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Summary 

In this thesis we present the results of calculations of the properties of quantum spin systems. 
The majority of the work is concerned with one dimensional spin chains and the particular 
effects that reduced dimensionality produce. The final chapter describes some earlier work on 
mixed valence manganite compounds. 

We demonstrate one derivation of the Heisenberg Hamiltonian and discuss its applicability to 
modelling magnetic systems both in three and one dimension. We discuss systems that are 
exactly soluble and the failure of spin wave theory in I-D. The Density-Matrix 
Renormalisation Group (DMRG) method is discussed in detail as is the extension to finite 
temperature (TMRG). 

We show results of calculations on a number of S=1/2 and S=l models and fundamental 
differences in their excitation spectra is observed. The thermodynamics of these systems have 
been obtained over a wide temperature range. In addition, excellent agreement with 
experiment is shown for a number of quasi one dimensional compounds. The DMRG and 
TMRG are shown to be very competitive and accurate methods of studying such systems, 
especially in the case of gapped systems. 

The final chapter discusses the role of correlated magnetic clusters in determining the magnetic 
properties of mixed valence manganites at temperatures near the Curie temperature. Our 
results are supported by recent direct experimental observation of the formation of these 
clusters. We also briefly discuss some preliminary results regarding the effect of an interface 
on the electronic and magnetic properties of these compounds. 
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1. The Heisenberg Interaction 

1.1 Origin of the Heisenberg Model. 

Much of the work in this thesis is devoted to studying properties of one dimensional 

Heisenberg models. This model, introduced in 1928 [1], is widely used to model the 

interaction of magnetic moments in magnetic insulators and has been extensively 

studied over the last 60 years. As such it is interesting to see how the Heisenberg 

interaction arises naturally from the treatment of the Schrodinger equation for an 

electron in a solid [2,3,4]. 

Consider the Hamiltonian 

(1.1 ) 

where V(!:;) represents the electron ion interaction and the third term is the electron-

electron Coulomb interaction. 

It is convenient to work with the second quanti sed form of the Hamiltonian and we 

choose a basis consisting of Bloch functions which are eigenstates of h the one 

electron part of H. We also make the approximation of only considering a single band 

(i.e. an s-band model). Although most magnetic phenomena are due to interactions 

between d-band electrons, the five fold degeneracy makes an analytic treatment 

prohibitive. It will be seen that the one band model contains many of the features for a 

many body treatment of magnetism that would be produced by a more exact treatment. 

It should also be noted that this approximation is the same starting point used by 

Hubbard in deriving what is now known as the Hubbard Hamiltonian [5]. 



We can now write the Hamiltonian as 

where B k are the one electron eigenvalues of the one electron part of the Hamiltonian 

We can cast the Hamiltonian into a site representation by introducing Wannier 

functions, defined as the inverse Fourier transform of the Bloch functions 

(1.3) 

and the creation and annihilation operators for the Wannier functions are defined by 

( 1.4) 

and 

1 '" ikR/ a iu = rAT L..Jakue 
~N k 

(1.5) 

In systems for which the band width is small, the Wannier functions are localized on 

the ionic sites which will emphasize the site nature of the Heisenberg model. 

In terms of these functions, H is given by 

( 1.6) 

where 

(1.7) 

and 

("Ill 2Jw*(r-Ri)w*(r'-Rj)w(r-Rk)w(r'-R/) 
1) - kl) = e drdr' 

r Ir' -rl 

(1.8) 
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Expanding the last term of the Hamiltonian into the various one and two centre terms 

gives 

(1. 9) 

where n jU is the number operator for electrons on the ith site with spin a , 

_ I 2j1w(r)nw(r't , 
U - -e drdr 

2 Ir- r'l 
(1.10) 

(1.11) 

the first two terms of the Hamiltonian constitute the Hubbard model, which assumes 

that the one centre integral, U ,corresponding to the Coulomb repulsion between two 

electrons of opposite spin on the same site, dominates the electron-electron interaction. 

If the summations are performed in the third term it turns out to be spin independent 

and hence doesn't contribute to magnetic effects. J ij is the direct electron exchange 

term and the last term is a pair hopping term which we won't consider. 

We will now consider the case of a magnetic insulator at half filling. In the limit 

u ~ 00, the Coulomb repulsion prohibits double occupancy on the same site and 

hence the system has one electron localized on each site. We can therefore completely 

describe states of the system by specifying the spin configuration of each 

electron I a)" 'a N)' 

Now consider matrix elements of the Hamiltonian between these states. The first three 

terms only contribute to diagonal elements and so it is the exchange term which 

3 



governs the magnetic states of the system in the U ~ 00 limit. We represent the spin 

state of each site by a two component vector 

t = (~) (1.12) 

and in this basis we can represent the fermion operators as 2 x 2 matrices. 

(1.13) 

We can represent these in terms of Pauli matrices defined by 

a = (0 -i) 
y i 0 

(1.14) 

By expanding out the exchange term we see that 

(1. 15) 

where we have defined the spin operator which has components a x . a y and a:. 

Therefore we can write the Hamiltonian for the spin configuration of the system in the 

limit of single occupancy as 

(1.16) 

which is the Heisenberg Hamiltonian. 

It is interesting to note that the exchange integral of equation (1. 11) is positive and 

hence favours ferromagnetism. This can be understood as a consequence of the 

antisymmetrisation of the wave function. The exclusion principle will on average keep 

electrons of the same spin further apart and hence their Coulomb interaction energy is 

lower. However, as many magnetic insulators actually exhibit antiferromagnetic 
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ordering it is interesting to see how by perturbing away from the U ~ 00 we can show 

that an antiferromagnetic Heisenberg interaction can be induced. First we will make the 

approximation that there is only significant overlap of Wannier orbitals when they are 

centred on nearest neighbour sites. We now consider the first term in the Hamiltonian 

of equation (l. 9) and separate it into diagonal and off diagonal terms. 

L L G ijat(J"aj(J" = L L G oni(J" + L L ta/(J"aj(J" (1. 17) 
ij (J" i (J" (ij) (J" 

where the first term just sets the zero of energy for the system and t is the one electron 

Hamiltonian matrix element between Wannier orbitals centred on nearest neighbour 

sites. This term can be thought of as hopping an electron from one site to another 

while conserving its spin. If we are in the U ~ 00 limit then at half filling the system 

will be in the state with one electron per site, hopping processes can only occur 

between adjacent sites if the electrons have opposite spin and the large Coulomb 

repulsion prohibits this. However, if we perturb away from this limit we can calculate 

the second order change in energy due to hopping conductivity as 

(1.18) 

The states connected to the ground state by a non-zero matrix element have one site 

vacant and one site doubly occupied by an antiparallel spin pair. The energy of this 

state is dominated by the Coulomb interaction of this spin pair and hence 

Eo - E; ~ -lJ. Therefore 

(1.19) 

Expanding the operator H2 out gives 
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H2 = ~)2 Lai:ai<T,aj<Ta;<T' ( 1.20) 
(if) <T<T' 

1 ,2 
which can agam be expressed m terms of Pauli matrices as - L-(s, . s) - 1) . 

2 (I)) lJ 

Therefore the hopping of electrons from site to site induces an anti ferromagnetic 

2 

Heisenberg interaction of order _1_. This is the basis of the 1-.1 model [6] which 
2U 

consists of a one band model with doubly occupied sites projected out and 

parameterized by hopping integral t and Heisenberg interaction energy .J. 

As mentioned earlier, most magnetic interactions are due to d-band electrons. The 

spins of these electrons can be coupled on each site and the Heisenberg Hamiltonian 

can be generalised to higher spins by considering the relevant Pauli matrices. 

Now that it has been shown that the magnetic interaction in insulating materials can be 

modeled by the Heisenberg Hamiltonian we will discuss some of the properties of its 

ground state and low lying excitations to give some background to the calculations 

described in the next two chapters. 

1.2 Spin waves in a ferromagnet. 

In this section will develop the theory of spin waves in a ferromagnet and show that at 

low temperatures they can be thought of as non-interacting collective effect which 

determine the excitation spectrum of the system. 

Taking a general ferromagnetic Heisenberg Hamiltonian of spin S with nearest 

neighbour interaction 

H = -.1"'" S . S ~ I } 
(1.21) 

M 
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we can describe states of the system by giving the z-component of spin at each site, 

1st ... s~ ). The quantum ground state has all spins aligned in the state with SZ = S . 

Alternatively we can label the states by giving the deviation n of each spin from 

saturation i.e. nj = S - s,z. States labeled in terms of their deviation we will denote by 

I nl ... n N ). It will be useful to express the spin operators in terms of the usual spin 

raising and lowering operators defined by 

(l.22) 

U sing these operators we can write the Hamiltonian as 

H = -J" SZ SZ + ~(S+ S~ + S- ~1+) 
~'J 2' J ''-l 
(jj) 

(1.23) 

We want to determine the effect of the spin operators on states represented by their 

deviation from saturation n. Considering first the z-terms acting on a pair of spins 

StS;lnj,nj)=S/S;IS-nj ,S-nj ) (1.24) 

= S2 - S(nj +nj )+njn j 

For the off diagonal terms we need to use the results for the spin raising and lowering 

operators acting on a state of spin Sand z component m: 

I 

S+lm) = [S{S + 1) - m{m + I)Flm + I) 
(1.25) 

I 

S-Im) = [S{S + I) - m{m -1)Flm -1) 
(1.26) 

We can therefore write 
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(1.27) 

1 

= [S(S + 1) - (S - n)(S - n + 1))2IS - n + 1) 

and similarly 

S-I Ii) == S-I S - n) (1.28) 

I 

= [8(8+ 1) -(S-n)(S-n-1}]21-8-n-1) 
I 

= [ 2~ 1 - ;S) Y In+fl n+1) 

These expressions suggest a transformation to bosonic operators and this was first 

introduced by Holstein and Primakoff [7] who defined 

using which we can write 

I 

1 ( +)2 S+ = (2S)2 1 - ~; a 

1 

I ( +)2 S- = (2S)2 a+ 1 - a2S~ 

We can now express the Hamiltonian as 

H = -JS2 NZ + JSz'Laj+aj - JLataja;aj 
(ij) 

( +) i ( a+ a J ~ -JSL 1 - a j a j a;a; 1 _ _ 1_' _J 

(ij) 2S 2S 

I I 

-JS"Lat(l- a;a;)2(1_ a;a1 J2 a
J 

(ij) 2S 2S 

8 

(1.29) 

(1.30) 

(1.31) 

(1.32) 

(l.33) 



This is a complex Hamiltonian which can't be solved exactly. However, we can expand 

the series and only keep quadratic terms. This gives the Hamiltonian as 

H=JSZLaj+aj -JSLaja; +aj+a
J 

(I)) 

which can be diagonalised by introducing the Fourier transformed variables 

in terms of which 

where 

h + - _l_~ jk·j + 
k - r>:r L... e aJ 

'" N i 

(1.34) 

(1.35) 

(1.36) 

(1.37) 

with the sum over 8 being over the nearest neighbours. For lattices with a symmetry 

centre r k = r -k and Iejk.J = 0 . Using these relations and the commutation relations 
k 

for h and b + allows the Hamiltonian to be written 

H = JSZL(l- r k)b; bk (1.38) 
k 

This equation gives the dispersion relation for spin waves, or magnons as they are 

often referred to as, for a ferromagnet as 

liJ(k) = 1SZ(I- r k) (1.39) 

1.3 Spin waves in an antiferromagnet 

The Holstein-Primakoff transformation to bosonic variables can also be carried out for 

an antiferromagnetic Heisenberg Hamiltonian. In this case we define creation and 
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annihilation operators for each of the two sub lattices and consider deviations away 

from the Neel state which has all the spins on one sublattice saturated with z-

component +S and the other with all the spins in the -S state. We define all and a i 

which create and destroy deviations from the saturated state on the ith site on one sub-

lattice and similarly bt and bi are defined for the other sub-lattice. Forming the 

Fourier transformed operators 

1 ~ ik-j 
ck = r>:T £..J e a j 

vN j 

+ 1 L -ik·j + Ck=-- e a IN . } 
} 

allows the Hamiltonian to be written as 

H = 2NZlS2 
- 2JZSLY k(c~d: + ckdk ) +C:Ck + d: dk 

k 

(l.40) 

(1.41) 

This Hamiltonian can be diagonalised exactly by making use of the Bogoliubov 

transformation [8] from which the dispersion relation can be shown to be 

I 1 

m{k} = JZS2[1- Y~F 
(I.42) 

Once the dispersion relations for the magnons 10 both the ferromagnetic and 

antiferromagnetic models are determined they can be used to calculate the 

thermodynamic properties of the system. We have so far neglected any interaction 

between the spin waves which arise from including the higher order terms in the 

Hamiltonian (1.33). It would therefore be expected that spin wave analysis of these 

systems would be most accurate at low temperatures when the number of magnons 

excited above the ground state would be small. As we shall demonstrate now, this is 

10 



correct in three dimensions, however in lower dimensions simple spin wave theory is 

insufficient and magnon - magnon interactions cannot be neglected. 

1.4 Calculations using spin wave theory. 

For the case of a ferromagnet, the quantum ground state has all spins aligned parallel 

with z-component of spin equal to S. We can investigate the change in magnetization 

as a function of temperature by calculating the expectation value for the number of 

magnons excited which is obtained from applying Bose statistics to the spin waves. 

The mean number of magnons excited with wave vector k is given by 

1 
(nk ) = e1iE(k) _ 1 

and so the number of flipped spins is given by 

(1.43) 

( 1.44) 

with the summation over all allowed k values in the first Brillouin zone. This sum can 

be evaluated by converting the sum to an integral which is valid if the number of sites 

N is large. We can also use the fact that the Bose factor becomes very small for 

increasing k allowing the integral to be taken over all of k-space and E(k) can be 

expanded in terms of k. For a simple cubic crystal with lattice constant a. 

