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FATIGUE DAMAGE ACCUMULATION IN TITANIUM ALLOY 

IMI 834 

BY G. J. BAXTER 

SUMMARY OF THESIS 

As current aerospace materials are subjected in service to 

increasingly onerous conditions of stress and temperature, the hazard 

of fatigue failure becomes more acute. Engineers utilise the 

methodology of fracture mechanics to estimate fatigue crack growth 

rates but fatigue crack initiation, which involves the interplay of 

many microprocesses, is only investigated empirically. The aim of 

this study was to investigate the fatigue damage accumulation 

mechanisms in the titanium alloy IMI 834 in order to develop a 

fundamental understanding of the controlling physical processes and 

the micromechanisms which occur at the dislocation level. 

Load controlled four point bend test specimens of IMI 834 were 

cyclically fatigued to failure with an R ratio of 0.1 over a range of 

maximum stress levels and the fatigue and fracture surfaces were 

examined by optical and scanning electron microscopy. The 

examination of cross-sectional foils prepared from the fatigue 

surface enabled the fatigue damage to be examined in the T.E.N. as a 

function of or ientation and depth below the specimen sur face. The 

distribution, orientation and type of slip bands were identified in 

the primary-a and the transformed-fJ grains, and their interaction 

with secondary phases, precipitates and grain boundaries was 

determined. 

The results show that fatigue damage accumulation in INI 834 occurs 

primarily on basal slip bands in the primary-a phase and on basal and 

prismatic slip bands in the transformed-fJ phase. The segregation of 

a-stabilising elements to the primary-a phase during alloy processing 

allows the formation of an ordered phase which increases the 

propensity for planar slip on the basal plane. A mechanism for 

fatigue crack initiation along this plane is proposed. In addition, 

the occurrence and identification of an interface phase is discussed 

in the light of current theories regarding this phase. 
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CHAPTER ONE 

INTRODUCTION 

1.1 FATIGUE LIFE PREDICTION 

The purpose of an aero engine is to provide an aircraft 
with propulsion. However, to economically achieve this 

function, weight and fuel efficiency criteria must be 

satisfied which results in components being subjected to 

high stresses and high temperatures. Under these 

conditions individual engine components are at a 

consequent risk of failure. The fracture and possible 

disintegration of the rotating components such as the 

compressor discs and the high-pressure casings can 

potentially cause the greatest damage to an aircraft 

engine. 

To reliably predict the service life of an aero engine 

component requires a sound knowledge of all the factors 

which affect the performance of the material, including 

the microstructure, surface finish, residual stresses and 

the service environment. Three criteria have been 

established to assess possible component failure; (i) low 

cycle fatigue (LCF) limitations, (ii) overstress 

requirements and (iii) the limitation of vibratory 

stresses [1]. The majority of components are removed from 

service because of their LCF limitations. In order to 

provide a balance between safety and economics, great 

emphasis must be placed on the reliability of the low 

cycle fatigue prediction methods. 

Traditionally, total fatigue life analysis relies on full 

scale component testing to statistically define a minimum 

life for each component. All such components are then 

withdrawn from service before they reach two thirds of the 

predicted life to failure (the predicted safe cyclic 

life). However, although full scale component testing 
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guarantees a direct fatigue life prediction, it is 

expensive and time consuming to perform a statistically 

relevant number of full scale tests. Hence it is far more 

economical for testing to be performed on the scale of 

laboratory specimens. To be able to correlate the fatigue 

life of a specimen to that of full scale components 

requires a database of results and a full understanding of 

the fatigue process and material behaviour [1]. 

1.2 HIGH TEMPERATURE TITANIUM ALLOYS 

Titanium and its alloys have been used extensively since 

the early 1950's in both airframe and aero engine 

applications as high temperature, high strength-to-weight 

ratio materials. The most predominant and most widely 

used titanium alloy, 1M1 318 or Ti-6Al-4V, was introduced 

in 1954 and still accounts for nearly 50% of the market 

for titanium alloys. After forty years of intensive 

development, the applications of titanium alloys have 

significantly advanced [2-6]. 1M1 829, an established 

leader in the high temperature titanium alloy field, has 

been developed specifically for gas turbine aero engine 

components and has a maximum operating temperature of 

550°C, the highest temperature at which any titanium alloy 

is currently reputed to be in commercial use [7]. A total 

weight saving of over 50 Kg is achieved by using 1M1 829 

as a replacement for nickel and steel in the compressor 

discs, rear cone and turbine blades of the Rolls-Royce 

RB211-535E4 engine [4]. Two titanium alloys, 1M1 834 and 

Ti-1100, have been developed for use up to higher 

operating temperatures by utilising conventional alloying 

techniques [8, 9]. 1M1 834 is being designed for 

potential use in the high pressure condensers of the Trent 

engine at temperatures up to 600°C. A possible 85 Kg 

weight saving over the existing design is envisaged [10]. 

The tensile strength and creep performance targets in the 

early 1950's were modest in comparison to modern aero 

engine requirements. With the development of more highly 
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alloyed and more microstructurally complex titanium alloys 

titanium alloy disc designs have become fatigue limited 

rather than creep limi ted [9] , hence research is 

concentrating on the need to maximise the all-round alloy 

capabilities. In addition, designers are looking to 

utilise as much of a component's fatigue life as possible 

before withdrawing it from service. This places great 

emphasis on the reliability of current fatigue life 
predictions. Consequently, an understanding of the 

fatigue behaviour of high temperature titanium alloys is 

of the utmost importance. 

In order to predict how high temperature alloys will 

perform in service, it is essential to acquire detailed 

knowledge of all the stages of fatigue deformation from 

the damage accumUlation stage to final failure. The 

majority of titanium alloy research to date has 

concentrated on the short and long fatigue crack growth 

behaviour of alloys. Both long and short crack growth 

behaviour are predicted using L. E. F . M.1 and elasto-plastic 

modelling. However, as the microstructure of the alloys 

is refined and the demands on the fatigue integrity are 

increased, the application of these models is limited, 

thus a more fundamental understanding of the processes 

leading to fatigue crack ini tiation is required. The 

intrusion/extrusion mechanisms of fatigue crack initiation 

in lightly alloyed fcc metals, such as copper, are well 

understood, but an understanding of fatigue crack 

initiation behaviour in more complex alloys, such as those 

of titanium, is still in its infancy. 

1.3 PROJECT AIMS 

The aims of this investigation are: 

* To characterise the as received IMI 834 microstructure 

in terms of the grain sizes, texture, phases, 

precipitates and dislocations present. 

1 L.E.F.M = linear elastic fracture mechaniCS 
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* To cyclically fatigue specimens of the alloy taken from 
close to the bore of a compressor disc. In this region 
the hoop stresses experienced in service have a maximum 
influence on the fatigue life of the disc. 

* To prepare thin foils both parallel to the surface and 
perpendicular to the surface so that the damage may be 
assessed as a function of depth. 

* To establish the types of dislocations produced, slip 
systems which are operative and their relative 
importance in the primary-a and transformed-p phases. 

* To examine the dislocation mechanisms in IMI 834 which 
lead to crack initiation under cyclic fatigue loading. 

* To propose a model of fatigue damage accumulation in 

IMI 834. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 INTRODUCTION 

The first section of the literature review (section 2.2) 
is designed to introduce titanium, the 

of titanium alloys and the factors 

properties of the classes used in 

aerospace applications. The effects 

recognised classes 

which affect the 

high temperature 

of aluminium and 

silicon additions on the formation of precipitates in the 

newer, more microstructurally complex alloys, and the 

formation of an interface phase in titanium alloys are 

reviewed in detail. 

Microstructural modifications of titanium alloys cause 

al terations in their mechanical properties. The creep, 

ductility, ultimate tensile strength and fracture 

toughness of alloys are reviewed with respect to their 

aerospace applications in section 2.3. 

since the preferred slip systems which occur during the 

deformation of titanium alloys are influenced by a number 

of factors which can ultimately affect the alloy's fatigue 

crack initiation behaviour, the crystallography and 

deformation modes of titanium alloys are discussed in 

section 2.4. 

Fatigue behaviour is reviewed in section 2.5. An 

understanding of long crack growth, short crack growth and 

crack initiation behaviour is outlined. The mechanism of 

fatigue crack initiation behaviour in lightly alloyed 

metals, such as copper, is also reviewed. 

The damage accumulation mechanisms and sites of room 

temperature low cycle fatigue crack initiation in titanium 

alloys are reviewed in section 2.5.6. These are discussed 
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further in the discussion, chapter 7. The incorporation 

of a dwell period at maximum load into the fatigue cycle 

has received much attention over the past 20 years. 

Although no dwell tests were carried out in the present 

investigation, a review of the effects is presented in the 

light of current titanium alloy research (section 2.5.7). 

2.2 GENERAL BACKGROUND TO TITANIUM ALLOYS 

2.2.1 Introduction 

Titanium, the ninth most abundant element in the Earth's 

crust, was discovered in 1790 but it was not until 1936, 

with the invention of the Kroll process, that industrial 

scale production of titanium was possible. The high 

strength to weight ratio of titanium alloys is achieved 

because the pure metal has a density of 4500 kg/m3 , which 

is midway between that of steel and aluminium and is about 

half that of nickel. The extremely high corrosion 

resistance of titanium can be attributed to the formation 

of a passive oxide layer on exposed surfaces. The oxide 

layer is stable up to 600°C [4], at temperatures above 

this, the layer dissolves into the parent metal [3]. Both 

the thermal expansivity and conductivity of the pure metal 

are low and titanium and its alloys are all non-magnetic. 

All these properties make titanium an attractive 

engineering material, a drawback being the cost of 

production of its alloys; about ten times that of 

aluminium and roughly one hundred times that of 

manufacturing steel. 

There are two allotropes of pure titanium: The alpha (a) 

phase, which is hexagonal close packed (hcp) in structure 

with a Q/A ratio of 1. 588 at room temperature, and the 

beta (P) phase which is stable at higher temperatures and 

has body centred cubic (bcc) crystal packing. The 

transition between the two phases occurs at the P transus 

temperature which, in pure titanium, is 883°C. The 

p-transus temperature is modified by alloying additions 
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which also open up a two phase field on the phase diagram 

(Figure 2.1). Alloying additions which raise the 

p-transus are known as a-stabilisers, the most important 

being aluminium and the interstitial elements; carbon, 

oxygen and nitrogen. p-stabilisers are more numerous and 

tend to lower the p-transus temperature. Of these 

elements there are two groups; those which are 

p-isomorphous elements and those which are p-eutectoid 

elements. p-isomorphous elements, such as molybdenum, 

vanadium and niobium, have a limited solubility in the a 

phase but are mutually soluble in the P phase, and act to 

stabilise this phase. p-eutectoid elements have a limited 

solubility in the P phase and promote eutectoid 

decomposition to give intermetallic compounds. The 

decomposition of P by the majority of these elements is 

kinetically unfavourable [12] and, therefore, it is only 

the more 'active' elements such as copper and silicon that 

promote precipitation. The remainder of p-eutectoid 

elements such as iron, chromium and manganese can be 

considered to be similar to the p-isomorphous elements 

since they also promote stabilisation of the P phase. A 

third group of elements act as solid solution 

strengtheners and do not significantly alter the 

transi tion temperature. Tin and zirconium are the two 

most important solid solution strengtheners. 

2.2.2 Effect of Alloy Additions 

Table 2.1 lists the compositions of some of the more 

important titanium alloys that have been developed over 

the past 40 years for use in higher temperature aerospace 

applications. The alloys are listed in chronological 

order and the p-transus temperature and maximum 

temperature capability are also indicated. 

in virtually all Aluminium, the primary a-stabiliser 

titanium alloys, increases their 

strengths and reduces their density. 

tensile and creep 

One estimate [ 13 ] 

increase in strength of suggests that there is an 
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approximately 55 MPa for every 1% aluminium present in the 

alloy. However, as the a-stabilising content is 

increased, embrittlement can ultimately occur during 

prolonged exposure at temperature due to the formation of 

the deleterious, coherent phase a2 (Ti3AI). The effects 

of this phase on the mechanical properties of titanium 

alloys are discussed further in section 2.2.5.1. 

Both tin and zirconium act as solid solution strengtheners 

in titanium alloys. Tin, also a weak a-stabiliser, is 

often used in conjunction with aluminium to achieve higher 

strengths without causing embrittlement of the alloy [4]. 

In alloys such as IMI 829 and IMI 834 which are designed 

for use at very high temperatures, increased temperature 

capability over IMI 685 is obtained by the replacement of 

zirconium with tin, a denser but more potent solid 

solution strengthener [14]. Zirconium is also a mild 

p-stabilising element and increases fatigue strength at 

low and intermediate temperatures. In concentrations 

above 5-6 wt% [4] the use of zirconium is detrimental in 

that it can reduce the ductility and creep strength of the 

alloy. 

The primary p-stabiliser of titanium alloys is the 

p-isomorphous element, vanadium, the advantages being its 

low cost and low density [15]. In order to increase the 

creep resistance of the high temperature titanium alloys, 

the p-stabiliser content must be reduced (section 2.3.1) 

and therefore the use of vanadium in high temperature 

titanium alloys is limited (see Table 2.1B). Molybdenum 

is the primary p-stabiliser of the high temperature 

titanium alloys. It is added to promote increased 

strength and increased hardenability at elevated 

temperatures [4]. A drawback of the addition of 

molybdenum to an alloy is that it decreases its 

weldability [16]; a property which is critical in aero 

engine applications since, unlike bolt joining, welding 

reduces the overall component weight. A small percentage 

of niobium, also a p-stabiliser, is added to improve the 
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high temperature oxidation resistance [4] of the most 

advanced titanium alloys, IMI 829 and IMI 834. 

The presence of the silicon, a ~-stabiliser, is important 

in titanium alloys since in solid solution it increases 

the creep strength at all temperatures and has a marked 

beneficial effect on creep resistance [4, 14, 17]. The 

maximum effective concentration of silicon in high 

temperature alloys is governed by its tendency to form 

silicides, which are discussed further in section 2.2.5.2. 

2.2.3 Classes of Titanium Alloys 

The two allotropes of titanium (a and P) form the basis 

of titanium alloy classification. These classes are 

recognised in the literature by the nature of the 

predominant phase present in the microstructure at room 

temperature [6, 12-14]. There are five main classes: (i) 

Commercially pure or alpha (a). (ii) Near-alpha (near-a) 

or superalpha. (iii) Alpha + beta (a+p). (iv) Near-beta 

(near-p). (v) Beta (P) or metastable beta. The 

distinction between the last two classes is not well 

defined. 

commercially pure titanium grades are solid solution 

strengthened to a range of proof strength levels (130 to 

480 MPa) by the inclusion of 0.07 to 0.3 at' oxygen [3, 

13]. This range gives ultimate tensile strengths (UTS) of 

between 300 and 750 MPa [3]. These alloys are useful in 

low temperature applications such as airframes, casings, 

ductings, firewalls and exhaust shrouds [14]. High 

temperature exposure results in oxygen dissolution into 

the metal, forming a hardened, oxygen stabilised layer or 

alpha-case which reduces the fatigue and fracture 

properties of the alloy [14, 18]. 

P alloys are rich in ~-stabilising elements and are low in 

a-stabilisers, and consist entirely of metastable ~ phase 

at room temperature. The advantages of ~ alloys are that 
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they have high tensile strength, excellent forgeability 

and good cold formability, in contrast to the a alloys 

[15] . However, fl alloys do not possess useful high 

temperature properties because of their high density, low 

creep strength, poor oxidation resistance and low tensile 

ductility when compared to the a alloys. Their use in 

airframes is limited due to the problems caused by the 

segregation of fl-stabilisers and the formation of 

intermetallic compounds (e.g. TiCr2 and omega phase) which 

can embrittle the alloy [5, 19]. 

Of the increasingly wide range of titanium alloys now 

available, only the near-a and a+fl alloys have been used 

to a significant extent in the present generation of gas 
turbine engines. 

2.2.3.1 a+p Titanium Alloys 

The a+fl system contains alloys with one or more of the 

a-stabilising elements plus one or more of the 

fl-stabilising elements. Examples of important a+fl alloys, 

their composition, fl-transus temperature and year of 

introduction are given in Table 2.1. The most widely used 

titanium alloy is IMI 318 or Ti-6Al-4V which was 

introduced in 1954. Its introduction on the JT3D engine 

(Boeing 747) in 1960 brought about a reduction in weight 

of up to 18 % when it replaced steel as the disc material 

[20]. IMI 318 is only creep resistant up to the 

relatively low temperature of 325°C, however, it still 

accounts for nearly 50% of the market of titanium alloys. 

It is used as the main component of the lower temperature 

compressor sections of gas turbines [ 13 ] and in less 

critical, non-rotating components such as compressor 

casings [4]. Because of the importance of IMI 318 in aero 

engines, numerous investigations have been published 

covering a wide range of its mechanical and 

microstructure-related properties which have formed the 

basis for many further studies of other titanium alloys 
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[21-27]. 

The a+p alloys have good room temperature properties but 

their creep resistance is limited to around 400°C by the 

significant amount of P phase present [6] (discussed 

further in section 2.3.1). The creep resistant alloys 

developed for service at temperatures exceeding 450°C are 

of the near-a type and are discussed in the following 

section. 

2.2.3.2 Near-a Alloys 

The drive for higher efficiencies and reduced weight in 

gas turbine engines has led to the development of a number 

of advanced near-a titanium alloys which have improved 

temperature capability over a+p alloys. Table 2.1 and 

Figure 2.2 list some of the near-a alloys, their 

composition, p-transus temperature and year of 

introduction. 

Three basic properties required by these high temperature 

titanium alloys for use in gas turbine engines [9, 17] 

include: (i) High tensile and yield strengths from room to 

maximum temperature. (ii) A high fatigue strength at both 

low and high frequencies from room to maximum temperature 

in the region of maximum stress. (iii) A high creep 

resistance at high temperature and high stress. In 

addition a good thermal stability, a low level of internal 

stress, good weldability and good oxidation resistance are 

required [9, 17]. 

Three very thorough reports by Eylon et al. [4], Goosey 

[6] and Driver [14] review the high temperature titanium 

alloys, paying considerable attention to the advances in 

composition, heat treatments, oxidation resistance and 

microstructure, which have brought about benef icial 

changes in their performance over the last 40 years (see 

Figure 2.2). It is well documented [4, 6, 9, 14, 17] that 

to fully optimise the mechanical properties of these 
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alloys, their composition and thermomechanical processing 

(discussed in section 2.2.4) must be carefully adjusted to 

control the microstructure. Improved properties are 

obtained by increasing the strength and the amount of the 

more creep resistant a phase at the expense of the P 
phase, whilst still maintaining the low temperature 

strength and forgeability of the near-a alloys. 

Creep performance first reached a temperature of 450°C 

with the introduction in 1959 of the near-a alloy, 1M1 

679. The development in 1968 of 1M1 685 pushed the 

operating temperature for titanium alloys to above 500°C. 

IM1 829 (American notation Ti-5331S), a derivative of 1M1 

685, was introduced in 1977 with a composition which was 

designed to further improve creep performance. 1M1 829 is 

being extensively used in the Rolls-Royce RB211-535E4 

engine [ 4, 6] up to a maximum operating temperature of 

550 0 Ci the highest temperature at which any titanium alloy 

is currently reputed to be in commercial use. The 

replacement of nickel and steel with 1M1 829 in various 

components of the compressor discs, the rear cone and 

turbine blades of the aero engine gives a total weight 

saving of over 50 Kg [4]. 

Two higher temperature near-a titanium alloys that 

utilise conventional alloying techniques have been 

developed. Ti-1100 is an American based alloy under 

consideration for use up to a maximum temperature of 593°C 

(1100 0 F) [8, 28, 29]. IMI 834 has been developed by 'The 

Total Engineering Approach' employed by Rolls-Royce (30] 

and is being designed for potential use at temperatures up 

to 600°C [6, 9], with short excursions up to 650°C [10]. 

If IMI 834 is used for the high pressure compressor of the 

Trent engine, it would save 85 Kg (or 42%) of the total 

drum weight compared with the existing RB211-524 design 

[10]. The development of IMI 834 is discussed further in 

section 2.3.1. 
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2.2.4 Heat Treatment and Microstructure 

The heat treatments and resulting microstructures of a+p 

and near-a alloys are fundamental in determining their 

mechanical properties. The processing routes can be 

complex and need to take into account a variety of 

different factors which can ultimately affect the alloys 

performance. The following sections are designed to give 

an overview of different heat treatments which can be 

applied to a+p and near-a titanium alloys. The effects on 

the mechanical properties are discussed later in section 

2.3. 

2.2.4.1 Solution Treatment 

Both near-a and a+p alloys first pass through the 

p-transus on cooling from the operating temperature of the 

vacuum arc melter, during which the a phase precipitates 

within the prior-p grains in the form of acicular 

a-platelets, as illustrated in Figure 2.3. In general, 

most near-a alloys tend to be re-heated to above the 

p-transus temperature during subsequent billet reduction, 

forging and solution treatment. such alloys are termed 

p-processed or p-heat-treated near a-alloys. The final 

transformed-p microstructure consists entirely of 

a-platelets, the arrangement of which depends upon the 

last through-transus cooling rate (discussed in section 

2.2.4.2) • 

Most a+p alloys and some near-a alloys (such as 1M1 679 

and 1MI 834, see section 2.3.1) are solution treated, 

below their respective p-transus temperatures, in the a+p 

phase field and are thus termed as having been a+p 

processed. During the a+p processing some, but not all, 

of the a phase present at room temperature will 

redissolve to form p phase. On subsequent cooling, the 

a phase, which did not dissolve at the a+p solution 

treatment temperature, precipitates as equiaxed primary-a 

grains on the boundaries of the p phase. On cooling, the 
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remaining rJ 

a-platelets 

rJ-processed 

phase transforms to form arrangements of 

in the prior-rJ grains, as in the case for 

microstructures. The primary-a has the 

pinning the rJ-boundaries and consequently 

the rJ-grain size resul ting in a duplex 

effect of 

restricts 

microstructure consisting of equiaxed primary-a 

in a matrix of fine, transformed-rJ grains. 
grains 

The 
proportion of primary-a depends upon the exact 

temperature of the heat treatment, as illustrated in 

Figure 2.4 for the alloys Ti-6AI-4V, IMI 829 and IMI 834 

[31]. Ti-6AI-4V and IMI 834 both have a shallower 

rJ-transus approach curve than IMI 829 i.e., for each unit 

increase in temperature below the rJ-transus there is a 

smaller increase in the volume fraction of rJ phase present 

for Ti-6AI-4V and IMI 834 compared to IMI 829. A 

shallower curve results in there being a wider temperature 

range in which a uniform microstructure can be achieved 

during a+rJ processing at temperatures just below the 

~-transus • In the case of IMI 834 , the addi tion of a 

small quantity of carbon has the effect of 'flattening' 

the rJ-transus approach curve and therefore permits 

accurate, high a+rJ processing [8, 9, 31-33]. 

2.2.4.2 Effect of Cooling Rate 

The morphology of the transformed-rJ grains at room 

temperature varies according to the cooling rate (see 

Figure 2.5) which significantly affects the resulting 

mechanical properties of titanium alloys. The following 

summary outlines the effect of cooling rate on both a+~ 

and ~-processed alloys. The resulting microstructure 

produced ultimately depends upon the cross-section of the 

component involved i.e. thick sections require a faster 

cooling rate than thinner ones to obtain an equivalent 

microstructure. 

Furnace cooling at rates between 0.1 and l°C/s gives 

well defined colonies of similarly orientated a-platelets 

with a relatively thick layer of grain boundary a at the 
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prior-p grain boundaries (see Figure 2.5a). In the 

transmission electron microscope (T.E.M.), thin films of 

retained-p are resolvable at the a-platelet boundaries. 

Air cooling at rates close to 10 0 C/s produces aligned 

colonies of acicular a-platelets with several colonies 

existing within individual prior-p grains [35]. All the 

a-platelets within one colony lie parallel to one another 

along the same set of P planes according to the Burgers 

orientation relation [36-38]: 

{llOhll (0001) u: <111>~1 1<1120>u (2.1) 

and the other variants which must follow [38]: 

{li2}~11{01iO}u:<111>~11<1120>u (2.2) 

{Olihll {0111}u: <111>~1 1<1120>u (2.3) 

Adjacent colonies may contain a-platelets with different 

variants of this relation. Prior-p grain boundaries can 

be identified by a layer of grain boundary a as 

illustrated in Figure 2.5b. As with furnace cooled 

microstructures, thin films of retained-p at the 

a-platelet boundaries are resolvable by T.E.M. 

oil quenching at approximately 100 o C/s results in 

Widmanstatten or basketweave arrangements of acicular 

a-platelets within the prior-p grains, the boundaries of 

which are outlined by a thin layer of grain boundary a 

(Figure 2.5c). Each individual a-platelet in this 

basketweave arrangement nucleates independently, usually 

from a grain boundary and is crystallographically related 

to the parent P phase by the Burgers orientation relation 

(equations 2.1 to 2.3) [36-38]. A thin, discontinuous 

layer of retained-p is present at the a-platelet 

boundaries and is resolvable by T.E.M. 

water quenching at a rate of between 350 o C/s and 2000 0 C/s 
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generally results in the I}-phase transforming to a very 

fine microstructure of martensite (a / ) needles which are 

outlined by the prior-I} grain boundaries (Figure 2. 5d) • 

Little or no retained-I} phase may be detected by T.E.M. at 

the boundaries of individual martensite needles [13]. 

The transformed-I} colony size is an 

microstructural parameter which is related to 

prior-I} grain size and the cooling rate [35]. 

important 

both the 

Table 2.2 

gives the effect of cooling rate on the grain and colony 

size of Ti-6242-si [39]. Slow cooling rates promote 

larger colonies, particularly after limited working in the 

I} phase field [40]. Large colonies are also favoured by 

low I}-stabiliser content, high solution treatment 

temperatures [41, 42] or longer times spent at elevated 

temperature [43]. For IMI 685 the mean intercept diameter 

for colonies varies in size from 10 to 250 fJm depending 

upon the processing conditions [42]. 

2.2.4.3 Ageing Treatment 

After cooling from the solution treatment temperature, 

most a+1} and near-a alloys are given a final annealing or 

ageing treatment. Ageing treatments are carried out well 

below the I}-transus and are designed to relieve internal 

stresses (particularly in components of large cross 

section) and to develop microstructures which show 

improved properties, such as creep strength, compared to 

the as-formed microstructures [12]. 

The effect of ageing IMI 834 (a+1} processed, oil 

quenched) for four hours at 600, 650 and 700°C has been 

investigated [32]. Spheroidisation of the small amount of 

retained-I} phase present at the a-platelet boundaries 

occurs at the lowest ageing temperature. Ageing at 

progressively higher temperatures results in an increase 

in the amount of spheroidised-I}. There is also a 

consequent decrease in the dislocation density associated 

with the a-platelet boundaries, due to the reduced 
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requirement of a and P lattice mismatch. An increase in 

tensile and creep properties and a decrease in ductility 

and crack propagation resistance is also observed [32]. 

In addition to the above, the formation and coarsening of 

silicides occurs. silicide precipitation in titanium 

alloys has been the subject of a large number of 

investigations and is discussed further in section 

2.2.5.2. 

2.2.5 Precipitates Associated with Solutes 

2.2.5.1 Ordered Phase, a2 

The degree of solid solution strengthening in ti tanium 

alloys is somewhat unfortunately limited by the occurrence 

of az, an ordered coherent phase based on Ti3 (AI,Sn) (~= 

5d ; Lz = 2L [12]). Additions of more than 5-10 wt' Al 

leads to the precipitation of this phase with consequent 

reductions in fracture toughness and ductility (section 

2.3.2). Having studied the creep and tensile properties 

of various titanium systems, Rosenberg [44] established an 

empirical relationship for the aluminium equivalent, AI­

(wt') : 

AI· = Al + Sn/3 + Zr/6 + 10(0 + C + 2N) (2.4) 

In order to avoid excessi ve az formation the aluminium 

equivalent should be maintained below 9 wt'. Above an Al· 

of approximately 5 wt', a2 occurs as coherent ellipsoidal 

fully ordered particles [12] separated by disordered 

regions, the size and volume fraction of which increase 

with Al· and ageing temperature. For example, the ageing 

of IMI 834 (Al* = 9.17 wt' [45]) for four hours at 700°C 

results in ordered precipitates of az in the primary-a 

which are 2.5 nm in diameter and 10 nm apart [32]. The 

increased level of ordering within primary-a is 

considered to be related to the higher Al* present in 

these areas compared to the a-platelets in the 

transformed-p structure. 
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2.2.5.2 silicide Precipitation 

It is well established that the addition of up to 0.5 wt% 

silicon improves the creep resistance of high temperature 

titanium alloys [37, 39, 46-52]. As an example, Figure 

2.6 shows the effect of silicon on the creep strain in 

Ti-6242-si aged at 510°C for 100 hours at 240 MPa [53]. A 

minimum in the total plastic strain suggests that the best 

creep performance is obtained in this alloy with the 

addition of 0.1 wt% silicon. The mechanism by which 

silicon improves the creep resistance is not clear, 

although it has been suggested that the interaction of 

silicon wi th dislocations impedes their motion by 

atmosphere drag and dynamic strain ageing [54, 55]. In 

comparison with other alloy systems, it is possible that a 

low concentration of silicon decreases the stacking fault 

energy of alloys and consequently reduces the mobility of 

dislocations by restricting cross-slip [4]. 

As a result of the improvements in creep performance 

observed with silicon additions, new commercial alloys 

have been designed to contain up to 0.5 wt% silicon [53J. 

It is interesting to note that differences in design 

philosophy are reflected in the nominal silicon 

concentration [51]; in America alloys have been developed 

which contain < 0.1 wt% si whereas the British alloys (IMI 

designations) contain 0.25 wt% < si < 0.5 wt% [51] (see 

Table 2.1). 

Additions of silicon result in the precipitation of a 

silicon rich phase known as silicide. The silicide phase 

occurs either (i) on ageing a silicon containing titanium 

alloy which has been quenched from its processing 

temperature or (ii) on cooling at slow rates « 250 o C/hr 

[51]) from the processing temperature. 

It was originally thought that silicides have a 

composition intermediate between ZrsSi3 and TisSi3, e. g. 

(TiZr) sSi3 [46]. Since then, there have been numerous 
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investigations into the occurrence and characterisation of 

titanium-zirconium silicides in Ti-2%5i [56], IMI 679 

[51], IMI 685 [47, 50, 52, 57] and IMI 829 [51, 58-60]. 

Two different types of silicides (51 and 52) with 

hexagonal structure were reported [61]; 51 = (TiZr)s5i3 (A 

= 0.780 nm, ~ = 0.544 nm) and 52 = (TiZr)65i3 (A = 0.70 nm, 
~ = 0.36 nm), although there were variations in the 

lattice parameters depending upon the alloy and the 

investigation [ 47, 50]. It was later proposed that the 

two silicides are distinct but that 51 transforms to 52 on 

extended ageing and that the composition can be expressed 

as (TiZr)s (5i5nh [57]. The tin content of this silicide 

is believed to increase with an increasing amount of tin 

in the parent alloy, whilst the Ti:Zr ratio decreases with 

ageing time due to the slower diffusion of Zr in the 

titanium matrix. It was suggested that the transformation 

from 51 to 52 may be caused by a change in the 

interstitial content (0 or N) of the silicides on ageing 

[57]. It was proposed that the transformation initiates 

with a decrease (around 10%) in the A axis of the 51 

silicide followed by a collapse of the ~ axis which 

results in the formation of the 52 type silicide [57]. 

There has been some disagreement in the literature on the 

space group of silicides in IMI 829. Banerjee et al. [51, 

60, 62] propose that the space group was P6/mmm whereas 

Woodfield and Loretto [58] suggest P62m as the space group 

of the silicide. 

5ridhar and 5arma [63] show that the size of silicides 

obtained on ageing IMI 829 at 625°C for 24 hours is 

dependent upon the cooling rate from the ~-processing 

temperature; furnace cooling and subsequent ageing results 

in silicides of 0.2 to 0.8 fJm in length with an aspect 

ratio of 1: 3 to 1: 4 whereas water quenching followed by 

ageing produces silicides of 0.05 to 0.1 fJm in length and 

aspect ratio 1: 1. 5. The size of silicides also varies 

according to the ageing temperature and silicon content 

[59]. The sites of precipitation and consequent growth 

rates of the silicides depend strongly upon the solution 
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treatment temperature and quenching rate [51, 58]. For 

example, in IMI 829 processed at 1020°C for 1/2 hour and 

aged at 700°C for 10 hours [51], silicides precipitate 

along alP interfaces and on a-platelet boundaries in air 

cooled specimens, whereas in the oil quenched specimens 

the silicides precipitate on the ~-component dislocations 

within the a-platelets and at a-platelet boundaries [64] 

(section 2.2.4.2). 

