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Abstract 

The purpose of this thesis is to study the functional anatomy of stereoscopic 
vision. Although many studies have investigated the physiological mechanisms by 
which the brain transforms the retinal disparities into three-dimensional 
representations, the invasive nature of the techniques available have restricted 
them to studies in non-human primates, whilst the research on humans has been 
limited to psychophysical studies. 

Modem non-invasive neuroimaging techniques now allow the investigation of the 
functional organisation of the human brain. Although PET and fMRI studies have 
been widely used, few researchers have explored the functional anatomy of 
stereoscopic vision. Most of these studies appear to be pilot work, showing 
inconsistency, not only in the areas sensitive to stereo disparities, but also in the 
specific role that each of these possesses in the perception of depth. 

In order to investigate the cortical regions involved in stereoscopic vision, four 
fMRI studies were performed using anaglyph random dot stereo grams. Our results 
suggest that the stereo disparity processing is widespread over a network of 
cortical regions which include VI, V3A, V3B and B7. Functionally, the V3A 
region seems to be the main processing centre of pure stereo disparities and the 
V3B region to be engaged in motion defined purely by spatio-temporal changes of 
local horizontal disparities (stereoscopic -cyclopean- motion). 

Interregional connectivity was investigated with two approaches. Structural 
Equation Modelling (SEM), as the classical technique for the analysis of effective 
connectivity, was used to assess one connectivity model proposed to· explain the 
cortical interaction observed in the first experiment. The implementation and 
application of this technique permitted us to identify some of its weaknesses in 
representing fMRI data. An extension of the SEM technique was introduced as a 
Non-linear Auto-Regressive Moving Average with eXogenous variables 
(NARMAX) approach. This can be thought of as an attempt to bring SEM 
towards a non-linear dynamic system modelling technique which permits a more 
appropriate representation of effective connectiyity models using fMRI time 
series.-
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Ch~pter 1 

Background and motivation 

Abstract. 

The current chapter shows a general framework of 

the work described in this thesis. The' operational 

principles of stereoscopic vision are explained 

and the basic anatomical organization of the 

visual cortex is presented. A review of the 

literature concerning studies of stereovision made 

in monkeys and humans IS discussed. The 

concepts and techniques to assess neural 

connectivity are introduced. Lastly a summary of 

objectives and relevance of the work is given. 



Chapter 1: Background and Motivation. 

1.1 Stereoscopic Vision. 

Visual perception theory establishes four maIn sources of retinal image 

information to recover the shape of the world. Texture, luminance, optic flow and 

disparity are the intrinsic sources of information from which the visual system 

gets clues about the three dimensional properties of objects (Marr 1982). Based 

on psychophysical observations, computational implementations of visual 

functions have been developed to explore the operational principles to recover 3D 

structure. Although most of the algorithms proposed to process these sources of 

intrinsic visual information work under many assumptions, they have helped to 

explore the mechanism that implements three-dimensional vision. Shape from 

texture algorithms use the local deformation of a "pattern of texture" to estimate 

the slope in the ,surface of the object (fig. 1.1). This procedure assumes the 

existence of repetitive patterns from which gradients of local deformation can be 

estimated (Aloimonos 1988; Malik and Rosenholtz 1994). 

Figure 1.1 Local deformation of a pattern of texture. A circle in the 
fronto parallel plane deforms to an ellipse as the slope of the plane < 

change. 

Shape from shading uses the reflective property of surfaces to estimate slope 

(Ramachandran 1988; Seyama and Sato 1998). Given that the quantity of light 

reflected by the surface is dependent on the slant on each particular point, the 

luminance gradients are used to estimate surface slant relative to the viewer 

(fig. 1.2). 

Shape from motion uses the gradient of speed and direction (optic flow) involved 

in one point in space when it changes its position. Optic flow is estimated by 

calculating the gradient of change in position of one point in the surface. 

, - 1 -



Chapter 1: Background and Motivation. 

Figure 1.2 Shape from shading. Three dimensional form can be observed using 

gradients of luminance. The quantity of light reflected in one point depends on 

the angle of reflection created by the surface slant. 

For example, let us imagine a transparent sphere with some kind of dot pattern. If 

the sphere is still, it is not possible to recognise the form, but if the sphere is 

permitted to rotate around one of its axes, it is easy to identify the structure (Marr 

1982; Poggio and Koch 1987; HubeI1995), (fig. 1.3). 

Figure 1.3 Optic flow. In a rotating sphere, the spatiotemporal derivatives (with ' 

respect to the viewer) in every position of the sphere vary over the surface. The 

gradient of optic flow is bigger on the periphery and decreases toward the centre. 

Because one of the topics of this work is how disparity is used by the brain to get 

shape from stereopsis, a fuller explanation about principles of stereoscopic vision 

will be given in the next section. 

It is important to notice that the previous analyses of intrinsic visual information 

are complementary in the sense that they estimate slant using different physical 

properties of the world. 

- 2 -



Chapter 1: Background and Motivation. 

It is believed that all of these sources of information are processed and integrated 

by the brain to estimate surface orientation relative to the viewer (Tittle, Norman 

et al. 1998). 

The present work is only concerned with the interaction between brain regions 

involved in the process of stereoscopic vision. However, a natural extension of 

this work is the study of the relationships between the cortical regions which 

recover shape from different intrinsic signals. 

1.1.1 Geometry of binocular vision. 

Due to the separation of the eyes the visual field is projected to spatially different 

parts of each retina. Let us imagine each retina as a bidimensional array of cells, 

each point in the v~sual field is projected to one cell of each array, if the point 

projects to the same corresponding cell in each retina it is considered to have zero 

horizontal disparity. Helped by the extraocular muscles, the eyes converge to 

fixate items of interest in the world, these points have zero disparity (fig.l.4). 

The set of points whose projections have zero disparities form the horopter. Points 

in front of the horopter have crossed or negative disparities, those beyond the 

horopter have uncrossed or positive disparities (fig.l.5). 

Left eye. Right eye. 

Figure 1.4 Horizontal disparity for points lying in the horizontal plane. 
Points at different depth projects in different position in the x axis defined by 
the horizontal eccentricity in the retina. 
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Left eye. 

Chapter 1: Background and Motivation. 

~Uncrossed 
disparity 

Right eye. 

Figure 1.5 Horopter. The horopter is defined by the family of points which projects 

onto the retina with zero horizontal disparity. 

The space around the fixation point that can be fused is limited, points outside 

certain values of disparities are perceived as two images (diplopia). Panum's 

fusional area is defined as the space of disparities that can be fused around the 

horopter (fig. 1.6). Some points outside ,the Panum's fusional area can be seen in 

depth despite diplopia, however the precision of the depth recovered by this fusion 

IS low. 

Panum's fusion area 

· ..... . . . . . . 
• •••••••• 4 .......... · ........ . 
:::::::::::::::.:.: . 

Left eye. 

. .... . . . .. . . ....... . . . . . . . .. . . . . . . . . . . 
. :.:=::::::::::: :: 

Right eye. 

Figure 1.6 Panum's fusion area. 
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Chapter 1: Background and Motivation .. 

So far, only horizontal disparities have been considered, however, points that in 

the visual field are closer to one eye project with different angles on each retina, 

and this fact generates image differences that are called vertical disparities 

(fig.l.7). 

Figurel.7 Vertical disparity. Points physically located near .to one eye project in 
different position in the y axis defined by the vertical eccentricity in the retina. 

Ogle's experiments proved that the brain is able to compute vertical disparities 

(Ogle 1962). He showed that the binocular perception of depth is altered by 

distorting one of the retinal images in the vertical dimension, this visual 

phenomenon is called the induced effect (fig.l.8). 

.~--t§S-+--
, v j 

• - I 

H 
++ 

H 

Figure 1.8 Induced effect. Symmetrically converged eyes observing a square produce a 
symmetrical trapezoidal shape in the retinas (left). Non-symmetrically convergence observing 
the same square produces a non-symmetrically trapezoidal shape (right). Vertical (V) and 
Horizontal (H) disparities are defined as the x and y coordinates of matching points. 
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Chapter 1: Background and Motivation. 

The stereoscopic perception of depth can be summarised in two processes: the 

solution of the correspondence problem and the interpretation of the disparities. 

The correspondence problem consists of mapping the points in the left image to 

points of the right image. This is a difficult task in which ambiguities could arise, 

for example, from some perspectives there are more than one possible match to 

correspond. Many computational approaches have studied this problem, but given 

the complexity of it, most of the proposed algorithms work under restrictive 

assumptions (Marr and Poggio 1979). 

The interpretation of the disparities consists of using the horizontal and vertical 

disparities, calculated by solving the correspondence problem, to recover the 

absolute location of one point in three dimensional space (Mayhew 1982). 

Mayhew et a/ (Mayhew and Longuet-Higgins 1982) proposed a computational 

model that uses both vertical and horizontal disparity. One consequence of this 

approach was that it is able to explain the induced effect. The algorithm works on 

the principle of continuity, i.e., it assumes the reconstruction of a planar surface 

defined by a plane z=PX+QY+K (fig 1.9). 

I 

Figure 1.9 Stereo geometry. The origin of the coordinate system that defines the 
plane z has its origin at the middle point of the axis that separates the eyes. X axis 
can be thought of as the rotation (g) of this axis. Z axis is defined by the projection 
from the origin to the position of fixation point. Y axis is orthogonal to X and Z (no 
represented in the figure). 
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Chapter 1: Background and Motivation. 

After solving the correspondence problem, vertical and horizontal disparities can 

be used to estimate the position and orientation of the plane Z. The geometry of 

the system is defined by 1.1 and 1.2, where V is an approximation. 

V = Ixy/d + Iyg/d 

H = Ix2/d + Ixgld + Iz/d2 

Where: 

H .- Horizontal disparity. 

V .- Vertical disparity measured at the retinal location. 

I .- Inter-ocular separation. 

d .- Viewing distance. 

g .- Angle of gaze .. 

(1.1) 

(1.2) 

x .- Horizontal component of the eccentricity measured at the retinal location . 

y .- Vertical component of the eccentricity measured at the retinal location. 

z = PX+QY+K.- Planarity assumption. 

P, Q .-Coefficients related to the surface slant. 

K .- Translation along the line of gaze. 

Using equation 1.1 it is possible to estimate g and d. Then using these values in 

the equation 1.2, one can estimate value of z with respect to the fixation point. 

Contrary to the theory that convergence angles of the eyes are used to estimate 

absolute depth, the previous approach revealed that no extra-retinal information is 
.-

needed. For a fuller explanation of the derivation of the previous equations consult 

(Mayhew and Longuet-Higgins 1982). 

1.2 Visual cortex. 

Most of the experiments made to investigate the functional neuroanatomy of 

visual systems have been done on monkeys and cats, due to the invasive nature of 

the available techniques. 

-7-



Chapter 1: Background and Motivation. 

Electro-recording, electro-stimulation and cytocrome oxidase staining have been 

the most frequent techniques applied to monitor neural activity. Given the 

physiological similarities between the human and monkey visual systems, it is 

reasonable to expect a similar functional architecture, however, this assumption 

should be taken very cautiously and many investigations have to be developed to 

assess the scope of its validity (Van Essen, J. W. et al. 2001). 

The visual cortex is one of the most studied parts of the brain. It is believed that 

understanding the functional organisation of the visual cortex could help 

understanding the structural organisation in the rest of the brain. Cortical areas 

sensitive to colour or motion are well identified, but it is not clear which parts of 

the brain are involved in stereopsis. 

1.2.1 Visual pathways. 

After the light is captured by the retinas information is transferred to the brain via 

the optic nerve. One important characteristic of the information transmitted 

through the optic nerves is that it preserves the spatial relationship with respect 

to the part of retina where the information was taken (retinotopic organisation). 

Both optic nerves join in the optic chiasm, at this point each hemiretina combines 

to form the optic tracts. Each optic tract contains information about one epsilateral 

temporal hemiretina and one contralateral nasal hemiretina. 

Optic tracts propagate information into the Lateral Geniculate Nucleus (LGN). 

This seems to -be a thalamic relay for the visual information coming from the 

retina. The LGN is divided into six layers which make up the parvocellular and 

magnocellular divisions. The four most external layers form the parvocellular 

division, which receives input from the fovea, and consequently, cont~ins a high 

resolution representation and also it is sensitive to colour. 
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Chapter 1: Background and Motivation. 

The two most internal layers of the LGN form the magnocellular division, which 

contains information from the periphery of the visual field and thus it has less 

spatial resolution than the parvocellular division. The LGN is connected to the 

striate cortex (primary visual cortex), (fig. 1.10). 

Figure 1.10 Visual pathway. Visual information flows from hemiretlnas, 
via the optic nerve, optic chiasm, optic tracts, and the lateral geniculate 
nucleus to the visual cortex. 

1.2.2. Striate and extrastriate visual areas. 

Visual cortex is spread over the parietal, occipital and temporal lobes. It is divided 

into different cytoarchitectonically and functionally defined areas. 

Cytoarchitectonically defined areas are commonly reported using Brodmann's 

map, in which the extriate visual cortex corresponds to area 1 7 (Amunts, 

Malikovic et al. 2000), (fig. 1.11). 

Figure 1.11 Brodmann areas. Visual cortex occupies areas 17, 18, 19, 37 and 7. Left.­
medial view. Right.- Lateral view. 
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Chapter 1: Background and Motivation. 

One problem of three dimensional visualization of the cerebral cortex is that 

neocortex is folded in the sulcus, so it is not possible to visualise brain regions 

under the cortical surface (fig. 1.12). 

Figure 1.12 Cerebral cortex. Some cortical regions in the visual system are not 
visible in three dimensional representations due to their location in highly folded 
structures in which the cerebral cortex is organised. Modified from (Zeki 1993). 

One alternative is to visualise the cerebral cortex as a cortical flat map, it allows 

the entire surface of the brain to be visualised in a single view (Carman, Drury et 

al. 1995),(fig. 1.13). 

Figure 1.13 Surface representation of the right hemisphere. Left.- Brodmann's areas distribution. 

Right.- Geographical atlas based on the atlas of the cerebral sulci (Ono, Kubick et al. 1990). 
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Chapter 1: Background and Motivation. 

Studies in monkeys and humans have revealed the existence of functional defined 

areas related with specific aspects of visual function, like edge detection (VI), 

motion (V5), colour (V4), space, form, etc. (DeYoe, Carman et al. 1996; Van 

Essen and Drury 1997), (fig. 1.14 and 1.15). 

vp 

Figure 1.14 Visual cortex. Estimated extent of visual areas. Left.- Lateral view. Right.­
Medial view. Blue area represents visual cortex for which functional properties have not 
been identified. 

Figure 1.15 Functionally defined visual areas. Partial hemisphere display show the 
estimated extent of visual areas as reported by Van Essen et all (Van Essen and 
Drury 1997). Blue area represents visual cortex without assigned name. 

The functional divisions shown above were defined uSIng as a reference the 

activations reported by neuroimaging studies (Van Essen and Drury 1997; 

Hasnain, Fox et al. 1998). Co~only, activations related to visual function are 

reported in stereotaxic coordinates 'in Talairach space (Talairach and P. 1988). 
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Chapter 1: Background and Motivation. 

One problem in creating accurately functional defined areas is the inter-subject 

variability in the cerebral cortex (Hasnain, Fox et al. 1998; Amunts, Malikovic et 

al. 2000). For a detailed description of the functional properties and stereotaxic 

locations of visual areas consult the fold out at the end of this chapter (fig. 1. 19). 

Although the visual cortex has been one of the most studied areas in the brain, 

many functional areas involved in different processes of visual information 

remain unknown. That is the case of stereoscopic vision. In the next section the 

most significant findings in the anatomy of stereo perception are reviewed. 

1.3 Functional anatomy of stereopsis. 

Psychophysical and computational models of s.tereopsis have been widely studied 

(Marr and Poggio 1979; Mayhew and Longuet-Higgins 1982), however, how the 

brain implements this process at a neural level is still unknown. The intuitive idea 

behind binocular fusion implies convergence of information from both eyes into 

unique neurones, in other words, to compute depth from disparities, it is 

necessary to solve the correspondence problem. 

1.3.1 Studies in monkeys. 

The first stage in the visual pathway that shares information from both eyes is the 

LGN (Schroeder, Tenke et al. 1990). Studies in monkeys reveal disparity 

sensitivity properties of magnocellular cells (Hubel and Livingstone 1987), 

nevertheless the conclusions among studies are not consistent, for example 

DeValois et al (DeValois, Smith et al. 1958) found no evidence of stereo 

sensitivity in these cells. Following the visual pathway, the second structure is the 

striate cortex, which contains information from both eyes (Cumt:ning and 

DeAngelis 2001). Neurons dominated by each eye are segregated into the 

system of alternating strips known as the ocular dominance columns (ODC) 

(Blasdel 1992). 
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Chapter 1: Background and Motivation. 

Some studies suggest that the information about the spatial relationships of 

disparities is encoded in the ODC (Chklovskii 2000) . Something important to 

note is that stereovision and ODC mature at almost the same time In young 

monkeys (Chklovskii 2000). 

There is general agreement about the disparity sensitivity of VI (Hubel and 

Wiesel 1970; Poggio and Fischer 1977; Gonzalez, Krause et al. 1993a; Gonzalez, 

Relova et al. 1993b). Cumming and Parker (Cumming and Parker 1999) used 

random dot stereo grams (RDS) (Julesz 1960) to manipulate the absolute and 

relative components of the stereo stimuli, proving that neurones in VI are 

sensitive to absolute but not to relative disparity. In the same study Cumming and 

Parker showed that the activity in VI to process stereo disparities is not enough 

to create the sensation of depth, so they concluded that other cortical areas are 

necessary to create depth sensation and VI represents only the first stage in the 

stereo information process. 

VI projects forward to V2, Poggio and Fisher (Poggio and Fischer 1977) 

investigated the sensitivity of cells in VI and V2 using bright and dark bars 

moving at different depths. Hubel and Wiesel (Hubel and Wiesel 1970) found that 

disparity sensitive neurones in V2 do not respond to monocular stimulation. The 

main inputs to VIN2 neurones come from the foveal region, these have sharply 

tuned disparity (0.5 arcmin). VIN2 are also sensitive to vertical disparities 

(Gonzalez, Krause et al. 1993a). Contrary to the results cited above, Cowey and 

Wilkinson (Cowey and Wilkinson °1991) report reduced but not total impairment 

on stereo acuity after lesion in VIN2. 

V3 and V3A are narrow strips anterior to V2, Poggio et af (Poggio, Gonzalez et 

al. 1988) found that the sensitivity to horizontal disparities is higher in this 

regions than in VIN2. Felleman and Van Essen (Fel,leman and Van Essen 1987) 
, . 

study reports sensitivity of V 4 neurones to stereo disparities. 
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Chapter 1: Background and Motivation. 

Contrary to these results Schiller (Schiller 1993) reports no loss of stereo acuity in 

monkeys after lesions in V 4. Its important to note that V 4 is well characterised by 

its sensitivity to colour (Zeki 1978; Hubel and Livingstone 1987). 

Deangelis and Newsome (DeAngelis and Newsome 1999) have proved the 

existence of columnar organisation of disparity-selective neurones in MT. 

Preferred disparity changes smoothly across the MT surface whereas neurones 

with similar disparity preference are allocated in the same column. 

This discovery is consistent with the well known columnar organisation of 

neurones sensitive to directional motion in MT (Zeki 1974; Salzman, Murasugi et 

al. 1992). These finding were confirmed in the same study using cortical electro 

stimulation in monkeys, the induced activity in binocular neurones created 

illusory sensation of depth. 

It is believed that neurones in MT could combine motion and stereo information 

to create representation of dynamic environments (Saito, Yukie et al. 1986; Roy 

and Wurtz 1990; Cumming and Parker 1994). Because the tuning disparity 

preferred by MT binocular neurones is coarse it is believed that other areas 

beyond MT could be involved in the processing of fine disparities (Cumming and 

DeAngelis 2001). This thought is reinforced by the fact that some studies in 

monkeys report no major deficit in stereo perception after MT lesions (Schiller 

1993). 

Far from producing a general theory about how the stereoscopic information 

process is implemented at neural level, no general agreement exists about the 

areas involved in this process. As we saw above, many cortical areas are sensitive 

to stereo disparities but no general conclusions can be made about the specific role 

that each region of the brain takes in the comp}ete process. Studying the 

interpretation of the results, many different characteristics are implied in the 

design of almost the same stereo stimulus, so the results of each experiment have 

to be interpreted carefully in order to avoid contradictory conclusions. 
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On the other hand, psychophysical assumptions about the physical perception of 

the stimulus and the correctness of the task development in monkeys make it 

difficult to assess, due to the nature and physical conditions of the subjects in the 

previous experiments. 

Although similar neural configurations between monkey and human visual 

systems are assumed, new non-invasive brain imaging techniques have been used 

to explore and to investigate stereo vision in human beings. Probably the most 

promising of these techniques is functional Magnetic Resonance Imaging (fMRI) 

which applications in human stereo vision will be introduced in the next section. 

1.3.2 Studies in humans. 

As we saw previously, the invasive nature of the functional brain mapping 

techniques available in the past limited the study of the human brain. Recently, 

the availability of new non invasive brain imaging technique has permitted the 

exploration of the functional organisation of the human brain. Binocular vision 

research projects using Positron Emission Tomography (PET) started less than 

twenty years ago, this technique allows one to monitor virtually the whole brain, 

with a spatial resolution from 5 to 10 nun. It's disadvantages are the poor 

temporal resolution in the signal and the necessity of using radioactive tracers 

(Frackowiak and Friston 1994). 

Revolutionary applications of physics to medical sciences have permitted the 

creation of functional Magnetic Resonance Imaging (fMRI). This technique 

permits one to record neural activity in the whole brain at spatial resolutions of 

few millimetres and with temporal resolutions of less than one second. No tracers 

or special subject preparation are needed and it is completely non-invasive. 

Although,the physical principles used in fMRI comes, from Felix Blo~h's theories 

established in 1946, the complete implementations available to medical 

applications started only 10 years ago. 
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1.3.2.1 PET studies. 

Gulyas et al (Gulyas and Roland 1993) used polaroid random dot stereo grams to 

create depth perception. The stereoscopic stimulus was constructed by forming a 

geometrical shape in the centre of the screen (range from 0.06 - 1.13 degrees of 

horizontal disparity). The control task was made by a random noise pattern 

forming a geometrical shape in the centre. This was recognisable by twice its 

spatial frequency with respect to the background. The areas of activation with 

respect to stereo stimulus were located bilaterally in the occipital pole around the 

caudal end of the calcarine sulcus, bilateral in the occipital medial gyri, bilateral in 

the superior occipital gyri, bilateral in the precuneus, and bilateral along the banks 

of the intraparietal sulcus. This' study did not support the right hemisphere 

dominance hypothesis believed to be found in stereoscopic vision. The authors 

concluded that stereoscopic vision is implemented through a segregated network 

in which both occipital and parietal areas are involved. 

Ptito (Ptito, Zatorre et al. 1993) used random dot stereograms to create a 

rectangular cyclopean shape (disparity information not reported). The stereo task 

was defined as describing the orientation of the rectangle. The control task 

consisted of a two dimensional shape (black outline) without stereo information. 

The activations raised from the contrast were located in Brodmann areas BA 1 7 . 

(VI) and BA18 (V2) in the right hemisphere. Deactivation during stereo tasks 

occurred in the right inferotemporal cortex. This is one of the few studies which 

report sensitivity in VIN2 to stereo stimulus. 

A closely related topic in the study of stereo vision is the performance of vergence 

eye movements. Hasebe (Hasebe, Oyamada et al. 1999) studied this phenomenon 

using two LCD panels to create an approaching vertical bar (1.9 deg.). Subjects 

were instructed to obey one of these instructions: follow the approaching bar, 

ignore the bar and fix on a stationary cross, or flX on the cross while the vertical 

bar is not moving. Comparison between ignore and fix revealed activation in the 

left temporo-occipitaljunction (MNI coordinates -52 -60 -16), includi~g V5. 
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It is not surprising to observe activation in V5 during this contrast given that the 

vertical bar is moving closer and V5 is sensitive to different kinds of motion 

(Howard, Brammer et al. 1996). Activations obtained between the contrast of 

follow and ignore tasks were found in the temporo-occipital junction and inferior 

parietal lobe. 

Fortin (Fortin, Ptito et al. 2000) used red-green random dot stereo grams to create a 

stereo condition in which a central square produced a vivid sensation of depth 

(disparity information not reported). The control condition was made of static red, 

green and yellow dots with no stereo information' at all. The contrast between 

these conditions revealed a bilateral activation on V2, bilateral activation in the 

middle temporal lobe (MT), right side activation on V3 and B7 (precuneus). This 

work supported the theory of right cerebral dominance in stereo vision. 

1.3.2.2 fMRI studies. 

Kwee's (Kwee, Fujii et al. 1999) study used two sets of images of magnetic 

resonance angiography (MRA) in slightly different planes (disparity information 

not reported) from which it was possible to recover three dimensional 

representation. The control task was the use of the pair of MRA images projected 

in an identical plane, so only two dimensional information was available. This 

contrast revealed bilateral activation along the intraparietal sulcus. 

Mendola's (Mendola, Dale et al. 1999) experiment used a static red-green. random 

dot stereogram to create a depth defined square (0.56 degrees). The control task 

defined square contours in a flat plane. Activations found were located in the 

areas V3A and V7. However, Hanazawa (Hanazawa, Kawashima et al. 2000) 

applied dynamic red-green random dot stereo grams to create two vertical bars 

defined by depth (disparity information not reported)., Dynamic random~noise was 
. . 

used to remove motion clue accompanied with change in disparity. 
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In the control task the vertical bars were defined by luminance (50 % more than 

the background). Activation was found in the posterior parietal and in the right 

occipito-temporal regions. 

Instead of using anaglyph, Nishida's stUdy (Nishida, Hayashi et al. 2001) used an 

array of two monitors to show the stereoscopic pair of images. This study utilised 

random dot stereograms to create a three dimensional cone in the centre of the 

screen (disparity gradually changed from 0 at the bottom to 1.6 degrees at the 

top). The control task was made by creating a flat circle shape within high density 

dots. Activations were found in the parieto-occipital region (BA 18, BA 19, 

Talairach coordinate 28 -86 22) and in the right superior parietal lobule (BA 7, 

Talairach coordinate 14 -70 62). This 'study supports the right hemisphere 

dominance in stereo information processing. The author concludes that the 

superior parietal lobule is a higher level processing centre for stereopsis. 

The most resent published stereo vision study used a random dot stereogram 

created by two independent displays (Backus, Fleet et al. 2001). Subjects viewed 

the stimuli through a pair of angled mirrors. The stereo stimulus consisted in two 

planes at different depth. The base line condition was set by a flat plane (zero 

disparity), whereas stereo condition varies the interplane disparity from 0 to ± 4 

degrees. Backus study reported high activation in V3A and less higher but 

consistent activation in VI, V2, V3 and V3B. 

1.3.2.3 Lesion studies. 

It is always difficult to assess the magnitude of damage to the areas involved in a 

brain injury, however some interesting. observations can be made from the 

behaviour of patients with brain abnormalities (Cowey and Porter 1979). One ~f 

the first reports of stereo acuity deficits was prese~ted by Vaina (Vain a 1989). 

Two groups of patients with right occipito-parietal and occipito-temporallesions 

respectively, were requested to identify the three dimen~ional form created using 

random dot stereo grams. 
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Although both groups of patients had normal visual acuity, they were impaired in 

doing the task. In a second study made by Vaina (Vaina, Lemay et al. 1990), one 

patient with bilateral lesion in the posterior visual pathways affecting the lateral 

parieto-temporal-occipital cortex was tested for different visual capabilities. 

Visual acuity, form discrimination, colour, and contrast-sensitivity discrimination 

were normal whereas spatial localisation, line bisection, and binocular vision were 

severely impaired. 

Finally, although it is not a lesion study, the following work is discussed because 

it applies a methodology which permits the assessment of neuronal performance 

during electromagnetic stimulation. Takayama et al (Takayama and Sugishita 

1994) applied Transcranial Magnetic stimulation (TMS) to a set of subjects whilst 

they were viewing a red-green random dot stereogram. Th~ coil was positioned 

over the midline of the bilateral occipital lobes. The subjects reported loss of 

stereoscopic perception during stimulation. 

Although the spatial resolution ofTMS is very low, and it is not possible to ensure 

the scope of the regions affected, the present results shows the contribution of the 

superior occipital cortex in the processing of stereo disparities. 

The stereoscopic studies developed so far using brain-imaging show 

inconsistencies between them. Most of these studies are reported in brief 

communications and no detailed descrip~ion of methodologies used by them are 

presented (Table 1.1). 
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Reference Task Base line Activation 
Gulyas,1993 Geometrical shape Geometrical shape Bilateral on occipital 
(PET study) using Polaroid RDS within higher density gyri. 
Proc. N atl. Acad. (0.06-1.13 degrees of dots. Bilateral on superior 
Sci. horizontal disparity). occipital gyri. 

Bilateral in 
precuneus. 
Bilateral on 
intraparietal sulcus. 

Ptito,1993 Rectangular shape Rectangular contours RightBAl7. 
(PET study) using Red-Green RDS. in a flat plane. RightBAl8. 
Neuroreport 
Hasebe,1999 Approaching vertical Static vertical bar. Left temporo-
(PET study) bar. occipital junction. 
Neuroimage [-52 -60 -16hal 
Mendola, 1999 Square shape using Square defined by Bilateral on occipital 
(fMRI study) Red-Green RDS (0.56 luminance. superior gyrus 
Neuroscience degrees). (V3A). 

[-21 -89 16hal 
[ 23 -88 16hal 
V7 

Kwee,1999 Stereoscopic pair of Flat medical image. Right intraparietal 
(fMRI study) medical images. cortex. 
Neurology brief Bilateral on the 
communications intraparietal sulcus. 
Fortin,2000 Square shape using Square shape within Bilateral on V2. 
(PET study) Red-Green RDS. higher density dots. Bilateral on MT. 
HBM poster Right on V3. 

Right on precuneus. 
Hanazawa,2000 Two vertical bars Two vertical bars Posterior parietal. 
(fMRI study) defined by depth. defined by luminance. Right accipito-
HBM poster temporal region. 
Nishida,2001 3D cone using Red- Flat circle shape within Parieto-occipital 
(fMRI study) Green RDS (0 - 1.6 higher density dots. region (BA 18 and 
Neuroreport degrees) BAI9).[28 -86 22hal 

Right superior 
parietal lobule. (BA 7). 
[14 -70 62hal .. 

Backus, 2001 Two planes in Flat plane. VI, V2, V3, V3B and 
(fMRI study) different depths (0- ±4 the highest sensitivity 
Neurophysiology degrees), two panel was found in V3A. 

display. 

~ 

Table 1.1 Literature review of PET and fMRI studie~ in stereoscopic vision. 
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1.4 Neural connectivity. 

The traditional theory of the existence of functional segregated areas, highly 

specialised in specific cognitive tasks, has been replaced by the concept that 

brain functionality is the result of the interaction between several regions. In this 

new' approach the functional profile of a cerebral region is determined by its 

relationship with other regions (McIntosh 2000). Hence, to evaluate a functional 

hypothesis under this integrated approach, it is necessary: i) to identify the 

regions involved in the task, ii) to identify the pathways that connect these 

regions and iii) to assess the interaction between the regions. 

Using fMRI makes it relatively easy to identify the brain regions activated during 

a given cognitive task. The anatomical connections could be approximated using 

as a reference the inter-regional connections across the brain, which have been 

widely researched in monkeys (Gerstein and Perkel 1969), (fig. 1. 16). Another 

method is the new technique called Diffusion Tensor Imaging (DTI) which allows 

us to determine anatomical connectivity in the human brain using the anisotropy 

of diffusion existing in the white matter (Le Bihan, Mangin et al. 2001). 

To explain how these procedures can be used to assess the interactions between 

regions we must to introduce the concept of effective connectivity in the next 

section (Friston, Frith et al. 1993). 

1.4.1 Functional and effective connectivity. 

The key point in the study of brain activations is the analysis of the hemodynamic 

behaviour during neuronal stimulation, i.e. the analysis of . time dependent 

changes (time series) in the neural activity (Friston, Holmes et al. 1994). 

Functional connectivity is defined as ''the temporal ,correlation between remote 

neurophysiological events". (Fristan, Frith et al. 1993) . This idea comes from the 

analysis of spikes recorded by multiunit micro-electrodes (Gerstein and Perkel 

1969). 
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Vl 

VI 

V2 

VI 

Figure 1.16 Connectivity maps. Intra-hemispheric connections of functional defined visual 
areas in macaque monkeys, modified from (Rockland and Kaas 1997). 
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As the main objective of functional connectivity is to identify correlation between 

the time series of different cortical regions, it is possible to apply Principal 

Component Analysis to identify the different (orthogonal) patters of activations 

within the set of time series (Friston, Frith et al. 1993). These orthogonal time 

series (principal components) represent families of cortical regions with highly 

correlated temporal response, thus spatial maps of functional connectivity can be 

constructed using these principal components as a model under a General Linear 

Model (GLM) approach. It is important to note thatfunctional connectivity is only 

related with the temporal correlation between neuronal acti.vations, however it 

does not say anything about how these temporal patterns of activation are 

mediated. The matter of ho~ cortical regions interact with each other is the main 

objective of effective connectivity. 

Effective connectivity is "the influence one neural system exe.rts over another" 

(Friston, Frith et al. 1993). This concept can be thought of as the neural 

connectivity at synaptic level. "Effective connectivity should be understood as the 

simplest possible circuit-diagram that would replicate the observed time relation­

ship between the recorded neurones"(Aertsen and Preissl 1991). For any set of 

neural activations recorded, there are a huge number of possible models to 

explain the temporal correlation. For instance, with 3 areas of activation, it is 

possible to construct 25 different models, therefore the consequence of this is that 

an effective connectivity model is very dependant on the apriori known 

anatomical connections. Effective connectivity models are divided into a neuro­

anatomical model (which areas are structurally connected) and a mathematical 

model (how areas are connected functionally). 

1.4.1.1 Linear neural relationships. 

Mathema~ical models of effective connectivity can ,be expressed as a multiple 

linear regression problem, where the variance in the post-synaptic neurone is 

explained as a weighted sum of variance in the pre-synaptic neurones (Buchel and 

Friston 2000). 
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Let us imagine one neuronal region y which receives input from 5 different neural 

regions Xn• 

In matrix notation: 

y=9x+'I' (1.5) 

y represents a column vector containing the time course of the post-synaptic 

neurone, x is a matrix which contain the time courses of the pre-synaptic neuronal 

input, 9 is a vector of weights, which represents the strength of connections 

between the post-synaptic neurone and each of the pre-synaptic inputs. Finally, 'I' 

represents the error on y, i.e. the part of y that can not be explained by the system. 

Using least-squares it is possible to solve for the values of the weights 9. 

(1.6) 

1.4.1.2 Non-linear neural relationships. 

Although many neural systems can be modelled uSIng linear representations 

(Friston, Frith et al. 1993), some neural interactions behave in a non-linear fashion 

(Friston, Josephs et al. 1998). In these cases it is necessary to extend the ·previous 
-. 

representation to capture the non-linearity of the system. A good example of a 

non-linear neural system is the modulatory interaction between VI and V2 regions 

in the visual cortex. 

Reversible cooling experiments in areas VI and V2 of the visual cortex of the 

monkey have proved that neural activity in V2 depends on inputs from VI 

(Sandell and Schiller 1982). 
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On the other hand neural activity in VI is modulated by re-entrant connections 

from V2. The experiment consisted of cooling VI while recording from V2 and 

vice versa. In the first case, it was demonstrated that activation in V2 depends on 

the activity of VI, however, in the second case the activity in VI was affected 

(modulated) by the lack of activity in V~. This means that the activity in VI 

depends not only on the main input of VI, but also in the modulatory effect that 

V2 exerts over VI. On the contrary, the strength of this modulatory interaction 

depends also on the input from VI to V2. 

This non-linear behaviour in VI was studied by Friston et al (Friston, Ungerleider 

et al. 1995) using fMRI in humans. They proposed an extension to the linear 

model by including a non-linear interaction term. 

(1.7) 

y=9x+pxy+'If (1.8) 

In this case 9 represents the obligatory connection because any change in Xi 

produces a change of magnitude 8i Xi in y. p is more a modulatory connection in 

the sense that the rate of change produced by this term not only depends on the 

value of Xi but also on the value of y. Although this equation is linear in the 

parameters, it captures the non-linearity of the system through to the interaction 

term included in the second term of the equation (Kenny and Judd 1984). The 

structure of interactive terms could be as complex as necessary, i.e.· it could 

include terms of higher order or even include the influences of past activities on 

the present. 

(1.9) 

However, it is important to have in mind that every model is a simplification of 

the real system and in practice it is necessary to compromise between accuracy, 

complexity, and interpretability. 
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In order to identify the non-linear relationships among regions we propose the use 

of a Non-linear AutoRegressive Moving Average with eXogenous inputs 

(NARMAX) algorithm (Billings, Chen et al. 1989). The underlying idea behind 

this algorithm is to represent the model as a linear-in-the-parameters non-linear 

difference equation system and estimate . the parameters doing an orthogonal 

decomposition. This non-linear system identification approach is described in 

chapter 3. 

One of the most important applications of effective connectivity is assessIng 

changes in effective connectivity connections as a function of task requirements, 

for example, Buchel (Buchel, Josephs et al. 1998) shows how the coefficients 

between neural connections in the visual cortex change as a function of attentional 

requirement. In the next section a general framework to define and assess models 

of effective connectivity is introduced. 

1.4.2 Structural equation modelling of neural networks. 

Structural Equation Modelling (SEM) is a statistical technique to assess causal 

models that define relations amongst variables in terms of the analysis of 

covariance (Bollen 1989). It is also called path analysis or analysis of variance­

covariance structures. SEM permits analysis of complex models of effective 

connectivity in which many regions could be included. The advantage of this 

approach over others like ANCOV A is that SEM evaluates the model as a 

complete network (where the output of one unit can be the input to another), 

whereas ANCOVA only considers individual multi-input single-output 

relationships (as shown above). 