( 1.45) 

which allows us to write 

(1.46) 

The integral can be performed analytically and expressed in terms of the Riemann zeta 

function and gives the temperature dependence of the reduction in magnetization as 

11 



3 

M1 ~ T2. This result was first derived by Bloch [9] and accurately reproduces the 

magnetization curves of many ferromagnetic materials. By similar calculation the 

5 

internal energy and heat capacity can be shown to vary like T2 and ]'2 respectively. 

In the case of an antiferromagnet the classical, or Neel, ground state which has all the 

spins on one sublattice in the .'It = +S state and all those on the other sub lattice in the 

.'It = -S state, is not the quantum ground state. This is due to the off diagonal terms in 

the Heisenberg Hamiltonian which flip pairs of opposite spins. In order to give an 

indication of what the system looks like at T = 0, it is instructive to calculate the 

average magnetization on each sub lattice which is given by 

(1.47) 

which for a simple cubic lattice gives a sublattice magnetization of ~ 0.87S [10], the 

reduction being due to quantum fluctuations. This shows that the Neel state, although 

not the exact quantum ground state, is a good approximation for many purposes. 

For small k, the magnon dispersion relation is approximately linear. In an analogous 

way to the Debye model for phonon dispersion, the decrease of sublattice 

magnetization, the internal energy and the specific heat can be shown to behave like 

T2, T4 and r3 respectively in three dimensions [2]. 

Spin wave theory has proved accurate in describing experimentally derived results for a 

wide range of magnetic systems. However, when treating systems with reduced 

dimensionality, the situation is less encouraging. To illustrate the problem, consider 

again the calculation of reduction of magnetization with temperature for a ferromagnet 
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but now considering a one dimensional chain. The mean number of magnons excited is 

given by 

( 1.48) 

This integral is divergent, meaning that although the classical fully aligned state is the 

quantum ground state in ID, at any finite temperature this state is destroyed and the 

system becomes disordered. This lack of long range order is a typical property of one 

dimensional systems. In two dimensions, the situation is the same as is true in all 20 

systems in which a continuous symmetry is broken. This is known as the Mermin-

Wagner theorem. [11 ] 

The case of an antiferromagnet is also changed in one dimension. Not only does the 

magnon occupation diverge at finite temperature, but so also does the T=O sublattice 

magnetization. This indicates that in ID, the Neel state is no longer a good 

approximation to the true quantum ground state. Hence, to study the properties of one 

dimensional magnetic systems a different approach is required. 

1.5 One Dimensional Magnetic Systems 

The Heisenberg model for a one dimensional chain has been the subject of a great deal 

of theoretical study for over sixty years for a number of reasons. Foremost amongst 

these is the fact that often problems can be solved in one dimension that are intractable 

in three dimensions in addition to the fact that the physics of 1 D systems is often 

strikingly different to that found in higher dimensionality [12]. Furthermore recent 

experimental studies have shown that a number of magnetic materials can be very 

accurately approximated by quasi ID models [13]. Much recent attention has been 
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concentrated on understanding the consequences of the Haldane conjecture [14]. This 

is the proposal put forward in 1983 that there is a fundamental difference in the nature 

of the excitation spectra of integer and half integer spin chains, namely that in the 

thermodynamic limit, integer spin chains have a finite energy gap between their ground 

and first excited states while half integer chains have a gapless spectrum. The existence 

of this gap has been confirmed by experiment on quasi 1 D magnets and has been 

calculated numerically to high accuracy. The next two chapters describe numerical 

calculations on a number of S =.! and S = 1 models and their comparison with 
2 

experiment, but first a brief description of what can be solved exactly will be presented 

and then a discussion of the Lieb-Shultz-Mattis theorem is made which gives a possible 

explanation for the non-existence of a gap in half integer spins chains. 

1.6 The Bethe Ansatz 

In 1930 Bethe [15] investigated the interaction between spin waves for an S = 1/2 

Heisenberg chain. His method allows two sets of equations to be formed for describing 

the spin states for the chain with a particular number of up and down spins. The 

equations determine the velocities and momenta of the excitations. The exact ground 

state of the antiferromagnetic chain was shown to have an energy of 1/4 -ln2 per site, 

which is significantly lower than the energy of the Neel state, and to exhibit no long 

range order. The Bethe Ansatz also allows the thermodynamics of the system to be 

represented as an infinite set of non-linearly coupled integral equations. These can be 

solved numerically to obtain the free energy of the system. Higher spin models cannot 

be solved by the Bethe ansatz except in certain circumstances [16] and generally such 
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systems can only be tackled numerically by techniques such as exact diagonalisation, 

Monte-Carlo methods and series expansion. 

1.7 The Lieb-Shultz-Mattis Theorem 

In 1961, Lieb, Shultz and Mattis (LSM) gave a rigorous proof that for S = 1/2, the 

Heisenberg chain has no energy gap between its ground state and first excitation [17]. 

This argument was extended by Aflleck and Lieb to arbitrary half integer Ic~'. The LSM 

theorem proceeds as follows. 

L 

Starting with the Hamiltonian H = ./L Sj . Sj+! we observe that H conserves parity as 
j=! 

all the interactions along the chain are equal. The ground state of this model is denoted 

by IIf/ 0) and the ground state energy as Eo. Now consider another state 11f/}) which 

is created from the ground state by taking a section of the chain containing an odd 

number of spins and rotating them about the z-axis, with the twist varying from 0 to 

27r over the section. This can be expressed as 11f/!) = Uilf/ 0) with 

(1.49) 

where the number of twisted spins is 21 + 1. 

The difference between the energy of this state and the ground state is given by 

(1.50) 

which is of order 1/1 . 

This shows that in the limit L ~ 00, we can construct a state with vanishingly small 

energy gap between it and the ground state. In order to show that IIf/ 0) and II/I}) are 

distinct states, we consider the relative parity of them. If we apply the transformation 
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St ~ -S~i this is equivalent to a product of parity and reflection about the y-axis by 7t 

1 

and can be expressed as exp( - 2i 1i L: S;' ). As the summation contains an odd number 
j=-I 

of spins, the above expression takes the values + 1 and -1 for integer and half integer 

spin respectively. Hence, in the half integer case IIf/ 0) and IIf/ 1) are distinct states and 

the excitation spectrum is gapless. 

1.8 Exact Diagonalisation and Quantum Monte Carlo 

Methods 

Much information about quantum many-body systems is derived from exact 

diagonalisation studies of finite chains. That is, numerically calculating all or some 

fraction of the eigenvalue spectrum of a particular Hamiltonian and then using these 

results to obtain ground state and/or thermodynamic properties of the finite size 

system. Finite size scaling can then be employed to infer information about the system 

in the thermodynamic limit. The limiting factor in exact diagonalisation calculations is 

computational resources. In general for a lattice system of I sites with n degrees of 

freedom per site, the size of the Hilbert space scales like nl. With regard to spin 

chains, this limits the size of lattice currently feasible to about 30 sites for S = 1/2 , 22 

sites for S = 1 and 14 for S = 2. Calculations on lattices of these sizes are very 

memory and CPU intensive, requiring supercomputing resources. Another point to 

consider is the validity of extrapolating finite size results to the thermodynamic limit. 

This may be of relevance when the system is near criticality and the correlation length 

diverges hence becoming larger than the size of the lattice being treated. 
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Quantum Monte Carlo methods involve sampling random configurations of the Hilbert 

space of the Hamiltonian and calculating the properties of the system statistically. Such 

methods can generally deal with larger size lattices than exact diagonalisation but 

larger errors occur due to the random nature of the process. 

1.9 Modified Spin Wave Theory and Green's Function 

Techniques 

An extension of spin wave theory was developed by Takahashi for low dimensional 

ferromagnets [18]. This involved adding the constraint that the magnetization is zero 

for all finite temperature. This was achieved by including an effective chemical 

potential which acts as a Lagrange multiplier when the Hamiltonian is diagonalised. 

The results for the S = 1/2 Heisenberg chain agreed well with the numerical solution 

of the Bethe ansatz integral equations. 

The theory was extended to antiferromagnets by Hirsch and Tang [19] and also by 

Rezende [20]. The latter showed that this theory predicted a gap in ID for integer 

spin, which was qualitatively in accordance with the Haldane conjecture. However, it 

could not prove the non-existence of a gap for half integer spin. 

Kondo and Yamaji [21] developed a Green's function method for investigating the 

thermodynamic properties of low dimensional ferromagnets for S = 1/2 and this was 

extended to arbitrary spin by Suzuki, Shibata and Ishii [22]. This involves forming the 

equations of motion for the double time Green's function ((S;(/);S;(/'))) and then 

decoupling them when the terms reach fourth order. The results compared favourably 

with exact diagonalization values. 
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2. Density Matrix Renormalisation Group Methods. 

This chapter describes the density matrix renormalisation group methods which will be used in 

the following two chapters. The failure of the real space methods is discussed and the DMRG 

is introduced. Its application to the study of quantum lattice models at both T = 0 and at finite 

temperature is described. 

2.1 Real Space Renormalisation Group. 

The concept of renormalisation is a common one in physics. The rescaling of a problem in 

order to make it a tractable one or to extrapolate results to the thermodynamic limit are 

techniques common to many fields. The renormalisation methods discussed in this chapter 

stem from the work of Kenneth Wilson and relate to the application of renormalisation group 

transformations applied to interacting quantum systems on a lattice [1]. The introduction of 

the Real Space Renormalisation Group (RSRG) and it's success in treating the Kondo 

problem was a milestone in the understanding of critical phenomena and earned Wilson a 

Nobel prize. The RSRG appeared to offer a systematic but non-perturbative way of reducing 

the number of degrees of freedom associated with a particular quantum lattice model and 

hence allow calculations of quantities in the thermodynamic limit (Number of sites, N ~ 00 ). 

Applications of the RSRG, however, where discouraging. The results obtained from applying 

the method to systems such as the Hubbard [2] models in 1 D and to investigating Anderson 
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localisation on a 2D lattice [3] gave results that were inaccurate and misleading. In order to 

appreciate the shortcomings in the RSRG method it is necessary to understand the algorithmic 

steps involved in a typical RSRG calculation. 

Consider a ID lattice with n degrees of freedom per lattice site (i.e. n=2 for a S=l/2 chain; 

n=4 for the ID Hubbard model). The first step of the calculation involves isolating a small 

block (usually a single site) of the lattice B. The Hamiltonian HB describes all the interactions 

between sites contained within B. Now consider two identical blocks Band B joined together. 

We can denote the state of one block B by Ii), the state of the other by 11) and hence the 

combined block BB by li)I)). Matrix elements of the Hamiltonian for the block BB will be of 

the form: 

(2.1) 

where Hint describes the interaction between the blocks, which for a system with only nearest 

neighbour interactions involves only the end sites of each block. HBB is diagonalised to obtain 

the eigenstates of BB. We can now use BB as the basic block in our procedure (i.e. BB ~ B) 

and consider a system consisting of it joined to a copy of itself and repeat the process above 

iteratively. In this way the Hamiltonian HBB obtained at each stage of the iteration describes 

longer and longer chains and calculations of expectation values of observables should tend 

towards their thermodynamic limits. However, as the chain length increases, so does the size 

of the Hilbert space required to describe it. If the chain is £ sites long then the number of states 

needed to fully describe it is nt . A system of truncation is obviously required if the calculation 

is to be feasible. If ground state properties and low lying excitations are of interest then an 

obvious way of restricting the basis states is to retain only the lowest energy eigenstates of 
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HBB at each stage and use these to describe the combined block at the next iteration. Using this 

method of truncation the RSRG steps can be summarised in the following steps. 

1. Construct the Hamiltonian HB for an isolated block B. 

2. Form a combined block BB and form its Hamiltonian HBB. 

3. Diagonalise HBB and retain the m lowest energy eigenstates If/i. 

4. Rotate HBB into the basis described by the states If/i using H B' = 0 H HB 0 + where B' 

denotes the block BB represented in the If/i basis and 0 is the matrix whose rows comprise 

of the m lowest energy eigenstates If/i. 

5. Replace B by B' 

6. Go to step 2. 

The reason for the failure of the RSRG in giving accurate results when applied to a variety of 

systems was not obvious until White and Noack published the first of a series of seminal 

papers describing quantum renormalisation groups [4]. They considered applying the RSRG to 

aID tight-binding model and it became apparent that the problem lay in the boundary 

conditions used when building up the chain from the individual blocks. 

Consider a point in the calculation where we have a block B described by some basis states I i) . 

Without loss of generality we can consider a point in the calculation where B is large and 

hence the Ii) 's are quantum mechanical particle-in-a-box states. If we consider the block in 

isolation then its eigenstates have a node at either end. For instance, the three lowest energy 

eigenstates would look like: 
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,." .... / ' ............. 

,..' -............ /~ 
'--------------

The next step of the calculation would be to use these eigenstates to describe a block of twice 

the size. It is easy to see that the lowest energy state that can be constructed has the form: 

which is NOT the lowest energy eigenstate for a particle in a box of this size. It is seen that the 

boundary conditions imposed when diagonalising RBB determine the form of its eigenstates. 

White and Noack showed that other choices of boundary conditions (eg. periodic, anti-

periodic) fared no better and argued that an accurate truncated basis set must combine 

eigenstates obtained from diagonalising RBB a number of times imposing different boundary 

conditions each time. In this way it is possible to simulate the effect of interactions between 

the isolated block and the rest of the lattice. It is this concept which lies at the heart of the 

Density Matrix Renormalisation Group. 

