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SUMMARY 

In this thesis, some nonlinear effects associated 

with the buckling behaviour of plated steel structures 

are examined using a modified finite strip method. To 

include the effects of plasticity over parts of the 

cross-section, a more general stress-strain relationship 

than previously included has been used. The method is 

also extended to account for the large deflection 

behaviour of perfect and imperfect plates in the elastic 

range. The only restriction on the method presented 

here is that the buckling mode varies sinusoidally in the 
.;, 

longitudinal direction, which implies either that the ends 

of the structure are simply supported or that the wave­

length of the buckled mode is small in comparison with the 

overall length of the structure. 

The present study may be divided into three parts. 

In the first part the small deflection theory is used to 

determine the stiffness and stability matrices of ~ 

individual strip and these are assembled to form an overall 

stiffness matrix, representing a structure which may be 

under concentric load, eccentric load or pure bending. In 

some cases a structure with an overall initial imperfection 

is considered. The Wittrick-Williams Algorithm is used to 

obtain the smallest critical buckling load. The method is 

applicable to the analysis of various structures such as 

isolated plates, stiffened panels, rolled sections and 

stiffened box-girder bridges. To check the accuracy of the 

method a comparison with some published theoretical and 

experimental results is undertaken. 



Secondly, a parametric study for stiffened panels, 

columns, and beams is presented. For the stiffened 

panels, the effect of seven parameters (slenderness ratio, 

residual stress, dimensions and shape of the stiffener, 

mode of buckling, the longitudinal boundary conditions, 

and the yield stress) has been investigated. Approximate 

design curves for the optimum dimensions of panels 

stiffened by flat stiffeners are given. The capability 

of the method for the analysis of a stiffened box-girder 

in bending is also shown. The effect of seven parameters 

(dimensions and shape of the cross-section, the slender­

ness ratio, the material yield stress, the residual stress, 

the initial overall imperfection and the eccentricity of 

the applied load) on the inelastic buckling of columns and 

beams has been studied. All the results are given in non­

dimensional graphs or tables. 

Finally large deflection plate theory is applied to 

study the post-buckling behaviour of both perfect plates 

and those with initial imperfections. The work in this 

section is restricted to the elastic state. The longitudinal 

axial compression is assumed to act on the plate through 

two rigid bars at the ends, and various in-plane boundary 

conditions for the longitudinal unloaded edges have been 

considered. The Newton-Raphson method is used for the 

solution of the non-linear equations. 
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NOTATION 

The following is a list of symbols which occur most 

commonly in the various chapters of the thesis - other 

symbols are defined in individual chapters. All symbols 

are defined in the text when they first appear. 

a 

e 

rn, n 

r 

t, t , t s w 

u, v, w 

x, y, z 

A s 

B 

D 

Length of a plate 

Widths of rectangular strip, flange and web 

Effective width of a plate 

Average longitudinal strain or eccentricity 

of the applied load 

Stiffener depth 

Curvatures 

Length of a structural member 

Numbers of harmonics chosen for a particular 

solution 

Radius of gyration 

Thickness of plate, stiffener and web 

Longitudinal, transverse and out-of-plane 

displacements 

Initial out-of-plane deflection 

Axes of co-ordinates 

Cross-sectional area of a stiffener 

Width of a plate 

Flexural rigidity of a plate 

Young's, secant and tangent moduluses 
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NOTATION (continued) 

Elastic or elasto-plastic matrix 

Buckling coefficient 

Stiffness matrix 

Stiffness matrix due to initial imperfections 

Incremental stiffness matrix 

Number of strips in which a plate is 

discretized 

Components of internal stresses 

Load vector 

Stability matrix 

Strain energy of a plate 

Amplitude of initial imperfection 

Slenderness ratio of a plate 
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Ratio of stiffener area to plate area 

Amplitude of nodal lines displacements 

Strain components at a point 

Bending strain 
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Half wavelength of buckling 

Slenderness ratio of a structural member 
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NOTATION (continued) 

Poisson's ratio 

Elastic and plastic Poisson's ratio 

Applied stress to yield stress ratio a/ay 

Dimensionless co-ordinate defined by 

r; = x/a 

Rotation of the nodal line 

Average longitudinal stress 

Critical stress 

Residual compressive stress 

Components of the stress 

Yield stress 
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CHAPTER I 

INTRODUCTION 

The failure of four box-girder bridges - at the 

beginning of the present decade - has focused attention 

on many apsects of steel bridges and le~~ to extensive 

research in steel structures. In order to understand the 

behaviour of a complete structure, the behaviour of each of 

its components should be capable of being predicted up to 

and beyond collapse. A study of the interaction of all 

such components should then lead to a complete understanding 

of the behaviour of the system. In the case of a box-girder 

bridge, a typical component might be the stiffened com­

pression flange which has itself been fabricated by welding 

together a number of flat plates. When subjected to com­

pressive loading such components tend to fail by instability. 

The buckling of a structure is associated with a 

reduction in its stiffness and a rapid increase in out-of­

plane deformation. The determination of the initial buckling 

load is of great importance, especially when the distortion 

of the cross-section is not allowed, Le. no account can be 

taken of the post-buckling strength. The analysis of this 

buckling is more difficult in the presence of residual 

welding stresses. These stresses are of such a magnitude 

that localised yielding occurs under relatively light loads, 

~nd hence part of the section behaves plastically under 

subsequent loading. In addition the pattern of residual 
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stresses is frequently highly nonuniform, leading to a net 

distribution of stresses which varies over the cross­

section even for a uniform applied loading. 

Rigorous analysis of the buckling behaviour of such 

structures is, of course, possible using standard finite 

element techniques, but because of the very large number of 

degrees of freedom associated with, for instance, a box­

girder modelled in this way, such an analysis becomes very 

lengthy and expensive in terms of computational effort. 

The finite strip method on the other hand is very efficient 

for this class of structure and is now well established as 

an economical way of analysing the elastic buckling 

behaviour. In the present work the finite strip method is 

modified to include the effects of plasticity over parts 

of the cross-section. 

Analysis of the behaviour of component plates after 

local buckling taking into account the material,nonlinearity, 

geometric initial imperfection and the residual stress is 

very complicated. Nonetheless, such an analysis is of great 

importance to the steelwork designer because it can provide 

information about the collapse load and the determination 

of this ultimate load for other than simple structural 

components has in recent years become possible as a result 

of the increasing power of the digital computer. 

The initial buckling of structures with relatively 

thick stiffened plates (e.g. component plates of suspension 

bridge towers) or structures controlled by serviceability 
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limit state (supersonic aircraft construction) is often 

more important than the post-buckling behaviour. In the 

first type of structure residual stresses influence the 

ultimate strength rather more than initial imperfections or 

post-buckling behaviour. In the second, to maintain the 

aerodynamic shape of the aircraft, large deflections and 

the post-buckling deformations must be prevented. In 

either case such structures may buckle in the elastic or in 

inelastic range and clearly the initial buckling load is 

of great interest. 

The purpose of the present project is to investigate 

the i~itial buckling of these structures and in particular 

to study the inelastic buckling of various plate assemblies. 

An analytical technique based on the finite strip approach 

has been developed to include the effects of plasticity 

over parts of the cross-section. The project involves the 

preparation of a computer program which is sufficiently 

flexible in scope to enable the analysis of a wide variety 

of plate assemblies. 

For more slender plates, the effect of initial 

geometrical imperfection and post-buckling strength are the 

major factors influencing ultimate load. The analytical 

techniques developed for initial buckling have therefore 

been extended to include large deflection behaviour. This 

is,however, restricted to the elastic stage. 
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The work can be divided into three main parts. In 

the first part (Chapters 3 and 4) the theory is developed 

and results obtained using this are compared with previously 

published results from various sources. Parametric studies 

for a range of panels are presented in the second part 

(Chapters 5 and 6) and in the third part (Chapters 7 and 8) 

large deflection theory is discussed. 

Finally, the major findings from this work are 

discussed, and some suggestions for future work in this 

area are given. 

. , . 
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CHAPTER 2 

BUCKLING AND COMPRESSIVE STRENGTH -

LITERATURE SURVEY 

More than two centuries ago, Euler first studied the 

problem of plate analysis. About sixty years later, Saint 

Venant (1,2) developed the plate deflection equation for 

in-plane load and it was a further sixty years before the 

equation was solved by Bryan (1,2) to obtain the elastic 

buckling load. The early developments of the plate problem 

have been well documented (1,2) and are summarised in 

Tables 2.l(a), (b) and (c). Table 2.l(a) deals with the 

historical development of the partial differential equation 

for small deflections, whilst Table 2.1(c) relates to the 

large deflection equation. Table 2.l(b) summarises the 

major developments in studying the initial buckling load 

for plates, based upon small deflection theory. 

The buckling behaviour of thin rectangular plates 

under uniaxial in-plane compression has attracted consider­

able attention during the ninety years since Bryan first 

analysed the stability of a simply supported plate in 1891. 

About the turn of the century, timber had largely been 

replaced by structural steel in ship construction. This 

change in structural material was extremely fruitful in 

furthering the development of plate theory. It was in 

Russia that the first contributions to naval architecture 

using the theory of solid mechanics took place. However, 



Name 
(1,2) 

Euler 

J. Bernouli 

Lagrange 

Navier 

Saint Venant 

Year 

1766 

1789 

1811 

1820 

1833 

Work 

Formulated the first mathematical 

approach to the membrane theory of 

plates. Using the analogy of two 

systems of stretched strings perpen­

dicular to each other he studied the 

problem of free vibration of rectan­

gular and circular elastic membranes. 

Extended Euler's analogy to plates 

by introducing the grid-work analogy 

and developed the partial differen­

tial equation governing small 

deflections. He did not consider 

the torsional resistance of the 

plate. 

Derived the correct partial differen­

tial equation for the small deflec­

tions of an isotropic plate under 

surface load. 

Extended the work of Navier and 

Lagrange to include in-plane forces 

applied at the edges. 

Table 2.l(a). Analysis of Plates-Early Developments 



Name 
(1,2) 

Bryan 

Timoshenko 

Reissner 

Bleich 

Kollbrunner 

Year 

1891 

1907 

1909 

1924 

1935 

and 
1946 

Work 

Presented the buckling analysis for a 
rectangular plate simply supported on 
all its edges subjected on two 

opposite sides to a uniformly distri­

buted compressive load in the plane 
of the plate. He was the first to 
apply the energy criterion of 
stability to the solution of the 

plate buckling problem. 

In a series of papers he used Bryan's 
approach to determine the critical 
stress of plates with different 
boundary conditions. 

Independent of Timoshenko, he 
presented the solution for an edge 
compressed rectangular plate with two 
clamped edges and for plates having 
one edge clamped and the other free. 

Made an attempt to extend the theory 
of flat plate stability into the in­
elastic range by considering the 
plate as nonisotropic and by tenta­
tively introduCing a variable modulus 
of elasticity into the basic 
differential equation upon which the 
solution for elastic buckling is 
based. 

Reported the results of his tests on 

large scale plates under edge com­

pression. He investigated the 
buckling behaviour of the plates in 

both the elastic and the inelastic 
range. 

Table 2.l(b). Initial Buckling of Plates - Early 



Name Year Work (1,2) 

Kirchhoff 1877 Developed the theory of large 

deflections of plates. 

Foppl 1907 Introduced the use of the stress 

function to simplify the form of 

the equation. 

Von Karman 1910 Was the first to derive the partial 

differential equation of large 

deflections in its current form. 

Marguerre 1938 Extended the Von Karman equations 

to include initial deflections. 

Table 2.l(c). Large Deflection of Plates- Early 

Developments 
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the Western world was slow to recognize this Russian 

research because of the language barriers and it was 

Timoshenko who directed the attention of the Western 

scientists towards the new Russian work in the theory of 

elasticity. These early developments have all been well 

documented (1-3) and are included here for completeness. 

The increased activity in aircraft design between 

the two world wars provided a strong impetus towards more 

rigorous analytical investigations of plate problems. 

Buckling of plates under combined loading, inelastic 

buckling, post-buckling behaviour and buckling of 

stiffened panels, were investigated by many researchers 

during this period. Again this work has been well docu­

mented, and in particular Bleich (1) and Timoshenko (3) 

have reviewed the development of the stability of columns, 

beams, plates and stiffened panels up to the middle of 

this century. 

In 1950 the arrival of the high speed electronic 

computer exerted a considerable influence on the analysis 

of plates. As a result.of this new tool special numericai 

techniques, e.g. finite difference, finite element and 

finite strip methods, have been developed to solve the 

complex plate problems in an economical way. 

Bulson (4) gives a comprehensive review of available 

solutions and references (up to 1970) relating to the 

critical buckling of flat plates subjected to a wide 

variety of in-plane loading conditions. 
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Because of the availability of several general reviews 

of the subject the remainder of this chapter will consider 

only those contributions which relate directly to the 

present study. These fall into three areas: the isolated 

plate, the stiffened panel and the structural sections 

(e.g. I-beams). For isolated plates and stiffened panels 

. developments in inelastic buckling, large deflection and 

ultimate strength analysis will be considered, while only 

those studies on the interactive buckling (combined local 

and overall buckling) will be reviewed for structural 

members. 

2.1 Buckling and Compressive Strength of Isolated 

Rectangular Plates 

The isolated rectangular plate is the basic element 

in many structures. The buckling of plates in the 

inelastic range has been studied by many investigators 

starting over 40 years ago. Two theories ·of plasticity, 

deformation theory and incremental theory (5) have been 

used. 

In 1947 Bij1aard (6) used the energy theory to study 

plastic buckling. He was the first to apply deformation 

stress-strain relations to the stability problem. 

I1yushin (7) attempted to formulate a rational theory for 

the inelastic buckling of plates, but Bijlaard comparing 

his theory with the test results by Kallbrunner, showed 

that his theory was more accurate. Modifying and 
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improving I1yushin's general relations Stowe11 (8) 

succeeded in developing a theory of inelastic buckling 

whic.h apparently leads to theoretical results in good 

agreement with the observations made in the laboratory. 

The more general theory of plasticity - incremental 

theory - was used by Haaijer (9) to investigate the 

buckling of steel plates including the effect of strain 

hardening. 

When studying the collapse of plates however, it is 

not only material non1inearity which is important. While 

the critical buckling load for a column is an upper bound 

to the collapse load, plates can sustain loads greater 

than this critical load (Figure 2.1). The behaviour of 

perfect and imperfect elastic plates after buckling has 

been studied by many researchers (10-15). The mathematical 

treatment of the interaction between the initial imper­

fections and the in-plane loading leads to a set of non­

linear algebraic equations, commonly referred to as large 

deflection equations (von Karman's equation) for which no 

general solution is known. 

Coan" (10) used Levy's approach to solve this equation 

for two specific forms of boundary condition. Yamaki (11) 

extended this work to investigate a rectangular plate 

under eight different boundary conditions. Four terms for 

the double Fouries series representing the deflected shape 

were considered and so his solution is generally regarded 

as accurate up to quite high loads. The same problem has 
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been examined by Walker (12), again solving von Karman's 

equations, this time using Galerkin's method with a 

technique based on perturbation about the bifurcation load. 

l-1any researchers (12-14) have presented explicit expres­

sions for the strength of a square plate, assuming that 

collapse corresponds to the condition when the maximum in­

plane stress (at the unloaded edge) equals the material 

yield stress. 

All these solutions have been restricted to isotropic 

plates of constant thickness and a limited range of 

boundary conditions. The ever-increasing computational 

capaci.ty of computers has facilitated the derivation of 

specific solutions using numerical techniques and these 

are finding increasing practical application. Plates with 

variable thickness, orthotropic plates and a variety of 

boundary conditions can be included by these numerical 

methods. 

One of these techniques is based on representing the 

governing differential equations in terms of finite 

differences which are solved iteratively using a computer 

program. There is sometimes a tendency for the direct 

iterative method to converge on the wrong deformed shape 

(16) and to avoid this, two dynamic terms one involving 

acceleration and the other viscous damping are added to 

the static equations. If the damping coefficients are 

arranged to give critical damping, the oscillations die 
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out quickly and a solution to the static form of the 

finite-difference equations is obtained. Rushton (17) has 

shown that dynamic relaxation can be a reliable solution 

procedure for elastic nonlinear plate problems. The same 

method has been used by Frieze et al (18) to examine the 

interactive buckling of box sections. 

The finite element method has been applied to obtain 

elastic and inelastic solutions for similar problems (19-

22). It is a general method and has no restriction on the 

mode of buckling but is approximate in that it is based 

upon an assumed displacement function. 

Real plates exhibit certain characteristics, some of 

which have been ignored in the above development. To be 

valuable to the designer, the ultimate strength of the 

plate, rather than the elastic ppst-buckling behaviour must 

be considered. The investigations of the maximum strength 

must include: 

1. The large deflection behaviour. 

2. The spread of yielding through the volume of 

the plate. 

3. The possibility of unloading from the yield 

surface. 

4. The effect of the initial imperfection. 

5. The effect of the residual stress. 

Since 1960 a comprehensive study of the ultimate 

strength of plates has been conducted at Cambridge 
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University (23-30) and more recently at Imperial College 

(35, 36) and other research centres in the UK (21). 

The experimental investigations of the maximum 

strength of plates have been carried out using individual 

plate specimens (23, 24) or square box columns (25-30). 

For the unloaded edges of the individual plates two 

boundary conditions - simply supported and clamped - have 

been considered. As an alternative to the conventional 

V-notches system, Ract1iffe et al (23) developed cantilever 

racks (Figure 2.2) to supply the required boundary condi­

tions. The thickness of the p.].ates used by Ractliffe et 

al were 6.3 mm. Some specimens were tested as delivered 

while others contained severe residual stresses due to 

welding. Similar experiments were carried out by Moxham 

et al (24) using Ract1iffe cantilever racks. One hundred 

and forty plates were tested with bIt between 36 and 80. 

The thickness of all specimens was 3 mm and the aspect 

ratio was 4.0. The conclusions of these two investigations 

(23, 24) were that: 

1. The maxima on the average stress-average strain' 

curves were more rounded for the plates with 

longitudinal imperfection. 

2. The welded plates had an earlier departure from 

linearity and a lower maximum strength, but 

were more ductile. 
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3. Little difference in behaviour was observed 

between the simply supported and clamped 

specimens, except at high bit. 

In his theoretical analysis, Moxham used the energy 

method (Rayleigh-Ritz type) to determine the cornpressive 

strength of the plate. The plate was assumed to be simply 

supported with the unloaded edge free to pull-in. Moxham 

considered the overall equilibrium of one quadrant of the 

plate dividing this into 9 x 9 x 5 volumes. The strain 

energy density was calculated at the centre of each volume 

and then summed over the whole quadrant. By repeating the 

process for increments of applied compressive load, a 

complete loading curve was obtained. Moxharn and Ractliffe 

have considered both residual stresses and initial imper­

fections in their analysis. 

To overcome the difficulty of accurately representing 

the boundary conditions of the unloaded edges, box columns 

have been tested to find the compressive strength of plates 

with simply supported edges. In 1973 Little (25) has 

reported the results of more than 60 tests on box columns' 

conducted by several investigators (26-30) at Cambridge. 

A method of analysis for the plate strength based on a 

Perry equation was presented and the theoretical results 

were shown to be in good agreement with the test results. 

Three design curves were provided depending on the magni­

tude of residual stress. 
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In a more recent paper Little (31) presented an 

accurate analysis for the collapse behaviour of a simply 

supported rectangular plate loaded by uniaxial or biaxial 

in-plane compression. 

Rayleigh-Ritz method. 

Again the analysis was based on the 

He used the plastic flow theory and 

took into account, as before, the effect of initial 

imperfections and residual stress. For numerical integra­

tion, Little divided one quadrant of the plate into grid 

points. Six systems of grids were examined. The smallest 

system had 80 points (4 x 4 x 5) and the largest one 252 

points (6 x 6 x 7) • 

Later Little reported the results of applying this 

approach to the analysis of 960 different simply supported 

rectangular plates under longitudinal compression (32). 

By controlling the transverse displacement function, the 

longitudinal in-plane boundary conditions and the aspect 

ratio the actual plate panels of a box-girder bridge have 

been modelled. The minimum total number of variables which 

have been used to represent the displacements was 9. It 

was observed that the critical aspect ratio for the simply 

-supported plate in the inelastic stage was not unity and 

this is in contrast with classical elastic buckling analysis. 

In most cases, the minimum plate strength was shown to 

occur at a/b = 0.6 while Moxham (24) suggested a critical 

ratio a/b = 0.875. Little suggested that this was due to the 

very small initial imperfection and the limited boundary 
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conditions used by Moxham (the unloaded edges were free to 

pull-in). Little in fact observed that the maximum effect 

of the longitudinal boundary conditions on the plate 

strength was less than 7% (32) and these new results gave 

support to his empirical design curves (25). 

At other research centres, different numerical 

methods - finite element, finite difference and dynamic 

relaxation - have been developed to examine the elasto­

plastic behaviour of unstiffened and stiffened plate 

panels up to ultimate load. At TRRL Crisfield (21) has 

used the finite element method to study large deflection 

elasti,c-plastic plate behaviour. Two approaches have been 

considered - the volume approach and the area approach. 

The first depends on the incremental theory of plasticity 

and integration is carried out over the volume of the 

plate. The area approach depends on the deformation theory 

of plasticity and sudden plastification of the plate sec­

tion is assumed. The area approach is more economical but 

less accurate than the volume approach. In later work (33) 

Crisfield has modified the area approach to allow for 

-spread of yield through the fibres before full section 

yield, but the accuracy is still less than for a full 

Volume approach. 

It has been observed by many researchers that the 

incremental theory of plasticity usually gives results 

further from experimental results than does the deformation 
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theory of plasticity. Neal (34) has referred this to the 

high sensitivity of the flow theory to initial imperfec-

tion. Moreover, the slenderness ratio and the material 

• constants affect the difference between deformation theory 

and flow theory results. 

At Imperial College, Frieze et al (35) and Harding et 

al (36) have used the dynamic relaxation method for the 

analysis of isolated plates in the elasto-plastic range, 

using the flow theory of plasticity. The main differences 

between these two investigations are: 

Frieze et al (35) 

1. The plate is loaded by 

uniaxial or biaxial 

compressive stress. 

2. Ilyashin single-layer 

has been used, with a 

sudden plastification 

at any section occur-

ring over the full 

depth. 

3. Uniaxial residual 

stress. 

Harding et al (36) 

The plate is loaded by 

complex load (shear, com­

pression and in-plane 

bending) • 

The plate thickness has 

been divided into layers 

and the yield of each 

layer has been determined 

from the von Mises 

criterion. 

Biaxial residual stress. 

Frieze et al found that the influence of aspect ratio 

was dependent upon both the magnitude of the initial defor­

mation and the slenderness ratio. They considered only one 
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value of slenderness ratio and two values of the initial 

imperfection to calculate the preferred aspect ratio. 

They observed that increasing the initial imperfection, 

increasing the residual stress or allowing the unloaded 

edge to move freely, reduced the ultimate strength of the 

plate. Design curves were presented for unstiffened com­

pression plates and data useful for the design of stiffened 

panels using a strut approach were also given. 

Harding (36) was the first to investigate the ultimate 

strength of plates under complex loading conditions. He 

also used dynamic relaxation, and to save computer time he 

used an 8 x 8 mash for square plates, although this mash 

was known to lead to an error of up to 5% in some cases. 

As most of the computer time has been used in the main 

dynamic relaxation loops, Harding's method (the calculation 

of elasto-plastic rigidities by the multi-layer approach 

rather than by the Ilyushin single layer approach) does not 

have a significant computer time penalty. From this 

investigation, it has been found that: 

1. The very slender panels (bit ~ 180) cannot 

sustain any significant level of compressive 

loading with the assumed residual stress and 

initial imperfection present. 

2. The panels loaded under combined shear - up to 

0.4 times the shear yield stress - and compres­

sion were not affected by shear if the edges 

were unrestrained. 
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3. The strength of restrained panels under shear 

loading only was almost independent of slender­

ness ratio and initial imperfection. 

Interaction curves were presented by Harding for 

square panels to show the relationship between the peak 

shear stress and the corresponding direct stress. 

2.2 Stiffened Panels 

An economical means of increasing the critical stress 

of a plate is to provide reinforcement in the form of 

longitudinal and/or transverse stiffeners. Two types of 

stiffe.ner, open section and closed section (as shown in 

Figure 2.3) may be used. Ships, suspension bridge towers, 

box girder bridges, dock gates, etc. are essentially a 

collection of stiffened plates under various loading con­

ditions. 

The elastic analysis of stiffened plates has been 

based, in the past, on certain idealizations or restrictions. 

As an approximation it was normally assumed that the 

stiffener did not resist twisting during buckling of the 

plate (1). Timoshenko (3) was the first to determine the 

critical load of rectangular stiffened plates under various 

loading conditions. Wah (37) included the effect of tor­

sional rigidity in his analysis of the same problem, showing 

it to be significant, particularly for closed section 

stiffeners. 



- 18 -

To obtain the overall buckling load of panels 

stiffened by a large number of identical equally spaced 

stiffeners, the panel may be treated as an orthotropic 

plate and a number of authors have used this approach to 

study this particular problem (38-42). 

Stiffened plates may be able to support ultimate 

loads considerably above the load for local buckling of the 

component plates. Three main approaches have been adopted 

by researchers for the inelastic analysis of stiffened 

plates in compression. These are: 

1. The strut approach (25, 43-47). 

2. The orthotropic plate approach (48, 49). 

3. The discretely stiffened plate approach (50-53). 

2.2.1 The Strut Approach 

In this approach it is assumed that the panel is wide 

enough that orthotropic plate action can be neglected and 

hence the stiffened panel is treated as a pin-ended column. 

Every stiffener together with its associated width of plate 

is considered as a strut and no consideration is given to 

the effect of any possible restraint arising at the longi­

tudinal edges of the "strut" due to transverse continuity 

with neighbouring "struts" (Figure 2.4). The effect of the 

initial imperfection, the residual stress and the loss of 

effectiveness due to buckling of the plating must be con­

sidered in the analysis. This may be achieved by using 

either: 
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1. Theoretical average stress-strain curve 

(approach I) • 

2. Experimental results (approach II). 

3. Effective width approach (approach Ill). 

Three modes of failure have been assumed, 

1. Failure of the plating in compression due to 

squashing or buckling (mode I). 

2. Failure of the stiffener by yielding (mode II) • 

3. Torsional buckling of the stiffener with sub­

sequent lateral collapse towards the plating 

due to loss of lateral stiffness (mode Ill). 

Different theoretical analyses can be used to calculate 

the ultimate strength of the strut. These are 

1. The moment-curvature-thrust relationship 

(method I) • 

2. Perry formula (method II). 

3. Approximate analysis (method Ill) • 

4. Finite element analysis (method IV) • 

A comparison of some studies (25, 43-47), based on the 

strut approach, is shown in Table 2.2. Little (25) used 

Moxharn's theoretical stress-strain curves, which were 

calculated for simply supported plates with unloaded edges 

free to pull-in, and this is not reasonable for a very wide 

panel. A similar investigation was made by Moolani et a1 

(43) assuming that the edges of the plate were simply 



Data Considered 
Little Moolani Borne Smith Car1son 

(25) (43 ) (44,45) (46) (47) 

1. Mode of buckling I & 11 I & 11 I I & 11 I, 11 & III 

2. Plate buckling approach I I III - III 

3. Theoretical method I I III III 11 & III 

4. Number of spans 1 ~ 1 1 ~ 1 ~ 1 

Table 2.2. Comparison Between Different Strut Solutions 
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supported or fixed against the out-of-plane deflections. 

The unloaded edges were constrained in-plane to remain 

straight but were free to pull-in. Single panel and multi­

panel stiffened compression flanges were considered. They 

observed that the effects of continuity on the multispan 

panels did not necessarily lead to increased strength as 

compared with similar single panels. 

Horne et al (44, 45) proposed an approximate method 

dependent on the effective width associated with the 

theoretical deflected form. Expressions for the effective 

width of perfect and imperfect plates have been obtained by 

assuming that the buckling shape in the post-buckled stage 

was sinusoidal. The analysis was restricted to the case 

where all edges of the simply supported plates are held 

straight both in-plane and out-of-plane, but free from 

restraining or applied moment. They also asslwed that the 

stress at any stiffener section remains in the elastic 

range. 

An alternative approximate investigation was conducted 

by Smith et al (46). They approached the problem by 

studying the inelastic buckling behaviour of a plane frame 

of general geometry. For stiffened panels, every stiffener 

with the attached strip of plating was treated as a beam­

column, i.e. as a special case of a plane frame. The local 

buckling of the plating was neglected in the range studied 

(bit s 40). They accounted for. the change in the position 
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of the elastic neutral axes, caused by progressive yielding 

or local buckling of the cross-section, along the beam. 

The analysis was based on a small deflection approach. 

After every increment of load every fibre was checked to 

see whether it had yielded or not; the stiffness of the 

yielded fibres being then neglected. 

More general loading conditions were considered by 

Carlsen (47). Emphasis was placed on the uniaxial com­

pression case, while the effect of transverse compression, 

shear and lateral hydrostatic load were also considered to 

some extent. Carlsen used two simplified methods for 

collapse analysis, the ideal elastic-plastic strut analysis 

and the initial yield method (Perry-Roberston formula). In 

the first method the collapse load was given by the inter­

section pOint of the load-deflection curves calculated for 

an ideal elastic column and an ideal plastic column (Figure 

2.5). The initial yield method defined collapse as the 

state of initial yielding of the outer fibres due to com­

pression and bending. The residual stress in the stiffener 

was neglected; and this led to discrepancies between 

theoretical and experimental results. 

2.2.2 Orthotropic Plate Action 

In the case of a plate stiffened by a large number of 

equal and equidistant stiffeners either in one direction 

parallel to one of the sides or in both directions, the 

plate can be treated as an orthotropic plate. The local 
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buckling of the plate between stiffeners may be allowed for 

by using the effective width approach this implies that the 

local buckling of the stiffener is assumed to be prevented. 

Assuming that the failure of the orthotropic plate 

corresponds to yielding of the unloaded edge, the ultimate 

strength of the stiffened panel can be obtained (48, 49). 

Although this is an approximate approach, it can give a 

general picture of the behaviour of stiffened panels in the 

post-buckling range. 

2.2.3 Discretely Stiffened Plate Approach 

To overcome the approximations inherent in the two 

previo'us approaches, especially the orthotropic plate 

approach, discrete stiffened panel methods have been 

devised. In this approach the effect of the longitudinal 

boundary conditions of the panel can be considered. The 

finite difference method and the finite element method (50, 

51) have been used in the theoretical analysis. One method, 

using a combination of finite element (local) and Rayleigh­

Ritz (global) has been developed by Tvergaad and Crisfield 

(52, 53) to reduce the number of degrees of freedom. In 

this approach the Rayleigh-Ritz method was used for the out­

of-plane displacements and the finite element method for the 

in-plane displacements. This approach was adopted because 

it is much more difficult to guess good in-plane trial 

functions than to guess good out-of-plane trial functions. 
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The triangular plate element and the beam element 

have been the main elements used to model the plate and 

the stiffener respectively (50, 51). The flow theory of 

plasticity with von Mises yield criterion has been used in 

the analysis. Soreide et al (50) used two approaches -

the fixed co-ordinate system and the updated co-ordinate 

system in their finite element analysis. A similar 

investigation was made by Fujita et al (51). In order to 

check their theoretical results they carried out collapse 

tests on three girder specimens. The effect of the 

distribution of the stiffeners on the collapse load and 

mode was included in their study. 

Tvergaad et al (52) used both theories of plasticity -

deformation theory and flow theory - to study the inelastic 

buckling of stiffened panels. Two modes - local buckling 

mode and wide column buckling mode were considered. In 

the wide column buckling mode, it was found that the 

results from the two theories were indistinguishable from 

one another. In the post-buckling phase, an incremental 

method based on finite element/Rayleigh-Ritz was used. A 

similar investigation was made by Crisfield (53), who used 

the von Mises yield criterion in conjunction with an inte­

gration through the depth of the plate. He also allowed 

for elastic unloading from the yield surface and modified 

the area approach (21) to allow for yield in the fibres 

before full section yield. A reduction in computer time of 
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about 50% was achieved by using global variables only but 

the accuracy was observed to decrease by up to 13%. 

In all the above approaches the torsional instability 

of the stiffener was neglected. 

2.2.4 Stiffened Panels - Experimental Work 

Panels stiffened by flats, bulb flats, angles, tees 

or closed stiffeners have been tested by many investigators 

in different countries (47, 51, 54-58). The effect of 

cross sectional shape, residual stresses, initial imperfec­

tions and the eccentricity of the applied load, have been 

studied. Three modes of buckling have been observed in the 

laboratory. These are 

1. The local torsional buckling of the stiffener 

(mode I). 

2. The buckling of the stiffened plate towards 

the free edges of the stiffeners (mode II). 

3. The buckling of the stiffened panel away from 

the stiffeners (mode Ill). 

Murray (54) and Faulkner (55) tested panels stiffened 

by bulb flats and tee stiffeners respectively. Murray's 

panels were loaded axially or in bending and only two modes 

of buckling, mode I and mode II, were observed. About 65 

specimens were tested by Faulkner (55) under axial load. 
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Over a four year period Horne et al (56-58) tested 86 

panels with different slenderness ratios stiffened uith 

flats, bulb flats and angle stiffeners loaded in longitudinal 

compression. For all the specimens the unloaded edges were 

free whilst the loaded edges were fixed for the short test 

specimens and hinged for the longer sp~cimens. They used 

. intermittent and continuous plate/stiffener welds to study 

the effect of the residual stresses and found that the 

Merrison Rules (59) underestimate the residual stresses by 

a factor of order 2. The change in the value of the 

residual stress due to the different methods of welding 

was found not to be a significant factor for panels with 

low slenderness ratios. This was put down to separation 

occurring between plate and stiffeners as the failure load 

is approached for the intermittent case. For the panels 

with torsionally weak flat stiffeners, intermittent welding 

reduced the strength of the panel as compared with the con­

tinuously welded case. The influence of the local plate 

imperfection, torsional imperfections in the stiffeners and 

overall imperfection of the stiffened panel were also 

studied. It was shown that very large plate panel imper-­

fections had, on the average, no deterimental effect on 

continuously welded panels and a slight deterimental effect 

on intermittently welded panels. The overall imperfection 

reduced the strength of the most slender panels but had 

almost no effect on the strength of the other panels. 
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In order to account for the effect of the boundary 

conditions of the unloaded edges, Fukumoto et al (60) 

tested 27 stiffened panelssimply supported along the four 

edges. The panels were stiffened by three to five flat 

stiffeners of the same grade of steel as the plate panels. 

In order to simulate the welding conditions in actual box 

section members, welding bead was provided along each 

unloaded edge. By measuring the residual stresses it was 

found that the compressive residual stresses increased as 

the width-to-thickness ratio of the plate became smaller. 

For panels with bit = 22, the compressive residual stress 

was 0.70 a. It was observed that the stresses in the y 

stiffeners had little correlation with the width-to-thick-

ness ratio of the panels or the stiffeners. All three 

modes of buckling were observed. 

Stiffeners of closed section, e.g. trapezoidal, 

triangular, rectangular and semi-circular, have structural 

and economic advantages. Due to their high torsional 

stiffness, they elastically restrain the plate sub-panels 

and hence enhance the corresponding ultimate stress. More-

over, the geometrical configuration alone allows a greater 

spacing between the stiffeners due to their own width. 

Also the connection with the plate requires only two fillet 

welds which is no more than required for a single open-

section stiffener. Girders stiffened by triangular section 

stiffeners have been tested (61) and showed the improved 

behaviour of this kind of stiffeners as compared to open 

sections. 
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2.3 Interaction Buckling in Beams and Columns 

Structural sections, e.g. I beams, may buckle in one 

of three buckling modes - local, overall or combined local 

and overall (Figure 2.6). The critical mode depends on the 

geometry and properties of the cross section, the slender­

ness ratio, the initial imperfections, and the residual 

stresses. In analysing local buckling it is typically 

assumed that the lines of junction between the plate 

assemblies remain straight. This mode is critical when 

the component plates are wide in comparison with their 

thickness. Overall buckling may be flexural, torsional or 

flexural-torsional. It is usually assumed that the cross­

section of a structural member buckl~ng in an overall mode 

remains undistorted - that is, each cross-section of a 

member deforms as if it were a rigid body with only three 

degrees of freedom in the plane of the cross-section. If 

the cross-section is made unduly compact, the flexural 

properties are poor and the tendency for this mode of 

buckling increases. To achieve an economic (optimum) 

design a section should be designed such that failure in 

local and overall buckling modes ocurr at the same load. 

In such cases the actual failure mode involves distortion 

of both a local and overall nature. This type of buckling 

is called distortional buckling (or interaction buckling) 

because the cross-section of the member is free to distort 

and displace. This interaction buckling is critical for 

intermediate length structural members (Figure 2.7) with 

relatively large width-ta-thickness ratios of the component 

plates of the cross section. 
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Over the last 30 years the problem of interaction 

buckling has received a great deal of attention from 

various researchers. Theoretical and experimental investi­

gations have been carried out on members with different 

cross sectional shapes. 

However, up to the present date there is no general 

study which has accounted for residual stress, initial 

imperfection and interaction between local and overall 

buckling (lateral, torsional and lateral-torsional). Many 

researchers (62-64, 66-68, 70-77, 79-82) have made assump­

tions limiting their work to (Table 2.3): 

L. Elastic plate behaviour (62-64, 66, 70-77, 79). 

2. Plates with small deflection (66, 70-73, 76, 77). 

3. Members deflecting without tWisting (62, 63, 67, 

68, 79-82). 

Various theoretical apFroaches (methods) have been 

used in the analysis of interaction buckling of a structural 

member. These are: 

1. Rayleigh-Ritz energy method (80-81). 

2. Moment-curvature-thrust relation (82). 

3. Finite element method (70-75). 

4. Finite strip method (76,77, 79). 

5. Approximate method. 

Bijlaard and Fisher (62, 63) were first to study H­

section columns in the post-local buckling range. They 

tested columns which had minimal geometric imperfections. 



Inelastic Imperfection Large deflec- Overall Residual Reference behaviour (local and tion of plate torsional stress overall) component buckling 

Bijlaard and Fisher 
(62,63) x x I x x 

Cherry (64) and Wang et x x .; I x al (74,75) 

-- *(66,70-73,76,77) x x x I x 

De \'10lf et al (67) and .; I Kalyanaraman et al (68) x x x 

~ Hancock (79) x I x I x x 
(overall) 

~ Graves Smith (80,81) I I x I x x 
(overall) 

Little (82 ) I I .; x I 

Notes: 
1. "*" indication for the following references 

Goldberg et al (66), Rajasekaran et al (70), Johnson and Will (71), Akay, Johnson and 
Will (72), Bardford et al (73), Plank et al (76), and Hancock (77). 

2. "l " and "x" indication for taking into consideration and neglecting respectively. 
3. Column 5 to show that not only lateral buckling but also torsional and lateral-torsional 

buckling have been considered. 

Table 2.3. Limitation on the Previous Interaction Buckling Researches 

\ 

I 
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In 1960 Cherry (64) proposed an approximate method for 

estimating elastic instability of beams. The method is 

applicable only for those sections in which the compression 
are 

flanges alone have buckled, the webs assumed to be 

undistorted. To account for the post-buckling effect of 

the flanges, he used the effective width concept. For the 

converted section the corresponding beam properties 

(flexural, torsional and warping rigidities) have been 

computed and taken as the effective properties of the 

section. To compare this theoretical approach with experi­

ments., Cherry tested a series of H-section and T-section 

beams loaded by pure end couples. The theoretical approach 

overestimated the test results by 30% maximum, in the range 

of the local buckling. He suggested that this may have 

been due to neglecting the effect of initial imperfections. 

Ten years later Skaloud and Zornerova (65) tested a series 

of columns which had both local and overall imperfections. 

The columns demonstrated a significant reduction in load 

carrying capacity compared with straight columns with 

perfect plate elements. 

In 1964 a more sophisticated buckling analysis 

(although still within the limitations of elastic small 

deflection theory) for members of arbitrary cross section 

was presented by Goldberg, Bogdanoff and Glanz (66). By 

coupling membrane and plate bending equations, eight first 

order partial differential equations were obtained. The 

critical load - corresponding to vanishing of the determinant 

of these equations - was obtained by iteration. 
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Recently, the results of the tests which have been 

performed at Cornell University on 34 H-section and 

rectangular tubular columns have been published by De Wolf, 

Pokoz and Winter (67). These columns were manufactured by 

connecting cold formed channels back to back (H-section) 

or the flanges of two channels together (rectangular 

section). The columns, which had a minimal initial imper­

fection, were loaded by concentric load (67). These tests 

are useful for estimating the effect of local buckling 

phenomena on the overall buckling of columns. De Wolf et al 

have developed an analytical iterative approach for the 

interaction buckling of rectangular box column. The method 

is based on the tangent modulus and the effective width 

concept. The same cold formed channel was used by 

Kalyanaraman, Pe·koz and Winter (68) to manufacture and test 

inverted hat section and H-section columns. Based on these 

test results they determined the local buckling coefficient 

and an expression for the effective width of a stiffened 

plate. They applied the method to develop an empirical 

model, based on the effective section of the column and 

either the CRe formula (69) in the region of inelastic 

column behaviour or the Euler formula in the region of 

elastic behaviour. 

The finite element method has been used by many 

researchers (70-75) to study the interaction behaviour of 

structural members. None of them have accounted for the 

post-buckling of the components plate and all have used the 
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small deflection theory. Rajasekaran and Murry (70) have 

restricted their analysis to a beam-column with open section 

only. The analysis superimposed the displacement due to 

out-of-plane flexure of the flanges on the displacements 

which occurred in one dimensional undistorted thin-walled 

beam element. The web was not allowed to distort. Eleven 
~e 

degrees of freedom were used at each node of cross-sectional 

element. In order to account for the distortion of the web 

as well as the flanges, it is necessary to adopt a more 

general finite element such as that of Johnson and Will (71). 

They sub-divided the beam into a large number of rectangular 

elements. It was necessary to sub-divide a simple beam into 

96 elements to achieve an accurate solution. Another model 

has been used by Akay et al (72) based on idealising the 

flange and the web by beam and plate elements. By this 

model only the distortion of the web was considered. It 

was assumed that straight lines across the flanges and 

normal to the web remain straight during buckling. They 

isolated the out-of-plane buckling from the in-plane stress 

analysis. This separation led to a reduction in the number 

of equations required for buckling analysis. Again the 

number of degrees of freedom is relatively large. Recently 

BB~dford et al (73) used one dimensional beam elements with 

six nodal displacements of the cross-section following Akay 

et al (72) they assumed that the flanges remained 

undistorted. It was found that two elements (18 degrees of 

freedom) gave an error about O.s% and 2% in the buckling 

load of a column under concentric compression and beams 

under pure bending respectively. 
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To account for the post-buckling effect in the finite 

element analysis, Wang et al (74, 75) used the effective 

width approach. Under a general loading condition, the 

beam section became monosyrnmetrically nonprismatic. The 

buckled compression flange was narrowed because of local 

buckling, but no reduction was necessary at locations with 

stress less than the critical stress. The effective 

flexural rigidity and the effective warping coefficient of 

the section was based on the effective width while the 

torsional rigidity was obtained from either the original 

full cross section or the effective cross section. It was 

found that the two values of the torsional rigidity were 

close "to each other. Since the buckled section properties, 

applied loads and the laterail buckling loads for buckled 

section were independent, an iterative analysis procedure 

has become necessary. Wang et al have used the finite 

element formulation with small deflection theory to obtain 

the critical load of the structural member. 

More recently, the finite strip method which is reviewed 

in the next section, has been used to study the interaction 

between' the local and overall buckling of simply supported 

beams (76, 77) in the linear buckling range. Hancock has 

extended the finite strip approach to the post-buckling 

range (78), and proposed a method for calculating the 

effective flexural rigidity of imperfect box and H-sections. 

For the box-section the flexural rigidity compared well with 
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the flexural rigidity based on the effective width concept. 

