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Abstract 

The phase behaviour and thermodynamic properties of simple model mixtures 

are examined using the statistical associating fluid theory as extended to chain 

molecules interacting with potentials of variable range (SAFT-VR), and by com­

puter simulation. The SAFT-VR approach is based on an accurate and compact 

representation of the free energy of chain molecules. We present the SA FT -VR 

methodology as applied to mixtures of non-conformal molecules. A series of mix­

ing rules are presented, beginning with the van der Waals one-fluid prescription 

and including more complex treatments. The vapour-liquid equilibria of a mix­

ture consisting of hard spheres and square-well monomers is examined with the 

SAFT-VR equation of state, together with the liquid-liquid equilibria of a sym­

metrical square-well mixture with no unlike interactions. Additionally, we examine 

the vapour-liquid equilibria of a square-well monomer-dimer mixture, composed of 

equal-sized segments, both with the SAFT-VR approach and by Gibbs ensemble 

Monte Carlo simulation. The simulation data are used to determine the vapour­

liquid critical line of the mixture. An extension of the SAFT-VR approach to 

describe the phase behaviour of chain molecules interacting with a soft repulsive 

potential and an attractive well of variable range is presented. We focus on the 

vapour-liquid properties of Lennard-Jones chains using a simple recipe for the eval­

uation of the chain free energy. We also perform a case study for a specific class 

of phase equilibria exhibited by binary mixtures, where systems are seen to posses 

a region of closed-loop immiscibility in their phase diagrams. We examine the 

nature of this type of pl1ase behaviour using the SA FT· VR equation of state and 

Gibbs ensemble simulation for a simple model system with an anisotropic bond­

ing site, which is seen to be the governing factor in the appearance of the region 

of low-temperature miscibility for this system. The model is chosen in order to 

mimic the physical features of real systems which exhibit this type of re-entrant 

phase behaviour. The critical regions of this model are examined using a finite-size 

scaling analysis performed in the semigrand canonical ensemble. 
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Chapter 1 

Introduction 

One of the central concepts in the structure of physical science is the development 

of a theory for a particular model system. This general model is required to contain 

all the essential features of real substances and must also be simple enough to be 

examined within a theoretical framework. The theoretical prediction obtained can 

be compared with known experimental observations for the system. If the model 

proves to be successful it can be subsequently made more complete by including 

additional features of the real system. Familiar examples of such an approach 

include the kinetic model of gases, the nuclear model of atoms, and the ideal gas 

model which is used to describe the low-density gas phase of matter. We focus our 

attention here on the development of a theory to describe the liquid state using 

simplistic models. 

The liquid state is that phase of matter which exists at pressures and temperatures 
bounded by the fusion curve and the vapour-pressure curve on the phase diagram 

of a pure substance. The well-known characteristics of the liquid state are that it 

is able to take the form of the container in which it is placed, as does the vapour 

phase, but the internal structure of a liquid is such that it has a higher degree 

of order than a vapour. This order is however not as long-ranged as the order 

observed in the structure of a solid phase. At high pressures and temperatures, 

above the vapour-liquid critical point, it is impossible to distinguish between the 

vapour and the liquid phases, so that it is common to refer to a single fluid phase 

at these conditions in phase behaviour studies. 

As a result of the vast number of liquids encountered in everyday life, the study of 

the liquid state has been a source of interest to scientists for centuries. Currently 
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we have a general understanding of the interactions which govern the existence of 

such a phase of matter. Much of the present interest in the study of liquids exists 

due to the complexity of phase behaviour exhibited by liquids and their mixtures, 

and by the possibility of obtaining a theoretical description of the interactions 

responsible for such behaviour. A topical example is the liquid crystalline state, 

which exists as an intermediate state between a liquid and a solid, and displays an 

array of beautiful and interesting phase behaviour. Other diverse systems which 

are also being examined using theories of fluids are colloids, polymer solutions 

and complex biological molecules such as proteins and membranes. The study of 

liquids is obviously not limited to theoretical approaches. Most chemical processes 
are dominated by the interplay of the phases of matter, so that an understanding 

. of the intermolecular interactions which govern phase coexistence and transitions 

between phases is vitally important to the experimentalist, regardless of the scale 

of the process in question. 

The theoretical examination of a model system with a given interaction potential 

to obtain a prediction of the phase behaviour of real fluids which is valid over the 

entire range of pressure, temperature and density, was a concept first introduced in 

1873 by van der Waals [1]. Here, an equation of state is proposed which is able to 

predict the existence of two fluid phases in a given model system. The deviations 

from ideality observed in real fluids are considered in terms of the structure of the 

system and of the intermolecular interactions present which are controlled by two 

coefficients. Molecules are considered as impenetrable hard spheres, so that the 

overall volume is reduced by the excluded volume of the spheres. The reduction of 

the pressure of the system is described in terms of the attractive interactions, which 

are responsible for reducing the frequency and the number of collisions between 

molecules in the fluid. An adjustment of the two parameters in the van def Waals 

equation enahles us to predict the phase behaviour of fluids which is surprisingly 

acceptable given the simplicity of the model used. An important feature of the 

van der Waals equation of state is that it can be written in terms of a first order 

perturbation expansion of the free energy about a hard-sphere reference system 

[2, 3], thus incorporating the essential ideas of modern perturbation theory. 

In this work we outline a particular route which can give a theoretical descrip­

tion of the fluid-phase behaviour of specific model systems by using both existing 

theories and certain new developments. This methodology can be used in turn to 

predict the phase behaviour of real systems over ranges of pressures and tempera­

tures, some of which are difficult to examine experimentally. We also illustrate the 

value of molecular simulation techniques within a theoretical study of the phase 

behaviour of fluids. We pay particular attention to the use of perturbation theory 

in the theoretical description of the liquid state. Such an approach is valid since 
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it is well known experimentally that intermolecular repulsions between molecules 

in the fluid dominate the thermodynamic properties of the system. Hence, the 

attractive interactions are much less significant and can therefore be represented 

by a perturbation to a repulsive system in a theoretical description. A successful 

perturbation theory relies upon a relationship between the property of the fluid 

in question and a known property of the reference system. The simplest of such 

reference systems is that of a hard-sphere fluid, which has an interaction potential 

which is zero for intermolecular separations greater than the hard-core diameter 

and is infini te at separations smaller than the contact diameter of two spheres. The 

nature of the hard-sphere interaction is known from computer simulation studies 

to give rise to two states for such a system: a solid phase at high densities, and 

a fluid phase at lower densities. A sound theoretical knowledge of the properties 

of the hard-sphere fluid was first formulated in 1958 when Percus and Yevick [4] 

proposed an accurate equation of state from which the pressure and structure of 

the system could be obtained. This information was subsequently incorporated 

into the earlier work of Zwanzig [5, 6], where the formal expressions of modern 

perturbation theories are introduced. Within such a representation the change in 

physical properties resulting from the addition of an attractive interaction to a 

hard-sphere system are given in terms of a Taylor expansion of the Helmholtz free 

energy of the total system. 

A solution of a perturbation expansion of the Helmholtz free energy can be ob­

tained via expressions which are written in terms of known thermodynamic or 

structural properties of the reference system. Expressions for the first- and second­

order perturbation terms in the free energy expansion in terms of the distribution 

functions of the hard-sphere fluid are first proposed in the work of Zwanzig [5]. An 

important advantage of this approach is that expressions for higher-order terms in 

the expansion can be obtained, however these higher terms contain higher-body 

distribution functions which are unknown, even for the hard-sphere system. 

An accurate route to the first- and second-order contributions to the free energy of 

a fluid can he ohtained using a method proposed by Barker and Henderson [7, 8] 

which involves an expansion which can be evaluated using known values of specific 

quantities for the hard-sphere reference system. The expansion is written in the in­

verse of temperature so that the series is rapidly convergent at high temperatures. 

The first-order term consists of an integral over the known hard-sphere radial dis­

tribution fUllction for a system interacting via a pair-wise additive potential (e.g., 

see McQuarrie [9]). However, the expression for the second-order perturbation 

term includes the unknown three- and four-body distribution functions. Within 

the Barker and Henderson theory, two different approximations can be used to 

evaluate the second-order contribution, the macroscopic and local compressibility 
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approximations, MCA and LCA. Both these approaches can also be used to obtain 

values for the higher-order perturbative terms using fluctuation theory [10]. The 

LCA, where the compressibility is written in terms of the pressure derivative of 

the density at a particular distance from a given molecule, is found to give more 

accurate results than the MCA for the second-order term at low densities, but 

both metllOds fail to give a good description at high densities [7, 8]. An extension 

of the LCA to include higher-order terms in the expansion of the Helmholtz free 

energy illustrates that such terms do not give a significant contribution to the free 

energy, except at very low temperatures [11]. Additionally, a semi-empirical rep­

resentation of these terms used to reproduce computer simulation results indicates 

that the first- and second-order terms give the the most significant contribution to 

the free energy [12]. 

A natural extension to these perturbation theories for hard-core potentials is 

their possible application to systems with more realistic interactions such as the 

Lennard-Jones potential, where the repulsive region of the potential is 'softer' than 

in the case of the hard-core systems. Introduction of this kind of potential into the 

perturbation approach of Zwanzig is not trivial since in this case, the diameter of 

the system is no longer fixed. Three different approaches exist, where a diameter 

for the reference system is defined differently in each case. This diameter is then 

incorporated into the definition of the equation of state for the reference system. 

The simplest of these methods is that proposed by Barker and Henderson [13, 14] 

where the system diameter depends only on the temperature of the system. The 

variational theory of Mansoori and Canfield (15]-[19] and the Weeks, Chandler and 

Anderson theory [20,21], both propose reference system diameters which are tem­

perature and density dependent. This dual dependence restricts their application 

to the description of mixtures due to the complex nature of the perturbation ex­

pressions when the diameter has a compositional dependence. The success of these 

soft-core approaches in obtaining a description of real systems is illustrated by the 

agreement between the melting curve of Argon obtained using the perturbation 

approaches of Darker and Henderson [22] and of Mansoori and Canfield [16] with 

the experimental results. 

The nature of perturbation theories requires that the interaction potential of the 

model system in question must be known exactly. The pair potential for a specific 

system can be evaluated using ab initio quantum mechanics (see Ref. [23] for a 

review), bu t the complexity of such a calculation increases rapidly with the number 

of electrons in the system, becoming prohibitively slow even for small molecules, 

despite the available computer power. Hence it is currently impossible to use 

perturbation theories to obtain the thermodynamic properties of real systems, so 

that alternative routes must be found. These involve either the specification of 
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a model intermolecular potential which can be used within perturbation theories, 

and other related mathematical approaches, or by the construction of empirical 

correlations. 

Such correlations consist of the construction of an equation of state for a system by 

fitting certain parameters in the equation to available experimental data for that 

system. The resulting expression cannot be used to extrapolate for the system's 

behaviour in regions of phase space outside of which the fitting was performed. 

Nevertheless, such correlation studies are widely used in industrial applications, 

since for a specific range of conditions they give acceptable results. Approaches 

such as the Wilson equation [24, 25], the NTRL equation [26, 27] and the UNI­

QUAC equation [28], relate the activity coefficients to the mole fraction of the 

system via expressions obtained from the excess Gibbs energy of solution. The 

values for the adjustable parameters which are included in these expressions are 

obtained via fitting to experimental data. The fact that such studies rely on the 

evaluation of the activity coefficients of systems result in the poor prediction of 

fluids which show a large amount of vapour-phase non-ideality [27]. 

As a result of the ahility of the van der Waals equation of state to adequately pre­

dict the phase hehaviour of a range of systems, much theoretical interest has been 

directed towards obtaining a van der Waals-like expression which gives a more accu­

rate prediction of phase behaviour. The most accurate of these augmented van der 

Waals equations use an improved expression for the free energy of the hard-sphere 

reference system, such as that proposed by Carnahan and Starling [29]. Various 

empirical equations of state such as the Berthelot [30], Dieterici [31], Redlich­

Kwong [:12, 3:1] and the Peng-Robinson [34] equations have also been developed in 

order to give a better description of phase behaviour than is obtained with the van 

der Waals equation. These approaches involve the introduction of parametE.'fs into 

an equation of state which are derived from more complex routes than the van der 

Waals coefficients. For example, the constants in the Redlich-Kwong equation have 

a similar physical significance to the van der Waals constants [27]. Such equations 

have found widespread use in the prediction of the phase hehaviour of hoth pure 

fluids and mixtures, despite the fact that they consider molecules as hard-spheres. 

Extension of the original hard-sphere perturbation theories to account for the 

non-sphericity of real molecules has been the source of much theoretical intE'Test 

(see Ref. [:15] for a review). However, the adequacy of such approaches is seen 

to decrease rapidly as the elongation of the system increases. An alternative ap­

proach to an accurate equation of state for chain molecules is the a perturbed 

hard-chain theory (PHCT) [36]. The PHCT provides an equation which links the 

low density ideal gas limit and the high density Prigogine-Flory theory of polymer 
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fluids [27]. The ideas of the PHCT have been widely used in a number of related 

theories, such as the simplified perturbed hard-chain theory (SPHCT) [37, 38], 

where the nature of the attractive interaction is less complex than in the PIlCT. 

The perturbed anisotropic chain theory (PACT) [39] is an extension of the PHCT 

approach which accounts for systems with anisotropic interactions, but is unable 

to describe the phase behaviour of associating systems. Such systems are found to 

be adequately described by the associated perturbed anisotropic hard-chain theory 

(APACT) [40]. The APACT approach is a modified perturbed hard-chain theory 

where simple chemical equilibria to account for association are also considered, 

following the approach of Heidemann and Prausnitz [41]. These PIICT-based ap­

proaches have been used in the prediction of mixtures containing chain molecules, 

mixtures of water and hydrocarbons and to examine the extent of association in 

supercritical water (see Ref. [42] for a review). However, these studies are not 

without their problems, which range from the empirical nature of the parameters 

in the APACT equation to the unphysical nature of the low temperature phase 

behaviour proposed by the SPHCT approach [43]-[45]. 

A molecular based equation of state which gives an excellent prediction of the full 

phase behaviour of a wide variety of systems is the statistical associating fluid 

theory (SAFT) [46, 47]. The approach is based on the thermodynamic pertur­

bation theory proposed by Wertheim [48]-[53], in which the phase behaviour of 

associating systems is explicitly described. Within this perturbative approach the 

association between molecules via short-ranged interaction sites is described in 

terms of a graphical expansion of the densities of every species in the fluid. Since 

the singlet density dependent contribution to the free energy due to association 

is included in the perturbation expansion there is a slight difference between the 

perturbation approach of Wertheim and those discussed previously, however the 

essential principles are the same. The SAFT equation of state and its applica­

tions and extensions will be discussed in detail throughout this thesis. One of the 

important advantages of molecular based theories such as SAFT over empirical 

equations of state is that each term in the SAFT free energy expansion can be 

compared directly with computer simulation results. This provides an indication 

of the adequacy of the individual contributions in their ability to give an accurate 

description of the phase behaviour of the model system. This type of informa­

tion is impossible to obtain when the terms in the equation of state are fitted to 

experimental data over a specific range. 

The use of computer simulation techniques in theoretical studies is not limited to 

the determination of the effectiveness of different equations of state. The pllase be­

haviour of model systems obtained by computer simulation can also be compared 

directly with experimental results. Simulation techniques can hence be considered 
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as a link between theoretical and experimental studies. The two-fold applicabil­

ity of simulation methods has resulted in a wide range of studies in this area. 

The results obtained from computer simulations can be considered as 'exact' with 

respect to those obtained from other theoretical approaches since no approxima­

tions, other than some concerning the intermolecular interactions have to be made. 

This allows the comparison between theory and simulation to be similar to that 

of between theory and experiment, where molecular simulations are considered as 

computer experiments. The different types of simulation techniques available and 

the underlying statistical mechanics of such approaches are illustrated in Chapter 

3. In this work we will use both aspects of computer simulation in order to obtain 

predictions of the phase behaviour of model systems directly and also as a means of 

testing the adequacy of equations of state. In order to examine the relative merits 

of the different approaches which can be used to determine the phase behaviour of 

a particular system, it is interesting to compare the cost and time associated with 

each approach. An estimation of such figures for a binary mixture liquid-vapour 
equilibrium c.alc.ulation is given in Table 1.1 (taken from Ref. [54]). This allows an 

approximate comparison to be made between the various methods. The cost and 

time efficiency of theoretical approaches with respect to experimental studies is 

clearly illustrated. It is also important to note how both the financial and compu­

tational cost of molecular simulation methods rapidly increase with the complexity 

of the model studied. 

Throughout this thesis we examine the phase behaviour of fluid mixtures using 

the SAFT-VR [57, .58] E'quation of state. This approach is known to give an accu­

rate description of the properties of associating chain molecules with intE'raction 

potentials of variable attractive range. In order to be able to describe mixtures 

within the SAFT-VR approach it is necessary to define suitable mixing rules for 

the cross-component parameters. We discus the nature and complexity of possible 

mixing rules. A series of studies of simple model systems are presented as a means 

of testing the adequacy of the SAFT-VR description for mixtures. The model sys­

tems examined in this context interact via simple hard-core attractive potentials. 

An E'xtension of the SAFT-VR approach to describe systems which interact via 

soft-core potentials is also presented. The ability of any equation of state to aCCu­

rately desc.rihe the phase behaviour of systems interacting with rE'alistic potentials 

is deal'ly advantageous. 

In the final chapter of this work particular attention is focused on a specific class 

of phase equilibria, characterised by phase diagrams with 'closed-loop' regions of 

immiscibility. The SAFT-VR approach and computer simulation methods are 

employed to describe this type of behaviour using a model system which contains 

the physical features responsible for the appearance of closed-loop immiscibility in 
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Table 1.1: Approximate costs of a binary mixture vapour-liquid phase equilibria 
calculation for a single state point for a fluid interacting via the Lennard-Jones 
(LJ) potential using experiment, theoretical techniques and Gibbs ensemble Monte 
Carlo simulation. The empirical correlation is performed using the Redlich-Kwong­
Soave equation [55] and the perturbation theory is a second order Barker and 
Henderson expansion. The estimates for the simulation cost are performed for 
a system of N =500 particles for 10,000 cycles on a Dec 5000 workstation. The 
figures are expected to be slightly lower if current cost-effective supercomputers 
are used [56]. All estimations are for calculations made in 1992, so an adjustment 
for inflation must be made in order to bring the prices into current context. 

Method Cost ($) Time 

Experiment 2600 2 days 
Empirical correlation 2.4x10-6 10-2 s 
Perturbation theory 1.2 x 10-5 5xl0-2 s 
Molecular Simulation 
Spherical LJ 4.5 5h 
Two-site LJ 31.2 35 h 
n-site LJ > 4.5n2 > 5n2 h 

real fluids. Such a study illustrates the the motivation behind this thesis, where the 

combination of a powerful theoretical method and computer simulation techniques 

are used to to describe the phase behaviour and thermodynamic properties of real 

systems which are of industrial interest. 
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Chapter 2 

The Statistical Associating 
Fluid Theory (SAFT-VR) 

2.1 Introduction 

The thermodynamic perturbation theory for fluids consisting of associating chain 

molecules proposed by Wertheim [1]-[6], provides the basis for the SAFT equation 

of state [7, 8]. Within the SAFT approach the individual molecular contributions 

to the macroscopic behaviour are accounted for by expanding the free energy into 

a sum of the different energies involved. lienee the equation of state for a mixture 

of associating chain molecules is written in terms of four separate contributions to 

the Helmholtz free energy A 

A AIDEAL AMONO. ACHAIN AASSOC. 

-N-k-T - NkT + NkT + NkT + NkT ' (2.1) 

where N is the number of chain molecules in the mixture, k is the Boltzmann 

constant, and T is the temperature. In the above equation AlDEAL is the ideal free 

energy, AMONO. is the excess free energy due to the monomer segments, ACIIAIN 

is the contribution due to the formation of chains of monomers, and AASSOC. is 

the term that describes the contribution to the free energy due to intermolecular 

association. A major advantage of the SAFT approach is that only the monomer 

Helmholtz free energy and the contact value of the monomer cavity function are 

required to describe the equation of state of chain molecules. 
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The success of this approach lies in its ability to provide an accurate prediction 

of the thermodynamics and hence the phase behaviour of systems where molec­

ular shape and associating phenomena are dominant characteristics. The SAFT 

equation of state has been used to correlate the phase equilibria data for sets of 

pure components [9], binary mixtures [10, 11], and ternary mixtures [11] (where 

the phase equilibria is obtained from the corresponding binary data [12]). Specific 

examples of other mixtures which have been studied within the SAFT framework 

include carbon dioxide with bitumen [13], carbon dioxide with methylnaphthalene 

[14], aromatics in ethene and ethane [15], binary and ternary systems of n-alkanes 

containing ethene and I-butene [16], methanol and ethene mixtures [17], systems 

containing alcohols [18], and recently mixtures of carbon dioxide with acetonitrile 

and acrylic acid [19]. In all the above examples the SAFT approach gives an excel­

lent description of the thermodynamic properties. The theory is also being used 

to correlate and predict the phase behaviour of a wide variety of complex polymer 

systems( e.g., see Ref. [20]). 

The original SAFT E'quation of state [7, 8], was proposed for a system of Lennard­

Jones segments, where the monomer contribution is described by a perturbation 

expansion and the chain contribution by the radial distribution function for the 

hard sphere reference system. The simplest version of current SAFT approaches 

is the SAFT-IIS equation of state, where the segments are treated as hard splleres 

(liS) and a mean-field (van der Waals) attractive interaction is included in the 

potential model. This simple treatment of the intE:'rmolecular interaction gives an 

accurate prediction of phase equilibria of a variety of systems. Examples include 

the critical hehaviour of n-alkanes [21], the upper critical solution temperatures 

of mixturE:'s of alkanes and perfluoroalkanes [22], the high-pressure critical lines 

of mixtures of alkanes and water [23], mixtures containing hydrogen fluoride [24J, 
and aqueous mixtures of alcohols and alkylpolyoxethylene surfactants [25]. The 

SAFT-lIS approach is found to give an accurate description of the thermodynamic 

properties of systems in which association (such as hydrogen bonding) are the 

dominant interactions, so that the mean field description of the dispersion forces 

does not have a significant effect on the accuracy of the overall phase equilibria 

obtained using such a fundamental representation. A related simplified SAFT 

approach is lIs('d in Ref. [26] where the simplified perturbed hard chain theory 

(SPHCT) is lls('d as in place of the hard spheres of the SAFT-I1S approach. 

The SAFT methodology, as well as the closely related ideas of WE:'rtheim, have 

been extended to varying degrees; to include a more accurate representation of 

the monomer-llIonomer distribution function [27]-[33], to include higher body in­

teractions in the climer versions of the theory [34, 35]. The nature of the honding 

described within the SAFT approach has also been extended, so that double bond-
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ing [36], ring formation [37]-[40], and bond co-operativity [41] can be treated within 

the equation of state. Furthermore the isotropic-nematic transition for associat­

ing rod-like molecules has also been characterised using the Wertheim theory of 

association [42, 43]. 

The SAFT-VR equation of state is a version of SAFT that considers non-conformal 

properties of fluids [44, 45], within the framework of a very general perturbation 

theory for hard-sphere monomers interacting with attractive interactions of vari­

able range (VR). The use of the Barker and Henderson perturbation theory [46]­

[49], together with a simple method for evaluating the first perturbation term, the 

mean-attractive energy, leads to a theory with the van del' Waals form but which 

is applicable to a wide variety of potentials. More specifically, chains formed from 

square-well (SW), Sutherland (S) and Yukawa (Y) segments with varying attrac­

tive range have been examined [44]. The SAFT-VR approach provides an excellent 

representation of the properties of simple, non-associating, mixtures such as alka­

nes and perfiuoroalkanes [44, .'50, 51] but also more complex fluid mixtures, e.g., 

those comprising replacement refrigerants [52]. The application of SAFT-VR to 

describe the phase behaviour ofthree specific model mixtures is presented in Chap­

ter 4 [45, 53], a.nd the extension of the theory to systems interacting via soft-core 

potentials is given in Chapter 5 [54]. The beauty of the SAFT approach lies in 

its versatility and in the means in which the results obtained can be compared 

directly with molecular simulation results. It offers the ideal framework to study 

complex fluid phenomena, the phase behaviour of liquid-crystalline colloids being 

a particularly topical example. 

Here we review the SAFT-VR expressions for mixtures of chain molecules formed 

from segments interacting via a square-well potential, following references [44] and 

[45]. Since the SAFT-VR approach for the calculation of the mean-attractive 

energy requires a knowledge of the van der Waals constant and the radial distri­

bution function of a mixture of hard spheres, simple expressions for the mixing 

rules can be formulated. We then discuss the use of a variety of possible mixing 

rules from the simple van der Waals one-fluid description to the full SAFT-VR 

second-order expressions. The mixing rules for the free energy of conformal and 

non-conformal mixtures are presented, as are the combining rules for the un-like 

interaction pa.rameters. 
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2.2 SAFT-VR equation of state for mixtures. 

The SAFT -VR equation of state for an n-component mixture of associating chain 

molecules takes the form of Eq. (2.1), where each of the individual terms will 

be subsequently discussed in turn. Within the SAFT framework molecules are 

described as chains consisting of spherical segments with diameter 0", where the 

general form of the interaction potential between two particles i and j a distance 

Tij apart is given by 

(2.2) 

The monomer-monomer interaction potential uM (Tij) consists of a hard sphere 

repulsive contribution uHS , defined by 

if Tij < O"ij 

if Tij > O"ij, 
(2.3) 

where O"ij is the contact distance, and an attractive interaction of depth -eij 

and sllape ¢( Tiji >'ij), where >'ij is a parameter associated with the range of the 

attractive forces. By including the range parameter ).ij in Eq. (2.2), the system's 

non-conformal properties can be described. A variation of the parameters O"ij and 

eij has no effect on the corresponding states behaviour of two particular systems, 

but a variation in >'ij leads to the breakdown of this correspondence for a given 

potential. 

Here we will introduce initially the SAFT-VR expressions for systems interacting 

via the square-well potential, the shape of which is governed by: 

(2.4) 

so that the energy is constant over the range of interaction. 

Although hard-core potentials of this kind are simplifications of the true interac­

tions between molecules, they allow a highly accurate description of the properties 

of real su hstances. An addi tional advantage is that the statistical mechanics of such 

hard-core attractive models is very well known, the analytical solutions which exist 

for the square-well potential [55]-[61] provide a useful guide for the development 

of an accurate equation of state. 

Since the SA FT equation of state consists of an expression in term of the lIelmhol tz 

free enE'fgy A of fluids, it is important to specify the relationships between A and 
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the fundamental thermodynamic variables of phase equilibria. In order for two or 

more phases to be in equilibrium with one another the pressures, temperatures, 

and chemical potentials of each component species must be equal in the coexisting 

phases. The chemical potential, Ili, of species i can be written in terms of the free 

energy: 
Ili (aA/kT) 
kT = aNi T,V,Nj:/-i ' 

(2.5) 

where Ni is the number of chain molecules of species i. The overall pressure, p, 

may be calculated through the compressibility factor, Z, as 

Z = pV 
NkT 
n Ili A 
~XikT + NkT' , 

(2.6) 

where n is the total number of components in the mixture and Xi = Nd N is the 

mole fraction of component i. 

Each of tIle individual contributions to the SAFT-VR Helmholtz free energy in 

Eq. (2.1) are now examined. 

2.2.1 The ideal mixture 

The free energy of the ideal mixture is given by [62] 

(2.7) 

where Pi = N;/V is the number density and Ai is the thermal de Droglie wave­

length, of species i. 

2.2.2 Monomer contribution 

The mOllOIlH'r free energy is 

AMONO. 

NkT = 

= (2.8) 
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where mi is the number of spherical segments in each chain i, and N. is the 

total numher of segments. The monomer free energy per segment of the mixture 

aM = Aj(NlJkT) is obtained from the Darker and Henderson high temperature 

expansion [46]- [49]: 
M _ HS a a2 

a - a + fJal + fJ a2 + .'" (2.9) 

where aHS is the free energy for a mixture of hard-spheres, f3 = l/kTj atand a2 

are the first two perturbation terms associated with the attractive energy -€ij. 

The free energy of the reference hard-sphere mixture is obtained from the expres­

sion of BoubHk [63] and Mansoori et al, [64] as 

(2.10) 

In this expression PIJ = NlJjV is the number density of spherical segments, where 

PIJ = P(Ei Xi 1ni), P being the total number density of the mixture. The reduced 

densities (, are defined as 

(2.11) 

where (1j is the diameter of spherical segments of chain i, and X.,i is the mole 

fraction of s<'gments of type i in the mixture, given by 

X,I,i = ~I\ • 
~j=l mjxj 

The overall packing fraction of the mixture is thus given by (3. 

The mean-attractive term at is given by 

where 

n n 

al = E E X.,ix.,ja?, 
i=l j=l 

a;j = -27rp.€ij 100 

r~jgliS[rij; (ij]drjj 
'J 

= _3pllb~DW €jj 100 

X2c/>ij(X)gliS(x)dx 

(2.12) 

(2.13) 

(2.14) 

where b~.jDw = 27r(1~j3, and gliShj; (ij] is the radial distribution function for a 

mixture of hard-spheres. The integral is factorised by applying the mean-value 

theorem [44] which gives an expression for at in terms of the contact value of 
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gUs. 
I) • 

(2.15) 

where 

a YDW = 2ul')'u~,(~~, - 1)/3 I) I) I) (2.16) 

is the van der Waals attractive constant for the i - j square-well interaction, and 

(;" is an effective packing fraction, the exact nature of which will be discussed in 

the next section. The contact value 9!JS[O'ijj (;' '] is obtained from the Doublik [63] 

expression for the contact value 9ffS[Uij; (3], which is evaluated at tIle overall 

packing fraction of the mixture (3. The mapping procedure used for obtaining 

(;" from (3 depends On the interaction potential and On the actual mixing rule 

used. Since the chemical potential is obtained as the derivative of the free energy 

with respect to the number of chain molecules care must be taken to ensme that 

the correct number of species are counted. For the square-well potential of range 

1.1 $; ~ij $; 1.8 , the mean-attractive energy is given by 

ij _ ijVDW HS[l. ( ] 
al - a 1 gij I efJ, (2.17) 

where the van der Waals mean-field parameter is 

(2.18) 

The parameterisation for the effective packing fraction (efJ[(, ~ij] depends on the 

particular mixing rules used and will be discussed in the next section. 

The fluctuation term of the free energy is given by 

n n 

a2 = L L x"ix"ja1, 
i=lj=1 

(2.19) 

where each of the terms aY are obtained with the local compressibility approxi­

mation (LeA) [46,47], which is once again specific for each interaction potential, 

stating: 

(2.20) 

whE'fe /{HS is the isothermal compressibility for a mixture of hard-spheres, given 

by the Percus-Yevick expression [65], 

(2.21) 
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and 

a;ii = -27rP8U~cii 1~ r;j4>;j(rii)g!JS(rii)drii 
'J 

= -3p,bY;DW cii Joo x24>~j(X)g!JS(x)dx (2.22) 

is the mean-attractive energy associated with a potential 4>;j' The explicit depen­

dence of the second order term on the mean-attractive energy is clearly shown 

in the above expression, indicating that evaluation of the first order term is the 

crucial step in the SAFT-VR approach. The fluctuation term aij for square-well 

fluids is given directly from the first density derivative of a;i, since a;ii = a?, 

giving 
ii 1 }' H S va;; 

a = -f." \ p--2 2 IJ , vp, . (2.2:3) 

2.2.3 Chain contribution 

The contribution to the free energy due to the formation of chains of monomeric 

segments is given by 

(2.24) 

where y~f = exp( -!3eii)gM (Uii) is the background correlation function. Since the 

Boltzmann factor exp( -(3€ii) is not required in the determination of the phase 

equilibria we can write 

(2.25) 

without loss of generality. An (n - l)th order perturbation theory in a fluid's 

structure is equivalent to a nth order perturbation in the free energy. Since the 

SAFT-VR approach consists of a second-order perturbation theory in the monomer 

free energy, the contact value of the radial distribution function for s(>gments of 

species i and j can be therefore be written as a first-order expansion: 

(2.26) 

The term 91 «(Tii) is obtained from a self-consistent calculation of the pressure by 

equating the expressions obtained form the Clausius vi rial theorem and from the 

density derivative of the Helmholtz free energy [44], giving an expression for g~; 
which depends on the mean-attractive energy a}, so it is hence specific for each 
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interaction potential. The contact value of the radial distribution function for the 

reference system of a mixture of hard-spheres at the actual packing fraction (3 of 

the mixture is given by [63] 

(2.27) 

where Dii is defined 
(1 .. (1.. ~n X .(12 D .. - 11)] L-i=} 8,1 ii 

I) - (1 .. + (1 .. ~n X .(13' 
11 )] L-i=1 8,' ii 

(2.28) 

It is important to note that the contact value at the effective packing fraction (;11 

is required for the expression of 9~i (second term in Eq. (2.26)) which also depends 

on a? ; gIJ S[O"ji' (;fI) is obtained from Eq. (2.27) with the appropriate value of the 

effective packing fraction (;fI. For a mixture of square wens, 9;i is given by [44] 
(see appendix for a full derivation) 

ii( .. ) _ 1 [3 (aa;i) - ~ aa;i] 91 0",) - 3 , 
2Uij(1ii ap8 P8 a)..ii 

(2.29) 

so that upon substituting in Eq. (2.26) we have 

2.2.4 Association contribution 

The contribution to the free energy due to association of Si square-well interaction 

sites on chain molecules of species i, is obtained from the theory of Wertheim [66] 
as: 

AASSOC. n [8 i 
( X.) ".J 

NkT = ~Xi L lnXa,i - ;,1 +~ , 
.=1 a=} 

(2.31) 

where first sum is over the species i, and the second over all .qi sites a on a molecule 

of species i. Xa,i is the fraction of molecules of type i not bonded at site a, given 

by the mass action equation as [8, 66]: 

1 
X a,i = 1 ~n ~"J X A ' + L-i=l L-b=l pXj b,jUa,b,i,j 

(2.32) 

where 

A b·· - 1\ b· .F. b· .gSW(u··) a, ,I,) - a, ,',) a, ,',) I) • (2 .:l:J) 
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J( a,b,i,j is the volume available for bonding [8, 66], Fa,b,i,j is the Mayer I-function 

Fa,b,i,j = exp( -<Pa,b,i,j/kT} - 1 of the a - b square-well site-site interaction ca,b,i,j, 

and gSW(lTjj) is given by Eq. (2.30) 

'rVe have now presented the formal expressions for each contribution to the free 

energy in the SAFT-VR approach, both in general and for the specific case of 

the square-well interaction potential. The precise expressions for the perturbation 

terms at and a'l, and for the contact value g~W (lTij) of the monomer reference 

depend on the type of mixing rule that is used to describe the mixture. A number 

of possibilities are discussed in the following section. 

2.3 Mixing rules for conformal fluids 

The extension to multicomponent mixtures of any equation of state developed 

for pure component systems requires the use of appropriate mixing rules for both 

the tbermodynamic variables and tbe parameters of the equation of state. Tllf'se 

mixing rules introduce an implicit composition dependence into the equation of 

state. In the van der Waals (vdW) n-fluid theories [62,67] tbe aim is to simplify the 

complex dependence on composition by assuming simple relationships between the 

pair correlation functions of the mixture and those for the pure components. The 

simplest case is the vdW one-fluid approximation, which can be defined in terms 

of the standard van der Waals mixing rules for the size and energy parameters: 

n n 

lT~ = L L X',iX',iCT~, (2.34) 
i=1 j=1 

and 
n n 

VDW '" '" VDW ax = L- L- X"iX"jaij , (2.35) 
i=1 j=1 

respectively. For monomer-monomer interactions consisting of a repulsive hard­

sphere plus an arhitrary attractive well, the van der Waals attractive constant 

a~DW has the general form 

(2.36) 

where <fJ(>.ij) is a shape factor that depends only on the range parameter Aij of 

the potential; from Eq .(2.16) it follows that for square-well interactions <fJ(Aij) = 
27r(A~i - 1)/:3. 
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For mixtures of conformal fluids Aij has the same value for all species since Aij = A, 
and <I> becomes a constant. The mixing rule given by Eq. (2.35) is then transformed 

into a definition of a mean-energy parameter: 

n n 

cxlT~ = L L X"iX"jCijlTD· 
i=1 j=1 

(2.37) 

The mixing rule for the effective size parameter lTx {Eq. (2.34» gives a vdW one­

fluid definition of the packing fraction (x for the mixture as (cf. Eq. (2.11» 

n n 

(x = ~P' L L X"iX"jlT~j 
i=1 j=1 

(2.38) 

11" 3 
= '6 p,(Tx' 

In the context of mixtures of conformal fluids, tIle vdW one-fluid approximation 

is completed by approximating the pair distribution function for the mixture by 

the radial distribution function for a single fluid, using the parameters (Tx and Cx 

defined previously in Eqs. (2.34 and 2.35): 

(2.39) 

where 90 is the one-fluid radial distribution function. 