As the properties of silicon containing high temperature 

titanium alloys become more critical, studies to determine 

their response to room temperature tests are increasingly 

necessary. Alloys quenched from above the p-transus 

temperature (IMI 685 and IMI 829) show a slight increase 

in their tensile and yield strengths on ageing but, more 

significantly, show a severe loss of ductility [52, 

63-68]. The cause of this loss was investigated [63, 64, 

66-68] and is discussed in section 2.3.2. 

2.2.6 The Interface Phase (IFP) 

The detection of an interface phase (IFP) at the 

boundaries between a and ~ phases of various titanium 

alloys has, over the last two decades, been the subject of 

a wide variety of studies and considerable controversy. 

In 1975, Rhodes and Williams [69] showed that the phase 

could be observed in the T.E.M. at the a-platelet 

boundaries as a distinct layer, between 0.1 and 0.4 JIm 

wide, in as many as 40 different titanium alloys. The 

layer was believed to develop as (i) a hexagonal (hcp) 

striated phase having a different orientation than the 

primary-a into which it grew or as (ii) a face centred 

cubic (fcc) monolithic phase with a lattice parameter, A, 

of approximately 0.42 nm which varied depending upon the 

alloy composition and the processing conditions [69]. 

Both phases were also commonly observed together [70-72] 

with the monolithic phase lying closer to the retained-~ 

phase than the striated phase [70]. 
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The origins of these phases were clearly of importance as 

the a/~ interface was believed to influence the fracture 

behaviour of titanium alloys, especially during fatigue 

and stress corrosion studies. The interface was thought 

to provide an easy crack path and was believed to be 

detrimental to the fatigue and corrosion lives of titanium 

alloys [41, 73]. 

During early studies, Rhodes and Paton [70] suggested that 

the monolithic fcc phase was an intermediate transition 

phase formed during the ~ to a transformation. A 

mechanism was proposed whereby sluggish ~-stabiliser 

diffusion away from the interface region transformed the ~ 

phase to the monolithic fcc structure (A = 0.426 nm) which 

was then modified by the formation of (111) twins to the 

striated IFP layer [70]. The striated layer was then 

believed to transform to the a phase. 

During the same period as the studies performed by Rhodes 

and Paton [70], a number of workers investigated the 

effect of the deliberate introduction of various 

concentrations of hydrogen into titanium alloys [74-77]. 

In a T.E.M. study of Ti-5Al-2.5sn, Hall [75] analysed 

foils from specimens containing 50 to 1600 ppm hydrogen. 

The addition of 330 ppm hydrogen caused one grain in every 

ten to exhibit platelets which were 0.1 ~m thick and often 

extended across a-platelets. The platelets had a fcc 

structure and were referred to as v-hydrides. From the 

orientation relationships and lattice parameter 

measurements, the fcc v-hydrides were crystallographically 

identical to the monolithic fcc phase observed by Rhodes 

and Paton [70]. As the hydrogen content was increased, 

the number of grains containing the fcc v-hydrides 

increased and two further precipitates were observed to 

form. A near-basal hydride was precipitated at > 510 ppm 

hydrogen and at > 600 ppm, so-called hydrogen stabilised 

stacking faults were also precipitated [75]. The effects 

of deliberate hydrogen additions on Ti-6Al-4V with 
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different material processing treatments was also 

investigated by Hall [76]. Similar phases were found to 

form at certain alP interfaces and across a-platelets. 

However, the concentration of hydrogen at which the fcc 

v-hydride was first detected in the T.E.M. varied 

according to the microstructure. Hence, fcc v-hydride 

formation was found to depend strongly upon both 

microstructure and hydrogen content. 

Subsequently, numerous investigators [71, 72, 75, 76, 

78-80] found the crystallography of the Rhodes-Paton model 

[70] inapplicable to their alloys. An alternative origin 

for this phase was proposed, using electron diffraction 

studies and lattice parameter measurements, based on the 

similarities with the binary hydride of titanium, TiHz 

(section 2.2.6.1). 

2.2.6.1 The Monolithic fcc Phase 

On the assumption that the interface phases observed were 

hydrides of titanium, the possible mechanisms of their 

formation were investigated. Monolithic fcc phase 

formation was thought to form as a hydrogen phase or 

hydrogen induced phase stabilised by stress, strain or 

compositional gradients [71, 72, 79] and was visualised to 

occur as follows [79]: As the p-a transformation 

proceeded on cooling the alloys through the p-transus, 

partitioning of various alloying elements occurred. The 

partitioning of hydrogen was particularly effective below 

573 K at which point the solubility of hydrogen in 

a-titanium decreased rapidly. Hydrogen atoms migrating 

from the a phase to the interface precipitated in this 

region since the supersaturation exceeded the solubility 

limit of hydrogen. precipitation took place when the p-a 

transformation was complete. 

Electron diffraction studies have suggested different 

orientation relationships and lattice parameters for the 

monolithic fcc IFP. These are summar ised in Table 2. 3 • 
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The lattice parameter, A, varies with alloy composition 
and has been reported to I ie between 0 • 420 nm [ 78] and 
0.453 nm [85]. The orientation relationship most 
frequently reported for the monolithic fcc phase [72, 75, 
77, 84, 85] is: 

(001) fcc// (OOOl)CI// (110}js; 
<110>~c//<11~0>CI//<111>, 

2.2.6.2 The Striated Phase 

(2.5) 

Identification of the striated form of the interface phase 
has led to much confusion in the literature [69-71, 78, 
84, 85, 87]. This phase was originally designated as Type 
2a and has been identified as either hcp [26, 69, 71, 81, 
87] or fcc [70, 72, 78-80, 84, 88]. The hexagonal 
morphology of the striated interface phase was thought 
either (i) to form by mechanical twinning due to a stress 
induced reaction on {1012} and {lOll} planes [87] or (ii) 
to be a more stable form of the a phase whose formation 
could possibly be caused by compositional differences 
[69]. 

Hammond and co-workers [72, 78, 84] consistently observed 
the striated (Type 2a) phase as thin lamellar particles 
both within and at the boundaries of the a-platelets. 
The structure of this phase was analysed as fcc or face 
centred tetragonal (fct) [72, 78, 84]. The particles were 
frequently internally striated and these striations were 
identified as the traces of {lll}fcc twins. The occurrence 
of both the monolithic and striated phases was said to 
depend upon the cooling rate [72]; air cooling IMI 685 (at 
approximately 400 o C/min) gave the monolithic phase (A = 

0.435 nm), whereas slow cooling (at less than sOC/min) 
produced the striated phase which was crystallographically 
identical to the monolithic fcc interface phase [78, 84]. 
Both forms occurred at intermediate cooling rates and it 

was observed that the striated phase precipitated within 
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the a-platelets and along the alP interfaces whereas the 
monoli thic phase was only found at the a/fi interfaces. 
At higher ageing temperatures, the striated phase was 
determined to have a face centred tetragonal (fct) 
structure with a Q/A ratio of 0.9 [78]. 

2.2.6.3 Effect of Foil Preparation 

It later appeared that the formation of the IFP was 
dependent on the thin foil preparation technique employed. 
For example, Shelton and Ralph [88] prepared foils from 
Ti-6Al-4V by electropolishing and observed three interface 
morphologies; a monolithic fcc phase, a striated fcc phase 
and a dislocated structure identified as hcp which was 
slightly misorientated with respect to the a phase. In 
foils prepared from ion-beam milling, no IFP regions were 
observed [88]. Banerjee and Williams [81] carried out 
similar experiments with foils of two starting thicknesses 
(0.05 and 0.1 mm) to observe the effect of foil thickness 
on interface phase formation. The results obtained 
suggested that both the fcc and hcp interface phases found 
in titanium alloys arose from processes which occurred 
during the electropolishing of thin foils. The fcc phase 
was formed in alloys with low fi phase fractions and larger 
starting thicknesses and consequently the fcc phase was 
determined to be a hydride of titanium arising as a result 
of an increase in hydrogen concentration during 
electropolishing. The hexagonal interface was observed at 
smaller starting thicknesses in a <1012>{1011} twin 
relationship to the a phase [81, 83] and was suggested to 
form as a result of stresses at the a/~ interface arising 
from thin foil relaxation in the ~ phase during 
electrolytic thinning. Ion-beam milling suppressed ~ 

phase relaxation [89] and prevented the formation of the 
hcp phase as well as the occurrence of the fcc phase [81, 
83]. 

Isaac and Hammond [84] agreed with the suggestion by 
Banerjee and Williams [81] that the interface phase was a 
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thin foil artefact but continued to observe the striated 

phase in their alloys as having an fcc or fct structure (A 

= 0.425 run). X-ray diffraction revealed no reflections 

attributable to an fcc phase in the bulk material and it 

was proposed [84] that the phase only occurred due to the 

relaxation of surface constraints during the 
electropolishing of thin foils. 

Having established that the IFP arose as a thin foil 

artefact [81, 89], a detailed study of diffraction 

patterns obtained from Ti-10V-2Fe-3Al was carried out by 

Banerjee et al. [85] in order to provide a consistent 

view-point for IFP formation. The hcp phase was found to 

exist in six variants formed by twinning on the six 

possible {lOll} planes of the parent Burgers a-platelet. 

The crystallography of this phase strongly suggested that 

it was a stress induced product formed by the volume 

expansion of the P phase caused by hydrogen absorption 

during electropolishing. Expansion of the P phase placed 

the a phase in compression which then deformed by 

twinning or slip. When the a-platelet size was small in 

relation to the surrounding P phase (e.g. in high 

temperature alloys), twinning was suggested to be the 

favoured deformation mechanism. According to Banerjee et 

al. [85], characteristics of the hcp phase were arced 

reflections in the diffraction pattern. Characterisation 

of the fcc IFP confirmed the existence of both the 

monolithic and striated morphologies, which were assigned 

different orientation relationships as given in Table 2.3. 

Both forms were determined to be hydrides of titanium that 

had nucleated on the a side of the alP interface (i) in 

alloys with low volume fractions of P phase, or (ii) when 

the electropolishing times were high (i .e. when the 

hydrogen content was expected to be high). When the 

striated and monolithic morphologies were observed to 

exist together, the monolithic form lay adjacent to the 

alP interface with the striated form within the a phase, 

in agreement with earlier work [70, 78]. The IFP was not 

observed in thin foils prepared by a method which 
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minimised increases in hydrogen concentration, such as 

grinding in CCI. followed by ion-beam milling. Despite 

much effort by Banerjee et ai., the exact mechanism of the 

formation of the fcc phase is still unknown. 

Careful diffraction analysis by Banerjee et ai. [85] was 

said to quite clearly reveal the structural differences 

between the strongly resembling striated fcc IFP and the 

hcp IFP which had caused so much confusion in earlier 

work. In contrast, Servant et al. [86] recently observed 

that the fcc IFP formed regardless of the thinning 

conditions, but only in foils from alloys which had 

received specific thermal treatments. Continuous cooling 

transformation curves constructed by Servant et ai. showed 

that the width of the IFP was a function of the cooling 

rate from the p-processing temperature. This was in 

agreement with Rhodes and Paton [70]. The compositions of 

the a, P and interface phases were presented as a 

function of the cooling rate [86]. They showed an 

increase in the p-stabiliser content with (i) a decreasing 

cooling rate and (ii) on moving from the a phase, to the 

striated fcc phase, to the monolithic fcc, to the P phase 

[86]. Despite all the research carried out previously on 

the characterisation of the interface phases, Servant et 

ai. [86] believed that the interface phases they had 

found, which were enriched in p-stabilisers, must be 

distinguished from the titanium hydride that formed after 

specific preparation techniques. 

In current commercial alloys the hydrogen concentrations 

are low enough, typically 30 - 70 ppm [73, 90], that these 

phases are only observed as thin foil artefacts and, as 

such, are unlikely to affect the behaviour of the bulk 

material [85]. 
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2.3 MECHANICAL PROPERTIES 

2.3.1 Creep Resistance 

The creep performance of high temperature titanium alloys 

is assessed by determining the maximum temperature at 

which alloys satisfy the creep test requirements, namely 

the temperature up to which the alloy undergoes less than 

0.1% total creep strain in 100 hours at a stress of 310 

MPa [6]. Generally, good creep resistance is obtained 

from an alloy which contains a small amount of the 

retained-p phase as this increases the resistance to 

diffusion controlled (vacancy) creep because the diffusion 

rate of elements can be up to one hundred times faster in 

the p-phase than in the a-phase [91]. 

Major advances in the development 

titanium alloys came in the late 

of creep resistant 

1950's when it was 

recognised that to obtain maximum creep resistance it was 

necessary to have an a titanium base strengthened by 

solute elements [5]. The relatively highly stabilised P 
phase of established a+p alloys such as IMI 550 and 

Ti-6AI-4V did not have the required creep stability and a 

new family of titanium alloys, the near-a alloys (section 

2.2.3.2), was investigated. In these alloys the amount of 

a-stabilisers used was sufficient to avoid the 

embrittlement of the alloy through a2 phase formation 

(section 2.2.5.1). The small fraction of p-stabilising 

elements present in these alloys allowed reasonable 

strength levels to be achieved. The first major near-a 

alloy to be developed in the U.K., IMI 679 (Table 2.1), 

was a+p processed and was creep resistant to 450 o C. 

In the mid 1960's it was discovered that significant 

improvements in creep resistance could be achieved by 

p-processing the near-a compositions. The ductility of 

IMI 679 was markedly reduced by p-processing. However, the 

p-processed alloy, IMI 685, was developed from IMI 679 by 

varying the composition so that the creep resistance could 
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be maintained at acceptable levels of tensile strength and 

ductility. IMI 685 represented a major breakthrough in 

design philosophy because, as well as being creep 

resistant up to 520 o C, IMI 685 was also weldable giving 

significant weight savings in the 

compressor discs. 
new high pressure 

A comparison of the differences in properties resulting 

from ~-processing and a+~ processing is given in Table 

2.4. A ~-processed, acicular-a microstructure was 

desirable for an improved fracture toughness (section 

2.3.4) and fatigue crack growth resistance (section 2.5.6) 

as well as an improved creep resistance. However, 

p-processed structures had a much larger microstructural 

unit size compared to a+p processed structures and this 

resulted in an inferior fatigue crack initiation 

resistance (Table 2.4 and section 2.5.6) • High 

temperature alloy disc designs were consequently becoming 

fatigue limited in the bore region rather than creep 

limited at the rim. The development of new alloys had to 

reflect the need to maximise the all-round capabilities 

and not just the creep and tensile properties of the 

alloys in the components [5]. The fatigue resistance of 

the alloys had to be a priority if alloys were to be 

developed for use at even higher temperatures and 

stresses. 

IMI 829 was developed with aluminium, tin and zirconium 

contents which were chosen to maximise the creep 

performance. The forging routes developed were aimed at 

minimising the p-grain size by p-recrystallisation [92]. 

This technique involved working the material by a minimum 

amount in the a+~ phase field to induce sufficient 

pre-strain for p-recrystallisation, and consequent grain 

refinement, to occur on reheating to the ~-phase field 

[9]. Unfortunately it was difficult to produce grain 

diameters of less than one millimetre in alloys such as 

IMI 685 and IMI 829 for use in turbine engines [4, 31, 

32] but it was claimed by Neal in a more recent paper [9], 
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that grain sizes of approximately half a millimetre were 

achieved in 1M1 829 using the technique described above. 

Even with the refinement of p-grain size achieved in 1M1 

829, the fatigue performance of p-processed, near-a 

alloys could not match that of a+p alloys with equivalent 

tensile strengths [9]. The grain size of near-a alloys 

needed to be reduced still further to achieve significant 

improvements in the fatigue performance whilst still 

maintaining the creep properties [9, 31]. A reduced grain 

size could be obtained by a+fS processing to produce an 

equiaxed structure, however, this method could not be 

employed on 1M1 829 because of the restricted a+p phase 

field or 'heat treatment window' (illustrated in Figure 

2.4, section 2.2.4.1). Accurate heat treatment within a 

small temperature range was not practically possible with 

large aero engine components. As already described in 

section 2.2.4.1, the addition of a small quantity of 

carbon (0.06 wtt) to the alloy 1MI 834 had the effect of 

decreasing the gradient of the fS-transus approach curve 

and permitted accurate a+p processing. Grain sizes of 

0.1 to 0.2 mm in diameter were achieved with a small 

volume fraction (5t to 1St) of primary-a phase. The 

alloy was creep resistant up to 600°C and combined the 

advantages of p-processed alloys with those of more 

fatigue resistant, a+p processed alloys. The 

improvements in creep capabilities are best illustrated in 

the form of a Larson-Miller plot; Figure 2.7 shows the 

improvements in creep resistance achieved (for selected 

alloys) over the last 40 years. 

The creep resistance of titanium alloys has been found to 

increase with additions of s i I icon up to O. 5 wtt by a 

mechanism of dynamic strain ageing [37, 55, 93] (see 

section 2.2.5.2). It was suggested that the improved 

creep resistance of recent fS-processed near-a alloys is 

achieved more as a result of the increased amounts of 

silicon being taken into solution at the higher 

temperatures employed than by the associated change from 
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an equiaxed a+~ microstructure to an acicular-a 

morphology [91]. The changes in microstructure and 

composition of high temperature titanium alloys which were 

associated with the improvements in creep performance 

have, however, led to severe losses in ductility being 

recorded during high temperature exposure [64]. These 

losses are discussed in section 2.3.2. 

2.3.2 Ductility 

It is the ductility of an aero engine component, along 

wi th the fracture toughness (section 2.3.3) , that 

determines its impact resistance and is particularly 

important where contact with debris or bird-strike may 

occur, for example at the anterior of the compressor 

section of a gas turbine engine. The two parameters used 

to describe ductility are the reduction in area (RA), 

measured as the percentage difference of the original and 

final cross-sectional areas, and the elongation (tE), 

measured as the percentage difference of the original and 

final specimen lengths. 

As with other mechanical properties, the ductility of 

titanium alloys is markedly influenced by a change in the 

processing conditions. A decrease in RA by a factor of 

about two has been observed in changing from an a+~ 

processed microstructure to processing above the ~-transus 

[94,95]. 

Banerjee et ale [96] observed the changes in the ductility 

of a near-a alloy on altering the cooling rate from the 

solution treatment temperature. water quenching from the 

~-processing temperature resulted in a poor ductility 

compared with material that had been air cooled. The 

behaviour was related to the relati ve strengths of the 

prior-~ grain boundaries and the matrix. In martensitic 
structures resulting from water quenched material, 

deformation was localised at the grain boundaries due to 

the restriction on slip into adjacent grains. 
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The boundaries became a site for void nucleation and, 

since they provided a continuous path across the specimen, 

fracture was intergranular, and a low ductility resulted. 

On decreasing the cooling rate deformation was no longer 

localised at the grain boundaries and void nucleation 

sites lay at the Widmanst~tten a/~ interfaces. Fracture 

was therefore intragranular and resulted in a higher 

ductility. 

Woodfield et al. [64] observed that the ductility of 

tensile specimens of IMI 829 was reduced after ageing at 

575°C for 100 hours. This loss was believed to be 

associated with the precipitation of silicides. However 

the mechanisms were found to be more complex and involved 

an interplay between a2 ordering and the presence of 

silicides [64]. The work by Woodfield et al. [64] 

suggested that, in addition to the AI· (section 2.2.5.1), 

the level of silicon was also important in determining the 

onset of ordering which could lead to a reduction in 

ductility. The improvement in creep properties associated 

with silicon additions may also be lost during high 

temperature exposure due to the precipitation of 

silicides. 

2.3.3 Ultimate Tensile Strength 

The room temperature ultimate tensile strength (UTS) of 

titanium alloys ranges from approximately 300 MPa in 

commercially pure grades [3] to 2260 MPa in the case of 

the ~ alloy, Ti-13V-11Cr-3AI, in the solution treated 

condition [11]. The UTS values vary according to a large 

number of factors including; alloy composition, solute 

content, the nature of the transformed-~, the relative 

fractions of primary-a and transformed-~, the grain size 

and the texture of the material [97]. strength levels for 

alloys are therefore quoted for a particular heat 

treatment or expressed as a range of values. The range of 

UTS at room temperature for a+~ alloys is between 900 

and 1400 MPa [3, 98], for example IMI 550 has a room 
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temperature UTS of approximately 1200 MFa in the solution 

treated and aged condition [3, 98]. The high temperature 

near-a alloys have typical room temperature UTS values of 

between 900 and 1250 MPa [99], for example 1M1 834 has a 

UTS range of approximately 1030 to 1050 MPa after solution 

treatment, oil quenching and ageing at 700°C for two hours 

[6]. 

The most important factor affecting the UTS in a+1S and 

near-a alloys is the nature of the transformed-IS (Section 

2.2.4.2). Material quenched from the solution treatment 

temperature has a fine microstructure and therefore has an 

improved strength when aged over material that has been 

furnace cooled and aged, as illustrated in Table 2.5 for 

the alloy Ti-6242-Si [99]. The increase in UTS occurs at 

the expense of the material ductility (section 2.3.2) and 

it is therefore of importance to obtain the best 

compromise between these properties in aero engine 

applications. 

The UTS is dependent upon the fraction of primary-a and 

transformed-IS phases present in the alloy w~ich is related 

to the alloy composition [97]. For example, an increase 

in the volume fraction of the primary-a phase causes a 

decrease in the fraction of the IS phase. At high 

temperatures the P phase increases in stability as a 

result of a promotion of solute partitioning to the P 
phase. Additions of neutral alloying elements, such as 

tin and zirconium, increase the strength of alloys without 

significantly altering the p-transus temperature (section 

2.2.2) . For every 1% tin added there is an estimated 

increase in strength of 28 MPa, whereas for every 1% 

zirconium added, there is an estimated increase of only 

3.5 MPa [13]. Although tin is denser than zirconium, its 

use in high temperature titanium alloys is preferred 

because of its more potent solid solution strengthening 

effect. 1M1 551, for example has 2% more tin than 1M1 550 

and is 15% stronger at room temperature, with all other 

properties remaining essentially unaltered [97]. The 
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degree of solid solution strengthening is severely limited 

by the formation of ordered phases such as aa (section 

2.2.5.1) which can ultimately embrittle the alloy. 

The presence of the interstitial elements, carbon, oxygen 

and nitrogen, increases the UTS of titanium alloys, 

particularly those of commercially pure grades. The 

effects of these additions has been extensively reviewed 

[100J and are also discussed in detail in section 2.4. 

2.3.4 Fracture Toughness 

The plane strain fracture toughness for metallic 

materials, K1C ' is determined from standard procedures 

[101J. The experimental conditions for K1c determination 

are not always satisfied during testing, hence a 

provisional value of plane strain fracture toughness, ~, 

is normally quoted instead [38, 102J. 

The fracture toughness of a+~ and near-a titanium alloys 

is very sensitive to the effects of microstructure and 

texture. For a given alloy, ~-processing yields a much 

greater fracture toughness than does a+~ processing (see 

Table 2.4) [103 J . This difference can be attributed to 

the more tortuous crack paths and greater propensity for 

multiple slip at the crack tip in the ~-processed material 

[104J. The advantage of ~-processing is lost however if 

the cooling rate is too rapid which leads to the formation 

of martensite [103J. 

The relationship between fracture toughness, strength and 

ductility on three a+~ processed titanium alloys (IMI 

318, IMI 550 and IMI 551) was investigated [103]. In IMI 

318 and IMI 550, the fracture toughness of air cooled and 

aged alloys increases with the solution treatment 

temperature whereas the proof stress, tensile strength and 

ductility remain fairly constant. For water quenched and 

aged material, there are marked minima in the proof and 

tensile stress values in all three alloys as the solution 
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temperature increases. However, the fracture toughness 

and ductility are not appreciably affected. The fracture 

toughness was found to be proportional to the volume 

fraction of Widmanstatten-a, and the strength was found 

to be proportional to the volume fraction of 

martensitic-a. The coarser Widmanstatten microstructures 

were believed to have a greater fracture toughness due to 

the ability of the thicker a-platelets to arrest or 

deviate cracks [103]. Using in situ tensile stage 

straining experiments in the T.E.M., it was suggested [41] 

that the minimum thickness of an a-platelet required to 

deviate a crack in the material examined was 2 IJm (see 

also section 2.5.6.3). 

An increase in the fracture toughness of 100% has been 

found in air cooled and aged IMI 550 on increasing the 

solution treatment temperature from 880 to 980 0 e [41]. 

This increase corresponded to a change in the volume 

fraction of primary-a from approximately 70% at 880 0 e to 

10% at 980 o e. Thus, higher volume fractions of primary-a 

led to inferior fracture toughness values and it has been 

suggested that this is due to an increase in the number of 

favourable void nucleation sites at the boundaries of 

equiaxed-a grains [105]. 

Bowen [106] highlighted the importance of test piece 

geometry on the fracture toughness of titanium alloy 

components with observations on strongly textured 

Ti-6Al-4V. High fracture toughness values were obtained 

in specimens where a crystallographic slip system was 

parallel to the plane of maximum shear stress. In 

specimens where the deformation modes were not aligned 

wi th the planes of maximum shear, much lower values of 

fracture toughness were recorded. 

2.4 CRYSTALLOGRAPHY AND DEFORMATION MODES 
IN TITANIUM 

A comprehensive review of the crystallography of hexagonal 
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close packed (hcp) metals was presented by Partridge 

[107]. Details on atomic positions in the hcp structure, 

interstitial positions, the reciprocal lattice, 

crystallographic indices and stereographic projections for 

hcp metals are discussed [107]. The review also covers 

the identification of 

of Burgers vectors, ~, 

observations on the 

dislocations and the determination 

in hcp metals (see Appendix 1) and 

slip and twinning behaviour in 

titanium and magnesium alloys. 

The lattice symmetry of hcp metals is usually illustrated 

by means of a hexagonal prism, Figure 2.8, in which the 

distances between atom centres are taken as A and £. 

Table 2.6 lists the Q/s ratios and the variations in the 

planar spacing and atomic density for prism and basal 

planes in several hcp metals. No pure metal has the ideal 

Q/s ratio of 1.633. The intrinsic Peierls-Nabarro stress 

necessary for slip is expected to be smaller for planes 

which have the largest interplanar spacings and contain 

the shortest lattice transition vectors [107, 108]. On 

the basis of this model, prism slip is expected to replace 

basal slip as the predominant slip mode when the £/A ratio 

becomes less than 1.73, because below this ratio the prism 

plane spacing is greater than the corresponding values for 

the basal plane. This concept apparently accounts for the 

predominance of prism slip in titanium and zirconium, 

however, the predominance of basal slip in cobalt, 

magnesium and beryllium cannot be explained [107] • 

Investigations by various workers have suggested that a 

thermally activated component also affects the deformation 

modes in hcp metals [100]. In this section, the factors 

affecting the deformation modes of titanium are discussed. 

The deformation modes of titanium were established by 

Churchman [109] and other workers [110-112]. From 

observations on single crystals of commercially pure 

titanium, it was shown that slip occurred on the basal 

(0001), prismatic {oliO} and pyramidal {li01} planes with 

<s> type Burgers vectors of the type 1/3<1120>. Figure 
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2.9 illustrates the position in the hcp structure of (i) 

the basal plane (0002), (ii) one of the six possible 

prismatic planes, (0110), and (iii) one of the six 

possible pyramidal planes, (1101) • Twinning was most 

frequently observed to occur on the {1012} planes [107, 

109-113] and {1211} planes [107, 111-113]. In addition, 

evidence of twinning on the {1212} [107, 109-113], {1213} 

[107] and {1214} [107] planes has been found, however the 

shuffles associated with these modes are complex and 

consequently they are far less commonly observed. 

2.4.1 von Mises Criterion 

According to von Mises criterion, a polycrystal requires 

five independent shear systems to undergo homogeneous 

strain without a change in volume [114, 115]. A slip 

system is independent of others provided that its 

operation cannot be produced by a suitable combination of 

slip on other systems [116]. Of the six types of slip 

system available in hcp metals [107], the operation of 

only <g> type, <1120>, slip in commercially pure titanium 

cannot satisfy the von Mises criterion. It was therefore 

suggested by Tegart [117] that other slip systems in 

titanium must operate in which the dislocations have a 

component of the Burgers vector in the ~ direction. Such 

slip has been observed to occur with Burgers vectors of 

the type 1/3<1123> on the {1122} and {lOll} planes and is 

identified as <~ + g> slip [118-123]. 

In fine-grained commercial titanium alloys, twinning is 

not an important macroscopic mode of deformation [12] but 

it is interesting to note that {10i2} twins may activate 

various <~ + g> type dislocations by interaction with <g> 

type dislocations [12, 107]. Such twin/dislocation 

interactions may account for the increased ductility 

observed in titanium 

approaching absolute 

considerable cryogenic 

(and zirconium) at 

zero which gives 

potential [107]. 
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2.4.2 The Critical Resolved Shear Stress 

The stresses required 
hexagonal metals are 
of the stress axis. 

to activate the deformation modes in 
very dependent upon the orientation 
This is demonstrated by plotting the 

Schmid factor, m, for each deformation mode: 

m = as/an = COS4>cOSA (2.6) 

where as = the shear stress resolved on the slip (or twin) 
plane and in the slip (or twin) direction (MFa) 

an = the applied stress (MPa) 

~ = the angle between the stress axis and slip (or 
twin) plane normal 

A = the angle between the stress axis and slip (or 
twin) plane direction 

Figure 2.10 shows the orientation dependence of the Schmid 
factor, m, versus the angle ~ for slip on the most highly 
stressed basal and prism slip systems [107] in conjunction 
wi th a standard unit stereographic triangle for a hcp 
metal. The triangle was formed by drawing great circles 
through (0001), (1120) and (1010) poles. 

as must attain a critical value, the critical resolved 
shear stress (eRSS), before slip (or twinning) can occur 
on a given plane. The CRSS for different modes of 
deformation varies and thus, although the Schmid factor of 
a particular mode may be favourable, deformation on that 
mode may not occur if a mode with a lower CRSS is able to 
operate at a lower orientation factor to the stress axis. 
For example, twinning requires a high eRSS to be reached 
before it can operate, so even if the orientation factor 
for twinning is ideal, slip can preferentially occur at a 
lower stress and at a less-than-ideal orientation due to 
the lower eRSS for slip [107]. 

For basal slip, m is zero for all {1120} slip vectors when 

the stress axis is parallel or normal to the £-axis. The 
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Schmid factor reaches a maximum value of 0.5 when. - A -
45° [107] (see Figure 2.10). For prism slip, the resolved 
shear stress on (01iO)(2i10] varies from a maximum, when 
the stress axis is normal to the ~-axis, to zero when the 
stress axis is parallel to the ~-axis. 

2.4.3 Effect of Interstitial Content 

Table 2.7 shows the CRSS's and ratios of CRSS for <4> type 
«0001)<1120>, {10iO}<1120> and (10i1}<1120» slip 
measured in studies of single crystals [109, 111, 112, 
124] and polycrystals [110] of commercially pure titaniua, 
with the interstitial contents indicated. In 
zone-refined titanium with an interstitial content of 4 x 
10'. at' Ooq (where Ooq - 0 + 2N + 0.75C in at' [100]), 
Levine (124] calculated that basal and prism slip had 
CRSS's of 8 kg/mml and 2 kg/mml respectively at roo. 
temperature. There is a preterence tor slip on the plane 
with the lowest value of CRSS and, therefore, in the case 
of titanium with low interstitial content, this 
corresponds to a preference for slip on the prismatic 
plane with secondary slip occurring on the (0001) and 
{10i1} planes [107, 124). 

Churchman (109] reported that increasing the interstitial 
content of single crystal specimens led to increased slip 
on basal and pyramidal planes. This is reflected in the 
ratio of the CRSS's which are given in Table 2.7. For 
example, the ratio for prism to basal slip decreased fro. 
1:3 to 1:1.2 on increasing interstitial content from 0.01 
wt' (0 + N) to 0.1 wt' (0 + N) [109]. A possible mechanis. 
for the role of oxygen in titanium was proposed by 
Churchman in which hard sphere models of the hcp lattice 
were used to indicate the positions ot oxygen atoms. The 
sites occupied by these atoms were said to obstruct slip 
on two of the three possible slip planes in titanium, 
namely, the basal and prism planes. The model provided an 
explanation tor the variation ot the relative values of 
the CRSS with interstitial impurity content; changes in 
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the oxygen concentration at low total oxygen contents had 
a much more marked effect on the CRSS for slip on the 
basal and prism planes than on the pyramidal planes, which 
agreed with the experimental observations [109]. 

A comprehensive review of the effects of interstitial 
solutes on the atrength and ductility of titaniWl waa 
compiled by Conrad (100]. The review discusses the 
ettecta of very dilute solid solutions « 1 att) of 
oxygen, nitrogen and carbon on the deformation kinetics, 
strain hardening, grain size hardening, ductility and 
tracture of single cryatals and polycrystals of unalloyed 
titanium. Three temperature regions were considered: (i) 
Low temperatures TIT. < 0.3 (T. - melting temperature in 
Kelvin). (ii) Intermediate temperatures, 0.3 < TIT. < 

0.4. (iii) High temperatures, TIT. > 0.4. Most attention 
is given to the more documented, low temperature regime. 

