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Abstract

The phase behaviour and thermodynamic properties of simple model mixtures
are examined using the statistical associating fluid theory as extended to chain
molecules interacting with potentials of variable range (SAFT-VR), and by com-
puter simulation. The SAFT-VR approach is based on an accurate and compact
representation of the free energy of chain molecules. We present the SAFT-VR
methodology as applied to mixtures of non-conformal molecules. A series of mix-
ing rules are presented, beginning with the van der Waals one-fluid prescription
and including more complex treatments. The vapour-liquid equilibria of a mix-
ture consisting of hard spheres and square-well monomers is examined with the
SAFT-VR equation of state, together with the liquid-liquid equilibria of a sym-
metrical square-well mixture with no unlike interactions. Additionally, we examine
the vapour-liquid equilibria of a square-well monomer-dimer mixture, composed of
equal-sized segments, both with the SAFT-VR approach and by Gibbs ensemble
Monte Carlo simulation. The simulation data are used to determine the vapour-
liquid critical line of the mixture. An extension of the SAFT-VR approach to
describe the phase behaviour of chain molecules interacting with a soft repulsive
potential and an attractive well of variable range is presented. We focus on the
vapour-liquid properties of Lennard-Jones chains using a simple recipe for the eval-
uation of the chain free energy. We also perform a case study for a speéiﬁc class

of phase equilibria exhibited by binary mixtures, where systems are seen to posses -

a region of closed-loop immiscibility in their phase diagrams. We examine the

nature of this type of phase behaviour using the SAFT-VR equation of state and
Gibbs ensemble simulation for a simple model system with an anisotropic bond-
ing site, which is seen to be the governing factor in the appearance of the region
of low-temperature miscibility for this system. The model is chosen in order to
mimic the physical features of real systems which exhibit this type of re-entrant
phase behaviour. The critical regions of this model are examined using a finite-size

scaling analysis performed in the semigrand canonical ensemble,
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Chapter 1

Introduction

One of the central concepts in the structure of physical science is the development
of a theory for a particular model system. This general model is required to contain
all the essential features of real substances and must also be simple enough to be
examined within a theoretical framework. The theoretical prediction obtained can
be compared with known experimental observations for the system. If the model
proves to be successful it can be subsequently made more complete by including
additional features of the real system. Familiar examples of such an approach
include the kinetic model of gases, the nuclear model of atoms, and the ideal gas
model which is used to describe the low-density gas phase of matter. We focus our
attention here on the development of a theory to describe the liquid state using

simplistic models.

The liquid state is that phase of matter which exists at pressures and temperatures
bounded by the fusion curve and the vapour-pressure curve on the phase diagram
of a pure substance. The well-known characteristics of the liquid state are that it
is able to take the form of the container in which it is placed, as does the vapour
phase, but the internal structure of a liquid is such that it has a higher degree
of order than a vapour. This order is however not as long-ranged as the order
observed in the structure of a solid phase. At high pressures and temperatures,
above the vapour-liquid critical point, it is impossible to distinguish between the
vapour and the liquid phases, so that it is common to refer to a single fluid phase
at these conditions in phase behaviour studies.

As a result of the vast number of liquids encountered in everyday life, the study of

the liquid state has been a source of interest to scientists for centuries. Currently



we have a general understanding of the interactions which govern the existence of
such a phase of matter. Much of the present interest in the study of liquids exists
due to the complexity of phase behaviour exhibited by liquids and their mixtures,
and by the possibility of obtaining a theoretical description of the interactions
responsible for such behaviour. A topical example is the liquid crystalline state,
which exists as an intermediate state between a liquid and a solid, and displays an
array of beautiful and interesting phase behaviour. Other diverse systems which
are also being examined using theories of fluids are colloids, polymer solutions
and complex biological molecules such as proteins and membranes. The study of
liquids is obviously not limited to theoretical approaches. Most chemical processes
are dominated by the interplay of the phases of matter, so that an understanding
. of the intermolecular interactions which govern phase coexistence and transitions
between phases is vitally important to the experimentalist, regardless of the scale

of the process in question.

The theoretical examination of a model system with a given interaction potential
to obtain a prediction of the phase behaviour of real fluids which is valid over the
entire range of pressure, temperature and density, was a concept first introduced in
1873 by van der Waals [1]. Here, an equation of state is proposed which is able to
predict the existence of two fluid phases in a given model system. The deviations
from ideality observed in real fluids are considered in terms of the structure of the
system and of the intermolecular interactions present which are controlled by two
coefficients. Molecules are considered as impenetrable hard spheres, so that the
overall volume is reduced by the excluded volume of the spheres. The reduction of
the pressure of the system is described in terms of the attractive interactions, which
are responsible for reducing the frequency and the number of collisions between
molecules in the fluid. An adjustment of the two parameters in the van der Waals
equation enables us to predict the phase behaviour of fluids which is surprisingly
acceptable given the simplicity of the model used. An important feature of the
van der Waals equation of state is that it can be written in terms of a first order
perturbation expansion of the free energy about a hard-sphere reference system

[2, 3], thus incorporating the essential ideas of modern perturbation theory.

In this work we outline a particular route which can give a theoretical descrip-
tion of the fluid-phase behaviour of specific model systems by using both existing
theories and certain new developments. This methodology can be used in turn to
predict the phase behaviour of real systems over ranges of pressures and tempera-
tures, some of which are difficult to examine experimentally. We also illustrate the
value of molecular simulation techniques within a theoretical study of the phase
behaviour of fluids. We pay particular attention to the use of perturbation theory
in the theoretical description of the liquid state. Such an approach is valid since



it is well known experimentally that intermolecular repulsions between molecules
in the fluid dominate the thermodynamic properties of the system. Hence, the
attractive interactions are much less significant and can therefore be represented
by a perturbation to a repulsive system in a theoretical description. A successful
perturbation theory relies upon a relationship between the property of the fluid
in question and a known property of the reference system. The simplest of such
reference systems is that of a hard-sphere fluid, which has an interaction potential
which is zero for intermolecular separations greater than the hard-core diameter
and is infinite at separations smaller than the contact diameter of two spheres. The
nature of the hard-sphere interaction is known from computer simulation studies
to give rise to two states for such a system: a solid phase at high densities, and
a fluid phase at lower densities. A sound theoretical knowledge of the properties
of the hard-sphere fluid was first formulated in 1958 when Percus and Yevick [4]
proposed an accurate equation of state from which the pressure and structure of
the system could be obtained. This information was subsequently incorporated
into the earlier work of Zwanzig [5, 6], where the formal expressions of modern
perturbation theories are introduced. Within such a representation the change in
physical properties resulting from the addition of an attractive interaction to a
hard-sphere system are given in terms of a Taylor expansion of the Helmholtz free
energy of the total system.

A solution of a perturbation expansion of the Helmholtz free energy can be ob-
tained via expressions which are written in terms of known thermodynamic or
structural properties of the reference system. Expressions for the first- and second-
order perturbation terms in the free energy expansion in terms of the distribution
functions of the hard-sphere fluid are first proposed in the work of Zwanzig [5]. An
important advantage of this approach is that expressions for higher-order terms in
the expansion can be obtained, however these higher terms contain higher-body
distribution functions which are unknown, even for the hard-sphere system.

An accurate route to the first- and second-order contributions to the free energy of
a fluid can be obtained using a method proposed by Barker and Henderson [7, 8]
which involves an expansion which can be evaluated using known values of specific
quantities for the hard-sphere reference system. The expansion is written in the in-
verse of temperature so that the series is rapidly convergent at high temperatures.
The first-order term consists of an integral over the known hard-sphere radial dis-
tribution function for a system interacting via a pair-wise additive potential (e.g.,
see McQuarrie [9]). However, the expression for the second-order perturbation
term includes the unknown three- and four-body distribution functions. Within
the Barker and Henderson theory, two different approximations can be used to

evaluate the second-order contribution, the macroscopic and local compressibility



approximations, MCA and LCA. Both these approaches can also be used to obtain
values for the higher-order perturbative terms using fluctuation theory [10]. The
LCA, where the compressibility is written in terms of the pressure derivative of
the density at a particular distance from a given molecule, is found to give more
accurate results than the MCA for the second-order term at low densities, but
both methods fail to give a good description at high densities {7, 8]. An extension
of the LCA to include higher-order terms in the expansion of the Helmholtz free
energy illustrates that such terms do not give a significant contribution to the free
energy, except at very low temperatures [11]. Additionally, a semi-empirical rep-
resentation of these terms used to reproduce computer simulation results indicates
that the first- and second-order terms give the the most significant contribution to
the free energy [12].

A natural extension to these perturbation theories for hard-core potentials is
their possible application to systems with more realistic interactions such as the
Lennard-Jones potential, where the repulsive region of the potential is ‘softer’ than
in the case of the hard-core systems. Introduction of this kind of potential into the
perturbation approach of Zwanzig is not trivial since in this case, the diameter of
the system is no longer fixed. Three different approaches exist, where a diameter
for the reference system is defined differently in each case. This diameter is then
incorporated into the definition of the equation of state for the reference system.
The simplest of these methods is that proposed by Barker and Henderson [13, 14]
where the system diameter depends only on the temperature of the system. The
variational theory of Mansoori and Canfield [15]-[19] and the Weeks, Chandler and
Anderson theory [20, 21], both propose reference system diameters which are tem-
perature and density dependent. This dual dependence restricts their application
to the description of mixtures due to the complex nature of the perturbation ex-
pressions when the diameter has a compositional dependence. The success of these
soft-core approaches in obtaining a description of real systems is illustrated by the
agreement between the melting curve of Argon obtained using the perturbation
approaches of Barker and Henderson [22] and of Mansoori and Canfield [16] with

the experimental results.

The nature of perturbation theories requires that the interaction potential of the
model system in question must be known exactly. The pair potential for a specific
system can be evaluated using ab initio quantum mechanics (see Ref. [23] for a
review), but the complexity of such a calculation increases rapidly with the number
of electrons in the system, becoming prohibitively slow even for small molecules,
despite the available computer power. Hence it is currently impossible to use
perturbation theories to obtain the thermodynamic properties of real systems, so
that alternative routes must be found. These involve either the specification of



a model intermolecular potential which can be used within perturbation theories,
and other related mathematical approaches, or by the construction of empirical

correlations.

Such correlations consist of the construction of an equation of state for a system by
fitting certain parameters in the equation to available experimental data for that
system. The resulting expression cannot be used to extrapolate for the system’s
behaviour in regions of phase space outside of which the fitting was performed.
Nevertheless, such correlation studies are widely used in industrial applications,
since for a specific range of conditions they give acceptable results. Approaches
such as the Wilson equation [24, 25], the NTRL equation [26, 27} and the UNI-
QUAC equation [28], relate the activity coefficients to the mole fraction of the
system via expressions obtained from the excess Gibbs energy of solution. The
values for the adjustable parameters which are included in these expressions are
obtained via fitting to experimental data. The fact that such studies rely on the
evaluation of the activity coefficients of systems result in the poor prediction of
fluids which show a large amount of vapour-phase non-ideality [27)].

As a result of the ability of the van der Waals equation of state to adequately pre-
dict the phase behaviour of a range of systems, much theoretical interest has been
directed towards obtaining a van der Waals-like expression which gives a more accu-
rate prediction of phase behaviour. The most accurate of these augmented van der
Waals equations use an improved expression for the free energy of the hard-sphere
reference system, such as that proposed by Carnahan and Starling [29]. Various
empirical equations of state such as the Berthelot [30], Dieterici [31], Redlich-
Kwong [32, 33] and the Peng-Robinson [34] equations have also been developed in
order to give a better description of phase behaviour than is obtained with the van
der Waals equation. These approaches involve the introduction of parameters into
an equation of state which are derived from more complex routes than the van der
Waals coefficients. For example, the constants in the Redlich-Kwong equation have
a similar physical significance to the van der Waals constants [27]. Such equations
have found widespread use in the prediction of the phase behaviour of both pure

fluids and mixtures, despite the fact that they consider molecules as hard-spheres.

Extension of the original hard-sphere perturbation theories to account for the
non-sphericity of real molecules has been the source of much theoretical interest
(see Ref. [35] for a review). However, the adequacy of such approaches is seen
to decrease rapidly as the elongation of the system increases. An alternative ap-
proach to an accurate equation of state for chain molecules is the a perturbed
hard-chain theory (PHCT) [36]). The PHCT provides an equation which links the
low density ideal gas limit and the high density Prigogine-Flory theory of polymer

10



fluids [27]. The ideas of the PHCT have been widely used in a number of related
theories, such as the simplified perturbed hard-chain theory (SPHCT) [37, 38],
where the nature of the attractive interaction is less complex than in the PHCT.
The perturbed anisotropic chain theory (PACT) [39] is an extension of the PHCT
approach which accounts for systems with anisotropic interactions, but is unable
to describe the phase behaviour of associating systems. Such systems are found to
be adequately described by the associated perturbed anisotropic hard-chain theory
(APACT) [40]. The APACT approach is a modified perturbed hard-chain theory
where simple chemical equilibria to account for association are also considered,
following the approach of Heidemann and Prausnitz [41]. These PHCT-based ap-
proaches have been used in the prediction of mixtures containing chain molecules,
mixtures of water and hydrocarbons and to examine the extent of association in
supercritical water (see Ref. [42] for a review). However, these studies are not
without their problems, which range from the empirical nature of the parameters
in the APACT equation to the unphysical nature of the low temperature phase
behaviour proposed by the SPHCT approach [43]-[45].

A molecular based equation of state which gives an excellent prediction of the full
phase behaviour of a wide variety of systems is the statistical associating fluid
theory (SAFT) [46, 47). The approach is based on the thermodynamic pertur-
bation theory proposed by Wertheim [48]-[53], in which the phase behaviour of
associating systems is explicitly described. Within this perturbative approach the
association between molecules via short-ranged interaction sites is described in
terms of a graphical expansion of the densities of every species in the fluid. Since
the singlet density dependent contribution to the free energy due to association
is included in the perturbation expansion there is a slight difference between the
perturbation approach of Wertheim and those discussed previously, however the
essential principles are the same. The SAFT equation of state and its applica-
tions and extensions will be discussed in detail throughout this thesis. One of the
important advantages of molecular based theories such as SAFT over empirical
equations of state is that each term in the SAFT free energy expansion can be
compared directly with computer simulation results. This provides an indication
of the adequacy of the individual contributions in their ability to give an accurate
description of the phase behaviour of the model system. This type of informa-
tion is impossible to obtain when the terms in the equation of state are fitted to

experimental data over a specific range.

The use of computer simulation techniques in theoretical studies is not limited to
the determination of the eflfectiveness of different equations of state. The phase be-
haviour of model systems obtained by computer simulation can also be compared

directly with experimental results. Simulation techniques can hence be considered

11



as a link between theoretical and experimental studies. The two-fold applicabil-
ity of simulation methods has resulted in a wide range of studies in this area.
The results obtained from computer simulations can be considered as ‘exact’ with
respect to those obtained from other theoretical approaches since no approxima-
tions, other than some concerning the intermolecular interactions have to be made.
This allows the comparison between theory and simulation to be similar to that
of between theory and experiment, where molecular simulations are considered as
computer experiments. The different types of simulation techniques available and
the underlying statistical mechanics of such approaches are illustrated in Chapter
3. In this work we will use both aspects of computer simulation in order to obtain
predictions of the phase behaviour of model systems directly and also as a means of
testing the adequacy of equations of state. In order to examine the relative merits
of the different approaches which can be used to determine the phase behaviour of
a particular system, it is interesting to compare the cost and time associated with
each approach. An estimation of such figures for a binary mixture liquid-vapour
equilibrium calculation is given in Table 1.1 (taken from Ref. [54]). This allows an
approximate comparison to be made between the various methods. The cost and
time efficiency of theoretical approaches with respect to experimental studies is
clearly illustrated. It is also important to note how both the financial and compu-
tational cost of molecular simulation methods rapidly increase with the complexity
of the model studied.

Throughout this thesis we examine the phase behaviour of fluid mixtures using
the SAFT-VR [57, 58] equation of state. This approach is known to give an accu-
rate description of the properties of associating chain molecules with interaction
potentials of variable attractive range. In order to be able to describe mixtures
within the SAFT-VR approach it is necessary to define snitable mixing rules for
the cross-component parameters. We discus the nature and complexity of possible
mixing rules. A series of studies of simple model systems are presented as a means
of testing the adequacy of the SAFT-VR description for mixtures. The model sys-
tems examined in this context interact via simple hard-core attractive potentials.
An extension of the SAFT-VR approach to describe systems which interact via
soft-core potentials is also presented. The ability of any equation of state to accu-
rately describe the phase behaviour of systems interacting with realistic potentials

is clearly advantageous.

In the final chapter of this work particular attention is focused on a specific class
of phase equilibria, characterised by phase diagrams with ‘closed-loop’ regions of
immiscibility. The SAFT-VR approach and computer simulation methods are
employed to describe this type of behaviour using a model system which contains

the physical features responsible for the appearance of closed-loop immiscibility in

12



Table 1.1: Approximate costs of a binary mixture vapour-liquid phase equilibria
calculation for a single state point for a fluid interacting via the Lennard-Jones
(LJ) potential using experiment, theoretical techniques and Gibbs ensemble Monte
Carlo simulation. The empirical correlation is performed using the Redlich-Kwong-
Soave equation [35] and the perturbation theory is a second order Barker and
Henderson expansion. The estimates for the simulation cost are performed for
a system of N=500 particles for 10,000 cycles on a Dec 5000 workstation. The
figures are expected to be slightly lower if current cost-effective supercomputers
are used [56]. All estimations are for calculations made in 1992, so an adjustment
for inflation must be made in order to bring the prices into current context.

Method Cost (3) Time

Experiment 2600 2 days
Empirical correlation 2.4x107% 10-2s
Perturbation theory  1.2x10~5% 5x10-25
Molecular Simulation

Spherical LJ 4.5 5h
Two-site L] 31.2 35h
n-site LJ >4.572  >5n%h

real fluids. Such a study illustrates the the motivation behind this thesis, where the
combination of a powerful theoretical method and computer simulation techniques
are used to to describe the phase behaviour and thermodynamic properties of real
systems which are of industrial interest.

13
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Chapter 2

The Statistical Associating
Fluid Theory (SAFT-VR)

2.1 Introduction

The thermodynamic perturbation theory for fluids consisting of associating chain
molecules proposed by Wertheim [1]-[6], provides the basis for the SAFT equation
of state [7, 8). Within the SAFT approach the individual molecular contributions
to the macroscopic behaviour are accounted for by expanding the free energy into
a sum of the different energies involved. Hence the equation of state for a mixture
of associating chain molecules is written in terms of four separate contributions to
the Helmholtz free energy A

A AIDEAL  gMONO. ACHAIN  4ASSOC.

NiT = NkT T TNAT NiT T TNRT (2.1)

where N is the number of chain molecules in the mixture, k is the Boltzmann
constant, and T is the temperature. In the above equation ATPEAL j5 the jdeal free

AMONO. i5 the excess free energy due to the monomer segments, ACHAIN

energy,
is the contribution due to the formation of chains of monomers, and A4559C. is
the term that describes the contribution to the free energy due to intermolecular
association. A major advantage of the SAFT approach is that only the monomer
Helmholtz free energy and the contact value of the monomer cavity function are

required to describe the equation of state of chain molecules.
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The success of this approach lies in its ability to provide an accurate prediction
of the thermodynamics and hence the phase behaviour of systems where molec-
ular shape and associating phenomena are dominant characteristics. The SAFT
equation of state has been used to correlate the phase equilibria data for sets of
pure components [9], binary mixtures [10, 11}, and ternary mixtures [11] (where
the phase equilibria is obtained from the corresponding binary data [12]). Specific
examples of other mixtures which have been studied within the SAFT framework
include carbon dioxide with bitumen [13], carbon dioxide with methylnaphthalene
[14], aromatics in ethene and ethane [15], binary and ternary systems of n-alkanes
containing ethene and 1-butene [16], methanol and ethene mixtures [17}, systems
containing alcohols [18], and recently mixtures of carbon dioxide with acetonitrile
and acrylic acid [19]. In all the above examples the SAFT approach gives an excel-
lent description of the thermodynamic properties. The theory is also being used
to correlate and predict the phase behaviour of a wide variety of complex polymer
systems(e.g., see Ref. [20]).

The original SAFT equation of state (7, 8], was proposed for a system of Lennard-
Jones segments, where the monomer contribution is described by a perturbation
expansion and the chain contribution by the radial distribution function for the
hard sphere reference system. The simplest version of current SAFT approaches
is the SAFT-IIS equation of state, where the segments are treated as hard spheres
(HS) and a mean-field (van der Waals) attractive interaction is included in the
potential model. This simple treatment of the intermolecular interaction gives an
accurate prediction of phase equilibria of a variety of systems. Examples include
the critical behaviour of n-alkanes [21], the upper critical solution temperatures
of mixtures of alkanes and perfluoroalkanes [22], the high-pressure critical lines
of mixtures of alkanes and water [23], mixtures containing hydrogen fluoride [24],
and aqueous mixtures of alcohols and alkylpolyoxethylene surfactants [25). The
SAFT-HS approach is found to give an accurate description of the thermodynamic
properties of systems in which association (such as hydrogen bonding) are the
dominant interactions, so that the mean field description of the dispersion forces
does not have a significant effect on the accuracy of the overall phase equilibria
obtained using such a fundamental representation. A related simplified SAFT
approach is used in Ref. [26] where the simplified perturbed hard chain theory
(SPHCT) is used as in place of the hard spheres of the SAFT-HS approach.

The SAFT methodology, as well as the closely related ideas of Wertheim, have
been extended to varying degrees; to include a more accurate representation of
the monomer-monomer distribution function {27}-[33], to include higher body in-
teractions in the dimer versions of the theory [34, 35]. The nature of the bonding
described within the SAFT approach has also been extended, so that double bond-
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ing [36], ring formation [37]-[40], and bond co-operativity [41] can be treated within
the equation of state. Furthermore the isotropic-nematic transition for associat-
ing rod-like molecules has also been characterised using the Wertheim theory of
association [42, 43].

The SAFT-VR equation of state is a version of SAFT that considers non-conformal
properties of fluids [44, 45], within the framework of a very general perturbation
theory for hard-sphere monomers interacting with attractive interactions of vari-
able range (VR). The use of the Barker and Henderson perturbation theory [46]-
[49], together with a simple method for evaluating the first perturbation term, the
mean-attractive energy, leads to a theory with the van der Waals form but which
is applicable to a wide variety of potentials. More specifically, chains formed from
square-well (SW), Sutherland (S) and Yukawa (Y) segments with varying attrac-
tive range have been examined [44]). The SAFT-VR approach provides an excellent
representation of the properties of simple, non-associating, mixtures such as alka-
nes and perfluoroalkanes [44, 50, 51] but also more complex fluid mixtures, e.g.,
those comprising replacement refrigerants [52]. The application of SAFT-VR to
describe the phase behaviour of three specific model mixtures is presented in Chap-
ter 4 [45, 53], and the extension of the theory to systems interacting via soft-core
potentials is given in Chapter 5 [54]. The beauty of the SAFT approach lies in
its versatility and in the means in which the results obtained can be compared
directly with molecular simulation results. It offers the ideal framework to study
complex fluid phenomena, the phase behaviour of liquid-crystalline colloids being

a particularly topical example.

Here we review the SAFT-VR expressions for mixtures of chain molecules formed
from segments interacting via a square-well potential, following references [44] and
[45]. Since the SAFT-VR approach for the calculation of the mean-attractive
energy requires a knowledge of the van der Waals constant and the radial distri-
bution function of a mixture of hard spheres, simple expressions for the mixing
rules can be formulated. We then discuss the use of a variety of possible mixing
rules from the simple van der Waals one-fluid description to the full SAFT-VR
second-order expressions. The mixing rules for the free energy of conformal and
non-conformal mixtures are presented, as are the combining rules for the un-like

interaction parameters.
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2.2 SAFT-VR equation of state for mixtures.

The SAFT-VR equation of state for an n-component mixture of associating chain
molecules takes the form of Eq. (2.1), where each of the individual terms will
be subsequently discussed in turn. Within the SAFT framework molecules are
described as chains consisting of spherical segments with diameter o, where the
general form of the interaction potential between two particles ¢ and j a distance
ri;j apart is given by

wM(rij) = wH8(rij5005) — €i;0(rijs Mij). (2:2)

The monomer-monomer interaction potential uM(r;;) consists of a hard sphere
repulsive contribution 45, defined by

uHS(rij;05) = { o 1mis < oy (2:3)

0 if r; > 0yj,
where o;; is the contact distance, and an attractive interaction of depth —¢;;
and shape ¢(r;j; Ai;), where A;; is a parameter associated with the range of the
attractive forces. By including the range parameter A;; in Eq. (2.2), the system’s
non-conformal properties can be described. A variation of the parameters o;; and
€ij has no effect on the corresponding states behaviour of two particular systems,
but a variation in A;j leads to the breakdown of this correspondence for a given
potential.

Here we will introduce initially the SAFT-VR expressions for systems interacting
via the square-well potential, the shape of which is governed by:

1 if o5 < 15 < Aijoj

2.4
0 if ri; > /\,‘jd,'j, ( )

SWi(n. o).. )=
¢ (rija ’\m') = {
so that the energy is constant over the range of interaction.

Although hard-core potentials of this kind are simplifications of the true interac-
tions between molecules, they allow a highly accurate description of the properties
of real substances. An additional advantageis that the statistical mechanics of such
hard-core attractive models is very well known, the analytical solutions which exist
for the square-well potential {55]-[61] provide a useful guide for the development
of an accurate equation of state.

Since the SAFT equation of state consists of an expression in term of the Helmholtz

free energy A of fluids, it is important to specify the relationships between A and
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the fundamental thermodynamic variables of phase equilibria. In order for two or
more phases to be in equilibrium with one another the pressures, temperatures,
and chemical potentials of each component species must be equal in the coexisting
phases. The chemical potential, p;, of species ¢ can be written in terms of the free

energy:

Hi (3A/kT (2.5)

kT — \ 9N; )T,V.N,-,.-’
where N; is the number of chain molecules of species i. The overall pressure, p,
may be calculated through the compressibility factor, Z, as

pV
N kT

z

Zx‘w NkT’ (2.6)

where n is the total number of components in the mixture and z; = N;/N is the
mole fraction of component ¢.

Each of the individual contributions to the SAFT-VR Helmholtz free energy in
Eq. (2.1) are now examined.

2.2.1 The ideal mixture

The free energy of the ideal mixture is given by [62]

AIDEAL n
-—m;- = Z:L',']n piki = 1, (2.7)
=1

where p; = N;/V is the number density and A; is the thermal de Broglie wave-

length, of species 1.

2.2.2 Monomer contribution

The monomer free energy is

AMONO. AM
NkT  © (E_:l”” m') N.kT

= (i z;m.-) aM, (2.8)

i=1
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where m; is the number of spherical segments in each chain i, and N, is the
total number of segments. The monomer free energy per segment of the mixture
aM = A/(N,kT) is obtained from the Barker and Henderson high temperature
expansion [46]- [49]:

aM = af'5 4 Ba, + B%ay + ..., (2.9)

where ays is the free energy for a mixture of hard-spheres, 8 = 1/kT; ajand a;
are the first two perturbation terms associated with the attractive energy —e¢;;.

The free energy of the reference hard-sphere mixture is obtained from the expres-
sion of Boublik [63] and Mansoori et al. [64] as

us_ 6 1(4 _ 36:(e G .
"= [(Cﬁ Co) In(1-(3)+ e + o -C3)2] . (2.10)

In this expression p, = N,/V is the number density of spherical segments, where
ps = p{3X; zim;), p being the total number density of the mixture. The reduced

densities (; are defined as
T | i ‘
G =5Ps PERICANE (2.11)
i=1

where o; is the diameter of spherical segments of chain 4, and z,; is the mole
fraction of segments of type ¢ in the mixture, given by

myxs

Ty = (2.12)

A

n .
=112

The overall packing fraction of the mixture is thus given by (3.

The mean-attractive term a; is given by
n n ..
ap =Y. z,iz, 507, (2.13)
=1 j=1
where

ij

o0
—27p,Eij / rhel Pl Gyldry;

7ij

(o o]
= -3p,b5PWey; 1 22¢ii(z)gf!5(z)dz (2.14)
where Y0V = 2703 /3, and 9H5[ri;;Ci;] is the radial distribution function for a

mixture of hard-spheres. The integral is factorised by applying the mean-value

theorem [44] which gives an expression for a; in terms of the contact value of
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HS

9i;7¢
= _pszzza :za,JaVDngS[auvc;;ff] (2.15)
=1 3=1
where
a;PW = 21e;503(A; - 1)/3 (2.16)

is the van der Waals attractive constant for the i — j square-well interaction, and
C;” is an effective packing fraction, the exact nature of which will be discussed in
the next section. The contact value gf15[o;;; ¢5//]is obtained from the Boublik [63]
expression for the contact value gf5[o;;; (3], which is evaluated at the overall
packing fraction of the mixture (3. The mapping procedure used for obtaining
C;” from (3 depends on the interaction potential and on the actual mixing rule
used. Since the chemical potential is obtained as the derivative of the free energy
with respect to the number of chain molecules care must be taken to ensure that
the correct number of species are counted. For the square-well potential of range
1.1 £ X\j; € 1.8, the mean-attractive energy is given by

af = aVPY gHS[1; ¢y y), (2.17)

where the van der Waals mean-field parameter is

o VPV = —4¢ei; (N} - 1). (2.18)
The parameterisation for the effective packing fraction (.ss[(, Ai;] depends on the
particular mixing rules used and will be discussed in the next section.

The fluctuation term of the free energy is given by

n n
a; = Z Z TsiTs ;07 (2.19)

1=1 =1

where each of the terms a;j are obtained with the local compressibility approxi-
mation (LCA) [46, 47], which is once again specific for each interaction potential,
stating:

i _ 1ons,  0ai” .
ay’ = 51\ EijPs 6;:, ) (2.20)

where K'H¥ is the isothermal compressibility for a mixture of hard-spheres, given
by the Percus-Yevick expression [65],

1\,}15 = CO(I - C3)4
Co(1 = C3)2 +6(1¢2(1 = (3) + 9¢3°

(2.21)
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and

.o o o]
“ij _ 3 2 12 HS
e = -27"P30¢j€:‘j/ r;95(rii)e 7 (rig)dri;
J

o0
—3p, bV PW e, 1 229} (2)g!S(2)dz (2.22)

is the mean-attractive energy associated with a potential ¢?j. The explicit depen-
dence of the second order term on the mean-attractive energy is clearly shown
in the above expression, indicating that evaluation of the first order term is the
crucial step in the SAFT-VR approach. The fluctuation term a.';j for square-well

fluids is given directly from the first density derivative of a';j, since a'{" = a’;j,
giving
ij 1

a] = -2-6,'_7'1\"}1 p,'a—p— (2.23)

2.2.3 Chain contribution

The contribution to the free energy due to the formation of chains of monomeric
segments is given by

chain n
ijkT = =Y zi(mi - 1) lnyl (a:), (2.24)

i=1

where yM = exp(—peii)gM (o) is the background correlation function. Since the
Boltzmann factor exp(—pf¢j;) is not required in the determination of the phase
equilibria we can write

A S ai(mi= 1) g (o) (2.25)
........—=._ zi nl‘-_ ngi. U,’" , 2, 5
NiT ~ & "

without loss of generality. An (n — 1)th order perturbation theory in a fluid’s
structure is equivalent to a nth order perturbation in the free energy. Since the
SAFT-VR approach consists of a second-order perturbation theory in the monomer
free energy, the contact value of the radial distribution function for segments of
species ¢ and j can be therefore be written as a first-order expansion:

9ii(0:;) = gH5(0i;) + Beijaf (i) (2.26)

The term g,(0o;;) is obtained from a self-consistent calculation of the pressure by
equating the expressions obtained form the Clausius virial theorem and from the
density derivative of the Helmholtz free energy [44], giving an expression for g{j
which depends on the mean-attractive energy a;, so it is hence specific for each
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interaction potential. The contact value of the radial distribution function for the
reference system of a mixture of hard-spheres at the actual packing fraction (3 of
the mixture is given by [63]

1 D;;(s (Di;Ca)?
HS(o. .o} = J J
gu (U:JaCS) 1-— 4.3 + 3(1 — C3)2 + 2(1 ~ C3)3’ (2.27)
where D;; is defined
PR a2
i = U"UJJ zt:l z’v'an (228)

Oii + 0jj Vi1 Tai0:
It is important to note that the contact value at the effective packing fraction (;”
is required for the expression of g}’ (second term in Eq. (2.26)) which also depends
on ay; gUb[a,J,(SH] is obtained from Eq. (2.27) with the appropnate value of the

effective packing fraction C3”. For a mixture of square wells, g}’ is given by [44]
(see appendix for a full derivation)

.. 1 9a’? \i: da¥d
() = 1) _ Qijday 9
9 (0':_1) 27"5:'1'0?_,' [3 (6{),) Ds 0/\.',' ’ (2.29)

so that upon substituting in Eq. (2.26) we have

g (0 () = 6l(0ij,Ga) (2.30)
+ Pei [g,-’}s[a.-,-,<§”]

HS{,.. rell eff eff
+ (’\?j' 1)‘99;1 [0i5, (5" ('\u 0(s __(33C3 )] )

acgfl 3 0\ 0@

2.2.4 Association contribution

The contribution to the free energy due to association of s; square-well interaction
sites on chain molecules of species i, is obtained from the theory of Wertheim [66)

as:
AASSOC n

_Zz, Z(lnx,. X2 )+%], (2.31)

where first sum is over the species %, and the second over all s; sites a on a molecule

of species 1. X, is the fraction of molecules of type 1 not bonded at site a, given
by the mass action equation as [8, 66]:

1
14 X2 ol pi Xb jBaij’

(2.32)

as —

where
= Iy . SW g 9
Aa,b,i,] = I\a.b,:,JFa,b,t,_;g (aij)- (233)



Kap,ij is the volume available for bonding [8, 66], F, 4, ; is the Mayer f-function
Fupij = exp(—@api,j/kT) = 1 of the a — b square-well site-site interaction g, ;
and ¢5¥(a;;) is given by Eq. (2.30)

o

We have now presented the formal expressions for each contribution to the free
energy in the SAFT-VR approach, both in general and for the specific case of
the square-well interaction potential. The precise expressions for the perturbation
terms a; and a3, and for the contact value g,-sjw(o'.-j) of the monomer reference
depend on the type of mixing rule that is used to describe the mixture. A number
of possibilities are discussed in the following section.

2.3 Mixing rules for conformal fluids

The extension to multicomponent mixtures of any equation of state developed
for pure component systems requires the use of appropriate mixing rules for both
the thermodynamic variables and the parameters of the equation of state. These
mixing rules introduce an implicit composition dependence into the equation of
state. In the van der Waals (vdW) n-fluid theories [62, 67] the aim is to simplify the
complex dependence on composition by assuming simple relationships between the
pair correlation functions of the mixture and those for the pure components. The
simplest case is the vdW one-fluid approximation, which can be defined in terms
of the standard van der Waals mixing rules for the size and energy parameters:

n n
62 = Z :t,,,':l‘,'jd?j, (2.34)
=1 =1
and -
QXDW = 2 Z z,,;z.,ja};DW, (2.35)
1=1 j=1

respectively. For monomer-monomer interactions consisting of a repulsive hard-
sphere plus an arbitrary attractive well, the van der Waals attractive constant
a};DW has the general form
vDw 3 .
o = <I>(/\,'j)€;jd,-j, (2.36)
where ®(A;;) is a shape factor that depends only on the range parameter A;; of

the potential; from Eq .(2.16) it follows that for square-well interactions ®();;) =
27T(A?J - 1)/3.
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For mixtures of conformal fluids A;; has the same value for all species since A;; = A,
and ® becomes a constant. The mixing rule given by Eq. (2.35) is then transformed

into a definition of a mean-energy parameter:

n n

£,05 = Z E T 005 iEij 05 (2.37)
=1 j=1

The mixing rule for the effective size parameter o, (Eq. (2.34)) gives a vdW one-
fluid definition of the packing fraction ¢, for the mixture as (cf. Eq. (2.11))

T n n
(: = E—p, Z Z z,,;z,,ja?j (2.38)
=1 j=1

m
= -é-/),(‘f:.

In the context of mixtures of conformal fluids, the vdW one-fluid approximation
is completed by approximating the pair distribution function for the mixture by
the radial distribution function for a single fluid, using the parameters o, and ¢,
defined previously in Eqs. (2.34 and 2.35):

gii(rii/oijs p, Ty xiy T5) = go(rij/ozi pod, kT/e2), (2.39)

where gq is the one-fluid radial distribution function.