Using the proposed flexural rigidity, the interactive 

buckling of the H-section column was obtained (79). Again 

an iterative analysis procedure was necessary. The 

theoretical results were compared with Cornell test results 

(67, 68) and with results which he calculated from the 

effective section approach described by Kalyanaraman et al 

(68) • 

The most sophisticated work on the problem of inter­

action buckling to date has been done by Graves Smith (80, 

81) and Little (82). Graves Smith has presented a numerical 

method to predict the ultimate strength of locally buckled 

rectangular members under concentric compression (80) or 

pure bending (81). Strain reversal was not allowed, so the 

column proportions must be chosen such that it has buckled 

locally in the elastic range. He used the Rayleigh-Ritz 
-

energy method in conjunction with the flow theory of 

plasticity. The stress-strain relation was assumed to be 

elastic-perfectly plastic and the onset of plasticity was 

governed by the von Mises criterion. The deflection was 

assumed to be basically the same as the deflection of the 

completely elastic column. Graves Smith obtained complete 

theoretical curves of ultimate stress against slenderness 

" ~" for various values of ~ greater than unity. In 

addition, he performed a carefully conducted series of model 

tests on square columns of aluminium and steel. The test 

specimens were approximately free from initial imperfection 
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and residual stress. He obtained very good comparison with 

the theory. 

Little (82) used the moment-curvature-thrust relation 

to study the ultimate strength of the square box column. 

The method had been used previously for stiffened panels 

(83). The local buckling of the flange was allowed for by 

applying an appropriate average stress-strain curve to 

M-~-P relation. Two cases for the web behaviour were 

assumed - unbuckled web (which was treated simply as 

elastic-perfectly plastic material) and buckled web (which 

was treated by using appropriate average stress-strain 

curve). No attempt was made to allow for strain reversals. 

Little proposed a design approach for the box column based 

on the modified Perry equation and ECCS column curves (69). 

The effective yield stress (the value at which the column 

curve cuts the stress axis) with the full cross section 

properties were used. The method has the advantage that it 

does not require iteration. 

A similar design method has been recently proposed by 

Hancock (79) for H-columns. The method was based on the 

SSRC multiple column curves (69) and on the effective 

section (stocky columns) or on the local buckling of com­

ponent plates (slender columns). 
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2.4 The Finite Strip Method 

Wittrick and his colleagues (84-86) have developed a 

generalised matrix approach for calculating the buckling 

stresses of plate assemblies using what might be called an 

exact finite strip method (i.e. exact within the limitations 

of linear theory in the elastic range). Each component 

flat was treated as a single strip and it was assumed that 

all three components of displacement vary sinusoidally 

along any longitudinal line when buckling occurs. To 

satisfy this, either the half wavelength is small compared 

with the length of the plate assembly, or all the component 

plates are simply supported at their ends. This assumption 

enables the partial differential equations governing the in­

plane and out-of-plane deformations of the component flats 

to be reduced to ordinary differential equations which can 

then be solved. Thence stiffness matrices are derived, 

relating the amplitudes of the sinusoidally varying forces 

and displacement on the longitudinal edgeS of the plate. 

These matrices have components which are complicated 

transcendental functions of a loading factor and the half 

wavelength. Therefore, the critical loading factor cannot 

be obtained by standard eigenvalue methods. To overcome 

this difficulty an algorithm was developed (87). The local, 

overall and interaction buckling can be investigated by this 

exact approach. 
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Parallel to the development of the exact method by 

Wittrick, an approximate finite strip method has been 

presented by Cheung (88), initially for plate bending 

problems, to solve the plate buckling problem. In this 

method, polynomial functions are used to describe the 

variation of the displacements in the transverse direction • 

. The advantage of this approach over the exact finite strip 

method described above is that the coefficientsof the over­

all stiffness matrix are linear functions of the load 

factor, and standard eigenvalue routines can therefore be 

used to extract the buckling loads. Another advantage is 

that the approximate finite strip approach is more general 

than the exact approach. Any cross section under complicated 

variations of loads can be considered. Furthermore, boundary 

conditions for the loaded edges other than simply supported 

can be considered with the appropriate longitudinal varia­

tion for the distortion. 

The disadvantage of it is that, in order to achieve 

sufficient accuracy, it is almost always necessary to sub­

divide the components flats into two or more finite strips, 

so that the order of the overall stiffness matrix is usually 

at least twice that arising from the exact finite strip 

approach. The approximate finite strip method is now well 

established as an economical and efficient way for the 

analysis of elastic buckling (76, 77, 88-95). 
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Recently the finite strip method has been extended to 

study the inelastic buckling behaviour of plate assemblies 

(60, 96, 97). Fukumoto et al (60) and Yoshida et al (95) 

have used the method to investigate axially compressed 

panels stiffened by longitudinal stiffeners and longitudinal 

and transverse stiffeners respectively. Yoshida et al (97) 

has studied H-columns. The effect of the residual stress 

was considered in all these studies. They assumed that the 

material stress-strain relationship was elastic-perfectly 

plastic. The strain reversal at the instant of buckling 

and the strain hardening were not considered in the analysis. 

They applied the deformation theory of plasticity in the 

inelastic range, and the inelastic moment curvature and the 

inelastic stress-strain relationship were used. 

On the other hand, Graves Smith et al (98) have 

extended the elastic finite strip to the elastic post­

buckling range. They have assumed that the strips were 

perfect. The two well known in-plane boundary conditions 

of the unloaded edges of the plate were considered. The 

in-plane displacement functions used by them differ from 

_those conventionally used in linear finite strip analysis, 

in the longitudinal harmonic series assumed. This is 

because this function must satisfy the in-plane equilibrium 

equations. The compatibility between the out-of-plane dis­

placement and the transverse in-plane displacement at the 

corners of structures where plates meet at an angle cannot 

be maintained by using these functions (Figure 2.8). To 



- 38 -

achieve this compatibility, Sridharan (99) has assumed 

another function for the transverse in-plane displacement. 

The required number of harmonics is higher, in this case, 

than that required in the first assumption. Graves Smith 

et al (98) have assumed that the distribution of Possion's 

ratio in the post-buckling range is equal to that before 

. buckling and have neglected the effect of the nonuniform 

stress in this range. 

More recently the finite strip method has been 

developed to include the effect of the initial imperfection 

by Hancock (78). He assumed displacement functions which 

were different from those used by Graves Smith and Sridharan 

(98, 99), the main differences being 

1. Graves Smith assumed that Possion's ratio is 

uniform in the post-buckling range while 

Hancock modified it by a factor dependent on 

the stress distribution. 

2. The longitudinal harmonics which were used by 

Graves Smith for the in-plane displacement 

were sine and cosine functions, for longitudinal 

and transverse respectively, where Hancock used 

squared functions. 

Hancock assumed that the in-plane displacement functions 

were divided into two components, one corresponding to the 

Hookean deformation (due to compressive stress) and the 
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other due to flexural displacement of the strip. Only one 

term of the Fourier series was used to describe the dis-

placement fields along the length of the stip. This approach 

produced an accurate solution up to approximately 1.5 times 

the critical load. The assumed longitudinal in-plane 

harmonic series eliminated shear straining at the ends of 

the strip. Moreover, it allowed for compatibility between 

the out-of-plane and the in-plane displacements at plate 

junction (Figure 2.8). It was assumed that the load is 

acting through a very rigid loading bar. The initial out­

of-plane imperfection of the plate was taken to be of the 

same form as'the out-of-plane displacement. 

To study the post-buckling behaviour of simply 

supported square plate, Graves Smith et al (98) divided it 

into 24 strips to achieve acceptable accuracy but Hancock 

(78) found that 8 strips were enough. 

Out-ot-plane displacement of 
Strip .1. 
Transverse displace men t of 
Strip.2. 

Hancok (78) 

Grave Smith (98) 

FIG. 2·8. GRAVE SMITH AND HANCOK'S DISPLACEMENT 
FUNCTIONS. 
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CHAPTER 3 

THE FINITE STRIP METHOD IN INELASTIC STABILI'l'Y 

3.1 Introduction 

The finite strip method is now well established as a 

powerful method of solution in structural analysis and as 

such has been well documented. In the present work the 

emphasis is on the inelastic application of the method. 

In this chapter attention will therefore be concentrated 

on the details of the finite strip approach specifically 

related to inelastic buckling behaviour of plated structures 

and only a brief description of the established theory will 

be given for completeness. The basis of the current 

approach can be summarised as follows. 

1. The structure is divided into a number of longitudinal 

strips. For a typical strip a displ.acement function 

describing the buckled deformation in terms of the 

nodal displacements is assumed. 

2. A nonlinear stress-strain relationship for the 

material is used. 

3. Applying the principal of virtual work stiffness and 

stability matrices can be derived for every strip. 

4. The generated matrices are modified to include the 

effect of the boundary conditions of the longitudinal 

edges of the strip. The overall matrix is then 

assembled from these matrices. 
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5. An iterative procedure is used to optain the 

inelastic critical load. 

6. The residual stresses due to welding or rolling can 

be considered as additional nonuniform loads. 

The present chapter concludes with a description of 

some of the routines used in the computer program 

developed on the basis of this theory for the determination 

of the smallest inelastic critical load of any plated 

structure. 

3.2 The Finite Strip Method 

In the finite strip method the structure is divided 

into a number of longitudinal rectangular strips (Figure 

3.1) connected along their longitudinal edges (nodal 

lines). A typical strip (Figure 3.2) is assumed to be 

perfect and plane with constant geometry along its length. 

It may be connected along one or both of its nodal lines 

to the adjacent strips. The behaviour of each strip can 

initially be studied independently of the behaviour of 

other strips by assuming a set of functions approximating 

the displacement in that region. Due to the use of con-

tinuous function in the longitudinal direction the number 

of degrees of freedom at a strip nodal line is usually 

less than that at an element node (the conventional in 

finite element approach). The buckled mode is assumed to 

be sinusoidal and this implies that there are four degrees 

'
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of freedom - longitudinal, transverse and out-of-plane 

.displacement and rotation - at each nodal line as shown 

in Figure 3.2. 

The fundamental assumptions on which the current 

work is based are: 

1. The cross-sectional dimensions of the structure and 

its components are the same throughout the length 

of the structure. 

2. All components of, the structure are initially 

perfectly flat. 

3. In any buckling mode the displacement, under the 

action of axial stress, varies sinusoidally in the 

longitudinal direction. 

4. The second order terms in the strain-displacement 

relations can be neglected. 

5. The applied loads act in the middle plane of the 

strip. 

3.3 Displacement and Shape Functions 

A typical strip with the geometry and conditions 

shown in Figure 3.2 will be considered. Displacement 

functions which are simple polynomials in the transverse 

direction and continuously differentiable smooth series 

in the longitudinal direction, as shown in Figure 3.3 have 

been assumed. The displacements of any point in a strip 

are (u, v, w) in (x, y, z) directions and the displacement 

vector {f} can therefore be written 
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FIG. 3·3. DISPLACEMENT FIELDS OF STRIP. 
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{f} = {u v w}T 

The displacement functions are chosen to represent these 

displacements {f} at any point in terms of the nodal 

displacements {c} which are given by 

{ c} 

where O. ·and w., v. and u. are the rotation and displace-
.~ ~ ~ ~ 

ments amplitude at edge (i). The chosen displacement 

functions consist of two parts. The first is the shape 

function which represents the change in the displacement 

in the transverse direction, while the second is the 

series which represents the change of the displacement in 

the longitudinal direction. The displacement function 

must be assumed so as to satisfy the following conditions 

(88) • 

(i) The series part of the displacement function should 

satisfy the end conditions. For the case of simply 

supported ends the conditions are that the out-of-plane 

(3.1 ) 

(3.2) 

displacements and the normal curvature at the two ends are 

equal to zero. Thus 

w = w'xx = 0.0 at x = 0 & A (3.3) 

Qr in nondimensional form 

w = w,r,;r,; = 0.0 at r,; = 0 & 1 (3.4) 
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where ~ = x/A and A is the half wavelength. 

Because the strip is under longitudinal stress it 

is assumed that the longitudinal displacement at the ends 

is constant, i.e. 

u = constant at ~ = 0,1 

The two ends are assumed to be undistorted which means 

that the transverse displacement at the ends must equal 

zero. 

i.e. 

v = 0.0 at ~ = 0,1 

The following displacement functions clearly 

satisfy the above conditions 

r 
u = l f n (y) cos n7TX 

n=l 
-A-

r 
v l f n (y) sin n7TX = -y-

n=l 

r m7TX 
w = l fm (y) sin -A-

m=l 

where n and m are the number of harmonics chosen for a 

particular solution. In the present work only the first 

term in the assumed basic series function will be used, 

i.e. m = n = 1 (100). 

(3.5) 

(3,6) 

(3.7a) 

(3.7b) 

(3.7c) 



- 45 -

(ii) The polynomial part in the displacement equation 

~ust be capable of representing a state of constant 

strain in the transverse direction. This can be achieved 

by satisfying the following conditions. 

(a) The polynomial is complete up to or above the order 

of the necessary differentiation required to obtain the 

strain. For example to obtain the transverse in-plane 

strain and the bending curvature (c and k ) a first and y y 

second order differentiation (v, and w, ) are required 
y yy 

respectively. Thus the polynomial must be complete, at 

least up to the first term for v and up to the quadratic 

term for w. 

(b) A constant term must be obtained after this 

differenation. 

(ii) The displacement function must be continuous within 

the element. Furthermore it must be such that conditions 

of compatibility along the common edges of adjacent strips 

are satisfied in respect of the displacement u, v, wand 

e. The continuity will be achieved if the partial 

derivatives of the displacement function w.r.t. y (to one 

order less than the highest order appearing in the strain 

displacement relationship) are continuous. 

If these three conditions are satisfied convergence 

en the correct results will be ensured and the summation 

of the sum total of the virtual work of all strips will 
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be equal to the total virtual work of the structure. The 

,displacement functionS which satisfy these conditions are 

given by: 

if} = El 
{a} 'Il'X cos T 

{a} sin 'Il'X 
= T 

{Z}T {a} sin 'Il'X 

T 

{al 

= itS} 

{c} 

= [NJ {a} 

where the shape functions {x}, {y} and {Z} which describe 

the variation of the nodal line displacements {a} across 

the strip width are given by 

{X}T = {o, 0, 0, Cl' 0, 0, 0, C
2 

} 

{y}T = {o, 0, Cl' 0, 0, 0, C2 , a} 

{Z}T = {C
3

, C4 , 0, 0, CS' C6 , 0, a} 

(3.9) 

(3.10) 

(3.11 ) 

(3.12) 

(3.13) 

(3.14 ) 
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Ci is a polynomial function (i = 1,6) defined by 

Cl 
1 (1 - 2 n) , = "2 

C2 
1 (1 + 2 n) , = 2 

C3 b/8 (1 - 2n 
2 + 8n 3), = - 4n 

C4 
1 (1 - 3n + 4n3 ) , = "2 

Cs blS (- I 2n + 4n 
2 + <5n 3 ) , = -

and C6 
1 (1 3 = "2 + 3n - 4n ) 

where 

n = ylb 

These shape functions are compele~up to the first term 

for in-plane displacement, and up to the cubic term for 

out-of-plane displacement and hence satisfy condition 

(ii) above. From equation (3.10) the matrix [N] is given 

by 

This matrix is a 3 x 8 rectangular matrix, where 3. 

corresponds to the component of displacement of any 

point and 8 corresponds to the total number of degrees 

of freedom per strip. 

(3.lSa) 

(3.lSb) 

(3.lSc) 

(3.lSd) 

(3.lSe) 

(3.lSf) 

(3.16) 
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3.4 Material Nonlinearity 

Much of the research work on stability of plates 

assumes a linear elastic relationship between stress and 

strain. Although for certain materials this might be 

quite acceptable up to the proportional limit, it is 

clearly inappropriate for stresses above this limit 

With regard to the plastic behaviour beyond the 

yield stress, there are two major theories - the defor­

mation theory and the incremental or flow theory (5). In 

the deformation theory the total strain depends on the 

current state of stress and is independent of the history 

of loading. In flow theory additional factors, such as 

the increments of stress and strain, affect the state of 

plastic strain. The basic assumption in the deformation 

theory is that no strain reversal occurs and therefore 

the relationship between increment in stress and increment 

in strain may be obtained from the tangent modulus. 

Both theories of plasticity have been used in the 

stability problem (21, 52, 60). The elasto-plastic 

buckling stress of a perfect plate based on deformation 

theory of plasticity often agrees with experimental 

results more closely than the flow theory. Neal (34) 

referred this to the high sensitivity of the flow theory 

to initial imperfections. He found that the difference 

between deformation theory and flow theory results were 

due to the value of the initial imperfection, the slender­

ness ratio and the material constants. 
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Based on the flow theory Zienkiewic~ et al (101) 

and Yamada et al (107) presented separately elasto-

plastic matrices which can be used in incremental 

analysis. These matrices depend on the state of total 

stress. The method is valid for ideal plasticity as 

well as work hardened materials. 

In the present work the more sophisticated stress­

strain re.lationship (103) shown in Figure 3.4 is used. 

The fundamental assumptions can be summarized as follows: 

1. Deformation theory can be applied. 

2. Strain reversal, as shown in Figure 3.5, due to 

unloading ~an be neglected. 

3. Although the strain hardening can be considered 

by modifying the stress-strain relationship 

(Figure 3.6), this strain hardening will be 

neglected in this work. 

4. The whole section depth of the plate can be 

yielded suddenly. 

The stress-strain curve (Figure 3.4) can be 

represented mathematically (103) by 

where 

s 1.0 

(3.17) 

(3.18) 
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0y the yield stress 

C = 0.997 for steel 

The tangent modulus Et which can be defined as the 

slope of the stress vs strain curve at a point (104) is 

given by 

differentiating equation (3.17) with respect to Ox gives 

de 1 
2 

(l-2C11+C]..I ) 

d Ox 
= 

E 2 
(1-11 ) 

1 = 
Et 

The tangent modulus may be written as 

(I-V) 
2 

2 
(1-2C11+C]..I ) 

The secant modulus E can also be defined in terms sec 

of the total stress and strain at a given stage as 

From equation (3.17) 

= E (I-V) 
(l-C]..I) 

(3.19) 

(3.20) 

(3.21) 

(3.22) 

(3.23 ) 

(3.24) 
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The effective Poisson's ratio v is given by (103) 

v = v - (v - v ) p p e 

E sec 
E 

(3.2S) 

where v and v are the plastic and elastic Poisson's ratios. p e 

In this work, it is assumed that v = O.S. Below the p 

proportional limit, the ratio of the secant modulus to 

elastic modulus, E lE = 1 and the effective Poisson's sec 

ratio v w'ill be equal to the elastic value (v ). Above e 
this limit, Esec/E will be greater than unity and so the 

effective Poisson's ratio v will be less than the elastic 

one. 

The relation between the applied stress and elastic 

properties of the material is shown in Figure 3.7 and 

Table 3.1. If the applied stress is less than or equal to 

80% of the yield stress, the tangent modulus may be con-

sidered equal to the elastic modulus. This means that the 

material is linear elastic for all values of ~ < 0.80. The 

reduction in the secant modulus and the increase in 

effective Poisson's ratio due to plasticity of the material 

can be neglected for ~ < 0.90. 

3.S Inelastic Stiffness Matrix 

The strain {E} at any point on the strip consists of two 

parts - the axial strain of the middle plane and the bending 
. 
strain. At a depth z from the middle plane the strain will 

be given by 



'\.I = a/a Et/E E /E v/v 
y sec ,e 

0.1 1.00 1.00 1.00 

0.5 0.99 1.00 1.00 

0.70 0.97 0.99 1.01 

0.75 0.96 0.99 1.01 

0.80 0.93 0.99 1.01 

0.90 0.77 0.97 1.02 

0.99 0.03 0.77 1.15 

0.999 0.00 0.25 1.50 

Table 3.1. Relation Between Applied Stress 

and Material Properties 
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(3.26) 

where 

{e: } (3.27 ) 

-{e:o} {e: XO 
T 

= e: YxyO } yo 
(3.28) 

{U'X 
T 

= V'y U'y + V'X I (3.29) 

{!. 1 1 + 1:. T 
= u'z; b V'n b U'n v'z; } A -A 

(3.30) 

{k} = {kx ky 2k }T 
x,y 

(3.31) 

{w'xx 
or = W'yy 2w' xy l (3.32) 

{..l. 1 2 T = W, r;. Z; 'b2 w'nn bA W'nz;} A2 
(3.33) 

EX' Ey and Yxy are the axial strains in x, y directions 

and the shear strain in xy plane at any pOint. E xo' E yo 

and Y are the axial and shear strains at any point in xyo 

the middle plane. k x' k y and k are the curvatures. xy 

The strains are related to the displacements by 

EX U, X W'xx 

Ey = V'y -z W'yy (3.34) 

U'y + V'x 2w,xy 
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1 1 . 
I u, l; 12 w'l;l; 

1 ...!..w (3.35) = b v'n -z 2 'nn b 
1 1 2 
b u'n + I v'r;; hA w, n r;; 

From the differentiation of equation (3.10) 

T {o } u'l; = - 7T {x} simrr;; (3.36a) 

u'n = {x'n}T to} cos7Tl; (3.36b) 

v'r;; = 7T {y}T to} cos7Tl; (3.36c) 

v'n = {y }T 
'n 

{o} sin7Tl; (3.36d) 

W I l;l; = 7T 2 {z }T to} simrr;; (3.36e) 

(3.36f) 

(3.36g) 

Substitute equations (3.36) into equat~on (3.35). 

!!. {x}T 
2 

to} simrr;; _ ~. {Z}T {o} sin7Tr;; A A2 

{a} sin7T r;; z 1 {Z'nn}T {a} sin7Tr;; = 
b2 

{~ {X ,n } + 7T {y}}T {a} 27T T {o} COST( r;; 
A bA {Z'n} 

(3.37) 
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From equation (3.37) the strain {e} related to the nodal 

displacement {c} 

{ e;} = [B] {c} by 

where [B] is the strain matrix and given by 

'IT {- {x} + z ~ {Z}}T sin'ITl; I 

[B]3x8 
1 

{{Y'n 
1 T sin'ITl; = b - z - {Z }} 
b 'nn 

{1 
b {X'n} + 'IT 

A 
{y} - z 2 'IT 

Ab {Z 'n}} 
T COS'ITl; 

The change in the internal virtual work is equal 

to dW
i 

where 

dWi = J {de}T [F] {e;} dvol 
vol 

Now from equation (3.38) 

{de;} = [B] {do} 

substituting for {e} and {de} into equation (3.40) gives 

dWi = J 
vol 

{de;}T [B]T [F] [B] {o} dvol -,.. 

Now {c} is the amplitude of the nodal displacement 

and constant within the strip. Hence 

(3.38) 

(3.39) 

(3.40) 

(3.41) 

(3.42) 
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dWi = {dolT J [B]T [F] [B] dvol {Of 

vol 

where [K] is the stiffness matrix of the strip 

[KJ = J 
vol 

[B]T [FJ [B] dvol 

(3.43) 

(3.44) 

(3.45) 

The'matrix [F], the elastic-plastic matrix, depends on 

on the properties of the material. 

FII Fl2 o 

[FJ = F21 F22 0 

o o 

For elastic material with linear stress-strain relation-

ship, the elements of the matrix [FJ are constant and 

given by 

E = --2 
I-v 

E 
= """2 -,..,( l:--+-v""") 

Mhere E is the elastic modulus, 

and v is the Poisson's ratio. 

(3.47a) 

(3.47b) 

(3.47c) 
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For the inelastic material, nonlinear stress-strain 

.relationship, the value of Fij (i & j = 1, 3) is given by 

Esec 
F 33 = 2 (1 +v) 

The tangent modulus Et' the secant modulus Esec and 

the effective Poisson's ratio v are given by equations 

(3.22), (3.24) and (3.25) respectively. 

An expression for the matrix [K] obtained by 

substituting equation (3.39) into equation (3.45) and 

carrying out the integration through the depth and along 

the length of the strip is given in Appendix A. The 

integration through the width of the strip, i.e. in the 

transverse direction, cannot be carried out simply in 

the inelastic analysis of a strip under nonuniform com-

pression. This is because the properties of the material 

will not be constant through the width and hence the 

matrix [F] will change from point to pOint. A numerical 

integration routine in which the strip is divided into a 

number of substrips will therefore be used, the matrix 

[F] being assumed constant for each substrip. The number 

of substrips into which each strip is divided will of 

course depend on the rate of variation of stress across 

(3.48a) 

(3.48b) 

(3.48c) 
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the width, and the accuracy required. F~r every substrip 

the stress level and hence the properties of the material 

can be determined at its two nodes. Using any numerical 

integration method, the stiffness matrix can thus be 

obtained. In the case of elastic analysis the stiffness 

matrix [K] is independent of the stress level which makes 

the solution of the problem much easier and direct. 

3.6 The. Stability Matrix 

The virtual work, dWm, done by the basic membrane 

stress system during a virtual displacement is 

dWm = J {d Eb}T {a} dvol 

vol 

where the stress vector {a} is defined by 

and ax is the longitudinal stress, 

ay is the transverse stress, 

Lxy is the in-plane shear stress. 

Note that because residual stresses are to be 

included, and hence some strips (or parts of strips) 

may be subjected to tensile stresses, it is important to 

introduce a sign convention. In this work compressive 

stress will be taken as positive and tensile stress as 

negative. 

(3.49) 

(3.50) 
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The bending strain {£b} is given by 

2 + v, 2 + W, 2 u, 
x x x 

{£b} 
1 2 + v, 2 + w, 2 = "2 u, 

y y Y 

2u, u, x y + 2v, v, x y + 2w, w, x y 

u'x v'x w'x 0 0 0 

1 
= "2 0 0 0 U'y V'y W'y 

u, v, w, y y y u'x v'x w'x 

Differentiation of equation (3.1) gives 

T 
{f,x} = {u, v, w, }, 

.x x x 

Substituting equations (3.53) 

bending strain becomes 

{f }T 
'x 0 

{£b} 
1 0 {f'y}T = "2 

{f }T 
'y 

{f }T 
'x 

into equation 

rf
. ] {f.:) 

u, 
x 

v, x 

w'x 

u, y 

V'y 

W'y 

(3.52) , 

(3.51 ) 

(3.52) 

(3.53a) 

(3.53b) 

the 

(3.54) 
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x y/b to obtain in nondimensiona1 form Using z;; = X- and n = 

f 1 (3.55) = X- f,Z;;' x 

f 1 
f'n' (3.56) y = b 

and 1 {f'Z;;}T 0 X- i {f,Z;;}" 

{e:b~ 
1 T (3.57) = 0 b {f'n} 

1 
1 {f }T 1 T 

b {f'n} 

b 'n X- {f, Z;;} 

From equation (3.11) 

{f,Z;;} = [N'Z;;J{o} (3.53a) 

{f'n} = [N'nJ{o} (3.58b) 

Substituting equations (3.58) into equation (3.57) 

1 T 0 ). [N,Z;;] 
1 

1 {o}T 1 [N JT 
X- [N, Z;; ] 

{e:b} = 2" 0 
b to} (3.59) 'n 

1 

1 [N JT 1 T b [N 'n] 

b 'n ). [N, Z;; ] 

1 T 
0 ). [N, Z;; ] 1 

). [N, Z;; ] 

{de: b} {dolT 0 
1 [N JT {o} (3.60) = b 'n 1 

1 T 1 T b [N 'n] 

b [N, n ] I [N, z;; ] 
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Substituting equations (3.50) and (3.60) into 

.equation (3.49) we obtain 

dWm = A~ f Ox {dOlT [N,~]T [N,~] {o} dvol 

vol 

+ b~ f ay {dOlT [N'n]T [N'n] {Ol dvol 

vol 

If it is assumed that the structure is under pure 

longitudinal axial compressive stress a and neglect the 
x 

transverse stress 0" and the shear stress 1 equation y xy 
(3.61) becomes 

dW = ~ f a {dolT [N ]T [N'r] {a} dvol m A2 x '1; ~ 
vol 

r cr 
= {dolT J ~ [N ]T [N'rJ dvol {a} 

A2 '1; ~ 
vol 

= {dolT [s] {c} 

where [S] is the stability matrix and given by 

[S] = :2 J Ox [N,~]T [N,~] dvol 

vol 

(3.61) 

(3.62) 

(3.63 ) 

(3.64) 

(3.65) 
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An expression for the matrix [S] o~tained by 

differentiating the matrix [N] (equation (3.16», sub-

stituting it into equation (3.65) .and carrying out the 

integration through the depth and along the length of 

the strip is given in Appendix B. If the longitudinal 

stress a is uniform a direct integration can be carried x 
out across the width of the strip in both elastic and 

inelastic analysis. But for the case of nonuniform stress 

as in the case of a strip under axial and residual 

stresses, the integration can be carried out numerically 

as mentioned above (Section 3.5). It is clear that this 

matrix is independent of the material properties and is 

a linear function of the stress. 

3.7 Eguilibrium Condition 

For equilibrium the virtual work done by the basic 

membrane stress system dW must equal the virtual work 
m 

done by the internal strains dW .• 
~ 

substituting expressions for dWi and dWm from equations 

(3.44) and (3.64) we obtain 

(3.66) 

(3.67) 

(3.68) 
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i.e. [[K] - [S]] {a} = 0 

For the case of uniform stress, equation (3.70) may 

be written as 

where 

[S] = ).12 f 
vol 

The matrix [S] is independent of the load and will be 

constant for every strip. It depends on the geometric 

properties of the strip, and for this reason it is 

called the geometric stiffness matrix. If the material 

is elastic then the matrix [KJ will also be constant and 

independent of the stress level. 

3.8 The Boundary Conditions 

After the stiffness and stability matrices of the 

strip have been obtained as described in the preceding 

sections, the boundary conditions at the longitudinal 

(3.69) 

(3.70) 

(3.7l) 

(3.72) 

edges of the strip must be considered. These longitudinal 

edges may be one the following: 

i-Connected to other strip 

ii - Free to move and rotate 
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iii - Simply supported 

iv - Built in 

One restriction of the finite strip method is the 

impossibility of mixing more than one condition along one 

edge which is an easy task in the finite element method. 

In the finite element method there will usually be more 

than one node along any longitudinal edge and these nodes 

may have ,different degrees (types) of restraint. In the 

finite strip method however the longitudinal edge is con-
I 

sidered as one nodal line and must therefore have only 

one type of restraint. For example if an edge is simply 

supported, then that condition must apply over the whole 

length of the edge. 

The first and the second conditions will not affect 

the stiffness or the stability matrices. The third 

condition prevents the edge from moving normal to the 

middle plane but allows any other in-plane displacements 

as well as a rotation (i.e. wi = 0). The fixed edge can­

not move in the out-of-plane direction or rotate about 

the longitudinal axis (wi = ~i = 0). 

To introduce a certain displacement (boundary 

condition) into the overall matrix, consider first the 

general case of a set of algebraic equations 



e e --nl n2 

or in brief 

[E] {c} = {PI 
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o 
n 

= 

in which any variable, O2 for example, should be zero (or 

have a constant value S). There are two approaches by 

which this may be achieved. 

(3.73) 

(3.74) 

1. The first approach is to modify the row and the column 

of the matrix [E] which corresponds to the constrained 

(or the known) displacement. All elements in this row and 

column are in fact reduced to zero, with the exception of 

the diagonal element which becomes unity. The corresponding 

element in the force vector must also be set to zero if the 

displacement is fully restrained (or the known value S). 

For instance if 15 2 is the constrained (or the known) dis­

placement then the second row and the second column in the 

matrix [E] become zero and the diagonal e 22 becomes unity. 

The value of P2 must also be set to zero (or 8). The 

modified form of equation (3.73) will then be 
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ell 0 e 13 e ln °1 PI 

0 1 0 0 0 °2 0 

e 31 0 e 32 e 3n °3 = P3 

-- 0 -- -- --

e nl o e -- e 0 P n2 nn n n 

2. The second approach involves modifying the diagonal 

element of [E] corresponding to the constrained dis-

placement by adding a very high value. This is equiva­

lent to applying a very large stiffness at the particular 

boundary, with the effect of reducing the corresponding 

displacement to a negligible small value. The modified 

form of equation (3.73) will be 

e nn ° n 

= 

p 
n 

In either case all degrees of freedom which are 

restrained can be treated in this way. In the present 

work the second method has been used and the stiffness 

matrix for each strip modified before the overall matrix 

of the structure is assembled. 

(3.75) 

(3.76) 
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3.9 The Overall Matrix 

After the stiffness and stability matrix for each 

strip has been obtained and modified to account for the 

edge conditions, the overall matrix can be assembled. 

If all strips are coplaner, i.e. the local axes of each 

strip coincide with the global axes of the structure the 

assembly of the overall matrix can be done directly. 

However, .if the local axes of the strip do not coincide 

with the global axes of the structure the stiffness and 

stability matrices for each strip must be transformed to 

a consistent set of axes. The transformed stiffness 

matrix [K] of the strip is given by 

where [K]l is the stiffness matrix referred to local 

axes and [R] is 8 x 8 transformation matrix. 

[R] = [er] 
[0] 

[O]J 
[r] 

[0] is 4 x 4 null matrix and 

I o o 0 

o cosS sinS 0 

(3.77) 

(3.78) 

[r] = (3.79) 

o -sinS cosS 0 

o o o 1 
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a is the angle of rotation of the local axes measured in 

.clockwise direction as shown in Figure 3.8. 

In elastic buckling problems where two basic types 

of strip matrices (stiffness and stability matrix) are 

involved, it is required to assemble the two corresponding 

overall matrices, since the parameter 0 must vary untill x 

a certain condition is satisfied. The matrices [K] and 

[5] for all strips are independent of the load and thus 

the overall equilibrium equation becomes 

[K - Ox S] {6} = 0.0 

where K is the assembled stiffness matrix, 

and S is the assembled stability matrix. 

In the inelastic buckling problems with nonuniform 

(3.80) 

applied stress, both matrices [K] and [S] are functions of 

the stress ox. The separation of the two matrices (stiff­

ness and stability) is no longer an advantage. They must 

both be updated with every iteration and the overall 

equilibrium equation becomes: 

[K - S) {o} = 0 (3.81) 

[E] {6} = 0 (3.82) 

where 

[E] = [R - S] (3.83 ) 
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The matrices K, Sand E are square matrices of order 

n x n, and {o} is a nodal displacement vector of order n 

where n is the total number of degrees of freedom. 

With regard to updating the stability matrix, there 

are two approaches. In the first the updated matrix [SJ 

for any strip is given by 

where [SJo is the stability matrix obtained at initial 

axial stress 0xo (equation (3.65». ~ox is the change in 

the initial axial stress 0xo' This change in the axial 

stress, ~ox' is uniform and the stability matrix [SJ can 

be obtained by direct integration (equation (3.72». So, 

the numerical integration will be done in the first cycle 

only to obtain [SJo ' Thus, the two matrices [SJo and [SJ 

will be calculated only once. The stability matrix at 

any stress level, ox' can then be obtained from equation 

(3.84). The second approach involves regeneration of the 

stability matrix using the updated axial stress, ° . x In 

this case the numerical integration will be used in every 

cycle. The second approach, which has been used in the 

present work, needs less core store but is more time 

consuming in terms of computational effort. 

(3.84) 
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3.10 Determination of the Critical Load .and Mode of 

Buckling 

3.10.1 Linear Eigenvalue Problem 

In the elastic buckling problem the coefficients 

of the equation 

[K - 0 S] {6} = 0 x 

are linear functions of the load and the simultaneous 

equations are homogeneous. The nontrivial solution of 

these equations is given by 

This means that the criterion for buckling is in general 

the vanishing of the determinant of the overall matrix 

[R - Ox S]. Standard eigenvalue routines (105) can be 

used to determine the critical load. In order to use 

direct methods for solution of the standard eigenvalue 

problem, equation (3.80) can be reduced to 

where 

[A] {6*} - c' * [I] {6*} = 0 
x 

[R] = [L] [L]T 

(3.80 ) 

(3.85 ) 

(3.86) 

(3.87) 

(3.88) 
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o * = 1/0 x x 

The reduction of equation (3.80) to equation (3.86) 

consists of symmetric triangulation of the stiffness 

T matrix [K] to [L] [L]. The matrix [A] is calculated 

by pre- and post-multiplication of the stability matrix 

[5] by [L]-l and [L]-T respectively. 

A comparison between three of the most successful 

direct methods, Lanzos, Givens and Householder's for 

(3.89) 

(3.90) 

finding the eigenvalues of a general symmetric matrix can 

be found elsewhere (l06). In all these methods the matrix 

reduces to triple-diagonal form. Householder's method is 

generally held to be the fastest and most accurate of 

known methods (l06). 

Because only the smallest eignevalue is desired, an 

iterative method rather than a direct one may be con-

venient to apply. In this method (107) a trial displace­

ment vector {oli is assumed and an approximate eigenvalue 

and a second trial eigenvector {oli+l can be determined 

from 

or from 

= a x 

(3.91) 

(3.92) 
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The iteration may be based on a tri~l eigenvalue ox. 

The value of the stability determinant at 0 ~ a < a is x cr 
always positive as shown in Figure 3.9. With the trial 

o , the determinant [K - a S] is evaluated. If the x x 
determinant is equal to zero, the trial value of the 

stress, a , will correspond to one of the critical loads x 
(eigenvalues). If the determinant has a value other than 

zero, a new stress, ox' will be selected and the deter­

minant is again calculated. A comparison is made with the 

results of the previous trial and, based on this comparison, 

a new stress, ox' is selected for trial. This should be 

repeated until the value oQtained for determinant is equal 

to zero. For practical applicationn in fact it is 

extremely unlikely that a trial value for the stress will 

be identically equal to the critical stress, and an 

absolute value for the determinant of zero will not be 

realised. However, it is clearly a simple matter to check 

the upper and lower bounds to the critical load at any 

iteration. Once the difference between these is 

sufficiently small, the value of the critical load can be 

given to the appropriate degree of accuracy. Using this 

method of iteration however, there is no guarantee that 

the obtained critical load is the smallest one. 

These standard methods of solutions for the eigen-

value problem are however only applicable to linear 

eigenvalue problems. As mentioned in the previous section, 
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but the stiffness and stability matrices. vary with the 

.applied stress in a nonlinear manner, and hence these 

forms of solutions are not applicable. In the methods 

for the determination of the eigenvalues described 

above an ideal, perfect panel is considered and displace­

ments prior to instability are ignored. An approximate 

method based on the load deflection relationship (Figure 

3.10), for perfect and imperfect panel, can also be used. 

For any increment of load, the deflection behaviour can 

be obtained from a direct solution of the equilibrium 

equations and the critical load corresponds to that load 

at which the deflection becomes very large. Usually this 

approach underestimates the critical load and is also 

difficult and time consuming (69) to use. However it does 

have the advantage that the mode of buckling will be 

provided and the critical load will always correspond to 

the lowest eigenvalue. More importantly, it can be 

applied to the non1inear relationships represented by the 

stiffness and stability matrices in the current work. 

A general algorithm presented by Wittrick and 

Wil1iams (87) eliminates the drawbacks of all these 

methods. Using this algorithm the number of critical 

buckling loads exceeded by any specified load can be 

obtained for the case in which the overall stiffness matrix 

is non1inear. It can also be applied to the computation 

of the natural frequencies of elastic structures. 
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Because it enables convergence on the lowest 

,eigenvalue with absolute certainty, this method has been 

used in the current work to obtain the critical loads. 

The method will be briefly described in the following 

section for completeness. 

3.10.2 Wittrick-Williams Algorithm 

In the inelastic problem, the stress at any point in 

the panel prior to buckling is a pure membrane axial stress 

combining the sum of the longitudinal residual stresses 

and the applied longitudinal compression. This stress may 

be tensile at some points and compressive elsewhere but the 

critical load can still be determined in the same manner as 

for the elastic case. However, as the coefficients of the 

matrix [E] (equation (3.82» will no longer be linearly 

dependent on the load factor, standard eigenvalue routines 

are not applicable, and instead the Wittrick-Williams 

algorithm (87) is used to ensure automatic convergence on 

the lowest buckling stress, ocr. The only difference 

between the elastic and inelastic analysis using this 

algorithm is the updating of the stiffness and stability 

matrices with every iteration in the inelastic case. 

The determination of the inelastic critical load using 

this algorithm is described below. 

~. The panel is divided into a number of strips and every 

strip into a number of substrips. An applied stress Ox is 

assumed and the elastic properties of the material for 
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every substrip is determined. The stiffness and stability 

matrices are generated and the overall matrix [E] assembled. 

2. Using Gauss elimination the matrix [E] is transformed 

to an upper triangular matrix [E*]. 

3. The number of the negative elements on the leading 

diagonal of the matrix [E*] is calculated. This number (m) 

is equal to the number of critical loads exceeded. To 

obtain the first critical load this number must be zero or 

one, i.e. the first critical load is the load which changes 

the number of the negative elements in the leading diagonal 

from 0 to 1 when this load increases by a small amount. 

4. If the number of negative elements m is greater than 

one, the assumed applied stress must be reduced and if m is 

less than one the assumed stress must be increased. The 

stiffness and stability matrices are then regenerated and 

steps 1 to 4 repeated. In every cycle the assumed stress 

is compared with the previous one. If the change in the 

critical load is within the accuracy specified, the current 

value of stress will be taken as equal to the smallest 

critical load. 

A flow chart for calculating the inelastic critical 

load for plate structuresis shown in Figure 3.11. 

3.10.3 The Determination of Buckling Mode 

The previous section has been concerned with the 

calculation of the smallest critical stress of a plate 
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assembly. However, it is often useful to know the 

corresponding mode of buckling (eigenvector) and a means of 

obtaining this will be described in the present section. 

After the determination of the critical stress cr cr 
equations (3.81) and (3.82) become 

[K - S] {a} = 0 

where the stiffness matrix [K] and the stability matrix [S] 

are both functions of the critical stress. These equations 

represent a system of simultaneous equations, the solution 

,of which yields the required eigenvector {cl. However, 

because these equations are all homogeneous, an absolute 

solution is not possible, and it is therefore necessary to 

specify arbitrarily one of the elements of {a}. Thus, the 

eigenvector represents simply the magnitudes of the nodal 

displacement relative to this specified displacement. 

Care must be taken in selecting a suitable displace­

ment to form the base which the values of the eigenvector 
~m 

are determined since many of the degrees of freedom could 

be implicitly zero in a given buckled shape. It has been 

found that problems can be avoided if the element of {a} 

to be specified is the one corresponding to the negative 

element of the leading diagonal of the upper triangulated 

overall matrix [E*] at the final upper bound to the critical 

load (22). Note that since the critical stress is 
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calculated using a trial and error proce~ure, it will in 

.general be an upper or a lower bound to the absolute value 

of the critical stress. It is assumed that the convergence 

procedure has been pursued to such an accuracy that the 

critical stress exceeds at most one eigenvalue. This 

implies that only one negative element appears on the 

leading diagonal of [E* (0 ) ] and the corresponding 
cr 

element of {c} is set to unity. 

Because this element may appear any where on the 

diagonal the following computational procedure can be 

adopted: 

1. Obtain the upper bound to the critical load ocr. 

2. Detect the negative element (ne) of the leading 

diagonal of the upper triangularized overall matrix 

[E*] • 

3. Generate the overall matrix 

[EJ = [K - S] 

or ell e 12 e l,ne e l,n 01 0 

e 2l e 22 e 2,ne e 2,n O2 0 

0 
= 

ene,l e e -- e 0 0 ne,2 ne,ne ne,n ne 

0 

en,l e e e 0 0 
n,2 n,ne n,n n 

(3.93) 
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4. Prescribe a unit value to one by means of the 

transformation 

ell e 12 0 e l,n °1 el,ne 

e 2l e 22 0 e 2,n °2 e 2,ne 

0 
=-

0 0 0 -e ne,ne 0 0 ° ne ene,ne 

-- 0 

e e -- 0 e ° e n,l n,2 n,n n n,ne 

5. Solve this linear system of equations (3.94) to 

obtain the required eigenvector. 

3.11 The Residual Stresses 

Many structural members, such as plate girders and 

box girders, are fabricated by welding plates along their 

longitudinal edges. The metal around the welds in these 

structures is stressed up to yield in tension. The rest 

of the section must be in a state of compression (residual 

compressive stress Or) in order to preserve longitudinal 

equilibrium (108, 109). This residual stress is due to 

the longitudinal shrinkage of the welds on cooling. The 

residual stresses can be introduced as an imperfection or 

as additional stresses on the panel (59). In this work 

~t is assumed that the residual stresses act as additional 

stresses in the direction of loading (longitudinal direc­

tion only). 
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The slenderness ratio of the panel,. the size, method 

and type of welding (continuous or intermittent) and the 

treatment process all have an effect on the residual 

stresses (56-58). The shape and the amplitude of the post­

welding distortions of plates are dependent upon the 

welding process and the dimension of the plate. The 

distortion increases with increasing weld size, which is a 

function of the plate thickness. The post welding distor­

tions are a function of the transverse shrinkage of the 

edge welds (108). The compressive residual stresses due 

to longitudinal shrinkage will increase this distortion. 