A summary of the data in the literature on the effects of 
temperature and purity on the CRSS for prism slip in 
titanium was presented in graphical form [100]. The 
eftects on the most pure material (0 + N + C - 0.05 att) 
are illustrated in Figure 2.11. The occurrence of a 
plateau in the 
(approximately 600 

prism slip below 

curve at intermediate temperatures 
- 800 K), suggested that the CRSS for 
800 K (0.4 TIT.) consisted of two 

components. These were a thermal component, ~, which was 
sensitively dependent on temperature, T, and strain rate, 
y, and an athermal component, TJI, which varied with the 
modulus, ~, such that: 

T < Tc: (2.7) 

Tea .. • T., T > Tc: (2.8) 

Tc - the initial temperature at the plateau and is 600 K 

tor prism alip (a.e Fiqure 2.11) [100]. The effects of 
temperature and atrain rate on the CRSS for basal alip in 
high purity titanium are compared to that for prism slip 
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in Figure 2.11 (Tc tor basal slip is approximately 800 K). 
Figure 2.12 shows the ettect ot the interstitial solute 
content on the CRSS tor basal slip [100, 109, 112, 124] 

and prism slip [100] in titanium at 300 1<. It was 
concluded that basal slip exhibits a stronger temperature 
and strain rate dependence ot the tlow stress but a weaker 
dependence on the interstitial content. The relatively 
small amount ot data regarding pyramidal and <~ + A> slip 
in titanium implies that comparisons cannot be made on 
these systems [100]. 

The results ot many studies on the detormation of titaniua 
single crystals and polycrystals at low temperatures [100, 

109, 111, 112, 119, 124-127] indicates that; (i) the 
principal slip mode is (10iO}<1120>, (ii) the stress tor 
this slip mode increases with an increase in interstitial 
content at all temperatures, (iii) the ratio ot the stress 
tor the systems (0001) and {lOll} to that tor {10l0} slip 
increases with purity and (iv) the temperature dependence 
ot the yield or tlow stress increases with interstitial 
content and is independent ot the strain or grain size. 
These and other considerations suggest that the low 
temperature detormation kinetics of single crystals and 
polycrystals ot titanium are associated with the theraally 
activated breakdown ot interstitial solute obstacles by 
dislocations moving on the tirst order prism planes [100]. 

A number ot suggestions concerning the rate controlling 
mechanism tor basal slip have been proposed. Levine [124] 

proposed that the Peierl. torce, or lattice friction, was 
rate controlling at temperature. below 400 I< and Akhtar 
and Teghtsoonian (128) concluded that cross-slip was rate 
controlling for basal slip at temperatures from 500 I< to 
1100 K. Somewhat better agreement between observed and 
predicted slip plane preference was obtained when the 
stacking tault energi.. on both basal and prism planes 
were considered in term. of the relative pha.e stability, 
as discus.ed by Conrad (100]. Interstitial solutes are 
believed to inf luence the effect of temperature on the 
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relative ease ot prism/basal glide through their direct 
interaction with dislocations, as well as their indirect 
effect through the stacking tault energy [100]. 

2.4.4 Aluminium Additions 

The addition ot up to 5 at' aluminium to titanium does not 
appreciably intluence the ettect of interstitial solutes 
on the thermal component ot the CRSS for basal and pris. 
slip at low temperatures. The etfect of aluminium is on 
the athermal component of the tlow stress [100]. However, 
additions of aluminium have a significant effect on the 
dislocation structure and strain hardening of titaniua 
alloys. 

Blackburn and Williams [118] studied the dislocation 
arrangements in detormed specimens ot titanium containing 
o to 25 at' aluminium and 0.3 to 0.6 at' oxygen. In 
commercially pure titanium, cellular distributions of 
dislocations occurred with an average cell diameter of 0.5 
to 1.0 ~m. Many dislocation loops were also formed. As 
the aluminium content increased, the number ot dislocation 
loops decreased. The addition of 5 at' Al resulted in a 
more homogeneous distribution of dislocations with neither 
a well defined cell structure nor planar groups of 
dislocations. Such planar groupings were observed in 
alloys with greater than 10 at' Al and allowed an analysis 
of the active slip planes to be made. Slip on the {10l0} 

planes dominated at low strains, but slip on {loll} planes 
and, to a lesser extent, on the (0001) plane was found at 
higher strains. Further increase. in the aluminiua 
content produced narrower slip bands and an increase in 
the volume fraction ot the 02 phase. In alloys containing 
> 10 at' aluminium, dislocations near the head of a planar 
array were tound to occur a. pairs. As the number of 
dislocations that passed along a glide plane increased, 
the amount ot pairing decreased. The changes in 
dislocation arrangement with increasing aluminium content 
were considered to rise, in part, from the development of 

, r-, '-. "" 
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ahort range order and ordered particles in the alloys and 
thia waa confirmed by the presence of dislocation pairs at 
the head of the planar arrays [118]. 

The planar slip in Ti-Al alloys ia determined to arise aa 
a reault of a decrease in the CRSS of the active alip 
plane, rather than a change in the ability of screw 
dislocations to cross-slip [129]. This is in contraat to 
the situation in fcc alloys where an increase in the 
solute content reduces the stacking fault energy and the 
ability to cross-slip [129]. 

2.5 FATIGUE BEHAVIOUR 

To be able to predict when a component in an aero engine 
will fail under all conditions to which it may be exposed, 
requires a thorough understanding of its fatigue 
behaviour. Fatigue testing usually involves cycling 
specimens to failure in order to predict a lifetime or 
number of cycles to failure, Nf, of a component. The 
prediction is subsequently used to remove the component 
from service after around 40' Nr. As finer, more highly 
alloyed and more microstructurally complicated alloys are 
developed, the demands on the fatigue integrity are 
consequently increased. In addition to this, the designer 
is currently looking to operate components up to 
two-thirds Nr bafore removing them from service. Better 
fatigue model 1 ing might a llow this operating time to be 

extended. To this end, metal fatigue atill remains an 
expanding and interdisciplinary subject. 

There are four phases of crack growth generally accepted 
in the literature (1]. The •• are illustrated in Figure 
2.13 and are summarised: (i) Initiation - the formation 
of a sub-gra i n-s i ze crack. ( i i) Short crack growth - a 
mixture of crack growth within a grain and crack arrest at 
the grain boundaries, which is microstructurally 
dominated. (iii) Steady or long crack growth - a function 
of geometry and stre •• which obey. linear elastic fracture 
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mechanics (L.E.F.M.) and is independent of microstructure. 
(iv) Rapid fracture - unstable crack growth under steady 
loading. 

The application of L.E.F.M. to long crack growth is now 
well understood, apart from materials of very high 
toughness which require alternative prediction algorithms 
[130] • Research is now concentrating on short fatigue 
crack growth, the current understanding of which is 
discussed in sections 2.5.2 and 2.5.3. As the prediction 
of component life has become increasingly critical, an 
improved understanding of the fatigue crack initiation and 
damage accumulation mechanisms in metals and alloys is 
necessary. Fatigue crack initiation in titanium and 
titanium alloys is discussed in section 2.5.6. 

2.5.1 Long Fatigue Crack Growth 

For over 150 years the study of fatigue has involved the 
use of S-N endurance curves (where S is the applied stress 
and N is the number of cycles) such as those in Figure 
2.14 [131]. The interpretation of these curves has been 
the subject of much research and intense discussion by 
materials scientists, materials engineers and mechanical 
engineers [130]. 

L.E.F.M. analysis of crack tip stress-strain fields in a 
component enables designers to estimate the period of long 
crack growth lifetime between an initial defect size as 
small as half a millimetre [132], to the final crack size, 
which can be as large as several hundred millimetres. The 
use of L.E.F.M. is of considerable benefit to engineers, 
permitting a direct comparison between large engineering 
structures and small laboratory specimens 
the elastic stress intensity factor, 4J( 

132, 133): 

4J( - YAa(Jra) 1/3 
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where: 
Y = specimen geometry and loading system factor 

AO' = cyclic stress range (N/m2) 
a = the crack length (m) 

However, L. E. F. M. is I imi ted to cases where the plastic 
zone size associated with the crack tip is less than one 
fiftieth of the crack size and can therefore be ignored. 

commercial pressures to develop more advanced materials 
and to perfect new techniques for monitoring the growth of 
small cracks has led to the inability of L.E.F.M. to 
characterise the behaviour of very small cracks. This is 
attributable to the fact that the plastic strain field of 
a small crack can be the same size as the crack, rendering 
the use of L.E.F.M. inapplicable. A recent development in 
the interpretation of short fatigue crack growth is based 
initially on an understanding of the fatigue limit [130]. 

2.5.2 The Fatigue Limit 

The fatigue limit is a limit on the ability of a crack to 
propagate to failure or the stress required to overcome 
the strongest barrier to crack propagation. Figure 2.15 

illustrates that at cyclic stress levels, AO'3, AO'. and 
40'5, failure does not occur since the crack is arrested at 
barriers b3 , b. and bs , e. g. a-platelet, colony and grain 
boundaries respectively. At A0'2, which is greater than 
the fatigue limit, these barriers are not sufficiently 
strong to arrest the crack and so failure ultimately 

occurs [130]. 

In order to appreciate the behaviour of short cracks, 
analytical models incorporating three separate zones have 
been proposed [132]. The zones vary in extent depending 
on the material under investigation. An example is given 
in Figure 2.16. Zone A-B represents the microstructurally 
short crack (MSC) growth regime. Zone B-C is referred to 
as the physically short crack (PSC) growth regime and zone 
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C-D corresponds to low stress, linear elastic fracture 

mechanics type cracks. 

Microstructural barriers bs , b, and b3 of increasinq 

resistance are illustrated in the microstructurally short 

crack (MSC) growth regime and match the conditions shown 

in Figure 2.15. According to Miller [134], it is the 

thermomechanical control of these barriers, in terms of 

their position, size and strength, that will provide the 

higher fatigue resistant materials of the future. 

2.5.3 Short Fatigue Crack Growth Rate 

The fatigue crack growth rate from Figures 2.15 and 2.16 

varies according to Figure 2.17. At the lowest value of 

the stress range, 4as, the MSC grows until it is stopped 

at the fatigue limit represented by the barrier bs • It 

can only continue to grow under the same stress ranqe if 

it has a lenqth greater than as. Even if the stress is 

increased to the range Aa3, which is sufficient to 

overcome the barrier, bs , the crack is arrested by the 

stronqer barrier, b3 • However, if the stress ranqe Aaz is 

imposed, fatigue failure occurs since the MSC qrowth curve 

and PSC growth curve cross at this stress range which is 

sufficiently high to overcome all the barriers (bs , b, and 

b 3 ) • 

All the zones of fatigue crack qrowth behaviour identified 

require their own branch of fracture mechanics to fully 

characterise their behaviour [130]. Miller [130, 132, 

134] reviewed the extent and practical relevance of each 

zone with the effects on short fatigue crack growth that 

could arise from crack closure, environment, surface 

preparation and notching of specimens. 

The manufacture of safe and long-life enqineering 

components requires a detailed understanding of the 

factors affectinq the short crack growth behaviour of the 

metal or alloy. These factors include: (i) The type of 
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test and geometry of test specimen, R ratio (a.in/ a_x) , 

frequency of testing and load pattern (square wave, 

sinusoidal etc.). (ii) The microstructure and prior 

processing history of the material, i. e. grain size, 

secondary phase distributions, inclusion sizes, 

orientation and distribution. (iii) Test environment. 

(iv) Test temperature. (v) Surface topography of the test 

specimen. 

In fact, as stated by Miller [130], all the classical work 

of the past 150 years, which characterised long crack 

fatigue behaviour and fatigue limits can now be reanalysed 

from the point of view of short fatigue crack growth. 

2.5.4 Fatigue Crack Initiation 

Crack ini tiation plays an important role in the fatigue 

life of either a component in a structure or a specimen in 

a laboratory, and is one of the major aspects of all 

fatigue studies. It is of interest to be able to define 

fatigue crack initiation as it is then possible to 

ascertain the periods of lifetime required for the crack 

to initiate and consequently to propagate to failure. 

Miller [134] considered the fatigue lifetime to be 

composed entirely of fatigue crack propagation from an 

initial defect size, ao, as small as 2 to 3 ~m 

(micronotches on an engineering surface) to the final 

crack size, af' To simplify calculations, ao was assumed 

to be zero since the growth of a crack from 0 to 3 ~m was 

said to make minimal difference to the lifetime. For 

example, in Figure 2.15 it was assumed that the fatal 

fatigue crack and its associated plasticity were initiated 

simultaneously in the first fatigue cycle. 

Funkenbusche and Coffin [135] defined crack initiation as 

the formation of a crack which was detectable using the 

scanning electron microscope (approximately 1 ~m). As a 

consequence, cracks were considered to initiate after 3% 
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to 30% of the total fatigue lifetime, depending upon the 

scatter of the results obtained and on the cyclic strain 

amplitude [21, 135]. A new theory of crack initiation 

based on the accumulation of dislocations in slip bands 

was developed by Lin et al. [136] whereby fatigue cracks 

were shown to be less than 0.5 pm in size when first 

initiated. 

Many workers have shown that the duration of crack 

initiation occupies the first 50% to 90% of the total 

fatigue lifetime in high strength materials [137-139]. 

Provan [137, 138], for example, considered that the 

initiation and coalescence of microcracks led to a 

macroscopic crack over the first 90% of the total fatigue 

life and has endeavoured to derive the Provan reliability 

law based entirely on the modelling of fatigue crack 

initiation and propagation [137]. 

Clearly the definition of crack initiation is a debatable 

one and a large amount of confusion concerning this issue 

has been generated. with an ever increasing number of 

more detailed theories and investigations, this issue will 

no doubt continue to be raised. 

2.5.5 Damage Accumulation in Copper 

Research into fatigue damage accumulation and crack 

initiation mechanisms has concentrated on lightly alloyed 

metals, in particular, copper [137, 138, 140-142]. This 

is understandable since the fundamental processes in 

lightly alloyed metals are more easily observed and 

interpreted than they are in more heavily alloyed 

materials containing precipitates and secondary phases, 

such as titanium alloys. 

The theory behind fatigue damage accumulation in pure 

polycrystalline materials, such as face centred cubic 

(fcc) copper, nickel and silver, and to a lesser extent in 

body centred cubic (bcc) metals such as a-iron and 0.1% 
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carbon steel, is based on an understanding of the 

behaviour of persistent slip bands (P.S.B.'s) [137, 138, 

140-144]. 

As long ago as 1902 P.S.B.'s were observed by Ewing and 

Humfrey [145] who reported that: (i) Slip bands formed in 

favourably orientated crystallites. (ii) With increasing 

strain new bands developed and old ones widened. (iii) 

The slip band markings were decidedly above the general 

surface, and were rough and jagged. (iv) Cracks 

developed at the slip bands. (v) There was a stress 

amplitude below which slip bands were not observed. (vi) 

There were fewer bands at lower stresses than at higher 

stresses. 

More recently, theoretical studies on crack nucleation in 

copper focuses on the effect of internal stresses within 

the P.S.B. 's, the development of the surface profile of 

P.S.B.'s and the identification of the most likely sites 

for crack formation. various dislocation mechanisms for 

the production of extrusions and intrusions have been 

proposed, theories have been formulated and an ever 

increasing number of investigations using novel 

experimental procedures have been made in order to 

accumulate data and knowledge on all aspects of the 

subject [137, 138, 140-143, 146-150]. 

For low strain amplitude fatigue in lightly alloyed fcc 

metals, cyclic hardening initiates fatigue damage by 

changing the microstructure of the material to a vein 

structure of unidirectional dislocation structures. A 

saturation stage is reached where cellular bundles of 

dipole and multipole dislocation configurations act as 

effective barriers to continued dislocation motion [137, 

141, 142, 147]. At this saturation point the hardening 

rate slows to zero. Watt et al. [146] observed that the 

micromechanical structure of the material changes with the 

achievement of saturation. 

itself in the evolution 

strain localisation manifests 

of surface relief which is 
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characterised by depressions and elevations along the 

lines of intensive slip [150]. These depressions and 

elevations develop into intrusions and extrusions, or 

persistent slip bands, either within a grain or at grain 

boundaries (persistent slip grain boundaries) [150]. The 

term persistent slip band originated from the 

"persistence" of some of the slip bands formed during 

fatigue tests when a thin layer had been removed from the 

surface by electropolishing [138]. The P.S.B. has been 

extensively researched [137, 138, 141-143, 148, 150]. Its 

ladder-like structure consists of highly concentrated 

dipole edge dislocations, of the order of 1015 1m2 [151], 

in the walls (approximately 1 to 1.5 ~m apart) and a screw 

dislocation density between the walls as high as 1013 1m2 
[138]. The motion of dislocations inside the walls and a 

P.S.B. formation theory for low strain amplitude fatigue 

have been proposed by Kuhlmann-Wilsdorf and Laird [147]. 

The extrusions and intrusions which form at the surface of 

a test specimen to a height and depth of up to 4 ~m, 

respectively [136, 142], act as stress raisers to initiate 

microcracks along the interface between the P.S.B. and the 

matrix [143]. When P.S.B.'s intersect with a free 

surface, the microcracks nucleate transgranularly, whereas 

intergranular cracking is observed at persistent slip 

grain boundaries. Once the microcracks have initiated, 

they propagate along slip planes to form macrocracks. 

Although much progress has been made, a general 

observation is that due to the complexity of the fatigue 

damage mechanism, this area of fatigue is still in a 

qualitative rather than a quantitative stage [138]. 

2.5.6 Damage Accumulation in Titanium Alloys 

2.5.6.1 Commercially Pure Titanium 

Both twins and slip bands are known to operate as 

deformation modes in commercially pure a titanium 

(section 2.4) but the preferred sites for fatigue crack 
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initiation have been found to vary. Preferential cracking 

on twin boundaries was observed by Partridge [152], 

stevenson [153] and at low strains by Sugano and Gilmore 

[154]. Suhua et al. [155] observed cracks to initiate at 

grain boundaries which separated highly misorientated 

grains whose dominant deformation modes were different. 

Some cracking from slip band interaction on prism planes 

was also observed [155]. Slipless cracking, believed to 

be geometrical in nature, was found at low frequencies 

[156] and at high frequencies [157, 158]. However, the 

most commonly reported sites for crack initiation in a 

titanium alloys are planar slip bands in the a phase 

[113, 154, 157-160]. It was shown that, as the frequency 

of testing increased; (i) a decrease in the number of 

grains with slip bands and cracks was observed, and (ii) 

an increase in the percentage of life to crack initiation 

and number of cycles to failure (Nf), occurred [157, 158]. 

2. 5. 6 . 2 Ti· 6Al ·4 V 

Due to its extensive use in aero engines, considerable 

interest has been generated in the low cycle fatigue 

behaviour of the a+ts alloy Ti-6AI-4V [21-25, 27, 161, 

162] • Low cycle tests were carried out at frequencies 

between 30Hz and 1 cycle per minute (cpm). The large 

variation in microstructure encountered in different 

forgings of this alloy stimulated research to identify the 

preferred sites of crack initiation and to observe the 

early stages of crack propagation in relation to the 

microstructure. 

In a study of Ti-6AI-4V by Wells and Sullivan [21], 

surface crack initiation occurred early in life (around 5 

to 10% Nf), after low cycle fatigue at room temperature 

(testing at a frequency of 1 to 2 cpm). Crack initiation 

occurred on the scale of the primary-a phase, primarily 

along slip bands, with some cracking along the boundaries 

between the primary-a and transformed-ts phases. Fatigue 

crack initiation along slip bands was also observed in 
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Ti-6Al-4V in the primary-a and transformed-~ [22, 27] and 

along intense planar slip bands normal to the a/~ 

interfaces in Widmanst~tten microstructures [162]. Only 

rarely was a/~ interface cracking observed in these 

investigations [22, 27, 162] but extensive studies by 

Sparks and Long [163] found crack nucleation at the a/~ 

interface regardless of microstructure in twenty three 

different a+p alloys including Ti-6Al-4V. 

A probable mechanism for crack initiation along localised 

slip bands was proposed by Brown and smith [27]. 

Dislocations on a slip plane in the primary-a phase pile 

up against a P particle. When the stresses at the head of 

the pile-up reach a sufficient magnitude, a crack 

initiates and grows back along the plane of weakness 

represented by the slip line. 

Fatigue deformation in annealed Ti-6Al-4V microstructures 

has been observed to be localised and associated with 

phase or grain boundaries [25]. The presence of P phase 

appears to be an integral factor in the initiation of a 

microcrack, particularly in the case of an a+p annealed 

specimen [25]. A mechanism of fatigue crack initiation 

has been proposed to explain how the accumulation of 

damage leads to cracking at the grain boundaries [25]: 

During fatigue cycling, jogged dislocations moving on 

highly strained slip planes create a trail of vacancies as 

they move to and from an impenetrable obstacle, such as a 

grain boundary. The sheets of vacancies so formed can 

coalesce to form a larger microcrack in the vicinity of 

the impenetrable grain boundary barrier. 

2.5.6.3 High Temperature Alloys 

Recent investigations on the low cycle fatigue behaviour 

of more advanced a+p and near-a titanium alloys have 

concentrated on the short crack propagation behaviour. 

Despite this, many of the studies have suggested sites of 

fatigue crack initiation. The majority, reported crack 
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initiation to occur on planar slip bands either; (i) 

across transformed-p colonies in p-processed 

microstructures [9, 17, 38, 40, 42, 43, 73, 95, 164] or 

(ii) across primary-a grains [135, 165-169] and/or 

transformed-p colonies [99, 165, 166] in duplex (a+p 

processed) microstructures. Crack initiation along alP 

interfaces was observed at low strains in Ti-6246 [165, 

166] and in low temperature a+p processed Ti-17 [135]. 

In both cases extrusion formation was observed as a 

precursor to crack ini tiation in these microstructures. 

Four possible mechanisms of extrusion formation were 

postulated and are discussed in detail by Mahajan et a1. 

[165]. 

Many studies show that intense slip lines and slip related 

cracks in p-processed, 

microstructures extend 

uninhibited by the alP 

Widmanst~tten and 

across a 

interfaces 

colony 

at the 

basketweave 

seemingly 

a-platelet 

boundaries [9, 17, 38, 40, 42, 43, 73, 95, 162, 164, 170, 

171]. Crack or slip band arrest most frequently occurs at 

grain or colony boundaries where slip transferal into the 

adjacent grains/colonies is not possible due to the high 

angles associated with these boundaries. In most cases, 

the planes on which the slip occurs are determined to be 

the prism and/or the basal planes. Such behaviour is 

consistent with the fact that colonies of similarly 

orientated a-platelets transform from the P phase 

according to the Burgers orientation relationships, 

equations 2.1 to 2.3 in section 2.2.4.2. consequently, 

slip in the a-platelets is readily accommodated by slip 

in the P phase and, although the P phase offers some 

resistance to dislocation motion in the a phase [38], the 

~ phase does not act as a major barrier to slip (in some 

cases [41, 105, 162, 171] the P phase acts as an effective 

crack stopper, as discussed later in this section). 

The yield strength has been found to depend on the colony 

size in a similar manner to a Petch type relationship [38, 

95]; a decrease in colony size results in an increase in 
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the yield strength. Thus, the colony size can be thought 

of as the effective grain size in the p-processed 

(Widmanstatten) microstructures [172]. In subsequent 

investigations, an effective colony size has been proposed 

[ 43 ] to account f or cases where two ( or more) adjacent 

colonies share a common basal plane and thus deform as if 

they are a single colony [38, 43]. The upper limit of 

a-colony size is the prior-p grain size [43]. A fine 

,,-grain size, achieved by close control of the forging 

route (section 2.3.1), is therefore very desirable as it 

results in good fatigue crack initiation life (Table 2.4). 

This limits the size of the initial fatigue crack, thereby 

increasing the number of cycles of crack propagation to 

failure [40, 95]. A fine p-grain size also results in an 

improved ductility (see Table 2.4). 

In slow (furnace) cooled microstructures, the a-platelet 

boundaries (not the colony boundaries) are the slip/crack 

arresting features when the retained-p phase is relatively 

thick and continuous across the alP interface [41, 105, 

162, 171]. T.E.M. evidence (41, 105] has suggested that 

a-platelets thicker than approximately 2 ~m can strongly 

deviate cracks by up to 80 0 along alP interfaces without 

undergoing any plastic deformation. The retained-p phase 

which is obtained on slow cooling has been observed to 

provide a route for deviation of the crack path when its 

thickness is of the order of 0.2 ~m. Several mechanisms 

by which the thick retained-p phase may retard cleavage 

crack growth have been suggested ( 162 , 171] • It is 

possible that a combined effect of thicker a-platelets 

and retained-p phases might be relevant to the mechanisms 

of crack retardation in slow cooled microstructures (171]. 

It has been shown however, that the thickness of 

a-platelets, and not necessarily the Widmanstatten colony 

size, may govern the intrinsic crack growth resistance in 

titanium alloys [171]. 
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2.5.7 Introduction of a Dwell Period at 
Maximum Load 

The load pattern of many aircraft structures, including 

turbine and compressor discs, essentially consists of a 

load applied at take-off which is held at a constant level 

during cruise and removed on landing. Since the 

in-service failure of RB-211 fan discs of IMI 685 in the 

early 1970's, the introduction of a holding time at the 

maximum load, has received much attention with respect to 

its effect on the low cycle fatigue behaviour of titanium 

alloys. 

To simulate in-service conditions in laboratories, load 

(or strain) is held at the maximum value of the cycle for 

a given period of time, referred to as the dwell time (or 

hold time). The response to the introduction of a 

dwell-on-Ioad has been extensively studied as the 

condi tions of testing can be as widespread as those for 

normal continuous fatigue cycling. For example, the 

effects of microstructure, temperature of testing, load 

level, texture, specimen size and shape and environment 

have been considered for a gi ven alloy as well as the 

effects of different dwell durations. 

In the first studies of dwell effects, Ryder et al. [173] 

ran a number of fatigue crack propagation experiments on 

specimens of IMI 685 with different microstructures using 

different dwell times, temperatures and environments. The 

effect of introducing a dwell at maximum load increased 

the fatigue crack growth rate compared to continuous 

fatigue tests. A maximum influence of dwell occurred at 

hold times between 15 seconds and 1 minute at maximum 

load. No obvious effect of temperature on fatigue crack 

growth rate was found between -40 and 150°C, however, the 

effect of a dwell on load decreased as the temperature was 

raised to 300°C. A larger detrimental effect on the 

fatigue crack growth rate was found in tests carried out 

in de-ionized water compared to laboratory air. Further 
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studies on the response to dwell time conditions have 

concentrated on IMI 685 and Ti-6AI-4V since these alloys 

have the widest application in the aircraft industry. 

2.5.7.1 Microstructural Effects 

Eylon and Hall [40], Postans and Jeal [174] and Evans and 

Gostelow [175] tested IMI 685 with an aligned a-platelet 

microstructure with and without a five minute dwell on 

load. Postans & Jeal and Evans & Gostelow showed that 

there was a definite increase in fatigue crack growth rate 

in specimens which had been dwell tested. However, no 

discernible fatigue crack growth rate increase was 

observed between non-dwell and dwell test specimens by 

Eylon and Hall [40]. Bania and Eylon [176] worked on a 

range of microstructures and textures of Ti-6AI-4V. They 

did not find a fatigue crack growth rate increase which 

was caused by the introduction of a dwell on load; infact, 

for certain microstructures, the fatigue crack growth rate 

during dwell tests was lower than that in non-dwell 

specimens. Postans and Jeal [174] carried out similar 

tests on IMI 685 containing a basketweave microstructure. 

No difference in the fatigue crack growth rates between 

the tests was detected in these specimens. 

Although no significant difference was found in the 

fatigue crack growth rates between non-dwell and dwell 

test specimens, Eylon and Hall [40] observed a large 

'dwell debit', or reduction in the number of fatigue 

cycles to failure (Nf), in test specimens of IMI 685. In 

the most severe case, tests were conducted at a maximum 

load of 827 MN/m2 and frequency of 0.33 Hz, and the number 

of cycles to failure of five-minute-dwell test specimens 

was reduced by an average of 98.6% compared to non-dwell 

tests. During five-minute-dwell tests at 750 to 850 MN/ma 

and 2.4 HZ, a reduction in Nf by 94% was found by Evans 

and Gostelow [ 175], conf irming the observations made by 

Eylon and Hall [40]. Evans [177] concluded that the dwell 

effect in IMI 685 was sensitive to microstructure. The 
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number of cycles to failure was most severely reduced when 

the alloy was slow cooled following its heat treatment to 

produce an aligned a-platelet microstructure. 

A recent study by White et ai. [178] found that a marked 

decrease in the fatigue lifetime was particularly notable 

in ,,-processed near-a alloys such as IMI 829. T.E.M. 

observations revealed no significant difference in the 

deformation modes observed in dwell and non-dwell test 

specimens. However, a higher dislocation density was 

observed in the dwell test specimens and was consistent 

with the higher strain associated with the dwell tests. 

The paths of crack growth were studied by Postans and Jeal 

[174] in basketweave-a and aligned-a microstructures of 

IMI 685. In the non-dwell specimens, cracks propagated 

through a-platelets sometimes crossing several different 

colonies without changing direction by using different 

slip planes in each. A strong tendency for cracks to 

propagate along the basal planes in the a phase was noted 

in the specimens subjected to a dwell on load and, as a 

result, the crack path frequently changed direction 

causing a more tortuous crack path morphology. 

2.5.7.2 Texture Effects 

stubbington and Pearson [179] studied the dwell effect in 

Ti-6Al-4V at frequencies of 0.3 and 25 Hz. Test pieces 

were cut from a forged and rolled bar with a strong 

preferred orientation. When the stress direction was 

parallel to the basal plane, the cracks ran approximately 

normal to it and the crack growth rate under dwell cycling 

at room temperature was similar to that for continuous 

cyclic fatigue testing. When the stress was normal to the 

basal plane, the cracks ran approximately parallel to the 

basal plane and the crack growth rate under dwell 

increased considerably. The fatigue crack growth rate was 

increased by increasing both the dwell time and stress 

intensity factor (AX). Tests were also carried out with 
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the plane of maximum stress at approximately 30° and 700 

to the basal plane. The results showed that the specimens 

with their basal planes closest (30°) to the maximum 

stress plane had a much greater dwell effect than those 

with the basal plane further away (70°) from the maximum 

stress plane. 

Although the material used by Evans and Gostelow [175] was 

not highly textured, X-ray analysis showed a strong 

tendency for the fracture planes to lie parallel to the 

basal planes. Facets on the fracture surfaces of IMI 685 

tested with and without a five-minute-dwell on load were 

examined by Davidson and Eylon [180] using selected area 

channelling. The crystallographic planes of the facets 

were identified as near-basal. For non-dwell specimens 

75% of the initiation sites were at the surface of the 

test specimen, whereas for dwell tested specimens 80% of 

the initiation sites were subsurface [180]. Evans [181] 

proposed that subsurface cracking was more prevalent if 

specimens were highly polished, the mean stress was high 

or there was a dwell at maximum load. Calculations 

suggested that facet formation, and hence subsurface crack 

nucleation was associated with the attainment of a 

critical level of strain [181]. 

2.5.7.3 Temperature Effects 

stubbington and Pearson [179] found that the increase in 

fatigue crack growth rate produced by cycling with a dwell 

at maximum load was greater at 20°C than at 40°C and 

became negligible above 75°C. Evans and Gostelow [175] 

carried out tests on IMI 685 at 150°C and also observed 

that the increase in fatigue crack growth rate caused by a 

dwell on load effectively disappeared. However, a 

significant reduction in the number of cycles to failure 

(up to 96%) in dwell specimens was still observed [175]. 

The explanation given for this divergence of behaviour was 

that the material in the specimens and the material ahead 

of the crack tip experienced different stress states 
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[175]. 

Neal [45] reported that the influence of dwell on cyclic 

life reduced as the temperature of testing increased, such 

that from about 200°C to 400°C there was no influence of a 

dwell on load and above 400°C the effect of dwell 

returned. The effects were explained by dynamic strain 

ageing occurring at between 200 and 400°C and by true 

creep-fatigue interactions taking place at higher 

temperatures (> 400°C). The effect of a dwell on load at 

low temperatures « 200°C) was extensively investigated 

[45]. The alloys studied included Ti-6Al-4V, IMI 550, IMI 

679, IMI 685, IMI 829, Ti-6242S and an experimental alloy 

of very high alpha stabiliser content. None of the alloys 

exhibited any loss in Nf at 200°C but at 20°C losses of up 

to 75% were seen, as summarised in Table 2.8. Neal [45] 

related the degree of cycle life loss with dwell in the 

various alloys examined to their aluminium and molybdenum 

equivalents, such that a greater cyclic loss could be 

expected in alloys containing a higher aluminium 

equivalent and lower molybdenum equivalent. The model 

for the dwell effect given by Neal [45] is discussed in 

section 2.5.7.5. 