2.2 Density Matrix Renormalisation Group. 

Once it was realised that it was the incorrect treatment of boundary conditions that had lead to 

the inaccuracies in RSRG calculations, White devised a general systematic method of dealing 

with this problem (DMRG) [5]. Rather than diagonalise a section of the lattice several times, 
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each time with different boundary conditions, an alternative approach is to consider the block 

connected to two or more copies of itself at either end and diagonalise this 'superblock'. 

Having obtained the superblock eigenstates, the projection of these onto a section of the 

superblock comprising two of the initilal blocks is calculated. These projected states now form 

a basis for a two block system which becomes the basic unit of a larger superblock and the 

process continues iteratively. If one is interested in ground state properties of the lattice then 

the projection need only be made onto the lowest energy eigenstate of the superblock. In order 

to clarifY this process, consider the first steps of a calculation. 

The initial block B J consists of a single site and the superblock is made up of four such blocks. 

The state of the superblock can be described by 

(2.2) 

and there will be n4 possible states for the superblock where n is the number of degrees of 

freedom per site. 

The Hamiltonian for the superblock is constructed and its lowest energy eigenstate \fo 

obtained. Now consider blocking the sites together to make two blocks each containing two 

sites. 
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The states of each block can be expressed as 

(2.3) 

(2.4) 

We want to keep the states I i) which project onto \{Io in order to construct a basis set for the 

new two site block. The two site block then becomes the basic unit of a new superblock 

containing four of these new blocks and the process continues iteratively with the size of the 

lattice doubling at each iteration. However, in general all the states will project onto the 

ground state of the superblock and so we again have the problem of an increasing Hilbert 

space as in the RSRG method. Therefore we need a truncation scheme for deciding which 

states to keep and which to discard. The method of choosing the retained states is the main 

difference between the DMRG and the RSRG. 

White formulated the problem as follows: The superblock, B{B; is in its ground state \{In 

which we can write as 

'Po = L'f/ifli)IJ) (2.5) 
;,j 
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where Ii), i = 1...1 is a complete set of states describing B; and I)), ) = 1...J is a complete 

set of states describing B;. We want to produce a truncated set of states I ua
), a = 1. •• m , 

m < I which optimally describes B; . That is we want to construct a wave function 

'V = Iaa.il u
a )1)) (2.6) 

a.i 

which minimises S = 11\jI) -I'V t ' varying all aa.i and uU
. Without loss of generality we can 

perform a truncation on the Ij) 's as well i.e. 

(2.7) 
U 

In terms of matrices 

(2.8) 

and S is to be minimised over all uU
, vll and all for a given value of m. The solution to this 

equation is achieved by forming the singular value decomposition of the matrix 'V . This is a 

common technique in linear algebra and allows \jI to be expressed as the product of three 

matrices 

\jI = UDV T (2.9) 

where U and D are I x I matrices, V T is an I x J matrix, U and V are orthogonal and D is a 

diagonal matrix whose diagonal elements are the singular values of 'V . For a given m, S is 
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minimised by choosing the aa as the m largest modulus diagonal elements of D and the II" 

and va as the corresponding columns of U and V respectively. 

The matrix U is also seen to diagonalize the reduced density matrix p for B{ which is defined 

by 

(2.10) 
j j 

glvmg 

(2.11 ) 

The eigenvalues of p, W a , are hence related to the singular values of If by wa = a ~. We can 

therefore obtain the optimal set ua by extracting the m eigenstates of p with largest 

corresponding eigenvalues. 

The physical significance of choosing this basis set is that each reduced density matrix 

eigenvalue, W a , gives the probability of B{ being in state ua given that the superblock is the 

state 'If G . Forming a truncated basis from the states with largest eigenvalue therefore retains 

the most significant states required to reproduce the chosen superblock target wave function 

m 

accurately for a given m. As Trp = 1, an estimate of the truncation is given by 1- L wa . 
a=1 

Computationally it is more efficient to construct the superblock at each stage from a block, a 

reflection of the block and two sites in between. For example the superblock at the first 

iteration would have the form 
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and at the second it would look like 

B I is usually referred to as the system block and B2 as the environment block. At each stage an 

augmented block consisting of B I and its adjacent site is projected onto the ground state and 

becomes the basic block for the next iteration. This method of increasing the superblock size 

means that the lattice grows more slowly but the sizes of matrices to be diagonalised are 

reduced making their computation easier. 

The steps in a typical DMRG calculation can be summarised as follows 

1. Construct an initial block B consisting of one site and form its Hamiltonian. 

2. Construct a superblock consisting of two blocks with two sites between them. Form the 

Hamiltonian for the superblock. 

3. Calculate the lowest energy eigenstate of the superblock Hamiltonian. 

4. Form the reduced density matrix p for an augmented block B' consisting of B and its 

neighbouring site. 
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5. Diagonalise p to find its eigenvalues Wi and corresponding eigenvectors Uj Retain the m 

most probable eigenstates as the new basis for B' . 

6. Construct the Hamiltonian for B' and then rotate into the Uj truncated basis. 

7. Replace B by B' and go back to step 2. 

We now consider the effect of truncating the Hilbert space on calculations of ground state 

properties of the system under consideration. Suppose for some Hamiltonian, we know that 

the true eigenstates are I cP 1 ) •• ·1 cP N) with corresponding eigenvalues AI" . A N such that 

AI < A 2 ••• < AN' We represent a summation over some subset of this basis by r'. We now 

consider some approximation to the ground state of the system in the truncated basis which is 

given by 

(2.12) 

We can calculate the energy of this state ('" IHI "') giving 

(2.13) 

if we denote the eigenvalue of the lowest energy eigenstate in the summation as A J then we 

can write 

(",IHI "') = !:' a;[A i + (A; - A i)] 
= !:'a;2 Aj +!:'a;2(A; -Ai) 

= Ai +!:'a;2(A; -Ai) 
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where we have assumed that 11fI) is normalised. As the second term in the above expression is 

positive we have shown that Ai is a variational upper bound on energy of the state 11fI) . If the 

truncated basis includes the true ground state then the upper bound is the ground state energy 

AI' else the upper bound is one of the excited states. 

The first applications of the DMRG method were in the study of quantum spin chains. The 

method gave unprecedented accuracy in the calculation of the ground state of S= 1 /2 

Heisenberg model reproducing the Bethe ansatz value correct to seven significant figures [5] 

and the ground state for S= 1 was calculated to an accuracy of two orders of magnitude 

greater than Monte Carlo techniques [6]. 

The DMRG method can also be used to calculate low lying excitations. In order to do this, 

rather than to project onto the ground state of the superblock, the superblock state with 

energy closest to the region of interest at each iteration is used as the target state. Using this 

method, the DMRG method was the first to give strong evidence to support Haldane's 

conjecture that all integer spin chains have gapped excitation spectra [6]. 

The DMRG can also be applied to electron models. In this case the target state is taken as a 

linear combination of superblock states which bracket the required filling. Using this method 

systems such as the t-J model [7] and Kondo lattice [8] have been studied. 

In the next two chapters we will use the DMRG to calculate zero temperature properties of a 

number of quantum spin systems. 

2.3 The Transfer Matrix 
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In order to extend the DMRG to calculate properties at finite temperatures it will be prove to 

be necessary to understand the application of transfer matrix techniques to classical lattice 

models. This section describes the use of transfer matrices in the calculation of thermodynamic 

properties of classical spin systems in 1 D and 2D. 

2.3.1 Transfer matrix in 1 D. 

As an example of the use of transfer matrices in ID, consider the one dimensional spin-1I2 

Ising model. The Hamiltonian for the system, in the absence of an applied field is: 

N-\ 

H = -JLO'jO'i+l 
;=0 

(2.15) 

where the spin variable cr can take the values + 1 or -1. We assume periodic boundary 

conditions i.e. 0' N+l = 0' \ 

The partition function for the system is: 

Z = L e J3.!(C1 tCl 2+C1 2C1 1"·+C1 N-tCl N+C1 N" t) (2.16) 
{C1 } 

where {O' } represents the sum over all states of all spins. Factorizing this expression gives 

Z = L eJ3.!C1 tCl 1 eJ3.!C11Cll • .. eJ3.!C1 N"t 

{a} 

We introduce the transfer matrix defined by 

T= (
1'..+ 
r+ 1'..-J = (el\l 

T -1\1 __ e 
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where 7;,la 2 = elllala2 We can now express the partition function as 

(2.19) 

Performing the summation over all spin states gives 

Z = 2, TN <11<11 = Tr(TN) (2.20) 
al 

which can be expressed in terms of the eigenvalues of T as 

(2.21) 

which is a general result independent of the model being studied. 

The usefulness 2.21 of can be illustrated by evaluating the free energy of the system. We 

consider a general n x n transfer matrix with eigenvalues AI such that Ao > AI > ... > All_I' 

The free energy per spin is given by 

F=-kT ~Inz =-kT >{~(l+ ~~)} 
(2.22) 

Taking the thermodynamic limit (N ~ 00) gives 

F = -kTlnAo (2.23) 

reducing the problem of finding the free energy to that of calculating the maximal eigenvalue 

of a matrix. It can be shown by the Perron-Frobenius theorem that T always has a real, 

positive definite maximal eigenvalue [9]. 
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For the case of the Ising model described above, the transfer matrix given by (2.15) has 

maximal eigenvalue 2coshjiJ. Applying equation (2.23) in the limit ~ ~ 00 gives the free 

energy per spin as -J. 

2.3.2 Transfer matrix in 20. 

The transfer matrix formalism can also be applied to classical spm models on a two 

dimensional lattice. The spin half Ising model in 2D is described by the Hamiltonian 

N M 

H = -JLLa n.ma n+l.m +a n.ma n.m+1 

n=1 m=1 

(2.24) 

where the n labels the rows of the lattice from 1 to Nand m labels the columns from 1 to M as 

shown in figure 2.1. The partition function is given by 

Z = L L'" Le-Jill 

01.l=±lo 1.2=± °N.M=±I 

glvmg 

Writing the n summation explicitly and applying periodic boundary conditions 

Z= L ... L exp 
01.1=±1 0N.M=±1 

~~" , .• " ,~ +" ,." ,._} 

[i/(f a 2.ma 3.m + a 2.ma 2.m+1 J+ ... 
m=1 

~~" N •• " , •• +" N •• " N_, J 
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(2.27) 



It can be seen that each of the terms in the exponential only depends on the spin variables of 

two adjacent rows. We define CT, as representing a spin configuration of the ith row and 

define a matrix T such that its elements are referenced by the spin configurations of adjacent 

rows: 

(2.28) 

The partition function can now be written in terms of T and the summation is performed over 

the rows 

(2.29) 

which can be expressed as 

Z = Tr(TN) (2.30) 

As in the one dimensional case this is a general result. 

For a finite lattice the matrix described by equation (2.28) is of dimensions 2M x 2M. If we 

denote the maximal eigenvalue by Ao then we can write the following inequality 

(2.31 ) 

Taking the logarithms of all three terms and dividing by the number of sites, NM, gives 

1 1 1 1 
-InA $ --lnZ $ -In.2 +-ln2 
M 0 NM M 0 2M 

(2.32) 

In the thermodynamic limit then, the free energy per site is given by 
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F - -kTln Z _ l' _1 1 "I - - . urn nll.o 
NM M-700 M 

(2.33) 

The obvious difficulty involved in proceeding to the thermodynamic limit is that the size of the 

transfer matrix increases without limit. This is contrast with the I-d case where the dimension 

of T was determined only by the number of degrees of freedom per site. We therefore require 

an approximation method for truncating the size of the transfer matrix as the lattice size is 

increased. The next section describes the application ofDMRG methods to this problem. 

2.4 Applying the DMRG to Classical Transfer Matrices. 

In order to understand the application of the DMRG algorithm to a two dimensional classical 

lattice system we again consider the 2D spin half Ising model whose Hamiltonian is given by 

2.21. If we consider the case of a 4 x 4 lattice, then the transfer matrix T has dimensions 

24 X 24. The matrix element between two row spin configurations can be written in terms of 

Boltzmann weights W (figure 2.2) as 

(2.34) 

where 

(2.35) 

Properties of this system can then be obtained from the eigenvalue spectrum of T. Now 

consider increasing the lattice dimensions to 6 x 6. We group the two leftmost spins of a row 

into the single spin variable ~ L and the two rightmost into the variable ~ R each of which can 
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take one of four values. The spin configuration of a row is now expressed as (~L 0' L 0' R~ R ) . 

The transfer matrix elements for this system are given by (see figure 2.3) 

(2.36) 

where TL and TR are transfer matrices for the left and right halves of the lattice respectively. 

We can repeat the blocking procedure, each time making the transformations (~L 0' L) ~ ~ ~ew 

and (~RO' R) ~ ~;ew .while at each stage TL and TR describe transfer matrices for the two halves 

of the lattice augmented by one site. As the lattice size increases and we approach the 

thermodynamic limit the properties of the system are dominated by the maximal eigenvalue of 

the transfer matrix which is obtained from the eigenvalue equation 

LT(2M)(~~O' ~o' ~~~ I~LO' LO' R~R )'PR (~L 0' LO' R~R) = A(2M)'P R (~~O' ~O' ~~~) (2.37) 
SL(J L(JRSR 

where 'P R is the right eigenvector of T. In general T is not symmetric and its left eigenvector 

corresponding to the maximal eigenvalue A is obtained from the equation 'PLT = 'PLA . 