The use of Structural Equation Modelling as a confirmatory tool implies the 

existence of a theoretical model proposed to explain the observed aata. The 

hypothesis to assess is that the observed covariance (S) taken from the data is 

equivalent to the implied covariance (l:(9» of the model. 
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The relationships between the variables included in the model are expressed as 

structural equations, for example consider the following model that assumes the 

connectivity between three variables A, Band C: 

B = 9fA + '1'2 

C = 92A + 93B + '1'3 

Matrix notation: 

Vector notation: 

v=Kv+'I' 

(1.10) 

(1.11) 

(1.12) 

Where v is a vector that represents the observed variables, K is the matrix of 

coefficients and If/ is a vector of residuals. The positions in K that contain 0 

denote the lack of connection between these variables. Factorising (1.12) we have: 

(1.13) 

Then the implied covariance matrix is constructed following the hypothesis that S 

= L(9). 

S =v. vT (1.14) 

Then substituting: 

(1.15) 

The estimation of the parameters in 9 that minimise the difference between Sand 

L(9) is usually done using the Maximum Likeliho~d fit function (ML) that is 

asymptotically distributed as chi-square statistic. 
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The goodness of fit of the model can be estimated using X2 distribution with 

degrees of freedom equal to the number of non repeated terms in the observed 

covariance matrix minus the number of parameters to be estimated in the model. 

A fuller explanation of the mathematical properties of SEM will be given in the 

next chapter. 

Although the concept of SEM is not new (Wright 1918; Wright 1921; Wright 

1934) having been applied widely in econometrics (Chow 1983), the idea of using 

it to assess models of effective connectivity using functional brain imaging is 

relatively recent (McIntosh and Gonzalez-Lima 1994b). McIntosh and Gonzalez­

Lima were the first investigators who applied SEM to asses neural interactions 

(McIntosh and Gonzalez-Lima 1992). They measured 2-deoxyglucose uptake in 

the visual system of rats during either patterned light or darkness. With this study 

they demonstrated the ability of SEM to assess changes in functional strengths 

between anatomical connections within the visual cortex. 

Since then, many studies have been made using SEM with PET or tMRI data 

(McIntosh, Grady et al. 1994c; Nyberg, McIntosh et al. 1996; Buchel and Friston 

1997; Jennings, McIntosh et al. 1998; McIntosh, Cabeza et al. 1998; Bavelier, 

Tomann et al. 2000; Bullmore, Horwitz et al. 2000; Friston and Buchel 2000). 

The most common examination followed by the application of SEM in neuro­

"imaging is the staked model analysis. This process permits one to evaluate 

changes in effective connectivity under different experimental conditions (Friston, 

Frith et al. 1993). 

Classical application of SEM has been performed in the Social Sciences where the 

connections among variables are usually hypothetical with models that contain 

variables that cannot be measured directly. In neuroimaging, the connection 

. between variables are anatomically constrained and the measurement of each 

variable can be made directly with functional imaging. These features make the 

application of SEM to function"al imaging data a useful tool to explore models of 

effective connectivity on the human brain. 
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In a preliminary study seven subjects were scanned in a 1.5 T whole-body MRI 

scanner (chapter 4). The subjects wore red/green anaglyph glasses, and were 

instructed to fixate on a point in the middle of the screen and foveate among one 

of the following visual stimuli: Fixation: In this condition only the fixation point 

is displayed in the centre of the active area. Stationary: two hundred and fifty dots 

were randomly positioned within the circular field of view. Motion: the same set 

of dots moving radially, changing from expansion to contraction every 3 seconds. 

Stereo: the same number of dots positioned in depth (red/green anaglyph 

stereogram) forming a 3D cone structure. StereoMotion: the previously Stereo 

and Motion stimuli were combined. The data were pre-processed and analysed 

using SPM99. The statistical parametric map of one subject with P < 0.05 

(corrected) is shown projected on the anatomical images below (fig. 1.17). 

Figure 1.17 Axial, sagittal and coronal views of activations at point [0 -
90 2]MNI. The anatomical images are used to show the location of the 
regions sensitive to: Motion V5 (blue), Stereo V3B (red) and Stereo and 
Motion V3A (yellow). 

We tested the hypothesis that there is effective connectivity (Friston, Frith et al. 

1993; Friston 1994) between these areas (V5: motion, V3B :stereo and 

V3A:stereo and motion) using the model in figure 1.18. Path analysis was done 

using the first principal component time series from the regions involved. First the 

NARMAX algorithm (Billings, Chen et al. 1989; Chen, Billings et al. 1989) was 

used to identify the path coefficients and the non linear term from the times series 

of the regions. 
- 29 -



Chapter 1: Background and Motivation. 

7.40 

Figure 1.18 Effective connectivity model. The model identified using the 
NARMAX algorithm was evaluated using SEM (AMOS 4.01). The model 
fitted the data <x2 = 0.2, dof=2, p= 0.99). 

N ext the statistical fit of the model to the data was evaluated using structural 

equation modelling and the AMOS software. According to the statistical test, the 

proposed model is able to account for the interactions among regions, particularly 

the non-linear relationship occurred when the inputs of V3A are given at the same 

time. For a fuller explanation of this pilot study consult chapter 4. 

1.5 Conclusions. 

Many psychophysical studies in humans have been made to understand the 

principles that govern stereoscopic vision. However, not much work has been 

done to understand the binocular perception at a physiological level. 

Electrophysiological studies in monkeys suggest that the MTN? region, 

commonly related to process directional motion, IS involved in processing 

binocular disparities. 

Mode~ non-invasive neuroimaging tools, like fMRI or PET, have opened new 

pathways to explore the functional anatomy of the human brain. Despite the 

novelty of these techniques, few studies have researched stereo vision and the 

results reported in them show inconsistencies. 
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Although some advances have been made in the search to understand the 

functional anatomy of stereopsis, much work still has to be done before obtaining 

finn evidence regarding the cortical regions and its functional interactions which 

produce stereoscopic vision. 

Furthermore, although most of the studies are in agreement with the fact that a 

network of cortical regions is involved in performing this task, no one has 

reported a connectivity analysis to assess the interaction between the stereo­

sensitive regions. Therefore, the interregional connectivity of stereo sensitive 

regions requires further investigation. 

The purposes of this work can be summarised in four objectives: i) Using 

functional magnetic resonance imaging to study the cortical regions involved in 

human stereovision. ii) Comparing the results of our experiments (testing the 

sensitivity of humans' V5 to stereo stimulus) with those reported on similar 

studies with monkeys. iii) Assessing the interactions between stereo sensitive 

regions by applying an effective connectivity approach. iv) Developing a tool to 

assess dynamic non-linear models of effective connectivity. 
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Vl.-
Edges (Tootell, Hadjikhani et al. 1998), 
Texture (Kastner, De Weerd et al. 2000), 
Motion (Sunaert, Van Hecke et al. 1999), 
Random motion (paradis, Comilleau-Peres et al. 2000), 
Absolute disparities (DeAngelis and Newsome 1999). 

V2.-
Texture (Kastner, De Weerd et al. 2000), 
Random motion (paradis, Comi11eau-Peres et al. 2000), 
3D surfaces (Bakin, Nakayama et al. 2000). 

V3.-
Optic flow (Dejong, Shipp et al. 1994), 
Shape from motion (paradis, Cornilleau-Peres et al. 2000), 
Second order motion (Smith, Greenlee et al. 1998a), 
Motion and direction (Fel1eman, Burkhalter et al. 1997), 
Direction selective (Burkhalter, Felleman et al. 1986). 

V3A.-
Texture (Kastner, De Weerd et al. 2000), 
Shape from motion (paradis, Comi11eau-Peres et al. 2000), 
Motion (Tootel1, Mendola et al. 1997), 
Motion (Sunaert, Van Hecke et al. 1999), 
Coherent motion (Braddick, O'Brien et al. 2001). 

V4.-
Colour (Zeki, Watson et al. 1991; Zeki, Watson et al. 1993), 
Colour (Lueck, Zeki et al. 1989), 
Form and colour (Burkhalter and Van Essen 1986), 
Form (Ghose and Ts'o 1997), 
Form (Tanaka, Saito et al. 1991), 
Texture (Kastner, De Weerd et al. 2000), L [-7.2 - S2.5 -1.9] 
Optic flow (Dejong, Shipp et al. 1994). R [6.2 -79.9 0.9] 

VP.-
Form and colour (Burkhalter and Van Essen 1986), 
Second order motion (Smith, Greenlee et al. 1998a). 

vs.-
Coherent motion (Uusitalo, Virsu et al. 1997), 
Speed and direction (Zeki 1974), 
Coherent motion (Braddick, O'Brien et al. 2001), 
Motion (Watson, Myers et al. 1993), 
Depth from motion (Orban, Sunaert et al. 1999), 
Depth from motion (Xiao, Marcar et al. 1997), 
Motion (Sunaert, Van Hecke et al. 1999), 
Coherent motion (Zeki, Watson et al. 1991), 
Stereo disparities (DeAngelis and Newsome 1999). 

VP 

L [-11.7 - 91.52.7] 
R [S.2 - S7.6 6.1] 

L [-17.9 - S9.6 5.9] 
R [12.0 - S7.6 10.3] 

" --_~,L [-39.0 - 71.9 ~. S] 

R [41.3 -{)4.S - 1.6] 

L [-21.S -{)5.S - 9.9] 
R [19.4 -72.6 -12.0] 

Figure 1.19 Functional defined visual regions. Left column summarises the functiona properties 
reported in each visual region. Flat representation of the right hemisphere shows the Talairach 
space coordinates of visual regions in both hemisphere. 
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Chapter 2 

Neural Structural Equation Modelling 

Abstract. 

Structural Equation Modelling (SEM) is a 

mathematical technique to assess models that 

define relations among variables in terms of the 

analysis of covariance. Although SEM theory is 

not new, the application of this technique to 

quantify functional relationships among· neural 

regions in the brain is a relatively new area of 

research. The methodology to apply this 

mathematical technique to represent models of 

.. effective connectivity using fMRI data IS 

introduced. Finally, the performance of this 

technique is assessed using artificial fMRI time 

series. 
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2.1 Introduction. 

Structural equation modelling (SEM) is a statistical technique to assess 

interactions within causal models (Bollen 1989). The basic idea of SEM comes 

from Wright's studies in path analysis (Wright 1921; Wright 1934). Path analysis 

technique consists in drawing a graphical model which specifies' causal 

relationships between variables, then, the graphical model is transformed into a 

simultaneous equation system. 

In the context of neuroimaging, variables represent cortical regions and causal 

relationships represent the strength of influence of one region has into another 

through their anatomical connection (McIntosh and Gonzalez-Lima 1994b). 

It is important to clarify that the specification of the path diagram implies an a 

priori knowledge of the relationships between variables. SEM does not discover 

the structure of the model; it only assesses the goodness of the proposed model to 

fit the observed data. Moreover, "anatomical foundation is the key feature for 

neural structural equation modelling" (McIntosh and Gonzalez-Lima 1994b). 

One important characteristic of SEM is that it evaluates the complete model as a 

whole unit, that is to say, it estimates all the relationships (covariance matrix) 

implied by the model to assess its goodness of fit. This is a huge difference with 

respect to other methods, like regression analysis or ANOV A, in which only 

individual dependent variables are explained from the set of predictors. 

The working hypothesis of SEM is that if the proposed model is the correct one, 

the observed covariance matrix (E) and the covariance matrix implied by the 

model (L(9» are equal. Finding the values of parameters (9) which minimise the 

difference L - L(9), provides an estimate of how well the model can r~present the 

data. 
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Although SEM is not new, the application of this technique to quantify functional 

relationships among neural regions from fMRI or PET neuroimaging data is a new 

area of research. The major application of SEM has been in the Social Sciences 

where the connections among variables are usually causal-hypothetical with 

models that contain variables that cannot be measured directly. In neuroimaging, 

the connections among the variables representing brain regions are anatomically 

constrained and the measurement of each variable can be made directly with 

functional imaging. These features makes the application of SEM to functional 

imaging data an useful· tool to explore the functional organisation in the human 

brain. 

2.2 Model notation. 

The two main parts that make any structural equation model are the path diagram 

and the structural equations implied by the model. SEM is able to work with 

latent and observed variables. Most of the applications of SEM have been made 

using latent variables, i.e., hypothetical variables that cannot be measured directly, 

such as loyalty, motivation, affection, etc. in contrast to variables such as income, 

educational qualification, age, etc. Figure 2.1 shows an example of a complete 

SEM model (measurement model) which includes latent and observed variables. 

Square boxes represent observed variables which are indicators of latent variables 

(ellipses). The grey square represents the structural model that defines the causal 

relationships between the latent variables. Circles represent two kinds of different 

noises: system noise (e.g. inputs coming from regions not included in the model) 

and measurement noise (e.g. variation in the signal due to the limitations of the 

equipment). One of the advantages of the use of SEM in neuroimaging is that the 

variables representing specialised brain regions involved in the model are 

observed, i.e. are physically recorded by the fMRI scan using the BOLD response 

as a indicator of neural activity. For that reason the present chapter explains only 

the basis of structural equation modelling with observed variables. 
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Figure 2.1 Structural equation measurement model. 

2.2.1 Terminology and notation. 

Observed variables can be exogenous or endogenous. Exogenous variables are 

independent of any other variable. For example in figure 2.3, Xl is an exogenous 

variable because it does not receive any influence from another variable, i.e. its 

variance is not explained by the system. Endogenous variables always receive 

influence from other variables, their value is determined by inputs wi~hin the 

model. 

In figure 2.3, YI and Y2 are endogenous variables. Because the value of any 

endogenous variable is explained by the behaviour of one or more variables, an 

associated error has to be introduced to account for the amount of variance that is 

not explained by its predictors. These error terms can be thought of as a mixture 

of biological and measurement noise. 

- 35 -



Chapter 2: Neural Structural Equation Modelling. 

It is assumed that this error term has a zero mean (Gaussian noise) and it is not 

correlated with any other variable in the model. Perhaps the strongest assumption 

of SEM is that the system noise is propagated through the model. This assumption 

is often violated by fMRI data where the measurement error frequently dominates 

the error term. It will be shown in subsequent MonteCarlo simulations, the 

violation of this assumption leads to under-determined models. A summary of the 

symbols used in path diagrams is presented in the figure 2.2. 

o Latent variable. 

D Observed variable. 

o Error term. 

Causal relationship. 

c Correlation between variables. 

Reciprocal causation. 

Fi2ure 2.2 Path analysis symbols. 

2.2.2 Structural equation models with observed variables. 

The general representation of a SEM separates the model into endogenous­

endogenous relationships, exogenous-endogenous relationships and error terms: 

y=By+rx+~ 
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where: 

B Matrix of endogenous - endogenous coefficients. 

r Matrix of exogenous - endogenous coefficients. 

y Vector of endogenous variables. 

x Vector of exogenous variables. 

~ Vector of error terms. 

Let us imaging that we have a model defined by the following path diagram. 

Figure 2.3 Path diagram. 

The structural equations related to this model are: 

Yl = 91 Xl + el 

Y2 = 92 Xl + 93 Yl + e2 

Where Xl is an exogenous variable and Yl and Y2 are endogenous variables. 

The matrix notation of the general representation of SEM is: 

y B y + r x + ~ 
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In this case B contain the parameter which d,efines the relation between the two 

endogenous variables. r contains the parameter of the relation between 

exogenous and endogenous variables. The positions in the matrixes which contain 

zeros represent the fact that no causal relationship exists between the variables 

involved. The covariance matrix of x is called <I> and the covariance matrix of ~ is 

called 'P. For this example they are equal to: 

'P = [", 1 0 J 
o "'2 

2.2.3 Recursive and non-recursive models. 

There are two types of structural equation models, recursive and non-recursive. 

Contrary to the intuition and common usage, recursive models differ from non­

recursive models in the fact that they do not contain reciprocal causation or 

feedback loops. The previous example corresponds to a recursive model. A 

recursive model implies a lower triangular B matrix, that is to say, there are only 

unidirectional relationships and no reciprocal relationships are considered. 

Recursive models assume a diagonal covariance matrix of error terms ('I'), i.e. the 

errors are orthogonal. The next path diagram shows· a non-recursive model. 

The matrix notation on the general representation is: 

y = B y + 
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In this case the covariance matrix of exogenous (<1») and the covariance matrix of 

error terms ('II) are: 

2.3 Implied covariance matrix. 

The main hypothesis of SEM is that the observed covariance matrix (1:) is equal 

to the implied covariance matrix (1:(0». 

1:=1:(9) 

Ordering the observed variables in endogenous (y) and exogenous (x), the 

observed covariance matrix is constructed as: 

[
YY' 

~ = xy' 
YX'] [~(e) ~(e)] 
xx' = ~xy(e) ~x<e) 

Where x' stands for x transpose. The implied covariance matrix is constructed 

using the general representation of SEM, which as explained above, contains the 

structural relationship of the model being assessed. Let us construct the section 

1:yy (9) of the implied covariance matrix. From the general representation: 

y=By+rx+~ 

1:yy (0) = E(yy') 

= E[(I - Byl (r x + ~)«I - Byl (r x + ~»'] 
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= E[(I - Brl (r X + ~)(x'r' + ~') (I - Brl'] 

= (I - Brl ( E(rxx'r') + E(rx~') + E(~x'r') + E(~~'» (I - Brl' 

Then Lxx (9) is equal to: 

Lxx (9) = E(xx') = cl> 

Finally Lxy (9) is: 

Lxy (9) = E(xy') 

= E[x«1 - Brl (r x + ~»'] 

= cl>r' (I - Brl
' 

So, the complete implied covariance matrix is: 

[

(I - Byl (rwr' + \}I) (I - Byl 
:L(8) = 

wr' (I - BYI' 

The equality hypothesis L = L(9) implies that for each element in the observed 

covariance matrix there exists one element in the implied covariance matrix 

whose values are the same. The solution of the simultaneous equation system is 

given by the estimation of the values in 9 whiCh minimise the difference between 

the matrixes. The most common method to identify th~ values of parameters 9 is 

maximum likelihood (ML) or least squares (LS). 
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As in all numerical methods to solve equation systems, there are some criteria that 

have to be reached to successfully identify the structural parameters. Most of the 

time these constraints have to be introduced in the system in order to obtain 

unique solutions: The implementation of the SEM routines was made in 

MATLAB 5.3 for Windows NT 4.0. For a detailed description of the code consult 

the appendix at the end of the thesis. 

2.4 Identification. 

According to the general hypothesis of SEM, each element of the observed 

covariance matrix is a function of the implied covariance matrix. Each function 

represents an equation that contains parameters that need to be estimated. The 

identification issue consists in finding unique values for the parameters of the 

equation system. If it is possible to find one and only one value for each 

parameter of the model, the model is identified. However, if it is not possible to 

find a value or a unique value, then these parameters are unidentified and the 

model becomes under-determined. 

2.4.1 The t rule (Bollen 1989). 

If the number of equations is smaller than the number of unknowns, the system 

does not have unique solution. For. example, in an observed covariance matrix 

with p endogenous and q exogenous variables there are t = Y2(p+q)(P+q+1) non­

redundant elements. If t is smaller than the number of unknown parameters in the 

model, the model becomes under-determined (the t rule). 

The t rule is a necessary but not sufficient condition to get identification, that is to 

say, although the t rule is satisfied, there are other reasons for which a model can 

be under-identified. "Model identification in structural equations wit~ observed 

variables is not possible without placing restrictions on model parameters" 

(Bollen 1989). 
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2.4.2 Fixing error variances. 

Applications of SEM to network analysis in functional brain imaging frequently 

have problems of model under-determination due to the greater number of 

. unknown parameters. One common practice is to fix the values of 'II with 

arbitrary constants. This not only permits identification of a model but also 

improves its goodness of fit by increasing its degrees of freedom. 

For example, McIntosh et al (McIntosh and Gonzalez-Lima 1992; McIntosh and 

Gonzalez-Lima 1994a; McIntosh and Gonzalez-Lima 1994b; McIntosh, Grady et 

al. 1994c), fix the residual values at 35 to 50 % of the variance of the endogenous 

variable associated with it. Similarly, they pre-compute the variance of the 

exogenous variables to fix their value and so reduce the number of parameters to 

estimate in the matrix Cl>. 

Bullmore et al (Bullmore, Horwitz et al. 2000) proposed an empirical estimation 

of'll using principal component analysis (peA). They applied peA to the set of 

times series from each region (I) recorded in a group of subjects. Then used the 

following equation: 

JIF = 1- A; 
'f' i ~m A~ 

L..Jj=l J 

Where the variance magnitude of eachj component (eigenvector) is represented 

by their eigenvalue (Aj), m is the number of components specified in the peA 

analysis (Lai and Fang 1999). The idea is that Al represents the amount of 'neural 

variance' contained in the region i , 'Vi is 1 minus the normalised ratio of the noise 

variance in region i. Finally, it is important to remark that different conclusions 

can be reached from the same group of data, depending on the assumptions used 

to estimate the error term (Bullmore, Horwitz et al. 2000). 
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2.5 Estimation. 

Estimation of a model is the process of finding the values of the unknown 

parameters in the system equations. Thus the estimation of the unknown 

parameters in B, r, <1>, 'P is made by finding values that solve the hypothesis 

L=L(9). Because the population observed covariance matrix is not know, the 

best estimation of it is the sampled covariance matrix (S). The solution of the 

system is obtained by finding the parameters which minimise the difference 

between the sampled covariance matrix and the implied covariance matrix (S-

L(9» . 

2.5.1 Fitting function. 

The criteria to assess how big is the difference S-L(9) , is given by a fitting 

function. The most common used fitting function is Maximum Likelihood. 

FML (S, L (9» = log 1 L (9) 1 + tr (SL-1(9» - log 1 S 1- (p + q) 

In which, FML (S, L (9» is a real number greater than or equal to zero, 

FML(S,L(9»=0 means that the proposed model represents a perfect match of the 

observed covariance matrix, and thus, the data supports the proposed model. For 

example, if S=L (9), substituting in FML (S, L (9», then FML =0. Generally 

speaking, iterative numerical techniques are used to find the' parameters which 

minimise the Maximum Likelihood fitting function. For a complete derivation of 

the ML fitting function (FML) consult (Bollen, 1989, p 131: 135). 

There are other fitting functions, for example Unweighted Least Squares (FULS) 

which minimise the sum of the squares of the observed and implied matrix (L­

L(9». 

FULS = Y2 tr [(S - L(9)i] 
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The disadvantage of this fitting function is that it does not lead to the 

asymptotically best parameter estimate. The advantage is that it does not assume 

normal distribution on the variables (Bollen). 

2.5.2 Goodness of fit. 

It is important to remember that SEM does not discover the model which best fits 

the observed data, it only says how well the proposed model fits the data. It could 

be the case that more than one model shows a good fit with the data. In which 

case, the researcher has to use his expertise to select the correct model. 

The statistical validation of the goodness of fit of the model is made using the fact 

that the value of the minimised maximum likelihood fitting function multiplied by 

the length of the sampling minus one «N-1)*FML) is asymptotically distributed as 

chi-square (X2
), with lh(p+q ) (p+q+ 1 )-k degrees of freedom, where k is the number· 

of free parameters in B, r, <1», 'P. 

The statistical test is given under the null hypothesis: Ho: L=L(9). It is assumed 

that the observed variables are normally distributed and N is large (> 200) (Bollen 

1989). If the observed discrepancy L-L(9) has a small probability under this 

distribution then no is formally rejected. It is important to notice that a small 

number of observations (N) overestimates the goodness of fit, for example,- the 

same model with the same data can be rejected or accepted depending on the 

length of the time series used in the analysis (Bullmore, Horwitz et al. 2000). 

There is no general agreement about the criteria to define the value of the 

threshold (p-value) for refutation. This is because the p-value assigned to a given 

model can not be considered as an absolute estimator, due to its dependence on 

the length of the sampling (N) and on the number of a priori estimations of 

residual term variances (Bullmore, Horwitz et al. 2000). 
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Furthermore, there is a lack of standardised ways of reporting SEM analysis in 

neuroimaging, and most of the cases, publications do not contain enough 

information to replicate or even interpret the results. 

Sometimes it is important to assess the goodness of fit not only in terms of how 

well it is able to represent the observed data, but also in terms of how easy it is to 

interpret it. By definition, every model .is a simplification of a system and it is 

necessary to find a balance between accuracy and complexity. In these cases, a 

more appropriate approach is to use Akaike Information Criterion (AIC) which 

favours the simple over the complex model (Bollen, 1989). 

Ale =x2 + 2t 

Where t is the number of parameters in the model and x2 is the value of the chi­

square estimator. 

2.6 Stacked models. 

Recent studies of brain functionality suggest the idea that cognitive process are 

not confined to specific cortical regions, instead, networks of cortical regions are 

responsible to perform specific tasks (McIntosh 2000). The functionality for 

certain cortical regions is dependent on the interactions with other regions. Thus 

one cortical region can be involved in more than one cognitive function. In order 

to investigate the changes in connectivity in the cognitive activity, it is necessary 

to assess the behaviour of a given neural system under different task requirements. 

The most common application of neural structural equation modelling is to assess 

a model of effective connectivity using the same group of subjects under different 

experimental conditions or by using the same experi,mental condition with two 

groups of subjects. The hypothesis behind this approach, called stacked model 

analysis, is that the same set of parameters within the structural model, are 

adequate for both sets of experimental data. 
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The procedure consists in defining a null model, in which parameters are 

constrained to be equal between conditions and an alternative model, in which 

parameters are allowed to differ. 

The statistical inference is made by subtr~cting the X2 value from the models and 

assessing its p-value with degrees of freedom equal to the difference of degrees of 

freedom between null and alternative models. If the p-value is not smaller than a 

threshold (e.g. 0.05), then the difference in functional connectivity between 

experimental conditions is not statistically significant. In other words, the same 

model (with same parameter values) can explain the data under the different 

experimental conditions. 

There is no general agreement about the need to assess the validity of the model to 

account for the different data sets. For most researchers it is enough to prove that 

the parameters of the model are different under different experimental conditions, 

without worrying if the individual data sets achieve a statistical valid goodness of 

fit. 

2.7 Non-linear models. 

Although most of the neural interactions can be represented by linear 

approximations, some neural systems have non-linear relationships between 

components (Friston, Josephs et al. 1998). Modulatory interactions under 

hierarchical organisations of cortical regions are a common example of it. 

2.7.1 Interaction terms. 

Let us imagine a neural system in which one cortical region (Yl) receiv~s inputs 

from two cortical regions (x}, X2). 
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Suppose in an experiment when the inputs are received individually (Xl or X2), the 

activity in the dependent region (YI) has a linear relation response with each of its 

predictors (YI=81 xI+82 X2). 

However, in another experiment when both inputs are present, it is found that the 

response is non-linear (YI=8IXI+82X2+83XIX2). This kind of non-linear relationship 

can be represented by creating new variables (interaction terms) to account for the 

non linearity (Kenny and Judd 1984; Schumacker and Marcoulides 1998). 

For the previous example it is possible to create a new variable from Xl and X2 

called Xl *X2. Because the product, of Xl and X2 is going to be highly correlated 

with them, it is necessary to orthogonalise it, i.e. to delete the part of Xl and X2 

contained in Xl *X2 (Buchel and Friston 1997). In this representation, the model is 

still linear in the parameters but non-linear in the variables (Bollen 1989). 

Xl *x 21 

rhe main issue in this approach is the identification of the interaction terms. There 

are diffe~ent techniques to solve this problem" for example, polynomial 

expansions or Volterra kernels. The next chapter explains in detail a non-linear 

identification algorithm based on orthogonal decompo,sition. 
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2.7.2 Feedback loops. 

Another common source of non linear relationships in neural models is found in 

systems which contain reciprocal causation or feedback loops (Berry 1984). Let 

us consider the following model. 

This modality of a non-linear system can be solved using partial correlation 

analysis or two stages least squares (2SLS). Although most of the anatomical 

connection between regions are reciprocal, it is not possible to specify all the bi­

directional paths because the model easily becomes under-determined, and a 

compromise between adequacy and complexity is necessary (McIntosh and 

Gonzalez-Lima 1994b). 

Feedback loops can be easily modelled in SEM as non-recursive models. As was 

shown above, these models imply that B is not a lower triangular because the 

relationships Yl ~ Y2 and Y2 ~ Yl are not symmetrical. 

2.8 Structural equation modelling software. 

There are many commercial software packages for structural equation modelling 

analysis. The general operation of these SEM tools require that the user specifies 

the model to be assessed, including the fixed parameters. The estimation of the 

model is given by the minimisation function preferred by the user. 

The most common packages used to assess SEM are: AMOS (Arbuckle and 

Wothke 1995), LISREL (Joreskog and Sorbom 1989), EQS (Bentl~r 1985), 

TETRAD II (Glymour, Spirtes et al. 1994). All of these above packages perform 

almost the same procedures as multivariate regression, confirmatory factor 

analysis, bootstrapping, and multiple population comparisons. 

- 48-



Chapter 2: Neural Structural Equation Modelling. 

As a difference with the other packages AMOS 4.0 has an excellent graphical 

interface. TETRAD II has the capability to develop a Bayesian network analysis 

when the input data is discrete. For further references about the individual 

characteristics consult (Tabachnik and FideIl2001). 

In the next section examples of structural equation models will be given to 

illustrate the application of the SEM's theory explained above. All the results 

shown in these examples were obtained using AMOS 4.0 software. 

2.9 MonteCarlo Simulations. 

The current section presents examples of data generation, model specification, 

and model assessment of different types of structural equation models. The data 

for each example was generated simulating fMRI data. Model assessment was 

made via AMOS 4.0 software using the Maximum Likelihood estit:nate. 

In the first part of this simulations section, theoretical (ideal) data is used to 

illustrate the SEM principles explained above. In the second part, the features of 

fMRI experimental data are replicated as closely as possible and one example 

model is used to show the behaviour of SEM analysis under non-ideal conditions. 

For both parts of this section, a stimulus paradigm ABABAB was considered. The 

boxcar stimulus was 200 data points long with 10 data points per epoch. 

2.9.1 Theoretical examples. 

The estimated hemodynamic response time series were computed by convolving a 

boxcar stimulation paradigm with a canonical hemodynamic response function 

(hrf). The hrf was generated using the statistical parametric map (SPM) software 

(spm_hrf function) with TR=3 sec (WDCN 1999). Lastly, random noise was 

added to the signal at 50 % level (figure 2.4). MonteCarlo simulation techniques 

were used to generate data sets with the statistical properties implied by each 

structural model, i.e., for given specified values of B, r, <1>, 'P. 
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2.9.1.1 Linear recursive model. 

Refering to the first model presented at the beginning of this chapter. 

Let us suppose that we want to generate data that fits the following featu~es, 

modified from Sharma (Sharma 1996). 

2.56 

~ 
.8294 

The structural equations related to this model are: 

YI =.9 Xl + el 

Y2 = .225 Xl + .4 Yl + el 

Figure 2.5 shows the time series generated by these structural equations. 
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a) Boxcar stimulus 
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b) Hemodynamic response. 
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c) Hemodynamic response with noise. 
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Figure 2.4 MonteCarlo simulation. a) Shows the boxcar paradigm used in the 
experimental stimulation. b) Represents the box car stimulus convolved with the 
hemodynamic response function (hfr). c) The hrfwith added noise. 
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Figure 2.5 Mean time series. The hemodynamic response of each simulated region was 
obtained using the structural equations specified by the model. 
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The matrix notation of the general representation of SEM is: 

y = B y + ··r x + ~ 

The exogenous covariance matrix (Cl») and the error term covariance matrix ('I') 

are: 

Cl» = [2.56] 

So the data can be generated as: 

Given that the present model contains 1 exogenous variable (P) and 2 endogenous 

variables (q) the number of non-redundant elements in the observed covariance 

matrix is computed as t = ~(p+q)(p+q+ 1)= ~(2+ 1 )(2+ 1 + 1) = 6, then the degrees 

of freedom of the model is df=~(p+q)(P+q+l)-k =6-6=0. Because k=3 path 

coefficients + 2 error variances + 1 exogenous variances. In this case, although the 

model is just identified, is it not possible to assess the goodness of fit of the model 

because it has zero degrees of freedom. However, because the variance of the 

exogenous variable is known a priori, it is possible to fix Cl» and so reduce the 

number of unknowns and increase the degrees of freedom. 

identified by AMOS 4.0 were: 
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The statistical analysis revealed a chi-square equal to 0.002 with 1 degree of 

freedom. This corresponds to a probability level equal to 0.96, which means that 

the model is a good representation of the data. 

2.9.1.2 Non-linear recursive model. 

Let us imagine that in our previous example the response in Y2 was non-linear to 

the joint inputs Xl and X2, i.e. the response in Y2 to individual inputs from Xl or YI 

is linear, however, when Y2 receives a joint input from Xl and Yh it is not equal to 

the sum of their individual inputs. As mentioned before these sort of non-linear 

relationship can be modelled creating a new variable which represents the gain of 

the interaction between variables. For example. 

In a similar way that data was generated for the previous model, we generated 

data for the current model with the following features. 

1 
.39 

2 
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It is important to emphasise that the product of two variables is going to be highly 

correlated with the source variables. So, it is necessary to orthogonalise it (Buchel 

and Friston 1997). There is no rule to select the source variables to make the 

interaction term. In practice, the expertise of the researcher has to be used to 

construct the interaction term based on his a priori knowledge. After analysis, the 

parameters identified by AMOS 4.0 were: 

The chi-square of the model is equal to 0.002 with 3 degrees of freedom; then the 

probability level is equal to 0.99. 

2.9.1.3 Non-recursive model. 

Non-recursive models are those which contain feed back loops or reciprocal 

causation. They provide another form to represent non-linear relationship. For 

example, let us imagine a region YI which receives a main input from Xl. Then the 

sensitivity of YI is modulated by another region Y2, i.e. the responsiveness of YI 

depends on the modulatory influence received from Y2 but at the same time Y2 is 

dependent on the input received from YI. This modulatory loop can be modelled 

by a bi-directional causation. Let us generate data for the following model. 

.3 

1 

- 55 -

.63 

2 



Chapter 2: Neural Structural Equation Modelling. 

The influence of Y2 over Yl can be seen as an addition of information, that is to 

say, given that the main input of Yl is x}, then the remaining part of yt, which is 

not explained by XI, is the part that is added by Y2. Models containing reciprocal 

causation are generally solved using partial regression or two stages least squares 

(2SLS) methods (Schumacker and Marcoulides 1998). The estimated parameters 

identified by AMOS 4.0 are: 

.39 

.21 

Which have a chi-square of 0.002 with 1 degree of freedom. The probability level 

of the model is 0.96. 

2.9.1.4 Stacked models. 

The principal way to test the use of stacked models is to assess one model under 

two or more data sets. Lets imagine that we want to assess the differences of a 

theoretical model of effective connectivity using two groups of subjects (healthy 

and unhealthy). The null hypothesis is that the connectivity in a model using the 

different groups is the same (Ho: 91=92), i.e. the parameters for the model under 

the two conditions are the same. The first step is to assess the model with the data 

of one of the groups (datal). Let us take the model assessed in the first example, 

where 91=0.9,- 92=0.225,93=0.4. 
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Then, generate a different set of data (data2) for the second group, we use 91=0.5, 

92=0.4, 93=0.1. The estimated parameters are shown below. 

Under the assumption that there is no difference between bo'th data sets, the 

stacked analysis consists in defining a null model (n), in which the base model is 

assessed using the second data set (data2) while the parameters are constrained to 

be equal to those identified using the data set (datal). For the current example, the 

analysis of the null model reports a chi-square (z;) equal to 230.247 with 4 

degrees of freedom (dfn)' 

The alternative model (a) is assessed in a similar form, however, in this case the 

parameters are not constrained to take any specific values, i.e., they are free. The 

results of this second analysis are: chi-square (z;) equal to 0.002 with 1 degree 

of freedom (dfa). 

The statistical significance (p-value) of the parameter difference for the two data 

sets is computed assessing the c~i-square difference (z; -z; =230.247-

0.002=230.245) with degrees of freedom equal to dfn - dfa = 4-1 =3. Where the p­

value < 0.05. Thus the null hypothesis (Ho) is formally rejected. 
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2.9.2 fMRI models. 

In the previous section, some examples of different structural equation model 

were presented to illustrate the potential application of this technique to assess 

connectivity models. However, ideal conditions were assumed. In empirical 

applications of SEM to investigate neural systems with fMRI data, some of 

these assumptions are not attained and this considerably affect the conclusions 

that can be made about the observations. 

The first and most important assumption that is violated is the fact that the error 

terms used in models with observed data represent system error (Pearl 2000), i.e. 

unobserved variances that affect the activity in one node and are propagated 

through its anatomical connection to other nodes. This assumption makes a huge 

difference with respect to fMRI data in which this error system is almost null and 

the error term represents measurement error (which is not propagated). The 

following figure represents a more realistic model of fMRI data. 

Where the grey square represents the structural model which contain the 

relationships between the latent variables. It also contain the system noise (sn) 

which is almost null because fMRI data is dominated by measurement error (en) 

(Friston, personal communication). Outside the structural model there are the 

observations, that it to say, the measurements of the activity in different regions 

(fMRI time series). These observations are affected by measurement errors, which 

as can be seen in the above figure are not propagated through the system. 
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In models in which two or more collinear variables are predictors of the same 

variable, the lack of system noise is a cause of under-determined models. For 

example, considering the structure of the previous structural model. 

Yl = 81 Xl + Sl 

Y2 = 82 Xl + 83 Yl + S2 

If var(sl)=O then, there are infinite number of values for 82 and 83 which satisfy 

the equation, in other words, the variance of Y2 can be explained using different 

combination of values in 82 and 83 (McIntosh, personal communication). Thus, it 

is not possible to know the true values which generated the data in the physical 

model (Bollen 1989). The model is theoretically identified but empirically under­

determined. The second invalid assumption is to expect linear relationships 

between variables. For example, one evidence of these non-linearity in neural 

responses is the fact that different cortical regions have different hemodynamic 

response (Aguirre, Zarahn et al. 1998; Oossl, Fahrmeir et al. 2001). 

Although neural interactions can be approximated by linear relationships, these 

approximation can bias the parameter estimation. For the next example, a data set 

was generated for the model with the following parameters. 

For this simulation, the structural model data was generated previously 

convolving the experimental stimulation times with the hemodynamic response 

function. It is equivalent to generating the interactions implied by the model at 

'neural level'. For simplicity, it was assumed that the neural response between 

regions is linear. 
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After generating the structural model, each time series was convolved with a 

different hemodynamic response, see figure 2.5. 

-O.OOfJ----'----"--------'-----'------'------'---.J 
o 50 100 150 200 250 300 350 

Figure 2.5 Hemodynamic responses. 