The van der Waals two- and three-fluid theories use mixing rules with two and
three size and energy parameters, respectively, and with g;; still given by the pure
component pair correlation function. One of the drawbacks of the higher order
vdW n-fluid theories, apart from their increased complexity with respect to the
one-fluid model, is that they introduce inconsistencies into the determination of
coexistence properties and critical behaviour [67]. A closely related approximation
to the vdW one-fluid approach is the mean-density approximation (MDA) [62, 68],
in which o is given by the vdW one-fluid approximation Eq. (2.34), but where
the temperature scales with the individual energy parameters ¢;;:

9ii(rij/ 053 p, T, 23, T5) = go(rij[ 0z, pod, kT [e}5). (2.40)

Although the one-fluid approximation can be used at all levels in the equation of
state [29], it is desirable to maintain the accuracy of the description of the structure
of the reference system given by Eq. (2.27). In order to achieve this, we only need
to introduce the mixing rules at the level of the perturbative terms of the monomer
free energy. Since the mean-attractive energy ay is the basic quantity which is used
for the evaluation of all the other perturbative terms in the SAFT-VR approach,
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we focus our discussion on the approximations obtained for a,,

In both the vdW one-fluid and mean-density approaches the mean-attractive en-
ergy is given by (cf. Eq. (2.15))

a = —pa Zzza gza,]aVDW HS[UI)C;:L’(A)]
PV gl () (241)

The contact value of gq is obtained from the Carnahan and Starling expression for
pure fluids [69, 62] as

—(efs
ot lowi (IO = T 1 (242)

The effective packing fraction ¢5/f within the vdW one-fluid approximation is ob-
tained from the corresponding packing fraction of the pure component (see Ref. [44]

for the pure square-well system):

CH Gy A) = e1(M)Ce + (M2 + ea( M), (2.43)

where the coefficients ¢;, ¢ and ¢; are approximated by those of the pure fluid [44]:

i 2.25855  —1.50349  0.249434 1
e | = | -0.669270 1.40049 -0.827739 2. (2.44)
e 10.1576  —15.0427  5.30827 22

One should note that in this case the range is the same for all components, and
thus enters the expressions in a trivial manner.

A step beyond the vdW n-fluid and the MDA approaches is to calculate a; with
the hard-sphere contact value g,—’}s of the mixture given by Eq. (2.27), rather than
that of the one-fluid expression, Eq. (2.42):

= =pPs E Z Ty tza,JaVDwggljS[”u, (3’1(’\)] (2.45)

i=1 j=

An advantage of such an approach is that Eq. (2.27) explicitly accounts for the
different sizes of the spherical segments. We obtain the contact value of the pair
distribution function for the mixture at the effective packing fraction C;” from
Eq. (2.27), with ¢5// replacing (3:

. eff\?
+ D|] 311 + (D'J 3 ) )
1-¢H T =y T -ty

J;;b["t,ncgfl('\)] = (2.46)
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Note that _(jgs[("ij; C;H(z\)] is a functional of the function C;”(/\).

There are three obvious ways of calculating the effective packing fraction C;f s,
The first involves the use of the vdW one-fluid value, where (from Eq. (2.43))

Gy ) = ¢ (G N). (2.47)

The second involves the use of the individual packing fractions for each species,
and the total packing fraction of the mixture is then obtained from the sum

(G N = Y ¢ (G2, (2.48)
i=1
where
(557G ) = a1(W)Gai + (M) + es(N) G, (2.49)
and
T 3
Gai = GieiPa%i: (2.50)

The dependence of the coefficients ¢1, ¢ and ¢3 on the range A is again obtained
from the pure square-well fluid (cf. Eq. (2.44)). Finally, we can use the total
packing fraction (3 together with an expression similar to Eq. (2.43):

(3, 0) = (M) + e2(N)E + ea(M)E. (2.51)

We end this section by reviewing the mixing rules (MXC) that we propose for
conformal fluids within the SAFT-VR approach; note that this is essentially an
exercise since SAFT-VR explicitly takes into account the range of the potential
and hence the fluid’s non-conformal nature. The possibilities discussed earlier are

summarised in Table 2.1,

Table 2.1: The mixing rules (MXC) for the conformal mixtures within the SAFT-
VR approach. The precise equations for a;, g//5(ay;; ¢5Hfy and ¢! are given for
each mixing rule; the rest of the SAFT-VR expressions can be obtained from these
expressions. The numbers refer to the equations given in the text.

Mixing Rule | a, gH5(a:;) ¢l
MXCI1 (241) [ (2.42) | (2.43)
MXC2 (2.45) | (2.46) | (2.48)
MXC3 (2.45) | (2.46) | (2.51)

The numbering of the mixing rule (MXC) refers to the representation of the ef-
fective packing fraction: MXC1 for Eq. (2.43), MXC2 Eq. (2.48), or MXC3 for
Eq. (2.51). The MXC1 rule is basically the van der Waals one-fluid representation
of the perturbation term for the monomer mixture. One should note that due to
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the use of the mean-value theorem in the expression for a;, the separate energy
contributions for each pair interaction factorise out of the integral giving the van
der Waals constant. Furthermore, the total free energy for the reference monomer
mixture also includes each pair interaction g/{%(ci;) and ¢5¥(0i;). This means
that MXC1 as used in our theory is similar to the MDA approach. The prescrip-
tions given by MXC2 and MXC3 for the partial and total packing fractions both
go beyond the VDW one-fluid level. The simplest and probably the most accurate
mixing rule is MXC3 although, as will be discussed later, there are some problems
associated with the critical region of the phase diagram when this mixing rule is
used in practice. In all of these MXC expressions the range A plays a trivial role,
since for conformal fluids the range is the same for all species. This is not the case

for the non-conformal fluids which we discuss next.

2.4 Mixing rules for non-conformal fluids

A central feature of the SAFT-VR approach is that it incorporates the non-
conformal properties of the fluid by using different values of the range A;; for each
species. The factorisation of the radial distribution function ggs in the expression
for the mean-attractive energy (using the mean-value theorem) Eq. (2.14)together

with the contact value of gf/%, allows a straightforward description of the mixture.

The vdW one-fluid mixing rules, Eqgs. (2.34) and (2.35) are still valid for non-
conformal fluids. We can derive two mixing rules from Eq. (2.35), one for the

energy,

I DL AN JRE LI LN, 5
=1 =183 082%1) N Y, (2 52)
n n K A3 L3 ? .
i=1 Ej:l 33.:-"’3,1’\.’1"’;';'

Er =

and another for the range of the potential,

n n . o0 \3. 43
3 _ Yiz1 D=1 ToiTa;Ei N0

A2 =
T n n , S |
=1 =1 T4,iTs,j€ij0¢;

: (2.53)

As for the conformal fluid described in the previous section, the corresponding
mixing rules (MX) for the non-conformal systems can be obtained via the three
possibilities which exist for the determination of the effective packing fraction
(which we will denote as MX1, MX2, or MX3), but now using one of two possibil-
ities for the range of the interaction potential of the mixture: a) as the simplest
option one can use the vdW one-fluid rule for A; given by Eq. (2.53); b) alter-
natively, a more accurate representation can be obtained by using the individual
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range A;; for each pair interaction. The vdW one-fluid mixing rule for a; in the

case of our non-conformal square-well mixture (MX1a) is

ay = —p, Z Z z, ,z,,JaVDWygS[Uz, ff(Ax)]
=1 =1

= —p,ayPWgllS1a.; 2T I(0,)] (2.54)

where g§5[0,;(5//(A;)] is obtained from the pure-fluid Carnahan and Starling
expression (Eq. (2.42)). The effective packing fraction is obtained from the one-
fluid expressions for the packing fraction (; (Eq. (2.43)) and range A, (Eq. (2.53)):

Gy A2) = e1(Ac)Ca + 2(A2)CE + ea(A2) 2. (2.55)

When the individual ranges A;; are used one can no longer factorise the pair
distribution function out of the sum, and the corresponding mixing rule MX1Db is
given by
= =Ps E Z za,'xa.JaVDW HS["’::» C;N(’\u )) (2.56)
=1 j=1
where now g4/ %[a; (277 (Ni;)] depends explicitly on the range of the pair interaction
via the expression for the effective packing fraction:

G (Gar Mij) = e1(Xi)Co + e2(Xif )C2 + ea(Nif)¢3. (2.57)

Note that as for the conformal mixture we approximate the coefficients ¢;, ¢, and
c3 by the values obtained for the pure fluid Eq. (2.44) (see Ref. [44)).

In the second class of mixing rule we use the packing fraction obtained from the
individual species (cf. Eqs. (2.48)and (2.49)) but with the two distinct treatments
of its dependence on the range of the potential. When we use the value of A, given
by Eq. (2.53) we obtain the mixing rule MX2a, where

a) = —p, E Z Ty .z,_JnVDngS[cr,,, ('3”(1\3,)], (2.58)
=1 3=1
with n
5 (G re) = 365 (G A2) (2.59)
=1
and
(;,};I(Ca.i, ’\z) = Cl('\r)cs.i + Cz(/\z)cg,,' + C3(A3)C§"‘. (260)

The mixing rule MX2b is given in terms of the range of each pair interaction as

a = —p,z }:x..z,,,aVDWg,';b[a.J,cdf( ), (2.61)

1=17=1
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where the eflective packing fraction is now

5 (Goi X)) = Y06 (G M) (2.62)
=1
with
GH (G Aig) = e1(Nig)Gai + €2(Aif )2 + e3(Ni) B (2.63)

The third class of mixing rule MX3 uses a direct mapping of the packing fraction
of the mixture with that of the pure fluid to give an expression for the effective
packing fraction, as in the MXC3 rule for conformal fluids. When A; is given by
Eq. (2.53), the mixing rule MX3a is obtained as

n n
ay = —ps E Z za,ixa,ja};DwggS[aij; (;jj(’\z)]’ (264)
=1 j5=1
where
577G, A2) = e1(A0)Ga + e2(A2)CE + ea(Ae) G- (2.65)

Finally, using the individual values of the interaction potential range, we obtain
the mixing rule MX3b as

a1 ==ps 3 Y waizaialis 9 o G (M), (2.66)
=1 j=1
with
G571 (Gay Aig) = e1(Xi)Ga + €2(Xi5)E3 + ea(A)G3. (2.67)

The mixing rules for non-conformal fluid are summarised in Table 2.2. The sim-
plest rule MX1a is similar to that of MXC1 for conformal fluids and essentially
represents a vdW one-fluid treatment. The most rigorous is probably the full
MX3b representation; this prescription was first suggested in the original SAFT-
VR paper Ref. ([44]). Its simplicity is a particularly attractive feature of the

approach.

2.5 Combining rules

In order to evaluate the parameters for the unlike interactions (the so-called cross
parameters) for the mixtures one can use the standard Lorentz-Berthelot (LB)
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Table 2.2: The mixing rules (MX) for the non-conformal mixtures within the
SAFT-VR approach. The precise representation for a;, gf5[0;;; ¢ and ¢/ are
given for each mixing rule; the rest of the SAFT-VR expressions can be obtained
from these expressions The numbers refer to the equations given in the text.

Mixing Rule | a; gH3(0i;) | ¢/
MXla (2.54) [ (2.42) [ (2.55)
MX1b (2.56) | (2.42) (2.57)
MX2a (2.58) | (2-46) (2.59)
MX2b (2.61) [ (2.46) | (2.62)
MX3a (2.64) | (2.46) | (2.65)
MX3b (2.66) | (2.46) | (2.67)

combining rules, which are derived for conformal fluids [67):

o = oii + 0;;
1 = 2

&ij = \/€ii€jj- (2.69)

Equation (2.69) is a particular case of the more general combining rule [67]:

(2.68)

&ij = Eij\/Eii€y5- (2.70)

It is well known [67] that real substances depart from the LB rules to varying
degrees depending on the particular interactions involved; in many cases mixtures
are characterised by values of §;; < 1. The value of ¢;; for real fluid mixtures is
usually obtained by an appropriate fit to the experimental properties of the specific

mixture.

A combining rule for the van der Waals attractive constant ag

the LB rule for the energy, Eq. (2.69),

vDw ‘
a7 = Tij\[aPWalbW, (2.71)

where Tj; depends on the form of the potential. For square-well mixtures Ty; is

DW follows from

given by

¥~ 1)od
3(1’/\3)’ — (2.72)
5= DA = Do)

An alternative combining rule to Eq .(2.69) corresponds to the geometric mean for

VDW,
a"j :
alP¥ = /axowajvjnw_ (2.73)

This is equivalent to the general rule given by Eq. (2.70) with &; = 1/T;. It is
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clear that, for conformal fluids, the three rules given by Eqs. (2.68), (2.69) and
(2.73) are inconsistent unless the particles in the mixture are of the equal size.

However, for non-conformal fluids, the three combining rules, Egs. (2.68), (2.69)
and (2.73), can be used if A;; is chosen in such a way so that they are self-consistent,
i.e. by assuming I';; = 1in Eq. (2.72). This leads to an expression for A;; of the

form

1
3 _

Nj=1+ ;?;\/(A?.- - 1) - oo (2.74)
It is possible to relax this criterion for A;; and to use either Eq. (2.69) or Eq. (2.73),
together with a specific combining rule for A;;. A simple arithmetic-mean combin-

ing rule may be used, analogous to that for the particle diameters (cf. Eq. (2.68)):
MiiGic + Niidras
A = 2Tt Aj0G5 75
j o (2.75)

Another option for the evaluation of A;; is by optimising its value from a fit to

experimental data for the mixture,

In the case of the association contribution to the SAFT-VR free energy similar
combining rules can be used for the energy of the site-site interaction €44,,; in the
mixture and the bonding volume K4,  in Eq. (2.33). The Berthelot rule for the
unlike site-site interaction is

Eapig = \/(€apiifab,iih (2.76)

and the combining rule for the bonding volume is

K13 LK

a,b,i,i

Kapij = 5 abii | (2.77)

This completes our description of the combining rules. One should, of course,
note that the combining rules are a convenient first representation of the unlike
interactions, but real substances show large deviations in practice, especially when
the components of the mixture are chemically very different. It is usually necessary
to fit the cross parameters to experimental data. In most cases the phase equilibria
of real mixtures is most sensitive to the variation in the energy parameters.
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2.6 Conclusions

In this chapter we provide a detailed analysis of the SAFT-VR approach to mix-
tures of fluids consisting of chain molecules with attractive interactions of variable
range. The resulting SAFT-VR equation of state has a van der Waals form where
the monomer properties are evaluated using a standard high-temperature pertur-
bation expansion. The mean-value theorem is used to give a compact expression
for the the mean-attractive energy a;, and the contact value of the radial distribu-
tion function is given by a self-consistent method, which combines two routes for
the evaluation of the pressure of the fluid [44]. This simple representation of a;
allows us to propose a number of straightforward mixing rules which range from
the simplest van der Waals one-fluid expressions to the full second-order descrip-
tion. It is important to mention that although the SAFT-VR expressions and the
corresponding mixing rules have been presented here in the context of square-well
mixtures, this is solely for convenience and the analysis can be easily applied to
other types of hard-core attractive potential (see Ref. [44]). To our knowledge, we
present the first in-depth analysis of mixing rules for non-conformal fluids.

The main motivation of the SAFT-VR approach is to obtain a description of the
phase behaviour of real fluid mixtures. The implicit dependence on the variable
range of the intermolecular potential makes the equation of state extremely ver-
satile, and allows for an accurate representation of the thermodynamics of fluid
systems [44]. The approach is currently being used to examine the vapour-liquid
and liquid-liquid equilibria of a number of mixtures. Use of the SAFT-VR method-
ology with the full MX3b mixing rule is seen to provide an excellent description
of the vapour-liquid equilibria for mixtures of n-alkanes [50], and for mixtures of
replacement refrigerants [52]. However, further studies of mixtures which exhibit
large regions of liquid-liquid immiscibility, such as mixtures of alkanes and perfluo-
roalkanes [51], have shown that there are large inconsistencies in the description of
the UCST when the MX3b mixing rule is used. This inability to describe mixture
properties is not surprising, and is common in ‘two-fluid’ equations of state for
mixtures which use parameters defined for pure fluids [67, 70]; in the SAFT-VR
approach the range dependence of the effective density for the mixture is obtained
from the pure fluid system. The use of the vdw one-fluid packing fraction ¢¢//
together with the MX3b mixing rule does not remove the inconsistency, and one
has to resort to using the vdW one-fluid MX1 mixing rules in order to obtain an
adequate description. The MX1b mixing rule has been found to give an excellent
representation of both the vapour-liquid and the liquid-liquid critical behaviour in

binary mixtures of perfluioromethane with a series of n-alkanes [51).



2.7 Appendix: Contact value of the radial distribu-
tion function

Here we illustrate how a closed expression for the radial distribution function at
contact for a square-well fluid is derived within the SAFT-VR approach. The
method involves the use of two independent routes to evaluate the compressibility
factor (or pressure) of the fluid. The Clausius virial for the compressibility factor

can be written as

2 n n o)
ZV =1- —%Ep,zzzgmjA T21' (adl I‘7) g,J(T)dT, (2.78)

where 7(3U;;/dr) is the virial contribution. An equivalent expression can be ob-
tained from the density derivative of the Helmoltz free energy as

da

T_, Y .
Z" =p, o’ (2.79)
which upon application of a high temperature expansion gives
n n
T - ZHs-i-ﬂZngsz.'j. (2.80)

i=1j=1

We first focus on the virial route to the compressibility factor of Eq. (2.78).
For discontinuous potentials such as the hard-core square-well of Eq. (2.4), it
is advantageous to examine the behaviour of the background correlation function
yi;(r) = exp(BUi;)gi;(r) in Eq. (2.78) rather than g;;(r) itself, since y;;(r) it is a
continuous function of r. In order to be able to express the compressibility factor
of Eq. (2.78) in terms of y;;(r), we must first obtain the derivative

dexp(=BU;) _
or -

oU;;
- 37'] exp(-pAUij), (2.81)

which can be re-arranged to give

oUi; _l()exp(—/}U,-j)

o =3 o exp(BU;;). (2.82)

Substituting this expression into the integral of Eq. (2.78) gives

o OU; 1 dexp(-pU;
[T Glestrar = - [T —B%,.—L exp(BUij)gis(r)dr

-5 3aexp( Sy (289)
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so that Eq. (2.78) becomes
= ) I;
zZV =1+ -——p,}:z:a: z,/ 3—9’-‘ul—fl yii (r)dr. (2.84)
=1 3=

In order to simplify this integral the properties of the Heaviside function inside

the integral of Eq. (2.84) must be examined; these are summarised by

{0 if r < 0y
d exp(—BUi;) Ablr = ) ff T
— o - {0 if o; < r < Ajjoij (2.85)
=Bé(r = Aijoi5) if r = Xjoy;
L 0 ifr > /\,'jO‘,'j

where § is the Dirac delta function, and A and B are constants which have to be

evaluated, The properties of the Dirac delta function can be written as
o0
/ §(z)dz = 1, (2.86)
-00

where
b _J f(zo) ifzo € [a,b] )
[ 1@z = z0) = { 2 e (2.87)

The integral of Eq. (2.84) can be split as follows

/00 é)exp(-ﬂU,-j)dr B /ai} 0exp(—/5U¢j)dT+/ i dexp(— ﬂU,])
0 0 o

or Jr a or
i19; Qexp(~ ﬂU,J) //\.','a,», d exp(=pBU;;)
+ /a ‘ —()r r+ s o7 dr
°  dexp(=BU) ;. :

For the square-well potential this reduces to

/ dexp(- ,BU,J)d /u Jdexp(- ﬂUU)
0

dr o5 or
Xsel exp(—AU;;
+ / e Mdr, (2.89)
/\.‘,a; or
which upon substitution of Eq. (2.85) becomes
° 9 exp(—fU;;) 0
—-——————d - — .o
/0 G = [ ke = o)
/\.'1'0:;-
- / _ Bé(r = Ajjai;)dr. (2.90)
195
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From Eq. (2.87), we know that the properties of the Dirac delta function can result

in an expression of the form

= dexp(~pUy), _ ,

A o - B. (2.91)

The LHS of the above expression can also be evaluated in full by integrating over
the full range of the interaction potential

n

/°° aexP("ﬂUij)dr
[¢]

57 [exp(-BU:;)I5°

= 1, (2.92)
so that we can write
1=A-B. (2.93)

In order to evaluate the constants A and B we examine the second integral in
Eq. (2.88)

/o.-t dexp(=BU) ;.
o or

v

fexp(-8U)I[2

exp(—pUij(a)) — exp(-BUi;(0};))
exp(~feif) = 0, (2.94)

we also know that from Eq. (2.90) that

+ +
o5 dexp(-BUij) %i
[ - /a  A8(r - o) (2.95)
enabling us to write
A = exp(=feij), (2.96)
and
B = exp(-f¢i;) = 1. (2.97)

Substituting these values of A and B into Eq. (2.85) we can obtain an expression
for the integral in the virial compressibility factor of Eq. (2.78) of the form

+

o . Jexp(-pU; a;
/0 Ta—'_(a?—ﬁyu(r)d" = /,-JTaexp(ﬂfijﬁ(r—Uc'j)y-'j(")d" (2.98)
[}

A.’,‘ax
- / _ r3[exp(/36.-j) = 1]6(r = Aijoij)yis(r)dr.

1195

38



Using the property of the Dirac delta given in Eq. (2.87) we can re-write the
Clausius virial Eq. (2.78) as

zV = 1+ _/’-’Z;E"’ mJ{exp(ﬂs,J)auy,J(a,,)
1=1 =1
[exp(Bei;) — A0 %35 (Nijoii)}, (2.99)

which simplifies further to

ZV=1+ _Ps Z Z-"’ mJ{augU(U'J) — [exp(Bei;) - 1]’\?3 ?J!hj(/\ijffij)}- (2.100)

i=1 j=1

In order to express the compressibility factor as a series in /3, so that it is consistent
with the perturbation expansion used for the mean-attractive energy in the SAFT-
VR methodology, we utilise a property of the exponential series, which gives

exp(feij) ~ 1 + Pei; (2.101)

and hence
exp(feij) — 1 = fBeij. (2.102)

The compressibility factor of Eq. (2.100) then becomes

27
ZV=1 + ?Pazzzv’% .J{gu(”t]) exp(ﬂe,,)z\ jyij(Aijaij)}' (2.103)

i=1j=

Recalling that within the SAFT-VR perturbation expansions we can truncate the
high-temperature expansion for the radial distribution function at first order

gi(r) = gI5(r) + Beijgly(r), (2.104)
so that the expression for the background correlation function becomes
vij(Xijaij) = exp(=Bei) ol (Mijois) + Beijgl(Xijoi)). (2.105)
Expansion of the exponential function in the above expression gives
Yii(Nijoii) = (1= Beii)olf S (Aijoi) + Beijgli(Mijaij)), (2.106)
which can be simplified to

yi;(Miiois) = g5 5 (Nijois) + Beijgl;(Nijoi) = Beisg S (Nijoi5). (2.107)
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Substituting this expression for y;;(A;;0i;) into Eq. (2.103) gives an expression for
the virial compressibility of the form

zvV = 1+—-Pazz-’b‘ z;o5{9f%(0i;) + Beijgli(oi;)}

t—lJ 1
- —p’ﬂzzm zJauEtJAug:J (’\1101_7) (2.108)
=1 j5=1
Since we know that
Z =1+ —p’zzz 5] ngu (otj)’ (2-109)
i=1j)=

we can re-write Eq. (2.108) for the compressibility factor as

ZV = ZHb _Paﬂzzz zJUl]'g'J[gt](a'J) Al]glj s(’\"jaij)]' (2'110)
1=1j5=1

We can obtain a similar expression for the compressibility factor from the Helmholtz
free energy, Eq. (2.79) as
= da;
2T =25 ¢ iz, ——1- 2.111

Equating these two expressions for the compressibility factor we obtain

da’? 2m
T'L 36'][9:]((’!]) ’\ugt] S(’\UU'J)] (2'112)
0ps 3

which can be re-arranged to give an expression for g}j

3 0aV
V(.. - hutnd U 3 HS(y. . .. D
gij(d'l) 21‘.6 Leij a/’a +’\:J.qq (’\qu)- (2113)
In order to evaluate gf/5();;a;;) we examine the definition of the mean-attractive
energy for the square-well potential within the SAFT-VR framework (Eq. 2.13),
over a particular region of the potential, so that

Aijo;
af = <2mpiei; [ koS (ris)iri (2.114)
aij
The Leibniz rule [71] states that
4 ) / afz Ab A -
dr Jugy Jyz)de = a(\) dz + J( )dA K a)dA’ (2.115)
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in our case,a = oyjand f = Tugu HS5(r;;) are independent of AijTij, 50 that the rule

reduces to oo
T L P2 gHS (i = (Nisais)2aHS
o T Ty (rij)drij = (Xijoi;) i (Nijoij). (2.116)
iJ
Hence the the derivativein the expression for the mean-attractive energy, Eq. (2.114)
becomes .
04 _ 2_2 HS
a005) ~2npac ol o) (2.117)
This simplifies to
1 Ba;’ _
0i; 0N =2mpugiiAjoligll S (Nijois), (2.118)
which rearranges to give
HS 1 aa"i
A 1 .
9i;° (Nijoi;) = 27',/)‘6_'],\']03 ohi; (2.119)

Substituting into Eq. (2.113) we obtain

3 (')a';j Aij (')u';j
2o} Eij Jps 27rp_,s.,c7 . OAij

gij(0i) = (2.120)
which can be used in the expansion for the radial distribution function of Eq. (2.104)
to give

(2.121)

9ii(0) = gH5(e i)+ 57 ﬂ [3%” i'i?—az]

Ops ps OAi

The derivatives of the mean-attractive energy required in the above expression for
the square-well potential can be obtained from the SAFT-VR expressions for a';j

a'{ = VDW/’agub(dusC:;f )s (2.122)

where or
|4
tJDW 3 = &ij c](’\u 1)’ (2.123)

and C;” is the effective packing fraction, which depends on the overall system
packing fraction (3 and on the range of the interaction potential A;;.

The derivative of a';j with respect to p, is given by
a(tij VDW HS 09;‘}"‘9(5’1";(6”)
".(')7)1: = gl] (UIJ;C;!f) - (xt};prl 2 0[)] 2 ’ (2.124)
L]

which can be re-written in terms of the packing fraction (3 as

Py dglS(aij; (317
e il AL T B L i LS SO R )
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The derivative of ggs with respect to (3 is given by

dgHS  agHS gcs!
9(3 c’)cgf oG

(2.126)

Both the partial derivatives on the RIS of this equation can be easily evaluated
since the dependency of the hard-sphere radial distribution function on the overall
packing fraction and the dependency of the effective packing fraction on the overall
packing fraction are both known in the SAFT-VR approach. This gives a final
expression for Eq. (2.125) of the form

9a' . dgHS gest!
T‘)Zl,_ = W gHS (0453 ¢57T) = a¥PW (g2l o gc (2.127)

The derivative of the mean-attractive energy a’;j with respect to the potential range
Aij is obtained through

7] VDW f
00 o B (i (57 = oPY 20 67 (2.128)
3 1 f .
ONij 0,\.] g OAi;
where the derivative of aVDW is given by
dalPW
_._'L— = 27r5:]‘7 /\ (2.129)
()/\,'J'
The derivative of g,-’;s can be written
dgHS  9gHS peel!
9y _ 29y 06 (2.130)

0A;; - 0(3” 01\,1

where the dependency of the effective packing fraction on the range of the potential
is known. Hence Eq. (2.128) becomes

aVpr agusaCeI/
12 ()Crf] ()/\

Oai

‘ HS
a/\” 2”5110 At]pagt] (UIJst,)

(2.131)
Substituting the expressions for the density and range derivatives (Eqs. 2.127 and
2.131) of the mean-attractive energy into Eq. (2.121) we obtain the radial distri-
bution function within the SAFT-VR approach in terms of known parameters for
the square-well potential, as

gii(0i;) = 9l5(ai;) (2.132)
11y~ aYPW¢, dg47° 3('3“)
OC'” 0(3

8 VDW _HS
+ 27[_0,?]_ 3( -y 9i; ((’ij;ca
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eff

Aij 09,,° %
= M ore a3 g HS (g STy q¥DW , 991" 0G5
o, (T2mE NP0 (04 610 = P peg i |

This simplifies to give a final expression for the radial distribution function for
chains of molecules interacting via the square-well potential, which can be incor-
porated into the contributions to the SAFT-VR Helmholtz free energy due to chain

formation and association of molecules,
gii(oi) = 9if%(ai;) (2.133)

OgHS (2. aceff aceff
+ Bei; ‘HS i eff A3 o= (24 Bs 3
ﬂ M gJ (aJ CS )+( 1 )aC;jj 3 8’\ij C3 ()CS .
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Chapter 3

Molecular Simulation

3.1 Introduction

Molecular simulation techniques provide an alternative approach to the theoretical
study of fluids. The results obtained can be used firstly to formulate a direct
comparison with experimental data and secondly to complement other theoretical
studies by providing means of testing the postulates used in these procedures. The
main advantage of molecular simulation techniques over theory in the prediction of
the thermodynamic and transport properties of fluids, is that no approximations
other than the initial assumptions about the intermolecular interactions have to be
made. This allows a highly accurate study of the thermodynamics of fluid systems
to be performed. In order to be able to compare computer simulation results
with those obtained experimentally, simulations of complex model interactions are
required, which mimic the behaviour of real systems as accurately as possible.
However, the use of simulation techniques to examine the nature of particular
phenomena only requires that the essential physics of the system is contained
within the model studied, thus eliminating the need for a complex model system. In
this work we exploit this feature of computer simulation where the phase behaviour
of simple model systems, obtained by simulation methods is used to determine the
adequacy of a molecular based equation of state.

Computer simulation methods can be sub-divided into two general classes; Monte
Carlo (MC) [1], where a random sampling technique is used as a basis to describe
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the fluid’s properties; and molecular dynamics (MD) [2, 3], where the fluid is
analysed by solving Newton’s equations of motion. Additionally, a number of
recently developed simulation techniques exist which use a combination of both
MC and MD methods, such as Brownian dynamics. We will be interested only in
MC techniques, and more specifically in particular ensembles, the Gibbs ensemble
and the semigrand canonical ensemble, which will be discussed in some detail in the
following sections. As a direct consequence of the ability of computer simulation
to yield ‘exact’ microscopic properties which can be used to give a macroscopic
description of the fluid, the technique has become an integral part of the modern
study of fluids and their mixtures, for theoreticians and industrialists alike. In the
next sections we will introduce the statistical thermodynamics which forms the
basis of Monte Carlo simulations, and also illustrate the underlying concepts of

the technique.

3.2 Statistical thermodynamics

The basic assumption made in statistical mechanics is that the ensemble average
of a mechanical property, such as the pressure P, the energy E, the volume V or the
number of particles N, is equivalent to the value of that property at the macroscopic
(or thermodynamic) level, A statistical ensemble is defined as the assembly of
all possible microstates, or configurations, of a system. A particular microstate
can be considered as an exact replica of the overall system at a thermodynamic
level which differs from other microstates at a molecular level. Such microstates
exist since a particular system can occupy several different energy levels whilst
remaining in the same thermodynamic state. By calculating the ensemble average
of a thermodynamic property we obtain an average over all the microstates of the
system. Each of these configurations is assumed to occur with equal probability
in an isolated system with fixed total energy and of a fixed size at thermodynamic
equilibrium. Each microstate is thus assumed to have an equal weight within
the distribution of configurations, so that the macroscopic system can evolve by
sampling from any combination of the available microstates, i.e., the microstates
are said to be ergodic. The probability that a macroscopic system lies in a state v
with N particles, a volume V, and energy E, is given by

1
QnvE'

(3.1)

where Qv is the number of microscopic states with N particles, a volume V and
an energy of between E and E - AE. AE represents the finite uncertainty which
exists in the specification of the actual value of the energy for a given energy level;
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it arises as a consequence of the Heisenberg uncertainty principle [4, 5]. For a
finite value of AE, QnvEg is a finite function upon which standard mathematical
analysis can be performed. The link to thermodynamics within this ensemble is

made via the entropy S, which is related to Qyyg by the equation
S=kInQnvE, (3.2)

where k is Boltzmann’s constant. The conditions of fixed number of particles,
system volume and energy define a system in the microcanonical ensemble, which
can be considered as a closed isolated system. Other ensembles exist which are
defined by the fixed thermodynamic conditions particular to that ensemble.

The canonical ensemble is an important example of an alternative ensemble, where
the individual microstates have fixed number of particles and volume, but their
energy is permitted to fluctuate, and the system is kept at a fixed temperature T
in order to maintain thermal equilibrium. The canonical ensemble can hence be
visualised in the same manner as the microcanonical ensemble, as a closed system
which is in contact with a heat bath of temperature T. Within the canonical
ensemble the probability that the macroscopic system is in a state » with fixed N,

V and T can be shown to be given by [6]

It

! — exp(= E,/AT), (3.3)

where the Boltzmann factor is introduced from the definition of entropy S in the
microcanonical ensemble Eq. (3.2). Qnvr is the canonical partition function which
is defined as a discrete sum over all the possible microstates v of a system

Qnvr = )_exp(-E,/kT). (3.4)

The partition function is the key quantity used for obtaining macroscopic proper-
ties from microscopic averages, since it appears in the expression for the configu-
rational (or ensemble) average of a thermodynamic function. For a given function

A the configurational average is given by

<A, >=) PA

5, A, exp(~ E, /kT)
OnvT
5, A, exp(~E, [kT) .
5, exp(=E, /kT) ° (3:5)

<A>nvT

Within the canonical ensemble the Helmholtz free energy is related to the partition



function by
A=-kThnQpvr, (3.6)

where A is the thermodynamic potential with independent variables equal to those
of the canonical ensemble, which is equivalent to the role of entropy in the mi-
crocanonical ensemble. The other thermodynamic properties of a system in the

canonical ensemble are given by standard relations, for example, the pressure as

0A olnQ
P=- (__) = kT (__ﬂ)
ovV)rN ov TN’ (37)
the average energy as
0A/T adlnQ
oo (), - (2282
oT JvnN or VN (3.8)

and the chemical potential of species i as

JA OlnQnvr
e () p(amny
ONi/ TN,y oON; T,V\N, (3.9)

The partition function in other common ensembles, such as the isothermal-isobaric
ensemble (constant NPT) and the grand canonical ensemble (constant uVT) can
be written in terms of the partition function for the canonical ensemble, For
example, in the NPT ensemble the partition function is given by

QnpT

> /‘:U exp(—[E, + PV]/kT)

= Eexp(—[’V/kT)QNVT, (3.10)
1 4

and in the VT ensemble by,

Quvt

33 exp(—[E, - pN]/kT)
v N

D exp(uN/kT)QNvT. (3.11)
N

In the thermodynamic limit, when N— o0, away from the critical region, the

averages obtained using the common statistical ensembles are equivalent {7, 8].

The aim of Monte Carlo simulation is to provide a means of obtaining configura-
tional averages of thermodynamic properties by performing virtual experiments in
which a series of microstates are generated, over which averages are taken. Thus
the concept of an ensemble average is approximated by performing a large number
of computer generated states, or trials 7. It is possible to write the configurational



average of Eq. (3.5) as

Yormar A(t)exp(—E(7)/kT)
=i exp(—E(r)/kT) °

<A>NvTX (3.12)

where Tynqaz i the total number of trials performed. The number of trials T can
be increased until a suitably accurate value of A is obtained by means of a simple
mean sample method, which involves sampling from all the permitted values of
A. However, a large proportion of the trials performed in such a process would
only give a negligible contribution to the ensemble average in Eq. (3.12), so that
in order for even a crude estimate of tlie property A to be obtained, the number

of trials required is prohibitively large.

The Metropolis method permits configurational averages to be obtained in a much
more efficient manner, via the use of importance sampling techniques. Ilere ran-
dom numbers are selected from a given distribution (or density) of states p which
allows the average to be calculated only in regions where it gives a significant
contribution to the numerator of Eq. (3.5).

Sampling configurations from a random distribution, leads to an expression for the
configurational average of the form

< .A >NvT=< A/’NVT//’ Dtrialay (3'13)

where pyyT is the density of states in the canonical ensemble which is given by

1 .
Tmvr exp(=E,/kT) (3.14)

PNVT =

which differs from Eq. (3.3) in that here we are considering a continuous distri-
bution of states, and the partition function is now written as an integral over all
states. For most thermodynamic functions (the free energy being the most notable
exception), the contribution to the ensemble average will be significant when the
distribution of states in the NVT eunsemble pyyr is significant. Hence an estimate
of the average of A can be obtained by setting p = pyvT, so that

<A>SNVT=< A Sirigls - (3.15)

The generation of such a sequence of states during a simulation, where all states
occur with equal probability, which also has to be equal to the probability of
microstates in the canonical ensemble, is the basis of the Monte Carlo method.
The Metropolis algorithm provides a solution to this problem by the construction
of a Markov chain for the fluid which las a limiting distribution equal to pyvr.
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A Markov chain is a sequence of trials where the outcome of each trial belongs to a
finite set of possible outcomes, and depends only on the result of the previous trial.
Two states m and n in the chain are linked by a transition probability P,,,, which
is the probability that the system moves from state m to state n. The limiting
distribution of a Markov chain, the vector p, must satisfy the condition

pP =p (8.16)

where the transition matrix P is made up of the elements P,,, such that

E/’m'Pmn = Pny (3'17)

m

and is stochastic, since all its rows add to one
> Pun=1 (3.18)
"

For fluids in the NVT Metropolis scheme the transition matrix must be both
stochastic and ergodic, that is each of the individual states is equally likely to be
‘visited’ by the overall system during the simulation. The elements of the matrix
must be generated from a knowledge of the limiting distribution of a Markov
chain which has elements p,, = pnyT(T)), for each T, point in phase space. A
further constraint on the transition matrix of a fluid is that its elements should
be independent of the corresponding partition function, in this case the canonical
partition function Qnv7. Application of the condition of microscopic reversibility

p"l 'pmn = /’npmn ’ (3- 1 9)

so that the probability of moving from m to n is equal to the probability of moving
in the reverse direction, i.e. from n to m, is suflicient to ensure that the transition
matrix for the generation of liquid configurations obeys all the required criteria.
Hence, providing that the different configurations in a given simulation ensemble
are microscopically reversible they can be considered as being elements of a Markov
chain of configurations, equivalent to those used in the original Metropolis Monte
Carlo formalism [1]. An additional advantage of the use of the Markov chain in the
simulation is that configurations can be generated without having to evaluate the
normalisation factor of the distribution of microstates, i.e. the canonical ensemble
partition function.