Of course as the lattice size increases so does the size of the transfer matrix which must be 

diagonalized and we again require a systematic truncation scheme to make calculations 

feasible. Nishino applied the DMRG algorithm to this problem [10]: The reduced density 

matrix for the left hand side of the lattice is defined by 

P L (~ ~ 0' ~ I~ L 0' L) = L 'P L (~ ~ 0' ~ 0' ;~; )'P R (~ L 0' L 0' ;~; ) (2.38) 
(JR~R 
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(where n is the number of degrees of freedom per site) matrix O(4~ewl~\o-L) whose rows are 

the m retained left eigenvectors of PL expressed in the product basis ~Lo-L and similarly the 

mn x m matrix Q( 4 L 0-L 14~ew) whose columns are the m retained right eigenvectors of P L we 

can express the transformation TiM) ~ T1 M
+

1
) by 

7iM
+ \)( ~~n.w 0-'14~ew 0-) = L o( ~~new 14~ 0-' )71M

)( 4~ 0-'14 L 0-)w( o-'o-~Io-o- L )Q( ~ L 0-14~e>" (2.39) 

~LCT'~ LCT 

The corresponding mapping for TR is obtained in a similar manner. Using this application of 

the DMRG algorithm the thermodynamic properties of classical 2D systems in the 

thermodynamic limit can be calculated. As with the 1 D case the deviation from unity of the 

sum of the m retained eigenvalues of the density matrix gives a measure of the truncation error 

introduced into the calculation. 

2.5 Trotter-Suzuki-decomposition 

The transfer matrix technique can be extended to the study of the thermodynamics of one 

dimensional quantum spin systems by the application of a decomposition of the Hamiltonian 

developed by Trotter and Suzuki [11]. Consider the spin half Heisenberg model for an even 

chain of length N. The Hamiltonian is given by 

N 

H= LS; ,S;+1 
(2.40) 

;=\ 

where we impose periodic boundary conditions. 
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where we impose periodic boundary conditions. 

The Trotter-Suzuki decomposition is invoked by writing the Hamiltonian as 

where 

NI2 

HI = Ih2i - 1 
i=1 

NI2 

H2 = Ih2i 
i=1 

(2.41 ) 

(2.42) 

In order to study the thermodynamics of the system we require the partition function 

(2.43) 

We define 

(2.44) 

If we let cr i be the z-component of spin on the ith site we can denote a configuration of the 

spin chain by Icr Ii ... cr /). Then by inserting 2M complete sets of such states and summing 

over them, we can write 

M 

ZMN = III(cr~j-I ... cr~-lr-lllil/Mlcr~j ... cr~) (2.45) 

s j=1 

x( cr~) ···cr ~ Ie -1lli11M I cr ~j+1 ••• cr ~+l ) 
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where I cr: .. · cr~ ) = I cr~M+) ... cr~M+)) being a necessary condition for the evaluation of the 

trace. 

Each of H) and H 2 contain terms which commute and act on different pairs of sites. Hence, 

Z MN can be written in terms of two site matrix elements: 

(2.46) 

This leads to the standard 'checkerboard' depiction of the Suzuki-Trotter decomposition 

(figure 2.4) as a 2d lattice of dimensions N x 2M with periodic boundary conditions where 

the shaded regions indicate the sites connected by the two site matrix elements of equation 

(2.46). M is referred to as the Trotter number. Rewriting 2.43 in terms of local transfer 

matrices T given by 

(2.47) 

gives 

(2.48) 

Representing a configuration of the spins in the Trotter direction as I cr; ... cr;M ), we can write 

NI2 

ZMN =:LO T(cr;j_) ... cr;~llcr;j+l .. ·cr;t:l) 
a ;=1 

(2.49) 

where 

38 



M 

T( I 2M 112M) IT ( 2j-1 2j 1 2j-1 2j \..( 2j 2 j +11 2j 2 j +l) 
\0" 2;_1"'0" 2;-1 0" 2i+1 "'0" 2;+1 = 't \0" 2;-1 0" 2;-1 0" 2; 0" 2; r 0" 2; 0" 2; 0" 2;+10" 2;+1 

(2.50) 

j=1 

We identify T as the quantum transfer matrix between states of the chain in the Trotter 

direction (figure 2.5). The periodic boundary conditions allow this to be written as 

In the thermodynamic limit (N -t 00 ), the free energy is given by 

1 
F=--lnA 2P max 

(2.51) 

(2.52) 

where A max is the maximal eigenvalue of the transfer matrix T. In order to calculate F at 

different temperatures, we fix E = Yu in the above expressions and systematically increase 

M. At each stage we identify the temperature as YME' As M increases, so does the size of T. 

Most previous studies of spin systems using the quantum transfer matrix have involved 

applying Monte Carlo methods to T to determine its eigenvalue spectrum. In order to limit the 

size of matrices involved, we use Nishino's implementation of the DMRG for 2d transfer 

matrices. 

2.6 Transfer Matrix Renormalisation Group (TMRG). 

Following the method of Burs ill, Xiang and Gehring [12], we define a system block as one site 

and calculate the transfer matrix between it and its neighbouring sites (figure 2.6) 
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T, (a'n' ,u'lan,u; a"I''') = L r( CJ'n'la"n") r(n" ,u"ln,u) (2.53) 
n" 

A single site is also used to create the environment block, whose transfer matrix 7~ has the 

same elements as that for the system. For the spin half model being considered, the system and 

environment blocks have two possible states. A superblock is constructed, consisting of the 

system and environment blocks plus two sites with periodic boundary conditions. This gives a 

lattice with Trotter number M = 2. The superblock transfer matrix elements are given by 

(figure 2.7) 

(2.54) 

f: Tv (a;n{ a; la Inl a 2; a ;o-~)r. (a;n~ a; la 2 n2 a 1; a ;'a ;') 
0'1 0"2 

T is in general asymmetric. By calculating Amax we can determine the free energy for M=2, i.e. 

at a temperature of ~e . 

We increase the size of the Trotter dimension by augmenting both system and environment 

blocks with an extra site. Taking an augmented system block n, consisting of a system state p 

and a spin state v, the transfer matrix 1'.' for the augmented system block is determined from 

(figure 2.8) 

r/(a'n' ,u'lan,u;a",u") = L r. (aI" v'lopv;a",u"}r( v',u'lv",u") (2.55) 
v" 

Similarly for the augmented environment (figure 2.9) 

T.'(an',u'lan,u;a",u") = L r.(vp',u'I'P,u; v"I''')r(a''v''lav) (2.56) 
v" 
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A superblock is again constructed, corresponding to a lattice of Trotter number M=3, its 

transfer matrix formed and its maximal eigenvalue found. For larger M we need to have a way 

of truncating the basis states used to describe the system and environment blocks and this is 

done using a DMRG method. We use the left and right eigenvectors ( IfI ~ax I and Ilfl ~'LX) of the 

superblock transfer matrix corresponding to the eigenvalue A max to construct density matrices 

for the augmented system and environment blocks. The matrix elements between augmented 

system states n' (consisting of system state n{ and spin state 0-; ) and n (consisting of 

system state n] and spin state a 2 ) are given by 

(2.57) 

The matrix elements between augmented environment states n' (consisting of system state 

n~ and spin state a; ) and n (consisting of system state n2 and spin state 0- 2 ) are given by 

(2.58) 

We retain the m most probable eigenstates of the augmented system and environment blocks 

and use these as the new basis to describe the transfer matrices. The rotation into this basis is 

given by 

2m , 

I: (o-'n' ,u'lan,u;o-",u") = L (n' I n") I: (o-'n" ,u'lan"',u; o-",u" )(n'" In) 
(2.59) 

n",n"'=1 

where n' and n are augmented block states in the new basis and n" and n'" are in the old 

basis. The augmented environment block transfer matrices are similarly rotated and truncated. 

The process continues iteratively, using the new system and environment blocks to construct 
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the superblock. Each iteration produces the free energy at a temperature corresponding to 

1/ M£ and this can then be used to calculate other thermodynamic quantities. 

Considering the effect of truncation on the free energy, the partition function of the system is 

given by 

Z = Tr exp( - {3H) (2.60) 

where the trace is taken over all the states in the Hilbert space. If we now consider a truncated 

space and evaluate the partition function by taking the trace over only these states 

Z' = Tr'exp(-{3H) (2.61) 

As all the terms in the trace are positive we can write Z ~ Z' . Evaluating the free energy in 

the complete and truncated bases 

F = -kTlnZ F' = -kTlnZ' (2.62) 

hence 

F - F' = -kTln(:,) 
(2.63) 

as Z ~ Z', 1n(:,) ~ 0 and hence F ~ F'. Therefore we have shown that the effect of 

truncating the basis in the TMRG method is to give a variational upper bound on the free 

energy. 
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3. 8=1/2 Heisenberg Hamiltonians. 

3.1 Introduction. 

In this chapter we describe the results obtained in the study of S= 1/2 Heisenberg models using 

the DMRG at T=O and the TMRG at finite temperatures. The Hamiltonians considered are 

1 . Dimerised X-Y model 

NI2 

H = LJ1(S~_IS~ +S{;_IS{;)+ J2(S;;S~+1 +S{;S{;+I) 
(3.1) 

;001 

2. Alternating Heisenberg model 

NI2 

H = L J I (S2;_1 . S2;) + J2 (S2; . S2;+I) 
(3.2) 

;=1 

Modell. was the first model to be treated by the TMRG method and is exactly soluble at all 

temperatures. As such it has proved to be a useful test of the accuracy of the TMRG method. 

In this chapter we show the improvement to the results as a consequence of introducing 

asymmetric density matrices. Model 2. is not exactly soluble apart from in the uniform 

(.II = J 2) and dimer (J2 = 0) limits. This model is believed to accurately model a number of 

quasi one dimensional systems and as such the results can be directly compared with 

experiment. 
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3.2 Dimerised X-Y model 

The dimerised X-Y model is described by equation (3. 1) or in terms of a , the alternation 

parameter 

NI2 

H =.J'L (S;i_IS;i + S~_IS~) + a(S;iS;i+1 + S~Sri+l) 
(3.3) 

i=1 

where J = J) and a = J 2 /J1 . 

As already mentioned this model is exactly soluble [1] and its thermodynamics can be obtained 

from the free energy given by 

1 21f ( (3¢( O)J 
F = -- fIn 2cosh-- dB 

27r{3 0 4 

where fJ = 1/ kT, ¢(O) = cos~(O)+ aco~ 0+ ~(O)) and ~(O) = -tan-I a sin ~ ) . 
1 + aco 0 

(3.4) 

As a test of the T=O DMRG algorithms discussed, we have calculated the ground state energy 

and energy gap to the first excited state. Although the Hamiltonian contains no z-component 

of spin, we can still work within a basis in which SZ is diagonal. As H conserves S=, the 

superblock can be block diagonalised in this basis. This symmetry of the superblock is utilised 

when finding the ground state target wave function of the superblock which is calculated using 

the Lanczos or conjugate gradient methods (see Appendix I). If a single superblock state is 

targeted, as is the case in our calculations, then the density matrix p is also block diagonal 

and this symmetry was also exploited in our code. 

The table below shows the ground state energy per bond of the ground state as a function of 

a for different values of m the number of retained states in the system and environment 
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blocks and also the lattice size required to converge to the given accuracy for the m = 32 

case. 

a m=8 m=16 m=32 L Exact 

0.1 -0.25062539160 -0.25062539160 -0.25062539160(5) 10 -0.25062539228 

0.2 -0.252506313(4) -0.25250631349 -0.25250631349(6) 14 -0.25250631482 

0.3 -0.25565737(5) -0.2556573787(3) -0.25565737873(0) 18 -0.25565738066 

0.4 -0.2601042(4) -0.2601042715(5) -0.260 \0427155(9) 22 -0.26010427406 

0.5 -0.265885(8) -0.2658861023(2) -0.26588610249(3) 30 -0.26588610553 

0.6 -0.27305(8) -0.273059643(6) -0.27305964588(7) 34 -0.27305964942 

0.7 -0.2817(0) -0.28170714(5) -0.2817071668(6) 42 -0.2817071708 

0.8 -0.2919(4) -0.2919521(4) -0.291952376(3) 62 -0.291952381 

0.9 -0.303(9) -0.30399(8) -0.304000(2) 84 -0.304000233 

1.0 -0.31(8) -0.3182(6) -0.31830( 1) 164 -0.31830989 

The convergence of the ground state energy for the uniform case (ex = 1) is plotted in figure 

3.1 as a function of the lattice size L and as functions of 1/ Land 1/ L2 . This shows the small 

size dependence which appears to be of the form with 

Eo (00) = -0.318308 and a = 0.l322878 
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Similarly for the first excited state the energy per bond is shown in the table below. 

a m=8 m=16 m=32 

0.1 -0.250625(7) -0.250625(6) -0.250625(6) 

0.2 -0.25250(6) -0.252507(0) -0.252506(9) 

0.3 -0.2556(5) -0.255658(5) -0.255658(4) 

0.4 -0.260(0) -0.26010(5) -0.260105(8) 

0.5 -0.265(8) -0.26588(8) -0.265888(4) 

0.6 -0.272(9) -0.27306(1) -0.273063(0) 

0.7 -0.28(1 ) -0.28170(4) -0.281712(2) 

0.8 -0.29(1) -0.2919(3) -0.291960(3) 

0.9 -0.30(3) -0.3039(4) -0.30401(3) 

1.0 -0.31(8) -0.3182(5) -0.31832(9) 

Again, in figure 3.2 we plot the size dependence of the energy and it IS well fitted by 

Eo (L) z Eo (00 )-~ with Eo (00 ) = -0.318306 and a = 1.423991.The convergence to the 
L 

thermodynamic limit is seen to be much slower than in the ground state. We have also 

calculated the energy gap between the ground and first excited states shown in the table 

below. For this model, the ground state is a singlet and the first excited state a triplet. The 
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energy gap is therefore given by the difference between the lowest lying eigenvalues of the 

Hamiltonian in the SZ = 0 and SZ = 1 subspaces for L = 100. 

ex. m= 16 m=32 Exact 

0.1 0.45005 0.45003 0.45 

0.2 0.40009 0.40008 0040 

0.3 0.35015 0.35013 0.35 

0.4 0.30023 0.30019 0.30 

0.5 0.25037 0.25028 0.25 

0.6 0.20071 0.20040 0.20 

0.7 0.15173 0.15059 0.15 

0.8 0.10498 0.10098 0.10 

0.9 0.06484 0.05222 0.05 

l.0 0.01795 0.00936 0.00 

To estimate the size dependence of the gap we show in figure 3.3 the gap as a function of L, 

1/ Land 1/ L2 . The scaling behaviour is seen to change from - 1/ L form in the uniform case 

to a 1/ L2 form in the highly dimerised case. The extrapolated gaps are shown below for the 

slowest converging cases. 

ex. AE (exact) 

52 



0.9 0.05(0) 0.05 

1.0 0.001(4) 0.0 

From these results we can draw some conclusions about the convergence properties of the 

DMRG method. It is seen that the results for both the ground state energy and the energy gap 

are much more accurate and converge to the thermodynamic limit when the energy gap is 

large. The reason for this is twofold. Firstly, when there is a large gap, the target wave 

function is well separated from the next highest energy eigenstate of the superblock and so can 

be calculated more accurately by the sparse matrix algorithms used in the calculations. 