Three set of data were generated under the following assumptions: i) Only 

measurement noise was including in the model (35 percent of the variance), no 

system noise was considered. ii) System noise and measurement noise were 

included in the model, both of them at 35 percent of the variance. iii) Only system 

noise was including in the model (35 percent of the variance), no measurement 

noise was considered. Twenty data sets were generated for each of the categories 

previously explained (i,ii,iii). Figure 2.6 shows the parameters estimated in each 

simulation. 

o. 
o. 
o. 
o. 
o. 

0.1 0.5 

Figure 2.6 Model parameter estimation under different assumptions. Blue circles 
represent the estimated vectors obtained under case i. Green and red circles 
represent estimations for cases ii and iii respectively. The black dot represents the 
solution vector which was used to generate the model. 
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The means and standard deviation of the parameters estimation in each category 

(i,ii,iii) are shown in table 2.1. Standard deviations are displayed in brackets. It is 

important to say that all the estimations were significant at p-value > 0.05. 

ii 

iii 

0.616 (0.032) 

0.601 (0.033) 

0.907 (0.042) 

(}2 = 0.225 

0.246 (0.029) 

0.240 (0.023) 

0.220 (0.068) 

0.266 (0.032) 

0.274 (0.033) 

0.431 (0.062) 

Table 2.1 Summary of parameter estimation. 

The previous simulations show how parameter estimation can be biased by the 

properties of the system being modelled. More over, confidence in the correctness 

of the model is not only given by the goodness of fit , but also, dependent on the 

assumptions made about the system. For example, in the previous model the 

parameters are theoretically identified, however if the assumption is that no 

system noise is present, then the model becomes empirically under-determined 

because there is not a unique solution. Otherwise if system noise is assumed, the 

model has a unique solution and the parameters can be used to make conclusion 

about the relationships in the model. 

fMRI studies applying SEM do not make an explicit distinction between system 

noise and measurement noise. Actually, the system noise is, in fact, seldom 

'noise' because the system is responding to designed inputs that have a large 

deterministic component (Friston, personal communication). So, system. noise has 

to be correlated with its associated variable, i.e. given y = ex + e, then cov(x,e) * 
O. 

In the next chapter, an alternative technique is explored to complement the 

limitation of SEM to represent models of effective Gonnectivity using' fMRI data. 

This technique uses the dynamics of the system to account for non-linear 

relationships. 
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2.9.3 Comments on stacked analysis. 

The invalid assumptions refered to above and the noise dominance in the fMRI 

time series can lead to a wrong conclusion when stacked model analysis is carried 

out. For example, let us use the previous model to generate various sets of data 

under different proportion of noise, i.e. noise at 10, 30 and 50 percent of the 

signal. Three data sets (Dl,D2,D3) were generated for each category of noise 

proportion. The parameters estimated (using AMOS 4.0) per each data set were: 

Iy I" 

- ' ; , ''', 'Theta 1;t l ,Theta':2 ,;«Thetaf,3 
, " 

D1 ·10 
'," - 0.81 0.25 0.35 

02 10 " 0.84 0.28 0.29 
'""i"'"':" , • 

' 0~_1~ " 0.84 0.31 0.30 

,0 -" 30, 
';,--r'; 

0.57 0.22 0.34 

,:p2r3~ 0.69 0.22 0.33 

"03 30 :1 

;i. , - I." 0.58 0.27 0.24 

D!~50' 0.53 0.09 0.29 

, ~~~50'11 0.49 0.25 0.16 

1 ~.~_~O ' 0.48 0.20 0.25 

According with stacked analysis technique, the goodness of fit in terms of chi­

square was estimated creating a null and an alternative model per each 

combination of data sets. The chi-squares are shown in the following table. 

'. ' " . ",0 '1,,10.\: " ~2-:-10 , . P3.Jq' '., Ot.:.~~,, ;; t("~~':30 · ' 03';>30 " [).~":50 ' ~,,~2_50. I 03" 50'~' 
f , ' ,~, :': ;t" , - .; -,:. 'I.!, , - ,' .,' \i, - ! 

'[ P11~'10 ' . 
, .\ - ' , ;" 

0.0 4.3 3.4 36.3 8.6 35.8 70.1 60.0 51.2 

' P210" 
Ii; ", - "i: 

4.3 0.0 3.7 45.2 11.3 37.4 75.0 56.5 52.9 

,,:~>3_1 q\, 5.3 5.2 0.0 51.3 15.1 43.8 87.6 64.9 61.2 

':P1l 30 
';' . -' ; : 79.1 87.4 114.2 0.0 5.4 5.1 25.5 23.3 11 .8 

, P.,2 ~ 30 4, 
~.I - Ii 

28.7 34.5 51.4 9.0 0.0 10.4 34.7 32.1 22.6 

:;r:.r~"~~'; 92.5 94.0 125.0 5.9 8.7 0.0 25.3 9.9 8.0 

,,c',P1 ,50 · 
'j,jI~ - ':( 

225.8 227.6 265.3 42.2 37.3 34.0 0.0 18.6 9.6 

:~P'2:50 ;,~: 209.7 209.2 249.4 30.0 37.9 14.6 16.2 0.0 4.2 

" ~i~~5~ 187.1 186.6 229.5 17.9 26.0 11 .8 9.4 4.9 0.0 
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The p-values for the model comparison are show in the table below. 

I, '. ~. . 01 10 \ ~2~J~, ' 03 '10 " , 01_30 ' ~2;-3() ,. (j3_30 ':\ 01 50 .> 02 ,· 50 , - ~3 .... 50 / 
' :~. '.', - . . ,,- :,1, ." , -_I . ".... ;r. I ,,,.,,. - , - .. 
I " F?1' '1l)' 
. ,~-

0.996 0~'1 ~5 :1, 
I ~ " . . ~ O·1'~t', 0.000 0.013 0.000 0.000 0.000 0.000 

, P2_1y . 0:t12 i\ 0.997 0.160 0.000 0.003 0.000 0.000 0.000 0.000 
,'" 

P3_10 '0.067 ' 0.071 ' 0.999 0.000 0.000 0.000 0.000 0.000 0.000 
~, " '", 

',.iP1 30 
Ii. ,..,. ~. ,'~ 

0.000 0.000 0.000 0.997 " q,O()~';i '·;,9~016 ,~, 0.000 0.000 0.002 

I ~ :,.f27"?~ , 0.000 0.000 0.000 0.010 0.992 0.005 0.000 0.000 0.000 

I .• i P~ .... 3~~ 0.000 0.000 0.000 .' 0.051 . 
il ' ,~, \ ". 

0.012 0.993 0.000 0.006 0.018 

1 ,~ ~1~~flOS 0.000 0.000 0.000 0.000 0.000 0.000 0.993 0.000 0.008 

1'~"ir~_5,9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.997 0.121 : 

. "'P3_50 ':' 0.000 0.000 0.000 0.000 0.000 0.002 0.009 ·Q:P~, 0.992 

Although all the data sets were generated by the same model, the stacked model 

analysis showed differences in most of the data sets. It is important to notice that 

all of the right conclusions (displayed in grey rectangles) where made in data sets 

with the same percentage of noise, whereas data sets with different noise amounts 

where always considered unequal. It reflects the high instability of the method 

under different noise conditions. 

2.10 Conclusions. 

Structural equation modelling is a potentially useful tool to assess models of 

effective connectivity using functional magnetic resonance imaging (fMRI). 

Although SEM has been widely applied in Social Sciences, the advantage of its 

application in neuroimaging is that the variables are observed and the connections 

between variables are anatomically defined, whereas in the traditional application 

of SEM in social sciences the variables are latent and the relationships between 

them are hypothetical. 

However, it is important to remark that the goodness of fit of a given model can 

not be treated as an absolute value. There are three main reasons for it: i) 

Although the model can be theoretical identified, it could be empirically under­

determined. 
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ii) A small number of observations (N) over-estimates the goodness of fit because 

the chi-square of the model is a function of the ML estimator times N. iii) The a 

priori estimation of the error terms can bias the parameter estimation at the same 

time that it biases the goodness of fit due to increases in the degrees of freedom. 

Moreover, MonteCarlo simulation showed the dependency between the 

assumptions and the conclusion that can be made about the estimated parameters. 

The collinearity between pre-cursors ,of the same node, produces empirically 

under-determined models, because the propagation of the error system (generally 

assumed by SEM modellers) does not exist in fMRI time series or is relatively 

much smaller than measurement noise. 

One important feature of SEM is its ability to represent non-linear relationships 

through feedback loops or interaction terms. However the identification of non­

linear relationships is not a trivial task and part of this work is to integrate lagged 
( 

covariance structures to capture the dynamic nature of fMRI time series. This 

brings SEM toward non-linear dynamical modelling. The next chapter presents a 

technique to incorporate these aspects to SEM through the use of a Non-linear 

AutoRegresive Moving Average with eXogenous approach. 
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Abstract. 

In the present chapter a Non-linear Auto­

Regressive Moving Average with eXogenous 

variables (NARMAX) algorithm is introduced as 

an alternative approach to represent models of 

effective connectivity using fMRI time series. 

This approach can be thought of as an attempt to 

bring Structural Equation Modelling to a non­

linear dynamic system modelling technique which 

permits a more appropriate representation of 

effective connectivity models using fMRI time 

series. The theoretical basis and implementation 

details of the algorithm are explained. The 

performance of the NARMAX algorithm IS 

assessed using simulated data. 
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3.1 Introduction. 

Classical applications of structural equation modelling (SEM) in social sciences 

create models of hypothetical connections to represent relationships among 

events that cannot be measured directly. Contrary to this, in neuroimaging, the 

constraints imposed by anatomical pathways and the use of BOLD signals, as a 

neural activity indicator, bring significant advantages for the application of this 

technique to assess relationships among cortical areas using fMRI time series 

(Friston 1994; Buchel and Friston 1997). 

Effective connectivity analysis has been focused on finding changes in 

connectivity, through the evaluation of an anatomically defined model under 

different experimental conditions. Using structural equation modelling, these 

changes can be detected by assessing individually each set of data and then by 

comparing the estimated parameters in each data set (stacked models). It is 

important to clarify, that these changes in connectivity refer to changes in the 

values of the path coefficients and not to changes in the model structure, which is 

assumed to be correct (Goncalves, Hall et al. 2001). 

In this approach the data is partitioned into as many data sets as experimental 

conditions, so only unique linear parameters are estimated per each data set. This 

means that the estimated parameters explain the relationships under each 

particular experimental condition only, but nothing is learnt about the cortical 

interactions which modulate the changes in effective connectivity unde~ different 

experimental conditions. For example, in our first experiment (chapter 4) we are 

going to assess the non-linear behaviour of the activation in V3A when it is 

stimulated by Stereo and Motion stimuli at the same time rather than when each 

stimulus is presented indep~ndently. 

A more robust approach is to model the system to account for changes in 

connectivity over time, i.e., to let the model explain all the data sets of the 

individual experimental conditions. 
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As this approach implies the identification of hidden variables, which explain the 

non-linear relationships of the cortical interactions, the effective connectivity 

analysis becomes not only a method for parameters estimation but also for model 

identification. Another huge difference between the classical applications of SEM 

in social sciences and neuroimaging is that social sciences work with static linear 

systems whereas in neuroimaging the nature of the relationships between cortical 

regions is inherently a non-linear dynamic system. 

It is well known that non-linearity can be present in tMRI data due to the facts 

that hemodynamic response varies among cortical regions (Aguirre, Zarahn et al. 

1998), or because hemodynamic responses are non-linear functions of 

experimental conditions. For example, passive listening to words produces 

different responses in periauditory regions depending on the rate at which the 

words are spoken (Friston, Josephs et al. 1998). 

Moreover, different hemodynamic response shape is going to be obtained by 

applying the same stimulus for different periods of time,. i.e., hemodynamic 

responses are time dependant in the sense that actual neural response is affected 

by previous activity (autoregressive). This suggests that 'time' is another 

important aspect to consider in this relatively new application. 

On the other hand, as different voxels are acquired at different times (multislice 

acquisition), artificial lags are introduced into the time series, and although tMRI 

analysis tools include utilities for slice time correction, the consideration of lagged 

inputs in effective connectivity analysis can optimise the parameter identification, 

maximising the correlation between variables. In the present chapter a Non-linear 

Auto-Regressive Moving Average with eXogenous variables (NARMAX) 

algorithm is introduced as an alternative to obtain a more accurate representations 

. of effective connectivity models. Its theoretical basis and implementations details 

are also introduced. The capabilities of this approach to represent lagged inputs 

and non-linear relationships can be thought of as an attempt to bring SEM towards 

a non-linear dynamic system modelling technique. 
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3.2 Non-linear dynamic system identification. 

System identification refers to the problem of constructing mathematical models 

which represents a mapping between input and output space of a particular 

system, i.e. to predict an output (y(t), given a set of inputs (u(t) or even also to 

give the lagged input itself. When modelling time-changing relationships, the 

problem becomes one of non-linear dynamic system identification. System 

identification is one of the most active fields in engineering. In the present 

section, two of the most common approaches to represent non-linear systems are 

going to be introduced and its application to fMRI time series analysis is going to 

be explored. The first approach, Volterra series, has been used by Friston et al 

(Friston, Josephs et al. 1998) to characterise the hemodynamic response of a 

single region (Multiple Input Single Output, MISO) in a event-related fMRI 

study. The second approach, polynomial expansions, is introduced as an attempt 

to use the basic ideas of Volterra series in a multiple region effective connectivity 

analysis (Multiple Input Multiple Output, MIMO). 

3.2.1 Volterra series. 

Volterra series are extensions of the Tailor series representations to model non­

linear dynamic systems. Volterra showed that these series are capable of 

representing any non-linear dynamic system (Volterra 1959) . Volterra series can 

be thought of as a high order extension of linear convolutions of the inputs to 

produce the output. The general form of the Volterra representation is: 

00 

y(t) = ho + fhl(r1)u(t-r1)dr1 + f fh2(rl,T2)u(t-Tl)U(t-T2)drldr2 + ... 

Where u(t) andy(t) are the input and output respectively at time t, and the hn(rJ, ... 

r,J is th~ nth order Volterra kernel. The' system identification requires one to 

estimate the kernels. 
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In the context of fMRI BOLD response characterisation, Friston et al (Friston, 

Josephs et al. 1998) used Volterra series to represent the relationship between 

evoked neuronal activity and the resulting. hemodynamic response. In this case, 

the Volterra kernels were a predetermined set of basis functions (gamma density 

functions) and the corresponding first derivatives (to accommodate differences in 

time), see figure 3.1. The choice of the gamma density functions used was 

motivated by prior knowledge of the hemodynamic response function to 

represent. 

0.12 

0.1 

0.08 
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-0.02 
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Figure 3.1. Basis functions. Three gamma density functions were used by Friston to 
approximate the hemodynamic response observed in an event-related study. Dashed lines 
represent the fist derivative of each gamma function. These gamma functions are used just as 
an example and they are not the same as those used in Friston's study. 

Considering a linear system, the response in any region y(t} can be represented as 

a linear convolution of the basis functions (hj(rj}) with the experimental stimulus 

u(t}. Given that fMRI BOLD response is inherently non-linear, the estimation of 

the Volterra kernels has to be extended to a high order (hn(rj, ... r,J). For example, 

Friston et al (Friston, Josephs et al. 1998) used Volterra representations to model 

the non-linear behaviour of the periauditory regions under different rates of word 

presentation. In order to linearise the problem to identify the kernels, they used 

three gamma density functions (fig. 3.1) as a basis to construct the hemodynamic 

response of the periauditory region. 
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The second order representation used by Friston was defined as follows: 

T TT 

y(t) = ho + f hi (1'1 )u(t - 1'1 )d1'1 + f f h2 (1'1,1'2 )u(t - 1'1 )u(t - 1'2 )d1'ld1'2 
o 0 0 

Where the scope of the integral from 0 to T, means that the system is causal 

(responses happen after the input) and the system has a finite memory T. The zero 

order kernels (ho) represent the base line. The first order kernels (h1(1'1)) represent 

the linear part of the system and the second order kernel (h2(1'1,1'») represent the 

non-linear part of the system. Each kernel was defined as a linear combination' of 

a number (P) of gamma density functions and its corresponding derivatives 

p 

hi (1'1) = Lg1b;{1'I) 
;=1 

p p 

h
2
{1'I,1'2) = LLg~b;{1'l)b}{1'2) 

;=1 }=1 

Then, the estimation of the coefficients (g) was made using least squares methods. 

It is important to notice that Volterra series are useful to characterise the 

behaviour of a single region. The non-linear analysis is restricted to the time series 

of the region in isolation, without considering its interactions with other regions. 

However, keeping the idea of the use of time delayed inputs and basis function to 

create multiplicative terms to represent the non-linear part of the system, it is 

possible to use a polynomial expansion approach to represent non-linear multiple 

region effective connectivity models. It is important to clarify that t~e intention of 

the present section was only to introduce the antecedents of the ideas to be used in 

the pres~nt chapter, for a meticulous explanation of Volterra series consult 

(Bendat 1990) . 
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3.2.2 Polynomial expansions. 

The polynomial expansion approach is one of the most common techniques used 

to represent non-linear systems. One of its main advantages is that few 

polynomial terms (less than 10) are usually enough to capture the non-linear 

relationships (Chen, Billings et al. 1989). 'Under this approach it is possible to 

integrate multiple regions on the non-linear modelling. As the basic idea of the 

algorithm proposed in this work is based on this approach, an in depth explanation 

of its basis is given in the next section. 

3.3 NARMAX model. 

The Non-linear Autoregressive Moving average with eXogenous variables 

(NARMAX) model was proposed by Billings et al (Leontaritis and Billings 1985; 

Korenberg, Billings et al. 1988; Billings, Chen et al. 1989; Chen, Billings et al. 

1989), in the department of Automatic Control and System Engineering of the 

University of Sheffield. This approach has been widely tested under simulated 

data and used in different engineering applications. 

3.3.1 Representation. 

A discrete-time multi-input multi-output (MIMO) non-linear dynamic system 

with m outputs and r inputs can be described as a Non-linear Autoregressive 

Moving average with eXogenous variables model (Leontaritis and Billings 1985). 

y;{t)=/; (yJ{t-l), ... , YJ{t-ny), ... , Ym{t-l), ... , Ym{t-ny), 

uJ{t-l), ... , uJ{t-n,J, ... , ur{t-l), ... , ur{t-n,J, (3.1) 

eJ{t-l), ... , eJ{t-ny), ... , em{t-l), ... , em{t-ny)) + e;{t) 

Where, 
Output Input Noise 

ylt) ult) elt) 

y(t) = u(t) = eft) = 

ym(t) u/t) em(t) 
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And 

Ji is an unknown non-linear function. 

t is the time index with values from 1 to N. 

i is the sub-system index with values from 1 to m. 

y is a vector of outputs. 

U is a vector of inputs. 

e is a vector of random noises. 

ny, nu , ne are the maximum lags. 

The non-linear form of J; can be approximated by a polynomial expansion of 

degree / under Y, U and e terms (Chen, Billings et al. 1989). 

(3.2) 

Yi (I) = OJ/> + t Oi~/> XII (I) + t t Oi~:~ XiI (/)Xi2 (I) + ... t .. · t O~~\ XII (I) .. ,XiI (I) + ei (I) 

Where 

11=1 11=1 12=il 11=1 i2=1-1 

O(i) is a vector of parameter regressors (coefficients) for the sub-system i. 

o Ji) is equal to dc. 

ni = m*ny + m*ne + r*nu 

Xi...I represents each term in the function J;. Each term can be thought of as 

an independent component (time series) in each column in the design 

matrix. 

For example,,, 

Xl (I) = Yl(l-l), 

X2(1) = Yl(I-2), ... 

Xm·ny(l) = Ym(l- ny), 

Xm·ny+l(t) = el(l-l), ... 

Xm.ny+m.ne(I)= em(l- nj, 

Xm.ny+m.ne+l(I)= ul(l-l), ... 

Xm·ny+m·ne+ r·nu (t)= Ur(l- n,J 
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Then, the non-linear function can be represented by a difference equation system 

which is linear in the parameters and non linear in the terms, lets us now represent 

y;(t) as z;(t). 

Mil 

Zi(t) = LPki)(t)Oii) +£(I)(t) 
k=l 

Where Mil can be computed recursively as 

For example: 

MiI=O.5 Mi/-l (Mi/-l +1) ••• Mil=ni 

Pki
) terms are monomials of degree from zero to I. 

po=l, 

P2= Yl(t-2), 

P4= Y2(t-2), 

P6= Yl(t-1) Y2(t-2), 

Pl= Yl(t-1), 

P3= Y2(t-1), 

ps= Yl(t-1) Y2(t-1), 

P7= Y2(t-1) Y2(t-1), ... 

(3.3) 

Then, for the subsystem i the solution can be formulated . as a least squares 

regression of the form: 

Z=PO+E (3.4) 

Where 

z (t) PI (t) PM(t) e (t) 

Z= p= 8= E= 

z(N) PI(N) ... pJN) erN) 

Because the design matrix (P) is generated by a polynomial exp'ansion in which 

each column of P is a product of a set of basic terms in y, u 'and e, many of the 

columns of P are highly correlated, then, the covariance matrix (P 'P) is singular 

(ill-conditioned) and the conventional least square method is not applicable to 

solve the equation system (Korenberg, Billings et al. 1988). 
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On the other hand, it is clear that only some of the terms of P are needed to 

explain Z. The question which arises is, which terms have to be selected from P 

to explain Z, avoiding the ill-conditioning problem? The answer is given by the 

Gram-Schmidt orthogonalisation algorithm. 

3.3.2 Gram-Schmidt orthogonalisation. 

Any inner product space Vis defined by an orthogonal basis S={Vi, V2, ... , vn} in 

which any vector W E V can be represented as a linear combination of the basis 

vectors in S (Lay 2000). 

Where (iI~~i) Vi is the orthogonal projection of w on Vi. For example, let us 

define the vector space S={Vi, V2} and represent in it the vectors WI and W2. 

(WI' VI) : 
IVII VI I 

W2 

The idea behind the Gram-Schmidt algorithm is that given an arbitrary basis { 

Wi, W2, ... , Wn } for an n-dimensional space V, it constructs an orthogonal basis 

S={ Vi, V2, ... , vn } for V. 
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For example, given the vectors WI, W2 in our previous example Gram-Schmidt 

orthogonalisation would create the following orthogonal basis S={ VI, V2}. 

Using the Gram-Schmidt approach the problem of solving (3.4), given that the 

(P 'P) covariance matrix is ill-conditioned, can be sorted out using orthogonal 

least squares. 

3.3.3 Orthogonal least squares. 

Any symmetric positive definite square matrix L can be decomposed in 

L=A'DA (3.5) 

Where A is an upper triangular matrix with unitary diagonal elements and D is a 

diagonal matrix with all positive elements. Assuming that the column vectors of P 

are orthogonal, P'P is symmetric positive definite and it can be represented as: 

P'P=A'DA (3.6) 

Because the design matrix P is generated by a polynomial expansion, it does not 

form a positive definite covariance matrix (P 'P). 
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Consequently, it is necessary to orthogonalise the columns of P to find the 

orthogonal components (»') which explains the vector Z. These components can 

be found following an orthogonal least squares approach inspired by the Gram­

Schmidt orthogonalisation (Chen, Billings et al. 1989). 

Because A-1A=I, Z (in 3.4) can be represented as 

It is possible to factorise as 

Where 

Z=Wg+E 

W=PA-1 

g=A8 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

Where W represents the orthogonal basis of P, and g represents the orthogonal 

projection coefficients of Won Z. Therefore, 

D=W'W (3.11) 

Where D (as defined above) is a diagonal matrix with all positive elements. 

Ilwoll 
IlwI11 o 

D= IIw211 

o 

The components of W can be obtained recursively from 

W=P-W(A-I) (3.12) 

-75 -



Chapter 3: NARMAX. 

It represents the orthogonalisation (subtraction) of the projection (common part) 

between the components of P. 

Multiplying (3.9) by W' and by A: 

So, the matrix A can be computed as 

With the form 

A= 

W=PA-1 

AW'W= W'PA-1A 

AW'W= W'P 

A=(W,W}-lW'P 

A=D-1W'P 

o 

From (3.8) the estimation of g is given by 

Z=Wg+E 

W'Z=W'Wg+W'E 

g=(W,W}-lW'Z 

g=D-1W'Z 

Finally, from (3.10) the parameters Bcan be computed as 

-76 -

(3.13) 

(3.14) 

(3.15) 

(3.16) 



Chapter 3: NARMAX. 

3.4 NARMAX algorithm. 

The Non-linear Autoregressive Moving average with eXogenous variables 

(NARMAX) algorithm is an orthogonal forward regression least square estimator 

which implements a modification of· the classical Gram-Schmidt algorithm 

(Billings, Chen et al. 1989). 

NARMAX algorithm computes the matrix A one row at a time, orthogonalising 

from the kth column (at the kth iteration), all the remaining columns from k+l to 

M Considering the subsystem (3.4), the algorithm can be structured as follows. 

3.4.1 Algorithm. 

Step 1: 

Given the input and output vectors generate the polynomial expansion as showed 

in (3.2) to construct (3.4). 

Step 2: 

With (3.15) consider all the elements of P as candidates to be WI (the first 

orthogonal basis). Select the element of P which gives more information (infk) 

about Z. In this context, information means the amount of variance on the 

dependent variable (Z) that is explained by the candidate (Pi). Let us consider an 

auxiliary vector W=P. For k=l to M. 
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Select the term of W which gives most information about Z. Make it equal to WI 

and make gl =gk. Permute the vector WI to the first position of the matrix Wand 

move the vector which used to be in the first column to the position in which the 

more informative element was found. Save the quantity of information given by 

the term as eXPl=infk because it can be used to define the convergence criteria. 

Step 3: 

Orthogonalizes the terms of W (from 2 to M) with respect to WI, i.e. using (3.12 

and 3.13) subtract the orthogonal. projection of the first component from the rest 

of the components. F:or k=2 to M. 

Update the vector Wand construct the matrix A as: 

Iterate steps 2 and 3 until a convergence criterion is reached. It is important to 

note that in each iteration: i) In step 3, the search for candidates to form new 

orthogonal components has to be restricted to those terms that have not been 

selected to be part of the orthogonalised bit of W. ii) In step 3, the 

orthogonalisation has to be done with respect to the component selected .in step 2. 

The convergence criteria can be defined in different ways, two of the most 

common used are: 

i) As the error term in the difference: 

Mv 

e(t) = z(t) - L Wig; ,lleli < threshold 
i=1 . 
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ii) As a percentage of the unexplained variance: 

Where exPi represents the percentage of variance (information, infk) given by each 

orthogonal component selected to explain Z. Finally, compute the parameters e 
using (3.16) as 

Because the error term is only known when the system has been identified with 

input and output terms, the delayed noise terms have to be identified in a second 

run of the algorithm in which the error term is included in the polynomial 

expansion (Billings, Chen et al. 1989; Chen, Billings et al. 1989). 

3.4.2 Implementation comments. 

The ill-conditioning characteristic of the covariance matrix of P can be sorted out 

in step 3, by checking the variance of the orthogonalised terms of W. If the 

variance of any of the orthogonalised terms (1lwk II) is less that a threshold (near to 

zero), it means that this term is a linear combination of a previous selected terms 

and then it can be deleted. They can be also identified before orthogonalisation 

by checking if the angle between the term to orthogonalise and the term to 

subs tract ( Arc cos (( W k , W n ) )) is smaller than a desired threshold. 

The NARMAX algorithm explained above includes a general framework to 

represent non-linear auto-regressive moving average systems with endogenous 

inputs. Linear autoregression, non-linear autoregression, non-lin~ar moving 

average~ etc. are particular instances of the NARMAX model. So, for the special 

characteristics of particular models, it could be the case that specific instances of 

the NARMAX model could be sufficient to capture the dynamics of the system. 

-79 -



Chapter 3: NARMAX. 

For example, if the assumption of the unknown system is that there are not lagged 

correlated errors, it is possible to create a Non-linear AutoRegressive with 

exogenous inputs model (NARX). On the other hand, if the assumption is that the 

system is not autoregressive, the explained variable can be left out of the 

polynomial expansion which generates the design matrix (P). It is always 

advisable to create a parsimonious representation model of the system. 

Because the polynomial expansion of order I generates monomials which are 

multiplicative terms of the basis terms. They are going to be highly correlated 

with the basis terms. In order to give priority in the regression to the basis terms, 

a residualisation procedure is suggested to delete (residualise) the projections of 

these terms (Buchel, Josephs et al. 1998). 

Lastly, it is necessary to remember that every model is a simplification of the real 

system and it is convenient to obtain a balance between accuracy and complexity. 

The convergence criteria shown above'do not take account of the complexity of 

the terms included in the model. However some measures like Akaike (Ale) 

information criteria or Minimum Description Length (MDL) can be used to 

address this problem (Bollen 1989; Pear12000). 

The implementation of the NARMAX algorithm was made in MAT LAB 5.3 for 

Windows NT 4.0. For a detailed description of the code consult the appendix at 

the end of the thesis. 

3.4.3 Model validation. 

The goodness of fit of the model can be assessed in the same form as in Structural 

Equation' Modelling (SEM), that its to say, evaluating (in terms of i) the 

difference between the observed covariance matrix and the implied covariance of 

the model proposed by the forward regression orthogonal algorithm (see section 

2.5.2). 
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3.5 MonteCarlo simulations. 

In the present section the efficiency of the forward regression orthogonal 

algorithm is going to be tested using artificial data. In the first two examples, 

classical exemplification used by the developers ofNARMAX are shown. In the 

second and third examples, potential applications of the algorithm to model non­

linear models of effective connectivity are going to be introduced using fMRI 

simulated data. As made in effective connectivity analysis within SEM, effective 

connectivity analysis within NARMAX approach assumes that the anatomical 

pathways are known before hand. This approach can be thought as a non-linear 

dynamic confirmatory analysis in which the hidden non-linear terms are 

identified. The convergence criteria in all the analyses was. defined as the 

minimum explained variance per predictor does not go below one percent. 

In each case the model validation was made assessing the output model under 

AMOS 4.0 software. It is important to remember that in SEM the goal is to know 

if the model fits the data, i.e. the parameter estimates of the model produce an 

implied matrix that is close to the observed covariance matrix. The null 

hypothesis is that the implied covariance matrix and the observed covariance 

matrix are equal (~=~(e». This hypothesis is assesses in terms of chi-square (X2
) 

test statistics. 

If the difference between the implied covariance matrix and the observed 

covariance matrix is "small" (for example, p-value > 0.05) the X2 is going to be 

small and the null hypothesis has to be retained. Otherwise, if the implied 

covariance matrix and the observed covariance matrix are sufficiently different, 

the null hypothesis has to be rejected, i.e. the model is not a good representation 

of the data. 

Finally, it is important to notice that, in order to be consistent with fMRI data 

characteristics, the error term of the simulated data is added as a measurement 

noise, i.e: it is not propagated. 
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3.5.1 Linear autoregressive with exogenous variables model. 

The present example defines a linear system with lagged inputs and 

autoregressive behaviour. Let us consider the following model (modified from 

(Billings, Chen et al. 1989)). 

YJ{t) = -0.4 YJ{t-l) + 0.5 YJ{t-3) - 0.2 uJ{t-l) + 0.5 uJ{t-3)+ 0.7 u2{t-2) 

Y2{t) = 0.6 YJ{t-2) - 0.8 Y2{t-2) + 0.3 Y2{t-3) + 0.4 uJ{t-l)+ 0.3 u2{t-l) 

YJ{t) = YJ{t) + eJ{t) 

Y2{t) = Y2{t) + e2{t) 

Where, UJ and U2 are independent sequences of uniform distribution of variance 1 

(see figure 3.2). eJ and e2 are uncorrelated gaussian noise of variance 0.04. The 

time series generated were 200 time points length. 

Using an autoregressive linear model of dynamic order=3 and polynomial 

order=l, (where the dynamic and polynomial orders are defined as the maximum 

lag and polynomial degree respectively permitted in the expansion), the forward 

regression orthogonal algorithm identified the following model. 

-0.394 YJ{t-l) + 0.486 YJ{t-3) + 

-0.225 uJ{t-l) + 0.502 uJ{t-3) + 

0.702 u2{t-2) where var{eJ) =0.062 

0.590 YJ{t-2) - 0.786 Y2{t-2) + 0.293 Y2{t-3) + 

0.397 uJ{t-l)+ 0.292 u2{t-l) 

where var{eJ) =0.077 
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The statistical validity of the model reported by AMOS 4.0 was p > .0.05 for each 

subsystem. The time series estimated by the algorithm are shown in figure 3.3. 

3.5.2 Non-linear autoregressive with exogenous variables model. 

The non-linear system presented below, represents a non-linear relatio~ship in 

terms of multiplicative lagged inputs. Let us consider the following model 

structure, modified from (Billings and Voon 1986b; Billings, Chen et al. 1989). 

0.5 uj(t-3)+ 0.7 u2(t-2)+ 

0.35 Yj(t-3) -0.2 uj(t-l) u2(t-3) + 

-0.4 Yj(t-l) uj(t-2) +0.5 Yj(t-3) u2(t-l) 

0.3 u2(t-l) - 0.7 Yj(t-2)+ 

0.3 Y2(t-3) + 0.4 uj(t-l) uj(t-2) + 

-0.8 Y2(t-2) u2(t~3) +0.1 Yj(t-3) Y2(t-l) 
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Figure 3.2 Exogenous inputs of the linear autoregressive model. 
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Figure 3.3. System output. For display convenience, only the first 100 time points of the 
time series are shown. The real output is shown in blue, the predicted model is shown in 
red dashed lines. 
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Where, U1 and U2 are independent sequences of uniform distribution of variance 1 

(see figure 3.4). e1 and e2 are uncorrelated gaussian noise of variance 0.04. The 

time series generated were 200 time points length. Using a Non-linear 

autoregressive model of dynamic order=3 and polynomial order=2. The forward 

regression orthogonal algorithm identified the following model. 

0.517 u1{t-3)+ 0.718 u2{t-2)+ 

0.341 Y1{t-3) -0.224 u1{t-l) u2{t-3) + 

-0.376 Y1{t-l) u1{t-2) +0.483 Y1{t-3) u2{t-l) 

where var{e 1) =0.083 

0.236 u2{t-l) - 0.680 Y1{t-2)+ 

0.309 Y2{t-3) + 0.421 u1{t-l) u1{t-2) + 

-0.779 Y2{t-2) u2{t-3) +0.077 Y1{t-3) Y2{t-l) 

where var{e2J=0.122 

The statistical validity of the model reported by AMOS 4.0 was p > 0.05 for each 

subsystem. The time series estimated by the algorithm are shown in figure 3.5. 

3.5.3 Linear autoregressive interactions using simulated BOLD. 

Let us consider a cortical network in which two regions become active under a 

certain experimental stimulation. The behaviour to model is the decrease in the 

response of the regions Y 1 and Y2 over time, i.e., the magnitude of their response at 

the time t depends on their past activity. The dynamics of the cortical interactions 

can be represented by following model. 

Y1{t) = U1{t)- 0.7 Y1{t-2) 

Y2{t) = 0.6 Y1{t~I)- 0.5 Y2{t-2) 

Y1{t) = Y1{t) + e1{t) 

Y2{t) = Y2{t) + e2{t) 

U1{t) = U1{t) + e3{t) 
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Figure 3.4. Exogenous inputs of the non-linear autoregressive model. 
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Figure 3.5. System output. For display convenience only the first 100 time points of the 
time series are shown. The real output is shown in blue, the predicted model is shown in 
red dashed lines. 
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Where Ul represents the measured hemodynamic response after a boxcar 

(ABAB ... ) stimulation. The boxcar stimulus was 200 data points long with 10 

data points per epoch. The estimated hemodynamic response time series were 

computed by convolving the boxcar stimulation paradigm with a canonical 

hemodynamic response function (consult 2.9.1). el, e2 and e3 are uncorrelated 

gaussian noise of variance 0.04, 0.02, 0.08, respectively (see figure 3.6). 

2.5 

2 

1.5 

0.5 

_1 1-----L...-~---1.--l--.l..----'---'-----1.---'---.--J 

o 20 40 60 80 100 120 140 160 180 200 

Figure 3.6 Exogenous input. Hemodynamic response of the boxcar 
experimental stimulation is shown in red (model). The blue time series 
represents the hemodynamic response plus random noise (e3)' 

Using a linear autoregressive model of dynamic order=3 and polynomial order=l. 

The forward regression orthogonal algorithm identified the following model. 

0.844 Ul(t)- 0.556 Yl(t-2) 

where var(el) =0.127 

0.56 Yl(t-1)- 0.432 Y2(t-2) 

where var(e2) =0.036 

The statistical validity of the model reported by AMOS 4.0 was p > 0.05 for each 

subsystem. The time series generated by the proposed model are shown in figure 

3.7. 
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Figure 3.7. System output. For display convenience only the first 100 time points of the 
time series are shown. The model output (as it was generated by the model without noise) 
is shown in black, the real output plus noise is shown in blue, and the predicted model is 
shown in red dashed lines. As defined by the model of system, the output responses (yl 
and y2) show a decrease in sensitivity over time, i.e. the activity on the past modulates 
the sensitivity of the system to new inputs (autoregressive system). 
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3.5.4 Non-linear neural interactions. 

Let us consider a cortical network in which three regIons are anatomically 

connected through the following structure: UJ ~ YJ, U2 ~ YJ. The experimental 

stimulation involves four conditions (A, B, A +B and N), where A +B means that 

stimulus A and B are presented together, and N is the base line condition. The 

complete stimulus sequence is given by: 

NAN (A+B) N B NAN (A+B)N B NAN (A+B) N B N 

Region UJ is sensitive to stimuli A and A+B, region U2 is sensitive to stimuli Band 

A+B, and region YJ is sensitive to stimuli A, Band A+B. The non-linearity of the 

systems relies on the fact that, when stimuli A or B are presented individually, the 

relationships in the system (uJ ~ Y1, U2 ~ YJ) are linear. However when the 

stimulus A+B is presented, and UJ and U2 are activated at the same time, the 

relationship becomes non-linear. In other words, the response to the A +B 

condition it is different to the sum of the individual stimulus inputs (see figure 

3.8). 

A A+B B A A+B 

10 20 30 40 50 60 70 80 90 100 

Figure 3.8 . Non linear response. The first 100 time points of the stimulus paradigm are 
shown. For display convenience the dc of each time series is moved. Red (UI), blue(u2), 
and black (YI) time series represent the hemodynamic response of the regions. 
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The behaviour of the system can be represented by the following model. 