The transition between neighbouring states m and n in the MC method is governed
by the difference in energy AUy, of the two states, AU,,,. If the new configuration
has a lower (or equal) energy to that of the initial configuration, the transition is
accepted, if the energy of the new configuration is greater than that of the old



state, the transition is not necessarily rejected. Such moves are accepted with a
probability proportional to
EX])(-—AU,,m/k‘T). (3.20)

This selective acceptance of Monte Carlo moves which are ‘uphill’ in energy pre-
vents the simulation from becoming trapped in local energy minima on the phase
space, hence ensuring that the thermodynamic properties obtained from the sim-
ulation take the correct value for the system studied. In order to accept a Monte
Carlo move with a probability given by Eq. (3.20) the ratio of probabilities of
neighbouring states is compared with a random number between zero and unity.
If the ratio in Eq. (3.20) is greater than the random number the move from m to
n is accepted (see [8] for full details).

The scope of the Monte Carlo technique has expanded dramatically since its in-
troduction in 1953, becoming “the most powerful and commonly used technique
for analysing complex problems” [9]. The first Monte Carlo studies resulted in
the mechanical and structural properties of simple hard-sphere fluids. lowever,
the nature of the model systems to which the MC method can be applied has
rapidly progressed via the use of diflerent inter-molecular interactions; for exam-
ple the Lennard-Jones potential was first used in a MC simulation in 1957 [10].
Further sophistication of the models used has led to the study of realistic systems
using the Monte Carlo method, a particularly relevant example being that of wa-
ter, which has been extensively studicd using the TIP4P model [11, 12], the TIPS2
model [13, 14] and the SPC model [15, 16]. Other systems which have heen studied
using MC techniques range from n-alkanes [17]-[19], methanol [20], complex fluids
such as surfactants [21], [22] to the examination of the swelling of clay systems
with the addition of aqueous solutions [23].

The nature of the information which can be obtained from MC simulation studies
has also advanced from the early work of Metropolis €t al.. New techniques such
as the grand canonical ensemble [24] and the Widom test particle method [25, 26)
have been developed which permit the evaluation of properties such as the the free
energy and entropy. These quantitics are diflicult to obtain from standard MC
methods since the Metropolis algorithm is designed so that it samples configura-
tions with small or negative energics, which have a small effect on the configura-
tional average in Eq. (3.12). Such techniques, together with the development of
realistic models for fluids, allow the evaluation of the full phase behaviour of a

complex model system using computer simulation.

We focus on the use of Monte Carlo methods in the study of phase coexistence of

simple model fluids, which can be achieved by using either direct or indirect simu-



lation techniques. Direct simulations yield phase equilibria data by simultaneously
examining the two coexisting phases. Indirect MC methods involve the calculation
of the chemical potential or free energy within a simulation for a series of state
points; the region of phase coexistence is determined by the location of ponts in
the phase space with equal temperature, pressure and chemical potential. A range
of special techniques have been developed in order to obtain thermal properties,
such as the free energy and entropy, some of which will be briefly disussed here
(see Refs. [8] and [27] for a review).

Use of the grand canonical ensemble [24], in which chemical potential, volume
and temperature are fixed during the simulation, is a direct simulation method
which has been widely used. Density is allowed to fluctuate over the course of the
simulation, and the average density is calculated as an ensemble average. Within
the grand canonical ensemble two Monte Carlo moves are performed in order
to generate states, particle displacements and particle insertions/deletions (see
Ref. [8]). The disadvantage of such an approach is that it relies upon successful
insertions in order to obtain an adequate sampling of the density fluctuations,
which become less likely as the density of the system increases. A related ensemble
which does not rely upon particle insertions is the semigrand canonical ensemble

which is discussed later.

An alternative route to the determination of chemical potential in standard simu-
lation ensembles is the use of the test particle method [25, 26], which consists of
the introduction of a virtual or test particle into the simulation. This molecule
measures the intermolecular interactions at that point, but it does not influence
the other molecules in the system in any way. This method and variations of it
have been used extensively to obtain chemical potentials in both MC and MD
simulations (see Ref. [28] for a review). The approach as adapted for the Gibbs
ensemble (see later) is given in the appendix. Application of the test particle
method in the N PT ensemble is particularly useful, since the density is permitted
to fluctuate, which is useful in studies close to the critical region, as will be shown

in Chapter G.

A range of modified sampling techniques which facilitate the insertion of particles
have been developed (see Ref. [28] and references therein), an example of which is
the so-called ‘umbrella’ sampling method [29, 30, 8] which samples configurations
which are important in the determination of the chemical potential. Another such
technique is density scaling Monte Carlo [29, 30}, where simulations are performed
on a non-Boltzmann distribution in order to evaluate the Helmholtz free energy
between two states of different density along an isotherm. The position variables

are scaled by density so that the generated configurations are also density depen-

i ]
[ ]



dent; the simulation results in the free energy difference between any two given
densities. It is also important to note that it is possible to exploit the standard
thermodynamic identities between the free energy or the chemical potential and
the internal energy or pressure of a system in order to obtain values for such quanti-
ties. Such aroute is termed thermodynamic integration, and has seen a wide range
of applications (see Ref. [28]). One of the most applicable of such approaches is
the Gibbs-Duhem integration method proposed by Kofke [31]-[33]. The method
consists of the numerical integration of the Clausius-Clapeyron equation, and its
main advantage lies in the fact that it is not limited to systems with coexistence
curves in the pressure-temperature plane. For example, it can be used to locate
phase transitions as a function of the interaction potential of a system (see Ref. [34]

for a recent review).

A more intuitive route to the simulation of phase behaviour is the use of direct
techniques, where the coexistence between two phases is simulated ‘directly’. In-
terfacial techniques, where two phases are simulated within a single subsystem
separated by an interface, are an example of such methods These studies lead to
the description of the interfacial properties of the two fluids but can also yield
bulk system properties. The common problems of direct MC simulation methods
include long equilibration times and that the stability of the two phase region is
very sensitive to the density difference of the two fluids. Additionally, confining the
two fluids between parallel walls leads to the simulation of a confined fluid rather
than that of coexisting phases. These limitations and the possible means by which
their effect can be minimised are discussed in Refs. [35, 27] and [28]. Accurate
evaluation of phase coexistence by MC simulation thus appears only to be possible
by means of indirect techniques coupled with a bias sampling scheme, or by using
a direct method with long simulation runs, taking care with the method used to
confine the fluid. An alternative direct simulation technique is the Gibbs ensemble
Monte Carlo (GEMC) method, where the phase equilibria of model systems can
be readliy obtained without any of the problems associated with the two-phase
interface. Within the Gibbs ensemble the coexisting phases are simulated in two
separate subsystems which are in thermodynamic equilibrium but not in physical

contact.
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3.3 Gibbs ensemble Monte Carlo simulations of mix-

tures

Since its introduction 10 years ago by Panagiotopoulos [36], the GEMC simulation
technique has become one of the most widely used simulation methods for the de-
termination of phase equilibria. The technique and its advantages and limitations,
together with its applications has been extensively reviewed in Refs. [27, 37}-[39).
As a simulation method it is particularly well suited to the study of coexisting
phases since it consists of two separate subsystems, or boxes, each of which can
be assigned to one of the individual phases. These two boxes are examined simul-
taneously and are not in physical contact, but can be imagined to be embedded
within the bulk of each phase. Hence the thermodynamic properties which are
evolved have no interfacial contributions associated with them. However, these
two subsystems, are not completely isolated from one another, at least in the
thermodynamic sense, since they are maintained in such a way that they are in
equilibrium with one another. This requires that equality of pressure, tempera-
ture and chemical potential exists between the two hoxes, and hence between the
two phases. This equilibrium is sustained via three kinds of Monte Carlo move,
particle displacement to maintain thermal equilibrium, volume changes , to main-
tain mechanical equilibrium, and interchange between the two boxes, to maintain
chemical equilibrium. The GEMC technique was first proposed for the study of
pure fluids at a constant number of particles, volume and temperature, that is
constant NV T overall, so that a coupled volume change of +AV in one box and
—~AYV in the other maintains the overall volume. This form of the Gibbs ensemble
has seen many applications, a few examples being the simulation of the Lennard-
Jones fluid both for monomers [36, 40] and higher chain molecules {41, 42], the
square-well fluid [43)-[45], the Stockmayer fluid [46], the Yukawa fluid [47, 48], the
Gay-Berne fluid [19], and of the Buckingham exp-6 fluid [50].

The Gibbs ensemble technique can also be applied to studies of coexisting mix-
tures [51], and it is this aspect of the method which is of interest here. In this
case the method can be implemented at constant N PT overall, since by increasing
the number of components of the system the number of variables which can be
specified in the simulation also increases. llence, for a two component system,
the temperature and pressure of the two coexisting phases can be specified, whilst
for the case of the pure component, only the temperature can be specified. Use
of the constant N PT Gibbs ensemble also results in smaller uncertainties in the
coexisting densities (or compositions) than for the constant NVT case. As one
would expect, many different mixtures have been examined using the Gibbs en-
semble technique, some examples are Lennard-Jones mixtures [51, 52], square-well



mixtures [53, 54], Stockmayer mixtures [55], alkane mixtures [12, 56, 57], associat-
ing mixtures [58], water/methanol/salt mixtures [59], polydisperse fluids [60], and

surfactant solutions [61].

The GEMC technique has recently been extended to simulate multiphase equilibria
[62], where the original GEMC two box partition function is written in terms of
two canonical ensemble partition functions. For simulation of an n-phase system,
n canonical partition functions are used in the overall Gibbs ensemble partition
function. Results are presented in Ref. [62] for mixtures of Lennard-Jones atoms,
including binary mixtures exhibiting two and three phase coexistence, and ternary
mixtures exhibiting three and four phase coexistence. The ability to perform direct
simulations of multiphase, multicomponent mixtures using the Gibbs ensemble is
likely to become one of the fundamental advantages of the technique over other

simulation methods in the near future.

In this work we are interested only in the application of the Gibbs ensemble simula-
tion method as a means of obtaining the phase coexistence of simple model systems.
The GEMC simulation results for a binary mixture of square-well monomers and
dimers are presented in Chapter 4 and the simulation of a symmetrical square-well
associating mixture is discussed in Chapter 6. We present the general expressions
of the GEMC partition function for a binary mixture at constant N PT, together
with the other related functions which are used in the estimation of the thermo-
dynamic properties of the fluid. The means by which the chemical potential can
be obtained within a Gibbs ensemble is detailed in the appendix. We also discuss
three possible algorithms for the particle transfer step in terms of their significance
in the expression for the acceptance criterion of the move.

Within the Gibbs ensemble a binary mixture of N = Ny + N; particles, Ny of
type 1 and N; of type 2, at a constant temperature T and a constant pressure P
is divided into two subsystems, labelled « and b, with volumes V* and V?, and
numbers of particles N* = N{' + N and Nt = N," + N%’, respectively, where N.-j is
the number of particles of type ¢ in subsystem j. The partition function for such

a mixture is

Gibbs 1 1 Nl 2
Onty NASMV, NatASN Y, NZ N{"N{" Nza:o N?'N”'
. pye ; Py
X / dv exp( 7k )/ dV’exp (--ﬁ—>
a Q
X /d(r“)N /d(r )Nz exp( v /fjv ))
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b b
/d(r )N /d(rz)N2 exp( ISTIY )), (3.21)

where A; is the thermal de Broglie wavelength of particle ¢, V4 is a basic unit of
volume chosen to render the partition function dimensionless [63], (rf)N-’ represents
the positions of particles of type ¢ in subsystem j, and Uj(Nj) is the energy of
subsystem j. Note that in the case of non-spherical particles the orientations of
particles also have to be specified. After introducing the re-scaled co-ordinates
f-’ r’/LJ where L7 is the box length of the simulated subsystem j, the partition
function can be written as

1 1 M

i

2
Glbbl
Onp NUATMV, NptA3N Y, NZO Ny Nf'Nz:o N“'N

X /0 dV®exp (——I:—CT—) (V“)N“/0 AVl exp <—-}%‘l/—b) (Vb)Nb
< [aers [aen oo (-5
x / aeH™ / d(EH™2 exp (—-’%Y—”) (3.22)

Hence, the configurational average of a function A in the NPT version of the
Gibbs ensemble is given by (cf. Eq. (3.5),

Ny N;

1 1 1 Ny! N,!
A Gibbs —
(Alnpr QnPE* NIAT YV, Ng'A’N’VoN;(, NpING! N‘S:O N3INg!

® o a PV ayNe b PVEY (un\V*
/OdV exp( kT)(V) A dV exp( u‘)(V)

pd
X /d(f‘l’)Nf/d({g)N; exp (-— Uak(ga))
» » b( b
x [aeh™ [a@ydex (—-’%’i—’) A (323)

An inspection of Eq. (3.23) indicates that it represents an ensemble average with
a probability distribution proportional to a pseudo-Boltzmann factor

ihbs —_ Nl! N' a a b
P Gitbe = exp [ln (__N{‘!N{’!)+1n (N“'N§'> +N*hhV*+Nv
PVe _ PV?® _ U*(N®%) _ Ub(NY)
kT kT kT kT |’

(3.24)

The acceptance criterion for each of the individual MC steps performed in the
Gibbs ensemble can be derived from Eq. (3.24).
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For a particle displacement in subsystem j, new configurations are accepted with

a probability proportional to

: AU
P 4 =exp (——ﬁ) (3.25)

which is equivalent to the original canonical NVT Metropolis scheme of Eq. (3.20)

[1].

A volume change at constant pressure generates new configurations which are

accepted with a probability proportional to
a a b b
PY = exp [N“ln (V—-“;AY—) + N*In (V—f"ﬂ,ﬁ/—)

PAV®  PAVY AU* AU
LT kT~ kT ~ kT |

- (3.26)
This is identical to the original isothermal-isobaric, N PT, Monte Carlo prescrip-
tion, proposed by Wood [64], written for a volume change in two identical sub-
systems. Overall convergence in the N PT Gibbs ensemble is found to be faster if
the volume of only one subsystem is changed per simulation cycle (defined later)
[51]. Selection of which subsystem is to undergo a volume change is carried out
at random, so that the acceptance criterion given in Eq. (3.26), only depends on
the terms which involve the chosen subsystem, for example, for a volume change
of AV?® in a, the pseudo-Boltzmann factor is given by

(3.27)

PV exp [N,,ln (va +AV“) _pave AU“]

Ve LT kT

Interchange of particles between the two subsystems has an acceptance probability,

for transfer of a particle of type i from subsystem a to subsystem b, proportional

- Nevh AU AU
P ti=exp [ln ((N,-b n l)V") T | (3.28)

to

In the thermodynamic limit, each subsystem thus corresponds to the generalised
uV T canonical ensemble [65). It is important to note that the method employed
to select the transferred particle affects tlie expressions involved in the above ac-
ceptance criterion. We now illustrate, for three transfer step algorithms, why this
is the case, and also explain why the three algorithms are equivalent by means of
their microscopic reversibility.

The condition of microscopic reversibility is an essential feature of all Monte Carlo

simulation methods, it requires that the probability of transforming a configu-
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ration m into a configuration n must be equal to the probability of performing
the reverse step. The roots of such a requirement lie in the fundamentals of the
Metropolis Monte Carlo technique [1] as shown earlier. The Gibbs ensemble (and
all the other MC ensembles) use the Metropolis algorithm, which requires that the
Gibbs ensemble transition matrix must satisfy the same conditions as those for the
Metropolis case. The microscopic reversibility of the individual steps in the Gibbs
ensemble, for the case of the particle displacement and volume change steps, is
easily recognised [8], since they correspond to the usual canonical and isothermal-
isobaric ensembles, and hence are known to be microscopically reversible. However,
in the case of the particle transfer step, the reversibility of the process is not so
apparent. llere, we outline the route involved in establishing the reversibility of
the transfer step, by using three different particle transfer algorithms. We bor-
row heavily from the language of Rull et al. in Ref. [66] where the condition of

microscopic reversibility in the Gibbs ensemble was first discussed in any detail.

We examine the same binary mixture as earlier, consisting of N®* = N{ + N3
and N? = Nl” + Ng particles, where N,-j is the number of particles of type ¢ in
subsystem j. Tle probability of moving from an overall state m to an overall
state n by transferring a particle of type 1 from subsystem a to subsystem b is
proportional to

'Pmn = N?!N{’!N?'N%! x P subsystem a x P type | X pmpanicle 1a

X P position b X pmGibbo % Pm:‘rinrion’ (3.29)

where each of the terms in the above equation will be considered in turn. The factor
N#INPINSINS! corresponds to the number of permutations of the labels used to
describe the configuration m. P *ubwstema j5 the probability of chosing subsystem
a as the donor subsystem for the transfer, P *?e?! js the probability of chosing
a given particle of type 1 to be transferred, and P, P**'* 1 is the probability of
chosing a particle of type 1in subsystem a. P Poie"b i5 the probability of selecting
a particular position for insertion in subsystem b, P, “*** is the probability that
the overall system is in the configuration n given in Eq. (3.24), and P, griterion
is the acceptance criterion for the particle transfer step in the Gibbs ensemble,
given in Eq. (3.28). The probabilities of choosing either a particle of type 1 or
of type 2 to be transferred are equal, P wpe! = P wre2 = /2 similarly, the
probability of chosing subsystem a or b as the donor subsystem are equal, so that
P subsystema — P subsysemb — 1 /9 The probabilities for selecting a particular
position for insertion in subsystem a and b are also equal, P positiona = P pesitiond,
so that these three terms will not appear in the overall acceptance criteria, which
is a ratio of the probability of transfers from state m to n and from n to m.
The probability of chosing a given particle of type 1 in subsystem a, P, Porticte e
depends on the algorithm used in the particle transfer step.
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In order that a particular transfer algorithmn yields microscopically reversible con-
figurations, and hence be considered as a true Metropolis algorithm, the probabil-

ities of the forward and reverse transfers must be equal, that is
Prmn = Pum. (330)

The first transfer step algorithm (1) proposed in the original prescription of the
Gibbs ensemble technique for mixtures [51], follows the methodology:

¢ random selection of the recipient subsystem
¢ random selection of particle type i
¢ random selection of a particle of that type in the donor subsystem

e transfer of the selected particle to a random position in the recipient subsys-

tem

The probability that a particle of type 1 is transferred from a to b is given by
Eq. (3.29), where the probability of chosing a particle of type 1 in subsystem a in

configuration m is
1

N’
and P,, %" is given by Eq. (3.24). The probability of the reverse step, the transfer

P particle 1,4 __
m =

(3.31)

of a particle of type 1 from subsystem b to subsystem a is proportional to

an = (NIL _ l)y(N{) + l)'N;'Ng' < P subsystem b < P type 1 o Pn particle 1,b

x P position @ X Pn Gibbs X 'pnnclrimion. (3.32)

For the configuration n, the factor (N§ — 1){(N} + 1)IN§IN$! corresponds to the
number of permutations of the labels, P, rarticte b js the probability of choosing a
particle of type 1 in subsystem b, given by

1
NP+ 1

P particle 1,b __
n =

(3.33)
The probability that the overall system is in configuration n is, cf. Eq. (3.21),

exp |In ! +1 !
UM -t ) T\ v
+ (N*=DhVe4+ (N 4+ 1)Invh

PVe PV® U N®-1) UYNb+ 1)]

Gibba
Pﬂ

kT kT kT kT (3:34)
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Equating the forward and reverse probabilities for this transfer step algorithm,
Egs. (3.29) and (3.32), gives

P t _ 'P"”clruenon
1 e Pn"c‘riterion
(N]a _ 1)!(Nlb + 1)!N€!N%! P subsystem b P typet P, particle 1,
n
Nla!Nlb!Nél!Ng! P subsystem @ x "J type 1 X '}_-,mpanicle 1.0

sition @ Gibb
P po p'm_ ibbs

X 17 posilionb X ’F’n Gibbs
= explln N?Vb - AUT AU 3.35
= XM\ NFy e ) T kT kT |’ (3.35)

This is identical to the general particle transfer step acceptance criterion given by
Eq. (3.28). An identical expression can be obtained for component 2 in terms of
Ng and NS.

The second transfer step algorithm (2) [53] is less specific in its method of particle

selection, it proceeds by:

¢ random selection of the recipient subsystem
¢ random selection of a particle in the donor subsystem, regardless of type

o transfer of the selected particle to a random position in the recipient subsys-

tem.

Here, the particle to be transferred is selected from the total N* particles in the se-
lected subsystem i, so that P *P*! is not included in the transfer step probability.
The species subscripts are dropped from the expressions for the probabilities of se-
lecting a particle of a given type in a specific subsystem, P, Particied and P, particted,
so that they become 1/N® and 1/(N® + 1), respectively. The reversible transfer
criterion for this algorithm can hence be written

") criterion
mn

'P criterion
nm

P!

(N]a - 1)!(Nlb + 1)!N§!N26! ya subsystem b "_')n particle,b P positiona 7)" Gibbs

Nil!NIb!N;l!Ng! P subsystema X P"‘P“““f'“ X P position b X P'n(hbbo

N} +1 ( N° )ex In NpV?E AU® AU
N J\N )P [\ vy yve ) TR T R

_ i [NV AU avt

= P M N e ) T RT T AT |

In this case the acceptance criterion is identical to that for the pure component
NVT Gibbs ensemble simulation [36].
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The third transfer step algorithm (3) [66] is the most general of the three algorithms

examined here, it proceeds by:

¢ random selection of a particle from the total N particles, regardless of sub-

system and type

o transfer of that selected particle to a random position in the other subsystem.

The particle which is to be transferred is hence selected from the total N particles,
§0 that P *ubsystema D subsystemb 550 P wweel are ot included in the expressions
for P,,cierem and P,,crer>". The probability of choosing a particle of a particular
type in a given subsystem, for both the forward and reverse steps, P, P>*“l* and
P, Prriicle are now equal, and given by 1/N, and hence cancel from the transfer step

criterion, which is now given by

7:7 criterion
mn

'Pt‘ = —
3 pnnclrnenon
B (N{'-l)!(N,b-{-l)!N;!Né’! Pmpanicle P Ppositiona ’P"Gibb;
- N{‘!Nlb!N;!sz! X Pn particle X P position b X 'pmc;ibb.
S 0 A Y G i AU® AU
Ny ) NP+ yve ) T kT T AT |

= exo i Ve AUs Aut
= exp ln{ 72 -~ Tl (3.37)

This is identical to the criterion obtained when the equivalent algorithm is applied

to pure systems in the Gibbs ensemble [GG).

In order to compare these three algorithims a N PT Gibbs ensemble Monte Carlo
simulation of a binary mixture consisting of equal sized spheres, a1y = 013 = 032,
interacting via a square-well potential of fixed range A = Ay; = Ay = 1.5, and
M2 = 1 is performed. The attractive interactions are given the values g7 =
£92 > 0 and 13 = 0. This mixture has been studied previously via the GEMC
technique [53], the particular choice of intermolecular interaction parameters result
in a phase diagram for the mixture which is dominated by regions of liquid-liquid
immiscibility. Results obtained using the different transfer step algorithms are
summarised in Table 3.1. All three algorithms are seen to give very similar results
for the phase coexistence of the mixture, but the first algorithm (1), is found to
require the fewest particle interchanges per simulation cycle, so that it is the most
computationally efficient.
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Table 3.1: Liquid-liquid coexistence data obtained from NPT Gibbs ensemble
Monte Carlo simulations for a symmetrical mixture of square wells with a range
A = 1.5, performed using the various algorithms in the particle transfer step.
The fixed variables during the simulation are the number of particles N = 512,
the reduced pressure P* = Po3/¢ = 1.08 and the reduced temperature T* =
kT/e = 1.829. The reduced densities p* = No3/V and compositions z3, in the
two coexisting liquid phases are labeled I; and I;, respectively; the uncertainties
correspond to one standard deviation. The time corresponds to the cpu time
required (in hours) to perform 100,000 simulation cycles on a 150 Mz, IP22
processor R4400 Silicon Graphics workstation. One simulation cycle consists of N
MC displacements, one volume change and a fixed number of particle insertions
(Ninser). The number of insertions is controlled so that 1% of the N particles are
interchanged per cycle. Data marked with a { correspond to the equivalent data
for the symmetrical square-well mixture of Ref. [53].

algorithm Pl Pia T2, T2, time  Nipger
1 0.474£0.016 0.474£0.017 0.945+£0.020 0.055+0.020 7.14 200
2 0.482+0.020 0.466+0.017 0.953+0.020 0.066+£0.023 9.39 1200
3 0.469£0.024 0.465+£0.021 0.9104£0.026 0.065x0.028 9.41 1200
2t 0.431+0.014 0.478+0.013 0.94840.016 0.01940.017 - -




3.4 The semigrand canonical ensemble for mixtures

Another Monte Carlo simulation ensemble used in this work is the semigrand
canonical ensemble (SGC) [67, 68], which is an analogue of the grand canoni-
cal ensemble. Within the grand canonical ensemble simulations are performed at
constant chemical potential g, volume and temperature (uVT) using MC displace-
ments and particle insertions/deletions to maintain the equality of the thermody-
namic variables. The main difference between the the grand canonical (and the
semigrand canonical) ensemble and the Gibbs ensemble is that the simulation is
performed in a single subsystem. In the semigrand canonical ensemble particle
identity changes are performed rather than the particle insertions of the grand
canonical ensemble [69]. The total number of particles, N is kept constant in the
SGC ensemble, but the concentration of the individual species is allowed to fluc-
tuate by enforcing that the difference in chemical potentials Ay = iy — 3 is kept
constant in addition to the number of particles, the volume and the temperature.

In order to obtain the partition function for a binary mixture in the semigrand
canonical ensemble, it is first necessary to present the expressions for the grand
canonical ensemble. The partition function for a binary mixture of N = Ny + N,
particles, Ny of type 1 and N; of type 2, at a constant volume V' and a constant
temperature T in the grand canonical ensemble is given by

> 1 1
Qulv“ZIVlT = Z

1A3N; 1A3N2
N[.Nz N]-A‘ NQ-AZ

M) (M) Ni+N;
X exp(kT exp | —7F vV
]
y /d(N""N’('xp[ ’(N‘L;N’)] (3.38)

where y; is the chemical potential of particle i. U(Ny + N;) is the configurational

energy of the system of Ny + N particles which have scaled coordinates {; = r;/L,
where r; corresponds to the positions and momenta of species ¢, and L is the linear
simulation box length. It is common to re-write the partition function in terms of
its configurational contribution, Zy, N, v,T

= 1 1
Q Ny |VvT = :
k2 N%]:V, Nl !A.llNl Nz!AgNz ‘

N Ny
X exp (—f%'l) exp (#) ZN, N, VT (3.39)
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where Zn, n,,v,T is defined

T
ZNl N VT = VN1+N2 /chH-Nz exp [_LM%_NQ] . (3_40)
In order to arrive at the partition function for the semigrand ensemble, we re-write
Eq. (3.39) by fixing the chemical potential of one component (y; for example) and
defining the difference in chemical potential Ay = pi3 — 1. This confines us to only
allowing p1 and N; to vary, whilst 3 and Ny are fixed. Eq. (3.39) thus becomes

Quiawvr = i—l—-exp(—]\-’—“)-) i 1
e Ao MY kT ) | =, NA(N = M)
y (Al)mwex)(AhAu)
As I kT
X  ZN-N, NV, T)
= > A3N EXP ("——IIH) YNV,T,Au (3.41)
N=0 1
where Yy v.r,a, is defined
N
1 A\
Ynvras = —_— (—-)
g NKE N2V = No)! \A,
NoAp
X exp (_:?1_1-’—) ZN-NQvNQvV’T' (3'42)

Note the similarities between the semigrand canonical partition function Eq. (3.41)
and the grand canonical partition function Eq. (3.39), particularly in the way in
which they can both be written as an expounential factor multiplied by a configura-
tional part. The configurational average of a function A in the semigrand canonical

ensemble can be written

1
ANV S e
yV 0l l‘
3 e ()™
N V2N = N2)P A,
NyAp
X exp( Ii'Tl ) ZN-N; N V,TA. (3.43)

The above expression corresponds to an ensemble average which has a probability

distribution, which is proportional to

. 1 NAu® U(N
semigrand - 1 28/ - ( )
P exl){ n [Nz!(N - Nz)!] + ( T ) +NInV (———-kT ,

(3.44)
where Ap® = pd — 4§ and pf = p; — InA}. New configurations in the semigrand

canonical ensemble are generated by performing both particle displacements and
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particle identity changes. Random displacement of particles leads to configurations
which are generated with a probability proportional to

AU
P? = exp (—Tf) . (3.45)

The identity change step is implemented by first s‘e]ecting a species at random,
then selecting a particle of that type from the total N particles and changing its
identity. For the identity change of a particle of type 1 to a particle of type 2

configurations are generated with a probability proportional to

id _ N] ) A[I,O AU
P = exp [ln (N2+1 + ) (W) . (3.46)

For the reverse process, when a particle of type 2 is changed into a particle of type

1, we find
; N Au® AU
id 2 /
—-e i - —_ | — 3.
P exp [ n (Nl l) ( T ) (kT )] . (3.47)

An alternative algorithm for the particle identity change step exists [67], where a

particleis chosen at random from the total N particles and its identity subsequently

changed. In this case the new configurations are generated with a probability

“ oo (22) - (A1) .
P —exp[( T /)| (3.48)

in the case when type 1 — type 2, and

. 0 7
Pid — exp {— (%‘) - (%,-)] , (3.49)

in the case when type 2 — type 1.

proportional to

The advantage of the semigrand ensemble over other simulation ensembles such
as the Gibbs or the grand canonical ensembles is that it does not rely on particle
insertions to achieve equilibrium. The convergence of the simulation is not limited
by the density of the the system studied, so that it direct simulation of solid-liquid
equilibria is theoretically possible [68]. The semigrand ensemble can also be ap-
plied to multicomponent systems where the chemical potential of only one species
at a given state has to be evaluated regardless of the number of components present
in the simulation. The phase behaviour of the symmetrical square-well mixture of
Ref. [53] has recently been examined within the SGC ensemble [70]. The symme-
try of the system examined in Ref. [70] permits the direct simulation of two-phase
coexistence as in the Gibbs ensemble, but the simulation is performed in a single
subsystem. The similarity between the SGC and the grand canonical ensembles
is also exploited in Ref. [70], where a finite-size scaling (FSS) analysis of the crit-
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ical region for the system is presented. In FSS studies the infinite system size
critical properties are obtained from a series of finite-system simulations, usually
performed in the GC ensemble, due to the density and energy fluctuations. The
greater efficiency of semigrand canonical simulations than the corresponding grand
canonical simulations hence make it a favourable ensemble for use in finite-size scal-
ing studies. In this work, we follow an approach similar to that of Ref. [70] where
the critical region of a specific model systemn is examined using FSS techniques in
the SGC ensemble.

3.5 Concluding remarks

In this chapter we have introduced the concept of molecular simulation as a means
of obtaining phase coexistence data for simple model systems. In particular, we
show how simulations can be performed in the Gibbs and semigrand canonical
ensembles. The Gibbs ensemble technique is the most widely used direct simula-
tion technique currently available for the study of fluid mixtures. It consists of
simulations which are performed in two subsystems which are in thermodynamic
equilibrium but not in physical contact. The advantage of this approach is that it
eliminates the problems associated with the interface, which is the main disadvan-
tage of two-phase simulation methods. The GEMC simulation results presented in
this work are used as a means of testing thie adequacy of the theoretical representa-
tion of model fluids obtained using the SAFT-VR equation of state, Additionally,
we perform Gibbs ensemble simulations as a means of testing the effect of including
specific features in the model on the phase hehaviour exhibited by the system.

The semigrand canonical ensemble is an indirect simulation technique, where the
difference in chemical potential of the component species is fixed. Since particle
identity changes are performed rather than insertions, the technique is applicable
to high density fluids and even solids. In this work we use the semigrand ensemble
to examine a specific model, which due to its symmetry can be simulated in a
single subsystem. The critical region of this model is also examined using a finite

size scaling analysis of the simulation results,

G9



3.6 Appendix: Determination of chemical potential
in the Gibbs ensemble

A feature of the Gibbs ensemble technique is that the chemical potential of the
individual species does not have to be calculated during the simulation, since the
particle interchange step maintains equality of chemical potential between the two
phases. A disadvantage of the Metropolis algorithm is its difficultly in obtaining
non-mechanical properties such as the free energy, the entropy and the chemical
potential during the simulation. It is however a useful test of the GEMC algorithm
to actually determine the chemical potentials of the individual species present in
the simulation. This can be achieved, within the GEMC transfer step, following
Widom'’s particle insertion method [25]. Here, a virtual or test particle is inserted
into the simulation box, and its energy with respect to all the other particles is

calculated, enabling the excess chemical potential of the system to be obtained

U test
p *=—kThn <exp [-—-T}> ), (3.50)
NVT

where U 't is the interaction energy of the test particle with the otler N par-

from

ticles, and the angular brackets represent an average in the canonical ensemble,
The full chemical potential is thus given by

0 U test
=y +kTinp—kTIn| (exp - , (3.51)
NVT

where % = kT In A3,

However, it has been noted [71] that this test insertion technique is strictly only
valid for the NVT ensemble, as derived in the original Metropolis scheme [1]. In
order to use the same technique in the Gibbs ensemble it is important to account
for the fluctuations in the number of particles and in the volume of the subsystems,
which arise in the Gibbs ensemble, both at constant NVT and at constant N PT,
These fluctuations only become important close to the critical point, and when
the number of particles is small. At temperatures away from the critical temper-
ature, when the particle number is stable, the chemical potential of a species i in
subsystem s in the N PT Gibbs ensemble is given by

‘ V] l], tf‘b‘t.j Gibbs
o= puf = kTn (< —— oxp [—-'———]> . (3.52)
N +1 k1 NPT

The chemical potentials obtained by Eq. (3.51) and by Eq. (3.52) are found to
differ by less than the simulation uncertainties for pure component species, except
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when the number of particles in one of the subsystems is very small [71]. In order
to prevent poor sampling in the case of GEMC simulations of mixtures, where
one subsystem can conceivably have a very small number of particles of a given
component, the chemical potential of the mixture is evaluated both during the
particle transfer step and in a separate subroutine using the Widom insertion

technique, as governed by Eq. (3.52).
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Chapter 4

Prediction of phase equilibria

of mixtures using the

SAFT-VR approach

4.1 Introduction

An important advantage of molecular based theories such as SAFT-VR [1, 2],
is that each of the individual contributions to the Helinholtz free energy can be
compared directly with computer simulation data. llere we examine three binary
mixtures using the SAFT-VR equation of state (as described in Chapter 2). A
mixture of hard-sphere and square-well monomers, a mixture consisting of only
square-well monomers, and a square-well imonomer-dimer mixture. The adequacy
of the SAFT-VR expressions in describing phase behaviour of mixtures in general
can be established via a study of these three important prototype systems. All the
particles which are examined here have the same segment diameter and square-well
interaction range. The dimers of the third mixture are formed from two tangen-
tially bonded square-well monomers, so that the monomer and dimer segments
have the same range and strength of square-well interaction. This simplifies the

actual expressions involved in the equation of state.

The two monomer mixtures can be used to determine the adequacy of the con-
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tribution to the SAFT-VR free energy due to monomers via an examination of
their vapour-liquid equilibria, in the case of the hard-sphere and square-well mix-
ture and of the liquid-liquid phase equilibria of the binary square-well mixture.
The coexistence region for both these mixtures has been examined previously by
Gibbs ensemble Monte Carlo simulation [3]-[3]. Thus it is possible to formulate
a direct comparison between the SAFT-VR prediction and the simulation data of

the mixtures.

The square-well monomer-dimer mixture is perhaps the most interesting of the
three mixtures studied here, since it allows one to quantify the effect of chain length
on fluid phase equilibria. Although the phase equilibria of systems with increas-
ing chain length have been studied experimentally (e.g., mixtures of homologous
series such as alkanes, perfluoroalkanes, dimethysiloxanes etc.), the complexity of
real intermolecular interactions makes it difficult to establish the precise eflect of
molecular extension. Computer simulation methods are ideally suited to the study
of such systems, since the nature of the intermolecular interactions can be con-
trolled within a simulation, and the results obtained can be considered as exact,
particularly in the context of comparisons with equations of state. Simulation
studies have been previously performed on both the pure component square-well
monomer [6, 7, 5] and dimer [8], but no simulation data has been reported for
the binary monomer-dimer mixture. In this chapter we present Gibbs ensemble
Monte Carlo simulation data for this mixture, which are used to examine the accu-
racy of the SAFT-VR equation of state in predicting the phase equilibria of chain

molecules.