The van der Waals two- and three-fluid theories use mixing rules with two and 

three size and energy parameters, respectively, and with 9ij still given by the pure 

component pair correlation function. One of the drawbacks of the higher order 

vdW n-fluid theories, apart from their increased complexity with respect to the 

one-fluid model, is that they introduce inconsistencies into the determination of 

coexistence properties and critical behaviour [67]. A closely related approximation 

to the vdW one-fluid approach is the mean-density approximation (MDA) [62, 68J, 

in which (Tr is given by the vdW one-fluid approximation Eq. (2.34), but where 

the temperature scales with the individual energy parameters Cij: 

(2.40) 

Although the one-fluid approximation can be used at all levels in the equation of 

state [29J, it is desirahle to maintain the accuracy of the description of the structure 

of the reference system given by Eq. (2.27). In order to achieve this, we only need 

to introduce the mixing rules at the level of the perturhative terms of the monomer 

free energy. Since the mean-attractive energy at is the basic quantity which is used 

for the evaluation of all the other perturbative terms in the SAFT-VR approach, 
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we focus our discussion on the approximations obtained for at. 

In both tIle vdW one-fluid and mean-density approaches the mean-attractive en­

ergy is given by (ef. Eq. (2.15)) 

at = -P"~~X".ix,,.iaijDWg~S[O'xj(;"(~)] 
i 

= _psa~DW g~s[O'xj (;"(~)]. (2.41 ) 

The contact value of go is obtained from the Carnahan and Starling expression for 

pure fluids [u9, 62] as 

(2.42) 

The effective packing fraction (;" within the vdW one-fluid approximation is ob­

tained from the corresponding packing fraction of the pure component (see Ref. [44] 

for the pure square-well system): 

(2.4:3) 

where the coefficients c}, C2 and C3 are approximated by those of the pure fluid [44]: 

( 

C} ) (2.2585.5 -1.50349 0.249434) ( 1 ) 
C2 = -0.669270 1.40049 -0.827739 ~. 

C3 10.1.576 -15.0427 5.30827 ~2 

(2.44) 

One should note that in this case the range is the same for all components, and 

thus enters the expressions in a trivial manner. 

A step beyond the vdW n-fluid and the MDA approaches is to calculate at with 

the hard-spl](,re contact value gfJ S of the mixture given by Eq. (2.27), rather than 

that of the oue-fluid expression, Eq. (2.42): 

(2.45) 

An advantage of such an approach is that Eq. (2.27) explicitly accounts for the 

different sizes of the sphE'rical segments. We obtain the contact value of the pair 

distribution function for the mixture at the effective packing fraction (;" from 

Eq. (2.27), with (;11 replacing (3: 

(2.46) 
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Note that glj8[ crij; (;JJ (.X)] is a functional of the function (;JJ ("x). 

There are three obvious ways of calculating the effective packing fraction (;11. 

The first involves the use of the vdW one-fluid value, where (from Eq. (2.43)) 

(2.47) 

The second involves the use of the individual packing fractions for each species, 

and the total packing fraction of the mixture is then obtained from the sum 

n 

(;JJ «(3.i,,,x) = E (;~I «(3.i, "x), (2.48) 
i=l 

where 

(2.49) 

and 

(2.50) 

The dependence of the coefficients c}, C2 and C3 on the range "x is again obtained 

from the pure square-well fluid (cr. Eq. (2.44)). Finally, we can use the total 

packing fraction (3 together with an expression similar to Eq. (2.43): 

(2 . .51) 

We end this section by reviewing the mixing rules (MXC) that we propose for 

conformal fluids within the SAFT-VR approach; note that this is essentially an 

exercise since SAFT-VR explicitly takes into account the range of the potential 

and hence the fluid's non-conformal nature. The possibilities discussed earlier are 

summarised in Table 2.1. 

Table 2.1: The mixing rules (MXC) for the conformal mixtures within the SAFT­
VR approach. The precise equations for a}, g!J8(O'jjj (;!f) and (;JJ are given for 
each mixing rule; the rest of the SA FT -VR expressions can be obtained from these 
expressions. The numbers refer to the equations given in the text. 

Mixing Rule a) gHS(cr oo
) ii I) (~JJ 

MXCI (2.41) (2.42) (2.43) 
MXC2 (2.4.) ) (2.46) (2.48) 
MXC3 (2.45) (2.46) (2 .. ) 1) 

The numhering of the mixing rule (MXC) refers to the representation of the ef­

fective packing fraction: MXCI for Eq. (2.43), MXC2 Eq. (2.48), or MXC3 for 

Eq. (2.51). The MXCI rule is basically the van der Waals one-fluid representation 

of the perturbation term for the monomer mixture. One should note that due to 
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the use of the mean-value theorem in the expression for al, the separate energy 

contributions for each pair interaction factorise out of the integral giving the van 

der Waals constant. Furthermore, the total free energy for the reference monomer 

mixture also includes each pair interaction g!fS( (Tij) and gr;W ((Tij). This means 

that MXCI as used in our theory is similar to the MDA approach. The prescrip­

tions given by MXC2 and MXC3 for the partial and total packing fractions both 

go beyond the VDW one-fluid level. The simplest and probably the most accurate 

mixing rule is MXC3 although, as will be discussed later, there are some problems 

associated with the critical region of the phase diagram when this mixing rule is 

used in practice. In all of these MXC expressions the range ~ plays a trivial role, 

since for conformal fluids the range is the same for all species. This is not the case 

for the non-conformal fluids which we discuss next. 

2.4 Mixing rules for non-conformal fluids 

A central feature of the SAFT-VR approach is that it inc.orporates the non­

conformal properties of the fluid by using different values of the range ~ij for each 

species. The factorisation of the radial distribution function g~ S in the expression 

for the mean-attractive energy (using the mean-value theorem) Eq. (2.14)togetller 

with the contact value of gtjS, allows a straightforward description of the mixture. 

The vdW one-fluid mixing rules, Eqs. (2.34) and (2.35) are still valid for non­

conformal fluids. We can derive two mixing rules from Eq. (2.35), one for the 

energy, 

(2.52) 

and another for the range of the potential, 

(2.53) 

As for the conformal fluid described in the previous section, the corresponding 

mixing rules (MX) for the non-conformal systems can be obtained via the three 

possibilities which exist for the determination of the effective packing fraction 

(which we will denote as MXl, MX2, or MX3), but now using one of two possibil­

ities for the range of the interaction potential of the mixture: a) as the simplest 

option one can use the vdW one-fluid rule for ~x given by Eq. (2.53); b) alter­

natively, a more accurate representation can be obtained by using the individual 
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range Aij for each pair interaction. The vdW one-fluid mixing rule for at in the 

case of our non-conformal square-well mixture (MX1a) is 

n n 

at -P6 ~ ~ X"i X6,jO&DW 9~8[(Txj (~" (Ax)] 
i=lj=l 

= _P6o~DW 9~s[(Txj (;"(Ax )] (2.54) 

where 9618 [O'x; (;"(Ax )] is obtained from the pure-fluid Carnahan and Starling 

expression {Eq. (2.42)). The effective packing fraction is obtained from the one­

fluid expressions for the packing fraction (x (Eq. (2.43)) and range Ax (Eq. (2.53)): 

(2 . .55) 

When the individual ranges Aij are used one can no longer factorise the pair 

distribution fUllction out of the sum, and the corresponding mixing rule MXlb is 

given by 
n n 

_ "" "" VDW HS[ • (ell{ \ )] al - -p, L.J L.J X"iX"jOij 90 O'XI x /lij (2.56) 
i=1 j=1 

where now 9618[O'x; (;"(Aij)] depends explicitly on the range of the pair in~eraction 

via the expression for the effective packing fraction: 

(2»7) 

Note that as for tlJe conformal mixture we approximate the coefficients e}, e2, and 

C3 by the values obtained for the pure fluid Eq. (2.44) (see Ref. [44]). 

In the second class of mixing rule we use the packing fraction obtained from the 

individual species (cf. Eqs. (2.48) and (2.49)) but with the two distinct treatments 

of its dependence on the range of the potential. When we use the value of Ax given 

by Eq. (2.5:1) we obtain the mixing rule MX2a, where 

n n 
_ "" "" VDW HS[ • (ell( \ )] at - -p, L.J L.J x",X"jetij gij (Tij, 3 /Ix, (2.58) 

i=1 ;=1 

with 
n 

C;11{(3,i,Ax ) = E(;Y«(3,i,Ax) (2.59) 
i=t 

and 

(2.60) 

The mixing rule MX2b is given in terms of the range of each pair interaction as 

n n 

al - -P '" '" x ·x .",Y.DWgH8[a··· (eJ/( \ 00)] 
- I L.J L.J ',I I,J '-'IJ IJ I)' 3 /II)' (2.61) 

i=l j=1 
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where the effective packing fraction is now 

n 

( eJJ(1" . .x .. ) _ ~ (eJJ« . \ .. ) 
3 .,3''''J - L..J 3,; 3,,, A'J (2.62) 

i=1 

with 

(2.63) 

The third class of mixing rule MX3 uses a direct mapping of the packing fraction 

of the mixture with that of the pure fluid to give an expression for the effective 

packing fraction, as in the MXC3 rule for conformal fluids. When Ax is given by 

Eq. (2.53), the mixing rule MX3a is obtained as 

(2.64) 

where 

(2.65) 

Finally, using the individual values of the interaction potential range, we obtain 

the mixing rule MX3b as 

n n 

al - -p ~ ~ x 'x 'aYDWgffs[(1'" (~JJ( \ .. )] 
- II L..J L..J a,l II,) IJ I) I)' 3 At), (2.(36) 

;=1 j=1 

with 

(2.67) 

The mixing rules for non-conformal fluid are summarised in Table 2.2. The siIu­

plest rule MXla is similar to that of MXCI for conformal fluids and essentially 

represents a vdW one-fluid treatment. The most rigorous is probably the full 

MX3b representation; this prescription was first suggested in the original SAFT­

VR paper Ref. ([44]). Its simplicity is a particularly attractive feature of the 

approach. 

2.5 Combining rules 

In order to evaluate the parameters for the unlike interactions (the so-called cross 

parameters) for the mixtures one can use the standard Lorentz-DertlH'lot (LD) 
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Table 2.2: The mixing rules (MX) for the non-conformal mixtures within the 
SAFT-va approach. The precise representation for at, glJ S[<1ij; (;//] and (;// are 
given for each mixing rule; the rest of the SAFT-VR expressions can be obtained 
from these expressions The numbers refer to the equations given in the text. 

Mixing Rule at 9fIS(<1ij) (~JJ 
3 

MXla (2.54) (2.42) (2 . .).) ) 
MXlb (2.S6) (2.42) (2.57) 
MX2a (2.58) (2.46) (2.59) 
MX2b (2.61) (2.46) (2.62) 
MX3a (2.64) (2.46) (2.6.5) 
MX3b (2.66) (2.46) (2.67) 

combining rules, which are derived for conformal fluids [67]: 

<1ii + <1jj 
<1ij = 

2 
(2.68) 

(2.69) 

Equation (2.G9) is a particular case of the more general combining rule [67]: 

(2.70) 

It is well known [67] that real substances depart from the LB rules to varying 

degrees depending on the particular interactions involved; in many cases mixtures 

are characterised by values of ~ij < 1. The value of tij for real fluid mixtures is 

usually ohtained hy an appropriate fit to the experimental properties of the specific 

mixture. 

A combining rule for the van der Waals attractive constant a~DW follows from 

the LB rule for the energy, Eq. (2.69), 

a rDW = r· ·VaY.DW a YPw 
'J 'J" JJ ' (2.71) 

where rij dl.'pends on the form of the potential. For square-well mixtures rij is 

given by 
(A~' - 1)<1:J. 

rij = IJ IJ (2.72) V( Ali - 1)( Alj - 1 )<1~(T]j 

An alternative combining rule to Eq .(2.69) corresponds to the geometric mean for 

a YDW : 
'J 

a YDW = Va¥.DWaYPW 
'J "JJ' (2.73) 

This is equivalent to the general rule given by Eq. (2.70) with eij = Iffjj. It is 
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clear that, foJ' conformal fluids, the three rules given by Eqs. (2.68), (2.69) and 

(2.73) are inconsistent unless the particles in the mixture are of the equal size. 

However, for non-conformal fluids, the three combining rules, Eqs. (2.68), (2.69) 

and (2.73), can be used if Aij is chosen in such a way so that they are self-consistent, 

i.e. by assuming rij = 1 in Eq. (2.72). This leads to an expression for Aij of the 

form 

A~' = 1 + ~3 J(A~' - l)(A~' - 1)(1~.(1~. tJ (1.. U JJ U JJ' 
tJ 

(2.74) 

It is possible to relax this criterion for Aij and to use either Eq. (2.69) or Eq. (2.73), 

together with a specific combining rule for Aij. A simple arithmetic-mean combin­

ing rule may be used, analogous to that for the particle diameters (cr. Eq. (2.68»: 

(2.75) 

Another option for tIle evaluation of Aij is by optimising its value from a fit to 

experimental data for the mixture. 

In the case of the association contribution to the SAFT-VR free energy similar 

combining rules ran be used for the energy of the site-site interaction tn,b,i.j in the 

mixture and the bonding volume J\n,b.i,j in Eq. (2.33). The Berthelot rule for the 

unlike site-site interaction is 

ta,b.i,j = (ea,b,i,ita,b,j,j), (2.76) 

and the combining rule for the bonding volume is 

J\ .. _ \ n,b,i,i n,b,i,i 

[
F· 1

/
3 + 1\'1/3 1 

a,b,t,J - 2 • (2.77) 

This completes our description of the combining rules. One should, of course, 

note that the combining rules are a convenient first representation of the unlike 

interactions, bllt real substances show large deviations in practice, especially when 

the components of the mixture are chemically very different. It is lIsually necessary 

to fit the cross parameters to experimental data. In most cases the phase equilibria 

of real mixtures is most sensitive to the variation in the energy parameters. 
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2.6 Conclusions 

In this chapter we provide a detailed analysis of the SA FT -VR approach to mix­

tures of fluids consisting of chain molecules with attractive interactions of variable 

range. The resulting SAFT-VR equation of state has a van der Waals form where 

the monomer properties are evaluated using a standard high-temperature pertur­

bation expansion. The mean-value theorem is used to give a compact expression 

for the the mean-attractive energy at, and the contact value of the radial distribu­

tion function is given by a self-consistent method, which combines two routes for 

the evaluation of the pressure of the fluid [44]. This simple representation of at 

allows us to propose a number of straightforward mixing rules which range from 

the simplest van der Waals one-fluid expressions to the full second-order descrip­

tion. It is important to mention that although the SAFT-VR expressions and the 

corresponding mixing rules have been presented here in the context of square-well 

mixtures, this is solely for convenience and the analysis can be easily applied to 

other types of hard-core attractive potential (see Ref. [44]). To our knowledge, we 

present the first in-depth analysis of mixing rules for non-conformal fluids. 

The main motivation of the SAFT-VR approach is to obtain a description of the 

phase behaviour of real fluid mixtur(>s. The implicit d(>p(>nd(>nce on tlle variable 

range of the intermol(>cular potential makes the (>quation of state extr(>lllPly ver­

satile, and allows for an accurate representation of the thermodynamics of fluid 

systems [44]. The approach is currently being used to examine the vapour-liquid 

and liquid-liquid equilibria of a number of mixtures. Use of the SAFT-VR method­

ology with the full MX3b mixing rule is seen to provide an excellent description 

of the vapour-liquid equilibria for mixtures of n-alkanes [50], a.nd for mixtures of 

replacement refrigerants [52]. However, further studies of mixtures which exhibit 

large regions of liquid-liquid immiscibility, such as mixtures of alkanes and perflllo­

roalkanes [51], have shown that there are large inconsistencies in the description of 

the UCST when the MX3b mixing rule is used. This inability to describe mixture 

properties is not surprising, and is COUlmon in 'two-fluid' equations of state for 

mixtures which use parameters defined for pure fluids [67, 70]; in the SAFT-VR 

approach the range dependence of the effective density for the mixture is obtained 

from the pure fluid system. The use of the vdw one-fluid packing fraction (;" 

together with the MX3b mixing rule does not remove the inconsistency, and one 

has to resort to using the vdW one-fluid MXl mixing rules in order to ohtain an 

adequate description. TIle MXl b mixing rule has been found to give an excellent 

representation of hoth the vapour-liquid and the liquid-liquid critical behaviour in 

binary mixtures of perfluoromethane with a series of n-alkanes [.'51]. 
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2.7 Appendix: Contact value of the radial distribu­
tion function 

Here we illustrate how a closed expression for the radial distribution function at 

contact for a square-well fluid is derived within the SAFT-VR approach. The 

method involves the use of two independent routes to evaluate the compressibility 

factor (or pressure) of the fluid. The Clausius virial for the compressibility factor 

can be written as 

(2.78) 

where 1'(DUii/Dr) is the virial contrihution. An equivalent expression can he oh­

tained from the density derivative of the I1elmoltz free energy as 

T oa 
Z = p,-;;;-, 

vp, 

which upon application of a high temperature expansion gives 

n n 

ZT = ZHS +/32:2: X i X j Zij. 

i=lj=l 

(2.79) 

(2.80) 

We first focus on the virial route to the compressibility factor of Eq. (2.78). 

For discontinuous potentials such as the hard-core square-well of Eq. (2.4), it 

is advantageous to examine the hehaviour of the background correlation function 

Yij(r) = exp(/3Ujj)gij(r) in Eq. (2.78) rather than 9ij(r) itself, since Yij(r) it is a 

continuous function of r. In order to be ahle to express the c.ompressibility factor 

of Eq. (2.78) in terms of Yij(r), we must first obtain the derivative 

oexp( -(3Uij) _ _ f3 0Uij (-f3U .. ) or - or exp '3 , (2.81) 

which can he re-arranged to give 

OUij _ _ 1 oexp(-/3Uij) (au .. ) 
Dr - j3 Dr exp IJ '3 • (2.82) 

Substituting this expression into the integral of Eq. (2.78) gives 

('X> 3 1 0 exp( -/3Uij) 
- Jo r 73 Dr exp(f3Ujj)9ij(r)dr 

= 1 ('X> 3 0 exp( -/3Uij) ()d -73 Jo r Dr Yij r r, (2.83) 
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so that Eq. (2.78) becomes 

V 211' ~ ~ roo 38exp( -j311ij) 
Z =l+3"psL...tL...t Xi Xj Jo r a Yij(r)dr. 

i=1 j=1 0 r 
(2.84) 

In order to simplify this integral the properties of the Heaviside function inside 

the integral of Eq. (2.84) must be examined; these are summarised by 

aexp(-j3Uij) _ 

ar -

o 
Ah(r - Ujj) 

o 
-Bh(r - )..ijUij) 

o 

if r < Uij 

if r = Uij 

if (lij < r < )..ij(lij , 

if r = )..ij(lij 

if r > ).ij(lij 

(2.85) 

where h is the Dirac delta function, and A and B are constants which have to be 

evaluated. The properties of the Dirac delta function can be written as 

1: o(x)dx = 1, (2.86) 

where 

l
b 

f(x)8(x _ Xo) = {f(xo) ~f Xo E [a,b] 
a 0 If Xo rt [a,b]. 

(2.87) 

The integral of Eq. (2.84) can be split as follows 

. J dr = 100 a exp( - j311i') 

o or 

(2.88) 

For the square-well potential this reduces to 

roo _8_ex..:..p~( -....:.j3_U....;.:iJ~· ) dr = 
Jo ar 

(2.89) 

which upon substitution of Eq. (2.85) becomes 

10
00 8exp(-j311ij)d = 

a r 
o r 

(2.90) 
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From Eq. (2.87), we know that the properties of the Dirac delta function can result 

in an expression of the form 

[00 oexp( -/3Ujj) dr = A-B. 
Jo or (2.91) 

The LHS of the above expression can also be evaluated in full by integrating over 

the full range of the interaction potential 

[00 oexp( -/3Uij)dr __ 
Jo or [exp(-/3Uij)]~ 

= 1, (2.92) 

so that we can write 

1 = A-B. (2.93) 

In order to evaluate the constants A and B we examine the second integral in 

Eq. (2.88) 

,,+ 
[exp( -/3Uij)] ~ 

"ij 

= exp(-/3Uij{(T~» - exp(-/3Uij«(Tij» 

= exp( -/3eij) - 0, (2.94) 

we also know that from Eq. (2.90) that 

+ ) + 

l "i) oexp( -/3Uij d l"iJ A C( ) 1 . r = v r - (Tij (r, 
,,~or ,,~ 
~ ~ 

(2.95) 

enabling us to write 

A = exp( -(3£jj), (2.96) 

and 

B = exp( -/3£,j) - 1. (2.97) 

Substituting these values of A and B into Eq. (2.85) we can obtain an expression 

for the integral in the virial compressibility factor of Eq. (2.78) of the form 

la
oo 30exp(-(3Uij) ()d 

r y" r r = ~l tJ o vr 
(2.98) 
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Using the property of the Dirac delta given in Eq. (2.87) we can re-write the 

Clausius virial Eq. (2.78) as 

ZV = 
211" n n 

1 + 3P8LLxiXj{exp(/3€ij)0"~Yij(O"ij) 
i=1 j=1 

[exp(/3cij) - l]'xljO"~Yij('xijO"ij)}, (2.99) 

which simplifies further to 

2 n n 

ZV = 1 + ; Ps L L Xi X j{O"t9jj(O"jj) - [exp(/3€ij) - 1],XljO"tYij('xijO"jj)}. (2.100) 
i=l j=l 

In order to express the compressibility factor as a series in /3, so that it is consistent 

with the perturbation expansion used for the mean-attractive energy in the SAFT­

VR methodology, we utilise a property of the exponential series, which gives 

(2.101) 

and hence 

(2.102) 

The compressibility factor of Eq. (2.100) then becomes 

Recalling that within the SAFT-VR perturbation expansions we can truncate the 

high-temperature expansion for the radial distribution function at first order 

HS 1 9ij(r) = 9ij (r) + /3€ij9jj(r), (2.104) 

so that the expression for the background correlation function becomes 

(2.105) 

Expansion of the exponential function in the above expression gives 

(2.106) 

which can be simplified to 

(2.107) 
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Substituting this expression for Yij(Aijl1ij) into Eq. (2.10:1) gives an expression for 

the virial compressibility of the form 

(2.108) 

Since we know that 

(2.109) 

we can re-write Eq. (2.108) for the compressibility factor as 

(2.110) 

We can obtain a similar expression for the compressibility factor from tIle Helmholtz 

free energy, Eq. (2.79) as 

n n 0 ii 
ZT = ZIIS + {3p ~~x'x'~ 1fL-L- '3D . 

i=1 i=1 PIf 

Equating thl"se two expressions for the compressibility factor we obtain 

which can he re-arranged to give an expression for g~ 

(2.111) 

(2.112) 

(2.113) 

In order to evaluate gliS(Aij(1ii) we examine the definition of the mean-attractive 

energy for the square-well potential within the SAFT-VR framework (Eq. 2.13), 

over a particular region of the potential, so that 

(2.114) 

The LE'ibniz rule [71] states that 

d jb('\) jb(,\) Of db da 
-[\ f(A,X)dx= iJ\dX+f(A,b)d\ -f(A,a)d\' 
tA utA) alA) A A A 

(2.115) 
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in our case, a = (Tij and f = T[jg!fS(Tjj) are independent of AijCTij, so that the rule 

reduces to 

(2.116) 

Hence the the derivative in the expression for the mean-attractive energy, Eq. (2.114) 

becomes 

This simplifies to 

which rearranges to give 

Substituting into Eq. (2.113) we obtain 

\ .. aaij 
"I) :::::L 

2""p ~"(T3 ~\ .. ' 
" .~I) ij U"I) 

(2.117) 

(2.118) 

(2.119) 

(2.120) 

which can he used in the expansion for the radial distrihution function of Eq. (2.104) 

to give 

( ) 
lIS /3 [aa;j Aij aa;j] 

gij (Tij = gij ((Tij) + -2 3 3~ - -{)\ ..• 
1!"(Tij up, P, "I) 

(2.121) 

The derivatives of the mean-attractive energy required in the above expression for 

the square-well potential can be obtained from the SAFT-VR expressions for a~j 

ij _ VDW HS( • {"til) 
at - -ajj P,gij CTij'''3 , (2.122) 

where 

(2.123) 

and (~II is the effective packing fraction, which dl'pl'nds on the overall system 

packing fradion (3 and on the range of the interaction potential Aij. 

The derivative of a1 with respect to P. is given by 

{) ij agllS(CT .. ot"tll) 
~ __ yDw ~s( ... (til) _ yDw ij 'J'''3 
» - a,) g'J CT,), 3 0,) P. {) , 
~ ~ 

(2.124 ) 

which can be re-written in terms of the packing fraction (3 as 

a ij a 11 S( ... (til) ::2..L = _aYDWg!l.S((1'" (til) _ aYDW( gij (11)':) up, 11 11 11' 3 11 3 V(3 (2.125) 
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The derivative of gIfS with respect to (3 is given by 

BgffS BgffS B(ef! _'_J _ __ '_J_--L 
B(3 - a(;I I B(3 . 

(2.126) 

Both the partial derivatives on the RIIS of this equation can be easily evaluated 

since the dependency of the hard-sphere radial distribution function on the overall 

packing fraction and the dependency of the effective packing fraction on the overall 

packing fraction are both known in the SAFT-VR approach. This gives a final 

expression for Eq. (2.125) of the form 

(2.127) 

The derivative of the mean-attractive energy a~j with respect to the potential range 

).ij is obtained through 

!'I ij a VDW a HS( ..• (t II ) 
~ __ aij ffS( ..• (e II ) _ yDW gil (1'JI:) 
n \ .. - ')... Psg.) (1')1 3 a.) ps ,)... I 
VA~ V ~ V ~ 

where the dC'fivative of atjDW is given by 

The derivative of gIfS can be written 

BgffS agffS a(efl 
:.=2L - :....::.!.L--L 
;.). .. - !)(e I/o). .. ' 
v,) v 3 .) 

(2.128) 

(2.12!» 

(2.130) 

where the dependency of the effective packing fraction on the range of the potential 

is known. lIeUf(' Eq. (2.128) becomes 

(2.131) 

Substituting the expressions for the density and range derivatives (Eqs. 2.127 and 

2.131) of the mean-attractive energy into Eq. (2.121) we obtain the radial distri­

bution functiou within the SAFT-VR approach in terms of known parameters for 

the square-w<>U potential, as 

= 9 I1s
«(1 .. ) •. ij ') (2.132) 

+ _f3_ [3( _aYDW g1!S({T'" (tIl) _ a YDW ( agffS a(;fI) 
21r(T;l. .).) 'JI3 IJ 3 0(t/I iJ( 

I) 3 3 
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This simplifies to give a final expression for the radial distribution function for 

chains of molecules interacting via the square-well potential, which can be incor­

porated into the contributions to the SAFT-VR Helmholtz free energy due to chain 

formation and association of molecules, 



Bibliography 

[1] M. S. Wertheim, J. Stat. Phys., 35, 19 (1984). 

[2] M. S. Wertheim, J. Stat. Phys., 35, 35 (1984). 

[3] M. S. Wertheim, J. Stat. Pllys., 42, 459 (1986). 

[4] M. S. Wertheim, J. Stat. Phys., 42, 477 (1986). 

[5] M. S. Wertheim, J. Chem. Phys., 85,2929 (1986). 

[6] M. S. Wertheim, J. Chern. Phys., 87, 7323 (1987). 

[7] W. G. Chapman, K. E. Gubbins, G. Jackson, and M. Radosz, Flui(l Phase 

Equilib., 52, 31 (1989) 

[8] W. G. Chapman, K. E. Gubbins, G. Jackson, and M. Radosz, Iwl. Eng. Chern. 

Res., 29, 1709 (1990). 

[9] S. H. Huang and M. Radosz, Ind. ElIg. Chern. Res., 29, 2284 (1990). 

[10] S. II. Huang and M. Radosz, Ind. Eng. Chern. Res., 30, 1994 (1991). 

[11] M. 1. Yll and Y. P. Chen, Fluid Plta.rte Equilib., 94, 149 (1994). 

[12] S. J. Suresh and E. J. Df'ckman, Fluid Phase Equilib., 99,219 (19!H). 

[13] S. II. Huang and M. Radosz, Fluid Phase Equilib., 70, 3:1 (1991). 

[14] C. J. Gf('gg and M. Radosz, Fluid Pha/'le Equilib., 86, 211 (199:3). 

[15] I. G. E<"OlIomoll, C. J. Grf'gg, and M. Radosz, Iud. Eng. Chern. Res., 31, 2620 

(1992). 

[16] C. J. Gregg, F. P. Stein, S. J. Chen, and M. Radosz, Ind. Eng. Chern. Res., 

32,1442 (19!);l). 

[17] n. M. Hasch, E. J. Maurer, L. F. Ansan£'lli, and M. A. McHugh, J. Chern. 

ThermodY1wmics, 26, 625 (1994). 

44 



[18] S. W. Campbell, Fluid Phase Equilib., 102, 61 (1994). 

[19] H. S. Byun, B. M. Hasch,and M. A. McHugh, Fluid Phase Equilib., 115, 179 

(1996). 

[20] S. -J. Chen, I. G. Economou, and M. Radosz, Macromolecules, 25, 4987 

(1992); C. J. Gregg, S. -J. Chen, F. P. Stein, and M. Radosz, Fluid Phase 

Equilib., 83, 375 (1993); C. J., Chen, I. G. Economou, and M. Radosz, Fluid 

Phase Equilib., 83, 391 (1993); C. K. Chen, M. A. Duran, and M. Radosz, Ind 

.Eng. Chem. Res, 32, 3123 (1993); S. J. Suresh, R. M. Enik, and E. J. Beckman, 

Macromolecules, 27, 348 (1994); C. K. Chen, M. A. Duran, and M. Radosz, Ind 

. Eng. Chem. Res, 33, 306 (1994); S. J. Chen, Y. C. Chiew, J. A. Gardecki, S. 

Nilsen, and M. Radosz, J. Polymer Science B., 32, 1791 {1994}; D. Pradhan, 

C. K. Chen, and M. Radosz, Ind. Eng. Chem. Res., 33, 1984 (1994); S. II. 
Lee, M. A. Lostracco, and M. A. McHugh, Mac7'Omolcculcs, 27, 4652 (19(4); C. 

J. Gregg, F. P. Stein, and M. Radosz, Macromolecules, 27,4972 (1994); ibid., 

4981; J. Phys. Chem., 98, 10634 (19!H); C. S. Wu, and Y. P. Chen, Fluid Phase 

Equilib., 100, 103 (1994); B. M. lIasch and M. A. McHugh, J. PolY71ll'r Sci­

ence 8., 33, 715 (19(5); Y. Xiong anel E. Kiran, J. Applied Polymer' Science, 

55, 1805 (1995); J. S. Chen, M. Banaszak, and M. Radosz, Mac7'Omo/ecuies, 

28,1812 (1995); B. M. Hasch, S. II. L('e, and M. A. McHugh, J. Applied Poly­

mer Scicllce, 59, 1107 (19(6); S. II. Lf'e, M. A. Lostracco, and M. A. Mdlugh, 

Macromo/ccules, 29, 1349 (1996); II. S. Byun, B. M. Hasch, M. A. McHugh, F. 

O. Mahling, M. Busch, and M. Buback, Mac7'Onio/ecu/cs, 29, 1625 (1(96). 

[21] G. Jackson and K. E. Guhhins, Put'e Appl. Chou., 61, 1021 (1(89). 

[22] A. L. Archer, M. D. Amos, G. Jackson, and I. A. McLnre, Int. J. Thc7'71IOphys., 

17,201 (1996). 

[23] A. Galindo, P. J. Whitehead, G .. Ja.ckson, and A. N. Burgess, J. Phys. Che7n., 

100,6781 (1996). 

[24J A. Galindo, P. J. Whitehead, G. Jarkson, and A. N. Burgess, J. PILys. Chem. 

B, 101,2082 (1907). 

[25] M. N. GarCia-Lisbona, A. Galindo, G. Jackson, and A. N. Burgess, Mol. Phy,~., 

in press (1997). 

[26] Y. H. Fu and S. I. Sandler, Ind. Eug. Chern. Res., 34, 18!l7 (19(5). 

[27] W. G. Chapman, J. Chem. Phy.~., 93, 429!l (1990). 

[28] S. II. Huang and M. Radosz, Ind. Eng. Chem. Res., 29, 2284 (1990). 

[29] S. H. Huang and M. Radosz, Iud. Eng. Chem. R('.~., 30, 1994 (1991). 

45 



[30] D. Ghonasgi and W. G. Chapman, Alol. Phys., 80, 161 (1993). 

[31] J. K. Johnson, E. A. Miiller, and K. E. Gubbins, J. Phys. Chem., 98, 6413 

(1994). 

[32] M. Banaszak, Y. C. Chiew, R. Olenick, and M. Radosz, J. Chem. Phys., 100, 

3803 (1994). 

[33] M. Banaszak, Y. C. Chiew, and M. Radosz, Phys. Rev. E, 48, 3760 (1993). 

[34] D. Ghonasgi and W. G. Chapman, J. Chem. Phys., 100,663:3 (1994). 

[3.5] F. W. Tavares, J. Chang, and S. I. Sandler, Mol. Phys., 86, 1451 (1995). 

[36] R. P. Sear and G. JacKson, Mol. Phys., 82, 1033 (1994). 

[37] D. Ghonasgi, V. Perez, and W. G. Chapman, J. Chern. Phys., 101, 6880 

(1994). 

[38] D. Ghonasgi and W. G. Chapman, J. Chem. Phys., 102,2585 (1995). 

[39] R. P. Sear and G. Jackson, Phys. Rctl. E, 50, 386 (1994). 

[40] R. P. Sf'ar and G. Jackson, Mol. Phys., 87, 517 (1996). 

[41] R. P. Sear and G. Jackson, J. Chon. Phys., 105, 1113 (1996). 

[42] R. P. Sear and G. Jackson, Mol. Phys., 82, 47:3, (1994). 

[43] S. C. McGrother, R. P. Sear and G. Jackson, J. Chem. Phys., 106, 731.5, 

(1997). 

[44] A. Gil-Villegas, A. Galindo, P. J. Whitehead, S. J. Mills, G. Jackson, and A. 

N. Burgess, J. Chem. Phys., 106,4186 (1997). 

[45] A. Galindo, L. A. Davies, A. Gil-V i1l('gas , and G. Jackson, Mol. Phys., in 

press (1997). 

[46] J. A. Barker and D. Henderson, J. Chern. Phys., 47, 2856 (19(7). 

[47] J. A. BarkC'r and D. Henderson, J. Cltem. Phy.'1., 47, 4714 (19(7). 

[48] P. J. Leonard, J. A. Darker and D. ](f'ndPrson, Tran.~. Faraday Soc. ,66,2439 

(1970). 

[49] J. A. Dark('r and D. Henderson, He". Mod. Phy.~., 48, 587 (1975). 

[50] C. M. McCabe, A. Galindo, A. Gil-Vilh>gas, and G. Jackson, Int. J. Thermo­

phys., suhmitted (1997). 

[51] C. M. McCahe, A. Galindo, A. Gil-Villega.<;, and G. Jackson, in pr(lparation 

(1997). 

46 



[.52] A. Galindo, A. Gil-Villegas, P .. J. Whitehead, G. Jackson, and A. N. Burgess, 

J. Phys. Chcm., submitted (1997). 

[.53] L. A. Davies, A. Gil-Villegas, G. Jackson, S. Calero, and S. Lago, Phys. Rev. 

E, submitted (1997). 

[.54] L. A. Davies, A. Gil-Villegas, and G. Jackson, Int. J. Thermophys., submitted 

(1997). 

[55] F. del RIo, and L. Lira, Mol. PhY8., 61, 275 (1987). 

[.56] A. L. Benavides and F. del RIo, Mol. Phy.'1., 68, 983 (1989). 

[.57] A. Gil-Villegas and F. del Rio, Rev. Mex. Fis., 39, 526 (1993). 

[.58] Y. P. Tang and B. C. Y. Lu, J. Chem. PhY8., 99, 9828 (1993). 

[.59] Y. P. Tang and B. C. Y. Lu, J. Chern. PhY8., 100,3079 (1991). 

[60] J. Chang and S. I. Sandler, Mol. PhY8., 81, 745 (1994). 

[61] A. Gil-Villegas, F. del RIo, and A. L. Benavides, Fluid Phase Equilib., 119, 

97 (1996). 

[62] L. L. Lee, Molecular Thermol/Yllflmics of Nonideal Fluid.'1, Butterworth Pub­

lishers, (1988). 

[63] T. BoubUk, J. Chern. Phys., 53,471 (1970). 

[64] G. A. Mansoori, N. F. Carnahan, K. E. Starling, and T. W. Leland, J. Chem. 

Phys., 54, 152:1 (1971). 