YI(t) = 
UI(t) = 
U2(t) = 

YI(t) + el(t) 

UI(t) + e2(t) 

U2(t) + e3(t) 

Where UI. U2 and YI represent the measured hemodynamic response under 

stimulation. Each condition was 10 time length (see figure 3.9), so each time 

series was 190 time point length. In order to simulate more realistic data, the data 

was firstly generated using a unitary response and then the time series of each 

region was convolved with a different hemodynamic response (see section 2.9.2 

of chapter 2). 

el, e2 and e3 are uncorrelated gaussian noise of variance 0.6, 0.15, 0.15, 

respectively. These variances were selected to introduce 45 % signal of 

measurement noise. Using an autoregressive linear model of dynamic order=O 

and polynomial order=2. The forward regression orthogonal algorithm identified 

the following model. 

0.908 UI(t)+ 0.923 U2(t)+ 0.667 UI(t)U2(t) 

where var (el) =0.951 

The statistical..validity of the model reported by AMOS 4.0 was p > 0.05. The 

time series generated by the proposed model are shown in figure 3.10. 
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Figure 3.9. System inputs. For display convenience only the first 100 time points of the 
time series are shown. The model signal (without noise) is shown in red, the measured 
input is shown in blue. 
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Figure 3.10. System output. For display convenience only the first 100 time points of 
the time series are shown. The model output (as it was generated by the model without 
noise) is shown in black, the real output plus noise is shown in blue, and the predicted 
model is shown in red dashed lines. 
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3.6 Open problems in effective connectivity analysis. 

Ill-conditioned models are those models for which no unique solution exists 

because there is not enough information specified in the system. The solution of a 

linear system can be formulated using the General Linear Model (GLM), in which 

each linear equation has the form (see also section 1.4 .1.1 in chapter 1): 

And the system is represented as: 

Y 1 = 81 XI, 1 + 82 Xl,2 + ••• + 8n Xl,n + el 

Y2 = 81 X2,1 + 82 X2,2 + ... + 8n X2,n + e2 

Ym = 81 Xm,1 + 82 Xm,2 + ... + 8n Xm,n+ em 

(3.17) 

Where m represents the number of equations in the system and n represents the 

number of variables in the system. In matrix notation: 

Y=X8+E (3.18) 

The solution of the system is given by: 

(3.19) 

Where T denotes for matrix transposition and -1 denotes for matrix inversion. For 

the sake of clarity, let us to illustrate the ill-conditioned problem usi~g a simple 

linear system which is a particular case of the General Linear Model (the noise 

term is not represented). Consider the following system of equations in which 

each equation represents a line. 
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Where 

-1 = 81 - 282 

3 = -81 + 382 

y = X 9 

[-1] _ [1 -2] [91] 3 - -1 3 92 

Graphically this system of equations looks like: 

. 1 '---___ ~~L_..J'--_----' __ ____' 

· 1 
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Where the blue and red lines represent the first and second equations of the 

system. The solution of the system is given by the point in which the lines 

intersect each other (81=3 and 82=2). This point can be identified using formula 

3.19. However, two lines can not necessarily intersect in one point, i.e. they could 

be parallel (no solution) or they could coincide, in which case they intersect in 

every point on the line (not unique solution), see figure 3.11. 

For those cases in which the system has infinite number of solutions it is said that 

the model is ill-conditioned or bad conditioned. In these kind of systems the 

inverse of the matrix XTX in equation 3.19 is not computable because the 

determinant of XTX is equal to zero and the matrix is call singular or non-positive 

definite. This problem arises because some variables in X are highly correlated or 

they are linear combinations of each other. 
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Figure 3.11 Linear systems. A linear system can also have no solution (a) parallel system 
or infinitely number of solutions (b) collinear system (modified from (Lay 2000)). 

Strictly speaking, singularity is reached when the variables (terms) in X are 

perfect linear combinations of each other (collinearity), however, although for a 

less highly correlated variables in X the inverse of XTX is computable, the 

solutions of these systems are very unstable because there are many local 

solutions instead of a global solution. For example, let us imagine an hypothetical 

space of solutions represented as a three-dimensional surface (fig. 3.12), in which 

the axis OJ and O2 represent the parameters to be identified in the model and the 

axis f(Ol, ( 2) represents the function to be maximised (consult section 2.5.1). 
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Figure 3.12 Space of solutions. 

- 97 -

80 



Chapter 3: NARMAX. 

As it can be seen in the space of solutions, there is not an unique solution (there 

are many local maximal) and the convergence to a given solution is highly 

dependent on the place in which the searching is started. So, although the model is 

mathematically consistent (because there is at least one solution), for practical 

purposes it is empirically under-determined because it is not possible to find a 

unique solution. For the sake of simplicity the previous examples engaged only 

two variables, however, the same principle apply for n dimensional systems. 

It is important to have in mind that the difference between model under­

determination due to the insufficient number of equations with respect to the 

number of parameters to being estimated (see the t rule in section 2.4.1) and 

model under-determination due to ill-conditioned conditions. As stated in chapter 

3, the t rule is a necessary but not sufficient condition to get identification, i.e., 

although exists more equations than unknown parameters the model could still 

have many possible solutions. 

3.6.1 Effective connectivity analysis of fMRI data. 

Effective connectivity analysis can be thought of as the simplest causal model 

that would replicate the observed time relationships between cortical regions. The 

structure of the model is defined using a priori knowledge about. the anatomical 

connections. Because the cortical activations are determined by the controlled 

experimental stimulation, their tMRI time series are highly correlated. 

Let us exemplify the problem using a very simple model. Suppose that fMRI is 

used to record the neural activity raised under a given boxcar (ABABABABAB) 

stimulation (10 data points per condition). After data analysis, three cortical 

regions (X},X2,X3) are identified and their time series are extracted (fig. 3.13). 

Assuming that based on anatomical maps, the structural model shown in figure 

3.14 is proposed. As it is easily seen in the system of equations that defines the 

structure of the model, the variance in X3 can be explained either by Xl or by X2. 
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Figure 3.13 Time series. Three artificial time series were generated convolving the 
boxcar stimulation with a canonical hemodynamic response. Measurement noise was 
added as gaussian noise at 50% of the variance (terms ej and e2 in figure 3.14). Blue, 
red and green time series represent the BOLD response of regions XI,X2,X3 

respectively. Dashed black line represents the hemodynamic response model. X axis 
represents time (volumes) and Y axis represents an arbitrary scale of signal change. 

Therefore the model is ill-conditioned since there are different sets of parameters 

(92,93) that satisfy the system. In other words, there is redundant information in 

the system, since the variance of X3 can be entirely explained by one (Xl) or 

another term (X2) . 

Structural equations 

Figure 3.14 Stru~tural model. 

It is important to realise that, contradictorily, t~e less noisy the data the worst the 

bad conditioning problem, that is to say, if the measurement noise is almost null 

the matrix becomes singular and the inverse ofXTX does not exist (fig. 3.15). On 

the other hand, although the big amount of noise characteristic in fMRI data let us 

to estimate the inverse of XTX, the solution is very unstable. This is a typical 

problem on fMRI models in which predictors of an independent variable are 

correlated as a result of the functional profile of the regions involved. 
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Figure 1.15 Singularity problem. Three sets of time series were generated for the model 
showed in figure 3.14. using different amounts of noise. The graphs show the correlation 
matrix for X}'X2,X3 and the plots: X}'X3 (blue), X2,X3 (red), X}'X2 (green). From let to 
right 50, 20 and 1 percent of noise were used. 

Even using a very simple model like that showed in figure 3.14 it is not possible 

to make any reliable conclusion about the meaning of the parameters estimated, 

because the solution obtained represents only one of many. That is to say, by 

definition, parameters of effective connectivity represent the strength of the 

influence that one cortical region exerts over another, however, under ill­

conditioned models it is only possible to made conclusion about functional 

connectivity ( correlations) but nothing can be said about effective connectivity 

(Friston, personal communication). 

3.6.2 SEM and ill-conditioned models. 

As Structural Equation Modelling (SEM) can be seen as an extension of the 

General Linear Model (GLM) it shares the same limitation to assess ill­

conditioned models. In practice the SEM's community avoid the problem of 

empirical under-determination assuming that the error term in the model is not 

only measurement noise but also it is system noise (which is propagated through 

the network). The justification to the assumption of system noise is that every 

model is a simplification of the real system and there are different sources of 

information which are not represented in the model (nodes not included in the 

model). The conceptualisation of the error term as a system noise can be thought 

of as an "injection" of extra information, which lets the model to have a unique 

solution, i.e. the system of equations is solved by a unique set of parameters 

(values). 
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However this assumption is not valid in fMRI data since the noise in the time 

series is dominated by measurement noise (e.g. variation in the signal due to the 

limitations of the equipment); and if any system noise exists, it is not gaussian 

noise because the system is responding to designed inputs that have a large 

deterministic component (Friston, personal communication). Consequently, the 

lack of "noise propagation" is that the model has many solution and the values of 

the parameter are highly dependant on the starting values used in the optimisation 

technique (Bollen,1989). 

For example, let us apply standard MonteCarlo simulation techniques used in 

SEM to generate data for the model presented in figure 3.14. The time series were 

generated in a similar way that those showed in figure 3.13. The parameters used 

in the simulation are shown in figure 3.16 (a). SEM software (AMOS 4) was used 

to identify the parameters of the model. Since error terms were propagated, SEM 

was able to identify the original parameters, see figure 3.16 (b). 

(a) 

1.2 

e1 
(b) 

1.18 

e1 

Figure 3.16 System noise. (a) Original model used to generate the data. The 
error terms (gaussian noise) where propagated through the network. (b) Model 
estimated using SEM software. The probability level was> 0.1. 

However generating data for the same model without noise propagation (a more 

realistic model for fMRI data), the parameter estimation is empirically under­

determined because the solution reached is determined by the starting .values used 

by the optimisation technique. As it can be apprecIated from the data simulation 

without noise propagation, a model different to that one used to generate the data 

was able to reach statistical significance to represen't the data, see figure 3.17 (a). 
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On the other hand, fixing one of the parameter values (93=3.36) to bias the search 

to converge to the "true" solution, the parameter estimation is able to find the 

original model, see figure 3.17 (b). This example shows the instability of the 

SEM's parameter estimation under ill-conditioned models. 

(a) 

2.94 

e1 
(b) 

2.94 

e1 

Figure 3.17 Measurement noise. Data for the model presented in figure 3.16a was 
generated without noise propagation. (a) Model estimated using SEM software. (b) 
The model was forced to find the original model. Both models reached a probability 
level> 0.1. 

One of the most common applications of SEM in neuroimaging has been the 

comparison of the parameters in a given model under different experimental 

conditions or between groups (see section 2.6 in chapter 2). However, as it was 

showed above, differences in parameters might not necessarily mean changes of 

effective connectivity. 

3.6.3 NARMAX and ill-conditioned models. 

Although the Non-linear AutoRegressive Moving Average with eXogenous 

variables (NARMAX) approach provides a better r~presentation than SEM to 

model non-linear dynamic systems like fMRI data, it has similar limitations to 

deal with ill-conditioned models. Using the NARMAX approach singularity is not 

a problem, because the inverse of XTX is computed iteratively in the 

orthogonalisation procedure. However, the system identification is affected at the 

time to select the orthogonal components in the covariance matrix. 
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For example, let us consider the data generated for the model shown in the figure 

3.17. (no noise propagation). Then, after using NARMAX algorithm to identify 

the system, it suggested the model shown in figure 3.18 (a). As it can be seen in 

the model, the orthogonalisation procedure deleted the arc form Xl to X3. The 

explanation for that is that one predictor (X2) is enough to explain most of the 

variance in X3. 

However using a more relaxed criterion to decide which terms of X are redundant 

(and have to be deleted), i.e. how similar (correlated) two terms should be to be 

considered collinear. The NARMAX algorithm reached the same solution as 

SEM. See figure 3.18 (b). 

2.94 2.94 

e1 e1 

(a) (b) 

Figure 3.18 System identification of ill-posed models using NARMAX. NARMAX 
algorithm was used to identify the model shown in figure 3.17. The algorithm was run 
using a dynamic order=O and polynomial order=I. (a) The orthogonalisation criteria to 
delete terms was set up to 0.5, i.e. when two terms have correlation bigger than 0.5 .The 
convergence criteria reported that X2 was able to explain 90.73 % of the variance in X2. 

(b) The orthogonalisation criteria was set up to 0.85. 

,As it can be appreciated from· the previous example, although NARMAX 

approach "solves" the ill-conditioned problem through the ortogonalisation of the 

covariance matrix, the cost of this solution is not acceptable in this application. By 

definition, effective connectivity is a confirmatory analysis, i.e. it relies on the 

anatomical model. So, the structure of the model can not be changed on the sake 

of mathematical consistency. 
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NARMAX approach can be thought of as a forward regression orthogonal 

algorithm which brings SEM towards a non-linear dynamic modelling technique. 

However under ill-conditioned models, NARMAX is good for prediction but not 

for explanation (McIntosh personal communication). That is to say, NARMAX 

approach is good to develop exploratory analysis (find a model which fits the 

observed data) but not necessarily to make a confirmatory analysis (iden~ify the 

"true" parameters). So, in ill-conditioned models the parameters estimated by 

NARMAX are as meaningless as those estimated by SEM. 

As a summary it can be said that ill-conditioned models are those models which 

have not a unique solution because nodes are highly correlated and predictors of 

dependent variables are usually redundant. Effective connectivity models using 

fMRI data easily becomes ill-conditioned since cortical activations are produced 

by designed stimuli that have a large deterministic component. 

Under ill-conditioned models it is not possible to make any conclusion about 

effective connectivity since the solution of this models are very unstable and it is 

not possible to know the ''true'' parameters which produced the data in the 

physical model. Neither SEM nor NARMAX approaches are able to solve this 

identification problem because there is not enough information in the system to 

find a unique solution. So, the parameters identified in this kind of models are 

meaningless. These models are empirically under-determined and no reliable 

conclusions can be made about effective connectivity, conclusions can be 

formulated only in term of functional connectivity (correlations). 

Approaches based on GLM (from which SEM and NARMAX are part) are not 

appropriate to deal with effective connectivity ill-conditioned problems since they 

are good for prediction but not for explanation. Although some alternative 

representations like state spaces or Bayesian modelling have been recently 

explored to develop connectivity analysis, more research has to be done to create 

better representations of effective connectivity models using fMRI data (Friston 

2002; Friston, Harrison et al. 2002). 
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Another open problem in effective connectivity analysis using fMRI time series is 

that although empirically identified models have unique solutions, the meaning of 

the parameters remains uncertain. There is not clear understanding about the 

relationship between neural activity and Blood Oxygenated Level Dependent 

(BOLD) changes. So, it is not reliable to assume that parameters of effective 

connectivity are the same at both levels. 

For example, hemodynamic responses from different regions on the brain are 

characterised by different parameters, e.g. neuronal efficacy, autoregulation, 

resting oxygen extraction, etc. (Friston, Mechelli et al. 2000; Zheng, Martindale et 

al. 2002). Thus, the same input can produce different hemodynamic responses in 

different regions (fig. 3.19). 

.0.005'----'-----'--'-----'---'---'----' 
o 50 \00 I SO 200 ;z,o 300 350 

Figure 3.19 Hemodynamic responses 

Therefore, although at a neural level the relationships in the model could be 

linear, at a BOLD level the model is inherently non-linear. This implies that the 

parameters identified at BOLD level would not be the same that those in the 

physical system (neuronal level), see figure 3.20. 

Figure 3.20 Different levels of representation for effective connectivity models. 

- 105 -



Chapter 3: NARMAX. 

One possible solution to estimate the parameters at low level is to infer the 

neuronal activity from the BOLD response, i.e., to convert hemodynamic response 

into neurone spikes. Then, the estimation of the model can be made at a neuronal 

level (fig. 3.21). 

BOLD level 

Figure 3.21 Model representation at BOLD and neuronal levels. BOLD 
measurements are represented as squares (X). The error term associated at this level 
is considered measurement noise (e). Neuronal activity is represented as ellipsis (x). 
The error terms associated at this level are considered system noise (s). 

There are well known forward methods to estimate BOLD response from neural 

activity. These methods take in account the physiological properties of the cortical 

region from which to estimate the BOLD response. For example, "the Balloon 

model" proposed by Friston et al (Friston, Mechelli et al. 2000; Zheng, 

Martindale et al. 2002) estimates the BOLD signal as a non-linear function of 

volume (v), deoxyhemoglobin (q) and oxygen extraction fraction by the capillary 

bed (Eo), see figure 3.21. 

Neuronal 
activity 

Balloon model 

-~ --+ BOLD signal 

t t t 
Figure 3.21 Balloon model. 

However, the estimation of neuronal activity from BOLD signal is not trivial and 

by the moment it does not exist a methodology to develop this "inversion" 

properly (Zheng, Martindale et al. 2002). 
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Another advantage of this multilevel analysis is that error terms can be modelled 

discriminating between measurement noise (e) and system noise (s). Measurement 

noise can be estimated as the remaining part of the variance (at BOLD level) that 

can not be converted into neuronal spikes. Then, any remaining error at neuronal 

level should be considered system noise. We hypothesise that system error should 

to be propagated through the network. It is important to note that the 

representation of the model at different levels would permit not only to have a 

better understanding of the interactions at low level but also to specify the 

problem in agreement with SEM assumptions. 

The necessity of the analysis of effective connectivity at different levels of 

representation was also addressed by Friston et al (Friston 2002; Friston, Harrison 

et al. 2002) almost at the same time than us. In accordance with our observations, 

they concluded that the success of this approach depends on the "inversion" of the 

forward models, i.e. the estimation of neuronal activity from BOLD signals 

(Friston personal communication). 

NOTE: It is important to clarify that effective connectivity analysis was only 

developed on the data acquired in experiment 1 (chapter 4) because the 

experimental stimulation used on it was specifically designed to test the 

hypothesis of the involvement of V5 region in the processing of stereo 

information. Due to finding that V5 was not sensitive to stereo disparities it was 

possible to apply SEM and NARMAX methodologies since the patterns of 

activation were not correlated (the model was not ill-conditioned). However, on 

the subsequent experiments (chapters 5, 6 and 7) our efforts were concentrated on 

the identification of the cortical regions involved in stereo disparity processing 

and the experimental stimuli were not designed to develop any analysis of 

effective connectivity. 
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3.7 Conclusions. 

In the present chapter a Non-linear Auto-Regressive· Moving Average with 

eXogenous variables (NARMAX) algorithm was introduced as an alternative 

approach to represent models of effective connectivity using fMRI time series. 

This approach can be thought of as a dynamic non-linear system identification 

technique which overcomes some of the limitations of Structural Equation 

Modelling (SEM). SEM is in principle appropriate to represent static linear 

systems, whereas fMRI time series are inherently non-linear dynamic systems 

(Friston, Frith et al. 1995; Friston, Josephs et al. 1998). 

BOLD hemodynamic response is a non-linear transformation of the stimulation 

input, and interactions between regions are non-linear as well. Then, non-linearity 

'is an important characteristic to contemplate in models ofeffective connectivity. 

Although in SEM it is possible to introduce moderator variables (interaction 

terms) to represent non-linear relationships, the advantage ofNARMAX approach 

is that it is able to identify those terms, in other words, NARMAX can be 

considered as a method not only for parameters estimation but also for model 

identification. 

Hemodynamic response latencies differ between cortical regions and the 

assumption of immediate responses is not convenient. A more relaxed assumption 

is· to let the model accommodate lags in time, i.e. to assume a causal relationship 

in which the input could happen in the past. This temporal property is not 

considered in SEM since it was created for the modelling of static systems. On 

the other hand, time is a~ important characteristic in the analysis of fMRI time 

series. The hemodynamic response in a region, not only depends on the inputs but 

also 0t:t its own activity in the past. This autoregressive property is incorporated in 

NARMAX approach as part of the polynomial expansion. 
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It is important to notice that although Volterra senes are as powerful as 

NARMAX in representing non-linear dynamical systems, Volterra representation 

is useful to model the behaviour of a single region (MISO), whereas NARMAX 

representation offers a framework to represent interactions between multiple 

regions (MIMO) (Billings, Chen et al. 198~; Friston, Josephs et al. 1998; Friston 

and Buchel 2000). 

Another difference between SEM and NARMAX approaches is how they 

interpret the noise (error) term. In SEM the noise term is considered "system 

noise", that is to say, the error is propagated through the network, whereas in 

NARMAX it is considered "measurement noise", i.e. it is uncorrelated with the 

regions included in the model (Bollen 1989). 

The definition of the error term as measurement noise is much more appropriate 

for tMRI data, because system noise is dominated by the huge amount of 

measurement noise characteristic of tMRI time series (Friston, personal 

communication). 

Finally, the parameter estimation procedure used by NARMAX is more efficient 

than that used by SEM in the way the observed covariance matrix is inverted. 

When two or more regions are very similar, they create a collinearity problem, in 

other words, the inverse of the covariance matrix cannot be computed. A typical 

mathematical error produced by the parameter estimation procedure of SEM is the 

"singularity" of the covariance matrix. By the operational definition ofNARMAX. 

approach, it is not a problem due to the orthogonal decomposition of the inputs 

(Billings and .Voon 1986b; Chen, Billings et al. 1989). 

As a conclusion, it can be said that SEM was a proper technique for its first 

applications to effective connectivity analysis using static data (2-deoxyglucose 

autoradiography or PET) (McIntosh and Gonzalez-Lima 1992; McIntosh and 

Gonzalez-Lima 1994a). However, the application of this technique to tMRI time 

series requires a modification. of the technique to satisfy the non-linear dynamic 

properties of tMRI data. 

- 109-



Chapter 3: NARMAX. 

The Non-linear Auto-Regressive Moving Average with eXogenous variables 

(NARMAX) approach described in the present chapter can be thought of as an 

attempt to bring SEM towards a non-linear dynamic system modelling technique 

which permits a more appropriate representation of effective connectivity models 

using tMRI time series. However, although NARMAX approach provide~ a better 

representation than SEM to model non-linear dynamic systems, it has similar 

limitations to deal with ill-conditioned models. 
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Chapter 4 

Experiment 1 

Stereo Motion Interactions 

Abstract. 

Functional magnetic resonance imaging was used 

to investigate the relationship between stereo and 

motion visual processing. Red/green random dot 

anaglyph stereo grams with radial motion were 

used as visual stimuli. Three main areas of 

cortical activations were identified. One was 

sensitive to motion corresponding to V5, one 

sensitive to stereopsis (V3B) and one more 

responsjve to both stimuli (V3A). Time series 

from the activated regions were extracted from 

the raw data. Non linear system identification 

techniques were used to identify a model of the 

interregional connectivity. The statistical validity 

of the functional relationship between the 

different regions was assessed using Structural 

Equation Modelling. 
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4.1 Introduction. 

Although many psychophysical studies have investigated how the human brain 

computes stereoscopic information (Tyler 1973; Burt and B. 1980), it is not 

certain which cortical areas are involved in its implementation. Some 

electrophysiological studies in monkeys report the sensitivity of VI to .absolute 

disparities, suggesting that this area could be a preliminary stage of processing for 

stereo information (Cumming and Parker 1999). MTN5 in monkeys shows a 

columnar organisation tuned for disparity (DeAngelis and Newsome 1999). 

MTN5 in human brains has been widely reported as a motion sensitive area 

(McKeefry, Watson et al. 1997; Tootell, Mendola et al. 1997; Smith, Greenlee et 

al. 1998a; Braddick, O'Brien et al. 2001). Given the similarity between the visual 

system of the monkey and the human (Gonzalez and Perez 1998), it is not 

unreasonable to think that V5 in human brains is also involved in the processing 

of stereo information. 

However some studies of monkeys with lesion in V 4 and V5 regions reported no 

loss of performance in a stereoscopic depth task (Schiller 1993). This could be 

attributed because either V5 is not related to stereo disparities processing or 

because there is another region (beyond V5) more sharply tuned to stereoscopic 

information. The aim of the present study is not only to investigate the cortical 

areas involved in the processing of stereo information but also to show how these 

areas interact with the V5 region. 

4.2 Experiment Design. 

All subjects were given 4 sequential scans each lasting 6 min. 12 sec. (17 epoch) 

with a 5 min. interscan interval to permit subjects to rest. One hundred and twenty 

four image volumes were acquired in each run. Each condition lasted 21 s., giving 

7 multislice volumes per condition (TR=3 s.). 
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A dummy condition of a blank screen was presented during the rlfst 15s (5 scans) 

of each run to eliminate magnetic saturation. To avoid habituation the conditions 

were counterbalanced using a Latin Squares design (figure 4.1). 

Run 1 

Run 2 

Run 3 

Run 4 

• Fixation D Stationary . Motion Stereo D StereoMotion 

Figure 4.1 Stimulation Sequences. 

The motion stimulus was radial to facilitate fixation following by Buchel's study 

(Buchel and Friston 1997; Buchel, Josephs et al. 1998). The subjects were 

instructed to fixate a point (0.3 deg. of radius) in the middle of the screen 

(circular field of view 13 deg.) and foveate while presented with the visual 

stimuli. There were five conditions of visual stimulation (fig. 4.2). 

a) Fixation: In this condition only the fixation point is displayed in the centre of 

the active area, this condition was taken as a base line. 
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b) Stationary: Two hundred and fifty dots (with radio 0.1 deg.) were randomly 

positioned within the circular field of view (mean dot density 8 dot dei2 at the 

centre and 1 dot deg-2 at the edges) , the aim of this condition was to activate the 

visual cortex areas sensitive to the luminance produced by the dots. 

c) Motion: The same set of dots moving (constant speed 6.8 deg s-l) radially, 

changing from expansion to contraction every 3 s. The dot density was kept 

constant by replacing each dot moving outside the visual field with one appearing 

at the centre. With this stimulus we expected to activate the motion sensitive 

regions. Radial motion was used because it facilitates fixation. 

d) Stereo: The same number of dots positioned in depth (red/green anaglyph 

stereogram) forming a 3D cone structure (disparity from 0 to ±1.5 deg.). A 3D 

cone shape was used· to provide a wide range of disparities to stimulate binocular 

neurons. To counterbalance this condition, the appearance of the cone was 

changing from concave to convex, but maintained constant during each epoch. 

e) StereoMotion: The above Stereo and Motion stimuli were combined. This 

visual stimulus was designed to activate stereo and motion sensitive areas at the 

same time. 

4.3 Methods. 

4.3.1 Subjects. 

Seven healthy right-handed volunteers (4 female, 3 male) aged from 20 to 30 

years participated in the present preliminary study. One of the male subjects was 

scanned twice. All subjects gave informed written consent. 
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Fixation Stationary Motion 

Stereo StereoMotion 

Figure 4.2 Visual stimuli. Subjects viewed the stimuli through the red/green glasses to present 
anaglyph stereo stimuli. Two directional arrows represent the expansion contraction radial 
motion. 

4.3.2 Stimulus presentation. 

Subjects lay on their back in the magnet. They wore red/green anaglyph glasses 

and looked via a mirror angled at , .. · .. 45° from their visual axes at a back illuminated 

screen located at the just outside the magnet (fig. 4.3). The viewing distance was 

2.4 m. Stimuli were projected on to the screen using an EPSON (EMP-7300) 

projector driven by a G3 Mac running Psychophysics Tool Box ver. 2.44 

(Brainard 1997; Pelli 1997) under MATLAB ver. 5.3. 

The mean luminance of the image was 30 cd/m2
. Although the . stimuli were 

displayed at a video frame rate of 60 Hz, the image was only updated on every 

10th frame, producing an effective frame rate of 6 Hz. 

- 114 -



Chapter 4: Stereo Motion Interactions. 

Figure 4.3 Stimulus display. 

4.3.3 Data acquisition. 

Subjects were scanned in a 1.5 T whole-body MRI scanner (Eclips Marconi 

Systems) with BOLD contrast echo planar imaging (TR= 3s, TE= 40 ms, 128 

x128 voxel, voxel size 1.875 x 1.875 x 4 mm.). Eighteen slices covering the 

whole visual cortex were acquired (figure 4.4). 

Fieure 4.4 Data acquisition. 

4.3.4 Data analysis. 

The data was pre-processed and analysed using SPM99 (Wellcome Department of 

Cognitive Neurology). The first five scans of each run were discarded in order to 

exclude magnetic saturation artefacts. All volumes were slice timed with respect 

to the top slice. Motion correction was made taking as a reference th~ first volume 

of the first run. The data was normalised in the MNI (Montreal Neurological 

Institute) stereotaxic space and smoothed using a 6 mm FWHM (full width at half 

maximum) isotropic Gaussian kernel (WDCN 1997). 
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Data analysis was performed using a boxcar design matrix of the different 

conditions (fixation, stationary, motion, stereo and stereomotion) convolved with 

a canonical hemodynamic response function (fig. 4.5). 

® 

Figure 4.5. Hemodynamic model. The hemodynamic model used for regression was 
created by convolving (®) the box car sequences of stimulation with the standard 
hemodynamic response function calculated by spm_hrf(3). 

Specific effects were tested by applying the corresponding linear contrast to the 

parameters obtained applying General Linear Model (GLM) using the design 

matrix shown in figure 4.6 (see also experiment design). 

Run 1 

100 

200 Run 2 

300 Run 3 

400 
Run 4 

10 20 

Figure 4.6 Design matrix. The design matrix used in the present analysis is shown in 
the conventional SPM display. Each block represents one sequence (run). Each column 
of the block represents one of the experimental conditions in the following order 
(stationary, motion, stereo and stereomotion). The base line condition . (fixation) is 
represented as the complement of the sum of all the experimental conditions. The white 
squares shows the periods in which the related condition was presented. The four 
columns at the end of the design matrix represent each of the independent sequences. 
Rows represents scans (476 scans = 7 scans per condition * 17 conditions per sequence 
* 4 sequences). 
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Voxel values were normalised to the Global Mean Intensity (GMI) using global 

effects (scaled), which scales each image within a session to 100/(mean of GMIs 

of the session). The data was temporally smoothed using an hrf as a low-pass 

filter (WDCN 1997). 

The statistical parametric maps (SPMs) were then interpreted by referring to the 

probabilistic behaviour of Gaussian random fields. The threshold adopted was P < 

0.05 (corrected), (WDCN 1997). Group analysis (random effects) was not 

developed due to the small number of subjects scanned (Friston, Holmes et al. 

1999). 

4.4 Res nits. 

The statistical difference of the neural activity under individual experimental 

conditions was tested using the SPM contrast approach. The contrast of two 

experimental conditions is constructed by the subtraction of the individual 

regression parameters obtained by the linear regression (GLM), in other words, 

the contrast Motion against Stationary (Motion-Stationary) tests the statistical 

validity of the hypothesis that the activation under Motion condition is not bigger 

than the activation under Stationary condition (WDCN 1997). It is important to 

notice that the contrasts Motion against Stationary, and Stationary against 

Motion, have different meanings. 

As part of the statistical analysis made by SPM software, a window of results is 

presented. This window contains four main sections: The first one shows the 

activation in a 3 view (axial, coronal, sagital) glass brain. A cursor «) points to 

the voxel of the location as shown in the table in figure 4.7. The second section of 

the window shows the contrast design matrix used in the analysis. The bars above 

each column of the design matrix refer to the conditions used in the analysis. The . 

bars above the show line means that the activity in this condition is bigger than 

the condition in which the bar appears below the mean line. 
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The third section of the window shows the statistical parameters of each 

activation, for example, location in mm., cluster size, statistical significance (p 

value), Z scores, etc. Finally, the window shows a summary of the statistical 

criteria used in the analysis, e.g., degrees of freedom, voxel size, height threshold, 

etc. A typical SPM analysis output is sho~ in the figure 4.7. 

In the present study, six analyses were performed in order to identify the areas 

involved in each particular stimulus. For reasons of space, individual analysis 

outputs are not presented, instead the results are reported as a synopsis through the 

use of condensed statistical tables which shows. a summary of the relevant 

statistical parameters of the regions of activation. In the same manner, the 

statistical map of the most sensitive subject is presented. It is important to clarify 

that the tables shown in those summaries refer to right and left hemispheres of the 

subject, for example, the left and right hemispheres of subject one are refered to as 

1 Rand 1 L respectively. Subjects or hemispheres not included in a particular table 

means that not significant activation was found. 

Due to technical restrictions, it was not possible to develop retinotopic mapping to 

identify the visual areas activated in our studies, instead, the regions of activation 

identified through the statistical analysis were mapped to anatomical locations 

using as a reference their Talairach coordinates. The labels assigned to each 

region were given, matching the anatomical location reported by other authors. 

So although the labelling was made as precise as possible using Talairach space, it 

is important to acknowledge that it was not possible to distinguish V3, V3A 

andV3B reliably and the labels assigned are best guesses. 

Finally, it is important to remark that the analysis of effective connectivity was 

only developed in this study and not in the subsequent experiments for the reasons 

explained in the Chapter # 3 (section 3.6). 
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Figure 4.7 SPM 99 output display. 
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4.4.1 Motion against Stationary. 

This contrast compares the activation caused by the moving dots against that 

caused by stationary dots. In accordance with previous research (Watson, Myers 

et al. 1993; McKeefry, Watson et al. 1997; Buchel, Josephs et al. 1998; Friston 

and Buchel 2000), the V5 area showed activation to the directional motion. Also 

. the V3A showed consistent activation to motion stimulus. All of the subjects 

showed consistent activation on motion sensitive areas. Figure 4.8 shows the 

statistical parametric map of the V5 and V3A activation, it also shows the location 

of the activation in V5. To see the specific location of the activation in V3A 

consult the table in figure 4.12. 

V5 

Sub'ect Location Z-Score P corrected Cluster size 
lR 56, -64, -6 (Int) 0.000 151 
lL -48, -74, -4 (Int) 0.000 239 
2R 44, -82, 6 (lnt) 0.000 353 
2L -48 -82, 4 (lnt) 0.000 396 
3R 48, -66, -6 7.58 0.000 99 
3L -40, -84, -6 (Int) 0.000 122 
4R 40, -76, -2 (Int) 0.000 223 
4L -38, -72, 2 7.60 0.000 128 
5R 48, -78, 0 (Int) 0.000 824 
5L -42,-84,6 (Int) 0.000 215 
6R 42, -64, 4 (Int) 0.000 474 
6L -46, -74, 8 (Int) 0.000 333 
7aR 46, -70, 0 (Int) 0.000 610 
7aL -46, -68, 8 (Int) 0.000 438 
7bR 44, - 70,0 (Int) 0.000 85 
7bL -46, - 68, 6 In 0.000 186 

Figure 4.8 Motion against Stationary contrast. The statistical map shows the areas sensitive to 
motion, the activation include V5 and V3A regions. The table shows the locations of V5 region. 
To see the locations of V3A look at the figure 4.12 in contrast 4.4.5. 
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4.4.2 Stereo against Stationary. 

The activation found by the contrast of the stereo cone against the stationary dots 

was not as consistent as in the previous contrast. This contrast reveals two main 

areas, one only sensitive to stereo and one sensitive to stereo and motion, i.e. there 

was an overlap with the region sensitive to motion (V3A). Five of the subjects 

showed consistent activation in V3A. Four of the subjects showed consistent 

activation in a small area only sensitive to stereo stimulus. In accordance with the 

theory of the right hemisphere dominance in stereo information processing 

(Nishida, Hayashi et al. 2001), the four subjects whose showed activation in this 

area had activation in the right hemisphere. The anatomical location of the region 

which was sensitive only to stereo stimulus refers to the visual area V3B. The 

literature reports this area as sensitive to stereo disparities (Backus, Fleet et al. 

2001), kinetic boundaries (Orban, Dupont et al. 1995; Van Oostende, Sunaert et 

al. 1997) and to second order motion (Smith, Greenlee et al. 1998a). Figure 4.9 

shows the statistical parametric map of the V3B and V3A activation, it also shows 

the location of the activation in V3B. To see the specific location of the activation 

in V3A consult the table in figure 4.12. 

V3B 
Sub·ect Location Z-Score P corrected Cluster size 

4R 44, -88, 10 6.09 0.000 245 
4L 36, -96, 0 4.80 0.098 76 
6R 40, -88, 8 5.35 0.006 7 
7aR 36, -88, 0 (lnf) 0.000 294 
7aL -36, -88, 2 (lnf) 0.000 243 
7bR 34, -88, -2 6.34 0.000 71 

Figure 4.9 Stereo against Stationary contrast. The statistical map shows the areas sensitive to 
stereo, the activation inc1ude V3B and V3A regions. The table shows the locations of V3B region. 
To see the locations of V3A look at the figure 4.12 in contrast 4.4.5. 
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4.4.3 Motion against Stereo. 

The assessing of the existence of one individual region sensitive only to motion 

was tested using the contrast of moving dots versus the stereo cone. This contrast 

can be thought of as the part of motion sensitive areas that are not sensitive to 

stereo stimuli. 

Motion Stereo 

This contrast suggests, in all of the subjects, that the V5 regions is sensitive to 

motion (fig. 4.10). 

V5 

Sub'ect Location Z-Score P corrected Cluster size 
1R 54, -68, -8 6.12 0.000 24 
1L -48, -74, -6 7.40 0.000 92 
2R -48, -76, 10 7.01 0.000 223 
2L 46, -84, 0 7.22 0.000 204 
3R 46, -68, -6 6.49 0.000 66 
3L -40, -84, -6 7.20 0.000 63 
4R 40,-76, -2 6.36 0.000 105 
4L -40, -72, 0 7.14 0.000 66 
5R 48, -78, 2 (Inf) 0.000 117 
5L -42, -84, 6 6.77 0.000 76 
6R 42, -64, 4 (Inf) 0.000 140 
6L -46, -74, 8 6.52 0.000 125 
7aR 44, -70, 0 7.46 0.000 56 
7aL -46, -68, 6 7.27 0.000 135 
7bR 42, -68, 2 5.7 0.001 8 
7bL -46, -68, 8 7.10 0.000 86 

Figure 4.10 Motion against Stereo contrast. The statistical map shows the region V5 sensitive 
only to motion. 
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4.4.4 Stereo against Motion. 

The assessing of the existence of one individual region, sensitive only to stereo 

was tested using the contrast of stereo cone versus moving dots. This contrast can 

be thought of as the part of stereo sensitive areas that are not sensitive to motion 

stimuli. 