There are three procedures for straightening the panel to 

overcome these distortions. The effect of the three 

methods-localized heating, clamping of some parts of the 

panel and mechanical loading - on the residual stress have 

been examined by Horne et al (56-58). 

There are many assumed patterns for the distribution 

of the residual stresses in plate structures (21, 60, 96, 

109) but in this work the idealized pattern shown in 

Figure 3.12 will be used. 

3.12 The Computer Program 

A program was written to calculate the inelastic 

critical load for stiffened panels, rolled sections or box 

columns. The routines of the program perform the following 

functions. 



- 79 -

1. Read and print the input data. 

2. Generate the substrips and determine the 

residual stresses. 

3. Obtain the elastic properties of the material. 

4. 

5. 

Generate the stiffness matrix 

Generate the stability matrix 

for each strip. 

for each strip. 

6. Introduce the geometric boundary conditions. 

7. Transform the stiffness and stability matrices 

if required. 

8. Assemble the overall matrix. 

9. Determine the first critical load. 

10. Print the results. 

3.12.1 Generate the Substrips and Obtain the Residual 

Stress 

The strip is divided into a number of substrips - up 

to 30.-dependent on the accuracy required from the 

numerical integration. The program generates the position 

of the strip - and hence each substrip - relative to the 

panel. From the assessed pattern of residual stress, the 

value of the residual stresses at each substrip node can 

be calculated and stored. The total stress will then be 

where ax(i) is the total stress at substrip node (i), 

a(i) is the applied longitudinal stress at sub­

strip node (i), 

ar(i) is the residual stress at substrip node (i). 
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3.12.2 Obtain the Inelastic Properties of the Material 

Knowing the value of the total stress at every sub-

strip node, the material properties such as tangent modulus 

Et' secant modulus E and effective Poisson's ratio can sec 

be obtained from equation (3.22), (3.24) and (3.25) 

respectively. The elasto-plastic matrix [F] (equation 

(3.48» is then generated at every substrip node. 

3.12.3 Generate Strip Stiffness Matrices 

TO generate the stiffness matrix of a strip equation 

(3.45) will be used. Because the width of individual 

strips is not constant in most cases, a routine to form 

the shape function for any strip width is used. It is 

clear from the stiffness matrix equation that the first 

and the second order differentiation of the shape functions 

are required. A routine for differentiation of the equa­

tion presented in the element lIii" of any vector such as 

{x} has been written. A flow chart for the generation of 

the stiffness or stability matrices of a strip is shown in 

Figure 3.13. 

The generated stiffness matrix will be stored. The 

next strip will be compared with the previous strip. If 

both strips have similar conditions, such as geometry, 

residual stresses and applied stresses, the same stiffness 

matrix will be used for the new strip. If any condition is 

different, a new stiffness matrix will be generated as 
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described above. So every new strip wil.l be checked with 

all the previous strips before deciding whether stiffness 

matrix is to be copied from any of the existing stiffness 

matrices or generated as a new one. 

3.12.4 Ge~erate Strip Stability Matrices 

The total stress at every substrip is calculated 

from the equation 

The stability matrix is given by 

.5 

[5] = bAt f Ox (i) [{xl {X}T + {y} {y}T + {z} {Z}TJdn 

-.5 (3.96) 

A flow chart for the generation of the stiffness and 

stability matrices is shown in Figure 3.13. The stability 

matrix will be stored. If the next strip is similar to 

the previous one the stability matrix will be copied 

otherwise it will be generated as described • 

. 3.12.5 Impose the Geometric Boundary Conditions, Assemble 

the Overall Matrix and Determine the Smallest 

Critical Load 

The boundary condition will be considered for every 

~trip by checking the two edges. If the first edge is 



- 82 -

free or continuous the routine will check the second edge 

and if that too is free or continuous the routine will do 

nothing and the strip stiffness and stability matrices 

will not change. If one edge is hinged, the diagonal 

element of the stiffness matrix corresponding to the out­

of-plane deflection will be replaced by a very high value 

such as 1030 . The corresponding element in the stability 

matrix will be replaced by zero. If the edge is fixed not 

only the out-of-plane deflection but also the diagonal 

elements corresponding to the combined rotation will be 

modified as before. 

If the angle between the panel global axes and the 

strip local axes is B the stiffness and stability matrices 

must be transformed. A routine has been written to trans­

form these matrices using the equation 

[K] = [R]T [R] [R] 

The transformed stiffness and stability matrices are used 

to assemble the overall matrix. This overall matrix is 

transformed to an upper triangular matrix using Gauss 

elimination. The Wittrick-Williams algorithm is then used 

to determine the critical load. If the change in the 

assumed stress is within 0.1% the program will terminate 

and print this value as the critical load. 
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CHAPTER 4 

COMPARISON BETWEEN THE THEORY 

AND PREVIOUS WORK 

4.1 Introduction 

In order to establish to what level of accuracy the 

finite strip method can be used to predict the failure 

load of plate structures, a number of comparisons have 

been made with previously published results. Before 

presenting these, however, it is necessary to evaluate 

the number of strips into which the structures should be 

divided in order to achieve a reasonable level of accuracy. 

Furthermore, where the stress varies across the plate width 

- and the elastic properties are therefore not constant -

the number of substrips to be used in the numerical 

integration for the internal virtual work must be assessed. 

This checking procedure has been carried out in 

stages, each of which are described in detail in the 

following sections. The first stage was the comparison 

with established results for the elastic buckling of a 

rectangular plate, followed by a similar study for plate 

assemblies - in particular stiffened panels. 

The next stage was to check the nonlinear parts of 

the current method, and this again was done first for 

isolated ~lates, and then for plate structures, including 

those with residual stresses. 
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Unfortunately some of the published work on buckling 

of plate structures is not directly suitable for compari­

son, but these points are discussed more fully where 

applicable. 

4.2 Elastic Buckling Behaviour of Plate Structures 

4.2.1 Elastic Buckling of Isolated Plates 

The stability of rectangular plates has been thoroughly 

studied by many authors and represents an ideal starting 

point for assessing the accuracy of the current method. 

This problem has been solved for various boundary condi­

tions and for loading conditions including uniform com­

pression, pure bending and combinations of the two (1, 3, 

4). Although the present program can be used for all such 

cases, it was checked first for the simple case of a 

rectangular plate under uniform compressive stress. Two 

restraint conditions were considered along the two longi­

tudinal edges - simply supported and clamped. The wave­

lengths used for obtaining the critical stresses were 

those used in the exact solution. A number of solutions 

were obtained with the plate divided into different numbers 

of strips between 1 and 8. Although direct integration 

could be used for this simple case, the more general method 

of numerical integration was used, with every strip 

divided into four substrips. For this simple case the 

number of substrips should have negligible effect on the 

buckling load. This in itself provided a useful check on 
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the program, and indeed it was found that with each strip 

divided into two substrips identical results were obtained. 

To use the routines described in Chapter 3, a very 

high value of yield stress was assumed, so the ratio of 

the applied stress to yield stress (~) was negligeably 

small. Therefore the tangent modulus and secant modulus 

could be considered as equal to the elastiq modulus. 

Thus, II = a/a y 

and for very high values of ay 

II := 0 

Et 
E (1 _ ~2) 

= 
+ ~2) (1-2 C~ 

Esec 
E (1 - ll) = (1 - Cll) 

:= 

:= E, 

E, and 

E sec 
E = v e 

The buckling coefficients K for simply supported and 

clamped rectangular plates are given in Table 4.1, where 

The results compared very well with Plank's results (76), 

the small difference between the two being possibly due to 

a higher accuracy used by Plank. 
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It appears from Table 4.1 that an error of about 0.2% 

compared with the exact critical stress will arise if the 

rectangular plate is divided into two strips. Considering 

the two important approximations which are made in the 

remainder ot this work, this level of accuracy can be con­

sidered quite acceptable. The first of these approximations 

is that the structure behaves in an inelastic way according 

to the assumed stress-strain relationship described in 

Section 3.4. The second approximation concerns the 

residual stress pattern which is idealized as described in 

Chapter 3, and this will generally differ from the actual 

pattern of the measured residual stresses (56-58, 60). For 

these reasons, in the present work every component of the 

structure will be represented by two strips unless other­

wise stated. 

4.2.2 Elastic Buckling of Stiffened Panels 

Skaloud and Kristek (113) have examined the relation­

ship between elastic critical load and stiffener size using 

folded plate theory. They considered simply supported 

panels with eight or two longitudinal flat, angle, tee or 

closed stiffeners under uniform axial compression and 

analysed both local and overall buckling modes. Their 

results for the case of eight flat stiffeners are shown in 

Figure 4.1 together with those predicted by the finite 

strip method (as curves of critical stress versus the 

stiffener size hs/ts) • 
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Buckling Coefficient 
(K) 

Boundary No. of strips 
Conditions Ref. (76) Present work 

1 4.2583 -
Simply 2 4.0086 4.0097 

Supported 3 4.0017 4.0019 

Edges 4 4.0005. 4.0006 

6 4.0001 4.0001 

)./b = 1.0 8 4.0000 4.0000 

Exact result (2) 4.000 

2 7.2261 7.2597 

Built in 3 7.0280 7.0348 

edges 4 6.9908 6.9930 

6 6.9753 6.9757 

)./b=0.661 8 6.9724 6.9725 

Exact result (2) 6.9709 

Table 4.1. Elastic buckling of flate plate 

For overall buckling ()./b = 4.5), agreement between 

the two methods is good, but the finite strip results for 

local buckling ()./b = 1) of panels with stiffeners with a 

depth to thickness ratio hs/ts < 8 are considerably lower 

than those of reference (113). This is because of inter­

action between local and overall buckling modes. For 
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small stiffener sizes the assumption that for local 

buckling the longitudinal lines at the stiffener-plate 

connections remain straight is unrealistic. Whilst 

the method used by Skaloud and Kristek imposed such a 

restriction, the finite strip method described here is 

more general, and because in-plane destabilising effects 

are included, full interaction between buckling modes is 

accounted for. 

The intersection of the overall and local buckling 

curves may be considered as defining the optimum size of 

the stiffeners (113), the increase in the local buckling 

stress being very small above this "optimum" size. 

Skaloud and Kristek found that the behaviour of a 

plate fitted with two stiffeners was similar to the one 

fitted with eight flat stiffeners. 

A point to note is that the folded plate theory of 

reference (113) is entirely elastic. If typical values 

for steel of elastic modulus E = 210000 N/mm2 and yield 

stress ay = 240 N/mm2 are assumed, it is clear that the 

critical stress does not exceed 0.5 ay, well below the 

limit of proportionality, and hence the assumption of 

elastic behaviour is justified. 

It would appear from this comparison that the computer 

program bpsed on the finite strip approach (Chapter 3) is 

capable of analysing accurately the buckling behaviour of 

plate assemblies within the elastic region. 
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4.3 Inelastic Buckling Behaviour of Rectangular Plates 

4.3.1 Plate Buckling Curve-German Design Rules 

After the program had been checked for obtaining the 

elastic critical load of a rectangular plate and plate 

assembly, it was used to investigate the inelastic 

behaviour of isolated plates to check the present non-

linear approach. An initially perfectly flat, simply 

supported square plate under a uniform longitudinal com-

pressive stress was considered. No residual stresses 

were included and the stress-strain relationship given in 

Chapter 3 was assumed. 

The plate was divided into four strips and instead 

of direct integration which is possible for this simple 

case of uniform stress, the more general method of numerical 

integration was used to obtain the stiffness and stability 

matrices, every strip being divided into four substrips 

for this purpose. 

To revise the German Standard for Stability Problems 

DIN 4114 and to prepare a new edition, Scheer et al (Ill) 

proposed a quadratic parabola as a transition curve between 

the elastic buckling curve and the squash line corresponding 

to a lay = 1.0 (Figure 4.2). This transition curve was cr 
established by comparing the following formulae (Ill): 
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a. Tirnoshenko 

1. = ~ 

b. Faulkner 

2t = b ~-

c. Engesser 

d. Moler and Donat 

Each of these curves is plotted in Figure 4.3(a) together 

with the results obtained using the inelastic finite strip 

approach. It is clear that for a slender plate the curves 

a, band d are higher than the finite strip and this may 

be due to neglecting the post-buckling effect in the 

present approach. 
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The finite strip method, in the elastic range (S > 1.25), 

gave a curve of critical stress versus slenderness which 

coincides exactly with the Euler curve as shown in Figure 

4.2. The finite strip results for the inelastic range are 

shown by the solid curve ac. These compare very favourably 

with the quadratic parabola proposed by Scheer et al (Ill). 

The tangent of this transition curve is equal to the 

tangent of the Euler hyperbola at the point a/ay = 0.65; cr 

the vertex of the curve corresponds to the ordinate 

Ocr/aY = 1. The difference between the two curves is more 

marked at the lower end where Scheer et al assume a 

starting point of S = 0.572 compared with a value of about 

0.45 given by the finite strip results. It should be noted 

that as the effects of strain hardening are not considered 

in either finite strip or Scheer's work the curves start 

as horizontal line 0cr/Oy = 1.0 at small values of S. 

Furthermore for slender plates, the post-buckling reserve, 

which may be many times larger than ocr' has been 

neglected in both approaches. 

comparing the Engesser curve for plate buckling with 

the quadratic parabola, Scheer et al found that the latter 

is lower for values of slenderness ratio a about 1.0 (Table 

4.2). On the basis of some unspecified test results they 

decided that this reduction was more correct. It is of 

interest to note that the finite strip results fall between 

these two curves - Scheer and Engesser - in the range of a 
between 0.8 and 1.2 (Figure 4.3b). At a = 1.0 the ratio of 
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the critical stress to the yield stress - 0cr/Oy - is 0.85, 

0.873 and 0.890 where the calculations were based on the 

quadratic parabola, finite strip and Engesser curve 

respectively. 

The above comparison for an isolated plate in the 

inelastic range would suggest that the current method of 

allowing for nonlinear material behaviour is sound. 

Formula or approach °cr/Oy 

I I 

I 2 strips 0.874 

FSM 3 strips 0.873 

4 strips 0.873 

Faulkner 0.769 

Moller 0.852 

Ref. ( Ill) Scheer 0.856 

Engesser 0.890 

I Timoshenko I 1.000 j 

Table 4.2. Inelastic buckling of simply supported plate 

with a = 1.0 

4.3.2 Inelastic Buckling of Rectangular Plates With 

Residual Stress (25) 

To check the finite strip approach when residual stress 

is included a comparison has been made with some test 
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results obtained at Cambridge University (25). In the 

previous section it was assumed that the plate was 

initially stress free and direct integration might be used 

to obtain the stiffness and the stability matrices. For a 

residual stress other than zero, the strip has to be 

divided into a number of substrips. The effect of this 

number on the buckling strength of plates has also been 

studied. 

For a square box section the local buckling can be 

modelled as a simply supported plate (25) with (4n + 4) 

degrees of freedom, where n is the number of strips. 

Generally, in the analysis of local buckling of box 

columns four models can be investigated (Figure 4.4). 

The first is a complete box section with l6n degrees of 

freedom where n is the number of strips on one side only. 

This model is necessary where there is no symmetry in 

geometry or in loading conditions. For symmetrical cross­

sections, only one half of the cross-section - as shown in 

Figure 4.4(b) - need be used. The number of degrees of 

freedom will be reduced to (8n + 4). If the section is 

under pure axial compression mode C which is based on the 

very wide panel approach (112) can be used. The displace­

ment of the nodes a and c (Figure 4.4(c» are identical so 

the total degrees of freedom is only (8n). 

In comparing the current results with the published 

test results (25) models A, C and D have been used and in 

each case the critical stress was the same, confirming 
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that the box column test results can be used for comparison 

with a simply supported rectangular plate. 

4.2.3.1 Division of Strips into Substrips - Convergence 

Tests 

The failure stress of a square box column loaded in 

axial compression has been analysed using different numbers 

of strips and substrips. The residual stress pattern 

shown in Figure 4.5 has been assumed, and two levels of 

residual stress - or = 0.1 0y and 0.3 0y where 0y is the 

yield stress - have been considered. The results are 

shown in Table 4.3 with the results of both the theoretical 

and experimental work carried out at Cambridge University 

for identical box columns with measured residual stresses 

between 0.08 ay and 0.13 ay., 

It is clear from Table 4.3 that convergence is quite 

rapid and that with each component divided into two strips, 

and six substrips used for the numerical integration, the 

results appear to be satisfactory. However it has been 

found that in some circumstances a finer subdivision is 

necessary, and as this involves little additional computa­

tional effort, ten substrips have been used throughout this 

work wherever the stress is varying across the strip width. 

Comparison of the finite strip results and the work 

undertaken at Cambridge University will be discussed more 

fully in the following section. 
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Critical stress/Yield stress °cr/Oy 

No. of No. of B = 1. 26 B = 0.92 B = 0.79 
strips substrips 

or ! 
= 0.1 0.3 0.1 0.3 0.1 i 0.3 

0y I 

I 
4 0.5523 0.3515 0.8330 0.6329 0.8622 

i 
0.6621 i 

i 
0.8611 

I 
6 0.5579 0.4483 0.8328 0.6691 0.7675 

I 
i 

1 10 0.5590 0.4234 0.8318 0.6581 0.8598 I 
, 0.6899 
I 
I 

20 0.5642 0.4179 0.8356 0.6555 0.8637 I 0.6854 
I I 

30 0.5631 0.4164 I 0.8351 0.6547 0.8632 I 0.6841 
I 

I 
10.8553 i 0.6642 

I 
4 0.5226 0.3774 0.8225 0.6365 

I 6 0.5252 0.3650 0.8245 0.6341 10.8570 0."28 
2 I 10 0.5257 0.3690 0.8238 0.6360 0.8543 0.6645 

I I 

I 
20 0.5254 0.3689 0.8239 0.6365 10.8547 0.6652 

I 30 0.5253 0.3692 0.8196 0.6365 I 0.8547 0.6650 

i 
4 j 0.5242 0.3642 0.8241 0.6339 0.8568 0.6627 

I 
I 
I 6 0.5253 0.3695 0.8237 0.6368 0.8562 0.6652 

3 10 0.5240 0.3671 0.8232 

I 
0.6354 0.8543 0.6640 

20 0.5243 0.3685 0.8191 0.6364 0.8543 0.6633 i 
I 

30 I 
I 0.5242 0.3683 0.8191 0.6362 ! 0.8543 0.6628 I 

i 4 0.5257 0.3708 0.8240 i 0.8564 
I 

0.6366 0.6644 
I 

6 0.5243 0.3693 0.8235 0.6365 0.8543 0.6645 

4 i 10 0.5242 0.3656 0.8234 0.6347 0.8543 0.6624 i 

I 20 0.5240 0.3658 0.8234 0.6341 0.8543 0.6624 
! I 

30 0.5240 0.3658 0.8233 0.6341 I 0.8543 0.6624 

Average test resu1 t 0.5600 - 0.7720 - I 0.8590 -

Theo. results (25) 0.5800 - 0.7330 - I 0.8400 -

No. of specimens 2 - 5 - 3 -

Measured er/o y 0.0800 - 0.1200 - 0.1300 - I 
Tnble 4.3. Convergence with box column test results 
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4.2.3.2 Comparison With the Available Results 

A considerable amount of experimental work has been 

performed at Cambridge University (25-30) to study the 

maximum strength of short, square, welded steel box columns. 

Some tests were done on "as-welded" and others on stress-

relieved specimens. The results for all tests, which 

included specimens with measured compressiye residual 

stresses between 0.0 and 0.25 Oy' are compared in Figure 

4.6 with the finite strip solution for or/ay = 0.0, 0.1 and 

0.2. In this analysis every side of the box column was 

divided into two strips and every strip was divided into 

ten substrips. For columns with a slenderness ratio 

B < 1.4 the theoretical predictions are generally in good 

agreement with the test results. For columns with more 

slender plating the test results tend to be a little higher 

than the theoretical predictions and this may be due to 

post-buckling effects which are not included in this 

analysis. Similarly at low values of B, some of the test 

results are underestimated by the current theory, possibly 

due to the influence of strain hardening. This last effect 

could in fact be included in the current analytical treat­

ment by suitable modification of the stress strain curve. 

It is of interest to observe that the buckling curve 

for or = 0.1 0y is horizontal for columns with stocky 

plating -. a < 0.35. The difference between this constant 

strength curve and the crushing strength is equal to the 

level of the residual stress. In this range the curve is 
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lower than the corresponding curve for or = 0.2 ay - the 

strength of stocky columns increases as the residual 

stress increases. This may be due to the fact that the 

central area of the plate subjected to compressive 

stresses is larger in the case of lower residual stress. 

A similar increase in strength was observed by Little in 

his tests on eccentrically loaded columns (82). 

In addition to his experimental work, Little developed 

curves for local buckling of square box columns based on the 

Perry formula using the available experimental and theore­

tical data. For a slender column with B > 1, he used an 

empirical expression to obtain the post-buckling strength. 

His theoretical curves, the finite strip results for 

different residual stress levels and the test results for 

initially stress free columnsare shown in Figure 4.7. 

For columns with B > 1.2 the finite strip results are 

lower than those predicted by Little's theory and the 

difference increases as the slenderness ratio e increases. 

This is because in the current work the post-buckling 

reserve is ignored. 

In the range of slenderness ratios 1.2 > e > 0.8 the 

finite strip results are greater than those of Little and 

as the residual stress increases, this difference increases. 

In this range - for zero residual stress - the test results are 

in fact c"loser to the finite strip curve than to Little's 

theoretical curve. 
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Again, for columns with relatively stocky plating 

B < 0.8, Little's theory predicts higher critical stresses 

than the finite strip method. This may be due to the 

early yielding assumed in the present stress-strain rela­

tionship (Chapter 3) compared with elastic-perfectly 

plastic stress-strain material used by Little. 

It can be concluded from this compari~on that the 

present approach gives results for inelastic buckling of 

rectangular plates with residual stress which are 

generally in good agreement with the test results, con­

firming the validity of the current work. 

4.4 Buckling of Panels Stiffened with Longitudinal 

Stiffeners 

A panel stiffened with longitudinal stiffeners can 

collapse in two different modes. The first is a plate 

collapse (local mode) and the second is a stiffener 

collapse (overall mode). The slenderness ratio of the 

plate, the rigidity of the stiffener and the eccentricity 

of the load are three factors which affect the mode of 

collapse. 

Many tests have been carried out to study this effect. 

Some investigators have measured and recorded the initial 

imperfections and the residual stresses and these provide 

a basis ~or comparison with the present theory. In the 

following sections the finite strip results will be com­

pared with both test and theoretical results from various 

sources. 
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These comparisons are provided to show the capability 

of the current work for studying the inelastic - local and 

overall - buckling of plate assemblies with different 

levels of residual stress. 

4.4.1 Inelastic Buckling of Wide Panels (52) 

In the following section the finite strip approach is 

compared with theoretical results based on 'various 

plasticity theories. Not only the local buckling - as in 

the previous section - but also the overall buckling has 

been considered. 

The panel stiffened with flat stiffeners used by 

Tvergaard et al (52) to study the elastic-plastic buckling 

of a wide panel (Figure 4.8(a» has been examined using 

the current approach. Tvergaard et al (52) considered two 

cases for the end boundary conditions. The first was a 

panel simply supported on the two edges on which the loading 

acts and the second was a panel continuous in the direction 

of applied compressive load and supported on several 

transverse supports. The panels were perfectly flat prior 

to buckling and the residual stresses were assumed to be 

zero. The local buckling of the plate between two adjacent 

stiffeners and the overall buckling of the panel as a wide 

column have been studied for different values of cry/E. In 

their work, Tvergaard et al included the effect of the 

material 'strain hardening. 
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For comparison only the simply supported panels will 

be considered and the inelastic critical load corresponding 

to local and overall buckling modes will be calculated. 

Tvergaard et al found that for wide column buckling (Figure 

4.9) the flow theory and the deformation theory gave 

identical results. The finite strip results for the same 

mode with ay/E = 0.001, are about 10% less than Tvergaard's 

results for a large range of panel geometries a. This 

underestimation increases to 12.5% and 15% when the yield 

stress, ay, is increased to 0.0015 E and 0.002 E respec­

tively. 

For the local buckling mode (Figure 4.10) the finite 
\ 

strip method - as expected - gives a result somewhat 

closer to the deformation theory than the flow theory. 

This is because the present approach is based on the 

deformation theory. As the ratio of the plate area to the 

total area (a) decreases the three local buckling curves 

(Tvergaard" s flow and deformation theories and the finite 

strip results) become closer. The difference between 

Tvergaard's results and the finite strip results may be 

due to the following points: 

a. The effect of strain hardening which is 

neglected in the present work (in fact this effect can be 

included in the current analysis by suitable modification 

of the as.surned stress-strain curve). As a increases -

1. e. the panel becomes more stocky - the effect of the strain 

hardening becomes more significant. 
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b. Tvergaard et al treated the stiffener as a beam 

with elastic torsional rigidity. In a wide column buckling 

mode where the stiffeners remain untwisted this is valid, 

but if the stiffeners twist this approximation leads to an 

overestimate of the torsional stiffness and hence the 

critical load. In the finite strip analysis, in any 

buckling mode, the stiffeners are allowed to distort and 

to become inelastic and this will contribute to giving a 

lower critical load than the results obtained by Tvergaard 

et al. 

c. For overall buckling, Tvergaard et al modelled 

the panel as a pin-ended column thus implying that the 

out-of-plane buckling displacement at any cross-section is 

constant. In the current analysis however the panel is 

treated as a very wide panel (Figure 4.8(b-d». This means 

that the out-of-plane buckling displacement is not con­

strained to be constant and this will also contribute to 

a lower value of critical stress. 

d. The depth to thickness ratio of the stiffeners 

in the panel is less than 5 for a wide range of a. This 

ratio is relatively low and a thick finite strip approach 

(88) may be necessary. The relation between a and hslts 

for the panels considered by Tvergaard is shown in Figure 

4.11. 
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4.4.2 Comparison With Experimental Work on Longitudinally 

Stiffened Panels (54) 

In Monash University, panels stiffened with five 

longitudinal flat stiffeners have been tested (54). The 

longitudinal edges were allowed to move longitudinally in­

plane but the out-of-plane displacements were constrained. 

The panels were loaded axially and in bending. To compare 

these test results with the FSM results it has been 

assumed - as did Horne et al (44) in their theoretical 

comparison - that the panel can be treated as a very wide 

panel and the bulb flat stiffeners may be substituted 

with flat stiffeners having the same area. Murray (54) 

did not report the values of initial imperfection of the 

plates or overall imperfection, so it has been assumed that 

the panels are nominally straight. Only those results for 

the three panels which were tested under concentric axial 

load will be discussed. 

A further convergence study to examine the effect of 

the number of strips and substrips on the accuracy was 

undertaken for one panel and the results are shown in 

Table 4.4. From this table it is clear that by dividing 

each plate into two strips each of which is divided into 

ten substrips, sufficient accuracy is achieved and this 

will be used for all other panels. 

Murray's test results (54), Hornets theoretical 

results (A4) and the finite strip results are shown in 

Table 4.~ Since the actual residual stresses present in 



No. of strips No. of sub-
critical stress/yield stress a /a 

cr y 

bet. adj. strips per 
stiff. strip 

ar/oy = 0.1 o /a = 0.3 ar/ay = 0.5 r y 

4 0.793 0.609 0.612 

6 0.793 0.659 0.497 
1 

10 0.792 0.648 0.546 

20 0.799 0.644 0.502 

4 0.622 0.482 0.357 
2 

6 0.624 0.473 0.362 

10 0.624 0.476 0.362 

20 0.624 0.476 0.363 

4 0.622 0.471 0.361 

6 0.623 0.476 0.363 
3 

10 0.622 0.474 0.363 

20 0.622 0.475 0.363 

4 0.623 0.477 0.363 

6 0.622 0.476 0.363 
4 

10 0.622 0.475 0.363 

20 0.622 0.475 0.363 

Table 4.4. Convergence of the critical load of a wide panel (panel H) 



Dimension of the panel Panel H Panel M Panel U 

bit 54 54 63 

Stiffener spacing 533.4 266.7 609.4 

Plate thickness 9.86 4.93 9.66 

Stiffener used 6 11 x 7.42 lb - 4" x 4.51 lb 

Equivalent stiff. thick 9.6 4.8 8.8 

Length of the panel 3450 1725 1700 

i/r 75.3 66.6 

Yield stress ay 377 N/mrn 2 317 N/mm 2 377 N/mm 
2 

Observed a max/ay (54) 0.70 0.73 0.59 

Manchester theor. 
a u (44) 0.62 0.64 ay -

ar/ay 

0.0 0.71 0.82 0.53 

0.1 0.62 0.73 0.44 

Finite strip 0.2 0.55 0.65 0.35 

acr/ay 0.3 0.48 0.57 0.28 

0.4 0.42 0.50 0.23 

0.5 0.36 0.42 0.18 

1. All dimensions are in mm 

2. Panel M is half scale of panel H 

3. Panel U from Ref. (44) 

. 
Table 4.5. Comparison with Monash University Test 



- 102 -

each individual specimen were not recorded in reference 

(54) the pattern of Figure 4.12 has been assumed with 

calculations being performed for values of or/aY between 

0.0 and 0.5. Horne et al (44), ignored the effect of the 

residual stress although the finite strip results indicate 

that the strength can be reduced by up to 17% by increasing 

or/aY from 0.0 to 0.1 (panel U). The finite strip results 

for panels with residual stress or/aY between 0.0 and 0.1 

were in close agreement with the observed results. In all 

cases, it is clear that the effect of the panel slenderness 

ratio (t/r) on the strength can be neglected because the 

failure was due to local buckling of plate between two 

adjacent stiffeners. 

Comparing panels U a~d H, it is clear that while the 

plate slenderness ratio e of the first panel (U) is the 

higher, the panel slenderness ratio (t/r) is less than that 

for panel H. These two panels failed by local buckling of 

the plating and hence the slenderness ratio of the plating 

e rather than t/r is the governing factor. From this, it 

would be expected that the strength of panel U would be 

less than that of panel H and indeed the experimental 

results confirm this. Whilst the results obtained using 

this finite strip method also demonstrate this, the 

theoretical results of Horne et al indicate the opposite. 

Again, from these convergence and comparison studies . . 
it is clear that - with each component of the plate 

assembly divided into two strips each of which is divided 

into ten substrips - the results based on the present 

approach are in good agreement with Murray's test results. 
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4.4.3 Comparison With Experimental and Theoretical Work 

on Longitudinally Stiffened Panel (56-58) 

A series of tests have been carried out by Horne and 

Narayanan (56-58) on longitudinally stiffened plates 

(Figure 4.13) under axial load. In these tests not only 

residual stresses, but also initial imperfections and 

eccentricity of the applied loading were considered. Some 

of the results are therefore not suitable as a direct com­

parison with the current finite strip predictions of 

critical stress, and only those panels with small imperfec­

tions and no eccentricity of loading have been included 

here. 

As a means of comparison the experimental results 

obtained by Horne and Narayanan have been reproduced in 

Table 4.6 together with the critical stresses calcuated 

using the current approach. In determining the finite 

strip results the actual values of residual stress have 

been used, and the pattern indicated in Figure 4.13 assumed. 

Unfortunately the information provided in reference (56-58) 

gives only the average residual stresses in both the 

stiffener and the plate and this may lead to some inaccuracy, 

particularly when detailing the distribution of residual 

stress within the stiffener. 

In studying Table 4.6 some general comparisons can be 

made. For the four panels 7, A23 , E23 and C2 where the 

measured residual stresses on the plates is high (or/ay ~ 



--

Specimen 7 8 9 D12 D22 A12 A23 E12 E23 C2 

Stiffner size 16 x 152.5 16x152.5 9.5x152.5 12 x 80 12 x 80 9.5x152.5 9.5x152.5 12.5 x 76 12.5 x 76 9.5x152.5 

Measured (plate) 0.410 0.125 0.122 0.132 0.315 0.066 0.424 0.088 0.330 0.386 

Or/GYp (stiff) 0.082 0.100 0.100 0.077 0.228 0.025 0.111 0.039 0.046 0.073 

bit 48.0 48.0 48.0 45.7 45.7 70.3 70.3 70.3 70.3 45.7 

R./r 37.6 37.6 42.0 92.7 92.7 40.6 40.6 88.1 88.1 44.7 

Observed 
ultimate load 

(56-58) squash load 
0.79 0.85 0.78 0.65 0.60 0.56 0.62 0.48 0.45 0.87 

calculated 
critical load 

(FSM) squash load 
0.60 0.85 0.83 0.78* 0.66* 0.52 0.31 0.55 0.35 0.60 

----- -----

* Panel buckled in overall mode 

Table 4.6. Comparison between Manchester test results and finite strip results 
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0.32) relative to the other panels, the finite strip 

method underestimates the test results by about 32% on 

average. This may be due to the way in which the residual 

stress pattern has been modelled, and it is worth noting 

that although the measured value of a in the plate is 
r 

high, the corresponding value in the stiffener is very low. 

It is of interest to observe that the difference between 

the squash load and the calculated critical load for panels 

7 and C2 is approximately equal to the measured residual 

stresses on the plate. Although Horne and Narayanan 

expected failure of panel C2 by stiffener buckling, it was 

the plate which collapsed in their test and buckled in the 

present work. Furthermore the observed failure stress for 

this panel was unusually high, and in.fact exceeded the 

corresponding value for a similar panel with fixed ends by 

some 10%. Horne and Narayanan did not explain this 

apparent inconsistency. 

Panels D12 and E12 have different values of measured 

residual stress on the plate. The finite strip results 

overestimate the test results of these two panels and this 

may be due to the fact that the present analysis ignores 

the initial imperfection which was approximately equal to 

0.40 times the plate thickness. 

For the three panels 8, 9 and A12 with measured 

residual stress on plate between 0.07 ay and 0.13 ay, the 

finite strip method results are in good agreement with the 
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test results. Panel 8 is similar to panel 7 and differs 

from it only in the magnitude of residual stress. For 

this panel the theoretical result is identical with the 

experimental result. Horne and Narayanan found that for 

panel 9 stiffener buckling was the dominant failure mode 

which means that the pattern of the residual stress in the 

stiffener is an important factor. In the finite strip 

analysis the maximum value of residual stress in the 

stiffeners was assumed to be equal to the recorded value. 

In the present work the maximum or occurred only in one 

pOint on the stiffener while the measured values are the 

average of the compressive residual stress on the 

stiffener. This led to 6.4% overestimation compared with 

observed failure load. The local buckling stress for this 

panel, based on the finite strip method, is less than the 

overall buckling stress by 4.6%. 

Panel D22 was nominally straight, the plate imper­

fections being in fact equal to about two-thirds of the 

Merrison tolerance (59). It was not possible for Horne 

and Narayanan to obtain the exact value for the ultimate 

collapse load taken by the panel and the value given in 

reference (56-58) represents the maximum load that could 

be recorded. Subsequent load increases, resulted in a 

sudden collapse of the specimen after a short time and 

Horne et al referred this to the fact that the stiffness 

of the te'st rig was lower than that of the unloading 
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specimen. The finite strip method overestimates the 

maximum recorded load by 10%. 

According to the present theory all panels, except 

panels D12 and D22 buckled in local mode. Horne and 

Narayanan observed that these two panels collapsed by a 

plate failure at amax/ay = 0.65 and 0.60 respectively. 

The finite strip method gives a result of a lay = 0.82 .cr 

and 0.67 for local buckling and acr/ay = 0.78 and 0.66 for 

overall buckling respectively. Horne and Narayanan found 

that as the failure load was approached a seperation 

between plate and stiffeners for panels of low 1/r and 

welded intermittently occurred. The finite strip method 

is unable to consider this seperation which caused a 

significant decrease in carrying capacity for these panels. 

Considering only the five continuously welded panels 

7, °22' A23 , E23 , and C2 - the finite strip method under-

estimates the test results.by an average of 27% while for 

the other five intermittently welded panels it overestimates 

the test results by an average of 7%. 

Horne and Narayanan demonstrated that for the 

relatively thin plate which they used, the influence of 

residual stresses on the failure stress is much less than 

that of initial imperfections. These are of course not 

included in the current approach, and hence good agreement 

could no~ be expected where such effects are important. 
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It should be noted that for the panels included within 

Table 4.6, initial imperfections were within the recommended 

limits given by Merrison (59). Clearly even if a panel is 

nominally flat, it does not necessarily imply that the 

finite strip method will give an accurate prediction of the 

failure load. Nonetheless the results do indicate that for 

panels in which initial imperfections are small the current 

approach compares well with the observed failure stresses. 

In addition to their experimental work, Horne and 

Narayanan proposed a theoretical treatment of the failure 

of stiffened panels, (44,45) based upon the "effective 

width" concept. They found in their tests, that the 

Merrison Interim Design Rules (59) underestimated the 

actual welding residual stress by a factor of about 2. 

Their theoretical comparison however were not based on the 

measured level of residual stress, but on the values 

calculated in accordance with the Merrison Rules. They 

also computed the maximum strengths for cr = O. Their r 

analysis was based on the assumption that the panel was 

wide and hence a single plate-stiffener combination could 

be considered even though the test panels each comprised of 

four flat stiffeners. The finite strip method can also cbe used 

efficiently to study very wide panels (112) and this 

approach has been adopted here for consistency. 

The theoretical results (44,45), based on Merrison 

Rules (56,57) and the finite strip method results are shown 

in Table 4.7. The residual stresses used in the finite 



Predicted values of a/ay 

Spec. Observed Finite strip method Manchester theory Merrison Rules 
No. a/ay max 

0 0 0 = 0.0 0 0 = 0.0 0 0 r (measured) r (average) r r (Merr. R.) 
r (as iilipr.) r (add. str.) 

7 0.79 0.60 0.75 0.95 - - 0.64 0.48 

8 0.85 0.85 0.86 0.96 - - 0.61 0.66 

9 0.78 0.83 0.84 0.94 - - 0.59 0.66 

D12 0.65 0.78* 0.78* 0.79* 0.65 0.69 0.54 0.58 

D22 0.60 0.66* 0.67* 0.72* 0.64 0.78 0.52 0.47 

A12 0.56 0.50 0.51 0.55 - - 0.58 0.48 

A
23 

0.62 0.29 0.38 0.59 - - 0.60 0.39 

E12 0.48 0.53 0.55 0.61 0.46 0.48 0.48 0.42 

E
23 

0.45 0.33 0.44 0.62 0.46 0.47 0.50 0.37 

C
2 

0.87 0.60 0.74 0.90* - - - -
- -- - -------- --- ---~-------- ----

* Panel buckled in overall mode 

Table 4.7. Comparison between Manchester theoretical work and the finite strip method 
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strip calculation were as measured, zero and an average 

value between the measured values on the plate and on the 

stiffener (Table 4.8). In the latter case it has been 

assumed that the residual stresses on the plate and on the 

stiffener are equal which is consistent with both Horne et 

al (44) and the Merrison Rules (59). 

It is clear from the comparison of Table 4.6 and 

Table 4.7 that the finite strip results for a very wide 

panel are approximately the same as those obtained from a 

complete panel analysis. The results for panels 7, 8, 9, 

012' 022 and C2 are in fact identical for both approaches. 

For all the other panels the results obtained by considering 

the panel as very wide slightly underestimate the results 

obtained for the complete model. 

For the four panels - 7, A23 , E23 and C2 - if the 

average residual stress has been used in the calculation 

of the critical load, the finite strip method under­

estimates the observed results by 15% compared with 32% if 

the measured residual stresses are used. Because the 

measured residual stresses on the stiffeners are close to 

those measured on the plate for panels 8, 9, 012' A12 and 

El2 the change in the critical stress due to using the 

average residual stress is very small. 

For panels 022 and E23 with bit equal to 48.0 and 

70.3 respectively, the residual stress according to 

Merrison Rules is about 0.20 cry. Using this value of 

residual stress the strength of the two panels is reduced 
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by 18% and 2% respectively according to Horne. This may 

be reasonable if the second panel collapsed in an overall 

mode but in fact the two panels were show,n to collapse 

by plate failure. When an average residual stress of 

0.23 ay is used for the same two panels the reductions in 

the strength based on the finite strip method are 6.9% 

and 29% respectively. This difference in reduction is due 

to the fact that the first panel buckled in an overall mode 

while the second panel buckled in a local mode. 

Horne and Narayanan found from their theoretical work 

that for normal panels with a moderate amount of welding 

the effect of residual stresses on the failure load is very 

small. For panels with a higher level of residual stress 

they suggested a reduction factor of 5% to 8% on the 

calculated ultimate stress to allow for any adverse effect 

of welding. The current finite strip results confirm this 

for a panel buckling in an overall mode (D12 and D22 ) but 

for the case of local bucklingabigger stress reduction 

would be suggested. 

Although separation between the plate and the 

stiffeners - leading to a reduction in the collapse load -

occurred in some panels Horne's results were very close to 

the observed strength. 

These comparisons show that, generally, there is good 

agreement between the current approach and the test 

results. 
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Or/aY (measured) 
Average Or/aY (Merr. R. ) 

Spec. Or/aY (59) 
Plate Stiff. 

7 0.410 0.082 0.25 0.16 

8 0.125 0.100 0.11 0.05 

9 0.122 0.100 0.11 0.06 

D12 0.132 .0.077 0.11 0.07 

D22 0.315 0.228 0.27 0.20 

A12 0.066 0.025 0.05 0.06 

A23 0.424 0.111 0.27 0.16 

E12 0.088 0.039 0.06 0.07 

E23 0.330 0.046 0.19 0.21 

C2 
0.386 0.073 0.23 0.17 

Table 4.8. The residual stresses used in comparison 

4.4.4 Nagoya University Test Results (60) 

The results of a series of tests on steel panels 

stiffened with three, four or five flat stiffeners have 

been presented by Fukumoto et a1 (60). For each test 

specimen the critical stress has been calculated using the 

present finite strip approach and these theoretical predic-

tions are compared with the test results in Table 4.9. 

Since measurements of the actual residual stresses present 

in each i.ndi vidua-1 specimen were not provided in reference 

(60) the pattern shown in Figure 4.12(c} has been assumed 
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and results obtained for values of 0r/Oy of 0.3 and 0.5. 

Comparison with the information on residual stresses given 

in reference (60) suggests that these levels bracket the 

likely values. Unfortunately values of the initial 

imperfections in the panels have not been reported. 

Table 4.9 includes the mean and standard deviation 

for the ratio 0cr/omax for both sets of calculations. It 

is noticeable that whilst certain individual results are 

affected by up to about 23% the two means for the series of 

24 tests are almost identical. Moreover, the values of 

0.86 and 0.89 suggest that on average the analysis is 

capable of providing good, if slightly conservative, pre­

dictions of panel strength. Whilst lack of input data 

(exact residual stress, level of imperfections, etc.) for 

individual panels make it impossible to discuss the compari­

sons on an individual basis, some rather more general 

observations may be drawn from the complete set of data. 

Referring to Table 4.9 it can be seen that for the 

panel with the stockiest plating (a = 0.457) a change in 

the level of residual stress has negligible effect on 

buckling strength. As the plating slenderness in the panels 

increased so the trend changes from a tendancy of over­

prediction to one of the underprediction. Taking a = 0.55 

as a refer~nce value, for the 4 specimens with lower a the 

mean values of 0cr/omax are 1.01 and 1.04 for or/ay = 0.3 

and 0.5 respectively, figures that are reduced to 0.82 and 

0.85 for the 20 tests with a > 0.55. It seems likely that 



: , 
i i i : 

Finite str ip resu1 ts 0cr/omax I 

m =......l- Test resu1ts3 I 
d sits Yreq• Slenderness 

Spec. ratio 8 °max/oy 
(1) (2) 0r/Oy = 0.3 0r/Oy = 0.50 

B-1-1 10.3 0.97 0.682 0.785 0.88 0.79 

I 
B-1-1r 10.0 1.15 0.733 0.789 0.87 0.72 

I 
B-1-2 12.1 1. 67 0.698 0.853 0.81 0.71 

i B-2-1 9.1 1.03 0.623 0.794 0.88 0.90 

I 
8-2-4 

I 
10.5 4.25 0.608 1.003 0.70 0.81 

B-3-1 6.9 1.07 0.472 I 0.941 0.93 1.01 I 

i 
C-1-2 1 18.5 2.62 0.784 i 0.746 0.91 0.67 I 

i ! I I 
C-1-4 15.3 5.10 0.766 0.889 0.77 0.66 I 

C-2-1 I 12.8 1.14 0.695 0.803 0.86 0.77 
I 

C-2-2 16.2 2.04 0.964 0.853 0.81 0.73 

I C-2-4 I 13.8 4.36 0.697 0.927 0.75 0.71 

I 
I 

I 14.5 2.11 0.606 0.820 0.85 0.94 I C-3-2 

C-3-4 12.8 4.19 0.607 0.885 0.81 9.:..2l 

C-4-1 9.5 1.09 0.543 0.806 0.99 1.07 

C-4-2 12.8 2.29 0.554 1.004 0.77 0.85 

C-5-1 8.7 1.15 0.481 0.862 1.01 1.09 

C-6-1 13.7 1. 24 0.756 0.945 0.81 

I 
0.70 

I C-7-1 11.7 1.07 0.671 0.890 0.78 0.80 
! 