[65] T. M. Rred and K. E. Gubbins, Applied Statistit'lll Mechanics, McGraw-IIill, 

(1973). 

[66] W. G. Chapman, G. Jackson, and K. E. Guhbins, Mol. Phys, 65, 1057 (1988). 

[67] J. S. Rowlinson and F. L. Swinton, Liquiti.'l and Liquid Mixtures, 3rd ed., 

Butterworth Scientific, (1982). 

[68] G. A. Mansoori and T. W. Leland, J. Chern. Soc. Famt/llY Tmn.'1. II, 8, 320 

1972. 

[69] N. F. Cal'llal1an and K. E. Starling, .!. CII£'11&. Phy.'1., 51,635 (1969). 

[70] C. P. Hicks and C. L. Young, Chcm. RetJ.'1., 75, 119 (1975). 

[71] M. Ahramowitz and I. A. Sh'gun (Editors),. lIandlJOok of Mathematical Func­

tion . .;, Dover (1972). 

47 



Chapter 3 

Molecular Simulation 

3.1 Introduction 

Molecular simulation techniques provide an alternative approach to the th('oretical 

study of fluids. The results obtainf'd can be used firstly to formulate a direct 

comparison with experimental data and s{'condly to complement other theoretical 

studies by providi ng means of testi ng the post ulates used in these proced nres. The 

main advantage of molecular simulation techniquE's over theory in the prediction of 

the thermodynamic and transport properties of fluids, is that no approximations 

other than the initial assumptions ahout the intE'rlllOlecular intE'ractions have to he 

made. This allows a highly accurate study of the thermodynamics of fluid systems 

to be performed. In order to be ahle to compare computer simulation results 

with those obtained experimentally, simlllations of complex model interactions are 

required, which mimic the behaviour of real systems as accurately as possihle. 

However, the use of simulation tpchniquf's to examine the nature of particular 

phenomena only requires that the essf'ntial physics of the system is contained 

within the modpl studied, thus eliminating the need for a complex mo(h'l system. In 

this work we exploit this feature of romputf'r simulation wlJ('re the pllase behaviour 

of simple mod('1 systems, ohtainf'd hy si Illulation methods is lIsed to determine the 

adequacy of a molecular based eqllation of state. 

Computer simulation methods can he suh-divided into two genNal rlassesj Monte 

Carlo (Me) [1], where a random sampling technique is lIsed as a basis to describe 
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the fluid's properties; and molecular dynamics (MD) [2, 3], where the fluid is 

analysed by solving Newton's equations of motion. Additionally, a number of 

recently developed simulation techniques exist which use a combination of both 

MC and MD methods, such as Brownian dynamics. We will be interested only in 

MC techniques, and more specifically in particular ensembles, the Gibbs ensemble 

and the semigrand canonical ensemble, which will be discussed in some detail in the 

following sections. As a direct consequence of the ability of computer simulation 

to yield 'exact' microscopic properties which can be used to give a macroscopic 

description of the fluid, the technique has become an integral part of the modern 

study of fluids and their mixtures, for theoreticians and industrialists alike. In the 

next sections we will introduce the statistical thermodynamics which forllls the 

basis of Monte Carlo simulations, and also illustrate the underlying concepts of 

the technique. 

3.2 Statistical thermodynamics 

The basic assumption made in statistical mechanics is that the ensemble average 

of a mechanical property, such as the pressure P, the energy E, the volume V or the 

number of particles N, is equivalent to the value of that property at the macroscopic 

(or thermodynamic) level. A statistical ensemble is dl'fined as the assembly of 

all possible miC)'ostates, or configurations, of a system. A particular miC)'ostate 

can be considered as an exact replica of the overall system at a thermodynamic 

level which diffl'rs from other microstatps at a molecular level. Such microstates 

exist since a particular system can OCCII py several di fferent f'nergy )f'vels whilst 

remaining in the same thermodynamic state. By calculating the ensembl<.> average 

of a thermodynamic property we ohtain an average over all the microstates of the 

system. Each of these configurations is assumed to occur with equal probability 

in an isolated system with fixed total f'Jlergy and of a fixPd size at thermodynamic 

equilibrium. Each microstate is thus assumed to have an equal weight within 

the distribution of configurations, so that the macroscopic system ran evolve by 

sampling from any combination of the availahle microstates, i.e., the microstates 

are said to be (lJ'godic. The probability that a macroscopic system lies in a state v 
with N particl(>s, a volume V, and ellf'rgy E, is given by 

1 
PI! = -n--' 

HNVE 
(3.1 ) 

where ONVE is the number of micros('opic states with N particles, a volume V and 

an energy of between E and E - ~E. ~E represents the finite uncertainty which 

exists in the sp(lcification of the actual value of the energy for a given energy level; 
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it arises as a consequence of the IIciscnherg uncertainty principle [4, 5]. For a 

finite value of ~E, ONVE is a finite function upon which standard mathematical 

analysis can be performed. The link to thermodynamics within this ensemble is 

made via the entropy S, which is related to ONVE by the equation 

(3.2) 

where k is Boltzmann's constant. The conditions of fixed number of particles, 

system volume and energy define a system in the microcanonical ensemble, which 

can be considered as a closed isolated system. Other ensembles exist which are 

defined by the fixed thermodynamic conditions particular to that ensemble. 

The canonical ensemble is an important example of an alternative ensemble, where 

the individual microstates have fixed numher of particles and volume, but their 

energy is permitted to fluctuate, and the system is kept at a fixed temperature T 

in order to maintain thermal equilibrium. The canonical ensemble can hence be 

visualised in the same manner as the mirl'Ocanonical ensemble, as a closed system 

which is in contact with a heat bath of temperature T. Within the canonical 

ensemble the probability that the macroscopic system is in a state " with fixed N, 
V and T can be shown to be given hy [G] 

1 
PII = -Q-exp(-EII/kT), 

NVT 
(3.3) 

where the Boltzmann factor is introduced from the dE'finition of entropy S in the 

microcanoniral ensemble Eq. (3.2). Q NVT is the canonical partition function which 

is defined as a discrete sum over all the possihle microstates v of a system 

QNVT = L exp( -EII/kT). (3.4) 
II 

The partition function is the key quantity lIs(>d for obtaining macroscopic proper­

ties from microscopic averages, since it appears in tIle f'xprf'ssion for the configu­

rational (or f'llsclllhle) aVf'fage of a thNlIlodynamic function. For a giV(,1l function 

.A the confignrational average is giv(>n hy 

<.A >NVT = < All >= L PIIAII 

= 

= 

II 
Lv Av eXIl( - Ev/ kT) 

QNVT 
LII All exp( -EII/kT) 

Lllexp(-EII/kl') • 
(a.5 ) 

Within the canonical ensemble the Helmholtz frf'e energy is related to the partition 
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function by 

A = -kTlnQNvT, (3.6) 

where A is the thermodynamic potentia.} with independent variables equal to those 

of the canonical ensemble, which is equivalent to the role of entropy in the mi­

crocanonical ensemble. The other thermodynamic properties of a system in the 

canonical ensemble are given by standard relations, for example, the pressure as 

p = _ (8A) = kT (8InQNVT) 
av T,N av T,N' 

(3.7) 

the average energy as 

(3.8) 

and the chemical potential of species i as 

. = (~) = -kT (Din QNVT) 
JlI aN· ON·' 

I T,V,NJ~i • T,V,NJ~i 
(3.9) 

The partition function in other common eIlsembles, surh as the isothermal-isobaric 

ensemble (coIlstant NPT) and the grand ranonical ensemble (constant JlVT) ran 

be written in terms of the partition function for the canonical ensemble. For 

example, in the NPT ensemble the partition function is given by 

QNPT = ~ fv:o exp( -[E" + PV]/kT) 

= Lexp(-I'V/kT)QNvT, 
v 

and in the ItVT ensemble by, 

QIJVT = LLf'Xp(-[E,,-llN]/kT) 

" N 
= Lexp(,tN/kT)QNVT' 

N 

(3.10) 

(3.11) 

In the thermodynamic limit, w}u'll N- 00, away from the critical rf'gion, the 

averages ohtaiJwd using the common statistical ensembles are f'ql1ivalent [7, 8]. 

The aim of Monte Carlo simulation is to provide a means of obtaining ronfigura­

tional averagf'S of thermodynamic propf'J'ties by }>f'rforming virtual experiments in 

which a series of microstates are gellf'l'atf'<l, over which aVNages are taken. Thus 

the concept of an ensemble average is approximated by pf'rforming a large number 

of computer generatf'd states, or trials T. It is possible to write the configurational 
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average of Eq. (:l.5) as 

A L:~~lZA(T)exp(-E(T)/kT) 
< >NVT~ L:;'~i%exp{-E(T)/kT) , (3.12) 

where Tmax is the total number of trials performed. The number of trials T can 

be increased until a suitably accurate value of A is obtained by means of a simple 

mean sample method, which involves sampling from all the permitted values of 

A. However, a large proportion of the trials performed in such a process would 

only give a negligible contribution to the ensemble average in Eq. (3.12), so that 

in order for even a crude estimate of tIle propE'fty A to be obtained, the number 

of trials required is prohibitively large. 

The Metropolis method permits configurationa'] averagf'S to be obtained in a much 

more efficient manner, via the use of importance sampling techniques. Here ran­

dom numbers are selected from a given distribution (or density) of states (J which 

allows the average to be calculated only in regions where it gives a significant 

contribution to the numerator of Eq. (:J.!). 

Sampling configurations from a random distribution, leads to an expression for the 

configurational average of the form 

(3.13) 

where PNVT is tIle density of states in the canonical ensemble which is given by 

1 
PNVT = --exp(-E/I/kT) 

(JNVT 
(3.14) 

which differs from Eq. (3.3) in that h('l'e we are considering a c.ontinuous distri­

bution of states, and the partition function is now written as an integral over all 

states. For most thE'flllodynamic functions (the free energy being the most notahle 

exception), the contribution to the ens('lIlhle average wiII be significant when the 

distribution of states in the NVT ensPllIble {JNVT is significant. Hence an estimate 

of the averagf' of A can be obtained hy sptting {J = {JNVT, so that 

< A >N\'T=< A >trials • (3.15) 

The generation of such a sequence of statf'S during a simulation, where all states 

occur with equal probability, wllich also has to he equal to the probability of 

microstates in the canonical ensPlllhle, is the basis of the Monte Carlo method. 

The Metropolis algorithm provides a solution to this prohl(llll by the construction 

of a Markov dJain for the fluid which lias a limiting distrihution equal to {JNVT. 
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A Markov chain is a sequence of trials where the outcome of each trial belongs to a 

finite set of possihle outcomes, and depf'nds only on the result of the previous trial. 

Two states m and n in the chain are linkNI by a transition probability P"I7H which 

is the probability that the system movf'S from state m to state n. The limiting 

distribution of a Markov chain, the vector p, must satisfy the condition 

p'P = p 

where the transition matrix 'P is made up of the elements 'Pmn such tllat 

LPmPmn = Pn, 
m 

and is stochastic, since all its rows acid to one 

(3.16) 

(3.17) 

(3.18) 

For fluids in the NVT Metropolis Sc1H'llle the transition matrix must be both 

stochastic and ergodic, that is each of the individual states is equally likely to be 

'visited' by the overall system during the simulation. The ('Iements of the matrix 

must be genel'ated from a knowll'dge of the limiting distribution of a Markov 

chain whic11 has elements Pm = PNVT(rm ), for each rill point in phase space. A 

further constraint on the transition matrix of a fluid is that its elrments should 

be independent of the corresponding partition function, in this case the canonical 

partition function Q NVT. Application of the condition of microscopic rev£'rsibility 

Pm Pm n = Pn Pnlll , (:1.19) 

so that tIle probability of moving from 11/. to n is {'qual to the prohahility of moving 

in the reverse direction, i.e. from n to 71/., is sufficient to ensure that the transition 

matrix for the g('neration of liquid configurations oheys all the required criteria. 

Hence, providing that the different configurations in a given simulation ensemble 

are microscopically reversible they Ca.1I hf' considered as being elements of a Markov 

chain of configurations, equivalent to tItOSf' used in the original Metropolis Monte 

Carlo formalism [1]. An additional advantage of the use of the Markov chain in the 

simulation is that configurations can be genNated without having to evaluate the 

normalisation factor of the distribution of microstates, i.e. the canonical ensrmble 

partition function. 

The transition between neighbouring statf'S m and n in the Me metllod is governed 

by the diffNence in ('nergy Allin" of the two states, Allmn • If the new configuration 

has a lower (01' equal) energy to that of the initial configuration, the transition is 

accepted, if the energy of the new configuration is greater than that of the old 



state, the transition is not necessarily rejected. Such moves are accepted with a 

probability proportional to 

(3.20) 

This selective acceptance of Monte Carlo moves which are 'uphill' in energy pre­

vents the simulation from becoming trapped in local energy minima on the phase 

space, hence ensuring that the thermodynamic properties obtained from the sim­

ulation take the correct value for the system studied. In order to accept a Monte 

Carlo move with a probability given by Eq. (3.20) the ratio of probabilities of 

neighbouring states is compared with a random number between zero and unity. 

If the ratio in Eq. (3.20) is greater than the random number the move from m to 

n is accepted (see [8] for full details). 

The scope of the Monte Carlo technique has expanded dramatically since its in­

troduction in 195:J, becoming "the most powerful and comlllonly used technique 

for analysing complex problems" [!)j. The first Monte Carlo studies resulted in 

the mechanical and structural properties of simple hard-sphere fluids. However, 

the nature of the model systems to which the MC llIethod can be applied has 

rapidly progressed via the use of dim'rellt inter-molecular interactions; for exam­

ple the Lennard-Jones potential was first used in a MC simulation in 1957 [10). 

Further sophistiration of the models used has led to the study of realistic systems 

using the Monte Carlo method, a particularly relevant example being that of wa­

ter, which lIas been extensively studil'd using the TIP4P mod('l [11, 12], the TIPS2 

model [13, 14] and the SPC model [15, IG]. Other systf'IllS which have 1)('en studied 

using MC techniques range from 7L-alkall{'s [17]-[19], methanol [20], complex fluids 

such as surfactallts [21], [22] to the rxamillation of the sw('lling of day systems 

with the addition of aqueous solutions [2:l]. 

The nature of the information whirh can he obtairwd from MC simulation studies 

has also adva,nc('d from the early work of ~fetropo1is d nl .. New tf'chniques such 

as the grand canonical ensemble [2:1J and tlte Widolll test pa.rticle method [25,26] 

have been dev(.·loped which permit tIl(' evaluation of properties such as the the free 

energy and ('ntl"Opy. These quantitif's are difficult to obtain from standard MC 

methods sinCE~ the Metropolis algorithm is desigll('d so that it samples configura­

tions with small or nf'gative energil's, wllirh have a small effect on the configura­

tional average in Eq. (3.12). Such tf'chlliques, togethf'r with the dev£>1opment of 

realistic 111od{'ls for fluids, allow tIle ('valuation of the full pllase behaviour of a 

complex 111od('1 system using computf'f silllulation. 

We focus on the use of Monte Carlo lIH'tllOds in the study of phase co('xistence of 

simple model fluids, which can he arliirvrd by lIsing E'ithN dir('ct or indir(lct simu-



lation techniques. Direct simulations yidd phase equilibria data by simultaneously 

examining the two coexisting phases. Illdirect MC methods involve the calculation 

of the chemical potential or free energy within a simulation for a series of state 

points; the region of phase coexistence is determined by the location of ponts in 

the phase space with equal temperature, pressure and chemical potential. A range 

of special techniques have been developed in order to obtain thermal properties, 

such as the free energy and entropy, some of which will be briefly disussed here 

(see Refs. [8] and [27] for a review). 

Use of the grand canonical ensemble [24], in which chemical potential, volume 

and temperature are fixed during the simulation, is a direct simulation method 

which has been widely used. Density is allowed to fluctuate over the course of tIle 

simulation, and the average density is calculated as an ensemble average. Within 

the grand canonical ensemble two Monte Carlo moves are performed in order 

to generate states, particle displacellH'nts and particle insertions/delE'tions (see 

Ref. [8]). The disadvantage of such an approach is that it relies upon successful 

insertions in order to obtain an adequate sampling of the density fluctuations, 

which become IE'sS likely as the density of the system increases. A related ensemhle 

which does not rely upon particle insertions is the semigrand canonical ensemble 

which is discussed later. 

An alternative route to tIle determination of chemical potential in standard shuu­

lation ensembles is the use of the test particle method [215, 2G], wldch consists of 

the introduction of a virtual or test particle into the simulation. This molecule 

measures the illtennolecular interactions at that point, but it does not influence 

the other molecul('s in the system in any way. This method and variations of it 

have been used extensively to obtain chemical potentials in hoth MC and MD 

simulations (see Ref. [28] for a review). The approach as adapted for the Gibbs 

ensemble (see later) is given in the apIH'Il<1iX. Application of the test particle 

method in the N PT ensemble is particularly useful, since the density is permitted 

to fluctuate, which is useful in studies rlm;(' to the critical region, as will he shown 

in Chapter 6. 

A range of modified sampling techniqu('s which facilitate the insertion of particles 

have been devPlop('d (see Ref. [28] and r<'fprences therein), an example of which is 

the so-called 'umbrella' sampling method [29,30,8] whicll samplf.'s configurations 

which are important in the determination of the chemical potential. Anothf.'r such 

technique is density scaling Monte Carlo [:20,30], whN(l simulations are perfol'lued 

on a non-Boltzmann distribution in ord(ll' to evaluate the Helmholtz frf.'(, energy 

between two states of different density along an isotherm. The position variables 

are scaled by density so that the generat(ld configurations are also df'llsity depen-



dent; the simulation results in the free energy difference between any two given 

densities. It is also important to note that it is possible to exploit the standard 

thermodynamic identities between the free energy or the chemical potential and 

the internal energy or pressure of a system in order to obtain values for such quanti­

ties. Such a route is termed thermodynamic integration, and has seen a wide range 

of applications (see Ref. [28]). One of the most applicable of such approaches is 

the Gibbs-Dllhem integration method proposed by Kofke [31]-[:3:3]. The method 

consists of the numerical integration of the Clausius-Clapeyron equation, and its 

main advantage lies in the fact that it is not limited to systems with coexistence 

curves in the pressure-temperature plane. For example, it can be used to locate 

phase transitions as a function ofthe interaction potential of a system (see Ref. [34] 

for a recent revh"w). 

A more intuitive route to the simulation of phase l)('haviour is the use of direct 

techniques, where the coexistence between two phases is simulated 'directly'. In­

terfacial techniques, where two phases are simulated within a single subsystem 

separated by an interface, are an example of such methods These studies lead to 

the description of the interfacial properties of the two fluids but can also yield 

bulk system prop(')'ties. The common prohlems of direct MC simulation methods 

include long equilibration times and that the stability of the two phase r£'gion is 

very sensitive to the density difference of the two fluids. Additionally, c.onfining the 

two fluids betW('flll parallel walls leads to the simulation of a confined f1 uid rather 

than that of co(>xisting phas(>s. These limitations and the possible means hy which 

their effect can be minimised are discuss(ld in Refs. [:15, 27] and [28]. Accurate 

evaluation of phase coexistence by Me sim1llation thus appears only to he possible 

by means of indirect techniques coupled with a bias sampling scheme, or by using 

a direct method with long simulation runs, taking care with the method used to 

confine the fluid. An alternative direct simulation technique is the Gibbs ensemble 

Monte Carlo (GEMC) method, where the phase equilibria of 11I0d('1 syst(,lllS can 

be readliy obtained without any of the problems associated with the two-phase 

interface. Within the Gibbs ensemble the coexisting phases are simulated ill two 

separate subsystems which are in thermodynamic E'<tllilibriulll hut not in physical 

contact. 
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3.3 Gibbs ensemble Monte Carlo simulations of mix­

tures 

Since its introduction 10 years ago by Panagiotopoulos [36], the GEMC simulation 

technique has become one of the most widely used simulation methods for the de­

termination of phase equilibria. The technique and its advantages and limitations, 

together with its applications has been extensively reviewed in Refs. [27,37]-[39]. 
As a simulation method it is partic.ularly well suited to the study of coexisting 

phases since it consists of two separate subsystems, or boxes, each of which can 

be assigned to one of the individual phases. These two boxes are examined simul­

taneously and are not in physical contact, but can be imagined to be embedded 

within the bulk of each phase. Hence the thermodynamic properties which are 

evolved have no interfacial contributions associated with them. HowevE:'r, these 

two subsystE:'lllS, are not completely isolated from one another, at least in the 

thermodynamic sense, since they are maintained in such a way that they are in 

equilibrium with one another. This requires that equality of pressure, tempera­

ture and chemical potential exists between the two boxes, and hence betw(,(,11 the 

two phases. This equilibrium is sustained via thr('e kinds of Monte Carlo move, 

particle displacem('nt to maintain thermal equilibrium, volume chang('s , to main­

tain mechanic.al equilibrium, and interchange betw('ell the two boxes, to maintain 

chemical equilibrium. The GEMC technique was first proposed for the study of 

pure fluids at a constant number of particles, volume and temperature, that is 

constant NVT oV('fall, so that a coupled volume change of +~ V in one box and 

-~ V in the other maintains the overall volume. This form of the Gihhs E:'llsE:'lllble 

has seen many applications, a few exampl"s heing the simulation of the Lennard­

Jones fluid hoth for monomers [36, 40] and higher chain molecules [41, 42], the 

square-well fluid [43]-[45], the Stockmayer Ouid [46], the Yukawa fluid [47, 4R], the 

Gay-Berne fluid [49], and of the Buckingham exp-6 fluid [50]. 

The Gibbs ells(,lllhle technique can also he applied to studies of r.oexistillg mix­

tures [51], and it is this aspect of the llIf'thod which is of inte),est he)"e. In this 

case the method can be implpll1ented at constant N l'T overall, since by increasing 

the number of COlllpolwnts of the systelll the number of variahl(ls which can be 

specified in the simulation also increasE's. Hence, for a two component system, 

the tempE'fatul'e and pressure of the two cOE'xisting pIlases can be sp(>cifi('d, whilst 

for the case of tIle pure component, only the tE:'mperature can be specifiN1. Use 

of the constant N PT Gibbs ensemble also results in smaller uncertainties in the 

coexisting df'nsities (or compositions) than for the constant NVT case. As one 

would expect, lllany different mixtures have been examin('d using the Gibbs en­

semble techniqu(', some examples are L(,lIl1ard-Jollf's mixtures [51, 52], square-well 
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mixtures [5:J, 54], Stockmayer mixtures [55], alkane mixtures [12,56,57], associat­

ing mixtures [58], water/methanol/salt mixtures [59], polydisperse fluids [GO], and 

surfactant solutions [61]. 

The GEMC technique has recently been extended to simulate multiphase equilibria 

[62], where the original GEMC two box partition function is written in terms of 

two canonical ensemble partition functions. For simulation of an n-phase system, 

n canonical partition functions are used in the overall Gibbs ensemble partition 

function. Results are presented in Ref. [62J for mixtures of Lennard-Jones atoms, 

including binary mixtures exhibiting two and three phase coexistence, and ternary 

mixtures exhibiting three and four phase coexistence. The ability to perform direct 

simulations of multiphase, multicomponent mixtures lIsing the Gibbs ensemble is 

likely to become one of the fundamental advantag('s of the technique over other 

simulation methods in the near future. 

In this work we are interested only in the application of tile Gibbs ens{'mble simula­

tion method as a means of obtaining the phase coexist{'nce of simple lllod(ll systems. 

The GEMC simulation results for a binary mixture of square-well monomers and 

dimers are prespnted in Chapter 4 and the simulation of a symmetrical square-w('ll 

associating mixture is discussed in Chapt(lr 6. We present the geuNal ('xpr('ssions 

of the GEMC partition function for a binary mixture at constant N PT, togpther 

with the other rplated functions which are used in the estimation of the thNlllO­

dynamic propf'J'ties of the fluid. The means by which the chemical potential can 

be obtained within a Gibbs ensemble is c1C'tailed in the appendix. W{' also discuss 

three possi hIe aJgorith IllS for the particle transfer step in tE'flllS of th{'i r siglli ficance 

in the expr('ssion for the acc('ptance critf'J"ion of the move. 

Within the Gibbs ensemhle a binary mixture of N = Nt + N2 partic1{'s, Nt of 

type 1 and N'l of type 2, at a constant temperature T and a constant pr('ssure P 

is divided into two subsystems, labelled (l and b, with volumes VCI and Vb, and 

numbers of pal'tid{'s NCI = Nr + N~ and Nb = Nt + Nj, r('spf'ctively, where N! is 

the number of particles of type i in subsystem j. The partition function for such 

a mixture is 

Q Gihb.t 
NJ'T 
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(3.21 ) 

where Ai is the thermal de Broglie wavelength of particle i, Vo is a basic unit of 

volume chosen to render the partition function dimensionless [63], (r1)N! represents 

the positions of particles of type i in subsystem j, and Ui(Ni) is the energy of 

su bsystem j. Note that in the case of non-spherical particles the orientations of 

particles also have to be specified. After introducing the re-scaled co-ordinates 

{{ = rilLi, where Li is the box length of the simulated subsystem j, the partition 

function can be written as 

Hence, the configurational average of a function A in the N PT version of the 

Gibbs ensemble is given by (cf. Eq. (3)5), 

An inspection of Eq. (3.2:3) indicates that it represents an ens(lmhle average with 

a probability distl'ihution proportional to a pseudo-Boltzmann factor 

P Oihb. = 

The acceptance criterion for each of the individual Me steps performed in the 

Gibbs ensemble ran be derived from Eq. (:3.24). 
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For a particle displacement in subsystem j, new configurations are accepted with 

a probability proportional to 

(3.25) 

which is equivalent to the original canonical NVT Metropolis scheme of Eq. (3.20) 

[1]. 

A volume change at constant pressure generates new configurations which are 

accepted with a probability proportional to 

p v = exp [N'J. (YO ~~V') + N'J. (V' ~~V') 
p~va p~Vb tl.Ua tl.Ub] 

kT kT - kT - kT . (3.26) 

This is identical to the original isothermal-isobaric, N PT, Monte Carlo pr(lscrip­

tion, proposed hy Wood [64], written for a volume change in two id(,lltical sub­

systems. Overall convergence in the N PT Whbs ensf'mble is found to be faster if 

the volume of only one su bsystem is changl'd per simulation cycle (d('fined later) 

[51]. Selection of which subsystem is to undergo a volume change is carried out 

at random, so that the acceptance criterion given in Eq. (:3.26), only depends on 

the terms which involve the chosen subsystem, for example, for a volume change 

of ~ va in a, the pseudo-Doltzmann factor is given by 

v_ [a (va+~va)_p~va_~ua] 
P - exp N In Va kl' kT' (:3.27) 

Interchange of particles between the two suhsystems liaS an acceptance probability, 

for transfer of a particle of type i from su hsystem a to subsystem 0, proportional 

to 
t [( NrVb 

) tl.Cfa dUb] 
P i = exp In (Nt + l)va - kl' - kT . (3.28) 

In the therlllodynamic limit, each subsystl'lll thus correfiJlonds to tile generalised 

jlVT canonical ensemble [65]. It is important to note that the m('tllOd employed 

to select the transferred particle affects the expressions involved in the above ac­

ceptance criterion. We now illustrate, for three transfer st(']> algorithms, why this 

is the case, and also explain why the thr(lp algorithms are equivalent by means of 

their microscopic revprsihility. 

The condition of microscopic reversibility is an essential feature of all Monte Carlo 

simulation methods, it requires that the prohability of transforming a configu-
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ration m into a configuration n must be equal to the probability of performing 

the reverse step. The roots of such a requirement lie in the fundamentals of the 

Metropolis Monte Carlo technique [1] as shown earlier. The Gibbs ensemble (and 

all the other MC ensembles) use the Metropolis algorithm, which requires that the 

Gibbs ensemble transition matrix must satisfy the same conditions as those for the 

Metropolis case. The microscopic reversibility of the individual steps in the Gibbs 

ensemble, for the case of the particle displacement and volume change steps, is 

easily recognised [8], since they correspond to the usual canonical and isothermal­

isobaric ensembles, and hence are known to he microscopically reversible. However, 

in the case of the particle transfer step, the reversibility of the process is not so 

apparent. Here, we outline the route involved in establishing the reversibility of 

the transfer step, by llsing three different partide transfer algorithms. We bor­

row heavily from the language of RuB et al. in Ref. [66] wllere the condition of 

microscopic reversibility in the Gibbs ensPllIhle was first discllsSE'd in any detail. 

We examine the sallle binary mixture as ea.rlier, consisting of N" = Nf + N!j 

and N b = Nt + N! particles, where N/ is the number of partides of type i in 

subsystem j. The probability of moving from an overall state m to an overall 

state n hy transferring a partide of type 1 from su bsystE'1Il a to Sll hsystem b is 

proportional to 

'Tl = N"'Nb'N"'N b, x'Tl .. boyolem" X 'Tl Iype I x'Tl pArlide I," 
rum l' l' 2' 2' r r rm 

x P po.ilion b X P Gibb. X P crilerion 
m mn' (3.29) 

where each of the terms in the above equation will be considered in turn. The factor 

Nf!Nf!N.f!Ni! corresponds to the numhN of pE'rlllutations of the labels used to 

describe the configuration m. P aub.y.lem" is the probability of chosing subsystem 

a as the donor subsystem for the transff'r, P Iype I is the probahility of chosing 

a given particle of type 1 to he transferred, and PmPArliclf! I," is the probability of 

chosing a particle of type 1 in subsystem lL. P po.ilion b is the prohability of selecting 

a particular position for insertion in subsystem b, Pm Uihb. is the probability that 

the overall system is in the configuration n given in Eq. (:J.24), and 'Pm~til.rion 

is the acceptance criterion for the particle transfer stE'P in the Gibbs f'lIsf'mble, 

given in Eq. (:1.28). The probahilities of choosing f'ither a particle of type 1 or 

of type 2 to be transferred are equal, P Iypel = P Iype:! = 1/2, similarly, the 

prohahility of chosing subsystem lL or b as the donor subsystem are equal, so that 
P .ub.y.l.mB = p .ub.y.lemb = 1/2. The prohahilitips for selecting a particular 

position for insertion in suhsystem a and b are also {'(pla.l, P po.ilionB = P po.ilionb, 

so that these three terms will not appear ill the overal1 accf'ptanc.e C1'iteria, which 

is a ratio of the probability of transfers from state Tn to n and from n to m. 

The probability of cbosing a given particle of type 1 in subsystem Cl, P,,/"";<I·I,B 

depends on the algorithm used in the particle transfer step. 
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In order that a particular transfer algorithm yields microscopically reversible con­

figurations, and hence be considered as a true Metropolis algorithm, the probabil­

ities of the forward and reverse transfers must be equal, that is 

(3.30) 

The first transfer step algorithm (1) proposed in the original prescription of the 

Gibbs ensemble technique for mixtures [51], follows the methodology: 

• random selection of the recipient subsystem 

• random splection of particle type i 

• random selection of a particle of that type in the donor subsystem 

• transfer of the selected particle to a random position in the recipient subsys­

tem 

The probability that a particle of type 1 is transfC'fI'f'd from a to b is given by 

Eq. (3.29), where the probability of chosing a particle of type 1 in subsystem a in 

configuration m is 
P p"nicle l,a _ _1_ 

m - Na' 
I 

(:3.31) 

and Pm Gibb. is givC'n by Eq. (3.24). The probability of the reV('fse step, the transfer 

of a particle of type 1 from subsystem b to subsystem (L is proportional to 

Pnm = (Nf- l)!(Nf + 1)!N2!N~! X P .ub.y.,.mb X P 

x P po.ilion II X P Gibb. X P cril .. ion 
n nm' 

Iype 1 X P p"'licl. I," 
n 

(:3.:32) 

For the c.onfiguration 11, the factor (Nf - l)!(Nt + 1)!N2!N~! corrpsponds to the 

numher of J)(,),lllutations of tIle labels, P,. parlicle l,b is the prohahility of choosing a 

particle of type 1 in subsystem b, given hy 

p parlicle I," _ --._1_ 
n - Nt + l' (3.33) 

The probability that the overall system is ill configuration n is, cr. Eq. (:J.2.1), 

1',. G;". = eXI+ (N: _ I~(~r + 1)!)+ In (N~~S!) 
+ (Na - 1) In va + (N b + 1) In Vb 

PVa _ PV" _ l1"(Na - 1) _ l1"(Nb + 1)] 
1.:1' k1' 1.:1' k1" 

(3.34 ) 
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Equating the forward and reverse probabilities for this transfer step algorithm, 

Eqs. (3.29) and (:3.:32), gives 

P 
t _ 
1 -

= 

X 

p criterion 
!lin 

(Nf - 1 )!( Nt + 1 )!N~!N~! P .ub.y.lem b P Iype 1 P n parlicl. l,b 

N alNblNalNbl X P .ub.y.lem a X -P-I-yp-e-l X P p,ulide l,a 
l' l' 2' 2' III 

P pOjition a Pm Gibb. 

P po.ilion b X P Gibb. 
n 

(3.35) 

This is identical to tIle general particle transfer step acceptance criterion given by 

Eq. (3.28). An identical expression can be obtained for component 2 in terms of 

Nf and N~. 

The second transf<'f step algorithm (2) [5:1] is less specific in its method of particle 

selection, it proceeds by: 

• random sel(lction of the recipient Sll hsystem 

• random sel('ction of a particle in the donor subsystem, regardless of type 

• transfer of the selected particle to a random position in the recipi<:'ut subsys­

tem. 

Here, the particle to be transferred is selected from the total N i particles in the se­

lected subsystem i, so that P Iype 1 is not included in the transf!'r step probability. 

The species suhscripts are dropped from tIle expressions for the probabilitirs of se­

lecting a particle of a gi yen type in a speci fic Sll hsystem, Pn p",licl.,a and Pm parliclo,b, 

so that they become I/Na and l/(Nb + 1), r('spectively. The reversihle transfer 

criterion for this algorithm can hence be wl'itt('n 

P t _ 
2 -

P,n ~,rilf'rion 
P,ui,'ilerion 

(Nf - 1 )!( Nt + 1 )!Nf!N~! P oub'yolom b p pa,licle.b p po.ilion a p Oibb. 
X n X X ~n!.-_ 

N"INblN"INbi X P .ub'101omB 
l' l' 2' 2' 

'Tl p,ulicl.,,, p po.ilion b 'Tl O,bb. 
",n r'f! 

= 

= (
Nt + 1) ( Na) [( NiVb ) dua dUb] 

Nt' Nb + 1 exp In (Nt + 1)va - 1.:1' - 1.:1' ' 

= [( Nav
b 

) dUB dUb] 
exp In (Nb+ l)va - 1.:1' - 1.:1' • 

In this Case the acceptance criterion is idf'lltical to that for the pure componE'nt 

NVT Gibbs E'ns(,lllble simulation [36]. 

(3.36) 



The third transfer step algorithm (3) [66] is the most general of the tluee algorithms 

examined here, it proceeds by: 

• random selection of a particle from the total N particles, regardless of sub­

system and type 

• transfer of that selected particle to a random position in the other suhsystem. 

The particle which is to be transferred is hence selected from the total N particles, 
so that P .ub.y ... ma, p oub.y.lomb and P Iypo J are not included in the expressions 

for Pm~rilorion and Pm~tl"ion. The probahility of choosing a partic.1e of a particular 

type in a given su hsystem, for both the forward and reverse steps, P TTl parlicle and 

Pn parlicle are now equal, and given by liN, and hence cancel from the transfer step 

criterion, which is now given by 

= 

= 

P'Ul ~ti '~rion 
p'n~ .. ri'~rion 
(N,\ - 1 )!( Nt + 1 )!N2!N~! Pm parlicle 1" po.ilion a 1"11 Gibb. 

NUINblNalNbl X P pArticio X P po.ilion b X 'J) Gibb. 
l' l' 2' 2' 11 I'm 

( Nt+l) [( NfV
b 

) t:.U
a 

D.Ubj 
Nj ex}> In (Nt + 1)va - 1.:1' - 1.:1' ' 

= exp [In (~:) - ~~. - ~n (3.37) 

This is identical to the criterion obtained when the equivalent algorithm is appUed 

to pure systems in the Gihhs ensemble [GG]. 