Secondly, when the system is gapless, it is in some sense at a critical point, and hence large 

lattices are required to accurately describe its thermodynamic properties. This necessitates 

many DMRG iterations and hence introduces larger truncation and accumulated round-off 

errors in the calculation. Also, as is the case when calculating energy gaps by other methods 

such as exact diagonalization, the gap is generally not obtained to the same accuracy as the 

energies themselves as the absolute errors add giving a larger relative error in t1E . We have 

also seen that if the finite size scaling behaviour can be determined for a particular quantity, 

then its thermodynamic limit value can be more accurately determined by extrapolation. The 

functional form of the size-scaling of the energy gap can also be understood qualitatively by 

considering the nature of the excitations in the gapped and gapless cases. For gapless system, 

the long wavelength excitations have a dispersion relation of the form E(k) - k, and will have 

a wavelength of the order of the lattice size, L. The energy gap from the ground state will 

therefore scale like 1/ L. Gapped systems, however, have a dispersion relation of the form 
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E ~ Ll + k 2 . The energy gap to the first excited state will therefore scale like .1 + 1/ /} . This 

is the scaling behaviour we have observed. 

Bursill, Xiang and Gehring (BXG) [2] calculated the thermodynamics of this system using the 

TMRG method. We will now consider a number of subsequent improvements to this 

technique. BXG only calculated the right eigenvector of the superblock and used the 

projection operator I f//R)( f//R I to calculate the density matrix elements. As described in the 

previous chapter we have calculated both the left and right superblock eigenvectors by means 

of a power method and the Arnoldi algorithm and used the projection operator I'll fI )( f// L I to 

produce an asymmetric density matrix. The added difficulty involved when dealing with 

asymmetric matrices is discussed in Appendix 1. We have also considered the symmetry 

properties of the transfer matrix. Consider the local transfer matrix which is related to the local 

Hamiltonian by 

(3.5) 

As h conserves the z-component of spin, the following conservation law holds 

(3.6) 

Ifwe make a change of basis (j~ = (-It) a~ then from equation (3.6) we have 

~1 ~1 ~2 ~2 

(Y 1 - a 2 = -(Y 1 + a 2 (3.7) 

or 

(3.8) 
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Transforming T into this basis means that it is diagonal in az
. This conservation law is true 

for the superblock transfer matrix as a whole and so it may be block diagonalised greatly 

reducing the size of the matrices needing to be treated. 

Another development of the method is that BXG calculated the free energy of the system and 

then calculated the internal energy as a numerical first derivative and the specific heat as a 

second derivative. As numerical differentiation has associated errors it is better to calculate the 

internal energy directly. This done by evaluating the quantity (H)/ N , where ( ... ) denotes a 

thermal average. This is achieved by constructing a superblock matrix U If' replacing one of 

the local transfer matrices by the operator 

(3.9) 

and then evaluating ('If L IV If I'lfR) / A to give the internal energy. This can then be numerically 

differentiated to give the specific heat. 

Similarly, the magnetisation of the system can be obtained by constructing the superblock 

transfer matrix M z constructed by replacing one of the T by the operator 

(3.10) 

(where the minus sign in the operator is a result of the basis change in equation(3. 7) ) and then 

BL: a; to the Hamiltonian, the susceptibility can be determined from X = (a=) / B . 
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Figure 3.4 show the free energy, internal energy and specific heat for the three cases a = 1.0, 

0.5 and 0.1 representing the uniform system and intermediate and strong dimerisation. The 

free energy is obtained to an accuracy of - 1 part in 106 for a = 0.1 and - 1 part in 104 for 

a = 1.0 for m = 32, Po = 0.05. The specific heat is also accurately reproduced and shows 

characteristic exponential low temperature behaviour in the gapped cases and algebraic 

behaviour in the uniform, gapless system. The introduction of asymmetric transfer and density 

matrices produces a marked improvement in the results compared with those of BXG, 

especially at lower temperatures. As with the zero temperature DMRG calculations, the results 

are most accurate in the gapped case. Only the low temperature region of the specific heat in 

the a = 1 case suffers from any appreciable error which is due to errors in numerically 

differentiating the internal energy as well as inaccuracies in the TMRG. method Now that the 

accuracy and convergence properties of the DMRG and TMRG methods have been discussed, 

we move onto tackling a model which is not exactly soluble. 

3.3 Alternating Chain Heisenberg Model. 

The alternating chain Heisenberg model is described by the Hamiltonian (3.2) or, in terms of 

the alternation parameter a , 

N/2 

H =.IL (8 2H · 8 2;) + a(8 2i ·8 2i+1) 

(3.11 ) 

;=1 

where .I =./1 and a = .12 /.11 . This model is exactly soluble only in the limits a = 0 and 

a = 1. The Hamiltonian arises in two classes of quasi 1 D compounds which will be discussed 

later. Previous work on this model has mainly been concerned with 
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a) Exact diagonalization of small chains and then extrapolating to the thermodynamic limit 

using some form of finite size scaling [3,4]. 

b) Perturbation theory using a as a perturbation away from dimer theory [5]. 

c) Bosonization in the continuous field limit [6]. 

We will compare our DMRG methods with previous studies and hopefully show it to be an 

accurate and competitive computational tool. We will consider first the case where both .f and 

a are positive and hence both interactions favour antiferromagnetism and refer to this as the 

AFI AF chain. 

3.3.1 AF/AF Heisenberg Chain. 

For all a, the AF/AF has a singlet ground state and for all a,* 1 there is a finite energy gap 

to a triplet state. We have calculated the ground state energy per bond using the DMRG 

method on open chains of up to L = 200 keeping 64 states in the system and environment 

blocks at each iteration. The results show quick convergence for all a with only the uniform 

case showing any significant size dependence. Figure 3.5 shows the uniform case plotted as a 

function of L, 1/ L and 1/ L2. The ground state energy is well fitted by 

E( L) = -0.443 1460 + 0.1 ~86 which is correct to - 3 x 10-6 compared with the Bethe Ansatz 
L 

result 1/4 - In 2 = -0.44314718. The energy per bond of the first excited state is also shown in 

figure 3.6 and is seen to converge more slowly than the ground state. The size dependence for 

the uniform case is fitted by E(L) = -0.4431244 - 3.65~711 . The energy gap has also been 
L 

calculated (figure 3.7) . Again, an open chain of 200 sites appears to reach the thermodynamic 
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I· . . h·C. h h . fi db 0 3.575 . Imlt except 10 t e umlorm case, were t e gap IS tte y .00276 + --. As a companson 
L 

we show our results below along with those of Barnes et al [5] who have carried out exact 

diagonalisation on chains of up to 28 sites and then extrapolated to the thermodynamic limit. 

a Eo Eo !lE (L=200) !lE 

(DMRG) (ED) (DMRG) (ED) 

0.1 -0.37548080549 -0.375480805 0.94631 0.946279339 

0.2 -0.37697449359 -0.376974494 0.88529 0.885209996 

OJ -0.37956632136 -0.379566321 0.81697 0.816844275 

0.4 -0.38335625029 -0.383356250 0.74124 0.74106141 

0.5 -0.38846561408 -0.388465614 0.65773 0.6574777 

0.6 -0.39504842294 -0.395048423 0.56565 0.565296 

0.7 -0.4033124321 -0.40331243 0.46350 0.46298 

0.8 -0.413564585 -0.4135644 0.34831 OJ474 

0.9 -0.426337689 -0.426330 0.21314 0.2098 

1.0 -0.443146(0) - 0.002(8) -
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The results for both the ground state and the gap are in excellent agreement with the exact 

diagonalisation results, the highest accuracy being obtained when the gap is large the reasons 

being the same as discussed before in relation to the convergence of the X- Y model. 

We also show in figure 3.8 the comparison between our DMRG data and a ninth order 

perturbation expansion in a by Barnes et al for the ground state energy density and the 

energy gap [5]. Again very good agreement is observed especially for small a as would be 

expected as the perturbation expansion becomes less accurate further from the dimer limit. 

Considering now the thermodynamics of this model, figure 3.9 shows the temperature 

dependence of the zero field spin susceptibility for varying a. All curves show a rounded 

maximum at T ~ O.6J. The position of the peak is seen to be independent of a. The height 

of the peak is reduced as the uniform limit (a = 1) is approached. The low temperature 

behaviour shows an exponential decrease as T --+ 0 for all a < 1 , characteristic of an energy 

gap. It would be interesting to determine an analytic form for the low temperature behaviour. 

The susceptibility of gapped systems are often modelled by an expression of the form 

t;. 

X - T''i e -r where L1 is the energy gap and 8 is some power to be determined. A possible 

method of determining the parameters is to plot In{xro) against I/T for various values of 

8. The correct choice of 8 should give a straight line in the T --+ 0 limit whose gradient is 

- L1. However, it was found that the fit is not very sensitive to 8. In order to clarify the 

situation we can compare the values of ~ obtained from the fit with those of the DMRG 

method. Figure 3.10 (a) shows the comparison of the values of L1 obtained for fits with 

8 = -1/2 and 8 = -1 with those of the zero temperature DMRG. These functional forms 
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appear to bound the T = 0 data. This is also reasonable as in the dimer limit (a = 0), the 

1 

susceptibility has the form X - ~ e -r , the energy gap in this case being exactly 1. 
T 

We can compare our susceptibility results with those of Hall et al [7] who fitted the 

°bOI' flO 0 0 fu 0 f h c. A 1'2 + BT + C 0 h susceptl I Ity 0 site nngs to a nctIOn 0 t e lorm X - 3 2 truncatmg t e 
T +DT +ET+F 

fit at T IJ=O. 5 . Figure 3.10 (b) shows the comparison of the results. The curves coincide most 

accurately for small a suggesting that the 10 site system closely approximates the 

thermodynamic limit in this region. 

Considering now the specific heat, figure 3.11 shows this for various a . In this case both the 

peak position and peak height are a dependent. Again, exponential behaviour is observed in 

the low temperature region revealing the presence of an energy gap. Carrying out a similar 

fitting procedure as for the susceptibility, figure 3.12 (a) shows the energy gap as a function 

/:; 

of a obtained by fitting Cv to a function of the form ~ e T. These forms seem to reproduce 
T 

the gap relatively accurately. 

3.3.2 Comparison with experiment. 

Two classes of experimentally realisable systems have been described by the alternating chain 

Heisenberg Hamiltonian. The first class, spin-Peierls compounds, generally also require the 

consideration of next-nearest-neighbour interactions which introduce frustration. This is 

currently beyond the scope of our TMRG method and hence will not be considered here. The 

second class of compounds consists of chains of magnetic ions that have two structurally 
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inequivalent exchange mechanisms which are of comparable strength and negligible interchain 

interaction. We consider the compound (VO)2P207. 

Until recently, (VO)2P20 7 was believed to be a two leg spin ladder system consisting of pairs 

of chains of spins coupled along and perpendicular to the chain direction [8]. However, recent 

neutron scattering measurements were inconsistent with this model and 'YOPD' is now 

recognised to be a quasi 1-D alternating chain system [9]. The interchain interaction energy is 

estimated to be :s; 0.02.1. In figure 3.12 (b), we compare susceptibility measurements made by 

Johnston et at [\0] with our TMRG data for J=65.7K1kB, g=2.0, a = 0.8. The procedure used 

for fitting the data is described in appendix 2. The fit is seen to be very good over the whole 

temperature range. The value of alternation parameter is in very good agreement with that 

obtained by Barnes et al [5] by comparing exact diagonalisation results with the magnon 

dispersion. 

3.3.3 F/AF Heisenberg Chain 

We have also considered the properties of the alternating chain Heisenberg model for values of 

a < 0, that is for systems with spins alternately coupled ferromagnetically and 

antiferromagnetically, which is referred to as the F/AF chain. We have calculated the ground 

state energy density as well as the energy gap. Figure 3.13 shows these quantities. If we 

consider the limit a ~ -00, then pairs of spins couple into triplets i.e. S=\ objects and hence 

in this limit, the model becomes the S=1 uniform Heisenberg chain. In this limit we can 

consider a quasi-Neel state Itt.,l...,l.. tt .,l...,l..) as a variational approximation to the ground 

state. In this case each ferromagnetic bond contributes an energy -Ja/4 and each 
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antiferromagnetic bond makes a contribution - J /4. This leads to an estimate of the average 

energy per bond of -J(a + 1)/8. Figure 3.14 (a) shows the ground state energy per bond for 

large a and the variational energy estimate of the Neel-like state which is seen to be an 

asymptotic upper-bound of the true energy. Obviously in this limit the ferromagnetic 

contribution dominates the ground state energy and so in order to more clearly see the 

connection between the F/AF chain and the isotropic S=1 chain we measure the bond strength 

across the antiferromagnetic bond. This is plotted in figure 3.14 (b) as a function of 1/ a . The 

dotted line shows the DMRG value for the ground state of the S=l chain (see Chapter 4) 

scaled by a factor of 4 to account for the S=1/2 Pauli matrices. The antiferromagnetic bond 

strength is seen to tend to this value as a ---t 00. Figure 3. 14 (c) shows the energy gap as a 

function of 1/ a, the point at a = 0 being the value of the gap obtained by the DMRG 

(Chapter 4) for the spin 1 chain, again divided by a factor of 4. 