Motion Stereo 

The results of this contrast was not as consistent as the previous one. Only two 

subjects showed consistent activation in the V3B area, one of them only in the 

right hemisphere (fig. 4.11). 

Sub'ect 
6R 
7aR 
7aL 

Location 
46, -84, 4 
38, -88, 0 
-36, -88, 2 

V3B 

Z-Score 
5.52 
5.03 
5.58 

P corrected 
0.003 
0.033 
0.002 

Cluster size 
3 
1 
6 

Figure 4.11 Stereo against Motion contrast. The statistical map shows the region V3B sensitive 
only to stereo. 
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4.4.5 Conjunction analysis of Motion and Stereo. 

Previous contrasts suggest the existence of two independent regions, one sensitive 

to motion and one sensitive to stereo. A combined contrast to identify the regions 

sensitive to both stimuli is given by the intersection between these two groups of 

neurones. 

Motion Stereo 

The statistical map of the regions (V3A) sensitive to stereo and to motion IS 

shown in figure 4.12. 

V3A 

Sub'ect Location Z-Score P corrected Cluster size 
4R 30, -88, 22 (lnf) 0.000 13 
4L -28, -88, 24 5.13 0.023 2 
5R 14, -94, 30 7.53 0.000 114 
5L -10, -98, 28 6.97 0.000 10 
6R 28, -92, 22 6.91 0.000 45 
6L -24, -86, 32 5.02 0.031 3 
7aR 32, -92, 16 6.66 0.000 66 
7aL -24, -96, 22 6.37 0.000 27 
7bR 32, -90, 14 6.19 0.000 33 
7bL -24, -96, 24 7.73 0.000 26 

Figure 4.12 Conjunction analysis of Motion and Stereo. The statistical map shows the region 
V3A sensitive to motion and to stereo. 
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4.4.6 StereoMotion against Motion and Stereo. 

The present contrast was designed to test if the region sensitive to stereo and 

motion become more active when motion and stereo stimulus are presented at the 

same time rather than when' the individual stimuli are presented in isolation. In 

other words, this contrast looks for a non-linear relationship in the joint 

stimulation which may suggest that this joint stimulation· produces a bigger 

response to that produced by the average of the individual stimulations. Given that' 

the location of the stereo-motion sensitive area (V3A) was identified in the 

previous contrast, the present analysis was restricted to those voxels positioned 

under a sphere of radius 8mm around the locations reported in figure 4.12. This 

analysis is also called Small Volume Correction (WDCN 1997). The results of 

the SVC analysis suggest that V3A is more responsive when stereo and motion 

are presented at the same time (fig. 4.13). 

Sub'ect 
4R 
4L 
5R 
5L 
6R 
6L 
7aR 
7aL 
7bR 
7bL 

V3A 

Location 
30, -88,22 
-28, -88, 24 
14, -94, 30 
-10, -98, 28 
28, -92, 22 
-24, -86, 32 
32, -92, 16 
-24, -96, 22 
32, -90, 14 
-24, -96 24 

Z-Score 
6.16 
4.99 
5.79 
5.02 
3.18 
Not 
3.55, 
4.46 
6.04 
6.08 

P corrected 
0.000 
0.000 
0.000 
0.000 
0.071 

significant 
0.028 
0.002 
0.000 
0.000 

Figure 4.13 StereoMotion against Stereo + Motion. 

The results found in the statistical analysis of the activations observed in the 

present experiment can be summarised as: motion stimuli activates V5 region in 8 

out of 8 of the scanned subjects. Stereo condition activates V3B region in 4. 

However, in the contrast Stereo against Motion, only two' subjects showed. 

significant activation in theV3B region. Furthermore, in five subjects, V3A was 

sensitive to both stereo and motion stimuli, showing a bigger response when the 

stimuli were presented together. 
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Using the anatomical data of the most sensitive subject, a summary of the main 

activation is shown in figure 4.14 

Figure 4.14. Axial, sagittal and coronal views of activations at point [0 - 90 
2]MNI. The anatomical images are used to show the location of the regions 
sensitive to: Motion V5 (blue), Stereo V3B (red) and Stereo and Motion V3A 
(yellow). 

4.5 Effective Connectivity Analysis. 

Having identified the cortical regions sensitive to each stimulus, the next question 

to answer is how to explain the relationships between regions? The answer to this 

question can be formulated as an effective connectivity analysis. The two main 

parts of an effective connectivity analysis are the anatomical model-(which areas 

are connected) and the mathematical model (how these areas 'are connected). 

Based on the observed data, the following section proposes and assesses a 

hypothesis of effective connectivity. 
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4.5.1 Anatomical model. 

From studies in monkey it is known that the visual system can be functionally 

divided into two main streams. The ventral stream which projects over the 

occipito-temporal cortex and the dorsal stream which projects over the occipito­

parietal cortex. The ventral stream ('what') is generally associated with object· 

information processing and the dorsal stream ('where') is associated with spatial 

and three dimensional information processing (Mishkin, Ungerleider et al. 1983; 

Creem and Proffitt 2001). 

Moreover, the dorsal stream can be subdivided into two branches, both of them 

starting in the primary visual cortex and ending in the parietal cortex (Zeki and 

Shipp 1988; Felleman and Van Essen 1991). The first branch projects from the 

primary visual cortex to the superior parietal cortex through the V5N5A visual 

areas (Podzebenko, Egan et al. 2002). The second one goes from the primary 

visual cortex to the intraparietal cortex through the V3N3A visual areas. This 

stream is related with the perception of three dimensional structures (Faillenot, 

Decety et al. 1999). 

Although there is no anatomical evidence of the projection from V5 to V3A, the 

hypothetical model of effective connectivity shown in figure 4.15 is proposed to 

explain the cortical interaction observed in the present experiment. It is important 

to note that because only eighteen slices, covering most of the visual cortex, were 

used to acquire data, most of the parietal cortex was missed and nothing can be 

deduced about its activations. Therefore, parietal regions are not included in the 

proposed model. 

Figure 4.15 Anatomical model. 
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4.5.2 Mathematical model. 

In order to assess this hypothesis of effective connectivity (Friston, Holmes et al. 

1994), path analysis was made using the time series from the regions involved. 

For that reason, the data of the most sensitive subject (subject 7aR) was used for 

the present analysis. The first principal component time series of a sphere 8mm 

radius around the voxel with highest activation of each cortical region is shown in 

figures 4.17 and 4.18. The NARMAX algorithm was applied to identify the 

interaction terms (Le. non linear relationships) among regions. Using an 

autoregressive linear model of dynamic order=O and polynomial order=2, the 

forward regression orthogonal algorithm identified the model shown in figure 

4.16. An interactive term (V5*V3B) was suggested by NARMAX to explain the 

response activation of the joint activity ofV5 and V3B. 

After the expansion of the model to include the interaction term (V5*V3B) 

suggested by NARMAX, the parameters of the model were identified using the 

Analysis of Moment Structures software package (AMOS ver. 4.0). As an 

_ indicator of correctness, the probability level achieved was ne"ar to one. 

49 

e 

...--___ --'--'.3 

VS*V38 

7.40 

Figure 4.16 Effective connectiviy model. The' model identified. using the 
NARMAX algorithm was evaluated using SEM (AMOS 4.0). The model fitted 
the data (.i=0.2, dof=2, p > 0.1) 
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Figure 4.17 Time series. Blue time series corresponds to the hemodynamic model estimated 
from the experimental stimulation paradigm. The time series were normalised to mean zero 
and standard deviation one. 
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V3B 
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Figure 4.18 Time series. Blue time series corresponds to the hemodynamic model estimated 
from the experimental stimulation paradigm. 
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4.6 Conclusions 

A conclusion of our research is that area V5 in humans appears to be functionally 

dissimilar to MT in monkeys, in the sense that the V5 regions of the subjects 

scanned in this study were not sensitive to t~e stereo stimulus used. 

Our results suggest that the V3A region is sensitive to both motion and stereo 

disparities. Our experiments also suggest that the V3B region is sensitive to stereo 

disparities, how~ver its activation was not consistent over all subjects. 

A model of effective connectivity that accounts for the functional architecture of 

stereo vision was presented. The non-linear relationships under the model were 

identified applying a Non-linear Auto-Regressive moving Average with 

eXogenous variables algorithm (NARMAX). The validity of the proposed model 

was tested statistically ~sing structural equation modelling. 

However, the structure of the model was derived from the data and not from the 

anatomy. This represents a problem of circularity since the functional model relies 

on the anatomical model and the structure of the model can not be modified for 

the sake of a better goodness of fit. Nevertheless, this analysis of effective 

connectivity was useful to exemplify the application of SEM and NARMAX to a 

real data set of fMRI time series. 

One possible explanation for the inter subject variability or unreliability of the 

activation in the V3B area during the stereo condition was attributed to the fact 

that all the subjects reported that the 'intensity' of the stereo precept declined over 

the 21 s. presentation time, however no evidence of it was found in the data. We 

have no explanation for this 'adaptation' but in the study that follows we attempt 

to prevent its occurrence by periodically alternating the depth of the ,stimulus from . 

convergent to divergent disparities. 

- 131 -



Chapter 5 

Experiment 2 

SereoMotion in Depth 

Abstract. 

Functional mag~etic resonance imaging was used 

to identify the stereo sensitive regions of the 

brain. Red/green random dot anaglyph 

stereo grams were used to create four squares 

lying in two different planes. The squares were 

periodically alternating in depth from convergent 

to divergent disparities. Although subjects 

reported seeing the squares moving in depth, the 

inter-subject variability of the activations suggests 

that the stereo. stimulus was dominated by the 

control conditions. However, consistent with the 

results of the previous experiment, evidence of 

sensitivity of the areas V3B and V3A to stereo _ 

stimulus was found. 
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5.1 Introduction. 

The results of the previous experiment suggested the existence of a cortical region 

sensitive to stereo disparities. According to its anatomical location, this cortical 

region lays more posterior to V5 region and corresponds to the location of V3B. 

The V3B region has been mainly associated with the processing of kinetic 

boundaries and second order motion (Orban, Dupont et al. 1995; Dupont, De 

Bruyn et al. 1997; Van Oostende, Sunaert et al. 1997; Smith, Greenlee et al. 

1998a; Seghier, Dojat et al. 2000). 

From the preVIOUS experiment the hypothesis is that V3B and V3A are both 

sensitive to stereo disparities. The main goal of the present study is to re-examine 

the cortical regions sensitive to stereo disparities, see figure 5.1. 

V3B 

R [ 38, -88, 0] 
L [ -36, -88, 2] 

Figure 5.1 Stereo sensitive regions. 

V3A 

R [ 32, -92, 16] 
L [ -24, -96, 22] 

Although the activations were not consistent over all subjects, a possible 

explanation of the inter-subject variability is that all the subjects reported that the 

'intensity' of the stereo perception declined over the 21s presentation time, 

however no evidence of it was found in the data. We have no explanation for this 

'adaptation'. In an attempt to prevent this happens, in this e~periment the 

disparities of the stimulus were changed over time by periodically alternating the 

depth of the stimulus from convergent to divergent disparities. 

- 132 -



Chapter 5: Stereo Motion in Depth. 

5.2 Experiment Design. 

All subjects were given 4 sequential scans each lasting 9 min. (25 epoch) with a 5 

min interscan interval to permit subjects to rest. One hundred and eighty image 

volumes were obtained in each run. Each condition lasted 21 s., giving 7 multi slice 

volumes per condition (TR=3 s.). A dummy condition of a blank screen was 

presented during the first 15s. (5 scans) of each run to eliminate magnetic 

saturation. To avoid any order effects the conditions were counterbalanced using a 

Latin Squares design (figure 5.2). 

Runl 

Run2 

Run3 

Run4 

StereoMotion in depth with random motion. D Stationary. 

• Random motion. D Lateral motion. 

• StereoMotion in depth. • Stereo still. 

Figure 5.2 Stimulation Sequences. 

The subjects were instructed to fixate a point (0.3 deg. of radio) in the middle of 

the screen (circular field of view 13 deg.) and foveate while presented with the 

visual stimuli. There were seven conditions of visual stimulation (figure 5.3). 

- 133 -



Chapter 5: Stereo Motion in Depth. 

a) Rest: From the experience of the previous experiment, in which some subjects 

reported 'tired eyes' and sometimes tears. The rest condition was designed as a 

relaxation period. In the first 15 seconds of this condition a blank screen was 

displayed and the subjects were instructed to blink or even to close their eyes for a 

couple of seconds. In the second stage of the condition (from second 15 to 21), a 

fixation point was displayed in the centre of the screen. The appearance of the 

fixation point was used to attract the attention of the subject and to get him/her 

prepared for the coming stimulus. This rest condition was taken as a base line .. 

b) Stationary: One thousand and twenty four dots (with radio 0.1 deg.) were 

randomly displayed over the screen (mean dot density 1.5 dot dei2). The absence 

of dots in the central axes (0.8 deg. wide) of the screen defined four doted textured 

squares. Each square was located in one quadrant of the visual field. A fixation 

point was displayed in the centre of the screen. The aim of this condition was to 

activate the visual cortex areas sensitive to the luminance produced by the dots. 

c) Random motion: The condition stationary was modified letting each dot move 

randomly. In order to maintain a uniform distribution of the dot density, the 

random motion was implemented by specifying a reference point for each dot, 

then the position of the dots between frames was determined randomly under the 

area defined by a circle of radius 1 deg. with its centre in the reference locations. 

This stimulus was designed as a control condition for StereoMotion in depth with 

random motion condition. 

d) Lateral motion: The four squares defined in the stationary condition moved 

laterally in the following manner. When squares in the quadrant 1 and 3 move to 

the right, squares in the quadrant 2 and 4 move to the left and vice versa. The 

speed of displacement was set constant to 0.53 deg. S·I. This stimulus was 

designed as a control condition for StereoMotion in depth condition. 

e) Stereo still: This condition was designed to stimulate binocular neurones. Four 

squares were displayed at two different depths (red/green anaglyph stereogram). 
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Squares in quadrants 1 and 3 lay in the same plane behind the fixation point ( 

0.172 deg.). Squares in quadrants 2 and 4 lay in the same plane in front of the 

fixation point ( -0.172 deg.). 

t) StereoMotion in depth: The pairs of squares laying in two different planes 

changed their depth smoothly from -0.172 to 0.172 deg. and vice versa (0.53 deg. 

S·I). The variation of .disparities over time was introduced to avoid any habituation 

effects occurred in the previous experiment. In the training sessions some of the 

. subjects reported that they perceived the squares moving laterally instead of 

seeing the squares moving in depth. This visual effect was attributed to the fact 

that some individuals are 'motion dominant'. In other words, for motion dominant 

subjects the change in position of the stereoscopic pair of dots (disparity) was 

stronger that the binocular fusion itself. Although this problem can be avoided by 

randomly locating the position of the dots between frames (see next condition), 

this condition was kept in order to investigate this phenomenon. 

Because motion in depth not only implies the processing of stereo disparities but 

also the computation of the motion gradient, this condition is expected to activate 

motion sensitive regions. We hypothesised that the subtraction of Lateral motion 

condition (d) from StereoMotion in depth condition should reveal the stereo 

sensitive regions. 

g) StereoMotion in depth with random motion: This condition is a modification . 

of the previous one (t). The introduction of random motion tends to eliminate the 

effect of lat_~ral motion, since no directional clues are involved in the stimulus. 

With the subtraction of random motion condition (c), from StereoMotion in depth 

with random motion, the stereo sensitive regions were expected to be identified. 
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Rest Stationary 

Random Motion Lateral Motion 

Stereo Still StereoMotion in Depth 

Figure 5.3 Visual stimuli. Subjects viewed the stimuli through the red/green glasses to present 
anaglyph stereo stimuli. The white arrows in the displays represent the direction in which the 
dots were moving . 
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5.3 Methods. 

5.3.1 Subjects. 

Eight healthy right~handed volunteers (3 fe~ale,5 male) aged from 20 to 60 years 

participated in the present study. Five of the subjects were the same as those 

scanned in the previous experiment. The subjects had a preliminary session 

outside the magnet to get familiar with the visual stimulation. All subjects gave 

informed written consent. 

5.3.2 Stimulus presentation. 

Subjects lay on their back in the magnet. They wore red/green anaglyph glasses 

and looked via a mirror angled at -45° from their visual axes at a back illuminated 

screen located just outside the magnet. The viewing distance was 2.4 m. Stimuli 

were projected on to the screen using an EPSON (EMP-7300) projector driven by 

a G3 Mac running Psychophysics Tool Box ver. 2.44 (Brainard 1997; Pelli 1997) 

under MATLAB ver. 5.3. 

The mean luminance of the image was 18 cd/m2
• Although the stimuli were 

displayed at a video frame rate of 60 Hz, the image was only updated on every 

10th frame, producing an effective frame rate of 6 Hz. 

5.3.3 Data acquisition. 

Subjects were scanned in a 1.5 T whole-body MRI scanner (Eclips Marconi 

Systems) with BOLD contrast echo planar imaging (TR= 3s, TE= 40 ms, 128 

x128 voxel, voxel size 1.875 x 1.875 x 4 mm.). Eighteen slices covering the 

whole visual cortex were acquired. 
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5.3.4 Data analysis. 

The data was pre-processed and analysed using SPM99 (Wellcome Department of 

Cognitive Neurology). The first five scans of each run were discarded in order to 

exclude magnetic saturation artefacts. All volumes were slice timed with respect 

to the first slice. Motion correction was made taking as a reference the first 

volume of the first run. The data was normalised in the MNI (Montreal 

Neurological Institute) stereotaxic space and smoothed using a 6 mm FWHM (full 

width at half maximum) isotropic Gaussian kernel (WDCN 1997). 

Data analysis was performed using a boxcar design matrix of the different 

conditions convolved with the hemodynamic response function. Specific effects 

were tested by applying the corresponding linear contrast to the parameters 

obtained applying General Linear Model using the design matrix sho~ in figure 

5.4 (see also experiment design). 

200 

400 

600 

5 10 1520 25 

Figure 5.4 Design matrix. The design matrix used in the present analysis is shown in the 
conventional SPM display. Each block represents one sequence (run). Each column of the 
block represents one of the experimental conditions in the following order (stationary, 
random motion, stereo-motion in depth, stereo-motion in depth with random motion, lateral 
motion and stereo still). The white squares shows the periods in which the related condition 
was presented. The four columns at the end of the design matrix represent each of the 
independent sequences. Rows represents scans (700 scans = 7 scans per condition * 25 
conditions oer seauence * 4 seauences). 
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Voxel values were normalised to the Global Mean Intensity (GMI) using global 

effects (scaled), which scales each image within a session to 100/(mean of GMIs 

of the session). The data was temporally smoothed using an hrf low-pass filter 

(WDCN 1997). 

The statistical parametric maps (SPMs) were then interpreted by referring to the 

probabilistic behaviour of Gaussian random fields: The threshold adopted was P < 

0.05 (corrected), (WDCN 1997). Group analysis (random effects) was not 

developed due to the small number of subjects scanned (Friston, Holmes et al. 

1999). 

5.4 Results. 

In the present study, nine analyses were performed in order to identify the areas 

involved in each particular stimulus. For reasons of space, individual analysis 

outputs are not presented, instead the results are reported as a synopsis through the 

use of condensed statistical tables which shows a summary of the relevant 

statistical parameters of the regions of activation. In the same manner, the 

statistical map of the most sensitive subject is presented. 

Note: Because the stereo still condition was included in the stimulation paradigm 

after the first scan session, the contrasts involving this condition are not available 

for the first three subjects. 
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5.4.1 Random motion against Stationary. 

This contrast compares the activation produced by the dots moving randomly with 

that produced by the stationary dots. Consistent with other studies (McKeefry, 

Watson et al. 1997; Smith, Greenlee et al. 1998a), random motion activates VI 

and V5 regions. The activation was more consistent in V5 (7 subjects) than in VI 

(5 subjects). There was neither consistent bilateral activation nor consistent 

hemisphere activation (fig. 5.5). 

Sub 'ect 
lR 
lL 
2R 
3R 
5L 
7R 

Sub'ect 
lR 
IL 
2R 
3R 
4R 
4L 
5R . 
5L 
6L 
8R 
8L 

~t~]:l~~H 
:'f~)j~ ~t+~ 

VI 

Location Z-Score 
14, -98, -4 6.41 

-14,-94, -10 6.30 
12, -92, 6 6.53 
2, -96, 2 . 6.10 

-12, -98, 10 5.72 
6 -82 -6 5.75 

V5 

Location Z-Score 
46, -70,2 7.24 
-48, -68, 4 5.71 
40, -76, 0 5.40 
46, -80, -2 6.68 
42, -72, -2 6.19 
-46, -76, 2 6.02 
44, -74, 2 7.51 

-32, -94, -2 6.04 
-48, -76, 0 5.11 
44, -84, 2 (Inf) 

-50, -76, 10 7.01 

P corrected Cluster size 
0.000 106 
0.000 359 
0.000 202 
0.000 34 
0.001 18 
0.000 37 

P corrected Cluster size 
0.000 39 
0.001 21 
0.005 4 
0.000 58 
0.000 54 
0.000 27 
0.000 93 
0.000 20 
0.022 5 
0.000 105 
0.000 241 

Figure 5.5 Random motion against Stationary contrast. The statistical map shows the areas 
sensitive to random motion. The activation includes VI and V5 regions. The table shows the 
locations of the activations and the statistical parameters. 
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5.4.2 Lateral motion against Stationary. 

This contrast compares the activation produced by the dots moving laterally with 

that produced by the stationary dots. Consistent with other studies (Watson, 

Myers et al. 1993; McKeefry, Watson et al. 1997; Uusitalo, Virsu et al. 1997; 

Sunaert, Van Hecke et al. 1999;, Friston and Buchel 2000), lateral (directional) 

motion activates V5 region in both hemispheres. It is important to note that 

although random motion activated V5, lateral motion produces a stronger 

activation in terms of activated area (fig. 5.6). Contrary to our expectation, none 

of the subjects showed activation in the V3A region. 

V5 

Sub'ect Location Z-Score P corrected Cluster size 
1R 46, -70, 2 (Inf) 0.000 120 
1L -48, -66, 6 (Inf) 0.000 138 
2R 44, -84,10 6.08 0.000 12 
4R 50, -74, 2 (Inf) 0.000 135 
4L -42, -74, 0 5.37 0.006 8 
5R 42, -74, 0 (Inf) 0.000 212 
5L -36, -84,4 7.54 0.000 168 
6R 44, -72, 6 5.96 0.000 42 
6L -48, -70, 6 5.04 0.029 2 
7L -44, -70,-6 7.84 0.000 105 
8R 46, -84, 2 (Inf) 0.000 328 
8L -52, -74, 4 In 0.000 363 

Figure 5.6 Lateral motion against Stationary contrast. The statistical map shows the areas sensitive 
to directional motion. The activation includes V5 region. The table shows the- locations of the 
activation and the statistical parameters. 
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5.4.3 Stereo still against Stationary. 

The present contrast compares the activation during the presentation of the 

squares in two different planes with the activation during the squares lying in one 

plane (zero disparities). With this contrast, the activation of the stereo sensitive 

regions was expected. Only one subject showed significant activation in this 

contrast, showing activation in V3B and V3A regions (fig. 5.7). Although the 

activations showed by the subject 4 were not significant at p corrected < 0.05, 

they were significant at this level using a small volume correction (WDCN 1997). 

It is important to remember that this contrast is available only for 5 subjects. 

Sub'ect 
lR 
lL 
2 

4R 
4L 
5 
6 

Sub'ect 
lR 
1 L 
2 

4R 
4L 
5 
6 

Location 
40, -88, 6 

-28, -86, 10 
Contrast 

44, -74, -2 
-26,-92, -14 

Contrast 
Contrast 

Location 
28, -78, 24 
-24, -96, 20 

Contrast 
30, -82, 24 
-22, -90, 26 

Contrast 
Contrast 

V3B 

Z-Score 
7.18 
6.37 
not 

4.53 
4.21 
not 
not 

V3A 

Z-Score 
5.74 
6.28 
not 

4.20 
3.93 
not 
not 

P corrected 
0.000 
0.000 

available 
0.225 
0.586 

available 
available 

P corrected 
0.001 
0.000 

available 
0.607 
0.910 

available 
available 

Cluster size 
244 
122 

146 
29 

Cluster size 
28 
122 

29 
35 

Figure 5.7 Stereo still against Stationary contrast. The statistical map shows the areas sensitive to 
stereo. The activation includes V3B and V3A regions. For subjects 2,5,6 stereo still condition 
was not available. 

- 142 -



Chapter 5: Stereo Motion in Depth. 

5.4.4 StereoMotion in depth against Lateral motion. 

This contrast compares the activation during the presentation of the squares 

moving in depth with the activation during the squares moving laterally. Because 

the condition StereoMotion in depth involves directional motion (V5,V3A) and 

stereo disparities (V3A,V3B), with this contrast, the activations of the stereo 

sensitive region V3B was expected. Only one subject showed significant 

activation in this contrast (fig. 5.8). V3B was activated bilaterally and V3A 

showed activation in the left hemisphere. It is important to clarify that subject 1 

was the same subject who showed a strong activation in the V3B under stereo 

stimulation in the previous experiment. 

Sub'ect 
lR 
lL 

; .~?~:~ :~};.;;~ .:~~~~ 

Location 
36, -80, -2 
-38 -90 6 

Location 
-26 -82 30 

.- .... ... 

V3B 

Z-Score 
5.98 
5.20 

V3A 

Z-Score 
5.35 

P corrected 
0.000 
0.011 

P corrected 
0.005 

Cluster size 
38 
4 

Cluster size 
14 

Figure 5.8 StereoMotion in depth against Lateral motion. The statistical map shows the areas 

sensitive to stereo. The activation includes V3B and V3A regions. 
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5.4.5 Stereo Motion in depth against Stereo still. 

This contrast compares the activation during the presentation of the squares 

moving in depth with the activation produced by the squares in two different 

planes. Because the condition StereoMotion in depth involves directional motion 

and stereo disparities (V5, V3A V3B), with this contrast, the activation of the V5 

motion sensitive region was expected. All the subjects showed significant 

activation (fig. 5.9). 

Sub'ect Location 
1R 44, -68, 2 
lL -54, -66, 6 
2 Contrast 

3R 40, -70,-4 
4R 48, -66, 6 
4L -44, -72,0 
5 Contrast 
6 Contrast 

7L -44, -70, 6 
8R 40, -80, 4 
8L -50 -76 6 

V5 

Z-Score 
(Inf) 
(Inf) 
not 
6.11 
6.14 
6.94 
not 
not 
5.89 
(Inf) 
6.95 

P corrected 
0.000 
0.000 

available 
0.000 
0.000 
0.000 

available 
available 

0.000 
0.000 
0.000 

Cluster size 
222 
259 

14 
41 
32 

19 
237 
127 

Figure 5.9 StereoMotion in depth against Stereo still contrast. The statistical map shows the areas 

sensitive to directional motion. The activation includes V5. 
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5.4.6 StereoMotion in depth with random motion against Random motion. 

This contrast compares the activation during the presentation of the squares 

moving in depth with dots moving randomly against the activation during the dots 

moving randomly. Because the condition StereoMotion in depth with random 

motion involves random motion (VI and V5), directional motion (V5 and V3A) 

and stereo disparities (V3A and V3B), with this contrast, the activation of the 

stereo sensitive region V3B was expected. Only one subject showed significant 

activation in this contrast. V3B showed significant activation in right hemisphere 

(fig. 5.10). 

V3B 

Z-Score P corrected Cluster size 
6.56 0.000 33 

Figure 5.10 StereoMotion in depth with random motion against Random motion contrast. The 

statistical map shows the areas sensitive to stereo stimulus. The activation include V3B region. 
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5.4.7 StereoMotion in depth with random motion against Lateral motion. 

This contrast compares the activation during the presentation of the squares 

moving in depth with dots moving randomly against the activation during the dots 

moving laterally. Because the condition StereoMotion in depth with random 

motion involves random motion (VI and V5), directional motion (V5 and V3A) 

and stereo disparities (V3B and V3A), with this contrast, the activations from 

areas sensitive to random motion (VI) and to stereo disparities (V3B) were 

expected. Four subjects showed significant activation in VI. However none of 

them showed activation in V3B (fig. 5.11). 

VI 

Sub 'ect Location Z-Score P corrected Cluster size 
lR 14,-96, -4 7.08 0.000 178 
lL -12,-104, -6 5.79 0.001 25 
2R 4, -90, -6 6.74 0.000 214 
3R 4, -96, 6 6.21 0.000 25 
6R 2 -88 -6 5.58 0.002 36 

Figure 5.11 StereoMotion in depth with random motion against Lateral motion contrast. The 

statistical map shows the areas sensitive to random motion stimulus. The activation includes VI 

region. 
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5.4.8 StereoMotion in depth with random motion against Stereo still. 

This contrast compares the activation during the presentation of the squares 

moving in depth with dots moving randomly against the activation during squares 

lying in two different planes. With this contrast, the activations from areas 

sensitive to random motion (VI) and to directional motion (V5 and V3A) were 

expected. As expected VI, V5 were activated by the motion stimuli (fig. 5.12). 

VI 

Sub'ect . Location Z-Score P corrected Cluster size 
lR 12, -98,-6 5.70 0.000 46 
lL -12,-102, -4 5.33 0.006 10 
2 Contrast not available 

3R 4,-96,4 5.62 0.002 47 
3L -4, -96,-4 6.62 0.002 40 
5 Contrast Not available 
6 Contrast not available 

V5 

Sub'ect Location Z-Score P corrected Cluster size 
lR 44, -68, 2 (Int) 0.000 105 
lL -52, -66, 6 (Int) 0.000 110 
2 Contrast not available 

3R 44, -80,-2 7.26 0.000 94 
4R 50, -68, 6 6.95 0.000 107 
4L -46, -74, 0 6.42 0.0 49 
5 Contrast not available 
6 Contrast not available 

8R 44, -82, 6 7.56 0.000 36 
8L -50 -76 6 6.05 0.000 58 

V3A 

Sub'ect Location Z-Score P corrected Cluster size 
2 Contrast not available 

3L -20,-100,16 5.98 0.000 46 
5 Contrast not available 
6 Contrast not available 

8R -18, -98, 22 5.27 0.011 5 

Figure 5.12 StereoMotion in depth with random motion against stereo still contrast. The activation 

includes VI, V5 and V3A regions. 
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5.4.9 Rest against Action. 

Although this contrast was not originally pianned in this study, its unexpected 

results are worth reporting as a significant finding. This contrast compares the 

neural activity during the rest period with that under visual activity. For this 

purpose a dummy condition composed of a sum of all the conditions (stationary, 

random motion, lateral motion, etc.) was created. This dummy condition was 

called Action. 

Agreeing with previous reports (Corbetta, Akbudak et al. 1998; Coghill, Sang et 

al. 1999; Taylor, Schmitz et al. 2000), a consistent activation between all the 

subjects was found in occipital, temporal and parietal areas. This finding suggests 

that some parts of the brain become active when the subjects are inactive. No 

general accepted theory exists to explain this phenomenon. However, it is 

believed that during rest periods the brain moves into an attentional mode, i.e. it is 

checking for new stimuli in order to be ready to react to any event. 

For instance, Raichle (Raichle, MacLeod et al. 2001) defined this mental state as 

the default mode of brain function in which ''the posterior cingulate and medial 

parietal cortices may well be the 'sentinels', which, when beam of light move over 

them, cry 'who goes there' and call the fovea to the spot". 

Figure 5.13 shows the regions of activation for the Rest against Action (red) and 

for the Action against Rest (blue) contrasts. 
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-1 

20 40 60 80 100 120 140 160 180 

Figure 5.13 Rest against Action. At the top, axial, coronal and sagital views of the 
structural data are used to show the location of the activations. The areas of activation 
during rest and action conditions are shown in red and blue respectively. At the bottom, 
the characteristic mean time series of each group of activations are displayed. As it can be 
appreciated in the picture, the activation of the regions is anti-correlated in time. 

5.5 Conclusions 

In the present stUdy, three maIn experimental conditions were designed to 

stimulate binocular neurones. Stereo still, Stereomotion In depth and 

Stereomotion in depth with random motion conditions were contrasted with their 

corresponding control conditions~ revealing the following results. 
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Stereo still against Stationary contrast revealed bilateral activation in the expected 

visual areas (V3B and V3A) in two of the five subjects. Stereo motion in depth 

against Lateral motion activated V3B bilaterally and V3A in the left hemisphere 

in one of the subjects. Stereomotion in depth with random motion against the 

random motion contrast showed activation in V3B in the right hemisphere in one 

subject. It is important to clarify that the subject mentioned above was the same 

who showed the highest activation in these areas in the previous experiment. 

These activations suggest that the stereo region V3B is sensitive to stereo 

disparities, and it is functionally and spatially independent of V5 (motion 

sensitive) area (fig. 5.14). However not enough evidence among the subjects was 

found to confirm this hypothesis of the stereo sensitivity ofV3B. 

Motion sensitive region. 

5.16 mm
3 !.;.;: .... :~: .. :i.::: : .t:~~~k: 

4~ mm' ~ ~£I:~ 
VS 

R [46, . 70, 2) 
L [. 48, · 66, 6) 

Stereo sensitive region. 

V3B 

R [ 40, ·88, 6) 
L [.28, .86, 10) 

Figure 5.14 Functional defined regions, Regions of activation for motion and stereo 
stimuli were identified using the data of the most sensitive subject. Left panel shows the 
location of the motion sensitive visual area (V5). Right panel shows the location of the 
stereo sensitive visual area (V3B). Red circles helps to show the different location of 
each region. The distance between centres of each cluster are 28 mm. and 18 mm. for the 
left and right activation respectively. 

Although the subjects reported to perceiving the squares moving in depth, the 

inter-subject variability of these results suggest that the stereo stimulus was very 

weak and the control conditions dominate the activations. The question which 

arises is how to increase the strength of stereo stimuli? 
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It has been demonstrated that attentional requirements can selectively modulate 

the response of a given stimulus (Corbetta, Miezin et al. .. 1991; Buchel, Josephs et 

al. 1998; Friston and Buchel 2000). Therefore, one alternative to increase the. 

strength of the response to the stereo. stimulus is to introduce an attentional 

requirement, i.e. design an specific task in which the subject has to do something 

more that just look, for example, detecting a feature in the display. 

In the study presented in the next chapter an attentional requirement was included 

in the paradigm through the use of an square (lying in front of the background) 

moving from left to right. The subjects were instructed to perform pursuit eye 

movement to follow the path of the ,square with their eyes. 

Finally, an unexpected finding of this' study was the identification of a cortical 

region on the occipital, temporal and parietal areas, in which activation is 

correlated with the rest condition. Although this phenomenon has been reported 

previously, no generally accepted theory exists to explain its causes. One possible 

explanation for this finding in our particular study is that during rest periods the 

subjects freely moved their eyes. Then, the activation observed may be produced 

by the network of functional areas which control eye movements (Darby, Nobre et 
, \ 

al. 1996; Corbetta, Akbudak et al. 1998; Petit and Haxby 1999; Nobre, Gitelman 

et al. 2000). 

Unfortunately, this hypothesis could not be tested because the areas involved in 

the eye movement network (frontal eye field, supplementary eye field, 

intraparietal sulcus and parietal eye field) were not included in the data we 

acquired in our experiment. Because the nature of this finding is out of the scope 

of this thesis, the exploration of this activation is proposed as a future project. 
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Chapter 6 

Experiment 3 

Global Stereo Tracking 

Abstract. 

This chapter explores the sensitivity of binocular 

neurones to a global stereo tracking stimuli. 

Red/green random dot anaglyph stereo grams were 

used to define a square (lying in front of the 

background) moving from left to right and vice 

versa. A similar display (square defined by 

luminance) was used as a control condition. The 

subjects were instructed to perform pursuit eye 

movement to follow the path of the square with 

their eyes. Consistent activations in V3A, V3B 

and parietal regions were revealed by the stereo 

stimuli. The activation of V3B was not generally 

consistent with the profile reported by other 

authors. However, we attribute its activation to 

the stereoscopic motion component induced by 

the global stereo tracking task. 



Chapter 6: Global Stereo Tracking. 

6.1 Introduction. 

Results from our previous experiments suggest the existence of two cortical 

regions sensitive to stereo disparities (V3A and V3B). In agreement with other 

studies, V3A was sensitive not only to stereo stimuli, but also to motion stimuli 

(Tootell, Mendola et al. 1997; Hasnain, Fox et al. 1998; Mendola, Dale et al. 

1999). Contrary to the consistency of V3A region with respect to its functional 

profile as reported in the literature, only one study (Backus, Fleet et al. 2001) 

reports V3B as a region sensitive to stereo disparities, whereas some studies 

associate this region with the processing of kinetic boundaries (boundaries 

between adjacent areas in which motion is in the opposite direction) and also to 

second order motion (motion than cannot be identified by tracking the position of 

spatial structures) (Orban, Dupont et al. 1995; Dupont, De Bruyn et al. 1997; Van 

Oostende, Sunaert et al. 1997; Smith, Greenlee et al. 1998a; Seghier, Dojat et al. 

2000). The conclusions made by this study supports the first theory, since neither 

kinetic boundaries nor second order motion were used in our stimuli experiments. 

On the other hand, the inter-subject variability of our experiments suggests that 

although the stereo activation was anatomically consistent in two subjects, it was 

too weak to be identified consistently over all subjects. One possible way to 

increase the response is to introduce an attentional requirement in the 

experimental conditions. It has been demonstrated that attentional requirements 

can selectively modulate the response to a given stimulus (Corbetta, Miezin et al. 

1991; Buchel, Josephs et al. 1998). For example, using radial motion, Friston et af 

(Friston and Buche12000) showed how the activity in V5 was increased when the 

subjects were instructed to detect changes in the speed of the motion rather than 

when they were watching the stimulus passively. 

Our ideal in the design of the present experiment was to increase t~e response of 

the stereo sensitive regions by requiring the subjects to perform a task of Global 

Stereo Tr~cking (GST). The basic idea behind this stimulus was to define a square 

(lying in front of the background) moving from left to right and vice versa. 
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The subjects were instructed to perform pursuit eye movement to follow the path 

of the square with their eyes. The advantage of this paradigm is that, it is an active 

rather than a passive stimulus in which the success of the task depends on the 

continuous perception of the square, i.e. to follow the path of the square, it is 

necessary to involve the stereoscopic processing system. 