In order to compare these three algorithms a N PT Gibbs ensemble Monte Carlo 

simulation of a hinary mixture consisting of equal siz('d sphf'J'es, (Til = (T12 = (T22, 

interacting via a square-well potential of fixed ra.llge .x = .x 11 = .x22 = 1.5, and 

.\12 = I is performed. The attractive intNactions are given the values ell = 
e22 > 0 and el2 = O. This mixture has heen studif'd previollsly via the GEMC 

technique [5:1], the particular choice of interlllolecular interaction paramet('rs result 

in a phase diagram for the mixture which is dominat('d hy regions of liquid-liquid 

immiscihility. Rpsults ohtained using tl)(l different transff'r stf'P algorithms are 

summarised in Table 3.1. All three algorithms are seen to give vpry similar r(lsults 

for the phase coexistence of the mixture, hilt the first algorithm (1), is found to 

require the fewest particle interrhangf's ])('1" simulation cyrle, so that it is the most 

computationally efIicient. 
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Table 3.1: Liquid-liquid coexistence data ohtained from N PT Gihhs ensemble 
Monte Carlo simulations for a symmetrical mixture of square wells with a range 
,\ = 1..'5, performed using tIle various algorithms in the particle transfer step. 
The fixed variahles during the simulation are the numbpr of particles N = 1)12, 
the reduced pressure P* = Pa3 /€ = 1.08 and the reducpd temp(>fature T* = 
kT/€ = 1.829. The reduced densities p* = N(T3/V and compositions X2, in the 
two coexisting liquid phases are labeled 11 and /2, respectively; the ullcertainties 
correspond to one standard deviation. The time cOrJ'psponds to the cpu time 
required (in hours) to p(>fform 100,000 simulation cycles on a 150 MHz, JP22 
processor R4400 Silicon Graphics workstation. One simulation cycle consists of N 
MC displarenH'nts, one volume change anel a fixed llumber of particle insertions 
(Ninm). The number of insertions is cOlltl'OlI(l<1 so that 1 % of the N particles are 
interchanged PPI' cyele. Data marked with a t correspoud to the equivaJ(lnt data 
for the symmetrical square-well mixture of Rrf. [5:1]. 

algorithm pit pi2 X2,ll X2h ti me Nin8~r 

1 0,474±0.016 0,4 7 4±0.0 17 0.945±O.O20 O.0!)!)±0.020 7.14 200 
2 0.482±0.020 0.466±O.OI7 0.953±O.O20 0.OG6±O.02:1 9.39 1200 
3 0.409±O.024 0.465±O.021 O.!).10±O.02G O.OG5±0.028 9.41 1200 
2t O.481±O.O14 O.478±O.O13 O.!).t8±O.OlU 0.0,1 !)±O.O 17 
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3.4 The semigrand canonical ensemble for mixtures 

Another Monte Carlo simulation ensemble used in this work is the semigrand 

canonical ensemble (SGC) [67, 68], which is an analogue of the grand canoni­

cal ensemble. Within the grand canonical ensemble simulations are performed at 

constant chemical potential p, volume and temperature (It VT) using MC displace­

ments and particle insertions/deletions to maintain the equality of the thermody­

namic variables. The main difference between the the grand canonical (and the 

semigrand canonical) ensemble and the Gihhs ensemhle is that the simulation is 

performed in a single subsystem. In the semigrand canonical ensemble particle 

identity changes are performed rather than the particle insertions of the grand 

canonical ensemble [69]. The total number of particles, N is kept constant in the 

SGC ensemble, but the concentration of tl)(:, individ1lal species is allowed to fluc­

tuate by enforcing that the difference in dlPllIical potf'ntials D..Jt = It} - It'). is kept 

constant in addition to the number of particles, the volume and the tf'mperature. 

In order to obtain the partition function for a binary mixture in the semigrand 

canonical ensemble, it is first necessary to present the expressions for the grand 

canonical ensemhle. TIle partition function for a binary mixture of N = Nt + N2 
particles, Nt of type 1 and N2 of type 2, at a constant volume V and a constant 

temperature T in the grand canonical ellsPlllhle is givpn hy 

(:1.38) 

where JLi is the chemical potential of particle i. U(Nt + N2 ) is tIle configurational 

energy of the systPlIl of Nt + N2 partidps whil'h have scaled coordinates (i = rd L, 
where ri corresponds to the positions and momenta of slwcies i, and L is the linear 

simulation box length. It is common to f(l·write the partition function in terlllS of 

its configurational ('ontribution, ZN1,N2,V,T 

(3.39) 
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(3.40) 

In order to arrive at the partition function for the semigrand ensemble, we re-write 

Eq. (3.39) by fixing the chemical potential of one component (P2 for example) and 

defining the difference in chemical potential D.JI, = IL2 - JLl' This confines us to only 

allowing ILl and N2 to vary, whilst IL2 and Nt are fixed. Eq. (3.39) thus becomes 

x 

x 

= (3.41 ) 

where }"N,V,T,~IJ is defined 

(3.42) 

Note the similarities between the semigralHI canonica.l partition function Eq. (3.41) 

and the grand canonical partition function Eq. (:J.39), particularly in the way in 

which they can both be written as an expollC'ntial factor multiplied by a configura­

tional part. The configurational average of a function A in the semigrand canonical 

ensemble can be written 

< A > N,V,T,tl.1l = 1 

(3.43) 

The above expression corresponds to an f'lls(,lIlhle aVNage which lIas a probability 

distribution, which is proportional to 

p8emigrand = exp {In [ 1 ] + (N2~JLO) + Nln V _ (U(N))} 
N2!(N - N2)! kT kT ' 

(3.44) 

where A,Lo = Il~ - JL? and IL? = ILi - In Al. New configurations in the semigrand 

canonical ensemhle are generated by performing hoth particle displacements and 
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particle identity changes. Random displa.cf'ment ofparticlf's leads to configurations 

which are generated with a probability proportional to 

pd = ex}> ( _ ~~) . (3.45) 

The identity change step is implemented by first selecting a species at random, 

then selecting a particle of that type from the total N particles and changing its 

identity. For the identity cha.nge of a particle of type 1 to a particle of type 2 

configurations are generated with a probabili ty proportional to 

pid = [1 ( Nt ) (!:lILO) _ (!:lCl)] 
exp n N 2 + 1 + I.:T k1'· (3.46) 

For the reverse process, when a particle of type 2 is changf'd into a particle of type 

1, we find 

pili = exp [Ill (N~~ 1) - (~~~) - (~~:)]. (3.47) 

An alternative algorithm for the particlp hh'lltity change stpp exists [G7], where a 

particle is rhos('u at random from the total IV partic1('s and its identity sUbspquently 

changed. In this case tIle new configurations are gpn('rat('d with a probability 

proportional to 

pid = exp [( ~~~) - (~~)] , (3.48) 

in the case Wh(,ll type 1 - type 2, and 

P irl [(~/LO) (~C!)] = ex}> - 1.:1' - I.:T ' (:3.49) 

in the case when type 2 - type 1. 

The advantage of the semigrand ensl'lIIl>l(> over other simulation ensembles such 

as tile Gihbs or the grand canonical ells(,lllh)ps is that it dops not rely on particle 

insertions to achieve equilibrium. The cOllvl'I"gPtlce of thp. simulation is not limited 

by the density of the the system studif'd, so that it dirf'ct simulation of solid-liquid 

equilibria is tlleoretically possihle [68]. Tile sPllligraud PllsPlllble can also be ap­

plied to lllulticompolH:'ut systems where tll(, cllf'mical potential of only oue species 

at a given state has to be evaluated regardlpss of the nlllllhpr of compolH'nts present 

in the simulation. Tile phase behaviour of tIle sYllllllf'trical square-wdllllixture of 

Ref. [53] has recently b('en examined wi t Id II the SGC ellsem ble [70]. The symme­

try of the system ('xamitlf'd in Ref. [70] )wrtllits the cliJ'f'ct simulation of two-phase 

coexistence as in the Gihbs ensemble, hilt the simulation is perform('d in a single 

subsystem. The similarity between the sec and the grand canonical ('lIsembles 

is also exploited in Rd. [70], where a finitp-size scaling (FSS) analysis of the nit-
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ical region for the system is presented. In FSS studies the infinite system size 

critical properties are obtained from a s('rips of finite-system simulations, usually 

performed in the GC ensemble, due to the density and ('nergy fluctuations. The 

greater efficiency of semigrand canonical simulations than the corresponding grand 

canonical simulations hence make it a favourahle ensemhle for use in finite-size scal­

ing studies. In this work, we follow an approach similar to that of Ref. [70] where 

the critical regiou of a specific model systPIIl is ('xamined using FSS techniques in 

the SGC ('usemble. 

3.5 Concluding remarks 

In this chapter we have introduced the COIIC<'pt of molecular simulation as a means 

of obtaining phase coexistence data for silliple model systems. In particular, we 

show how simulations can be perfol'llH'd in the Gibbs and semigrand canonical 

ensembl('s. TIle Gibbs ensemble technique is the most widely used direct simula­

tion technique cUl'I'ently available for the study of fluid mixtures. It consists of 

simulations which are performed in two subsystems whirll are in thermodynamic 

equilibrium but 110t in physical contact. Tile advantage of this approach is that it 

eliminates the problems associated with tIle interface, which is the main disadvan­

tage of two-pllase simulation methods. The GEMC simulation results presented in 

this work are uSNI as a means of testing tll(> a.dl'Ciuacy of the tlH'oretical I'f'presenta­

tion of model fluids obtained using the SA FT-VR equation of state. Additionally, 

we perform Gibhs ensemble simulations as a.llIl'ans of tf'sting the effect of including 

specific features in the model on the phase hehaviollf exhibited by the system. 

The semigrand canonical ensemble is an indirect simulation tf'chnique, where the 

difference in c11C'mical potential of the component speci('s is fixed. Since pa.rticle 

identity changes are performrc1 rath(>r than insrJ'tiolls, tlse technique is applicable 

to high density fluids and (,Vf'1I solids. III this work we lIS(> tlse semigrand Pllsemble 

to examine a specific lll0dpI, which dill' to its sYllllllPtry ca.n be simulated in a 

single subsystem. The critical rpgion of this lllodel is also examined using a finite 

size scaling analysis of the simulation r('slllts. 
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3.6 Appendix: Determination of chemical potential 

in the Gibbs ensemble 

A feature of the Gibbs ensemble technique is that the chemical potential of the 

individual species does not have to be calculated during the simulation, since the 

particle interdlange step maintains equality of chemical potential between tIle two 

phases. A disadvantage of the Metropolis algorithm is its difficultly in obtaining 

non-mechanical properties such as the frf'e energy, the entropy and the chemical 

potential during the simulation. It is however a useful test of the GEMC algorithm 

to actually determine the chemical potentials of the individual sIwries present in 

the simulation. This can be achieved, within the GEMC transfN step, following 

Widom's particle ins('rtion method [25]. lINe, a virtual or test particle is inserted 

into the simulation box, and its energy with resppct to all the otller particles is 

calculated, enabling the excess chemical poteutial of the system to be obtained 

from 

I' ex = -kTln ( (eXI> [_1I k~:'t l) NJ, (3.50) 

where U test is the interaction enNgy of th .. test particle with the oth('r N par­

ticles, and the angular brackets rpprpsl'lIt all averag(' in the canonical ensemble. 

The full chemical potential is thus given hy 

(( [ 
U tI'8t]) ) I' = 1,0 + kT In p - kT In ('XI> - k1' NVT' (3.51) 

However, it has ])(>(>11 noted [71] that this t('st insertion tE'chniqlle is strictly only 

valid for the NVT E'nsemhle, as derived in the original Metropolis sch(,llle [1]. In 

ordN to use tIle same technique in the Gibhs E'ns(,llIhle it is important to account 

for the fluctuations in the lllllllbeT of partid('s alld ill the volume of tIle subsystems, 

which arise ill th(' Gibbs ensf'mble, both at ("onstallt NVT and at wnstant N PT. 

These fluctuations only become important close to tIle critical point, and when 

the number of partir\es is small. At telll){'ratllres away from tIle critical temper­

ature, when t11e particle nUmhf'T is stahl!', the rhellliral potential of a species i in 

subsystem s in the N PT Gibbs ensf'mble is given hy 

(( 
vj [U test.j ]) Gibhl) 

Jt: = JL? - kTln i ('xp - i 1.:1' • 
N, +1 NPT 

(3 .. 52) 

The chemical potentials obtained hy Eq. (:1.51) and by Eq. (3.52) are found to 

differ by less than the simulation UIlcf'rtaintirs for pure component species, except 
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when the number of particles in one of the suhsystems is very small [71]. In order 

to prevent poor sampling in the case of GEMC simulations of mixtures, where 

one subsystem can conceivahly have a very small number of particles of a given 

component, the chemical potential of the mixture is evaluated both during the 

particle transfer step and in a separate suhroutine using the \Vidolll insertion 

technique, as governed by Eq. (3.52). 
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Chapter 4 

Prediction of phase equilibria 

of mixtures using the 

SAFT -VR approach 

4.1 Introduction 

An important advantage of molecular hasl'd tlH'oril's such as SAFT-VR [1,2], 
is that each of the individual contributions to the ]lPlllllloltz free f'nl'rgy ran be 

compared directly with computer simulation data. IIpJ'e w(' examine three binary 

mixtures using tIll' SAFT-VR equation of state (as dC'srrihed in Chapter 2). A 
mixture of hard-sphere and square-wpll II\OIlO1l1NS, a mixture consisting of only 

square-well monOlllPrs, and a square-w('lIl1lllllomN-dillH'r mixture. The adequacy 

of the SAFT-VR expressions in descrihing phase hl'haviollr of mixtur('s in gf'll('ral 

can be established via a study of these thl'('e important prototype systems. All the 

particles whicll are examined here have the sa III I' segment diameter and square-well 

interaction rangf'. TIle din}('rs of tIle third mixture are fOfllH'd from two tangen­

tially bonded square-well monomers, so that tll(\ 1lI0nOIlH'r and dimpr spgments 

have the same range and strength of fHIII<lI'(',Wf'1l interadioll. This simplifif's the 

actual expr('ssions illvolved in tl\f~ e(lllation of state. 

The two monOllwr mixtur('s ran he lIs('d to df'tNmill(> the adecillacy of the ron-

iG 



tribution to the SA FT -va free energy due to monomers via an exami nation of 

their vapour-liquid equilibria, in the case of the hard-sphere and square-well mix­

ture and of the liquid-liquid phase equilibria of the hinary square-well mixture. 

The coexistence region for both these mixtures has been examined previously by 

Gibbs ensemble Monte Carlo simulation [:1]-[5]. Thus it is possihle to formulate 

a direct comparison between the SAFT-V It prediction and the simulation data of 

the mixtures. 

The square-well monomer-dimer mixture is perhaps the most interesting of the 

three mixtures studied here, since it allows olle to quantify the effpct of chain length 

on fluid pllase equilibria. Although the phase equilibria of systems with increas­

ing chain length have heen studif'd expl'rilllf'utally (e.g., mixtures of homologous 

series such as alkanes, perfiuoroalkaIH's, dilll<'thysiloxallf's etc.), the complf'xity of 

real intermolecular interactions makf's it diflicult to estahlish the precise effect of 

molecular extension. Computf'r simulation IIIl'thods arc idea.lly suited to the study 

of such systems, since the nature of the intNmolf'cular interactions cau be con­

trolled within a simulation, and the results ohtaiued can he consider('(1 as exact, 

particularly in th(> context of comparisolls with equations of statE'. Simulation 

studies have been pr('viously I)f'rfofllwd 011 hoth the pure componf'lIt square-well 

monomer [6, 7, 5] and dimf'r [8], but un silllulation data has IWPIl reportrd for 

the binary monolllN-dimer mixture. In tltis chapter we prf'scut Gihhs rnsemble 

Monte Carlo simulation data for this lIlixtllJ'(', which arE' Ulil'd to examine the accu­

racy of the SAFT-VIt equation of state ill pl'Nlirting thp phaSe> {'<Juilihria of ('hain 

molecules. 

The SAFT-va formalism is described ill ChaptN 2, so that ll(lr(' we will only brirfly 

present the main r\clllents of the tlif'ory as applif'd to the three hinary mixtures 

of interest; the hal'd-sphNe and sqll(lJ'f'-\\'('lIl11onolllf'r mixtuJ'e; the binary square­

well monollwr mixt \I rr; the sqllare-w('11 IIloll0lllN-<Ii IIlPr lIIixt urI'. COlli parisons 

between the SAFT-VR predictions allll (,(Jlllplltf'r silllulation da.ta are made for 

each of these mixtur('s in turn. For tIll' IIIOIIOIllN-dilllf'r lIIixtur(> we also r('port 

new GEMC simulation data and iIlllstra!'!' !low this ran hf' USf'd to obtain the 

phase diagram of the plIl'e compolI(,lIts. 
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4.2 SAFT-VR equation of state 

The SAFT-VR equation of state for a wixture of associating chain molecules is 

written in terms of four separate contributions to the Helmholtz free energy, A [1,2] 

AIDEAL AAlONO. ACIIAlN AA880C. 

-N-k-T - NkT + NI.:T + NkT + NkT ' 
A 

(4.1 ) 

where N is the number of chain molecul('s in the mixture, k is Boltzmann's con­

stant, and T is tIle temperature. In this ('(Illation AIDEAL is the idC'al free energy, 

AMaNa. is the residual free energy due to the monomeT sE'gments, ACIIAlN is the 

contribution due to the formation of cllai liS of monomers, and A ASSOC. is the term 

that describes the contribution to the fr(>(' (,lIl'I'gy due to intennolecular association. 

Here, we focus on systems interacting with a. square-wf'lI potential: 

( 4.2) 

where rjj is the distallce hetwepn two particl(ls i and j. TIle contact distance is (Tjj 

and the parameters AU and Cjj are tltp rallgp and d('pth of tIle potf'ntial WE'll for 

the i-j interaction, respectively. For all tll\'('e mixtllr('s, the lllolf'l'lilar diameters 

and the range of tll(> square-well int(')'artion are equal for (lach rOlllpOIlf'llt, so that 

(T = (TIl = (T12 = (T22, and A = A)) = A12 = >'2:2. TllI~ JlatuJ'(~ of the i-j illt<'l'actioll, 

Cjj must be defined individually for thl' tllJ'('(' lllixtllrps. For the hard-sphNe and 

square-well mixt ure, wi th the hard splt(')'(' as l'OllIponf'nt 1, the 11lixt lire in tp1'actions 

are given by C)) = C12 =0 and C22 = C. Fol' tile hinary square-well mixture hoth 

components have equal like int<'l'actiolls, so that C)) = C22 = c, hut we specify that 

there is no attraction betwf'en unlike (,(lIl1pOllents, so C12 = O. In the case of the 

monomer-climer square-w£'llmixtl\J'£', all till' int<'l'actions b('twe£'ll unlike and like 

components are equal, so that hf'J'e ':1\ = en = en = e. \Ve presrllt the general 

SA FT-VR expressions for each contrihlltiull to tIle f"PC' elH'rgy in Eq. (4.1) together 

with those which an' specific for each of t.ltl' thr(l(l hinary mixtmes (lxamiu<'d hf're 

here. 

The free eIlNgy of the idpal 1l-COIll\lOllI'lit Illixtur(l is giv(,11 hy [9] 

AIDEAL 71 

NkT = LJ'jlnpJ\j - 1 
i=J 

(4.3) 

where Xi = Nd N is the mole fraction, Pi = NdV is the numher d('nsity and Ai is 

the thermal de Broglie wavel<'ugth of sp('cil's i, fol' a binary mixture this reduces 
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to 
AlDEAL 

N kT = x1ln PIA:: + x2ln p2A~ - 1. ( 4.4) 

The monomer free energy is 

AMONO. 

= NkT 

= 

(4.5) 

where mj is the number of spherical segllll'llts in each chain i. For a binary mixture 

consisting of only monomers, where Wi = 1, we llave 

AMONO. ___ = (lAt, 
N!,;,), 

(4.6) 

and for a binary mixture of monolllers ((,OIIlPOIH'lIt 1) and dinH'l's (component 2) 

with m2 = 2 we have 

(4.7) 

The monomer fr<.'e ('nergy pf'r seglllf'llt of the JIIixtul'f' aM = A/(NakT) is ob­

tained from the Barker and Jlf'ndf.'fSOll lli~lt-teIllJ)('ratlll'e f'xpansioll up to sC'cond 

order [10]- [12]: 
(4.8) 

where aHS is the free enNgy for a mixture uf laard-sph('J'(ls, /3 = l/kT, al and a2 

are the first two perturbation ternls assuciat.l'd with tIll' attractive ('I\prgy. 

The free energy of the rcf('rcnre hard-spliNe mixture is ohtailH'd from the expres­

sion of BoubHk [1:3] and Mansoori d lit. [1:1]: 

HS _ G [((1) . . :l(t(2 (1 1 
a - - (2 - (0 In (1 - (,:d + ~(. + r (1 _ t')2 • 

7r P a 3 ,J ..,3 .,3 
(4.9) 

In this expression Pa = Na/V is the 1l1l1ll1H'I' c\PlIsity of the mixture in t('J'1II8 of the 

number of spherical spgments. Note tltat [Is = P('Lj xjllld, where p is the total 

number density of the mixturf'. Tlte ff,dll('('d df'IIsitif's (I are df'fiuf'd as 

(4.10) 

where (1j the diameter of spherical Sl'gllH'uts of ('hain i, and X.,i is the mole fraction 
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of segments of type i in the mixture, givPIl hy 

Xs,i = "u. . 
i..Jk=1 1IIk X k 

(4.11) 

When mj = 1 for both components, Xs.i = :1:j, hut for monomers in a monomer­

dimer mixture we have 
;1:1 

Xsl = ---
, ;1:1 + '2x2 

(4.12) 

and for dimers in the same mixtur(', 

(4.13) 

The overall packing fraction of til(' mixtuJ'(' is given by (3, whidl is (>quival(>ut to 

fJ = 1rp(13/6 for the pure COlllpOnl'llt. III all of the hinary mixtures of interest here, 

since (1 = (111 = (122, tile free energy of till' n.fPl'f'nre hal'll-sphl'l'e mixture rl'duces 

to the Camahan and Starling exprl'ssioll [1!J, 0] 

2 
118 ·1/1 - :31/ 

(L = . 
(1_7))2 

The mean-attrarti ve energy al in tile l)()rt IIrhation I'xpansioll is giv(ln hy 

where 

" " 
a -" ",. "2' ,(t

ii 
1 - L....J L....J. "',1' '/I,) 1 

;=1 ;=1 

(4.14) 

(4.15 ) 

(4.16) 

and g!fS is the radial distrihution fllllrtilJll fur a mixtllrl' of liard spl\('rl's. The 

integral is transformed hy applying tll(, IlIPiln-va.J1I1' t111'OrE'1ll [1] which gives an 

expression for al in terms of the contact val 11(> of gW': 
11 71 

8W __ ~", ", , ymv 1!8[ ... l"tJ/] 
(11 - (1s L....J L....J .1: 11 •1 .1 ".)il'.1 gi) (11)1 "a , ( 4.17) 

;=1 j=1 

where 
( V DW .) <' :l ( \ 3 1 )/3 Wij = ~1rc;.j.i(7'j.i Ai; - • (4.18) 

is the van dE'!' Waals attractive ('ollstalll fllr tilt> i - j square-wpll interaction. 

The contact val ue of the radial distl'i hll tillll function fur t !\(' hard-sp1lere I'efl'l'ence 

system, 9!;S[(1ij; (~II] is evaluated at all I'fJ'l'ctive packing fraction (t", given by 

the expression of BoubHk [13J and Mansouri d al. [14J 

g!(8[(7"" (r' f] _ 
I) 1)1 3 -

(1 "(7' . . (t" + 'j II)J '2 -1 --(-( ,-:-:, . (1" + (1 .. -( l--';':',-t: ,,,...,.., )-2 
:J 1\ JJ - 3 

(4.19) 



For the three systems of interest here thC' nature of the interactions and the fact 

that all the segments are of equal diamC'tf'1' Il'acls to the simplification of the mean­

attractive energy expressions for these mixtures. For the hard-sphere and square­

well mixture, Eq. (4.15) becomes 

= 222 :1:2(/,) 

= '1,2(lSW 
'''}.) , 

( 4.20) 

since ap = al2 = O. Similarly for the hillary square-well mixture tIle expression 

for at is given by 

(11 = J:f(/]'+x~af2 

= (xi + :d)a~w, 
(4.21) 

since a}2 = O. For tIl(> mOJlolllf'r-(lilJll'r sqllan'-wplllllixture all the interactions are 

non-zero, so we ohtain an expn'ssioll for th<' lIIf'an-attractive £'tlf'J'gy of the form 

(4.22) 

In each of these rases aiw is giVf'1l hy 

( 4.2:J) 

where 

( 4.2,1) 

and the contact value of the ra.dial distriblltioJl fUllct.ion is givf'1I hy the Carnatlan 

and Starling expression [15, 9J 

(4.25) 

with ."ef! = (;f!. The paralllf:'t<'l'isation fill' 1/,11 ohtaill(,(\ for tJ.f' J>lII'e square-well 

fluid in Ref. [1] is 118('<1, where 

( 4.26) 
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the coefficients ClI C2 and C3 are giVPll hy: 

( 

Cl ) (2.25855 -1.50:1·19 
C2 = -0.669270 1.400·19 

C3 10.1576 -15.0·127 

0.249·1:14 ) ( 1 ) 
-0.827739 ;\. 

5.:30R27 ;\ 2 

( 4.27) 

This corresponds to the MXl or MX:3 mixing rule of Chapter 2 and Ref. [2]. 

The fluctuation t£'rm of the free ell£'rgy is gi veIl by 

n n 

a2 = LL;l's,i;r. II ,j lL1, 
i=l j=1 

( 4.28) 

where each of the t<'fIl1S a1 are ohtai'lf'd with the loral compressibility approxi­

mation (LeA) [10, 11] as 

1 () ij 
ij -I/S (1, 

(L., = -:-/\ € i/·1'8-.-, 
""2 . dp. 

(4.29) 

where 1(118 is the isothermal fOlllpl'l'ssibilily for a mixture of hard-splll'res, given 

by the Percus-Yevick expression [l(j] 

Since all segments have ('qual diall1('tN WI' Ilave 

where ]{118 is now the pure rOlllpOIlPlit ('XIJI'('ssioll givPIl hy 

= 

(1 - llF + (jl/(1 - 11) + !J112 
(I - 1/ )'1 

(1+21/)' 

( 4.30) 

( 4.31) 

( 4.32) 

The contrihution to the SAFT-VR IIpll1lhnltz free elleJ'gy <!up to the formation of 

chains is given by 

( 4.33) 

where ySW(O'ii) = exp(-/3€ii)g8W(O'ii) is tllp hackground corr£'lation function, and 

gSW(O'ii) is the radial distribution fUllction for tIl£' square w£'ll system, hoth eval­

uated at contact. The t('nn corrpspollt\illg to the Boltzmann factor ('xp( -(3eii) is 



not required in the phase equilibria calculations, which permits us to write: 

(4.34 ) 

The contact value of the radial distribution function hl'tween s('gments i and j is 

obtained in the SAFT-VR approach from a first ol'<1('r perturbation expansion 

( 4.35) 

where 91 ((Tij) is obtained from a self-rollsistent calculation of the pressure using 

the Clausius vidal theorem [1], as was explaiuf'd in Chapter 2.: 

= IIS[ ( ] gij (Tij i 3 (4.36) 

+ /3e" [g/~S[rr' ,. (ell] 
') I) IJ':3 

+ (,,3, _ 1) -!1.. ".1 11' ,J _}' I) IJI ,3 

(

,\" i)(JU S[rr ':' (,ef f] UlJI! 8[rr' ,. (,~ f f)) 1 
I] ,) ')\.. fa!1 • 

oj ( /'II] ups 

Since both the lJard-sphere and s(l'larp-wdl mixtlll'P and the binaTY square-well 

mixture consist only of 111 on o III erir sPglllf'lIts, tl1(' rontrihlltion due to the formation 

of chains in Eq, (4.1) is only 1)ff'SPllt ill thl' IlIonoIllPJ'-dillll'r mixture, wh('rt' 

Acliain 
SlY 

Nkl' = X:lln!1 (rr). (4.37) 

Additionally, since all of the squaJ'p.-wf>ll s('gllll'nts have eqllal diameter the contact 

value of the square-wt'll radial distrihlltion fUllrtioll of Eq. (.1.:36) r('(luces to 

None of the threp hinary mixtures f'xalllilH'd 11('1'(' are perlllittCl} to associatt', so 

that the contribution to Eq. (4.1) duc to association is z('ro, hen('e we now have a 

complete descriptioll of the SAFT-Vlt f'lJllatiolls of state ror the thn'e mixturf's. 

For all mixtures, in order to dt'tf'J'lllinc the mnditions of phase ('(Illilibl'ia for two 

coexisting phases (l and b the tf.'IIl)H'J'atUI'I', PI'f'SSUJ'f' and rilPlllicaJ potential are 

required to satisfy the equations 

( 4.39) 

The c.bemical pot('utial, Jli, of SIH'ri(lS i ran he> ohtailH'd from the I1f'lmholtz fl'(>e 



energy of the SAFT-VR ('<Illation of slale using till' standard relation: 

It; (() AI J.-T) 
1.:1' = uNj T,V,NJ~i' (4.40) 

where Ni is the number of chain 1I10\PCII\(,S of speejps i. The overall pressure P 

may be calculated through the COllllHPssihility factor Z as: 

Z = PV 
NJ.:l' 

(4.41 ) 

where n is the total number of COlllPOIIC'lIts in tlte mixture and Xi = N;/N is 

the mole fraction of component i. 1'1t('s(> fUllrtions are uSf\d in the lIumerical 

determination of the phase hf'haviolll' of tltl' lIlixlurl', using a simplex method 

[17]. 

4.3 Comparisons with shnnlation data 

In the previous section we have disclIssl'd dl'tai\s of tlt(> application of the SAFT· 

VR equation of state to tllff'e difft'J'('nt lIIixtllfl'S fUnsistillg of hanl-spht"l't" and 

square-well molecules (in hoth 1I101l01llN fllld dimPf fOl'llls). The principal moti· 

vation of the SAFT-VR approach lips ill t\\I' dl'sCI'iption of the pllasp equilibria. 

of real mixtures, it is impoftant to first c'xalllillP the adpqlJacy of tlH' {·{J1Ia.tion of 

state ust"d by comparing the tllPorC'tiral pl'('dictions with pxart data ohtainpd by 

computer simulation. lINe, we 1)I'('S('lIt appropriate ('olJlpa,risons with Gibbs En­

semble Monte Carlo (GEMC) [IR, In] data. fill' thp vapolIl'-liquid and liquid-liquid 

phase equilibria of sp(lcifically chos(ln squarp-w('lIl11ixtllff'S. W(' initially study mix­

tures of 11l0nonwric st'glll('nts or tit" sa 11)(' si;w, wi t h aU rartive i ntNartions of ('qual 

range but with extreme values of tile altradivf' ('nNgips, which ('sspntia,l1y is a t('st 

of the Barker and lIelldersoll pf'ftllJ'hatinll tltf'ory llspd to d('srril)(' the 1II0nOllH:'r 

contribution in the SA FT· VR frf'e {'IINgy. Tll(,s(> COlli pill'isOIlS allow us to ass('ss 

the adequacy of tIll' pUff>-fluid rall)!;p dl'l)('IH\"ncp which is used to detPrllline the 

effective packing fraction of tIle llIixtul'l'. Simulation data for t1l(> vapour-liquid 

and liquid-liquid <'quilihl'ia of th('s(l lIIixtul'(,s havf' alrpac1y 1>('('n J'('poJ't{'d [:1]. 

By specifying that till' s('gl1l('uts of tIll' lIIixtlll'fl are of f'lIlIal sizp and that the 

square-well interaction is of <,qual stl'(lllgth and J'angr for hoth components, the 

phase equilibria of the llIonolll('f-dill\f'r lIIixtllre examitlf'd }\I're is gov('rned by the 

difference in length of the two com P 11111' 1\ ts. Co 111 pari SOil of the SA FT· VR pre· 

8·l 



diction with GEMC data for this mixture> allows us to test the adequacy of the 

term which describes the contributioll to the IIplmholtz freE' energy due to chain 

formation. Since the mixtures examitlf'd here all cOllsist of square-well segments 

of equal diameter and interaction rangf', w(' are unable to present a stringent test 

of the mixing rules described in Chaptf'r 2 alld in Ref. [2], llowever further GEMC 

simulations are currently being performed for mixtures with components of differ­

ent size and with energy parameters so that a lIlore d('tailed analysis of the mixing 

rules can be obtained. 

4.3.1 The hard-sphere and square-well mixture 

The vapour-Hquid phase equilibria of a, biliary mixture Wllsistillg of haJ'd-sphNe 

(1) and square-well (2) lllonOllH'rs is pxalliinNI. Bolh ('OIllPOIlf'llts are of equal 

diameter with (T = (TIl = (T12 = (Tn, alld t\al' JIIixtlll'(' inti'radiolls al'(' ('haraderised 

Ell = E12 = 0, E = E22 > 0, All = A 12 = I a lid A = An = I.!). COllstant ]>I'f'ssure 

slices of the vapour-liquid phase diagrflllis for tllf~ mixtlJrE' are shown in Figures 

4.1 and 4.2. 

The SAFT-VR predictions for the vapour-liqlJid ('qllilihria are compared with the 

GEM C data of Hef. [:3] for hoth tllP t(,III(H'ra t ur('-d(,lIsi ty (T p) a lid t(,llIperat ure­

composition (Tx) coexist(,Il('e clJrVl's. Tltl' phase l)('haviolJr of this mixture has 

been exami ned before [20, 21, :1]: t liP ni tical tl'lJIlH'rat II rE' and p1'<'ssur(> of the 

square-well fluid is s('('n to incrl';ts(> "POll l\lI~ addition of the hard SphPI'('S, and as 

expected the vapour phase is ridll'r in liard spltNPs than tIle ('o{'xisting liquid phase 

which is composed almost entirply of SllllilJ'l'-w('l1l11olloIlH'rs. The phase diagrams 

given in Fig. 4.1 an> at a constant rpdllcpd Pl'('ssure of I'· = [1(f3/ E = 0.1 whirh is 

very close to the critical pressure of tltl' PIII'(, squal'(' Wf'l1: wh(,l'e til(> I'pduced critical 

temperature, press\ll'(> and d('nsity for tJI<' pllre squilrp-w('ll fluid with a range of 

A = 1.5 are give in Ref, [7] as T; = I/J~/! = 1.219, I'; = l'c(13/E = 0.10H, and 

p~ = PcU3 = 0.299, )'('spertively. Hpsults an' prpsf'ntf'<\ for tIle SAFT-VR theory 

including only thE' al t<'rm in the (,(lIltrihlltioll to tIle fl'<'e cnNgy due to monomers, 

and for the theory including hoth (II alHl (ll. Tllf'se first- and s(l('oIHI-ordpr v(>J'sions 

of the SAFT-VR eXI)J'(>ssions ar(> hoth fllllnd to giv(> all pxcc,l1l'ut dpsCI'iption of the 

vapour-liquid phas(> equilihria for the nwx ist.i ng dC'nsi t.ips (Fig. 4.1 ( a)) and the 

composi tions (Fig. 4.1 (b)). Inclusion of 1.11f' sl'colHI-ordN tC'rm (ll ll'ads to a bet ter 

description of the liquid densitif's and of tIle vapour l'OJIlpositions. The vapour­

liquid coexistence curvps for a slIp(,JTl'itiral PI'(,SSllf(' slin' of I'. = f'(f3/ E = 1.0 are 

shown in Fig. 4.2; this state coTrC'sponds to ahout t('n tilll('s the critical pl'E'ssure of 

the pure square-wPl} fluid. Th" first- alld s('wlld-ol'dl'r prf'Clictions ohtainN) with 
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Figure 4.1: (a) TC'IIIIH'l'atllre-dl'nsit,Y lIlid (II) tl'llIpCI'atIlI'P-flJlJlpositioll slicl's of the 
vapour-liquid ('o('xisLI'II(,(, for tlll~ lIIixllll"l' .,1' hard sphl'l'I's (1) and square wells (2) 
with>' = 1.5 at a I'<,dlll'l,d pr(,SSIII'(' of I'· = l'rr:3/£ = 0,1; tltp J'l'ducC'd tl'lllperature 
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(at term) and s('('Qlld-ordpl' «(/1 and (/1 II'I'IIIS) SAFT·VR prNlictioll:'l, 1'('SIH'ctiveiy. 
The data points I'epr(ls(lllt the I'<'S 11 I 1.8 fir tilt' GEMC silllulations [:Jj; the diamond 
in (b) corresponds to thf' nitica.l poillt [ij. 
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the SAFT-VR approach are again colllpan·<J with the wrresponding GEMC data. 

The SAFT-VR expressions providtl an C'X('I·l1l'lIt rf'pr<'scntation of the wexisting 

densities and compositions for telll)lC'ratllJ'('s twlnw the critical point. However, the 

theory leads to an overestimate of tIle nitiral tClIllH'rature, a fC:'ature that it has 

in common with other analytical eqllatiolls of state which possess classical critical 

exponents [23]. The SAFT-VR eqllation uf statE." also IC'ads to an ovC'restimate 

of the vapour-liquid critical point of tIll' P"/,(' wlllponcnt sqllare-w<,ll fluid with 

>. = 1.5 [1]. In ord(»' to illustrate that tilt' ov<'restilllate in the nitical point of 

the mixture can he attributed almost l'lItil'l'ly to that of the pure component, we 

rescale the second-order co<'xistenl't> CIlJ'VI'S with tIl(> critkal tl'IlIIH'rature of the 

pure fluid ohtain(ld from GE~1C data ( as 7'; = 1.219 in Hl'f. [7]). From Figs. 4.2 

(a) and (b) it is rlpar that tllis l<,ads to a IIll1rh illlJ>rov<'cl r<'prel;('utation of the 

critical region for th" llIixturp at tIll' <l1·triIlH·lIt of tll<' pn·diction of tIl(> ('ot'xistence 

curve at lower tellllH'l'atul'<'s. 