The SAFT-VR formalism is described in Chapter 2, so that liere we will only briefly
present the main elements of the theory as applied to the three binary mixtures
of interest; the hard-sphere and square-well monomer mixture; the binary square-
well monomer mixture; the square-well monomer-dimer mixture. Comparisons
between the SAFT-VR predictions and computer simulation data are made for
each of these mixtures in turn. For the monomer-dimer mixture we also report
new GEMC simulation data and illustrate how this can be used to obtain the

phase diagram of the pure components.
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4.2 SAFT-VR equation of state

The SAFT-VR equation of state for a mixture of associating chain molecules is
written in terms of four separate contributions to the Helmholtz free energy, A [1, 2]

A AIDEAL A]\/()N(). AC”AIN AASSOC.
N A R T R T (4.1)

where N is the number of chain molecules in the mixture, & is Boltzmann’s con-
stant, and T is the temperature. In this equation A/PEAL jg t}e ideal free energy,
AMONO. is the residual free energy due to the monomer segments, ACHAIN js the
contribution due to the formation of chains of monomers, and AA559C: s the term
that describes the contribution to the free energy due to intermolecular association.
Here, we focus on systems interacting with a square-well potential:

+00 if?‘,'_; < a;;,
uij(ri;) = § =gy if oy < 1ij < Aijoij, (4.2)
0 il i 2 /\,'jn’,']',

where r;; is the distance between two particles i and j. The contact distance is a;;
and the parameters \;; and ¢;; are the range and depth of the potential well for
the i-j interaction, respectively. For all three mixtures, the molecular diameters
and the range of the square-well interaction are equal for each component, so that
o =011 =012 =0, and A = Ay = A2 = Ay, The nature of the -7 interaction,
€ij must be defined individually for the three mixtures. For the hard-sphere and
square-well mixture, with the hard sphere as component 1, the mixture interactions
are given by €11 = €12 =0 and €33 = €. For the binary square-well mixture both
components have equal like interactions, so that £;; = €23 = €, but we specify that
there is no attraction between unlike components, so €13 = 0. In the case of the
monomer-dimer square-well mixture, all the interactions between unlike and like
components are equal, so that here 17 = €13 = €92 = €. We present the general
SAFT-VR expressions for each contribution to the free energy in Eq. (4.1) together
with those which are specific for each of the three binary mixtures examined here

here.

The free energy of the ideal n-component mixture is given by [9]

AIDEAL
NET S ;4”{1" piki =1 (4.3)

where z; = N;/N is the mole fraction, p; = N;/V is the number density and A; is

the thermal de Broglie wavelength of species 4, for a binary mixture this reduces



to
AIDEAL

NET = z1In gAY + z31n A - 1. (4.4)
The monomer free energy is
AMONO. M
-m,— = Z Tymy ;LT

- (z ) oM,
=1

where m; is the number of spherical segments in each chain 7. For a binary mixture

(4.5)

consisting of only monomers, where m; = 1, we have

AM()N().

— M
7 (4.6)

and for a binary mixture of monomers (component 1) and dimers (component 2)

with mg = 2 we have
AAI()N().

NLT

The monomer free energy per segment of the mixture ¢ = A/(NT) is ob-

= () + 2x9) e, (4.7)

tained from the Barker and Henderson high-temperature expansion up to second
order [10]- [12]:
M _ HS 2
' =" 4 Bay + fay, (4.8)

where ays is the free energy for a mixture of hard-spheres, 8 = 1/kT, a; and a;

are the first two perturbation terms associated with the attractive energy.

The free energy of the reference hard-sphere mixture is obtained from the expres-
sion of Boublik [13] and Mansoori et al. [14]:

H = L(&e- In(1 =Gy 3616 ¢
’ s KC? 0) A G a(1 - Ca)zl ' (49)

In this expression p, = N,/V is the number density of the mixture in terms of the
number of spherical segments. Note that p, = p(3; @im;), where p is the total
number density of the mixture. The reduced densities (; are defined as

(= %,,, [Z ;r,_;(a,')l], (4.10)
=1

where a; the diameter of spherical segments of chain ¢, and «, ; is the mole fraction



of segments of type ¢ in the mixture, given by

U4

Tsi = S0
Yok=1 MkTk

(4.11)

When m; = 1 for both components, z,; = a;, but for monomers in a monomer-

dimer mixture we have

R
Ty = ——0 4.12
sl xry + 2.’132 ( )
and for dimers in the same mixture,
2
To2 = 2 (4.13)

Ty + 2.’1?-2’

The overall packing fraction of the mixture is given by (3, which is equivalent to
n = wpa>/6 for the pure component. In all of the binary mixtures of interest here,
since o = 011 = 032, the free energy of the reference hard-sphere mixture reduces
to the Carnahan and Starling expression [15, 9]

us _ = 3ny*

T,

(4.14)

The mean-attractive energy a; in the perturbation expansion is given by

n o on
) = E Z;l:_,','.'lf,'jatl] (4.15)

i=15=I
where -
ay = "2”/'.-50'/ rE gl ¥ (rijs Ca)drij (4.16)
ay,
and g{}s is the radial distribution function for a mixture of hard spheres, The
integral is transformed by applying the mean-value theorem [1] which gives an
expression for a; in terms of the contact value of g/!5:
W n n , .
W = =p, 303 wai ol ol Moy 37), (4.17)
i=1g=1
where
“};DW = 27r€i.i"’2j(’\?j -1)/3 (4.18)

is the van der Waals attractive constant for the ¢ = j square-well interaction.
The contact value of the radial distribution function for the hard-sphere reference
system, ggs[d,'j;CSH] is evaluated at an cffective packing fraction ¢¢/7, given by
the expression of Boublik [13] and Mansoori et al. [14]

HS

1 050,55 ."”
ol lois 1] = 3t

L=/ Taitai (1= ¢y

(4.19)

80



2 of 12
Y T ¢l
o5+ 0 _ eff 3°
it a5 (1-¢3"7)

For the three systems of interest here tlic nature of the interactions and the fact
that all the segments are of equal diameter leads to the simplification of the mean-
attractive energy expressions for these mixtures. For the hard-sphere and square-
well mixture, Eq. (4.15) becomes

a = 15(122 (4.20)
= 22V,
since a}! = a}® = 0. Similarly for the binary square-well mixture tlie expression

for ay is given by

zial' + z2ad? (4.21)

(22 + 23)a",

(3]

12 _

since al? = 0. For the monomer-dimer square-well mixture all the interactions are

non-zero, so we obtain an expression for the mean-attractive energy of the form

ap = zlal' 4 aywpa)? 4 23ad? (4.22)
= (1 + $2)2“;W
_ L SW
= (ll .
In each of these cases a$" is given by
af‘v = —'[),(XV“”/!/”S((Y; 1,(]!] (4.23)
where
VPV = 2rea® (N - 1)/3 (4.24)

and the contact value of the radial distribution function is given by the Carnahan

and Starling expression [15, 9]

1=-ytl)2

HSp ..eff1
g™ = e

(4.25)

with n‘“ = C;”. The parameterisation for 3°// obtained for the pure square-well
fluid in Ref. [1] is used, where

1, 2) = el + (A + es(A), (4.26)
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the coefficients ¢, ¢ and ¢z are given by:

€1 2.25855  -1.50319  0.249134 1
c2 | = | —0.669270 1.40019 -0.827739 Al (4.27)
c3 10.1576  —15.0127  5.30827 A2

This corresponds to the MX1 or MX3 mixing rule of Chapter 2 and Ref. [2].

The fluctuation term of the free energy is given by

n o n
ay = Z z .'I',','.’L‘,'J'(t;j, (428)

i=1j=1

where each of the terms a;j are obtained with the local compressibility approxi-
mation (LCA) [10, 11} as

day

I (4.29)

.. 1 .
t 1S
a.lJ = E I 5i.i/’a

where KH% is the isothermal compressibility for a mixture of hard-spheres, given
by the Percus-Yevick expression [10]

‘HS (1 = ()

K = ol <. 4.30
Go(1= G + 601 Ga(1 = G2 4 0] (4.30)

Since all segments have equal diameter we Lave

_Lons, Ou
@y =k et (4.31)

where K75 is now the pure component expression given by

HS 1 =1 )4
I Hs - ( ] 3
\ (1=9)2 4 6y(1 = n) + 99? (4.32)

(1-n
(14 21)
The contribution to the SAFT-VR lelmholtz free energy due to the formation of

chains is given by

1tluu'n n .
WT = T L mlmi = Dy ™ (), (4.33)
f=

where y5W(ay;) = exp(=Beii)g™" (ai) is the background correlation function, and
g5% () is the radial distribution function for the square well system, both eval-
uated at contact. The term corresponding to the Boltzmann factor exp(—fe;;) is
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not required in the phase equilibria calculations, which permits us to write:

Achain n

N =~ 2 wilmi = g (ow). (4.34)
=1

The contact value of the radial distribution function between segments ¢ and j is
obtained in the SAFT-VR approach from a first order perturbation expansion

95 (035) = g11%(0ij) + Besjm(oij), (4.35)

where g;(0;;) is obtained from a self-consistent calculation of the pressure using
the Clausius virial theorem [1], as was explained in Chapter 2.:

91%l0ij3 ) (4.36)
+ Bei; [g.-'}'s[mj;CS”]
Nij 00ll8laiis 5T 09l S(aisi 57 ])]

95" {033 Gl

+ 1 D ( 3 dA; P Ips

Since both the hard-sphere and square-well mixture and the binary square-well
mixture consist only of monomeric segments, the contribution due to the formation
of chains in Eq. (4.1) is only present in the monomer-dimer mixture, where

Achain Sy
-N_k'['- =1Iy In .(/h‘ ((T). (4-37)
Additionally, since all of the square-well segments have equal diameter the contact

value of the square-well radial distribution function of Eq. (4.36) reduces to

eWoin) = ¢"7[o50)] (4.38)

dgH5(a; 1) (A oned! 07;'11)]

HST o ef] 3.
+ Belg o]+ (A - 1) i) 3 ox o

None of the three binary mixtures examined here are permitted to associate, so
that the contribution to Eq. (4.1) due to association is zero, hence we now have a
complete description of the SAFT-VR equations of state for the three mixtures,

For all mixtures, in order to determine the conditions of phase equilibria for two
coexisting phases a and b the temperature, pressure and chemical potential are
required to satisfy the equations

T =T 1" = bt =, (4.39)

The chemical potential, y;, of species ¢ can be obtained from the Helmholtz free
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energy of the SAFT-VR equation of state using the standard relation:

— = - s 4.40
k1 IN; )T.V,N,,u (4.40)

where N; is the number of chain molecules of species i. The overall pressure P

may be calculated through the compressibility factor Z as:
rv
NLT
n i A
= El,ﬁi--m, (4.41)

zZ =

where n is the total number of compounents in the mixture and z; = N;/N is
the mole fraction of component 7. These functions are used in the numerical
determination of the phase behaviour of the mixture, using a simplex method
[17]).

4.3 Comparisons with simulation data

In the previous section we have discussed details of the application of the SAFT-
VR equation of state to three different mixtures consisting of hard-sphere and
square-well molecules (in both monomer and dimer forms). The principal moti-
vation of the SAFT-VR approach lies in the description of the phase equilibria
of real mixtures, it is important to first examine the adequacy of the equation of
state used by comparing the theoretical predictions with exact data obtained by
computer simulation. llere, we present appropriate comparisons with Gibbs En-
semble Monte Carlo (GEMC) [18, 19] data for the vapour-liquid and liquid-liquid
phase equilibria of specifically chosen square-well mixtures. We initially study mix-
tures of monomeric segients of the same size, with attractive interactions of equal
range but with extreme values of the attractive encrgies, which essentially is a test
of the Barker and Henderson perturbation theory used to describe the monomer
contribution in the SAFT-VR free energy. These comparisons allow us to assess
the adequacy of the pure-fluid range dependence which is used to determine the
effective packing fraction of the mixture. Simulation data for the vapour-liquid
and liquid-liquid equilibria of these mixtures have already been reported [3).

By specifying that the segments of the mixture are of equal size and that the
square-well interaction is of equal strength and range for both components, the
phase equilibria of the monomer-dimer mixture examined here is governed by the

difference in length of the two components. Comparison of the SAFT-VR pre-
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diction with GEMC data for this mixture allows us to test the adequacy of the
term which describes the contribution to the Ilelmholtz free energy due to chain
formation. Since the mixtures examined here all consist of square-well segments
of equal diameter and interaction range, we are unable to present a stringent test
of the mixing rules described in Chapter 2 and in Ref. [2], however further GEMC
simulations are currently being performed for mixtures with components of differ-
ent size and with energy parameters so that a more detailed analysis of the mixing
rules can be obtained.

4.3.1 The hard-sphere and square-well mixture

The vapour-liquid phase equilibria of a binary mixture consisting of hard-sphere
(1) and square-well (2) monomers is examined. Both components are of equal
diameter with ¢ = oy = 012 = 032, and the mixture interactions are characterised
en=¢€12=0,e=¢€2>0, A1 = Aig =1 and A = Ay = 1.5, Constant pressure
slices of the vapour-liquid phase diagrams for the mixture are shown in Figures
4.1 and 4.2.

The SAFT-VR predictions for the vapour-liquid equilibria are compared with the
GEMC data of Ref. [3] for both the temperature-density (Tp) and temperature-
composition (T'z) coexistence curves. The phase hehaviour of this mixture has
been examined before [20, 21, 3]: the critical temperature and pressure of the
square-well fluid is seen to increase upon the addition of the hard spheres, and as
expected the vapour phase is richer in hard spheres than the coexisting liquid phase
which is composed almost entirely of square-well monomers, The phase diagrams
given in Fig. 4.1 are at a constant redunced pressure of I'* = Pa?[e = 0.1 which is
very close to the critical pressure of the pure square well: where the reduced critical
temperature, pressure and density for the pure square-well fluid with a range of
A = 1.5 are give in Rel. [7] as T2 = kT,./¢ = 1.219, I’? = I.0?/c = 0.108, and
ph = po® = 0.299, respectively. Results are presented for the SAFT-VR theory
including only the a; term in the contribution to the free energy due to monomers,
and for the theory including both «; and @,. These first- and second-order versions
of the SAFT-VR expressions are both found to give an excellent description of the
vapour-liquid phase equilibria for the coexisting deunsities (Fig. 4.1 (a)) and the
compositions (Fig. 4.1 (b)). Inclusion of the second-order term a; leads to a better
description of the liquid densities and of the vapour compositions. The vapour-
liquid coexistence curves for a supercritical pressure slice of '+ = Pa?/e = 1.0 are
shown in Fig. 4.2; this state corresponds to about ten times the critical pressure of

the pure square-well fluid. The first- and sccond-order predictions obtained with
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Figure 4.1: (a) Temperature-density and (b) temperature-composition slices of the
vapour-liquid coexistence for the mixture of hard spheres (1) and square wells (2)
with A = 1.5 at a reduced pressure of '™ = ['a?[¢ = 0.1; the reduced temperature
is defined as T* = kT'/<, the reduced density as p* = pa, and @y refers to the mole
fraction of square wells. The dotted and solid curves correspond to the first-order
(a; term) and second-order («; and «ay terms) SAFT-VR predictions, respectively.
The data points represent the results of the GEMC simulations [3]; the diamond
in (b) corresponds to the critical point [7].

86




(a) 1.8

(b) 1.8

Figure 4.2: (a) Temperature-density and (h) temperature-composition slices of
the vapour-liquid coexistence for the mixture of hard spheres (1) and square wells
(2) with A = 1.5 at a reduced pressure of P* = Pa’[/s = 1.0. See Fig. 4.1
for details. The dashed curves represents the rescaled second-order SAFT-VR

coexistence curves,
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the SAFT-VR approach are again compared with the corresponding GEMC data.
The SAFT-VR expressions provide an excellent representation of the coexisting
densities and compositions for temperatures below the critical point. However, the
theory leads to an overestimate of the critical temperature, a feature that it has
in common with other analytical equations of state which possess classical critical
exponents [23]. The SAFT-VR equation of state also leads to an overestimate
of the vapour-liquid critical point of the pure component square-well fluid with
A = 1.5 [1). In order to illustrate that the overestimate in the critical point of
the mixture can be attributed almost eutirely to that of the pure component, we
rescale the second-order coexistence curves with the critical temperature of the
pure fluid obtained from GEMC data ( as 77 = 1.219 in Ref. [7]). From Figs. 4.2
(a) and (b) it is clear that this leads to a much improved representation of the
critical region for the mixture at the detriment of the prediction of the coexistence

curve at lower temperatures.

4.3.2 The binary square-well mixture

The liquid-liquid phase equilibria of & symmetrical binary mixture of square-well
monomers is also exanmined. The segments are of equal diameter, e = oy = oy =
022, the square-well interaction is of equal strength and range for both components,
and no unlike interactions exist; e = €5y = €32 > 0, 612 = 0, A = A = Ay = 1.5,
and A2 = 1. The plase belaviour of such a system has already been charac-
terised [22, 4, 3, 5]: the principal feature of the phase behaviour is the large extent
of liquid-liquid immiscibility at high pressures due to the absence of any unlike
attractive interactions; at low pressures the phase equilibria is complicated by
vapour-liquid-liquid three-phase coexistence, A temperature-composition Tr slice
of the mixture at a pressure of ’* = I’a?/c = 1.08 is shown in Fig. 4.3; at this
high pressure this system only exhibits liguid-liquid phase separation. The theo-
retical predictions obtained using the SAIT-VR approach with both the first- and
second-order representation are compared with the corresponding GEMC simula-
tion data [3]. The theory is seen to provide a good representation of the coexisting
compositions for the liquid-liquid phase equilibria below the upper critical solu-
tion temperature (UCST). As with the vipour-liquid equilibria of the mixture of
hard spheres and square wells, the SAFT-VR approach overestimates the criti-
cal point of the system due to the classical representation of the coexistence curve
(quadratic rather than the flatter cubic dependence). We observe that by rescaling
the second-order coexistence curve with respect to the pure component vapour-
liquid critical point, a much better representation of the critical region is obtained.
This again indicates that the principal inadequacy of our theoretical approach lies
is in the description of the critical point of the pure component rather than by any
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Figure 4.3: Temperature-composition slice of the liquid-liquid coexistence for the
symmetrical mixture of square wells with A\ = 1.5 at a reduced pressure of P* =
Pa3/e = 1.08. See Fig. 4.1 for details. The dashed curve represents the rescaled
second-order SAFT-VR coexistence curve.
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incorrect representation of the mixture within the equation of state.

4.3.3 The square-well monomer-dimer mixture

The vapour-liquid equilibria of a binary square-well mixture of monomers (1) and
dimers (2) with equal spherical diameters ¢ = a1y = 013 = 2, is the third system
studied. The square-well interactions are defined, A = Ajy = Ay = Ay = 1.5
and € = €11 = €12 = €22. We use the same reduced variables as in the previous
mixtures, T* = AT/e for the temperature and P = Pa?/¢ for the pressure,
The mole fraction of monomers is z; = Ny /N and of dimers is 2; = N/N. No
simulation data has been previously reported for the monomer-dimer mixture,
so that it was necessary to undertake isothermal-isobaric NPT Gibbs ensemble
Monte Carlo simulations [I8, 19] in order to have data with which to compare the

theoretical prediction.

The GEMC method is described in Chapter 3, so only brief details are presented
here. Simulations are performed in cubic hoxes, the particles jn the vapour sub-
system are initially arranged on a face-centred-cubic (fec) lattice, while the higher
density liquid configurations are obtained by compressing a single subsystem with
a standard N PT Monte Carlo technique [24, 25]. The usual periodic boundary
conditions and minimum image convention are used [25]. Initial guesses for the
coexisting densities and compositions at cacl pressure and temperature state point
are made by using the corresponding SAI'T-VR solutions; one must always ensure
that the overall composition of the system lies somewhere between the composi-
tions of the two coexisting phases. The chemical potential was determined with
the Widom test particle technique [26] as adapted to the GEMC approach [27], in
order to ensure that phase equilibria is achieved during the simulation. The use of
the N PT version of the Gibbs ensemble teclinique yields constant pressure slices of
the phase diagram of the mixture by performing a series of simulation cycles. One
cycle consists of N displacements/reorientations of a randomly selected particle
in each subsystem (see Ref, [28]), one volume change for either subsystem, and
a specific number of particle interchanges hetween subsystems (using the trans-
fer algorithm of Ref. [18]). The maximum displacement and voluwme change are
adjusted to give an acceptance ratio of hetween 30 and 40%, and the number of
insertions is controlled so that between 1 and 3% of particles are interchanged each
cycle. The majority of the simulations are performed with systems of N = 512
particles, but it is necessary to use N = 1728 particles in order to get closer to
the critical line of the mixture. An initial simulation of 50,000 cycles is performed
to equilibrate the subsystems, hefore averaging for hetween 100,000 and 250,000
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cycles.

The phase behaviour of the mixture is sumarised in Figs. 4.4 and 4.5, and the
corresponding Gibbs ensemble data are reported in Tables 4.1 to 4.8

As will become clear later the simulation data obtained for the mixture can be
used to estimate the vapour-liquid equilibria of each pure component fluid: the
phase diagram of the square-well monomer is shown in Fig. 4.6 and that of the
square-well dimer in Fig. 4.7, with the corresponding data given in Tables 4.9 and
4.10. A pressure-temperature projection of the full phase behaviour, including the
pure component data is given in Fig. 4.8.

Table 4.1: Vapour-liquid coexistence data obtained from NPT Gibbs ensemble
Monte Carlo simulations for a mixture of square-well monomers and dimers with a
range A = 1.5. The fixed variables during the simulation are the number of particles
N = 512, the reduced pressure I’* = I’a?/s and the reduced temperature T* =
kT /e = 1.00. The packing fractions 5, diter mole fractions xy, and the reduced
energies per segment E* = E/eN, in the coexisting vapour and liquid phases
are labeled v and [, respectively; the uncertaiuties correspond to one standard
deviation.

P* Mo m T Ty I Ey
0.004 0.003+0.0002 0.395+0.004 0.313+0.015 0.873+£0.015 -0.10+0.03 -5.29+0.06
0.007 0.004£0.000+4 0.380%+0.004 0.11240.020 0.7084£0.017 -0.13+£0.03 -5.274+0.07
0.011 0.006+0.00! 0.3834+0.0014 0.0514+0.019 0.5444£0.012 -0.094£0.04 -5.26+0.07
0.013 0.008+0.001 0.379+0.004 0.0174£0.016 0.476£0.012 -0.14+£0.01 -5.2540.07
0.019 0.01240.001 0.376%0.006 0.0:3210.012 0.339+£0.017 -0.30+£0.06 -5.2940.08
0.027 0.0151+0.002 0.374£0.008 0.007£0.009 0.1324£0.007 -0.194£0.06 -5.4410.11
0.031 0.0211£0.002 0.366+£0.008 0.007+0.006 0.090+£0.005 -0.441+0.09 -5.36+0.12

Pressure-composition () constant temperature slices of the vapour-liquid phase
diagram for the monomer-dimer mixture are shown in Figs. 4.4 and 4.5. The
square-well dimer is the less volatile of the two components, and a slight negative
deviation from Raoult’s law can be detected. As the temperature is increased
above the critical point of the pure monomer square-well fluid, vapour-liquid crit-
ical points are observed for the mixture. The SAFT-VR predictions are compared
with the GEMC simulation data for a serics of temperatures: four sub-critical
with respect to the pure monomer fluid, one at the estimated vapour-liquid critical
temperature of the monower (77, = 1.22 and I'?y = 0.108) [7]; and three tem-
peratures above the monomer critical point. Very good agreement hetween the
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correspond to the SAFT-VR prediction.
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Figure 4.5: Pressure-composition slices of the vapour-liquid coexistence for the
square-well mixture of monomers (1) and dimers (2) with A = 1.5 for temperatures
above the critical poiut of the pure monomer system. monomer. See Fig. 4.4 for
details. The squares correspond to GEMC data for a system of N = 1728 particles.
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Table 4.2: Vapour-liquid coexistence data obtained from NPT Giblhs ensemble
Monte Carlo simulations for a mixture of square-well monomers and dimers at a
reduced temperature of T* = 1.05. See Table 4.1 for details.

p* Ny m Z3,v Il E; Er
0.005 0.004£0.0003 0.388+0.004 0.366+0.020 0.892+0.015 -0.1240.03 -5.1710.06
0.006 0.004+0.0003 0.390+0.005 0.371+0.017 0.880+0.017 -0.15+0.03 -5.1940.08
0.011  0.00740.001 0.384+0.004 0.15940.020 0.7194+0.017 -0.20+£0.04 -5.17£0.07
0.017 0.010+£0.001 0.376+0.004 0.083+0.017 0.539+£0.012 -0.23+0.05 -5.14+0.07
0.020 0.01240.001 0.3711£0.005 0.067+0.017 0.464+0.017 -0.30£0.05 -5.12+0.08
0.027 0.01840.002 0.370%0.004 0.057+£0.020 0.380+0.010 -0.47+£0.10 -5.1710.07
0.031 0.0201+0.002 0.360+£0.006 0.032+0.013 0.255+0.014 -0.47£0.08 -5.1240.09
0.034 0.02240.002 0.355+0.006 0.018+0.010 0.1724+0.011 .0.5410.09 -5.1140.09

Table 4.3: Vapour-liquid coexistence data obtained from N I’T' Gibbs ensemble
Monte Carlo simulations for a mixture of square-well monomers and dimers at a
reduced temperature of 7* = 1.10. See Table 4.1 for details.

p* N ™ Z2,v T2l ES E}
0.009 0.006+0.001 0.3774+0.004 0.32240.023 0.83410.0i17 -0.1940.04 -5.0010.08
0.017 0.010+0.001 0.365+£0.005 0.11740.021 0.596+0.015 -0.25+0.05 -4.94%0.07
0.026 0.016+0.002 0.355+0.006 0.069+0.017 0.419+0.013 -0.40+0.07 -4.91+0.09
0.033 0.02240.002 0.3591+0.006 0.067+0.015 0.378+0.013 -0.53+£0.09 -4.99+0.09
0.038 0.021+0.002 0.357+£0.006 0.04540.018 0.31240.010 -0.23+£0.07 -5.0040.09
0.047 0.03840.008 0.315+£0.007 0.0301+0.018 0.160+0.009 -0.9510.26 -4.9610.11
0.052 0.050+£0.009 0.34240.006 0.040+£0.013 0.156+0.008 -1.334+0.28 -4.93+0.09
0.058 0.0514+0.007 0.3414£0.013 0.007+0.007 0.03540.003 -1.26+0.22 .5.0240.18
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Table 4.4: Vapour-liquid coexistence data obtained from N PT Gibhs ensemble
Monte Carlo simulations for a mixture of square-well monomers and dimers at a
reduced temperature of T* = 1.18. See Table 4.1 for details.

Pt

Ny

™

T2y

T2l

E"

v

Ef

0.008
0.013
0.018
0.032
0.036
0.045
0.060
0.076

0.00710.001
0.01110.001
0.01240.001
0.01940.002
0.022+0.002
0.03240.004
0.04740.005
0.07740.012

0.368+0.005
0.370+0.005
0.361+0.005
0.368+0.006
0.34810.007
0.34310.007
0.328+0.010
0.3061+0.010

0.790+0.015
0.5474£0.017
0.31740.024
0.139+0.022
0.12410.018
0.131+£0.019
0.072+0.013
0.0394+0.014

0.96610.008
0.90010.015
0.778£0.017
0.539+0.017
0.491+0.016
0.429+0.018
0.25810.020
0.108+0.008

-0.24£0.05
-0.3210.06
-0.2440.05
-0.2910.06
-0.51£0.07
-0.80+0.13
-1.1110.15
-1.68+0.27

-4.80£0.07
-4.8910.08
-4.7740.08
-4,7110.09
-4.66+0.10
-4.701+0.11
-4.6110.14
-4.4510.14

Table 4.5: Vapour-liquid coexistence data obtained from NPT Gibbs ensemble
Monte Carlo simulations for a mixture of square-well monomers and dimers at a
reduced temperature of T* = 1.22. See Table 4.1 for details.

Pl

N

m

I2,v

Zal

E3

0.016
0.022
0.027
0.032
0.043
0.054
0.065
0.076
0.081

0.0134£0.001
0.015+0.002
0.016+0.002
0.022+0.002
0.02910.004
0.03610.005
0.05210.007
0.0671+0.018
0.071+0.010

0.357+0.006
0.35440.006
0.336+0.007
0.34510.007
0.33310.008
0.31610.010
0.31410.009
0.29910.010
0.28510.014

0.51310.044
0.368+0.028
0.209+0.028
0.236+0.029
0.155+0.023
0.09910.022
0.09110.019
0.06610.022
0.04610.018

0.82710.018
0.78840.017
0.64440.018
0.64240.022
0.48810.023
0.314510.021
0.274+0.016
0.18310.010
0.12540.010

-0.3510.07
-0.394+0.08
-0.36+0.07
-0.54+0.10
-0.69+0.12
-0.8240.14
-1.1510.19
-1.41£0.35
-1.4810.32

-4.67+0.08
-4.65+0.08
-4.48£0.09
-4.5940.10
-4.51+0.11
-4.3840.13
-4.4010.13
-4.26£0.13
-4.141£0.17

95



Table 4.6: Vapour-liquid coexistence data obtained from N PT Gibbs ensemble
Monte Carlo simulations for a mixture of square-well monomers and dimers at a
reduced temperature of T* = 1,28, See Table 4.1 for details.

P T ™ I2,v T2 E; EI‘I
0.022 0.023£0.005 0.353+0.005 0.753+£0.050 0.931+0.011 -0.65£0.19 -4.56+0.07
0.027 0.023+£0.003 0.3461+0.006 0.56140.032 0.850+0.016 -0.62+0.11 -4.5040.09
0.032 0.02310.002 0.331+0.008 0.336+0.029 0.715£0.019 -0.55£0.10 -4.36£0.10
0.043 0.031+0.003 0.327+0.009 0.266+0.032 0.619+£0.018 -0.71%£0.12 -4.35+0.12
0.054 0.04110.005 0.32040.009 0.230+0.025 0.523£0.023 -0.94%0.14 -4.3010.12
0.065 0.046+0.005 0.304+0.011 0.15940.022 0.407+£0.019 -1.00£0.13 -4.151+0.14
0.076 0.062+0.011 0.29410.012 0.13610.026 0.322+0.018 -1.30+£0.24 .4.08%0.15
0.085 0.080+0.020 0.277+0.015 0.1141£0.030 0.241£0.014 -1.60£0.36 -4.93+0.18

Table 4.7: Vapour-liquid coexistence data obtained from N I’T (iibbs ensemble
Monte Carlo simulations for a mixture of square-well monomers and dimers at a
reduced temperature of T* = 1.34. See Table 4.1 for details.

p* Mo m T3,y | ES E}
0.027 0.025+£0.003 0.3291+0.008 0.713+£0.028 0.907+0.012 -0.6440.12 -4.23+£0.10
0.032 0.028+0.003 0.325+0.008 0.5774£0.030 0.84240.016 -0.69+0.12 -4.2140.10
0.038 0.033+0.005 0.324+0.007 0.514+0.034 0.793+0.017 -0.79+0.15 -4.21+0.10
0.043 0.03510.001 0.316+£0.009 0.42040.027 0.7234£0.020 -0.79+0.13 -4.1310.11
0.054 0.040+0.006 0.296+0.010 0.294+0.036 0.59040.018 -0.85+0.15 -3.95+0.12
0.065 0.051+0.006 0.29910.012 0.29240.028 0.55540.020 -1.0840.16 -3.99+0.14
0.076 0.066+0.011 0.280+0.015 0.2214£0.033 0.426+£0.019 -1.34+0.23 -3.83+0.17
0.086 0.0774£0.012 0.2664+0.018 0.201£0.030 0.36440.018 -1.51+0.24 -3.7140.20
0.097 0.0881£0.025 0.235+0.039 0.1774£0.034 0.29740.003 -1.694£0.40 -3.4310.41
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Table 4.8: Vapour-liquid coexistence data obtained from NPT Gibbs ensemble
Monte Carlo simulations for a mixture of square-well monomers and dimers at a
reduced temperature of 7* = 1.46. See Table 4.1 for details. Results labeled with

a t are obtained using N = 1728 particles.

pP* Ny U] Tav Tt Ej E;
0.043 0.056140.012 0.2934£0.011 0.914+0.020 0.962+0.007 -1.1740.26 -3.7340.13
0.049 0.07110.009 0.29240.012 0.861+£0.015 0.92840.012 -1.4740.17 -3.7240.14
0.054 0.056+0.010 0.27440.012 0.681+0.042 0.837+0.013 -1.1240.22 -3.56%0.13
0.065 0.060+0.013 0.240+0.016 0.563+0.032 0.738+0.014 -1.174+0.26 -3.25%0.16

0.065' 0.070+0.004 0.25040.013 0.575+0.015 0.73140.013 -1.4040.08 -3.35+40.13
0.076! 0.0774£0.004 0.25440.010 0.5734£0.013 0.723+0.011 -1.5140.08 -3.3940.10
0.081t 0.1014£0.012 0.23540.019 0.53740.024 0.651+0.015 -1.86+0.20 -3.2340.18
0.086' 0.12240.017 0.197£0.034 0.51940.024 0.583+0.027 -2.13+0.22 -2.9040.32
0.092t 0.11340.011 0.21240.024 0.5084+0.020 0.5954+0.017 -2.0140.15 -3.04%0.22

Table 4.9: Values of the reduced temperature T* = kT /e, the reduced vapour
~ pressure P* = Pa3[¢ and the packing fractions 7 for the vapour-liquid coexistence
of the pure square-well monomer fluid with a range A = 1.5. The results are
obtained by extrapolating the monomer-dimer mixture simulation data (see text
for details). The vapour and liquid densities are denoted by v and I, respectively.

T P Y m

1.18
1.10
1.05
1.00

0.086
0.061
0.040
0.034

0.055
0.046
0.220
0.016

0.283
0.306
0.318
0.332
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Figure 4.6: (a) Vapour-liquid coexistence densities for the monomer square-well
system with A = 1.5, where T* = kT'/¢, and n = 7p,03/6 is the packing fraction,
The triangles correspond to the results obtained by extrapolating the mixture
GEMC data, the crosses correspond to the GEMC data of Ref. [7], and the aster-
isks to the molecular dynamics data of Ref. [6]. The continuous curve represents
the SAFT-VR prediction and the dashed curve to the Wegner expansion used in
Ref. [7). (b) Clausius-Clapeyron representation of the vapour pressures for the
monomer fluid. The reduced pressure is defined as P* = Pa3/¢, The continuous
lineis the SAFT-VR prediction and the dashed line corresponds to the fit obtained
in Ref. 7). 98
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Figure 4.7: (a) Vapour-liquid coexistence densities for the dimer square-well system
with A = 1.5 (see Fig. 4.6 for details). The crosses correspond to the Monte Carlo
simulation data of Refl. [8]. The dashed curve is obtained by fitting a Wegner
expansion to the simulation data of Ref. [8]. (b) Clausius-Clapeyron representation
of the vapour pressures for the dimer fluid. The continuous line is the SAFT-VR
prediction and the dashed line corresponds to a linear fit of the simulation data.
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Figure 4.8: Pressure-temperature projection for the binary mixture of square-well
monomers and dimers. The reduced pressure P, = P*/P;, and temperature T,
T* [Tz, are defined in terms of the critical point of the monomers. The triangles
are the vapour pressures obtained by extrapolating the mixture GEMC data, the
crosses are the GEMC data of Ref. [7], the circles correspond to the estimated
vapour-liquid critical points, and the filled circles are the pure component critical
points. The continuous and dashed curves represent the SAFT-VR prediction
for the pure component vapour pressures and the critical line of the mixture,

respectively.
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Table 4.10: Values of the reduced temperature T* = kT /e, the reduced vapour
pressure P* = Pa3 /¢ and the packing fractions 5 for the vapour-liquid coexistence
of the pure square-well dimer fluid with a range A = 1.5. The results are obtained
by extrapolating the monomer-dimer mixture simulation data (see text for details).
The vapour and liquid densities are denoted by v and I, respectively.

T* pP* Ny ™

1.46 0.040 0.060 0.304
1.34 0.020 0.019 0.342
1.28 0.017 0.023 0.361
1.22 0.011 0.003 0.368
1.18 0.006 < 0.001 0.379
1.10 0.002 < 0.001 0.384
1.05 0.002 < 0.001 0.395
1.00 0.001 < 0.001 0.398

theoretical predictions and the exact simulation data are observed for all temper-
atures studied. The comparisons have been made in terms of the reduced pressure
and temperature with respect to the pure square-well monomer, I, = P*/F?; and
T, = T*/T;,. As has been mentioned previously for the other mixtures studied,
the vapour-liquid critical point of the pure monomer square-well fluid is overes-
timated by the theory. By viewing the phase behaviour of the monomer-dimer
mixture in terms of reduced variables, we can again focus on the adequacy of the
theoretical prediction for the mixture, without including the poor description of
the pure component critical point.