6.2 Experiment Design. 

Subjects were given 4 sequential scans each lasting 5.15 min. (10 epoch) with a 5 

min. interscan interval to permit subjects to rest. One hundred image volumes 

were obtained in each run. Each condition lasted 30s., giving 10 multislice 

volumes per condition (TR=3s.). A dummy condition of a blank screen was 

presented during the first 15s. (5 scans) of each run to control for magnetic 

saturation effects. The stimulation sequence is shown in figure 6.1. 

3DT 3DT 3DT 3DT 3DT 

Fixation 2DT 2DT 2DT 2DT 2DT 

Figure 6.1 Stimulation sequence. Dotted line represents the dummy condition displayed 
during the first 15 s. to avoid magnetic saturation. Two dimensional tracking (2DT) was used 
as a base line. Blue blocks represent the three dimensional tracking condition (3DT). 

The display contained one thousand and twenty four dots (with radio 0.1 deg. and 

zero disparity) distributed over the screen (mean dot density 1.5 dot deg-2
). The 

subjects were instructed to fixate on the right superior comer of a square (5.23 

deg. side long) moving laterally in the screen (13 deg. field of view). The square 

was moving from left to right and vice versa at 2.19 deg.sec-1
, each time that the 

square reached one edge of the screen it changed its direction. Dynamic random 

noise was used in order to remove the motion cues introduced by the chance in 

disparity (Hanazawa, Kawashima et al. 2000). There were two modalities to 

define the square, each one represents one experimental condition (fig. 6.2). 
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a) Two Dimensional Tracking (2DT): The square was luminance defined, its 

luminance (8.56 cd/m2) was lower that the background (18 cd/m2). This condition 

was used as a base line. 

b) Three Dimensional Tracking (3DT): The square was depth defined (red/green 

anaglyph stereogram), it laid at the front (-0.3 deg.) of the background (zero 

disparity). It is important to clarify that the square was moving in the plane XN, 

not in plane Z (motion in depth). 

·6.3 Methods. 

6.3.1 Subjects. 

Ten healthy subjects, nine right-handed and one left-handed volunteers (7 female, 

3 male) aged from 20 to 30 years participated in the present study. The stereo 

acuity of the subjects was measured using stereo vision test (RANDOT SO-002), 

all of them were below 40 sec of ARC. The subjects had a preliminary session 

outside the magnet to become familiar with the visual stim~lation. All subjects 

gave informed written consent. 

6.3.2 Stimulus presentation. 

Subjects lay on their backs in the magnet. They wore red/green anaglyph glasses 

and looked vi~ a mirror angled at -45° from their visual axes at a back illuminated 

screen located just outside the magnet. The'viewing distance was 2.4 m. Stimuli 

were projected on to the screen using an EPSON (EMP-7300) projector driven by 

a G3 Mac running Psychophysics Tool Box ver. 2.44 (Brainard 1997; Pelli 1997) 

under MATLAB ver. 5.3. The stimuli were displayed at a video fra~e rate of 60 

Hz. 
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Two dimensional tracking 

Three dimensional tracking 

Figure 6.2 Visual stimuli. Subjects viewed the stimuli through the red/green 
glasses to present anaglyph stereo stimuli. In order to exemplify the stimulus 
used, the central position of the square is displayed in the frames above. 
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6.3.3 Data acquisition. 

Subjects were scanned in a 1.5 T whole-body MRI scanner (Eclips Marconi 

Systems) with BOLD contrast echo planar imaging (TR= 3s, TE= 40 ms, 128 

x128 voxel, voxel size 1.875 x 1.875 x 4 mm.). Because some studies suggest the 

involvement of parietal regions in the processing of stereo information (Gulyas 

and Roland 1993; Hanazawa, Kawashima et al. 2000; Nishida, Hayashi et al. 

2001), the area of acquisition was expanded to cover these regions. Thirty two 

slices covering the whole brain were acquired (fig. 6.3). 

It is important to clarify, that no activations in parietal regions are expected due 

to either eye movements or attention modulations (Darby, Nobre et al. 1996; 

Corbetta, Akbudak et al. 1998; Petit and Haxby 1999; Nobre, Gitelman et al. 

2000), because the control condition was designed to counterbalance them. 

Figure 6.3 Data acquisition. 

6.3.4 Data analysis. 

The data was pre-processed and analysed using SPM99 (Wellcome Department of 

Cognitive Neurology). The first five scans of each run were discarded in order to 

exclude magnetic saturation artefacts. All volumes were slice timed with respect 

to the first slice. Motion correction was made 'taking as a reference the first 

volume of the first run. The data was normalised in the MNI (Montreal 

Neurological Institute) stereotaxic space and smoothed using a 6 mm FWHM (full 

width at half maximum) isotropic Gaussian kernel (WDCN 1997). 
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Data analysis was performed using a boxcar design matrix of the different 

conditions (2DT and 3DT) convolved with the hemodynamic response function. 

Specific effects were tested by applying the corresponding linear contrast to the 

parameters obtained applying General Linear Model using the design matrix 

shown in figure 6.4 (see also experiment design). The statistical parametric maps 

(SPMs) were then interpreted by referring to the probabilistic behaviour of 

Gaussian random fields. The threshold adopted was P < 0.05 (corrected), (WDCN 

1997). Group analysis (random effects) was not developed due to the small 

number of subjects scanned (Friston, Holmes et al. 1999). 

100 

200 

300 

400 
2 4 6 S 1012 

Figure 6.4 Design matrix. The design matrix used in the present analysis is shown in 
the conventional SPM display. Each block represents one sequence (run). Each column 
of the block represents one of the experimental conditions in the following order: 3DT, 
first derivative. The base line condition (2DT) is represented as the complement of the 
experimental conditions. The white squares shows the periods in which the related 
condition was presented. The four columns at the end of the design matrix represent 
each of the independent sequences. Rows represents scans (400 scans = 10 scans per 
condition * 10 conditions per sequence * 4 sequences). 

6.4 Res nits. 

In the present study, two analyses were performed in order to identify the areas 

involved in each particular stimulus. For reasons of space, individ~al analysis 

outputs are not presented, instead the results are reported as a synop~is through the 

use of condensed statistical tables which show a summary of the relevant 

statistical parameters of the regions of activation. In the same manner, the 

statistical map of the most sensitive subject is presented. 
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6.4.1 Three dimensional tracking against Two dimensional tracking. 

This contrast compares the activation produced by the moving square defined by 

depth with that produced by the moving square defined by luminance. Consistent 

with our expectations V3A, V3B and parietal regions were activated (fig. 6.5). 

Although we could not track the eye movements to assess how well the subjects 

were developing the" task, we do not believe that the observed activation were 

produced by saccadic eye movements because after both, the training session and 

the scan session, the subjects reported easily following the path of the square in 

2DT and 3DT conditions. 

On the other hand, studies in eye movements suggest the involvement of parietal 

areas in the execution of eye movements but not the involvement of V3A and 

V3B regions (Darby, Nobre et al. 1996; Corbetta, Akbudak et al. 1998; Petit and 

Haxby 1999; Nobre, Gitelman et al. 2000). 

Figure 6.5 Three dimensional tracking against Two dimensional 
tracking. The statistical map shows the areas sensitive to stereoscopic 
information. The activation includes V3A, V3B and parietal regions. 

Area V3A was activated bilaterally in 2 subjects, and in the right hemisphere of 5 

subjects (table 6.1). The right hemisphere dominance of the stereo activation in 

V3A is supported by the theory of right cerebral dominance in stereo vision 

(Howard and Rogers 1995). 

- 158 -



Chapter 6: Global Stereo Tracking. 

Sub'ect Location Z-Score P corrected Cluster size 
1R 32, -96, 16 5.65 0.002 21 
2R 30, -92, 24 6.20 0.000 16 
3R 28, -88, 16 5.09 0.029 3 
4R 34, -94, 16 5.62 0.003 4 
7R 34, -92, 22 6.25. 0.000 8 
8R 36, -86, 16 (Inf) 0.000 45 
8L -28, -96, 16 (Inf) 0.000 62 
lOR 32, -94, 16 (Inf) 0.000 116 
10L -28 -98, 14 In 0.000 546 

Table 6.1 Stereo sensitive region: V3A. The table shows the locations of the 
activations and the statistical parameters. 

Consistent with our previous results, area V3B was activated bilaterally in 5 

subjects, in the right hemisphere of 3 subjects and in the left hemisphere of 1 

subject (table 6.2). Since the pattern of activation was similar for both regions, it 

suggest a functional relationship between the activation on V3A and V3B. i.e. (see 

table 6.4). 

Sub'ect Location Z-Score P corrected Cluster size 
1R 34, -84,-6 6.25 0.000 36 
1L -26, -94, 2 5.80 0.001 25 
2R 40, -88,-4 6.98 0.000 38 
3R 38, -88,-4 5.29 0.011 6 
3L -28, -96,-10 5.54 0.003 4 
4R 40, -88, 0 5.81 0.001 16 
6R 28, -104,2 7.03 0.000 93 
7R 36, -92, 0 (Inf) 0.000 105 
7L -28, -102, 2 (Inf) 0.000 37 
8R 36, -92, 4 (Inf) 0.000 35 
8L -26, -100, 6 (Inf) 0.000 176 
9L -28,-100, -2 4.54 0.000 51 
lOR 38, -90, 2 5.88 0.000 3 
10L -28 -100 2 7.84 0.000 7 

Table 6.2 Stereo sensitive region: V3B. The table shows the locations of the 
activations and the statistical parameters. 

Consistent with other studies, parietal activation were found in this ~ontrast. The 

precuneus was activated in the right hemisphere' of 3 subjects c;lnd in the left 

hemisphere of 2 subjects (Gulyas and Roland 1993; Fortin, Ptito et al. 2000). The 

superior. parietal was activated in the right hemisphere of 2 subjects (Nishida, 

Hayashi et al. 2001),(table 6.3). 
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6.53 
5.84 
6.96 
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P corrected 
0.000 
0.001 
0.000 

Cluster size 
19 
11 

145 

Table 6.3 Stereo sensitive regions: Superior parietal lobule (grey rows) and 
precuneus. The table shows the locations of the activations and the statistical 
parameters. 

6.4.2 Two dimensional tracking against Three dimensional tracking. 

The subtraction of the activations produced by following the square defined by 

depth from the activation produced by the square defined by luminance, did not 

revealed any consistent activation, i.e. although statistically significant activations 

were found for this contrast, all of them were spread over the brain without any 

consistent location. 

6.5 Summary of activations. 

The following tables compare the functional profiles and the average Talaraich 

coordinates of the V3A and V3B areas founded in the present experiment with 

those reported by other authors. 

V3A 

Re erence x z Sensitive to 
Tootell, 1997 ±14 -84 19 Directional motion. 
Buchel, 1998 -30 -90 9 Directional motion. 

36 -84 18 
Hasnain, 1998 -25.7 (2.9) -83.8 (4.9) 11.0 (6.1) Defined by 

17.4 (9.3) -84.1 (6.1) 15.9 (3.4) retinotopic mapping. 
Mendo la, 1999 -21.2(9.3) -89.1 (4.3) 16.5 (11.1) Stereopsis .and 

22.7 (10) -88.3 (5.6) 16.5 (10.5) illusory contours. 
Backus, 2001 No given by the author Stereopsis. 
Acosta, 2001 -27.7 (1.5) -93.2 (1.41) 18.48 (1.41) . Directional motion 
(Present study) 32 (2.94) -88 (3.54) 20.9 (3.46) and 

Stereo sis. 
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Re erence 
Orban, 1995 
Dupont, 1997 

x 
-25 
-28 
34 

±31 
±26 (8) 

No given 
-27 (1.03) 
35.8 3.91 

V3B 
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z 
-1 
-4 
o 
o 

-2 (8) 

Sensitive to 
Kinetic boundaries. 
Kinetic contours, shape 
and motion. 
Kinetic boundaries. 
Second order motion. 
Stereopsis. 
Stereopsis, stereoscopic 
motion. 

Although the design of the present experiment did not contain a contrast to 

identify the V5 region, the data of the previous experiment was used to identify its 

mean location. The following table compares our results with those presented in 

other studies. 

Re erence x 
Orban, 1995 -44 

40 
VanOostende,1997 -42 

41 
Buchel, 1998 -48 

42 
Hasnain, 1998 -39 (2.6) 

41.3 (4.7) 
Smith, 1998a ±46 (7) 

Mendo la, 1999 

VS 

Y 
-67 
-70 
-78 
70 
-72 
-78 

-71.9 (4.2) 
-64.8 (7) 
-70 (7) 

z 
3 
4 
4 
2 
-9 

-12 
-0.8 (4.1) 
-1.6 (6.2) 

4 (7) 

Sensitive to 
Directional motion. 

Directional motion. 

Directional motion. 

Retinotopic mapping. 

First and second order 
motion. 
Directional motion. 

Directional motion. 

From the average location of the areas V3B and V5, it is possible to conclude that 

the results of the present experiment support our hypothesis for the existence of a 

stereo sensitive area located at almost the same horizontal level as V5 but more 

posterior and more medial (fig. 6.6). 
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Stereo Sensitive Region 

i~~~;:J::M 
, 

f'~ J -_12: 

V3B 

R [ 36, -88, 3 ] Tal 
L [-27, -96, -5] Til 

Figure 6.6 Anatomical location of V3B and V5 regions. Left panel shows the location of the 
motion sensitive visual area (V5). Right panel shows the location of the stereo sensitive visual 
area (V3B). Red circles helps to show the different location of each region. 

Our results supports the hypothesis of right hemisphere dominance in stereoscopic 

vision, however, there was no evidence in the data that suggested any relationship 

between gender, eye dominance or hand dominance with the activations found in 

our experiments. Table 6.4 summarises the results of this study. 

Subject Gender Dom. Eye Dom. hand V3A V3B BA7 

F L L R R,L X 

2 F R R R R R 

3 F R R R R,L L 

4 F L R R R R 

5 F R R X X X 

6 F R R X R X 

7 M R R R R,L R 

8 M R R R,L R,L R,L 

9 F R R X L X 

10 M R R R,L R,L R 

Table 6.4 Summary of results. The characters L, R and X in 

the table refers to left, right and no-activation respectively. 
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6.6 Conclusions. 

The results of this experiment revealed three main regions sensitive to the 

stereoscopic information, V3A, V3B and parietal regions. Consistent with other 

studies, V3A and parietal regions showed sensitivity to stereo disparities (Gulyas 

and Roland 1993; Mendola, Dale et al. 1999; Backus, Fleet et al. 2001). However, 

only one study has reported the V3B region as being sensitive to stereoscopic 

information (Backus, Fleet et al. 2001). In our results, the preferential activation 

ofV3B to the stereo stimuli cannot be explained either by different patterns of eye 

movements or by stronger attentional engagement since the control condition was 

designed to provide identical requirements for these parameters. On the other 

hand, we do not believe that the activation on V3B can be produced by the 

segmentation in the three dimensional space required by the global stereo 

tracking task, since tMRI studies in perception of object shape suggest that the 

activation of cortical regions (Lateral Occipital Complex) involved in the analysis 

of object structure is independent of the cues (luminance, colour, depth) that 

define the shape (Kourtzi and Kanwisher 2000). 

A possible explanation for the activation of V3B in our data (and not in other 

stereoscopic studies) can be postulated by looking at the differences in the 

experimental stimulus used. All those stereoscopic studies have used static stereo 

stimulus, whereas in ours, it is a dynamic stimulus, i.e., our stereo stimuli not only 

requires the perception of square defin'ed by depth (form task), but also requires 

the tracking of it over time (motion task). 

Motion can be detected using different sources of information, for example, 

luminance, colour, texture or depth. Depending on its operational definition, 

motion perception can be categorised as first or second order motion. First order 

motion can be identified by tracking the position 9f spatial structures (one point 

moving in space), whereas it is not possible with second order motion (motion 

defined by spatio-temporal changes of horizontal disparities, also referred to as 

stereoscopic -cyclopean- motion). 
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Based on this we hypothesise that the V3B region was activated by the 

stereoscopic motion component of the global stereo tracking task. Supporting this 

hypothesis, Patterson's studies (Patterson, Donnelly et al. 1997) showed how 

speed discrimination can be done under conditions of minimal position 

information. This suggests that stereoscopic motion is processed in a different 

way, perhaps by a different mechanism than that which processes first- order 

motion (Smith and Scott-Samuel 1998b). Moreover, in an fMRI study of second 

order motion, Smith et al (Smith, Greenlee et al. 1998a) found a cortical region 

sensitive to motion defined by contrast rather than by luminance. This cortical 

region was previously identified and named Kinetic Occipital (KO) for it's 

sensitivity to kinetic defined contours. Smith called it V3B for the sake of 

consistency with the classical alpha-numerical classification of the visual areas. 

The comparison of the anatomical location of these regions, shows that they are 

very similar or probably the same (see table in section 6.5). This suggests that the 

activation found in our experiment, matches both functionally and anatomically 

the V3B region. Thus, it is not unreasonable to hypothesise that the V3B region is 

sensitive to second order motion as defined by contrast and also by stereoscopic 

motion. 

In the next chapter, a second experiment introducing a stereoscopic motion 

component is presented to test the consistency of our hypothesis. The remaining' 

question is why this region was activated in two of the eight subjects in the first 

experiment since the stereo stimulus (stereo cone) did not contain any second 

order motion at all? However that activation could not be considered as consistent 

(because it was present in only two subjects) and more research has to be done to ' 

investigate this phenomenon. 

Finally, it is important to remember that the ,effective connectivity model 

proposed in chapter 4 (experiment 1), was based on the assumption that V3B was 

involved in the processing of pure stereo stimuli, therefore, that model should be 

reinterpreted in the light of these results (see section 8.1.2 of the next chapter). 
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Experil11ent 4 

Shape Discrimination from Stereopsis 

Abstract. 

The objective of the present experiment is to 

explore not only the cortical regions involved in 

pure stereoscopic vision but also the behaviour of 

the V3B region identified in our previous 

experiments. Red/green random dot anaglyph 

stereo grams were used to define a pacman shape 

(lying in front of the background). A similar display 

(pacman defined by luminance) was used as a 

control condition. The figure changes to one of four 

possible positions every second. The subjects were 

instructed to press a button when they identified a 

certain position of the figure. The advantages of this 

stimulus over the previous one are that it avoids eye 

movements and provides a mechanism to assess 

how well the subjects are developing the task. The 

results support our hypothesis of the engagement of 

V3A and precuneus in the processing of stereo 

disparities, and the possible engag~ment of V3B in . 

processing stereoscopic motion. These results als'o 

suggest that VI region is sensitive to near zero 

disparities. 
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7.1 Introduction. 

The results of the previous experiment revealed three main regions sensitive to the 

stereoscopic information. Consistent with other studies, V3A and parietal regions 

showed sensitivity to stereo disparities (Gulyas and Roland 1993; Mendola, Dale 

et al. 1999; Backus, Fleet et al. 2001). However, the use of the Global" Stereo 

Tracking (GST) task showed a cortical region that has not been usually shown in 

the results reported by other authors. We hypothesised that this region was 

activated by the stereoscopic motion induced by the GST task, i.e., this region is 

sensitive to second order motion defined by spatio-temporal changes of horizontal 

disparities (stereoscopic -cyclopean- motion). 

Supporting this hypothesis, Smith's study (Smith, Greenlee et al. 1998a) reports a 

cortical region sensitive to second order motion defined by contrast which 

matches our region both functionally and anatomically. We concluded that these 

regions are very similar or probably the same as that referred to as V3B. Thus, we 

hypothesised' that the V3B region is sensitive to second order motion as defined 

by contrast and also by stereoscopic motion. 

It is important to remember that our ideal in the design of the previous experiment 

was to increase the response of the stereo sensitive regions by the introduction of 

an attentional task (GST). The subjects were instructed to perform pursuit eye 

movement to follow the path of a square with their eyes. The advantage of this 

paradigm is that it is an active rather than a passive stimulus, in which t~e success 

of the task depends on the continuous perception of the square, i.e. to follow the 

path of the square, it is necessary to involve the stereoscopic processing system. 

The objective of the present experiment is to explore not only the cortical regions 

involved in. pure stereoscopic vision but also the, behaviour of the 'V3B region 

identified in our previous experiments. As in the GST task, the .present stimulus 

was designed to maintain the attention of the subject through the use of an active 

task. 
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A ''pacman'' shape defined either by luminance (2D) or by depth (3D) was 

displayed at the centre of the screen. The figure changes to one of four possible 

positions every second. The subjects were instructed to press a button when they 

identified a certain position of the figure. The advantages of this task over the 

GST are that it avoids eye movements and provides a mechanism to assess how 

well the subjects are performing the task. 

7.2 Experiment Design. 

Subjects were given 4 sequential scans each lasting 5.15 min. (10 epoch) with a 5 

min. interscan interval to permit subjects to rest. One hundred image volumes 

were obtained in each run. Each condition lasted 30s., giving 10 multislice 

volumes per condition (TR=3s.). A dummy condition of a blank screen was 

presented during the first 15s. (5 scans) of each run to control for magnetic 

saturation effects. The stimulation sequence is shown in figure 7.1. 

3D 3D 3D 3D 3D 

Fixation 2D 2D 2D 2D 2D 

Figure 7.1 Stimulation Sequence. Dotted line represents the dummy condition displayed 
during the first 15 s. to avoid magnetic saturation. Luminance task (2D) was used as a base 
line. Blue blocks represent the depth task condition (3D). 

The display contained four thousand seven hundred and sixty one dots (radius 

0.04 deg.) distributed over the screen (mean dot density 7 dot deg-2
). A pacman 

shape (radius 4.3 deg.) was displayed at the centre of the screen. The pacman was 

changing randomly in one of four possible positions (up, down, left, right) every 

second (see figure 7.2). The change in position was constrained to avoid the fact 

that one position was displayed for more than one second. In order to remove 

possible shape cues introduced by the red/green stereoscopic pair of dots in the 

stereo condition, the positions of the dots were changed between frames (in both 

conditions) to produce the effect of dynamic random noise (Hanazawa, 

Kawashima et al. 2000). 
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Right Up 

Left Down 

Figure 7.2 Pacman positions. The pacman figure was changing its position 
every second. Four positions were defined: right, left, up and down. 

The subjects were instructed to fixate a point (0.3 deg. of radio and zero 

disparity) in the middle of the screen (circular field of view 13 deg.) and press a 

button (with her/his right hand) when the pacman was in up position. The 

response on the button box was recorded to assess the performance of the 

subjects. There were two modalities to define the pacman, each one represents 

one experimental condition (fig. 7.3). 

a) Luminance (2D): The pacman was luminance defined, its luminance (9.29 

cd/m2) was lower that the background (17.7 cd/m2). Both the backgrou~d and the 

pacman were laid in the same plane (zero disparity). This condition was used as a 

base line. 

b) Depth (3D): The pacman was depth defined (red/green anaglyph stereogram), 

and laid at the front (-0.076 deg. of disparity.) of the background (0.076 deg. of 

disparity). The pacman and the background were displayed in front 'and behind the 

fixation point respectively in order to remove possible shape cues introduced by 

the red/green stereoscopic pair of dots in the stereo condition. 
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Luminance 

Depth 

Figure 7.3 Visual stimuli. Subjects viewed the stimuli through the 
red/green glasses to present anaglyph stereo stimuli. In order to exemplify 
the stimulus used, the up position of the pacman is displayed in the frames 
above. 
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7.3 Methods. 

7.3.1 Subjects. 

Five healthy right-handed subjects (2 female, 3 male) aged from 20 to 30 years 

participated in the present study. The stereo acuity of the subjects was measured 

using stereo vision test (RANDOT SO-002), all of them were below 40 sec of 

ARC. The subjects had a preliminary session outside the magnet to become 

familiar with the visual stimulation. All subjects gave informed written consent. 

It is important to clarify that for reasons of financial restrictions, in the present 

study only five subjects were scanned. 

7.3.2 Stimulus presentation •. 

Subjects lay on their backs in the magnet. They wore red/green anaglyph glasses 

and looked via a mirror angled at -45° from their visual axes at a back illuminated 

screen located just outside the magnet. The viewing distance was 2.4 m. Stimuli 

were projected on to the screen using an EPSON (EMP-7300) projector driven by 

a G3 Mac running Psychophysics Tool Box ver. 2.44 (Brainard 1997; Pelli 1997) 

under MATLAB ver. 5.3. The stimuli were displayed at a video frame rate of 60 

Hz. 

7.3.3 Data acquisition. 

Subjects were scanned in a 1.5 T whole-body MRI scanner (Eclips Marconi 

Systems) with BOLD contrast echo planar imaging (TR= 3s, TE= 40 ms, 128 

x128 voxel, v'oxel size 1.875 x 1.875 x 4 mm.). As performed in the previous 

experiment (see section 6.3.3), thirty-two slices covering the whole brain were 

acquired. 
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7.3.4 Data analysis. 

The data was pre-processed and analysed using SPM99 (Welcome Department of 

Cognitive Neurology). The first five scans of each run were discarded to exclude 

magnet saturation effects. All volumes were slice timed, motion corrected and 

normalised in the MNI (Montreal Neurological Institute) stereotaxic space. The 

data were smoothed using a 6 mm FWHM (full width at half maximum) isotropic 

Gaussian kernel. Data analysis was performed using a boxcar design matrix of 

the different conditions (2D and 3D) convolved with the hemodynamic response 

function. 

Specific effects were tested by applying the corresponding linear contrast to the 

parameters obtained applying General Linear Model using the design matrix 

shown in figure 7.4 (see also experiment design). The statistical parametric maps 

(SPMs) were then interpreted by referring to the probabilistic behaviour of 

Gaussian random fields. Although for some subjects the activation in V3A and 

V3B was not significant at p corrected < 0.05, they were significant at this level 

using a small volume correction (WDCN 1997). 

100 

200 

300 

400 
246 $1012 

Figure 7.4 Design matrix. The design matrix used in the present analysis is ~hown in the 
conventional SPM display. Each block represents one sequence (run). Each column of the 
block represents one of the experimental conditions in the following order: 3D, first 
derivative. The base line condition (2D) is represented as the complement of the 
experimental conditions. The white squares shows the periods in which the related condition 
was presented. The four columns at the end of the design matrix represent each of the 
independent sequences. Rows represents scans (400 scans = 10 scans per condition lie 10 
conditions per sequence lie 4 sequences). 
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7.4 Results. 

In the present study, two analyses were performed in order to identify the areas 

involved in each particular stimulus. F~r reasons of space, in~ividual analysis 

outputs are not presented, instead the results are reported as a synopsis through the 

use of condensed statistical tables which show a summary of the relevant 

statistical parameters of the regions of activation. In the same manner, the 

statistical map of the most sensitive subject is presented. 

The performance of the task was assessed integrating all the occasions in which 

the subjects pressed the button at the right time (when the pacman was in up 

position). Then, subtracting the occurrences when the subjects pressed the button 

at wrong times (when the pacman was not in up position). The final score was 

computed dividing this difference by the number of occurrences of the pacman in 

the up position. In both, the training session and the scan session, all of the 

subjects scored at least 95% of accuracy in the performance of the discrimination 

task. 

7.4.1 Depth against Luminance. 

This contrast compares the activation produced by the pacman defined by depth 

with that produced by the pacman defined by luminance. Consistent with our 

expectations V3A, V3B and precuneus were activated. Activations were also 

found in striate cortex (VI), we attribute this activation to the fact .that small 

disparities were used in the depth condition, i.e. there is evidence that VI is tuned 

to near zero disparities (Poggio, Gonzalez et al. 1988; Backus, Fleet et al. 2001). 

The statistical parametric map of one of the subjects is shown in figure 7.5. 

Area V3A was activated bilaterally in 3 subjects, and in the right heririsphere of 2 

subjects (table 7.1). The right hemisphere dominance of the stereo activation in 

V3A is. supported by the theory of right cerebral dominance in stereo vision 

(Howard and Rogers 1995). 
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Figure 7.S Depth against Luminance. The statistical map shows the areas 
sensitive to stereoscopic infonnation. The activation includes VI , V3A, 
V3B and precuneus. 

Sub'ect Location Z-Score P corrected Cluster size 
lL -24, -98, 16 5.30 0.000 1 
lR 36,-88,18 5.29 0.000 1 
2R 28, -78, 24 3.11 0.077 1 
3R 34, -90, 20 4.67 0.001 47 
4L -10,-104,16 3.77 0.02 2 
4R 36,-90,16 5.99 0.000 1 
5L -22, -98, 18 7.21 0.000 52 
5R 34, -94, 12 5.63 0.000 9 

Table 7.1 Stereo sensitive region: V3A. The table shows the locations of the 
activations and the statistical parameters. 

Consistent with our preVIOUS results, area V3B was activated bilaterally in 1 

subject, and in the right hemisphere of 4 subjects (table 7.2). Since the pattern of 

activation was similar for both regions, it suggests a functional relationship 

between the activation on V3A and V3B. 

Sub'ect Location Z-Score P corrected Cluster size 
lR 42, -82,4 (lnt) 0.000 149 
2R 38,-90,2 3.96 0.056 39 
3R 40, -80, 0 4.58 0.001 21 
4L -26, -100, 4 7.59 0.000 28 
4R 36, -94, 6 (lnt) 0.000 103 
5L -36, -92,4 5.47 0.000 7 
5R 36, -88, -4 6.55 0.000 21 

Table 7.2 Stereo sensitive region: V3B. The table shows the locations of the 
activations and the statistical parameters. 
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The precuneus was activated bilaterally in I subject and in the right hemisphere of 

4 subjects (table 7.3). 

Sub'ect Location Z-Score P corrected Cluster size 
lR 32, -72, 52 7.06 . 0.000 1 
2L -26, -74, 46 4.67 0.003 4 
2R 28, -66, 54 6.01 0.000 96 
3R 14, -78, 52 3.90 0.015 5 
4R 28, -64, 54 4.30 0.003 8 
5R 14, -74, 54 5,,47 0.000 1 

Table 7.3 Stereo sensitive region: Precuneus (BA 7). The table shows the 
locations of the activations and the statistical parameters. 

Consistent with other studies which used stimulus with small disparities, 

activations in VI were found in this contrast (Backus, Fleet et al. 2001). The 

primary visual cortex was activated bilaterally in 2 subjects, in the left hemisphere 

of2 subjects and in the right hemisphere of I subject (table 7.4). 

Sub'ect Location Z-Score P corrected Cluster size 
lL -8, -102,-2 (Int) 0.000 236 
lR 16, -100, 0 (lnt) 0.000 149 
2L -8, -106,-2 6.20 0.000 59 
3L -6,-104,-6 5.27 0.000 55 
4L -14, 106,0 5.83 0.000 15 
4R 16,-100,6 6.65 0.000 214 
5R 10 -100 4 5.06 0.001 1 

Table 7.4 Stereo sensitive regions: VI. The table shows the locations of the 
activations and the statistical parameters. 

7.4.2 Luminance against Depth. 

The subtraction of the activations produced by the pacman defined by depth from 

the activation produced by the pacman defined by luminance, did not revealed any 

consistent activation, i.e. although statistically significant activations were found 

for this contrast, all of them were spread over the brain without. any consistent 

location. This inter-subject variability was considered as noise. 
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7.4.3 Motor response. 

Although the identification of the motor regions was not the purpose of the 

present study, the activation produced by the finger movements (when the 

subjects press the button to confirm that they perceived the pacman in up 

position) were identified in the present contrast. 

The responses recorded by the button box were convolved with the canonical 

hemodynamic response function to use it as a column in the GLM design matrix. 

As expected, this contrast revealed activations in the primary motor cortex 

contralateral to the hand used in the motor task. The statistical parametric map of 

one of the subjects (which used the left right hand to press the button) is shown in 

figure 7.6. 

Figure 7.6 Motor response. The statistical map shows the areas involved 
in the motor activity. The activation was found in the primary motor 
cortex, contralateral to the hand used to press the button. 

Three main regions were activated in the left primary motor cortex: Precentral 

Gyrus, Postcentral Gyrus (BA3), and Cyngulate Gyrus (table 7.5). It is important 

to clarify that because this contrast was not properly counterbalanced (to permit 

the signal to decay), the statistical significance of the response was weak and not 

valid at P < 0.05 corrected. So, it was assessed with criteria of P < 0.001 

uncorrected. 
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Location 
-44,-4,58 

-62, -20, 38 
-2, -10 48 

Z-Score 
4.94 
4.80 
4.59 

P uncorrected 
0.000 
0.000 
0.000 

Table 7.5 Motor cortex: Precentral Gyius, Postcentral Gyrus (BA3), and 
Cyngulate Gyrus. The table shows the locations of the activations and the 
statistical parameters. 

Our results supports the hypothesis of right hemisphere dominance in stereoscopic 

vision, however, there was no evidence in the data that suggested any relationship 

between gender, eye dominance or hand dominance with the activations found in 

our experiments. Table 7.6 summarises the results of this study. 

Subject Gender Dom. Eye Dom. hand VI V3A V3B BA7 

1 F R R R,L R,L R R 

2 F L R L R R R,L 

3 M R R L R R R 

4 M R R R,L R,L R,L R 

5 M L R R R,L R R 

Table 7.6 Summary of results. 

7.5 Conclusions. 

In accordance with other studies on stereoscopic perception, our results showed 

inter-subject consistent activations in the regions: VI, V3A, V3B and precuneus. 

Given that VI is tuned to near zero disparities (Poggio, Gonzalez et al. 1988; 

Backus, Fleet et al. 2001), the activation observed in the VI region (and not 

observed in our previous experiments) was attributed to the small disparities' 

(±O.076 deg.) used in the depth stimuli. 

The activation of the V3B region supports our hyPothesis of the sensitivity of the 

V3B region to stereo disparities, particularly in the processing of motion defined 

by stereopsis. 
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Although the stereoscopic motion component induced by the rotatory pacman was 

not the optimal stimuli to activate the V3B region (see section 8.3.2 of the next 

chapter), we believe that it was strong enough to activate the stereoscopic motion 

sensitive region of all the subjects (see table 7.2). 

Figure 7.7 shows the time series of the right V3B region of each subject. The grey 

columns represent the periods in which the pacman defined by depth was 

displayed, whilst the white columns represent the base line condition (pacman 

defined by luminance). In average, the amplitude of the signals was 1 % over the 

mean activation, with frequency equal to that used in the experimental stimulation 

(0.0167 Hz). 

10 20 30 40 50 60 70 80 90 100 

Figure 7.7 V3B time series. The first principal component time series of a sphere 8mm radius 
around the voxels specified in table 7.2 (right V3B region) were averaged over sessions (runs) to 
create a single time series (100 time points) per subject (S). Each time series represents the neural 
activity over time (scans) of the right V3B region in each subject. The time series were normalised 
to mean zero and standard deviation one. The dashed black time series represents the average of 
the subjects. Grey columns show the stereo stimulation periods. 

The experimental design of the present study Improves two aspects of the 

previous experiment. First, the activation on V3B region cannot be related with 

eye movements because in this study the subjects were instructed to fixate in a 

static feature. 
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Second, the only cue available to develop the discrimination task was the stereo 

disparities, thus, the correct discrimination of the shape was an' indicator of depth 

perception, i.e., the identification .of the "up position" of the pacman implied a 

proper stereoscopic fusion. 

In conclusion, the results of this experiment support our hypothesis of the 

engagement of V3A and precuneus in the processing of stereo disparities and the 

possible engagement of V3B in t~e processing of stereoscopic motion. These 

results also suggest that VI region is sensitive to near zero disparities. The 

remaining question is why: using stimulus that did not contain any stereoscopic 

motion at all (our first two experiments and Backus' study) some subjects showed 

activation in the V3B region? One possible e?,planation is that it may be produced 

by illusory stereoscopic motion effects (Zeki, Watson et al. 1993), however more 

research has to be done to investigate this phenomenon. 
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Chapter 8 

Discussion and Future Work 

Abstract. 

The present chapter summarises the results of the 

studies made in human and non-human primates 

to understand the functional anatomy of 

stereoscopic vision. The findings of our 

experiments are discussed in the context of other 

related studies, and conclude that V3A and 

precuneus seems to be involved in pure 

stereoscopic processing whereas V3B might be 

particularly sensitive to stereoscopic motion. 

Also, a new technique for a more appropriate 

representation of effective connectivity models 

using fMRI time series is introduced as the 

NARMAX approach. This representation attempts 

to bring SEM towards a non-linear dynamic' 
, 

system modelling technique. Finally, the direction 

for the new studies arising from this thesis is 

described with ideas for future research. 
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8.1 Functional anatomy of stereoscopic vision. 

Stereoscopic vision is one of the most important sources of depth information for 

species with frontally located eyes. Although there are other sources of three­

dimensional cues, such as shading, texture, motion or perspective; binocular 

disparities are particularly important because they provide a mechanism to 

estimate not only the form but also the position of objects in space. 

Many studies have investigated the physiological mechanisms from which the 

brain transforms the retinal disparities into three-dimensional representations of 

the world. Given the invasive nature of the techniques to assess neural activity, 

most of these studies have been in non-human primates and the research on 

humans has been restricted to psychophysical studies. 

Recently, modem non-invasive neuroimaging techniques have allowed the 

investigation of the functional anatomy of the human brain. These new techniques 

identify the sites of neural activity using exogenous indicators such as 

fluorodeoxyglucose (PET) or oxygen concentration on tissue (fMRI). However, 

the understanding of the relationship between these indicators and the 'effective' 

neural activity at synaptic level remains incomplete . 

. Although many PET and fMRI studies have explored the functional properties of 

the visual cortex, few have explored the functional anatomy ofo stereoscopic 

vision. Most of these studies seem to be pilot work; and they show inconsistency 

regarding the areas sensitive to stereo disparities. It seems to be that the stereo 

disparity processing is widespread over a network of cortical regions rather than 

being confined to a specific cortical region. Furthermore, there is no general· 

agreement about the cortical regions selective to stereo disparities or the specific 

role that each of these has in the perception of depth. The regions most common 

reported as disparity selective are: VI, V2, V3A,V3B, and precuneus (BA 7). 
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One possible explanation for the variability of the results reported by different 

laboratories is the lack of homogeneity in the design of the stereo stimulus used. It 

is relatively easy to define the concept of stereo disparity, but for practical 

purposes, its implementation can be made in different ways. For example; the 

technique used to generate the RDS (anaglyph, polaroid, twin monitors, etc), or 

the parameters used to define the stereo pair of features (feature size, disparity 

size, density, etc). In order to avoid contradictory conclusions, the interpretation 

of results should be carefully analysed in the context of the experimental 

parameters used to stimulate disparity selective neurones. 