4.3.2 The binary square-well mixture 

The liquid-liquid plias(l (>(Illilihria of it S,YlIlIlIl'triral biliary mixture of sqllare-well 

monomers is also exalllilw(l. TIl(' Sl'gllll'lIts CII'(' of ('(Illal <liam('tpr, (T = (TIl = (T1'l = 
(Tn, the square-w(,l! intpl'a('tioll is of (''1l1al st 1'/,lIgth fllld rallgl' fnr huth ('Olllponents, 

and no unlike interactions exist; e = ':11 = E,J'l > 0, e1:l = 0, >. = ~II = ~22 = 1.5, 

and >'12 = 1. Tlul plJase IH'haviollr or slI('1I a systl'1Il lias alrpady h(,(,11 rharac­

terised [22,4,3,5]: tIle principal f('atlll'l' of tIll' phas(l l)(·IIHviullr is tlj(l large t'xtent 

of liquid-liquid immiscihility at high PJ'{'SSIII'I'S dill' to tIll' ahspn('(l of a.ny unlike 

attractive illtt'rartiunsj at low IHPSSIIJ'('S till' phas(l ('qllilibria is complicated by 

vapour-liquid-liquid thl'('('.phase co('xist!'I1(,('. A t(lllllwl'atul'e.compositinll Tx slice 

of the mixture at a pr<'ssul'e of p. = /'(T:I IE = 1.0H is shown ill Fig. 4.:3; at this 

high pressure this systC'1II only pxllibil,s liquid-liquid plms(' s<'paratioll. Thp tlll'o­

retical predictions ohtaiu<'ll using tIll' S;H'T· VH. appl'Oaeh with both tllp. first- and 

second-order rl:'prpst'lltatioll arp ('QlJlpal'l'd with till' fUl'rl'spouding GE~tC simula­

tion data [3]. Thl' thpol'Y is s(,pn to I'/'O\'id" a good ff'l)f('s('lItatioll of the copxisting 

com positions for th(> liquid-tiq lIid plias(' ('I) II iIi hria lwlnw t hI' \I pp('r ('fi til-al sol u­

tion temperature (lJCST). As with till' vilpour-liquid Nillilihria of the mixture of 

hard spherl's and sCJuare w<,1\s, tlJ{' SA FT· V It a ppl'o(lch oV<'J'('sti mat<'s the cri ti­

cal point of thl' systpm dup to tll(, classical I'I'PI'('sC'lltation of the cO(lxistl'llcl' curve 

(quadratic rather than thp flattl'r cuhic d(·PI'lIdpllc('). \Vf' ohs<'I've that by rescaling 

the second·order ro('xist(>llre cUl'n' wit Ii l'I'sPI'('t to tIl(' pure (,01l1»0Il('lIt vapour­

liquid critical point, a lIlu('h 1)(,ttC'r I'P)lJ'('s('lItatioll of th(l nitit'a) I'('gioll is obtained. 

This again indicatE'S that the pl'illripa) illa<l('qllary of ollr thC'oretical approach lies 

is in the desrriptioll of tIle rritkal point of tll(' »111'<' ('01II)H)nf'lIt rather than by any 
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incorrect representation of the mixture> williill the equation of state. 

4.3.3 The square-well monomer-dimer mixture 

The vapour-liquid equilibria of a binary sqllarp-wdlmixture of monomers (1) and 

dimers (2) with equal spherical diallletf'rs (1 = (1\\ = (7'\2 = (7'22 is the third system 

studied. The square-well interactions are df'fined, A = ).11 = A\2 = ).22 = 1.5 
and e = ell = el2 = e22. \Ve use the salllC I"('dllced variahles as in the previous 

mixtures, T* = kT/e for the telllpNatllJ'(' and p. = p(7'3/e for the pressure. 

The mole fraction of monolllPrs is Xl = 1\'J/ N and of dillH'rs is X2 = N2/ N. No 

simulation data has been prt'viollsly rt'p"l'l('ll for the monomer-dimer mixture, 
50 that it was lU:'('es:mry to undNtak(' iSlillwl'lIlal-isuharic N f'T Gibhs t'nselllble 

Monte Carlo simulations [18, 19] in onl(, .. to have data with which to compare the 

theoretical prediction. 

The GEMC metllOd is d('scrihpd in ChapLI'1" :J, so ollly hri('f d('tails are J)f('sented 

here. Simulations are 1)('rfoTIIH'd ill cubic Iltlxl's, tltp partir\l's ill the vapour sub­

system are initially arranged 011 a fac('-n'lIl.n·d-rtlhk (fcc) lattice, whil(' thp higher 

density liquid configurations art' ohtaill!'d hy rOllJpr(lssing a single suhsyst(JIll with 

a standard N PT Monte Carlo t('I"\IIIi'lIl!' [:21, 25]. Th(' usual periodic boundary 

conditions and minilllulIl image conv!'111 jllil al'e uSl'd [2.'j]. Initial guesses for the 

coexisting densities and compositions at l'a("11 I'rf'SSIII'f' aud templ'J'ature state point 

are made by using the corresponding SA FT- V It sol utiollsj 0111' lIIust always ('nsure 

that the overall composition of thp sysll'lII IiI'S SOllll'w\tPI'e betw('{lll the composi­

tions of the two cO(lxistillg phas('s. Th(' r1wllliral pot('ntial was (I(lt(lrmin(ld with 

the Widom test partkle t('chniqlle [2G] as adaptpd to tlte GEMC approach [27], in 

order to ('nsure that phase equilibria is ilrh i('\'('(1 d II ri liP; t It<.> si mu)ation. The lise of 

the N PT v('rsion of th(l Gibbs eIl5(,1II1>1" ll'('h lIiqlll' yi('lds constant PJ"<.'5511re slic('s of 
the phase diagram of the mixture hy )H'rrul"llIillg a SNips of simulation cycles. One 

cycle consists of N displacf'ments/rpori!'lIl.alions of a randolllly s('lf'ct(Jd particle 

in each subsystem (sP(J Ref. [2~]), 011(' \,01111111' dlllllgP for eith<'r subsystem, and 

a specific num h(Jr of parti('le i nterrha IIgl's II!'t w('('n Sll hsystellls (\lsi ng the trans­

fer algorithm of Ref. [lS]). Thf' maxirllllill displacl'IIH1 nt and volUllIf' change are 

adjusted to give an acc(Jptancf' ratio of IlI'tw(,1'1I :10 and 40%, and th(' numher of 

insertions is contro])('(1 so that bf'twl'PIl 1 and :1% of particll:'s are int('rchangNl ('ach 

cycle. The majority of the si 111 III atioll s al'l' I)(·rfornwd wi th syst(lms of N = 512 

particles, but it is lI('c('ssary to use N = 171~ partirll's in ordpr to get dos('r to 

the critical line of the> mixtllJ'P. An initial sillllllation of M,OOO cyril's is p(lrform('d 

to equilibrate the subsystems, I)('fo)'(> a\'I'rag;illp; for hrtw(,(,1J 100,000 and 250,000 

no 



cycles. 

The phase behaviour of the mixture is slIlIlllIarisI'd in Figs. 4.4 and 4.5, and the 

corresponding Gibbs ensemhle data an' 1'(')101'1(>(1 in Tables 4.1 to 4.S 

As will become dear later tIle silllulatioll d;lta obtained for the mixture can be 

used to estimate the vapour-liquid ('(!lIilibria of ('ach pure COmpOIH'llt fluid: the 

phase diagram of the square-w('ll 1lI01101I1I'" is shown in Fig. 4.G and that of the 

square-well dimer in Fig. 4.7, with tIll' rUf'I'l'sponding data given in Tahles 4.9 and 

4.10. A pressure-temperature projPctioll of til<' full phase b('haviour, including the 

pure component data is givpn in Fig. 4X 

Table 4.1: Vapour-liquid cOl'xist('nce dala IIbtain(>d from N PT Gibhs ('nspmble 
Monte Carlo simulations for a mixture of s'IlIal'l'-w(>lI monOIllPI'S and dillH'rS with a 
range ~ = 1.5. The fixed variahl('s during tt.1' silllulation arl' tllP numh('r ofpartic1es 
N = 512, the redu("('(l prflssure P* = p(T:l/! and the r(>(hl("{'(l tfllJll)('rature T* = 
kT / e = 1.00. The packi ng fractions flt diall!'I' 1II01e fractions X2, and the r(>duc(>d 
energies per s(>gment E* = E/eN. in tlal' ('()('xisting vapour and liquid phases 
are labeled v and I, rl'spertiv('\Yi the ulH'l'l'tailltil's corrrspolld to one standard 
deviation. 

P* flu '/I :/''1.'' Xv E* u 

0.004 0.00:1±0.OOO1 O.:lfl!l±O.OO·t 0.:1I:I±O.015 0.87:J±O.015 -0.10±O.0:1 
0.007 O.OO·lfO.OOO·' 0.:18!>±0.004 0.11 :!±O.O:.W 0.708±0.017 -0.13±0.O:1 
0.011 O.OOG±O.OO 1 0.:Jl'tl±0.004 0.O.'i1±O.OI9 0.5H±0.012 -0.O9±0.04 
0.013 O.OOS±O.OO 1 O.:JiO±0.OO4 0.0Ii±O.OI6 0.4 7G±O.0 12 -0.14 ±O.O·t 
0.019 0.0 12±O.OO 1 0.:17G±O.OO6 0.O:11±O.012 0.3;J!)±0.O 17 -o.:m±0.06 
0.027 0.015±0.OO1 O.:l74±O.008 0.OOi±0.009 0.132±0.OO7 ·0.19±0.O6 
0.031 0.021 ±0.OO2 0.:3GG±O.OO8 0.O()j±O.OO6 0.OOO±O.OO5 ·O.44±O.O!) 

Pressure-composition (f'X) collstant t('mpN<lIIII'(l slic(>s of tll(l vapoUl·.liqllid pllase 

diagram for the mOllollu'r-dinwr mixture 011'<' sllown in Figs. 4.4 and 4.5. The 

square-well dimer is the l('ss volatile of till' two cnmpon(luts, and a sligllt lIE'gative 

deviation from Raoult's law can be d(>tE'<'lC'(1. As the t(llllpPTatu re is increas(>d 

above the critical point of thp pure monolJlC'l' square-w('11 fluid, vapour·liquid crit­

ical points are obs('fv('d for the mixture. TI.(' SA FT-VR pr(ldictions al'e compared 

with the GEMC simulation data for a SNit'S of temperatul'es: four sub-critical 

with r(>spect to the »1IJ'e lllOIlOllu'r fluid, om' at the (lstimatl'd vapour-liquid critical 

temperature of the 1II0JlOlller (Tc~1 = 1.22 alld 1';,1 = 0.1O~) [7]; and tlll'{'e tem­
peratures above the lllOJlOllll'r critical poillt. VNY good agJ'(l{,llll'lIt hrtw('rn the 
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Figure 4.4: Pressure-('omposi tion slices of t IIi> vapour-liquid coexistE'n('«:> for the 
square-wellmixtur«:> of lllonOll1l:'rS (1) and di \IIprs (2) wi th " = 1.5 for temperatures 
below the critical point of th«:> pure monOIllf'T =,ystE'm. TIle reduced pressure Pr = 
P* I P:' t is defin«:>d in terms of the critical poi Ilt or the monomer, and X'l is tIle mole 
fraction of dimers. The curvE'S are labelled witb their corresponding values of the 
reduced temperature Tr = T* IT:'1• The data points represent the results of the 
GEMC simulations for syst(>llls of N = 511 particles, and thE> continuous curves 
correspond to the SA FT -VR prediction. 
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Figure 4.5: Pressttr(>-romposition slices of the vapour-liquid coexistence for the 
square-well mixture of 1l10nOllH'rs (1) and dimers (2) with ,\ = 1.!) for temperatures 
above the critical poillt of the pure monomer system. monomer. S('(' Fig. 4.4 for 
details. The squares l"orrespond to GEMC data for a system of N = 1728 particles. 
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Table 4.2: Vapour-liquid coexistence data obtained from N PT Gibbs ensl.'mble 
Monte Carlo simulations for a mixture of square-well monomers and dilllers at a 
reduced temperature of T* = 1.05. See Table 4.1 for details. 

P* 7]v 7]1 %:l,v %2,1 E* v E* I 

0.005 0.004±0.000:J 0.388±0.004 0.366±0.020 0.892±0.015 -0.12±0.03 -5.17±0.06 
0.006 0.004±0.000:J 0.390±0.OO5 0.371±0.017 0.880±O.0 17 -O.15±0.03 -S.19±0.08 
0.011 0.OO7±O.OOl O.3~4±O.OO4 0.159±0.020 0.719±O.O17 -O.20±0.04 -5.l7±0.O7 
0.017 O.OlO±O.OOl O.:17G±O.004 0.083±0.017 0.539±0.0 12 -0.2:J±0.05 -5.14±0.O7 
0.020 0.012±0.OOl 0.:J71 ±0.OO5 0.067±0.017 0.46.J±0.017 -0.:W±0.05 -5.12±0.08 
0.027 0.018±0.OO2 O.:170±0.OO4 0.057±0.020 0.380±0.0 1 0 -O.47±0.10 -5.17±0.07 
0.031 0.O20±0.OO2 O.3GO±0.OO6 0.032±0.013 0.255±0.0 14 -0.47±0.08 -5.12±0.09 
0.034 0.022±O.OO2 O.355±0.OO6 0.018±0.O10 0.172±0.Oll -0.54 ±O.O!} -5.11±O.O9 

Table 4.3: Vapour-liquid rOl.'xistence data obtained from N PT Gibbs E'lls('mble 
Monte Carlo simulations for a mixture of square-well monol1l('rs and dilll(>rs at a 
reduced tE'mperature of T* = 1.10. See Table 4.1 for details. 

P* flv '/1 %:l.v %2.1 E* v E* 1 

0.009 0.006±O.OOl 0.:J77±0.004 0.322±0.023 0.834±0.017 -0.19±O.04 -5.00±O.O8 
0.017 0.010±O.001 0.:JG5±0.005 0.117±0.021 0.596±0.015 -0.25±O.05 -4.94±O.07 
0.026 0.016±0.002 O.:J55±0.006 O.069±0.O17 0,419±0.0l3 -0.40±O.O7 -4.91±0.O9 
0.033 0.022±0.OO2 O.:J!)!)±0.006 0.067±0.OI5 0.378±0.01:J -O.55±O.09 -4.99±O.09 
0.038 0.021±0.002 0.:157±O.OO6 0.045±0.O18 O.312±0.010 -O.2:1±0.07 -S.00±0.09 
0.047 0.038±0.O08 0.:J.l5±0.007 O.030±0.018 O.160±0.OO9 -O.95±0.26 -4.96±O.11 
0.052 0.050±0.009 0.:J42±0.006 O.040±0.013 0.156±O.OO8 -1.3:J±O.28 -4.93±O.09 
0.058 0.051±O.OO7 O.341±0.O13 O.OO7±O.OO7 O.035±O.OO:J -1.2G±O.22 -5.02±0.18 
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Table 4.4: Vapour-liquid coexistence data obtained from N PT Gibbs ensemble 
Monte Carlo simulations for a mixture of square-well monomers and dimers at a 
reduced temperature of T* = 1.18. See Table 4.1 for details. 

P* flv '71 %;l,v %2,1 E* v E* I 

0.008 0.007±0.001 0.368±0.005 0.790±0.015 0.966±0.OO8 -O.24±0.05 -4.80±0.07 
0.013 O.Ol1±O.OOl 0.370±0.005 0.547±0.017 0.900±0.0IS -0.32±0.06 -4.89±0.08 
0.018 0.012±0.001 0.:161 ±0.005 0.317±0.024 O. 778±O.0 17 -O.2·1±O.05 -4.77±0.08 
0.032 0.019±0.OO2 0.368±0.006 O.139±0.022 0.539±0.0 17 -0.29±0.06 -4.71±0.09 
0.036 0.022±0.OO2 0.:H8±0.007 0.124±0.018 0.491±0.O16 -O.IlI±0.07 -4.66±0.10 
0.045 0.032±0.OO4 0.343±0.007 0.131±0.Ot9 0.429±0.018 -0.SO±0.13 -4.70±0.11 
0.060 0.047±0.00!) 0.:128±0.010 0.072±0.Ot3 0.258±0.020 -1.11±0.15 -4.61±0.14 
0.076 0.077±0.012 0.:lOG±0.010 0.039±0.014 0.108±0.00S -1.G8±0.27 -4.45±0.14 

Table 4.15: Vapour-liquid ('o('xistence data obtained from N I'T Gibbs t'nsemble 
Monte Carlo simulations for a mixture of square-well monOlll(lrs and dimers at a 
reduct'd tt'mpl'rature of T* = 1.22. See Table 4.1 for details. 

P* 11" 711 Xl,v XV E* v Ei 

0.016 0.013±0.001 O.:J!) 7 ±0.006 0.513±0.044 0.827±0.018 -0.:J5±0.07 -4.67±0.08 
0.022 0.015±0.OO2 0.:lM±0.006 0.368±0.028 O. 788±0.0 17 -0.3!>±0.08 -4.65±0.08 
0.027 0.016±0.002 0.:1:16±0.007 0.209±0.028 0.644±0.018 ·0.:lG±0.07 -4.48±0.O9 
0.032 0.022±0.002 0.:J.t5±0.007 0.236±0.029 0.642±0.0:12 ·0.M±0.10 ·4.S9±0.IO 
0.043 0.029±O.004 0.:J:J3±0.008 0.155±0.023 0.488±0.02:J ·0.G9±0.t2 -4.S1±0.11 
0.0.54 0.0:J6±0.005 O.:1IG±O.OIO 0.099±O.022 O.34.5±0.021 -0.~2±0.14 ·4.38±O.13 
0.OG5 0.052±0.OO7 0.314±0.009 O.091±0.O19 0.274±O.016 ·1.15±O.19 ·4.40±O.13 
0.076 0.067±0.018 0.299±0.01O 0.066±0.O22 0.183±0.010 -1.41 ±0.35 ·4.26±0.13 
0.081 0.071±0.OlO 0.285±0.014 0.046±0.018 0.125±O.010 ·1.48±0.32 ·4.14±O.17 
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Table 4.6: Vapour-liquid coexistence data obtained from N PT Gibbs ensemble 
Monte Carlo simulations for a mixture of square-well monomers and dimers at a 
reduced temperature of T* = 1.28. See Table 4.1 for details. 

P* flv 17' %2,,, %2,' E* v E* , 

0.022 0.023±0.OO.') O.3.')3±0.005 0.753±0.0.')0 0.931±0.011 -O.G.')±O.19 -4.56±0.07 
0.027 0.023±0.00:} 0.346±0.006 0.561±0.032 0.850±0.0 1 G -0.G2±0.11 -4.50±0.09 
0.032 0.02:HO.002 O.a:ll ±0.008 0.336±0.029 O.715±O.O19 -O.M±O.IO -4.36±O.10 
0.043 0.0:11 ±O.OO:J 0.:J27±0.009 0.266±0.032 0.619±O.018 -O.71±0.12 -4.3.')±0.12 
0.054 0.041 ±O.OO.') O.320±0.009 0.230±0.02!5 0.523±0.O2:1 -O.94±0.14 -4.30±0.12 
0.06.1) 0.046±O.OO5 O.:JO·i±O.Oll 0.159±0.022 OA07±0.019 -1.00±O.13 -4.15±0.14 
0.076 0.062±0.0 II 0.29·t±0.0 12 O.136±0.O26 0.322±0.018 -1.30±0.24 -4.08±0.15 
0.08!) 0.080±0.O:.W 0.277±0.O15 O.114±0.O30 O.241±O.014 -1.nO±O.36 -4.93±O.18 

Table 4.7: Vapour-liquid ('o('xist('nce data obtained from N PT (:ibhs (,1I8(,l1Ihle 
Monte Carlo simulations for a mixture of square-well monOIlH'rs and dilllPrs at a 
reduced tpll1ppraturp of T* = 1.34. See Table 4.1 for details. 

P* flv f1l %2,,, %2,1 E* 
" Ei 

0.027 0.025±0.OO:1 0.:129±0.008 0.713±0.028 0.907±0.O12 -O.O·1±0.12 -4.23±0.10 
0.032 0.028±0.OO:1 0.:125±0.OO8 O.577±O.O30 O.842±O.OlG -O.G9±O.12 -4.21±O.10 
0.038 0.033±0.00.') 0.324±0.O07 0.514±0.034 O. 793±0.0 17 -0.79±0.15 -4.21±0.10 
0.043 0.035±O.OO·1 0.:U6±O.OO9 O.420±O.O27 O.723±0.020 -0.79±O.13 -4.13±O.11 
0.054 0.040±0.OO6 0.296±0.OlO 0.294±0.036 0.590±0.018 -0.8.')±0.15 -3.95±0.12 
0.065 0.051±0.006 0.299±0.012 0.292±0.028 O.5.J5±0.020 ·1.08±0.16 -3.99±0.14 
0.076 0.066±0.OI1 O.280±0.015 0.221±0.033 0.426±0.019 -1.34±0.2:1 -3.83±0.17 
0.086 0.077±0.OI2 0.2G6±0.018 0.201±O.030 0.364±O.O18 -1.51±0.24 -3.71±O.20 
0.097 0.088±O.02.') O.2;}.')±0.O39 0.177±0.034 0.297±O.OO:} -1.G!HO.40 -3.43±O.41 
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Table 4.8: Vapour-liquid coexistence data obtained from N PT Gibbs ensemble 
Monte Carlo simulations for a mixture of square-well monomers and dimers at a 
reduced temperature of T* = 1.46. See Table 4.1 for details. Results labeled with 
a t are obtained using N = 1728 particles. 

P* 71v 7]1 X2,t1 X 2,1 E* v 

0.043 0.056±O.O12 O.293±0.01l 0.914±0.020 0.962±0.007 -1.17±0.26 
0.049 0.071 ±o.oon 0.292±0.012 0.861±0.015 0.928±0.012 -1.47±0.17 
0.054 0.056±O.OlO O.274±0.012 0.681±0.042 0.837±0.01:1 -1.12±0.22 
0.065 0.060±0.01:J 0.240±0.016 0.563±0.052 0.738±0.014 -1.17±0.26 

O.OMt O.070±O.OO·1 O.2M±0.013 0.575±O.OI5 0.731±O.Ol:1 -1.40±O.O8 
0.076t 0.077±0.OO·1 0.254±0.010 0.573±0.013 O. 723±0.0 11 -1.51±O.08 
O.08I t 0.101±O.O12 0.2:15±0.019 0.537±0.024 0.651±0.O15 ·1.8G±O.20 
O.086t 0.122±O.017 0.197 ±O.034 O.519±O.O24 O.583±O.027 -2.13±O.22 
o.ont 0.113±0.01l O.212±O.O24 0.508±0.020 0.595±0.017 -2.01±0.15 

Table 4.9: Val ues of the reduced temperature r* = kT Ie, t h(> red u('c·d vapour 
pressure p. = p(73 It and the parking fractions 11 for the vapour·liquid ro('xist('nce 
of the pure square-wpll monomer fluid with a range ,\ = 1.5. The rE'sults are 
obtained by extrapolating the monomer-dimer mixture simulation data. (sE'e text 
for details). The vapour and liquid densities are denoted by 11 and I, t'('sp(,(·tivdy. 

T· p. 7]v 7]1 

1.18 0.086 0.055 0.283 
1.10 0.061 0.046 0.306 
1.05 0.040 0.220 0.318 
1.00 0.034 0.016 0.332 
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Ej 

-3.73±0.13 
-3.72±0.14 
-3.56±0.13 
-3.25±0.16 

-3.35±0.13 
-3.39±O.10 
·3.23±0.18 
-2.90±O.32 
·3.04±0.22 
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Figure 4.6: (a) Vapour-liquid coexistence densities for the monolller square-well 
system with ~ = 1.5, where T- = kT/£, and '1 = 7rp.(J3/6 is the packing fraction. 
The triangles correspond to the results obtained by extrapolating the mixture 
GEMC data, the crosses correspond to the GEMC data of Ref. [7], and the aster­
isks to the molecular dynamics data of Ref. [6]. The continuous curve.> re.>pre.>sents 
the SAFT-VR prediction and the dashed curve to the Wegner expansion used in 
Ref. [7]. (b) Clausius·Clapeyron representation of the vapour pressures for the 
monomer fluid. The rt'dured pressure is defined as p. = Per3 Ie. The continuous 
line is the SAFT·VR pre,diction and the dashed line corresponds to the fit obtained 
in Ref. [7]. 98 
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Figure 4.7: (a) Vapour-liquid coexistence densities for the diuJ('r squart>-well systt>m 
with ~ = 1.5 (see Fig. 4.6 for details). The crosses correspond to the Monte Carlo 
simulation data of Ref. [8]. The dashed curve is obtained by fitting a Wegner 
expansion to the simulation data of Ref. [8]. (b) Clausius-Clapeyron rt>presentation 
of the vapour pressures for the dimer fluid. The continuous line is the SAFT·VR 
prediction and the da.-.II('d line corresponds to a linear fit of the simulation data.. 
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Figure 4.8: Pr('ssur('·t(,l1lp('rature projection for the binary mixhlr(' of square.w('U 
monomers and dilll('rs. The reduced pressure P" = P* I p;,. and t(,lllIH'rature T" = 
T* IT;'. are d('fin('d in tNIIlS of the critical point of the monOlllers. The triangles 
are the vapour pressur('s obtained by extrapolating the mixture GE~lC data, the 
crosses are the GEM C data of Ref. [7], the circles correspond to th(' ('stimat('d 
vapour.liquid critical points, and the filled circles are the pure component critical 
points. The continuolls and dashed curves represent the SAFT· VR pr('<iiction 
for the pure compolll'nt vapour pressures and the critical liue of the mixture, 

respectively. 
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Table 4.10: Values of the reduced temperature T· = kTlt, the reduced vapour 
pressure p. = Per3 Ie and the packing fractions TJ for the vapour-liquid coexistence 
of the pure square-well dimer fluid with a range ..\ = 1.5. The results are obtained 
by extrapolating the monomer-dimer mixture simulation data (see text for details). 
The vapour and liquid densities are denoted by v and I, respectively. 

T· p. '7v '71 

1.46 0.040 0.060 0.304 
1.34 0.020 0.019 0.342 
1.28 0.017 0.023 0.361 
1.22 0.011 0.003 0.368 
1.18 0.006 ::; 0.001 0.379 
1.10 0.002 ::; 0.001 0.384 
1.05 0.002 ~ 0.001 0.395 
1.00 0.001 ~ 0.001 0.308 

theoretical predictions and the exact simulation data are Ohf;(~rv('(1 fur all temper­

atures studied. The comparisons have been made in terms of th(> rpduc(>(l prpssure 

and temperature with r£'sp£'ct to the pure square-well mOnOlll<'f, Pr = pOI 11';'1 and 

T,. = T· IT;'I' As has h(,£'ll mentioned previously for the Ot1tN mixtuf('s studied, 

the vapour-liquid critical point of the pure monomer square-w('ll fluid is OVNes­

timated by tlle tl\(~ory. ny viewing the phase behaviour of the 1II0nolJl(>r-dimN 

mixture in terms of r(>(luc(>(1 variables, we can again focus on the ad('(JlJacy of the 

theoretical prediction for the mixture, without including the poor d(~scriptioll of 

the pure compolI(,llt rritical point. 

Our monomer-dim('r simulation data can be used to (>stimat(' the vapour-liquid 

coexistence of the individual components. We extrapolate the mixturE:' Px data, 

using a lin(>ar Raoult's law dependence close to the %2 = 0 and X2 = 1 axes, 

to estimate values of the pure component vapour pressures for the 11I01l01llE"r and 

dimer, respectively. An extrapolation of the temperature-dl'llsity data for the 

mixture is used to ('stilllate the coexisting densities of the pure components. The 

large curvature of the data close to the pure monomer ax~s (X:l = 0) made a 

linear extrapolation ullsuitablej the SAFT· va theory for the mixture was used to 

guide the extrapolation in this case. The resulting estimates of the vapour-liquid 

equilibria for the pure component monomer and dimer syst(\Il\S ar(' r(lport(ld in 

Tables 4.9 and 4.1 0, resp('ctively. The coexisting densities and vapour l>ressures 

(represented as Clausius-Clapeyron plots) are compared with the previolls r('sults 

in Figs. 4.6 and 4.7. It is gratifying to see that the extrapolation of the mixture 

data leads to valu('s which are in close agreement with the previous data. As an 
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added bonus we can estimate the coexistence curve of the square-well dimer to 

much lower temperatures, and provide values for the vapour pr<'ssures which were 

Dot determined in tlll" earlier work of Ref. [8]. Also shown on these figures are 

the SAFT-va predictions of the vapour-liquid phase equilibria for both the pure 

components and the mixture. It has already been demonstrated that the SAFT·VR 

approach provides a good description of the phase envelope of the pure component 

monomer and dimer square-well systems [1], which is again apparent from an 

inspection of Figs. 4.6 and 4.7. In addition we show a comparison of the SAFT· 

VR predictions for the vapour pressures of the pure components with the simulated 

values: good agreement is again observed, although a slight undel'('stilllate is found. 

The SAFT-VR approach is known to overpredict the coexist<'nce curve in the 

critical region, so that hoth the critical temperature and pressure of the model 

system occur at 10wE'r valu('s than predicted by the SAFT-VR approach. The usual 

methodology for the dC'tE'rmination ofthe critical parametE'rs from Gibbs ensemble 

simulation data is frolll an appropriate critical expansion (e.g., Sf'(' Refs. [7,3] and 

Chapter 6). The co('xist('nce curves obtained from a fit to the data using a Wegner 

expansion with a fixpd critical exponent of {j = 0.325, and the fit of the vapour­

pressure curves using a Clausius-Clapeyron plot are also shown in Figs. 4.6 and 

4.7. The corresponding estimates for the critical param('tNs are T;'l = 1.22, 

P;'l = 0.108, and '/e.l = 0.157 for the monomer of RE'f. [7], and T;'2 = 1.58, 

P;'l = 0.085, and 7/e.l = 0.147 for the dimer; the latter are in good agre(llllent with 

the estimates of T;'2 = 1.59 and l1c.2 = 0.14 of Yethiraj and Hall ill R('f. [8], but 

P;'2 = 0.085 is a new estimate for the critical pressure of the squar(>-well cliulf'r. 

The critical points of mixtures can also be obtained by analysing the simulation 

data using a Wegner expansion (see Ref. [3] for details). In our casp an expansion 

including the first extpllsion to scaling term was used to estimatl' the rritical points 

at constant temperature; and a simple extrapolation was 115('d to ohtain the critical 

temperature froUl the constant pressure slices. Due to the limit('d amount of 

simulation data dose to the critical region only crude estimates of the vapour­

liquid critical points could be made. The resulting vapour-liquid C1'itical line of 

the monomer-climer mixture is presented as a pressure-temperature PT proj('ction 

in Fig. 4.8, together with the vapour-pressure curves of the two pure components. 

The vapour-liquid rritical line is continuous and extends from the critical point 

of the pure component monomer to that of the dimer. Thf'r(> iii no liquid-liquid 

immiscibility in this system due to the similarity in the attractive interactions. 

This type of vapour-liquid equilibria corresponds to type I in the classification 

of Scott and van I\onynl'nburg [29, 30]. The vapour-liquid nitical line of our 

monomer-dimer mixturt' obtained by extrapolation of the simulation data for the 

mixture also exhibits a maximum in pressure, a feature which is rE'producE'd by 

the SAFT·VR prNliction5. As was mentioned earlier, the SAFT·VR theory is 
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seen to provide an eXfellellt description of the vapour-pressure curves for both the 

monomers and dimers. The critical points estimated from the GEMC coexistence 

data are seen to deviate from the predicted critical line, although a large amount 

of scatter is evident. 

4.4 Conclusions 

The SAFT-VR equation of state is shown to be successful in its application to 

three mixtures of square-well monomers and dimers of equal dialllf.'ter but with 

extreme values of the attractive interactions. The vapour-liquid e(luilibria of mix­

ture of hard spheres and square wells, the liquid-liquid equilibria of a sYlllmetri­

cal mixture of square w('lls, and the vapour-liquid equilibria. of a llIonolll('f-dimer 

square-well mixture predicted with the SAFT-VR equation of state are all shown to 

compare favourably with computer simulation data away from the critical region. 

The inadequacy of the SAFT-VR theory in describing the critical behaviour is a 

feature com1l10n to <'quations of state which are based on analytical exprf'SSiOllS for 

the free energy, and near-critical corrections are possible although rath(')' complex 

[31]. This work is essentially a test of the fundamental description of the range­

dependence of the mixture expressions in terms of their pure-fluid c:ounterparts, 

and of the adequacy of the SAFT-VR approach to describe the thermodynamics of 

model mixtures which consist of chain molecules. The pressure-romposition slices 

of the phase diagram of the square-well monomer-dimer mixture ohtained using 

the Gibbs ens(>mhle terhnique indicate that there exists a SmalllH'gative deviation 

from Raoult's law in this system. This non-ideality can be attributed (lntirely to 

the diff(>rl'nce in chain l('ngth in this mixture since all the other int<'Tmolecular 

parameters such as the diameter and the range and depth of t1tl' squal'l'-w(>ll, are 

equal for both compollents. It is also shown that reasonable estimates of the pure 

component phase (>quilihria can be obtained by extrapolating the simulation data 

for the mixture. 

103 



Bibliography 

[I) A. Gil-Villega.<;, A. Galindo, P. J. Whitehead, S. J. Mills, G. Jackson, and A. 
N. Durgess, J. Chern. Phys., 106,4168 (1997). 

(2) A. Galindo, L. A. Davies, A. Gil-VillE:'gas, and G. Jackson, Mol. Phy . ..,., in prE:'SS 

(1997). 

[3] D. G. Green, G. Jackson, E. de Miguel, and L. F. RuB, J. C/tem. Phy,~., 101, 

3190 (19!).1). 

[4] J. R. Recht and A. Z. Panagiotopoulos, Mol. Phys., 80, 8,1:1 (}!)!);J). 

[.'}} E. de MiguE:'l, Phy.~. Ret" E, 55, 13.t7 (1997). 

[6} G. A. Chapela, S. E. Mart(nez-Casas, and C. Varea. J. Chem. Phy.~., 86, 5683 

(1987). 

[7] L. Vega, E. de Miguel, L. F. Rull, G. Jackson, and I. A. McLure, J. Chcm. 

Phys., 96, 2296 (1902). 

[8] A. Yethiraj and C. K. Hall, Mol. Phys., 72,619 (1991). 

[9] L. L. Lee, Molccu/m' Thermodynamics of Nonideal Flui(/.s Duttf>rworth Scif'n-
tiRe, (1988). 

(10) J. A. DarkE:'r and D. JlE:'nderson, J. Chern. Phys., 47,2850 (1 OG7). 

(11) J. A. Darker and D. Henderson, J. Chern. rhUs., 41,4714 (19G7). 

[12) J. A. Darker and D. Henderson, Rev. Mod. Phys., 48,587 (1970). 

[13} T. Doublfk, J. Clu:m. Phys., 53, 471 (1970). 

[14} G. A. Mansool'i, N. F. Carnahan, K. E. Starling, and T. W. Lf'land, J. Chern. 

Phys., 54, 152:3 (1971). 

[15} N. F. Carnahan and K. E. Starling, J. Chern. Phys., 51, Q:15 (19G9). 

[16] T. M. Reed and 1\. E. Gubbins, Applied Statistical Mechanics McGraw-Hill, 

(1973). 

104 



[17] \V. H. Press, D. P. Flannery, S. A. Teukolsky, and W. T. VettNling, Numer'ical 

Recipes, second ('<lition Cambridge University Press, (1992). 

[18] A. Z. Panagiotopoulos, Mol. Phys., 61, 813 (1987). 

[19] A. Z. Panagiotopoulos, N. Quirke, M. R. Stapleton, and D. J. Tild('sley, Mol. 

Phys., 63, 527 (1988). 

[20] M. Rigby, D. J. Ald('r, A. M. Sapse, and C. E. Hecht, J. Chou. Pilus., 52, 

3665 (1970). 

[21] G. Jackson, J. S. Rowlinson, and C. A. Leng, J. Chern. Soc., Fmvul(,y Trans. 
1,82,3461 (1986). 

[22] G. Jackson, Mol. Pllys., 72, 1365 (1991). 

[23] II. E. Stanley, Illtroduction to Phase Transitions and O,ti/'(li f'!tnlO7Ueua 
Oxford Univ('fsity Pr('ss, (1987). 