I 

I 

0-1-1 

I 
9.9 1.08 0.657 0.814 0.86 0.88 

I 0-1-2 15.2 2.04 0.683 0.947 0.74 0.70 

I 0-1-3 15.0 3.16 0.652 0.955 0.73 0.77 

0-2-1 8.6 I 1.03 0.578 0.856 0.89 £:.22. 
I 

i 

0-2-3 13.4 3.20 0.597 1.013 0.72 0.82 I I I 

0-3-1 7.0 1.10 ! 0.457 0.946 1.06 I 1.06 -- i 

0.84 i 0.83 
-, 

Mean average , 
Standard deviation I 0.09 I 0.13 i 

! I 
Mean average of the chosen values 3 0.86 1 0.89 

~ Standard deviation of the chosen values 0.10 0.09 
} 

1. ds/ts is the stiffeners width to thickness ratio 

2. m = y/y is the relative flexure rigidity to the required relative f1exure rigidity req. 

3. The selected values are the predicted critical stresses closer to the observed maximum 

stress. They are indicated by underline in the table 

Table 4.9. Comparison between Fukumoto test results and FSM 
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part of the reason for the overprediction at very low B is 

the presence of unflat plating in the test specimens, a 

feature that is not allowed for in the analysis. Moreover, 

at high values of B the plating would be expected to 

possess some postbuckling strength leading to experimental 

maximum loads being somewhat higher than the predictions 

of a theory which did not include this effect. It is of 

interest to note how for every panel with plating in the 

range 0.46 < B S 0.67 a higher value of ocr has been 

obtained when the larger residual stress has been assumed. 

Further study of this point shows that it occurs consistently 

for panels having these proportions; it may be due to the 

reduction of the plate area - between stiffeners - in which 

the residual stresses are cornpressive. This effect has also 

been observed by Little (82) in his work on box columns. 

For the 11 panels with relatively weak stiffeners 

(rn < 1.2) the finite strip results underestimate the 

collapse loads slightly, the mean 0cr/omax being 0.94 for 

both levels of or. However, this underestimate increases 

for the panels with m > 1.2 for which the mean values of 

a /0 are 0.80 and 0.85 for 0r/Oy = 0.3 and 0.5 cr max 

respectively. It is possible that for this second series 

the buckling deformations are more concentrated within 

the plating and that the effects of plate post-buckling 

are significant. On the other hand when weak stiffeners 

are used buckling may be expected to occur in a more 

predominantly overall mode in which case the post-buckling 

of the plating would be expected to be rather less important. 
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For those panels in which the stiffeners had a width­

to-thickness ratio in excess of 10 the theory generally 

underestimated the buckling load. This was in line with 

the analysis made by Fukomoto et al for panels having 

stiffeners with a width to thickness ratio less than 14. 

For the other panels this is in contrast to Fukumoto's 

analysis which tended to overpredict the strength of such 

panels. Although Fukumoto et al could not"properly 

explain this they suggested that residual stresses higher 

than the assumed values might be a factor. Since in 

general the present calculations suggested that a change from 

0r/Oy of 0.3 to 0r/Oy of 0.5 only produces a reduction in 

strength of about 8% at high values of B compared with an 

increase in strength at low values of S, this does not 

appear to be an adequate explanation. 

Fukumoto et aI's assumption of elastic-plastic material 

behaviour implies that nonlinear behaviour starts at rather 

higher loads than does the present analysis which is based 

on the stress-strain curve given in Chapter 3. While they 

consider that the material is linear elastic up to applied 

stresses equal to the yield stress, in the present approach 

the material is no longer linear elastic in the range of 

Or/aY ~ 0.8. Consequently it is to be expected that the 

present analysis, since it leads to an earlier and more 

gradual drop in stiffness due to the effects of plasticity, 

would produce results generally lower than those of 

Fukumoto (60). 
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The finite strip results are shown in Figure 4.14 for 

the two levels of ar/ay - 0.3 and 0.5 - as curves of 

acr/ay against the observed collapse stress amax/ay • The 

450 line corresponding to acr/amax is also shown and it is 

evident that in some levels the results for ar = 0.3 'ay 

are closer to the test results, in others closer agreement 

occurs for residual stresses, ar = o.say • In the 

subsequent comparison the finite strip results closest to 

the experimental values have been used and this has been 

necessary because of the lack of data in reference (60). 

These selected results are shown in Figure 4.15 with the 

mean average line. 

It is of interest to note that changing the shape of 

the stress-strain curve (Figure 3.4) by increasing the 

value of C in equation (3.17) to 0.999 increases the 

value of acrlay for each panel by up to 5% (Table 4.10). 



-~ I 
Predicted critical stress ocr/aY i 

! 
, 
I 

Fukumoto 

I Spec. test 
or/aY == 0.3 or/aY == 0.5 results 

°max/Oy , 
I c == 0.997 C .. 0.998 C == 0.999 C == 0.997 C == 0.998 C == 0.999 
! i . ~ 

1 8-1-1 I 0.785 0.688 0.692 0.694 0.618 0.624 0.630 
I 

i B-1-1r 0.789 0.683 0.689 0.690 0.564 ! 0.569 0.577 , 

B-1-2 0.853 0.689 0.690 0.694 0.608 0.614 0.622 

B-2-1 0.794 0.698 0.698 0.700 0.714 0.720 0.728 

I 
I ! 

B-2-4 1.003 0.702 0.706 0.710 0.808 0.817 0.829 

B-3-1 0.941 0.874 0.874 0.876 0.950 I 0.954 0.960 I , 

C-1-2 
I 0.746 0.675 0.679 0.685 0.499 0.499 0.499 

! 

I ! 

C-1-4 I 0.889 0.687 0.690 0.694 0.589 0.595 0.605 
) 

C-2-1 I 
0.803 0.690 0.692 0.694 0.618 0.622 0.630 

I 
, 

C-2-2 i 0.853 0.690 0.692 0.694 0.618 0.624 0.630 
I 

I 0.927 0.696 0.698 0.698 0.661 0.665 
, 

0.667 C-2-4 
1 ! 

C-3-2 0.820 0.698 0.700 0.700 0.767 0.772 ! 
0.780 , 

i 
C-3-4 0.885 0.720 0.724 0.728 0.821 0.829 0.841 

i 
I 

C-4-1 I 0.806 0.794 
i 

0.800 0.810 0.860 0.864 0.868 

C-4-2 
I 1.004 0.772 

I 
0.776 0.782 0.849 0.853 0.860 , 

C-5-1 0.862 0.874 0.874 0.874 0.940 0.944 0.952 
I 

I C-6-1 ! 0.845 0.688 0.690 0.694 0.595 0.601 0.610 

C-7-1 0.890 0.698 I 0.698 0.700 0.712 0.718 0.726 

I i 

I 
I 

0-1-1 0.814 0.698 0.698 0.700 , 0.718 0.724 

I 
0.731 

i 
, 
I 

0-1-2 ) 0.947 0.696 0.698 0.698 0.663 0.665 0.669 : , , 
0.698 0-1-3 I 0.955 

I 
0.698 0.700 0.733 0.739 0.749 I 

! 

0-2-1 
, 

0.856 0.765 0.771 0.776 0.847 0.851 0.858 , 
I 
I I 

I 
0-2-3 

I 
1.013 0.733 0.737 0.743 0.829 0.837 0.847 

i 

0-3-1 I (j; 946 0.999 0.999 
I 

0.999 0.999 
! 

0.999 I 0.999 I : I 
,-~ 

t - -

Table 4.10. Effect of the shape of stress-strain curve on the results 
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4.5 Buckling of Beams and Columns 

Having checked the present approach (Chapter 3) for 

plate structures - rectangular plates and stiffened panels -

it can now be compared with results for beams. and columns 

which may also be considered as plate assemblies •. The main 

difference between the buckling of a slender plate and the 

buckling of a slender column is the appreciable positive 

post-buckling stiffness of the plate compared with zero 

post-buckling stiffness of the column. Note that this 

post-buckling effect, has not been considered in the present 

approach. 

In the following section theoretical predictions are 

compared with the experimental results for beams under pure 

bending moment and columns under axial compression. This 

comparison also demonstrates the wide variety of plate 

assemblies which can be analysed using the present approach. 

4.5.1 Beams Under Pure Bending 

A series of tests on beams of I-section under a uniform 

bending moment has been carried out by Dibley (114). Four 

sections - two universal columns and two universal beams -

were chosen to cover a wide range of section geometry and 

slenderness ratio. The residual stress distribution and 

the initial imperfection, in the test section, were 

reported by Dibley and in only two spec imens.w:as.! there 

found to be any measurable initial bow. Four-point loading 

was used so that the centre unsupported span carried a 

uniform bending moment, the load being applied vertically 



- 116 -

downwards at the ends of the beam which were constrained in 

guides to move vertically only. Dibley found that the ratio 

of the effective length to the actual length increased as 

the residual stress increased while the effectiveness of 

the lateral and warping restraint stiffnesses was reduced. 

The observed values of the maximum bending moment were 

reduced to account for the effect of the dead load bending 

moment of the beam itself and friction in the loading and 

support structure. However the effect of the dead load was 

very small and it has been neglected in the current finite 

strip analysis. Dibley's estimation of error due to fric­

tion was relatively high and the maximum correction was about 

16% for some test results. The actual slenderness ratios 

were modified to account for end restraint and nonuniform 

bending moment. 

The relationship between the critical moment and both 

actual and effective slenderness ratio is shown in Figures 

4.16 and 4.17. The finite strip results which of course 

were based upon the assumtpion of ideal end support and 

uniform bending moment loading conditions, are also shown 

in Figures 4.16 and 4.17. Two levels of residual.stresses 

- 0.1 ay and 0.3 ay for the UB sections and zero and 0.1 ay 

for the UC sections - have been used in the present 

calculations. 

It is apparent that for slender beams - t/ry > 120 -

the effect of the residual stresses on the finite strip 

results is negligible. For beams UB17 and UB19 the measured 

residual stress was approximately 0.12 ay and 0.24 ay 
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respectively but the actual pattern of ~he residual stress 

is in fact quite different from the assumed pattern used 

in the finite strip analysis (Figure 4.18). In the 

observed patterns both flanges were in tension and the web 

was in compression, while the assumed pattern was based on 

self equilibrium of each flange. This pre-tension in the 

flanges would increase the experimental collapse moment of 

a short column. 

For beams with effective slenderness ratios 1/ry ~ 60, 

the finite strip results are in good agreement with the 

test results. The use of the actual slenderness ratio 

instead of the effective one leads to an underestimate 

of the collapse load by about 0.3 M based on the finite p 

strip method. For beams with 1/zy < 60 the finite strip 

method underestimates the test results by about 18%. This 

underestimate may be due to the residual stress which 

gives rise to pre-tension in the flanges of the test 

specimens. 

In Dibley's work five of the beams were observed to 

collapse at a maximum bending moment higher than the plastic 

moment (Figures 4.16 and 4.17). The reason for this would 

appear to be the strain hardening which has been neglected 

in the present analysis. 

4.5.2 Columns Under Axial Compression 

One hundred and thirty strut tests have been carried 

out by Strymowicz and Hors1ey (115) on high-strength steel 
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2 
with a yield stress of 447 N/mm. Five sections of 

different geometry were studied over a wide range of 

slenderness ratios (~/r). They investigated the influence 

of residual stresses by comparing the behaviour of as-

rolled and stress-relieved stub columns and found that the 

residual stress made very little difference to the overall 

strength of the columns tested. They attributed this to 

the fact that the magnitudes of the residual stresses are 

influenced by the section geometry, rate of cooling and 

modulus of elasticity. Thus, as the modulus of elasticity 

is not greatly influenced by the yield stress, the residual 

stress will not depend on the type of steel, and influence 

of residual stresses on high strength steel is therefore 

less pronounced than on other steel. During the testing 

they observed that initial imperfections had very little 

effect on the final failure load. 

To compare the test results, a 152 x 89 mm x 17.1 Kg/m 

I-section has been chosen for analysis using the fiijite 

strip method. Due to the lack of data regarding actual 

residual stress values it is assumed that the struts are 

initially stress-free. This would appear to be reasonable 

since the yield stress of the material is high. The results 

of the finite strip method together with corresponding curve 

B.S. 449 (116) - Addendum No. 1 (117) - are shown in 

Figure 4.19. It is clear that the finite strip method 

"results are in good agreement with the test results whereas 

the B.S. 449 curve underestimates the test results over a 

wide range of t/r. This is because the B.S. 449 strut 
y 

curve was obtained for a strut with an initial imperfection. 
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The formula used to calculate the B.S. (49 curve is 

(Y CT_) + (n + 1) C 2 
_ /( s -m 0) _ (Y CT.) C 

2 s -m 0 

the permissible average stress, N/rnrn2 

load factor or coefficient· 

2 minimum yield stress, N/rnrn 
2 

Euler critical stress = 'rr E 2 
( R./r) 

n=O.3 (R./100r) 2 

R./r slenderness ratio = effective length/radius 

of gyration 

eLm is the weighted mean stress factor for the 

cross-section 

= 1: CLbt/I: bt 

CL is the stress factor depending on bit and Ys • 

It is given in reference (ll7). 

For short columns - R./r < 50 - the finite strip 

results and B.S. 449 are in good agreement but both under-

estimate the test results in this range. This may be due 

to the fact that the strain hardening parameter is 

neglected in both approaches. Moreover the effective 

length of the columns is assumed to be the distance between 

~he supports although the two overhanging ends may have 

some effect on this. It seems also that the method of 

loading may have given some restraint to the rotation of 

the edge. 
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Nevertheless, the comparison appears to demonstrate 

that the current method is in good agreement with the 

available data. 

4.6 Conclusion 

In this chapter examples have been presented to assess 

the accuracy of the present approach by comparison with 

previously published theoretical and experimental work. 

Various plate structures - rectangular plates, stiffened 

panels, box columns, H-sections and channels - under axial 

compression or bending moments have been considered. 

convergence studies indicate that with each component 

of the structure divided into two strips, each of which is 

divided into 10 strips, sufficient accuracy is obtained. 

In the light of the comparisons reported in this 

chapter it can be concluded that the current finite strip 

approach can be used to predict - with a reasonable 

degree of accuracy - the inelastic critical load for any 

plate assembly. 
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CHAPTER 5 

INELASTIC STABILITY OF STIFFENED PANELS -

A PARAMETRIC STUDY 

5.1 Introduction 

Two different stiffened panels have been considered in 

the current parametric study. The first is a square panel 

simply s~pported on the four edges and" stiffened with four 

longitudinal flat, angle or tee stiffeners. The second is 

a very wide panel stiffened with flat ribs and simply 

supported at the loaded edges. William's approach (112) 

for the solution of a very wide panel has been used. In 

both cases the applied load is an axial longitudinal com­

pressive stress. 

The parameters to be varied in this study are: 

1. The slenderness ratio of the plating. 

2. The geometry and properties of the stiffeners. 

3. The orientation of the angle stiffeners. 

4. The yield stress of the stiffeners. 

5. The residual stress level. 

6. The longitudinal boundary conditions. 

7. The distance between the transverse supports 

(for the very wide panel only) • 

The results for the very wide panel have enabled 

approximate design curves based on either the optimum panel 

length or the optimum stiffener dimensions to be established. 
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Finally, a stiffened box girder has. been considered to 

show the capability of the present method for the analysis 

of a complete and complicated structure. 

5.2 Square Panel Stiffened with Four Longitudinal 

Stiffeners 

The square panels (Figure 5.1) considered in this 

section are reinforced with four flat, angle or tee 

stiffeners as shown in Figure 5.2. The distance between 

two adjacent stiffeners has been fixed (arbitrarily) at 

200 mm and the plate thickness varies from 2 mm to 10 mm 

to achieve slenderness ratios B between 1.778 and 0.356. 

The yield stress ay of both the plate and the stiffener is 

assumed to be 240 N/mm2 and a number of different levels 

of residual stress or are assumed, varying from zero to 

0.5 ay' The assumed residual stress patterns are shown in 

Figure 5.3. For the purpose of analysis using the finite 

strip method the plate between two adjacent stiffeners has. 

been divided into two strips. The flat, angle and tee 

stiffeners have been modelled using one, two and three 

strips respectively. Every strip has been divided into ten 

substrips. 

In the following sections, the influence of some of 

the important parameters on the inelastic buckling load 

are examined. 
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5.2.1 Effect of Slenderness Ratio of th~ Plating Between 

Stiffeners 

The effect of the slenderness ratio, a, of the plating 

between stiffeners on the critical buckling stress of the 

panel has been examined. This plate (i.e. the plate between 

two adjacent stiffeners) can be idealised simply as an 

isolated plate with specified longitudinal boundary condi­

tions. The upper limit of the local buckling strength 

curve for a stiffened panel corresponds to a plate simply 

supported at one edge and built-in at the other edge. The 

lower limit is that for a plate simply supported on both 

edges. These two limits of the critical load will of course 

depend on the residual stress level. Three levels of 

residual stress - ar = 0.0, 0.3 ay and 0.5 ay - have been 

considered in this analysis, and for each of these the two 

bounds are shown in Figure 5.4 together with the Euler curve 

for a simply supported plate free of residual stress. For 

the lower bound curve (i.e. plate with simply supported 

edges) the half wavelength (A) was assumed to be equal to 

the plate width (b). The upper limit was calculated for 

A = O.Bb (1) as well as A = b. 

For an initially stress free simply supported plate 

the lower limit curve coincides with the Euler curve for 

slenderness ratios a ~ 1.3. For slenderness ratios less 

than this the buckling curve (lower limit) deviates from 

the Euler curve due to the effects of inelastic behaviour 

of the material. It is clear that in the absence of 

residual stress stocky plates with slenderness ratio 
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a s 0.6 are not affected by the out-of-p~ane boundary 

conditions of the longitudinal edge, but as a increases 

the effect of the edge conditions becomes more pronounced. 

This may be due to the fact that in the first range the 

plate yields before it buckles while in the second range 

the plate buckles elastically or inelastically. It is also 

clear that the effects of the boundary conditions and the 

half wavelength are more pronounced in ,the elastic buckling 

range - a s (.8 ay - ° ) - than in the inelastic buckling cr r 

range. 

The buckling strength curves for a plate with a 

residual stress level or = 0.3 ay and slenderness ratio 

a ~ 0.8 are similar to those for an initially stress free 

plate. For such a plate (or = 0.3) with a slenderness ratio 

0.9 > a > 0.7 the critical load is approximately equal to 

the difference between the squash load and the residual 

stress. As the slenderness ratio increases (8 > 0.9) the 

effect of the residual stress reduces and at a = 1.8 the 

reduction in the critical load is about 0.8 or. For more 

stocky plates, the buckling strength increases as the 

slenderness ratio a decreases - a sO.8 (built-in) and 

a s 0.6 (simply supported). 

When the residual stress is increased to 0.5 0y the 

buckling curves for plates with a ~ 1.1 have a pattern 

similar to or = 0 curves. The buckling curves of a built­

in plate become approximately horizontal in the range of 

a = 0.9 ~ 1.2 - corresponding to 0cr/Oy = 0.45 ~ 0.50 -
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while for a simply supported plate this plateau does not 

appear. It is clear that the plateaus (of the nearly 

constant strength) depend on the edge conditions and the 

residual stress level. 

Again, for plates stockier than B = 0.9 (a r = 0.50 ay) 

the critical stress increases as the slenderness ratio B 

decreases. At slenderness ratio B less than about 0.6 the 

buckling,strength curves become higher than those corre-

sponding to ar = 0.3 ay. This may be due to the reduction 

of the plate area subjected to compressive residual stress 

as this stress, ar , increases. 

A further point of interest is that a simply supported 

plate with slenderness ratio B ~ 1.55 and a residual stress 

a
r 

~ 0.5 ay will buckle under the effect of the residual 

stress alone. 

Let us now consider the case of buckling of a complete 

panel rather than the simplified case above where only local 

buckling was considered, and the plate was treated as an 

isolated plate. Buckling strength curves for panels stiffened 

with one of the three types of' stiffener (flat, angle or tee) 

have been produced and are shown in Figures 5.5 and 5.6. By 

using two different values for the half wavelength - A = b 

and A = B - both local and overall buckling strengths have 

been obtained. The stiffeners were proportioned such that 
. 
the depth to thickness ratio (h It ) was equal to 10 - the s s 



>.1·2 
b 

-U 0·6 

0·4 

0·2 

& = 0·1 
hs Its = 10 

A­
• Local buckling 
A Overall buckling 

o.[)IO--...,...o&.".-2-----,o ...... 4--o.,.....6~-.."..0·...".S--1'"'"·0--1 ..... · 2--1 ..... ·-4 ----I1·L-6--1-· SL---2.J...·0-

1-2 

.~ 

u 0·6 

0·4 

0·2 

Slenderness ratio ~= _b
t 

1Ql.13/1- v 2) 
t-' E TT2 

(a) Flat stiffeners. 

\ 
.~ 

\o\S\ 
.~. 

\' 
\ 
~ 

,j);. 
r r, .., 

J>,. 

5 = 0·1 
hsf Ihs = '·0 
hsl ts = 10 

• Local buckling 
• Overall buckling 

02 01. 0·6 0·8 '·0 '·2 1·1. 1-5 J.-.1·~8 __ -.. 

Slenderness ratio f3 = ~ I~ 13(~2v2) 
(b) Angle stiffeners. 

FIG.S·S. (Cont ... ) 



1·2 

~ 
"'l:. 

~ 1-°r-----.;~~F~~==~""""""\ 
crr I cry = O' 

T T T 

= 0·1 
hsf/hs = 1·0 
hslts = 10 

T 

• Local buckl ing 
A. Overall buckling 

O~ __ ~~ __ ~~ __ ~~ __ ~ ____ ~ ____ ~ ____ ~ ____ ~ ____ L-__ _ 

o 0·6 o·a 1-0 1·2 1-1. 1-6 1·8 

(c) Tee stiffener. 
Slenderness ratio J3 = ~ I ~ 3 (~2~) 

FIG. 5·5. BUCKLING STRENGTH CURVE FOR A STIFFENED PANEL. 



1·4 

1·2 
b' 
"L::. 
~ 1·01--____ ~~-S ..... qu-a-s-h-L-o-a-d-___\ 

:a 
~ -
~ 0·8 
o 
o -'-
u 0.6 

0·4 

0·2 

o 

5 = 0·05 
hslts =10 

• Local buckling 
& Overall buckling 

1·0 1·2 1·4 

Slenderness 

[a) Flat stiffener. 

1·2 

b' 
"L::. 
o Squash Load 

I::) "Ol~-------~~------':~ ,'-,.: 
~ ,~ , 
~ ,~ - ,~ 

C/'l O' \~ 
o ' o 

0·4 T T T T 
,At A 

5 = 0·05 • Local buckling 
& Overall buckling 0·2 hslts = 10 

hsfl hs = 1 

o 0·2 0'4 0·6 0·8 1·0 1·2 

(b) Tee stiffener. 

1-4 1-6 

S lendernessratio 

FIG.5·6. BUCKLING STRENGTH CURVES FOR STIFFENED PANEl. 



- 126 -

same value as used by Dowling (43) in hi~ analysis. Two 

values of the ratio of the stiffener area to the plate area 

(0) were considered - 0.05 and 0.1 - and the proportions of 

the stiffener were selected to ensure that local buckling 

of the stiffener outstand did not predominate. 

The results for panels with relative stiffener area 

o = 0.1 are shown in Figure 5.5. It was found in most 

cases that short wavelength (local) buckling (A = b) was 

critical and in these cases the curves for overall buckling 

(A = B) are not shown. However, for an initially stress 

free panel stiffened with angle or tee stiffeners and with a 

slenderness ratio a < 0.9 overall buckling (A = B) was the 

critical mode as shown in Figure 5.5 (b and c). The Euler 

curve for a simply supported plate - corresponding to the 

plating between stiffeners - and the elastic buckling curve 

of the panel (A = b) are also shown for reference. 

From the graphs it is clear that the elastic buckling 

curve of the panel is underestimated by the Euler buckling 

curve for a simply supported plate. This is due to the 

torsional resistance of the stiffeners and the transverse 

continuity with neighbouring sections of plate which provide 

some rotational restraint at the edges. These two factors 

are not included for a simply supported plate. 

The initially stress free buckling curves coincide with 

the elastic buckling curve in the range of slenderness ratio 
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6 ~ 1.4. When the slenderness ratio 6 of an initially 

stress free panel is reduced below unity, it is clear from 

Figure 5.5 that the gain in the critical stress is very 

small. Again, this is due to the fact that the failure of 

such panels is due to yielding. Comparing the buckling 

strength curve (or = 0) with the two bounds given in Figure 

5.4 it is clear that the curve coincides exactly with the 

upper bound (A = 0.8b) for all slenderness ratios. This 

means that using stiffeners larger than 0 = 0.1 will not 

have any effect on the critical stress. 

Panels with slenderness ratio 6 > 1.3 (or = 0.3 ay) or 

6 > 1.4 (or = 0.5 ay) buckle elastically and in these 

elastic ranges - ocr S (0.8 ay - or> - the buckling curves 

have patterns similar to the elastic buckling curve. The 

reduction in the critical stress due to residual stress a 
r 

is approximately 0.85 or and 0.75 or respectively. 

For slenderness ratio 6 between about 0.8 and 1.3 

(or = 0.3 ay) or 0.9 and 1.4 (or = 0.5 ay> the effect of the 

residual stress becomes more pronounced. For lower values 

of 6, the critical stress begins to increase more sharply 

and as the residual stress increases the critical stress 

increases. At a slenderness ratio B S 0.65 the buckling 

curve corresponding to a residual stress level of 0.5 ay 

indicates a higher critical stress than for a residual 

~tress of 0.3 ay and this may be due to the fact that at such 

low slenderness ratios (because the residual stress pattern 

must be in self equilibrium) the central area of the plate 

which is subjected to residual cornpressive stress reduces 

as the residual stress increases. 
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Comparing the buckling strength curves - for panels 

with residual stress cr r = 0.3 cry and cr r = 0.5 cry - with the 

two bounds it is clear that these curves coincide with the 

upper bound (A = 0.8b) for a wide range of slenderness ratio 

e. For slenderness ratios e ~ 0.7, the curve for the panel 

with or = 0.50 0y falls between the two limits and as the 

slenderness ratio decreases it becomes closer to the lower 

limit. 

It is of interest to note that for panels with tee or 

angle stiffeners and e > 0.7, the buckling stress is about 

5% higher than that corresponding to a similar panel with 

flat stiffeners for all values of residual stress. For a 

panel with flat or angle stiffeners and e < 0.7 the buckling 

curves are identical, being some 6% higher than the curve 

for a panel with tee stiffeners. This may be due to the 

residual stress pattern which ~s different for angle 

stiffeners and tee stiffeners as shown in Figure 5.2. 

In general, for the panel with heavy stiffeners -

o = 0.1 and h It = 10 - the effect of the shape of the s s 

stiffeners on the buckling strength curves is relatively 

small. Moreover, it is also clear that the buckling 

strength curves are smooth curves and do not exhibit the 

sudden reduction which would occur at (ocr = cry - Or) if 

an elastic perfectly plastic stress-strain relationship for 

the material had been assumed. In the present approach the 

more sophisticated stress-strain relationship (Chapter 3) 

leads to a gradual change from elastic buckling to inelastic 

buckling. 
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A similar study has been conducted using both flat and 

tee stiffeners of reduced size such that 0 = 0.05. This 

value has been chosen so that overall buckling (A = B) will 

predominate over the local buckling (A = b) of the panel 

which was critical for 0 = 0.1. The effect of the slenderness 

ratio of the plate on the critical stress of this panel is 

shown in Figure 5.6. 

For,an initially stress free panel with flat stiffeners 

and for slenderness ratios S ~ 1.3, the panel buckles in an 

overall mode but local buckling becomes critical as the 

slenderness ratio increases. A further pOint of interest 

is that the maximum critical load for the stockiest panel 

considered (S = 0.35) is only 95% of the squash load whereas 

for 0 = 0.1 it was equal to the squash load. This reduction 

is due to the fact that as this panel buckles in an overall 

mode, not only the slenderness ratio of the plating but also 

the stiffener properties have an effect on the buckling. 

As the residual stress is increased (crr = 0.3 cry and 

0.5 ay) the buckling mode changes to a more predominantly 

local mode (A = b) and this is a reflection of the fact that 

local buckling is more sensitive to the level of residual 

stress than overall buckling. 

It is of interest to note that the critical stress of 

the panels with very low slenderness ratios - a < 0.4 -

exceeds the squash load. This may be due to the initial 

tensile stresses present in the panel required to maintain 
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equilibrium with the initial compressive residual stress • 

. In general the buckling strength curves (Figure S.6(a» are 

similar to those for 0 = 0.1 (Figure S.S(a» but corre­

sponding values of critical stress are lower for the panels 

with smaller stiffeners as would be expected. This 

difference depends on the slenderness ratio, the residual 

stress level and the half wavelength (i.e. mode of 

buckling) . 

It is clear from Figure S.6(a) that a panel with 

slenderness ratio ~ ~ 1.8 will buckle locally (A = b) under 

the effect of the residual stress alone if its value a 
r 

exceeds 0.5 ay. 

Comparing the curves for panels with flat stiffeners 

with the corresponding curves for panels with tee stiffeners, 

it appears that for the latter, the long wavelength (overall) 

buckling of the panel is critical (over a wider range of 

slenderness ratios al. This may be due to the more severe 

residual stress pattern assumed for the tee stiffener. 

This pattern leads to more substantial losses in the 

flexural rigidity of the stiffener accompanied by overall 

buckling of the panel. 

For both types of stiffener - flat and tee - the 

slenderness ratio at which overall buckling (A = B) becomes 

critical depends on the residual stress. Moreover, the 

range of slenderness ratio a for which the overall buckling 
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is critical is wider for panels with te~ stiffeners than 

for panels with flat stiffeners, for all values of cr • 
r 

From the above discussion, it can be concluded that 

the buckling strength curves can be divided into three 

parts - elastic, inelastic and squash. The effect of the 

residual stress is more pronounced in the inelastic range 

than in the elastic range and the squash load may be 

overestimated if the panel is heavily welded. 

5.2.2 Effect of Stiffener Geometry on the Buckling 

Strength 

The effect of the stiffener area, the stiffener depth 

to thickness ratio hs/t s ' the flange width to web depth 

ratio hSf/hs (for tee stiffener) and the stiffener shape 

(flat, angle and tee) on the buckling strength of a 

stiffened panel have been studied. The local buckling of 

the plating between stiffeners has been calculated from the 

short wavelength (A = b) while the overall buckling has 

been determined from the long wavelength (A = B). The 

buckling strength curves corresponding only to the critical 

mode are given, but in some cases the buckling strength 

curves corresponding to the two modes - local and overall -

are given. 

To investigate the effect of both the stiffener depth 

to thickness ratio and the stiffener shape on the buckling 

strength, only two panels - one buckling elastically and 

the other inelastically - have been considered. 
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5.2.2.1 The Effect of the Stiffener Area 

To study the effect of stiffener area and the flange 

width to web depth ratio h f/h (of tee stiffener) on the s s 

buckling strength, the results for panels stiffened with 

flat or tee ribs with hs/ts = 10 and or = 0.3 ay are 

reproduced in Figure 5.7 together with additional results 

for stiffeners with hs/ts = 15 and tee stiffeners with 

h flh = 0.5. ss· 

It is clear that the more slender panels (8 ~ 1.4) 

with flat stiffeners buckle in a local mode (A = b) and 

the effect of hs/ts - 10, 15 - is small. As the slenderness 

ratio decreases, the effect of hs/ts increases. It is of 

interest to note that the buckling strength of panels with 

hslts = 10 is higher than the buckling strength of panels 

with hslts = 15 for all slenderness ratios 8. This may be 

due to the fact that this panel buckles in a local mode. 

It is also clear from Figure 5.7(a) that the stiffener 

area (0 = 0.1 and 0.05) has no effect on the buckling 

strength of stocky panels (8 s 0.8) as long as h It ratio s s 

is constant (h It = 10). Increasing the slenderness ratio s s 

of the panel, the stiffener area produces some increase in 

the local buckling strength. The effect of the stiffener 

area, on this strength, increases as the slenderness ratio 

increases. 
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The panel with tee stiffeners (hs/ts = 15) behaves in 

a similar manner to the panel with tee stiffeners corre-

sponding to hslts = 10 in the range of 8 > 0.6. Both panels 

buckle in a local mode. For slenderness ratios 8 less than 

this, there is an effect on the buckling strength due to the 

increase of the h It ratio. The increase in the buckling s s 

strength for the panel with hslts = 15 is due to the fact 

that the panel buckles in an overall mode in the range of 

~ s 0.6. 

The effect of hSflhs of the tee stiffener on the 

buckling strength for a wide range of slenderness ratio is 

very small. Fukumoto et al (60) also demonstrated this in 

their theoretical work. For panels with 8 < 0.5 the h flh s s 

= 1.0 buckling curve is slightly higher than the h flh = 0.5 s s 
buckling curve. This may be due to the increase in the 

flexural rigidity of the stiffener with higher h flh • s s 

The effect of hSflhs and hslts on the buckling strength 

of a panel depends on the mode of buckling. The panels 

discussed above buckle in a local mode where this effect is 

small. But the strength of a panel buckling in an overall 

mode will increase as the hSf/hs ratio decreases •. This is 

because the flexural rigidity rather than the torsional 

rigidity is the controlling factor. 
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5.2.2.2 Effect of Stiffener Depth to Thickness Ratio 

Two panels with slenderness ratios S = 0.88 and 1.414 

stiffened with flat, angle or tee stiffeners have been 

considered in a study of the relationship between the 

stiffener size and the critical stress. These two values 

of slenderness were chosen (from the previous section) to 

represent the inelastic and elastic ranges respectively. 

The stiffener thickness ts was assumed to be equal to the 

plate thickness t and the stiffener depth hs was varied from 

zero (unstiffened panel) to l6t. Three levels of residual 

stress - a r = 0, 0.3 ay and 0.5 ay - have been considered. 

Figure 5.8 shows how, as the stiffener size is 

increased, the critical buckling mode of the panel changes 

from that of a predominantly overall mode (A/b = 5.0) to a 

local mode for which the plate buckles between adjacent 

stiffeners (A/b = 1.0). For the range of stiffener depths 

considered (s 16t) local buckling of the stiffener outstand 

is not significant. It is clear from this graph that the 

local buckling of a panel with low hs/t increases rapidly 

as h It is increased, due to the increase in the torsional s 

stiffness of the stiffener. Above a certain ratio however, 

the effect of hs/t on the local buckling is very small (the 

torsional rigidity rather than the flexural rigidity is more 

effective), this ratio depending on the slenderness ratio of 

the plate 6 and the residual stress level are 
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For panels with hs/ts = 0 (unstiffened) the effect of the 

residual stress level on local buckling is small. The 

effect of residual stress however increases as h It increases s 

until at a certain value of hs/t the effect becomes constant 

and the local buckling curves for different or-values become 

parallel. 

It is clear that the more slender panel (8 = 1.414) 

behaves ~lastically for the range of stiffener sizes con-

sidered, the critical stress being always less than (0.8 

Oy - or). While the overall buckling curves for the first 

panel, 8 = 0.88 become parallel to the local buckling 

curves at higher hs/t, this does not occur for this panel 

as shown in Figure 5.8(b). This is due to the spread of 

yielding in the stiffeners of the first panel which reduces 

the effect of the stiffener (flexural rigidity) on the overall 

buckling strength. This spread of yielding also affects the 

local buckling of the panel. For the stockier panel the 

critical local buckling stress is approximately constant 

while for the other panel this critical local buckling 

increases slightly with the increase of the stiffener depth. 

For this panel, an increase in hs/t of 50% leads to a 5% 

increase in the local buckling strength. 

The intersection of the local buckling curves and the 

overall buckling curves leads to one of the possible 

definitions of the optimum size of the stiffeners. In 

designing stiffened plates, it may be that this optimum 
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stiffener size is required. From the co~parison of the 

behaviour of the two panels - 8 = 0.88 and 1.414 - it is 

apparent that the optimum hslt increases as the slenderness 

ratio increases. For a 38% increase in the slenderness 

ratio of an initially stress free panel, the optimum h It s 

increases by 10%. 

As an extension of this study similar panels with four 

angle or.tee stiffeners have been examined. The results 

for the two panels with slenderness ratios, 8 = 0.88 and 

1.414 and three levels of residual stress ar = 0.0, 0.3 ay 

and 0.5 ay - are shown in Figure 5.9. The general pattern 

of behaviour is similar to that shown in Figure 5.8 for a 

panel with flat stiffeners. 

For the stockier panels there is no effect for hslt 

on the local buckling (A = b) strength. The local buckling 

strength of the more slender panels increases by 12% as 

h It is increased by 50%. This ratio, 12%, is more than s 
twice the corresponding increase for flat stiffeners. 

However it is worth noting that although the increase in 

hs/t is the same in both cases - 50% - the actual increase 

in the areas of the flat stiffeners and the tee stiffeners 

are 50% and 100% respectively. 

The presence of residual stresses reduces the overall 

buckling of the stocky panel (8 = 0.88) when h It > 5.0 but s 
for the more slender panel (8 = 1.414) it has no effect. 

This may be due to the elastic behaviour of the slender 

panel. The optimum hs/t reduces as the residual stresses 
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increase. This is because of an increase in the tendency 

.towards local buckling, which is not greatly affected by 

the increase of the stiffener depth, hs • When or is changed 

from 0.0 to 0.5 0y the optimum hs/t reduces by about 28% and 

40% for panels with a = 0.88 and 1.414 respectively. 

5.2.2.3 Effect of the Stiffener Shape 

Three identical panels stiffened with flat, angle and 

tee stiffeners have been considered in an attempt to 

establish the efficiency of the stiffener shape. The area 

of the three types are equal and their thicknesses are equal 

to the plate thickness. For three levels of residual 

stress - or = 0, 0.3 0y and 0.5 0y - the variation of 0cr/Oy 

against 6 is shown in Figure 5.10 and Figure 5.11 for panels 

with slenderness ratios e = 1.414 and 0.88 respectively. 

The ratio of the stiffener area to the plate area (0) is 

proportional to the amount of material spent on stiffening 

the flange; therefore the figures provide information on 

the effectiveness of the rib material in increasing the 

critical load. 

For the more slender panel (a = 1.414) with flat 

stiffeners the results show clearly that for a wide range 

of 0 the overall buckling (A = B) stress is approximately 

100% greater than the corresponding values for both the tee 

and angle stiffened panels. This range decreases as the 

residual stresses increase. While it is between 0 = 0.012 ~ 

0.037 for an initially stress free panel, it reduces to 
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6 = 0.012 ~ 0.022 for a panel with or = ~.5 ay. This is 

due to the early local buckling of the second panel. 

For the initially stress free panel (B = 1.414) and 

at a value of 0 of about 0.036 however, local buckling 

(~ = b) becomes critical for the flat stiffened panel and 

for values of 0 greater than about 0.052 the angles and tee 

stiffened panels are more efficient. This value reduces to 

0.038 an~ 0.030 for panels with or = 0~3 0y and 0.5 0y 

respectively. The increase in the local buckling stress due 

to using angle or tee stiffeners instead of the flat 

stiffeners is about 20% for an initially stress free panel. 

This value increases as the residual stress increases and 

for panels with or = 0.3 ay and 0.5 ay the value becomes 

30\ and 50% respectively. 

The variation in the critical stress simply reflects 

the relative stiffnesses of the various sections for the 

different modes of buckling - local (~ = b) and overall 

(~ = B). It is of interest to note that the tee and angle 

stiffeners give results close to each other for any level 

of or' The difference in the critical stress is about 6% 

on average. At a high ratio of 0 the overall buckling of 

the panel with tee ribs, and the local buckling of the 

panel with angle ribs give the upper limits. 

From Figure 5.10 and Figure 5.11 it is clear that as 
. 
the slenderness ratio of the panel decreases, the effect of 

the stiffener shape (flat, tee and angle) on the critical -
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local and overall - buckling stress decreases. For the 

.stockier panel - a = 0.88 - this effect becomes approxi­

mately zero in the local buckling mode. The 100% increase 

in overall buckling stress observed in the slender panel 

ca = 1.414) with flat stiffeners reduces to 50% for the 

stockier one but its range becomes wider. It is worth 

noting that, for any stiffener shape, the change from the 

overall buckling mode (A = B) to the local buckling mode 

(A = b) is more gradual for the stockier panel with or = 

0.0. 

Some designers and researchers suggest that the tee 

stiffener is more favourable than the rectangular stiffener. 

Fukumoto et al (60) referred this to the fact that the 

reduction of the effective flexural rigidity is much more 

gradual in tee cross-sections than in flat cross-sections. 

They found that the strength reduction due to yielding in 

the stiffeners are rather gradual in this type of stiffened 

plates. On the other hand Kristek et al (113) found that 

flat stiffeners are more efficient than any other type for 

a wide range of o. Kristek's work was limited to initially 

stress free elastic panels. 

From the present results, it is clear that it is not 

usual for tee or angle stiffeners to perform better than flat 

stiffeners. This is due to the fact that the flexural 

~igidity of a flat stiffener increases very quickly with the 

increase of 0 (for constant thickness) but increases slowly 
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for other types of stiffeners until a limit where local 

buckling of the plate between stiffeners occurs. Any 

further increase in the flexural rigidity will have no 

effect on the panel with flat stiffeners but will continue 

to increase the critical stress for a panel with tee or 

angle stiffeners. 

5.2.3 Effect of the Orientation of the Angle Stiffener 

The'orientation of the outstanding leg of the angle 

stiffener has been considered in connection with its effect 

on local (A = b) and overall (A = B) buckling. The results 

for a panel with slenderness ratio a = 1.414 under three 

levels of residual stress - Or = 0.0, 0.3 0y and 0.5 0y -

are shown in Figure 5.12. The finite strip method and the 

folded plate theory (113) show that the orientation of the 

outstanding leg has some effect on the overall buckling 

stress. Kristek et a1 (113) referred this to the fact that 

the bending moments, through which the oustanding legs of 

the angle stiffeners act on the flange sheet, stabilize the 

buckled sheet in the case of the outward-orientated legs but 

enlarge the sheet f1exure when the outstanding legs have an 

inward orientation. The two modes of buckling, local (A = b) 

mode and overall (A = B) mode used in the present analysis 

are similar to those used by Kristek. 

From Figure 5.12 it is clear that there is no effect on 

the overall buckling stress for the orientation of a 

stiffener with hs/t ~ 5. The increase in the critical 
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stres~ due to outward orientation, starts gradually as the 

.stiffener depth hslt increases up to the optimum value 

h:/t. Increasing the stiffener size over the optimum size 

will reduce the effect of the orientation on the overall 

buckling stress and it vanishes. As the residual stresses 

are increased the effect of the orientation of the out­

standing leg increases. The overall buckling stress of an 

initially stress free panel with outward orientated stiffeners 

- at optimum hslt - is higher than the buckling stress of a 

panel with inward orientated stiffeners by 6%. This ratio 

icnreases to 12% for a panel with residual stress or = 
0.5 ay. 

For the local buckling mode (A = b) the folded plate 

results (113) do not exhibit any influence of the orienta­

tion. The critical buckling stress of an inward orientated 

panel, based on the finite strip is higher than the critical 

stress of outward oriented panel. The effect of the 

orientation on local buckling stress reduces as hslt 

increases above its optimum value. 

The optimum h;/t for the inward orientation is higher 

than that for the outward orientation by 5% and 11% for 

panels with residual stress or = 0.0 and 0.5 ay respectively. 