In conclusion, although there may be some advances in the identification of the 

cortical regions involved in stereoscopic vision, the accurate understanding of the 

functional anatomy of stereoscopic vision is uncertain and more research is 

needed to investigate the neural basis of depth perception from stereoscopy. In the 

next section the main findings of our experimental work are discussed. 

8.1.1 Summary of experimental results. 

Four experiments, using red/green anaglyph to present stereo stimuli, were 

conducted to explore the cortical regions involved in stereoscopic vision. In the 

first experiment the sensitivity of the V5 region to motion and stereo disparities 

(as reported in non-human primates) was tested using radial motion and radial 

disparity (stereo cone) respectively. The V5 region was activat~d by motion, 

however no evidence was found of the sensitivity of this region to stereo 

disparities (Acosta-Mesa, Mayhew et al. 2001). 

In accordance with previous studies, our results revealed the sensitivity of V3A to 

motion and stereo stimulus (Buchel, Josephs et al. 1998; Mendola, Dale et al. 
,. ! .. 

1999; Sunaert, Van Hecke et al. 1999; Paradis, Comilleau-Peres et al. 2000; 

Backus, Fleet et al. 2001; Braddick, O'Brien et .al. 2001). A non-linear interaction 

between the effects of the stereo and motion stimulus was identified in the V3A 

region. 
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Interestingly, the V3B region (not commonly reported as stereo sensitive) was 

activated by the stereo stimuli in 2 of 8 subjects. Although the activation of V3B 

region was not consistent between subjects, a model of effective ~onnectivity was 

proposed to explain the observed activations (see section 8.1.2). Since the scanned 

area was restricted to the occipital cortex, parietal regions were not included in the 

analysis. 

A possible explanation of the inter-subject variability on the activation of V3B 

region can be attributed to the fact that all the subje~ts reported that the 'intensity' 

of the stereo precept declined over the presentation time, although no evidence of 

this was found in the data. We have no explanation for this 'adaptation'. In an 

attempt to prevent this occurring, in the second experiment, the disparities of the 

stimulus were changed over time by periodically alternating the depth of the 

stimulus from convergent to divergent disparities. The new stimuli consisted of 

two pairs of squares lying in two different planes, changing their depth smoothly 

from convergent to divergent disparities. 

In accordance with our previous results, areas V3A and V3B were activated by 

the stereo stimuli. However, the activation was not consistent between the 

subjects. Although the subjects reported perceiving the squares moving in depth, 

the, inter-subject variability of these results suggests that the stereo stimulus was 

very weak and the control conditions dominated the activations. Although the 

results of this experiment did not provided conclusive evidence of the stereo 

sensitivity of V3B, they support our hypothesis of its involvement in the 

processing of stereo disparities and suggest that the kind of stereo stimuli used 

was not optimal to stimulate the V3B region. 

In order to explore the role of V3B region in the processing -of stereoscopic 

information, the main goal of the third experiment was to introduce an attentional 

demand that ensured that the subjects concentrated their attention on the 

stereoscopic component of the stimuli. 
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This attentional requirement was included in the paradigm through the use of a 

square (defined either by luminance or by depth) moving from left to right. The 

subjects were instructed to perform pursuit eye movement to follow the path of 

the square with their eyes. Because some studies suggest the involvement of 

parietal regions in the processing of stereo information, the area of acquisition was 

expanded to cover the whole brain. 

The results of this experiment revealed a consistent activation in three main 

regions sensitive to the stereoscopic information, V3A, V3B and precuneus. It is 

important to emphasise that, although for technical reasons eye movements were 

not measured, the preferential activation of these regions to the stereo stimuli 

cannot be explained either by different patterns of eye movements or by stronger 

attentional engagement since the control condition was designed to provide 

identical requirements for these parameters. 

On the other hand, we do not believe that the activation of V3B can be produced 

by the segmentation in the three dimensional space required by the global stereo 

tracking task (GST), since fMRI studies in perception of object shape suggest that 

the activation of cortical regions (Lateral Occipital Complex) involved in the 

analysis of object structure is independent of the cues (luminance, colour, depth) 

that define the shape (Mendola, Dale et al. 1999; Kourtzi and Kanwisher 2000). 

The explanation for the activation of V3B in our data (and not in other 

stereoscopic studies) could be due to the differences in the experimental stimulus 

used. Most of the stereoscopic studies have used static stereo stimulus, whereas in 

ours, it is a dynamic stimulus, i.e., our stereo stimuli not only requires the 

perception of the square defined by depth (form task), but also requires the 

tracking of it over time (motion task). Based on this, we hypothesised that V3B 

region could have being activated by the stereoscopic motion inauced by the GST 

task, i.e., this region is sensitive to second order motion defined by spatio­

temporal changes of horizontal disparities (stereoscopic -cyclopean- motion). 
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In relation of this hypothesis, Smith's study (Smith, Greenlee et al.· 1998a) 

reported a cortical region sensitive to second order motion defined by contrast 

which matches our region both functionally and anatomically. We concluded that 

these regions are very similar or probably the same as that referred to as V3B. 

Thus, we hypothesised that the V3B region is sensitive to second order motion as 

defined by contrast and also by stereoscopic motion. 

The objective of the last experiment was designed to explore not only the cortical 

regions involved in pure stereoscopic vision but also to test the sensitivity of V3B 

to stereo disparities. As in the GST task, this stimulus was designed to maintain 

the attention of the subject through the use of an active task. 

A ''pacman'' shape defined either by luminance or by depth was displayed at the 

centre of the screen. The figure changes to one of four possible positions every 

second. The subjects were instructed to press a button when the figure was in a 

certain position. The advantages of this task over the GST are that it avoids eye 

movements and provides a way to assess how well the subjects are performing the 

task. 

In accordance with other studies on stereoscopic perception, our results showed 

that all the subjects had consistent activations in the regions: VI, V3A, V3B and 

precuneus. The activation observed in the VI region (and not observed in our 

previous experiments) was attributed to the small disparities use~ in the depth 

stimuli (Poggio, Gonzalez et al. 1988; Backus, Fleet et al. 2001). The activation of 

the V3B region supports our hypothesis of the sensitivity of the V3B region to 

stereo disparities, particularly in the processing of motion defined by stereopsis. 

Although the stereoscopic motion component induced by the rotafory pacman was 
. , 

not the optimal stimuli to activate the V3B region (see section 8.3.2), it was strong 

enough to activate the stereoscopic motion sensitive region of all the subjects. The 

activation on V3B region cannot be related with eye movements because in this 

study the subjects were instructed to fixate on a static feature. 

- 182-



Chapter 8: Discussion and Future Work. 

On the other hand, the only cue available to develop the discrimination task was 

the stereo disparities, thus, the correct discrimination of the shape was an indicator 

of depth perception. Our results supports the hypothesis of right hemisphere 

dominance in stereoscopic vision. However, there was no evidence in the data 

that suggested any relationship between gender, eye dominance, or hand 

dominance with the activations discovered in our experiments. To summarise, our 

results support the hypothesis of the engagement of V3A and precuneus in the 

processing of stereo disparities. Contrary to the results reported in studies with 

monkeys, our experiments did not reveal any evidence of the sensitivity of V5 to 

stereo disparities. Finally, our results showed a region which functional profile 

and anatomical location matched the V3B region. We hypothesised that this 

regions was activated by stereoscopic motion. See figure 8.1. 

VS 

R [46, ·70, 2) 
L [.48, . 66, 6) ~ 

. . . , , ~ , 
• • .. . . . .. . . . - ~ • . .... .!"" .. . ~ . ~ .. .. 
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3 L. . :.'. ~~~"':' ... ~t:~J:~: 
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L [.28, . 86, 10) 

Figure 8.1 Functional defined regions. Regions of activation for motion and stereo 
stimuli were identified using the data of the most sensitive subject. Left panel shows the 
location of the motion sensitive area (V5). Right panel shows the location of the stereo 
sensitive 'visual area (V3B). Red circles helps to show the different location of each 
region. The distances between centres of each cluster are 28 mm. and 18 mm. for the left 
and right activation respectively. 

The remaining question is why: when using stimulus that did not contain any 

stereoscopic motion at all (our first two experiments and Backus' study) some 

subjects showed activation in the V3B region? One possible explanation is that it 

may be produced by illusory motion effects (Zeki, Watson et al. 1993), i.e, the 

perception of motion which is ·not physically present in the visual stimulus (e.g. 

Enigma picture), however more research has to be done to investigate this 

phenomenon. 
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8.1.2 Connectivity model of stereoscopic vision. 

Based on neuro-anatomical studies in monkeys and in the activation observed in 

our first pilot experiment (chapter" 4), an effect'ive connectivity model was 

proposed to explain the relationships between the motion and the stereo selective 

regions. The model was defined assuming that V3B was engaged in the 

processing of pure stereoscopic disparities. The V5 and V3B regions were 

considered the main centres of motion and stereo information respectively. The 

dual sensitivity of V3A (motion and stereo) was explained by considering this 

region as a second stage of the proce'ssing in which an integration of the two 

sources of information is made (fig 8.2). 

VI V3A 

Figure 8.2 Effective connectivity model of stereoscopic 
vision proposed in the pilot study. 

However, in the light of the results observed in the last experiments, which 

suggest that V3B is engaged in processing stereoscopic motion, this model has to 

be reinterpreted. Firstly, since the activation of V3A is correlated with the 

presence of stereo disparities, and not directly engaged in stereoscopic motion, the 

main centre of stereo processing should be V3A (Backus, Fleet et al. 2001). 

Because stereoscopic motion requires that disparity information be processe~ 

prior to motion information and V3B is preferentially activated by stereoscopic 

motion, it can be hypothesised that V3B receives inputs from V3A. That is to say, 

in, order to detect the stereoscopic motion in. V3B, it is' necessary to solve the' 

correspondence problem in V3A. 
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Secondly, in our last two experiments, the contrasts which compared luminance 

against depth and depth against luminance, did not reveal any activation in VS. 

This fact may have two explanations: VS was not activated in any of the two 

conditions or VS was equally activated by each one. The likelihood of the first 

explanation is minimal because the stimulus produced a clear perception of 

rotatory motion. Thus, although there is no direct evidence, we hypothesise that 

VS is engaged in stereoscopic motion as much as it is in first order motion. In the, 

light of these findings, the effective connectivity model proposed in the pilot 

study was modified to be consistent with our conclusions (fig. 8.3). 

VI 

Figure 8.3 Effective connectivity model of stereoscopic vision 
(modified to account for stereoscopic motion cues). 

This new model accounts for the hypothesis of the involvement of V3B in the 

processing of stereoscopic ~otion. It also suggest a possible interaction between 

the first order motion sensitive region (VS) and the second order sensitive region 

(V3B):' The stereo sensitive region observed in the parietal region (B7) was also 

included in the model according to monkey's anatomical map, although its 

functional role in stereoscopic vision is unknown. 

It is important to emphasise that this model is a hypothetical a~empt to explain the 

relationships of the activation observed in our experiments, so research must be 

done to explore its validity. The next section proposes an experimental paradigm 

to investigate this hypothesis in future work. 
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8.1.3 Future work. 

The results obtained in our experiments suggest that V3B is engaged in the 

processing of second order motion defined by stereo disparities. However, as the 

main objective of our studies was to investigate the cortical areas selective to 

stereoscopic information, no specific experiment was designed to test the 

hypothesis of the selectivity of the V3B region to stereoscopic motion. 

Although both tasks used in the last two experiments (global stereo tracking and 

the form discrimination) implied in some way the processing of motion defined by 

spatio-temporal changes of horizontal disparities, neither of them maximises the 

directional component of the motion stimulus. Classical studies of motion 

selective regions have used radial motion to excite a big range of direction 

selective neurones. 

A more appropriate stimuli to explore the selectivity of V3B region to 

stereoscopic motion, is to use concentric rings moving radially from expansion to 

contraction. The use of concentric rings ensures the stimulation of a larger 

population of directional motion sensitive neurones and facilitates fixation. On the 

other hand, the change from expansion to contraction prevents any habituation 

effect. In order to provide a mechanism to maintain the attention of the subject, 

one can develop a specific task (e.g. press a button) when the direction of the 

motion is altered. Four conditions are proposed to identify the region involved in 

stereoscopic motion. 

a) Stationary: One thousand and twenty four dots (zero disparity) randomly 

distributed over the screen. The subject is instructed to fixate 9n the point located 

in the centre of the screen. This condition is used as a base line. 

b) Luminance: Four concentric rings defined by luminance (half luminance with 

respect to the background) are displayed. 
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c) Depth: Four concentric rings defined by depth (red/green anaglyph stereogram) 

positioned at the front (-0.15 deg.) of the background (0.15 deg.). The rings and 

the background are displayed in front and behind the fixation point (zero 

disparity). 

In order to remove possible shape cues introduced by the red/green stereoscopic 

pair of dots in the stereo condition, the positions of the dots are changed between 

frames (in both conditions) to produce the effect of dynamic random noise 

(Hanazawa, Kawashima et al. 2000). It is important to notice that the rings are 

moving in the plane XN, not in plane Z (motion in depth) 

d) LuminancewithDepth: The rings are defined by both stimulus (Luminance 

and Depth stimulus), the purpose of this condition is to assess the effect of the 

interaction of first and second order motion over those regions sensitive to both 

stimuli. 

In order to assess the activation produced for each specific condition, four main 

contrast are proposed: 

i) Luminance against Stationary : The subtraction of the stationary dots from 

the moving rings defined by luminance should identify those regions involved in 

the processing of first order motion (V5 and V3A). 

ii) Depth against Stationary: The subtraction of the stationary dots from the 

. moving rings defined by stereo disparities should identify those regions involved 

in the processing of stereoscopic motion (V5, V3A ,V3B and BA ?). 

iii) Depth against Luminance: This contrast compares the activation produced 

by the rings defined by depth with· that produced by the rings defined by 

luminance. According to our hypothesis of the stereoscopic motion selectivity, 

with this cont~ast we expect to identify the V3B and BA 7 regions. 
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iv) LuminancewithDepth against Luminance and Depth: This contrast is 

intended to identify those regions which become more active when luminance and 

depth stimuli are presented at the same time, rather than when the individual 

stimuli are presented in isolation. Assuming that V5 is engaged in first order 

motion (luminance) and second order motion (stereoscopy), the joint stimulation 

of both conditions is expected to result in an increase in the response. 

8.1.4 Second order motion and kinetic boundaries. 

One interesting extension in the study of the V3B region is the exploration of the 

relationship between stereoscopic motion and kinetic boundaries detection. As 

reported in the literature, the V3B regions is also called Kinetic Occipital (KO) for 

its selectivity to illusory boundaries defined by features moving in opposite 

direction (Orban, Dupont et al. 1995; Dupont, De Bruyn et al. 1997; Van 

Oostende, Sunaert et al. 1997). These results suggest that V3B is involved in the 

processing of high order properties of motion stimuli. However, the specific role 

that this region has in the perception of kinetic boundaries is not known. 

8.2 Effective connectivity modelling. 

The traditional theory of the existence of functional segregated areas, highly 

specialised in specific cognitive tasks, has been replaced by the concept that 
", 

brain functionality is the result of the interaction between several regions. In this 

new approach the functional profile of a cerebral region is determined by its 

relationship with other regions (McIntosh 2000). 

Modem approaches to the study of the functional anatomy of cognitive process 

have been focused on the analysis of the interaction between cortical regions 

unde,~ different experimental' conditions, also called Effective conn,ectivity 

analysis. Effective connectivity is "the influence one neural system exerts over 

another" (Friston, Frith et al. 1993). 
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This concept can be thought of as the neural connectivity at synaptic level. 

"Effective connectivity should. be understood as the simplest possible circuit­

diagram that would replicate the observed time relationship between the recorded 

neurones"(Aertsen and Preissl 1991). Effective connectivity analysis has been 

focused on finding changes in connectivity, through the evaluation of an 

anatomically defined model under different experimental conditions. 

The "classical" application of effective connectivity analyses have been made 

using Structural Equation Modelling (SEM). Although SEM represents a useful 

tool to assess models that define relations among variables, some of its basic 

assumptions are not totally compatible with fMRI data. However, it can be 

extended to account for non-linear dynamic systems like fMRI time series. 

8.2.1 Structural equation modelling. 

Although SEM is not new, the application of this technique to quantify functional 

relationships among neural regions from fMRI or PET neuroimaging data is a new 

area of research. In neuroimaging, the connections among the variables 

representing brain regions are anatomically constrained and the measurement of 

each variable can be made directly with functional imaging. These features have 

made SEM a useful tool for models of effective connectivity. 

Howevei~ the results obtained with SEM have to be carefully interpreted because 

its meaning is highly dependent on the assumptions made in the analysis, for 

example: 

i) A small number of observations (N) will over-estimates the -goodness of fit of 

the model because the chi-square value is a function of the ML estimator times N. 

i.e. the same model can be a good or bad representation of the data depending on 

the size of the time series used in the analysis (Bullmore, Horwitz et al. 2000). 
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ii) The fixation of the error terms can bias the parameter estimation at the same 

time that it biases the goodness of fit due to the increases in the degrees of 

freedom. 

iii) The collinearity between pre-cursors of the same node, produces empirically 

under-determined models, because the propagation of the error system (generally 

assumed by SEM modellers) does not exist in fMRI time series or is relatively 

much smaller than measurement noise. Thus, although the model can be 

theoretically identified, it could be empirically under-determined. 

iv) The differences in signal to noise ratios between the data sets used in staked 

model analysis can be enough to conclude the difference between models. On the 

other hand, the classical stacked analysis assumes that the data sets used in the 

analysis have a significant goodness of fit on the model (Goncalves, Hall et al. 

2001). It implies that the difference of two models can be statistically significant 

although the individual goodness of fits of each data set is not assessed. 

This lack of standardisation in the application of SEM to perform analysis of 

effective connectivity makes difficult the interpretation of the results reported in 

neuroimaging. 

Another important aspect to consider in the analysis of effective connectivity 

models using fMRI time series is the inherently dynamic nature of these systems. 

SEM has been widely applied to static systems, in fact, it was the correct 

_ technique for its first applications in effective connectivity analysis using static 

data (2-deoxyglucose autoradiography or PET) (McIntosh and Gonzalez-Lima 

1992; McIntosh and Gonzalez-Lima 1994a). However, the application of SEM to 

fMRI time series requires an extension of the technique to satisfy the non-linear 

dynamic properties ,of this relatively new application. Such extension is proposed 

using a Non-linear Autoregressive Moving Average with eXogenous inputs 

algorithm (NARMAX). 
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8.2.2 NARMAX. 

The Non-linear Auto-Regressive Moving Average with eXogenous variables 

(NARMAX) algorithm was introduced as a new approach to represent models of 

effective connectivity using fMRI time series. It can be thought of as a dynamic 

non-linear system identification technique which overcomes some of the 

limitations of Structural Equation Modelling (SEM). The main advantages of this 

extension can be summarised as : 

i) Unsupervised identification of interaction terms. Although in SEM it is possible 

to introduce moderator variables to represent non-linear relationships, the 

polynomial expansion made by NARMAX permits the automatic identification of 

these hidden variables, thus, this approach can be seen as method not only for 

parameters estimation, but also for model identification. 

ii) An appropriate treatment of noise term. The treatment of noise terms is another 

significant difference between SEM and NARMAX approaches. Whereas for 

SEM term noise is considered "system noise" (it is propagated through the 

model), in NARMAX the error term is considered "measurement noise" (it is 

uncorrelated with the regions included in the model). The definition of the error 

term as measurement noise is much more suitable for fMRI data, because system 

noise is dominated by the huge amount of measurement noise characteristic of 

fMRI time series. 

iii) Avoidance of singularity on the covariance matrix. Under NARMAX 

approach, the collinearity problem in the data does not produ~e mathematical 

indetermination in the parameter estimation procedure.. The orthogonal 

decomposition developed by the algorithm ensures an invertible covariance 

matrix. 
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iv) Representation of dynamic systems. SEM is in principle appropriate to 

represent static linear systems, whereas fMRI time series are inherently non-linear 

dynamic systems. The capability of NARMAX to accommodate lagged inputs and 

autoregressive interactions allows for a better representation of the non-linear 

dynamic behaviour of fMRI data. 

Although Volterra series are as powerful as NARMAX in representing non-linear 

dynamical systems, the Volterra representation is useful to model the behaviour of 

a single region (MISO), whereas NARMAX representation offers a framework to 

represent interactions between mUltiple regions (MIMO). 

In summary, the NARMAX approach can be thought of as an attempt to bring 

SEM towards a non-linear dynamic system modelling technique which permits a 

more appropriate representation of effective connectivity models using fMRI time 

series. 

8.2.3 Future work. 

It is important to remember that the fMRI BOLD response is only an indicator of 

neural activity, however, the relationship between oxygen concentration in tissue 

and "neural activity" is not well understood. The misinterpretation in this 

relationship may have a direct implication in the assessing of effective 

connectivity since the evaluation of the model at BOLD level could differ from 

the representation at lower levels (i.e. synaptic). 

Neural activity can be assessed at different levels of abstraction, for example, 

synaptic action potentials, blood flow, blood 'volume, oxyhemoglobin, etc. An 

interesting extension on the effective connectivity analysis can be to assess the 

behaviour of the model at diffe'rent levels of representation. It can be made using 

either different neuroimaging techniques or models to infer neural activity from 

high levels, e.g. BOLD (Buxton, Wong et al. 1998; Zheng, Martindale et al. 

2002). 
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The basic idea for the multi-level representation is to create independent models 

for BOLD (y) and neuronal (x) levels (fig. 8.4). The activity in y level is a 

function of the hidden (non-measurable) level x and the activation in x level is a 

function of the stimulus (u). 

x = f 1(u, a) 

y = f2(x, y) 

Then, the identification consists in solving the system to find the parameters (a) 

on x level. Although this problem has been recently addressed Friston et al 

(Friston 2002), this represent a new area of investigation and further studies are 

needed to explore its plausibility. 

y 

x 

Neuronal level 

1 Stimulus 

u 

Figure 8.4 Levels of representation for effective connectivity models. The 
same anatomical model is shown in a different level of representation. The 
measurements (y) at BOLD level are indicators of the activations at neural 
level (x) produced by the stimulus (u). The research question is how the 
connectivity parameters (a and y) behaves between levels. 
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Appendix 

CODE 

Abstract 

This appendix describes the code developed' to 

implement two approaches for the analysis of 

effective connectivity models, Structural Equation 

Modelling (SEM) and Non-linear 

AutoRegressiove Moving Average with 

eXogenous variables (NARMAX) algorithm. The 

code was written in MA TLAB 5.3 for Windows 

NT 4.0. 



Appendix: Code. 

A.1 Neural structural equation modelling tool. 

The prototype of the Structural Equation Modelling tool developed to investigate 

models of effective connectivity using fMRI time series was implemented 

following the procedure described in Bollen's book (Bollen 1989). The code was 

written in MATLAB 5.3 for Windows NT 4.0. The prototype takes as input the 

fMRI time series from a matrix structure of the form (time~oints, 

cortical_region). There are two fitting function available, Maximum Likelihood 

(ML) or Unweighted Least Squares (ULS). A routine that moves the phase of the 

time series is provided to accommodate lags in responses (fig. A.l). 

Figure A.1 SEM tool. 

The connectivity structure is defined through a graphical interface which displays 

a statistical map of the regions of interest (fig. A.2a). The interface lets the user 

specify the effective connectivity pathways using the "mouse" (fig. A.2b). As 

output, the SEM tool displays the estimated lags, the connectivity coefficients, 

and the goodness of fit of the model (fig. A.2c). 

The code of the different routines used to implement the neural structural equati~n 

modelling tool is listed below. For the sake of legibility, the commands engaged 

in the formatting of the outputs were deleted. It is important to clarify that the 

present implementation only works for recursive models and its extension to 

account for non-recursive model requires additional routines. 
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Figure A.2 SEM tool interface. a) The regions of activation are displayed in 
the statistical map. b) The connectivity paths are defined using the mouse, first 
click defines the cause (0) and the second click defines the effect (*). c) The 
connectivity coefficients, lags estimation, and goodness of fit (x2) are 
displayed over the statistical map. 
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% Main/unction 

Prompt = ('directory', ... 
'file name~ ... 
'Fittingfuction to use? ML(1) ULS(2) ~ ... 
'Lag correction? (yIn)', ... 
),' 
Lines = 1; 
dir = [pwd '\']; 

DefAns = {dir, ... 
'Brain_Model', ... 
'1~ ... 

-" , n, ... 
},' 

Appendix: Code. 

answer = inputdlg(prompt, 'Neural Structural Equation Modeling~ Lines, DefAns); 

% Reading data 
dir = [answer{l} '\'],' 
infile = answer{2},' 
method = eval(answer{3 }); 

,lagc = answer{4},' 
load([dir infile}); 

% Displaying structural data 
[samples vars}=size(block),' 
areas2 =reshape( areas, h, w); 
edges=edge( areas 2),' 
edges=reshape(edges,h *W, 1),' 
ind=find(edges> 0),' 
img(ind) =max(img),' 
imagesc(reshape(img,h, w)),colorbar 
title('Define path diagram. ? 
ans=[J,' 
i=l; 
hold on 

% Defining connectivity structure 
while isempty(ans) 

[y x}=getline; 
arcs(i,3) =floor(mean(y)) +2,' 
arcs(i, 4) =floor(m ean (x)); 
title('Cause (0) Effect (*) Temporal violation (---)? 
x=fix(x),' 
y=.fix(y); 
arcS(i,l :2)=[areas2(x(1),y(1)) areas2(x(2),y(2))},' 
mode='-" 
if(lag_d;tection(block(:,areas2(x(1),y(1))),block(.·,ar~as2(x(2),y(2)))) > 0) 

mode=':'; 
end 
line(y,x, 'linestyle~mode); 
plot(y(1),x(1), 'o? 
plot(y(2),x(2), '*? 
i=i+1,' 
ans=input( 'Press <Return> to define another path or any letter to finish. ','s?; 

end 
hold off -~ 

Cont_exo=l,' 
Cont_end=l,' 

- 196 - . 



for i=l:vars 
if ((ismember(i,arcs(',l))) & (-(ismember(i,arcs(',2))))) 
exogenous(cont_exo)=i,' 

cont _ exo =cont _ exo + 1,',' 
else 
if ((-(ismember(i,arcs(', 1)))) & (-(ismember(i,arcs(',2))))) 

0=0; 
else 

endogenous(cont _end) =i; 
cont_end=cont_end+1,·,· 

end 
end 

end 
guideline=0.5,· % Starting values estimation (0.9) Moderate(OA) Weak (0.2) 
cont_series=l; 
coef=l,' 
% Dejining implied matrix (S) 
BETA =zeros(l ength(endogenous), length (endogenous)),' 
for i=l:length(endogenous) 

data(', cont_series) =block(',endogenous(i)); 
cont_series=cont_series+ 1; 
ind=jind(arcs(:,l) == endogenous(i)); 
for j=l:length(ind) 

Appendix: Code. 

param(coej) = (std(block(:, arcs(indO), 2)))lstd(block(', end ogenous(i))))*guideline; 
aux(coef,l) =1,' 

aux(coef,2)=jind(endogenous==arcs(indO),2)); 
aux(coef, 3) =jind(endogenous= =endogenous(i)),' 
arcs(jind(arcs(·,l)==endogenous(i) & arcs(',2)==arcs(indO),2)),5)=coef; 

BETA (jind(endogenous= =arcs(indO), 2)),jind(endogenous ==end ogenous(i)))=coef; 
coef=coef+ 1,' 

end 
end 
clear ind; 

. ALPHA =zeros(length(endogenous), length (exogenous)) ,. 
for i=l:length(exogenous) 

ind=find(arcs(:,l) == exogenous(i)),' 
for j=l :length(ind) 

., param(coej)=(std(block(',arcs(indO),2)))lstd(block(',exogenous(i))))*guideline; 
aux(coef,l) =2; 
aux(coef,2) =jind(endogenous = =arcs(indO), 2)),' 
aux(coef,3) =jind(exogenous= =exogenous(i)),' 
arcs(jind(arcs(·,l)==exogenous(i) & arcs(:,2)==arcs(indO),2)),5)=coef; 

ALPHA (jind(endogenous = =arcs(indO), 2)),flnd(exogenous = =exogeno us(i)))=coef; . 
coef=coef+ 1; 

end 
. end 
PSI=zeros(length(endogenous),length(endogenous)),' 
for i=l:length(endogenous) 

param( coej) =var(block(', endogenous(i))) *guideline,' 
aux(coef,l) =3,' 
aux(coef,2)=i,' 
aux(coef,3)=i; 
nOises(i,l)=endogenous(i); 
noises(i, 2) =coef,' 
PSI(i,i)=coef,' 
coef=coef+ 1,' 

end 
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PHI=zeros(length(exogenous),length(exogenous)); 
for i=l:length(exogenous) .. 

end 

data(.·, cont_series) =block(",exogenous(i)),' 
cont _series=cont _series + 1,' 
PHI(i,i)=var(block(:,exogenous(i))),' 

% Construct observerd covariance matrix (S) 
iflagc=='y' 

{s, Mlags] =Iag_correction (data),' 
else 

S=cov(data),· 
end 

opt = optimset,' 
opt.MaxFunEvals = 1 el 0; 
opt.MaxIter =le10; 
opt. TolFun=l e-5,' 
opt. TolX= 1 e-5,' 

Appendix: Code. 

% Parameter Identification 
(param,j)=fminsearch('.fitJunction~param,[],BETA,ALPHA,PS/'PH/'S,method,aux); 

% Chi square 
chCobs=abs(samples*j),· 
% Degrees of freedom 
df=O. 5 *vars *(vars + 1 )-Iength(param); 
%Pvalue 
pvalue=chi2(chi_obs,dj),' 

% Fitting function 
% This function is used by the MATLAB optimisation tool box to estimate the parameters 

function res=model(param,BETA,ALPHA,PS/,PH/,S,method,aux) 

for i=l:length(param) 
if (aux(i, 1)==1) 

BETA (aux(i, 2), aux(i,3)) =param(i); 
else 

if(aux(i,1)==2) 
ALPHA (aux(i, 2), aux(i, 3)) =param(i); 

else 
PSI(aux(i,2),aux(i,3))=param(i),' 

end 
end 

end 
% Constructing implied matrix 

roBETA+PSI 
[rb cb]=size(BETA),' 
I=eye(rb,cb),· 
B2=inv(l-BETA),· 
s(J :rb, 1 :cb)=B2 *(ALP HA * PHI*ALPHA' +PSI) * B2'; 
raALPHA 
[ra ca]=size(ALPHA),' -
S(J:ra,cb+ 1 :cb+ca) =B2 *ALPHA *PH/,' 
roS(rb+ 1 :rb+ra, 1 :ca)=PHI* ALPHA '*B2'; 
s(rb+ 1 :rb+ca, l:ra)=PHI.*ALPHA '*B2'; 
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%PHI 
[rp ep]=size(pHI),' 
s(rb+ 1 :rb+rp,cb+ l:cb+cp)=PHI; 

% Fittingfunctions 

if (method==l) % Maximum likelihood 
p1=log(det(s)); 
p2=trace(S*inv(s)); 
p3=log(det(S)),· 
res=p1 +p2-p3-(ra+ca),' 

else % Unweighted least Squares 
res1 = S-s; 
res2 = res1. *res1; 
res =0.5*trace(res2),· 

end 

% Lag detection function 

Appendix: Code. 

% This function verifies if a move of phase maximises the correlation between regions 

function [I, c]=lag_detection(serie1,serie2) 

serie1 =serie1-mean(serie1); 
serie2=serie2-mean(serie2),· 
len=length(serie1); 

for i=1:30 
covs(i+30)=(serie1 (1 : len + 1-i,1)'*serie2(i:len, 1))/(len-1),' 
covs(i) = (serie1 (i:len, 1) '*serie2(1 :Ien+ 1-i, 1))/(len-1); 

end 

l=jind(abs(covs) == max(abs(covs))),' 
1=1{1,1),· 
c=covs(l); 
1==1-1,' 

% Lag correction function 
% This function moves the phase of the time series to maximise the correlation between regions 

function [S,M/ags] =Iag_ correction ( data) 

[rows eols]=size(data); 
S==zeros(cols,cols),' 
Mlags=zeros(cols,cols); 

data =data-repmat(mean ( data), rows, 1),' 

for vars=l :eols 
for id=l:cols 
ifid < vars 

for i=1:10 
covs(i + 10) =( data{1 :rows+ 1-i, vars) '*data(i:rows, id))/(rows-1); 
covs(i) =( data(i:rows, vars) '*data{1 :rows+ 1-i, id) )/(rows-1); 

end 
l=jind(abs(covs) == max(abs(covs))); 
1=1{1,l),' 
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c=covs(1),' 
1=1-1; 
if (1 > 10) 

1=(1-10)*-1,· 
end 

S(vars,id)=c,' 
Mlags(vars, id) =1,' 

end 
end 

end 
S=S+S'+cov(data). *eye(cols,cols),' 
Mlags=Mlags-Mlags',· 

· Appendix: Code. 

: % Chi-square p-value estimation 
% This function estimates the p-value for a given chi-square value at a specific degrees of 
freedom. 

junction res = chi2(x,n) 
% chi2(chi-square, degrees _ 0 Jreedom) 

p=exp(-O. 5 *x),' 
if(mod(n,2) == 1) 

p=p*sqrt(2*x/pi); 
end 
k=n,' 
while(k> =2) 

p=p*X/k,' 
k=k-2,' 

end 
t=p,' 
a=n; 
while(t>(O. 000001 *p)) 

a=a+2; 
t=t*xla; 
p=p+t; 

end 

res=l-p; 
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A.2 NARMAX algorithm. 

The present NARMAX implementation was made following the algorithms 

described on Korenberg , Chen and Billings' papers (Korenberg, Billings et al. 

1988; Billings, Chen et al. 1989; Chen, Billings et al. 1989). The algorithm 

described in 3.4.1 was codified in MATLAB 5.3 for Windows NT 4.0. The main 

inputs of this tool are the fMRI time series of the regions of interest and their 

connectivity structure specified by the user. The general settings for the system 

identification and parameter estimation (see chapter 3) are requested in the input 

window (fig. A.3). 

Figure A.3 NARMAX tool. 

The outputs of the algorithm are the connectivity coefficients, the lags between 

activations, and the high order interaction terms (non-linear terms). For an 

example of the output consult chapter 3. It is important to clarify that the present 

implementation of NARMAX assumes that the error terms are random noise 

(measurement noise), so no further analysis is made to assess correlated errors. 

The code of the different routines used to implement the NARMAX algorithm is 

listed next. For the ,sake of legibility, the commands engaged in the formatting of 

the outputs were deleted. 
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% Main/unction 

global Colinear _Criteria Explain_Criteria AR 

Prompt = {'Directory~ ... 
'File name~ ... 
'Dynamic order ~ ... 
'Polynomial order (1,2 or 3)~ ... 
'Standardized Estimates? (yin) ~ ... 
'Minimum explaned variance permited (%)~ ... 
'Angle to consider orthogonal (» ', ... 
'Autoregressive (yIn) ~ ... 
),. 

Lines = 1,' 
dir = [pwd '\ '],' 
De/Ans = (dir, ... 
'Example4~ ... 
'O~ ... 
'2', .. . 
'n~ .. . 
'1~ .. . 
'45~ .. . 
'n~ .. . 
),. 

answer = inputdlg(prompt, NARMAX', Lines, De/Ans),' 

dir = [answer{l) '\'],' 
infile = answer(2),' 
Max_lag = eval(answer{3)),· 
Maxyol = eval(answer{4)),' 
Stand_E = answer(5),' 
Explain_Criteria = eval(answer{6))1100; 
Colin ear _ Criteria=eval (answer (7)),' 
AR=answer{8 ),. 

load([dir inflleJ),' 

ifStand~E == y' % Normalization 
Data=Data-repmat(mean(Data),max(size(Data)),l),' % Mean 
Data =Data.lrepmat(std(Data), max(size(Data) ),1),' % Std 

end 

vars=length(strs1),· 
str yos=num2str((1 :vars)); 

blank=cellstr('£~,· %Fill predictors 
for j=1:length(strs1) 

str aux2='" 
for i=1 :length(strs 1) 

if -strcmp(strs1 O),strs1 (i)) 
str _aux2=strcat(str _aux2,strs1 (i), blank),' 

end 
end 

str _aux2=char(strrep(str _aux2, '£~' ~);_. 
DefAnsO)=cellstr(str _aux2(1 :length(str _aux2)-1)); 

end 

answer = inputdlg(strs1, 'pnter list o/predictors per, Variable',Lines,De/Ans),' 
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for i=l:vars 
Dv=Data(:, i) " 
str _Dv=strs 1 (i),' 
exps=char(answer(i)) " 

iflength(exps) > 0 

% In answer % Look at which position correspond in Data. 
clear keep srt_aux answer2 
con_keep=l,' 
j=l; 
k=l; 

for ii=l:length(exps) 
if -strcmp(exps(ii),'? 

srt _ auxO) =exps(ii) " 
j=j+l,' 

else 
answer 2 (k) =cellstr(srt _ aux) " 
clear srt_aux,' 
j=l,' 
k=k+l,' 

end 
end 
answer 2 (k) =cellstr(srt _ aux); 

for j=l:length(answer2) 
for jj=l:length(strsl) 

%answer20) 
roStrslOj) 
if strcmp(answer20),strs 1 OJ)) 

keep(con _keep) =jj; 
con_keep =con_keep + l; 

end 
end 

end 
factors =Data(:, keep); 
strs2=strsl (keep),' 
ncauses=length(strs2),· 
Causes=factors,' 
Var_names=strs2; 

else 
ncauses=O; 

end 

fprintf(fid,' roS\t\t~char(str _Dv)); 

ifncauses> 0 

. Var _names(length(Var _names) + l)=str _Dv; 
Causes(.·,length(Var _names))=Dv; 

clear Parameters lab Jac Explain val Jac 

Appendix: Code. 