[24] 'V. W. Wood, J. Chern. Phys., 48, 415 (1968). 

[2.5] M. P. AIlE'n and D. J. Tildesley, Computer Simulations of LifJuid,~, Clar('ndon 

PrE'SS, (1987). 

[26] B. Widolll, J. Cltrm. Pllys., 39, 2808 (1963). 

[27] B. Smit and D. Fr('ukE'l, Mol. Phys., 68, 951 {1989}. 

[28] A. L. ArchE'r and G. Jackson, Mol. Phys., 73,881 (19!H). 

[29] P. n. van Konyneuhurg and R. L. Scott, Phil. Trans., A298, 4% {l9RO). 

[30] J. S. Rowlinson and F. L. Swinton, Liquids and Liquid MiJ:tU7'f,~, third edition 

Butterworth Sci(>utific, {1982}. 

[31] A. Van P('lt, G. X. Jin, and J. V. Sengers, Int. J. T"('r'71w]J"y,~" 15, 687 

(1994). 

105 



Chapter 5 

Examination of the the phase 
behaviour of Yukawa and 
soft-core fluids using the 

SAFT -VR approach 

5.1 Introduction 

In the previolls chaptE'r we have shown that a version of the statistkal associating 
fluid theory for sphcrps interacting via attractive wells of variable range (SA FT­
VR) [1,2], gives an accurate prediction of the thermodynamic propc:>rties of model 
fluid mixtures. More spprifically, we have examined mixturps consisting of hard­
spheres, square-w(·lI monomers, and square-well dimers. Within the SAFT·VR 
framework, the range of the interaction potential is a uSf>ful quantity in the de­
scription of expE'riuwlltal systems since it accounts for the nOIl-confonual hplJaviour 
present in liquids and thpir mixtures [3]. In addition, the SAFT. VR tllf'ory com· 

prises a compact reprpspntation of the monomer propertips, ill the framework of 

the BarkE'r and lIf'uderson pf'rturbation theory for simple liquids [·']-[G]. Two ma­
jor advantagf's of the SAFT approach are: that the f'quation of statE> is ohtainNI 

from the properties of the constituent monomeric sf'gments, and that ('ach one of 

the terms can be dirE·ctly compared with, and tested against, mole('ular simulation 
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results. 

In this chapter we describe the application of the SAFT· VR lllPthodology to the 

Yukawa and Sutherland potentials and also present a further f.'xtellsion of the 

SA FT· VR approach to describe the properties of chain molecules which are formed 

from soft·core segmf.'nts with variable repulsive and attractive ranges. We illus. 

trate the effectiveness of the SAFT·VR equation of state in the description of 

the properties of the Yukawa fluid via a comparison with integral equation the· 

ories. We df.'lllOnstrate that the analytical expressions devf.'lopNI previously for 

the Sutherland potential (1] together with a Barker and lIend('fson effective hard· 

sphere diamf.'ter [6] can be used to account for potentials of variable attractive and 

repulsive ranges in the SAFT·VR framework. As specific applications, Wf' present 

equations of statf.' for Lpnnard·Jones chain (LJC) molf.'cules. These system has 

been studied extensively in the past, and a number of accurate ('(Illations of state 

have been reported [7]-[11]. Our main goal is to show that the SAFT·VR method· 

ology providf.'s a simple and compact equation of state for systems interacting via 

more realistic potentials s\lch as the Lennard-Jones model which is valid for ranges 

of density and telllpprature of practical interest. 

We will first summarise the SAFT· VR equation of state for pllre hard-corc:> systems 

intc:>racting with the Yukawa and the Sutherland-'\ potentials. The Yukawa fluid 

is of particular theoretical intf.'rest since the nature of the pot(llltial allows for the 

exact solution of C('ftain integral equations, such as the ml'an sphf'l'ical approxima­

tion (MSA) of the model. These solutions can be readily used in a comparison of 

the adc:>quacy of any other thc:>orf.'tical approach for the dt'srription of the Yukawa 

fluid propertif.'s. The SAFT.VR equation of state for the SlIth('rlalld pott'utial is 

used as a model to ohtain a gf.'nf.'ral equation of state for the ~tie m - n family of 

potentials [12, 13], of which the Lennard·Jones potential is a sp(lcifir. case (m = 6 

and n = 12). Wf.' also present a simple recipe for the calculation (If the fref' f.'nf.'rgy 

due to chain formation, and the prediction of LJC propf'rtj(>s Itrf' colllparf'd with 

simulation results. 

5.2 SAFT-VR for pure fluids 

As has bef.'n shown previously, the Helmholtz free f.'nf.'Tgy of associating chain 

molecules is descri bl'd in the SA FT· VR approach as 

A AlDEAL AMONO. ACHAIN AASSOC. 

NkT = NkT + NkT + NkT + Nk1' , (5.1) 
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where the different terms in this equation correspond to the coutributions to the 

free energy due to the ideal fluid, the monomer segments, cltain formation and in­

termolecular association, respectively. In this chapter will only present the SAFT­

VR expressions for the pure fluid. 

The free energy of an ideal gas is given by [14] 

(5.2) 

where p = N IV is the number density of chain molecules and not of monomer 

segments. A separate treatment of this term renders all the other tel'lllS residual 

free energies. 

The general form of thl' monomer-monom('r interaction is giv('n by a hard-spliNe 

repulsive term plus an attractive well: 

{ 

00 if r < u 
u

Af 
(r; (7',e,~) = -e4>(rj~) if r > (7', 

(5.3) 

where u is the sphNi<-al hard-core diamet('r, while t, r/> and ~ an', the <I('pth, the 

shape and the rang£> parameter of the attractive well, r('spE'ctivPly. 

The contribution to the free energy due to the monomers (m of whkh make up 

eac.h chain molecule) interacting with a potf.'ntial of the form giv(lJl in Ell. (5.3) is 

AMONO. 

NkT 

(5.4) 

whf.'re N, is the total number of spherical monomers, and (LM = AM /(N,kT) is 

the excess Helmholtz free ('nergy per monomer s('gment. An an'lIrate dl'scl'iption 

of aM is obtained frolll the high-temperature expansion givPlI hy tIl(:' Bark"r and 

Henderson perturbation th('ory for hard-core syst(>tnS [4, 5, G], 

(5.5) 

where (3 = 1/kT, and Ctl and al are the first two perturhation tf'l'ms assoriatf'd 

with the attractive well. The mean-attractive energy al is givE'n by [G) 

(5.6) 

where p, = N./V is tItl' density of monomers (segments) and gIlS(r) is the radial 

distribution function of the hard-sphere reference system. Dy using the llI{'an-value 
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theorem, gIlS(r) cau he factorised from the integral and written in terms of its 

contact value gllS(I; 7/tfl), at an effective packing fraction 7/~fI' and the van der 

\Vaals mean-field terlll llYDW [1]: 

_ VDW 115(1' ) at - at 9 ,TJeJl , (5.7) 

where 
liS. _ 1 - ''It'/J/2 

9 (1, "lefl) - (1 )3 ' 
. - "lell 

(5.8) 

is obtained from the Carnahan and Starling expression [15]. The sf'cond-order 

term can be calculatf'd in the local compressibility approximation [0], 

(5.9) 

where 

ai = _3p.bvDW E 100 

z2 [.p(z)]2 glls(z)d.r.. (5.10) 

and I<IIS is tlle Percus-Yevick hard-sphere isothermal comprf>ssihility [GJ 

(5.11) 

The Yukawa potential is givE'n by 

(.5.12) 

By convention the range of the attractive forces in this 1110<1('] is ('harartNised 

by ~-t. The Yukawa model finds a particular use in the df'scription of scr(,f'ned 

Coulombic interactions found in electrolytes and colloids. The van dl'f Waals 

mean-field tefm fOf the Yukawa potential is given by 

(5.13) 

and the parameterisation for 1}eJJ(1}.~) is obtained by using anurat(' valu('s of al 

obtained from the HIINC integral equation [1], as 

with 

(
Cl) (0.900678 -1.50051 
C2 = -0.:H4300 0.257101 
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0.776577 ) (~~1) . 
-0.0431566 ~-2 

(5.15) 



The fluctuation term for the Yukawa fluid is obtained from 

where 

and 

with the parameterisation 

where 

(
d. ) (0.9S9GO 1 
d2 = -0.01191.')2 

aj('\) = arDW.gHS (1, ,..,.), 

arDW• = -6,..,e,\-1, 

HS • 1 - ,..,. /2 
9 ( 1,,.., ) = (1 - ,..,.)3 ' 

-0.872203 0.320808 

-1.24029 2.41636 

0.0 

-2.01922 

The final exprpssion for U'l is 

0.0 ) 
0.G·1i!j(J!) 

(5.16) 

(5.17) 

(5.18) 

(5.19) 

1 
,\ -1 

,\-2 

,\-3 

,\ -4 

(5.20) 

(5.21 ) 

Thus for Yukawa fluids of variable range, the SAFT· VR EOS is ohtait)(l<J hy substi· 

tuting the expr('ssiolls for ar and ar in Eq. (5.5) and tll('n in Eq. (5.4). Although 
ind('pend('nt paral1l('tNisations are used for a. and ai the tlll'rlllodYllamics of the 

Yukawa fluid can be f('cast('d in terms of ai only. By using the prop('rti('s of 

Laplace transforms, it follows that 

(5.22) 

This way of ohtaining (lit however, makes the application of till' Yukawa. l1Iod('1 to 

mixtures more romp!('x. 

We also examine systPllls intpracting via. the Suthl"rland potl'ntia! which is gin'n 

by 

(5.23) 

The range param('t('r ,\ controls the decay of the interaction. Uy varying '\, die­

feno'nt angle-avprag('d l1Iultipolar-like forces, such as the Mie m·n pot(llltials can 

be mod('lled with this pot('ntial. For the Sutherland potential the> van d('r Waals 
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mean-field term is given by 

(5.24) 

where 1] = 7r(13p,/6 is the packing fraction of the system, and 

(5.25) 

with 

-0.0371763 0.0011 G90 1 ) ( ~ 1 
0.0175599 -0.000572729 .x2 • 

.x3 

( 

Cl ) (-0.943973 0.422543 
C2 = 0.370942 -0.173333 

(5.26) 

The fluctuation tE'rm a-z for the Sutherland potential is givE'1l fiimply in terms of 
the mean-attractive E'IH'rgy of a Sutherland pot('ntial of invt'rsp ranjl;p 2.x 

(5.27) 

The contribution to the fr('e ('nergy due to the formation of a chain of m JIIonOl1l('rs 

is [7] 
ACIIAIN M 

N kl' = -em, -1) In y «(1), (5.28) 

W}lere yM «(T) is the U101l0mf.>r-monomer background cOfff']atioll fll uctioll eval u­

ated at hard-core contact; if gM (r) is the monomer-monOlll('r radial distribution 

function, then yM(r) = exp[uM(r)/kT]gM(r). In the SAFT-VR approach a p(>r­

turbation expansion is used for the monomer-monom(>r contact value of th(> radial 

distribution function [Gj, 

(5.29) 

and gl«(1+) is obtained from a s('lf-consist('nt calculation of th(> pr('ssure, using the 
virial theorem of Clausius and the derivative of the free (>It('rgy with rpspect to 

density. The contad va.lue for the radial distribution function fOf Yukawa fluids 
can be expressed in tf'fmS of at using the properties of Laplacp transforllls, giving 

a final expression fOf the contact value as, 

(5.30) 

For the Sutherland potential we obtain an expression for the contact value of the 
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radial distribution function as [1] 

(5.31) 

The value of gM(O'+) is also required for the calculation of the contrihution to the 

free energy due to association. It is important to stress that ill order to obtain 
the complete equation of state all that is required is a hard-sphf'J'e E'<luation of 
state togE'thE'r with the lllE'an attractive energy all which is given in terms of the 
hard-sphere contact value of g. 

The contribution to the 1IE'lmholtz free energy due to associatioll for .'1 sites on the 
chain moleculE's is ohtained from the theory of WE'rtheim as [1 G] 

AASSOC. r~· ( X4) ~l 
N kT = L.~ In X II - -'2 +:2' (5.32) 

where the sum is over all s sitE'S a on a molecule, and XII is the fraction of molecules 

not bonded at site (t. Th(> latter quantity is obtain('d by a solution of the following 

mass action equation: 

(5.3:J) 

The function A 4 ,b characteris(>s the association b('tw('(>n site a and sitE' b on different 

molecules. It can be written in terms of the contact value gAt«(f) of th(> monomer· 

monomer radial distribution function, the Mayer function /4." = ('xp( -cP(I,"/ kT)-l 
of the a-b site-sitE' bonding interaction £11,'" and the volume> A'",,, available for 

bonding as [17] 
(5.:J4 ) 

The bonding volul1I(, 1\(I,b can be determined from the parall1f'tl'I'S of the honding 

site such as its position and range [17], As for the chain contrihution, gAt(CT) is 
approximated by gl\l «(7+). 

5.3 Yukawa fluids 

Interest in the Yukawa fluid arises due to the nature of the l)otelltial shown in 
Eq. (.5.12), since it has the same form as the potE'ntial exp<'ri(lIH'pd hy shi(lhll'u ions 

in electrolyte solutions. Additionally, the exponential term in the- attractive part 

of the potential allows for an exact solution of the mE'an-spJ.Nical approximation 

for this hard-core mod(·1. The MSA is an integral E'quation approarh lIsrd to obtain 

the correlation functions and thermodynamic functions for a fluid, Imsl'd on the 
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Ornstein-Zernike (OZ) relation: 

(5.35) 

Here, h(rjj) is the total correlation function between two particles with centres at 
rj and rj, at a distance rjj = rj - rj apart apart, and c(rjj) is the corresponding 
direct correlation function. Given the general pair potential of Eq. (5.3) which is 

independent of the relative orientations of the particles, the correlation functions 

only depend 011 r which is the magnitude of the vector rij, r = Irijl = Iri - rjl. 

We know that the radial distribution function must obey tlle condition 

g(r) = 0 if r ~ (T. (5.36) 

Within the mean-sphNical approximation the assumption is madE' that for all 
r> (T we have 

c(r) ~ -fJt4>(r), (5.37) 

which simply indicate'S that the direct correlation between a pair of 11I0)('c\1l('s is 

given by the pair int('J'actioll potential. Combining this a,pproximation with the 

OZ relation betw(len r(r) and her) of Eq. (5.35) allows (or tile d(·tl'rlllination of 
the radial distribution function g(r) outside the hard ('ore sinc(> 

g(r) = her) - 1, (.5.38) 

and also o( the dir('ct corr('lation function inside the core. Suhl'Jtitution of the 

Yukawa attractive wf'll of inverse range .>t giv('n in Eq. (5.12) into the gE'neral 
expression of Eq. (5.:17) yi('lds the MSA exactly solvahle [18]. 

The analytical solution of the MSA for the hard-core Yukawa fluid (18]-[20] con­

sists of six 1l0nlinE'ar {'quations in six unknowns. 1I0wever, this solution dO(ls not 
give explicit expressions for tbe free energy and other relatl'd functions of the sys­
tem and several studies have been reported [21]-[32] which prN;('nt V('J'SiOllS of the 
MSA solution which can he written directly in term of the lIs('ful thflflllodynamic 
properties of the Yukawa fluid. One such route is the work of rtpf. [:12] following 
the work of Ginoza [2D]-[:n], where a higb temperature expansion (liTE) is used 
within the original ~fSA to give exprf'ssions which depend f'xplicitly on tempera­
ture, density and the rang£> of the potential. The frt'e enf'rgy of til(' Yukawa fluid 
is written as a first order expansion 

(5.39) 

where aHS is the free (luergy of the hard-sphere reference system, giV(,ll by tbe 

Carnahan and Starling expression [15], and af is the mean-attractivp ('nergy of 
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the Yukawa fluid, whit-h is given by [32] 

y 2~L(~) 

al = exp( -~)L(~)S(~)' (5.40) 

The polynomials L(~) and S(~) are given by 

L(~) = 127][(1 + 7]/2)>. + 1 + 27]] (5.41) 

and 
(5.42) 

The contact value of the.> radial distribution function for th(> Yukawa fluid is also 

written as a first ord('r expansion in Ref. [32] 

where 90 is given by tIle.> Percus Yevick approximation for hard sph('J'{'s [:l:J] 

+ 1 + 11/2 
90( (1 ) = (1 _ 11)2 • 

The first order te.>rm 9ncr+) is given by [32] 

w here ~o is d('fi ned 

y 1 
91 = ca»2' 

o 

ca» _ exp( ->.)L(>.) + S(>') 
0- ~3(l-"1)1 . 

(5.43) 

(5.44) 

(5.45) 

(5.46) 

We can use th('se.> expr('ssions as a means of testing the consist(,lIcy of tlu,' SAFT· 

VR methodology for the thprmodynamic propertips of th(> Yllkawa fluid. Previous 

results r('porte.>d for this system include a Monte Carlo (MC) simulation study [34], 
which can be treat(>d as '('xact' results, togE'ther with a full analytical solution of the 

mean-sphe.>rical approximation [34], and a more r£'r£'nt study using the truncatt'd 
t('mp£'rature expansions giv£'n above (Eqs. (5.40and 5.43) within til" MSA 1:12]. 

The valu£'s of th£' llwall-attrartive energy and the first fluctuation ill £'\l('rgy for 

the Yukawa fluid with ~ = 1.8 obtained with the SAFT·VR IIlPthodology are 

compar£'d in Table 5.1 with those obtained with the MSA r(lsults of Itf'f. [:l~], for a 

sE'ri£'s of reduced dellsiti<,s. No significant diff£'rE'nce exists hf'tw{,(,11 th(' valu('s for 

the mean-attractivt> (l1l('J'gy obtained by £'ither method, hut the fit-st fluctuation 

term a:z is larg('r in till' rase of the SAFT· VR ('quation of statl', indicating that 

the use of the local collll)J'f'ssibility approximation rf'sults in a. high(lr value of al 

than the MSA. COlllpal'ing the values of al obtain£'d using th" SA FT· VR {''Illation 

of state with the perturbation thf.'ory results of Ref. [3.1], which arp calculated 
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Table 5.1: Values of the mean-attractive energy at and the first fluctuation term 
a2 for the Yukawa fluid with ~ = 1.8 obtained using the MSA [:3:1) and SAFT-VR 
[1] approaches for a series of reduced densities p" = p(13. 

at a2 

p" MSA SAFT-VR MSA SAFT-VR 

0.1 -0.566 -0.565 -0.054 -0.067 
0.2 -1.175 -1.172 -0.065 -0.10·1 
0.3 -1.824 -1.822 -0.057 -0.119 
0.4 -2.513 -2.511 -0.044 -0.120 
0.5 -3.2:}7 -3.237 -0.030 -0.112 
0.6 -:1.995 -3.996 -0.019 -o.onn 
0.7 -4.784 -4.785 -0.011 -0.0~:1 

0.8 -5.602 -5.599 -0.006 -O.OGG 
0.9 -6.446 -6.432 -0.003 -0.051 
1.0 -7.314 -7.278 -0.001 -O.O:JG 

using Me t('cbniqu(ls from exact expressions, also indicatf's that tIll.> flurtuation 

t('rm is ov('restimated by the SAFT-VR approacb. 1I0wevN, till' fact that the 
values of a2 obtained using the local compressibility approximation in the SAFT­

VR methodology is lc'ss accurate than those ohtain£'d in tIle MSA do('s 1I0t have a 
significant influence on the accuracy of the overall SAFT-Vlt ('<Illation of state for 
the Yukawa fluid since for values of {3e :S 1 the s('cond-ordf'r contrihution to the 

fr('e energy is negligible with respect to al' 

The values of thl.> IklmllOltz free energies for the Yukawa fluid with" = 1.8, 

obtained using the SAFT-Vlt equation of state up to first orc\(lr, and including the 
second-ordl.>r p€'rturbation, are compared with the ('quiva)eJlt MSA (>xpr(>ssions, 
(or a. series of r(>duc(>d densities a.nd temperatur(>s in Table 5.2. Good agreement 

is observed between both theoretical approaches, and the contrihution to the free 
('n€'rgy from fluctuations is se('n to be much smalll'r, in hath cases, than that of 
the mean-attra.ctive clwrgy at. 

Values of the compr(>ssihility factor for the Yukawa fluid with ~ = 1.8 obtained 

using the SAFT-VR ('<Illation of state are compared with the vahlt's obtained using 
the MSA of Ref. [:3-1] and with the Monte Carlo results of Ref. [;J·l) in TahlE' 5.:}, and 
in Figure 5.1. Results are presented for a spries of reduced dp.llsith·s and tempE'r­

aturE'S and good agr(,Pl1leut can be observed betw(,E'n both theoretical approach(ls 

and the simulation rf'sults, with neither theory giving rl'sults which an> romis-
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Figure 5.1: The colllpJ'"ssibility factor Z = PVINkT for tltP. Yukawa fluid with 
A = 1.8 obtained frolll th(> SAFT-VR equation of state [1] (curves) compared with 
values obtain(>d using thp. MSA (crosses) approach and frolll 11C simulation (opl:'n 
circles) [34]. The reduced dt'nsity is defined p. = p(l3, and tht' curves art' labelled 
with the corresponding values of the reduced tt'mp('ratures T· = kTle. 
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Table 5.2: VahlE'S of tll(> Helmholtz free energy A/ N kT for the Yukawa fluid with 
.\ = 1.8 obtained using the MSA [34] and SAFT-VR [1] approarh('s to first and 
second order, for a s('ries of reduced densities p* = p(13 and t('mpf'ratures T* = 
kT/t. 

1st order 2nd ordN 
p* T* MSA SAFT-VR MSA SAFT-VR 

0.4 2.0 -0.137 -0.125 -0.139 -0.1.').') 
1.5 ·0.56,1) ·0.549 ·0 . .569 -0 . .')!)7 
1.0 ·1.426 ·1.381 ·1.443 ·1..')01 

0.6 2.0 0.040 0.044 0.039 0.019 
1.5 ·0.630 -0.622 ·0.631 -O.ClGG 
1.0 ·1.972 ·1.954 ·1.976 ·2.0.'):) 

0.8 2.0 0.601 0.603 0.600 0 . .')X7 
1..') ·0.334 ·0.330 ·0.334 ·O.:J.')O 
1.0 ·2.205 ·2.200 ·2.206 -2.202 
0.7 .4.611 ·4.595 .4.164 .4.7:J 1 

tE·ntly the most an'urat(>. The nt>gative values of pr('ssure at low t(~IIlJ>('fatures 

corr<>spond to lllE'tastahl(' states within the coexistE'nre rf'gioll of tlu_' syst(,lll. 

An additional means of t(>sting the ad<>quary of the MSA and SAFT· VIt methods in 

their prediction of thf' propf'TtiE's of the Yukawa fluid is to cOlllpar(' till' valuE's of the 

radial distribution function (>valuat(>d at contact, obtain('d using hoth approarh('s. 

Within the MSA it is possible to obtain values of g((1+) both frum tIl(> fllll analytical 

solution of Ref. [:1.1] and hy lIsing the truncat(>d high t(,nl}wratur(> ('xpansions of 

Ref. [32]. The rontact vallie of the radial distribution function in tIl£' SAFT·VR 

approach is obtaim·d IIsing Eq. (5.30), where the JlI('an-attrartiv(> (,IlNgy is giv(>n 

by Eq. (5.7). It is int('J'('sting to note that a combination of hoth the SAFT·VR 

and the MSA appro(lrhr's ran be us('d to give an expr('ssion for the ('Olltact value 

of the radial distribution function of the Yukawa fluid, sincE' the> IlIl'an-attractive 

en(>rgy at of the MSA llIp.thodology givf.'n by Eq. (5.40) can hI' tiSI'd in the SAFT· 

VR ('xprf.'ssion for the radial distribution function Eq. (5.30). Thp. va.luPS for the 

contact value of tlu' ra.dial distribution function ohtainpd hy f'arh of thp.se rout('s 

are cOnlparf.'d directly with one anoth('r, and with the Me sil\lulation f('sults of 

R('f. [34], for a s('riC's of rpduced densities and t('mp('raturp.s ill Tahl!' 5.4. The 

values of g((1+) obtailwd using the SAFT·VR ('quation of state art' 8('('11 to he in 

bettf.'r agreement with th(> simulation results than those obtaiu('d lIsing either the 

full MSA of Ref. [3.1], or the truncatl'd MSA of R('f. [32] (thNP is littlp difrp.rence 
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Table 5.3: Valu('s of tll(> compressibility factor Z = PV/NkT for the Yukawa fluid 
with ~ = 1.8 ohtain('(l using MC simulation [34J and both the MSA [:J.1] and SAFT. 
VR [IJ approach(>s, for a series of reduced densities p. = prr3 aud tE'lllperatures 
T· = kT/e. 

p. T· MC MSA SAFT·VR 

0.4 2.0 1.08 1.119 1.106 
1.5 0.69 0.659 0.637 
1.0 -0.21 -0.2S1 -0.298 

0.6 2.0 2.04 1.976 1.981 
1.5 1.21 1.213 1.223 
1.0 -0.27 -0.303 -0.277 

0.8 2.0 4.27 4.4:J2 4.486 
1.5 3.31 3.330 3.412 
1.0 1.29 1.131 1.287 
0.7 -1.63 ·1.687 -1.401 

betw(>('n the values ohtainpd using either MSA approach). I1owf'v('r, th(' contact 

value of the radial distribution function obtained using tlw cOlllbination of the 
expression for at frolll th(> MSA Eq. (5.40), and the (>xpr('ssion fOI' o(rr+) fl'om the 
SAFT-VR approach Eq. (5.30) is s(>('n to give valu('s for 0«(7+) which al'e in rlos('st 
agrt'ement with the simulation r(>sults. This indicat('s that lise of t\l<' sf'lf·consist('nt 
route to obtain the radial distribution function, as giv('n in the SAFT-VR approach 
by Eq. (5.30), r(>sults ill a more accurate vt'rsion of the MSA. Tht· dos('d nature 
of the expression for o(rr+) l'nables it to be incorporated into the alp;c'hl'a of the 

analytical solution of tIle> MSA, so that it can be t'valuatE'd E'xadty hy an alternative 

and more aCCllrat(> rout('. 

It is clear that t11(> SAFT-VR approach gives suitably ac('urat(' valu(ls for the 
contact value of tll(l radial distribution function whl'n compared with Me I'(>sults 

and with tIle full analytical solution of the MSA for the Yukawa fluid. 

The vapour-liquid phas(> (,(Jllilibria of Yukawa chains of )(,lIgth m.='l, 4 and 16 
obtained using the SA FT -VR (>quation of state for invPfse ral1f1/'fi of ..\ = 1.0, 1.8 and 
4.0 are shown ill Figurps 5.2, 5.3 and S.4, rf'Rpectiv(>ly. The J'('gioll of vapollr liquid 
coexist(>nce is sppn to move to highf'r t('mp('ratur(>s as tIle chain 1l'llgth iUCfea.'ips, 

and extf'nds as th(> range of the pot('ntial increases. In tlu' rasp of tIle 1II0nOIl\(>r 

Yukawa fluid with inv{'J'se range of ~=1.8 (Fig. 5.4) the SAFT·VR. pr('(\irtion is 

seen to compare favourahly with the Gibbs t'nst'lnhle simulation rC'sults of RC'r. [:15]. 

118 



Table 5.4: Values of the contact value of the radial distrihution fUllction 9(0'+) 
for the Yukawa fluid with ,,\ = 1.8 obtained using Me simulation (:J.t], the MSA 
equation of state, both analytically [34] and using a first ord(lr expansion [32], 
the SAFT-VR [1] approaches, and a combination of the MSA and SAFT-VR ap­
proaches, for a series of reduced densities p* = p(f3 and tempE'ratUJ'es r* = kT/e. 

p* T* Me MSA IITE-MSA SAFT-VR SAFT-VRtMSA 

0.4 2.0 2.128 1.963 1.944 2.106 2.12·' 
1..') 2.378 2.040 2.003 2.204 2.22X 
1.0 2.94:3 2.222 2.121 2.401 2.4:JG 

0.6 2.0 2.921 2.5Gl 2.555 2.821 2.8·10 
1.5 2.9GG 2.598 2.586 2.891 :l.9:?:J 
1.0 3.20.') 2.GSI 2.649 3.029 :l.Oin 

0.8 2.0 4.10D :J.G2!} 3.628 4.177 4.19·1 
1.5 4.257 :J.646 3.643 4.226 4.2·19 
1.0 4.490 3.GSI 3.674 4.325 4.:J59 
0.7 4.G22 3.729 3.713 4.452 4.500 

I1ow{'ver, no simulation data currently exist for Yukawa chains liO that we cal1not 

make a direct comparison of the results ohtainf"ci using tll(, SA FT- Vlt approach 

for these systems. 

5.4 Lennard-Jones chains 

The expressions }>f('sf'ntf'd in the previous section can be tiSI'd to d('Yf'Jop an equa­
tion of state for chain 1I1011'cul('s interacting via. the Mie m - fl pot(>lIlials [12], of 
which the L('nnard-JoIIPs (m = 6 and n = 12) is the most COllllllon (lxa.mpl(>. The 

Mie m - n potentials al'e giv(ln by 

(5.47) 

where 
n (n)* c=- - . n-m 111 

(5.48) 

Systems interacting with binary pott>ntials with soft r(lpIIIsiv(l intl'factions like 

Eq. (5.47) can be describl'd within the Darker and )Jt>llderSOll )wl'tllrbation theory, 
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Figure 5.2: The vapour.liquid coexistence densities for Yukawa rhains of length 
m. =2, 4 and 16 with inverse range of ~ = 1.0. The curv('s ar(' labelled with the 
values of the chain length m •. The reduc('d parameters used are T· = kT Ie and 
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Figure 5.3: The vapour.liquid coexistence densities for Yukawa chains of length 
m, =1,2,4 and 16 with inverse range of ,\ =1.8. The curves art> labt'llt>d with the 
values of the chain length m,. The reduced parameters used are T- = kT /t and 
P: = p,u3• The data points correspond to the Gibbs ensemhle sill\ulation data. for 
Yukawa monomers or Lomba and Almarza [35]. 
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Figure 5.4: The vapour-liquid coexistence densities for Yukawa chains of length 
m. =1,2,4 and 16 with inverse range of ~ =4.0. The curves are lahelled with the 
values of the chain length m •• The reduced parameters used are T* = kT Ie and 
P: = p.(13. The data. points correspond to the Gibbs ensemhle simulation data for 
Yukawa monomers of Lomba. and Almarza [35]. 
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by considering an E'quivalent potential with a hard-core tE'lIlp<>rature df'p(lndent 

diameter, 

!If {oo if r < CTBH(T) 
UIJJI = 

uM if r > (TBH(T), 
(.1.49) 

where 

(5.50) 

and (T defines the position wh(>re uM changf's sign. The frf'f' f'1l<'rgy is then calcu­

lated with the expansion of Eq. (5.5) using the packing fraction 

(5.51) 

The expressions for (lit (/2 and g( (T+) for the Suthf.'rland potf.'nlial (E<ls, (5.7), (5.27) 
and (5.31», can bt> \ls('(1 dirE'ctly in the ('xprf'ssions for th(' soft-core Systf'lllS. Since 

the family of Mie polf>lltials can be represf'ntNI by a StlJll of an attJ'acti VI' and of 

a repulsive Sutherlalld potf'ntial, tIle mean-attractive E'nergy for su('11 syst(>lIIs can 

be similarly eXIHE'SS('d as the sum of two Suthf'rland at tf'rIllS, 

AI IE _ C [as( . \ _ ) + s( . \ _ )] at - - t 'lBII, " - Jl a 1 'lBII, " - J/t , (5.52) 

wh£>re af corresponds to th(> lIl(lan-attractiv(l (,(If'rgy for a. Suthf'J'land syst(llll with 

exponent .\. The secolld orcl(lr term al is given in tf'rms of the attl'artiv(' contri­

bution only as 
(5.53) 

For the LJ fluid we can apply this reripe with the following paralllf'tl'isation for 

(TBH [1]: 

wh('re T- = kT / t. III ordf'r to calculate the contri bution to thf' f/'f'(l (lJlPrgy due to 

chain formation, we f('quir(' the monomer cavity function at the hunding distanc(', 

yt'. For systems illt(,J'arting with soft rE'puJsive interactions, the "und distanc(' is 

(T, Le., wh(>re the potplltiaJ is Z(>fO. Since in til .. SAFT-VR appl'Ua.rh tIll> lIIolf'cul(ls 
are formed from t'rr(ll"ti Vt' liard-core sf'gnlf'nts wi th diam(>t('r (T RJI, th(' bond lE'llgth 
is (TBII and ytt can bl' l"a\culat(>d according to 

At _ LJ( ) Yb - Y (TBII, (.1.55) 

where yLJ is the cavity function of the hard-core pot('utial d('finPlI in tIlt> Hark(>r 

and H(>ndprson p(>rturhation th(\ory, which is given in Eq. (5.49). WE.' hav(> found 



that a more accurate pr('diction of the prop<'fti('s of the Ll'l1llanl-Jolles chains is 

obtained with the approximation 

(5.56) 

where yS6 is the Sutherland-6 potential contact value, ohtaiIwd dirpctly from 

Eq. (5.31). With this approximation, the final expression for the chain free energy 

is 

(5.57) 

Here we only consider chains formed from spgments with 110 association sites, 

hence there is no contribution to the Hplmholtz free energy due to association, 
AASSOC. = O. 

The vapour-liquid phas(> (>quilibria of Lennard-JonE's chains of l(>llgth m. =2,4 and 

8 obtained using the SAFT-VR approach outlinf'd in the pr('violls sf'dion ar(> com­

pared with existing Gibhs £'n8('rn1>le Monte Carlo (GEMC) simulation r('sults [11] 
in Figure 5.5. The SA FT-VR dE'scription for 1lI01l0111E'rS (m, = ]) givell previously 

[1] and the corrl'spouding GEMC simulation r('suIts [36] are a.lso SIIOWII. 

The SAFT-VR thpory giv('s a good overall d('scription of tll(> co(>xist('IIt'(' r('gion, 

and reproduces thE' ('ff<'ct of increasing the chain Ipllgth. The th('ory's adequacy is, 

however, seen to decrf'ase as the chain length incr£'ases, whidl can h(~ rationalisf'd 

in terms of an inaccurate> d('scription of molecular structure, 811('h as folding, whic.h 

occurs as the chain If'ngth increases [10]. It is wpll known tha.t tile SA FT approach 

accurately descrih('s tial' })('haviollr of long-chain mo)E'cu)ps lip to m, = 8 [37]. 
Veorsions of SA FT whit-h account for high('r body intNactions have 1>('('11 propos('d 

[31, 38], in ord('r to be able to give a more accurate prediction of systellls consist­

ing of long chain 11I0]('('ul{'s. Variolls supN-critical isotherms cakulntt'd using the 

SAFT-VR approach for LJC with m, =2,4 and 8 ar~ pr('s('ut('d in Figul'(,s 5.6, 5.7 

and 5.8, rt'spectiv('}y. 