The change in the critical stress with orientation may be 

due to the change in the out-of-plane displacements of the 

outstanding leg of the stiffener - which depends on the 

orientation - relative to the displacements of the plate. 
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Comparing both orientations, the smaller displacement of the 

outstanding leg of the angle stiffener leads to a higher 

overall buckling stress. It can be imagined that the 

angle stiffeners are replaced by an elastic support or 

springs. The stiffness of these springs is proportional to 

l/w where w is the displacement of the centre of gravity of 

the stiffener. This displacement in overall buckling modes 

of a panel with outward orientated stiffeners is less than 

the displacement for a panel with inward orientated 

stiffener. So the stiffness of the springs is higher in 

the first case and the critical buckling load is higher. A 

similar analysis can be conducted for the local buckling 

mode. 

From this it is clear that by phoosing the better 

orientations of the outstanding leg of an angle stiffener 

a further increase in critical load could be obtained. 

5.2.4 Influence of Residual Stress 

The same two panels - e = 0.88 and 1.414 - with flat 

stiffeners and five levels of residual stress - a = 0.0, 
r 

0.2 ay, 0.3 ay, 0.4 ay and 0.5 ay - have been used to study 

the effect of residual stresses on the stiffener size. 

The overall buckling mode (X = B) and the local buckling 

mode (X = b) have been considered and the results are 

shown in Figure 5.13. 
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For panels with light stiffeners (low values of hit) 
s 

for which overall buckling (A = B) is the critical mode 

the residual stress has no effect on the critical stress. 

As the stiffener depth increases the tnedency towards 

local buckling - which is greatly affected by the residual 

stresses - increases. When the stiffener depth to thick-

ness ratio hslts ~ 8.5, the residual stresses reduce the 

overall buckling of the stockier panel, B = 0.88. The 

reduction in the overall buckling stress increases as the 

residual stress or decreases. This may be due to the 

increase of the plate area subjected to compressive resi-

dual stress. The more slender panel - B = 1.414 is not 

affected by the residual stress when it buckles in an 

overall mode. 

One further point of interest is that for this panel 

B = 1.414 - the reduction in local buckling stress due to 

residual stress or = 0.3 0y is of the order of 90% of or' 

but the corresponding reduction for the stockier panel is 

almost equal to Or. For residual stress or = 0.5 ay the 

reductions become 75% and 90% of a for the two panels r 

respectively. This is because the former panel behaves 

elastically, whereas the latter is failing at a stress 

close to the yield stress and the influence of residual 

stress is therefore greater. 

From these two graphs a relation between the residual 

stress level, the optimum stiffener size (h;/t) and the 

critical buckling stress have been obtained - the results 
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are shown in Figure 5.14 (a). The relati.onship is approxi­

mately linear; the slope of the 0r/Oy vs h~/t lines for 

the two panels - B = 0.88 and 1.414 - being almost equal. 

The slope of the 0r/Oy vs 0cr/Oy line for the more slender 

panel is slightly greater than the slope of the line for 

the stockier panel. This means that the later panel is 

more sensitive to the level of the residual stress. The 

450 line where 

is also shown. The difference between the slope of this 

line and the slope of the other lines, may be due to the 

fact that in the first case the total area of the plate is 

assumed to be subjected to compressive or' while in the 

later case this area reduces as ° increases. This r 

difference reduces as the slenderness ratio of the panel 

reduces. For panels with a = 0.88 and 1.414 the difference 

between the slopes are 0.06 and 0.43 respectively which may 

be neglected for the stockier panel. It is clear from 

Figure 5.l4(a) that the average reductions in the critical 

stress are 0.95 or and 0.7 or for the two panels respec­

tively. 

The same two panels but stiffened with angle or tee 

stiffeners have been considered and the results are shown 

In Figure 5.14(b) and Figure 5.l4(c) respectively. The 

slopes of the or/aY vs h:/t lines for these panels are 
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not equal. From the graphs it can be noted that the value 

of the optimum stiffener size of the stockier panel is 

less affected by the residual stress level than the more 

slender panel. The optimum h;/t for the stockier panel 

with tee stiffener is higher than that required for the 

more slender panel in the range of residual stress a ~ 
r 

0.45 ay. This may be due to the assumed pattern of the 

residual stress in this type of stiffener which makes the 

stiffener lose its rigidity rather more rapidly. 

Considering the three panels with the same B (0.88) 

but stiffened with flat, angle and tee stiffeners the 

slopes of the or/ay vs 0* lines are not constant as shown 

in Figure 5.15. In this figure the optimum relative 

stiffener area 0* is used instead of the optimum stiffener 

depth h;. Due to the fact that the assumed residual stress 

patterns for the flat, angle and tee stiffeners have no 

common base, a useful comparison cannot be obtained from 

Figure 5.15. It is of interest to note that for panels 

with tee or angle stiffeners having the same area and a 

panel with flat stiffeners having 70% of this area an 

equal strength can be obtained for any residual stress 

level. In general the difference between the optimum area 

of the tee and angle stiffeners for this panel is small 

compared with the flat stiffeners. The ocr/aY against 

or/aY lines for the three shapes of stiffeners - flat, 

angle and" tee - coincide with each other for the stockier 
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panel. For the more slender panel the shape of the 

stiffeners has some effect on the critical stress. 

5.2.5 Hybrid Stiffened Panel 

A panel stiffened with higher strength steel 

stiffeners has been considered to study the effect of the 

ratio of the stiffener yield stress to the plate yield 

stress 0ys/Oy. The yield stress of the stiffeners 0YS 

are taken as 1.0, 1.4 and 1.6 times the plate yield 

stress, Oy. Three levels of residual stress - 0 = 0.0, r 

30% and 50% of the plate yield stress - have been con-

sidered for both plate and stiffeners. The results given 

in Figure 5.16 are nondimensionalized by using a modified 

yield stress Oy, where Oy = maximum squash load/area of 

the panel. 

The slenderness ratio of the plate is given by 

a = ~;(Oy 3(1 - v
2

) 
t E n2 

In Figure 5.17 the same results have been reproduced using 

the yield stress of the plate 0y to determine the ordinate 

and abscissa. 

At high panel slendernesses, the panel buckles 

elastically and the higher yield stress of the stiffener 

has no effect on the critical load. In the inelastic range, 

the effect of the material yield stress depends on the 

• 
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stiffener area, mode of buckling, residual stress, slender­

ness ratio of the panel and the ratio of stiffener yield 

stress to the plate yield stress Oys/Oy. For a panel with 

heavy stiffeners where the mode of buckling is usually a 

local mode, the effect of Oys/Oy is small. This effect 

increases as the slenderness ratio decreases. The maximum 

increase in the critical stress - for the panel considered -

is 2% when Oys/Oy increases by 60% for an initially stress 

free panel. This value increases to 12% when the residual 

stress or increases to 0.5 Oy. 

From Figure 5.16 and Figure 5.17 it is clear that for 

a stocky panel with residual stress, the critical stress 

will exceed the squash load. This may be due to the fact 

that as the residual stress increases the area of the 

plate subjected to compressive residual stress decreases 

and the area subjected to tensile. stress increase. The 

results obtained here are not sufficient to discuss the 

efficiency of this type of panel in detail, but generally, 

the little benefit from increasing the yield stress of 

the stiffener was expected for t~e assumed panels. 

Knowing that the panel with the smallest OYS has buckled 

in a local mode, the increase in 0YS will not change this 

mode but will lead to a small increase in the buckling 

strength. This is due to the fact that the strength of the 

stiffener, after a certain limit, has a very small effect 

on the local buckling strength of the panel. 
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5.3 Very Wide Panel Stiffened With Flat. Ribs 

Usually the stiffened panels used in civil engineering 

projects have a width many times greater than their length. 

Such a panel behaves rather differently from the 

rectangular panel due to the lack of the longitudinal edge 

supports. Some studies on a panel like this have been 

carried out approximating the panel by a pin-ended column 

(19, 25, ·44). Murray (19), Little (25), and Horne et al 

(44) neglected the continuity between the plate and the 

neighbouring panel and assumed that every stiffener 

together with its associated plate could be treated as a 

column. 

Two buckling modes, a local mode (A = b) and an 

overall mode (A = a) have been considered. In the overall 

buckling there are differences between the present work 

and the previous work (19, 25, 44). In the previous work 

orthotropic plate action of the whole stiffened panel was 

not considered. In the present work it is assumed that 

the transverse cross-section can be distorted which means 

that the displacements at different points on this cross­

section may be varied. The effect of any possible 

restraint arising at the edges of the panel due to trans­

verse continuity with a neighbouring panel have also been 

included. 

The approach given by Williams (112) is used to 

assemble the overall stiffness and stability matrices. 
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The parameters to be varied in this study are: 

1. The residual stress level. 

2. Stiffener depth to thickness ratio. 

3. Stiffener area. 

4. The length of the panel. 

5. The slenderness ratio of the plate. 

The geometry of the very wide panel is similar to 

the square panel except that the leng~,Of the panel 

changes from a = b (a = 200 mm) to a = lOb (a = 2000 mm) • 

A design chart has been developed to show the 

critical load of a very wide panel under longitudinal 

compressive stress. 

5.3.1 Williams's Very Wide Panel Approach 

Assume the panel shown in Figure 5.18 has nodal 

repetitive displacements ci • The equilibrium equations 

in matrix form are given by 

[KJ {cS} = {p} 

where [KJ is the stiffness matrix 

{c} is the displacement vector 

{Pj is the load vector 

(S.l) 

This stiffness matrix is of a very large order but can be 

divided into a number of submatrices as follows: 



FIG .5·18.(0) VERY WlDE PANEL. 

FIG.S·18.lb) DISPLACEMENT OF A VERY WIDE PANEL. 
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o o o o o o o 

.0 K43 K44 K41 tOO 0 0 0 0 
- - - - - , - - - - - - -,- - - - -- - - - - - - - - -, 
o 0 I K14 K11 K12 0 0 0 I 0 0 

o 0 0 K21 K22 K23 0 0 0 0 
= 

o 0 0 0 K32 K33 K34 0 0 0 

o 0 I 0 0 0 K43 K44 K41 : 0 0 
'-- ---- - - - - - - T - - - ___ L ------

o 0 0 0 0 0 I K14 K11 K12 0 
I 

00 0 00 O' 0 

(5.2) 

It is clear that the system consists of a set of equations 

which will be repeated many times. If there are n nodes 

in one complete wave-length there will be only (n - 1) new 

equations. These equations are (Figure 5.18(b» 

K14 °4 + K11 °1 + K12 °2 = PI 

K21 °1 + K22 15
2 + K23 15 3 = P2 

K32 °2 + K33 6
3 + K34 15 4 = P3 

1(43 15
3 + 1(44 15

4 + K41 151 = P4 

Any other equation will be similar to one of these 

equations. Equations (5.3) can be put in matrix form as 

follows: 

1(11 K12 0 1(14 15 1 P1 

1(21 1<22 1(23 0 15 2 P2 = 
0 K32 K33 1(34 15 3 P3 

K41 0 1(43 1(44 15 4 P4 

(5.3a) 

(5.3b) 

(5.3e) 

(5.3d) 

(5.4) 
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or simply 

(5.5) 

Therefore the stiffness matrix of the very wide panel [K] 

is reduced to a square matrix [R] of order (n - 1) x (n - 1) • 

This matrix can be used to determine the critical buckling 

stress using the Wittrick-Williams algorithm as usual (87). 

5.3.2 Effect of the Panel Length on the Buckling Strength 

Five values for the distance between the end supports 

(a) of a very wide panel have been considered 

a = b , 2b, ••• , 5b 

where lib" is the distance between two adjacent stiffeners. 

Although full results for panels with residual stress or = 
0, 0.2 ay and 0.4 ay and hslts = 8, 12, 16 and 20 have 

been obtained, only the results for a panel with h It = 12 and s s 

Or = 0.0 and 0.4 ay are shown in Figure 5.19. 

Three values for the relative stiffener area - 0 = 0.1, 

0.2 and 0.3 - have been used. It is clear that the buckling 

strength of the panel with the lightest stiffeners (0 = 0.1) 

reduces substantially as the panel length increases from 

a a b to a = 5b for both levels of residual stress - a = 0.0 r 

and 0.4 ay. The maximum reductions are about 70% and 55% 

respectively. This may be due to the fact that the mode of 
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buckling has changed from local (A = b) .to overall CA = a). 

It is of interest to note that while the buckling strength 

for the panel with A = b reduces when the residual stress 

increases, the buckling strength for the other panel 

(A = 5b) is not affected. 

As the stiffener area increases the reduction in the 

buckling strength decreases. For an initially stress free 

panel wi~h stiffener area 6 = 0.3, the maximum reduction -

due to increasing the length of the panel from a = b to 

a = 5b - is 2%. The panel with higher residual stresses -

Or = 0.4 ay - is less affected by increasing its length to 

5b. Again, this reflects the effect of the stiffener area 

and the residual stress on the local buckling strength. 

It is clear that panels with stiffener area 6 > 0.1, 

residual stress or = 0.4 ay and with length up to 5b buckle 

in a local mode. 

From Figure 5.19, the effect of the stiffener area 

on the local buckling stress reduces as the slenderness 

ratio of the plate a reduces. Increasing the residual 

stress, the length of the panel can be increased to achieve 

a correlation between the local and the overall buckling 

because the residual stress affects the local buckling 

while the length of the panel affects the overall buckling. 

5.3.3 Effect of Stiffener Depth to Thickness Ratio on 

Buckling Strength 

Four values of the stiffener depth to thickness ratio _ 

h It • 8, 12, 16 and 20 - have been considered with the s s 
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relative stiffener area fixed at 0 = 0.3. The local 

buckling curves (A = b) and the overall buckling curves 

for different lengths of the panel are shown in Figure 

5.20. The residual stresses used in the analysis were 

Or = 0, 0.2 ay and 0.4 ay. 

It is clear from the graph that the local buckling 

stress increases as h It reduces. This may be due to the s s 

reduction in torsional resistance of the slender stiffeners. 

As the slenderness ratio of the panel reduces the effect of 

h It on the local buckling stress reduces. This is 
s s 

because the yield in the plate region between two adjacent 

stiffcners starts to spread and the limit in this case is 

an ultimate limit rather than a serviceability limit. The 

buckling mode changes from local (A = b) to overall 

buckling (A = a) as the length of the panel increases. In 

the overall mode the critical stress increases as h It s s 

increases. In this mode the flexural resistance of the 

stiffener rather than the torsional resistance affects the 

critical stress. 

5.3.4 Effect of the Residual Stress 

The local buckling strength curves for three panels 

with relative stiffener area 0 = 0.1, 0.2 and 0.3 are 

shown in Figure 5.21. Three levels of residual stresses -

or = 0.0, 0.2 0y and 0.4 0y - have been considered. The 

stiffener depth to thickness ratios hslts are 12 and 20. 
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From the graphs it is clear that for panels with a 

slenderness ratio B ~ 0.9 the effect of 0 on the local 

buckling stress is very small for any level of 0. For r 

a panel with slenderness ratio B ~ 0.53 the buckling 

strength curve for or = 0.4 0y exceeds the one for or = 

0.2 0y. When ° increases from 0.0 to 0.20 0y the reduc-r 

tion in the strength of the panel with h It = s s 12 and 20 

equal to 0.90 or for any value of o. As ° increases to r 

is 

0.4 0y this reduction reduces to 0.8 or. This reduction 

is very high relative to the critical load of an initially 

stress free panel with slenderness ratio B ~ 1.3. A wide 

area of the plate in this panel is under compressive 

residual stresses. 

As the slenderness ratio reduces, the reduction in 

the strength due to the residual stresses increases. In 

the range of 1.2 > B ~ 0.8 the reduction in the strength 

equals or and 0.95 or for panels with residual stress or = 
0.2 0y and 0.4~y respectively. But it is worth mentioning 

that this reduction relative to the critical stress is less 

than that which occurs in the range B > 1.2. 

The effect of the residual stress on the overall 

buckling strength is shown in Figure 5.22. The initially 

stress free panels with relative stiffener area, 0 = 0.2 

and 0.3 buckle in an overall mode. This mode changes to a 

~ocal mode when the residual stress increases to 0.4 ay. 
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The initially stress free panel with 0 = 0.1 buckles in an 

overall mode and when the residual stress increases to 

0.4 ay the mode changes to a local mode for panels with 

slenderness ratio a > 1.3. For a very wide range of a 
there 1s no effect of the residual stress on the overall 

buckling strength for this panel. At a s 0.4 the residual 

stress reduces the strength of the panel by about 12%. 

This value of a will increase as the relative stiffener 

area 6 increases. 

5.4 Approximate Method for Design of Stiffened Panel 

The intersection of the local buckling strength curves 

and the overall buckling strength curve leads to one 

possible definition of the optimum dimensions of the 

panel. The buckling strength of a panel depends on the 

distance between the transverse supports, the stiffener 

size and shape, the slenderness ratio of the plate and the 

residual stress level. Assume only one factor can be 

varied and that the value of this factor at which the 

overall buckling strength equals the local buckling 

strength is the optimum value. 

Assume the length of the panel is the variable factor. 

The critical buckling stress for different values of plate 

slenderness ratio a, stiffener size hslts and 6 and residual 

stress or are given in Table 5.1. 
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To obtain the optimum length (a) for the panel a 

graph for A/b against 0crlOy is produced from this table. 

Figure 5.23 is an example for the case of a panel with 

residual stress or = 0.2 0y and the relative stiffener 

area 0 = 0.1. The intersection of the horizontal line for 

local ° loy (A/b = 1.0) with the corresponding buckling cr 
strength curve leads to the optimum length (a) of the 

panel. The slenderness ratio of the plateS varies between 

0.36 and 1.78 (bit = 20 ~ 100). Four values of stiffener 

depth to thickness ratio - hslts = 8, 12, 16 and 20 - have 

been considered. 

For different values of 0 and or similar graphs have 

been obtained and the optimum panel length determined for 

every case. 

In some cases where the graphs are almost flat, the 

optimum length of the panel has been obtained from Table 

5.1 by interpolation. 

The relation between the optimum length of the panel, 

the slenderness ratio S (bit) and the critical stress is 

shown in Figure 5.24 for different stiffener sizes and 

residual stresses. To use this design chart: 

1. Assume the values of both the residual stress -

Or - and the relative stiffener area - o. 
2. Knowing the value of the applied compressive 

stress and choosing the stiffener depth to 
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thickness ratio - h It between 8 and 20 -ss' 

the slenderness ratio (bit) of the panel -

can be obtained. 

3. From the relation between (bit) and (a/b) 

the panel length (the distance between the 

transverse supports) can be obtained. 

In the example shown assume an initially stress free 

panel stiffened with a number of ribs, the area of each 

rib relative to the area of the associated plate 0 = 0.1. 

Assume the applied stress 0 = 180 N/mm2 and choose 

hslts = 20. The optimum values for bit and alb will be 

64 and 3.0 respectively. 

From this, a very wide panel with the following 

dimensions 

a · 600 mm · 
b · 200 mm · 
t : 3.125 nun 

stiffener . 1.77 x 35.36 mm . 
or · 0.0 · 

240.0 N/mm 2 
0y · · 

will have local buckling strength equal to the overall 

buckling strength. 

If the relative stiffener area 0 is increased to 0.2 

the optimum bit and alb will be 65 and 5.8 respectively. 
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The graphs can be used to determine any other two 

unknowns by using a similar approach. 

In the previous section the optimum length of the 

panel was obtained from the graph of ocr/Oy against A/b. 

The results given in Table 5.1 can be recast in the form 

of Figure 5.25 to obtain the optimum stiffener depth to 

thickness ratio h~/ts. The relation between the applied 

stress, the slenderness ratio of the plate and the optimum 

stiffener dimension h~/ts for a specified panel with 

length (a) are shown in Figure 5.26. 

Use of this graph entails an exactly parallel process 

to that used with the length chart Figure 5.24. 

5.5 Stability of Box Girder 

The program has been developed to calculate the 

critical stress of a complete box section stiffened with 

any number of stiffeners on both the upper flange and the 

web. The applied stress can be axial compression with 

eccentricity varied from zero (pure compression) to 

infinity (pure bending). In order to take advantage of 

symmetry - both of the geometry and loading - only half 

of the box will be considered. 

No parametric study has been done for this box section 

and the results shown in Figure 5.27 and Figure 5.28 are 

provided simply as an indication of the range of problems 

that can be analysed using the author's program. 
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5.6 Concluding Remarks 

The inelastic finite strip method has been used to 

study the buckling strength of stiffened panels. The 

effect of the slenderness ratio of the plating S, the 

residual stress, the shape and dimensions of the 

stiffener, the longitudinal boundary conditions and the 

yield stress of the material have all been considered. 

Results have been obtained for two main cases: a very 

wide panel and a square panel with four stiffeners. 

The results from the analysis of the very wide panel 

have been used to develop an approximate design chart. 

This chart gives the optimum dimensions of a panel based 

on the condition that the overall buckling strength of the 

panel is equal to the local buckling strength of the 

plating; an example of its use is provided. 

The main conclusions of the investigation of the 

square panels may be summarised as follows: 

1. The present buckling strength curves show a smooth 

transition from elastic to inelastic buckling rather 

than the sudden reduction which would occur if an 

elastic perfectly plastic stress-strain relationship 

for the material had been assumed. 

2. As the slenderness ratio of the plating B increases, 

the effect of the residual stresses reduces. For 

moderatly stocky panels strengths in excess of the 

value (Oy - Or) x area have been obtained at low B. 
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3. At low values of e the buckling strength curves for 

or = 0.5 ay become higher than those corresponding 

to a
r 

= 0.3 ay. Moreover, for the very stocky panels, 

the critical stress may exceed the squash load. 

4. At high values of the slenderness ratio of the 

_Plating e, increasing the stiffener area produces 

some increase in the local buckling strength. 

5. Panels buckling in the inelastic range are affected 

more by the residual stresses than panels buckling· 

in the elastic range. 

6. ~he local buckling is more sensitive to the level of 

the residual stress than the overall buckling. 

7. The torsional resistance of the stiffeners and the 

transverse continuity with neighbouring panels have 

some effect on the local buckling strength of the 

plating. 

8. There' is an optimum size for the stiffeners and using 

larger stiffeners will not have any effect on the 

buckling strength. This optimum size depends on the 

shape of the stiffener, slenderness ratio of the 

plating , level of residual stress and half wavelength 

of buckling. 

9. The shape of the stiffener has some effect on the 

buckling strength. While flat stiffeners are most 

effective in preventing overall buckling, tee and 
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angle stiffener are more effective for local buckling. 

As B decreases, the effect of the stiffener shape on 

the critical buckling decreases. 

10. There is a small effect for the flange width of a 

tee stiffener on the buckling strength of a stiffened 

panel. 

11. The outward orientation of the outstanding leg of the 

angle stiffeners increases the overall buckling 

strength while the inward orientation increases the 

local buckling strength. 

12. Some increases in the buckling strength of stiffened 

panels can be achieved by using stiffener material 

with a yield pOint higher than that of the plating. 



~ 
°crloy 

bit 
(8) 

halts 1 2 3 4 5 6 

8 0.341 0.429 0.220 0.128 0.083 0.058 

12 0.331 0.508 0.319 0.187 0.123 0.086 

100.0 16 0.327 0.502 0.413 0.247 0.163 0.113 

(1. 76) 20 0.323 0.498 0.502 0.304 0.203 0.141 

8 0.729 0.672 0.338 0.195 0.127 0.088 

12 0.712 0.849 0.487 0.285 0.186 0.130 

66.67 16 0.708 0.901 0.626 0.373 0.246 0.171 

(1.17) 20 0.702 0.903 0.748 0.459 0.304 0.212 

8 0.937 0.848 0.457 0.264 0.172 0.119 

12 0.934 0.920 0.650 0.383 0.250 0.175 

50.0 16 0.933 0.940 0.803 0.499 0.329 0.229 

(0.88) 20 0.931 0.950 0.880 0.611 0.406 0.284 

8 0.972 0.932 0.693 0.407 0.265 0.185 

12 0.976 0.951 0.870 0.581 0.382 0.267 

33.33 16 0.978 0.960 0.918 0.732 0.496 0.348 

(0.59) 20 0.980 0.965 - 0.843 0.607 0.428 

8 0.978 0.951 0.858 0.555 0.363 0.253 

12 0.982 0.963 0.924 0.762 0.516 0.362 

25.0 16 0.984 0.968 0.943 0.874 0.660 0.468 

(0.44) 20 0.985 0.972 - 0.913 0.782 0.572 

8 0.982 0.960 0.913 0.701 0.465 0.326 

12 0.985 0.969 0.943 0.869 0.649 0.460 

20.0 16 0.986 0.973 0.954 0.917 0.798 0.589 

(0.35) 20 0.988 0.976 - 0.936 0.877 0.709 

(a) Or· 0.0 and ~ • 0.1 

(Table continued) 



X °cr/ay 
bit 
(8) 

hslts 1 2 3 4 5 6 7 

8 0.397 0.584 0.665 0.415 0.279 0.195 0.143 

12 0.370 0.547 0.842 0.601 0.415 0.290 0.214 

100.0 16 0.353 0.526 0.832 0.759 0.548 0.385 0.284 

(1. 76) 20 0.342 0.511 - 0.855 0.674 0.478 0.353 

8 0.799 0.927 0.880 0.622 0.415 0.292 0.215 

12 0.760 0.916 0.932 0.838 0.615 0.434 0.320 

66.67 16 0.734 0.909 0.948 0.908 0.783 0.571 0.424 

(1.17) 20 0.714 0.903 - 0.931 0.873 0.700 0.526 

8 0.947 0.960 0.928 0.796 0.556 0.390 0.288 

12 0.941 0.963 0.950 0.911 0.785 0.575 0.426 

SO.O 16 0.936 0.961 0.960 0.938 0.890 0.740 0.561 

(0.88) 20 0.931 0.959 - 0.949 0.923 0.849 0.688 

8 0.983 0.971 0.953 0.915 0.794 0.583 0.433 

12 0.985 0.977 0.965 0.946 0.911 0.810 0.633 
: 

33.33 16 0.984 0.980 0.971 0.957 0.938 0.899 0.797 

(0.59) 20 0.981 0.982 0.974 0.964 0.950 0.927 0.880 

8 0.987 0.977 0.963 0.941 0.895 0.757 0.577 

12 0.989 0.981 0.971 0.958 0.939 0.901 0.803 

25.0 16 0.991 0.983 0.975 0.966 0.953 0.933 0.896 

(0.44) 20 0.985 0.985 0.978 0.970 0.960 0.946 0.925 

8 0.990 0.980 0.969 0.952 0.927 0.863 

12 0.991 0.984 0.975 0.965 0.950 0.929 

20.0 16 0.992 0.986 0.979 0.971 0.960 0.946 

(0.35) 20 0.985 0.987 0.981 0.974 0.966 0.956 

(b) or· 0.0 and ~ - 0.2 

(Table continued) 



~ 
ocr/ay 

bit 
(B) 

hs/ts 1 2 3 4 5 6 7 8 

8 0.459 0.676 0.898 0.755 0.543 0.380 0.280 0.215 

12 0.417 0.603 0.869 0.897 0.776 0.564 0.418 0.321 

100.0 16 0.389 - 0.844 0.929 0.887 0.731 0.552 0.426 

(1.76) 20 0.369 0.531 - 0.929 0.921 0.845 0.679 0.529 

8 0.863 0.942 0.948 0.907 0.778 0.566 0.419 0.322 

12 0.813 0.928 0.960 0.942 0.908 0.798 0.618 0.479 

66.67 16 0.771 - 0.956 0.954 0.937 0.895 0.787 0.636 

(1.17) 20 0.735 0.902 - 0.961 0.949 0.925 0.876 0.762 

8 0.955 0.971 0.960 0.937 0.888 0.735 0.555 0.429 

12 0.948 0.967 0.969 0.956 0.937 0.896 0.788 0.631 

SO.O 16 0.940 - 0.973 0.964 0.952 0.931 0.891 0.798 

(0.88) 20 0.932 0.958 - 0.969 0.960 0.946 0.923 0.881 

8 0.986 0.980 0.971 0.957 0.937 0.897 0.792 -
12 0.986 0.983 0.976 0.968 0.956 0.940 0.911 0.851 

, 
33.33 16 0.984 0.985 0.980 0.974 0.965 0.953 0.938 0.914 

(0.59) 20 0.978 0.983 0.982 0.976 0.970 0.961 0.950 0.935 

8 0.991 0.984 0.975 0.966 0.952 0.932 0.894 

12 0.992 0.986 0.980 0.973 0.965 0.954 0.939 

25.0 16 0.993 0.988 0.983 0.977 0.971 0.963 0.953 

(0.44) 20 0.983 0.988 0.985 0.980 0.974 0.968 0.960 

8 0.993 0.986 0.979 0.971 0.960 0.947 

12 0.994 0.988 0.983 0.976 0.970 0.961 

20.0 16 0.993 0.990 0.985 0.980 0.974 0.968 

(0.35) 20 0.983 0.988 0.987 0.982 0.977 0.972 

(c) ay. 0.0 and 6 - 0.3 

(Table continued) 



~ 
Ocr lay 

bit 
(S) 

hslts 1 2 3 4 5 6 

8 0.160 0.340 0.200 0.120 0.080 0.060 

12 0.150 0.330 0.300 0.180 0.120 0.080 

100.0 16 0.150 0.320 0.380 0.230 0.150 0.110 

(1.76) 20 0.140 0.320 0.470 0.290 0.190 0.140 

8 0.550 0.630 0.330 0.190 0.120 0.090 

12 0.540 0.720 0.470 0.780 0.180 0.130 

66.67 16 0.530 0.710 0.610 0.360 0.240 0.170 

( 1.17) 20 0.520 0.710 0.710 0.450 0.300 0.210 

8 0.740 0.760 0.450 0.260 0.170 0.120 

12 0.740 0.760 0.640 0.380 0.250 0.170 

SO.O 16 0.740 0.760 0.750 0.490 0.320 0.230 

(0.88) 20 0.740 0.760 0.780 0.600 0.400 0.280 

8 0.790 0.800 0.680 0.400 0.260 0.180 

12 0.790 0.800 0.790 0.580 0.380 0.260 
: 

33.33 16 0.790 0.790 0.800 0.720 0.490 0.340 

(0.59) 20 0.790 0.790 0.800 0.780 0.600 0.420 

8 0.880 0.900 0.780 0.550 0.360 0.250 

12 0.870 0.900 0.890 0.740 0.510 0.360 

25.0 16 0.870 0.890 0.900 0.810 0.650 0.460 

(0.44) 20 0.870 0.890 0.900 0.870 0.750 0.570 

8 0.920 0.960 0.850 0.690 0.460 0.320 

12 0.920 0.940 0.930 0.790 0.640 0.460 

20.0 16 0.920 0.930 0.970 0.880 0.760 0.580 

(0.35) 20 0.920 0.920 0.960 0.920 0.810 0.700 

(d) or· 0.2 ay and 6 • 0.1 

(Table continued) 



~ 
ocr/aY 

bit 
( S) 

hs/ts 1 2 3 4 5 6 7 8 9 

8 0.210 0.400 0.620 0.400 0.260 0.190 0.146 - 0.090 

12 0.190 0.370 0.660 0.580 0.390 0.280 0.217 0.167 0.133 

100.0 16 0.180 0.360 0.650 0.710 0.510 0.368 0.287 0.221 0.175 

(1. 76) 20 0.170 0.340 0.640 0.740 0.630 0.457 0.357 0.275 0.218 

8 0.620 0.730 0.760 0.610 0.400 0.280 0.218 - -
12 0.580 0.720 0.760 0.770 0.590 0.420 0.323 - -

66.67 16 0.560 0.720 0.760 0.770 0.740 0.555 0.427 - -
(1.17) 20 0.540 0.710 0.760 0.770 0.780 0.676 0.529 - -

8 0.750 0.770 0.780 0.750 0.540 0.382 0.291 - -
12 0.750 0.770 0.780 0.790 0.740 0.562 0.429 - -

50.0 16 0.740 0.770 0.780 0.780 0.790 0.710 0.564 - -
(0.88) 20 0.740 0.760 0.780 0.780 0.790 0.779 0.684 - -

8 0.800 0.800 0.800 0.810 0.150 0.573 0.436 - -
12 0.800 0.800 0.800 0.800 0.820 0.760 0.633 - -

: 

33.33 16 0.790 0.800 0.800 0.800 0.800 0.841 0.759 - -
(0.59) 20 0.190 0.190 0.800 0.800 0.800 0.831 0.816 0.745 -

8 0.900 0.910 0.920 0.920 0.830 0.728 0.578 - -
1:2 0.880 0.900 0.910 0.910 0.920 0.844 0.760 - -

25.0 16 0.810 0.890 0.900 0.910 0.910 0.912 0.846 - -
(0.44 ) 20 0.810 0.880 0.890 0.900 0.910 0.913 0.911 0.827 -

8 0.930 0.990 1.000 0.910 0.890 0.785 - - -
12 0.920 0.950 0.980 1.000 0.960 0.901 - - -

20.0 16 0.920 0.920 0.940 0.910 0.990 0.954 0.912 - -
(0.35) 20 0.920 0.920 0.920 0.940 0.980 0.980 0.951 0.902 -
(e) or· 0.2 0y and 6 • 0.2 

(Table continued) 



~ 
°cr/Oy 

bit 
( S) 

hs/ts 1 2 3 4 5 6 7 8 9 10 

8 0.273 0.497 0.707 0.710 0.508 0.382 0.282 0.216 - -
12 0.236 0.432 0.683 0.744 0.711 0.564 0.419 0.322 0.255 0.208 

100.0 16 0.212 0.390 0.664 0.740 0.759 0.715 0.553 0.427 0.339 0.276 

(1.76) 20 0.196 0.367 0.647 0.737 0.758 0.775 0.673 0.530 0.422 0.343 

8 0.677 0.748 0.769 0.779 0.728 0.566 0.421 0.323 - -
12 0.634 0.736 0.764 0.775 0.781 0.754 0.617 0.480 - -

66.67 16 0.599 0.726 0.761 0.773 0.780 0.828 0.749 0.628 0.504 -
(1.17) 20 0.571 0.717 0.759 0.772 0.779 0.908 0.791 0.735 0.620 0.510 

8 0.764 0.779 0.786 0.790 0.793 0.717 0.556 0.430 - -
12 0.756 0.772 0.782 0.787 0.790 0.828 0.749 0.629 - -

SO.O 16 0.750 0.768 0.780 0.785 0.789 0.923 0.818 0.754 0.657 -
(0.88) 20 0.744 0.765 0.778 0.784 0.788 0.961 0.902 0.796 0.751 0.663 

8 0.799 0.800 0.841 0.866 0.880 0.830 0.751 - - -
12 0.797 0.798 0.800 0.814 0.850 0.945 0.870 0.790 - -

33.33 16 0.795 0.794 0.798 0.799 0.816 0.982 0.941 0.877 0.785 0.744 

(0.59) 20 0.794 0.794 0.796 0.798 0.800 1.000 0.972 0.933 0.872 0.788 

8 0.907 0.917 0.919 0.920 0.932 0.924 0.821 - - -
12 0.892 0.908 0.912 0.915 0.917 0.982 0.942 0.878 - -

25.0 16 0.880 0.891 0.900 0.905 0.910 1.000 0.980 0.945 0.894 0.808 

(0.44) 20 0.868 0.868 0.881 0.893 0.901 1.000 0.990 0.975 0.943 0.897 

8 0.995 1.000 1.000 1.000 0.993 0.962 - - - -
12 0.920 0.957 0.974 1.000 1.000 1.000 0.973 0.934 0.874 -

20.0 16 0.920 0.920 0.972 0.938 0.970 1.000 1.000 0.975 0.943 0.898 

(0.35) 20 0.919 0.919 0.919 0.920 0.922 1.000 1.000 0.996 0.974 0.945 

(f) 0y - 0.2 0y and 6 - 0.3 

(Table continued) 



~ 
ocr/aY 

bit 
( I) 

hs/ts 1 2 3 4 5 

8 0.030 0.213 0.187 0.114 0.076 

12 0.023 0.204 0.276 0.171 0.116 

100.0 16 0.019 0.199 0.360 0.226 0.155 

(1.76) 20 0.017 0.197 0.429 0.281 0.195 

8 0.413 0.535 0.319 0.188 0.119 

12 0.403 0.535 0.457 0.276 0.179 

66.67 16 0.398 0.539 0.554 0.361 0.238 

(l.17) 20 0.394 0.533 0.568 0.443 0.300 

8 0.559 0.577 0.441 0.259 0.164 

12 0.557 0.576 0.574 0.376 0.243 

50.0 16 0.556 0.575 0.590 0.486 0.321 

(0.88) 20 0.556 0.575 0.590 0.566 0.398 

8 0.722 0.748 0.599 0.403 0.257 

12 0.718 0.744 0.763 0.551 0.373 

33. 33 16 0.715 0.742 0.768 0.656 0.483 

(0.59) 20 0.712 0.740 0.767 0.752 0.567 

8 0.989 0.981 0.747 0.533 0.354 

12 0.983 1.000 0.892 0.674 0.499 

25.0 16 0.979 l.000 0.965 0.789 0.592 

(O.44) 20 0.974 1.000 1.000 0.870 0.698 

8 1.000 1.000 0.843 0.612 0.452 

12 1.000 1.000 0.962 0.775 0.580 

20.0 16 1.000 1.000 1.000 0.880 0.678 

(0.35) 20 1.000 1.000 1.000 0.945 0.803 

(q) or • 0.4 ay and 6 • 0.1 

(Table continued) 



~ 
°cr/oy 

bit 
(6) 

hslts 1 2 3 4 5 6 7 8 

8 0.079 0.279 0.507 0.386 0.272 0.188 0.136 0.103 

12 0.059 0.248 0.497 0.532 0.407 0.283 0.207 0.157 

100.0 16 0.047 0.231 0.491 0.551 0.527 0.377 0.277 0.211 

(1. 76) 20 0.040 0.220 0.485 0.549 0.599 0.467 0.346 0.264 

8 0.467 0.548 0.573 0.563 0.410 0.285 0.208 -
12 0.442 0.542 0.571 0.583 0.568 0.425 0.313 -

66.67 16 0.426 0.538 0.570 0.583 0.696 0.543 0.415 -
(1.17) 20 0.414 0.536 0.569 0.582 0.804 0.621 0.510 0.397 

8 0.567 0.582 0.596 0.683 0.532 0.382 0.281 -
12 0.563 0.579 0.593 0.670 0.698 0.545 0.418 -

SO.O 16 0.566 0.577 0.591 0.656 0.828 0.656 0.536 -
(0.88) 20 0.558 0.576 0.590 0.644 0.913 0.771 0.611 0.519 

8 0.746 0.766 0.787 0.876 0.703 0.549 0.424 -
12 0.732 0.755 0.773 0.873 0.880 0.721 0.575 -

: 

33.33 16 0.723 0.747 0.770 0.844 0.963 0.846 0.709 -
(0.59) 20 0.717 0.741 0.767 0.826 1.000 0.926 0.813 0.684 

8 1.000 1.000 1.000 0.969 0.835 0.664 0.545 -
12 0.992 1.000 1.000 1.000 0.964 0.849 0.713 -

25.0 16 0.978 0.998 1.000 1.000 1.000 0.949 0.839 -
(0.44) 20 0.961 0.983 1.000 1.000 1.000 0.988 0.921 0.821 

8 1.000 1.000 1.000 1.000 0.921 0.782 - -
12 1.000 1.000 1.000 1.000 1.000 0.972 - -

20.0 16 1.000 1.000 1.000 1.000 1.000 0.989 - -
(0.35) 20 1.000 1.000 1.000 1.000 1.000 1.000 0.974 0.908 

(h) or. 0.4 0y and 6 • 0.2 

(Table continued) 



A Ocr/ay 
bit 
(6) 

hs/ts 1 2 3 4 5 6 7 8 9 10 

8 0.133 0.367 0.529 0.560 0.521 0.373 0.274 0.209 0.164 0.131 

12 0.101 0.309 0.514 0.556 0.677 0.535 0.409 0.314 0.248 0.200 

100.0 16 0.082 0.276 0.503 0.553 0.820 0.635 0.528 0.417 - 0.268 

(1. 76) 20 0.069 0.254 0.493 0.551 0.857 0.757 0.591 0.511 0.412 0.335 

8 0.509 0.560 0.579 0.590 0.679 0.537 0.411 0.315 0.249 -
12 0.482 0.552 0.545 0.586 0.873 0.701 0.565 0.467 0.373 -

66.67 16 0.460 0.545 0.572 0.584 0.961 0.838 0.688 0.570 0.489 0.401 

(1.17) 20 0.441 0.540 0.570 0.583 1.000 0.924 0.803 0.664 0.567 0.494 

8 0.576 0.592 0.651 0.719 0.823 0.637 0.530 0.420 0.333 -

12 0.570 0.584 0.606 0.690 0.962 0.839 0.689 0.571 0.490 -
50.0 16 0.565 0.581 0.594 0.673 1.000 0.944 0.829 0.701 0.583 0.521 

(0.88) 20 0.562 0.578 0.592 0.653 1.000 0.988 0.917 0.814 0.693 0.586 

8 0.768 0.789 0.871 0.955 0.963 0.841 0.692 - - -
12 0.750 0.768 0.793 0.903 1.000 0.970 0.882 0.765 0.637 -

33.33 16 0.736 0.754 0.772 0.844 1.000 1.000 0.966 0.889 0.790 0.679 

(0.59) 20 0.725 0.742 0.765 0.8ll 1.000 1.000 1.000 0.957 0.885 0.795 

8 1.000 1.000 1.000 1.000 1.000 0.946 0.833 - - -
12 1.000 1.000 1.000 1.000 1.000 1.000 0.967 - - -

25.0 16 0.981 0.990 1.000 1.000 1.000 1.000 1.000 0.970 - 0 •. 823 

(0.44) 20 0.954 0.953 0.996 1.000 1.000 1.000 1.000 1.000 0.968 0.911 

8 1.000 1.000 1.000 1.000 1.000 0.990 0.921 - - -
12 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.958 0.887 -

20.0 16 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.968 0.912 

(0.35) 20 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.970 

(i) or - 0.4 ay and 6 - 0.3 

Table 5.1. The Buckling Strength of a Very Wide Panel 
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CHAPTER 6 

INELASTIC BUCKLING BEHAVIOUR OF COLUW~S, BEAMS 

AND BEAM-COLUMNS 

6.1 Introduction 

In this chapter the finite strip method described in 

the previous section is used to study the ~ne1astic 

buckling of structural members under various types of 

loading. The columns, beams and beam-columns are all 

assumed to be pin-ended. Lateral deflection and twist at 

the ends are thus prevented but no resistance is provided 

against lateral bending nor is there any restraint 

(bracing) to the web or the flanges along the length. 

This type of structural member may buckle in one of the 

three basic modes, 

1. Local buckling 

2. Overall buckling 

3. Combined overall and local buckling 

Which of these modes will actually occur depends on 

many factors including, 

1. The shape and dimensions of the cross­

section 

2. The length of the structural member 

3. The magnitude and the pattern of the residual 

stresses 

4. The initial imperfections and the eccentricity 

of the load 
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The local buckling of any component of the structural 

element depends largely on the width-to-thickness ratio 

of that component. For a low ratio the ultimate strength 

of the member may be reached before buckling occurs, while 

for a high ratio the component may exhibit some post­

local-buckling strength. In this chapter any post-local­

buckling strength is neglected. 

In the conventional treatment of overall buckling, 

the components of a member are considered undistorted. 

This buckling may be flexural, torsional or flexural­

torsional. 

In the combined mode the overall buckling occurs at 

a load which is lower than that which the member would 

carry if local buckling of the components were prevented. 

This is due to the weakening effect of the local buckling. 

It is especially critical for intermediate length 

structural members containing plates with relatively 

large width-to-thickness ratios. 

In this chapter the effects of the yield stress of the 

material, the slenderness ratio of the member, the cross­

sectional shape and dimensions, the residual stress 

pattern and magntiude, the overall initial imperfection 

and the load eccentricity on the buckling strength of 

structural members have been considered. 
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6.2 Number of Strips, Number of Substrips and Accuracy 

As described in Chapter 4, the current method requires 

the structural elements to be divided into a number of 

longitudinal strips and - where the stress is not uniform 

over the section - every strip is divided into a number of 

longitudinal substrips (segments). The number of strips 

required depends on some of the following factors, 

1. The shape of the cross-section (H-section, 

channel, box section, etc.) 

2. The type of the applied load (axial compression, 
• 

bending moment, eccentric compression) 

3. The mode of buckling (i.e. the half wavelength) 

4. The residual stresses (pattern and magnitude) 

5. The accuracy required 

and these will now be discussed. 