[Parameters, lab Jac,Explain, val Jac~semJ=fnarmax(Causes,Dv,Max_lag,Maxyol, Var _name 
s),' 
Rv=val Jac*Parameters; 
noise=Dv-Rv,' 
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NoiseMat(:, i) =noise; 
Rvs(.·, i) =Rv,' 

fprintf(fid, 'Endogenous\t %3.3j\t\t~ var(noise)); 

else 
fprintf(fid, 'Exogenous\t %3.3j\n~ var(Dv)); 

end 

% NARMAX Algorithm 
% Apply two main steps of the algorithm 

Appendix: Code. 

function [Parameters,labJac,Explain, valJac, semJ=fnarmax(factors, Dv,Max_lag, Maxyol,strs),' 

global Colin ear _Criteria Explain_Criteria AR 
% -------------------- Generating Design_Matrix 
[DM labelsJ=fdesmat(factors,Max_lag,Maxyol,strs),' 
nfacts=min(size(factors)); %labels 
% -------------------- Orthogonalisation Algorithm 
[Param eters, goods, Explain, val Jac,semJ=jMGramSchmidt(DM,Dv,nfacts),' 

lab Jac=labels(goods, .~,' 
ind=find(goods <= min(size(factors))),' 

% Design matrix generation 
% This function generates predictors through the polynomial expansion 

function [Design_Matrix,labelsJ=fdesmat(factors,Max_lag,Maxyoljac_str),' 

global Co lin ear _Criteria Explain_Criteria AR 

N=max(size(factors)),· 
nf=min(size(factors)); 

cont=1,' 
if strcmp(AR, y1 

for j=-!Jax_lag:-1 
Design_ Matrix(",cont) =putlag(1 jactors(.·,nj),j); 
str _tem=strcat(fac_str(nj), '(t-~num2str(absO)), 11; 
19=1ength(str _tem),' 
str _labels(cont, 1: 19) =str _tem; 

cont=cont+ 1,' 
end 

end 

for i=1:nf-1 
for j=-Max_lag:O %Max_lag . 

Design_Matrix(.·,cont)=putlag(1,factors(.·,i)J); 
ifj> 0 
- str _tem=strcat(fac_str(i), '(t+~num2str(absO)), 11,' 
else . 

str _tem =strcat(fac _str(i), '(t-', num2str(abs0) ), 11; 
end 
19=1 ength(str _tem),' 
str _labels(cont, 1 :lg)=str _tem,' 
cont=cont+ 1 ,. 

end 
end 
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ifMaxyol> 1 . 
l=min(size(Design_Matrix)); 
gabbo=l,' 
for i=1:1 

for j=1:1 
ifj >= i 

res idual=Design_Matrix(",i). *Design_Matrix(:j),' 

residual =residualise(Design _Matrix(:, i) ,Design _ Matrix("j)); 

Design_Matrix(",cont)=residual; 
str _tem=strcat(str _labels(i,:),str _labelsO,:)); 
19=1ength(str _tern); 
str _labels(cont, 1 :lg) =str _tern; 
cont=cont+ 1,' 

end 
end 

end 
end 

ifMaxyol> 2 
12 =min(size(Design_Matrix)); 
for i=1:1 

for j=I+1:12 
. residual=Designyatrix(,·,i). *Design_Matrix("j),' 

residual=residualise(Design_Matrix(",i),Design_Matrix("j)); 

Design_Matrix(",cont)=residual; 
str _tern =strcat(str _labels(i, :),str _labelsO,:)); 
19 = length (str _tern),' 
str _labels(cont, 1 :lg) =str _tern,' 
cont=cont+ 1 " 

end 
end 
end 
labels=str _labels(1 :cont-1,:),' 

% Residualisation 
% This function residualise the product of x * y 

. Junction residual=residualise(x,y) 

residual=x. *y; 

alpha=covar(residual,x)/var(x); % First orthogonalization 
residual=residual-(alpha *x) " 

% Make orthogonal the second term with the previous one. 
aux==y,' 
alpha=covar(aux,x)/var(x),' 

var _aux=var(aux),' . 
Simil=((alpha *alpha) *var _ aux)/var(x); 

aux=aux-(alpha*x),· 
alpha=covar(residual,aux)/var(aux); 

residual=residual-(alpha*aux),· 
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% Orthogonalisation algorithm 
% Modified Gram-Schmidt Algo.rith"! 

function [param, Goods,Explain, val Jac,semJ=fMGramSchmidt(p,Z,nfacts) 

global Colin ear _Criteria Explain_Criteria 
s=l,' 
[N M]=size(p),' 
Sdm=M; 
A_aux=zeros(Sdm,Sdm); 
goods=(l :Sdm) " 
PP=P; 
ZZ=Z,' 
Cn=l,' 
% Select the jist component 

for i=l:M % Find the most informative component in P 
Gi(i)=covar(P(:,i),Z)/var(p(.·, i)); 
expl_i(i) = ((Gi(i) *Gi(i)) *var(p(.·,i)))/var(Z),· 

end 
ind=jind(expl_i == max(expl_i)); 

if length (ind) > 1 
ind=ind(l, 1) " 
display('Two or more with equal score? 

end 
A ux_P=P(:,s)" 
P(.·,s)=P(.·,ind),· % Most informative element 
P(.·, ind) =Aux P; 
G(s) = Gi(ind/": 

Expl(s) = expCi(ind) " 

Aux~=goods(s),' 
goods(s) =goods(ind) " 
goods(ind) =Aux~; 

A=A_aux(l:s,l:s)+eye(s,s),' 
param=inv(A) *G'; 
Goods=goods(l :s),' 
New _Z=PP(:, Goods) *param,' 
Noise(Cn)=var(ZZ-New _Z); 

s=s+l; 

% Look for the rest of the orthogonal components: 

flag1=1,' 
whiles <= M &flag1 == 1 

clear Gi expCi alpha 
flag2=0; 
for k=s:M % Substract previous orthogonal componentfrom the rest 

alpha(k)=covar(P(:,k),P(:,s-l))/var(p(.·,s-l)); 
angle=acos(corr(P(:,k),P(",s-l )))/0.0175,' 

ifangle> Colin ear_Criteria % 0.5 % Avoid matrix become singular 
P(.·,k) =P(.·,k}-(alpha(k) *P(.·,s-l)); 

var _Pk=var(P(",k)); 
Ifvar _Pk == 0 
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display(,Increase orthogonal criteria? 
expl_i(k) =-1000; . 

flag2=1; 
else 

Gi(k)=covar(p(.·,k),Z)/var _Pk; 
expCi(k) =((Gi(k) *Gi(k)) *var _Pk)/var(Z); 

end 
else 

expl_i(k) =-1 000; 
flag2=1,' 

end 
end 
ind=jind(expCi == max(expCi)),' 

- if length (ind) > 1 
ind=ind(1,l),' 
display('Two or more with equal score? 

end 

Expl(s)=expCi(ind),' 
A ux_P=P(.·,s); 
P(,·,s)=P(.·,ind),· 
P(.·, ind) =Aux P,' 
G(s)=Gi(ind); 

AA_aux=A_aux(.·,s),· 
A_aux(,·,s)=A_aux(.·,ind),· 
A_aux(.·, ind) =AA _aux,' 

Aux_A=alpha(s),' 
alpha(s) =alpha(ind),' 
alpha(ind) =A ux _A,' 
A_aux(s-l,:)=A_aux(s-l,:)+alpha,' 
Aux....E=goods(s),· 
goods(s) =goods(ind); 
goods(ind) =Aux....E; 

Aux_ exp=expCi(s),' 
expl_i(s)=expl_i(ind),' 
expCi(ind) =Aux _ exp; 

ifflag2 == 1 
[P,A_aux,goods,M, alpha] =deCcolin ear(expl_i, P,A_aux, goods, M, alp ha); 

end 

A =A_aux(1 :s, 1 :s)+eye(s,s); 
param=inv(A)*G'; 
Goods =goods(l :s),' 

Cn=Cn+1; 

s=s+l; 
else 

flag1=0; 
end 

end 
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s=s-l,' 
A=A_aux(l:s,l:s)+eye(s,s),' 
param=inv(A) *G'; 
Goods=goods(l:s); 
Explain =Expl(l :s)'* 100; 
sem=O; 
val Jac=P(:, Goods),' 

% Delete collinear elements 
% Eliminate redundant elements on the design matrix 

Appendix: Code. 

function [P2,A2,GOODS2,M2,alpha2J=deCcolinear(expCi,Pl,Al,GOODSl,M1, alpha 1) 

[nrows ncolsJ=size(Al); 
index=l:ncols,' 
ind=jind(expCi .... = -1000),' 
ind2=jind(expCi == -1000),' 

P2=Pl(:,ind); 

A2=Al (ind, ind),' 

GOODS2=GOODSI (ind),' 

alpha2 =alphal (ind),' 

n=length(ind2) ,. 

M2=Ml-n; 

- 208-



Bibliography 



Bibliography. 

Acosta-Mesa, H., G., J. Mayhew, et aL (2001). "Functional anatomy of stereoscopic visual 
process." Third Mexican International Conference on Computer Science. 
Aguascalientes. Mexico. Sep. 15-19.2001. 

Aertsen, A. and H. Preissl (1991). "Dynamics of activity and connectivity in physiological 
neuronal networks." VCR Publishers Inc.: 281-302. 

Aguirre, G. K., E. Zarahn, et al. (1998). "The variability of human, BOLD hemodynamic 
responses." Neuroimage 8(4): 360-9. 

Aloimonos, J. (1988). "Shape from texture." Bioi Cybern 58(5): 345-60. 

Amunts, K., A. Malikovic, et aI. (2000). "Brodmann's areas 17 and 18 brought into 
stereotaxic space-where and how variable?" Neuroimage 11(1): 66-84. 

Arbuckle, J. L. and W. Wothke (1995). "AMOS 4.0 User's Guide." SmallWaters 
Corporation. 

Backus, B. T., D. J. Fleet, et al. (2001). "Human cortical activity correlates with stereoscopic 
depth perception." J NeurophysioI86(4): 2054-68. 

Bakin, J. S., K. Nakayama, et al. (2000). "Visual responses in monkey areas VI and V2 to 
three-dimensional surface configurations." J Neurosci 20(21): 8188-98. 

Bavelier, D., A. Tomann, et al. (2000). "Visual attention to the periphery Is enhanced in 
congenitally deaf Individuals." J Neurosci 20(17): RC93. 

Bendat, J. S. (1990). "Nonlinear system analysis and identification from random data." John 
Wiley & Sons. 

Bentler, P. M. (1985). "Theory and implementation ofEQS, a structural equations 
program." BMDP Statistical software. 

Berry, W. D. (1984). "Nonrecursive causal models." SAGE. 

Billings, S. A., S. Chen, et al. (1989). "Identification of MIMO non-linear systems using a 
forward-regression orthogonal estimator." Int. J. Control. 49(6): 2157-2189. 

Billings, S. A. and W. S. F. Voon (1986b). "A prediction-error and stepwise-regression 
estimation algorithm for non-linear systems." International journal of control 44: 
803-822. 

Blasdel, G. G. (1992). "Orientation selectivity, preference, and continuity in monkey striate 
cortex." J Neurosci 12(8): 3139-61. . 

Bollen, K. A. (1989). "Structural equations with latent variables." Wiley-lInterscience 
publication. 

Braddick, O. J., J. M. O'Brien, et al. (2001). "Brain areas sensitive to coherent visual 
motion." Perception 30(1): 61-72. 

Brainard, D. H. (1997). "The psychophysics toolbox." Spatial vision 10: 433-436. 

Buchel, C. and K. J. Friston (1997). "Modulation of connectivity in visual pathways by 
attention: cortical interactions evaluated with structural equation modelling and 
fMR!." Cereb Cortex 7(8): 768-78. 

- 209-



Bibliography. 

Buchel, C. and K. J. Friston (2000). "Assesing interactions among neuronal systems using 
functional neuroimaging." Neural Networks. 13: 871-882. 

Buchel, C., O. Josephs, et al. (1998)~ "The functional anatomy of attention to visual motion. 
A functional MRI study." Brain 121(Pt 7): 1281-94. 

BuUmore, E., B. Horwitz, et al. (2000). "How good is good enough in path analysis of fMRI 
data?" Neuroimage 11(4): 289-301. 

Burkhalter, A., D. J. Felleman, et aI. (1986). "Anatomical and physiological asymmetries 
related to visual areas V3 and VP in macaque extrastriate cortex." Vision Res 26(1): 
63-80. 

Burkhalter, A. and D. C. Van Essen (1986). "Processing of color, form and disparity 
information in visual areas VP and V2 of ventral extrastriate cortex in the macaque 
monkey." J Neurosci 6(8): 2327-51. . 

Burt, P. and J. B. (1980). "A disparity gradient limit for binocularfusion." Science 208: 615-
617. 

Buxton, R. B., E. C. Wong, et aI. (1998). "Dynamics of blood flow and oxygenation changes 
during brain activation: the balloon model." Magn Reson Med 39(6): 855-64. 

Carman, G. J., H. A. Drury, et aL (1995). "Computational methods for reconstructing and 
unfolding the cerebral cortex." Cereb Cortex 5(6): 506-17. 

Chen, S., S. A. Billings, et al. (1989). "Orthogonal least squares methods and their. 
application to non-linear system identification." Int. J. Control. 50(5): 1873-1896. 

Chklovskii, D. B. (2000). "Binocular disparity can explain the orientation of ocular 
dominance stripes in primate primary visual area (VI)." Vision Res 40(13): 1765-73. 

Chow, G. C. (1983). "Econometrics." McGraw Hills. 

Coghill, R. C., C. N. Sang, et al. (1999). "Pain intensity processing within the human brain: a 
bilateral, distributed mechanism." J NeurophysioI82(4): 1934-43. . 

Corbetta, M., E. Akbudak, et al. (1998). "A common network of functional areas for 
attention and eye movements." Neuron 21(4): 761-73. 

Corbetta, M., F. M. Miezin, et al. (1991). "Selective and divided attention during visual 
discriminations of shape, color, and speed: functional anatomy by positron emission 
tomography." J Neurosci 11(8): 2383-402. 

Cowey, A. and J. Porter (1979). "Brain damage and global stereopsis." Proc R Soc Lond B 
Bioi Sci 204(1157): 399-407. 

Cowey, A. and F. Wilkinson (1991). "The role of the corpus callosum and extra striate visual 
areas in stereoacuity in macaque monkeys." Neuropsychologia 29(6): 465-79. 

Creem, S. H. and D. R. Proffitt (2001). "Defining the cortical visual systems: "what", 
"where", and "how"." Acta Psychol (Arnst) 107(1-3): 43-68. 

Cumming, B. G. and G. C. DeAngelis (2001). "The physiology of stereopsis." Annu Rev 
Neurosci.24: 203-38. 

- 210-



Bibliography, 

Cumming, B. G. and A. J. Parker (1994). "Binocular mechanisms for detecting motion-in­
depth." Vision Res 34(4): 483-95. 

Cumming, B. G. and A. J. Parker (1999). "Binocular neurons in VI of awake monkeys are 
selective for absolute, not relative, disparity." J Neurosci 19(13): 5602-18. 

Darby, D. G., A. C. Nobre, et al. (1996). "Cortical activation in the human brain during 
lateral saccades using EPIST AR functional magnetic resonance imaging." 
Neuroimage 3(1): 53~62. 

DeAngeliS, G. C. and W. T. Newsome (1999). "Organization of disparity-selective neurons in 
macaque area MT." J Neurosci 19(4): 1398-415. 

Dejong, B. M., S. Shipp, et al. (1994). "The cerebral activity related to the visual perception 
of forward motion in depth." Brain 117(Pt 5): 1039-54. 

DeValois, R., C. J. Smith, et al. (1958). "Responses of single cells in monkey lateral 
geniculate nucleus to monochromatic light." Science 127: 238-239. 

DeYoe, E. A., G. J. Carman, et al. (1996). "Mapping striate and extrastriate visual areas in 
human cerebral cortex." Proc Natl Acad Sci USA 93(6): 2382-6. 

Dupont, P., B. De Bruyn, et al. (1997). "The kinetic occipital region in human visual cortex." 
Cereb Cortex 7(3): 283-92. 

Faillenot, I., J. Decety, et al. (1999). "Human brain activity related to the perception of 
spatial features of objects." Neuroimage 10(2): 114-24. 

Felleman, D. J., A. Burkhalter, et al. (1997). "Cortical connections of areas V3 and VP of 
macaque monkey extrastriate visual cortex." J Comp NeuroI379(1): 21-47. 

Felleman, D. J. and D. C. Van Essen (1987). "Receptive field properties of neurons in area 
V3 of macaque monkey extrastriate cortex." J NeurophysioI57(4): 889-920. 

Felleman, D. J. and D. C. Van Essen (1991). "Distributed hierarchical processing in the 
primate cerebral cortex." Cereb Cortex 1(1): 1-47. 

FOrtin, A., M. Ptito, et aL (2000). "Extrastriate visual cortical areas in the processing of 
stereoscopic depth perception." Neuroimage (poster) 11(5). 

Frackowiak, R. S. and K. J. Friston (1994). "Functional neuroanatomy of the human brain: 
positron emission tomography-a new neuroanatomical technique." J Anat 184(pt 
2): 211-25. 

Friston, K. J. (1994). "Functional and effective connectivity in neuroimaging: A synthesis." 
Human Brain Mapping. 2: 56-78. 

Friston, K. J. (2002). "Bayesian estimation of dynamical systems: an application to fMRI." 
Neuroimage 16(2): 513-30. 

Friston, K. J. and C. Buchel (2000). "Attentional modulation of effective connectivity from 
V2 to V5IMT in humans." Proc Natl Acad Sci USA 97(13): 7591-6. 

Friston, K. J., C. D. Frith, et al. (1993). "Time-Dependent changes on effective connectivity 
measured with PET." Human Brain Mapping. 1: 69-79. 

- 211 -



Bibliography. 

Friston, K. J., C. D. Frith, et al. (1995). "Characterizing dynamic brain responses with 
fMRI: a multivariate approach." Neuroimage 2(2): 166-72. 

Friston, K. J., C. D. Frith, et al. (1993). "Functional connectivity: the principal-component 
analysis oflarge (PET) data sets." J Cereb Blood Flow Metab 13(1): 5-14. 

Friston, K. J., L. Harrison, et al. (2002). "Models of effective connectivity." Welcome 
Department of Cognitive Neurology Internal report. 

Friston, K. J., A. P. Holmes, et al. (1999). "How many subjects constitute a study?" 
Neuroimage 10(1): 1-5. 

Friston, K. J., A. P. Holmes, et al. (1994). "Analysis of functional MRI time-series." l!!!!!!: 
Brain Mapp. 1: 153-171. 

Friston, K. J., O. Josephs, et al. (1998). "Nonlinear event-related responses in fMRI." Magn 
Reson Med 39(1): 41-52. 

Friston, K. J., A. Mechelli, et al. (2000). "Nonlinear responses in fMRI: the Balloon model, 
Volterra kernels, and other hemodynamics." Neuroimage 12(4): 466-77. 

Friston, K. J., P. Ungerleider, et al. (1995). "Characterizing modulatory interaction between 
areas VI and V2 in human cortex: A new treatment of functional MRI data." 
Human Brain Mapping. 2: 211-224. 

Gerstein, G. L. and D. H. Perkel (1969). "Simultaneously recorded trains of action 
potentials: Analysis and functional interpretations." Science 164(828-830). 

Ghose, G. M. and D. Y. Ts'o (1997). "Form processing modules in primate area V4." :! 
Neurophysiol 77(4): 2191-6. 

Glymour, C., P. Spirtes, et aL (1994). "TETRAD II User's manual." lawrence Earlbaum 
associates . 

. Goncalves, M. S., D. A. Hall, et al. (2001). "Can meaningful effective connectivities be 
obtained between auditory cortical regions?" Neuroimage 14: 1353-1360. 

Gonzalez, F., F. Krause, et al. (1993a). "Binocular matching in monkey visual cortex: single 
cell responses to correlated and un correlated dynamic random dot stereograms." 
Neuroscience 52(4): 933-9 •. 

Gonzalez, F. and R. Perez (1998). "Neural mechanisms underlying stereoscopic vision." 
Progress in neurobiology 55: 191-224. 

Gonzalez, F., J. L. Relova, et al. (1993b). "Cell responses to vertic~1 and horizontal retinal 
disparities in the monkey visual cortex." Neurosci Lett 160(2): 167-70. 

Gossl, C., L. Fahrmeir, et al. (2001). "Bayesian modeling of the hemodynamic response 
function in BOLD fMRI." Neuroimage 14(1 Pt 1): 140-8. 

Gulyas, B. and P. E. Roland (1993). "Binocular disparity discrimination in human cerebral 
cortex: Functional anatomy by positron emission tomography." Proc. Natl. Acad. 
Sci. USA (Nuerobiology) 91: 1239-1243. 

lIanazawa, A., R. Kawashima, et al. (2000). "The human posterior parietal cortex 
participates in stereoscopic depth perception. A fMRI study." NeuroImage (poster) 
11(5). . 

- 212-



Bibliography. 

Hasebe, H., H. Oyamada, et al. (1999). "Human cortical areas activated in relation to 
vergence eye movements-a PET study." Neuroimage 10(2): 200-8. 

Hasnain, M. K., P. T. Fox, et al. (1998). "Intersubject variability of functional areas in the 
human visual cortex." Hum Brain Mapp 6(4): 301-15. 

Howard, I. P. and B. Rogers (1995). "Binocular vision and stereopsis." Oxford University 
press. 

Howard, R. J., M. Brammer, et aL (1996). "A direct demonstration of functional 
specialization within motion-related visual and auditory cortex of the human brain." 
Curr Bioi 6(8): 1015-9. 

Hubel, D. H. (1995). "Eye, brain and vision." W. H. Freeman. 

Hubel, D. H. and M. S. Livingstone (1987). "Segregation of form, color, and stereopsis in 
primate area 18." J Neurosci 7(11): 3378-415. 

Hubel, D. H. and T. N .. Wiesel (1970). "Stereoscopic vision in macaque monkey. Cells 
sensitive to binocular depth in area 18 of the macaque monkey cortex." Nature 
225(227): 41-2. 

Jennings, J. M., A. R. McIntosh, et al. (1998). "Mapping neural interactivity onto regional 
activity: an analysis of semantic processing and response mode interactions." 
Neuroimage 7(3): 244-54. 

Joreskog, K. G. and D. Sorb om (1989). "LISREL 7 User's reference guide." Scientific 
software. Inc. 

Julesz, B. (1960). "Binocular depth perception of computer generated patterns." Bell system 
~ 39: 1125-1162. 

Kastner, S., P. De Weerd, et al. (2000). "Texture segregation in the human visual cortex: A 
functional MRI study." J NeurophysioI83(4): 2453-7. 

Kenny, D. A. and M. C. Judd (1984). "Estimating the nonlinear and interactive effects of 
latent variables." Psychological bulletin 96(1): 201-210. 

Korenberg, M., S. A. Billings, et al. (1988). "Orthogonal parameter estimation algorithm for 
non-linear stochastic systems." Int. J. Control. 48(1): 193-210. 

Kourtzi, Z. and N. Kanwisher (2000). "Cortical regions involved in perceiving object shape." 
J Neurosci 20(9): 3310-8. 

Kwee, I. L., Y. FujU, et al. (1999). "Perceptual processing of stereopsis in humans: high-field 
(3.0-tesla) functional MRI study." Neurology 53(7): 1599-601. 

Lai, S. H. and M. Fang (1999). "A novel local PCA-based method for detecting activation 
signals in fMRI." Magn Reson Imaging 17(6): 827-36. 

Lay, D. C. (2000). "Linear algebra and its applications." Addison Wesley Longman. 

Le Bihan, D., J. F. Mangin, et al. (2001). "Diffusion tensor imaging: concepts and 
applications." J Magn Reson Imaging 13(4): 534-46. 

Leontaritis, I. J. and S. A. Billings (1985). "Input-output parametric models for non-linear 
systems." International journal of control 41: 303-344. 

- 213-



Bibliography. 

Lueck, C. J., S. Zeki, et ale (1989). "The colour centre in the cerebral cortex of man." Nature 
340(6232): 386-9. 

Malik, J. and R. Rosenholtz (1994). "A computational model for shape from texture." Ciba 
Found Symp 184: 272-83. 

Marr, D. (1982). "Vision." W. H. Freeman & Company. 

Marr, D. and T. Poggio (1979). "A computational theory of human stereo vision." Proc R 
Soc Lond B Bioi Sci 204(1156): 301-28. 

Mayhew, J. (1982). "The interpretation of stereo-disparity information: the computation of 
surface orientation and depth." Perception 11(4): 387-403. 

Mayhew, J. E. and H. C. Longuet-Higgins (1982). "A computational model of binocular 
depth perception." Nature 297(5865): 376-8. 

McIntosh, A. R. (2000). "Towards a network theory of cognition." Neural Networks. 13: 
861-870. 

McIntosh, A. R., R. E. Cabeza, et aL (1998). "Analysis of neural interactions explains the 
activation of occipital cortex by an auditory stimulus." J NeurophysioI80(5): 2790-6. 

McIntosh, A. R. and F. Gonzalez-Lima (1992). "Structural modeling of functional visual 
pathways mapped with 2-deoxyglucose: effects of patterned light and footshock." 
Brain Res 578(1-2): 75-86. 

McIntosh, A. R. and F. Gonzalez-Lima (1994a). "Network interactions among limbic 
cortices, basal forebrain, and cerebellum differentiate a tone conditioned as a 
Pavlovian excitor or inhibitor: fluorodeoxyglucose mapping and covariance 
structural modeling." J NeurophysioI72(4): 1717-33. 

McIntosh, A. R. and F. Gonzalez-Lima (1994b). "Structural equation modelling and its 
application to network analysis in functional brain imaging." Human Brain 
Mapping. 2: 2-22. 

McIntosh, A. R., C. L. Grady, et al. (1994c). "Network analysis of cortical visual pathways 
mapped with PET." J Neurosci 14(2): 655-66. 

McKeefry, D. J., J. D. Watson, et al. (1997). "The activity in human areas VIN2, V3, and V5 
during the perception of coherent and incoherent motion." Neuroimage 5(1): 1-12. 

Mendola, J. D., A. M. Dale, et al. (1999). "The representation of illusory and real contours in 
human cortical visual areas revealed by functional magnetic resonance imaging." J: 
Neurosci 19(19): 8560-72. 

Mishkin, M., L. G. Ungerleider, et ale (1983). "Object vision and spatial vision: Two cortical 
pathways." Trends Neuroscience 6: 414-417. 

Nishida, Y., O. Hayashi, et al. (2001). "Stereopsis-processing regions in the human parieto­
occipital cortex." Neuroreport 12(10): 2259-63. 

Nobre, A. C., D. R. Gitelman, et ale (2000). "Covert visual spatial orienting and saccades: 
overlapping neural systems." Neuroimage 11(3): 210-6. 

- 214-



Bibliography, 

Nyberg, L., A. R. McIntosh,et al. (1996). "Network analysis of positron emission 
tomography regional cerebral blood flow data: ensemble inhibition during episodic 
memory retrieval." J Neurosci 16(11): 3753-9. 

Ogle, K. N. (1962). "The optical space sense." The eye (New York: Academic Press) 4. 

Ono, M., S. Kubick, et al. (1990). "Atlas of the cerebral sulci." Thieme medical. New York. 

Orban, G. A., P. Dupont, et al. (1995). "A motion area in human visual cortex." Proc Natl 
Acad Sci USA 92(4): 993-7. 

Orban, G. A., S. Sunaert, et al. (1999). "Human cortical regions involved in extracting depth 
from motion." Neuron 24(4): 929-40. 

Paradis, A. L., V. Cornilleau-Peres, et al. (2000). "Visual perception of motion and 3-D 
structure from motion: an fMRI study." Cereb Cortex 10(8): 772-83. 

Patterson., R., M. Donnelly, et al. (1997). "Speed discrimination of stereoscopic (cyclopean) 
motion." Vision Res 37(7): 871-8. 

Pearl, J. (2000). "Causality." Cambridge university press. 

PeIIi, D. G. (1997). "The videotoolbox software for visual psychophysics: Transforming 
numbers into movies." Spatial vision 10: 437-442. 

Petit, L. and J. V. Haxby (1999). "Functional anatomy of pursuit eye movements in humans 
as revealed by fMRI." J NeurophysioI82(1): 463-71. 

Podzebenko, K., G. F. Egan, et al. (2002). "Widespread dorsal stream activation during a 
parametric mental rotation task, revealed with functional magnetic resonance 
imaging." Neuroimage 15(3): 547-58. 

Poggio, G. F. and B. Fischer (1977). "Binocular interaction and depth sensitivity in striate 
and prestriate cortex of behaving rhesus monkey." J NeurophysioI40(6): 1392-405. 

Poggio, G. F., F. Gonzalez, et al. (1988). "Stereoscopic mechanisms in monkey visual cortex: 
binocular correlation and disparity selectivity." J Neurosci 8(12): 4531-50. 

Poggio, T. and C. Koch (1987). "Synapses that compute motion." Sci Am 256(5): 46-52. 

Ptito, A., R. J. Zatorre, et al. (1993). "Localization and lateralization of stereoscopic 
processing in the human brain." Neuroreport 4(10): 1155-8. 

Raichle, M. E., A. M. MacLeod, et al. (2001). "A default mode'ofbrain function." Proc Natl 
Acad Sci USA 98(2): 676-82. ' 

Ramachandran, V. S. (1988). "Perception of shape from shading." Nature 331(6152): 163-6.­

ROCkland and Kaas (1997). "Crebral cortex." Plenum. New York. 12: 694. 

Roy, J. P.and R. H. Wurtz (1990). "The role of disparity-sensitive cortical neurons in 
signaIIing the direction of self-motion." Nature 348(6297): 160-2. 

Saito, H., M. Yukie, et aL (1986). "Integration of direction signals of image motion in the 
superior temporal sulcus of the macaque monkey." J Neurosci 6(1): 145-57. 

- 215 -



Bibliography, 

Salzman, C. D., C. M. Murasugi, et al. (1992). "Microstimulation in visual area MT: effects 
on direction discrimination performance." J Neurosci 12(6): 2331-55. 

Sandell, J. H. and P. H. Schiller (1982). "Effect of cooling area 18 on striate cortex cells in 
the squirrel monkey." J NeurophysioI48(1): 38-48. 

Schiller, P. H. (1993). "The effects ofV4 and middle temporal (MT) area lesions on visual 
performance in the rhesus monkey." Vis Neurosci 10(4): 717-46. 

Schroeder, C. E., C. E. Tenke, et al. (1990). "Binocularity in the lateral geniculate nucleus of 
the alert macaque." Brain Res 521(1-2): 303-10. 

Schumacker, R. E. and G. A. Marcoulides (1998). "Interaction and nonlinear effects in 
structural equation modelling." LEA. 

Seghier, M., M. Dojat, et al. (2000). "Moving illusory contours activate primary visual . 
cortex: an fMRI study." Cereb Cortex 10(7): 663-70. 

Seyama, J. and T. Sato (1998). "Shape from shading: estimation of reflectance map.".YWm! 
Res 38(23): 3805-15. 

Sharma, S. (1996). "Applied multivariate techniques." John Wiley & Sons: 447-49. 

Smith, A. T., M. W. Greenlee, et al. (1998a). "The processing of first- and second-order 
motion in human visual cortex assessed by functional magnetic resonance imaging 
(fMRI)." J Neurosci 18(10): 3816-30. 

Smith, A. T. and N. E. Scott-Samuel (1998b). "Stereoscopic and contrast-defined motion in 
human vision." Proc R Soc Lond B Bioi Sci 265(1405): 1573-81. 

Sunaert, S., P. Van Hecke, et al. (1999). "Motion-responsive regions of the human brain." 
Exp Brain Res 127(4): 355-70. 

Tabachnik, B. G. and L. S. Fidell (2001). "Using multivariate statistics." Allyn and Bacon 
Fourth Edition: 764-771. 

,Takayama, Y. and M. Sugishita (1994). "Astereopsis induced by repetitive magnetic 
stimulation of occipital cortex." J NeuroI241(9): 522-5. 

Talairach, J. and T. P. (1988). "Co-planar stereotaxic atlas of human brain." Thiem medical 
publishers. New York. 

Tanaka, K., H. Saito, et al. (1991). "Coding visual images of objects in the inferotemporal 
cortex of the macaque monkey." J NeurophysioI66(1): 170-89. 

Taylor, J. G., N. Schmitz, et al. (2000). "The network of brain areas involved in the motion 
aftereffect." Neuroimage 11(4): 257-70. 

Tittle, J. S., J. F. Norman, et al. (1998). "The perception of scale-dependent and scale­
independent surface structure from binocular disparity, texture, and shading." 
Perception 27(2): 147-66. 

Tootell, R. B., N. K. Hadjikhani, et al. (1998). "Functional analysis of primary visual cortex 
(VI) in humans." Proc Natl Acad Sci USA 95(3): 811-7. 

Tootell, R. B., J. D. Mendola, et al. (1997). "Functional analysis ofV3A and related areas in 
human.visual cortex." J Neurosci 17(18): 7060-78. 

- 216-



Bibliography. 

Tyler, C. W. (1973). "Stereoscopic Vision: cortical limitations and disparity scaling effect." 
Science 181: 276-278. . 

Uusitalo, M. A., V. Virsu, et al. (1997). "Activation of human V5 complex and rolandic 
regions in association with moving visual stimuli." Neuroimage 5(4 Pt 1): 241-50. 

Vaina, L. M. (1989). "Selective impairment of visual motion interpretation following lesions 
of the right occipito-parietal area in humans." Bioi Cybern 61(5): 347-59. 

Vaina, L. M., M. Lemay, et al. (1990). "Intact "biological motion" and "structure from 
motion" perception in a patient with impaired motion mechanisms: a case study." 
Vis Neurosci 5(4): 353-69. 

Van Essen, D. C. and H. A. Drury (1997). "Structural and functional analyses of human 
cerebral cortex using a surface-based atlas." J Neurosci 17(18): 7079-102. 

Van Essen, D. C., L. J.W., et al. (2001). "Mapping visual cortex in monkeys and humans 
using surface-based atlases." Vision reseach. 

Van Oostende, S., S. Sunaert, et al. (1997). "The kinetic occipital (KO) region in man: an 
fM.RI study." Cereb Cortex 7(7): 690-701. 

Volterra, V. (1959). "Theory of functionals and integral and integro-differenntial. 
equations." Dove. New York. 

Watson, J. D., R. Myers, et al. (1993). "Area V5 of the human brain: evidence from a 
combined study using positron emission tomography and magnetic resonance 
imaging." Cereb Cortex 3(2): 79-94. 

WDCN (1997). "SPM Course." Welcome Department of Cognitive Neurology, VCL ' 
http://www.fil.lon.ucl.ac.uk!spm/. 

WDCN (1999). "SPM99 Software." Welcome Department of Cognitive Neurology, VCL 
http://www.fiI.lon.ucl.ac.uk!spm/. 

Wright, S. (1918). "On the nature of size factors." Genetics. 3: 367-374. 

Wright, S. (1921). "Correlation and causation." Agricultural Research. 20: 557-585. 

Wright, S. (1934). "The method of path analysis." Ann~ls of Mathematical Statistics. 5: 161-
215. 

Xiao, D. K., V. L. Marcar, et al. (1997). "Selectivity of macaque MTN5 neurons for surface 
orientation in depth specified by ~otion." Eur J Neurosci 9(5): 956-64. 

Zeki, S. (1993). "A vision of the brain." Blackwell Scien tific Pu blications. 

Zeki, S. and S~ Shipp (1988). "The functional logic of cortical connections." Nature 
335(6188): 311-7. 

Zeki, S., J.D. Watson, et aL (1993). "Going beyond the information given: the relation of 
illusory visual motion to brain activity." Proc R Soc Lond B Bioi Sci 252(1335): 215-
22. 

Zeki, S., J. D. Watson, et al. (1991). "A direct demonstration of functional specialization in 
human visual cortex." J Neurosci 11(3): 641-9. 

- 217-



Bibliography. 

Zeki, S. M. (1974). "Functional organization of a visual area in the posterior bank of the 
superior temporal sulcus of the rhesus monkey." J PhysioI236(3): 549-73. 

Zeki, S. M. (1978). "Uniformity and diversity of structure and function in rhesus monkey 
prestriate visual cortex." J Physiol277: 273-90. 

Zheng, Y., J. Martindale, et al. (2002). "A model of the hemodynamic response and oxygen 
delivery to brain." Submited for publication. 

- 218-


	_001
	_002
	_003
	_004
	_005
	_006
	_007
	_008
	_009
	_010
	_011
	_012
	_013
	_014
	_015
	_016
	_017
	_018
	_019
	_020
	_021
	_022
	_023
	_024
	_025
	_026
	_027
	_028
	_029
	_030
	_031
	_032
	_033
	_034
	_035
	_036
	_037
	_038
	_039
	_042
	_043
	_044
	_045
	_046
	_047
	_048
	_049
	_050
	_051
	_052
	_053
	_054
	_055
	_056
	_057
	_058
	_059
	_060
	_061
	_062
	_063
	_064
	_065
	_066
	_067
	_068
	_069
	_070
	_071
	_072
	_073
	_074
	_075
	_076
	_077
	_078
	_079
	_080
	_081
	_082
	_083
	_084
	_085
	_086
	_087
	_088
	_089
	_090
	_091
	_092
	_093
	_094
	_095
	_097
	_098
	_099
	_100
	_101
	_102
	_103
	_104
	_105
	_106
	_107
	_108
	_109
	_110
	_111
	_112
	_113
	_114
	_115
	_116
	_117
	_118
	_119
	_120
	_121
	_122
	_123
	_124
	_125
	_126
	_127
	_128
	_129
	_130
	_131
	_132
	_133
	_134
	_135
	_136
	_137
	_138
	_139
	_140
	_141
	_142
	_143
	_144
	_145
	_146
	_147
	_148
	_149
	_150
	_151
	_152
	_153
	_154
	_155
	_156
	_157
	_158
	_159
	_160
	_161
	_162
	_163
	_164
	_165
	_166
	_167
	_168
	_170
	_171
	_172
	_173
	_174
	_175
	_176
	_177
	_178
	_179
	_180
	_181
	_182
	_183
	_184
	_185
	_186
	_187
	_188
	_189
	_190
	_191
	_192
	_193
	_194
	_195
	_196
	_197
	_198
	_199
	_200
	_201
	_202
	_203
	_204
	_205
	_206
	_207
	_208
	_209
	_210
	_211
	_212
	_213
	_214
	_215
	_216
	_217
	_218
	_219
	_220
	_221
	_222
	_223
	_224
	_225
	_226
	_227
	_228
	_229
	_230
	_231
	_232
	_233
	_234
	_235
	_236
	_237
	_238
	_239
	_240
	_241