Our monomer-dimer simulation data can be used to estimate the vapour-liquid
coexistence of the individual components. We extrapolate the mixture Pr data,
using a linear Raoult’s law dependence close to the z3 = 0 and z; = 1 axes,
to estimate values of the pure component vapour pressures for the nionomer and
dimer, respectively. An extrapolation of the temperature-density data for the
mixture is used to estimate the coexisting densities of the pure components. The
large curvature of the data close to the pure monomer axes (; = 0) made a
linear extrapolation unsuitable; the SAFT-VR theory for the mixture was used to
guide the extrapolation in this case. The resulting estimates of the vapour-liquid
equilibria for the pure component monomer and dimer systems are reported in
Tables 4.9 and 4.10, respectively, The coexisting densities and vapour pressures
(represented as Clausius-Clapeyron plots) are compared with the previous results
in Figs. 4.6 and 4.7. It is gratifying to see that the extrapolation of the mixture
data leads to values which are in close agreement with the previous data. As an
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added bonus we can estimate the coexistence curve of the square-well dimer to
much lower temperatures, and provide values for the vapour pressures which were
not determined in the earlier work of Ref. [8]. Also shown on these figures are
the SAFT-VR predictions of the vapour-liquid phase equilibria for both the pure
components and the mixture. It has already been demonstrated that the SAFT-VR
approach provides a good description of the phase envelope of the pure component
monomer and dimer square-well systems [1], which is again apparent from an
inspection of Figs. 4.6 and 4.7. In addition we show a comparison of the SAFT-
VR predictions for the vapour pressures of the pure components with the simulated
values: good agreement is again observed, although a slight underestimate is found.
The SAFT-VR approach is known to overpredict the coexistence curve in the
critical region, so that hoth the critical temperature and pressure of the model
system occur at lower values than predicted by the SAFT-VR approach. The usual
methodology for the determination of the critical parameters from Gibbs ensemble
simulation data is from an appropriate critical expansion (e.g., see Refs. {7, 3] and
Chapter 6). The coexistence curves obtained from a fit to the data using a Wegner
expansion with a fixed critical exponent of 8 = 0.325, and the fit of the vapour-
pressure curves using a Clausius-Clapeyron plot are also shown in Iigs. 4.6 and
4.7. The corresponding estimates for the critical parameters are 7, = 122,
=y = 0.108, and 7., = 0.157 for the monomer of Ref. [7], and T, = 1.58,
P2y = 0.085, and 5,1 = 0.147 for the dimer; the latter are in good agreement with
the estimates of T7, = 1.59 and 7.2 = 0.14 of Yethiraj and Iall in Ref. (8], but
Pz, = 0.085 is a new estimate for the critical pressure of the square-well dimer.

The critical points of mixtures can also be obtained by analysing the simulation
data using a Wegner expansion (see Ref. [3] for details). In our case an expansion
including the first extension to scaling term was used to estimate the critical points
at constant temperature; and a simple extrapolation was used to obtain the critical
temperature from the constant pressure slices. Due to the limited amount of
simulation data close to the critical region only crude estimates of the vapour-
liquid critical points could be made. The resulting vapour-liquid critical line of
the monomer-dimer mixture is presented as a pressure-temperature PT projection
in Fig. 4.8, together with the vapour-pressure curves of the two pure components.
The vapour-liquid critical line is continuous and extends from the critical point
of the pure component monomer to that of the dimer. There is no liquid-liquid
immiscibility in this system due to the similarity in the attractive interactions.
This type of vapour-liquid equilibria corresponds to type I in the classification
of Scott and van Konynenburg [29, 30]. The vapour-liquid critical line of our
monomer-dimer mixture obtained by extrapolation of the simulation data for the
mixture also exhibits a maximum in pressure, a feature which is reproduced by
the SAFT-VR predictions. As was mentioned earlier, the SAFT-VR theory is
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seen to provide an excellent description of the vapour-pressure curves for both the
monomers and dimers. The critical points estimated from the GEMC coexistence
data are seen to deviate from the predicted critical line, although a large amount
of scatter is evident.

4.4 Conclusions

The SAFT-VR equation of state is shown to be successful in its application to
three mixtures of square-well monomers and dimers of equal diameter but with
extreme values of the attractive interactions. The vapour-liquid equilibria of mix-
ture of hard spheres and square wells, the liquid-liquid equilibria of a symmetri-
cal mixture of square wells, and the vapour-liquid equilibria of a monomer-dimer
square-well mixture predicted with the SAFT-VR equation of state are all shown to
compare favourably with computer simulation data away from the critical region.
The inadequacy of the SAFT-VR theory in describing the critical behaviour is a
feature common to equations of state which are based on analytical expressions for
the free energy, and near-critical corrections are possible although rather complex
[31]. This work is essentially a test of the fundamental description of the range-
dependence of the mixture expressions in terms of their pure-fluid counterparts,
and of the adequacy of the SAFT-VR approach to describe the thermodynamics of
model mixtures which cousist of chain molecules. The pressure-composition slices
of the phase diagram of the square-well monomer-dimer mixture obtained using
the Gibbs ensemble technique indicate that there exists a small negative deviation
from Raoult’s law in this system. This non-ideality can be attributed entirely to
the difference in chain length in this mixture since all the other intermolecular
parameters such as the diameter and the range and depth of the square-well, are
equal for both components. It is also shown that reasonable estimates of the pure
component phase equilibria can be obtained by extrapolating the simulation data
for the mixture.
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Chapter 5

Examination of the the phase
behaviour of Yukawa and
soft-core fluids using the

SAFT-VR approach

5.1 Introduction

In the previous chapter we have shown that a version of the statistical associating
fluid theory for spheres interacting via attractive wells of variable range (SAFT-
VR) [1, 2], gives an accurate prediction of the thermodynamic properties of model
fluid mixtures. More specifically, we have examined mixtures consisting of hard-
spheres, square-well monomers, and square-well dimers. Within the SAFT-VR
framework, the range of the interaction potential is a useful quantity in the de-
scription of experimental systems since it accounts for the non-conformal behaviour
present in liquids and their mixtures [3]. In addition, the SAFT-VR theory com-
prises a compact representation of the monomer properties, in the framework of
the Barker and Henderson perturbation theory for simple liquids [1]}-[6]. Two ma-
jor advantages of the SAFT approach are: that the equation of state is obtained
from the properties of the constituent monomeric segments, and that each one of

the terms can be directly compared with, and tested against, molecular simulation
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results.

In this chapter we describe the application of the SAFT-VR methodology to the
Yukawa and Sutherland potentials and also present a further extension of the
SAFT-VR approach to describe the properties of chain molecules which are formed
from soft-core segments with variable repulsive and attractive ranges. We illus-
trate the effectiveness of the SAFT-VR equation of state in the description of
the properties of the Yukawa fluid via a comparison with integral equation the-
ories. We demonstrate that the analytical expressions developed previously for
the Sutherland potential [1] together with a Barker and Henderson effective hard-
sphere diameter [G] can be used to account for potentials of variable attractive and
repulsive ranges in the SAFT-VR framework. As specific applications, we present
equations of state for Lennard-Jones chain (LJC) molecules. These system has
been studied extensively in the past, and a number of accurate equations of state
have been reported [7]}-[11]. Our main goal is to show that the SAFT-VR method-
ology provides a simple and compact equation of state for systems interacting via
more realistic potentials such as the Lennard-Jones model which is valid for ranges
of density and temperature of practical interest,

We will first summarise the SAFT-VR equation of state for pure hard-core systems
interacting with the Yukawa and the Sutherland-X potentials. The Yukawa fluid
is of particular theoretical interest since the nature of the potential allows for the
exact solution of certain integral equations, such as the mean spherical approxima-
tion (MSA) of the model. These solutions can be readily used in a comparison of
the adequacy of any other theoretical approach for the description of the Yukawa
fluid properties. The SAFT-VR equation of state for the Sutherland potential is
used as a model to obtain a general equation of state for the Mie m — n family of
potentials [12, 13], of which the Lennard-Jones potential is a specific case (m = 6
and n = 12). We also present a simple recipe for the calculation of the free energy
due to chain formation, and the prediction of LIC properties are compared with
simulation results.

5.2 SAFT-VR for pure fluids

As has been shown previously, the Helmholtz free energy of associating chain
molecules is described in the SAFT-VR approach as

A AIDEAL AMONO. ACHAIN AASSOC.
NiT - kTt +

Nir Y TNET NET (5.1)
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where the different terms in this equation correspond to the coutributions to the
free energy due to the ideal fluid, the monomer segments, chain formation and in-
termolecular association, respectively. In this chapter will only present the SAFT-
VR expressions for the pure fluid.

The free energy of an ideal gas is given by [14]

AIDEAL

——— 3 -
NiT In(pA®) ~ 1, | (5.2)

where p = N/V is the number density of chain molecules and not of monomer
segments. A separate treatment of this term renders all the other terms residual
free energies.

The general form of the monomer-monomer interaction is given by a hard-sphere
repulsive term plus an attractive well:

00 ifr<o

—-ed(r;A) ifr> o, (5:3)

u“’(r;a,e,A) = {

where ¢ is the spherical hard-core diameter, while £, ¢ and A are, the depth, the
shape and the range parameter of the attractive well, respectively.

The contribution to the free energy due to the monomers (m of which make up
each chain molecule) interacting with a potential of the form given in Eq. (5.3) is

AMONO. AM
NkT . = ™NgET
= m,aM, (5.4)

where N, is the total number of spherical monomers, and a™ = AM/(N,T) is
the excess Helmholtz free energy per monomer segment. An accurate description
of aM is obtained from the high-temperature expansion given by the Barker and
Henderson perturbation theory for hard-core systems [4, 5, 6],

aM = a5 4 Ba; 4 f2a,, (5.5)

where 8 = 1/kT, and «; and a; are the first two perturbation terms associated
with the attractive well. The mean-attractive energy ay is given by [6]

4y = =2mp,E /:o rig(r)ghs (r)dr, (5.6)‘

where p, = N,/V is the density of monomers (segments) and ¢"/¥(r) is the radial
distribution function of the hard-sphere reference system. By using the mean-value
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theorem, g*/S(r) can be factorised from the integral and written in terms of its
contact value g75(1;7.4), at an effective packing fraction Nes s and the van der
Waals mean-field term oY 2% [1]:

a1 = ay DY gHS(1;n.4)), (5.7)
where 1 /2
dT5(15meg) = '(1_-:1’7;7!,!7)_3’ (5.8)

is obtained from the Carnahan and Starling expression [15]. The second-order
term can be calculated in the local compressibility approximation [G],

_1 . ns_0aj .
a2 - 251‘ pl 8/).’ (')'9)
where -
o = =3p,bYPWe / 23 [$(2)]? g"5(2)dis (5.10)
1
and K'HS is the Percus-Yevick hard-sphere isothermal compressibility [G]
Hs_ _(1=n) .
K" = Trap+ip (5.11)
The Yukawa potential is given by
=X(r/o-1)
¢ (r;A) = —— (5.12)

r/o

By convention the range of the attractive forces in this model is characterised
by A~1. The Yukawa model finds a particular use in the description of screened
Coulombic interactions found in electrolytes and colloids. The van der Waals
mean-field term for the Yukawa potential is given by ’

ayPW = ~12ne(A! + A72), (5.13)

and the parameterisation for 7.77(n, A) is obtained by using accurate values of a;
obtained from the RIINC integral equation [1], as

Tess (mA) = a1+ can?, (5.14)
with
1 0.000678 -1.50051  0.776577 :
= , A=t - (5.15)
ez -0.314300 0.257101 -0.0431566) | ° _,
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The fluctuation term for the Yukawa fluid is obtained from

aj(A) = o/ P g5 (1,9, (5.16)
where
ayPW* = —6ner!, (5.17)
and 1 /2
HS ¢y oy 1=7°
977 (L,n%) = =y (5.18)
with the parameterisation
n*(n,2) = din + dan?, (5.19)
where
1
,\-l
dy\ _ [ 0.9%9G601 -0.872203 0.320808 0.0 0.0 A3
d; -0.0119152 -1.24029 241636 -2.01922 0.647565 3=3
A-4
(5.20)
The final expression for a; is
1 .45 0aj(X)
Y Hs_U4,
A) ==K —_— 5.
0 (A)=3K""n o (5.21)

Thus for Yukawa fluids of variable range, the SAFT-VR EOS is obtained by substi-
tuting the expressions for a}’ and a} in Eq. (5.5) and then in Eq. (5.4). Although
independent parameterisations are used for ay and aj the thermodynamics of the
Yukawa fluid can be recasted in terms of a} only. By using the properties of
Laplace transforms, it follows that
_ Oa} . .o

a) = —a:\- -a,. (5.22)

This way of obtaining a;, however, makes the application of the Yukawa model to

mixtures more complex.

We also examine systems interacting via the Sutherland potential which is given
by

¢5(r;A) = (o/r)\. (5.23)
The range parameter A controls the decay of the interaction. By varying A, dif-

ferent angle-averaged multipolar-like forces, such as the Mie m-n potentials can
be modelled with this potential. For the Sutherland potential the van der Waals
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mean-field term is given by

ay PW = _4pe ( 5 f’_ 3) , (5.24)

where 7 = 10%p, /6 is the packing fraction of the system, and

Ners (1, ) = e1n + ean?, (5.25)
with
1
er) _ [—0.943973  0.422543 —0.0371763  0.00116901 A
c2/)  \ 0.370942 -0.173333  0.0175599 —0.000572729 ) | A2 |°
/\3
(5.26)

The fluctuation term a; for the Sutherland potential is given simply in terms of
the mean-attractive energy of a Sutherland potential of inverse range 2\

1 _.pys 0a$(2)
aj(\) = -2-51\"51;-210(—”—-)-. (5.27)

The contribution to the free energy due to the formation of a chain of m monomers

is [7]
ACHAIN

NkT

where yM(a) is the monomer-monomer background correlation function evalu-

= —(m, =1)InyM(0), (5.28)

ated at hard-core contact; if gM(r) is the monomer-monomer radial distribution
function, then y*(r) = exp[uM(r)/kT]gM(r). In the SAFT-VR approach a per-
turbation expansion is used for the monomer-monomer contact value of the radial
distribution function [6],

gM(at) = gH5(ot) + Begi (o), (5.29)

and g,(o*) is obtained from a self-consistent calculation of the pressure, using the
virial theorem of Clausius and the derivative of the free energy with respect to
density. The contact value for the radial distribution function for Yukawa fluids
can be expressed in terms of a; using the properties of Laplace transforws, giving
a final expression for the contact value as,

5 1.[8aY  AdaY (142)
Yr. .+ - HS; _+ hd Kol _ %
g (07)=g""(07) + 78 '_'La +3”——La,\ 3 | (5.30)

For the Sutherland potential we obtain an expression for the contact value of the
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radial distribution function as [1]

5 1 18a% A
S 4y - HS(+y 1 L 1 _AS
9 (0%)=g""(c )+4ﬂ[an 3na’]’ (5.31)

The value of gM(a+) is also required for the calculation of the contribution to the
free energy due to association. It is important to stress that in order to obtain
the complete equation of state all that is required is a hard-sphere equation of
state together with the mean attractive energy a;, which is given in terms of the
hard-sphere contact value of g.

The contribution to the Helmholtz free energy due to association for s sites on the
chain molecules is obtained from the theory of Wertheim as [10]

AASSOC’. . Xa
=[S (i x-3) 4], (5.32)
=1

where the sumn is over all s sites a on a molecule, and X, is the fraction of molecules
not bonded at site a. The latter quantity is obtained by a solution of the following

mass action equation: )

CT14 i p X8y

The function A, 4 characterises the association between site @ and site b on different

X

(5.33)

molecules. It can be written in terms of the contact value gM(a) of the monomer-
monomer radial distribution function, the Mayer function f, 4 = exp(=¢qs/kT)~1
of the a-b site-site bonding interaction €4, and the volume I 4 available for
bonding as [17]

Aap = Kapfapg™(0). (5.34)

The bonding volume I, can be determined from the parameters of the bonding
site such as its position and range [17). As for the chain contribution, gM(0) is
approximated by gM(at).

5.3 Yukawa fluids

Interest in the Yukawa fluid arises due to the nature of the potential shown in
Eq. (5.12), since it has the same form as the potential experienced by shiclded jons
in electrolyte solutions. Additionally, the exponential term in the attractive part
of the potential allows for an exact solution of the mean-splerical approximation
for this hard-core model. The MSA is an integral equation approach used to obtain
the correlation functions and thermodynamic functions for a fluid, based on the
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Ornstein-Zernike (OZ) relation:

W(ria) = c(rna) + p [ h(ris)e(ras)drs. (5.35)

Here, h(r;;) is the total correlation function between two particles with centres at
r; and r;, at a distance r;; = r; — r; apart apart, and ¢(r;;) is the corresponding
direct correlation function. Given the general pair potential of Eq. (5.3) which is
independent of the relative orientations of the particles, the correlation functions
only depend on r which is the magnitude of the vector r;;, r = |r;;| = |r; = r}].
We know that the radial distribution function must obey the condition

g(r)= 0 ifr<o. (5.36)

Within the mean-spherical approximation the assumption is made that for all
r > o we have

o(r) = —Beg(r), (5.37)

which simply indicates that the direct correlation between a pair of molecules is
given by the pair interaction potential. Combining this approximation with the
0OZ relation between ¢(r) and h(r) of Eq. (5.35) allows for the determination of
the radial distribution function g(r) outside the hard core since

g(r)=h(r)-1, (5.38)

and also of the direct correlation function inside the core. Substitution of the
Yukawa attractive well of inverse range A given in Eq. (5.12) into the general
expression of Eq. (5.37) yields the MSA exactly solvable [18].

The analytical solution of the MSA for the hard-core Yukawa fluid [18]-[20] con-
sists of six nonlinear equations in six unknowns. However, this solution does not
give explicit expressions for the free energy and other related functions of the sys-
tem and several studies have been reported [21]-[32] which present versions of the
MSA solution which can be written directly in term of the useful thermodynamic
properties of the Yukawa fluid. One such route is the work of Ref. [32] following
the work of Ginoza [29]-[31], where a high temperature expansion (HTE) is used
within the original MSA to give expressions which depend explicitly on tempera-
ture, density and the range of the potential. The free energy of the Yukawa fluid
is written as a first order expansion

a¥ = a"S 4 gal, (5.39)

where af’S is the free energy of the hard-sphere reference system, given by the
Carnahan and Starling expression [15], and a}' is the mean-attractive energy of
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the Yukawa fluid, which is given by [32]

Y 10) ]
af = exp(-ML(AN)S()’ (5.40)

The polynomials L(A) and S(A) are given by
L) =129[(1 + n/2)A+ 1 + 21] (5.41)

and
S(A)= (1 =123+ 6n(1 = n)A2+ 187 = 125(1 + 23). (5.42)

The contact value of the radial distribution function for the Yukawa fluid is also
written as a first order expansion in Ref. [32]

9¥(0*) = go(a*) + BgY (o), (5.43)

where gg is given by the Percus Yevick approximation for hard spheres [33]

141/2
go(o*) = (1-:'1,,/)—; (5.44)
The first order term g (a%) is given by [32]
1
gr = ‘47(3;1 (5.45)
where &g is defined ALY 4 SO

A1 =n)?
We can use these expressions as a means of testing the consistency of the SAFT-
VR methodology for the thermodynamic properties of the Yukawa {luid. Previous
results reported for this system include a Monte Carlo (MC) simulation study [34],
which can be treated as ‘exact’ results, together with a full analytical solution of the
mean-spherical approximation [34], and a more recent study using the truncated
temperature expansions given above (Eqs. (5.40and 5.43) within the MSA [32].

The values of the mean-attractive energy and the first fluctuation in energy for
the Yukawa fluid with A = 1.8 obtained with the SAFT-VR methodology are
compared in Table 5.1 with those obtained with the MSA results of Ref. [34), for a
series of reduced densities. No significant difference exists between the values for
the mean-attractive energy obtained by either method, but the first fluctuation
term a; is larger in the case of the SAFT-VR equation of state, indicating that
the use of the local compressibility approximation results in a higher value of az
than the MSA. Comparing the values of a; obtained using the SAFT-VR equation
of state with the perturbation theory results of Ref. [34], which are calculated
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Table 5.1: Values of the mean-attractive energy a; and the first fluctuation term
a; for the Yukawa fluid with A = 1.8 obtained using the MSA [34] and SAFT-VR
[1] approaches for a series of reduced densities p* = pa3,

az

a
p* MSA SAFT-VR MSA SAFT-VR

0.1 -0.566 -0.565 -0.054 -0.067
0.2 -1.175 -1.172 -0.065 -0.104
0.3 -1.824 -1.822 -0.057 -0.119
0.4 -2.513 -2.511 -0.044 -0.120
0.5 -3.237 -3.237 -0.030 -0.112
0.6 -3.995 -3.996 -0.019 -0.099
0.7 -4.784 -4.785 -0.011 -0.083
0.8 -5.602 -5.599 -0.006 -0.0G66
0.9 -6.446 -6.432 -0.003 -0.051
1.0 -7.314 -7.278 -0.001 -0.036

using MC techniques from exact expressions, also indicates that the fluctuation
term is overestimated by the SAFT-VR approach. However, the fact that the
values of a; obtained using the local compressibility approximation in the SAFT-
VR methodology is less accurate than those obtained in the MSA does not have a
significant influence on the accuracy of the overall SAFT-VR equation of state for
the Yukawa fluid since for values of 8¢ < 1 the second-order contribution to the
free energy is negligible with respect to a;.

The values of the Helmholtz free energies for the Yukawa fluid with A = 1.8,
obtained using the SAFT-VR equation of state up to first order, and including the
second-order perturbation, are compared with the equivalent MSA expressions,
for a series of reduced densities and temperatures in Table 5.2. Good agreement
is observed between both theoretical approaches, and the contribution to the free
energy from fluctuations is seen to be much smaller, in both cases, than that of
the mean-attractive energy ay.

Values of the compressibility factor for the Yukawa fluid with A = 1.8 obtained
using the SAFT-VR equation of state are compared with the values obtained using
the MSA of Ref. [31] and with the Monte Carlo results of Ref. [3-1] in Table 5.3, and
in Figure 5.1. Results are presented for a series of reduced densities and temper-
atures and good agreement can be observed between both theoretical approaches

and the simulation results, with neither theory giving results which are consis-
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p*

Figure 5.1: The compressibility factor Z = PV/NKT for the Yukawa fluid with
A = 1.8 obtained from the SAFT-VR equation of state [1] (curves) compared with
values obtained using the MSA (crosses) approach and from MC simulation (open
circles) [34). The reduced density is defined p* = po3, and the curves are labelled
with the corresponding values of the reduced temperatures T* = kT /¢,
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Table 5.2: Values of the llelmholtz free energy A/NAT for the Yukawa fluid with

A = 1.8 obtained using the MSA [34] and SAFT-VR [1] approaches to first and -

second order, for a series of reduced densities p* = po3

kT/e.

and temperatures T* =

1st order 2nd order
p* T* MSA SAFT-VR MSA SAFT-VR

0.4 20 -0.137 -0.125 -0.139 -0.155
1.5 -0.565 -0.549 -0.569 -0.597
1.0 -1.426 -1.381 -1.443 -1.501
0.6 2.0 0.040 0.044 0.039 0.019
1.5 -0.630 -0.622 -0.631 -0.666
1.0 -1.972 -1.954 -1.976 -2.053
0.8 2.0 0.601 0.603 0.600 0.587
1.5 -0.334 -0.330 -0.334 -0.359
1.0 -2.205 -2.200 -2.206 -2.262
0.7 -4.611 -4.595 -4.164 -4.731

tently the most accurate. The negative values of pressure at low temperatures
correspond to metastable states within the coexistence region of the system,

An additional means of testing the adequacy of the MSA and SAFT-VR methodsin
their prediction of the properties of the Yukawa fluid is to compare the values of the
radial distribution function evaluated at contact, obtained using both approaches,
Within the MSA it is possible to obtain values of g(¢*) both from the full analytical
solution of Ref. [34] and by using the truncated high temperature expansions of
Ref. [32]. The contact value of the radial distribution function in the SAFT-VR
approach is obtained using Eq. (5.30), where the mean-attractive energy is given
by Eq. (5.7). It is interesting to note that a combination of both the SAFT-VR
and the MSA approaclics can be used to give an expression for the contact value
of the radial distribution function of the Yukawa fluid, since the mean-attractive
energy a; of the MSA methodology given by Eq. (5.40) can be used in the SAFT-
VR expression for the radial distribution function Eq. (5.30). The values for the
contact value of the radial distribution function obtained by each of these routes
are compared directly with one another, and with the MC simulation results of
Ref. [34], for a series of reduced densities and temperatures in Table 5.4, The
values of g(ot) obtained using the SAFT-VR equation of state are soen to be in
better agreement with the simulation results than those obtained using either the
full MSA of Ref. [34], or the truncated MSA of Ref. [32] (there is little difference
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Table 5.3: Values of the compressibility factor Z = PV/NKT for the Yukawa fluid
with A = 1.8 obtained using MC simulation [34] and both the MSA [31] and SAFT-
VR [1] approaches, for a series of reduced densities p* = pa? and temperatures

T* = kT|/e.

p* T* MC MSA SAFT-VR

04 2.0 108 1.119 1.106
1.5 0.69 0.659 0.637
1.0 -0.21 -0.251 -0.298
06 2.0 204 1.976 1.981
1.5 1.21  1.213 1.223
1.0 -0.27 -0.303 -0.277
0.8 2.0 4.27 4.432 4.486
1.5 331 3.330 3.412
1.0 129 1131 1.287
0.7 -1.63 -1.687 -1.401

between the values obtained using either MSA approach). However, the contact
value of the radial distribution function obtained using the combination of the
expression for a; from the MSA Eq. (5.40), and the expression for g(at) from the
SAFT-VR approach Eq. (5.30) is seen to give values for g(at) which are in closest
agreement with the simulation results. This indicates that use of the sell-consistent
route to obtain the radial distribution function, as given in the SAFT-VR approach
by Eq. (5.30), results in a more accurate version of the MSA. The closed nature
of the expression for g(@*) enables it to be incorporated into the algebra of the
analytical solution of the MSA, so that it can be evaluated exactly by an alternative
and more accurate route,

It is clear that the SAFT-VR approach gives suitably accurate values for the
contact value of the radial distribution function when compared with MC results
and with the full analytical solution of the MSA for the Yukawa fluid.

The vapour-liquid phase equilibria of Yukawa chains of length m,=2, 4 and 16
obtained using the SAF'T-VR equation of state for inverse ranges of A =1.0, 1.8 and
4.0 are shown in Figures 5.2, 5.3 and 5.4, respectively. The region of vapour liquid
coexistence is seen to move to higher temperatures as the chain length increases,
and extends as the range of the potential increases. In the case of the monomer
Yukawa fluid with inverse range of A=1.8 (Fig. 5.4) the SAFT-VR prediction is
seen to compare favourably with the Gibbs ensemble simulation results of Ref. [35).

118



Table 5.4: Values of the contact value of the radial distribution function g(a+)
for the Yukawa fluid with A = 1.8 obtained using MC simulation [34], the MSA
equation of state, both analytically [34] and using a first order expansion [32],
the SAFT-VR [1] approaches, and a combination of the MSA and SAFT-VR ap-
proaches, for a series of reduced densities p* = pa? and temperatures T* = kT /e.

p* T MC MSA HTE-MSA SAFT-VR SAFT-VR+MSA

04 2.0 2128 1.963 1.944 2.106 2.124
1.5 2378 2.040 2.003 2.204 2.228
1.0 2,943 2.222 2.121 2.401 2.436
0.6 2.0 2921 2561 2.555 2.821 2.846
1.5 2966 2.598 2.586 2.891 2.923
1.0 3.205 2.681 2.649 3.029 3.079
0.8 2.0 4.109 3.629 3.628 4.177 4.194
1.5 4.257 3.646 3.643 4.226 4.219
1.0 4.490 3.681 3.674 4.325 4.359
0.7 4.622 3.729 3.713 4.452 4.500

However, no simulation data currently exist for Yukawa chains so that we cannot
make a direct comparison of the results obtained using the SAFT-VR approach
for these systems.

5.4 Lennard-Jones chains

The expressions presented in the previous section can be used to develop an equa-
tion of state for chain molecules interacting via the Mie m — n potentials [12], of
which the Lennard-Jones (m = 6 and n = 12) is the most common example. The
Mie m — n potentials are given by

uM = Ce [(g)" - (f'r-)] : (5.47)

where n N 2B
ce o (2)7. 15
n—m\m

Systems interacting with binary potentials with soft repulsive interactions like
Eq. (5.47) can be described within the Barker and Henderson perturbation theory,
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Figure 5.2: The vapour-liquid coexistence densities for Yukawa chains of length
m, =2, 4 and 16 with inverse range of A =1.0. The curves are labelled with the
values of the chain length m,. The reduced parameters used are T* = AT /¢ and

pi = a0’
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Figure 5.3: The vapour-liquid coexistence densities for Yukawa chains of length
m, =1, 2, 4 and 16 with inverse range of A =1.8, The curves are labelled with the
values of the chain length m,. The reduced parameters used are T* = AT /e and
P = p+0°. The data points correspond to the Gibbs ensemble simulation data for
Yukawa monomers of Lomba and Almarza [353].
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Figure 5.4: The vapour-liquid coexistence densities for Yukawa chains of length
m, =1, 2, 4 and 16 with inverse range of A =4.0. The curves are labelled with the
values of the chain length m,. The reduced parameters used are T* = kT/¢e and
pL= p,03. The data points correspond to the Gibbs ensemble simulation data for
Yukawa monomers of Lomba and Almarza [35).
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by considering an equivalent potential with a hard-core temperature dependent

diameter,

“eH = { uM ifr> apu(T), (5.49)
where .

ogn(T) = /0 (1 - exp(-puM))dr, (5.50)

and o defines the position where uM changes sign. The free encrgy is then calcu-
lated with the expansion of Eq. (5.5) using the packing fraction

n8u(T) = n(opn/a)’. (5.51)

The expressions for aj, az and g(at) for the Sutherland potential (Eqs. (5.7), (5.27)
and (5.31)), can be used directly in the expressions for the soft-core systems, Since
the family of Mie potentials can be represented by a sum of an attractive and of
a repulsive Sutherland potential, the mean-attractive energy for such systems can
be similarly expressed as the sum of two Sutherland a; terms,

aMIE = ¢ [—af(vm:: A=n)+ai(npniA = m)] , (5.52)

where aj corresponds to the mean-attractive energy for a Sutherland system with

exponent A. The second order term a3 is given in terms of the attractive contri-
bution only as
aME = Cal(npp; A = m). (5.53)

For the LJ fluid we can apply this recipe with the following parametrisation for

ogn [1):
ogn/o = 0.995438 = 0.0250917T" + 0.00392254T*2 = 0.0002893987*3,  (5.54)

where T* = kT /e. In order to calculate the contribution to the free energy due to
chain formation, we require the monomer cavity function at the bonding distance,
yM. For systems interacting with soft repulsive interactions, the bond distance is
o, i.e., where the potential is zero. Since in the SAFT-VR approach the molecules
are formed from eflective hard-core segments with diameter a5y, the bond length
is ogy and yM can be calculated according to

vM = yL(osn), _ (5.55)

where yL’ is the cavity function of the hard-core potential defined in the Barker
and Henderson perturbation theory, which is given in Eq. (5.49). We have found
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that a more accurate prediction of the properties of the Lennard-Jones chains is
obtained with the approximation

w! = y*(onn) (5.56)

where ¢ is the Sutherland-6 potential contact value, obtained directly from
Eq. (5.31). With this approximation, the final expression for the chain free energy

18 ACHAIN

NkT
Here we only consider chains formed from segments with no association sites,

hence there is no contribution to the Helmholtz free energy due to association,
AASSOC. - 0,

= —(m, = 1)In y%(opn). (5.57)

The vapour-liquid phase equilibria of Lennard-Jones chains of length m, =2, 4 and
8 obtained using the SAFT-VR approach outlined in the previous section are com-
pared with existing Gibbs ensemble Monte Carlo (GEMC) simulation results [11]
in Figure 5.5. The SAFT-VR description for monomers (m, = 1) given previously
[1] and the corresponding GEMC simulation results [36] are also shown.

The SAFT-VR theory gives a good overall description of the cocxistence region,
and reproduces the eflect of increasing the chain length. The theory’s adequacy is,
however, seen to decrease as the chain length increases, which can be rationalised
in terms of an inaccurate description of molecular structure, such as foldiug, which
occurs as the chain length increases [10]. It is well known that the SAFT approach
accurately describes the hehaviour of long-chain molecules up to m, = 8 [37).
Versions of SAFT which account for higher body interactions have been proposed
[37, 38}, in order to be able to give a more accurate prediction of systems consist-
ing of long chain molecules. Various super-critical isotherms calculated using the
SAFT-VR approach for LIC with m, =2, 4 and 8 are presented in Figures 5.6, 5.7
and 5.8, respectively.

The SAFT-VR expressions are seen to compare favourably with results obtained
with the equation of state proposed by Johnson et al. [10]; these authors used an
accurate empirical representation for gLJ(a). The approximation used in Eq. (5.57)
gives an accurate prediction of the vapour-liquid envelope, as well as the pressure
for the whole range of monomer densities p;. The residual internal energy at a
series of temperatures for LJC with m, =2, 4 and 8 are presented in Figures 5.9,
5.10 and 5.11, respectively. Our equation of state overpredicts the residual internal
energy for densities p > 0.7.
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Figure 5.5: The vapour-liquid coexistence densities for Lennard-Jones chains of
length m, compared with the Gibbs ensemble simulation data of Panagiotopoulos
[36] (m, = 1), and of Escobedo and de Pablo[11] (m, =2, 4 and 8). The continuous
curves correspond to the SAFT-VR approach, and each is labelled with the values
of the chain length m,. The reduced parameters used are T* = kT /< and p =

ps0>.
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Figure 5.6: The reduced pressure P* = Po/e of Lennard-Jones chains with m, =
2 (diatomics) as a function of the reduced monomer density p* =.p o3 'I.‘l;;
squares, diamonds, circles and triangles are the molecular (lyna'mics s’imt'x]ation
results of Johnson et al. [10] for the reduced temperatures of T* = AT/ec =5
4, 3 and 2, respectively. The continuous curves correspond to the SAFT.V'R’

predictions.
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Figure 5.7: The reduced pressure P* = Pa3/c of Lennard-Jones chains with
m, = 4 as a function of the reduced monomer density p; = p,0*. The diamonds,
circles and triangles are the molecular dynamics simulation results of Johnson et
al. [10] for the reduced temperatures of T* = kT [e =4, 3 and 2, respectively. The
continuous curves correspond to the SAFT-VR predictions.
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20

Figure 5.8: The reduced pressure P* = Pa3/¢ of Lennard-Jones chains with
m, = 8 as a function of the reduced monomer density p; = p,0?. The diamonds,
circles and triangles are the molecular dynamics simulation results of Johnson et
al. [10] for the reduced temperatures of T* = kT /e =4, 3 and 2, respectively, The
continuous curves correspond to the SAFT-VR predictions.
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Figure 5.9: The residual internal energy u* = u/N¢ of Lennard-Jones chains with
m, = 2 (diatomics) and inverse range of A =1.8 as a function of the reduced
monomer density p; = p,a®, The squares, diamonds, circles and triangles are
the molecular dynamics simulation results of Johnson et al. [10] for the reduced
temperatures of T* = kT/e =5, 4, 3 and 2, respectively. The continuous curves
correspond to the SAFT-VR predictions.

129



0.0 0.2 04 0.6 0.8

Figure 5.10: The residual internal energy u® = u/Ne of Lennard-Jones chains
with m, = 4 and inverse range of A =1.8 as a function of the reduced monomer
density p; = p,03. The diamonds, circles and triangles are the molecular dynamics
simulation results of Jolhnson et al. [10] for the reduced temperatures of T* =
kT /e =4, 3 and 2, respectively. The continuous curves correspond to the SAFT-
VR predictions.
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Figure 5.11: The residual internal energy u* = u/N¢ of Lennard-Jones chains
with m, = 8 and inverse range of A =1.8 as a function of the reduced monomer
density p; = ps03. The diamonds, circles and triangles are the molecular dynamics
simulation results of Johnson et al. [10] for the reduced temperatures of T* =
kT/e =4, 3 and 2, respectively. The continuous curves correspond to the SAFT-
VR predictions.
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5.5 Conclusions

We have presented the SAFT-VR equations of state for the Yukawa and Sutherland
potentials, and have illustrated how the expressions obtained for the Sutherland
potential can be used to give a general equation of state for associating chain
molecules interacting via potentials with soft-core repulsive interactions. In the
case of Lennard-Jones chains, an accurate description is obtained for vapour-liquid

coexistence properties using this approach.