The SAFT·VR expressions are se('n to compare favourably with r£>sults obtained 

with the t'<lllation of statl' proposed by Johnson tt (ll. (10); thf'Sf' a.u thaI's \Isl'd an 

accurate empirical r(,»"('s(,lItation for gLJ (l1). The approxi matioll \18<'<1 in Eq. (.5.57) 

gives an accurate pr('dirlion of the vapour-liquid envE'10pe, as w<>11 ali thp. pressure 

for the whole rangE' of JIIonomer densiti('s P:' The re"idual internal t'1H'rgy at a 

series of tE'mpt'raturf's for L.lC with m, =2,4 and 8 are prt'lwntE'd in Figurt's 5.9, 

5.10 and S.l1, respf'cti v(·ly. Our equation ofstate overprE'dicts t h(' J'('sid ual internal 

en('rgy for dellsi ties p; > 0.7. 
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Figure 5.5: The vapour.liquid coexistence densities for Lennard·Jones chains of 
length m, compan>d with the Gibbs ensemble simulation data of Panagiotopoulos 
(36) (m, = 1), and of ESl'oi>l'do and de Pablo [11) (m, =2,4 and 8). TI\(~ continuous 
curves correspond to th(· SAFT.VR approach, and each is lahelled with the values 
of the chain length m,. The reduced parameters USE'd are T- = kT/e and p: = 

3 p,(1 • 
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Figure 5.6: Th~ r('duft'd })J'{'ssure p. = p(f3/e of Lennard-JonC's chains with m. = 
2 (diatomics) as a funftion of the reduced monomer density P: = p.(T3. The 
squares, diamonds, rirdf.'s and triangles are the molecular dynamics simulation 
results of Johnson rt al. [10] for the reduced temperatures of T- = kTle =.5, 
4, 3 and 2, respectivf.'ly. The continuous curves corrf:'spond to thE." SAFT·VR 

predictions. 
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Figure 5.7: The f('du(,t'd 11I"('ssure p. = p(Tl/£ of L<'Jlllar<l-.JollC'"i ('hajJIs wilh 
m. = 4 as a. fUllrtioll of tile' r('duc('d 1II01l0tn('r d('nsity P; = fI.(T:s. TItC' dialllonds, 
circles and triall!?;\C's an' tliC' mol('cular dynamics silllulation ."«,stllls of .Joltllson ct 
al. [10] for thE.' r('<111("(·<1 le'lIIpc>ratur('s of T- = kT/e =4, :J alld 'J., l"C'slH'rliv('ly. Tilt' 
continuous CllrV('S rorrl'spoud to the SA FT· V R pr('dictiolls. 
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Figure 5.8: The redlu'C'd pressure P- = p(13/t of L('nnarcl·.JolH's chains with 
m, = 8 as a fUllction of the reduct.>d monomer d('nsity P: = p,rr:', Thl.' dia.monds, 
circles and triangll.'s art.> the molecular dynamics simula.tion results of .Johnson d 
al. [10] for the reduced temperatures ofT- = kT/t =4,3 and 2, 1·('SI)(>ctivr\y. The 
continuous curves correspond to the SAFT· VR predictions. 
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Figure 5.9: The r«:'sidual internal energy u· = uj N £ of Lennard-Joll«:'s chains with 
m, = 2 (diatomirs) and inverse range of A =1.8 as a function of the reduced 
monomer density p; = p.(T3. The squares, diamonds, rirrll's and triangles are 
the molecular dynamics simulation results of Johnson ct al. [10] for tht:' rt:'duced 
temperatures of T- = kTIE =5, 4, 3 and 2, rE'spE'ctivE'ly. The» continuous curves 
correspond to the SAFT-VR predictions. 
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Figure 5.10: The r('sidual internal energy u· = u/N€ of LpllIlard-.)ollf.>s chains 
with m. = 4 and illv(>l's(> range of ). =1.8 as a function of th(> rc>tiucE'd monomer 
density p: = P.cr3• The diamonds, circles and triangles are thp.l1Io\('cular dynamics 
simulation results of Johnson et al. [10] for the reduced t(,lllppratures of T* = 
kT/& =4, 3 and 2, r('spectively. The continuous curves ('orr('spond to the SAFT­
VR predictions. 
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Figure 5.11: The rpsidllal internal energy u· = u/Nt or Lt'lIl1ard·Jonps chains 
with m, = 8 and inv~rs(' range or >. =1.8 as a function of th(' rt'duct'd llIonomer 
density P: = p.(13. Tt.(~ diamonds, circles and triangles are thp 11lolecIIlar dynamics 
simulation r('sults or Johnson et al. {IO] for the rt'duct'd t(,lIIperatur('s or T· = 
kT/t =4, 3 and 2, r('spectively. The continuous curves corrt'spond to the SAFT. 
VR predictions. 
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5.5 Conclusions 

We have presented the SA FT-VR equations of state for the Yukawa and Sutherland 

potentials, and have ilIustratf'd how the t>xprf'ssions ohtaiu(l(l for the Sutherland 

potential can be used to give a gf'neral f'Cluation of statE' for assodating chain 

molecules interacting via potf'ntials with soft-cort' rE'pulsivf:' intNactiolls. In the 

case of Lennard-Jones chains, an accurate df:'scription is ohtaill(·d for vapour-liquid 

coexistence properties using this approach. 

The SAFT-VR expressions for the Yukawa fluid are Sf't'n to cOlllpart' favourably 
with those obtained using tIu' analytical solution of thE' lII£'an sphf>l'iral approxi­

mation. In the case of tll(, contact value of the radial distrihution fuuctioll of the 
Yukawa fluid we obtain a r('dpe which comhinf's hoth the ~fSA and thE' SAFT-VR 

approaches, which is 5('('11 to give rf'sults which arE' in r1osf'r lIJ?;n'('lIu'lIt with situ­
ulation data than thosp ohtainpd using pithpr thp individual MSA or SAFT-VR 

methods. As a rE'sult of tltE' corrf'spondl'nre h£'lwf'('11 tht> f"rlll of lit" Yukawa po­

tE'ntial and the pott'utial t'xpf'rif'nrf'd by iOlls in flollllion, tlte> f'xpn'ssiolls prt'spntC'd 

here can be usC'd to d£'srri be the pha.<;e hC'haviollr of n uids of ind IIstrial i ntf'rpst 

such as electrolytes. In addition, the E'xtf'llliion of the SAFT-VR f'<l'mtion of state 
to systems interacting with potentials of variahlp. r('»ulsivE' rallg(', Ipads to the pos­

sibility of tile study of syst(>lIls with int('raction pot(,lItials whirh are> mon' complex 

than those which call he lllodl'lpd by hard-core potl'lltia.ls slIch as thp. squa.rE' wpll. 

FurthermorE', since tltE' SAFT-VR llI<,lhodology is ('a.<;i1y appli('d to lIIixtur<'s [1, 2] 

the E'xpressiolls pr('s('ntl'd hl'fE' for the p"r(' fluid can fil"IIII:\IIY applications in the 
prE'diction of the thl'rllludynamirs and phasl" lH'haviollr of lIIixtllr('s with lip<,rific 

inlE'rmolE'cular i IItE'rartioJls. 
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Chapter 6 

Case Study: Closed-Loop 

Immiscibility in Fluids 

6.1 Introd uctiOll 

In this final rhaptN WI.' PrNH'lIt a d('tai1f'(1 study of a spf'rifit' dass of phase bt'­

haviour, using a romhillatioll of tht' l11f'thods discuss('(lllr('violisly. Thp I'xpNilll('n­

tally observed phf>1I01llC'1I011 of rlos('d-Ioop liquid-liquid illllllisrihility is ('xamin('(l; 

such behaviour is charaflt'I'isf>c1 hy a clos('d r('v;ioJl of two-phas(' illlmiscihility ov('r 

a spt'rific tt'lll}><'raturl.' ranJZ;e on the phase diagram of a systl'lIJ. A simple mod('l 

system which incorpomt('s thl.' important fpatllr('s of mixturl's whit'll ('xhibit this 

re-t'ntrant miscihility eXIH.'riJllf'ntally is examilll'll with th~ SAFT· VR {·qlla.tion of 
state introduced in Chapt('r 2, and with tl. .. ('OIllPllt(>f simulatioll tf'dlniqu('s of 

Chapter 3. Particular att('lItion is paid to tll(, critical h('haviollr of this llJod('l, 

both at the high and low tf'lllJ)('ratur('s which hound the rf'JZ;iulIs of Immiscihility. 

The nat ure of the in teractions which gOVNIl i 11\ lIIi sri hili ty i II fluids aI''' disruss('d 

as a means of introducing the ('nf>rgf'tic alld tlu'rmodynamk ('OlICl.'pts which 1('ad 

to the existf>nce of SII('h dosf'd-Ioop bf'llaviour. 

It is common for binary liquid mixtur('s with wf'ak unJikp int('rcatiolls to have phase 

diagrams dominated hy ff'JZ;ions ofimmisrihility, as ff'prf'fif'nt('d hy thp. tf'I1I»f>rature­

composition pha.se diagram shown in Figure G.t. The two-phasf' ('()(>Xistf'llCe re-
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Figure 6.1: Schematic tl.'llI}>('rature compositioll phase diagl'nlll ror a biliary liquid 
mixture with weak unlikt:t interactions. 
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gion is bounded at high t(,Ill}>f'fatllres hy an lIPIlf'r critical sulution temperature 

(USCT), the tempNatur<.> at which the compositions of the two ("O(>xistillg phases 

become identical, so that at tempf'raturf's ahove th .. VeST the systpm is com­

pletely miscible. The immiscihility of the fluid syst(,1ll at t(,lIll)('rahlrps b('low the 

UCST is a result of the unfavourahle f'nprgy wldch ('xists b£'tw('(,11 ulllike compo­

nents in the mixture, so that like componf'nts have a high aHinity for olle another. 

This leads to clustt'Ting of particles of the sauIP sp('cips, r('sultillg ill phase s(>pa­

ration into an energptirally favourahle configuration, with OI\(> phasp rich in one 

component and one phase rich in the othpr compon(,lIt. Prefis('ly at thl' UCST the 

entropy of the system has illcr('a.'ipcl sufficil'ntly so that it is the dOlllinant contri­

bution to the Helmholtz fr('e energy of the syst(,lIl. The fr<'(' (,IINgy A is gov('rned 

by the interplay 1>(>tW(>(>11 the int(>rnal f'1If'Tgy IT and tIll' Plltropy S: 

~A = ~1I- T~S. (G.1 ) 

The temperature d('p<'I\(I('lI('" in the above P<llIation is r('spolIsihh> fur thf.' inCf('ase 

in the importance of till' (,lItropic contrihution to thp frl>l' ('IINgy with rf'sp<'ct to 

the contrihution due tu thp illt('rnal ('n('rgy a.<i t(,llIpNatllTP iIlCl'('lUH's. At temp('r-

atures above tll(> ueST thp syst(,1II no IOllgpr rClllfiists (If I'('giolls whirh are rich 

in a particular compolIl'lIt sillc(' the lIIolf'culf's aT(, ralldolllly distrihlltpd and the 

syst€'JI1 is miscible. Sp(>('ific ('xamplps of SystPIIIS which ('xldhit slich \H'haviullr are 

methan(>+tetrafl uorOIlll't lIall(" h('xane+ pf'rfluol'll('yrluhf'xalll' and lIH't11 allol +cydoh('xalle 

[1]. 

A specific class of binary mixture which (\xhibits )j(llIid-li'lllid illllllisdhility at t£'tIl­

p€'ratures 1>{'low an VeST has a t(,llIl)('ratur('-wlllpositinn phaSE' diagram similar 

to that shown in Figlll'f' G,2. In this ca.'if', the rf'gioll of il1l1l1isri\Jilily il'l also 5('(>11 to 

decrf:'ase in size as t{'mpC'ratur(> is df'cr(>as('d, alld is \)011 I\(I I'll at 10WN t(,IIIIH'ratllres 

by a lower critical solution t(,llIpNaturf' (LeST). ConsP'IIH'lllly th(' two phas(> re­

gion in such a systPIII only pxists OVf'r a sp('cilk t(,llllwraturp range l)C'tw{,(,11 the 

LeST and the UeST. The syst£>m is Ial'ncf> said to POSS('H I~ rlulwd-Ioop of im­

miscibility. Within til(' cla.ssification of hinary liquid mixtllr(ls propusf'd by Scott 

and van Konyn('nburg (2. 3] this typ(> of plla.'if' I)('haviour is ('xhihit('d hy type VI 
mixtures. 

An understanding of th(' thf'rmodynamics f('sJ)(JIIsihlp for tll(' ('xist<'llc(' of this 

LCST is, at first glancc', <Ii fficul t to obtai n si IIC(, t h(' low t('m Jll'I'atll rf' lIIiscihll' phase 

appears to be morl' disol'<)('J'pd and thus hav(> a gl'f'atf'r ('ntropy thall thl' il1lmiscible 

phase. An examination of tIl(' common f('atlll'1'8 of systf'IIlS which ('xhihit such 

b('haviour do{'s how(>v('r If'ad to a logical pxplallalioll for this n'-Plilralit miscihility. 
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Figure 6.2: Schematic t£'lIIpt'rature composition phase diagram for a. hinary liquid 
mixture with weak unlikl" interactions and a strollg associa.tion t'1IC'rgy ht'tween 
unlike species which is dominant at low t(>mperaturl's. 



The first experimentally ohs('rvNI closed-loop of immiscibility was r('ported by 

Hudson in 1904 [4]. Whilst trying to crystallise nicotine from its aqupotls solution in 

order to prove the exisl(,lIl'e ofthe hypothp.licaluicoti lie hydrate IIlIdsoll discov€'fed 

the existence of a closed r<'gion of immiscibility for the nicotillP+water system. 

Early studies which also report closed-loop behaviour are those of2-butanol+water 

[.5], 3-methylpyridine+heavy watE.'r [6] and guiacol+glyc('rine [7]. The existence 

of re-entrance in the glliacol+glyc('rine mixtllr(' is (11J('stiol1(·d ill a 5('('ond study 

[8] which fE.'ports that anhydrous guiacol+glyn·rine are compl('lPly miscible at 

all temperatures. It is only in the pr(,!;pnce (If a small amolJnt of watN that 

the closed-loop of immisdbility appears, as the alllount of wal('f in till' system is 

increased the loop also inCfpasps in sizp. ConVl'rs,'ly, addition of wat<'r to the 3-
methylpyridine+heavy wat('r syst('m I('ads to a dC'crC'asl' in the· (>xl(,lIt of thp rpgion 

of immiscibility. COlIsid!'rahl" int('r('st in the phasp IwhaviolJr or th('s(' two ternary 

systems exists as a f('sult of tht' criticill roll' (If the third ('OIllPOII(,lIt [6, 9], 8('e 

Ref. [10] for a review. 

The existence of the teST in thpse systf'1JI1i was at first conshlt'l'('d to hI' a f('slJlt of 

the decomposition of Olt(' uf till' compolu'lIts in till' lIIixturl', ur IlY tltC' formation of 

new chemical compounds [11]. Tllis is r(·f1('ctpd in a fllJllJllf'lIt by Hudson [,1] with 

respf>ct to his Ii ndi ngs for 1 It(' niroti u('+wa tpr sys I ('Ill: "It JlJay IJI' asslI 1I11't1 that t hI' 
pr('sence of the hydratp. is the causp for thf" misribility of tll(1 o\,hNwisp insoluble 

liquids-more or l(>s5 tlu' samp. way as tlar addition or alt-ulwl hrings ahout tIle 

mixing of wat<'r and ethc'r. Thp llydratf' d('cOIllI)()Sf'S with iIH'J'(·ltsillg t(,lJIl>p.rature 

and tIle two liquids, uiwtinf:' and watf'r, s('paral" hf'calls,' til" quantity of th('ir 

mutual solvent, nall1('ly th(> hydrat(', is gr('atly rf'llucf'cl". lIowN'N,IIU ('xpf'riIllPntal 

f:'viden('e exists to ('011 fi 1'111 t h(' ('xistPllrp. of a. <Ii Iff' 1'(,11 t dl('11\ iral SPl'ri('s in t h('se 

systems, so an altf'rnatiw f'xplanatioll 111115t h('l sOIlj:!;ht. 

A wide range of liquid lJIixturC's are cIJrrrutly known to pxllihit this r('-p.utratlt 

b('haviour, including mixturf's of aliphatic or arolllatic alwhuls, aminI'S, p.tl1('rs or 

k('ton('s with water or alrohols. Th" common r .. aturl' of all th(·s" fiystf'IJIS which 
can be used to giv(> all l'xplanatioll of thC'ir '''Iusllal l)(lhaviour, is tlJ('ir ability 

to form hydrogC'n hOllds. Ilydrngf'n hOllds ran furlll lH'lWt'('1I allY (·Ip('tron('gative 

atom, such as OXygf'II, lIitrog('lll or fluorinf', and a hydrng('lll alolll via. donation of 

Jone pairs of electrollS Ollto thp C'1f'rtropnsitive hydrngf'll. IJUt> to t1.f' shoJ't-fang('lcl, 

dir('ctional natur(' of hydrclgC'n honds tlt .. y can only form h('tw('('11 two lilwrirs wl1('11 

they approach on(> anollH'r r10sply and are in a sp('rific oJ'ic'lItatiun with T('Sp('ct 

to one anoth{'r. The angular "prpad of a hydroJ,!;l'1I hOlld is typirally 10°, so tha.t a 

small displacement of eitll£'r sp('ri('lS can IC'ad to liar df'strIJctiull of th£> hondo Con­

sequently hydrog('n honding is only ohs('rv('l<l in low-t('llllprratur(' COli figurations 

where molecules hav(,> a low mohility and h('nc(' r('main in SI)(·dfir ol'iC'utations for 



relatively long timesrales. 1I0w('v('r, in onl('r to obtain a compl(>t(' undPrstanding 

of why hydrogen hOllds ar(' ('nf'fgptically favollfl'd at low tplIIJ>pratllrf'S, one must 

consider the entropic CUlls('qupncps of the hondillp; prucpss ilsf'lf. Th(' dir('ctional 

nature of the bond hinders the nllmbf.'r of vihrational and rutational d('grf.'(,s of 

freedom available to a 1lI01<>cule wIlen it is part of a bydrogf'n-bond('(l structure. 

This orientational constraint 1E'ads to a d('("fE'C\Sp in the randomll(,ss of the system 

upon the formation of such bonds, and It('nce a de("ff.'as ... in th ... ori('ntational ('n­

tropy, which is greatf.'r titan the compositional f'lItropy ga.inf'd on mixing [12]. At 

low temperatures we know frolll Eq. (6.1) that f'lItropic ('[('cts do 1I0t have a pro­

found effect on the free energy of the SystPIll, but thp combination of lowering the 

internal energy and an incrpase in the compositional ('ntropy duE' to mixing leads 

to a favourable free ('nf'rgy for the overall Systr'III, df'fipitE' tlap df'ffP(lSe in crien­

tational entropy. 11('11('(', for a mixture of two CfII11IHHH'lIts whit'h art> both able to 

form hydrogE'n bonds, it is ('nprg('tically favollrahl(' for fill('h bOllds to form. This 

results in the low t{,lIlp('ratllr(> miscihility of tllP flYfil('1II fiiut'(· tit .. bUl\d~ can occur 

betw('(>n both tbe unlikf> and Iik<' rOlllpOIH'nt8 ill thp lIIixturf>. TIt(' unfa.vourahle 

low orientational entropy of tllP hydrogpn hond giv('s a 1II0r(' signifimnt contri­

bution to the fre(' f'nergy of the systPIII as tplllppratur(' illnf'asl's, so that other 

configurations, sllch as thosl' involving thl' cItIl;tr-rillg £If lik .. lil)('rj(,s h('('olll(:, more 

enE:'rgetically attrartiVf'. At highpr tf'lIIpf'ratllrc's tilt:' syst(llll IIf'II(,P IIIUV(,S from a 

miscible hydrog(,lI-hondpd pha.-;p to a two-pha!';l' systPIll "I)(}V(' a partklllar t(,llIp('r­

ature (the LeST). This is tit ... tplllpf'fatllrf' at whirh til .. hydro!!;f'lI 1>0Il<lC·<1 configu­

ration becomes energf'tirally unfpasihl('. Ahovp this tPIIIIH'fatlll'f' thr fn'p f'lIergy of 

the systE:'11l is dOlllinatpd hy the t1nfavourahl .. intf'l'ntll elll'rgy ('olltrihlltioll l>('tw(,(,11 

unlike species, r{'sulting ill th .. dllstf'fing of likf' sl"'fif's. IIf'II('P, th(' fOlllpositiollal 

entropy is 10w(>fE:'d with n's)('ct to that of thf' hydrogf'n hntllll,d fitrllrture. This 

decrE:'ase, togE:'th(>r with thp iIlCfPa.'\p in ol'if'lItational (,lItropy, favuurs thp phase 

spparation of th(' systf'1Il for lIlodf'rate\y hiJ.?;h t(,lIIpNatur('s. This twu-pha.'it' rrgion 

is again houndpd at higll tf'IIIIH'ratllrps hy all lJCST, tllP tplII)lf'ratllrf' at whkh the 

entropic contributioll to thf' frf'f' ellPrgy hf'('()lI\f'S grpah'r than that of till' int('r­

nal E'nergy in Eq. (6.1). At this tf'IlI)lf'ratllrp a random disll"ihutioll of tll{' s))('cif's 

within the system is elu·rg(·tirally favulIrf'll so that tllP syslf'lII b('('ulllf's miscihle. 

Having obtainpd a dpsrriptioll of the tltf'flllcl(lynalllirs illvolVf·d ill thf' phf'nolllf'non 

of closed-loop immiscihility it is also illlportant to lIotl' tlaat tIap strf'lIgth of the 

hydrogen-bonding intf'fartioll plays a rriticaJ rolp in thfl dl't<'rlllinatiull of th(' ('xt('nt 

of the immiscibility in a particular systf.'lIl. A 3-dilllensinllal rf'prc'sPlltation of the 

E:'treet of a variation ill strf'ngth of the hydrogf'n hOll<l \H'tWf'('1I IIl1likC' ('omponf'nts 

on the temperature-culllposition ]>lla~f.' digram of a. binary liCJllhll11ixtllre in fihown 

in Figure 6.3. For a bonding litr('ngth of Zf'ro no LeST is ohsf'fvc'd and th ... syst('m 

is immiscible at all t{,1II1H'raturps lwlow the VeST, wldch is til" fasl' sllown in Fig. 
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Figure 6.3: A tlirE'E'·dilllf'lIsiollal rpprrsE'ntation of thp ('(f('ct of a val'iation in the 
strength of the bydro)!;f'lI bOlld wbich ran form 1>1'1\"'('('11 ullli\';f' ('OIiIPOIIE'lIts on 
the t{'mperature cOIllJlosition phase diagram of tl.p mixtllJ'f', Ead. vNliral 'slice' 
corresponds to the pha:,<, diagram for the systPllI at t ha t SP('ri fit' hOlldi ng str£'ugth. 
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6.1. As the strength of the honding interaction is infrf'as('d a LeST app('ars and a 

closed-loop of i mmiscibili ty is observed, corr('sponcli ng to the Jl h asp. diagram shown 

in Fig. 6.2. The extellt of this r<'gion of immiscihility uecrf'a.<;f's as the bonding 

strength is increased furthf'r, until it vanishes compl('t('ly at tIll.> point where the 

UCST and the LCST occur at the same tE'llIpE'raturf'. liNe the syst(,lll becomes 

immiscible exactly at the point wlH're it bf'C'OIllE's miscihle again, which corresponds 

to a double critical point (DCr) for the system. The eff('ct of varying the strength 

of the hydrogen bonding intf'raction on the phase diagram of a system is equivalent 

to scaling the temperature of that system, and can be exalJlinf'd ex»<'rimentally 

by several difft>rent routes: 

• altering one of th(> fompolH'nts in thl' mixtllrf', f;inl'f' diffN('lIt slIhstances 

have difft>rent hydru)!;f'n bonding stn'lIgths. 

• changing the prf'SSlIre of the systE'llI. As thE' prf'SSlIre illfl'('i\sf'S thf' Illolecul('s 
are forced c1os('r tog<'l hN, which h'acls to an f'ff('fti VP i nrrf'a,o;l' in th(> hondi ng, 

so that the ('xtt'llt of thf' dos(1-loop r<'j.!;ioll dp('rl'as('s, vaJlishing fOlllplt·t('ly at 

high enough prf'SSIII'('S. 

• adding a small <pJantity of a third (,01ll)101lf'lIt whirll is lIIisriblp in tIll.> binary 

mixture. The syst('m C'Ontinllf's to have all the ('ssf'Jltial f"aturf's of a binary 

mixture, hut (a.~ for thp glliacol+glyc('rill(, systf'lI1) th(' tlaird (,OIl1I)oll('nt laas 

a significant effpft UII th(' pha."p l)f'haviour of thp lIIixtII I'P, In the cast' of 

guiacol+glyceri 11(>, addi tion of watf'r II'a<l8 to glliarol fllrllli ng layd I'Og(,1I honds 

with water, rathl'r than with glyc('rill(>, iaf'llc(' dl'crrajiillg tIl(' aV('ragr bonding 

interaction hetwl'('11 guiarol and gIYCNitl", whkh alluws tIl(' aplwaralH'e of the 
immiscibl(> phas(>. 

When hydrogen bonding is ahl(' to occur hf'twppn lik(l sp(·dl's, in adllition to un· 

like, tbe system will t(,11l1 tu plaa.o;e s('parat(.' at tpJllppratllrps 1H'low the LCST. In 

such cases, the slim of the <Ii r('ctional alld t lap. non·di rl'diollal i ntc'ra('tiolls for a 

pair of like species is gn'atpr than for a pair of unlik(l 1I101.'('ull'''. Tlal' hydrog('n 

bonding of like spt·d('s to Olle anoth('r r<'sliits in a dC'<"r(·a.1W in 1101h th(> compo­

sitional and ori('ntaliollal PJltrollY of th" lIIixtllfl', r('slIllillg ill phas(l lipparation 

at low temperatur(>s. This ('{fl'et is not gPIINally s("'n pxp"rillll'lItally since sys­

tems tend to fr('('ze h('ful't' the low.tPlIllwrature miscibility can 1)1' ohs('fv(>d. The 

2-butanol+water mixtllr(' is all ('xc('ption, wllPre at high prpSSllrf'S (or 011 addition 

of t.butanol) two rl'gions of immiscibility ('xist, tll(, liquid-liquid illllniscibll' phase 

bounded by th(' LeST and thf> UeST aliI! a Inw.t<'IlI)ll'ratllre immiscible pha. .. 4.', 

bound('d by a UCST [1:1]. At atlllosphf'ric prf'SIHlrf' tiaP dos<'d-Ioo)l lII('rgl'H with 

the low-temperature two-plaa..,(> rrgion, resulting in a so-cal\<,<\ 'hour-glass' pha.c;e 
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diagram. The point at which thE> VeST of tit,. low-1<'I1IIH'ratllfl'misrihl(> r<'gion oc­

curs at exactly the sanl(~ t<'lIIp('ratllre as tll(> LeST of tlH' rlosl'd-Iuop rorrE'sponc1s 

to a double critical point (DCr) for this systpm. TltE' ('If('rt of varying tIH.· strf'ogth 

of the hydrogen-bonding interartion h('tw(,(,11 unJik(> rOmpOIlC'lIts 011 the phase di­

agram whf're bonding ran orcur b('tw('('n hoth unlike and likE' SIH'ri('S, is shown in 

Figure 6.4. When the hydrog('n bonds 1>('1\\'('('11 1II,lik(> rOlllpUI1('nts are wf'ak the 

system has a p11a.se diagralll with thE' form of Fig. G.t. As tIll' honding strength 

increasE'S the immiscihle rE.'gion splits into two spparat(l r('giolls, th(· r\os(ld-loop at 

higher temperatures and a serond illllllisribl" rf'gioll hOlln(\<'d hy all VeST at low 

tE'mperatures. 

Clos('d-Ioop h('haviour is not only (>xhihit(>d hy simpl,. Jj(J'tid llIixtllrt'S, a wid" vari­

ety of other systE'IllS ar(> known to IIIHIl'rgo ff··f'lltrant phas(l transitions ('X)lrrimf'n­

tally. The c1oSE'd-1oop h('llaviollr of colllpll'x f1l1id aystl'JIIs 811rh as wino('llllllsions 

and polYIllE'r solutions [14,15] and non-ionir slIrfartantli [W, Ii], ran 1)(· dilirusfi{'d 
within thE' thE'rmodynalllk fralllf'wurk givl'lI pr('vinllsly; wlU,rt· tIll' hydro!!;!'11 hoods 

which are forlll('d h('twl'('U IJIllik(' r0ll1pOllf'IIt8 ar(' ff'sponsihl(, fur tIl(' low tC'mIH'r· 

ature miscibility. Furtllf'flllore, th/' pt.f'III1I1I1'noll of rl'-('lItrall('(' is lIut ('ollfiu('d to 

liquid mixtur('sj it ran I,,· uhsPTvf'c1 ill a rall~f' of otJ.f'r "yst(,IIIS, ('xaIII pl<'s of which 

are givE'n in Tahlp G.t. 

Table 6.1: Exalllpl<,s ofsyst<'lIIs wlth-h f'xltihit rp-<'lItrallt »I':ISI' tl'lllltiitiolls t()p;(~th('r 
with the reapp('aring phasps in ('ad, sysll'lII (frnlll It"f. [10]). 

System 

Binary gases 
Liquid crystals 

Ferrof'lE'ct rics 

Sup('rconductors 

Aquf>OUS ('l('ctrolytps 

Exam pll' 

N(·-I\r [IX] 
Ortyloxycyallohi phf'lIyl (XOell)t 
11('xal i xyrya Ilohi plll'lIyl 
(GOCU) [J!))-(2I) 
ltodu·1l1' salt 
(N aKC.II .. 0 IlA 11 lO)[22] 
BaPhu.75Bi".250:J [2:1] 

N ,N-di lIH'thyarrlya mid .. or 
N-isopropyl arrylalllidp gpls 
in (wat('rt<ii lII('t lIyl Im1 pJ.nxidp) [tl] 
Tf'tra-l1- hll tylalllllllJlli 11111 

lhioryanilll' (BII.,NSCN)+wat!'r [1;'] 

Furlll of r(,-C'lItrance 

Partial illllllisdhility 
N<'lIaatic phasl' 

lion-polar phase 

Norlllal statt' 
( 1I01l-S IIIH'r<'ond lIcti ng) 
Swol1pn state 

~Iisdhility 

It is ohviously impossibl(' to obtain an f'xplanatioll of tllf' pllysirs of slIrh div('rse 

. ' 



Figure 6.4: A thl'E'l:'-dillll'lIsional r('prI"S('1I1alioll of tIll" ('!fI'ct uf a variation in the 
strength of thp hydrog!'11 IWlld which can flll'llI hoth hl"tWf'f'lIl1l1likp alld Iik(> compo­

nents on the telllperatlll'l' ('ulllpositioll plaasl' dia~ralll of till' IlIixtlll'P. Tltp :'trE'lIgth 
of the hydrogen bOlld 1,,'l\\W'1l Iik(> COIII/loIIl'IIt8 i~ ('()lIstallt. 
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systems using the same thermodynamic ideas as those used to rationalise closed­

loop behaviour in liquid mixtures. However, it is possible to identify the com­

petition between the entropy and the internal energy at low temperatures in the 

free energy expression of Eq. (6.1) as the driving force for the existence of re­

entrance in all such systems. In this chapter we will concentrate on the study of 

the phenomenon of closed-loop immiscibility in binary liquid mixtures, and more 

specifically in a model mixture which is chosen due to its simplicity. The SAFT­

VR equation of state and computer simulation techniques are used to provide a 

description of the phase behaviour of the model mixture in order to obtain an un­

derstanding of the interactions involved. Defore describing the methods employed 

in this study in detail we review the other theoretical studies which have been 

performed previollsly for fluid systems which exhibit dosed-loop immiscibility. 

6.2 Theory of closed-loop behaviour 

As a result of the Ilovd nature of this re-entrant bdlaviour, tog('ther with its ap­

pearance in a wide variety of Systl'lllS, throretical studies of this type of phase 

behaviour are IlUJlH'rous. A d('tai1"d dc>scription of an the approa.dl<'s is h<'yond 

the scope of this work. We give a brief review of the ('arly stlldi('s and tlH'ir find­

ings hut we are most interested in the use of continuum fluid thc>ori(ls to dc>scribe 

closed-loop immiscibility in mixtllrc>s. Early thPOr(ltical stlldi(ls are bas(ld on the 

ideas proposed by IlirsrhfPldt'r rt (jl. [26], in the first study which app('ars in the 

literature where hydrogen bonds are cited as h(ling the forces rt'sponsible for the 

existence of a LeST in binary liquid mixtures. lIE're the low tE'I11J>f:'rature misci­

bility is explained in t(,Tms of the hindering of frE'e rotation of l1Iol('cul(,8 due to 

directional interactions betw('('n unlike components in the mixture. This d('scrip­

tion of the int('ractiolls can be incorporatNI into lattice modd studi('s, the first of 

which to actually rE'port a cJospcl-loop of immiscibility for a sp('cific model is the 

work by Barker and Fock [27). TII(lir mod,,1 of a binary liquid mixture fonsists 

of a z co-ordinatE'cl lattice made up of two types of mO\(,fule, each of which has z 
contact points capahle of interafting with the z contact points of the neighhour­

ing molecules. Olll' of tIle contact points on each molecule is specifi('d as being 

distinct from all the others. Interactions betwP('n like moleculps are taken to be 

zero, whilst intc>ractions betweE'n unlike 1ll01C'culC's are an considC'r('d to be TE'pul­

sive, unless they ('xist b('twc>en the distinct contact point on one molecule and the 

equivalent distinct contact point on the other molecule, in which case the intE'rac­

tion is considNed to be attractive. The conditions of phase equilibria are solved 

for this model using DE'the-Guggpuheim quasichemical approximation [28]. The 

resulting phase diagrams show both an UPP(,T and alowf.'T critical solution t('mp('r-
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ature, but the overall shape of the coexistence curves are very much narrower than 

those observed experimentally, and are parabolic at the critical point, whereas the 

experimental curves are cubic. These apparent failures of the Darker and Fock 

model can be rationalised in terms of the inadequacy of the quasichemical ap­

proximation, rather than as a conSE'ql1ence of the lattice model or the interaction 

potential USE'd. The quasicllE'mical approximation is a mean-field theory, 80 it will 

always predict parabolic bt'haviour at the critical point. Use of a higher order 

approximation for the same model [29], wh("re the anisotropic interactions in the 

model are better accounted for gives results which are in closer agreement with 

the experimental findings. 

After this initial hrpakthrough, a sf'rif>s of lattice studif's w('re p('rform('d on more 

complex modpl syst(,llls. The first of thf>se is the study by Whpf'l('r [30] which 

introduct's a decoratt'd lattke model, whirh can be exactly mapppd onto a spin 

t Ising model, for which exact solutions are known, and which also prpdicts the 

corr("ct cubic (univ('fsal) critkal behaviour. The known solutions for the Ising 

magnet are us('d to predict the phase behaviour of a 1110<1f'1 systE'm with highly 

anisotropic intE'ractions, yi€'lding cJosf'd-loop r('gions for a sp('cific choice of int('f­

action paramp.ters. Dpspite a reasonable agrf'('tn('nt b('tw('('n the r('sults ohtain('d 

from these lattice mod€'l studips and thf'ir exp('rimf'ntally ohs('fv('d rount('rparts 

[31], furth('r st udif's have bf'{'11 u nd('rtak(,11 in or<1('r to obtai n closer agr(,(,I1H'nt. 

One of the shortromings of the use of such lattice mod('ls is that they yi('ld in­

herently symmetrical rpsults, which is obviously not mirror('d by r('al systE'ms. A 

number of studjps have h'-(,II performf'd which produce asymlll('trical ro('xist('nce 

curves [32]-[34] hy including intf'ractions hE'tW(,t'Jl unlike sp('ci('s. Another sf'ries 

of investigations \lsi ng the Potts 1110<1('1 rf'Jlort closed· loop r('gions for appropriate 

interaction paramet('rs [35]-[:lR], where the interaction pot('ntial ha.'1 a dir('ctional 

compolI('nt and the system is examin('d using the Migdal-KadanofT approximation 

via renormalisation group throry (known as the Walk('r and Vause modd). 

The underlying feature cOlllmon to all of th('se lattire-bas('d approach('s which 

is thought to be responsible for the re-E'ntrant b('llaviour obsf'rvf'd Is that t.he 

intf'raction pot('ntial uspd in the d('srri ption of the modt>l fluid is always anisotropic. 

Despite the ba.<;ic ov('rsirnplificatioll involved in using a lattice to r('pr('sent the 

structure of a liquid such studies give a useful qua1itative description of the shape 

of the closed-loop and also illustrate whicb feattJrf's of the interaction potential are 

rf'sponsible for the exist('nce of closed-loop immiscibility. 

An alternative approach for the description of closed-loop bellaviour in mixtur('s 

is the use of continuum fluid theories, which account for the structure of the liquid 

in a more completf' manner than lattice modf'ls. Such th{'ori{'s consist of the 

146 



proposal of an equation of state for a model syst('m which is used to predict the 

phase behaviour and thE'rmodynamics of the fluid. The large number of continuum 

studies which currently exist in the lit('rature indicate the importance of such 

predictive work to theoreticians and experimentalists alike. The most significant 

early work in this field is that of van Konynl'nburg and Scott [2, 3], whNe the van 

der Waals ('quation of state [39] is us('d to obtain the phase diagrams of binary 

mixtures. The systems examined by van Konynenhurg and Scott are assumed to 

obey the van der Waals mixing rules and the phase behaviour of all but one of the 

types of phase equilibria are succl'ssfully predicted by varying the intermolecular 

parameters. The failure of this approach to pr('dict the phase b('haviour of type VI 

hinary mixtur('s which POSSf:'S the closf'd rf'gions of immiscibility can be understood 

by examining the nature of the intf'rmolpcular interactions described by the van 

der Waals ('quation of stat('. Since re·('ntrant miscibility is only observ('d in lattice 

models which contain short.rangpd, dirE'ctional interactions, olle ('xppcts that the 

equival('nt rritf:'fion should hold in thl' case of continuum throries. The van d('r 

\Vaals l'quation ha.c; no provision for such t(,lllp('rature dp»E'ndent intE'ractions, 

so that its failurf:' to prE'dict thl.' r(,·('lltrant b('haviollr of the type VI mixture is 

not unexp('cted. NUIllf:'rous studies have subsequently I>('('n p('rform('d in ord('r 

to obtain an ('(Illation of state which can pr('dict the low.t('mp('rature miscihility 

of such systems. The SAFT ('quation of state has I>('en \ls('d s\lcc('ssfully in this 

context. 