6.2.1 Section Under Concentric Longitudinal Compression 

In Table 6.1 the effect of the number of strips on 

the elastic critical load is considered. Two cross-sections 

- an H-section and a channel - are divided into a number of 

strips as shown in Figure 6.1. Because the sections are 

under concentric axial load symmetrical divisions are con-

sidered (Figure 6.1). To study the effect of the buckling 

mode on the number of strips, five values for the half 
. 

wavelength A are used. It is clear that more strips are 
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required for the local buckling analysis than are required 

for the other modes - i.e. the number of strips may be 

reduced as A increases. For a wide range of A, four strips 

for a channel section and six strips for an H-section are 

sufficient for the analysis of sections under pure com­

pressive stress. 

For a residual stress magnitude other than zero, every 

strip is divided into a number of substrips. The effect of 

this number on the accuracy is shown in Table 6.2. Two 

levels of the residual stress (Figure 6.2) are considered -

or = 0.3 ay and 0.5 ay. In Chapter 4 it was found that 10 

substrips per strip were sufficient and from the current 

results it is clear that this will again give acceptable 

accuracy. 

6.2.2 Sections Under Pure Bending 

In this case three divisions - two symmetrical (Figures 

6.l(a) and (c» and one unsymmetrical (Figure 6.l(b» -

have been considered. The effect of the number of strips -

for the H-section and channel - on the accuracy of the 

critical bending stress of beams under end moments is shown 

in Table 6.3. It is clear that there is no significant 

gain in accuracy from increasing the number of the strips 

on the tension side. Therefore 6 strips for a channel and 

9 strips for an H-section will be used. 

Table 6.4 confirms that 10 substrips per strip are 

again sufficient. 



I 

a x 10
3 lE a x 10

3/E (channel) cr 
(H-section) 

cr 

bf/bw b It A/b w w w 

6 strips 12 strips 4 strips 8 strips 112 strips 
.1 

I 

0.25 6.406 6.345 6.429 6.369 6.351 

0.50 2.095 2.072 2.123 2.100 2.096 

0.5 50 1.00 1.067 1.063 1.128 1.118 1.118 
. 

2.00 . 1.004 1.001 1.193 1.188 1.188 

4.00 1. 753 1. 750 2.425 2.416 2.417 

0.25 6.676 6.648 6.620 6.606 6.599 

0.50 2.500 2.481 2.411 2.397 2.398 

0.25 50 1.00 1.760 1. 751 1.625 1.616 1.616 

2.00 2.291 2.280 2.137 2.118 2.115 

4.00 3.816 3.773 2.467 2.411 2.403 

Table 6.1. Effect of the number of strips on the accuracy 

for sections under axial compression (elastic) 

No. of a x 10
3 lE 

a lay 
No. of cr 

Section bf/bw A/b strips sub- cr w 
strips (elastic) a r/Oy = 0.3 a r/Oy = O. 5 

10 0.834 0.756 

Channel 0.50 4 4 20 2.425 0.830 0.744 

30 0.830 0.744 

10 0.794 0.694 

H-section 0.50 4 6 20 1.753 0.791 0.693 

30 . 0.793 0.692 

Table 6.2. The effect of the number of substrips (segments) 

on the accuracy for sections under axial com-

pression (inelastic) 



Ob x 103/E (H-section) 3 ob x 10 lE (channel) 

bf/bw bw/tw A/bW 
6 strips 9 strips 12 strips 4 strips 6 strips 8 strips 

0.25 6.494 6.378 6.378 6.550 6.401 6.401 

0.50 2.183 2.137 2.137 2.262 2.197 2.197 

0.50 50.0 1.00 1.211 1.193 1.193 1. 356 . 1. 332 1.332 

2.00 1.332 1.323 :1.323 1.723 1.709 . 1. 709 

4.00 2.732 2.727 2.723 3.876 3.853 3.848 

0.25 8.819 8.545 8.545 9.103 8.740 8.740 

0.50 4.657 4.588 4.588 5.099 5.010 5.011 

0.25 50.0 1.00 4.295 4.276 4.276 5.178 5.510 5.146 

2.00 6.875 6.852 6.843 9.280 9.187 9.163 

4.00 9.503 9.298 9.294 5.169 4.992 4.987 
--

Table 6.3. Effect of the number of strips on the accuracy for sections under pure 

bending (elastic) 

I 
I 
I 

/ 

! 

I 



· 
No. of No. of ob x 103/E 

ob/aY 
Section bf/bw A/bw strips substrips (elastic) 

or/aY = 0.3 or/aY = 0.5 

10 0.959 0.943 

H-section 0.25 4.0 9 20 9.298 0.955 0.939 

30 0.955 0.938 

10 '. 0.920 0.908 

Channel 0.25 4.0 6 20 4.992 0.920 0.908 

30 0.920 0.908 

Table 6.4. The effect of the number of substrips on the accuracy for sections under pure 

bending (inelastic) 
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6.3 Buckling of Column Under Compressive Stress 

One of the most important advantages of the finite 

strip method is its simplicity in obtaining the critical 

stress whatever the buckling mode. In the following 

analysis two cross-sectional shapes - an H-section and a 

channel section - have been considered. For both, the 

depth-to-thickness ratio of the web is constant at 50 and 

the thickness of the flange is taken as equal to the thick-

ness of the web. Four values for the ratio of flange width 

divided by web depth - 1/8, 1/4, 3/8 and 1/2 for the channel 

and 1/4, 1/2, 3/4 and 1.0 for the H-section - have been 

considered. 

Both the elastic buckling of sections free of residual 

stresses and the inelastic buckling of sections with 

different residual magnitudes have been investigated. 

6.3.1 Elastic Buckling of Columns 

The variation of elastic critical stress cr with the cr 

half wavelength A for both channels and H-columns is shown 

in Figure 6.3. For curves corresponding to bf/bw = 1/8, 

and 1/2 an indication of the different modes of buckling at 

different values of A are also given. The curves have been 

obtained for subsequent comparison with the inelastic 

behaviour of these columns. Each curve can in fact be 

divided into three ranges depending on the buckling mode -

overall buckling, interaction buckling and local buckling. 
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At high values of half wavelength, the columns buckle 

in an overall buckling mode and the buckling curves coincide 

with the Euler curve. 

written, 

The critical stress 0 can thus be cr 

(6.1) 

where ~ is the length of the column and in "this case is 

equal to A, 

r is the minimum radius of gyration. 

It is clear that there is no direct effect due to the shape 

i.e. individual plate slenderness, of the cross-section on 

this buckling strength since it depends only on the flexural 

rigidity of the cross-section. The columns with bf/bw = 0.5 

buckle in an overall flexural, mode "e", while the columns 

with bf/bw = 0.125 buckle in an overall flexural-torsional, 

mode "F". This may be due to the large torsional rigidities 

of the long columns with bf/bw = 0.5. The overall flexural 

buckling of the channel with bf/bw = 0.5 (mode "e") changes 

to an overall torsional mode at A ~ 20 bw' This may be the 

reason for the early separation of its buckling curve from 

Euler buckling curve. 

The slenderness ratio of the cross-section of a column 

(~/r) rather than the slenderness ratio of the components of 

the cross-section (a) has an effect on the overall buckling 

strength. Thus, for a column buckling in this mode, it is 
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more effective to add material in increasing the outer 

dimensions of the cross-section - depth and breadth - than 

to increase the thickness of the components. As the outer 

dimensions increase, the flexural rigidity of the cross-

section increases, the slenderness ratio (t/r) reduces 

leading to an improved overall buckling strength. On the 

other hand, increasing the thickness of the components, the 

slenderness ratio (8) - which has no effect on the overall 

buckling - reduces and no gain (relative to the first case) 

will result. 

By reducing the half wavelength A, the buckling curves 

start to deviate from the overall elastic buckling curves 

(Euler curve). This is due to the fact that the local 

buckling which occurs in some components of the sections 

leads to a reduction in the overall buckling strength. 

The shape and the dimensions of the cross-section have some 

effect, in this range, on: 

1. The value of the half wavelength at which the 

interaction buckling starts 

2. The range of the half wavelength where the inter-

action buckling mode occurs 

3. The magnitude of the reduction in the overall 

buckling strength due to the interaction effect 

If the channel with the largest ratio of flange width­

to-web depth is excluded, the relation between A/b and w 
bf/b

w 
for the other channels and H-sections can be 
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represented by a straight line as shown in Figure 6.4. 

For the channel with bf/bw = 0.5 the interaction between 

the local buckling and the overall buckling starts at a 

relatively high value of the half wavelength. While the 

range of A where the interaction buckling occurs is about 

2.5 bw ~ 3.0 bw for the H-sections with bf/bw ~ 0.25 

it becomes 0.5 b ~ 0.7 b for the sections with bf/b = w w w 

0.125. This range increases to about 20 bw for the channel 

with bd/bw = 0.5. 

The reduction in the overall buckling strength due to 

this interaction depends on the half wavelength. As the 

half wavelength reduces, within the range, the reduction 

increases. Comparing the maximum reductions - at the end of 

the range - for all sections, it is clear that the minimum 

value is about 10% and occurs for the H-section with bf/bw = 

0.25. The maximum value is about 35% and occurs for the 

channel with bf/bw = 0.50. It is of interest to note that 

the interaction buckling of the H-section with bf/bw = 0.25 

occurs from the overall buckling and the local buckling of 

the web while the interaction buckling of the channel with 

bf/bw = 0.5 occurs from the overall buckling and the local 

buckling of the flanges (mode "B"). 

It is unsafe to design a column which buckles in this 

range by considering the full flexural rigidity of the cross­

section ~nd neglecting the weakening effects of the local 

buckling. 
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In the third range the sections buckle, in a local 

buckling mode at low half wavelength. The shape of the 

cross-section and the width-to-thickness ratio of its com­

ponents have a large effect on the buckling strength. It 

is clear from Figure 6.3 that the minimum local buckling 

stress corresponds to a ratio of half wavelength-to-web 

depth of between 1 and 2. 

For sections with small flange width-to-web depth ratios 

the local buckling of the web (mode "D") is more critical 

than the local buckling of the flanges (mode "A"). In this 

range it is more effective to increase the thickness of the 

cross-sectional components than to increase the breadth and 

the width of the column, i.e. reducing the slenderness ratio 

of the components (S) is more effective than reducing the 

slenderness ratio of the cross-section (t/r). 

From this discussion it is clear that the elastic­

buckling mode depends on the half wavelength, the shape and 

the dimensions of the cross-section. While the compact 

section can offer a high resistance to the local buckling, 

its resistance to overall buckling is of course, much lower 

than a more slender section of comparable area. 

6.3.2 Effect of Longitudinal Edge Conditions on Inelastic 

Buckling Strength 

The puckling strength curves for the flanges and the 

web assuming different conditions of restraint at the junc­

tions between them are considered. These idealised conditions 



- 171 -

represent approximately upper and lower bounds to the actual 

behaviour of the complete section. 

1. Built-in condition 

The rotation and the out-of-plane displacement are 

restrained. This may model a section with a stiff web where 

the flange buckles in a local mode. It can also represent 

the local buckling of the web of H-sections with stiff 

flanges and a thin web. This condition is the upper limit 

for the local buckling curves of the section. 

2. Free edges condition 

It is assumed that the edges can rotate and move freely 

in any direction. This condition is the lower limit for the 

buckling curves of the sections. This case may represent 

the overall buckling mode of a very slender section at very 

high values of A/bw• 

3. Simply supported condition 

This case falls between the other two limits, free and 

built-in conditions. The rotation of the edge corresponding 

to the junction between the web and the flange is permitted, 

whilst the edge is restrained against out-of-p1ane displace­

ment. Based on the relative dimensions of the cross-section 

components the local buckling strength of the section may be 

accurate~y modelled by this case. Thus, the approximate 

local buckling strength for the web and the flange can be 

obtained from this case. Due to the presence of some 

restraint to the rotation of the junction between the flanges 
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and the web in the actual section, this case is normally 

considered as a lower bound for the local buckling of any 

component. 

These three cases are shown in Figure 6.5 with the 

buckling stress curves for a channel with bf/bw = 0.5. The 

modes of buckling for the complete channel at various half 

wavelengths are also shown. Three levels Of residual stress 

have been considered with the pattern given in Figure 6.2. 

It is clear from Figure 6.6 that between A = 0.5 and A = 4 

the buckling stress curve of the channel falls between the 

buckling stress curves of the flange with one edge simply 

supported (case 3) and built in (case 4). The other edge of 

the flange is free. The model where both edges of the web 

are simply supported (case 5) or built-in (case 6) over-

estimates the buckling stress curve of the channel. This 

means that for this section the local buckling of the web will 

not occur before the local buckling of the flange or the 

overall buckling of the structural member, and this is also 

clear from the modes of buckling. 

The main conclusion of this analysis is that the local 

buckling of the cross-section components - A/bw > 4 - falls 

between the two bounds. This is because there is always 

some sort of restraint to the rotation at the junction 

between the flange and the web - i.e. torsional resistance. 

For A/b .> 4 the mode of buckling is no longer local and w 
these two bounds are invalid. 
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6.3.3 Effect of the Cross-Section Dimensions 

Two cross-sectional shapes, a channel and an H-section 

and four values for the flange width-to-web depth ratio have 

been considered. The yield stress of the material was 

2 
assumed to be 240 N/mm. The buckling strength curves for 

three magnitudes of the residual stress - or = 0.0, 0.3 ay 

and 0.5 0y - are shown in Figure 6.6 for channels and Figure 

6.7 for H-sections. The elastic buckling curves are shown 

dotted. 

The buckling curves of the columns can be divided into 

three ranges - large A/b , intermediate A/b and low A/b • w w w 

The value of A/b which differentiates between these ranges w 
depends on the shape and the dimensions of the cross-

section and on the residual stress. At high value of half 

wavelength the columns buckle in an elastic overall mode. 

The shape of the cross-section and the residual stresses 

have no effect on the buckling strength in this range (as 

long as the column buckles flexurally). 

By reducing the half wavelength, the buckling curve 

starts to deviate from the elastic overall buckling curve 

and this may be due to one of the following 

- Inelastic overall buckling 

- Elastic interaction buckling 

- Inelastic interaction buckling 



o· 

4 8 64 
Half wave-length >-./bw 

(01 OrICTy=O'O 

C B A 

>-
b 1·0 -... 
8 
In 

~ - F E 0 
Vl 

"0 
.!:! -.\: 
U 

O' 

2 [. 8 4 
Half wave-length Albw 

(bl Or IOy = 0·30 

FIG. 6·6. (Cent ..... 1 



c A 

1: 

~ 
~ F E 0 C» 
L-

Vi 
a 

.!:! -L-u 
.1. 

~25 -5 1 
Half wave-length '" bw 

Icl CJrlCJy = a-50 

FIG _ 6-6 _ INELASTIC BUCKLING STRESS CURVES FOR CHANNEL COLUMN_ 

1-1. I I I , , 
I , 
I , 

I , , 
I , 0 A 

1- , , , 
bf I bw I , , 
0-125 , , , 
0-375 \ \ , 

1- -25 I \ \ 

d" 
'1:. 

eJ o· B 

BI tf/tw = 1 
C» 

bw/tw = 50 L.. -V) o· -a - -- - - Elastic .!:! -L.. 
U 

C 

-s 10 2 8 32 6' 
Half wave-length AI bw 

lal CJr I cry = 00 

FI G _ 6 -7 _ ( Cont _ _ _ I 



" ·~O· -L-

U 

O·L. 

0'2 

'i: 
U 

O' 

t t I tw= 1 
bwltw = 50 

1 

(b) CTr lay= 0·3 

tf/tw=l 
bw'tw= 50 

2 

(c) Or/ay = 0·5 

4 8 
Halt wave-length Mbw 

4 8 64 
Half wave-length Mbw 

FIG. 6·7. INELASTIC BUCKLING STRESS CURVES FOR H - COLUMN IN COMPRESSION. 

A 

B 

C 

A 

B 

c 



- 174 -

In this range at least one of these phenomena may be observed. 

The factors which affect behaviour are the half wavelength, 

the residual stress and the shape and the dimensions of the 

cross-section. At the beginning of the range - large A/b -. w 
the possibility for inelastic overall buckling is high while 

at the end of the range the tendency for inelastic inter-

action buckling increases. In certain cases this range may 

disappear from the buckling curve and be replaced by a transi­

tion curve between the overall buckling and the ultimate 

strength (the squash load). 

In the range of low A/bw ratios the section may reach 

its ultimate strength and/or buckle in a local mode either 

elastically or inelastically. This depends on the width-to-

thickness ratio of the components of the member, the residual 

stress, the yield stress of the material and the half wave-

length. 

Considering the buckling curves shown in Figure 6.6(a) 

for the initially stress free channels with bf/bw < 0.5, it 

is clear that the sections buckle in an elastic overall mode 

at large ratios of A/bw (modes "c" and "F"). As A/bw 
reduces the buckling curves deviate from the elastic overall 

buckling curves. The deviation starts at acr/ay = 0.8 

thereby demonstrating that the deviation is due to an 

inelastic effect rather than an interaction effect. 

At an ap~lied stress> 0.8 ay the stress strain relationship 

of the material is no longer linear. The ratios of bf/b
w 
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have no effect on this deviation. For the channel with bf/b
w 

= 0.5 the deviation starts in the elastic range at a half 

wavelength equal to the one obtained from the elastic 

buckling analysis. The deviation in this case is due to 

interaction buckling (mode "B"). The range where this 

interaction buckling occurs is clearer for this section than 

for the other sections. 

The local buckling of the components of the cross-

section occurs at a lower ratio of A/b. This may be local w 

buckling of the flanges (mode "A") or local buckling of the 

web (mode "0"). The width-to-thickness ratio of the com-

ponent is the main factor controlling this buckling. For 

the present case the flanges of the channels with bf = 0.375 

bw and bf = 0.5 bw have buckled before the web (mode "A") 

while for the other two channels the web has buckled (mode 

"0"). As bf/bw increases the minimum local buckling strength 

of the flange decreases while the local buckling strength of 

the web increases. 

It is clear that the local buckling has a large effect 

on the strength of the structural members especially those 

with high residual stress levels. The ECCS (118) recommended 

prevention of the local buckling of the component elements 

and developed buckling curves based on this assumption. 

Compare Figure 6.6(a) with or = 0.0 and Figures 6.6(b) 

and (c) with or = 0.3 ay and 0.5 ay respectively, it is 

clear that the three ranges become more clear as the 
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residual stress increases. In the overall buckling range 

the residual stress has no effect on the flexural buckling 

strength, but it reduces the local buckling strength and 

the interaction buckling strength. Due to this reduction 

the deviation of the buckling curve from the elastic overall 

buckling curve starts at a relatively high value of A/b • w 

As the residual stress increases the value of A/bw - where 

the deviation starts - increases. Moreover, the presence 

of the residual stress may change the local buckling of the 

section from web local buckling to flange local buckling. 

The local buckling of the flanges of the channel with bf/bw 
= 0.25 and or = 0.5 0y is more critical than the local 

buckling of the web while the web of the same channel with 

or = 0.0 buckles before the flanges. 

It is of interest to note that all the buckling curves 

diverge from the elastic buckling curves (Euler curve) at 

points where 

(6.2) 

From Figure 6.6 and Figure 6.7 it is clear that the 

ranges of the overall buckling are similar and there is no 

effect for the shape of the cross-section on the overall 

buckling strength. The local buckling of the flanges and 

the web of an H-section are different from the local buckling 

of the flanges and the web of a channel with the same bf/b
w 

(modes "A" and "0", Figures 6.6 (b) and 6.7 (b) ). This may be 



- 177 -

due to the effect of the boundary conditions at the junctions 

between the flanges and the web. The flanges act as 

stiffeners to the web and it was shown in Chapter 5 that the 

local buckling of a plate (web) increases as the depth of 

stiffener increases up to a certain limit where it starts to 

decrease. So, by controlling the dimensions of the flanges, 

the maximum local buckling of the web can be obtained. The 

effect of the flanges (stiffeners) on the iocal buckling of 

the web depends on: 

- The flanges are symmetrical (H-sections) or 

unsymmetrical (channels) 

- The width-to-thickness ratio of the flanges 

- The residual stress 

Because the interaction buckling depends on the local buckling, 

it is clear that the range of the interaction buckling and 

the reduction in the strength due to it are affected by the 

shape of the cross-section (H-section or channel) • 

The main point arising from these 24 curves - Figures 

6.6 and 6.7 - is that the inelastic buckling curve can also 

be divided into three ranges only one of which is similar to 

the corresponding elastic curve. The other two mayor may 

not be similar to the corresponding elastic curve and this 

depends on many factors (discussed above). 

6.3.4 Effect of the Residual Stress 

H-sections and channels are fabricated by rolling or 

welding. Due to this rolling or welding some parts of the 
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cross-section are subjected to higher rates of cooling than 

the other parts. This leads to variation in the temperature 

and the parts which cool first contain residual compressive 

stress while the parts which cool later contain residual 

tension. The residual stresses also depend on the shape of 

the cross-section and the straightening procedures, the 

heavier the section the larger the magnitude of the residual 

stress. 

To study the effect of the residual stress on the 

buckling strength, it is decided to reproduce some results 

from Figure 6.6 and Figure 6.7. Because the structural 

member may have one or more than one half wavelength A along 

its length t, the minimum critical stress is plotted against 

the length of the member. The t/bw ratio is used instead 

of A/b ratio. Moreover, it is decided to plot the buckling w 
curves of each section under three levels of residual stress 

Or = 0.0, 0.3 ay and 0.5 ay on one graph to investigate the 

effect of are Only four sections - two channels and two 

H-sections - have been considered. The results of the 

sections with flange width-to-web depth ratio bf/bw = 0.25 

and 0.50 are shown in Figure 6.8 and Figure 6.9. 

It is clear from Figure 6.8 and Figure 6.9 that while 

the residual stress has a large effect on the local 

buckling strength the effect becomes negligible on the 

overall buckling strength. The overall mode (flexural, 

torsional and flexural-torsional) however, may be affected 

by the residual stress magnitude. A column buckl1aq 

laterally (mode "c" Figure 6.6(c» may change to· buckle 
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in lateral-torsionell buckling (moxd "e" Figure 6.6 (c)) as 

the residual stress increases. This may be due to the 

increase in the internal twisting moment as the residual 

stress increases. The internal twist moment is given by 

f 0 (x2 + y2) dA (69) and it is clear that this value 
r 

increases as the residual stress 0 increases. r 

In the local buckling range, the effect of the 

residual stress depends on the shape and dimensions of the 

cross-section. For a channel with bf/bw = 0.25, increasing 

the residual stress from 0.0 to 0.3 and 0.5 leads to a 

reduction in the critical stress 17% and 30% respectively 

- in the range A = bw ~ 4bw• When bf/bw is increased to 

0.5 the reduction becomes 21% and 37% respectively - while 

the range becomes A = bw ~ l2bw• 

The effect of the residual stress on the local buckling 

of a component depends on the longitudinal boundary con-

ditions of this component. A component with a free edge is 

more sensitive to the residual stress than that with 

elastically supported or simply supported edges. So, the 

flanges are more sensitive to the residual stress and by 

increasing or the local buckling mode may change from web 

local buckling to flange local buckling. 

For the H-sections the reductions in the buckling 

strength due to the residual stress are approximately the 

same as that of the channels but the range of A increases 

slightly. It is clear that as the residual stresses increase 

the ~mndency for the local buckling increases. 
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6.3.5 Effect of the Cross-Sectional Shape 

Three different cross-sections - an H-section, a 

channel and a box section - each with the same area have 

been considered. The thicknesses of all cross-section 

components are the same and equal to 0.25% of the cross­

sectional area. The square box-column is divided into 

eight strips as was shown in Chapter 4. T~e patterns of 

the residual stresses in every section are shown in Figure 

6.10 and their magnitudes are equal to 0.3 ay. The buckling 

strength curves are shown in Figure 6.10. 

One of the important factors which is influenced by 

the cross-sectional shape is the magnitude and distribution 

of the residual stresses. For the box-section the pattern 

of the residual stresses is affected by the width-to­

thickness ratio of the components. Because this pattern 

has an effect on the buckling strength, especially in the 

local buckling range, a useful comparison between the 

behaviour of different columns is difficult. But generally 

it is clear that three ranges for the buckling curves can 

be distinguished. 

In the first range - where the section buckles in a 

local mode - the strength of the channel is less than the 

strength of the H-section. This is expected because the 

buckling occurs in the flanges of these sections. The 

strength of the box-column is higher than any other type 

although its residual stress pattern is more severe. This 
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increase.. in the buckling strength may be due to the effect 

of the longitudinal boundary conditions. The boundary con­

ditions of an open section's components differ from the 

boundary conditions of a closed section's components and 

there is a significant, effect, particularly when the first 

section loses its stability due to the local buckling of the 

flange. Moreover, the shapes of the closed section (square­

box or rectangular-box) have an effect on the local buckling 

of the components. It is clear from Figure 6.10 that while 

the local buckling of the box and H-sections occurs in a 

range of slenderness ratio ~ s 0.5, the local buckling of 

the channel section occurs at A S 1.0. 

The second range corresponda~u to the interaction 

buckling mode. Because this mode depends on the local 

buckling it is clear that it starts at a lower ~ for the 

box and H-sections than for the channel section. For 

slenderness ratio 1.6 > r > 0.9 the three buckling curves 

become closer. At the beginning of this range (1.2 > ~ > 1.0) 

the buckling strengths of the channel and the H-section are 

higher than the buckling strength of the box-section. This 

may be due to the effect of the residual stress patterns. 

For higher slenderness ratios - 1.3 > X > 1.6 - the effect 

of the residual stress becomes less and the buckling 

strength curve for the box-section coincides with the 

buckling strength curve for the H-section. 
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The cross-sectional shapes have no effect on the 

buckling strength of a column with a slenderness ratio 

higher than 1.6. The buckling curves for the three sections 

- channel, box and H-sections - coincide with the Euler 

buckling curve. 

Based on the shape of the cross-section, the axis of 

buckling and the manufacturing procedures, the ECCS select 

four buckling curves to represent the column strength. 

From this analysis it is clear that the shape of the 

cross-section has some effect on the buckling strength. 

This effect depends on the half wavelength (mode of buckling), 

the residual stresses and the boundary conditions along the 

longitudinal edges of the components. Generally, the sec-

tions can be divided into open sections and closed sections, 

which is better, depends on many other factors besides 

the shape of the cross-section. Thus, no general conclusion 

for the best choice of cross-sectional shape can be obtained 

from the present analysis. 

6.3.6 Effect of the Material Yield Stress 

Two cases have been considered, the first is an 

initially stress-free section and the second is a section 

containing residual stress. An H-section with bf/bw = 0.25 

is assumed to be loaded by axial compressive stress. Three 

values for the yield stress of the material - ay = ay
O , 

o 0 0 2 
1.5 ay , and 2 ay where ay = 240 N/mm - are used. The 

results in terms of acr/ay against the slenderness ratio are 

shown in Figure 6.11. 
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It is known that the slenderness ratio is a nondimensional 

factor depending on the mode of buckling. For a member which 

buckles in an overall mode 

(6.3) 

while for the local buckling of the member's components: 

where b is the width of the buckled component 

t is the thickness of the buckled component 

K is a constant (buckling coefficient) depends on 

the boundary conditions. 

In the elastic range there is a relation between the 

slenderness ratio ~ and the critical stress a lay cr 

I 
a lay = 2 
cr (slenderness ratio) 

This parabolic equation is valid as long as 

- The section does not yield 

- The mode of buckling does not change. 

In the present analysis different modes - overall, 

(6.4) 

(6.5) 

interaction and local buckling mode - have been developed 

along the buckling curve. For the initially stress-free 

section the buckling strength curve shown in Figure 6.II(a) 

can be divided into two ranges. The first is the overall 

buckling range where the member slenderness ratio ~ ~ 1.4, 
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-equation (6.5) is valid. For A < 1.4 the mode of buckling 

changes to an interactive mode then a local mode and there 

is no relation between the member slenderness ratio ~ and 

the critical stress. Changing the yield stresses leads to 

different buckling curves (in this range) as shown in 

Figure 6.ll(a). It is worth noting that in the range of 

the local buckling mode using equation (6.4) with reasonable 

K instead of equation (6.3) will give a local buckling 

curve independent of the yield stress. 

It is normally assumed that the residual stresses in 

the welded section depend on the yield stress while in the 

rolled sections the absolute values of the residual stress 

are not affected by the yield stress (118). For such 

sections the relative importance of this residual stress 

decreases with increasing yield stress. To study this 

effect the three values of the yield stress and a residual 

o 
stress or = 0.3 ay are assumed, i.e. or = 0.3 ay' 0.2 ay 

_ 0 0 
and 0.15 ay in the H-sections with 0y - 0y , 1.5 0y and 

2 OyO respectively. The buckling curves are shown in 

Figure 6.ll(b). It is clear that at high slenderness ratios 

where the sections buckle in an overall mode there is no 

effect for the residual stress on the buckling strength. 

The maximum effect occurs in the range of slenderness ratios 

where the section buckles in a local mode. The local 

buckling of the cross-sectional components depends not only 

on the width-to-thickness ratio of this component but also 

on the yield stress of the material and the residual stress. 

Some gain in the local buckling strength and the 

interactive buckling strength can be obtained by using a high 
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yield stress material for a section which is expected to 

have a certain amount of residual stress due to manufacture. 

6.3.7 The Initial Imperfection 

In practice there is no ideal straight structural 

member. Every member contains a certain initial imperfec­

tion and in practice the load is not concentric. From 

measurements on columns, the imperfection shapes were 

classified as shown in Figure 6.12. 

The initial imperfection can exist in the member as an 

overall imperfection and/or local imperfection in the 

section's components. For the local out-of-flatness the 

non linear theory must be used and this will be considered in 

the next chapter. In the present section the overall imper­

fection is approximated by a sinusoidal curve. At first an 

approximate approach is discussed, then a study on the effect 

of the initial imperfection on the buckling strength is 

considered. 

6.3.7.1 Approximate Approach 

The imperfect member may be modelled by a perfect 

member under eccentric load, i.e. a member under axial load 

with equal and opposite end moments. The present approxima­

tion is based on the same model but assuming that the moment 

is varied sinusoidally along the length. This assumption 

is more sophisticated. Moreover, it is assumed that there 

is a variable shearing force along the length represented 

by a cosine shape. Because the imperfection is small the 

material properties are assumed to be constant 
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along the length. This assumption may lead to small under-

estimates of the buckling strength of the member. As the 

initial imperfection increases the variation of the 

distribution of the stress along the length increases and 

the underestimation increases. 

Assume the centreline of the column has an initial bow 

in a sine form, the initial deflection at a distance x from 

the end is given by 

= a sin 7TX 
n T 

7TX = an sin T 

where WO is the initial imperfection at distance x 

an is the amplitude of the initial imperfection 

A is the half wave-length 

1 is the length of the member 

(6.6a) 

(6.6b) 

(6.6c) 

At any cross-section of a perfect column there is only 

axial load while for an imperfect column there are axial 

compressive load Nx ' bending moment My and shearing force 

°z' 

(6.7) 

(6.8a) 

(6.8b) 
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0 

Qz = N dw 
x dx (6.9a) 

N 
1T cos = an r 1Tn x (6.9b) 

a x Aan 
1T 1Tx 

= X cos T (6.9c) 

where A is the cross-sectional area. 

Because the initial imperfection is usually very 

small it is assumed that its effect on the stiffness of the 

member can be neglected. So the stiffness matrices of the 

components can be obtained from the case of a perfect member. 

Only the stability matrix has been modified. This stability 

matrix can be divided into three matrices 

1. The stability matrix due to the axial stress 

This matrix is given in Chapter 3 (equation 

(3.65» • 

2. The stability matrix due to the bending stress 

Using the elastic theory, the bending stress is 

given by 

where ab is the bending stress 

Z is the elastic modulus 

Substitu~e equation (6.l0) into equation (3.ll2) the 

stability matrix [S] due to bending is given by 

(6.10) 
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.5 
r j [{X} 

-.5 

A more correct matrix can be obtained by numerical 

integration along the length of the member because the 

(6.11) 

bending stress is not constant through this length. But in 

the present approximation a direct integration has been 

done. For a long column, the initial imperfection and 

hence the bending stresses are higher than the corresponding 

values for the short column. Fortunately, the long column 

usually buckles 'elastically and direct integration can be 

performed without any approximation. For a short column 

the initial imperfection and the bending stress are 

smaller, but direct integration leads to some underestimation 

in the column buckling strength. 

3. The stability matrix due to shearing force 

The shear stress can be obtained from equation (6.9c) 

and it will be in the form 

= a C cos nn x (6.12) 

where C is a constant depending on the shape of the cross­

section, the position of the strip and the value of the 

initial imperfection. Substitute equation (6.12) into 

equation (3.61) the stability matrix due to the shear stress 

is given by 
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.5 
ntb 4Ab J CS] = --A-.:GT Ox C [- {X} {X'} - {y} {y'} + {Z} {Z'}]dn 

-.5 
(6.13) 

which is a symmetrical matrix. 

Because the initial imperfection is usually assumed in the 

range of 0.001 of the length of the column this shear is 

small and may be neglected for simplicity. 

6.3.7.2 Effect of the Initial Imperfection on the 

Buckling Strength 

To check the accuracy of the present approach initially 

imperfect II-columns free from residual stress has been 

considered. The assumed amplitudes of the initial imper-

fection are ~/2000, ~/lOOO and ~/500. The buckling strength 

curves are shown in. Figure 6.13. The buckling strength 

curves reproduced by ECCS (118) for an initially stress-

free H-column similar to the assumed column - are also 

shown for comparison. It is clear that three ranges for 

the slenderness ratio can be distinguished. In the first 

range - where the slenderness ratio of the column r < 0.7 -

the finite strip results underestimate the ECCS curves and 

this may be due to the following facts 

1. The ECCS assumed that the local buckling of the 

cross-section is prevented while this buckling is allowed 

.in the present work. 

2. In the present work it is assumed that the 

material properties at any section ~ equal to the material 

properties of column midheight section. This section 
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starts to yield before any other sectio~ and behaves 

inelastically while the rest of the column may be still in 

the elastic state. The average of the maximum underestima­

tion is 5.1% and this occurs at the lowest slenderness 

ratio, X = 0.4. As the slenderness ratio increases, this 

underestimation reduces and it becomes zero at X = 0.75 ~ 

0.85, then it overestimates the ECCS results. 

In the second range where the slenderness ratio of 

the column falls between 0.75 and 1.4 the finite strip 

result overestimates the ECCS curves by 6.4% average. For 

columns with slenderness ratios> 1.4 the finite strip 

result becomes very close to the Euler buckling curve and 

there is a small effect on the buckling strength due to the 

initial imperfection. The ECCS curves underestimate the 

Euler curve in this range. It is well known that as the 

slenderness ratio increases the effect of the initial 

imperfection decreases and this is clear in Figure 6.13. 

In Figure 6.14 a perfect and imperfect column with 

initial bow equal to ~/2000, ~/1000 and ~/500 are considered. 

The residual stress is assumed to be 0.3 Oy. It is clear 

that for columns with slenderness ratios s 0.65 there is a 

very small effect for the imperfection. This is because 

the section buckles in a local mode. In this range the 

local imperfection, the yield stress, the residual stress 

Gnd the width-to-thickness ratio of the components are the 

factors controlling the buckling strength. 
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As the slenderness ratio r of the ~olurnn increases 

beyond 0.9, the effect of the imperfection on the buckling 

strength increases. At r = 1.4 this effect starts to 

decrease with increasing A. There is no effect for the 

imperfection on the buckling strength at a slenderness 

ratio r ~ 1.9. 

6.3.8 Effect of the Load Eccentricity 

Due to the erection of structures the joints may move 

in space and the axis of the structural members may deviate 

from ideal system geometry. This leads to an eccentricity 

of the applied load from the axis of the members. More­

over, the variations of the cross-section dimensions -

along the length of the member due to manufacture procedure -

produce an eccentric loading. 

The eccentricity e of the load may be in any direction 

in the cross-sectional plane. When it tends to induce 

bending about the strong axis its effect is very small and 

can be neglected. The maximum effect occurs when it acts 

so as to induce bending of the section about the weak axis 

and this is the case which has been considered in the 

present section. 

The buckling strength curves for an initially perfect 

H-section loaded by eccentric load with eccentricity e = 
0.02, 0.04 and 0.06 of the flange width are shown in 

Figure 6.15. The section has a residual stress or = 0.3 Oy' 
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The reduction in the buckling stre~gth due to the 

eccentricity depends on the slenderness ratio. For a very 

slender member - A > 1.8 - there is no effect for the 

eccentricity on the buckling strength. In this range the 

section buckles in an overall mode. The reduction increases 

as the slenderness ratio decreases up to a certain value 

then the strength becomes constant. The section buckles 

in an interaction mode. The interactive buckling strength 

depends on the overall buckling strength and the local 

buckling strength. It is clear that while the overall 

buckling strength is not affected by the eccentricity, the 

local buckling strength is greatly affected by it. 

For the section considered, local buckling occurs in 

the flanges. Due to the eccentricity half of the flange is 

sUbjected to compressive stress (from the moment) while the 

other half is subjected to tensile stress. As the eccen­

tricity increases, the moment increases and the bending 

stress increases. The maximum stress occurs at the free 

toes of the flanges and this reduces the local buckling 

strength significantly. When e/bf increases from 0.0 to 

0.04, 0.08 and 0.12, the local buckling strength reduces 

by about 17.5%, 33% and 45% respectively. These very large 

reductions are due to the fact that the ratios between the 

uniform compressive stress (e = 0.0) and the additional 

maximum bending stress are 24%, 48% and 72% for the three 

values of eccentricities respectively. It is clear from 

Figure 6.15 that the range of slenderness ratio - where the 

local buckling occurs - increases as the eccentricity 



- 193 -

increases. When e/bf increases from 0.04 to 0.08 this range 

.increases from ~ S 0.8 to ~ S 1.1. 

Figure 6.15 is reproduced in Figure 6.16 with the 

critical stress versus half wavelength instead of the critical 

stress versus the slenderness ratio. This is to show the 

effect of the eccentricity on the range where the inter-

action between the local and the overall buckling occurs. 

6.4 Buckling of Beams Under Bending 

A beam subjected to end moment about its strong axis 

will deflect in the plane of this moment. However, once 

the critical moment is reached, the beam may buckle in the 

lateral direction. This depends on the lateral stiffness 

of the beams and the lateral supporting arrangement. A 

short beam can carry the full plastic moment while a more 

slender beam may buckle at a moment which is significantly 

less than the plastic moment. If the width-to-thickness 

ratio of the flange is high, the flange may buckle locally 

before the plastic value of the applied moment is reached. 

Two beams with different shape, a channel and an 

H-section under equal and opposite end moments have been 

considered. The beams are bent in their stiffer principal 

planes. This case is the model of the loaded beams shown 

in Figure 6.l7(a). In general the beams are under moment 

~radient as shown in Figure 6.l7(b). Only the first 

case - constant moment - is used to study the effect of the 

cross-sectional shapes and dimensions and the effect of the 

residual stress patterns and magnitudes on the buckling 

strength of the beams. 
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The problem of beams is more difficult than the 

. problem of columns and the aim of the present section is 

to demonstrate the capability of the finite strip method 

for dealing with such problems rather than to investigate 

it in detail. 

6.4.1 Elastic Buckling of Beams 

Four values for the ratio bf/bw - 0.125, 0.25, 

0.375 and 0.50 - have been considered. The channel is 

divided into 6 strips - 4 strips in the compression part and 

2 strips in the tension part - while the H-section is 

divided into 9 strips - 6 strips in the compression part 

and 3 strips in the tension part (Figure 6.1). Every strip 

is divided into 10 substrips. The elastic buckling curves 

are shown in Figure 6.18 for the channels and in Figure 6.19 

for the H-sections. Some modes of buckling at different 

half wavelengths are also shown. The elastic buckling 

strength curves have been obtained for subsequent compari­

son with the inelastic buckling behaviour of beams. 

Because the beams are assumed to be initially perfectly 

straight, there are no out-of-plane displacements until the 

applied moments reach the critical values at which the 

beams buckle. The buckling curves of the beam can be 

divided into three ranges as in the case of columns. At a 

large ratio of A/bw the beams buckle in an overall mode. 

The buckling may be flexural, torsional (modes "F" Figure 

6.18 and "c" Figure 6.19) or flexural-torsional (mode "c" 
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Figure 6.18). This depends on the shape. and dimensions of 

the cross-section. 

For short beams, the local buckling occurs only in the 

compression flanges of the sections (modes "A" and "D"). In 

this range the buckling strength depends on the width-to­

thickness ratio of the compression flange and the degree of 

restraint developed by the web. 

In the intermediate range of A/bw' an interaction between 

the overall buckling and the local buckling occurs (modes 

"B" and "E"). Due to this interaction the beam buckles 

before it reaches its full overall buckling strength. 

6.4.2 Effect of the Shape and Dimensions of the Cross­

Section on the Inelastic Buckling Strength 

Two cross-sectional shapes and four different 

dimensions for every cross-section are considered. The 

residual stress pattern Figure 6.2 with three levels of 

or - 0.0, 0.3 ay and 0.5 ay - is assumed. The critical 

bending stresses against the half wavelength are shown with 

some modes of buckling in Figure 6.20 for the Channels and 

in Figure 6.21 for the H-sections. 

It is clear from Figure 6.20(a) that the buckling 

strength curves can be divided into three parts. The 

first at large ratio of A/bw where the beams buckle in an 

overall mode (modes "c" and "F"). In this range the beams 

behave elastically and they may deflect laterally and/or 
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twist. The torsional rigidity of the cross-section 

controls the deflected form. 

As the half wavelengths reduce the buckling curves 

start to deviate from the elastic overall buckling strength 

curves. For the sections with wide flanges, an interactive 

buckling mode may occur in this range (mode "B"). The 

range of the half wavelength where this interaction mode 

occurs and the reduction in the overall buckling strength 

due to it depends on many factors as was shown for the case 

of columns. The buckling curves, for the other sections with 

small flange widths, seem to be transition curves between 

the elastic overall buckling curves and the full plastic 

strength of the flange. In this case the curves deviate 

at 9b/Oy = 0.8 (Figure 6.20(a» where the stress-strain 

relationship of the material becomes nonlinear. 

The maximum strength for short beams depends on the 

width-to-thickness ratio of the compression flange. For 

sections with flanges of small width-ta-thickness ratio, 

the flange may yield before it buckles while in the sec­

tions with high ratios the compression flange may buckle 

locally before reaching the ultimate strength (mode "A"). 

From Figures 6.20(a), (b) and (c), it is clear that 

the residual stress has no effect on the long beams 

buckling in an overall mode. For short beams, the local 

buckling strengths of the beams reduce significantly as 

the residual stress increases. The interactive buckling 

ranges become more clear due to the effect of the residual 

stress on the local buckling of the flanges. 
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Comparing the buckling strength curves Figure 6.20 

and Figure 6.21, it can be noted that the H-beams behave in 

a similar manner to the channel beams. Because the two 

sets of graphs are not plotted with respect to the same 

slenderness ratio, no useful comparison can be obtained 

from them. The cross-sectional shape of the beam has an 

effect on the critical moment and this must be considered in 

any comparison. 

6.4.3 Effect of the Residual Stress Pattern 

The distribution of the compressive and tensile 

residual stresses depends on the cross-section geometry, 

the method of welding or rolling and many other factors. 

Open sections like H-sections or channels are affected by 

the variation of the residual stress pattern more than 

closed sections like box-sections and tubes (118). 

In the previous sections some indications have been 

given of the effect of the magnitude of residual stresses 

on the buckling behaviour of various structural elements. 

In order to study the influence of the assumed pattern of 

residual stress on such behaviour, the H-section detailed 

in Figure 6.22(a) has been studied for the case of pure 

bending. Three different patterns have been assumed as 

shown in Figure 6.22 (b-d). These patterns are selected 

to represent H-section with as-rolled flanges (Figure 6.22(b) 

and (d» and H-section with flame-cut flanges (Figure 6.22(c». 

The critical stresses are computed over a range of wave­

lengths. The results for or/Oy of 0.3 and 0.5 are shown in 

Figure 6.23. 
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In both cases the pattern of residual stress "A" is 

associated with critical stresses which are higher than for 

liB" and "C". For buckling at long wavelengths the differences 

between these are in fact very small. This is again a 

reflection of the fact that in the overall buckling mode, 

the influence of residual stress is very small. 

At lower wavelengths, however, the difference is quite 

marked, being of the order of 30% and this clearly indicates 

the importance of idealising the residual stress distribu­

tion as accurately as possible when considering the local 

buckling behaviour of plated structures. 