2.5.7.4 Hydrogen Additions 

Almost all 

facetting 

investigations 

at subsurface 

observed 

nucleation 

that quasi-cleavage 

sites was closely 

associated wi th a reduction in Nt and an increase in 

fatigue crack growth rate, associated with introducing a 

dwell on load into the fatigue cycle. Many investigators, 

including Postans and Jeal [174], stubbington and Pearson 

[179] and Evans and Gostelow [175], proposed that 

strain-induced hydrogen interaction with dislocations at, 

and near, a crack tip was responsible for this effect. To 

this end, several investigations have been carried out to 

study the effect of deliberately introducing hydrogen in 

various concentrations into the material prior to testing. 
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An increase in hydrogen concentration from 40 ppm to 140 

ppm was shown to dramatically reduce the fatigue life 

[182]. Evans [183] illustrated that hydrogen acted as a 

strengthening element in IMI 685 up to a concentration of 

60 ppm, improving both continuous and dwell fatigue lives. 

However, at higher concentrations of hydrogen the strength 

was maintained, but premature failure occurred due to a 

reduction in ductility. The role of hydrogen was complex 

and was found to affect basketweave and aligned-a 

microstructures to different degrees [183]. 

Neal [45] observed that hydrogen did not playa part in 

the dwell process. On comparing dwell and non-dwell 

lifetimes, degassed material (IMI 685) of less than 10 

ppm hydrogen produced virtually identical losses in Nf to 

material containing 50 ppm (as received) and material 

hydrogenated to 190 ppm. 

2.5.7.5 Proposed Models 

Evans and Gostelow [75] demonstrated that the 

quasi-cleavage facets, which were commonly observed in 

dwell tested specimens, could also form during creep 

deformation at ambient temperatures. Fracture surfaces in 

the dwell test specimens were virtually identical in 

appearance to those from static creep experiments. 

FUrthermore, the times to failure in dwell and creep tests 

were quite similar, thereby indicating that the number of 

cycles to failure in dwell tests was merely the number of 

periods at peak stress that were necessary for the creep 

failure strain to be attained. The implication was that 

facet formation was a function of the plastic strain 

accumUlation at peak stress rather than being dependent on 

the response of the material to stress reversals. It was 

therefore proposed that the low cycle fatigue dwell effect 

and facet formation under cyclic conditions was caused by 

time dependent plastic strain accumUlation. Hydrogen was 

said to influence this behaviour by inter a cting with the 

dislocations and enhancing the hardening process [175]. 
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Evans [184] concluded that, 

concentrations of hydrogen 

at the comparatively low 

relevant to the service 

applications of high temperature titanium alloys, the role 

of hydrogen is secondary to time dependent deformation. 

White et al. [178] also concluded that the accumulation of 

strain in the dwell test specimens was primarily 

attributable to time dependent deformation accrued during 

the dwell on load part of the fatigue cycle. A comparison 

between the creep and dwell curves showed that higher rate 

of strain accumulation in the dwell test specimens could 

not be attributed to creep alone but may have been caused 

by a greater degree of surface cracking observed in the 

dwell specimens arising from the interaction of creep and 

fatigue. 

Neal [45] believed that the basic mechanism of the dwell 

effect during fatigue and creep were the same, namely 

planar slip in the a phase on, or near to, the basal 

plane. The anomalies in the results of dwell tests by 

different workers could be reconciled by examination of 

the texture of the material used. High levels of 

a-stabilisers and low levels of p-stabilisers promoted 

the creep-fatigue interactions at ambient temperatures, 

(Table 2.8) and at temperatures of around 150 o C, the dwell 

effect reduced to zero. No evidence was found to suggest 

that hydrogen was involved in the dwell effect [45]. 
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CHAPTER THREE 

EXPERIMENTAL PROCEDURE 

3.1 MATERIAL PREPARATION 

The titanium alloy, IMI 834, used in this investigation 

was obtained from a section of an experimental 'Spey Data 

Base Compressor Disc' of rectilinear shape provided by 

Rolls-Royce. The following heat treatment process was 

carried out at Rolls-Royce: In order to obtain a duplex 

microstructure, the disc was a+p solution treated at 

1030 0 C (below the p-transus temperature of 1045°C, Table 

2.1B) for two hours. The disc was oil quenched from the 

solution treatment temperature to give a fine grained, 

Widmanst~tten-like microstructure in the transformed-po 

Subsequent ageing at 700°C for two hours relieved stresses 

induced in the oil quenching and thus strengthened the 

microstructure. After ageing, the disc was air cooled to 

room temperature. 

3.1.1 Test Specimens 

Metal fatigue has been investigated under a wide variety 

of testing conditions. The options considered in the 

current investigation were tensile, torsional, three point 

bend and four point bend fatigue testing using un-notched 

specimens. Four point bend testing was chosen to observe 

the fatigue damage accumulation in IMI 834 for many 

reasons. The flat surface of a bend specimen (three or 

four point) can be polished more easily for detailed 

observations of the damage accumulation on the fatigue 

surface, than the concave or circular surface of tension 

or torsional type specimens. Only one surface is subject 

to tensile fatigue damage in bend testing and therefore 

just one surface requires polishing. At least two 

surfaces need to be polished and observed in tension 

specimens and the whole gauge length of torsion specimens 
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must be polished in order to satisfactorily observe the 

effects of fatigue testing. In addition, because of the 

respective specimen geometries, the sectioning of bend 

test specimens for back-thinned foil (section 3.3.5.2) and 

cross-sectional (section 3.3.5.3) thin foil observations 

is much simpler than the sectioning of tension or torsion 

type specimens. Four point bend test specimens were 

chosen in preference to three point bend test specimens 

since a much larger area of the fatigue surface is 

subjected to the maximum stress during fatigue and thus 

more foils for transmission electron microscope (T.E.M. ) 

observations may be obtained from each specimen. The four 

point bend test geometry was also chosen so that 

preferential yielding, a problem that can occur in three 

point bending, is less likely to occur. 

Four point bend test specimens of 10.0 x 10.0 x 80.0 mm 

were accurately machined at Rolls-Royce from the radially 

and tangentially orientated locations in the disc section, 

which are illustra"ted in Figure 3.1A to 3.1F. All 

specimens were labelled on immediate removal from the disc 

in order to define their exact position and orientation 

within the disc. A fine ultrasonic drill was used for 

this purpose to give a permanent marking on each specimen. 

The position and orientation of radial specimens were 

identif ied by marking the 10.0 x 10.0 mm end closest to 

the disc bore with a number (Figure 3.2A). For example, 

the number OR6B corresponds to an outer radial specimen in 

layer B at position 6. The position and orientation of 

tangential specimens were defined by marking the 10.0 x 

80.0 mm surface facing towards the disc bore with a small 

circle close to one end and marking the adjacent 10 x 10 

mm end with a number, see Figure 3.2B. A metallographic 

specimen, M1, of approximately 15 x 20 x 50 mm was cut 

from the centre of the disc section and used for 

observations of the unfatigued material. 

In a compressor disc, the area subjected to the greatest 

fatigue stresses during in-service conditions is the area 
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closest to the bore of the disc. High hoop stresses act 

in this region which can cause cracks to initiate at the 

bore, which then propagate radially into the disc. In 

order to obtain the conditions closest to those in 

service, the specimens chosen for fatigue testing were 

orientated tangentially. The surface of maximum stress in 

these specimens faces towards the disc bore and 

corresponds to a 10.0 x 35.0 mm area in the centre of the 

10.0 x 80.0 mm surface, see Figure 3.3, which is defined 

by the position of the inner rollers. This is explained 

further in section 3.2.2. The 10.0 x 80.0 mm surface which 

faces the 

referred to 

thesis. 

disc bore in tangential specimens will be 

as the 'fatigue surface' throughout this 

3.1.2 Specimen Polishing 

An important stage in the preparation of the test 

specimens was to obtain a flat, polished fatigue surface 

of which the microstructure could be distinguished under 

both the optical and scanning electron microscopes. The 

fatigue surface was ground flat on 1200 grit paper to 

remove any scratches and surface damage resulting from the 

extraction of the specimen from the compressor disc. A 

struers lapping wheel was used at a speed of 40 rpm to 

polish two specimens at a time using 6 ~m and then 1 ~m 

diamond pastes. A solution of 1 part colloidal silica 

(Silco of o. 05 ~m diameter) to 10 parts water was then 

used to obtain a smooth fatigue surface by hand polishing 

at 250 rpm on a Struers o.P. polishing cloth. 

After polishing, the specimens were lavishly coated with a 

lacquer resin over all but an area of 10.0 x 40 mm across 

the centre of the fatigue surface and an adjacent 2 x 40 

mm on the sides of the spe~imens. The remaining, 

unprotected area was electropolished; (i) to 'round' the 

corners and thus reduce the tendency for specimens to 

initiate fatal cracks at the corners and (ii) to remove 

any residual surface deformation from the polishing 
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process. Electrical contact with the specimen was made by 
carefully scratching enough lacquer resin from one end of 
the specimen to attach a large crocodile clip (anode). 
The specimen was then carefully lowered into a steel 
beaker (cathode) containing 500 ml of 5% perchloric acid, 
35% 2-butoxyethanol and 60% methanol, so that the 
unprotected area to be electropolished was completely 
submerged. The solution was magnetically stirred and 
cooled to a temperature of < -55°C using liquid nitrogen. 
This temperature was maintained by placing the beaker in a 
plastic container with methanol cooled with liquid 
nitrogen. Successful results were obtained on 
electropolishing at a voltage of 54 V and current of 60 to 
80 mA for two minutes. The specimens were thoroughly 
washed in methanol before removing the lacquer. 

3.2 MECHANICAL TESTING 

3.2.1 Tensile Testing 

An important parameter required for carrying out fatigue 
testing is the 0.2% proof stress (P.s.) of the material. 
This was determined for specimens in both the tangential 
and radial directions by testing five standard tensile 
test specimens which were machined from 10.0 x 10.0 x 80.0 
mm specimens. The diameter of the tensile specimens was 
3.99 ± 0.01 mm and the gauge length was 25 mm. Tensile 
testing was carried out using a Mayes servohydraulic 
testing machine with an extension rate of 0.06 mm/minute. 

The five tensile test specimens were chosen from strategic 
locations in the disc section (see Figure 3.1). Specimens 
TC13 from the disc rim, TC7 from close to the centre of 
the section and TD1 from close to the disc bore, were used 
to determine the proof stress in the tangential direction 
and specimens OR11B and IR5B were used to determine the 
proof stress in the radial direction. 
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3.2.2 Four Point Bend Fatigue Testing 

A Mand servohydraulic testing machine was used to carry 
out load controlled, low cycle fatigue (LeF) tests in the 
form of cyclic four point bending. The tests were carried 
out at room temperature, with a frequency of 5 Hz and an R 
ratio (allin/aux) of 0.1. A four point bend rig was 
supplied by Mayes for the purpose of this investigation. 
Figure 3.4 illustrates the stress profile across the 80.0 
mm specimen length. The specimen geometry was chosen so 
that the maximum load was well within the maximum load 
capability of the testing machine when fitted with a 25 kN 
load cell. Figure 3.5 illustrates the four point bending 
configuration; the two outer rollers were positioned on 
the fatigue surface 70.0 mm apart and 5.0 mm from each end 
of the specimen, and the position of the inner rollers was 
half way between the specimen centre and the outer rollers 
on the opposite surface i .e. 17.5 mm from the centre of 
the specimen. The maximum and mean loads (Fux and Fllean 
respectively) to subject a tangential specimen to A% of 
its 0.2% P.s. (where A = 80 to 100) were calculated for 
each specimen tested using simple bending theory [133]. 
The derivations of the following formulae for Fux and FII• an 
are given in Appendix 2: 

where: 
ap8 = 0.2% Proof stress (N/m2) 

b = average specimen breadth (m) 
d = average specimen depth (m) 
A = percent of 0.2% P.S. 
Fux and Flllun have units of Newtons (N) 

(3.1) 

(3.2) 

The specimen breadths and depths were determined by 
averaging at with least four micrometer readings. Table 
3.1 lists the value of A, average depth and breadth, Fax 
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and Fllun for each tangential specimen tested. All the 

fatigue tests were carried out to failure at a maximum 

stress of A = 80% to 100% of the calculated 0.2% P.s. 
Testing was monitored using a graduated optical telescope 

focussed on a mirror orientated at 45° to the specimen 

surface. 

Two radial specimens (OR6B and OR9B, see Figure 3.1) were 

fatigue tested at A = 80% before any tangential specimens 

were tested, using the 0.2% P.S. calculated for the radial 

specimens. 

provide an 

lifetime at 

These initial tests were carried 

indication of the four point bend 

this stress level. 

3.3 MICROSTRUCTURAL EXAMINATION 

3.3.1 Composition 

out to 

fatigue 

The composition of 1M1 834 was determined from 0.5 9 

sections taken from specimen M1 (Figure 3.1). The 

elements; carbon, oxygen and nitrogen were measured using 

LECO. The percentage of the remaining elements were 

determined by rcp. 

3.3.2 X-ray Diffraction 

X-ray diffraction was carried out using cobalt radiation 

(wavelength 0.179021 nm) between 28 = 35° and 28 = 100°. 

Scanning rates of 1 ° /min and O. 5 ° /min were used. A 

surface from specimen M1 was polished and lightly etched 

for 10 seconds in a solution of 2% HF, 8% HN03 and 90% H2 0 

for the determination of a- and p-titanium lattice 

parameters and d spacings. 

The three orthogonal surfaces of a cube of material cut 

from one end of specimen TA3 (after fatigue failure) were 

polished and scanned from 28 = 40° to 100°. A suggestion 

of the preferred texture close to the disc bore was 
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obtained by comparing the ratios of the peak intensities 

in the resulting X-ray traces, notably the intensity of 

the (0002)g peak. 

3.3.3 Optical Microscopy 

Unfatigued specimens for optical microscopy were ground 

and polished using 6 ~m and 1 ~m diamond pastes. 

Colloidal silica (Silco of 0.05 ~m diameter) was used for 

the final polish. The specimens were etched in 2% HF, 8% 

RN03 and 90' HaO for 20 to 30 seconds. The volume 

fraction of primary-a was determined by identifying the 

phase (primary-a or transformed-~) at 3000 points on each 

of the three orthogonal surfaces of a cube cut from 

specimen TA3 (see section 3 . 3 .2) . The 95' conf idence 

limits, 2ay , were calculated from the equation; 

where: 

av = (V, a (1- V, al )11a 
(No.a)l/a 

(3.3) 

No.a = the number of points counted in the 

primary-a phase 

V, a = the volume fraction of primary-a 

a y = the standard deviation. 

optical microscopy provides a quick and useful technique 

for observing the fatigue surfaces of failed specimens. 

These surfaces were observed under both reflected light 

and Nomarski interference conditions. 

3.3.4 Scanning Electron Microscopy (S.E.M.) 

sections were cut from failed specimens at a distance of 

approximately 3 mm from the fracture surface using a slow 

speed, 0.5 mm silicon carbide slitting wheel. The 

sections were mounted using silver dag in order to observe 

the fracture surface in a Camscan series 2 S.E.M. 

A section of the fatigue surface (see Figure 3.5) from a 

67 



specimen tested at 100% P.S. was carefully removed after 

etching for 20 seconds in 2% HF, 8% HNOl and 90% H30. The 

fatique surface section was then placed in the S.E.M. to 

examine the distribution of slip bands and secondary 

cracking. 

3.3.5 Transmission Electron Microscopy (T.E.M.) 

The majority of T. E.M. was carried out on a Jeol 200CX 

electron microscope operating at 200 kV. A Philips 400T 

electron microscope was also used, operating at 100 kV. 

3.3.5.1 Foil Preparation from Unfatigued Material 

In order to characterise the microstructure of unfatiqued 

IMI 834, thin foils were electropolished. To observe and 

determine the effect of fatigue on the microstructure of 

the alloy, it was initially necessary to determine the 

unfatiqued foil microstructure in terms of the 

identification and distribution of phases and the nature 

and distribution of dislocations present. 

Rods of IMI 834 3.0 mm in diameter were machined from 

unfatigued specimens eM1 and TEl, see Figure 3.1) using a 

sharp lathe at slow speeds and using water as a coolant. 

The rods were sectioned into approximately 0.5 mm thick 

discs using a 0.5 mm silicon carbide slitting wheel. A 

low speed of 200 to 300 rpm was used to keep deformation 

as a result of the preparation to a minimum. The discs 

were carefully ground from both sides on 1200 grit paper 

to a thickness of 200 JIm. Electropolishing was carried 

out at 90 V and 22 mA using a struers Tenupol-2 

electropolisher. A solution of 5% perchloric acid, 35% 

2-butoxyethanol and 60% methanol, cooled with liquid 

nitrogen was used at a temperature of approximately -55°C. 

All foils were cleaned twice in methanol before 

observation in the T.E.M. 
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3.3.5.2 Back-thinned Foil Preparation 

Back-thinned foils were prepared from fatigued specimens 

in order to observe the dislocation structures induced by 

fatigue testing at a position which was parallel to the 

fatigue surface and, ideally, at the fatigue surface. 

Slices of 0.5 mm thick x 4 mm x 10.0 mm were carefully cut 

from the 35.0 x 10.0 mm area of maximum stress in 

specimens which had been fatigue tested at 95% and 100% of 

the 0.2% P.S. A silicon carbide slitting wheel was used 

at low speeds with water as a coolant. The slices were 

mounted using low melting point wax on a clean glass plate 

with the fatigue surface facing downwards, and then 

thinned to a thickness of 200 ~m using 1200 grit paper. 

After removal from the glass plate, any excess low melting 

point wax was cleaned from the thin slice by ultrasonic 

agitation in methanol. Three discs of 3 mm diameter were 

punched from each slice (ensuring that the fatigue surface 

was facing downwards before punching). An attempt to 

spark erode 3 mm discs in deionised water proved 

unsuccessful. The fatigue surface of each disc was 

covered with a lacquer resin and left to dry before the 

discs were electropolished from the unprotected side 

(back-thinned) using the same conditions as for unfatigued 

foil preparation (section 3.3.5.1). 

Attempts to obtain back-thinned foils with a thin area at 

the fatigue surface were unsuccessful. A more successful 

technique employed an average total electropolishing time 

which was calculated from back-thinning to perforation at 

least three 200 ~m thick unfatigued foils. A fatigued 

foil was subsequently back-thinned for at least 90% of the 

total electropolishing time. The lacquer was removed and 

the remainder of the foil was thinned from both sides to 

perforation. The total electropolishing time varied 

between 240 and 300 seconds and depended upon the 

condi tions, notably temperature, but also solution 

concentration and flow rate. A variation in the depth of 

the thin areas below the fatigue surface was expected from 
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this technique. 

3.3.5.3 Cross-sectional Foil Preparation 

Fiqure 3.6 summarises the technique devised for T.E.M. 

examination of damage accumulation in cross-section below 

the fatique surface, based on the methods by Goodhew [185] 

and Newcombe et al. [186, 187]. 

sections of > 2.5 x 10.0 x 0.5 mm from failed specimens 

were cut from within the 35.0 x 10.0 mm area of maximum 

stress by the method descr ibed in sect ion 3. 3 . 5 • 2 ( see 

Figure 3. 6A) . To avoid areas which contained plastic 

deformation due to fatal crack propagation, the sections 

were cut at a distance of greater than 3 mm away from the 

fracture surfaces. The sections were carefully ground to 

2.0 x 10.0 x 0.5 mm by the method described in section 

3.3.5.2. Two techniques, (a) and (b), for obtaining thin 

foils from the sections were devised: 

(a) The first 

fatique surface 

technique involved nickel-plating the 

in order to protect and identify this 

surface during further preparation, see Figure 3. 6A. A 

lacquer resin was used to cover all but the fatique 

surface of a section so that only this surface was 

available for nickel-plating. A strike coat of Woods 

nickel (60 g NiClz, 31 ml HCl and 250 ml HzO) was 

electrolytically plated at room temperature for thirty 

minutes on to the clean fatigue surface using a pure 

nickel sheet as the anode. A slow deposition rate was 

used to ensure that a good bond formed between the 

titanium and nickel plate. After the strike coat had 

been deposited, a faster deposition rate was obtained 

using a nickel watts bath (165 g/l NiSO" 22.5 g/l NiClz, 

20 gIl HB03 , 500 ml H20 and 2 ml HzOz) , which was 

magnetically stirred at 60°C. The nickel-plate was 

allowed to build up to approximately 150 ~m in thickness. 

Excess nickel plating was carefully ground away after the 

plating process and the lacquer was removed. The 
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resulting composite was glued into a slit in a 2 mm 
diameter rod using Ara1dite. The slit was cut off-centre 
so that the fatigue surface could be mounted at the rod 
diameter. The rod, containing the composite, was glued 
into a tube of internal diameter just greater than 2 mm 
and outer diameter of 3 mm so that the cut ends were flush 
with each other and a minimal gap was present between the 
rod and tube, see Figure 3. 6A. The resulting composite 
was cured for at least 24 hours. The remaining steps in 
the preparation of cross-sectional foils are described at 
the end of technique (b) since these steps are common for 
both techniques (a) and (b). 

(b) The second technique required two sections of the same 
orientation to be glued with their fatigue surfaces 
facing, see Figure 3.6A. A slit was cut central to a 2 mm 
diameter rod and the two sections were glued into the rod 
and tube in a similar manner to that described above (a). 

The remaining steps of the preparation, common to both 
techniques, are illustrated in Figures 3. 6B and 3. 6C. 
Discs of > 0.3 mm in thickness were carefully cut from the 
composite rod using a 0.5 mm silicon carbide cutting wheel 
at a slow speed. The discs were carefully ground to 200 
flm from both sides and then mounted onto a glass plate 
using low melting point wax. A subsequent stage of 
preparation (ion-beam milling) required that the thin area 
was smooth and clean, thus it was necessary at this stage 
to polish the exposed surface with 6 flm and 1 flm diamond 
pastes, finishing with colloidal silica. To provide extra 
support for the disc, a 3 mm diameter slotted copper grid 
was glued onto the polished surface to leave the fatigue 
surface(s) visible. The glue was left to cure before the 

disc was removed from the glass plate. 

The disc was dimpled from the unpolished side using 6 flm 
and 1 flm diamond pastes to a remaining thickness of 80 flm 
(Figure 3. 6C) • This thickness was calculated using a 

travelling microscope by the method described in Appendix 
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3. It was important to ensure that the dimple was 

positioned centrally in the disc so that the electron 

transparent region occurred at the area of interest (the 

fatigue surface(s». A final dimple using colloidal 

silica gave the polished surface required for ion-beam 

milling. 

Ion-beam milling was carried out on a conventional stage 

of a Gatan Duomill operating at a voltage of 6 kV and gun 

current of 0.5 mAo The angle of the beams was initially 

16 0 to the surface and a total ion-beam milling time of 

around 40 hours was required to thin the remaining 80 ~m 

of material. The beam angle was reduced to 11 or 12 0 on 

perforation to improve the quality and increase the size 

of the thin area. 

3.3.5.4 AlteInative Foil PIepaIation Techniques 

In light of the results obtained from cross-sectional 

foils prepared using the nickel plating technique (chapter 

5), three alternative foil preparation techniques were 

devised. The techniques were designed to determine the 

effect of the dimpling and ion-beam milling stages of the 

cross-sectional foil preparation technique on the 

appearance of the thin foil microstructure. Unfatigued 

foils 3 mm in diameter and 200 ~m in thickness were used 

because of their availability. The details of each 

technique were adapted from those already described 

(sections 3.3.5.1 to 3.3.5.3). (i) Foils were dimpled to 

80 ~m thickness remaining and electropolished from both 

sides to perforation. (ii) Foils were electropolished to 

80 ~m rema1n1ng thickness and ion-beam milled to 

perforation. (iii) Foils were dimpled to 80 ~m remaining 

thickness and ion-beam milled to perforation. 
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CHAPTER FOUR 

MATERIAL CHARACTERISATION 

4.1 COMPOSITION 

The composition of 1M1 834 used in this investigation was 
determined to be: 5.81 + 0.05 wt% AI, 3.78 + 0.03 wt% Sn, 

3.39 ± 0.03 wtt Zr, 0.70 ± 0.02 wt% Nb, 0.45 ± 0.02 wt% 
Mo, 0.32 ± 0.02 wt% si and < 0.02 wt% Fe, the balance 
being titanium and the interstitial elements 0, Nand C. 

The intersti tial content was determined to be 0.058 ± 
0.001 wtt C, 885 ± 25 ppm 0 and 23 ± 1 ppm N. The 
hydrogen content of the material was not determined. 

4.2 OPTICAL MICROSCOPY 

Optical micrographs of the duplex microstructure of 1M1 
834 are shown in Figures 4.1A and 4.1B. These clearly 
show the fine, acicular a-platelets which are arranged in 

colonies of similarly orientated platelets. Several 
colonies exist within each transformed-~ grain. The 
average transformed-~ grain size of the material was 
determined to be 66. 4 ± 30.4 ",m and the average colony 

size was determined as 35.3 ± 16.5 ",m. The prior-~ grain 
boundaries are outlined by a thin layer of a phase and by 
elongated primary-a grains which occur at triple points. 
These have an average length determined to be 35.2 ± 9.3 
fJm and average width determined as 17. 9 ± 4.5 ",m which 

occur at triple points (aspect ratio 2:1). 

Table 4.1 summarises the data used to determine the volume 
fraction of the primary-a phase within a specimen taken 
from the centre of the compressor disc. A volume fraction 

of 18.8 ± 1.9% primary-a was determined by point counting 

(see section 3.3.3). 
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4.3 X-RAY DIFFRACTION 

4.3.1 Phase Identification 

An X-ray diffraction trace acquired from a polished and 

lightly etched sample of 1M1 834 is shown in Figure 4.2. 

The reflections in the trace arise from the different 

planes present in the a phase. Their {hkil} indices have 

been assigned. The planes are listed in Table 4.2 along 

with their corresponding d spacings. The calculated 

lattice parameters for the a-phase have been determined 

to be a = 0.2951 nm and £ = 0.4686 nm which gives a £/A 

ratio of 1.588. Reflections from the retained-~ phase are 

also identified in this trace, but since the volume 

fraction of retained-~ is small, the peaks are of low 

intensity. Accurate d spacings from the retained-~ phase 

were obtained by using a slower scanning rate over the 

relevant ranges of 28, see Figure 4.3. The peak at 28 = 
45.65° corresponded to a {011}~ type reflection and that 

at 28 - 66.55° nm corresponded to the (002)~ reflection. 

From these peaks, the lattice parameter of the retained-~ 

was calculated to be A = 0.326 nm. Table 4.3 lists the 

planes and d spacings for the retained-~ phase using this 

value of the lattice parameter. 

4.3.2 Texture Determination 

Figure 4.4A shows optical micrographs taken from the three 

orthogonal surfaces of a tangential four point bend 

specimen. The surfaces are identified as the fatigue 

surface, fracture surface and axial surface according to 

Figure 4.4B which indicates the position of these surfaces 

in relation to the compressor disc geometry. The 

primary-a grains in the fatigue and fracture surfaces 

have a higher aspect ratio (approximately 1:2) than in the 

axial surface (approximately 1:1). This suggests that the 

compressor disc has a preferred texture. 
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X-ray traces from the three orthogonal surfaces were 

obtained from polished and lightly etched specimens and 

are illustrated for comparison in Figure 4.5. The 

relative intensities of the a-phase reflections were 

calculated, based on the most intense reflection ({1011}g) 

being set to 100 in each case (see Table 4.4). The 

{0002}g peaks provide a broad indication of the texture 

present in the disc. Relative {0002}m peak intensities of 

18.8, 15 and 4.8 were obtained from the fracture, fatigue 

and axial surfaces, respectively. A comparison of the 

{0004}g intensities shows a similar trend. These results 

indicate that a greater number of basal planes are 

parallel to the fatigue and fracture surfaces than are 

parallel to the axial surface. Based on these results, a 

schematic diagram illustrating the preferred texture in 

the compressor disc is given in Figure 4.6. 

The (011)~ peak was only identified in the trace obtained 

from the fracture surface. This surface also yielded the 

most intense (0002)g reflection (see Figure 4.5 and Table 

4.4) • This observation suggests that the orientation 

relationship {Ollhl I (OOOl)g (equation 2.1) reported by 

Williams [36] is present in this alloy. 

4.4 THIN FOIL MICROSTRUCTURE 

4.4.1 Transformed -{j grains 

Figure 4.7 shows the arrangement of a-platelets in 

adjacent colonies within a transformed-~ grain. The 

a-platelet boundaries within a colony contain the 

retained-~ phase which appears dark and discontinuous 

along the length of the boundaries, Figure 4.8. 

Figure 4. 9A is a higher magnification micrograph of an 

area showing the retained-~ phase along a-platelet 

boundaries in two adjacent colonies. The retained-~ phase 
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is present as angular, discontinuous particles of 0.1 to 

0.5 J.lm in width. Figure 4. 9B is a corresponding dark 

field micrograph taken using the (011)~ spot in the 

diffraction pattern, Figure 4. ge. Diffraction pattern 

analysis of the retained-p particles was difficult, due to 

their small size. However, the lattice parameter for the 

retained-p phase obtained from diffraction patterns 

agrees well with the X-ray diffraction data given in Table 

4.3. 

Small particles of 0.05 to 0.3 J.lm in length such as those 

illustrated in Figure 4.10 were found along the 

a-platelet and transformed-p grain/colony boundaries, 

within the retained-p phase and occasionally on 

dislocations within a-platelets. Figure 4.11A is a dark 

field micrograph of an area containing a large number of 

particles within an a-platelet. From the analysis of 

diffraction patterns, such as those in Figures 4.11B and 

4.12, the particles were identified as titanium-zirconium 

si1icides. Table 4.5 lists the d spacings obtained from 

the analysis. The lattice parameters of the silicides 

were calculated: .A = 0.703 ± 0.004 nm and ~ = 0.360 ± 
0.015 nm. An orientation relationship between the 

silicides, s, and the a phase was established from the 

diffraction pattern in Figure 4.12A: 

[01il]m//[2110],; 

(2110)m/ / (0110), (4.1) 

Complex interactions between silicide particles, 

retained-p and dislocations, such as those in Figure 4.13, 

were observed in the transformed-p grains when a-platelet 

boundaries occurred in the plane of the foil plane. 

The density of dislocations observed in the a-platelets 

of unfatigued foils varied between colonies. Some 

colonies 

contained 

were relatively dislocation free 

dislocations along the a-platelet 

which were associated with the retained-po 
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colonies, however, the dislocation density was relatively 

high, as illustrated in Figure 4.14. Dislocations with a 

Q-component in the Burgers vector (Q-component 

dislocations) as well as A type (perfect) dislocations 

were identified. The density of dislocations was 

generally higher in regions closer to the a-platelet 

boundaries and lower near the centre of an a-platelet. 

Under certain conditions, parallel fringes were observed 

in some a-platelets, see Figure 4.15. A close inspection 

of the fringes revealed that they were bounded by 

Q-component dislocations. The fringes were identified as 

stacking faults and the bounding dislocations were 

identified as partial dislocations (see section 7.1.2.4). 

A few dislocations in some of the platelets, Figure 4.16, 

appeared straight and perpendicular to g under the 

condition g = [0002]. These were identified, by their 

absence under g = [1120] (see Appendix 1), as dislocations 

with Burgers vectors of the type <0001>. Figure 4.16 also 

shows some small particles on these dislocations which 

were identified by electron diffraction as silicide 

particles. 

The presence of the ordered phase, Ti3Al, was established 

by the presence of reflections in diffraction patterns at 

half the distance of reflections from the a phase (see 

section 2.2.5.1). Ti3Al reflections of very low intensity 

were detected in some transformed-p grains which 

suggested that a small amount of this phase was present. 

However, in the majority of transformed-p grains the 

presence of Ti3Al was not detected. 

4.4.2 Primary-a grains 

Primary-a grains in thin foils from unfatigued IMI 834 

contained a dislocation density which varied from grain to 

grain. Most grains contained only a few dislocations, see 

Figure 4.17. This was confirmed by tilting these grains 

under appropriate two beam conditions. Single 
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dislocations or bands of dislocations present had Burgers 

vectors (R) of the type 1/3<1120>. Some primary-a grains 

contained hexagonal dislocation arrays such as that 

illustrated in Figure 4.18. By tilting the grain, it was 

clear that such arrays of dislocations separated two 

primary-a sub-grains with a low misorientation. In a 

few, randomly distributed primary-a grains a much higher 

dislocation density was present in the form of dislocation 

networks such as those in Figures 4.19 to 4.21. The dark 

field micrograph, Figure 4.19 shows that these networks 

occurred in sub-grains within the primary-a phase. 

Diffraction analysis and trace analysis of the 

dislocations revealed that they were <A> type screw 

dislocations (~ = 1/3<1120» which lay on either a prism 

or pyramidal plane. However, accurate trace analysis was 

difficult due to the large variation in e (the angle 

between the dislocation and the 9 vector), see Figures 

4 • 20 and 4. 21. 