Figures 3.15 and 3.16 show the susceptibility and specific heat for vanous a. Again, 

exponential low temperature behaviour indicates the presence of a gap. 

The compound (CH3hClffiNH3CuCh is believed to be described by this Hamiltonian. The Cu 

ions form dimers which are arranged stepwise leading to different exchange integrals. Due to 

the difference in bond angles, the exchange favours alternately ferromagnetic and 

antiferromagnetic interactions. We have compared our TMRG data with susceptibility 

measurements by Manaka, Yamada and Yamaguchi [1 1] (figure 3. 1 7). We see good 

agreement for 1=49K1kB, g=2.13, a ~ 2.3. The gap estimated from the zero temperature 

DMRG is -0.3841 which gives a gap for IPACuCh of 18.8K1kB which is in excellent 

agreement with Manaka et aI's estimate. 
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4. 8=1 Heisenberg Hamiltonians 

4.1 Introduction 

The S=1 Heisenberg chain has been the subject of vigorous study in recent years. 

Theoretically, it has been treated by a wide variety of techniques ranging from exact 

diagonalisation [1] to field theoretic methods [2]. Experimentally, a wide range of 

quasi one dimensional magnetic materials have been fabricated which exhibit 

characteristic 10 behaviour [3]. In this chapter, we describe the work carried out on 

S=1 Heisenberg chains using the OMRG and TMRG methods. We consider the effect 

of anisotropy and the introduction of a biquadratic term. We also show comparison 

with experiment for a number of compounds. 

As was shown in Chapter 1 the LSM theorem showed that for S=1/2 the isotropic 

Heisenberg chain has a singlet ground state and a gapless excitation spectrum. Gaps in 

the spectrum could only be introduced by the inclusion of dimerisation or anisotropy 

effects. Until 1983, this was believed to also probably be the case for higher spin 

models. When Haldane [4] conjectured from field theoretic arguments that integer and 

half integer spin chains had fundamentally different excitation spectra, there was a 

great interest in confirming this. Although limited to short chain lengths, exact 

diagonalisation[l] gave some evidence supporting a gap in the S=1 case. QMC [5] 

results also confirmed these results. Concurrently, quasi 10 magnetic compounds, 

NENP[3] being the best example, exhibited gapped behaviour in inelastic neutron 

scattering experiments and susceptibility measurements. The introduction of the 

OMRG, with its ability to treat long chains with unprecedented accuracy, has allowed 
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Haldane's conjecture to be confirmed beyond doubt, this being the method's first 

major success [6]. Knowledge of the ground state and low-lying excitations has been 

obtained from the DMRG results as well as other theoretical models [7]. Before 

presenting our results we will discuss the Valence Bond Solid model which gives a 

simple, but accurate picture of the nature of the ground state of the S= 1 chain. 

4.2 Valence Bond Solid 

Affleck, Kennedy, Lieb and Tasaki (AKLT) [8] introduced the concept of the Valence 

Bond Solid (VBS) in order to try and understand the nature of the ground state of 

integer spin chains. A valence bond (VB) is formed by the contraction of two S=1/2 

spins to form a singlet state. That is a VB consists of a pair wave function of the form 

(4.1) 

For a spin half chain the formation of valence bonds leads to dimerisation (see figure 

4.1), where the bonds represent the contracted spins. The translational symmetry of the 

chain is seen to be modified by the formation of this state . 

• • • • • • • • Figure 4.1 

In order to extend this idea to higher spins, we consider a spin S object as being 

formed by a symmetric combination of 2S S=1/2 spins. These decomposed spins can 

then form valence bonds. We show in figure 2 an S= 1 chain where the circles indicate 

the lattice sites and the points the S=}/2 spins. 

88888 Figure 4.2 
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We can form valence bonds between adjacent sites as shown in figure 3. This state 

retains the translational symmetry of the lattice and is referred to as the valence bond 

solid. 

-B8888- Figure 4.3 

AKL T considered a Hamiltonian formed by making a projection on the S=2 subspace 

of the operator S) +Sl giving 

(4.2) 

which they showed to have the form 

(4.3) 

If we consider any pair of sites in the VBS, two of the S= 112 spins form a singlet (due 

to the VB) and hence the total spin of the two sites can only be 0 or 1. Therefore the 

VBS has zero energy and is the ground state of the above Hamiltonian. The 

consequence of this is that by the addition of a biquadratic term to the isotropic 

Hamiltonian the ground state is seen to have a particularly simple form. AKL T also 

rigorously showed that this system was gapped [9]. Due to the similarity between this 

Hamiltonian and the isotropic case, it is believed that the isotropic ground state will 

have qualitatively similar properties. We will discuss later the justification for this 

claim, but before considering the results of our calculations we will make an 

observation on the effect of boundary conditions on the VBS. Figure 4 shows a VBS 

state for periodic and open boundary conditions. It is seen that in the open case, an 

unpaired S=}/2 spin is left at each end of the chain. This implies a four-fold degeneracy 
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in this state which is absent in the periodic case. As will be shown, this degeneracy is 

directly observed in numerical calculations and in experiment. 

88888 Figure 4.4 

4.3 Isotropic Chain. 

We consider first the isotropic S=l chain, which was treated by White and Huse [6] 

and gave the first indication of the accuracy of the DMRG method, with open 

boundary conditions: 

(4.4) 

We work in a basis in which SZ is diagonal and we use this symmetry to block 

diagonalise the superblock Hamiltonian and the density matrix. As all the interactions 

along the chain are equal, parity is also conserved by H. We therefore would like to 

use this symmetry to further reduce the size of matrices needing to be diagonalised and 

this is achieved as follows. 

We consider the basis set of superblock wavefunctions of the form 

(4.5) 

where n) and n2 describe the system and environment blocks and s) and ,"12 the two sites 

in between. 

In general these are not states of definite parity. However, we can construct states of 

the form 

(4.6) 
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i. e. a linear combination of two states which are related to each other by reflection 

through the middle of the chain, which are parity eigenstates. In this way we can 

construct a new basis in which the states have definite parity. If we are looking to 

target states of a particular parity, this symmetry approximately halves the size of the 

superblock Hamiltonian. 

We have carried out T=O DMRG calculations of chains up to 200 sites retaining 81 

states in both the system and environment blocks. We have calculated the energies of 

the lowest lying states in each of the blocks SC=O, 1,2 with both positive and negative 

parity. We show below the ordering of the energy levels. 

2-

------- 0+ 0- l-

It is seen that as the thermodynamic limit is approached, the 0+,0- and 1- states are 

degenerate. By symmetry, the -1- state would also be degenerate with this state. This 

fourfold degeneracy is an indication that the VBS model is in some way similar to the 

ground state of the isotropic chain. The Haldane gap is given by the energy difference 

between these states and the 2+ state. 

In figures 4.5 and 4.6 we show the scaling behaviour of the ground state and the 

energy gap. The gap is seen to scale like - ~ + a/ L2 as expected for a gapped system .. 

Extrapolating to the thermodynamic limit L ~ 00 gives a ground state energy density 

of eo = -1.401484(0)J and the Haldane gap as ~ = 0.410(7). 

We consider now the thermodynamics of this system using the TMRG. We have 

calculated both the specific heat and spin susceptibility as shown in figures 4.7 and 4.8. 
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Both show exponential low temperature behaviour indicating the presence of a gap. 

Sorensen and Affleck [10] examined this system by considering a dilute system of 

polarised magnons which could be treated as a system of non-interacting fermions. For 

k near Tr, they obtained a dispersion relation of the form 

(4.7) 

where v is the spin wave velocity. This leads to a density of states given by 

(4.8) 

From this, the zero field susceptibility has the low temperature form 

I fJl1 (11) X(T)=- -exp--
v TrT T 

(4.9) 

Sorensen and Affleck estimated the spin wave velocity as v = 2.49. Using this value 

for v and the DMRG result for 11, we show in figure 4.8 (b) the comparison of this 

curve with the TMRG results. 

We can also compare our results with experiment. The compound TMNIN consists of 

Ni chains with negligible interchain interaction. Figure 4.9 show the comparison with 

susceptibility and specific heat measurements by Ito et al for .J = 12K / k, g = 2.1 

[11 ]. 

4.4 Single Ion Anisotropy 

The isotropic Heisenberg model has full spherical symmetry. In real compounds this is 

rarely the case. The crystal structure of real systems leads to a lowering of the 

symmetry of the system which we can incorporate into our Hamiltonian by introducing 

an anisotropy term. We have considered single-ion anisotropy which is represented by 

86 



the addition of the term HSI = DL(str . Using the DJ\.1R.G and TJ\.1R.G methods we 

have investigated the T =0 and finite temperature properties of the Hamiltonian 

(4.10) 

over a wide range of the parameter DIl. Of particular interest to us is the effect of J) 

on the Haldane gap. Previous studies on this system have included exact 

diagonalisation on small chains [12] and quantum Monte-Carlo calculations [12,13]. 

These studies have suggested, though by no means conclusively, that the Haldane gap 

vanishes at D/J ~ 1 . We have investigated this region, as well as the large j) region 

where the system is XY-like in character. 

The diagram below shows schematically the ordering of the energy levels in the region 

0< D < 1 alongside those with those of the isotropic chain for comparison. 

------- 1+ 2+ 

-------- 0+ 0- 1-
0=0 0<0<1 

O' 0- )-

An interesting observation is that the ground state degeneracy of the open isotropic 

chain is still present with the introduction of anisotropy. The Haldane gap is 

characterised by the energy difference between the 0+ and 2+ states. We have 

calculated the gap using the OJ\.1R.G on an open chain keeping 81 states in both the 

system and environment blocks. Figure 11 (a) shows the ground state energy density 

as a function of D. It is seen to increase approximately linearly with D. Figure 10 

shows the gap as a function of L, 1/ Land 1/ L2 in the D= 1 case and is seen to scale 
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like 1/ L, consistent with gapless behaviour. We have extrapolated the data in the 

L ~ 00 limit by fitting to a function of the form ~(L) = ~o + aj L + hi L2. The 

extrapolated gaps are shown in the table below and in figure 11 (b). 

D ~ 

0.0 0.410(7) 

0.1 0.347(7) 

0.2 0.290(0) 

0.3 0.237(2) 

0.4 0.188(8) 

0.5 0.145(9) 

0.6 0.107(7) 

0.7 0.059(4) 

0.8 0.040(4) 

l.0 0.01(6) 

As can be seen, the gap appears to be approaching zero as D ~ 1 . It is not true to say 

that the DMRG gives a strict upper limit on the value of the gap, but we will now 

argue why this is probably the case. 

It is certainly true that by systematically truncating the Hilbert space we are obtaining a 

variational approximation to the ground state energy. As we have block diagonalised 

the superblock Hamiltonian, the first excitation also corresponds to a lowest 

eigenvalue within a subspace of our Hilbert space and hence a variational principle also 

applies to this energy. We can therefore write 

(4.11) 
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where the primes indicate our DMRG results and the unprimed quantities are the real 

eigenvalues. We rewrite these expressions as 

(4.12) 

where 8 0 and 8] are both by definition positive quantities. Therefore the energy gap 

we calculate is given by 

(4.13) 

(4.14) 

where A is the true gap. Obviously the relation between A and A I depends on the 

relative magnitudes of 8) and 8 0 . However, as we have seen, the convergence of the 

ground state energy is generally quicker and more accurate than that of the first 

excitation. Consequently we would expect 8] > 8 0 , meaning that A I can generally be 

interpreted as an upper limit of the gap. In common with the 5=1/2 results of the 

previous chapter, the results are most accurate when there is a substantial energy gap. 

U sing the TMRG method, we have calculated the susceptibility and specific heat for 

varying D/J. It has been observed that X can generally be obtained more accurately 

than C v . The reason for this is that at low temperatures small oscillations occur in the 

internal energy, presumably as a result of accumulated truncation and round off errors 

in the calculation. This introduces larger errors when taking the derivative when 

calculating Cv ' As X does not involve taking a derivative, it does not suffer from this 

problem. 

Considering first the susceptibility, figure 4.12 shows the zero field spin susceptibility 

per site in the range O<D<O.7. All curves show a broad maximum and exponential 

89 



behaviour at low temperature. Our results do not suffer from Curie-like divergences as 

a result of edge effects which are present in quantum Monte Carlo data. In this region. 

the ground state of the system is expected to be qualitatively similar to that of the 

isotropic system. We have therefore fitted the low temperature region of the data to 

curves of the form of equation (4.9) that is X - Jr exp( - ~ ). By doing so we can 

obtain an estimate of the energy gap as a function of D. We show in the table below 

the results and a comparison with those of the T=O DMRG results. 

D TMRG DMRG 

0.0 0.41(5) 0.4107 

0.1 0.35(0) 0.3477 

0.2 0.29(5) 0.2900 

0.3 0.24(0) 0.2372 

0.4 0.18(7) 0.1888 

0.5 0.14(1) 0.1459 

0.6 0.09(3) 0.1077 

0.7 0.05(4) 0.0594 

For D < 0.5 the agreement is very good suggesting that the chosen functional form for 

the susceptibility is accurate in this region. The discrepancy for larger D indicates the 

crossover to the gapless behaviour. Figure 4.13 shows the comparison of the data. 