6.5 Buckling of Beam-Columns 

A beam-column subjected to axial compressive force and 

moment about its stronger principal axis will deflect about 

this axis as long as the applied combined stress is less than 

the critical stress. When this critical stress is reached 

the long beam-column may buckle out-of-the plane of bending 

by deflecting laterally and twisting. For short beam­

columns the cross-sectional components may buckle locally 

or the applied stress may reach the ultimate strength before 

it buckles. The most important factor controlling the 

mode of buckling is the moment-to-thrust ratio (the 

eccentricity) • 

In Figure 6.24 an H-section under eccentric load with 

different eccentricities has been studied. The residual 

stress is assumed to be 0.3 Oy and bf/bw is taken as = 0.25. 

It is clear that the effect of eccentricity on the local 

buckling strength is higher than its effect on the overall 
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buckling strength. Increasing eccentricity e from 0.0 

. (pure compression) to 0.25 bw and 0.375 bw leads to a 

reduction in the local buckling strength of about 37% and 

47% respectively. This reduction becomes 9% and 16% at 

half wavelength A = 20 b . w 

The influence of the residual stress on the buckling 

strength of an eccentrically loaded H-column is shown in 

Figure 6;25. Three levels of the residual stress - a = 
r 

0.0, 0.3 ay and 0.5 ay - and two values for the eccentricity -

e = 0.25 bw and 0.375 bw - have been considered. The reduc­

tion in the buckling strength - at A = bw - due to an 

increasesof Or from 0.0 to 0.3 ay is 7% for both values of 

e. It is clear from Figure 6.25 that the effect of the 

residual stress on the buckling strength increase as the 

eccentricity e increases. 

6.6 Concluding Remarks 

The inelastic buckling of structural members under 

axial compression, pure bending and eccentric load has been 

considered. Convergence studies indicate that dividing any 

component of the cross-section into at least two strips is 

sufficient to obtain the desired accuracy. When residual 

stresses are present, every strip has been divided into 10 

substrips. 

The effect of certain parameters - the shape and 

dimensions of the cross-section, the length of the structural 

member, the magnitude and pattern of residual stress, the 
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initial imperfections and the eccentric~ty of the load -

have been studied and the following conclusions may be 

drawn: 

1. The buckling strength curve can be divided into three 

ranges - overall buckling, interactive buckling and 

local buckling. These three ranges become more 

clearly defined as the residual stresses increase. 

2. The inelastic buckling curves diverge from the 

elastic buckling curves (Euler curve) at a point 

approximately corresponding to 0cr/Oy = 0.8 - 0r/Oy. 

3. The overall buckling may be flexural, torsional or 

flexural-torsional. 

4. The slenderness ratio of the structural member (i/r) 

affects the overall buckling while the slenderness 

ratio of the components (8) affects the local 

buckling. There is very little effect for the shape 

of the cross-section on the overall buckling strength. 

5. Due to the interaction between the overall and the 

local buckling, the buckling strength of the member 

has been reduced. In this range it is unsafe to 

design this member considering the full flexural 

rigidity of the cross-section • 

. 6. The local buckling of any component of the cross­

section falls between two bounds - upper bound (the 

displacement and the rotation of the longitudinal 
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edges are restrained) and lower bound (only the 

displacements of these edges are restrained). 

7. The residual stress has no effect on the overall 

flexural buckling strength, but it reduces both the 

local and the interaction buckling strengths. 

8. The presence of the residual stresses may change the 

local buckling of the section from web local buckling 

to flange local buckling. It may also change the 

overall flexural buckling to overall flexural-torsional 

buckling. 

9. A component with a free edge is more sensitive to the 

presence of residual stress than a component with 

restrained - elastically, simply supported or fixed -

edges, i.e. the flanges are more sensitive to the 

residual stress than the web. 

10. The residual stress pattern has no effect on the 

overall buckling strength while the local and inter­

active buckling are greatly affected by this pattern. 

11. The local buckling strength and the interactive 

buckling strength can be improved by using material 

with a higher yield point for a section which is 

expected to have a given level of residual stress. 

·12. The range of the interactive buckling and the 

reduction in the strength due to it are affected by 

the shape of the cross-section. 
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13. An approximate method has been proposed to take the 

overall initial imperfection into effect in a simple 

manner and the results have been compared with the 

results obtained by ECCS. The maximum difference 

between the two sets - FSM and ECCS - is about ± 6.0%. 

14. The effect of this initial imperfection on the local 

buckling strength is very small while.its effect on 

the interactive buckling and the overall buckling is 

relatively high. For a very slender column - ~ ~ 1.9 

- the initial imperfection has no effect on the overall 

buckling strength. 

15. The maximum effect of the load eccentricity occurs when 

it acts so as to induce bending of the section about 

the weak axis. For a very slender member - ~ >1.8 -

there is no effect for the eccentricity on the overall 

buckling strength while the local buckling strength is 

greatly affected by this eccentricity. 

16. For beam-columns, the most important factor controlling 

the mode of buckling is the moment-to-thrust ratio. The 

effect of this ratio on the local buckling strength is 

greater than its effect on the overall buckling 

strength. 
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CHAPTER 7 

A NON-LINEAR THEORY OF ELASTIC STABILITY 

7.1 Introduction 

For a slender plate the linear strain-displacement 

relationship (small deflection theory) leads to an under-

estimate of a plate's actual strength. This is due to the 

neglect of the post-buckling reserve which may, in certain 

cases, be much larger than the pre-buckling strength. 

Moreover, for this slender plate the presence of initial 

imperfections has a much more significant effect on 

strength than does material nonlinearity. It is the 

object of this chapter to extend the finite strip method 

to include the effects of geometric nonlinearity, leading 

to a study of the post-buckling behaviour of perfect and 

imperfect plates. 

In the following analysis the large deflection theory 

(non-linear strain-displacement relationship) the Marguerre 

strain expression (119) for shallow shells will be used. 

The stress-strain relationship of the material is assumed 

to be linear elastic. 

7.2 Non-Linear Elastic Behaviour 

The classical linear elastic theory becomes invalid 

at loads in excess of the critical buckling load. A plot 

of the lateral displacement "Welt" against the applied 

longitudinal compressive stress' "ala "for a perfect plate cr 
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is shown in Figure 7.1. The load is assumed to act through 

a very rigid loading bar, thereby ensuring that the longi­

tudinal displacement of the ends is uniform. The perfect 

plate does not deflect laterally at loads below the 

critical: the linear strain-displacement relationships can 

be applied in this range. However, the lateral displacements 

of the plate increase rapidly once applied stress exceeds 

this critical stress. The rate of growth of this displace­

ment depends on the in-plane and out-of-plane boundary con­

ditions at the longitudinal edges. 

In practice plates are not perfect but contain initial 

imperfections. Up to a certain limit it is not unreasonable 

to neglect this imperfection and to consider the plate as 

perfectly flat (3). If the initial out-of-flatness exceeds 

this limit, then the post-buckling behaviour of the plate 

effectively ~presents a transition between that of a flat 

plate and that of a cylindrical shell. Plates containing 

large imperfections effectively buckle like a cylindrical 

shell, i.e. the in-plane boundary conditions have no effect 

on the ultimate load (107). 

The plot of lateral displacement against the applied 

stress for an imperfect plate is shown in Figure 7.1. It 

does not exhibit a bifurcation point but a smooth increase 

in lateral deflections from the start of loading. Once the 

applied stress exceedsthe critical, the effect of the 

initial bow reduces and the plate tends to behave rather 

like a perfect one~ 
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The presence of imperfections is considered in the 

general theory of elastic stability by introducing an 

imperfection parameter into the strain energy function. 

7.3 Effective Width Method 

Before buckling the axial compressive stress "0 " is x 
uniformly distributed and proportionality exists between 

the strain and the compressive stress 

0 = E c x x 

E E 

a x or = 
(I-\)2 ) x 

for the case of free and restrained longitudinal edges 

(7.1) 

(7.2) 

respectively. Above the critical load the plate deflects 

more in the middle than near the unloaded edges. Thus the 

stiffness of the central part reduces more quickly resulting 

in a nonuniform distribution of the compressive stress "0 " x 

as illustrated by Figure 7.2. The stress in the centre of 

the loaded edge remains equal to or less than the critical. 

The actual distribution of these compressive stresses 

depends on the boundary conditions and the aspect ratio of 

the plate. 

At failure the total compressive load is carried by 

two edge strips and the remainder of the plate contributes 

virtually nothing. This has led to the effective width 

concept suggested by van Karman et al (3). To obtain the 
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effective width of a plate they assumed that 

1. The plate is initially perfect. 

2. The stress is uniformly distributed over the 

two strips and equal to the maximum value. 

3. The two strips have an equal width. 

From this assumption, the effective width lib 11 is given by e 

1 

Ox max 

B/2 

f Ox dx 
-B/2 

where "B" is actual width of the plate, and 

"a " is the value of the longitudinal stress x max 

at the unloaded edge. 

The average longitudinal stress a is given by x ave 

1 
ax ave = B 

B/2 

J 
-B/2 

Ox dx 

From equations (7.3) and (7.4) 

Scheer et a1 (111) suggested a simple approximation 

to the minimum be/B ratio which may be adopted within the 

scope of ~he linear plate buckling theory. They assumed 

that the maximum edge stress is set equal to the yield 

(7.3) 

(7.4) 

(7.5) 
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strcss 0 = 0y and the average stress is set equal to x max 

the critical stress Ox ave = Ocr. Thus equation (7.5) 

becomes 

and the buckling stress curve can represent the effective 

width curve. 

7.4 Solution of Non-Linear Equilibrium Equations 

The strain-displacement relationship (in large 

(7.6) 

deflection theory) has a non-linearity of second order (119), 

so the energy function has a non-linearity of fourth order. 

The equilibrium equations, which can be obtained from the 

first differentiation of the energy function, have a non-

1incarity of third order. Many numerical methods have been 

developed to solve this non-linear equation. The solution 

is usually attempted by one of the four basic techniques 

1. Incremental or stepwise procedure. 

2. Iterative or Newton method. 

3. Step iterative or mixed procedure. 

4. Perturbation procedure. 

In the first three methods the load is applied first 

and the displacernents obtained from the solution of the 

equations. These three methods are the most widely used 

for the solution of non-linear equations (22) and they are 

explained in detail in many text books (104,119). 
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In the incremental procedure the load is divided into 

many small increments which are usually equal. Every time 

an increment is applied the equations are assumed to be 

linear during that increment. An increment of the displace­

ment can then be obtained from the solution of the equa­

tions. The total displacements can be obtained by accumu­

lating the displacement increments. The procedure is shown 

in Figure 7.3(a). 

In the iterative procedure the structure is fully 

loaded and the tangent stiffness at the origin is used to 

obtain the displacements (Figure 7.3(b». From the 

equilibrium equations the corresponding load can be calcu­

lated, so the out-of-balance load can be obtained. After 

calculating the displacements due to this out-of-balance 

load, using the same tangent stiffness, the new out-of­

balance load can be obtained. The tangent stiffness may 

be modified at every iteration (Figure 7.3(c». This 

process is repeated until equilibrium is approximated to 

some acceptable degree, i.e. the out-of-balance loads become 

sufficiently small. 

The mixed procedure is a combination between the 

incremental and iterative methods. The load is applied in 

increments and the displacement obtained in every increment 

by successive iteration. The method is shown in Figure 

7.3(d). 
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The perturb,3tion method is accurate for moderate non-

linearily (22). Compared with the other methods, it is 

less time consuming (12). The method has been used in both 

finite element (22) and finite strip (99) post-buckling 

analysis. In this method the deformation o. and the stress 
1. 

o are expressed in the form of a Maclaurin's series as 

follows 

2 
~ __ a~i 1 a oi 2 

i 55+2"7 5 + ... 

0=0 er + ••• 

where" S" is some, as yet undefined, perturbation 

(7.7) 

(7.8) 

parameter to be equated to one of the basic incremental 

variables "oi,a". The derivatives of the equilibrium 

equations with respect to "5", as many times as is necessary 

for the required accuracy (12), are zero at "0 = o "and cr 

"oi = 0.0". These derivatives with equations (7.7) and 

(7.8) are the basis of the perturbation method. Rojas­

Gutierrez (22) discussed in detail the choice of the 

perturbation parameter " 5" necessary for rapid convergence. 

7.5 Large Deflection Energy Function of Rectangular Plate 

Consider a rectangular plate with thickness "t" and 

orthogonal co-ordinates x, y and z. The "x" and "y" co-

ordinates-originate in the middle plane of the plate. The 
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z co-ordinate is normal to this plane. The change in 

displaccmc>nts of any pOint on the plate due to external 

load arc u, v and w in x, y and z directions respectively. 

The internal strains at this point are{c} 

(7.9 ) 

where "E " "e " and"y "are the longitudinal, transverse x' y xy 

and the shear strains. These strains are composed of the 

in-plane str.ains (linear + nonlinear) and the bending 

strains. For an imperfect plate these strains include an 

extra linear term which is a function of the imperfection 

parameter. 

The corresponding stresses are {N} 

For clastic material 

{N) = [F] {e} 

The elastic matrix [F) is given by 

1 

o 

o 

v 

1 

o 

o 

o 
I-v 
""2 

where "E" is the elastic modulus, 

"v" is the Possion's ratio. 

(7.10) 

(7.11) 

(7.12) 
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The strain energy of the plate is generally expressed 

w = ~ f {N}T {c} dvol 
vol 

- ! III {c}T [F] {E} dx dy dz 
2 

(7.l3a) 

(7.l3b) 

~ ! (1_~2) III (Ex
2 

+ 2v Ex Ey + Ey2 + l;V YXy2)dX dy dz 

(7.13c) 

7.5.1 Perfect Plate 

For the large deflection analysis of a perfect plate, 

the strain-displacement relationship is given by 

(7.14) 

where {to} is the linear in-plane strain, 

{eN} is the non-linear strain due to the deflection 

of the middle plane, 

{J(} is the curvature of the middle plane, 

·z· is the depth of the point from the middle plane. 

(7.1Sa) 

(7.1Sb) 

(7.16) 
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(7.17a) 

(7.17b) 

From cquations (7.1Sh), (7.16) and (7.17b) equation (7.14) 

can be expressed by 

(7.18a) 

(7.18b) 

y = u, + v, + w, w, - 2z w, xy Y x x Y xy (7.18c) 

substituting equation (7.18) into equation (7.13c) and 

intcgrating with respect to "z" to obtain the strain energy 

in terms of the displacements 

+ 1 F II [( + 1 w 2) 2 + 2 2 u'x 2 'x 

where 0 • 2 12(1-v ) 

E t 
F • 2 (1-v ) 

( + 1 w 2) ( + 1 w 2) u'x 2 'x V'y 2 'y 

(7.19) 

(7 _ 20) 

(7.21) 
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The first term of equation (7.19) represents the 

strain energy of bending and the second term represents 

the strain energy of stretching of the plate. 

7.5.2 Imperfect Plate 

Consider now the same plate but with an initial 

imperfection. The total lateral displacement at a point 

is given by 

where "wo" is the initial imperfection at this point. 

The strain displacement relationship for this plate 

can be obtained by modifying equation (7.18) (119). 

tx • U ,x 
+ ! 2 M 0 

2 w,x - z w'xx + w'x "'x 

(7.22) 

(7.23a) 

(7.23b) 

Y • u, + v, + w'x w, - z 2w, + w, w, 0 + w, w 0 
xy y x y xy y x x' y 

Substituting equation (7.23) into equation (7.13c) and 

integrating with respect to z, the strain energy of an 

imperfect plate can be obtained 

(7.23c) 
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+ 1 1 w 2 w 0) 2 2 ( 1 w 2 
2 F II [(u'x + 2 'x + w'x'x + v u'x + 2 'x 

0) ( + 1 w 2 + w w 0) + (v, + 1 w 2 + w'x w'x V'y 2'y 'y'y Y 2 'y 

7.6 The Finite Strip Analysis 

The solution scheme already employed in the linear 

analysis of a plate will be used in the present section. 

The plate is divided into a number of longitudinal strips 

and displacement and shape functions which satisfy the 

boundary conditions assumed. The end displacement due to 

the longitudinal compressive stress is uniform due to the 

(7.24) 

rigid loading bar. Once the potential energy of every 

strip for a given end displacement has been calculated the 

linear and the nonlinear equilibrium equations {El may be 

obtained from the minimization of the energy function. The 

stiffness matrix for each strip can be then obtained from 

the corresponding equilibrium equations. By assuming a 

pattern of the initial imperfections the strain energy can 

be modified by the addition of a term which is linear in 

the displacement field. From the change in the strain 

energy, the stiffness matrix due to the imperfection can be 
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obtained. The overall linear and nonlinear stiffness 

matrices may be assembled and modified to include the 

effect of the longitudinal boundary conditions. A 

numerical method, e.g~ Newton-Raphson iteration, can be 

used to solve the nonlinear equations. The deflected form 

of the plate and the magnitude and distribution of the 

membrane stresses can then be determined. 

7.6.1 The Displacement and the Shape Function 

It is difficult to assume a suitable deflection shape 

for a plate in general. The shape of the buckled plate, 

after reaching the first stage of buckling, may change as 

the load is increased beyond its critical value. These 

changes are always progressive. The aspect ratio of the 

plate, the in-plane and out-of-plane boundary conditions 

and the ratio between the applied stress and the critical 

stress are the factors which control the buckling mode and 

its changes. The first buckling mode keeps developing until 

the energy stored is sufficient to carry the plate into a 

second buckling mode and so on. 

The deformed shape of the middle plane of a plate 

undergoing large deflections can be represented by displace­

ment functions u, v and w in the x, y and z directions 

respectively. These functions must satisfy the geometric 

and static boundary conditions. In the following the 

longitudinal, transverse and out-of-plane displacement 

functions will be discussed in some detail. 
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7.6.1.1 The Longitudinal Displacement 

The longitudinal compressive stress is assumed to act 

through a rigid loading bar, so the longitudinal displace­

ment of the loaded edge is uniform. If the longitudinal 

strain at this edge is "e" the displacement "u" due to this 

strain is given by 

u = e ()../2 - x) (7.25) 

For a symmetrical plate the displacement "u" must be 

antisymmetrical in the longitudinal direction with the value 

±e)../2 at the loaded edges. This can be achieved only if the 

chosen harmonic is sin m~x, where m = 0, 2, 4, 6, ••.• So 

the longitudinal displacement can be represented by 

M 
u = e()"/2 - x) + r {X}T {a} sin mnx 

m=2 -A-

where {6} is the nodal displacement of the strip, 

"en is the shortening of the plate/A, 

M is the number of harmonics chosen for a 

particular solution. As this number increases, 

the degrees of freedom increase. It is clear 

that the longitudinal harmonic series in this 

function differs from the one used in linear 

finite strip analysis (Chapter 3). 

(7.26) 
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7.6.1.2 The Transverse Displacement 

There are two cases for the transverse displacement 

functions depending on the conditions of the longitudinal 

edges of the plate or the conditions of the junctions 

between plates if a plate assembly is being considered. 

The first case is applicable for local buckling analysis 

of a plate while the second is applicable f~r overall 

buckling of a structure, i.e. in the first case it is 

assumed that the junction between plates in the assembly 

is restrained against out-of-plane displacement while in-

plane displacements are allowed. In the second case no 

restrictions at all are placed on the displacement at those 

junctions. The second case is more general, more time 

consuming in computation, and cannot be approximated in 

the same way as the first (99). 

Case I 

In this case the transverse deformed shape of the 

middle plane of the strip is represented by 

M 
v = fy + I 

m 
(7.27) 

where "f" is a variable which controls the amplitude of the 

displacement function and may take any value. A similar 

function was assumed by Little (31) in his analysis of a 

simply supported plate. Graves Smith et al (98) replaced 
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the variable "f" by "ev" in their large deflection finite 

strip formulation. It is true that "f" is equal to "ev" as 

long as the longitudinal stress is equal to or less than 

the critical. If the applied stress exceeds this critical 

value the variable "f" may take any value. This displace­

ment function satisfies the in7plane equilibrium equations 

(Appendix C). It is different from the displacement func­

tion used in linear finite strip analysis (Chapter 3). It 

is accurate for the large deflection analysis of a single 

plate but only approximate for the case of local post­

buckling of a plated structure. 

From equation (7.27) it is clear that the loaded 

edges are allowed to distort in the in-plane transverse 

direction. The unloaded edges are free to move or are 

maintained straight and move bodily in this direction~ The 

number of longitudinal harmonic series may be 0, 2, 4, 6, ••• 

to achieve a symmetrical in-plane deformed mode. 

Case II 

This case applies to the unloaded edges of a simply 

supported plate restrained against any in-plane transverse 

displacement or where compatibility between the in-plane 

and out-of-plane displacements along the junctions of a 

plated structure is required. This is necessary in the 

overall buckling mode analysis. The displacement function 

must satisfy the geometric boundary conditions, but not 
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necessarily the governing differential equations (107). 

This longitudinal displacement function can be represented 

by 

N 
v = L {y}T {5} 

n=l 
sin n1TX -A- (7.28) 

where N is the number of the harmonic chosen for a particular 

solution. A similar function was assumed by Timoshenko (3) 

with N =.1 in his analysis of the post-buckling behaviour 

of a simply supported plate. He assumed that the longitudinal 

edges of the plate are restrained against the in-plane 

transverse displacement. Sridharan (99) used this function 

in the overall post-buckling analysis of a plated structure. 

He found that a large number of harmonics are required in 

this case, leading to a large number of degrees of freedom. 

In this case the loaded edge will not distort. It is 

clear that the longitu,dinal harmonic of this function is 

similar to the longitudinal harmonic of the out-of-plane 

displacement function given in the next section. Moreover, 

the function is similar to that used in the linear finite 

strip analysis. 

7.6.1.3 The Out-of-Plane Displacement 

The displacement function is similar to that used in 

linear finite strip (discussed in detail in Chapter 3). 

For the assumption of a simply supported loaded edge the out-
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of-plane displacement of a point in the middle plane is 

given by 

N 
w = I {Z}T {6} sin n~x 

n=l 
(7.29) 

This function satisfies the boundary conditions at x = 0 

and x = ~ where the displacement and the curvature vanish. 

w = w, xx + \) W, yy = 0.0 

7.6.1.4 The Shape Functions 

The shape functions, which represents the change in 

the displacement in the transverse direction, are similar 

to those used in linear finite strip. 

o o (7.30a) 

o C(3+2i)m 0 (7.30b) 

o (7.30c) 

where "i" is the number of the node, 

"Ck1 " is a polynomial function (k = I '" 8, I = m or 

n) given by 

C1n = b/8 (1 - 2n - 4n
2 + 8n

3
) (7.31a) 

(7.3Ib) 
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(7.3lc) 

(7.3ld) 

CSm = 1/2 (1 - 2n) (7.3le) 

(7.3lf) 

C7m = 1/2 (1 + 2n) (7.3lg) 

and Cam = C7m (7.3lh) 

The nodal displacement of a strip {o} is given by 

where "i" is the number of the node. If a single harmonic 

is used for u, v and w, the nodal displacement becomes 

(7.32) 

which means that there will be five degrees of freedom at 

every node. If two harmonics for the out-of-plane displace-

ment "w" are used, the number of degrees of freedom becomes 

11 per node. 
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In the present analysis the large deflections of a 

single plate are studied with the displacement function 

given by 

·M 
{XjT e (A/2 - x) + l {c} sin m1TX u = -A-

m=2 

M 
{y}T m1TX v = fy + l {c} cos -A-

m=2 

N 
{z}T n1TX w = l {c} sin -A-

n=l 

For completeness the analysis based on the displacement 

function 

M 
{X}T {c} m1TX u = e(A/2 - x) + l sin -A-

m=2 

N 
{y}T {o} n1TX 

v = r sin -A-
n=l 

N 
{Z}T n1TX w = r {a} sin -A-

n=l 

is given in Appendix D. 

7.6.2 Linear and Nonlinear Stiffness Matrix 

7.6.2.1 Perfect Plate 

To find a relation between the strain at any pOint on 

a strip and the nodal displacement of this strip, 

differentiate equations (7.26), (7.27) and (7.29) and sub-
. 

stitute into equation (7.23) 



Yxy 

- 223 -

N 
l ({y,}T {c} cos rn~x + ~ {inT {c} 

n=l 

nnx _ Z {Z"}T to} sin ~) -A- A 

N 
({X,}T rnnx rnn {y}T l {c} sin {c} = -A- -T 

n=1 

+ 1:. !!!!. 
2 A sin nnx 

T 

~) cos A 

nnx {B}T {c} - 2 Z cos -A-

sin 

nnx 
-A-

rnnx 
-A-

{z ,}T 

The vectors {R}, {R} and {B} are the contribution of the 

stretching of the middle plane due to the large deflec-

tions 

Dashes denote differentiation with respect to y. 

From equations (7.19), (7.26), (7.27) and (7.29) or 

from equations (7.l3c), (7.33), (7.34) and (7.35) an 

expression for the strain energy in terms of the nodal 

(7.33) 

(7.34) 

{c} 

(7.35) 

(7.36) 

.(7.37) 

(7.38 ) 
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displacements, end shortening and the variable "f" can be 

obtained. The strain energy of a strip after integration 

through its depth is given in Table 7.1. It is clear 

that the highest order term in this equation is of fourth 

order. 

The integration along the length of the strip can be 

done simply. Performing this integration, the first 

order terms "Wl " vanish for any value of (m). The 

quadratic membrane term "w "reduces to 2mb 

at Ir. = 0 

The cubic term "w " vanishes by integration for all 3 

values of "m" and "n" except when "m = 2n", i.e. 

(n,m) = (1,2),(3,6),(5,10), ••• 

The strain energy of the strip after this integration is 

given in Table 7.2. 

For a given end shortening "e" of the plate the 

variable "f" and the nodal displacement {a} will have 

(7.39) 

constant values which can be found from the conditions that 

the strain energy of the plate "w " is a minimum: hence 
t 

aWt 
~ = 0.0 (7.40) 

= 0.0 (7.41) 



----- -
Order Formulation 

-
Zero 

F 2 2 Wo • '2 I I (e + f - 2 v e f) dx dy 

Linear "1 = III C(m) {2 ~3 (vf - e) {xl + 2(f - vel {y.}} {o} dx dy 

Quadratic 
W

2mb 
= III {6}T [(~32 {x} {X}T + {y.} {y.}T + 2V ~) {x} {y.}T) c2 (m) 

(membrane) + s2(m) (l;V) ({x'} {x.}T + ~32 {y} {y}T _ 2~) {x'} {y}T)] {6} dx dy 

Quadratic 
"2b = ~ 11 {o}T [s2(n) (~14 {z} {z}T -V~12 dz"} {z}T + {z} {z .. }T). + {z"} {z"iT) 

(bending) + c2 (n) (1;V) 4 1/1
1

2 {z.} {z·jT] to} dx dy 

Quadratic "2s = ~ 11 {c2
(n) 1/11

2 
(Vf - e) {R} + s2(n) (f - vel {R}} {6j dx dy (stability) 

Cubic 
"3 = ~ 11 {o}T [1/112 c2 (n) C(m) {1/13 {x} + v {y.}}T {R} + s2(n) C(m) {v1/l3 {x} + {y'}jT {R} 

+ (1;V) 1/11 S(m) S(n) C(n) {{X'} - 1/1
3 

{y}}T {B}] {6} dx dy 

4 . 

Quartic 
"4 = ~ 11 {6}T [~! c4 (n) {R} {R}T + i s4(n) {R} {R}T + 1/1

1
2 c2 (n) s2(n) [~ {R} {R}T 

+ (1;V~ {E} {B}T]] {6} dx dy 

n'IT m'ITx ... 
N 1/11 = T C(m) = oos T 

The strain energy" = l ("0 + "1 + "2mb + "2b + W2s + ") + "4) ... 
m'IT 

S(m) = sin ¥ n=1 1/1) = T 
--.----~ 

Table 7.1. The Strain Energy of a Strip 



Order . Formulation 
No. of 

harmonic 

Zero 
F 2 2 

Wo - '2 f 2). (e + f - 2V ef) dy 

First W
l 

.. 0.0 

Quadratic W
2mb 

= F). f {&}T {y'} {y.}T {&} dy m == 0 
(membrane) 

Quadratic 
W

2mb 
= F

2
). f {15}T [W

3
2 {X} {X}T + {y'} {y.}T + 2v W3 {X} {y.}T + (l;V) [{X'} {X·}T 

m = 2, 4, 6 
, 

(membrane) + W3 2 {y} {y}T - 2 W3 {X·} {y}T]] {c} dy 
i 

W = D). f {c}T [W 4 {Z} {Z}T _ V ~ 2 [{ztt} {z}T + {z} {ztt}T] + {ztt} {ztt}T 
Quadratic 

2b 2 1 1 

(bending) + (l;V) 4 W
1

2 {z.} {z,}T] {&}dx dy 
n = 1, 3, 5 

Quadratic W
2s 

= ~). f {&}T [W
1

2 (Vf - e) {z} {Z}T + (f - Vel {z'} {z,}T] {a} dy n = 1, 3, 5 
(stability) 

Cubic W3 = ~A f {a}T [W
1

2 {l).} {R}T - {A
2

}{RJT + (l;V) W
l 

{A
3

} {B}T] {of dy n = 1, 3, 5 
m = 2n 

Quartic w
4 

= ;; f {a}T [3 W
1

4 {R} {R} + 3 {R} {R} + 2V W
1

2 {R} {R} + (l;V> ~12 {B} {B}] {c} dy n = 1, 3, 5 

{~} = ~3 {X} + V {y'} {A
2

} = V ~3 {xl + {y'} {A
3

} = {x,} - ~3 {y} m = 2n 
m = 2, 6, 10 

----------

Table 7.2. The Strain Energy of the Strip 
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where "Wt " is the total strain energy of. the plate which 

can be obtained by the acumulation of the strain energy 

of all strips. {a~} is the overall displacement vector. 

From equation (7.40) and Table 7.2 

where 

M b/2 

= t ~ f 
1 -b/2 

+ {z'}{Z'lT] {al) dy 

"M " s is the number of strips into which the plate 

has been divided. Assuming 

f = fl + ev 

equation (7.42) becomes 

For every iteration, the value of "fl" can be obtained 

from equation (7.44) and the value of "f" from equation 

(7.43). Graves Smith et al (98) in their analysis 

assumed"f = ve" and did not mention "fl". 

(7.42) 

(7.43) 

(7.44) 

The equilibrium equations {E} can be obtained by 

minimising the strain energy with respect to the displace-

(7.45a) 
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= 0.0 (7.45b) 

= [K] t 51} (7 • 4 Se) 

where [K] is the overall stiffness matrix. In the 

following the stiffness matrix for one strip will be,obtained 

and then the overall stiffness matrix will be assembled. 

Minimising Table 7.2 with respect to {5}, the strip 

stiffness matrix has been obtained as shown in Table 7.3. 

The equilibrium equation of a strip is given by 

{E} = [KJ {5} 

where 

[K] = [K1Jmb + [K1Jb + [K1J
s 

+ [K2] + [K3] 

It is clear from Table 7.3 that the matrices [Kl]mb 

and [Kl]b are similar to the inplane stiffness matrix 

and out-of-plane stiffness matrix obtained in the linear 

finite strip analysis (Chapter 3), respectively. It is 

worth noting that neglect of the nonlinearity leads to 

"£1 = 0.0" and the matrix [KlJs will be similar to the 

stability matrix used in Chapter 3. 

By accumulating the equilibrium equations {E} for 

all strips and solving this nonlinear equation by any 

numerical method, the post-buckling behaviour of a 

rectangular plate can be obtained. In the present work, 

(7.46 ) 

(7.47) 



I Order of the 
equilibrium Formulation of the stiffness matrix 
equation {E} 

[Kl]mb - 2 F~ f {y,} {y.} dy m - 0 

[Kl]mb - F~ f [~32 tX} {X}T + {Y'} ty·}T + 2v W3 {X} {y.}T + (l;V) ({X'} {X·}T I 

m = 2, 4, •. 

+ W3 2 {y} {y}T - 2 W3 {X·} ty}T)] dy 
6, .. 

Linear 

[Xl]b = D~ f [W
1

4 {z} {Z}T - v W
1

2 (tz} {z}T)" + {z"} {Z,,}T + 2 lP12 {Z·} {Z·}T] dy n = 1, 3, •• 

f 
[Xl] = Et~ f [- e ~12 {z} {z}T + 12 (V W

1
2 {z} {Z}T + {z·} {z·}T)] dy n=1,3, •. 

s (l-V ) 

Non1inear 
[K2] = F2~ f [$12 dR} tA1}T + ; {A

1
} {R}T) - ({ii} {A

2
}T + ; {A

2
} {lilT + (l;V) $1 ({ B} {A

3
}T 

n=1,3, •• 

(quadratic) + ; {A
3

} {B}) T] dy 
m = 2n 

Non1inear FA f [3 4 { } {}T 3 {-} {-}T V 2 {} -}T 1-V 2 { } { }T 
(cubic) [K3] = T 4" lP1 R R + '4 R R ~ 2" $1 R {R + (a) $1 BB] dy n = 1, 3 

--

Table 7.3. The Strip Stiffness Matrix 
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the approach of Clough et al (120) has been used, and in 

this way an incremental equilibrium equation {ET} can be 

developed from Table 7.3. Consider two configurations of 

the strip that are close to each other during deformation 

as shown in Figure 7.4. Obtaining the equilibrium 

equations of each of these strip configurations incremental 

relationships can then be determined by taking the 

difference between the two. The end shortening parameter 

"en is assumed to be increased during this increment to 

ne + 6e". The incremental equlibrium equations and the 

incremental stiffness matrix for a strip are given in 

Table 7.4. The incremental equlibrium equation of the 

strip {~~} is given by 

{ET} = [KT] {6e} + {6P} 

• 0.0 

where 

(KT) • (KT1]mb + [KT1]b + [KT1]s + [KT2J + [KT3] 

(7.48a) 

(7.48b) 

(7.49) 

{6P} I: Et), I [- 6e1lll2 {Z} {Z}T + 6fl 2 {Z} {Z}T 
(1-,,2) (V1ll l 

+ {Z'} {Z'} T)] {<5} dy (7. SOa) 

2 6f 1 (v'" 2 • Et). I (- 6e1ll {R} + ~ {R} + {R}» dy 
1 (1-v2) 1 

(7. SOb) 

{6P} is an imaginary load vector. 



z 

x 

Deformed 
configuration 

FIG. 7·'. INCREMENTAL DEFORMATION OF A STRIP. 



Order of the 
incremental Formulation of the incremental stiffness matrix 
equilibrium 

equation 

(ETl]mb • 2 FA I {yl} {y,}T dy m-a 

[Erl]mb - FA I (~32 {X} {X}T + {yl} {y,}T+2V V3 tX} {y.}T + (1;V) ({XI} {X,}T 

+ V32 {y} {y}T _ 2 V3 tX'} {y}T] dy 
m - 2, 4, ••• 

Linear 

[KT1]b - DA I [V
1

4 {z} tz}T - V ~12 ({z} {Z}T)ft + {zn} {zn}T + 2 W
1

2 {Zl} tz,}T] dy n - 1, 3, 5, ••• 

f 
[Er1] = EtA I [- e V

1
2 {ZI {Z}T + \ (V 1/1

1
2 tz} {Z}T + {Z I} tZ' }T) ] dy n = 1, 3, 5, ••• 

s (l-V ) 

[Icr'2J= F2A I ["'1
2 ({RI {~}T + {A

1
} {R}T) - ({ii} tA2}T + {A2} {ii}T) 

Non1inear n = 1, 3, 5 
(quadratic) 

+ (l;V> V
1 

dB} {A
3

} T + {A
3

} {B}T)] dy m = 2n 

Nonlinear 3FA 3 4 { } {} 3 -}{-I V 2 { } {- 1-V 2 { } { I n = 1, 3, 5 (cubic) [Icr'3J = -2- f [4 W1 R R + 4" {R R + 2" W1 R RI + (a) W1 B B J dy 

--

Table 7.4. The Incremental Stiffness Matrix 
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Comparing the equilibrium equations. (Table 7.3) and 

the incremental equlibrium equations (Table 7.4), it is 

clear that the linear terms do not change. The quadratic 

term in the incremental equation is symmetric although it 

1s unsymmetric in Table 7.3. This fact has been noticed 

by Clough et al (120) and it is important since the incre-

mental matrix will have to be inverted during end shortening 

incrcmentation. 

7.6.2.2 Imperfect Plate 

Assume the initial imperfection of the plate varies 

sinusoidally in "x" and "y" directions with an amplitude 

"a " The initial displacement (wo) of any point is nn' . 

given by 

o .., "" 
N N 
r _r 

n=l n=l 

-a _ sin nnx cos nny 
nn -r- B 

In the longitudinal direction this pattern is similar to 

(7.51 ) 

the deformation of the plate after buckling. For Simplicity 

assume nal, i.e. the initial deflection of the plate has 

onc half wave in the transverse direction (a - = a ) nn n· 

The initial imperfection of every strip relative to 

its local axes is given by 

..,0 • ~ Cl sin nnx cos 
ny 

n=l n --r b (7.52 ) 

- (y + 0.5 Bb)/Ms where y • (7 .53) 

b • the breadth of the strip 
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where M = s total number of strips 

e = a factor depending on the position of the 

strip relative to the plate given by 

M 
e = 2(L - s+l) 

2 (7.54) 

L = the strip number, for left edge strip L = 1 

and for right edge strip L = M • s 

From equations (7.24), (7.26), (7.27) (7.29) and (7.52) 

the change in the strain energy W due to the initial 

imperfection can be obtained. The results are given in 

Table 7.5. 

(7.55) 

The results of integrating this strain energy function 

with respect to x are given in Table 7.6. The quadratic 

term due to the interaction between the membrane and 

bending strains will vanish for all values of m and n 

except when m = 2n, i.e. 

(n,m) = (1,2), (3,6), (5,10), ••. 

Accumulating the total strain energy functions for 

all strips and minimising it with respect to f, equation 

(7.42) becomes 



Order 

Linear 

Quadratic 
(bending) 

Quadratic 
(interaction 

between membrane 
and bending) 

Cubic 

,I. _ n1T 
"'I - T 

Formulation 

Wl = F an 11 {c}T {W1
2 

(Vf - e) c
2

(n) cos ~ {Z} - W
2 

(f - vel S2(n) sin ~ {Z'} dx dy 

W2b = ~Fan2 11 {o}T [cos
2 7 W

1
2 

c
2

(n) (W
1

2 c 2 (n) {z} {z}T + (l;V) s2(n) {Z'} {z,}T) 

2 1Ty 2 2 2 2 I-v T 2 T 
+ sin b W2 S (n) (~l C (n) (T) {Z} {Z} + S (n) {Z' J {Z'} ) 

- sin 2~Y W
1

2 W
2 

C2 (n) s2(n) (l;V) {Z} {Z,}T] to} dx dy 

{ ~ T 2 2 1Ty T 2 . TIY {} }T W2i = F an 11 uJ [~l C(m) C (n) Cos b {AI} {Z} - W
2 

C (m) S(n) S1n b A2 {Z' 

- (l;V) Wl C(n) S(n) S(m), {A
3

} {W
2 

sin 7 {z} - cos TIt {Z' nT] {c} dx dy 

W3 = ~ F an 11 to} [cos 1T: ~12C2(Jl) (~12c2(n) {RHz}T+ s 2(n)(V{R}(Z}T+(1;V) {B} {z,}T» 

- sin 1Tt W
2 

S2(n) (s2(n) {R} {Z,}T + W
1

2 c 2 (n) (V{R} {z,}T + (l;V) {B} {z}T)] {c} dx dy 

1T 
W2 = M.b 

s 
C(n) = cos W

l 
x S(n) = sin W

l 
x 

Table 7.5. The Strain Energy Due to Initial Imperfection 



:'~ 

Order Formulation 

- -
Linear - T { 2 'ITy 'ITy } W

1 
= A Fan f {a} W

l 
(vf - e) cos 1) tz} - W2 (f - vel sin 1) {z'} dy n = 1, 3, 5, •.• 

W
2b 

= ~ FA a
n

2 f {o}T [cos2 ~ W
1

2 (3W
1

2 tz} {Z}T + (I;V) {z'} {Z,}T) 

Quadratic + sin2 'IT: W~2 (3 {ZIJ {z,}T + W
1
2 (l;V) {z} {z}T) n = 1, 3, 5, ••• 

(bending) 

- sin 2~Y W
1

2 W
2 

(l;V) {z} tz I }T J to} dy 
I 
. 

Quadratic - 1 } T nY { T I-v } { 
( interaction W2i = 2" FA an f {o [WI cos b (WI AI} {z} + (2) {A3 Z I }) n = 1, 3, 5 
between membrane 

+W2 s1n'IT: ({A
2

} {z'} - (I;V) W
I 

{A
3

} {z})] {o} dy 
m = 2n 

and bending) = 2, 6, 8 

. 

Cubic 
W3 = ~ FA an f {o}T [cos 'IT: W

1
2 

(3 W
1

2 {R} {Z}T + v {R} {z}T + (I;V) {B} {z' }T) 
n = 1, 3, 5, ••• 

- sin t W2 (3 {R} {ZI} + W
1

2 (V{R} {Z,}T + (I;V) {B} {Z}T) ] {o} dy 

Table 7.6. The Strain Energy Due to Initial Imperfection 
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MS N 
b/2 
r 1 {c}T [1/1 2 v {Z} {Z}T l L FA J [2(f - ev) + "2 

1 n=l 1 
-b/2 

-
1/1 2 + {Z'} {Z'}T] {c} + Vcl cos ~ {c}T {Z} 

n 1 b 

i .~ {~}T {Z'}] = - Cln 1/) 2 s n b U 0.0 

Substituting equation (7.43) into (7.56), fl can then be 

expressed as follows 

(7.56) 

-M 
-1 s 

fl = 4M b l 
5 1 

viR} + {R} + 2v Cln 1/11
2 cos ~ {Z} 

-
- 2 Cln 1/1 2 sin ~ {z,}}T {c} dy 

To integrate the third term and the fourth term in 

this equation, where {Z} and y are functions of y, the 

approach of integration by parts has been used (Appendix 

E) • 

Minimizing the strain energy function given in 

Table 7.6 with respect to the displacement {cl, the 

change in the equilibrium equations due to the initial 

imperfection can be obtained as shown in Table 7.7. 

{E} = {p} + [KO] {a} 

The vector {p} in Table 7.7 is an irnaginery load 

vector dependent on the amplitude of the initial imper­

fection. The change in the stiffness matrix due to this 

(7.57) 

(7.58 ) 



Order of the 
equilibrium 

equation 

Zero 

First 
(bending) 

First (inter­
action between 
membrane and 
bending) 

Quadratic 

Change on the 
equilibrium 

equation 

{pJ 

[K01\ to} 

[K01J
1 

to} 

[K02] to} 

Formulation 

{p} = AF an f tW1
2 

(Vf - e) cos 1¥ tZ} - W2 (f - vel sin ~ {Z}} dy 

[K01]b = ! FA a
n

2 f [cos 2 ~ W
1

2 
(3 W

1
2 {zJ {Z}T + (l;V) {Z'} {Z,}T) 

+ sin2 TI~ W
2

2 (3 {Z'} {z,}T + W
1

2 (l;V) {Z} {Z}T) 

- sin 2~Y W/ $2 (l;V~ tZ} {Z t}T] dy 

[K01]1 = ~ FA an f [W
1

2 
cos TI~ ({A

l } tZ}T + {Z} {Al}T) 

+ (l;V) W
l 

cos ~t (tA
3

} {Z·JT + {z·} tA3}T) 

+ W
2 

sin TI~ ({A
2

} tZ·}T + {Z·} {A
2

}T) 

- (l;V~ W
1 

W
2 

sin ~ ({A
3

} tZ}T + {Z} {A3}T)] dy 

[K02] = ~ FA an f [cos TI! W
1

2 (3 W
1

2 {R} {z}T + V {R} {z}T 

+ (l;V) {B} {Z.}T) _ sin TI: $2 (3 tiiHz'} + W
1

2 (V lR} {z·}T 

+ (l;V) {B} {z}T) ] dy 

Table 7.7. The Stiffness Matrix Due to Initial Imperfection 

'r ,',,",,,j",. 

n = 1, 3, 5, •.• 

n = 1, 3, 5, •.. 

n = 1, 3, 5, •.. 
m = 2n 

= 2, 6, 10 

n = 1, 3, 5, •.. 