Figures 4.22A to 4.22C are diffraction patterns taken from 

zone axes in primary-a grains showing additional 

reflections which correspond to the presence of the 

ordered phase, T i3Al ( see sect ion 2 . 2 . 5 • 1) . The zones 

are: (A) [1210], (B) [2423] and (e) [0001]. The Ti 3Al 

reflections are more intense than those obtained from 

transformed-p grains (using the same selected area 

aperture size) and were observed in all the primary-a 

qrains analysed. However, the relative intensities of the 

reflections varied, suggesting that the amount of Ti3Al 

may vary between primary-a grains. Figure 4.220 is a 

bright field T.E.M. micrograph of the bend centre from 

which diffraction pattern C was taken. 
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CHAPTER FIVE 

THE INTERFACE PHASE 

5.1 CROSS-SECTIONAL THIN FOILS 

Cross-sectional thin foils of a fatigue surface were 

prepared from specimens which had been nickel-plated using 

the technique described in section 3.3.5.3. Figure 5.1 is 

a low magnification T.E.M. micrograph showing the extent 

of the thin area obtained with respect to the fatigue 

(nickel-plated) surface. Figure 5.2 is an example of the 

microstructure which was typical of that observed at about 

100 fJm from the fatigue surface. Much of the 

transformed-~ microstructure had been changed dramatically 

making the original microstructure barely identifiable. 

a-platelet boundaries, two of which are identified in 

Figure 5.2, appear to have been transformed either as a 

result of fatigue damage or thin foil preparation 

techniques. Parallel streaks which crossed the 

a-platelets in several directions are also present in 

this region. Figure 5.3A is a dark field micrograph of a 

similar a-platelet boundary (observed at about 100 fJm 

from the fatigue surface) which clearly shows that a phase 

has formed in the boundary region that is distinct from 

the retained-~ and a-platelet phases of titanium. The 

diffraction pattern containing the reflection from which 

the dark field micrograph (Figure 5. 3A) was imaged is 

given in Figure 5.3B. 

Figures 5.4A to 5.40 are examples of the microstructure in 

regions of the transformed-~ phase at approximately 150 fJm 

from the fatigue surface. The features present are 

similar to those seen closer to the surface (Figures 5.2 

and 5.3A) but are more clearly defined. A phase is 

observed which had formed along the interface of the 

retained-~ phase and a-platelets, the width of which 

var ies between 0 . 1 and O. 5 fJm. Acicular features or 
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bands, between 0.02 and 0.2 IJm wide, also formed across 

the ex-platelets. These features crossed the ex-platelets 

parallel to each other in several directions (Figure 

5. 4B), suggesting that they had occurred in very strict 

crystallographic directions. The majority of the bands 

crossed the ex-platelet width. Figure 5.5A and 5.5B are 

bright and dark field micrographs highlighting both the 

phase along the ex-platelet boundaries and the acicular 

features occurring across the ex-platelets. A thin layer 

of retained-~ phase is resolvable at the centre of one of 

the ex-platelet boundaries in Figure 5.5B. 

The density of acicular bands decreased on moving further 

from the surface (> 150 IJm) and none were observed at 

greater than about 250 IJm from the surface. However, at 

> 250 IJm, the phase along the ex-platelet boundaries was 

observed in the thin area of the foil. 

Limited thin areas were obtained from two other 

cross-sectional foils prepared by the same technique. 

Similar features to those seen in Figures 5.2 and 5.3 were 

found at the fatigue surfaces and to a depth of between 

100 and 150 ",m. Regions containing both phases were found 

at approximately 150 ",m from the fatigue surfaces, 

although the number of acicular bands observed was not as 

high as in the first foil described. 

It is important to establish the origines) of both the 

phase observed along the ex-platelet boundaries and the 

features observed across the ex-platelets. This is 

discussed in detail in section 5.2. 

5.2 EFFECT OF PREPARATION TECHNIQUES 

On discovering the phases in the cross-sectional foils 

described in section 5.1, it was important to establish 

whether they were wholly or partly artefactual i.e. 
whether they were introduced during foil preparation, or 

indeed, whether they were the result of fatigue damage. 
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Thin foils from unfatigued specimens were therefore 

prepared by the techniques (i), (ii) and (iii), described 

in section 3.3.5.4 and, in addition, foils from fatigued 

specimens were prepared by the method of back-thinning 

(section 3.3.5.2). The foils were examined by T.E.M., 

with some interesting results. Table 5.1 summarises these 

results. 

No phases along or between a-platelet boundaries were 

formed in the following: Unfatigued and fatigued foils 

thinned by electropolishing at < -55°C (section 3.3.5.1), 

unfatigued foils thinned by dimpling and then 

electropolishing (technique (i), section 3.3.5.4) or 

unfatigued and fatigued foils prepared by back-thinning 

(section 3.3.5.2). 

Figures 5.6 and 5.7 show evidence of a phase which had 

formed along a-platelet boundaries in foils which had 

been electropolished and then ion-beam milled to 

perforation (technique (ii» and dimpled and ion-beam 

milled to perforation (technique (iii», respectively. 

However, in these foils the phase had formed along fewer 

of the a-platelet boundaries and these were distributed 

throughout the thin areas of the foils. Acicular features 

were not found in foils prepared by either technique «ii) 

or (iii». 

It appeared from the above results that ion-beam milling 

induced a phase to form along some of the a-platelet 

boundaries in the transformed-p microstructure. The phase 

was not observed in foils which had been prepared by 

techniques such as electropolishing (section 3.3.5.1). It 

is suggested that the nickel plating process, used in the 

preparation of cross-sectional thin foils, caused a 

similar phase to form along the a-platelet boundaries and 

a second, acicular feature to form across the width of 

some of the a-platelets. The microstructure of the 

cross-sectional foils changed dramatically as the distance 

from the nickel-plated surface increased such that, within 
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about 150 fJm of the surface the original microstructure 

was barely identifiable (Figure 5.2). Between about 150 

and 250 fJm from the surface both the phase along the 

a-platelet boundaries and the bands across the 

a-platelets were observed. At greater than 250 fJm from 

the surface, only the phase along the a-platelet 

boundaries was observed. The results are discussed 

further in section 7.2. 

5.3 CRYSTALLOGRAPHY OF THE PHASES 

Analysis of the crystallography of the phases observed in 

cross-sectional foils was carried out using selected area 

diffraction patterns and convergent beam electron 

diffraction with a spot size of approximately 100 nm. 

Figure 5.SA is a bright field T.E.M. micrograph of an area 

containing both the phase along the a-platelet boundaries 

and the acicular features across the a-platelets. The 

diffraction pattern in Figure 5.SB was obtained by 

careful tilting of the thin foil. Reflections 

corresponding to the two phases of interest and to a 

[1213]« zone are present in this diffraction pattern. 

Figure 5. se is a schematic representation of the 

diffraction pattern in Figure 5.SB. By selecting each 

reflection in turn to give a dark field image, it was 

possible to determine which reflections gave rise to 

particular features. The results are represented in 

Figure 5. se by the use of different symbols for the a 

phase, the phase along the a-platelet boundaries and the 

phase across the a-platelets. Selecting the spot marked 

F in Figure 5. se gave the dark field micrograph of the 

boundary phase, Figure 5.S0. The dark field micrograph, 

Figure 5. SE, was taken using the reflection marked H in 

Figure 5. se and highlights the phase across the 

a-platelets in the same region as Figure 5.S0. The 

a-platelets appear grey rather than black in Figure 5.SE 

due to the close proximity of the reflections from the 

acicular phase and reflections from the a phase. Figure 

5. SE indicates that the acicular phase was also present 
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between the edge of the phase along the a-platelet 

boundaries and the a-platelets. 

Figure 5.9A is a selected area diffraction pattern 

obtained by tilting a region of the foil containing both 

the phases of interest to an [OOOl]G zone. This is drawn 

schematically in Figure 5. 9B. Also of interest in this 

diffraction pattern are the presence of reflections from 

the retained-p phase which correspond to an [011]" zone 

and agree with the Burgers orientation relationship: 

[OOOl]G//[Olll1S [36]. Figures 5.10A, 5.10B and 5.10C are 

convergent beam electron diffraction patterns taken from 

an area containing the two phases of interest and the a 

phase, without tilting the foi1. These figures show an 

[0001] zone from the a phase, a zone from the phase along 

the a-platelet boundaries and reflections from the 

acicular phase. In both Figures 5.10B and 5.10C, 

reflections from the a phase are also present as less 

intense discs. The small size of the additional phases 

made it impossible to focus the beam on areas which did 

not contain some a phase. 

Determination of the d spacings corresponding to the phase 

along the a-platelet boundaries from the diffraction 

patterns in Figures 5.8B and 5.9A, identified this phase 

to be face centred cubic in structure. The lattice 

parameter was calculated to be A = 0.434 ± 0.004 nm. 
Table 5.2 lists the corresponding reflections to which the 

d spacings refer. The phase was determined to be 

equivalent to the interface phase (IFP) described in the 

literature (see section 2.2.6, Table 2.3) and will, 

therefore, subsequently be referred to as the fcc 

interface phase. Having established the structure of the 

fcc interface phase, it was possible to index the 

diffraction patterns with respect to this phase. The fcc 

phase reflections in Figure 5. 8B correspond to a [112] fcc 

zone and those in Figure 5.9A correspond to a [OOllfcc 

zone. From these diffraction patterns, two orientation 

relationships, between the a phase and fcc interface 
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phase, are suggested: 

and 

[1213]CI//[112]fcc ; 

(1010)CI// (110) fcc 

[Ollhl/[OOOl]CI//[OOl]fCC ; 

( li2 h/ I (10iO)ca// (110) fcc 

(5.1) 

(5.2) 

The crystal structure of the acicular phase which occurred 
across the a-platelets could not be determined 
conclusively despite much deliberation over results from 
the diffraction pattern analysis and from high resolution 
electron microscopy of the phase. The occurrence and 
identification of both phases are discussed with reference 
to the literature in section 7.2. 
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CHAPTER SIX 

FATIGUE DAMAGE 

6.1 TENSILE TESTS 

Table 6.1 lists the results of tensile tests on specimens 
which were taken from the locations in the compressor disc 
indicated in Figure 3.1. The ultimate tensile strength 
(U.T.S.) and 0.2% proof stress (P.S.) were determined for 
specimens taken from both the tangential and radial 
orientations. A 0.2% P.S. of 872 MPa was obtained from 
tanqentially orientated specimens which were taken from 
positions close to the disc bore (TD1 and TC7). A 0.2% 
P.S. of 880 MPa was obtained from radially orientated 
specimens. These values for the 0.2% P.S. were used in 
the determination of Fllax and F.8an (see equations 3.1 and 
3.2). Average U.T.S. values of 993 MPa and 1008 MPa were 
obtained from the tangentially orientated and radially 
orientated specimens, respectively. From the gradient of 
the stress-strain curves, the Young's modulus, Eav8ug8' was 
calculated to be 117 GPa. 

6.2 FATIGUE TESTS 

Two radial specimens (OR6B and OR9B) which had not been 
electropolished were tested at a maximum stress (allax ) of 
80% P. S. in order to obtain an estimate of the fatigue 
lifetime at this stress level. The specimens failed after 
75230 and 90260 cycles respectively. The fatal cracks had 
initiated from a corner of the surface of maximum stress 
(see Figure 3.3). Optical and S.E.M. observations close 
to the crack oriqin on both specimens did not reveal any 
information on the cause of failure. To reduce the 
undesirable tendency for specimens to fail at the corners, 
all subsequent fatigue tests were carried out on specimens 
which had been electropolished as described in section 

3.5.1. 
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Table 6.2 lists the number of cycles to failure, Nf, of 

tangentially orientated specimens which were tested at a 

maximum stress level of between 80% and 100% P. S. The 

fatigue lifetimes are plotted as a stress versus number of 

cycles (S-N) curve in Figure 6.1. As expected, an 

increase in the number of cycles to failure with a 

decrease in the maximum stress level was observed. 

Specimen TAl tested at 80% P.S. did not fail after 126880 

cycles. 

6.3 FATIGUE SURFACES 

The majority of fatigue surface observations were carried 

out using optical microscopy. Observations were also made 

using scanning electron microscopy (S.E.M.). 

6.3.1 Slip Bands 

Optical microscopy of the fatigue surfaces revealed that 

slip bands had occurred during fatigue testing in 

favourably orientated primary-a and transformed-fS grains 

present in the area of maximum stress in all failed 

specimens. Figure 6.2 is an optical micrograph taken from 

a specimen which had been fatigue tested at 100% P. S. 

which shows slip bands within primary-a grains. The slip 

occurred across the widths of the grains as individual or 

parallel bands. The orientation of these bands was 

observed to have occurred between 40° and 90° to the 

applied stress direction. only in the more highly 

stressed areas, such as those adjacent to the fatal cracks 

(fracture surfaces), were slip bands observed in more than 

one direction in a given grain. Slip within the 

transformed-fS was less commonly observed and positive 

identification was difficult because slip bands were 

obscured by the a-platelet structure of the transformed-p 

grains. Thus an estimate of the slip band distribution in 

the transformed-fS could not be made by optical or scanning 

electron microscopy. In transformed-fS grains where the 
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slip bands could be identified, the slip was found to 
occur at 60 0 or 90 0 to the direction of the a-platelets. 
Fiqure 6.3 is an example of the fatiqued microstructure 
typical of that observed across the fatique surface in a 
specimen tested at 100' P.S., and clearly shows that the 
slip bands were more easily identifiable in the primary-a 
qrains than in the transformed-p qrains. 

The density of slip bands is a function of the applied 
stress. In a specimen tested at 100' P. S., slip bands 
were observed in favourably orientated primary-a qrains 
across the entire fatique surface. As the maximum stress 
level was reduced, the number of primary-a grains 
containinq slip bands also reduced and the averaqe number 
of slip bands wi thin those qrains was also lower. A 
higher slip band concentration close to the fatal fatique 
crack in all specimens was due to the large plastic zones 
present, and higher stresses imposed, during long-crack 
propagation. 

6.3.2 Secondary Cracking 

Secondary cracks (i.e. cracks which did not propagate 
cause failure) were observed on the fatigue surfaces 
all the specimens tested. An increase in the number 

to 
of 
of 

secondary cracks was observed with increasing maximum 
stress. For example 20 secondary cracks were found in a 
specimen tested at 85' P.S., between 60 and 80 secondary 
cracks were observed in specimens tested at 95' P.S. and 
close to 100 secondary cracks were observed in a specimen 

tested at 100' P.S. 

6.3.2.1 Secondary Crack Initiation 

Fiqures 6. 4A and 6. 4B are examples of secondary cracks 
which were observed in a specimen tested at 100' P.S. The 
cracks initiated within primary-a grains in a direction 
which was parallel to the slip bands present suggesting 
that the cracks had occurred along slip bands. 
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The majority of secondary cracks in all fractured 

specimens were greater than one primary-a grain diameter 

(35 J.lm) in length. In many of the shorter secondary 

cracks « 200 J.lm), such as those in Figures 6.5 and 6.6, 

it was possible to determine the probable crack initiation 

site as a primary-a grain which occurred approximately at 

the middle of the secondary crack length. The 

orientation of the secondary cracks in the initiating 

primary-a grains was between 50° and 90° to the applied 

stress direction. Only occasionally were cracks observed 

which had initiated from colonies in the transformed-p 

grains. The initiation of many secondary cracks, 

however, could not be positively identified, particularly 

as some cracks may have initiated in sub-surface grains. 

6.3.2.2 Secondary Crack Propagation 

The majority of secondary cracks of over 200 J.lm in length, 

such as those in Figures 6.7A and 6.7B, were found to have 

occurred by the coalescence of two, 

secondary cracks. The cracking in 

observed in a specimen tested at 100% 

or more, shorter 

Figure 6.7A was 

P.S. and clearly 

illustrates the tortuous and bifurcating nature of crack 

propagation in IMI 834. There was a tendency for the 

longer cracks to group or cluster, particularly in 

specimens tested at the higher stress levels (95% and 100% 

P.S.). For example, Figure 6.7B shows a cluster of cracks 

in a specimen tested at 95% P.S. 

It was found that there was a preference for short cracks 

to propagate through the transformed-p colonies 

perpendicular to the a-platelet direction. The short 

secondary cracks illustrated in Figures 6.4A, 6.4B and 6.5 

have propagated in the adjacent transformed-p at 90° to 

the a-platelet direction in colonies which were suitably 

orientated with respect to the initial crack and the 

applied stress direction. Where no suitably orientated 

colonies were available, the paths of the respective 
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cracks were more tortuous in nature, or were arrested. 

For example in Figure 6.5, the a-platelets in a colony on 

one side of the initiating primary-a grain lie almost 

parallel to the initial crack direction. It is observed 

that the propagating crack path through this grain is more 

tortuous than the crack path through the colony on the 

opposite side of the primary-a grain in which a path 

perpendicular to the a-platelets is followed. Further 

examples of a preferred short crack path perpendicular to 

the direction of a-platelets are illustrated in Figures 

6.7A and 6.8. The crack path in Figure 6.8 is 

particularly interesting and is discussed in detail in the 

figure caption. 

6.3.3 Fatal Fatigue Cracks 

Figure 6.9 is a low magnification optical montage taken 

with Nomarski interference, showing the path of the fatal 

crack in a specimen tested at 100% P.S. The test was 

terminated just prior to failure so that the detail of the 

fatal crack path could be observed. It is possible to 

identify the region in which the crack initiated by the 

observation of the surface relief which is associated with 

the increase in crack tip plasticity with crack 

propagation. The surface relief is enhanced by the 

Nomarski interference conditions used and the region in 

which the crack initiated is indicated. Similar surface 

relief associated wi th the fatal crack propagation was 

observed on other fractured specimens. 

Figures 6.10A and 6.10B are higher magnification montages 

of the area containing the crack initiation site. Figure 

6.10A was taken with Nomarski interference and Figure 

6.108 was taken after the fatigue surface had been etched 

to reveal the microstructure. In Figure 6.10B, two 

primary-a grains are indicated where the fatal crack 

passes parallel to slip bands contained within them. It 

is possible that one of these grains initiated the fatal 

crack, but without more sUbstantial evidence it is equally 
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possible that the crack initiated in an adjacent 

transformed-p grain, a sub-surface site or even at two 

sites. In Figure 6.10A slip bands in some transformed-p 

grains (indicated) can be seen at close to 90° to the 

applied stress direction. By comparison of the grains 

with the equivalent grains on the etched surface (Figure 

6 .10B), it is clear that the slip bands occur at either 

60° or 90° to the direction of the a-platelets. 

Figure 6.11 is a high magnification montage of the two 

complementary fatigue surfaces of the area containing the 

origin of the fatal fatigue crack in a specimen fatigued 

to failure at 90\ P.S. Prior to the propagating crack 

becoming more tortuous in nature, the crack traverses at 

least three primary-a grains maintaining a direction 

parallel to the slip bands contained within them (at 60° 

and 70° to the stress direction). The initiation site was 

identified by S.E.M. as the primary-a grain indicated 

(see section 6.4.1 below). 

6.4 FRACTURE SURFACES 

6.4.1 Crack origins 

Figure 6.12 compares the fatigue and fracture surfaces of 

one half of a fractured specimen tested at 90\ P.s. (the 

same specimen as that shown in Figure 6.11 in section 

6.3.3) . By using the ri ver markings on the fracture 

surface as a guide, the origin of the crack was traced to 

a primary-a grain at the fatigue surface. The diameter 

of the primary-a grain on the fatigue surface was 

approximately 20 .,am. This figure also shows a crack 

branch at the primary-a/transformed-p grain boundary. 

In the S.E.M. micrograph of the fracture surface in Figure 

6.12, a small elliptical-shaped feature of approximately 2 

... m in diameter was observed at 2 to 3 .,am from the fatigue 

surface in the initiating primary-a grain. An attempt to 

analyse the composition of this feature by energy 
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dispersive spectroscopy (EDS) in the S.E.M. found no 

difference in composi tion between this feature and the 

adjacent primary-a phase. The feature was surrounded by 

a very smooth area of approximately 5 J.lm in radius from 

which the river markings extended radially. This 

featureless area suggests that the fatal crack had 

initiated crystallographically along a slip band within 

the primary-a grain without any deviation in the plane of 

the crack path. It is interesting to note that the river 

markings in the initiating primary-a grain extend up to 

50 J.lm below the fatigue surface and cross at least one 

boundary between two primary-a grains. It is considered 

that such low misorientation boundaries can effectively 

double the length over which damage can accumulate on a 

given slip band and may influence the mechanism of fatigue 

crack initiation (see section 7.5). 

Figures 6.13A and 6.13B show the two complementary 

fracture surfaces in a specimen tested at 95\ P. S. The 

crack origin occurred at approximately 20 J.lm below the 

surface of the test specimen. The features associated 

with this origin were similar to those observed in a 

specimen tested at 90\ P.S. (Figure 6.12), suggesting that 

the initiation site was also a primary-a grain. The 

changes in contrast which can be seen in Figure 6.13A 

correspond to the boundaries between the initiating 

primary-a grain (darker) and adjacent primary-a grains of 

slightly different orientation. A feature of about 2 to 3 

J.lm in diameter was observed on one fracture surface of the 

initiating grain, close to the boundary with an adjacent 

transformed-p grain. This feature is similar in appearance 

to the elliptical feature present in Figure 6.12. A 

comparison between the two complementary fracture surfaces 

shows that the feature was elevated on one surface and 

depressed on the other surface. 

6.4.2 Crack Propagation 

When the fracture surfaces of all failed specimens were 
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observed by eye under bright light, the region in which 

the fatal crack had initiated appeared as a shiny region 

of up to 3 millimetres in radius. The remainder of the 

fracture surface had a more matt appearance. This 

macroscopically visible transition in fracture appearance 

was investigated by S.E.M. 

Fiqure 6.14 is a S.E.M. montage taken near to the fatal 

crack origin of a specimen tested at 95% P.S. The 

extensive facetting observed in this area is similar to 

that observed around the crack origins of all the 

specimens and suggests that a quasi-cleavage 

(cleavage-like) mode of fracture operates close to the 

crack origins. The facets occur on the scale of the 

primary-a grain/transformed-p colony size and contain 

river markings similar to those illustrated in Figures 

6.12 and 6.13. It is considered that the majority of the 

facets arise from cleavage of the primary-a phase. The 

remainder of the fracture surface appears blocky in nature 

and is likely to arise from the transformed-p phase. 

Material which has fractured in layers on the scale of 

ex-platelet widths can clearly be seen in these blocky 

regions. 

Fiqures 6.15A to 6.15C were taken from areas greater than 

3 mm from the fatal crack origins, i. e. beyond the 

transition in fractographic appearance, of various test 

specimens. The more ductile appearance of these areas 

shows features such as flutes and micro-serrated ridges 

[188]. Figures 6.15A and 6.15B show regions of fluting up 

to 60 IJm in length which are typical of the 

post-transition fracture surfaces. The micro-serrated 

ridges in Figure 6. 15C are approximately 0.5 IJm apart 

which suggests that these arise from a transformed-p 

colony which has been fractured perpendicular to the 

ex-platelets contained wi thin it. No evidence of any 

fatique striations on these post-transition fracture 

surfaces was found. 
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An estimate of the alternating stress intensity factor, 
Ax (MPam1 / 2 ) , at which the macroscopically visible 
transition in fracture appearance is observed, was 
calculated from (equation 2.9 [130, 132, 133]): 

where: 

AK = Y4a (7ra) 1/2 (6.1) 

a = crack depth at the transition em) 
Y = specimen geometry and loading system factor 
Aa = the stress range at the crack depth (MPa) , a, 

below the fatigue surface 

The crack depth, a, was measured from the projected crack 
length below the fatigue surface, perpendicular to the 
applied stress axis using a travelling microscope. A 
value of Y = 1 for four point bend testing was used as 
this corresponds to a crack which had initiated from an 
infinite surface and also since no alternative values of Y 
for four point bend test specimen geometries have been 
suggested [189]. The value of Aa (MPa) was calculated 
according to the following equation: 

where: 

4a = (allllx - a.in) (y-a) /y (6.2) 

allllX = maximum stress at the fatigue surface (MPa) 

a.in = a llllx /10 since R = 0.1 
Y = 5 mm i.e. the specimen centre line depth or 

depth of the neutral axis from the fatigue 
surface, see Appendix 2 (m) 

a = crack depth at the transition (m) 

The data measured from specimens which had failed with a 
crack that had initiated from a non-corner site are given 
in Table 6.3. Average AK values measured at the change 
in fractographic appearance for the different stress 
levels are 32.7 MPam1 / 2 at aux = 95' P.S., 32.0 MPam1 / 2 at 
allllX = 90' P. S. and 31. 6 MPam1 / 2 at alll&X = 85' P. S. These 
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results are discussed in section 7.3.3. with reference to 

the reverse plastic zone size of the material. 

6.5 THIN FOIL OBSERVATIONS 

Thin foils from specimens fatigued to failure were 

prepared by two techniques: (i) Back-thinning (see section 

3.3.5.2). (ii) By cross-sectional thin foil preparation 

(see section 3.3.5.3). All the foil sections were taken 

from the 35.0 x 10.0 mm area of maximum stress at a 

distance of at least 3 mm from the fracture surface of 

specimens which had been fatigued at 95% P.s. or 100% P.s. 

6.5.1 Foil Preparation Results 

6.5.1.1 Back-thinned Foils 

The most successful back-thinned foils were obtained from 

200 Jim thick discs which had been back-thinned for at 

least 90% of the total electropolishing time and then 

electropolished from both sides to perforation (see 

section 3.3.5.2). It was observed that the variation in 

total electropolishing time, resulted in the electron 

transparent region of the foil occurring at between 5 and 

10 Jim from the fatigue surface. The electron transparent 

areas were far more extensive using this technique than 

those obtained from back-thinning foils to the fatigue 

surface. 

6.5.1.2 CIoss-sectional Thin Foils 

Figure 6.16 is a low magnification T.E.M. micrograph 

showing the extent of the thin area obtained in a 

cross-sectional foil taken 

(prepared by technique (b) 

from a fatigued specimen 

in section 3.3.5.3). The 

preparation of the majority of cross-sectional thin foils 

was successful· in that it was possible to identify the 

position of the fatigue surface in relation to the 

underlying microstructure and associated fatigue damage. 
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The presence of the interface phase (see chapter 5) was 

not detected in any of the cross-sectional foils obtained 

by this technique. 

6.5.2 Slip in Primary-a Grains 

Intense parallel planar slip bands were characteristic of 

fatigue deformation in the primary-a grains, Figure 6.17. 

In foils which contained relatively extensive thin areas, 

the slip bands were observed to traverse the length of 

primary-a grains. The slip bands were arrested at grain 

boundaries between the primary-a and adjacent 

transformed-p grains. In cases where two primary-a 

grains were adjacent to each other, Figure 6.18, the slip 

bands crossed low angle boundaries with a change in 

direction corresponding to the misorientation between the 

grains. In the example given in Figure 6.18, the 

misorientation between the primary-a grains is 

approximately 9°. In all the examples found where two 

adjacent primary-a grains were crossed by slip bands, the 

misorientation between them was observed to be < 10°. 

6.5.2.1 Slip in Back-thinned Foils 

Figures 6. 19A to 6. 19C are examples of slip bands in 

primary-a grains, which were examined in back-thinned 

foils. The dislocations in the bands have piled up 

against the boundary between the primary-a and an 

adjacent transformed-p grain. By measuring the width of 

the slip band under different beam directions, it was 

possible to determine on which plane slip had occurred. 

The boxed region in Figure 6.19B was imaged under the 

twelve conditions 1 isted in Table 6.4, six of which are 

shown in Figures 6. 20A to 6. 20F. The width of the band 

was measured at each zone and was found to decrease from a 

maximum at a beam direction, B, close to [0001] to a 

minimum at B close to [2423] (see Table 6.4). From the 

measured widths, it was most probable that the 

dislocations were lying on the basal plane. In Figure 
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6.21 the slip plane was confirmed to 

usinq trace analysis. All slip 

primary-a qrain in Fiqure 6.19 were 

planes. 

be the basal plane 

bands within the 

on parallel basal 

Table 6.4 also lists the g vectors used to determine the 

Burqers vectors of dislocations in the basal slip band 

(Fiqures 6.19 and 6.20) usinq the invisibility criterion. 

The three dislocations, labelled A, Band C in Fiqures 

6.20A to 6.20F, have different Burqers vectors since each 

dislocation went out of contrast under different two beam 

conditions. By referrinq the contrast values in Table 

6.4 to those listed in the table in Appendix 1, the 

dislocations were determined to have <A> type Burqers 

vectors; (A) 12 = 1/3[1120], (B) 12 = 1/3[1210] and (C) R = 
1/3[2110], which are permitted Burqers vectors for slip on 

the basal plane. The dislocations marked B are of near 

screw type since the true direction, U, lies close to R. 
The dislocations marked A and C have a mixture of edqe and 

screw components. 

Usinq the techniques described above, the majority of slip 

bands observed in primary-a qrains were identified to 

have occurred on the basal plane. The Burqers vectors of 

dislocations in these bands were of the 1/3<1120> type. 

Fiqure 6.22 is an example of a primary-a qrain from a 

back-thinned foil in which slip had occurred on two 

perpendicular planes. Slip on the band marked b was basal 

and slip on the band marked p occurred on a prism plane at 

90° to the basal plane. It is interestinq to note the 

nature of the dislocations within the slip bands. The 

dislocations in the basal slip band are often paired (see 

Fiqure 6.22) whereas those in the prism slip band are much 

more random in nature and contain many cut off loops and 

dislocation debris perhaps arisinq throuqh the interaction 

of dislocations on the two slip planes. 
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6.5.2.2 Slip in Cross-sectional Thin Foils 

The preparation of thin foils in cross-section afforded 

two main advantages: (i) The extent of fatigue damage as 

a function of depth below the fatigue surface could be 

determined. (ii) The angle between the slip bands and the 

fatigue surface could be measured. However it was 

observed that the depth below the fatigue surface to which 

the fatigue damage was present depended upon the 

orientation of the individual grains. Due to the limited 

extent of the thin areas obtained in cross-sectional thin 

foils, it was only possible to estimate the extent of 

fatigue damage below the fatigue surface. As expected, 

the highest density of dislocations was observed within 

the first few microns below the fatigue surface, generally 

over the extent of the adjacent primary-a/transformed-p 

colonies. All grains which were adjacent to the fatigue 

surface contained a relatively high concentration of slip 

band activity. As the distance below the fatigue surface 

increased, the slip band/dislocation density decreased. 

At greater than approximately 100 IJm from the fatigue 

surface, the dislocation density was equivalent to that 

observed in unfatigued foils. 

The majority of primary-a grains within 100 IJm of the 

fatigue surface contained at least one active slip system. 

For example, the primary-a grain shown in Figure 6.23 

shows basal slip occurring at 20° to the fatigue surface. 

Slip had occurred in primary-a grains at between 15° and 

90° to the fatigue surface with a high proportion of the 

grains containing slip at between 35° and 55° to the 

fatigue surface, e.g. Figure 6.24. Basal slip was found 

to have occurred in all the primary-a grains which 

contained slip bands. In some grains where the angle 

between the basal slip and the fatigue surface was less 

than 20° or greater than approximately 70° other slip 

systems were activated. The planes of these slip systems 

were identified as either prism or pyramidal planes using 

trace analysis (see later in this section). 
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The two slip systems shown in Figure 6.25 were activated 

in a primary-a grain which was located at the fatigue 

surface of a cross-sectional foil. The slip bands 

occurred at 90° and at 40° to the fatigue surface. Table 

6.5 lists the beam directions and two beam conditions 

under which the grain was imaged by T.E.M. and also the 

measured thicknesses of the two slip bands (marked 1 and 2 

in Figures 6.25 and 6.26) at these zones. Figures 6.26A 

to 6.2 6C were taken under the condi tions indicated in 

Table 6.5. By plotting the measured thicknesses of the 

bands on a standard stereographic projection, Figure 6.27, 

the slip which occurred at 90° to the surface (band 1) was 

identified as basal slip. Using trace analysis (explained 

in detail in Figures 6.28A to 6.28C), the other slip 

system activated at 40° to the fatigue surface was found 

to be on the (1101) pyramidal plane. Thus, the two active 

slip systems in this grain were; basal slip at 90° to the 

fatigue surface and pyramidal slip on the (1101) plane at 

40° to the fatigue surface. Many of the dislocations in 

the basal slip bands in Figures 6.26A and 6.26B appear to 

be paired similar to those observed in the basal slip 

bands in Figures 6.17 and 6.22. Analysis of the basal 

planes edge-on (Figure 6.26C) shows that these 

dislocations are contained within a single slip band, 

strongly suggesting that they are ordered dislocations or 

superdislocations and are not dipoles. 