The compound Ni(C~8N2hN02(CI04), usually referred to as NENP, is believed to be 

described by equation (4.10), with D lying in the region just discussed. The Ni ions 

form chains which are octahedrally coordinated giving rise to the anisotropy term. We 

have fitted susceptibility data by Takeuchi et al [14] with results from our TMRG 
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method with the parameters J=46KJkB , D/J=0.25 and g=2.15 as shown in figure 4.13 

(b). The fit is good over the whole temperature range. 

In the region 0.8 ~ D ~ 1.2 the TMRG method produces less accurate results and is 

unable to indicate whether the gap vanishes. At any given iteration of the calculation 

T ~ 1/ M where M is the Trotter number, hence the algorithm tends to TO 

asymptotically. As the number of iterations mcreases, so does the accumulated 

truncation and numerical errors. Therefore when the gap IS reduced and the 

exponential behaviour of X(T) is located in an ever decreasing region close to T~'O, 

the results become less reliable. The susceptibility in this region is shown in figure 

4.14. The specific heat calculated by this method is shown in figure 4.14 (b). The data 

below T~.2J are not very accurate as discussed above. 

We have also considered the properties of this system in the large D region. In the limit 

D ~ 00, the ground state would be that in which all the spins are in the S: = 0 state, 

f// 0 = I 000.· .00) . In this case, the ground state energy density (f// 0 IHI f// 0)/ N tends to 

zero. We show in figure 4.15 the ground state per bond for large D and the expected 

asymptotic behaviour is observed. In this region a substantial energy gap is observed 

between the 0+ and r states. By perturbation theory [12] it can be shown that the gap 

behaves like Il~D-2+0(1/D) as D~oo. In figure 4.15 (b) we show the DMRG 

results for the energy gap as a function of D and the expected asymptotic behaviour is 

observed. The thermodynamics of this system have been calculated. The susceptibility 

is shown in figure 4.16 (a). Due to the large gap the results are more accurate and 

show low temperature exponential behaviour. Fitting to a function of the form 

X ~ Jr exp( - ~) can again be used to estimate the gap energy and the comparison 
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between these results and the DMRG results are shown in the table below and in figure 

4.16 (b). 

0 DMRG TMRG 

2.0 0.540 0.547 

3.0 1.362 1.373 

4.0 2.267 2.289 

5.0 3.219 3.236 

In figure 4.16 (c) we show the specific heat for D in this region. Gapped behaviour is 

demonstrated in the low temperature region. 

In addition to positive single-ion anisotropy, we have considered the ground state 

properties for D<O. We show in figure 4.17 (a) the ground state energy density as a 

function ofD. In the limit D ~ 00, we can consider the Neel state as an approximation 

to the true ground state. This gives the asymptotic behaviour of the energy as 

eo ~ D- 1. We show this in figure 4.17 (b). In this region the energy levels are 

ordered as shown below, alongside those of the isotropic case for comparison. The 

energy gap is seen to be between the ground state and the 1 + state. 

------- 1+ 2+ 

------- 0+ 0- ]­
D=O D<O 0-+ 0- 1-

In figure 4.17 (c) we show the energy gap extrapolated in the limit L ~ 00. The gap 

appears to vanish at D ~ -OJ. This indicates that the Haldane phase is more unstable 

with respect to a transition to the Neel phase than to the X-Y phase which occurs at 
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D ~ 1. Finally, we show in figure 4.18 the ground state energy density and energy gap 

over the whole range -1::; D ::; 2 . 

4.5 Biquadratic Exchange 

In Chapter 1 we showed how the application of second order perturbation theory to 

the one dimensional Hubbard model in the U ~ 00 limit led to an effective 

antiferromagnetic Heisenberg interaction. Fourth Order terms [15] contribute a term of 

the form 

(4.15) 

which is referred to as the biquadratic exchange interaction. It was the inclusion of 

this term in equation (4.3) which leads to the formation of the VBS ground state in the 

AKL T model. The effect of this term has also been observed in real systems such as 

MnO [16]. The effect of biquadratic exchange on ID Heisenberg systems has been 

studied by Xiang and Gehring [17] using a real space renormalisation method and by 

Bursill, Xiang and Gehring [18] using the DMRG. 

We express the Hamiltonian incorporating biquadratic exchange as 

(4.16) 

The system is exactly soluble at a number of points, namely 

a) r = tr/2. At this point the system is ferromagnetic and hence its ground state 

wavefunction can be written down exactly. The excitation spectrum is gapless. 

b) r = tr /4. The Lai-Sutherland point. Solution by the Bethe ansatz leads to a 

gap less, trimerised ground state. 
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c) r = tan -1 (1/3). This is the Aftleck point already discussed. The system is gapped 

and has a VBS ground state. 

We have calculated the ground state energy and energy gap in the region O:s:: r :s:: 0.8 

using the DMRG in order to show whether the isotropic chain is within the same part 

of the phase diagram as the Aftleck point (i.e. does the energy gap disappear between 

these points?) 

Considering first the ground state eneq,ry we show in figure 4.19 the ground state 

energy density as a function of L for varying r . It is interesting to see the transition 

from a monotonically decreasing function of L to the period three staggering observed 

for r:2 0.6. It should be noted that as the DMRG algorithm increases the lattice by 

two sites at a time, the periodicity we observe is not the true periodicity of the system 

but the trimerisation (periodic in the lattice with period 3) aliased against the periodic 

increase of the lattice (period 2). In figure 4.19 (c) we show every third result from the 

DMRG calculation, which corresponds to an increase of the lattice by six sites from 

point to point. This is seen to be monotonically decreasing with L. Extrapolating to the 

thermodynamic limit we plot the ground state energy as a function of r (figure 4.20 

(a». 

We have also calculated the energy gap. Again evidence of trimerisation is observed 

for r ~ 0.6 We see that the gap is finite up to and past the Aftleck point indicating that 

the VBS and isotropic chain are part of the same phase. It then decreases with r 

consistent with it vanishing at the Lai-Sutherland point at r ~ 0.785. The gap is 

plotted as a function of r in figure 4.20(b). 
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5. Electronic and Magnetic Properties of Mixed 

Valence Manganites. 

The compounds A1_xBxMn03 (where A=La, Y, Pr, Nd and B=Ca, Sr, Ba, Pb) have been the 

subject of much attention due to the colossal negative magneto resistance (CMR) [I] they 

exhibit. By this we mean the very large change in resistivity observed under application of a 

magnetic field. A great deal of theoretical and experimental effort has been made to 

understand the physical properties of these systems and to develop device applications [2]. 

In order to understand the magnetic properties of these compounds it is first necessary to 

consider their electronic structure. In the undoped parent compound (x=O), the manganese 

exists in the Mn3+ valence state. The octahedral symmetry of the ions causes the splitting of 

the d-band into the lower lying, triply degenerate 12g orbitals and the higher, doubly degenerate 

eg orbitals, each orbital being able to accommodate two electrons, one of each spin 

polarisation. There is also believed to be Jahn-Teller splitting of the eg states. Due to Hund's 

rules, the four d-electrons are parallel and three occupy the t2g state forming a core spin of S = 

3/2 and one occupies the lower eg orbital giving a total spin of S = 2. The lower eg orbital 

effectively forms a filled conduction band and hence the compound is an insulator. A 

superexchange interaction causes antiferromagnetic (AF) alignment of the Mn ions as 

observed in neutron scattering experiments [2]. 

We now consider doping the compound with a divalent ion. The effect of this is to cause the 

manganese to exist in a mixed valent state, with a fraction x of the ions in the Mn4
' state and a 

fraction I-x in the Mn3+. The Mn4+ state is achieved by removing the eg electron from the Mn3 
I 
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ion. The net effect is therefore to dope the conduction band with holes at a concentration x. 

Now that the eg band is not full, the electrons can become mobile. The effect of this electron 

mobility was extensively studied by Zener [3], de Gennes [4], Anderson and Hasegawa [5], 

and Kubo and Ohata [6]. Here we briefly review the main results of these investigations. 

5.1 Double Exchange Ferromagnetism 

We consider the case of a Mn3
+ ion adjacent to a Mn4

+ ion at an angle B to each other where 

in figure 5. 1 the solid arrows represent the core spin S = 3/2 and the open arrow the 

conduction electron spin of S = 112. 

t 

v/ 
Mn3+ Mn4+ Figure 5.1 

We now want to consider the process of hopping the conduction electron from one ion to 

another. Due to the on-site Hund's rule coupling, the electron must hop across into the eg state 

parallel to the ion on the new site. We therefore need to be able to project an electron in an t 

eigenstate in one basis onto an t eigenstate in a basis rotated by (). It was shown both 

classically [4] and quantum mechanically [5] that the transition matrix element for this process 

was of the form t ~ co~ (}12). This a maximum for () = 0 (parallel alignment of ions) and 

becomes zero for B = n/2 (antiparallel arrangement). The lowering of the kinetic energy due 
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to the mobility of the conduction electrons means that the hopping of the carrier mediates an 

effective ferromagnetic (FM) interaction between the ions, leading to competing AFIFM 

interactions. As the doping is increased above about x~O.I, the FM interaction dominates and 

the system is a so called 'Double Exchange Ferromagnet'. In this context, the CMR effects 

can be understood as applying a magnetic field will cause increased alignment of the ions and 

hence favour conduction. Above the Curie temperature, when the system is paramagnetic, the 

conduction obeys a thermally activated hopping behaviour. 

Our work on these materials has been focused on two areas. One is the effect of correlations 

~ T c and polaron formation, the other is the effect of an interface on the electronic and 

magnetic properties of the manganites with a view to investigating the feasibility of a particular 

device application being fabricated at Sheffield University. 

5.2 Correlated Regions and Polaron Formation. 

Above T c there is evidence of short range magnetic order [7] and of course below T c long 

range FM ordering occurs. We are interested in the growth of correlated magnetic regions as 

Tc is approached from above and the energy associated with them. The simplest correlated 

region is a pair of sites. We consider two sites, Mn3+ and Mn4+ with spins S=2 and S=3/2 

respectively. The S=2 states may be written in terms of the core spin (3/2) and eg spin (1/2) as 

follows: 

(5.1) 

The values of aM and bM are given below. 
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M aM bM 

2 1 0 

FJ{ 7i 
o YJ2 YJ2 
-1 7i F){ 

-2 0 1 

Thus when an electron is transferred off this site it will be left in state 13/2; M - 1/2) if the 

transfer was of an up spin electron and 13/2; M + 1/2) if a down spin electron was transferred. 

The pair problem consists of sites S=3/2 and S=2 coupled in this way. The total spin of the 

pair may take values ST = 712, 512, 312, 112 and these characterise the eigenstates. The values 

for the energies and degeneracies are shown below in terms of the hopping energy 10. For 

reference the energy levels for a pair spins S=3/2 and S=2 coupled by a Heisenberg exchange 

interaction, -lSI· S2' is also given. It is seen that although the ordering of the energy states is 

the same the splittings between the states follow different patterns and there are also 

'antibonding' states with positive energy in the polaron problem. 

Total Spin Degeneracy Energy Heisenberg 
Energy 

7/2 8 -to -3J 

5/2 6 -3(0 I 4 +J I 2 

3/2 4 -to 12 +3J 

1/2 2 -to I 4 9J I 2 

1/2 2 to /4 

3/2 4 10 /2 

5/2 6 310 / 4 

7/2 8 to 
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This shows that there is a considerable lowering of energy if an eg electron may delocalise 

between two Mn sites. This may account for the fact that an intermediate valence line is seen 

in the Mn NMR spectra over a wide range of concentrations [8]. 

This method may be extended to larger clusters. An obvious case to consider is that of a 

cluster of three sites consisting of two Mn3+ and one Mn4+ ions. This corresponds to the 

doping, x=1I3 , which is required for optimum magnetoresistance. The state of lowest energy 

in this case corresponds to Sr = 1112. The next step is to consider clusters of six sites 

containing four Mn3
+ and two Mn4+ ions. We considered four arrangements, a loop, a starfish 

(five sites nearest neighbour of the central site) and a rectangle (six sites arranged in a block 

2x3) and a cube of dimensions 3 x 3 x 3 (figure 5.2). We treat only the case where the spins 

are fully aligned and so all the mobile electrons have the same spin. The system then becomes 

equivalent to a one spin band, non-interacting tight-binding model for which we calculate the 

one electron eigenstates and then fill up the lowest third to calculate the energy per hole. We 

have also considered the energy of the fully aligned lattice by a Monte Carlo k-space 

integration. The ground state energy per hole for these configurations is given in the table 

below and compared with that for the pair, the triple and a fully ordered lattice. 

Number of sites Number of holes Cluster Ground state energy per hole, 

E / to. 

2 1 Pair -1 

3 1 Triple -1.41 

6 2 Starfish -1.12 

116 



6 2 Loop -l.5 

6 2 Rectangle -1.71 

27 9 3x3x3 -2.20 

Fermisea 33.3% Cubic tight binding -2.91 

This demonstrates that the delocalisation of an eg hole between a few Mn sites can lead to an 

energy lowering per hole which is a significant fraction of that achieved in the fully ordered 

state. This is achieved without significantly reducing the entropy and therefore without 

introducing a large positive entropic contribution to the free energy. This explains the large 

amount of short range magnetic order which is observed above T c in these materials. 

We will now consider the effect of correlated clusters on the paramagnetic susceptibility. If we 

have N ions in a crystal, each of spin S then the Curie paramagnetic susceptibility has the form 

Ng2 Jl ~S(S + 1) 
XI = 3k

B
(T- Tc) 

(5.2) 

whereas if we consider N ions arranged in correlated clusters each of m ions and with spin mS, 

then the susceptibility will be 

(~)g2Jl~ms(ms+ 1) 

Xm= 3k
B
(T-Tc) 

(5.3) 

and we see that the effect of forming the clusters is that X m = mx I' This means that 

experimentally we may be able to see the formation of clusters as the temperature is lowered 
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towards T c by plotting X -1 as a function of temperature and look for changes in the gradient. 