The SAFT-VR expressions for the Yukawa fluid are seen to compare favourably
with those obtained using the analytical solution of the mean spherical approxi-
mation. In the case of the contact value of the radial distribution function of the
Yukawa fluid we obtain a recipe which combines both the MSA and the SAFT-VR
approaches, which is scen to give results which are in closer agreement with sim-
ulation data than those obtained using either the individual MSA or SAFT-VR
methods. As a result of the correspondence hetween the form of the Yukawa po-
tential and the potential experienced by ions in solution, the expressions presented
here can be used to describe the phase behaviour of fluids of industrial interest
such as electrolytes. In addition, the extension of the SAFT-VR equation of state
to systems interacting with potentials of variable repulsive range, leads to the pos-
sibility of the study of systems with interaction potentials which are more complex
than those which can be modeled by hard-core potentials such as the square well,
Furthermore, since the SAFT-VR methodology is easily applied to mixtures {1, 2]
the expressions presented here for the pure fluid can find many applications in the
prediction of the thermodynamics and phase behaviour of mixtures with specific
intermolecular interactions.
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Chapter 6

Case Study: Closed-Loop

Immiscibility in Fluids

6.1 Introduction

In this final chapter we present a detailed study of a specific class of phase be-
haviour, using a combination of the methods discussed previously, The experimen-
tally observed phenomenon of closed-loop liquid-liquid immiscibility is examined;
such behaviour is characterised by a closed region of two-phase immiscibility over
a specific temperature range on the phase diagram of a system. A simple model
system which incorporates the important features of mixtures which exhibit this
re-entrant miscibility experimentally is examined with the SAFT-VR equation of
state introduced in Chapter 2, and with the computer simulation techniques of
Chapter 3. Particular attention is paid to the critical behaviour of this model,
both at the high and low temperatures which bound the regions of immiscibility.
The nature of the interactions which govern immiscibility in fluids are discussed
as a means of introducing the energetic and thermodynamic concepts which lead
to the existence of such closed-loop behaviour,

It is common for binary liquid mixtures with weak unlike intercations to have phase
diagrams dominated by regions of immiscibility, as represented by the temperature-

composition phase diagram shown in Figure G.1. The two-phase coexistence re-
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Figure 6.1: Schematic temperature composition phase diagram for a binary liquid
mixture with weak unlike interactions.
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gion is bounded at high temperatures by an upper critical solution temperature
(USCT), the temperature at which the compositions of the two coexisting phases
become identical, so that at temperatures above the UCST the system is com-
pletely miscible. The immiscibility of the fluid system at temperatures below the
UCST is a result of the unfavourable energy which exists between unlike compo-
nents in the mixture, so that like components have a high affinity for one another.
This leads to clustering of particles of the same species, resulting in phase sepa-
ration into an energetically favourable configuration, with one phase rich in one
component and one phase rich in the other component. Precisely at the UCST the
entropy of the system has increased sufficiently so that it is the dominant contri-
bution to the Helmholtz free energy of the system. The free energy A is governed
by the interplay between the internal energy {7 and the entropy 5:

AA =AU -TAS. (6.1)

The temperature dependence in the above equation is responsible for the increase
in the importance of tlie entropic contribution to the free energy with respect to
the contribution due to the internal energy as temperature increases, At temper-
atures above the UCST the system no longer consists of regions which are rich
in a particular component since the molecules are randomly distributed and the

system is miscible. Specific examples of systems which exhibit such behaviour are

methane+tetrafluoromethane, hexane+perfluorocycloliexane and methanol+cyclohexane

[1}.

A specific class of binary mixture which exhibits liguid-liquid immiscibility at tem-
peratures below an UCST has a temperature-composition phase diagram similar
to that shown in Figure 6.2, In this case, the region of immiscibility is also seen to
decrease in size as temperature is decreased, and is bounded at lower temperatures
by a lower critical solution temperature (LCST). Consequently the two phase re-
gion in such a system ouly exists over a specilic temperature range between the
LCST and the UCST. The system is hence said to posses a closed-loop of im-
miscibility. Within the classification of binary liquid mixtures proposed by Scott
and van Konynenburg [2, 3] this type of phase hehaviour is exhibited by type V1

mixtures,

An understanding of the thermodynamics responsible for the existence of this
LCST is, at first glance, difficult to obtain since the low temperature miscible phase
appears to be more disordered and thus have a greater entropy than the immiscible
phase. An examination of the common features of systems which exhibit such
behaviour does however lead to a logical explanation for this re-entrant miscibility.
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Figure 6.2: Schematic temperature composition phase diagram for a binary liquid
mixture with weak unlike interactions and a strong association energy between
unlike species which is dominant at low temperatures.
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The first experimentally observed closed-loop of immiscibility was reported by
Hudson in 1904 [4]. Whilst trying to crystallise nicotine from its aqueous solution in
order to prove the existence of the hypothetical nicotine hydrate Hudson discovered
the existence of a closed region of immiscibility for the nicotine+water system.
Early studies which also report closed-loop behaviour are those of 2-butanol+water
[5], 3-methylpyridine+heavy water [6] and guiacol+glycerine (7). Tle existence
of re-entrance in the guiacol+glycerine mixture is questioned in a second study
[8] which reports that anhydrous guiacol+glycerine are completely miscible at
all temperatures. It is only in the presence of a small amount of water that
the closed-loop of immiscibility appears, as the amount of water in the system is
increased the loop also increases in size. Conversely, addition of water to the 3-
methylpyridine+heavy water system leads to a decrease in the extent of the region
of immiscibility. Considerable interest in the phase behaviour of these two ternary
systems exists as a result of the critical role of the third component [6, 9], sce
Ref. {10] for a review.

The existence of the LCST in these systems was at first considered to be a result of
the decomposition of one of the componeuts in the mixture, or by the formation of
new chemical compounds [11]. This is reflected in a comment by Hudson [1] with
respect to his findings for the nicotine4water system: “It may be assumed that the
presence of the hydrate is the cause for the miscibility of the otherwise insoluble
liquids-more or less the same way as the addition of alcohol brings about the
mixing of water and ether. The hydrate decomposes with increasing temperature
and the two liquids, nicotine and water, separate because the quantity of their
mutual solvent, namely the hydrate, is greatly reduced”. However, no experimental
evidence exists to confirm the existence of a different chemical species in these
systems, 50 an alternative explanation must be sought,

A wide range of liquid mixtures are currently known to exhibit this re-entrant
behaviour, including mixtures of aliphatic or aromatic alcoliols, amines, ethers or
ketones with water or alcoliols. The common feature of all these systems which
can be used to give an explanation of their unusual behaviour, is their ability
to form hydrogen bonds. llydrogen bonds can form between any clectronegative
atom, such as oxygen, nitrogen or fluorine, and a hydrogen atom via donation of
lone pairs of electrous ounto the electropositive hydrogen. Due to the short-ranged,
directional nature of hydrogen bonds they can only form between two species when
they approach one another closely and are in a specific orientation with respect
to one another. The angular spread of a hydrogen bond is typically 10°, so that a
small displacement of either species can lead to the destruction of the bond. Con-
sequently hydrogen bonding is only observed in low-temperature configurations
where molecules have a low mobility and hence remain in specific orientations for
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relatively long timescales. llowever, in order to obtain a complete understanding
of why hydrogen bonds are energetically favoured at low temperatures, one must
consider the entropic consequences of the bonding process itsell. The directional
nature of the bond hinders the number of vibrational and rotational degrees of
freedom available to a molecule when it is part of a hydrogen-honded structure,
This orientational constraint leads to a decrease in the randomness of the system
upon the formation of such bonds, and hence a decrease in the orientational en-
tropy, which is greater than the compositional entropy gained on mixing [12]. At
low temperatures we know from Eq. (6.1) that entropic effects do not have a pro-
found effect on the free energy of the system, but the combination of lowering the
internal energy and an increase in the compositional entropy due to mixing leads
to a favourable free energy for the overall system, despite the decrease in orien-
tational entropy. lHence, for a mixture of two components which are hoth able to
form hydrogen bonds, it is energetically favourable for such bonds to form. This
results in the low temperature miscibility of the system since the bonds can occur
between both the unlike and like components in the mixture. The unfavourable
low orientational entropy of the hydrogen bond gives a more significant contri-
bution to the free energy of the system as temperature increases, so that other
configurations, such as those involving the clustering of like species become more
energetically attractive, At higher temperatures the system hence moves from a
miscible hydrogen-bonded phase to a two-phase system above a particular tomfmr-
ature (the LCST). This is the temperature at which the hydrogen hounded configu-
ration becomes energetically unfeasible. Above this temperature the free energy of
the system is dominated by the unfavourable internal energy countribution hetween
unlike species, resulting in the clustering of like species. Hence, the compositional
entropy is lowered with respect to that of the hydrogen bonded structure. This
decrease, together with the increase in orientational entropy, favours the phase
separation of the system for moderately high temperatures, This two-phase region
is again bounded at high temperatures by an UCST, the temperature at which the
entropic contribution to the free encrgy becomes greater than that of the inter.
nal energy in Eq. (6.1). At this temperature a random distribution of the species

within the system is encrgetically favoured so that the system becomes miscible,

Having obtained a description of the thermodynamics involved in the plienomenon
of closed-loop immiscibility it is also important to note that the streugth of the
hydrogen-bonding interaction plays a critical role in the determination of the extent
of the immiscibility in a particular system. A 3-dimensional representation of the
effect of a variation in strength of the hydrogen bond between unlike components
on the temperature-composition phase digram of a binary liquid mixture in shown
in Figure 6.3. For a bonding strength of zero no LCST is observed and the system
is immiscible at all temperatures below the UCST, which is the case shown in Fig.
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Figure 6.3: A three-dimensional representation of the effect of a variation in the
strength of the hydrogen bond which can form between unlike components on
the temperature composition phase diagram of the mixture. Each vertical ‘slice’
corresponds to the phase diagram for the system at that specific honding strength.
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6.1. As the strength of the bonding interaction is increased a LCST appears and a
closed-loop of immiscibility is observed, corresponding to the phase diagram shown
in Fig. 6.2. The extent of this region of immiscibility decreases as the bonding
strength is increased further, until it vanishes completely at the point where the
UCST and the LCST occur at the same temperature, llere the system becomes
immiscible exactly at the point where it becomes miscible again, which corresponds
to a double critical point (DCP) for the system. The effect of varying the strength
of the hydrogen bonding interaction on the phase diagram of a system is equivalent
to scaling the temperature of that system, and can be examined experimentally
by several different routes:

o altering one of the components in the mixture, since different substances
have different hydrogen bonding strengths.

o changing the pressure of the system. As the pressure increases the molecules
are forced closer together, which leads to an effective increase in the bonding,
so that the extent of the close-loop region decreases, vanishing completely at
high enough pressures.

o adding a small quantity of a third component which is miscible in the binary
mixture. The system continues to have all the essential features of a binary
mixture, but (as for the guiacol4glycerine system) the third component has
a significant effect on the phase behaviour of the mixture. In the case of
guiacol+glycerine, addition of water leads to guiacol forming hydrogen bonds
with water, rather than with glycerine, hence decreasing the average bonding
interaction between guiacol and glycerine, which allows the appearance of the
immiscible phase.

When hydrogen bonding is able to occur hetween like species, in addition to un-
like, the system will tend to phase separate at temperatures helow the LCST. In
such cases, the sum of the directional and the non-directional interactions for a
pair of like species is greater than for a pair of unlike molecules. The hydrogen
bonding of like species to one another results in a decrease in both the compo-
sitional and orientational entropy of the mixture, resulting in phase separation
at low temperatures. This effect is not generally seen experimentally since sys-
tems tend to freeze hefure the low-temperature miscibility can be observed. The
2-butanol4water mixture is an exception, where at high pressures (or on addition
of t-butanol) two regions of immiscibility exist, the liguid-liquid immiscible phase
bounded by the LCST and the UCST and a low-temperature immiscible phase,
bounded by a UCST [13]. At atmospheric pressure the closed-loop merges with
the low-temperature two-phase region, resulting in a so-called ‘hour-glass’ phase
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diagram. The point at which the UCST of the low-temperature miscible region oc-
curs at exactly the same temperature as the LCST of the closed-loop corresponds
to a double critical point (DCP) for this system. The eflect of varyiug the strength
of the hydrogen-bonding interaction between unlike components on the phase di-
agram where bonding can occur between both unlike and like species, is shown in
Figure 6.4. When the hydrogen bonds between unlike componeunts are weak the
system has a phase diagram with the form of Fig. G.1. As the bonding strength
increases the immiscible region splits into two separate regions, the closed-loop at
higher temperatures and a second immiscible region bounded by an UCST at low

temperatures,

Closed-loop behaviour is not only exhibited by simple liquid mixtures, a wide vari-
ety of other systems are known to undergo re-entrant phase transitions experimen-
tally. The closed-loop belaviour of complex fluid systems such as microemulsions
and polymer solutions [14, 13] and non-ionic surfactants [16, 17), can be discussed
within the thermodynamic framework given previously; where the hydrogen bonds
which are formed between unlike components are responsible for the low temper-
ature miscibility. Furthermore, the phenomenon of re-eutrance is not confined to
liquid mixtures; it can be observed in a range of other systems, examples of which

are given in Table G.1.

Table 6.1: Examples of systems which exhibit re-entrant phase transitions together
with the reappearing phases in each system (from Ref, [10]).

System Example Form of re-entrance
Binary gases Ne-Kr [18] Partial immiscibility
Liquid crystals Octyloxycyanobiphenyl (8OCI)+ Nematic phase

hexalixycyanobiphenyl
(GoCn) [19)-[21)

Ferroelectrics Rochelle salt non-polar phase
(NaKC41404.411,0)[22]
Superconductors BaPby.zs1i0.2503 23] Normal state

(non-superconducting)

Gels N,N-dimethyacrlyamide or Swollen state
N-isopropy! acrylamide gels
in (watertdimethyl sulphoxide) [21]

Aqueous electrolytes  Tetra-n-butylammonium Miscibility
thiocyanate (BuyNSCN)+water [25]

It is obviously impossible to obtain an explanation of the plysics of such diverse
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Figure 6.4: A three-diniensional representation of the effect of a variation in the
strength of the hydrogen bond which can form both between unlike and like compo-
nents on the temperature composition phase diagram of the mixture, The strength
of the hydrogen hond hetween like components is constant.
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systems using the same thermodynamic ideas as those used to rationalise closed-
loop behaviour in liquid mixtures. However, it is possible to identify the com-
petition between the entropy and the internal energy at low temperatures in the
free energy expression of Eq. (6.1) as the driving force for the existence of re-
entrance in all such systems. In this chapter we will concentrate on the study of
the phenomenon of closed-loop immiscibility in binary liquid mixtures, and more
specifically in a model mixture which is chosen due to its simplicity. The SAFT-
VR equation of state and computer simulation techniques are used to provide a
description of the phase behaviour of the model mixture in order to obtain an un-
derstanding of the interactions involved. Before describing the methods employed
in this study in detail we review the other theoretical studies which have been
performed previously for fluid systems which exhibit closed-loop immiscibility.

6.2 Theory of closed-loop behaviour

As a result of the novel nature of this re-entrant behaviour, together with its ap-
pearance in a wide variety of systems, theoretical studies of this type of phase
behaviour are numerous. A detailed description of all the approaches is beyond
the scope of this work. We give a brief review of the early studies and their find-
ings but we are most interested in the use of continuum fluid theories to describe
closed-loop immiscibility in mixtures. Early theoretical studies are based on the
ideas proposed by Iirschfelder et al. [26), in the first study which appears in the
literature where hydrogen bonds are cited as being the forces responsible for the
existence of a LCST in binary liquid mixtures. lere the low temperature misci-
bility is explained in terms of the hindering of free rotation of molecules due to
directional interactions between unlike components in the mixture. This descrip-
tion of the interactions can be incorporated into lattice model studies, the first of
which to actually report a closed-loop of immiscibility for a specific model is the
work by Barker and Fock [27]. Their model of a binary liquid mixture consists
of a z co-ordinated lattice made up of two types of molecule, each of which has 2
contact points capable of interacting with the z contact points of the neighbour-
ing molecules.” One of the contact points on each molecule is specified as being
distinct from all the others. Interactions between like molecules are taken to be
zero, whilst interactions between unlike molecules are all considered to be repul-
sive, unless they exist between the distinct contact point on one molecule and the
equivalent distinct contact point on the other molecule, in which case the interac-
tion is considered to be attractive, The conditions of phase equilibria are solved
for this model using Bethe-Guggenheim quasichemical approximation [28]. The
resulting phase diagrams show both an upper and a lower critical solution temper-

145



ature, but the overall shape of the coexistence curves are very much narrower than
those observed experimentally, and are parabolic at the critical point, whereas the
experimental curves are cubic. These apparent failures of the Barker and Fock
model can be rationalised in terms of the inadequacy of the quasichemical ap-
proximation, rather than as a consequence of the lattice model or the interaction
potential used. The quasichemical approximation is a mean-field theory, so it will
always predict parabolic behaviour at the critical point. Use of a higher order
approximation for the same model [29], where the anisotropic interactions in the
model are better accounted for gives results which are in closer agreement with
the experimental findings.

After this initial breakthrough, a series of lattice studies were performed on more
complex model systems. The first of these is the study by Wheeler [30] which
introduces a decorated lattice model, which can be exactly mapped onto a spin
1 Ising model, for which exact solutions are known, and which also predicts the
correct cubic (universal) critical behaviour. The known solutions for the Ising
magnet are used to predict the phase behaviour of a model system with highly
anisotropic interactions, yielding closed-loop regions for a specific choice of inter-
action parameters. Despite a reasonable agreement between the results ohtained
from these lattice model studies and their experimentally observed counterparts
[31], further studies have been undertaken in order to obtain closer agreement,
One of the shortcomings of the use of such lattice models is that they yield in-
herently symmetrical results, which is obviously not mirrored by real systems. A
number of studies have been performed which produce asymmetrical coexistence
curves [32)-[34] by including interactions between unlike species. Another serics
of investigations using the Potts model report closed-loop regions for appropriate
interaction parameters [35])-[38], where the interaction potential has a directional
component and the system is examined using the Migdal-Kadanofl approximation
via renormalisation group theory (known as the Walker and Vause model).

The underlying feature common to all of these lattice-based approaches which
is thought to be responsible for the re-entrant behaviour observed is that the
interaction potential used in the description of the model fluid is always anisotropic.
Despite the basic oversimplification involved in using a lattice to represent the
structure of a liquid such studies give a useful qualitative description of the shape
of the closed-loop and also illustrate which features of the interaction potential are
responsible for the existence of closed-loop immiscibility.

An alternative approach for the description of closed-loop behaviour in mixtures
is the use of continuum fluid theories, which account for the structure of the liquid
in a more complete manner than lattice models. Such theories consist of the
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proposal of an equation of state for a model system which is used to predict the
phase behaviour and thermodynamics of the fluid. The large number of continuum
studies which currently exist in the literature indicate the importance of such
predictive work to theoreticians and experimentalists alike. The most significant
early work in this field is that of van Konynenburg and Scott [2, 3], where the van
der Waals equation of state [39] is used to obtain the phase diagrams of binary
mixtures. The systems examined by van Konynenburg and Scott are assumed to
obey the van der Waals mixing rules and the phase behaviour of all but one of the
types of phase equilibria are successfully predicted by varying the intermolecular
parameters. The failure of this approach to predict the phase behaviour of type VI
binary mixtures which posses the closed regions of immiscibility can be understood
by examining the nature of the intermolecular interactions described by the van
der Waals equation of state. Since re-entrant miscibility is only observed in lattice
models which contain short-ranged, directional interactions, one expects that the
equivalent criterion should hold in the case of continuum theories. The van der
Waals equation has no provision for such temperature dependent interactions,
so that its failure to predict the re-entrant behaviour of the type VI mixture is
not unexpected. Numerous studies have subsequently been performed in order
to obtain an equation of state which can predict the low-temperature miscibility
of such systems. The SAFT equation of state has been used successfully in this
context.

A simplified version of the SAFT-VR equation of state is known to predict the
closed-loop phase behaviour of a model system [40]. The model examined in
Ref. [40] consists of a binary mixture of equal sized-spheres with one off-centre
association site per sphere, these sites are included to account for the directional
nature of the hydrogen-bond. The version of SAFT used in Ref. [10)] differs from
the SAFT-VR equation of state given in Chapter 2 in the nature of the dispersive
interactions, in the simplified SAFT-IIS approach they are given by the van der
Waals equation. The SAFT-HS equation of state is also used in a global study
of model binary mixtures of water+alkanols [41). The effect of chain length and
association on the phase equilibria are presented in Ref. [41], where closed-loop re-
gions are observed for intermediate chain lengths and bonding energies. A recent
application of this simplified SAFT approach is in the prediction of the closed-loop
phase behaviour of of binary aqueous solution of 1-butanol, n-butoxyethanol and
n-decylpentoxyethylenether (CygEs) [42). The extent of the immiscibility in real
mixtures is seen to be accurately predicted using the SAFT-HS equation of state,
via the fitting of a specific number of interaction parameters., In this work we
re-examine the phase behaviour of the symmetrical binary mixture introduced in
Ref. [40] using the SAFT-VR equation of state.
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Before presenting the specific SAFT-VR expressions for the model system it is
important to discuss other recent continuum theory studies which also examine
the phenomenon of closed-loop immiscibility. By combining the results obtained
from lattice studies and the knowledge that the van der Waals equation of state is
unable to predict closed-loop behaviour, it is not over-presumptuous to state that
a short-ranged directional interaction must be included in the potential model, in
order for a given model system to exhibit re-entrant miscibility. It is also widely
believed that the appearance of the LCST experimentally in systems is a direct
result of hydrogen-bonding between the two components in the mixture, so that
the directional nature and the temperature dependence of such bonding must be
accounted for in any theoretical studies of such associating fluids. However, certain
continuum fluid studies present results which contradict the above statements, that
is, they predict closed-loop immiscibility for systems with isotropic potentials. We
will discuss the findings of each of these studies in turn.

The global study of the phase diagram of a model mixture interacting via the
Lennard-Jones potential by Boshkovet al. [43]-[45] is one such study. A closed-
loop of immiscibility is reported for a system with only spherically symmetrical
interactions, where the model does not account for low temperature directional
interactions. By taking a closer look at the methods by which they arrive at
their results one can uncover possible sources of error. The configurational part of
the free energy is calculated in the work of Refs. [43]-[45] using a solution for the
pure component Lennard-Jones fluid obtained using the Ree equation of state [16).
This equation of state is obtained by performing a fitting to computer simulation
data points over a temperature range of 0.54 < T/T, < 1.93. The closed-loop of
immiscibility presented in the work by Boshkov et al. has a temperature range of
0.45 < T/T. < 0.50 [40], indicating that the Ree equation of state has been used
outside its range of validity. Another important observation, mentioned in the
original Ree paper (Ref. [46]) is that the equation should not be used below the
triple point of the system, which for the Lennard-Jounes fluid occurs at T/T,. = 0.49
[46]. This indicates that the results presented by Boshkovet al. should be viewed
with caution.

A series of studies by van Pelt et al. [47]-[19] also predicts closed-loop immiscibility
for an isotropic potential model, in this case for the simplified perturbed hard chain
theory (SPHCT) [50). Within the SPHCT equation the attractive part of the
partition function is written in terms of the temperature and density dependence
of the co-ordination number, which is a function of the Boltzmann factor of the
the interaction potential. The results obtained using this attractive term compare
favourably with computer simulation results in the one-phase region of the phase
diagram, but the agreement decreases rapidly in the gas-liquid, two-phase region.
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This indicates that such an attractive term within the SPHCT equation should
not be relied upon to give accurate predictions below the gas-liquid critical point.
However, the work van Pelt et al. reports the existence of closed-loop regions
in the temperature range T /T, < 1.0, which is exactly the region in which the
attractive term is considered to be invalid. The occurrence of closed-loop regions
for the SPHCT equation at these low temperatures is believed to be a result of the
inverse exponential temperature dependence in the expression for the co-ordination
number [41], rather than a consequence of the true phase behaviour of the system.

A recent study of the topology of the type VI phase diagram attempts to illustrate
which features of an equation of state are important in order for it to be able to
predict the existence of closed-loop regions on the global phase diagram for a model
system [51]. A version of the SAFT equation of state where the repulsive interac-
tions are given by a van der Waals description is used in Ref. [51]. The occurrence
of critical saddle points in the binary liquid-gas critical line are reported to be
responsible for the appearance of both an upper and a lower critical pont on the
phase diagram. The investigation presented in Ref. [32] concludes that type VI be-
haviour can be rationalised for simple, non-directional equations of state, but that
these theoretical findings cannot be considered as being experimentally observable
since they occur for highly un-physical models with un-realistic interactions.

The confusion which currently exists in the literature with respect to the nature
of the interaction potential of an equation of state which is either able or unable
to predict closed-loop immiscibility for a model system provides the motivation
for the work presented in this chapter. Within theoretical descriptions of systems
the most ‘exact’ results are those obtained from computer simulation studies, We
undertake a Gibbs ensemble Monte Carlo (GEMC) simulation study of a model
mixture. The system examined consists of monomeric segments with short-ranged
directional interaction sites, and is shown to exhibit closed-loop immiscibility for
a specific choice of interaction parameters using the SAFT-VR equation of state,
The results obtained from a computer simulation study of this model system can
be presented as substantial evidence that anisotropic interactions are required in
order for a model system to exhibit a closed region of immiscibility. To date no
simulation results have been reported for a specific potential model where both
an upper and a lower critical solution temperature can be observed on the phase
diagram.

In the following section we briefly summarise the SAFT-VR equation of state for
the binary mixture of interest, illustrating the prediction of phase behaviour. The
GEMC simulation technique used to give comparable results is subsequently pre-
sented. Additionally, simulations performed in the semigrand canonical ensemble
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are used to estimate both the upper and lower critical temperatures of the system
using finite-size scaling (FSS) methods.

6.3 SAFT-VR prediction

The phase behaviour of a two-component model mixture consisting of square-well
monomer segments with equal diameter ¢ = 0y; = ;3 = 033, no unlike interac-
tions €12 = 0, and € = £;; = €33 with fixed interaction range A = Aj; = Ay = 1.5,
has been examined previously using the SAFT-VR equation of state in Chapter 4.
By specifying that there is no attraction between unlike components, we induce
the system to phase separate leading to the existence of a large region of liquid-
liquid immiscibility, which is bounded at high temperature by an UCST. Gibbs
ensemble computer simulations for this system have also been reported [53, 54],
where the phase diagrams presented confirm the SAFT-VR prediction in showing
no regions of low-temperature miscibility and no LCST. In order for such a model
to be able to associate at low temperatures a short-ranged square-well interaction
site is placed at an ofl-centred position on each sphere. In order for bonding to
occur between two sites on adjacent particles in the mixture the sites must bein a
specific orientation with respect to one another and are also required to be within a
distance shorter than the range of the site-site interaction. Such constraints mimic
the physical constraints of hydrogen bonding within an experimental system. This
model system has been examined previously [40].

As discussed in Chapter 2 the llelmholtz free energy for a mixture of chain
molecules within the general SAFT-VR approach can be written as a sum of indi-
vidual contributions [55, 50]

A AIDEAL  AMONO. ACHAIN  4ASSOC.

NET - N T TNRT Y AR Y TR (6.2)

The SAFT-VR expressions for the ideal and monomeric contributions to the llelmholtz
free energy for the associating mixture are identical to those presented for the
symmetrical mixture of square-well monomers in Chapter 4. Since the mixture
examined here also only consists of monomer segments, there is no contribution to
the Helmholtz free energy due to chain formation, so that ACHAIN = @,

The contribution to the free energy due to the association mediated by the s; sites
on molecules of species i can be described within the framework of the theory of
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The first sum is over the number of species i in the mixture and the second sum
is over all sites a on a molecule of type i. The fractions of molecules of species 1
not bonded at a particular site a, X, ;, is given by solution of the simultaneous

equations: :
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is specific for each a-b site-site interaction, and incorporates the volume available
for bonding Nqp.,j, and the strength of the association via the Mayer function
Janij = exp(eij/kT) = 1 of the square-well potential. The contact value of the
radial distribution function for the square-well interaction, 5% (a;) is evaluated
within the SAFT-VR approach for mixtures [35, 56 using a first order perturbation
expansion

guw(du) ’q(au) + ﬂ‘ugl(”u) (66)

The contact value of the radial distribution function for the hard-sphere reference
system g”s[a,-,-;cgﬂ] is evaluated at an effective packing fraction ¢¢//, using the
expression of Boublik [58] and Mansoori et al. [39]
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The first order perturbation term, g;(a;;) is obtained from a self-consistent calcu-
lation of the pressure using the Clausius virial theorem, as explained in Chapter
2.
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The components in the mixture are of equal diameter and each sphere only has
one interaction site. Bonding is only permitted between unlike components in the
mixture, i.e., between site @ on component 1 and site b on component 2 when
the two sites are within a distance r.. The expression for the contribution to the
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Helmholtz free energy due to association of Eq. (6.3) thus simplifies to
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—j—v-i_-T—=:n(ln)(a—-i-+;5)+1'2(lﬂXb-—2£+§)' (6.10)

The fractions X, and X} of molecules of species 1 and 2 not bonded at sites a and

b, respectively, are given by
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where
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The volume available for bonding between two sites @ and b which are positioned
at a distance rg from the centre of spheres with diameter & and have an interaction
range r. is given by [40]
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The contact value of the square-well distribution function simplifies to
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[60, 61) with the total and effective packing fractions, respectively

[a.-j;(;”] become the Carnahan and Starling equation

Hsp...q_ 1—=n/2
and
1=-9etl)2
o"S[ay ) = bl (6.18)

=iy

with 5¢/¢ = ¢¢//. The parameterisation for /7 obtained for the pure square-well
fluid in Ref. [55] is used.

The thermodynamic properties of this mixture used in the determination of phase
equilibria are obtained from the expressions for the Helmholtz free energy using
the standard thermodynamic relations given earlier. In the discussion of the pre-



diction of phase behaviour obtained using the SAFT-VR equation of state for this
associating system a number of reduced variables are used. The strength of the site
square-well interaction is reduced with respect to the magnitude of the square-well
interaction of the monomeric segments Eap = €ap/€. The reduced temperatures
and pressures are defined in terms of the van der Waals parameters a, which is
given for the square-well potential by a = —4¢(A3 = 1) and b = 2/3703, The pres-
sure is given by P* = pb?/a = pb/e and the temperature by T* = kTb/a. These
values for the pressure and temperature are also reduced with respect to the critical
pressure and temperatures of the pure component square-well monomer, so that
P, = P*/P? and T, = T*/T;. Where the critical values are P; =0.00792563199
and T7 =0.139942105.

The PT projection for the binary square-well mixture with a site-site interaction
energy of €% = 15 obtained using the SAFT-VR equation of state is shown in
Figure 6.5. The vapour pressure curves of the pure components are represented by
the solid curve, both curves lie on the same line due to the symmetry of the mixture
studied here. The dashed curve which originates at the vapour-liquid critical
point of the pure component and moves to higher pressures and temperatures
represents the gas-liquid critical line. The distinction between gas and liquid phases
is arbitrary at high pressures and temperatures, In this discussion we use the term
gas to describe a phase which has its origins in the vapour phase of the pure
component. This gas-liquid critical line goes through a minimum in temperature
close to the critical point of the pure component. This critical line then moves to
higher pressures, reaching a maximum before ending at a double critical point DCP,
where it connects with the three-phase line. The bold curve which originates at
high pressures is the three-phase line for the mixture, along which two liquid phases
and one gas phase coexist. The three-phase line ends at the double critical point,
which corresponds to the point at which three phases simultaneously vanish. The
dashed curve which extends from the DCP to higher temperatures going through a
minimum in pressure, is the liquid-liquid critical line, This line forms the boundary
of the closed-loop region for this mixture, for pressures between that of the DCP
and of the minimum in the liquid-liquid critical line. In this region the system is
seen to posses two liquid-liquid critical points, the LCST at lower temperatures
and the UCST at higher temperatures. A third critical point is observed at lower
temperatures, where the gas-liquid critical line is crossed.

The effect of varying the strength of the site-site interaction on the phase behaviour
of this model system is shown in Figure 6.6. Decreasing the association strength
from €3, =15 to €5, =14 shrinks the the minimum in the liquid-liquid critical
line, and hence the extent of closed-loop immiscibility exhibited by the system. A

further decrease of the magnitude of the interaction energy to €35 =13 leads to the
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Figure 6.5: Pressure-temperature projection for the binary associating square-
well mixture with a bonding strength of £, = 15 obtained using the SAFT-VR
equation of state. The reduced pressure P, = P*/P; and reduced temperature
T, = T*/T; are defined in terms of the pure component values, given in the text.
The solid curve at low pressures and temperatures corresponds to the vapour-liquid
curve of the pure component, whilst the solid curve at high pressures and tem-
peratures corresponds to the three-phase line of the mixture. The dashed curves
correspond to the critical lines, gas-liquid at low pressures and temperatures, and
liquid-liquid at high pressures and temperatures,
154

2.00



Figure 6.6: Pressure-temperature projection for the binary associating square-well
mixture with a range of bonding strengths of ¢; , =13, 14 and 15 obtained using the
SAFT-VR equation of state, see Figure 6.5 for details. The curves are labelled with
the corresponding value of the site-site interaction energy. Also shown (labelled
vdw) is the equivalent prediction obtained using the SAFT-HS equation of state
given in Ref. [40}.



disappearance of the minimum in the liquid-liquid critical line, so that the three-
phase line meets the gas-liquid and the liquid-liquid critical lines before either
go through a maximum or minimum in pressure. In this case the system only
possesses a single critical point at any given pressure or temperature. Decreasing
the strength of the bonding interaction further, eventually to zero, leads to the gas-
liquid and liquid-liquid critical lines becoming one continuous curve originating
from the vapour-liquid critical point of the pure component. Additionally the
three-phase line curves so that its origins are moved to low temperatures and
pressures. This corresponds to the situation observed for a binary mixture with
no bonding sites in Ref. [40]. Conversely, increasing the strength of the site-site
interaction beyond €3 , =15, leads to the displacement of the DCP and hence the
end of the three-phase line and the origin of the liquid-liquid critical line, to higher
temperatures and pressures, so that the system only exhibits a single critical point,
corresponding to the gas-liquid critical line. The PT projection obtained using the
SAFT-HS equation of state as given in Ref. [40] is also shown in Fig. 6.6, with a
corresponding reduced site-site interaction energy of £7 , =13. It is hence possible
to conclude that use of the SAFT-VR approach to evaluate the mean-attractive
energy and its derivatives, as opposed to treating the attractive interactions at
the van der Waals level, decreases the relative strength of the reduced site-site
interaction € ;.

The eflect of a variation in pressure on the extent of the closed-loop region of
the binary square-well mixture is illustrated in Figure 6.7, via a series of constant
pressure slices of the P'T projection for a system with £3, =15. The symmetry
of the phase diagram about x; =0.5 is a result of the symmetry of the model
system. For a reduced pressure of I, =6.8 the system is secn to be miscible at all
temperatures above T, =1.1, indicating that we are well below the minimum in
pressure of the liquid-liquid critical line. The closed-loop region appears when the
pressure of the system is increased above that of the minimum of the liquid-liquid
critical line to P, =8.2, and a further increase in pressure to I, =9.3 gives rise to
the appearance of the gas+liquid+liquid three-phase line. At higher pressures of
P, =10.4 the three-phase line merges with the low temperature gas-liquid critical
lines, so that the system only possesses a single critical point at these pressures,

The SAFT-VR equation of state can also be used to give information about the
degree of association present in the system at any given temperature, via X,, the
fraction of molecules of component 1 not bonded at site a. An understanding of
the mechanism of closed-loop immiscibility can be hence obtained by consider-
ing the intermolecular association exhibited by the system. The total fraction of
not-bonded molecules are shown as a function of temperature in Figure 6.8, this
corresponds to the temperature-composition slice at pressure P, =10.9 of Fig. 6.7,
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Figure 6.7: Temperature-composition slices of the coexistence region for the sym-
metrical square-well mixture with €7 , = 15 at a series of reduced pressures P, =6.8,
8.2, 9.3 and 10.4, obtained using the SAFT-VR equation of state. The pressure of
the slices increases from left to right and from top to bottom. See Figure 6.5 for

details.
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The degree of association is the same in both components so that X, = Xj, since
bonding is only permitted between unlike species. Hence, the total fraction of
molecules bonded in the coexisting liquid phases is represented by a single solid
line. The extent of association increases rapidly as the temperature of the system
approaches that of the LCST. This confirms that the low temperature miscibility
of the system is observed due to the formation of bonds between unlike compo-
nents in the mixture. The total fraction of molecules bonded at low temperatures
corresponds to the association in the coexisting gas-liquid regions, each of which
have the same fraction of molecules bonded. The degree of association is greater in
the gas phase then in the liquid phase since the composition of the two components
in the gas phase are more similar than those in the liquid phase, which favours
bonding between unlike species.

In summary, the extent of closed-loop immiscibility as predicted by the SAFT-VR
equation of state for a model system of a binary mixture of square-well monomers
with no unlike interactions and with a single bonding site per sphere is governed
by the interplay of several factors. Most importantly, the ability of the system
to associate at low temperatures via directional interaction sites is found to be
responsible for the existence of the closed-loop of immiscibility. An increase in
the relative strength of the site-site interaction initially leads to an increase in
the temperature range of the closed-loop region. A very large site-site interaction
results in the system becoming miscible at all temperatures, at the expense of the
loss of the closed-loop of immiscibility. An increase in pressure similarly leads to
the initial appearance of the closed-loop region, but a large increase in pressure
increases the temperature difference between the LCST and the UCST, until the
LCST merges with the three-phase line, upon which the closed-loop region is lost.