The primary-a grain shown in Figure 6.29 was located 

wi thin 5 J.lm of the fatigue surface in a cross-sectional 

foil. Two slip systems were activated at 15° and 75° to 

the surface. Table 6.6 lists the zones and two beam 

conditions used in tilting experiments. The measured 

thicknesses of the bands at each zone are also indicated. 

From this data, the two systems were identified to have 

occurred on the basal plane, at 75° to the fatigue 

surface, and the (0110) prism plane, at 15° to the fatigue 

surface. 
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High densities of dislocations with a more tangled and 

wave-like appearance were found in two primary-a grains 

adjacent to the fatigue surface of cross-sectional foils, 

see Figures 6.30A and 6.30B. Analysis of these grains 

under the condition of B close to [1210] and g = [0002], 

showed that dislocations with Burgers vectors of the <~ + 

A> type were present, Figure 6.30B. The traces of long, 

parallel slip bands can also be seen under this condition 

at 90° to g = [0002]. These slip bands occur on the basal 

plane. The angle between the basal slip bands and the 

fatigue surface was 20° in both the grains. An attempt to 

identify the plane on which the <~ + A> slip occurred was 

unsuccessful. However, based on the crystallography of 

titanium, the <~ + A> slip was probably on a pyramidal 

{lOll} type plane with a Burgers vector of the type 

1/3<1123>. 

The primary-a grain in Figure 6.31 occurred adjacent to 

the fatigue surface in a cross-sectional foil. The single 

slip system in this grain occurred on the basal plane, at 

75° to the fatigue surface. Figure 6.31 also shows a 

particle at the boundary between two primary-a grains 

which have a low misorientation. At the thickest region 

(centre) of this particle, basal slip bands have been 

arrested. However, at least two bands have passed through 

the particle where they have met with thinner regions. 

The deformation associated with these thinner regions is 

imaged in Figure 6.32. Figure 6.33A is a dark field 

micrograph of the particle imaged using the reflection 

indicated in Figure 6.33B. The particle was identified as 

a ~ phase particle using this and a convergent beam 

electron diffraction pattern, Figure 6.34. Smaller 

particles associated with the P phase particle were 

identified as titanium-zirconium silicides. The montage 

in Figure 6.35 was imaged under different diffraction 

conditions and SUbstantiates the fact that the basal slip 

was arrested at the P particle. No evidence of cracking 

resulting from this interaction was observed, however, the 

build up of intense slip at such particles may lead to 
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crack initiation at the interface between a primary-a 

grain and a ~ particle. 

6.5.2.3 Grain Orientations 

The approximate orientations of over 30 grains (primary-a 

and transformed-~) in cross-sectional thin foils were 

determined by tilting the foils through less than 5° in 

order to obtain a zone axis diffraction pattern that could 

be indexed. The results are listed in Table 6.7 and are 

illustrated schematically on a standard stereographic 

triangle (0001)-(10iO)-(1120) for titanium in Figure 6.36. 

When the preferred texture found in the disc (section 

4.3.2, Figure 4.6) is interpolated onto such a triangle, 

it suggests that few grains in cross-sectional foils are 

orientated close to B = [0001] with the majority 

orientated nearer to B = {10io} and B - {1120}. The 

observed grain orientation measurements provide additional 

data to support the putative preferred texture measurement 

given in section 4.3.2 

6.5.3 Slip in Transformed-p Colonies 

Low magnification T.E.M. micrographs taken from the 

transformed-~ in a back-thinned foil are shown in Figures 

6.37A and B. These areas are typical of the transformed-~ 

and show a higher dislocation density and a more 

homogeneous nature of deformation in grains close to the 

fatigue surface than in the pr imary-a (section 6. 5.2) . 

However, as the distance from the fatigue surface 

increases, the distribution of deformation becomes more 

inhomogeneous and most transformed-~ colonies contain 

little or no deformation at greater than about 30 ~m from 

the surface. 

An example of the deformation within a transformed-~ grain 

less than 4 ~m from the fatigue surface in a 

cross-sectional foil is 

higher magnification, 

shown in Figure 

in Figure 6.39. 

100 

6.38 and, at 
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dislocation density was associated with slip on two 

systems within the a-platelets. Figure 6.40 shows two 

slip bands which cross an a-platelet boundary 

approximately 10 JIm below the fatigue surface. Band 1 

occurred almost parallel to the platelet boundary (dark) 

and band 2 at 60 0 to band 1. Table 6.7 lists the zones 

from which the slip plane of band 2 was determined to be 

the (1100) prism plane, see also Figures 6.41A and 6.41B. 

From trace analysis, band 1 occurred on the (0110) prism 

plane. Figures 6.40 and 6.41B show a high dislocation 

density built up at the a-platelet boundary in slip band 

2 which suggests that the a-platelet boundary has caused 

some restriction to dislocation motion on the (1100) 

plane. Prism slip was most commonly arrested at grain and 

colony boundaries. 

Slip in the transformed-IS was not confined to the prism 

planes. Figure 6.42 shows a transformed-IS colony adjacent 

to the fatigue surface in a cross-sectional foil. A high 

density of slip occurred at 45 0 to the fatigue surface on 

basal planes, at 90 0 to the a-platelet boundaries. The 

a-platelet boundaries appeared to offer no restrictions 

to dislocation motion and basal slip was only arrested at 

the colony/grain boundaries, see Figure 6.43 and Figure 

6.44. In Figure 6.44, the adjacent primary-a grain is 

the same grain as that illustrated in Figure 6.30A 

(section 6.5.2.2), which contained dislocations with 

Burgers vectors of the <Q + A> type (R = 1/3<1123». The 

high density of basal slip in the transformed-IS, which 

piled up at the grain boundary, may have increased the 

stresses in the adjacent primary-a leading to stresses 

high enough to generate <Q + A> slip. 

6.5.4 Microcracking 

A total of four microcracks were observed in: (i) A 

transformed-IS grain present in a back-thinned foil. (ii) A 

primary-a grain in a back-thinned foil. (iii and iv) A 

primary-a grain in a cross-sectional thin foil. 
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6.5.4.1 Microcracking in Transformed-p 

Figure 6.45 is a low magnification montage illustrating a 

microcrack, approximately 6.5 ~m in length, observed in a 

transformed-p grain present in a back-thinned foil. The 

crack followed a \ zig-zag' path through the 

microstructure, sometimes changing direction by up to 90°. 

It appeared that the crack followed an a-platelet or 

colony boundary and changed direction at slip bands which 

passed through the boundary or at particles such as 

silicides contained within the boundary. Because of the 

heavy deformation associated with the crack, it was not 

possible to fully characterise the crack path. The high 

level of deformation associated with the microcrack is 

illustrated in Figures 6.45 and 6.46. The density of 

dislocations was so high that individual dislocations were 

unresolvable, in contrast to the observations of 

transformed-p which did not contain a microcrack (Section 

6.5.3). The plastic zone ahead of one end of the 

microcrack is illustrated in Figures 6.46 and 6.47. 

Figure 6.47 shows that the region of high dislocation 

density did not extend far from the crack. The build up 

of deformation at the boundary between the transformed-p 

and an adjacent primary-a grain caused a significant 

amount of strain in the primary-a grain. Evidence of 

this strain is shown in Figure 6.46 by the high 

dislocation density, localised nature of the thickness 

fringes and streaking, in a band of deformation which 

extends into the primary-a grain. 

6.5.4.2 Microcracking in Primary-a 

Figure 6.48 is a low magnification T.E.M. micrograph of a 

crack approximately 2 ~m in length which occurred in a 

primary-a grain in a back-thinned foil. The area in 

Figure 6.48 is sketched in Figure 6.49 and shows that the 

crack occurred parallel to slip bands in the primary-a. 

Figure 6.50 shows the deformation associated with the 

crack which is highlighted by the bend contours around the 
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crack tip and also the dislocations which can be resolved 
along the crack length. Dislocations which extend in 
pairs from the crack tip to a distance of approximately 1 
11m indicate the presence of short range order in the 
primary-a. The Burgers vector and slip plane of the 
dislocations were identified as 1/3[1210] and the (0001) 

plane, respectively (see Figure 6.51). Since the 
microcracking is parallel to the slip plane under the 
condition g = 0002, this suggests that the microcrack had 
occurred on the basal plane in the primary-a. Also shown 
in Figures 6.50 and 6.52 are four bands of dislocations on 
one side of the crack which are up to 0.5 11m in length and 
0.2 11m apart. These lay at 75° to the crack in a region 
just ahead of the crack tip. Figure 6.52 shows that a 
significant amount of deformation had occurred along the 
length of the crack, however, analysis of the deformation 
was not possible due to the strain associated with the 
crack. Observation of the crack tip closest to the edge 
of the foil was not possible because of pitting which had 
occurred during the electropolishing process (Figure 
6.49) • Two pits were present between the crack and the 
thin foil edge but no deformation was observed in this 
region. 

Figure 6.53 is a low magnification T.E.M. montage from a 
cross-sectional thin foil. Two microcracks occurred 
parallel to each other in a primary-a grain, about 15 11m 
below the fatigue surface. The angle at which the cracks 
occurred was at 75° to the fatigue surface. One of the 
microcracks was approximately 4.2 11m long and the other 
about 2.2 11m in length. 

The crack tip closest to the fatigue surface of the longer 
crack was bounded by an elliptical particle about 0.6 11m 
long. The particle was located on the boundary between 
two similarly orientated primary-a grains (labelled A and 
B in Figure 6.53) and identified from diffraction pattern 
analysis as a ~ phase particle, see Figures 6.54Aand B. A 
high dislocation density across the ~ particle occurred at 
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the point where dislocations from the slip band in grain A 

had piled up. It is suggested that the dislocation pile 
up in the primary-a caused the Ii particle to deform as 
illustrated in Figure 6.54. In Figure 6.55 the slip bands 
in grain A are imaged under the condition g = 0002. The 
plane of the microcrack is parallel to the slip bands and 
therefore lies on the basal plane. 

The crack tip furthest from the fatigue surface is shown 
as a dark field image (g = 2020) in Figure 6.56. The 
region ahead of the crack tip contained a high density of 
<A> type dislocations. Figure 6.56 also shows a zone of 
about 5 ~m in length which extends into the region of high 
dislocation density. Figure 6.57 was taken under 
different conditions and shows MoirA fringes extending 2 
~m from the apparent crack tip, indicating that 
extended further into the foil than it appears 
6.57. Figure 6.58 shows these fringes 
magnification to be between 6 and 10 nm apart. 

6.5.5 Summary of Thin Foil Observations 

the crack 
in Figure 
at high 

Intense planar slip bands which traversed the grain widths 
are characteristic of fatigue damage accumulation in the 
primary-a grains of IMI 834. Basal slip of the type 
1/3<1120>(0001) is the predominant mode of deformation in 
primary-a grains, under the testing conditions studied 
and is present in all primary-a grains observed to 
contain slip bands. Basal slip is the only slip system 
present in over 50\ of primary-a grains, in the remainder 
of primary-a grains either no slip systems or two slip 
systems (one of which is basal slip) are observed. Many 
of the basal slip bands contain dislocations which occur 
in pairs (see Figures 6.17,6.22,6.26 and 6.52). The 
occurrence of these paired dislocations is discussed 
further in section 7.3.4.1. The secondary slip systems 
observed to form in primary-a grains are prismatic 
(1/3<1120>{10iO}) slip or pyramidal (1/3<1120>{10i1}) slip 
and these occur when the angle between the fatigue surface 
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and the basal slip is high (> 70°). <& + A> slip is also 

identified in primary-a grains close to the fatigue 

surface when the angle between the basal slip and the 

fatigue surface is low (about 200in the cases found). The 

slip plane and Burgers vectors of the <Q + A> slip are not 

determined, but are probably pyramidal {lOll} and 

1/3<1123>, respectively. Primary-a/transformed-~ grain 

boundaries and ~ phase particles on low angle boundaries 

between primary-a grains are observed to act as effective 

barriers to slip in the primary-a grains. 

Slip in the transformed-~ appears more homogeneous in 

nature than in the primary-a and a greater slip band 

density is generally observed, especially near the fatigue 

surface. Prismatic (1/3<1120>{10iO}) slip and basal 

(1/3<1120>(0001» slip are observed with about equal 

frequency in the transformed-~ colonies. The basal slip 

occurs at 90° to the a-platelet direction and appears to 

cross the a-platelet boundaries with little or no 

effective slip band arrest. The prismatic slip normally 

occurs in two of the three possible directions and runs 

nearly parallel to a-platelet boundaries and/or 

approximately 60° to them when observed 'edge-on'. 

Basal slip in the transformed-~ is arrested at colony 

boundaries and at boundaries of adjacent primary-a or 

transformed-~ grains. Prismatic slip in transformed-~ is 

arrested at similar boundaries to basal slip. In 

addition, some restriction to the motion of dislocations 

through a colony is caused by the a-platelet boundaries 

(for example Figure 6.41B), however, these boundaries are 

not considered to be a major barrier to slip in INI 834. 

The microstructure associated with four microcracks found 

in thin foils is presented. Two of the microcracks 

occurred in a transformed-~ grain and a primary-a grain 

in foils which had been back-thinned (by 

electropolishing). The most notable feature associated 

with the microcrack in the transformed-~ is the high 
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dislocation density around the crack and in the plastic 

zone ahead of the crack tip. The microcrack in the 

primary-a grain was determined to occur along a basal 

plane. Two other microcracks were found in a primary-a 

grain which was approximately 15 Ilm below the fatigue 

surface of a cross-sectional thin foil. Both microcracks 

were found to have occurred along a basal plane at 75° to 

the fatigue surface. 
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CHAPTER SEVEN 

DISCUSSION 

7.1 OBSERVATIONS ON UNFATIGUED MATERIAL 

7.1.1 Composition 

Table 7.1 compares the compositions of IMI 834 analysed by 

different workers [32, 33, 90, 190], the nominal 

composition [6] and the composition determined in the 

present investigation. All the values are consistent 

apart from those for tin and zirconium which vary from 3.5 

to 4.7 wt% and 3 .4 to 4 . 0 wt% , respecti vely • The 

aluminium equivalent, AI·, was determined, using equation 

2.4 (section 2.2.5.1), to be greater than 9 wt% in each 

case. This value of AI· was considered by Rosenberg [44] 

to be the limit of Al*, above which excessive a2 (Ti3AI) 

formation seriously reduces the fracture toughness and 

ductility of titanium alloys. However, Neal [9] stated 

that an alloy which had been a+~ processed was less 

susceptible to ordering instability than if it were 

~-processed. Consequently, for a+~ alloys such as IMI 

834, the AI· could be increased to give an improvement in 

the creep and fracture properties. 

In the above analyses, the value of AI- was determined 

from the compositions of the bulk material. However, 

during alloy processing, the segregation of a-stabilisers 

to the primary-a grains and ~-stabilisers to the prior-~ 

grains occurs [32]. This segregation results in the 

primary-a and a-platelets having different chemistries. 

Scanning transmission electron microscopy (STEM) analysis 

of these grain types has been carried out on IMI 834 [191] 

and the results (in atomic %) are presented in Table 7.2 

(Also given are the composition of the silicide 

precipitates and retained-~ phase along the a-platelet 

boundaries) . From the results of this analysis, the 
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difference in chemistry 

a-platelets is small. The 

only slightly higher than 

between the primary-a and 

Al" (at%) in the primary-a is 

in the a-platelets, yet Ti3Al 

reflections in diffraction patterns from primary-a grains 

were always observed and were often fairly intense (Figure 

4.22A), whereas reflections from Ti3Al in the a-platelets 

were only occasionally observed and were barely resolvable 

(section 4.4). However, the difference in the composition 

between the two grain types will also be influenced by the 

interstitial elements, carbon and oxygen, which were not 

analysed by Shollock [191]. Both oxygen and carbon are 

a-stabilisers and it is therefore probable that the 

diffusion of these elements to the primary-a occurs 

during processing causing a marked increase in the Al" of 

the primary-a phase. 

The addition of a small quantity of carbon to the alloy 

IMI 834 is important for three reasons: (i) It allows a 

practical a+p heat treatment (see Figure 2.4, section 

2.2.4.1 and section 2.3.1). (ii) It increases the 

p-transus temperature [192]. (iii) It improves the 

tensile strength of the alloy throughout the desired 

temperature range [31, 131, 192]. However, the addition 

of carbon is detrimental as it increases the Al" by up to 

0.6 wt% (equation 2.4, section 2.2.5.1), bringing it above 

the 9 wt% level considered to be the upper limit to avoid 

excessive Ti3Al formation in titanium alloys [44]. This 

point has been overlooked in the literature [31, 131, 

192], possibly because of the larger number of advantages 

brought about by the addition of carbon to IMI 834. 

However, this increase in the Al" is significant, since 

the formation of Ti3Al has important implications on the 

deformation behaviour of IMI 834 (see section 7.4.1.1). 
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7.1.2 Microstructure 

7.1.2.1 Optical Microstructure 

A fine, duplex microstructure of equiaxed primary-a and 
basketweave transformed-p was observed in specimens taken 
from the compressor disc section (section 4.2). This is 
typical of an a+p processed, oil quenched and aged 
titanium alloy (see section 2.2.4.2). Such a 
microstructure was designed to produce the optimum balance 
of properties, combining the advantages of p-processed 
near-a alloys (e.g. IMI 829 and IMI 685) with those of 
a+p processed alloys (e .g. Ti-6Al-4V) [6, 9, 10, 192]. 
Thus, the high creep resistance was maintained by a high 
a-stabiliser content and favourable fatigue resistance 
and crack tolerance were achieved from the a fine grained 
microstructure (see section 2.3.1). 

7.1.2.2 Effect of Primary-a Content 

One of the microstructural parameters considered by 
workers during the development of IMI 834 was the volume 
fraction of primary-a present in the microstructure after 
solution treatment. In the present work, a volume fraction 
(V/o) of 18.84 ± 1.9% primary-a phase was determined 
(section 4.2). 

The volume fraction of primary-a was typically altered by 
varying either the solution treatment temperature (see 
Figure 2.4, section 2.2.4.1) or the cooling rate from the 
solution treatment temperature. For example, Table 7.3 
gives some of the results of heat treatments carried out 
on IMI 834 by various workers [32, 168, 190]. Figure 7.1 
illustrates the effect of the volume fraction of the 
primary-a on the creep and fatigue performance of IMI 
834. The cross-over in the fatigue performance and creep 
resistance curves indicates the point at which the two 
conditions can be optimised. A range of optimum values 
has been reported, for example, Neal [9] suggested 5 v/o 
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primary-a and Bate et al. [33] 7 to 8 v/o primary-a. 

Postans [10] and Goosey [6] suqqested that 12 to 15 v I 0 

primary-a provided the best balance between creep and 

fatique properties. More recently Neal [31] and Daeubler 

[192] found that a hiqher primary-a content of 15 vlo, 
together with a 700°C aqeinq temperature provided the 

optimum property combination. The value of 18.84 v/o in 

the present work is therefore sliqhtly hiqher than that 

suqgested as the optimum by most workers. However, as 

discussed later (section 7.3.2), the fatique behaviour of 

IMI 834 appears to be insensitive to the volume fraction 

of primary-a [168]. 

7.1.2.3 X-ray Diffraction 

All lattice parameters in the present work were determined 

at room temperature. The lattice parameters, A = 0.2951 

nm and ~ = 0.4686 nm, obtained from the a phase (section 

4.3.1) agree with those listed for a-titanium in the 

standard X-ray powder data files [193]. In the present 

investigation, the lattice parameter of the retained-~ was 

measured by X-ray diffraction as A = 0.3264 nm. This 

value aqrees favourably with a value for ~-titanium of A = 
0.33065 nm determined from a commercially pure titanium 

alloy [194]. However, direct comparison is not possible 

since pure ~ phase titanium cannot be retained on 

quenching to room temperature and thus the lattice 

parameter for ~-titanium was measured at a temperature 

above the ~-transus temperature (882°C). The addition of 

~-stabilising elements to an alloy, such as IMI 834, 

causes the ~ phase to be retained on quenching (section 

2.2) and, consequently, allows measurement of the lattice 

parameter to be made at room temperature. A number of 

workers calculated the lattice spacinq of pure ~-titanium 

at room temperature by extrapolation to zero ~-stabiliser 

content of the lattice spacinq curve of quenched alloys 

[195, 196] . Values extrapolated from different alloy 

systems were; A = 0.3282 nm (Ti-Mo-Cr) [196] and A = 
0.3294 nm (Ti-V) [195]. The lattice parameter, A = 0.319 
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nm was obtained from the a+~ alloy Ti-6AI-4V by X-ray 

diffraction at room temperature [197]. Since the 

~-stabiliser content of IMI 834 is low, the lattice 

parameter of the ~ phase (A = 0.3264 nm) is comparable to 

the extrapolated values (A = 0.3282 nm and A = 0.3294 nm), 

but is higher than that determined for Ti-6AI-4V because 

of the higher ~-stabiliser (vanadium) content which has 

the effect of reducing the lattice parameter. 

7.1.2.4 T.E.N. of Transformed-p Grains 

The a-platelet morphology observed in thin foils of IMI 

834 corresponds with the basketweave microstructure 

observed in oil quenched, near-a titanium alloys [32, 63, 

64, 66, 178, 198]. Many investigations have observed the 

effect of different processing temperatures, cooling rates 

and ageing times oni (i) the morphology of the 

a-platelets, (ii) the distribution of dislocations within 

the a-platelets, (iii) the amount of retained-~ phase and 

(iv) the precipitation of silicide particles, in various 

near-a titanium alloys [51, 64, 90, 198]. In general, 

material which is cooled at a faster rate from the 

processing temperature (oil or water quenched) is found to 

contain a higher dislocation and stacking fault density in 

the a-platelets when compared to material which has been 

air cooled [ 64 , 66]. The higher dislocation density of 

quenched material is generated by the stresses associated 

with the faster ~ to a transformation. 

Cope and Hill [32] studied the effect of ageing 

temperature on the microstructure of a+~ processed and 

oil quenched IMI 834 which was aged at 600, 650 and 700°C 

for four hours and observed by T.E.M. Material aged at 

6000C contained thin films of retained-~ which were 

surrounded by dislocation arrangements at, or close to, 

the a/~ interface. These arrangements accommodated the 

lattice mismatch between the a and ~ phases. In material 

aged at 700°C, some retained-~ had spheroidised and 

appeared discontinuous along the a-platelet boundaries. 
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As a consequence of the p-spheroidisation, the 

dislocation density in the interface region decreased due 

to the reduced requirement for a and P lattice 

accommodation [32]. Since the alloy in the present 

investigation was aged for two hours at 700°C, the T.E.M. 

observations of the transformed-p (Figures 4.8 and 4.9) 

are in good agreement with those made from material which 

was aged for four hours at 700°C [32]. Similar lattice 

mismatch dislocations were also observed in 1M1 829 which 

had been aged at 575°C for up to 1000 hours [64, 66]. 

The precipitation, distribution and subsequent growth of 

silicides has caused much excitement in the literature as 

already discussed in section 2.2.5.2. silicides with 

lattice parameters, A = 0.703 ± 0.004 nm, ~ = 0.360 ± 
0.015 nm, were observed in the present investigation 

(section 4.4.1). The lattice parameters are similar to 

those measured from aged specimens of 1M1 834; A = 0.70 nm 

and ~ = 0.36 nm [90] and A = 0.69 and £ = 0.33 nm [33]. 

The lattice parameters correspond to silicides of the S2 

type (i.e. (TiZr)sCSiSnb, section 2.2.5.2). Ramachandra 

et al. [90] observed the 52 type silicide to form in 1M1 

834 after a+p and p-processing treatments which were 

followed by water quenching and ageing at between 600 and 

700°C. From their results they concluded that S2 was the 

only type of silicide to form in 1M1 834 under the 

conditions given. The orientation relationship between 

the silicides (s) and the a-platelets (a) determined in 

the present work agrees with that found by Ramachandra et 

al. (in their case the orientation relationship was 

between the silicides and the martensite laths (a'»: 

[0111]a//[2110]. ; (2110)a//(0110). (7.1) 

In the present work, the precipitation of silicides was 

observed on a-platelet, colony and grain boundaries and 

occasionally on dislocations within a-platelets. These 

observations agree with those in the literature [33, 64, 

67, 90]. Ramachandra et al. [90] concluded that, in the 
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p-processed condition, the precipitation of silicides in 

IMI 834 was predominantly at the a-platelet boundaries, 

whereas, in the a+p processed condition, silicides also 

precipitated at the primary-a/transformed-p boundaries. 

The higher precipitation kinetics in the latter condition 

were attributed to the role of the p-stabilising elements 

which partitioned to the transformed-p [90]. 

Woodfield et al. [64, 66, 198, 199] and White et ai. [178] 

analysed the nature of the dislocations within the 

transformed-p microstructure. In the a-platelets of oil 

quenched IMI 829, the majority of dislocations had Burgers 

vectors of the type 1/3<1120> and 1/3<1123>. In addition, 

a significant fraction of the dislocations produced by oil 

quenching were observed to bound stacking faults [64, 66, 

178, 198]. In the present investigation, 1/3<1120> type 

dislocations were observed, however the presence of the 

1/3<1123> dislocations was not actively sought. Similar 

observations of stacking faults and bounding dislocations 

were also observed in the present investigation (Figure 

4.15, section 4.4.1). The bounding dislocations were 

identified by Woodfield et al. [199] as partial 

dislocations which had Burgers vectors of the type 

1/6<2023> and the stacking faults were found to lie on the 

basal plane. It was argued that the faults may have been 

produced by mis-stacking events during the growth of 

a-platelets [199]. 

7.1.2.5 T.E.N. of Primary-a Grains 

Hexagonal dislocation networks were observed in the 

primary-a grains of IMI 834 (section 4.4.2, Figures 4.18 

and 4.19). Similar networks were observed in annealed 

a-titanium and represented low angle grain boundaries 

between two primary-a sub-grains [200]. Their formation 

was believed to occur from interactions between two sets 

of dislocations lying on two parallel non-basal slip 

systems. The sets were formed between either two screw 

dislocation arrays with lh = 122 or two edge dislocation 
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arrays with Ji;h = -ja [200]. Agrawal et al. [201] also 

analysed similar networks in commercial Ti-ASO titanium 

and concluded that, in the as-annealed condition, 

hexagonal dislocation networks occurred on the prism, 

basal and {211X} planes. 

In a study of the titanium alloy VTS-1ct (similar in 

composition to Ti-SAl-2.SSn), Grinberg et al. [202] found 

dislocation networks in the primary-a sub-grains. The 

networks were commonly observed and were formed during the 

high temperature compaction initially given to the alloy 

[202]. In the present study similar networks are found in 

primary-a sub-grains in IMI 834 (Figures 4.19 to 4.21). 

On the basis of the observations by Grinberg et al. [202], 

the networks observed in IMI 834 in the present study are 

considered to have formed as a result of the initial 

forging process. 

The presence of Ti3Al was detected in all primary-a grains 

of IMI 834 by the occurrence of extra reflections in 

diffraction patterns (section 4.4.2). Ti3Al reflections 

were not observed in the majority of the transformed-~ 

grains. This distribution of Ti3AI in the alloy is 

expected due to the segregation of a-stabilising 

elements, such as aluminium, to the primary-a phase 

during solution treatment [32, 191]. The growth of Ti3Al 

precipitates occurs on ageing. Cope and Hill [32] 

observed Ti3Al precipitates to be approximately 2.S nm in 

diameter and 10 nm apart after ageing IMI 834 for four 

hours at 700°C. In the present investigation the 

precipitates were too small to be resolved by T.E.M. since 

the alloy was aged for just two hours at 700°C. The 

precipi tation of Ti3Al has important implications on the 

fatigue behaviour of IMI 834 and this is discussed in 

section 7.4. 1. 1 
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7.2 THE INTERFACE PHASE (IFP) 

7.2.1 Foil Preparation Techniques 

Initial attempts to prepare cross-sectional foils of 

fatigued specimen sections involved plating the fatigue 

surface of interest with nickel in order to protect the 

surface and to aid its identification in the T.E.M. 

(section 3.3.5.3). When observed by T.E.M. a change from 

the expected microstructure was found, this is summarised 

schematically in Figure 7.2. within 150 ~m of the plated 

surface the microstructure had dramatically altered such 

that the original microstructure was barely identifiable 

(Figures 5.2 and 5.3). Between about 150 and 250 ~m from 

the surface, an interface phase along the a-platelet 

boundaries and a second phase, in the form of acicular 

bands across the width of a-platelets, were observed 

(Figures 5.4 and 5.5). At distances of greater than 250 

JIm from the surface only an interface phase along the 

a-platelet boundaries was found. 

The origin and identification of the interface phases was 

important as it was unclear whether they were wholly or 

partly artefactual or, indeed, whether they were the 

result of fatigue damage. Several different preparation 

techniques were carried out to establish at which stage of 

foil preparation these phases had formed (see Table 5.1). 

The interface phases were never found in either; (i) 

unfatigued or fatigued foils prepared by electropolishing, 

(ii) back-thinning or (iii) dimpling followed by 

electropolishing. However, foils prepared by dimpling 

followed by ion-beam milling and by electropolishing 

followed by ion-beam milling contained an interface phase 

along some of the a-platelet boundaries. The absence of 

any interface phases in electropolished foils suggests 

that the interface phase along the a-platelet boundaries 

is a thin foil artefact which was formed during the 

ion-beam milling process. It is suggested that the nickel 

plating process used in the preparation of cross-sectional 
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foils has induced both interface phases to form. 

A review of the theories in the literature regarding the 

origin of the interface phases (IFP's) is given in section 

2.2.6. A similar phase to that identified in the present 

study was found along the a-platelet boundaries of 

various titanium alloys and was determined to be a face 

centred cubic (fcc) hydride of titanium which arose as a 

resu1 t of an increase in hydrogen concentration in thin 

foils during electropolishing [81, 83-85, 89]. A second 

phase with an hcp structure was found in a <10i2>{10i1} 

twin relationship to the a phase and was considered by 

some workers to form as a result of stresses at the a/~ 

interface arising from thin foil relaxation in the ~ phase 

during electrolytic thinning [81, 83]. Ion-beam milling 

was said to prevent the formation of both the fcc phase 

along the a-platelet boundaries and the hcp phase [81, 

83, 89]. 

In the present investigation, the observation that the 

IFP's are thin foil artefacts (Table 5.1, section 5.2) 

agrees with the observations given in the literature [81, 

83-85, 88, 89]. However, the observation of an fcc IFP 

along some a-platelet boundaries in foils prepared by 

techniques involving ion-beam milling and the absence of 

any interface phases after electropolishing, are in 

conflict with the literature (Table 7.4). A possible 

explanation for the observations in the present work is 

that water may have been an impurity in the argon gas used 

during the ion-beam milling process. Hydrogen ions 

derived from this water may have been absorbed by the thin 

foil causing the interface phase to form along some of the 

a-platelet boundaries. In e1ectropo1ished foils, the 

hydrogen content was minimised by maintaining the 

temperature at < -50 o e (section 3.3.5.1). 

In the nickel plated cross-sectional thin foils it is 

proposed that hydrogen was absorbed into the alloy during 

the plating process. A hydrogen gradient may have been 
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established which was a maximum concentration at the 
fatigue surface and decreased as the distance into the 
bulk material increased. At between 150 and 250 ~m from 
the surface, two interface phases were observed. The fcc 
phase along the a-platelet boundaries was 
crystallographically identical to the IFP identified in 
the literature to be a hydride of titanium [85]. The 
second phase which formed as acicular bands across the 
width of a-platelets could not be fully identified in the 
present investigation despite analysis using high 
resolution T.E.M. However, from the evidence available, 
this phase was probably hcp in structure. It is possible 
that this phase may resul t from twinning which may be 

induced by the increased stresses in the foil from the 
formation of the fcc IFP along the a-platelet boundaries 
and the relaxation of surface constraints in the foil (see 
section 7.2.2). At greater than 250 ~m from the surface, 
the hydrogen content of the foil was sufficiently high to 
form the fcc IFP along the a-platelet boundaries but not 
high enough to form the acicular phase. 

7.2.2 Crystallography of the IFP 

The lattice parameter, A = 0.434 ± 0.004 nm, determined in 
the present investigation lies within the range found in 
the literature for the monolithic fcc IFP (0.420 nm S A S 
0.453 nm, Table 2.3). The actual value of A is dependent 
on the alloy composition, prior heat treatment, cooling 
rate and/or foil preparation technique [70-73, 75, 78-86]. 
In the present investigation two orientation relationships 
between the fcc phase and the a phase were found 
(equations 5.1 and 5.2), however, when the stereographic 
projections from both the primary-a phase and fcc IFP are 
compared, both equations may simply be represented by the 
orientation relationship (equation 5.2); 

[011l1s11 [0001]1111 [OOllfcc ; 

(112),111 (1010)1111 (011) fcc 
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Equation 7.2 agrees with the orientation relationship 
found for the monolithic fcc phase by Banerjee et al. 

[85], indicating that the interface phase found along the 
ex-platelet boundaries in the current study is identical 
to that found by Banerjee et al. 