- 231 -

imperfection is given by 

[KO] = [KOl]b + [KOl]i + [K02] (7.59) 

All the integration with respect to y necessary to 

obtain the matrix [KO] (Table 7.7) can be carried out by 

parts. The change in the incremental stiffness matrix 

due to the initial imperfection can be.obtained from Table 

7.7. The vector {p} becomes {~p} by this increment but 

the two matrices [KOl]b and [KOl]i will not change. 

Multiplying the matrix [K02] by a factor of order 2.0 

enables the incremental one to be obtained. The incre-

mental matrix of a strip [KOT] is given by 

[KOT] = [KOl]b + [KOl]i + 2 [K02] 

It is clear that the matrices [KO] and [KOT] are 

symmetrical matrices and this is an advantage of this 

approach since the matrix [KOT] + [KT] will have to be 

inverted during an increment of the end shortening. 

The incremental load vector is given by 

-
{AP} = -A Et an $12 Ae f cos ~ {Z} dy 

(7.60 ) 

(7 • 61) 
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7.7 The Boundary Conditions 

In the linear finite strip method only the out-of­

plane boundary conditions of the longitudinal edge have 

any real effect on the pre-buckling behaviour of the 

structure. For the large deflection analysis not only 

the out-of-plane but also the in-plane boundary conditions 

affect the post-buckling results. 

The loaded boundaries of the plate are taken to be 

simply supported (fundamental assumptions), with zero 

shear stress. The edges are maintained straight but move 

longitudinally under the applied longitudinal compressive 

stress (on the assumption that very rigid loading bars 

are present). These conditions may be written as 

at x = 0 & A 

= 0.0 

u = ± eA/2 

= 0.0 

The boundary conditions of the unloaded edges can 

be divided into 

(a) out-of-plane boundary condition, 

(b) in-plane boundary condition. 

(7.62) 

(7.63) 

(7.64) 
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Considering the in-plane condition,. there are two 

types of boundary as specified in reference (12) 

b-i) The edges are free to move, 

b-ii) The edges are maintained straight. 

In the following these conditions will be discussed. 

a) Out-of-plane boundary condition 

The unloaded edges are simply supported and the shear 

stress is zero. This may be written as 

at y = ± B/2 

w = w, + v w, = 0.0 yy xx (7.65) 

Nxy = 0.0 (7.66) 

b) In-plane boundary conditions 

Case (b-i) 

The edges are free to move in the plane of the plate. 

The stress resultant vanishes at this edge 

at y = ± B/2 

v = arbitrary 

N = 0.0 
Y 

(7.67 ) 

(7.68) 
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Case (b-ii) 

The unloaded edges are maintained straight by a 

distribution of normal stress, the resultant of which is 

zero. The edges may move bodily in the plane of the plate. 

at y = ± B/2 

v,x = 0.0 (7.69) 

(7.70) 
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CHAPTER 8 

THE COMPUTER PROGRAM 

The computer program (written in Fortran IV) developed 

previously for the linear finite strip analysis has been 

extended to include the effects of large deflections and 

initial imperfections. There are four stages to this 

program: 

1. Calculate the critical stress 

2. Obtain the deformations at different points 

3. Find the distribution of stresses and strains 

4. Calculate the average longitudinal compressive 

stress 

From the average stress and the maximum stress at the 

unloaded edges the effective width can be obtained. At 

first the program is used for the case where the trans­

verse displacement "v" and the out-of-plane displacement 

"w" have different longitudinal harmonic series. Then, 

by modification of some constants, the same program can 

be used for the case where "v" and "w" have the same 

longitudinal harmonic series. This case is considered at 

the end of this chapter. 

It is clear from Chapter 7 that the analysis makes 

use of two types of matrices. The first does not depend 

on the displacements and for this reason it is generated 

only once at the first cycle of the program and stored 
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for future use. This type corresponds to the linear 

equilibrium equations and throughout this work these will 

be termed "linear matrices". For a perfect plate divided 

into a number of similar strips, the linear matrices are 

the same for all strips, so only one strip will be con­

sidered in this case. The second type of matrix is a 

function of the deformation and needs to be generated at 

every increment of the end shortening. From these matrices 

the non-linear equilibrium equation can be obtained and so 

these will be termed "nonlinear matrices". 

Figure 8.1 is a flow diagram of this computer 

program showing the main operations for the analysis of 

perfect or imperfect plates. As a first step only one 

term in the harmonic series has been considered. This 

single harmonic is chosen to reduce the number of degrees 

of freedom. It is assumed that n = 1 and m = 2. The main 

routines in the program are 

1. Routine to generate linear matrices 

a - stiffness and stability matrices 

b - imperfect matrices 

2. Routine to generate nonlinear matrices 

a - perfect matrix 

b - imperfect matrix 

3. Routine to impose geometric boundary conditions 

4. Routine to solve the equilibrium equations 

5. Routine to calculate the stress and strain 

distribution. 



Generate the linear 
matrices (Section 8.1) 

Calculate the critical stress 
and the critical strain 

No 

Calculate {Po} 
(equation (8.22» 

e b.e 

o 

e cr = °cr/E 

Assume {6} = 0.0 
and e = 0.0 

1 
Is 

it perfect 
plate 

{p} = {Po} 

Generate incremental 
stiffness matrices 
EST] = [KT] + [KOT] 

~ 

B 

Yes 

Assume {po} 
(equation (8.21» 

t 
• • ·cr + A. J 

C, 

G( 

r e=e+/le 

Calculate the 
average stress 0av 
(equation (8.32» 

Calculate the 
strain {E} and the 

stress {a} 

Yes 

r ,-{lIQ}-- {~-;l [ST ]-1 

{oS} = {6} + {1\6} I 

_==r~:~ ___ _ 
Generate the stiffness 

matrices 
[ S] = [K] + r KO ] 

c 

[S 1 {Cl ---1 ----~ ~------·-I 

I. __ ~p} _;. {~~_~ - , 

Obtain the out-Of-balan:e-~~:~.l 
{p } = {p } - iP} 

u 0 

I 
I 

< accuracy> .. No .I 

Figure 8.1. Flow Diagram for the Computer Program 
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In this chapter these routines will be described in 

some detail. The program will be checked for the case of 

a square, simply supported plate with different levels of 

imperfection under in-plane compressive stress. 

8.1 Routine to Generate the Linear Matrices 

8.1.1 Perfect Stiffness and Stability Matrices 

For a perfect plate the same routines given in 

Chapter 3 will be used to generate the stiffness and the 

stability matrices of the strips. Once the overall 

matrix of the plate has been assembled use of the Wittrick-

Williams algorithm enables the critical buckling load to 

be obtained. 

is given by 

The critical end shortening parameter, e 
cr 

e = a lE cr cr (8.1) 

for the case of free transverse displacement of the unloaded 

edges. If this displacement is prevented equation (8.1) 

becomes 

(8.2) 

8.1.2 Imperfect Linear Matrices 

Due to the initial imperfection the linear stiffness 

matrix will be modified. This modified matrix depends on 

the pattern of the initial out-of-flatness and on the 
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position of the strip. This matrix can be divided into 

two matrices. The first is an out-of-plane matrix given 

by 

b/2 
2ny KOl i . = f (Cl zi z. + C2 zi 

, z. , + cos 
,J J J b 

-b/2 
z. ' 
~ 

Z. ' 
J 

+ C4 
z. Z • ) - sin 2ny 

(CS zi Z • ' ) ) dy 
~ J b J 

(8.3) 

are constants which can be obtained from 

Table 7.7 and the vector {Z} is given by equation (7.30c). 

Integrating this equation by parts the matrix can be 

-obtained. Since y depends on the position of the strip, 

the matrix must be generated for each strip. The overall 

matrix may then be assembled and stored. This matrix has 

to be generated only once after which the program may use 

it at every increment of the end shortening. 

The second matrix is generated from the interaction 

between the in-plane and out-of-plane shape functions, 

it is a symmetrical matrix given by 

b/2 

KOl 1 ,j = f (cos ~ (C 6 al i Zj + C7 a3 i Zj') 
-b/2 

Z. ' 
J 

where a's are the element of the vector {Al. 

(8.4) 

(8. S) 
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2VTT = A xi + Yi ' 

X ' -i 

The vectors {X} and {y} are given by equations (7.30a) 

and (7.30b) respectively. The matrix may be integrated 

by parts, assembled into the overall matrix and stored. 

If (In = 0.0 (perfect plate) the program will omit this 

routine. 

8.2 Routine to Generate the Nonlinear Matrices 

8.2.1 Perfect Strip 

This matrix depends on the displacements of the 

strip, so it must be generated for every strip. At-

every increment of the end shortening the displacements 

change and the matrix has to be regenerated. In the 

present work at every iteration during the increment, 

the matrix is updated using the final displacements. 

The matrix can be divided into an out-of-plane matrix 

and a matrix covering the interaction between out-of-

plane and membrane effects. The out-of-plane matrix 

is a symmetrical matrix given by 

K3
i 

. , ) 
b/2 

= f (ClO 
-b/2 

(8.6) 

(8.7) 

(8.8) 



- 240 -

where r, rand b are the elements of the· vectors {R}, 

.{R} and {B} respectively. All these vectors are functions 

of the displacement given by 

{R} = {Z} {Z}T to} 

It is clear that all these vectors are generated from 

the multiplication of constant matrices with the dis-

placement vector. These matrices are generated only 

once and then stored for use at every iteration. They 

are identical for similar strips and thus only one strip 

will be considered to obtain the matrices {Z} {Z}T, 

{Z'} {Z,}T and {Z} {Z,}T. Having generated the matrix 

[K3] for every strip, the overall matrix can be obtained. 

The matrix due to the interaction between the in-

plane and the out-of-plane displacement is unsymrnetrical. 

Not all the elements of the matrix have been calculated 

but only the elements which are given by 

K2i . ,) 

b/2 

= f 
-b/2 

(C14 r i al j + CIS r i 
a2 j + C16 b

i 
a3 j ) dy 

(8.9) 
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The other elements can be obtained from 

K2 .. 
),1. 

1 = -2 K2 .. 
1.,) 

In the program the vectors {AI}, {A2} and {A3} are 

generated only once and stored for use at every itera-

tion. 

B.2.2 Imperfect Strip 

This matrix is an out-of-plane symmetrical matrix. 

Knowing the vectors {R}, {R} and {B} from the previous 

routine this matrix can be generated simply from the 

following equation 

- -K02 i . ~ (C17 r i + C19 b i z'. ) = cos z. + ClB r i z. , ) b ) ) ) 

-
+ sin ~ (C 20 

- z'. + C22 b i Zj) r i z'. + C2l r. b J 1- J 

The integrations have been carried out by parts, then 

repeated for all the other strips and the overall matrix 

(B.lO) 

(B .11) 

assembled. If the plate is perfect (an = 0.0) the program 

will omit this routine. 

B.3 Routine to Impose Geometric Boundary Conditions 

For the out-of-plane boundary conditions the same 

routine given in Chapter 3 will be used. In the present 

routine the in-plane boundary conditions will be con-

sidered. There are two cases for the in-plane boundary 
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conditions at the unloaded edges. Only the case where 

these edges are maintained straight have been included in 

the present routine. It can be expressed as (using 

equations (7.69) and (7.70» 

v = constant at y = ±B/2 

v'x = 0.0 at y = ±B/2 

fNy dx = 0.0 at y = ±B/2 

The transverse displacement is given by 

v = {y} {a} cos mnx + fy 
),. 

by differentiation 

v,x = -~n {y} {a} sin m~x 

substitute by Y = ±B/2 into equation (8.12), it gives 

sin mnx 03 sin mnx 
°4(M +1) 0.0 -),.- = T = 

s 

i.e. 

63 = 64 (M +1) 
s 

= 0.0 

or m = 0 

(8.12) 

(8 .13 ) 

(8.l4a) 

(8.14b) 

where 03 and 64 (M +1) are the amplitudes of the transverse 
s 

nodal displacernents at the unloaded edges. The 
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corresponding diagonal elements of the stiffness matrix 

have been modified as shown in Chapter 3. 

Equation (7.70) can be expressed as 

Et 
2 (C y + v cx) dx = 0.0 

(I-v ) 

substitute for Cx and c y by equations (A.l) and (A.2) 

Ms/2 
L J (v'y + \I u'x) + ~ (W'y2 + \I W'x

2
) = 0.0 

1 

(8.15) 

(8.16) 

The displacernents u, v and ware given by equations (7.26), 

(7.27) and (7.29); thus the following equation can be 

obtained 

MS/2 
~ J [f - v e) cos 2'TTX {A2}T {cS} + 12 sin2 'TTX {p,}T {cS} f -A- T 

n2v 2 'TTX T + - cos "'"\ {p} {cS} ] dx = 0.0 
2A2 " 

(8.17) 

It is clear that this is the same equation as (7.42). 

8.4 Routine to Solve the Nonlinear Equilibrium Equations 

The general non linear equilibrium equation can be 

expressed as 

[S] {o} = {p} 

To trace the post-buckling behaviour of a perfect plate a. 

small constant uniformly distributed load "p" normal to 
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the original plane of the plate, is maintained on the 

plate throughout the analysis. The work done by this 

load is given by 

W = II pw dx dy s 

where w is the out-of-plane displacement, 

P is the intensity of the load. 

Substituting for w, equation (8.19) becomes 

Ws = II P {z}T {o} sin ~~ dx dy 

4A b2 b _b2 b 
= n p {12 2" 0 0 "'T2 2" 0 O} {o} 

= {p} {o} 

where {P} is the load vector for a strip 

{p} 

Then the overall load vector can be obtained from the 

load vector of one strip. For the case of an imperfect 

plate this load is replaced by the imaginary load {p} 

which is given by 

- -
{p} = I [C23 cos ~ {Z} + C24 sin ~ {Z'}] dy 

(8.19) 

(8.20a) 

(8.20b) 

(8.20c) 

(8. 21) 

(8.22) 
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Knowing this the load vector for all the other strips 

may be generated leading to the assembly of the overall 

load vector. 

To solve equation (8.18) Netwon Raphson iteration 

has been used. In this method the incremental matrices 

can be used directly (120). The incremental matrices 

can be obtained as follows: 

1. The linear matrices will not change. 

2. The nonlinear matrices. 

1 - [KT3] = 3[K3], 

il [KT2] will be symmetrical and given 

by equation (8.9), 

iil - [KOT2] = 2[K02]. 

8.5 Routine to Calculate the Stress and Strain Distribution 

Knowing the nodal displacement {cl, the strains at 

any point in a perfect plate can be obtalned from the 

following equations 

EX = - e + ~3 {X}T {cl cos ~3 x + ~12 z {Z}T to} sin ~l x 

1 2 T 2 
+ 2 ~l {R} to} cos ~l x + EX (8.23) 

1 - T 2 -+ 2 {R} to} sin ~l x + Ey (8.24) 
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sin T W 3 x - 2 Z W I {Z'} { <5} co s W I x 

I}T -+ 4 wI {B to} sin 2WI x + Yxy 

Only the vectors {R}, {il, {B} and the factor "f" must 

be updated at every increment of the end shortening. 

All the other vectors and constants are calculated once 

and then used at any increment. 

- £ and y are the effect of the Where E: x ' y xy 

imperfections on the strains and given by 

-- 2 {Z J {IS J 2 :!!.Y E: = an lPI cos lPl x cos 
x b 

--E: y = - a n lP2 {Z ' } to} 2 
lPl x sin ~ sin b 

-I - {Z}}T ~ Yxy = "2 a lPI {{Z' } - lP2 {IS} cos sin 2 IPI n b 

The stress at the point can then be obtained from 

Ox = Et 
(E: x + v E: y > 

(1-v 2 ) 

Et 
(E: y + v E: x > 0y = 

(1-v 2) 

Et 
'rxy = 2 (l+v) Yxy 

The mean applied compressive stress in the longitudinal 

direction 0av is given by 

A B/2 

°av = {B J J Ox dx dy 
o -B/2 

(8.25) 

x 

(8.29) 

(8.30) 

(8.31) 

(8.32) 
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8.6 Checking the Computer Program 

A simply supported square plate under longitudinal 

in-plane compressive stress will be considered to check 

the computer program. The unloaded edges are assumed to 

be maintained straight but able to move bodily. The plate 

is initially perfect with a thickness to width ratio equal 

to 0.01. Because the program is not being used for a 

parametric study at this stage and in order to reduce the 

number of degrees of freedom and the computing time, the 

plate is divided into four strips only. A single longi­

tudinal harmonic is used to reduce the number of degrees 

of freedom per node. 

The post-buckling behaviour of this plate is compared 

in Figure 8.2 with the results presented by Yamaki (11). 

It is worth mentioning that in their work on the same 

problem Graves Smith et al (98) divided the plate into 24 

strips to obtain a sufficiently accurate result. The 

present approximation leads to an overestimation in the 

post-buckling stress of about 11% and 14% at an applied 

stress level of twice and three times the critical stress 

respectively. 

The same plate with a O.lt initial imperfection has 

also been analysed and the results are also shown in 

Figure 8.2. At a stress equal to the critical, the finite 

strip underestimates the central deflection by about 11%. 
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These limited results do no more than indicate the 

potential of the current method and much additional work 

would be necessary to assess the accuracy, determine the 

required number of strips into which each plate should be 

divided for analysis and so on. Unfortunately due to lack 

of time this has not been possible. 

8.7 Modification of the Program 

There are two cases for the in-plane transverse 

displacement based on the assumed longitudinal harmonic 

function as described in Section 7.6.1. To consider the 

case where the transverse displacement "v" and the out-of-

plane displacement "w" have the same longitudinal harmonic, 

the computer program has been modified in the following 

four areas: 

1. The linear stiffness matrix used in Chapter 3 is 

modified by using the constant given in Table o. 3 instead 

of the constant given by equation (3.98). 

2. The variable "f" vanishes and equations (7.38) 

and (7.50) become 

f1 = - e\l 

3. The vectors {AI}' {A2 } and {A3 } are replaced by 

the vectors {Al }, {A2 } and {A3 } respectively, where 

8\1 = ~3 {X} - 3nn {yl} 
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= tlJ {X} + ..l§... {y I } 
3 3nn 

8 = {XI} - 3I {y} 

4 • An additional load given by 

{P} == _ 2 F ). ev f {y I} dy 
nn 

considered to act on the plate. 

Although this modification has been included in the 

computer program and some results have been obtained, these 

are incomplete due to lack of time and are therefore not 

included here. 
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CHAPTER 9 

CONCLUSION AND SCOPE FOR FUTURE WORK 

9.1 Scope of the Present Work 

The present work can be divided into two parts, the 

first concentrated on the initial buckling while the second 

dealt with the post-buckling behaviour. The first part was 

intended' to study the inelastic buckling of " plate assemblies 

using the small deflection theory. The loaded ends of the 

component plates were limited to simply supported conditions. 

It was assumed that every strip was subjected to a range of 

in-plane longitudinal loads varying from pure compression to 

pure bending, no shear or transverse loading was considered. 

The analysis was restricted to perfect component plates, but 

plate assemblies with shallow overall imperfections were 

considered in some cases. There was no limitation on the 

mode of deformation of the whole plate assembly or the 

distortation of its components plates. 

The parameters, which were varied to study the 

inelastic initial buckling of plate assemblies were: 

1. Shape and dimensions of the cross-section 

(stiffened panels, rolled sections, box­

section, etc.). 

2. Number, orientation and geometrical properties 

of the stiffeners. 
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3. Pattern and magnitude of residual stress. 

4. Material yield stress. 

5. Boundary conditions of the unloaded edges. 

6. Slenderness ratio of both plating and 

stiffened panel. 

7. Mode of buckling (half wavelength). 

8. Type of loading. 

In the second part, the post-buckling behaviour was 

considered. The work was limited to the case of an 

initially stress free plate with simply supported loaded 

ends buckling in the elastic range. Only the case of 

plates under uniaxial longitudinal compressive stress was 

considered. It was assumed that the load was acting 

through two rigid loading bars, i.e. the longitudinal 

displacement at the loaded ends was uniform. A sinusoidal 

initial imperfection was assumed in the analysis. There 

was no limitation on the boundary conditions of the un­

loaded edges. No parametric study has been carried out in 

this part. 

9.2 Conclusions from the Analysis 

9.2.1 Theoretical Approaches 

9.2.1.2 Initial Buckling 

The theoretical approach for the determination of the 

initial buckling was based on the small deflection plate 

theory. This theory was applied through the finite strip 
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method which has been modified to include the effects of 

plasticity over parts of the cross-section. The critical 

buckling load has been obtained using Wittrick-Williams 

algorithm. The corresponding eigenvector was obtained 

from the solution of the reduced system of linear equations 

which has been developed by transforming the singular 

matrix (overall matrix) to a non-singular one. This was 

done by replacing a given column as the right-hand-side 

vector. 

The general theory employed in this work provided a 

flexible and powerful method of analysis for the inelastic 

stability of any plate assembly. This theory was incor­

porated into a computer program to determine the critical 

load and the buckling mode of the plate assembly. The 

computer program could account for various patterns and 

magnitudes of residual stress. 

9.2.1.2 Post-Buckling 

In this theoretical approach, the large deflection 

plate theory was used with Marguerre's equation to account 

for the initial imperfection. The finite strip method was 

extended to determine the linear and non-linear stiffness 

matrices. The non-linear matrix, which was a function of 

the displacements, must be up-dated at every increment of 

load. Netwon-Raphson method was used to solve the non­

linear equations. For the case of a perfect plate a very 

small disturbing surface load was applied. A computer 

program was developed to consider the following problem: 
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1. The determination of the bifurcation point, 

solution of the nonlinear equations and tracing 

the secondary path for a perfect plate. The 

change in the deformation of an imperfect plate 

can also be obtained by the same program. 

2. The distribution of the stress and strain at 

any level of the applied load. 

3. The determination of the average longitudinal 

compressive stress (the applied load) . 

9.2.2 Comparison with Previous Published Results 

The accuracy of the method is demonstrated by 

comparison with previously published theoretical and 

experimental results from various sources, and some 

indications of the efficiency of the method were given. 

Various plate structures - isolated rectangular plates, 

box columns, stiffened panels and rolled sections - have 

been used. The comparisons cover the elastic and the 

inelastic behaviour of plate assemblies with different 

levels of residual stress. 

9.2.3 Theoretical Parameters 

A parametric study has been carried out on a number 

of plate assemblies under various loading conditions, and 

particula! comments relating to the behaviour of each 

structures have been made in the relevant sections. 

Because only one or two parameters were usually varied 
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(while the other parameters were assumed to be constant) it 

was not possible to generalise the obtained results. 

Three structural assemblies have been used in the 

present parametric studies, these are: 

1. Square panels stiffened with four-flat, angle 

and tee - stiffeners. 

2. Very wide panels stiffened with a large number 

of flat stiffeners. 

3. Structural members - rolled H-sections and 

channels. 

From the very wide panel results, a design chart is 

provided. Moreover, to demonstrate the capability of the 

current approach to analyse a complete plate structure, a 

box-section stiffened by any number of ribs on both the 

compression flange and the web has been used. 

9.3 Recommendation for Future Work 

The two parts of the investigation presented in this 

thesis can be extended in a number of ways. These will be 

mentioned briefly in the following. 

Part I 

This part was based on small deflection theory. The 

effect of a nonlinear stress-strain relationship and the 

effect of the residual stresses were included. The 
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computer program which has been developed can be used to 

investigate the initial buckling of various plate 

assemblies. This program may be applied to a well 

organized parametric study to cover any gap in the 

literature. The measured pattern of residual stress can 

be introduced and the approximation due to the use of an 

idealized pattern can be studied. Moreover, this computer 

program can be modified to investigate plate assemblies 

loaded by transverse stress, shear, combined load and/or 

lateral load. 

Another extension, which is a simple matter in 

principle, will be the modification of the method to allow 

for end conditions different from those considered herein. 

A continuous structure over several supports, stiffened 

curved plate, etc. can also be studied after some modifica­

tion in the present theory. 

Finally, an extension which may be of importance, is 

to allow for the post-buckling in component plates. The 

large deflection of these plates, the initial imperfection 

and the residual stress can be accounted for by applying 

(to these component plates) one of the following approaches. 

1. Theoretical load shortening curve. 

2. Experimental results of stress-strain relation­

ship. 

3. The effective width approach. 



- 256 -

This extension can produce a complete study on the· 

interactive buckling. Similar work has been done by Wang 

et al (74, 75) where a combination of the finite element 

method based on small deflection theory with the effective 

width of the component plates was used. Little (82) has 

used the theoretical load shortening curve in conjunction 

with the moment-thrust-curvature relationship. 

Part 11 

The work presented in this part can be extended to 

study the large deflection of plates under combined lateral 

and in-plane loads. The elastic post-buckling of a complete 

structure (e.g. box-girder) may be analysed by the computer 

program. To allow for the compatibility at the junction 

between two component plates, the longitudinal harmonic 

functions which have been developed recently by Hancock 

(78) can be used. Again the method can be modified to 

allow for end conditions different from those assumed here­

in. The theoretical approach can be extended to allow for 

inelastic behaviour and residual stress. The load shortening 

curves for perfect and imperfect plates with various boundary 

conditions can be obtained. Various plasticity theories and 

various yield criteria may be applied. 

It is hoped that the present investigation has opened 

up new directions of research and providesasrnall contribu­

tion towards better understanding of the instability 

problems. 
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APPENDIX A 

EXPRESSION FOR THE STIFFNESS MATRIX [K] 

From the equation of internal virtual work the 

stiffness matrix [K] is given in terms of the strain 

matrix [B] and the elsto-plastic matrix [F] by 

[R] = J [B]T [F] [B] dvol 

vol 

~ 1 t/2 
r 

f 
r 

[B]T = Ab J J [F] [B] dz dZ;" dn (A. I) 

-~ 0 -t/2 

T The strain matrix [B] and its transpose [B] are 

given by 

[B] = 

2 r 
-7T {x}T + z~{z}T sin7Tl; 
A A 2 

l{ T 1 T 
b Y'n} -z2{Z'nn} 

b 

l{ } 7T{ T 27T T 
b X'n +>: y} -ZAb{Z'n} 

2 r 
- 7T {X} + z.:!!.-..{z} sin7Tl;; 

A A2 

sin7Tl; COS'ITZ; 
.::.t 

simn;; 

(A. 2) 
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and the elasto-plastic matrix [F] = Fll F12 0 

Substi~uting [B]T, [F] and [B] into equation (A.l), knowing 

that JlrSinTI~ sinTI~ COSTI~J rsinTI~ sinTI~ COSTI~J d~ = 1.0 
o 

and carrying out the integration with respe~t to z, the 

stiffness matrix [R] will be given by 

.5 

[R] = J [a
l Fll {X} {X}T - a

2 F12 [{Y'n} {X}T 

-.5 

+ {xJ {Y'n}T] + a 3 F22 {Y'n} {y }T 
'n 

(A.3) 
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The elements of the matrix [F] are as follows 

Element Elastic Inelastic 

Fll F22 
E Et 

= 
(1-v 2 ) (1-v2 ) 

F12 = F21 v Fll v Fll 

E E 
F33 

sec 
2 (l+v) 2 (1 +v) 

The values of Et and E and effective v are given sec 

in equations (3.22), (3.24) and (3.25). To obtain 

elastic or inelastic stiffness matrix substitute the 

appropriate [F] into equation (A.3). The constants in 

equation (A.3) are 

a 1 = 7f
2
bt/A' 

a 2 = 7ft, 

a
3 = At/b, 

a
4 = 112 1T

4
bt

3 lA 3 , 

1 
1T

2
t 3 /Ab, a 5 

=-12 

a
6 = ~ At3/b3 

12 
(A.4) 
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It is clear that if the stress is uniform the 

elements of the elasto-plastic matrix FII , FI2 , •.• etc. 

will not change across the width of the strip and the 

integration through the width can be carried out as in 

the elastic analysis. In this case the results of the 

integration of the submatrices, in the right hand side 

of equation (A.3) will be as follows: 

.5 

J {xHx}Tdll = 
-.5 

.5 

J {y}{y}Tdll = 
-.5 

o 0 000 000 

o 0 0 0 0 0 0 

o 0 0 0 0 0 

~ 0 0 0 It 

synunetrical 

o 0 0 0 

000 

o 0 

o 0 000 000 

000 000 0 

~ 0 0 0 ~ 0 

o 000 0 

o 0 0 0 

000 

o 

symmetrical o 

(A.5) 

(A.6) 
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.5 

J {X'nHX'nJTdn = 0 0 0 0 0 0 0 0 

-.5 0 0 0 0 0 0 0 

0 0 0 0 0 0 

1 0 0 0 -1 

0 0 0 0 

0 0 0 

0 0 

symmetrical 1 (A. 7) 

.5 

J {Y'nHY'n}Tdn = 0 0 0 0 0 0 0 0 

-.5 
0 0 0 0 0 0 0 

1 0 0 0 -1 0 

0 0 0 0 0 

0 0 0 0 

0 0 0 

1 0 

symmetrical 0 (A.8) 

.5 

J {Y'n}{X}T + 0 0 0 0 0 0 0 0 

-.5 0 0 0 0 0 0 0 

{X'n}{y}Tdn = 0 -~ 0 0 0 -~ 

0 0 0 ~ 0 

0 0 0 0 

0 0 0 

0 ~ 

symmetrical 0 (A.9) 



.5 

f {Y}{X'n}T+ 

-.5 

.5 

f {z}{Z}Tdn 

-.5 

.5 

1 =-420 

f {Z'nn}{Z}T+ 

-.5 
{ T 1 

{z} Z, nn} dn = 15 
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o 0 0 000 0 0 

000 0 000 

o -~ 0 0 0 ~ 

o 0 0 -~ 0 

000 0 

0 0 0 

0 ~ 

synunetrical 0 

4b2 
22b 0 0 -3b

2 

156 0 0 -13b 

0 0 0 

0 0 

13b 

54 

0 

0 

4b2 -22b 

156 

symmetrical 

4b2 -18b 0 0 b 2 
3b 

-36 0 0 -3b 36 

0 0 0 0 

0 0 0 

4b2 18b 

-36 

symmetrical 

(A .10) 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

·0 0 

0 (A.ll) 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 (A .12) 
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.5 

I {Z'nn}{Z'nn}Tdn = 4b2 6b 0 0 2b2 -6b 0 0 

-.5 12 0 0 6b -12 0 0 

0 0 0 0 0 0 

0 0 0 0 0 

4b2 -6b 0 0 

12 0 0 

0 0 

symmetrical 0 

.5 

J {z }{Z}Tdn 
1 4b2 3b 0 0 _b2 -3b 0 0 = 30 

-.5 36 0 0 3b -36 0 0 

0 0 0 0 0 0 

0 0 0 0 0 

4b2 -3b 0 0 

36 0 0 

0 0 

symmetrical 0 

Most of these matrices were obtained by Plank et al (76) 
are 

and mentioned here for completeness. 

(A.13 ) 

(A .14) 
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APPENDIX B 

EXPRESSION FOR THE STABILITY MATRIX [S] 

From equation (3.55) 

J 
Ox T [N,,] dvo1 [S J = 
).2 

[N,,] 

vo1 

.5 1 t/2 
bOx 

f J f 
T [N,,] dz dr,; dn = -).- [N'r,;J (B.1 ) 

-.5 0 -t/2 

where 

(B. 2) 

Differentiating [N] with respect to I; we obtain 

and 

(B. 4) 

substituting equations (B.3) and (B.4) into equation 

(B.l), carrying out the integration with respect to z and 

, and knowing that 

1 

J ISimr, COSTIl;; COSTI,J rsimrl; COSTIl; COSTIl;J dl; = 1.0 

o (B.5) 

\tie obtain 
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.5 

[S] J ox 
-.5 

For the case of uniform stress, the integration can 

be carried out through the width of the strip. But if 

the stress is not uniform due to the presence of residual 

stresses the integration must be carried out numerically 

by dividing.the strip into a number of substrips and using 

any method of numerical integration such as the 

Trapezoidal Rule, Simpson's Rule or Weddle's Rule (110). 

The elements of the stability matrix [S] after integration 

over the width for the case of uniform stress are given by 

[S] 
Ox tb'IT2 

4b2 22b 0 0 -3b2 13b 0 0 == X 
156 0 0 -13b 54 0 0 

\§ 0 0 0 ~ 0 

~ 0 0 0 \ 

4b2 -22b 0 0 

156 0 0 

~ 0 

symmetrical ~ (B. 7) 



- 266 -

APPENDIX C 

THE IN-PLANE EQUILIBRIUM EQUATIONS 

To prove that the assumed displacement function 

satisfies the in-plane equilibrium equations assume the 

displacements of a point on the middle plane are u , v 

and w in X, y and z directions. The strains at this 

pOint are given by 

+ .! w 2 
2 I X 

The corresponding stress resultants are given by 

'N 
Y 

Et = ---- (EX + V Ey) 
1_\12 

Et 
= 2 (1+\1) Y xy 

The in-plane equilibrium equations as derived by 

Timoshenko (3) are 

aN aN 
---a x + --Y!a X = 0.0 

X Y 

(C .1) 

(C. 2) 

(C. 3) 

(C. 4) 

(C.5) 

(C.6) 

(C. 7) 
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aN aN 
-.:i+-E..=OO ay dX • 

Substituting equations (C.l), (C.2) and (C.3) into 

equations (C.4), (C.S) and (C.6), the stress resultants 

can be expressed in terms of displacements 

Nx 
Et [ (u, + \) v, ) 1 

(w'x 
2 2 = --2 + "2 + v W'y )] 

l-v x Y 

Ny 
Et [ (v, + v u, ) 1 

(w'y 
2 2 = 

l-v 2 + '2 + v w'x )] y x 

Nxy 
Et 

[(u,y + v,x) W'y] = + W'x 2(1+v) 

Differentiating equations (C.g), (C.l~ and (C.ll) and 

substituting equations (C.7) and (C.B), the in-plane 

equilibrium equations become 

[u + (l+v) l-v 
'xx 2 V'yx + (--2-) U'yy] + [w'x w,xx 

+ (l+v) 
2 w, w, + y xy (l-V) w w ] = 0 0 

2 'x 'yy • 

[ + (1 +v) v, 2 yy u, + (l-v) v ] + [w w 
xy 2 'xx 'y 'yy 

Differentiating the assumed displacement function 

"M 
u = L {X}T {o} sin mnx + e (1 - x) 

m=l --A-- 2 

(C.8) 

(C. 9) 

(C.10) 

(C.ll) 

(C.12) 

(C .13) 
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M 
{y}T mTTX 

V = L {a} cos -A- + fy 
m=l 

N 
{z}T nTTX 

w = L {a} sin -A-
n=l 

and substituting into equation (C.12) 

M mTTX {X"}}T L sin -A- {Cl {X} + C2 {y'l + C3 
{a} 

m=l 

N nTTX nTTX L sin cos {C 4 {R} + Cs {R'} + C {R"}} {a} + -A- -A- 6 n=l 

where Cl' C2 , C3 , ••• are a non-zero constants. Equation 

(C.14) may be expressed as 

M N 

= 0.0 

(C.14) 

Lla sin ~ + r b
n 

(sin (n+n)TTx + sin (n-n)TTx) = 0.0 
m= m A n=l A A 

From this it is clear that the condition of 

m = n ± n, i. e. for n = 1, 3, 5,... m = 0, 2, 4, 6, ... 

is a necessary and sufficient condition for the assumed 

displacement function to satisfy the in-plane equilibrium 

condition. 

Similarly when the displacement function is 

differentiated and substituted into equation (C.13) the 

equilibrium equation becomes 

M N nTTX nTTX L am cos ~ + L bn sin --A- sin --A- = 0.0 
m=l A n=l 

(C.1S) 

(C.16) 
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M N 
i.e. L a cos ~ + l b (cos (n-n)rrx - cos (n+n)rrx) = 0.0 

m=l m A n=l n A A 
(C.17) 

and the sufficient condition is m = n ± n. 
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APPENDIX D 

THE STIFFNESS MATRICES FOR THE SECOND CASE 

In this appendix the linear and nonlinear stiffness 

matrices have been obtained using the displacement func-

tions given by 

A M 
u = e(2 - x) + L {X}T to} 

m=2 

N 
v = L {y}T to} sin n'ITx 

n=l --A-

N 
W = L {Z}T {o} 

n=l 
sin n'ITx -A-

sin m'ITx -A- (D .1) 

(D.2) 

(D.3) 

The strains at any point on a perfect plate based on these 

functions can be expressed as 

(D. 4) 

sin 1 - T 2 
~l x + 2 {R} to} sin Wl x 

- Z {Z,}T to} sin ~l x (D.5) 

L ({X,}T {o} 
m=2 sin W3 x + Wl {y} to} cos ~l x 

+ ~ ~l sin ~ x cos ~l x {B}T {o} 

- 2z ~l {Z'} to} cos Wl x (D.6) 
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where IlIl = nlT/A 

The vectors {R}, {R} and {B} are given by equations (7.30), 

(7.31) and (7.32). Using equations (0.4), (0.5) and (0.6) 

the strain energy of the strip can be obtained. Table 01 

is the modification of Table 7.1. It is clear that the 

quadratic (bending) term and the quartic term do not 

change. This is because these terms do not depend on the 

in plane displacement. In this appendix only the terms 

which have been affected by the modification are given in 

the tables. The other terms can be read from the earlier 

tables. 

Integrating the strain energy function with respect 

to the length of the plate; Table 7.2 is modified as 

shown in Table 02. 

The equilibrium equations {E} can be obtained by 

minimizing this strain energy with respect to the nodal 

displacement to}. The equilibrium equation is given by 

{E} = [R] to} + {p} 

where [R] is the stiffness matrix 

[KJ = [KIJmb + [RIJb + [KIJ s + [K2] + [R3] 

(0.7) 

(0.8) 



Order Formulation 

F 2 
Zero Wo = 2 11 e dx dy 

Linear W = F 11 {2C(m) "l/J
3 

(- e) {x}T+ 2 S(n) (-Ve) {y.}T} {cS} dx dy 
1 2 

W = F If {o}T [("l/J/ {x} {X}T c2 (m) + {y.} {y.}Ts2(n) + 2V"l/J3 {x} {y.}T C(m) S(n) 
2mb 2 

Quadratic 
2 T 2 T 2 T (membrane) + (l-V) (S (m) {X'} {X'} +"l/J

l 
{y} {y} C (n) + 2 "l/J

l 
{X'} {y} S(m) C(n»] dx dy 

2 

Quadratic W2b: Do not change 
(bending) 

Quadratic F 2 2 { 2 (-Ve) {RnT {cS} dx dy 
(stability) 

W
2s 

= 2 11 {C (n)"l/Jl (- e) R} + S (n) 

W3 = ~ 11 {cS}T ["l/J12 c2
(n) {C(m) "l/J

3 
{X} + V S(n) {yl}} {R}T+ s2(n) {e(m)V ~3 {x} + S(n) {yl}} {R}T 

Cubic 
+ (l;V) "l/J

l 
S (n) C(n) {S{m) {X'} +"l/J

1 
C(n) {y}} {Br] {o} dx dy 

Quartic W4 : Do not change 

L- ... _ -_._- -
Table 01. The Strain Energy 



Order Formulation 

Zero 
2 

Wo = F f Ae dy 

First = 4FAve r {y,}T {IS} dy 
W1 n 7f 

Quadratic 
(membrane) 

8 tl! n 
W = FA f {C} [ljJ3 2 {x} {X}T + {Y'J {y,}T + 2 3

2 
{X} {y,}T + (1;,,) ({X'} {X,}T 

2mb 2 (n -ID ) 7f 
2 T 8Vtl!l m T 

ljJ12 {Y} {y}T + ljJl {Y} {Y} + 2 2 {X'} {Y} )] {ci dy 
(m -n )IT 

Quadratic 
(bending) 

W
2b

: Do not change 

Quadratic I w = FA r to} [- ljJ 2 e {Zj {z}T - ev {Z'} {Z'}] to} dy 
(stability) 2s 2 1 

Cubic W3 = F4A f {o} [ljJ1
2 {Al } {R}T - {A2} {R}T + (l;V~ ljJl {A

3
} {B}T] {C} dy 

Quartic W 4: Do not change 

- 8v {A
l

} =ljJ {X} --{Y'} 
3 3mr 

- 16 
{A2} = v ljJ3 {X} + 3nlT {Y'} 

- Btpl 
{AJ} = {X'}- - {y} 

3nlT 

, Table D2. The Strain Energy of a Strip 

n = 1, 3, 5 

n = 1, 3, 5 
m = 2, 4, 6 

n = 1, 3, 5 

n = 1, 3, 5 
ID 2n 
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Those matrices can be obtained by modification of Table 

7.3 as shown in Table 03. The minimization of the linear 

term "W " of the strain energy functions (Table D2) gives 
1 

an imaginary load vector {plo 

{p} = 2FAev f{Y'} dy 
nn 

The incremental stiffness matrix can be obtained 

from Table 03 as follows: 

1. The linear matrices do not change. 

2. The quadratic incremental matrix is a 

symmetrical matrix given by 

[KT2 ] FA 
=2 

3. The cubic incremental matrix is given by 

[KT3] = 3 [K3] 

For an imperfect plate the strain energy, the 

equilibrium equations and the stiffness matrix can be 

(0.9) 

(0.10) 

(0.11) 

obtained by substituting f = 0.0, {AI} = {AI}, {A2} = {A2} 

and {A3} = tA3} inTables7.5, 7.6 and 7.7 respectively. 



Order of the 
equilibrium 

equation 

Linear 

Nonlinear 
(quadratic) 

Nonlinear 
(cubic) 

Formation of the stiffness matrix 

[KlJ
mb 

= F A f [~32 {x} {X}T + {y'} {y.}T _ 8V m n {x} {y.}T + (I-V) ({X'} {X,}T 
A (m2_n2) 2 

+ ~12 {y'} {y'}T + 8 2n ~ {XI} {y}T)] dy 
A (m -n ) 

[KlJ
b 

Do not change 

[KlJ
S 

= F A f [- e ~12 {Z} {z}T - eV {ZI} {ZI}T] dy 

[K2J = F2A f [$1
2 

({R} {Al}T + ~ {AI} {R}T) - ({R} {A
2

}T + ~ {A
2

} {R}T) 

+ (l;V) $1 ({B} {A3}T + ; lA3} {B}T)] dy 

[K3 J: 1)0 not change 

Table 03. The Strip Stiffness Matrix 
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APPENDIX E 

INTEGRATION BY PARTS 

Assume a general function 

b 

x = J fey) sin2 ay dy 
a 

(E.1 ) 

This function can be integrated by parts as follows: 

b 

J fey) sin2 ay dy 
a 

b 

= I ~ f (y) (1 - cos 2 ay) dy 
a 

(E. 2) 

b 
1 J f (y) dy 1 f (y) 2ay dy = - - 2" cos 2 

a 
(E. 3) 

b 
b 1 J f (y) [1 1 = - dy - (2a) f (y) sin 2ayJ 2 2 

a a 

b 
+ 1 1 r 

(2a) J 
f' (y) sin 2ay 2 

a 
(E. 4) 

• 
b 

1 J 1 1 . 2n-l = 2 fey) dy - 2 [sin 2ay L (2a) 
n=l a 

2n 
1 [ 2 ~ Cl) - '2 cos ay l 

n=l 2 (l 

2n 
f 

n+l b 
(-1) J 

a 

(E. 5) 

dy 
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where f
n

+l is the (n) differentiation of the function f(y) 

(E. 6) 

Similarly, 

b b 2n-l 
J fey) cos 2 ay 1 J f (y) 

1 1 dy = - dy + 2" [sin 2ay L (2a) 2 n=l a a 

2n-l n+l b 
+ 1 1 2n 2n n+l b 

f (-1) Ja 
[cos 2ay L (2a) f (-1) 

2 n=l 

(E. 7) 

b 
2n-l 2n-l n+l b f f (y) sin ay dy = - [cos ay r (1) f (-1) Ja 

n=l a 
a 

+ [sin ay 
1 2n 2n n+l b 

I <a) f (-1) la 
n=1 

(E. 8) 

b 
2n-l 2n-l n+l b I f (y) (1) cos ay dy = [sin ay r f (-1) 

n=l a 
a 

1 2n 2n n+l b 
-[cos ay L (-) f (-1) la 

n=l a 

A routine has been developed to perform this 

integration. The function fey) is differentiated many 

times until it vanishes. This function may be either 

in vector or matrix form. The results of the differen-

tiation can be accumulated and multiplied by the 

corresponding harmonic function. The value of the 

integration can then be obtained by substituting the 

limits of the integration into the accumulated results. 

Ja 

(E.9) 

Ja 
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