6.4 Gibbs ensemble Monte Carlo simulation results

As has been discussed previously, the Gibbs ensemble Monte Carlo technique was
first introduced in 1987 by Panagiotopoulos [62, 63], and is a highly effective direct
simulation technique used for the determination of phase equilibria in fluid systems.
The method discussed in detail in Chapter 3, consists of a simulation performed in
two distinct regions which are in thermodynamic equilibrium, but not in physical
contact. Three distinct Monte Carlo moves are performed in order to satisfy
the conditions of equilibrium: particle displacements within either subsystem, to
maintain equality of temperature; volume changes of either subsystem, to maintain
equality of pressure; and particle interchanges between the two subsystems, to
maintain equality of chemical potential. As a consequence, the energy E7, volume
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Figure 6.8: Total fraction of molecules bonded in the coexisting phases for the
symmetrical square-well mixture with €7, = 15 at a constant reduced pressure
of P, =8.2 as a function of reduced temperature. The dashed curve corresponds
to the temperature-composition phase diagram for this system at this pressure

(shown in Fig. 6.7).
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V4, and composition z{ = N,-j/Nj of particles of type ¢ in subsystem j vary during
the course of the simulation.

We perform GEMC simulations at constant number of particles, pressure and
temperature (N PT) for the symmetrical square-well mixture with a single off-
centre bonding site per sphere, with interactions defined in the previous section.
We aim to confirm the theoretical results obtained using the SAFT-VR equation of
state, where the addition of a bonding site onto the monomer segments is sufficient
to lead to the appearance of a LCST for the system. Simulations are performed
in cubic boxes, the particles are initially arranged on a face-centred-cubic (fcc)
lattice. The usual periodic boundary conditions and minimum image convention
are used [64]. Initial guesses for the coexisting densities and compositions at each
pressure and temperature state point are made by using the corresponding SAFT-
VR solutions. The chemical potential is evaluated using the Widom test-particle
method as adapted for the Gibbs ensemble {65, 66]. One simulation cycle consists
of N displacements in each box, one volume change for either box, and a specific
number of particle interchanges. The maximum displacement and the maximum
volume change are controlled in order to give corresponding acceptance ratios of
between 30 and 40%, the number of insertions is adjusted so that between 1 and
3% of particles are interchanged each cycle. We use the particle transfer algorithm
originally proposed for mixtures by Panagiotopoulos et al. [63]. Simulations
consisting of systems with N=512, N=1000 and N=1728 particles are performed
at a series of different coexisting pressures, for different strength of the site-site
interaction energy. An initial equilibration simulation of 50,000 cycles is performed
before averaging for between 150,000 and 250,000 cycles.

The reduced thermodynamic variables, temperature, T* = kT /e, pressure P* =
Pa3/e, and site-site interaction energy e}, = £4,/¢ are used in the following
discussion. It is convenient to reduce the pressure and temperature with respect to
the critical point of one of the components, such that T, = T*/T* and P, = P*/ P},
where the subscript ¢ denotes the critical value of a variable. We use the critical
values of T2 = 1.219£ 0.008 and P? = 0.108 £ 0.016 as estimated in Ref. [73] for
the pure-component square-well system with range A = 1.5.

The GEMC results obtained for the mixture of square wells are presented in Ta-
bles 6.2 to 6.12 and the corresponding constant pressure temperature-composition
Tz slices of the coexistence regions are shown in Figures 6.9 to 6.12 and 6.14.

The pressure of P* = 0.756 of Figure 6.9 is approximately seven times the crit-
jcal pressure of the pure square-well system with A = 1.5. The Gibbs ensemble
simulation data with ¢} , = 13 for three system sizes are shown, with a negligible
system size effect. The region of liquid-liquid immiscibility bound by an UCST at
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Figure 6.9: Temperature-composition slice of the coexistence region for the sym-
metrical square-well mixture at a reduced pressure of P* = Pg3/¢ =0.756 with
a bonding interaction of ¢}, = 13. The triangles correspond to the GEMC data
for a system of N=312 particles, the circles to a system of N=1000 particles, and
the squares to a system of N=1728 particles. The continuous, dotted and dashed
curves correspond to the SAFT-VR prediction for the same model with bonding
strengths of €} , =12, 13 and 14, respectively.
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Figure 6.10: Temperature-composition slice of the coexistence region for the sym-
metrical square-well mixture at a reduced pressure of P* = Po3/¢ =1.08 with a
bonding interaction of £;, = 13. The triangles correspond to the GEMC data
for a system of N=>512 particles, the circles to a system of N=1000 particles, and
the squares to a system of N=1728 particles. The continuous, dotted and dashed
curves correspond to the SAFT-VR prediction for the same model with bonding
strengths of ¢ , =13, 14 and 153, respectively.
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high temperatures is clearly shown, together with low temperature regions of gas-
liquid immiscibility below a three-phase line. The curves represent the SAFT-VR
prediction for the equivalent model, with three different strengths of the site-site
interaction energy. For a value of 7 ; = 12 the theory predicts immiscibility of the
system at all temperatures below an USCT, as the site-site interaction is increased
in to €3, = 13 the prediction includes regions of low temperature gas-liquid im-
miscibility, and the three-phase line can be observed at a temperature close to the
critical temperature of the pure component. Increasing the strength of the bonding
interaction further to £ , = 14, leads to a complete change in the nature of the
Tz slice, now the theory predicts a large region of miscibility above two low tem-
perature regions of gas-liquid immiscibility, indicating that increasing the site-site
interaction energy from ¢ , = 13 to €7 , = 14 has resulted in both the formation
and the loss of a region of closed-loop immiscibility at this pressure. The low-
temperature regions of gas-liquid immiscibility obtained from simulation appear
at slightly higher temperatures than those predicted by the SAFT-VR equation of
state for 3 , = 13.

The equivalent temperature-composition Tz slice for a higher pressure of P* =
1.08, which is approximately ten times the critical pressure of the pure component,
is given in Figure 6.10. The simulation results again show a region of liquid-liquid
immiscibility bounded at high temperatures by an UCST, and low temperature
regions of gas-liquid immiscibility. The region of liquid-liquid immiscibility is seen
to be larger than in the lower pressure case of Fig. 6.9, but no closed-loop of
immiscibility is observed. For a site-site interaction energy of €7 , = 13 the SAFT-
VR approach predicts a region of liquid-liquid immiscibility bounded by an UCST
and small regions of low temperature gas-liquid immiscibility below the three phase
line. The SAFT-VR prediction for a site-site interaction energy of ¢; , = 14, the
low temperature, gas-liquid immiscible regions are larger than in the ¢7 , = 13 case,
so that the onset of a closed-loop region can be observed. For an association energy
ofeg, =15 the SAFT-VR equation of state predicts the existence of a small closed-
loop of immiscibility at temperatures between T, = 1.35 and T, = 1.45, together
with low-temperature regions of gas-liquid immiscibility.

At this stage, one can conclude that increasing the pressure from P* = 0.756 to
P* = 1.08 for a system with an interaction energy of €7 , = 13, does not bring about
a sufficient change in the phase diagram of the system, in order for a closed-loop of
immiscibility to be observed by GEMC simulation. An increase in strength of the
bonding interaction, together with a slight increase in pressure, is shown to give
more pleasing results. The temperature-composition slice for a pressure of P* =
1.28 is shown in Figure 6.11. Here, the Gibbs ensemble simulation data is obtained

for a mixture with a site-site interaction energy of £}, = 14.5, for two system
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Figure 6.11: Temperature-composition slice of the coexistence region for the sym-
metrical square-well mixture at a reduced pressure of P* = Po®/¢ =1.28 with a
bonding interaction of €} , = 14.5. The circles correspond to the GEMC data for
a system of N=1000 particles, and the squares to a system of N=1728 particles.
The continuous curve corresponds to the Wegner expansion of Eq. (6.30) which is
fitted to the simulation data and includes a first correction to scaling.

164

1.0



sizes. The region of closed-loop immiscibility can be clearly observed, bounded
at T* ~ 1.56 by a LCST and at T* &~ 1.92 by an UCST. No low-temperature
regions of gas-liquid immiscibility were observed for this system. The curve fitted
through the GEMC results is obtained using a Wegner expansion, using a method
which is described later. As a means of monitoring the association present in the
system, the fraction of molecules bonded is calculated during the simulation. The
extent of association as a function of temperature for the system at a pressure
of P* = 1.28 with ¢}, = 14.5 is shown in Fig. 6.12. The association is again
seen to increase dramatically as the temperature of the system approaches that of
the LCST (cf. Fig. 6.8), indicating that association of the system is responsible
for the low-temperature miscibility. The SAFT-VR predictions at a pressure of
P* = 1.28 with site-site interactions of €5, = 14.5 and &3, = 15 are shown in
Fig 6.13. For g7 ;, = 14.5 the theory predicts a region of liquid-liquid immiscibility
bounded by an UCST and regions of low-temperature gas-liquid immiscibility for
certain compositions at temperatures below the three-phase line. Increasing the
strength of the site-site interaction to €7 , = 15 leads to the prediction of a closed-
loop of immiscibility, which has upper and lower boundaries which are similar to
those obtained using Gibbs ensemble simulation. It is encouraging to observe the
existence of a closed-loop of immiscibility for this system with a single association
site, both by simulation and by using the SAFT-VR equation of state.

A temperature-composition slice obtained at a higher pressure of P*=1.48 by
Gibbs ensemble simulation is shown in Figure 6.14. As for the case of the P*=1.28
slice, the strength of the site-site interaction is fixed at ¢} ;, = 14.5, and the region
of closed-loop immiscibility is clearly observed, with no low-temperature immis-
cible regions. For this higher pressure case the closed loop is bounded at higher
temperatures by an UCST at T* ~2.07 and at low temperatures by a LCST at
T* ~1.47. This indicates that the extent of the closed-loop region has increased
from that of the P* = 1.28 state, which is in line with the theoretical prediction of
the effect of pressure on the closed-loop. The degree of association at this higher
pressure is shown, as a function of temperature in Figure 6.15, the extent of as-
sociation is again seen to increase rapidly at temperatures close to the LCST.
The prediction of SAFT-VR for two different interaction energies 5;,1: = 14.5 and
Eap =19 is shown in Figure 6.16, where the simulation and theoretical results both
predict regions of miscibility for temperatures below the LCST.

These GEMC simulation results confirm the theoretical predictions that the extent
of closed-loop behaviour has a critical dependency on the pressure, temperature,
composition and the strength of the site-site interaction of the model system.
The existence of closed regions of immiscibility for simulations performed for the

model with a specific choice of interaction energy confirms that the existence of
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Figure 6.12: Total fraction of molecules bonded in the symmetrical binary mix-

ture as a function of temperature, obtained using GEMC simulation at a reduced
pressure of P* = Pa3[e =1.28 with a bonding interaction of ¢}, = 14.5. The

dashed curve corresponds to the Wegner expansion of Eq. (6.30) Wthh is fitted to
the simulation data and includes a first correction to scaling.
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Figure 6.13: Temperature-composition slice of the coexistence region for the sym-

metrical square-well mixture at a reduced pressure of P* = Pg3/¢ =1.28 with a
bonding interaction of ¢; y = 14.5. The data points correspond to the GEMC data.
The bold and dashed curves correspond to the SAFT-VR prediction for the same
model with bonding strengths of ¢7 , =14.5 and 15, respectively. See Figure 6.11
for details.
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Figure 6.14: Temperature-composition slice of the coexistence region for the sym-
metrical square-well mixture at a reduced pressure of P* = Po3/¢ =1.48 with a
bonding interaction of ¢; , = 14.5. The squares correspond to the GEMC data for
a system of N=1728 partlc]es The continuous curve corresponds to the Wegner
expansion of Eq. (6.30) which is fitted to the simulation data and includes a first
correction to scaling.
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Figure 6.15: Total fraction of molecules bonded in the symmetrical binary mix-
ture as a function of temperature, obtained using GEMC simulation at a reduced
pressure of P* = Pa3/e =1.48 with a bonding interaction of €35 = 14.5. The
dashed curve corresponds to the Wegner expansion of Eq. (6.30) which is fitted to
the simulation data and includes a first correction to scaling.
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Figure 6.16: Temperature-composition slice of the coexistence region for the sym-

metrical square-well mixture at a reduced pressure of P* = Po3/¢ =1.48 with a
bonding interaction of ¢} , = 14.5. The data points correspond to the GEMC data.

The bold and dashed curves correspond to the SAFT-VR prediction for the same
model with bonding strengths of €7 ; =14.5 and 15, respectively. See Figure 6.14
for details.

" 170



a low temperature region of miscibility is a direct result of the inclusion of the
association sites in the potential model of the system. It is gratifying to observe the
parallels which exist between the results obtained using the SAFT-VR approach
and the Gibbs ensemble simulation technique, especially in their ability to predict
the extent of the region of immiscibility for the model examined. By monitoring
the effect of association in the model system, both using the SAFT-VR approach
and by computer simulation methods the low-temperature miscibility of the system
is confirmed to be a direct result of the formation of directional bonds between
unlike species. Such bonds can be considered to be representative of the hydrogen
bonds which form between components in a real fluid mixture.

Table 6.2: Vapour-liquid coexistence data obtained from NPT Gibbs ensemble
Monte Carlo simulations for a mixture of square-well monomers with a range A =
1.5, and a single interaction site of reduced depth ¢ ,/e = 13. The fixed variables
during the simulation are the number of particles N, the reduced pressure P* =
Po3 /e = 0.756 and the reduced temperature T* = kT /e. The packing fractions 5
and mole fractions z3 in the coexisting vapour and liquid phases are labeled v and
[, respectively; the uncertainties correspond to one standard deviation.

T N My n T T
1.20 1000 0.33540.006 0.316+0.005 0.9321+0.030 0.615+0.031
1.25 1000 0.331+£0.006 0.3131+0.005 0.93240.025 0.643+0.024
1.30 1000 0.316+£0.010 0.295%£0.005 0.9121+0.047 0.65840.047
1.36 1000 0.299+0.006 0.2724+0.007 0.928+0.022 0.611+40.028
1.332 1728 0.308+0.006 0.28310.005 0.929+0.022 0.61710.026
1.34 1728 0.308+0.005 0.283+0.005 0.941+0.016 0.598+0.021
1.35 1728 0.307+£0.005 0.281+£0.008 0.950+0.014 0.592+0.015
1.29 512 0.31710.008 0.2874+0.011 0.929+0.037 0.607+0.051
1.27 512  0.323+0.008 0.296+0.009 0.938+0.031 0.612+0.035
1.25 512 0.32240.008 0.295+0.009 0.93940.023 0.631+0.027

6.5 Critical behaviour and finite-size effects

The existence of both an upper and a lower critical solution temperature in this
particular system allows the study of the differences or the similarities between the
two critical regions. The inadequacy of mean-field equations of state such as the
SAFT-VR approach in the description of the critical region has been discussed pre-
viously. A means of obtaining critical point parameters from computer simulation
data is an alternative approach which gives more satisfactory results. However,
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Table 6.3: Liquid-liquid coexistence data obtained from NPT Gibbs ensemble
Monte Carlo simulations for a mixture of square-well monomers with a single

interaction site of reduced depth ¢} ,/¢ = 13, at a reduced pressure of P*

Po3/e = 0.756 for N =1728 particles. The packing fractions  and mole fractions
z, in the coexisting liquid phases are labeled I; and l;. See Table 6.2 for details.

T#

My

m,

lell

2,0,

1.37
1.375
1.38
1.39
1.40
1.42
1.44
1.46
1.48
1.50
1.52
1.54
1.56
1.58
1.60
1.61

0.27640.009
0.27240.008
0.26310.005
0.278+0.009
0.269+0.008
0.27410.005
0.268+0.005
0.27540.004
0.264£0.006
0.27040.005
0.26710.004
0.26240.003
0.250+0.004
0.246+0.003
0.23840.004
0.246+0.003

0.271+0.007
0.273+0.009
0.265+0.006
0.272+0.006
0.27140.008
0.27510.006
0.27010.007
0.27640.005
0.262+0.005
0.26210.004
0.26710.004
0.260+0.004
0.248+0.004
0.24140.003
0.235+0.004
0.24110.003

0.87510.035
0.84910.045
0.831+0.016
0.915+0.022
0.872+0.033
0.911+0.014
0.895+0.021
0.92510.014
0.91610.016
0.931+0.015
0.92810.011
0.919+0.014
0.905+0.017
0.900+0.014
0.880+0.019
0.906+0.013

0.13940.028
0.14610.048
0.146+0.021
0.111+0.017
0.119+0.033
0.093+0.014
0.09740.021
0.071+0.013
0.09310.014
0.092+0.014
0.073+0.011
0.090+0.016
0.103+0.018
0.123+0.014
0.133+0.019
0.1201+0.014

Table 6.4: Vapour-liquid coexistence data obtained from NPT Gibbs ensemble
Monte Carlo simulations for a mixture of square-well monomers with a single
interaction site of reduced depth ¢} /¢ = 13, at a reduced pressure of P* =

Pa3/e = 1.08 for N =1000 particles. See Table 6.2 for details.

T‘

N

m

I2v

T2

1.465
1.425
1.400
1.360
1.332
1.300
1.250
1.190

0.3134+0.005
0.32040.005
0.31940.005
0.326+0.005
0.335£0.005
0.335+0.006
0.33940.005
0.359£0.004

0.28410.006
0.291+0.006
0.290+0.007
0.30310.005
0.307+0.006
0.313+0.008
0.31810.005
0.34310.005

0.9651+0.011
0.970+0.009
0.964+0.014
0.964+0.015
0.97240.012
0.9651+0.012
0.961+0.013
0.9801+0.006

0.573+0.016
0.56440.015
0.570+0.023
0.58110.019
0.589+40.019
0.589+0.016
0.62040.013
0.58740.009
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Table 6.5: Liquid-liquid coexistence data obtained from NPT Gibbs ensemble
Monte Carlo simulations for a mixture of square-well monomers with a single
interaction site of reduced depth ¢} ,/e = 13, at a reduced pressure of P* =

Po3/e = 1.08 for N =512 particles. See Table 6.2 for details.

Tt

m,

n,

Z2,,4

X210,

1.35
1.40
1.45
1.50
1.55
1.60
1.65
1.70
1.80
1.81

0.33110.009
0.3111£0.008
0.31310.008
0.29410.007
0.303+0.008
0.28840.009
0.281+0.010
0.258+0.012
0.242+0.010
0.2491+0.011

0.32540.008
0.32610.008
0.312+0.008
0.30710.009
0.29510.008
0.285+0.009
0.27240.011
0.269+0.008
0.242+0.009
0.238+0.008

0.973+0.013
0.93810.021
0.97110.013
0.948+0.015
0.973+0.011
0.95840.017
0.95610.019
0.90610.042
0.89110.034
0.9161+0.031

0.038+0.017
0.02210.011
0.03310.012
0.026+0.013
0.045+0.015
0.047+0.018
0.065+0.030
0.05410.018
0.114+0.033
0.135+0.030

Table 6.6: Liquid-liquid coexistence data obtained from NPT Gibbs ensemble
Monte Carlo simulations for a mixture of square-well monomers with a single
interaction site of reduced depth &7 ,/e = 13, at a reduced pressure of P* =

Pa3 /e = 1.08 for N =1728 particles. See Table 6.2 for details.

Tl

n,

nt,

T2,

T2,

1.50
1.75
1.83
1.835
1.84
1.845
1.85
1.855
1.86

0.298+0.011
0.25710.004
0.242+0.004
0.243£0.005
0.23840.005
0.239+0.005
0.233+0.005
0.2311+0.003
0.23310.005

0.29740.008
0.2511+0.003
0.241£0.005
0.240+0.004
0.24240.007
0.23610.004
0.233+0.005
0.232+0.004
0.23240.005

0.95940.015
0.92610.012
0.88510.016
0.889+0.019
0.862+0.024
0.881+0.019
0.853+0.029
0.840+0.024
0.851+£0.023

0.044+0.012
0.094+0.013
0.120+0.019
0.12840.019
0.11410.027
0.140+0.019
0.147+0.025
0.15240.023
0.15140.028
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Table 6.7: Liquid-liquid coexistence data obtained from NPT Gibbs ensemble
Monte Carlo simulations for a mixture of square-well monomers with a single
interaction site of reduced depth ¢} ,/e = 14.5, at a reduced pressure of P* =

Pa3/e = 1.28 for N =1000 particles. See Table 6.2 for details.

Tﬁ

m

i,

a1

Tl

1.64
1.65
1.68
1.70
1.72
1.74
1.75
1.76
1.78
1.80

0.28440.006
0.29240.007
0.28240.007
0.275+0.007
0.27240.007
0.271+0.005
0.2661+0.004
0.26410.006
0.26240.007
0.2621+0.005

0.279+0.006
0.285+0.007
0.277+0.006
0.27310.007
0.27410.010
0.26710.005
0.26610.004
0.261+0.005
0.25710.006
0.26010.004

0.860+0.032
0.886+0.026
0.864+0.027
0.859+0.032
0.85210.032
0.87810.024
0.849+0.027
0.850+0.033
0.854+0.032
0.86040.028

0.177+0.031
0.1761+0.036
0.166+0.025
0.152+0.031
0.131+0.041
0.150+0.024
0.15440.027
0.170+0.029
0.193+0.030
0.15440.029

Table 6.8: Reduced energies per segment E* = E/e and chemical potentials pf

of component ¢ in subsystem j obtained from N PT Gibbs ensemble Monte Carlo
simulations for a mixture of square-well monomers with a single interaction site
of reduced depth ¢; ,/e = 14.5, at a reduced pressure of P* = Po3/e = 1.28 for

N =1000 particles. See Table 6.7 for details.

T E}, Ef, I 12 I 12
1.64 -4.602+0.154 -4.6491+0.155 -0.869 -0.833 -0.867 -0.850
1.65 -4.621+0.148 -4.69410.148 -0.759 -0.741 -0.753 -0.759
1.68 -4.487+£0.173 -4.500%+0.171 -0.793 -0.759 -0.781 -0.770
1.70 -4.34940.156 -4.347+0.169 -0.811 -0.787 -0.827 -0.803
1.72 -4.267£0.150 -4.2574£0.149 -0.761 -0.771 -0.774 -0.800
1.74 -4.1484£0.135 -4.1484+0.135 -0.793 -0.764 -0.783 -0.759
1.75 -4.136£0.148 -4.146+0.138 -0.787 -0.783 -0.770 -0.770
1.76 -4.063+0.154 -4.054£0.151 -0.799 -0.795 -0.798 -0.797
1.78 -3.989£0.151 -3.99240.150 -0.779 -0.761 -0.774 -0.764
1.80 -3.934+0.137 -3.9261+0.144 -0.713 -0.718 -0.718 -0.729
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Table 6.9: Liquid-liquid coexistence data obtained from NPT Gibbs ensemble
Monte Carlo simulations for a mixture of square-well monomers with a single
interaction site of reduced depth ¢} ,/e = 14.5, at a reduced pressure of P* =

Po3 /e = 1.28 for N =1728 particles. See Table 6.2 for details.

Tlt

n,

M,

T2,

2,0,

1.58
1.59
1.60
1.61
1.62
1.63
1.81
1.82
1.83
1.84
1.85
1.86

0.289+0.004
0.289+0.004
0.29140.003
0.292+0.003
0.289+0.004
0.290+0.005
0.25410.004
0.256+0.003
0.25410.003
0.254+0.003
0.2511+0.004
0.24710.005

0.28940.004
0.290+0.003
0.29240.004
0.292+0.003
0.290+0.004
0.290+0.005
0.254+0.004
0.25510.003
0.255+0.003
0.254+0.003
0.24910.004
0.24740.005

0.81010.021
0.8144+0.033
0.8351+0.026
0.860+0.017
0.862+0.020
0.864+0.022
0.827+0.029
0.833+0.028
0.81610.021
0.82410.020
0.81310.029
0.796+0.038

0.195+0.020
0.18540.035
0.159+0.028
0.136+0.017
0.1404+0.023
0.135+0.027
0.177+0.029
0.178+0.030
0.168+0.021
0.169+0.021
0.202+0.028
0.2141+0.037

Table 6.10: Reduced energies per segment E* = E /e and chemical potentials u{
of component 7 in subsystem j obtained from N PT Gibbs ensemble Monte Carlo
simulations for a mixture of square-well monomers with a single interaction site
of reduced depth &} ,/¢ = 14.5, at a reduced pressure of P* = Po’/e = 1.28 for

N =1000 particles. See Table 6.9 for details.

T Ef, El‘, I Ha 51 K2
1.58 -4.962+0.122 -5.020+0.128 -0.870 -0.898 -0.912 -0.922
1.59 -4.939+0.131 -4.948+0.144 -0.881 -0.873 -0.879 -0.874
1.60 -4.866+0.131 -4.863%0.136 --0.872 -0.819 -0.850 -0.863
1.61 -4.777+£0.110 -4.747£0.116 -0.836 -0.797 -0.830 -0.812
1.62 -4.682+0.096 -4.739+0.112 -0.852 -0.842 -0.823 -0.8253
1.63 -4.676+0.114 -4.69410.106 -0.805 -0.812 -0.793 -0.828
1.81 -3.826+0.124 -3.8454+0.117 -0.802 -0.780 -0.754 -0.771
1.82 -3.843+0.120 -3.826%0.112 -0.718 -0.708 -0.723 -0.756
1.83 -3.811+0.102 -3.8034+0.099 -0.720 -0.712 -0.712 -0.698
1.84 -3.77240.105 -3.762+0.108 -0.731 -0.682 -0.710 -0.718
1.85 -3.720+0.118 -3.6961+0.107 -0.711 -0.706 -0.707 -0.715
1.86 -3.647£0.126 -3.658+0.110 -0.708 -0.713 -0.699 -0.695
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Table 6.11: Liquid-liquid coexistence data obtained from N PT Gibbs ensemble
Monte Carlo simulations for a mixture of square-well monomers with a single
interaction site of reduced depth ¢} /¢ = 14.5, at a reduced pressure of P* =

Po3/e = 1.48 for N =1728 particles. See Table 6.2 for details.

T‘

m,

n,

T2l

xzvlz

1.54
1.555
1.56
1.57
1.58
1.59
1.61
1.63
1.65
1.67
1.70
1.73
1.75
1.77
1.79
1.81
1.83
1.85
1.87
1.88
1.89
1.90
1.91
1.92
1.93
1.94
1.95
1.96
1.97
1.98

0.307£0.003
0.3124+0.003
0.306+0.004
0.302+0.003
0.299+0.003
0.29510.004
0.301£0.005
0.29510.006
0.2921+0.003
0.29610.007
0.292+0.005
0.28710.004
0.28610.004
0.28210.004
0.280+0.004
0.2684+0.004
0.264+0.005
0.271+£0.005
0.27210.004
0.269+0.004
0.262+0.004

- 0.26340.003

0.260+0.004
0.255+0.005
0.256+0.004
0.25040.004
0.247+0.003
0.25210.003
0.250+0.004
0.24840.004

0.30510.003
0.31010.003
0.30510.004
0.30310.004
0.30010.004
0.29540.004
0.300+0.004
0.29510.006
0.294+£0.003
0.29210.005
0.289+0.004
0.282+0.003
0.284+0.004
0.27910.003
0.28010.004
0.268+0.004
0.26510.004
0.26510.004
0.268+0.004
0.26410.004
0.258+0.003
0.261+0.003
0.259+0.004
0.25240.003
0.254+0.004
0.249+0.004
0.24840.003
0.25110.004
0.24810.004
0.24640.004

0.808+0.027
0.870+0.015
0.863+0.018
0.83210.021
0.851+0.018
0.82210.025
0.87710.020
0.878+0.014
0.88210.014
0.905+0.016
0.911+0.017
0.90910.014
0.90610.014
0.90110.017
0.895+0.015
0.869+0.018
0.856+0.024
0.88910.024
0.896+0.016
0.891+0.017
0.86740.023
0.871+0.019
0.865+0.019
0.84510.023
0.84410.025
0.818+0.032
0.819+0.027
0.8331+0.023
0.819+0.028
0.811+0.031

0.206+0.025
0.1431+0.015
0.145+£0.019
0.169+0.019
0.1461+0.017
0.177+0.026
0.13610.020
0.12410.015
0.110+0.014
0.125+0.015
0.1221+0.017
0.113+0.015
0.108+0.016
0.119+0.016
0.103+0.014
0.129+0.019
0.137+0.023
0.146+0.020
0.131+0.016
0.145+0.019
0.163+0.021
0.1414+0.020
0.14510.019
0.18710.022
0.1724+0.022
0.193+0.030
0.20640.026
0.17310.024
0.202+0.028
0.210+0.030
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Table 6.12: Reduced energies per segment E* = E/¢ and chemical potentials p]
of component ¢ in subsystem j obtained from NPT Gibbs ensemble Monte Carlo
simulations for a mixture of square-well monomers with a single interaction site
of reduced depth ¢} ,/e = 14.5, at a reduced pressure of P* = Po3/e = 1.28 for

N =1000 particles. See Table 6.11 for details.

T £, £ I H3 M 13
1.54 -5.363£0.122 -5.365£0.142 -0.715 -0.810 -0.736 -0.800
1.555 -5.111£0.101 -5.143+0.106 -0.835 -0.654 -0.721 -0.649
1.56 -5.043£0.108 -5.076+0.102 -0.799 -0.758 -0.801 -0.750
1.57 -5.11240.118 -5.140+0.122 -0.806 -0.783 -0.765 -0.718
1.58 -4.97240.117 -4.971+0.118 -0.803 -0.805 -0.787 -0.813
1.59 -5.015£0.132 -5.014£0.130 -0.821 -0.794 -0.830 -0.819
1.61 -4.841£0.128 -4.881+0.122 -0.679 -0.695 -0.710 -0.705
1.63 -4.706£0.107 -4.716£0.123 -0.751 -0.737 -0.721 -0.763
1.65 -4.61240.109 -4.637£0.102 -0.721 -0.734 -0.694 -0.704
1.67 -4.556+0.103 -4.627+0.094 -0.668 -0.611 -0.672 -0.607
1.70 -4.437£0.101 -4.507£0.112 -0.621 -0.599 -0.624 -0.594
1.73 -4.334£0.091 -4.300£0.089 -0.675 -0.609 -0.633 -0.631
1.75 -4.29740.091 -4.306£0.101 -0.556 -0.556 -0.568 -0.555
1.77 -4.216£0.101 -4.223+0.101 -0.610 -0.561 -0.581 -0.571
1.79 -4.166£0.094 -4.156£0.120 -0.595 -0.548 -0.550 -0.559
1.81 -3.989+0.101 -3.98740.106 -0.623 -0.634 -0.628 -0.610
1.83 -3.918£0.097 -3.929+0.104 -0.635 -0.618 -0.610 -0.640
1.85 -3.953£0.109 -3.870+0.107 -0.560 -0.536 -0.578 -0.545
1.87 -3.92540.105 -3.898£0.100 -0.481 -0.470 -0.481 -0.450
1.88 -3.854£0.096 -3.825+0.109 -0.496 -0.488 -0.505 -0.474
1.89 -3.774£0.099 -3.731£0.107 -0.531 -0.528 -0.559 -0.533
1.90 -3.743£0.003 -3.72040.102 -0.519 -0.508 -0.512 -0.518
1.91 -3.693£0.102 -3.684+0.109 -0.525 -0.516 -0.522 -0.502
1.92 -3.6131£0.110 -3.574+0.103 -0.565 -0.548 -0.550 -0.556
1.93 -3.62240.104 -3.563+0.104 -0.513 -0.513 -0.531 -0.507
1.94 -3.500£0.120 -3.48410.104 -0.545 -0.545 -0.541 -0.544
1.95 -3.410£0.098 -3.393+0.100 -0.565 -0.563 -0.560 -0.573
1.96 -3.467£0.093 -3.476£0.112 -0.494 -0.510 -0.490 -0.489
1.97 -3.4674£0.104 -3.42410.101 -0.483 -0.492 -0.497 -0.483
1.98 -3.39740.109 -3.366£0.117 -0.504 -0.491 -0.496 -0.499
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it is important to understand the differences between the coexistence and critical
regions before such an analysis can be performed. In this section we give a detailed
description of the nature of the critical region in fluids. Two procedures which can
be used to obtain accurate estimates for the critical parameters of model systems
using computer simulation are discused in subsequent sections.

It is known from statistical mechanics that a true phase transition, that is, a
singularity in the free energy of a system, can only occur in the thermodynamic
limit L — oo, where L is the linear system size [67). The free energy surface of
a finite-sized system is regular, it has no singularities., Hence a phase transition
in a finite system is smeared or rounded over a particular temperature region,
the centre of which corresponds to the critical temperature of the finite system,
T.(N). This temperature is shifted from the critical temperature of the infinite
system, Te(00). Various critical exponents such as A, the shift exponent and 6, the
rounding exponent, control the dependence of the critical region on the system size
N, whilst other exponents control the the size dependence of critical properties,
In finite fluid systems the order parameter Az, which can be given in terms of
either density or composition, is defined

Az = Tphasel — Tphase2: (6-19)

In the infinite system limit Az vanishes at the critical point, but for finite system
it obeys the scaling relationship [68]

< |Az| >~ LR, (6.20)

which is controlled by the critical exponents 3 and v. Finite-size effects are impor-
tant in experimental systems, which are homogeneous only for finite-sized regions,
and in computer simulation studies, where small system sizes are used to obtain

the thermodynamic properties of model systems.

In order to understand the nature of the critical region, we must introduce the
correlation length {, of a specific property a. This property a is a well defined
function of the positions r; and the momenta p; of all the ¢ particles, such as an
energy per particle, and is intensive, that is, does not scale with system size. This
correlation length is characteristic of the critical point and is defined [69]

o [[wctigpe:

where < da(0)da(r) > is the spatial correlation function of the property a. This
correlation function becomes < da? > for an infinitesimally small system, i.e.
= 0. As r increases to infinity the correlation function decays to zero since
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< 0a(0) > and < Ja(r) > become uncorrelated, so that < 9a(0)da(r) >—<
da(0) >< da(r) >. Away from the critical point the correlation length (, is small
(only a few molecular units in magnitude). In order to ensure good statistical
sampling, the simulation box size L should be larger than (, for all a properties
studied in the simulation. The continuous nature of the phase transition which
occurs in fluids can be characterised by the divergence of the correlation length and
by the increase of the order parameter to macroscopic dimensions. This divergence
can be used as a means of signaling the approach to criticality of a specific fluid
system. In the vicinity of the critical point the correlation length may hence exceed
the simulation box length, resulting in a shift and a rounding of the singularities
and the discontinuities which characterise critical behaviour in the thermodynamic
limit [70, 69], which in turn lead to finite-size effects. The shift in the phase
transition caused by finite-sized simulation cells is a result of the correlation length
(, only having to reach a value of L in finite systems, to reach critical behaviour,
rather than its divergent value in infinite systems. The rounding of the phase
transition is caused by the partition function of a finite system being analytic,
whereas in the limit L — oo it has the singularities which lead to discontinuous or

divergent properties [69].

The increase of the correlation length beyond the linear dimensions of the simula-
tion box, leads to the critical point of a finite sized system T.(N) usually being an
overestimation of the infinite volume critical point T.(c0). The difference between

T(N) and T() as N — oo is given by [68]
T(N) - To(o0) x NV (6.22)

where d is the spatial dimensionality of the system and v is the correlation length
critical exponent.

Much theoretical interest lies in the accurate determination of the infinite system-
size critical point, as a result of the universal nature of fluids precisely at that
temperature. The most important of the theoretical studies in this area are finite-
size scaling (FSS) techniques [67]. Such techniques have been developed in order
to give an understanding of the relationship between properties obtained for finite
systems and their counterparts in the thermodynamic limit of L — oo. Before
presenting the details of such methods we examine the finite-size dependence of
simulations performed in the Gibbs ensemble. We also illustrate how the GEMC
simulation data for the closed-loop coexistence regions presented in the previous
section can be extrapolated to give initial estimates for the critical parameters
of the system. The results obtained are subsequently compared with equivalent
results obtained using FSS methods.
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6.6 Finite-size effects in the Gibbs ensemble

The large density fluctuations which appear as the critical point is approached
prevent the direct study of the critical region using conventional simulation tech-
niques. Hence, simulations performed in standard ensembles such as the canonical
or the isothermal-isobaric ensembles, give estimates for the critical point of a par-
ticular system which are an overestimate of the infinite system critical temperature,
Te(o0). Conversely, for the Gibbs ensemble it was initially proposed, via a study
of the surface contributions to the free energy in Ref. [71] that values for the criti-
cal point could be obtained which would slightly underestimate T.(cc). The work
of Ref. [71] illustrates that close to but below T(N) no coexistence is observed
in the Gibbs ensemble. At temperatures well below T,(/N) the densities of the
individual phases in the Gibbs ensemble are obtained by sampling the individual
subsystem densities at regular intervals. Closer to T.(N), the subsystems may
continuously change identity from being rich in one of the coexisting densities (or
compositions) to the other. Ilence, in order to obtain an estimate for the density
in one of the two phases it is necessary to construct a probability distribution for
the observed order parameter in a particular subsystem, which samples the density
in both subsystems. This distribution function is not affected when the identity
of the subsystems is interchanged. At low temperatures the surface tension of the
system is high so that the two phases present will not tend to coexist within the
same subsystem. This results in a density distribution function for the overall sys-
tem which has two sharp peaks, representing each of the coexisting phases. As the
temperature of the system increases, the surface tension decreases and becomes
similar in magnitude to the enthalpy of formation of the interface [72]. This leads
to the formation of a third peak on the density distribution function which exists
at a density corresponding to the average overall density of the system. A further
increase in temperature leads to the dominance of the entropic contribution, so
that the central, average density, peak becomes more pronounced. This leads to
the disappearance of the two individual phase density peaks in the probability dis-
tribution at temperatures close to, but below T,(N). The system hence appears
to have undergone a phase transition at a temperature below the critical temper-
ature of the finite system. These theoretical findings are confirmed by simulation
studies of the Lennard-Jones fluid [71]. However, the study of finite-size effects in
the Gibbs ensemble reported in Ref. [68] indicate that no such third central peak
is observed in the probability distribution function for the 2D lattice gas model.
In this case, the double peaked structure of the probability distribution function
merges directly into a single peak at the average system density as the tempera-
ture of the system approaches T(N). It is shown in Ref. [68] that for any model
system, providing that the linear size of the simulation cell, L, is greater than the
correlation function of the density fluctuations (,, the height of the third peak, if
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it occurs, is exponentially smaller than the height of the two peaks corresponding
to the coexisting phases. Additionally, they indicate that in order to study the
density probability distribution function close to the critical temperature, when
L < (4, the finite-size rounding of the interfacial free energy must be accounted
for, a fact which was ignored in the analysis of [71]. It is also important to note
that finite-size effects in lattice models are significantly greater than those observed
for continuum models, such as the Lennard-Jones fluid, hence they may be more
difficult to detect in the latter [72).