A second crystallographic form of the fcc IFP was referred 
to in the literature [78, 81-86] as the striated fcc IFP. 
A different orientation relationship has been determined 
for the striated phase by many workers [78-81, 83-86]: 

[1111111/ [1120]1I11[110]lCC 
(110),111 (0001) 1111 (111) fcc ; (7.3) 

Banerjee et al. [85] suggested that careful diffraction 
pattern analysis could clearly reveal the structural 
differences between the strongly resembling striated fcc 
morphology and hcp phase morphology, which had caused so 
much confusion in earlier work (see section 2.2.6). In 
their work appropriate ageing treatments were chosen for 
the alloy Ti-10V-2Fe-3Al in the range 500 to 700°C so that 
the ex-platelets were large enough to be analysed 
individually by selected area diffraction. The hcp phase 
was found to exist in six variants formed by twinning on 
the six possible {lOll} planes of the parent ex-platelets 
[85]. Banerjee et al. [85] believed that the hcp phase 
was a stress induced phase formed by the volume expansion 
of the P phase and concomitant compression of the ex phase 
due to hydrogen absorption during electropolishing. 
Twinning was suggested as the favoured deformation mode 
when the ex-platelet sizes were small. Figure 5.4 shows 
examples of acicular bands, which are considered to be the 
same phase, observed at between 150 and 250 ~m from the 
fatigue surface. As shown in Figures 5. 5 and 5.8, the 
bands occurred in specific crystallographic directions 
both across the ex-platelets and also parallel to the 
ex-platelet boundaries (between the monolithic fcc phase 
and the ex-platelet phase). It is sUggested that the 
acicular bands are stress induced during ion-beam milling. 
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In agreement with Banerjee et al. [85], hydrogen in the 

bulk material is believed to segregate to the retained-~ 

phase. At high hydrogen concentrations, such as those in 

the nickel plated foils, this effectively places the ~ 

phase in compression. The removal of material during 

ion-beam milling promotes the relaxation of bulk material 

constraints allowing the ~ phase to expand. The expansion 

of the retained-~ is accompanied by the formation of the 

monolithic fcc IFP along the a-platelet boundaries which 

places the a-platelets under compression. The stresses 

induced in the a-platelets cause the formation of the 

acicular bands across them. In view of the observations 

made by Banerjee et al. [85], it is probable that the 

bands are twins and have an hcp structure. 

7.3 FATIGUE DAMAGE 

7.3.1 Mechanical Testing 

7.3.1.1 Tensile Tests 

Table 7.5 compares the room temperature tensile properties 

of IMI 834 specimens determined in the present 

investigation with values obtained in the literature [31, 

32, 168, 169, 190, 203] for similarly processed material. 

The room temperature 0.2% proof strength (P.S.) and 

ultimate tensile strength (U.T.S.) of tangential and 

radial specimens are lower in the present work than those 

quoted in the literature [31, 32, 168, 203]. The reasons 

for this difference are unclear but may have arisen from 

variations in the exact locations of test specimens, 

processing conditions and/or testing conditions. However, 

in comparison with other high temperature near-a titanium 

alloys such as 1MI 829 and Ti-6242-S [6], the values 

determined in the present work are over 60 MPa higher. It 

is probable that a range of properties exist across the 

compressor disc section which may have arisen from 

differential cooling rates caused by variations in the 
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compressor disc thickness. The higher tensile strength 
values determined for the specimen from the disc rim 
(Figure 3.1C, Table 6.1) is likely to have resulted from a 
faster cooling rate from the solution treatment 
temperature at the rim, compared to other areas of the 
compressor disc section. 

7.3.1.2 Fatigue Tests 

Figure 7.3A compares, as a function of the maximum stress 
(o.x) , the fatigue life data of 1M1 834 obtained in the 
present investigation with those determined for similarly 
processed material [131, 190, 192, 204]. Figure 7.3B 
shows the same data as a function of the 0.2% proof 
stress. 

The number of cycles to failure are significantly higher 
in the present work [31, 190, 192, 204] (Figure 7. 3B) • 
However, because the type of test specimen and frequency 
of testing used are different from those used by Daeubler 
et al. [31, 190, 192, 204], it is difficult to compare 
these results directly. Load controlled four point bend 
specimens were fatigue tested in the present 
investigation, whereas load controlled tension-tension 
type specimens of 1M1 834 were tested by Daeubler et al. 

An investigation into the effects of different fatigue 
test types was carried out by Yates [205] on Waspaloy, a 
nickel based superalloy. The results showed statistically 
that four point bend testing produces a longer fatigue 
lifetime than tension-tension type testing under the same 
loading conditions. 

The frequency of testing in the present work was 5 Hz, 
whereas in the tests by Daeubler et al., a frequency of 
0.3 Hz was used. Munz et al. [157] observed the effect of 
increasing the testing frequency on the fatigue life of 
titanium (Contimet 30). On increasing the frequency from 
0.5 Hz to 5 Hz, the average number of cycles to failure 
increased from approximately 9 x 10" to 14 x 10" , which 
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represents an increase in lifetime of over 50% [157]. 

It is probable that the higher fatigue lifetimes 

determined in the present investigation, compared to those 

found by Daeubler et al., are influenced by the testing 

type and the higher testing frequency used. 

7.3.2 Fatigue Surfaces 

Slip bands occurred in suitably orientated primary-a 

grains of fatigued specimens over the entire 35.0 x 10.0 

mm area of maximum stress. The bands were observed at 

between 40° and 90° to the applied stress direction. Slip 

in the transformed-IS occurred at 90° and 60° to the 

direction of the a-platelets. From T.E.M. observations, 

these directions in the transformed-IS correspond to the 

basal and prism slip planes, respectively. 

A preference for crack initiation along planar slip bands 

in the primary-a grains was observed in the present work 

(section 6.3.2). A similar preference has been found for 

room temperature low cycle fatigue crack ini tiation in 

many duplex, a+1S processed titanium alloys (see section 

2.5.6) including Ti-6Al-4V [21], Ti-17 [135], Ti-6246 

[165, 166] and IMI 834 [168, 169]. 

Dowson et al. [168, 169] observed the low cycle fatigue 

crack initiation response in IMI 834 containing volume 

fractions of 5, 15 and 25% primary-a phase. The material 

had been processed according to the heat treatments 

presented in Table 7.6 [168, 169]. Load controlled, low 

cycle fatigue tests were carried out at 20°C under either 

three point bend or tension-tension loading with R = 0.1 

or 0.7, f = 25 Hz and a peak stress, aux < 90% of the 

0.2% P.S. From the results of tensile fatigue tests, 

Dowson et al. found that fatigue cracks initiated 

exclusively in the primary-a phase and were associated 

with the formation of intense slip bands which ultimately 
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extended across the full grain diameter. Under three 

point bend testing, cracks were again associated with slip 

bands, however, initiation sites within the transformed-p 

grains were occasionally observed [168]. Crack initiation 

in a 15 v 10 primary-a microstructure, which was fatigued 

at 80% of the 0.2% P.S., was found to be associated with 

the development of intense slip bands at between 30° and 

70° to the principal stress axis [169]. In the present 

investigation, slip bands in the primary-a were found 

between 40° and 90° to the applied stress direction and 

initial primary cracks and secondary cracks were found 

between approximately 45° and 90° to the applied stress 

direction in specimens fatigued at 95 or 100% of the 0.2% 

P.S. The greater applied stresses in the present 

investigation may explain the larger range of initial 

crack orientations observed. Apart from this larger range 

of slip band and initial crack orientations, the 

observations made in the present study are in agreement 

with the results of Dowson et ai. [168, 169]. 

Attempts by Dowson et ai. [168] to quantify the initiation 

process in terms of var ious test parameters were 

unsuccessful. No correlation between the number of cycles 

to crack initiation and the level of applied stress was 

found. In addition, crack initiation was determined to be 

insensitive to variations in the primary-ex phase volume 

fraction (5, 15 and 25 V/o) despite the general preference 

for cracks to initiate in the primary-a phase [168]. 

Dowson et ai. [169] found that many secondary cracks 

propagated linearly at an angle to the applied stress for 

a significant period before finally being deflected 

towards the expected crack propagation direction (which is 

900 to the applied stress direction) at a grain or colony 

boundary. These observations suggested that the initial 

paths of propagating cracks were along favourably 

orientated slip bands. Similar findings were made in the 

present work with the observation that there was a 

preference for short crack paths to propagate more easily 
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through the transformed-~ at 90 0 to the a-platelets (see 

Figures 6.5, 6.6 and 6.8). From T.E.M. observations this 

direction corresponds to the basal plane in the 

transformed-~ grains. The propagating cracks changed 

direction so that this orientation could be followed 

preferentially. Beyond about 300 f.lm in length, this 

preference was not as pronounced. Dowson suggested that 

slip compatibility between neighbouring primary-a and 

transformed-~ grains was an important consideration in the 

process of crack formation. The resul ts of the present 

investigation agree with this suggestion and further 

suggest that it is less tortuous for a crack to propagate 

from an initiating primary-a grain if the a-platelets in 

adjacent transformed-~ colonies are orientated such that 

the crack can follow a path at 90 0 to the a-platelet 

boundaries, i.e. propagate along the basal plane. 

Dowson et ai. [168, 169] concluded that the crack 

initiation response and the global crack propagation 

characteristics of IMI 834 were relatively independent of 

the volume fraction of primary-a (up to 25 V/o) for the 

limited stress range studied. The crack propagation was 

governed primarily by the crack length, the level of 

cyclic damage introduced prior to crack initiation and by 

the magnitude of the applied stress. The results of 

Dowson et ai. 

primary-a in 

suggest that 

IMI 834 is 

properties as suggested by 

[192] (section 7.1.2.2). 

7.3.3 Fracture Surfaces 

an optimum volume fraction of 

not as critical for fatigue 

Neal [31] and Daeubler et ai. 

A macroscopically visible change in fracture surface 

appearance from a shiny semi-circular region up to 3 mm in 

radius around the fatal crack origins to a matt region at 

greater distances was observed on all failed specimens 

(section 6.4.2). S.E.M. examinations of the two regions 

revealed that the semi-circular region close to the origin 

contained a large number of flat facets (Figure 6.14). In 
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the matt region beyond the transition fluting and 

micro-serrated ridges produced a more ductile fracture 
surface appearance. 

A similar, macroscopically visible, transition in fracture 

appearance was observed by Wanhill et al. [206] in compact 

tension specimens of Ti-6Al-4V containing a duplex 

microstructure. A detailed summary of the pre-transition 

and post-transition fractographic features was presented 

[206]. The fracture surface features found in failed 

specimens of IMI 834 correspond well with those reported 

by Wanhill et al. [206]. In the present investigation, 

characteristic pre-transition features found close to the 

crack origins were; (i) cleavage facets in the primary-a 

phase which contained river markings and (ii) 

micro-serrated ridges resulting from fracture of the 

transformed-p phase. Typical post-transition features 

were a blocky fracture appearance and rough cleavage 

containing micro-serrated ridges which give the more 

ductile appearance of the fracture surfaces in these 

regions. 

Many studies of titanium alloys have shown that this 

transition in fractographic appearance occurs at a change 

in the gradient of fatigue crack growth rate (da/dn 

(m/cycle» versus AI< (MPam1 / 3 ) curve [97, 102, 161, 171, 

206, 207]. From a detailed investigation of fatigue crack 

growth in Ti-6Al-4V, Wanhill et al. [206] concluded that a 

transition in the fatigue crack growth rate curve 

correlated with a change from a structure-sensitive to a 

continuum-mode of crack growth, which in turn was 

associated with the transformed-p grain size. Analysis of 

the fatique crack growth curve transi tion was made by 

correlating the cyclic plastic zone sizes of the 

propagating cracks with microstructural features such as 

the grain and colony sizes [206]. The cyclic plastic zone 

sizes were calculated using the formulae proposed by Hahn 

et al. [208]. The most useful formula was that for the 

cyclic plastic zone size in the y direction, which 
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determined the maximum extent of the plastic zones: 

where: 

[relY = the cyclic plastic zone size (m) 

[ac)y = the yield strength (MPa) 

(7.4) 

AX = the alternating stress intensity factor 

(MPam1 / 2 ) 

From their results, and a similar investigation of 

Ti-6Al-4V by Yoder et al. [161], Wanhil1 et al. concluded 

that the fatigue crack growth curve gradient transition 

probably occurred; ( i) as a consequence of the maximum 

extent of the cyclic plastic zone becoming equal to, and 

exceeding, the average colony size and (ii) a change from 

a structure-sensitive facetted and branched mode of crack 

growth to a continuum-mode of crack growth which was 

characterised by fatigue striations. Similar conclusions 

to (i) have also been made by Thompson et al. [207] in 

Ti-6Al-4V and by Gardiner [102] in IMI 550. Thompson et 

al. [207] used a similar formula to equation 7.4 with a 

pre-multiplying factor of 0.106 which was calculated for 

Ti-6Al-4V by Irving and Beevers [209]. 

using equation 7.4 and the resu1 ts in Table 6.3, the 

average cyclic plastic zone sizes in the present 

investigation are 46 ~m, 44.4 ~m and 43.3 ~m for tests at 

C711AX = 95%, 90% and 85% of the 0.2% P.S., respectively. 

If the pre-multiplying factor of Irving and Beevers [209] 

(0.106) is used, values of 37.3 ~m, 35.6 ~m and 34.8 ~m 

are obtained for the same respective aux values. The 

average colony size measured in IMI 834 is 35 ± 16 ~m 

(section 4.2), whereas the average transformed-IS grain 

size is 66.4 ± 30 ~m. It therefore seems probable that 

the transition in macroscopic fractographic appearance in 

four point bend specimens of IMI 834 occurs when the 

reverse plastic zone size equals, or exceeds, the average 

colony size of the transformed-IS. This is clear evidence 
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that it is the colony size which is important for fatigue 

properties, rather than the prior-p grain size. 

By tracing back the river markings, which are a feature of 

the flat facets in the pre-transition region of the 

fracture surfaces, two fatal crack origins were identified 

using S.E.M. (Figure 6.12 and Figure 6.13). Both origins 

occurred in primary-a grains and contained similar 

features, namely, very smooth areas of about 5 flm in 

radius. The smooth areas imply that the fatigue cracks 

initiated crystallographically across a slip plane. The 

path of the cracks did not deviate from this slip plane 

over the radius of the smooth regions. Beyond these 

smooth regions river markings were produced where the 

crack front changes to a parallel slip plane due to 

imperfections in the crystal lattice. 

Elliptical features of between 2 and 3 flm in length 

occurred close to the centre of both crack origins. It 

was found that these features were complementary on 

matching fracture surfaces (Figure 6.13). It is suggested 

that an alternative crack path may have been followed in 

these regions by the linkage of more than one crack on 

parallel planes in the primary-a. T.E.M. observations 

that may explain this behaviour are discussed later 

(section 7.4.3). 

7.4 T.E.M. OBSERVATIONS OF FATIGUED MATERIAL 

The stress profile (from the fatigue surface to the 

neutral axis) of a four point bend specimen at below the 

35.0 x 10.0 mm area of maximum stress is shown in Figure 

7.4. Cross-sectional thin foil observations of the 

fatigued microstructure were made within 100 flm of the 

surface. At this depth there is a small reduction in the 

16.5 MPa compared to that at the maximum stress of 

fatigue surface 

Figure 7.4). 

(for specimens tested at 95' P.S., see 

Thus, differences in the deformation 

this depth range are likely to be behaviour over 
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negligible. 

7.4.1 Slip Systems in Primary-a Grains 

In this section the results of T.E.M. observations from 

back-thinned and cross-sectional foils are discussed. The 

foils were taken from specimens which were fatigue tested 

with a maximum stress of 95% or 100% of the 0.2% P.s. 

In the present study, intense planar slip bands across the 

primary-a grains were characteristic of fatigue damage 

accumulation in IMI 834 (section 6.5.5). Basal (0001) 

slip was found to be the preferred deformation mode in 

these grains and secondary slip on prism {10io} planes and 

pyramidal {lOll} planes was observed. occasionally, <~ + 

A> slip was found in primary-a grains close to the 

fatigue surface (see section 7.4.2). The preference for 

slip on the basal planes, rather than the prism planes, in 

primary-a grains of IMI 834 is due to the high AI· in 

these grains (section 7.1.1). The relatively high 

interstitial content of the primary-a grains also 

contributes to this slip preference (section 7.1.1). 

Observations which support these preferences are discussed 

in this section and are SUbstantiated further in section 

7.4.1.1 by the influence of oxygen and aluminium on the 

nature of slip in titanium alloys. 

Many investigations of fatigue crack initiation and short 

crack growth in titanium alloys having a duplex 

microstructure found that the crack nucleation sites were 

associated with slip bands in the primary-a phase [21, 

135, 165, 166, 168, 169]. However, observations of the 

slip systems responsible are less commonly reported. 

The majority of observations on slip systems in primary-a 

grains were made in a-titanium alloys. The 

crystallography and deformation modes in a-titanium were 

determined by Churchman [109] and other workers [110-112] 

(section 2.4). From the results of many studies on the 
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deformation modes of single crystals and polycrystals of 

a-titanium at low temperatures (section 2.4.3) the 

principal deformation mode in titanium was established as 

prismatic 1/3<1120>{10iO} slip [100, 109, 111, 112, 

124-128, 155, 159, 210, 211]. The stresses required to 

activate the different slip systems in hexagonal metals 

are very dependent upon the orientation of the stress axis 

(equation 2.6) and the critical resolved shear stresses 

(CRSS) of the different slip systems. In commercially 

pure titanium with a low interstitial content, there is a 

preference for prismatic slip due to the lower CRSS 

required to activate slip on the prism planes (see Table 

2.7 and Figure 2.12). The results of many studies on the 

deformation of a-titanium, particularly those of Conrad 

and co-workers [100] (Figure 2.12, section 2.4.3), 

indicate that the ratio of CRSS for basal and prism slip 

decreases wi th an increase in the intersti tial content 

(even though the absolute values of both increase). At 

interstitial contents approaching 1 att, the curves of 

CRSS for basal and prism slip converge and, above this 

level, slip on the basal plane becomes the preferred 

deformation mode [100] (Figure 2.12). The ordering of 

oxygen in ti tanium has also been used to explain the 

changes in the dominant slip mode from prismatic slip to 

pyramidal slip in some commercial titanium alloys [100]. 

Blackburn and Williams [118] studied the dislocation 

arrangements in deformed specimens of titanium containing 

up to 25 att aluminium and 0.3 to 0.6 att oxygen (see 

section 2.4.4). Prismatic slip was found to be the 

preferred mode at low strains but at higher strains, slip 

on pyramidal {lOll} planes and basal (0001) planes was 

observed [118]. Thus, the CRSS for prismatic slip is 

lower than that for pyramidal and basal slip in these 

alloys. 

basal, 

equal 

Jones and Hutchinson [121] reported that <A> type 

prismatic and pyramidal slip occurs with almost 

ease in Ti-6Al-4V, suggesting that the CRSS's 

required to activate the three slip systems are similar in 

this alloy. 
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Evidence by Paton and Spurling [212] indicates that the 

aluminium content of titanium alloys also influences the 

CRSS's of the slip systems. It was found that basal slip 

becomes equally favoured to prismatic slip when the 

aluminium content is increased to 6.6 wt%. In support of 

this observation, a preference for basal slip in 

transformed-~ grains of the high Al*, near-Q titanium 

alloy, IMI 829, has been found by Woodfield et al. [64] 

and White et al. [178] (see section 7.4.2). 

7.4.1.1 Effect of Aluminium and Oxygen Content 

In view of observations made in the literature, the 

combined effects of; (i) a very high Al* (9.14 wt%), (ii) 

the occurrence of the ordered phase (Ti3Al) and (iii) the 

oxygen content (Table 7.1) of IMI 834 are considered to be 

responsible for the intense planar slip bands observed on 

the basal planes of primary-a grains in the present 

study. 

Williams et al. [118, 129] found that the principal 

parameters affecting the nature of slip in a-titanium 

were the aluminium content, oxygen concentration and the 

grain size. The effect of aluminium additions was 

investigated [118]. At low aluminium contents (0 to 5 

at'), the dislocations in deformed specimens formed a 

cellular structure and as the aluminium content increased, 

a more homogeneous distribution of dislocations was 

observed (section 2.4.4). At greater than 10 at% (6 wt%) 

aluminium, very planar arrays of dislocations were 

observed with a consequent reduction in cross-slip [118]. 

The widths of the planar slip bands narrowed as the 

aluminium content increased further and were also narrowed 

by the formation of the ordered a2 phase or Ti3Al 

precipitates (section 2.2.5.1). In addition to the effects 

of aluminium, increases in oxygen concentrations promoted 

planar slip in the a phase [129]. Lim et al. [213] 

investigated the effect of a2 and oxygen on the mechanical 
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behaviour of Ti-SAl. The precipitation of a2 led to a 

marked increase in the tendency for planar, sharply 

defined slip bands. This in turn produced internal stress 

concentrations at arrested slip bands (e.g. at grain 

boundaries) and increased the propensity for cleavage 

fracture. Increases in the oxygen content of 

titanium-aluminium alloys stabilised the a2 phase which 

increased the brittleness. It was suggested that oxygen 

partitioned preferentially to the a2 phase in a + a2 

alloys [213]. The effect of oxygen on the slip planarity 

was suggested to be approximately ten times stronger than 

that of aluminium [129]. 

Many examples of paired dislocations were also found in 

the present study (see section 6.5, Figures 6.17, 6.22, 

6.26 and 6.52). The spacing of these dislocation pairs 

varied between 20 and 40 nm. A number of investigators 

have reported similar dislocation pairs on preferred slip 

bands in various titanium alloys. 

In a study of the deformation modes operating in 

titanium-aluminium alloys, Blackburn and Williams [llS] 

found dislocation pairs at the head of planar arrays on 

the prism planes. The dislocation pairs were found only 

in alloys of greater than 6 wt' aluminium and their 

spacing was said to depend upon the aluminium content and 

the size of Ti3Al particles [llS]. vijayakar [214] found 

that dislocation pairs approximately 30 nm apart were 

associated with short range order of Ti3Al in planar slip 

bands lying on the prism {10io} planes of Ti-SA1-1Mo-1V. 

In a more detailed study of titanium-aluminium alloys, 

Gysler [215] observed that the separation of the leading 

pair of dislocations was approximately 20 nm and that the 

spacings increased with distance from the head of the 

pile-up until only single dislocations were observed. The 

transition from paired to single dislocation 

configurations, indicated that the Ti3Al particles had 

totally sheared by a particle cutting mechanism proposed 

by LUtjering [216]. This mechanism allows an estimate of 
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the ordered particle size to be made [215]. 

In primary-a grains of Ti-6AI-4V which had been aged for 

67 hours at 350°C and strained by 2%, Welsch et al. [197] 

observed dislocation pairs, on the pyramidal ({0111}) 

planes, which were separated by approximately 25 nm. The 

dislocation pairing suggested that short range order was 

present in the primary-a grains, but surprisingly, no 

evidence of aa formation was found, even after the 67 hour 

ageing treatment. This observation suggested that 

titanium and aluminium were immobile at 350°C [197]. The 

diffusion of oxygen in titanium was possible at 350°C and 

it was concluded that oxygen and not aa was responsible 

for the short range order (i.e. dislocation pairing) 

[197]. 

Liu and Welsch [217] investigated the dislocation 

structure formed in the alloy Ti-6AI-2V with oxygen 

concentrations of between 0.65 and 0.07 wt%. The alloy 

was solution treated, quenched and some specimens were 

aged, prior to straining by 2%. Evidence of oxygen order 

was found in the as-quenched 0.65 wt% oxygen alloy as <A> 

type superdislocation pairs formed approximately 10 nm 

apart. The two member dislocations of superdislocations 

had identical Burgers vectors and, as a consequence, the 

spacing between them did not change with the reversal of 

g. In the aged specimens containing 0.65 wt% oxygen, no 

superdislocations were found. It was suggested that 

oxygen had partitioned to the octahedral sites in the 

Ti3Al formed during ageing. This partitioning possibly 

caused a reduction in the bulk oxygen concentration and 

was said to explain why no superdislocations were observed 

in the aged material [217]. In the alloy with 0.07 wt% 

oxygen some dislocation pairs were observed. However, 

because the distances between the members of the 

dislocation pairs changed with the reversal of g, these 

dislocation pairs were dipoles (with opposite Burgers 

vectors) and not superdislocations. 
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The paired dislocations observed in the present 

investigation are an indication of ordering in the 

primary-a grains of IMI 834. It is proposed that they 

are superdislocations formed by a combination of aluminium 

and oxygen ordering which is enhanced by the segregation 

of these elements to the primary-a during a+p processing 

(section 7.1.1). The addition of carbon to IMI 834 was 

advantageous for the reasons listed in section 7.1.1. 

However, the segregation of this a-stabiliser to the 

primary-a phase will increase the AI* in these grains 

probably enhancing the ordering process by a similar 

mechanism to oxygen. 

The tendency for planar slip to occur in the primary-a 

grains suggests that cyclic softening has occurred which 

is associated with the passage of superdislocation pairs 

shearing the coherent Ti3AI particles. The continued 

shearing of the particles by subsequent superdislocations 

destroys the particles and reduces the dislocation glide 

stress on the slip plane, consequently causing slip to 

concentrate preferentially on the same basal slip plane. 

7.4.1.2 Effect of Silicon Additions 

In the present investigation, the effect of silicon on the 

precipitation of Ti3AI and hence the planarity of the 

basal slip in the primary-a could not be established. 

However, the effects of silicon on the ordering and 

ductility of IMI 829 (Ti-5331-S) were compared to a 

silicon-free experimental alloy Ex-Ti-5331 with a similar 

AI* to both IMI 829 and IMI 834 [44, 64]. Despite the 

similar Al*, the extent of ordering in IMI 829 which was 

aged for only 100 hours at 575°C was found to be the same 

as that in Ex-Ti-5331 after 1000 hours at 575°C. In 

contrast to IMI 829, ageing Ex-Ti-5331 for 1000 hours at 

5750C caused no observed ductility loss. Woodfield et al • 
[64] argued that the precipitation and fracture of 

silicides effectively enhanced the ordering process and 

reduced the ductility of IMI 829. Their work suggested 
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that, in addition to the AI·, the silicon content of the 

alloy was important in determining the degree of ordering. 

Additional qualitative evidence given by LUtjering and 

Weissmann [216] showed that silicon atoms may precipitate 

within the Ti3AI particles in ternary Ti-Al-si alloys. 

Further work is required to establish whether the addition 

of silicon enhances the ordering process in IMI 834. 

7.4.1.3 <c + a> Slip 

In the present investigation, slip with a Burgers vector 

of the <~ + A> type was occasionally observed in 

primary-a grains adjacent to the fatigue surface. It has 

been shown in the literature that <Q + A> slip can play a 

major role in the plastic deformation of single crystals 

of titanium [119], polycrystalline a-titanium [118, 122] 

and Ti-6AI-4V [32, 120, 121]. Blackburn and Williams 

[118] determined that <Q + A> slip of the type 

1/3<1123>{1011} occurred as planar groupings in 

ti tanium-aluminium alloys containing up to 17 at' 

aluminium. The individual dislocations were more 

irregular than <A> type dislocations, often being paired 

and were observed to interact with <A> type dislocations 

[118]. Similar dislocation pairing and interactions with 

<A> type dislocations on the basal plane were observed in 

the present study of IMI 834 (Figure 6. 30B) • Blackburn 

and Williams suggested that such interactions may arise as 

a result of the reaction: 

1/3[1123] + 1/3[1123] = 1/3[1120] (7.5) 

Analysis of the eRSS for <~ + A> slip was made by Bowen 

[32] and Jones and Hutchinson [121]. Bowen determined 

that the eRSS for <~ + A> slip was four times that for <A> 

type slip in Ti-6AI. However, Jones and Hutchinson 

determined the eRSS for <~ + A> slip to be a factor 1.5 

times that of <A> type slip in Ti-6AI-4V. The 

comparatively easy operation of <~ + A> slip in Ti-Al-4V 

was said to limit the potential for texture strengthening 
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in this alloy [121]. 

A number of factors may have contributed to the occurrence 

of the <& + A> slip observed in the present investigation. 

During fatigue, the fatigue surface is subjected to the 

highest stresses in the specimen and therefore the grains 

adjacent to the fatigue surface receive the stresses 

likely to reach the CRSS necessary for <& + A> slip. In 

the two examples where <& + A> slip was found in the 

present study, the basal planes occurred at an angle of 

20 0 to the fatigue surface (Figures 6. 30A and 6. 30B) • 

The resolved shear stress acting on the basal planes was 

low in these grains and the occurrence of basal slip alone 

was insufficient to accommodate the imposed stresses. The 

orientation of these grains was such that the CRSS for <& 

+ A> slip was attained. In one of the grains of interest, 

illustrated in Figure 6.30A, a contribution to the 

stresses required to activate the <& + a> slip may have 

come from the intense basal slip which had built up at the 

primary-a/transformed-~ grain boundary in an adjacent 

transformed-~ colony (see Figure 6.44). The basal slip 

pile-up caused a stress concentration in the p'rimary-a 

which increased the imposed stresses in this grain. <& + 
Jl> slip was, however, a minor feature of the fatigue 

damage accumulation in the present study of IMI 834. 

7.4.1.4 Effect of CRSS and Grain orientation 

A preference for slip on the basal plane of primary-a 

grains was found due to the high Ale present in these 

grains (discussed in section 7.4.1.1). However, the 

observation that basal slip occurred even where the 

resolved shear stress was low, was surprising. Two 

measurements were made in each primary-a grain where slip 

was observed (section 6. 5. 2 . 3) : ( i) The orientation of 

the grain was determined at 0° tilt by T.E.M. From this 

orientation, the angle which would be required to tilt the 

basal slip to an edge-on position was calculated (section 

6.5.2.3, Table 6.7). (ii) The angle between the slip band 
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and the fatigue surface was also recorded. Figure 7.5 

schematically shows these angles which are hereafter 

termed • and 8, respecti vely. Figure 7.6 shows the 

observed orientation of the basal slip with respect to the 

fatigue surface and secondary slip systems. Secondary 

slip on the prismatic or pyramidal planes was found in 

grains close to the fatigue surface when the 8 was > 70° 

(section 6.5. 5) • When 8 was approximately 20°, <2 + A> 

slip was found to operate in some grains adjacent to the 

fatigue surface. At 20° < 8 < 70°, basal slip was the 

only deformation mode observed. The significance of these 

observations is discussed here with reference to the grain 

orientations. 

The dominance of basal slip at 30° < 8 < 70 0 can be 

explained by comparing the eRSS's of the different slip 

modes. The eRSS for basal slip has the lowest of all the 

slip systems in the primary-a grains. At 30 0 < 8 < 70°, a 

high resolved shear stress for at least one of the slip 

directions «1120» operates on the basal plane. Although 

the Schmid factor of other slip systems 

(prismatic/pyramidal) may be favourable in these grains, 

deformation on these slip systems does not occur because a 

slip system with a lower eRSS (basal slip) is able to 

operate. Thus, only basal slip is expected to operate at 

these angles. 

In several circumstances where 8 was close to 90°, the 

value of • was found to be low. For example, in Figures 

6.25 and 6.26, basal slip occurred at close to 90 0 to the 

fatigue surface and the value of • was 15°. This gave a 

value of • of close to 15°, where. is the angle between 

the applied stress direction and the normal to the applied 

stress. Under such circumstances the resolved shear 

stress on the basal plane is expected to be very low. In 

the primary-a grain of interest, pyramidal slip at 45 0 to 

the fatigue surface also occurred. It is considered that 

the plane stress condition of the free surface has 

promoted basal slip even though the resolved shear stress 
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on this plane is very low and that the eRSS for slip on 

the pyramidal plane is also reached since the Schmid 

factor for slip on this plane is close to its maximum. 

In some primary-a grains adjacent to the fatigue surface, 

where 8 S 20° (Figures 6.30A and 6.30B), <£ + A> slip was 

found. The fact that basal slip also occurred in these 

grains suggests that the eRSS for basal slip is much lower 

than that for <£ + A> slip. It is considered that the low 

eRSS for basal slip results from the high overall AI·, the 

partitioning of a-stabilising elements to the primary-a 

(section 7.1.1) and, importantly, the formation of Ti3Al 

and the segregation of interstitia Is to these 

precipitates. The effect of this ordering is sufficient 

to cause the formation of superdislocations. Slip on the 

basal planes is therefore highly planar in nature and 

restricted to a small number of planes in each primary-a 

grain. 

The effect of slip on basal cleavage planes at angles 

approaching 90° to the fatigue surface is highly 

significant in the consideration of fatigue crack 

initiation. The resolved tensile stress on such planes is 

high. The combination of a high dislocation density on a 

limited number of basal planes, with a high resolved 

tensile stress may provide a clear mechanism for fatigue 

crack initiation. As e and • approach a maximum resolved 

shear stress (i.e. e = 45°), the resolved tensile stress 

falls, and the dislocation density is likely to increase. 