This is what has been done by Amaral et al [9] and the predicted behaviour in the susceptibility 

is observed. They claim to see evidence for clusters of total S = 11, 22, 44 and 88 

(corresponding to 6, 12, 24 and 48 sites containing 2, 4, 8, 16 holes respectively) at 

temperatures close to T c. This is very strong evidence to suggest that our theory of small 

correlated cluster formation is a predominate mechanism in determining the magnetic order in 

these compounds. 

5.3 Perturbation produced on manganites by a metallic 
interface 

It would be highly desirable to be able to utilise the CMR effects exhibited by the mixed valent 

manganites in devices. However, the required field is usually prohibitively high (-ST). Being 

able to design device systems which require lower fields is therefore a technological priority. 

One possible method of inducing CMR at lower fields is to inject polarised electrons from a 

ferromagnet in to a manganite film and see if this induces ferromagnetic ordering in the film, 

hence changing the sample's conductivity. This has lead us to investigate the effect of a Ni 

interface on the electronic and magnetic properties of Lal-xCaxMn03 for x = 0.3 

We have performed tight-binding calculations on an interface system consisting of Lat-

xCaMn03 and Ni. We assume perfect epitaxy between the (100) surface of Ni and the simple 

cubic lattice formed by the Mn ions in the manganite. The basis states are the d-band electrons 

of Ni and the eg electrons of Mn. The tight-binding parameters for Ni were obtained from 

reference [10], the Mn hopping parameter was fitted to give the correct band width in bulk 

118 



Lal.xCaMn03 [2] and the interface hopping was calculated usmg a root-mean-square 

interpolation [11]. 

We utilised the Haydock recursion scheme to calculate diagonal elements of the on site 

Green's function from which we have obtained the density of state for Mn eg orbitals near the 

interface. 

5.3.1 Haydock Recursion Scheme 

The Haydock Recursion Scheme [12] (HRS) is mathematically equivalent to the Lanczos 

Method discussed in Appendix 1. It constructs a tridiagonal basis by repeated application of 

the Hamiltonian. However, the HRS is geared towards calculating local properties of the 

system which is done by choosing the initial state to be localised in the region of interest 

(generally a single orbital). Successive applications of the Hamiltonian on this state therefore 

produce linear combinations of 1 st, 2nd 3rd etc. nearest neighbour orbitals. It is reasonable to 

expect that for systems with short range interactions and localised electron states, that the 

effect of these new states decreases with distance from the initial site. The Hamiltonian in the 

tridiagonal basis is used to construct the Greenian operator (E - H) -I in terms of the Lanczos 

parameters {apb;}. The diagonal element of this operator on the initial state can be written as 

a continued fraction of the form 

Go (E) = -------h-=-2 ----
E - a

J 
- _____ -=2_~---

h2 

E-a _ 3 

2 b 2 

E-a _ 4 

3 E -a - ... 
4 
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By including an infinitesimal imaginary part to the energy E ~ E + is, we can use the 

property of Green functions that the density of states p( E) is related to the Greens function 

by [13] 

p(E) = lim- ~ Im[Go(E + is)] 
,,-->0 7r 

(5.5) 

In order to actually use this to make calculations we must be able to terminate the continued 

fraction expression for the Green's function. It can be shown that for a continuous band, the 

parameters a; and hi tend to a limit as i ~ 00. In this case, the continued fraction can be 

exactly terminated by a square-root termination. 

Figures 5.3 and 5.4 shows the density of states for the Mn eg band for the first three planes 

near to the interface for the two situations where the conduction band in the manganite is 

parallel to the majority or minority band of the Ni. The electron occupation on each site is 

shown in Figure 5.5. As can be seen, the occupation reaches it's bulk value of 0.7 electrons 

per site within -5 lattice spacings. 

The difference in integrated energy between the two spin situations gives a measure of the 

magnetic interaction between the two materials. Using this as an input parameter, mean field 

simulations have been carried out to estimate the magnetisation profile in the manganite as a 

function of distance from the interface. However, it was seen that the desired effect i.e. an 

enhanced magnetisation near the interface only penetrated about ten lattice planes into the 

manganite which would suggest that this may not be a suitable method for obtaining CMR at 

low applied fields. 
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Appendix 1 - Matrix Methods 

When one wants to find the eigenvalues and eigenvectors of a matrix a number of methods are 

available, the choice of which will depend upon factors such as 

a) How many eigenvalues/eigenvectors are required? 

b) The size and sparsity of the matrix. 

c) Are there any symmetries of the matrix which can be exploited? 

If the whole matrix is to be diagonalised, then most methods rely on being able to cast the 

matrix into a particular form through a series of similarity transformations which is then easier 

to deal with. Examples of this are reduction of a symmetric matrix to tridiagonal form or of an 

asymmetric matrix to Hessenberg form. Alternatively, factorisation methods such as the QR 

and QL algorithms can be employed [1]. 

In condensed matter physics, we are often interested in extrema of a matrix's eigenvalue 

spectrum. This may be the ground state of some Hamiltonian or the maximum eigenvalue of a 

transfer matrix. In addition there may be certain symmetries of the system reflected in the form 

of the Hamiltonian which lead to the matrix being relatively sparse. We would like to exploit 

these facts and this we have done by using a number of sparse matrix algorithms in our DMRG 

and TMRG code. 

126 



The Lanczos Algorithm 

The standard Lanczos algorithm [2] provides a method of transforming a Hamiltonian in some 

known basis, into a new basis in which it is tridiagonal. This is done by choosing a starting 

state Ilf ,) and repeatedly operating with the Hamiltonian, H, to generate new states which are 

linked by the recursion formula: 

HI If II) = a III 'If II ) + h II I 'If 11-' ) + h 11+ ,I 'If 11+' ) (A 1. I) 

where h, = 0 and Ilf 11-') = 0 . This leads to a tridiagonal matrix of the form 

a J b2 0 0 (A 1.2) 

h2 a2 h3 0 

0 b3 a3 b4 

0 0 h4 a4 

If the rank of His N, then N-l applications of the formula generates a tridiagonal basis which 

completely spans the Hilbert space of the Hamiltonian. At each stage, however, the Lanczos 

algorithm provides a truncated basis and the lowest energy eigenvalue of H in this basis gives a 

variational approximation to the true ground state. The power of the Lanczos method lies in 

the fact that the approximation to the true ground state converges, generally, in much less than 

N iterations provided that the initial trial state has non-zero overlap with the true ground state. 

This is due to the repeated action of H on the trial state. 

Modified Lanczos Algorithm 

A modification of the above method, aimed specifically at finding the ground state energy 

alone, is the so called modified Lanczos algorithm [3]. In this method, a trial state Ilf J) is 
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chosen, which is a first approximation to the true ground state of H, and is operated upon with 

H. In general this will give a component in the direction of 1'1/ I) and a component orthogonal 

to it. We write this as 

(AI.3) 

Similarly we can write 

(A 1.4) 

This give a 2 x 2 matrix representation of H in the space spanned by I'll I) and 1'1/ 2 ) 

(Al.S) 

This matrix IS easily diagonalised and its lower eigenvalue and eigenvector the new 

approximation to the ground state. This state then becomes the new trial state and replaces 

111'1) in equation (A1.3). The process continues iteratively until the ground state is found to 

the required accuracy. 

Conjugate Gradient Method 

A related approach to finding the lowest eigenvalue and eigenvector of H is the conjugate 

gradient method [3]. Like the Modified Lanczos Method, the CG method creates successive 

approximations to the ground state, but uses extra information about the gradient of these 

vectors to choose a more direct sequence towards the true ground state. The CG method 

effectively lifts the orthogonality requirement of the MLM between successive states. It is this 

128 



method which we have found to be most reliable in converging quickly and accurately to the 

ground state. 

Asymmetric Matrices 

When dealing with the quantum transfer matrix as discussed in chapter 2, we are faced with 

the problem of finding the maximal eigenvalue of a large, sparse asymmetric matrix. One quite 

simple minded way of proceeding is the power method. This involves choosing a trial state 

I 'II) and by repeated action of the matrix we are studying, the trial state is transformed into 

the state with maximum eigenvalue. To see how this works consider the matrix T with right 

eigenvectors 1;1),1;2)"""I;N) and corresponding eigenvalues AI'A2"""AN such that 

A I > A2 >"""> AN· Now consider the trial state 1'1') expanded in the eigenstates of 7'. 

(A1.6) 

Acting upon this state with T gives 

(A 1.7) 

We consider the effect of repeated action giving 

(A 1.8) 

and 
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(A1.9) 

Hence as M is increased, the ratio of the squared norm of successive states generated tends to 

A.~ and the states tend towards I <I> I ). An analogous method is used to generate the left 

eigenvector. 

Arnoldi Algorithm 

A generalisation of the Lanczos algorithm to asymmetric matrices was made by Arnoldi [4]. 

This is a much more complicated method to understand ands to program. As a consequence of 

this we have made use of commercially available 'black box' routines supplied in the 

ARPACK library [5], which is available as a shareware package. This provides a 

comprehensive set of reliable routines for various matrix operations. Reference [6] gives a 

detailed review of the theory behind Arnoldi methods and their computational implementation. 
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Appendix 2: Fitting Procedures 

In order to compare our theoretical susceptibility and specific heat curves to those of 

experiment we have to determine how the parameters in our calculations correspond to 

real quantities. Considering first the susceptibility, we will use the alternating chain 

Heisenberg Hamiltonian as an example given by 

NI2 N 

H = L(S2i-l . S2; + aS2; . S2i+1)+ hLS/ 
(A2.I) 

;=1 ;=1 

where we have set the exchange integral J equal to 1. The theoretical susceptibility we 

have calculated is given by 

(A2.2) 

We now need to compare this with the Hamiltonian of the real system which is given 

by 

NI2 N 

H = LJ(S2i-l . S2; + aS2; • S2i+1) + gpBBLS;z 
(A2.3) 

;=1 i=1 

which we write as 

NI2 gp B N (A2.4) 
H=J{ L(S2i-1 ,S2; +aS2i ,S2i+l)+_B_L S,Z } 

;=1 J ;=1 

We therefore identify our parameter h as representing gpBB In MKS units the 
J 

volume susceptibility is given by 

M 
%MKS =-

H 
(A2.S) 

where M is the magnetic moment per unit volume. If N is the number of magnetic ions 

per unit volume then we can write 
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(A2.6) 

where all the quantities are in MKS units. We can express the mass susceptibility in 

terms of the volume susceptibility by dividing by the density 

N: 2 2 
'Ymas ... _ Po g P B%th 
A-MKS -

pJ 

(A2.7) 

which we can write in terms of Avogadro's number NA and the mass of one mole of 

the particular compound we are considering, W as 

N 2 2 
mass Po Ag PB%th 

%MKS = WJ 
(A2.S) 

Many magnetic measurements are expressed in terms of emu units. We can make the 

conversion by dividing by 47r x 10-3 
, where the 10-3 takes into account the different 

mass units in the two systems [1]. We can therefore now write 

(A2.9) 

The temperature which is measured in units of T / J must also be rescaled to 

correspond the true experimental temperature. This expression can now be used to 

compare our results with those of experiment. 

In the case of the specific heat, we consider the above Hamiltonian without the field 

term. If J is the real exchange energy, the calculated internal energy E and the 

experimental internal energy E" are related by E" = JE, while the theoretical 

temperature Tand the experimental temperature are related by r = JT. Hence, the 

experimental specific heat oE' / iJr is related to the theoretical value, oEI iJr by 

iE' _oE' OE or _ JoE I_IE 
iJr - IE iJror" -. orJ- or 
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Hence the specific is the same of that of the theoretical model with the temperature 

rescaled. 
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Appendix 3: Implementation of Spin Symmetries. 

In this appendix I will explain the implementation of the spin symmetries used in the DMRG 

and TMRG calculations. All the Hamiltonians considered conserve the value of the component 

of spin in the direction of the axis of quantisation (taken to be the Z-axis), that is [H, S:] = O. 

In addition S2 is also conserved, however we did not utilise this symmetry. This means that 

the action of the Hamiltonian on a state with a particular value of SZ will in general be a linear 

combination of states also with the same value of SZ. The consequence of this is that the 

Hamiltonian matrix may be block diagonalised according to this quantum number. The transfer 

matrix is block diagonalised according to pseudo-spin as described in chapter 3. The block 

diagonalisation greatly speeds up the application of sparse matrix eigenvalue/vector 

calculation. 

In the calculations we have carried out, the values of SZ for each superblock and system and 

environment block states are stored as integer numbers of spin quanta. The density matrix is 

also block diagonal in SZ if it is constructed from a single target state or from a combination 

of target states originating from the same symmetry sector. Although the density matrix 

diagonalisation takes only a small fraction of the time of the calculation as a whole, I will now 

demonstrate why it is necessary to block diagonalise it and calculate the eigenstates of each 

block separately when targeting the singlet ground state wavefunction. 

Consider a density matrix eigenstate having z-component of spin 0' and eigenvalue £ . We 

will denote this state by 10') and the following equation are satisfied 

pIO') = EIO') 
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SZla) = ala) 

However, in the absence of a magnetic field this state will be degenerate with a state with all 

the spins reversed i.e. a ~ -cr . We denote this state by l-cr) and the following equations are 

satisfied 

pi-cr) = el-a) 

SZI-a) = -ala) 

If we do not block diagonalise p before we calculate its eigenspectrum, then a typical 

diagonalisation method will have no reason to differentiate between these two eigenstates and 

will in general produce some linear combination of them as an eigenstate 

It is clear that 1<1» is not an eigenstate of SZ and hence our system of labelling states 

according to integer numbers of spin quanta is destroyed. For this reason the density matrix 

was always block diagonalised before the eigenstates were determined. 
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