Numerous studies of the finite-size dependence of the Gibbs ensemble exist which
report small or negligible finite-size effects; examples include studies of three-
dimensional systems interacting via the square-well potential [73, 54] and [74]
and via the Lennard-Jones potential [62, 71]. Two studies which are a source of
particular interest in this area are the examination of the lattice gas model in 2-D
presented in Ref. [68] and that of the symmetrical square-well mixture with no
association sites given in Ref. [53]. In the work of Ref. [68] a critical tempera-
ture for a finite system of a 10 X 10 lattice is reported which is 20% greater then
the known infinite system critical temperature. However, the simulations reported
in Ref. [68] are performed in the so-called ‘restricted’ Gibbs ensemble, where no
volume exchanges between the two subsystems occur, and the authors concede
that use of the ‘restricted’ Gibbs ensemble for simulation of real fluids could lead
to “a behaviour rather different from the full Gibbs ensemble”. Large finite size
effects for both the two- and the three-dimensional systems are also reported for
the square-well mixture in Ref. [53]. In this case simulations are performed in the
‘restricted’ Gibbs ensemble at constant NVT, so that the density of the system re-
mains constant. The estimated critical temperatures of the finite systems studied
are all significantly greater than the estimated infinite-volume critical temperature
for the square-well system, even for systems of greater than N = 1000 particles.
It is noted in Ref. [34] that the suppression of volume changes (allowed due to
the system’s symmetry) in the version of the Gibbs ensemble used in the work of
Ref. [53] is respousible for this large finite size effect. Since the simulations are
performed at constant density, the additional constraint of not performing any vol-
ume changes leads to the suppression of both the density and volume fluctuations
in the work of Ref. [53]. Such fluctuations are known to influence the properties
of a system as the critical point is approached. By means of illustrating that the
lack of volume change steps does not affect the results of Ref. [53], a system of
N = 3200 particles in 2-D is simulated in the ‘full’ Gibbs ensemble and no signifi-
cant difference is observed hetween the results and those obtained when no volume
changes are performed. This is not surprising due to the large system size studied,
the difference between the two sets of results is expected to increase as the system
size decreases [34]. A similar system size dependence is ohserved in the canonical
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(NVT) ensemble where the system volume is kept constant, lending further evi-
dence to support the idea that the absence of volume fluctuations in simulations
performed at constant density, leads to a large finite size effect. Other results in
Ref. [53], for the pure Lennard-Jones fluid in 3-D, where simulations are performed
in the ‘full’ Gibbs ensemble (where volume changes are performed), show little or
no system size dependence, which is in agreement with the studies of Refs. [62] and
[71). However, a recent study [74] indicates that the system-size effect observed
in Ref. [53] is merely a result of the means by which the equilibrium compositions
are defined. This point will be disussed in greater detail later.

Generally, finite size effects in the Gibbs ensemble are considered to be negligible in
regions away from the critical point, so that simulation data from these regions can
be used as experimental data and lead to an estimate of T.(N') via extrapolation
of a Wegner expansion which includes scaling corrections. This method has been
used successfully to predict the critical parameters of the pure Lennard-Jones
fluid [75), the pure square-well fluid [73], and also for the square-well mixture of
Ref. [54]. Before such a fitting can be performed it is necessary to identify to
which universality class [76] the phase transitions occurring at the UCST and
the LCST belong in the symmetrical associating mixture of interest here. As the
critical point is approached the critical exponent 3 is defined in terms of the critical
temperature of the finite system as, [77]

Az(N) = Bo(N) 'l - (6.23)

T P
|
Here, By(N) is the leading amplitude term. We assume that the phase transitions
occurring at the LCST and at the UCST both belong to the Ising universality
class, so that the critical exponent takes the universal value of 8 = 0.325 in both
cases. The coexistence curve thus has a cubic form in the critical region. Providing
that the correlation length {, remains less than the linear box length L, the value
of B = 0.325 can be assumed to be valid over the entire duration of the simulation.
The cross-over of the value of the critical exponent from universal to mean-field,
where 3 = 0.5, only occurs when the correlation length becomes greater than L
(68]. A value of 3 = 0.5 results in a quadratic coexistence curve close to the critical
point.This type of behaviour has been observed in Gibbs ensemble simulation
studies of a 2-D lattice gas [68] and in a 2-D square-well mixture {53]. A plot of
the square of the order parameter Azx? with temperature in this case, is linear,
whereas in the case where 8 = 0.325, a plot of Az® with temperature is linear.
Simulation studies of the the square-well fluid in 3-D [53] and [74], show no sign of
this cross-over behaviour. This can be explained by considering the relationship
between the dimensionality of the system and the temperature dependence of the
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correlation length,
T -V
T.(N)

The exponent v takes a value of unity in 2-D and of 0.63 in 3-D, so that the correla-

C,,ocll

(6.24)

tion length grows more rapidly with temperature as T — T,(N) in two dimensions
than in three [78]. Hence the cross-over from unijversal to classical (mean-field)
exponents occurs further away from T,(N) in 2-D than in 3-D, making it more
easily observed in simulations of 2-D systems. It is generally agreed that this type
of cross-over behaviour cannot be observed in 3-D systems using regular simulation
techniques [79]. The other critical exponents can hence also be attributed their
universal values, a = 0.11 for the heat capacity, ¥y = 1.24 for the compressibility
on the critical isochore, and é§ = 4.8 for the critical isotherm [80]. Away from the
critical region the power law of Eq. (6.23) fails to accurately describe the shape
of the coexistence curve. It is hence necessary to include corrections to the renor-
malisation group (RG) based scaling laws in order to obtain more accurate results,
Such corrections can be written as an expansion in ¢t = 1 — T/T(N) [80], in a
so-called Wegner expansion [81]

|21 = 2| = Bo|t)P + Bilt|P*ot + BylyfPt3dr (6.25)

where A; is a RG gap exponent, equal to 0.5 in the case studied here, and the B;
terms are the correction amplitudes. This expansion leads to the estimation of the
critical temperature whilst assuming a universal value for the critical exponent. A
similar expansion can be written for the diameter of the coexistence curve [80]

T+ 1)
L"_.z_l = Cc+C]|t|¢+02|t|+03|t'¢+A" +... (6.26)
where (. is the critical composition, the C; terms are the coefficients of the ex-
pansion, and % is an exponent which characterises the anomaly in the diameter of
the curve. These two expansions can be combined to give one expression for the
coexisting compositions

gy =2, + Cilt]¥ + Colt] + Ca|t]¥+41 + ...
1
£ (Boltf + BltP*A + Byt 4% +.L), (6.27)

where z_ and z4 represent the smaller and larger coexistence compositions, re-
spectively. Similar expressions can be written in terms of the coexistence densities.

For the symmetrical square-well mixture studied here this expression can be sim-
plified due to the symmetry of the system. The critical composition is known to
be equal to 0.5, and the non-linear C; coefficients can be disregarded, since the di-
ameter is symmetrical about 0.5. Additionally, only the first correction to scaling
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term Bj is required in order to give an adequate description of the liquid-liquid
coexistence region. Hence the expression for the compositions of the coexisting
phases becomes

zs =05+ Colt] £ %(Bgltlﬁ + Bﬂtl““‘). (6.28)

Assuming values of 8 = 0.325 and A; = 0.5 the above equation can be fitted to the
simulation data using a standard least-squares procedure [82] to give estimates
of the critical temperature. Since the coexistence curves obtained by GEMC sim-
ulation in Figs. 6.11 and 6.14 have two critical points it is possible to use two
such power laws, one to estimate the UCST, and one to estimate the LCST. These
two expressions can be combined to give a complete description of the region of
closed-loop immiscibility. A hyperbolic tangent function of the form:

exp(z) — exp(-z)

tanh(z) = p(@) + exp(=2)

(6.29)

is used as a switching function between the expression for the UCST and that for
the LCST. llence, only the expansion fitted to data close to the UCST is used
above a certain temperature Tyyitch, and the expansion fitted to data close to the
LCST is used at temperatures below this point. The compositions of the coexisting
liquid phases in the closed-loop region are obtained as

xiwp = F(T):L'ZCST + (1 - F(T))ziCST’ (6'30)

where F(T) is given by

F(T) = 5 + 3 tanh(y), (6.31)
" y = L Louitch (6.32)

2/\/.’,

The parameter Ay, controls the steepness of the tanh function. In order to de-
scribe the coexistence curves in Figs. 6.11 and 6.14 we assume Agz =0.1. This
procedure is seen to provide an excellent description of the shape of the closed-loop
of immiscibility at the two pressures in question (see Figs. 6.11 and 6.14). The
estimated critical temperatures, together with the values of the coefficients By, By
and C; are given in Table 6.13 for the temperature-composition slice at a reduced
pressure of P* =1.28 and in Table 6.14 for a pressure of P* =1.48.

As with all ensembles, data obtained in close proximity to the critical point has
to be treated with care, especially in systems of low dimensionality., This is due
to the cross-over from universal to mean-field critical exponents which occurs as
the critical temperature is approached. However, the selection of data which can
be considered far enough away from the critical region to be included in the ex-
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Table 6.13: Estimated critical constants for the symmetrical square-well mixture
with A = 1.5 with a single bonding site of reduced energy ¢}, =14.5 at a re-
duced pressure of P* = 1.28. The errors represent the maximum possible error
which is estimated from the reported errors in the compositions obtained from the
simulation data.

UCST LCST

T*(N) 1.915£0.689 1.557+0.009
Bo 2.3241.85  3.0040.21
By -2.61£3.20  -4.94+0.54
C; 0.067£0.095  0.1740.42

Table 6.14: Estimated critical constants for the symmetrical square-well mixture
with A = 1.5 with a single bonding site of reduced energy £}, =14.5 at a re-
duced pressure of P* = 1.48. The errors represent the maximum possible error
which is estimated from the reported errors in the compositions obtained from the
simulation data.

UCST LCST

T*(N) 2.068+1.038 1.466+0.239
By 2.01+227  2.03+0.89
B, -145#3.01 -1.51%1.12
C, 0.078+0.056 0.051+0.038




trapolation is an arbitrary process. An alternative and more rigorous route to the
estimation of critical point parameters is via finite-size scaling methods.

6.7 Finite-size scaling theory

It is well-known that finite-size effects can lead to serious errors in computer simu-
lation estimates of critical point parameters, and FSS techniques have been devel-
oped in order to overcome such problems [67]. Application of these techniques to
finite systems which are close to criticality, allow the infinite system-size quantities
to be estimated accurately. The basic FSS hypothesis states that for sufficiently
large values of the correlation length {; and of the linear simulation cell L, the
coarse-grained properties of a specific system close to criticality are universal [76]
and only depend on the length scale L and on the appropriate scaling fields. These
fields measure deviations from criticality [81] and are quantities which are specific
to each universality class. Exactly at the critical point the probability distribution
functions of certain observable quantities such as the density or composition, do
not vary with system size: they are said to be scale invariant [83}-[85]. Another
feature of these critical distribution functions, which is central to the FSS analy-
sis, is that they are all identical for systems which belong to the same universality
class, that is, they are universal functions. These concepts of scale invariance
and universality provide the basis of the way in which FSS methods are used to

estimate the infinite volume critical parameters of specific, finite, systems.

It is well known experimentally [86]-[80], theoretically [88, 89], and from computer
simulation studies [90], that simple fluids belong to the Ising universality class.
This enables the matching of the (easily measured) critical distribution function
for the Ising model with those obtained from simulation studies of fluid systems,
due to their universal equivalence. This matching allows the infinite system size
critical properties for fluid systems to be estimated.

Here, we will only give a brief outline of the FSS analysis method; more details
can be found in Ref. [91] (see also Ref. [92] for a review). For the Ising universality
class, the critical point is characterised by two scaling fields: 7 the thermal scaling
field, and & the ordering scaling field. For systems which posses the so-called
particle-hole symmetry, such as the Ising magnet, 7 is the reduced temperature
and h is the reduced magnetic field [67]. Fluid systems have a reduced symmetry
with respect to the Ising model, so that the scaling fields 7 and h take a different
form [93]; they consist of linear combinations of the potential well-depth w and of
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the chemical potential px [91]:
T=we—w+s(pt—pe), h=p—p.+r(w.—w) (6.33)

where s and r are system specific quantities which control the degree of field mixing.
In the case of the Ising model, s = 0 and r = 0. This field mixing does not affect
the universal properties of fluids, it only has an observable effect on non-universal
properties close to criticality. The most familiar effect of field mixing is that of the
failure of the law of rectilinear diameters due to the weak, energy-like singularity
in the coexistence diameters at criticality {94]. Conjugate to the the scaling fields 7
and h there are two scaling operators £ and M [91], which are linear combinations
of the particle density p and the energy density u,

1

1-—sr

M= ﬁ[p -su), €= [u - rp]. (6.34)

M is the ordering operator (conjugate to h) and £ is the energy-like operator
(conjugate to 7). For the Ising model M is simply the magnetisation and € is
the energy density. The symmetry of the square-well system studied here leads to
the simplification of these scaling expressions. The fact that the critical compo-
sition of this system is fixed at 2, = 0.5 together with the symmetrical nature of
the square-well interactions between species, leads to the absence of field mixing,
between the thermal and ordering scaling fields 7 and A in Eq. (6.33). Hence,
the field mixing parameters s and r are zero, and we are effectively examining
the critical behaviour of a system which had an equivalent symmetry to that of
the Ising magnet. In this case, the ordering operator M is equal to the density
(or composition) of the individual species, and the energy-like operator £ is equal
to the energy density. Hence, a study of the distribution of the order parameter
for this system is equivalent to a study of the distribution function of the Ising
magnet, which is considered to be a hallmark of this universality class.

Finite-size scaling methods [91] which are based on the renormalisation group
theories [83], predict that the concentration distribution of the symmetrical square-
well system of linear dimensions L exactly at criticality scales with system size as

Pr(m) = a;} LAY B, (LP!a; 6m), (6.35)

where m = z — 2. and §m = m — m,. a,, is a non-universal scale factor which can
be assigned a specific value in order to ensure the universality of P, (y), which is a
universal function of the scaling variable y = LA/¥a;!6m. Performing simulations
close to the critical points of the symmetrical square-well mixture at a series of
different system sizes should therefore result in universal concentration distribu-
tions at two specific temperatures; corresponding to the UCST and the LCST of
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the infinite system. The observation of these size-independent distributions enable
the accurate estimation of infinite system critical temperatures for this system.
An initial estimate for T,(co) is obtained from the linear relationship between the
critical temperature of the finite system T.(N) and the system size N given in
Eq. (6.22). This relies on the prior estimation of critical temperatures for a series
of finite-size systems. This is achieved using the relationship given in Eq. (6.23).
Such results rely on the successful simulation of the system in regions close enough
to the critical point so that Eq. (6.23) is valid. This in turn relies on the choice of
a suitable ensemble,

The majority of F'SS studies have been implemented in the grand canonical (GC)
ensemble with VT fixed. The main advantage of this ensemble over other common
ensembles is that it allows the total number of particles to fluctuate during the
simulation, via particle insertion steps. This allows the fluctuation in the order
parameter (density or composition) to be observed over the full length scale of the
system itself, hence minimising corrections to scaling. FSS ideas have also been
applied to systems in the canonical ensemble NVT fixed [95, 96]. In this case the
simulation box is divided into sub-sections of length /, within which the density is
allowed to fluctuate. Use of FSS techniques in the canonical ensemble has been
found to be less successful than those in the GC ensemble, which is partly due
to the introduction of an additional length scale ! into the FSS analysis. The
magnitude of this length has to be significantly larger than the individual particle
diameter o, and significantly smaller than the total simulation box length L. This
leads to the situation where prohibitively large simulations are necessary in order
to obtain satisfactory results [92]. A study of the FSS properties of the Lennard-
Jones fluid at constant pressure P, within the isothermal-isobaric (NPT fixed)
ensemble has also been reported [97]. Here, the number of particles is fixed, as in
the canonical ensemble, but the overall density is allowed to fluctuate by means
of volume changes of the simulation box. This leads to complications for the
application of FSS ideas since these are based on the concept of comparing the
correlation length of fluctuations with the linear dimensions (L) of the simulation
box. In the N PT ensemble L is varied during the simulation, however, it has been
shown that the critical scaling distribution functions in the NPT ensemble are
equivalent to those in the GC ensemble [97]. This equivalence can be rationalised
by considering that either ensemble only has one extensive variable, N in the grand
canonical ensemble and V in the isothermal-isobaric ensemble. Other statistical
ensembles, such as the microcanonical (NV E fixed) or the canonical, have different
characteristic scaling functions, which are in turn different to those in the GC
ensemble, since they have two extensive variables; N and V. However, use of the
N PT ensemble is not preferred over the GC ensemble, since in the N PT ensemble,
the correlation time (the time equivalent of the correlation length) is much longer,
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hence making it less efficient. One advantage of the N PT ensemble over the uVT
ensemble, is that no particle insertions have to be performed, so that the NPT
ensemble is favoured in simulations of high density systems.

No method currently exists to implement FSS methods within the Gibbs ensemble,
which is mainly due to the fact that the two subsystems in the Gibbs ensemble
both undergo volume fluctuations during the simulation, so that there is no length
scale which remains constant over the whole course of the simulation. It is only in
simulations of symmetrical fluid systems (such as the square-well system studied
here) or the Ising lattice gas [98], where volume fluctuations can be excluded due
to symmetry, that accurate results can be obtained via a full FSS analysis in the
Gibbs ensemble [92]. Use of the Gibbs ensemble to provide estimates of the critical
point and its associated phenomena is hence currently restricted to extrapolation
of data obtained well away from the critical region itself.

The semigrand canonical ensemble (SGC) [99, 100], described in Chapter 3, is
an ensemble which can be used to obtain data which can be analysed using FSS
methods. The total number of particles N is kept constant, but the concentration
of the individual species is permitted to fluctuate by enforcing that the difference
in chemical potentials Ap = py — p; is kept constant, together with the variables
NVT. The symmetrical square-well mixture with no interaction sites has has
recently been examined using FSS ideas in the SGC ensemble [74]. As a result of
the symmetry of this binary mixture, the SGC ensemble can be used to simulate
two-phase coexistence in a single simulation but by performing the simulation in
a single subsystem. Additionally, as mentioned previously, the symmetry of the
system results in the simplification of the complex FSS expressions involved in the
description of the critical behaviour of the mixture. The combination of a single
box simulation and particle identity changes, lead to the efficiency of simulations in
the SGC ensemble being much higher than that of simulations performed in either
the Gibbs or the GC ensembles. This is advantageous since a full FSS analysis
for a specific model system is very time consuming, for example, in the FSS study
of Ref. [91] the simulations are performed on 4096 distributed array processors
(DAPS) for runs up to 2x10° Monte Carlo cycles.

6.8 Semigrand canonical ensemble simulation results

The binary mixture of square-well molecules with one off-centre bonding site is
examined by simulations performed in the semigrand canonical ensemble at con-
stant AuNVT, where a simulation cycle consists of N trial displacements and
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a fixed number of trial particle identity changes, following the acceptance rules
given Chapter 3. Displacements are performed in such a way to give a 30% to 40%
acceptance rate, and the number of identity changes is controlled so that between
1% and 3% of the particles are given a new identity. A smaller number of iden-
tity changes are required as the critical point of the system is approached. The
strength of the site-site interaction energy is fixed at €3, =14.5 and simulations
are performed at a constant packing fraction of 7 =0.287 and 5 =0.247, which cor-
respond to the packing fractions of the UCST and the LCST, respectively, of the
P* =1.28 closed-loop GEMC simulations reported in the previous section (cf. Fig
6.11). Simulations are performed for systems with N=108, 256 and 864 particles,
for a range of temperatures at both densities.

For the symmetrical square-well mixture it is possible to guarantee equilibrium be-
tween a single liquid phase and its symmetrical counterpart by fixing Au® = 0 [74].
Hence the two coexisting phases need not be simulated individually., The liquid-
liquid phase equilibria of a system with equivalent symmetry can be therefore be
obtained by fixing Au® = 0 at constant NVT in the semigrand canonical ensem-
ble, and allowing composition fluctuations to occur by performing identity changes.
For the square-well system studied here, simulation of the region of liquid-liquid
coexistence between the upper and the lower critical solution temperatures will
yield equilibrium compositions of the individual phases. As a result of the ability
of the simulation box to change identity during the simulation, from being rich in
component 1 to being rich in component 2, it is necessary to use histograms to
monitor the relative frequency at which specific compositions of either component
appear in the distribution function. Away from the critical region, the histograms
are singly peaked, since the simulation samples either phase a, rich in component
1, or phase b, rich in component 2. As the critical region is approached the his-
tograms are double peaked, indicating that the system is sampling both coexisting
phases. Above the critical temperature, for the UCST, below for the LCST, the
histograms display a broad peak centred at the critical composition. This varia-
tion in the shape of the concentration distribution functions with temperature is
shown in Figure 6.17 for simulations performed at 7 =0.287, and in Figure 6.18 for
the simulations performed at 7 =0.247. The average concentration of species i in
each phase is given by an average over the distribution function, Z = ¥~z Py(z).
When the histograms exhibit two peaks, the total histogram may be approximated
by Pn(z) ~ P%(z) + Pf(z), where P}(z) is the concentration distribution of a
component in phase a, and P} (z) is the distribution in phase b. In this case the
average concentration of species i in each phase can be written as a sum over the
corresponding distribution function,

2* =) aPy(z), =) zP}(2), (6.36)
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Figure 6.17: Concentration distribution functions Py(z) of a component in the
symmetrical square-well mixture with &3 , = 14.5. Simulations are performed in
the semigrand ensemble at a constant packing fraction of 5 =0.287 with N =864
particles. The curves are labelled with the corresponding values of the reduced tem-
peratures T* = kT/¢. The estimated UCST for this finite system is Ty (V) =2.382.
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Figure 6.18: Concentration distribution functions Py(z) of a component in the
symmetrical square-well mixture with ¢3 , = 14.5. Simulations are performed in
the semigrand ensemble at a constant packing fraction of 5 =0.247 with N =864
particles. The curves are labelled with the corresponding values of the reduced tem-
peratures T* = kT /c. The estimated LCST for this finite system is T*(N) =1.570.
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where P%(z) and P}(z) are normalised to unity. Due to symmetry, £* = 1 — z°,

The importance of correctly identifying the equilibrium value z.4 of the concentra-
tion of a given species with the average value of z taken over the whole distribution
function Z, as in Eq. (6.36), rather than with the most probable value is discussed
in Ref. [74). The assumption that the concentration distribution functions can be
approximated by symmetrical Gaussians in regions close to the critical temperature
of the system, as used in Ref. [53] is found to be invalid. The large finite-size effect
observed in the critical temperatures estimated for the symmetrical square-well
system in the work of Ref. [53] are explained in terms of the use of this incorrect
assumption in Ref. [74].

The effect of varying the system size on the form of the composition distribution
function for the simulations performed at a packing fraction of  =0.287 is shown
in Figure 6.19, at a temperature well below that of the UCST. The curves are seen
to become more asymmetric as the system size decreases. A similar comparison
is made in Figure 6.20, now at a temperature close to the estimated UCST. Here
the distributions are asymmetric for all system sizes and the peak heights are seen
to approach the thermodynamic limit of £ =0.5 as the system size increases. The
equivalent curves for the system at a packing fraction of 5 =0.247, away from the
LCST and close to the LCST are given in Figures 6.21 and 6.22, respectively. In
this case, the trends exhibited by the curves are not as clear as those for the UCST,
nevertheless the shift of the maxima of the distributions to the thermodynamic
limit as the system size increases can be observed.

In this work we follow the methodology of Ref. [74], and fit the doubly-peaked
concentration distribution functions to two asymmetric Gaussians [82], in order to
obtain . We assume that the distribution function Py(z) can be written as a
sum Py(z) = P%(z) + P}(z), where

Al exp[—-A.a(z — 5;6)2], if:t < jl’
P'l = 1 2 .
n(T) { % exp[— Al(z — 1—,a)2], ifz > 30 (6.37)
Aleap[-Ay(x - )], ifz < 2"
Pb = 1 2 ’ 6.
) { Abezp[-A(z - 24)?), ifz > 2 (6.38)

For sufficiently large system sizes the asymmetry coeflicients A{ become equal in
each phase, since the Gaussians become symmetrical as the system size increases,
so that A3 = A} and AS = A3, A typical fit to one of the doubly-peaked con-
centration distributions is shown in Figure 6.23. The values obtained for the
equilibrium compositions Z using this fitting procedure are given in Table 6.15, for
three system sizes of N =108, 256 and 864 particles for the simulations performed
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N=864

Figure 6.19: Effect of a variation in system size on the concentration distribution
function Py(z) for a component in the symmetrical square-well mixture with Eap =
14.5 at a a constant packing fraction of 1 =0.287, at a reduced temperature of
T* = kT/e =1.80, which is well below the estimated UCST for the system. The
dashed curve corresponds to simulations of N =108 particles, the dotted curve
to simulations of N =256 particles and the bold curve to simulations of N =864
particles.
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N=864

Figure 6.20: Effect of a variation in system size on the concentration distribution
function Py(z) for a component in the symmetrical square-well mixture with ¢} , =
14.5 at a a constant packing fraction of 7 =0.287, at a reduced temperatu;é of
T* = kT /e =2.30, which is close to the estimated UCST for the finite, N =864
system. The dashed curve corresponds to simulations of N =108 particles, the
dotted curve to simulations of N =256 particles and the bold curve to simulations
of N =864 particles.
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Figure 6.21: Effect of a variation in system size on the concentration distribution
function Pn(z)for a component in the symmetrical square-well mixture with ¢* o=
14.5 at a a constant packing fraction of 7 =0.247, at a reduced tempera.ture of
T* = kT /e =1.68, which is well below the estimated LCST for the system. The
dashed curve corresponds to simulations of N =108 particles, the dotted curve
to simulations of N =256 particles and the bold curve to simulations of N =864
particles.
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Figure 6.22: Effect of a variation in system size on the concentration distribution
function Py(z) for a component in the symmetrical square-well mixture with 7 | =
14.5 at a a constant packing fraction of 7 =0.247, at a reduced temperature of
T* = kT /e =1.60, which is close to the estimated LCST for the finite, N =864
system. The dashed curve corresponds to simulations of N =108 particles, the
dotted curve to simulations of N =256 particles and the bold curve to simulations
of N =864 particles.
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Figure 6.23: Typical fit of the composition distribution function Py(z) obtained
from simulation (dotted curve) to the sum of two asymmetric Gaussians (bold
curve). The simulation is performed at a constant packing fraction of 7 =0.287 at
a reduced temperature T* = kT /e =2.35 for a system of N =256 particles.
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at 7 =0.287. The equivalent values for the simulations performed at a packing
fraction of  =0.247 are given in Table 6.16.

Table 6.15: Liquid-liquid coexistence data obtained from semigrand canonical
ensemble simulations at constant packing fraction # =0.287 for the symmetri-
cal square-well system with A =1.5 and with a single interaction site of depth
€3 5 =14.5. The data for the concentration of component 1 were obtained as aver-
ages over the distribution function for three different system sizes. Due to symme-
try the composition of component 2 is given by 1 — z. The reduced temperature
is defined as T* = kT /e.

T* z(N =108) z(N =256) z(N =864)

2.35 0.314 0.282 0.234
2.30 0.259 0.293 0.313
2.25 0.239 0.268 0.276
2.20 0.230 0.238 0.253
2.15 0.210 0.217 0.231
2.10 0.194 0.202 0.216
2.00 0.183 0.188 0.203
1.90 0.188 0.195 0.201

Table 6.16: Liquid-liquid coexistence data obtained from semigrand canonical
ensemble simulations at constant packing fraction 5 =0.247 for the symmetri-
cal square-well system with A =1.5 and with a single interaction site of depth
g3 5 =14.5. See Table 6.15 for details.

T* z(N=108) z(N=256) z(N =864)

1.58 - - 0.294
1.60 0.199 0.218 0.211
1.62 0.157 0.153 0.177
1.64 0.133 0.144 0.146
1.66 0.120 0.126 0.140
1.68 0.108 0.117 0.118
1.70 0.096 0.108 0.082

These values of the equilibrium compositions can be used to give an estimate of
the respective critical temperature for each system size at a fixed packing fraction.
This is achieved by assuming the linear relationship between temperature and the
order parameter given in Eq. (6.23) and fixing 8 = 0.325. The estimates of T;(N)
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obtained by this mechanism can, in turn be used to estimate the value of T(o0) for
both the LCST and UCST of the symmetrical square-well system. In this case, the
shift of the infinite system critical point is given by the linear relationship between
T.(N) and the size of the system given in Eq. (6.22). The dimensionality of the
system is given as d =3 and the correlation length critical exponent is assumed to
take the value v =0.63. The estimated critical temperature for each of the system
sizes are given in Table 6.17 for both the UCST and the LCST.

Table 6.17: Estimations for the critical temperatures obtained from the semi-
grand ensemble simulation data at a constant packing fraction of 7 =0.287 (for
the UCST), and 1 =0.247 (for the LCST). T.(N) is the estimated critical temper-
ature of a system of N particles, obtained by extrapolation of Eq. (6.23) assuming
a value of 3 =0.325, The infinite system-size critical point is obtained by extrap-
olation of Eq. (6.22), see text for details.

N T*(N)UCST T*(N)LCST

108 2.523 1.528
256 2.451 1.549
864 2.382 1.570

00 2.314 1.590

In order to check the validity of the estimations of T,(o0) for the upper and lower
critical solution temperatufes, we turn to the finite-size scaling analysis described
earlier. The order parameter distribution function exactly at criticality for a sys-
tem belonging to the Ising universality class is known not to scale with system
size. The form of the distribution function is given in Eq. (6.35). Simulations
are therefore also performed for the three system sizes at the estimated infinite
system-size critical temperature of T* =2.31 with a packing fraction of 7 =0.287,
The resulting concentration distribution functions are plotted in Figure 6.24 in
terms of the scaling variable y = LA/Ya-16m, where the non-universal scaling fac-
tor a;;! is chosen so that each of the distribution functions has unit variance. The
fact that the individual functions for each system size lie on the same curves is an
indication that the estimate of T.(oo) for the UCST is consistent with the results
of a finite-size scaling analysis. This estimate of the critical temperature is signif-
icantly greater than that obtained by the Wegner fitting using a first correction
to scaling term, where T (/N) =1.915, however the estimate does fall within the
error bars of the fitted critical temperature. Similarly, simulations are performed
at the estimated infinite system-size critical temperature of T* =1.59 for the sys-
tem with a packing fraction of 5 =0.247. The distributions obtained are plotted
as a function of the scaling variable y in Figure 6.25, and in this case the universal
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Figure 6.24: Scaled composition distribution function Py(y) at the estimated
infinite system-size UCST of T* =2.31 plotted in terms of the scaling variable
y = a3} LP/*6m. The distributions for each system size (N =108-dashed, N =256-
dotted and N =864-bold) are obtained in the semigrand canonical ensemble at a
constant packing fraction of 5 =0.287,

201

2.5



0.8

0.6+

P(y)
0.4

0.2+

OoO L LI ! | 1 1 Ll I 1
-25 -20 -15 -10 -05 00 05 1.0 15 2.0 25

Yy

Figure 6.25: Scaled composition distribution function Py(y) at the estimated
infinite system-size LCST of T* =1.59 plotted in terms of the scaling variable
Y= a;} LA/v§m. The distributions for each system size (N =108-dashed, N =256-
dotted and N =864-bold) are obtained in the semigrand canonical ensemble at a
constant packing fraction of 1 =0.247.
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nature of the curves for each system size is not so clear. It is expected that bet-
ter agreement will be observed after completing longer simulations. However, the
agreement between this FSS estimate of the LCST and that obtained using the
Wegner expansion with a first correction to scaling, T*(N) =1.557, is much better

than that of the UCST.

6.9 Conclusions

This chapter has formed a case study of the phenomenon of closed-loop immisci-
bility in mixtures. A specific model system is examined using both a theoretical
equation of state and computer simulation methods. The SAFT-VR approach is
seen to predict re-entrant miscibility for a range of pressures and temperatures; the
extent of which also depends on the strength of the site-site interaction potential,
We present the first simulation results which display a closed-loop region of liquid-
liquid immiscibility for a specific model system. The Gibbs ensemble simulation
results are shown to have a dependency similar to the SAFT-VR prediction on the
pressure, temperature and the strength of the association energy of the system.
The closed-loop of immiscibility for this system only exists for a narrow range of
temperatures at specific pressures and at a relatively large value of the site-site
interaction energy. The existence of both an UCST and a LCST for this model
system in results obtained by computer simulation confirms that the short-ranged
directional interaction site which is responsible for the low-temperature miscibility
of the system. Previous GEMC simulation studies of square-well mixture with no
association sites [53, 54] and [74], only report regions of liquid-liquid immiscibility
below an UCST with no low temperature features on the phase diagram of the
system. An examination of the extent of association present in the system, using
both the SAFT-VR equation of state and the simulation results, indicates that
the amount of inter-molecular association increases dramatically as the tempera-
ture of the system approaches that of the LCST. This endorses the idea that the
low-temperature miscibility is a direct result of the bonding which occurs at low
temperatures between unlike species in the mixture. The experimental observation
of closed regions of immiscibility only in systems which have the ability to form
hydrogen bonds between unlike components adds to the validity of our findings. As
a general conclusion it is possible to state that any theoretical approach which in-
tends to predict closed-loop immiscibility, must include a directional, temperature
dependent interaction in order to give physically reasonable results.

Additionally, simulations performed in the semigrand canonical ensemble are used
to estimate the finite system critical temperatures at both the UCST and the
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LCST. These estimates are found to differ from those obtained by a Wegner ex-
pansion which includes corrections to scaling. These finite system values can be
used to estimate the infinite system critical temperature. The validity of these
estimates are confirmed by the use of finite-size scaling methods. Further work
in this area is required in order to obtain a complete description of the critical
behaviour of the system in the vicinity of the LCST.
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Chapter 7

Concluding Remarks

The ultimate aim of theoretical studies of the liquid state is to obtain an under-
standing of the interactions which govern the phase behaviour in real systems. In
this work we illustrate how the phase behaviour of even simple model mixtures
can be made surprisingly complex by varying the size, the chain length and the
nature of the intermolecular interactions of the system.

Specifically, we have examined the mixing rules involved in the application of
the SAFT-VR equation of state to mixtures. The vapour-liquid and liquid-liquid
coexistence regions of a series of model mixtures have been investigated using the
SAFT-VR approach. The predictions obtained are seen to compare favourably
with corresponding molecular simulation results. The extension of the SAFT-
VR methodology to incorporate systems which interact via soft-core potentials is
presented. The proposed recipe is shown to give an accurate description of chain
molecules interacting with the Lennard-Jones potential.

The effect of the addition of an anisotropic interaction site, which mimics hydro-
gen bonding in real systems, on the phase diagram of a specific model system is
carefully monitored. For a specific association strength the SAFT-VR equation of
state predicts that the system exhibits a region of low-temperature miscibility, a
finding which is confirmed by a computer simulation study performed for the same
model system. This re-entrant phase behaviour is a phenomenon which is exhib-
ited experimentally for a range of aqueous solutions of many organic molecules,
such as alcohols and surfactants. It is satisfying that a simple model system, con-
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taining the essential physical features of the experimental systems can be used
within a theoretical approach to give a qualitative representation of this kind of
novel phase behaviour. Accurate results have been reported for mixtures of alka-
nes, perfluoroalkanes, refrigerants, alcohols and the more complex polyoxyethylene

surfactants.

An advantage of a molecular based approach such as the SAFT-VR equation of
state is that it can be easily applied to a range of model systems of various diame-
ters, chain length and number of associating sites. Additionally, the non-conformal
properties of the model can be accounted for in the approach, since the range of
the interaction potential can be used as a variable. Hence, the application of the
SAFT-VR methodology to more realistic model systems than those considered is
a straightforward process. The phase behaviour of mixtures of real systems using
the SAFT-VR approach (and the simpler SAFT-HS version) is currently a source
of interest both theoretically and industrially.

As a closing statement, it is important to note that the work presented here is
by no means an exhaustive study of the phase behaviour of these type of model
systems. Routes of future research include the study of multicomponent systems,
simulation studies of more complex models and the study of systems with long-
range interactions such as electrolytes.

211