Unfortunately it is not clear which mechanism is more 

likely to initiate a crack; (i) a plane with e close to 

90° and • close to 0°, with a resolved tensile stress 

close to aappl, or (ii) a plane with e closer to 45° where 

the dislocation density and resolved shear stress are 

high, but the resolved tensile stress is lower. It is 

probable that the plane which ultimately cracks will 

involve a combination of these events (i. e. basal slip 

bands at 45° < e < 80°), and may require an additional 

factor to activate a fatigue crack. For example, a given 
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grain may have a greater slip length (and hence a higher 
dislocation density), a particularly potent dislocation 
barrier such as a primary-a/transformed-p grain boundary, 
a silicide or P particle, or an especially high Al*. The 
above conditions suggest that a strong texture may have a 
significant effect on the fatigue behaviour. 

7.4.2 Slip Systems in Transformed-p Grains 

Both prism (1/3<1120>{1010}) and basal (1/3<1120>(0001» 

slip were found as the preferred slip systems in the 
transformed-p colonies of IMI 834. The two slip systems 
were observed with about equal preference. The basal slip 
was found to occur across the widths of the transformed-p 
colonies with little or no resistance from the retained-p 
along the a-platelet boundaries, and was arrested at 
colony or grain boundaries. Some restriction to the 
dislocation motion in prism slip bands was observed at the 
a-platelet boundaries (Figures 6.40 and 6.41B), however, 
the major barriers to prism slip were also the colony or 
transformed-p grain boundaries. Similar barriers to the 
progress of slip bands in the transformed-p have been 
widely reported [24, 38, 42, 64, 178]. 

Due to the increased interest in the more creep resistant, 
high temperature, p-processed, near-a titanium alloys 
over the more established, duplex microstructured, a+p 
titanium alloys, a number of recent investigations have 
studied the slip characteristics of the transformed-p 
grains in near-a titanium alloys. 

The observations in the present work have shown; (i) that 
an inhomogeneous distribution of deformation both within 
and between thin foils occurred, (ii) a variation of 
dislocation density in the transformed-p grains such that 
some colonies were highly deformed whereas others were 
completely undeformed, (iii) a higher dislocation density 
in transformed-p grains closer to the fatigue surface was 
observed, (iv) that the most commonly observed slip 
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systems in the transformed-~ were 1/3<1120>{1010} and 

1/3<1120>(0001) and (v) that a quantitative measurement of 

the dislocation density was difficult due to the 

inhomogeneous distribution of deformation in the 

transformed-~ grains. These observations are in agreement 

with those made by White et a1. [178] in a T.E.M. study of 

the damage accumulation mechanisms in ~-processed IMI 829 

(fatigued in tension at a.x = 800 to 900 MPa, R = 0, f = 
10 cpm). 

Woodfield et a1. [64] observed the damage in IMI 829 which 

had been tensile tested in 

as-quenched and aged conditions. 

various ~-processed, 

In both the unaged and 

aged materials, the most active slip system was of the 

type 1/3<1120>(0001), followed by 1/3<1120>{10iO}. 

Similar preferred deformation modes were found in both 

Ti-11 and IMI 685 [42]. <Q + A> slip of the type 

1/3<1123>{10i1} was observed in the transformed-~ grains 

of IMI 829 [64], IMI 685 [42] and Ti-6Al-4V [24]. In the 

present investigation <Q + A> slip is observed in 

occasional, suitably orientated primary-a grains near the 

fatigue surfaces (section 7.4.1.3). However, despite no 

<2 + .A> slip being found in the transformed-~ in the 

present study, such slip may occur in suitably orientated 

colonies. <Q + A> slip would be difficult to image 

because of the high dislocation densi ty present in the 

transformed-~ grains. 

The occurrence of both prismatic and basal slip in the 

transformed-~ grains of IMI 834 suggests that the eRSS's 

for slip on these planes are similar in the transformed-~. 

Slip in these grains is also more homogeneous in nature 

than in the primary-a. These observations suggest that 

the Al· in the transformed-~ is lower than in the 

primary-a. This is confirmed by the difference in the 

reflections from 

primary-a than 

STEM analysis of 

Ti3Al which were much more intense in the 

in the transformed-~ (section 4.4.1). 

IMI 834 by Shollock [191] (section 7.1.1) 

confirmed a higher Al* in the primary-a compared to the 
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transformed-~. It is also suggested in the present work 

(section 7.1.1) that the diffusion of interstitial 

elements to the primary-a phase will also increase the Al· 

of the primary-a phase. Whether prism or basal slip 

operates in a given transformed-~ grain is probably more 

dependent upon the grain orientation than in the 

primary-a. 

7.4.3 Damage Accumulation and Microcracking 

Fatigue crack initiation in the present study was found to 

occur preferentially in the primary-a phase, in agreement 

with the observations in similar duplex microstructures 

[ 168 , 169]. Crack initiation was associated with the 

development of intense planar slip bands in grains 

favourably orientated with respect to the applied stress 

direction (section 6.3.2.1). Four microcracks were 

observed in thin foils (section 6.5.4) which were wholly 

contained in the thin area, and were found in foils where 

the hole was free from cracking. The microcracks are 

considered unlikely to be a result of the thinning 

process, however, the possibility that the cracks opened 

up as a result of the residual stresses and the removal ot 

surface constraints during foil preparation cannot be 

totally ruled out. 

It is well established that the fatigue crack initiation 

and early fatigue crack growth in high temperature 

titanium alloys occurs in a crystallographic manner along 

intense planar slip bands inclined to the stress axis [40, 

42, 104, 162, 165, 168, 169, 218]. Crack or slip band 

arrest is most frequently found at grain boundaries where 

slip transferral into adjacent grains/colonies is not 

possible due to the high angles created at the grain 

boundaries. In ~-processed microstructures, intense slip 

bands were observed across colonies of similarly 

orientated a-platelets [9, 17, 38, 40, 42, 43, 73, 95, 

164] and the length of slip bands was controlled by the 

effective colony size in the alloy (section 2.5.6.3)[43]. 
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Although the retained-~ phase at the a-platelet 

boundaries offered some resistance to the dislocation 

motion in the a phase, it did not act as a major barrier 

to slip, except in slow cooled microstructures (section 

2. 5.6. 3) . In duplex, a+~ processed microstructures the 

planar slip, on which the majority of fatigue cracks 

initiated, occurred across the width of primary-a grains 

[21, 135, 165-169]. 

As a result of the crystallographic mechanism of crack 

initiation and early crack propagation, the fracture 

surfaces close to the crack origins of failed specimens 

have been characterised by several authors as having 

smooth, transgranular cleavage-like facets on the scale of 

the primary-a/colony size of the alloys [40, 52, 104 164, 

206]. S.E.M. studies of the fracture surfaces have 

determined that the initial fatigue cracks occurred on, or 

near to, the basal (0001) plane [66, 104, 164, 180, 

219-221]. The observation of cracking on apparently 

irrational planes close to (0001), such as {1017} and 

{1018} [23, 161, 222], was explained by the consequence of 

crystallographic cracking on a combination of (0001) and 

{10l0} planes [164]. 

In the present work, the path of the microcrack found in a 

transformed-p grain (Figure 6.45) suggests that an 

a-platelet or colony boundary was followed and that the 

crack had changed direction at slip bands or silicides in 

the boundary. However, because of the high density of 

deformation around the cracking (Figure 6.46), accurate 

analysis of its path was not possible. 

T.E.M. observations of microcracking in the primary-a 

phase were more easily characterised (section 6.5.4.2). A 

microcrack observed in a back-thinned foil occurred on the 

basal plane of the primary-a (Figures 6.48 to 6.50). The 

crack plane was determined by tilting the foil so that the 

basal dislocations at the crack tip were imaged edge-on 

when the crack was imaged edge-on. The analysis of 
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selected area diffraction patterns under this condition 

confirmed that the cracking occurred on the basal plane. 

The superdislocations at the crack tip, and the presence 

of extra reflections in the diffraction pattern, Figure 

6.51, indicate that short range order is present in the 

primary-a grain (section 7.4.1.1). No evidence of any 

slip band pile-up associated with the crack could be seen, 

however, the foil was back-thinned and therefore such 

information may have been removed during electropolishing. 

TWo parallel microcracks were found in a cross-sectional 

thin foil at approximately 15 ~m below the fatigue surface 

(Figure 6.53). The microcracking occurred parallel to 

planar slip bands at 75 0 to the fatigue surface in a 

primary-a grain. Analysis of the microcracks under g = 

[0002] (Figure 6.55) showed that they were edge-on under 

this condition and thus occurred on the basal plane. The 

longer of the two microcracks was arrested at the tip 

closest to the fatigue surface by a ~ phase particle. It 

it is suggested that the elliptical features observed at 

the crack initiation sites by S.E.M. (Figures 6.12 and 

6.13) may have formed by the linkage of two cracks on the 

same plane to avoid a ~ phase particle in the primary-a. 

This is therefore evidence for cracking on parallel basal 

planes in the primary-a, however the possibility of crack 

linkage remains unresolved. The microcracking observed by 

T.E.M. further substantiates the optical and S.E.M. 

observations (sections 7.3.2 and 7.3.3) that short cracks 

initiate along planar slip bands in the primary-a and 

showS that these initial cracks occur on the basal planes. 

In addi tion, the cracking occurs at 75 0 to the fatigue 

surface; this agrees wi th the suggestion that a high 

resolved tensile stress may be required for fatigue crack 

initiation (section 7.4.1.4). 

7.4.3.1 Mechanisms of Fatigue Crack Initiation 

Fatigue crack initiation in pure metals and alloys occurs 

at microscopic sites of high local plastic strain 
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concentration such as slip bands, twin boundaries, grain 

boundaries and inclusions [135]. In high temperature 

titanium alloys, crack initiation on slip bands is most 

widely reported. However, existing evidence of crack 

initiation mechanisms reported in the literature have 

largely been indirect. Many observations have been made 

using surface replication techniques and S. E.M. stUdies 

and as such, these fail to differentiate between surface 

and sub-surface features. 

The important parameters which control the onset of 

fracture in a phase alloys were those which control the 

character of the slip, i. e. the aluminium and oxygen 

equivalents (section 7.4.1.1), and those which control the 

pile-up length, i.e. the grain size [129]. Planar slip in 

the primary-a phase of the a-alloy Ti-8.6% Al led to 

relatively intense dislocation pile-ups at the grain 

boundaries [129]. When the local stress reached a 

critical value [223], crack initiation occurred by grain 

boundary cracking and crack growth along slip bands [129]. 

It was suggested that, if the density of dislocations was 

not high enough for crack propagation along the slip 

bands, then the cracks propagated along the grain 

boundaries [129]. Similar crack nucleation sites were 

found in low temperature a+~ processed Ti-17 [135]. 

Crack initiation along slip bands in the primary-a phase 

was considered to represent situations where the resolved 

shear stress along them was high. Conversely, crack 

initiation along the grain boundaries suggested that the 

resolved shear stress along the slip bands was low [135]. 

However, these suggestions were made from s. E.M. 

observations of plastic replicas and, as such, the 

resolved shear stresses along the slip bands could not be 

determined. A more conclusive determination of the slip 

band orientations with respect to the fatique surface and 

the resolved shear stresses on these bands has been 

obtained from cross-sectional thin foil observations in 

the present investigation (section 7.4.1.4). 
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Fatigue crack ini tiation along slip bands in the 

primary-a grains of Ti-6Al-4V was observed by Brown and 

smith [27]. Detailed S.E.M. studies of surface replicas 

indicated that a single region of localised slip of less 

than 3 f,lm in length ini tiated a crack in the a phase. 

The slip was located adjacent to a ~ particle and neither 

the decohesion of the a/~ interface nor the failure of 

the ~ particle were responsible for the fatique crack 

initiation. A mechanism of crack initiation was proposed 

[27]: Dislocations in a slip band in the primary-a phase 

piled up against a ~ particle. When the stresses at the 

head of the pile-up reached a sufficient magnitude, a 

crack initiated and grew back along the plane of weakness 

represented by the slip line. Figures 6.12 and 6.53 

provide more direct evidence of such a mechanism than 

results from the S.E.M. of surface replicas which cannot 

differentiate between surface/sub-surface activity. From 

the evidence obtained in the present investigation, it is 

likely that a similar mechanism of fatigue crack 

initiation may have occurred in the primary-a grains of 

IMI 834 (see section 7.5). 

Large shear offsets at the a-platelet boundaries of 

~-processed IMI 685 have been reported [42, 73, 224] and 

have been attributed to the differences in 

characteristics of the a and ~ phases [224]. 

either the basal [42, 56] or prismatic [42] 

deformation 

Shearing on 

slip planes 

was observed and the offset produced depended upon the 

number of pile-up systems [42]. If the slip band density 

was high, up to ten pile-up systems per micron were 

observed and the shear was divided among them producing 

only a small amount of shear on each band. The shear 

produced by an· isolated band was more pronounced and 

represented the passage of hundreds, perhaps thousands of 

dislocations [42]. Such shear offsets provided points for 

void nucleation [73, 224], the growth of which led to 

fatique crack initiation along the a-platelet boundaries 

[224] or along slip bands [42, 56] in the transformed-~. 

In a T.E.M. study of the room temperature tensile 
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properties of tensile tested IMI 829 (IS-processed air 

cooled or oil quenched and aged at 575°C for 1000 hours) 

slip bands were observed to intersect with silicide 

particles which had precipitated on the a-platelet 

boundaries [64, 66]. In regions where slip bands 

intersected with silicide particles, cracking or voiding 

occurred at the matrix-silicide interface. It was 

suggested that fracture of the silicides occurred when the 

fracture stress was exceeded at the slip band with the 

longest dislocation pile-up length. Once a particle had 

fractured, it was argued that slip on the same plane 

continued until a second silicide particle was 

encountered. since the slip band was then longer, the 

second particle was subjected to a higher stress and 

consequently fractured more readily. As a resu1 t, the 

strain became highly localised leading to an overall loss 

in ductility. It was suggested that continued basal slip 

across a colony would result in the growth of these cracks 

or voids with consequent fracture on the basal plane, 

giving rise to the crystallographic facets which were 

observed in the S.E.M. The linkage of cracks initiated on 

parallel (0001) planes in a colony was suggested to 

explain why the facet plane analysed in the S.E.M. often 

deviated from the expected (0001) plane [64]. In a 

fractographic analysis of IS-processed IMI 685, Hoeppner 

[220] also found that silicide precipitation promoted 

crack initiation. 

The silicide particles at the a-platelet boundaries in 

the present study of IMI 834 (aged for 2 hours at 700°C) 

were < 0.3 ~m in length and neither slip band pile-ups or 

shearing of the silicide particles was observed. It is 

unlikely that fatigue crack initiation occurs at the 

silicide particles in a+1S processed IMI 834 unless the 

material is aged for much longer times to permit the 

growth of the silicide particles. The grain boundaries or 

boundaries between colonies of high misorientation are the 

most probable sites for crack initiation in the 

transformed-IS, however, this mode of crack initiation is 
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secondary to crack initiation in the primary-a, discussed 

in section 7.5. 

7.5 FATIGUE CRACK INITIATION IN IMI 834 

In the present investigation it is proposed that fatigue 

damage accumulation in IMI 834 leads to a preferred crack 

initiation mechanism on basal slip bands in primary-a 

grains. The occurrence of such planar slip in the 

primary-a is influenced by contributions from a number of 

factors including the interstitial and aluminium content 

(section 7.4.1.1) and grain orientation (section 7.4.1.4). 

Short range ordering of Ti3AI in the primary-a grains 

causes the strain in these grains to become very 

localised. Intense slip bands in the primary-a arise due 

to the shearing of Ti3AI particles by moving 

superdislocation pairs on the basal planes. The 

successive shearing of the small particles leads to their 

breakdown and gives rise to large dislocation pile-ups at 

the primary-a grain boundaries or at a barrier such as a 

f} particle. 

If the dislocation pile-ups occur at a high angle to the 

fatigue surface (i.e. e = close to 90°) then the tensile 

stresses acting to open up a crack along the slip band are 

high (see section 7.4.1.4). Alternatively, if two 

similarly orientated primary-a grains are crossed by the 

slip band then the length of the dislocation pile-up is 

effectively doubled (see Figure 6.12), thus the stresses 

tending to open up a crack along the slip band are 

significantly increased. Both these cases are illustrated 

schematically in Figure 7.7. 

When the stresses at the 

sufficient magnitude, it 

initiates and grows back 

head of the pile-up reach a 

is suggested that a crack 

along the plane of weakness 

represented by the slip band. This condition is most 

likely to be satisfied if two adjacent primary-a grains, 
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at or close to the fatigue surface, are both orientated 

such that the angle of the basal slip is between 45° and 

80 0 to the fatigue surface. 

The proposed fatigue crack initiation mechanism requires 

that the crack initiates at a barrier to dislocations 

(e. g. a grain boundary, silicide or" particle). This 

suggests that crack initiation will occur at a subsurface 

site and that the crack will propagate towards the fatigue 

surface. No evidence was found in the present 

investigation for a surface intrusion/extrusion mechanism 

of crack initiation. Such a mechanism is promoted by the 

formation of dislocation dipoles at the edge of a 

persistent slip band (P.S.B.) (see section 2.5.5, and 

references [136-138, 141-143, 147-151]). The planar slip 

bands observed in the present study were widely spaced and 

no evidence of dipoles within them was found. Thus P.S.B. 

formation does not play a significant role in the 

mechanism of fatigue crack initiation in IMI 834. 

The improvements in the fatigue performance of IMI 834 

which result from an increase in the yield strength and a 

decrease in the grain size compared to other near-a 

alloys are off-set by the high Al·, and hence basal slip 

planarity in the primary-a grains. 
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CHAPTER EIGHT 

CONCLUSIONS 

Microstructure 

* The lattice parameters for titanium in the alloy IMI 

834 were determined by X-ray diffraction and confirmed 

by T. E.M. diffraction pattern measurements to be A = 

0.2952 nm and ~ = 0.4686 nm for the a phase and .A = 

0.3264 nm for the retained-~ phase. 

* The a-platelet 

colonies contain 

retained-~ phase. 

boundaries of the transformed-~ 

thin, discontinuous films of the 

A high dislocation density was 

observed in the vicinity of the a-platelet boundaries 

which accommodated the lattice mismatch generated 

between the a and retained-~ phases when the material 

was oil quenched. 

* silicides of the S2 type, (TiZr)6(SiSn)3, occurred on 

a-platelet, colony and grain boundaries and 

occasionally on dislocations within the a-platelets. 

The following orientation relationship between the 

silicides and a-titanium was determined: 

[0111]CI//[2110]. ; (2110)CI//(0110). 

* The primary-a grains in unfatigued foils were usually 

found to contain a low density of dislocations. 

However, high dislocation densities in the form of 

hexagonal dislocation arrays and sub-grain networks 

were occasionally observed. 

have formed during the 

compressor disc. 
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* The occurrence of the ordered phase, Ti3AI, in the 

primary-a grains of IMI 834 was established by the 

presence of additional reflections in diffraction 

patterns imaged from zone axes. The presence of Ti3AI 

was not detected in the majority of transformed-p 

grains. 

* A tentative suggestion of the preferred texture in the 

compressor disc section has been obtained using X-ray 

diffraction. It is proposed that the basal planes 

preferentially face at or between the tangential and 

radial directions in the compressor disc according to 

Figure 4.6. A low volume fraction of grains were 

orientated such that the basal planes within them faced 

in the axial direction. 

Artefactual Interface Phase 

* A face centred cubic interface phase with A = 0.434 + 
0.004 nm was identified to form along some of the 

a-platelet boundaries in thin foils prepared by 

techniques involving ion-beam milling. No evidence of 

any interface phase was found in foils which had been 

electropolished. This is in conflict with observations 

published in the literature [85]. It is proposed that 

water may have been an impurity in the argon gas used 

during ion-beam milling and that hydrogen ions derived 

from the water may be responsible for the formation of 

the interface phase. 

* From observations of cross-sectional thin foils, it is 

postulated that the nickel plating process had caused 

hydrogen absorption into the plated IMI 834. As the 

hydrogen content increased: (i) An fcc interface 

formed along the a-platelet boundaries. (ii) An 

phase about 0.1 ~m in width occurred in 

crystallographic orientations across the 

acicular 

specific 

a-platelet width. (iii) At high hydrogen 

concentrations, the entire microstructure was altered. 
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Fatigue Crack Initiation 

* Optical and scanning electron microscopy revealed that 

fatigue crack initiation in 1M1 834 occurs 

preferentially in the primary-a phase and is 

associated with the development of intense slip bands 

across favourably orientated primary-a grains. 

* The results of the present investigation suggest that 

it is less tortuous for a crack 

initiating primary-a grain if 

adjacent transformed-~ colonies 

that the crack can follow a 

to propagate from an 

the a-platelets in 

are orientated such 

path at 90 0 to the 

a-platelet boundaries, i. e. propagate along a basal 

plane in the transformed-p phase. 

* Short fatigue crack growth in 1M1 834 was shown to be 

facetted, with initiation sites at, or just below the 

fatigue surface. A macroscopically visible transition 

in fracture appearance was noted on all failed test 

specimens. The transition occurred when the reversed 

plastic zone size of the material became equal to, or 

exceeded, the transformed-~ colony size. 

* Cross-sectional thin foils 

from fatigued specimens. 

build up and relative depth 

were successfully prepared 

The technique enabled the 

of damage below the fatigue 

surface, and the orientation of slip bands with respect 

to the fatigue surface, to be observed and 

characterised. 

* Damage accumulation in the transformed-~ grains was 

more homogeneous in nature than in the primary-a 

grains. Two preferred deformation modes were found to 

be operative, namely, the basal (1/3<1120>(0001» and 

prismatic (1/3<1120>{1010}) slip systems. The most 

effective barriers to slip in the transformed-~ were 

the grain boundaries and boundaries between colonies 

which were orientated such that continued slip in the 
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adjacent colony was unfavourable. Some restriction to 

the motion of slip on the prismatic planes was observed 

at the a-platelet boundar ies, however, these were not 
considered to be major barriers to slip. 

* Intense planar slip on the basal (0001) planes was the 

dominant mode of deformation in primary-a grains under 

the testing conditions studied. Basal slip occurred on 

widely spaced planes with no tendency to form PSB's via 

numerous closely spaced planes. The preference for 

slip on the basal planes was caused by the high 

aluminium equivalent and interstitial content in the 

primary-a grains which reduces the ratio; 

(CRSS has. I I (CRSS }PriSIl to less than one. 

* Basal slip was observed in all the primary-a grains 

which contained slip bands. Some of these grains also 

contained either prismatic (1/3<1120>{10Io}) slip, 

pyramidal (1/3<1120>{10I1}) slip or <Q + A> slip. 

These secondary slip systems were found to occur when 

the angle between the basal plane and the fatigue 

surface gave rise to a low resolved shear stress on the 

basal plane; <A> type slip on the prismatic and 

pyramidal planes was found in primary-a grains where 

the angle between the basal slip and the fatigue 

surface was ~ 70° and <Q + A> type slip was observed in 

grains which contained basal slip at low angles to the 

fatigue surface. Between these two extremes, basal 

slip was the only slip system observed. Thus, it 

appears that the critical resolved shear stress for 

slip on the basal planes in primary-a grains of IMI 

834 is significantly lower than that for slip on the 

other available slip systems. 

* Basal slip was found to occur when orientated at close 

to 90 0 to the applied tensile axis, i.e. when the 

resolved shear stress on the basal plane was very low. 

The resolved tensile stress on such planes would have 

been high, increasing the propensity for crack 
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initiation on these planes. 

* The occurrence of paired dislocations in many of the 

basal slip bands was indicative of the presence of 

short range order (Ti3Al) which promotes planar slip in 

the primary-a grains. It is suggested that the effect 

of Ti3Al is enhanced by the partitioning of the 

interstitial elements, oxygen and carbon into the 

enlarged octahedral sites in the ordered phase. 

* Due to the high propensity for slip to occur on the 

basal planes and the preference for fatigue cracks to 

initiate in the primary-a grains of IMI 834, it is 

proposed that all slip band cracking occurs on the 

basal planes. It is suggested that fatigue crack 

initiation in the primary-a phase occurs by the 

pile-up of dislocations on a basal plane at either the 

boundary between a primary-a grain and an adjacent 

transformed-~ grain or at a ~ phase particle on the 

boundary between two similarly orientated primary-a 

grains. When the stresses at the head of the pile-up 

reach a sufficient magnitude, a crack may initiate and 

grow back along the plane of weakness i. e. the basal 

cleavage plane. 

* Fatigue crack initiation was found to be just 

sub-surface. No 

intrusion/extrusion 

of crack initiation. 

evidence was observed for an 

or persistent slip band mechanism 

* Crack initiation in the primary-a grains is 

controlled by: (i) The composition (Al* and 

interstitial content) of the primary-a grains. (ii) 

The density of dislocations on the basal planes. (iii) 

The effectiveness of a microstructural barrier to 

dislocation motion. (iv) The magnitude of the resolved 

shear stress on the basal planes. 
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CHAPTER NINE 

IMPLICATIONS AND FURTHER WORK 

IMPLICATIONS 

Composition 

The oye~riding factor which controls the nature of 

fatigue damage accumulation in IMI 834 is the aluminium 

equivalent, AI*. The high AI* (> 9 wt%) in the primary-a 

phase; (i) causes the formation of the ordered phase, 

Ti3AI and __ ( ii) reduces the ratio (CRSShaaal/ (CRSS)priall' so 

that slip on the basal plane is the preferred deformation 

mode. The formation of Ti3AI increases the slip 

planarity, the effect of which may be enhanced by the 

presence of interstitial elements. In order to reduce the 

propensity for such planar slip on the basal planes, the 

Al* must be decreased by careful alteration of the alloy 

composition. 

The exact role of carbon in IMI 834 remains uncertain, but 

it may affect the damage accumulation mechanisms, and thus 

merits further investigation. 

Texture 

Fatigue cracking on the basal plane may be reduced by 

refining the texture of the alloy so that, in service, the 

basal planes are orientated such that they are least 

likely to cause deformation. The most probable sites for 

fatigue failure in a compressor disc are close to the bore 

region where the hoop stresses are acting at a maximum. 

In order to minimise the propensity for fatigue crack 

in~tiation in these regions requires that the basal planes 

are orientated radially within the compressor disc. 
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SUGGESTIONS FOR FURTHER WORK 

* To observe the effect of extended ageing on the 

distribution and size of the ordered Ti3Al precipitates 

and the consequent effects this has on the deformation 

behaviour of IMI 834. 

* To determine whether larger silicide precipitates, 

which may be present after extended ageing, can arrest 

slip in the transformed-~ grains and affect the 

* 

mechanism of fatigue crack 

transformed-~ grains of IMI 834. 

To determine the effect of 

orientations on their fatigue 

initiation 

different 

lifetimes 

in the 

specimen 

and thus 

whether there is an influence of a preferred texture in 

the compressor disc. 

* To determine the number of cycles to fatigue crack 

initiation of fatal cracks by taking surface replicas 

at appropriate intervals during fatigue cycling. 

* The introduction of a dwell at maximum load into the 

fatigue cycle is suggested to enhance basal cleavage 

and crack density (section 2.5.'7). It is suggested 

that further work should be carried out, under similar 

loading conditions to those studied in the present 

work, to observe the effects of introducing a dwell at 

maximum load on the fatigue behaviour of IMI 834. 
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APPENDIX 1 

BURGERS VECTOR CALCULATIONS 

Buroers yeclorl 01 perlecl dislocation, ()( il 

:Hll~] :I:{l2'O] i£~110] ±(lI~J :I:(f2'3] :I:[~lt3J :I: [l1U] :I: ['2T31 :1:[2115] :1:[00031 

:1:1 0 :;:, :1:.1 0 To' :! 1 0 :;:1 0 
:l:t :1:1 0 :l:t :I.' 0 :1:' :1:1 0 0 

0 :1:1 :1:1 0 :1:' :L' 0 :1:1 ±1 0 

0 0 0 :1:.2 :1:.2 .12 12 T2 :r2 :1..2 

:l:t 0 =fl ·H :i' 0 0 =f' :;:2 :1:1 
:1:1 0 =f' 0 1=' T2 :.1:2 :1:1 0 ~ I 

:l:t :1:1 0 J 2 :l 2 :1:' 0 0 T' J,I 
:1:' :1:' 0 0 0 1=1 U 12 :1.1 TI 

0 :1:1 ;1:1 -{ , 12 -t: 2 To' 0 0 , 
0 :1:1 :1:' Tl 0 0 :1:1 :\:.2 ±2 T' 

±' 0 :1:' :L3 12 :1:' T' 12 1=3 :1:2 
:1:' 0 :1:1 Tl '-:2 1=3 :l3 ±2 :1:' n 
±1 ..1:1 0 :L3 :1:3 :1:2 :;:1 T-I 1=2 2 
±1 :1:1 0 1=1 p' 1=2 :13 ±3 .1.;2 1'2 

0 :1:1 :1:1 ±2 ±3 ±3 :u =f' =f, ±2 
0 :1:1 ± 1 1=Z =F' =f' :1:2 ±3 ±3 H 

:l:Z ±' =Fl :.I:Z ±' =ft :U :1:1 =F' 0 
±1 ..1:2 .:1.1 :.1:1 :l 2 ..1:' :it :1:2 ±-1 0 
=fl .il ±2 :r:l xl :/:2 Tl :1:1 :l:Z 0 

±1 0 =F' ·1: 4 :i3 :1:2 "'F2 =F3 :: 13 
±1 0 :1"1 T2 T3 :;:4 :1:4 =F3 H 

±1 I 0 l 4 4 :J:3 n 4 =1'3 1;3 
:it :il · 0 rz :;:2 :r:3 ..1:4 2 :L3 f3 

0 -:1: 1 :.1:1 :1:3 :1:4 :1:4 :r:3 :1:4 1'2 1 
0 :/·1 xl 13 :r-2 T2 :il =Fa :1: 4 ·13 

:1:2 :il =F' 1;4 ±3 :1:1 0 l~ I: :1;1I 
±2 1"1 =fl 0 n 1=3 :1:4 f2 

:1:1 :H ± ' :1:3 :1,:4 H Tl 0 =fl $~ :1:1 ± 2 ..1:1 Tt 0 =F' :i3 0 :1;' 

=Fl :1:1 :1:2 :1:1 :1:3 :1:" :;:3 3 0 2 
=fl :1:1 :i:2 n T-f 0 I 1 4 2 -

r tl ction nd Values of g.12 tor the tirst ven 

1/3<1120>, 1/3<1123> and <0001> typ 
(107]. 

Burq r v ctors-



APPENDIX 2 

CALCULATION OF Fmax AND Fmean 

The second moment of area, 

where: 

I - bd3 /12 (mC) 

b - specimen breadth (m) 
d - specimen depth (m) 

The bending moment, 

M - ap.l/y (Nm) 

where: ap • - 0.2\ P.S. stress (N/m2) 

y - specimen centre-line depth (m) 
or depth of neutral axis 

- d/2 (m). 

The maximum load required, 

F~ - 2MA/100a (N) 

where: A - percent of O. 2 \ P. S • ( ap .) • 

(1) 

(2) 

(3) 

a - separation of outer and inner roller. (m) 
- 17.5 x 10-' m (s •• Fiqure 3.5). 

From equations 1 to 3 and substituting for a; 

F~ - 0.1905ap.bdJ A (N) 

From R - 0.1, it follows that; 

and therefore; 

Fain - F .... /10 

r ... n - (F .... - F .... /10) /2 

r"'D - 0.0857ap .bd2A (N) 

(4) 

(5) 

(6) 



APPENDIX 3 

CALCULATION OF DIMPLE DEPTH 

(1) The average diameter, d (f.lm), of the dimple at the 

surface of the disc was calculated using a travelling 

microscope. The radius, r = d/2. 

(2) The diameter, 0 (f.lm), of the tool used for dimpling 

was measured with a micrometer. The radius, R = 0/2. 

(3) The depth of the dimple was designated as 0: 

R-O 

r 

i~::::::::!::':!!:l.~ : ... ::";:::;I;;: .. HH:: 
200 J..lm 

- 3000 ~m 

(4) By Pythagoras; R2 = (R-5) 2 + rl 

The radius of the tool, R, used for dimp ing w s 7095 fJm. 

From this value, a conversion t ble w s dr wn u which 

compared the depth, d, of the dimpl with th d m 

of the dimple at he disc surface. 

d (f.lm) 1000 2000 2100 2200 2300 2400 2500 2600 2700 2800 

6 (f.lm) 17 71 78 86 94 102 1 20 0 40 

Thus, or dimple 120 f.lm in d pth, d m r, , 0 2 00 

fJm w s r qu'r d the d c sur c . w m 0 n 0 

r -check th di m r, 0, 0 h dim ng ch m 
i was use so h h igu cou h 

001 h b n worn ur n9 ny in rv nin 0 . 