A simplified v('rsion of tll(' SA FT· VR ('(Illation of state is known to prE'dict the 

c1osf:'d·loop phasl.' behaviour of a llJod('1 syst(,1ll [.iO]. The model ('xamin('d in 

R('f. [40] consists of a binary mixture of ('qual siz('d.sph('r('s with one off·c('ntre 

association site pE'r sphf:'rE', th('se sit('s are indudl'd to account for the dir('ctional 

nature of tll<~ hydrogf'n.bond. The v('rsion of SAFT \l5('d in Ref. [·10] differs from 

the SAFT·VR f.'<Juation oC state givf'n in Chapt('r 2 in the nature of the disp('rsive 

interactions, in th(' simplifif'd SAFT.IIS approach thf'Y are giv('n by the van def 

Waals e-quation. The SAFT·IIS E'<jllation of state is also \)s('d in a global study 

of model binary mixtures oC watertalkanols [41]. The ('fT~('t of chain length and 

association on the phase (>CJuilihria are prf's(>ntE'd in R('C. [41]. whf're closed· loop reo 

gions are ohs(>rVf·d for int('rtIlf'diat£' rhain lengths and bonding ('nergi('s. A r('c('nt 

application of this simplified SAFT approach is in the prrdiction oC the dosl'd.loop 

phase b£'haviour oC of hinary aqul'ous solution of I·hutanol, n-butoxyethanol and 

n-dl.'cylpE'ntoxy{'thylenetb('r (ClOE5) [42]. Tbe ('xtf.'nt oC the immiscibility in r('al 

mixtures is se(,ll to be accurately prNlict('d using the SAFT.IIS equation of state, 

via the fitting of a sp('cific numher of int('raction parameters. In this work we 

re-examine the phase b('haviol1r of the symmetrical binary mixture introduced in 

Ref. [40] using t1l(' SAFT·VR ('filiation oC state. 
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Before presenting the specific SA FT-VR (>xpressions for the model system it is 

important to discuss other recent continuum theory studies which also examine 

the phenomenon of closed-loop immiscibility. By combining the results obtained 

from lattice studies and the knowl('dge that the van der Waals equation of state is 

unable to prE'dict closed-loop behaviour, it is not over-presumptuous to state that 

a short-ranged directional intE'raction must be included in the potE'ntial model, in 

order for a given model SystE'lll to E'xhibit re-entrant miscibility. It is also widely 

believed that the appearance of the LeST experimentally in systems is a direct 

result of hydrogen-bonding between the two components in the mixture, so that 

the directional nature and the temperature dependence of such bonding must be 

accounted for in any theorE'tical studies of such associating fluids. However, certain 

continuum fluid studies present results which contradict the above statements, that 

is, thE'Y pr('dict c1osNI-loop immiscibility for systems with isotropic pot('ntials. \Ve 

will discuss the finding!! of each of these studips in turn. 

The global study of the pha.se diagram of a model mixture int('racting via the 

Lennard-Jonf:'s potNltial hy Boshkovd al. [43]-[45] is one such study. A clost'd­

loop of immiscibility is rt'portt'd for a systf'm with only sphf'rically symmf'trical 

interactions, whpre the 1lI0dpl dol'S not account for low trill perature dirf'ctional 

interactions. By taking a closf'r look at the methods by which they arrive at 

their rE'sults one can uncov('r posgibl .. sO\lrc(>s of error. The configurational part of 

the free E'nergy is ca1culatf'd in the work of Refs. [43]-[-15] using a solution for the 

pure compollent Lennard-JonE's fluid obtained using the Ree equation of state [46]. 
This f.'quation of state is obtain('(1 hy pf'rforming a fitting to computer simulation 

data points over a t('mperaturf.' range of 0.54 < T/Tc < 1.93. The dosf\d-loOI> of 

immiscibility pr('sented in the work by Doshkov tt al. has a. temprrature range of 

0.4.5 < T /Tc < 0.50 [40J, indicating that the R('e ('quation of state has 1>('('n used 

outside its range of validity. Another important observation, mentioned in the 

original Ree paper (Ref. [46]) is that the ('<iuation should not be used b(>low the 

triple point of the systl'Il1, which for the Lennard·Jones fluid occurs at T /Tc = 0.49 

[46J. This indicates that the r(>sults pres('nted by Doshkovet al. 6110uld be view(>d 

with caution. 

A sE'riE's of studi('s by van P('lt et al. [47]-[40] also pr(>dicts r)oSE'd-Ioop immiscibility 

for an isotropic potential modf'l, in this case for the simplified pf'rturhecl hard chain 

theory (SPIICT) [50]. Within the SPIICT ('ql1ation the attractive part of the 

partition function is writtE'n in terms of the t(>JlIperatl1re and d(>nsity d('pendE'nce 

of the co-ordination numher, which is a function of the Boltzmann factor of the 

the interaction potential. The results ohtained using this attractive term compare 

favourably with comput(>r simulation rE'sults in the one-phase region of the phase 

diagram, but th(> agrN'llll'nt ul'crl'ases rapidly in the gas-liquid, two-phase rl'gion. 
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This indicates that such an attractive term within the SPJlCT equation should 

not be relied upon to givl' accurate predictions below the gas-liquid critical point. 

However, the work van Pdt d al. reports the existence of closed-loop regions 

in the temperature range T fTc $ 1.0, which is exactly the region in which the 

attractive term is considerf'd to be invalid. The occurrf'nce of closed-loop rf'gions 

for the SPIICT equation at thf'se low tf'mpf'ratures is bf'lieved to be a result of the 

inverse expon{'ntial temperature d{'pendence in the expression for the co-ordination 

number [41]. rather than a conseqUE'nce of the true phase behaviour of the system. 

A recent study of the topology of the type VI phase diagram attempts to illustrate 

which featurE's of an equation of state are important in ordE'r for it to be able to 
predict the existence of dosed-loop rpgions on the global phase diagram for a model 

system [51]. A version of the SAFT {'quation of state whNe the rrpulsive intf.'rac­

tions are givpn by a van dE'r Waals d(>scription is USE'd in RE'f. [51]. The occurrE'nce 
of critical saddle points in the binary liquid-gas critical line are rE'portE'<l to be 
responsible for the appf'arance of both an uppE'r and a lowf.'r critical pont on the 

phase diagram. Thl' invf'stigation prE'selltNI in RE'f. [52] concludes that type VI be­

haviour can be rationalisNI for simpl(>, lion-directional rCJuations of statf.', but that 

these theon·tical findings cannot he consi<i(>rE'd M bf'ing expf'rim('ntally ohsf.'rvablc 

sin('c they occur for highly un-pllysical lJIotl(>ls with un-r('alistic int('ractions. 

Thl' confusion which curr('ntly ('xists in the litE'rature with r('sp<'ct to the nature 

of the intE'raction potE'ntial of an <'CJuation of state which is ritlwr ahle or unahle 

to predict dos<,d-Ioop immiscibility for a model syst<'111 provid<>s the motivation 

for the work prf'sl'ntpd in this chaptl'r. Within thf'orE'tical d(>scriptions of systrll1s 

the most 'f'xact' rf'sults arr thos(> ohtairwd from ('ompu tf'r si mulation st udif's. \Ve 

undNtake a Gibbs (>lIsPllIhle ~tOlltE' Carlo (GEMC) simulation study of a 11I0dd 

mixture. The syst<'1ll l'xaminE'd consists of llIonomf'ric sE'gnwnts with short.rangpd 

dirf'('tional intf'ractioll sites, and is shown to exhibit c1os(>d-looJ> immiscibility for 

a specific choke of intE'raction paraJl1l'tl'rs using the SAFT-VR ('quatioll of state. 
The results obtaillC'd from a computer simulation study of this model system can 
be prf'sented as substantial evidpnce that anisotropic intf'ractions are rt'quirf'd in 

ordE'r for a l1Io<1f'1 systf'1Il to pxhihit a clos('d rl'gion of immiscibility. To date no 
simulation results hav(> bf'en rE'port<>d for a sp<>rific potential modd where both 

an upp<'r and a lowpr critical solution t(,lIIp<'raturf> can be ObHf'rv(>d on the phase 

diagram. 

In the following s<'ction we bridly sUlllmarise the SAFT-VR equation of state for 

the binary mixture of interest, illustrating the prrdiction of phase b{'haviour. The 

GEMC simulation trchnique usC'd to give comparable results is 8ubs(>qul'ntly pre­

sented. Additionally, simulations »<>rformed in the semigrand canonical ens(,lllbIe 
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are used to estimate both the upper and lower critical temperatures of the system 

using finite-size scaling (FSS) methods. 

6.3 SAFT-VR prediction 

The phase behaviour of a two-component model mixture consisting of square-well 

monomer segments with equal diameter (1 = (111 = (1n = (122, no unlike interac­

tions £12 = 0, and £ = £11 = £22 with fixed interaction range ..\ = ..\ll = ..\2:l = 1.5, 

has been examined previously using the SAFT-VR equation of state in Chapter 4. 

Dy specifying that there is 110 attraction betw('en unlike components, we induce 

the system to phase sf'parate leading to the t'xist('nce of a large f(·gion of liquid­

liquid immiscibility, which is houndp<) at high temperature by an UCST. Gibbs 

ensemble computer simulations for this system have also been r('port('cl [53, 54], 

where the phase diagrams presented confirm the SAFT-VR prNliction in showing 

no regions oflow-temperaturt> miscibility and no LeST. In ordt'r f()r Stich a modd 

to be able to associate at low t(,lllperatllres a short-rangl'Cl sCJuare-wdl interaction 

site is placed at an ofT-c('ntred pDf.ition on each sphl're. In order for bonding to 

occur between two sites on adjacent partir1('s in the mixture the sites must be in a 

sp('cific orientation with Tl'Spect to on(' anoth('r and art' also recl'lir('d to he within a 

distance shorter than the range of the sit('-site interaction. Such ('onstraints mimic 

the physical ('onstraints of hydrogen honding within an ('x(>E'fimeutal system. This 

mod('l syst('m bas b('en ('xamin('cJ pr('viollsly [40]. 

As discussed in Chapter 2 the IIl.'lmholtz free ('ul.'rgy for a mixtur(' of chain 

mo)ecu)('s within the gNu'ra) SAFT-VR approach can be writt('n as a sum of indi­

vidual contributions [55, 56] 

A AIDEAL AAfONO. ACJlAlN AASSOC. 

Nkl' = Nkl' + Nkl' + Nk'/, + NkT . (6.2) 

The SAFT-VR f>xprf'ssiolls for thp id('a) and mOllolllpric ('olltribution8 to the Helmholtz 

free ('nergy for the associating mixture are idf'ntical to those preHf'nted Cor the 

symmetrical mixturf' of square-wf'1l monOIll('rs in Chapter 4. Since the mixture 

examined here also only consists of 11l01l011lf'r s('gments, th('re is no contribution to 

the Helmholtz frf'e ellf'rgy due to chain formation, fiO that ACJlAlN = o. 

The contribution to thl' fr('e (,llergy due to the association m£'diated by the ,fJj sitl's 

on mo)ecu)('s of spf'cies i can be descrihf'd within the fram('work of the theory of 
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Wertheim as [57] 

(6.3) 

The first sum is over the number of spt'cit's i in the mixture and the second sum 

is over all sites a on a molpcule of type i. The fractions of molecules of species i 

not bonded at a particular site a, XG,i, is given by solution of the simultaneous 

equations: 
1 

X a,. = 1 ~'l ~'J X A ' + L..j=1 L..b=1 pZj 6,j a,b,i,j 
(6.4) 

where 
~ 1" - J( l' .f, l' .gSW(cr··) II,",',) - G, .. ,',) G,"",J.j 'J (6.5) 

is spt'cific for each a-b site-site intt'raction, and incorporates the volume available 

for bonding K II ,6 •• ,j, and the strt'ngth of tIle a.'lsociation via. the Mayer function 

!G,b.iJ = exp(eij/kT) - 1 of the square-wpU potential. The contact value of the 

radial distribution function for the square-w('ll interaction, g;~W(crij) is evaluat('d 

within the SAFT-VR approach for mixtur('s [55,56] using a first ord('r p('rturbation 

expansion 

(6.6) 

The contact value of the radial distribution function for the hard-sphere r('f('f('nce 

system g!jS[aij; (;"] is evaluat('(l at an .. !fpc-tive packing fraction ('", using the 

expression of Bou hlfk [58] and ~fallsoori rt al. [59] 

g/~ S[a . .• (t II] = 
.) ')' 3 

1 
(6.7) 

1 _ (;" 

+ 3 II Jl '2 + 2 II lJ _..:.2 ..... -:-:-_ 
cr .. fT" (t" ( cr .. cr .. )2 (t1/2 

• O'ji + O'jj (1- (;")2 CTi, + O'jj (1- (31Ip' 
(6.8) 

The first ordt'r pf'rturhation tp.rm, gl (crij) is ohtai nf:'d from a S('lf-fonsist('nt calcu­

lation of the pr£'ssnre using the Clausius virial th('orem, as ('xpla.inf'd in Chapter 

2.: 

gSW[cr'" t" ] ij ')' \3 = U~S[crij; (3] + {Jeij [U!jS[crij; (;11] 

+ (.\3. _ 1) ::.!L .11 Il':J _ II Il':\ 

(
A" {)qIIS[a··· (t,,) {)gI(S[fT . ..• (til}) 1 

I) "' J:j \ • • p, {) • 
,'VI\.) p, 

(6.9) 

The components in the mixture art' of equal dianwt('f and ('ach spl1ere only has 

one interaction site. Bonding is only permittE'd betwf'f:'n unlike componf:'nts in the 

mixture, i.e., b('twe('11 site a 011 fompon('nt 1 and site b on component 2 wh(,1l 

the two sites aft> within a distanct> Te' The expression for the contribution to the 
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Helmholtz free energy due to association of Eq. (6.3) thus simplifies to 

(6.10) 

The fractions XII and X6 of molecules of species 1 and 2 not bonded at sites a and 

b, respectively, are given by 

(6.11) 

and 
(6.12) 

where 

(6.13) 

The volume availahle fOT bonding bt"twN'1l two sitf'8 a and b which are positioned 
at a distance rtl from the centre of spher .. s with dialllE'tf'T (1 and have an int('raction 

range rc is giv('n by [.10] 

(6.14) 

+ {rc + 2rd - (1)(22r~ - 5rcrd - 7rd(1- 8r: + rc(1 + (12)}/{72r3). 

(6.15) 

The contact value of the sCJuarc-w('ll distribution function simplifies to 

where gr;S[(1jj; (3] and g!f[t1jj; (;11] ))('(ollle the Carnahan and Starling equation 

[GO, 61] with th(' total and effectivt> packing fractions, rf'spf'ctiv«,ly 

IIS[ ] 1 - 71/2 
9 t1j'l = (1 _ f})3' (6.17) 

and 

{6.18} 

with .,t" = (;11. The paramet('risation for flrll ohtained fOT the pure square-well 

fluid in Ref. [55] is used. 

The tht>rmodynamic properti('s of this mixture used in the determination of phase 

equilibria are obtained from the exprt>ssiolls for the Helmholtz free energy using 

the standard th('rmodynamic r('lations given earlier. In the discussion of the pre-
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diction of phase behaviour obtained using the SAFT-va equation of state for this 

associating system a number of reduc('d variables are used. The strength of the site 

square-well interaction is reducf.'d with respect to the magnitude of the square-wf.'ll 

interaction of the monomeric segments £:,6 = £a,6/£. The reducf.'d temperaturf.'s 

and pressures are defined in terms of the van der Waals parameters a, which is 

given for the square-well potential by a = -4£(,x3 - 1) and b = 2/37r(l3. The pres­

sure is given by p. = pb'lla = pblE and the tempf>rature by T* = kTbla. ThE'se 

valuE'S for the pressure and temperature are also rf>ducf>d with respect to the critical 

pressure and tempt>ratures of the pure componf.'nt square-well monomer, so that 

Pr = P* I P; and Tr = T* IT;. Where the critical values are P; =0.00792563199 

and T; =0.13994210.'). 

The PT proj('ction for th(' binary square-well mixture with a site-site int('faction 

energy of EAB = 1.'5 ohtaint>d using the SAFT· va equation of state is shown in 

Figure 6 . .'5. The vapour pressure curv('s of tht' pure components are rf.'prf.'s('nted by 

the solid curve, hath curv('s lie on tl\l' sallie line due to the symmetry of the mixture 

studied here. Thp dash('d curv ... which originat('s at the vapour-liquid critical 

point of the pure component and moves to high('r prellsures and tempf.'ratures 

rE'presents the gas-liquid critical line. The distinction betw('('n gas and liquid phasf.'s 

is arbitrary at high pr(,SSlIrNI and telllpf'raturf's. In this discussion we lise the tf.'rm 

gas to describe a phase whirh has its origins in the vapour phase of the pure 

componf.'nt. This gas-liquid critical line go('s through a minimum in tf.'lllpf.'rature 

close to the critical point of the pure cOll1pon('nt. This critical line thf.'n movf'S to 

highf.'r prf.'ssures, rf.'achi ng a maximum bf.'fore ('ndi ng at a dou hIe cri tiral poi nt ncp, 
whf.'re it connects with the thrf'f'-pha..,e linfl. The hold curve whirh originatf's at 

high pressurt's is the thr('e-plla.c;e line for tht' mixture, along which two liquid pha."(ls 

and one gas phase co('xist. The thr(l('-phase line l'nds at the double critical point, 

which corresponds to the point at which thrf'e p11a.lit'S simultanf'otlsly vanish. The 
dashed curve which f.'xtt'llds from the ncr to high('r tt'lIlp('ratur('s going through a. 

minimum in pressure, is the liquid-liquid critiralline. This linP. forms the boundary 

of the clos('d-loop rpgion for this mixtur(', for prt>ssures betwf'f'n that of the DCP 

and of the minimulll in the liquid-liquid rriticallinp.. In this r('gioll the systf'1ll is 

s('('n to poss('s two liquid-liquid critical points, the LeST at 10w('r t('mpf'fatur('s 

and the VCST at highf'r tt'mpf'ratur('s. A third critical point is obsf'rved at low('r 

temp('ratures, whf're the gas-liquid critical line is crossed. 

The f.'fff'ct of varying the str('ngth of the site-site int('raction on the phase b('havionr 

of this model system is shown in Figure 6.6. Of'crE'a.liing the association strE'ngth 

from E:,6 =15 to E:,6 =14 shrinks th(' th,. minimulll in the liquid-liquid critical 

line, and hencl' the l'xtl'nt of dos('d-loop immiscibility exhibitE'd by the systE'lll. A 

furth('r decrl'a.c;e of tlu.> magnitude of the int('rartion l'nNgy to £:,6 = 13 leads to the 
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Figure 6.5: Prt'ssure-tt'mpt'rature projection for the binary associating square­
well mixture with a bonding strength of £:.6 = 15 obtained using the SAFT·VR 
equation of statt'. Tht' rf'ducf'd prt'ssurt' P., = p. I P; and reduced temperature 
T., = T· IT; are defint'd in tf'rms of the pure compont'nt values, given in the text. 
The solid curve at low pressures and tt'llIperatures corresponds to the vapour-liquid 
curve of the pure component, whilst the solid curve at high pressures and tem­
peratures corresponds to the three-phase line of the mixture. The dashed curves 
correspond to the critical lines, gas-liquid at low pressures and temperatures, and 
liquid-liquid at high pr£'SSllrt's and tt'mperatures. 
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Figure 6.6: Pressure·temperature projection for the binary associating square· well 
mixture with a rang ... of bonding strengths of £:,6 = 13, 14 and 15 obtained using the 
SAFT· VR equation of statf.', Sf.'e Figure 6.5 for details. The curves are labe]]ed with 
the corresponding value of the site·site interaction energy. Also shown (labe]]ed 
vdw) is the equivalent prediction obtained using the SAFT·JlS equation of state 
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disappearance of the minimum in the liquid-liquid critical line, so that the three­

phase line meets the gas-li<luid and the liquid-liquid critical lines before either 

go through a maximum or minimum in pr('ssure. In this case the system only 

possesses a single critical point at any given pressure or temperature. Decreasing 

the strength of the bonding interaction further, eventually to ZE'ro, leads to the gas­

liquid and liquid-liquid critical linE's bE'coming one continuous curve originating 

from the vapour-liquid critical point of the pure component. Additionally the 

three-phase line curves so that its origins are movf'd to low tf'mpf'raturf's and 

pressures. This corresponds to the situation obRerved for a binary mixture with 

no bonding sites in Ref. [40]. ConvE'rst'ly, increasing the strength of the site-site 

interaction beyond !:.b = 15, leads to the displarf'lnE'nt of the ocr and hf'nce the 

end of the thrf'f'-phasp line and the origin of the liquid-liquid critical line, to hight'r 

temperatures and prf>SSllreS, so that the system only exhibits a single critical point, 

corresponding to the gas-liquid critical line. The PT projl'ction obtaill(>d using the 

SAFT-JlS equation of state as given in HE'f. [40] is also shown in Fig. 6.6, with a 

corresponding rf'd UCE'<1 sitf'-sitt' intf'raction energy of !:." = 13. It is llf'nre possihle 

to conclude that use of the SAFT·VR approach to E'valuate the l1lE'an-attractive 

ent'rgy and its dt'fivativ(>s, as oPI>osf'd to trE'ating the attractive intt'Tactions at 

the van dE'r Waals If>v('l, d(>creas(>s tIl(' r('lative str(,llgth of the reduc('d site·site 

. t' • mterac Ion £4.'" 

The eff('ct of a variation in prf'Ssurf> on the ('xtE'llt of the r1osf'd-Ioop r('gion of 

the binary square-w ... lImixture is ilIuslrat ... d in Figure 6.1, via a fl('rif's of constant 

prE'ssure slict's of the I'T projf'ctioll for a systE'1ll with t:.b = 15. The symmetry 

of the phase diagram about Xl =0.5 is a r('su)t of the symm('try of the model 

system. For a rE'dured pr('ssure of Pr =6.R the systE'1ll is (;('('11 to be miscible at all 

tE'lllpf'TaturE's above Tr =1.1, indicating that we are w('l1 b('low tht' minimum in 

prE'ssure of the Ji(luid-liquid criticallin(>. The dos('d-Ioo)> r('gion apP(lars wh(ln the 
pressure of the systE'1ll is incrE'asf'd ahove that of the minimum of the liquid-liquid 

critical1ine to Pr =8.2, and a further increase in pressure to Pr =9.3 gives rise to 

the appearance of the ga.r;tliqllidtliquid thret>-phast> line. At high('r pr('sstlrE'S of 

Pr =10.4 the thr<>e-phase line lllergps with the Jow tl'lllprrature gas-liquid critical 

lines, so that the syst(,1ll ollly pOSsessf'S a single critical point at th('se prE'ssures. 

The SA FT· V R E'quation of statE' can a1so b(' uSf>d to give information ahou t the 

drgree of association prE'sf'nt in the systE'1ll at any giv('n tE'mperature, via XCI' the 

fraction of molf>cules of compon('nt 1 not bondf'd at site a. An undE'rstanding of 

the mE'chanislll of rJosN1-100p illllllisdhi1ity can he hence ohtain('d by consicl('f. 

ing the intf'TlUoll'cular association ('xhibited by the syst(,lll. The tota1 fraction of 

not-bondf>d molecules are shown a.'I a. function of tE'lIlpf>rature in Figure 6.8, this 

corr('sponds to thf> t(>mperatllrE'-composition slice at prf'ssure l'r =10.9 of Fig. 6.7. 
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8.2,9.3 and 10.4, ohtained using the SAFT-VR equation of state. The pressure of 
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The degree of association is the same in both components so that Xa = Xb, since 

bonding is only permitted between unlike species. Hence, the total fraction of 

molecules bonded in the coexisting liquid phases is represented by a single solid 

line. The extent of association increases rapidly as the temperature of the system 

approaches that of the LeST. This confirms that the low temperature miscibility 

of the system is observed due to the formation of bonds between unlike compo­

nents in the mixture. The total fraction of molecules bonded at low temperatures 

corresponds to the association in the coexisting gas-liquid regions, each of which 

have the same fraction of molecules bonded. The degree of association is greater in 

the gas phase then in the liquid phase since the composition ofthe two components 

in the gas phase are more similar than those in the liquid phase, which favours 

bonding between unlike species. 

In summary, the extent of closed-loop immiscibility as predicted by the SAFT-va 
equation of state for a model system of a binary mixture of square-well monomers 

with no unlike interactions and with a single bonding site per sphere is governed 

by the interplay of several factors. Most importantly, the ability of the system 

to associate at low temperatures via directional interaction sites is found to be 

responsible for the existence of the closed-loop of immiscibility. An increase in 

the relative strength of tIle site-site interaction initially leads to an increa.c;e in 

the temperature range of the closed-loop region. A very large site-site interaction 

results in the system becoming miscible at all temperatures, at the expense of the 

loss of the closed-loop of immiscibility. An increase in pressure similarly leads to 

the initial appearance of the closed-loop region, but a large increase in pressure 

increases the temperature difference between the LCST and the UCST, until the 

LCST merges with the three-phase line, upon which the closed-loop region is lost. 

6.4 Gibbs ensemble Monte Carlo simulation results 

As has been discussed previously, the Gibbs ensemble Monte Carlo technique was 

first introduced in 1987 by Panagiotopoulos [62, 63], and is a highly effective direct 

simulation technique used for the determination of phase equilibria in fluid systems. 

The method discussed in detail in Chapter 3, consists of a simulation performed in 

two distinct regions which are in thermodynamic equilibrium, but not in physical 

contact. Three distinct Monte Carlo moves are performed in order to satisfy 

the conditions of equilibrium: particle displacements within either subsystem, to 

maintain equality of temperature; volume changes of either subsystem, to maintain 

equality of pressure; and particle interchanges between the two subsystems, to 

maintain equality of chemical potential. As a consequence, the energy E;, volume 
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Vi, and composition xi = N/ I Ni of particles of type i in subsystem j vary during 

the course of the simulation. 

We perform GEMC simulations at constant number of particles, pressure and 

temperature (N PT) for the symmetrical square-well mixture with a single off­

centre bonding site per sphere, with interactions defined in the previous section. 

We aim to confirm the theoretical results obtained using the SAFT-VR equation of 

state, where the addition of a bonding site onto the monomer segments is sufficient 

to lead to the appearance of a LeST for the system. Simulations are performed 

in cubic boxes, the particles are initially arranged on a face-centred-cubic (fcc) 

lattice. The usual periodic boundary conditions and minimum image convention 

are used [64]. Initial guesses for the coexisting densities and compositions at each 

pressure and temperature state point are made by using the corresponding SAFT­

VR solutions. The chemical potential is evaluated using the Widom test-particle 

method as adapted for the Gibbs ensemble [65, 66]. One simulation cycle consists 

of N displacements in each box, one volume change for either box, and a specific 

number of particle interchanges. The maximum displacement and the maximum 

volume change are controlled in order to give corresponding acceptance ratios of 

between 30 and 40%, the number of insertions is adjusted so that between 1 and 

3% of particles are interchanged each cycle. We use the particle transfer algorithm 

originally proposed for mixtures by Panagiotopoulos et al. [63]. Simulations 

consisting of systems with N=512, N=1000 and N=1728 particles are performed 

at a series of different coexisting pressures, for different strength of the site-site 

interaction energy. An initial equilibration simulation of 50,000 cycles is performed 

before averaging for between 150,000 and 250,000 cycles. 

The reduced thermodynamic variables, temperature, T" = kT/e, pressure P" = 
p q 3 Ie, and site-site interaction energy £:,b = ea,ble are used in the following 

discussion. It is convenient to reduce the pressure and temperature with respect to 

the critical point of one of the components, such that Tr = T* IT; and Pr = p. I P;, 

where the subscript c denotes the critical value of a variable. We use the critical 

values of T; = 1.219 ± 0.008 and P; = 0.108 ± 0.016 as estimated in Ref. [73] for 
the pure-component square-well system with range A = 1.5. 

The GEMC results obtained for the mixture of square wells are presented in Ta­

bles 6.2 to 6.12 and the corresponding constant pressure temperature-composition 

Tz slices of the coexistence regions are shown in Figures 6.9 to 6.12 and 6.14. 

The pressure of P* = 0.756 of Figure 6.9 is approximately seven times the crit­

ical pressure of the pure square-well system with ..\ = 1.5. The Gibbs ensemble 

simulation data with £:,b = 13 for three system sizes are shown, with a negligible 

system size effect. The region of liquid-liquid immiscibility bound by an UCST at 
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high temperatures is clearly shown, together with low temperature regions of gas­

liquid immiscibility below a three-phase line. The curves represent the SAFT-VR 

prediction for the equivalent model, with three different strengths of the site-site 

interaction energy. For a value of E:,b = 12 the theory predicts immiscibility of the 

system at all temperatures below an USCT, as the site-site interaction is increased 

in to E:,b = 13 the prediction includes regions of low temperature gas-liquid im­

miscibility, and the three-phase line can be observed at a temperature close to the 

critical temperature of the pure component. Increasing the strength of the bonding 

interaction further to £:,b = 14, leads to a complete change in the nature of the 

Tx slice, now the theory predicts a large region of miscibility above two low tem­

perature regions of gas-liquid immiscibility, indicating that increasing the site-site 

interaction energy from e:,b = 13 to E:,b = 14 has resulted in both the formation 

and the loss of a region of closed-loop immiscibility at this pressure. The low­

temperature regions of gas-liquid immiscibility obtained from simulation appear 

at slightly higher temperatures than those predicted by the SAFT-VR equation of 

state for E:,b = 13. 

The equivalent temperature-composition Tx slice for a higher pressure of P* = 
1.08, which is approximately ten times the critical pressure of the pure component, 

is given in Figure 6.10. The simulation results again show a region of liquid-liquid 

immiscibility bounded at high temperatures by an VCST, and low temperature 

regions of gas-liquid immiscibility. The region of liquid-liquid immiscibility is seen 

to be larger than in the lower pressure case of Fig. 6.9, but no closed-loop of 

immiscibility is observed. For a site-site interaction energy of E:,b = 13 the SAFT­

VR approach predicts a region of liquid-liquid immiscibili ty bounded by an VCST 

and small regions oflow temperature gas-liquid immiscibility below the three phase 

line. The SAFT-VR prediction for a site-site interaction energy of E:,b = 14, the 

low temperature, gas-liquid immiscible regions are larger than in the E:,b = 13 case, 

so that the onset of a closed-loop region can be observed. For an association energy 

of E* b = 15 the SAFT -VR equation of state predicts the existence of a small closed-a, 

loop of immiscibility at temperatures between Tr = 1.35 and Tr = 1.45, together 

with low-temperature regions of gas-liquid immiscibility. 

At this stage, one can conclude that increasing the pressure from P* = 0.756 to 

P* = 1.08 for a system with an interaction energy of E: b = 13, does not bring about , 
a sufficient change in the phase diagram of the system, in order for a closed-loop of 

immiscibility to be ohserved by GEMC simulation. An increase in strength of the 

bonding interaction, together with a slight increase in pressure, is shown to give 

more pleasing results. The temperature-composition slice for a pressure of P* = 
1.28 is shown in Figure 6.11. Here, the Gibbs ensemble simulation data is obtained 

for a mixture with a site-site interaction energy of E:,b = 14.5, for two system 
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Figure 6.11: Temperature-composition slice of the coexistence region for the sym­
metrical square-well mixture at a reduced pressure of p. = p q 3 Ie =1.28 with a 
bonding interaction of e:,b = 14.,1i. The circles correspond to the GEMC data for 
a system of N = 1 000 particles, and the squares to a system of N = 1728 particles. 
The continuous curve corresponds to the Wegner expansion of Eq. (6.30) which is 
fitted to the simulation data and includes a first correction to scaling. 
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sizes. The region of closed-loop immiscibility can be clearly observed, bounded 

at T* ~ 1.56 by a LCST and at T* ~ 1.92 by an UCST. No low-temperature 

regions of gas-liquid immiscibility were observed for this system. The curve fitted 

through the GEMC results is obtained using a Wegner expansion, using a method 

which is described later. As a means of monitoring the association present in the 

system, the fraction of molecules bonded is calculated during the simulation. The 

extent of association as a function of temperature for the system at a pressure 

of P* = 1.28 with e:,b = 14.5 is shown in Fig. 6.12. The association is again 

seen to increase dramatically as the temperature of the system approaches that of 

the LeST (cf. Fig. 6.8), indicating that association of the system is responsible 

for the low-temperature miscibility. The SAFT-VR predictions at a pressure of 

P* = 1.28 with site-site interactions of E:,b = 14.5 and e:,b = 15 are shown in 

Fig 6.13. For E;,b = 14 .. 5 the theory predicts a region of liquid-liquid immiscibility 

bounded by an UCST and regions of low-temperature gas-liquid immiscibility for 

certain compositions at temperatures below the three-phase line. Increasing the 

strength of the site-site interaction to E; b = 15 leads to the prediction of a closed-, 
loop of immiscibility, which has upper and lower boundaries which are similar to 

those obtained USitlg Gibbs ensemble simulation. It is encouraging to observe the 

existence of a closed-loop of imlllisdbility for this system with a single association 

site, both by simulation and by using the SAFT-va equation of state. 

A temperature-composition slice obtained at a higher pressure of P*= 1.48 by 

Gibbs ensemble simulation is shown in Figure 6.14. As for the case of the P*=1.28 

slice, the strength of the site-site interaction is fixed at E:.b = 14.5, and the region 

of closed-loop immiscibility is clearly observed, with no low-temperature immis­

cible regions. For this higher pressure case the closed loop is bounded at higher 

temperatures by an UCST at T* ~2.07 and at low temperatures by a LeST at 

T* ~1.47. This indicates that the extent of the closed-loop region has increased 

from that ofthe P* = 1.28 state, which is in line with the theoretical prediction of 

the effect of pressure on the closed-loop. The degree of association at this higher 

pressure is shown, as a function of temperature in Figure 6.15, the extent of as­

sociation is again seen to increase rapidly at temperatures close to the LeST. 

The prediction of SAFT-VR for two different interaction energies e:,b = 14.5 and 

E:,b = 15 is shown in Figure 6.16, where the simulation and theoretical results both 

predict regions of misdhility for temperatures below the LeST. 

These GEMC simulation results confirm the theoretical predictions that the extent 

of closed-loop behaviour has a critical dependency on the pressure, temperature, 

composition and the strength of the site-site interaction of the model system. 

The existence of closed regions of illlmiscibility for simulations performed for the 

model with a spedfic cllOice of interaction energy confirms that the existence of 
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Figure 6.12: Total fraction of molecules bonded in the symmetrical binary mix­
ture as a function of temperature, obtained using GEMC simulation at a reduced 
pressure of p. = p{13 It = 1.28 with a bonding interaction of e:.b = 14.5. The 
dashed curve corresponds to the Wegner expansion of Eq. (6.30) which is fitted to 
the simulation data and includes a first correction to scaling. 
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for details. 
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bonding interaction of E:.6 = 14.5. The squares correspond to the GEMC data for 
a system of N = 1728 particles. The continuous curve corresponds to the Wegner 
expansion of Eq. (6.:10) which is fitted to the simulation data and includes a first 
correction to scaling. 
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a low temperature region of miscibility is a direct result of the inclusion of the 

association sites in the potential model ofthe system. It is gratifying to observe the 

parallels which exist between the results obtained using the SAFT-VR approach 

and the Gibbs ensemble simulation technique, especially in their ability to predict 

the extent of the region of immiscibility for the model examined. By monitoring 

the effect of association in the model system, both using the SAFT-VR approach 

and by computer simulation methods the low-temperature miscibility of the system 
is confirmed to be a direct result of the formation of directional bonds between 

unlike species. Such bonds can be considered to be representative of the hydrogen 

bonds which form between components in a real fluid mixture. 

Table 6.2: Vapour-liquid coexistence data obtained from N PT Gibbs ensemble 
Monte Carlo simulations for a mixture of square-well monomers with a range A = 
1.5, and a single interaction site ofreduced depth €:.b/ € = 13. The fixed variables 
during the simulation are the number of particles N, the reduced pressure P* = 
p(J3/e = 0.756 and the reduced temperature T* = kT/e. The packing fractions 1] 

and mole fractions X2 in the coexisting vapour and liquid phases are labeled v and 
I, respectively; the uncertainties correspond to one standard deviation. 

T* N '7v 1}t X2,v X2,I 

1.20 1000 0.335±0.006 0.316±0.005 0.932±0.O30 0.615±0.03l 
1.25 1000 0.331±0.006 0.3l3±0.005 0.932±0.025 0.643±0.024 
1.30 1000 0.316±0.010 0.295±0.005 0.912±0.047 0.6.58±O.047 
1.36 1000 0.299±0.OO6 O.272±O.OO7 O.928±O.022 0.611±O.O28 

1.332 1728 O.308±0.O06 O.283±0.OO.) 0.929±0.O22 O.617±O.O26 
1.34 1728 0.308±0.005 0.283±0.005 0.941±O.016 0.598±O.021 

1.3.5 1728 O.307±O.O05 O.281±O.OO8 O.950±0.014 0.592±0.015 

1.29 512 O.317±O.008 0.287±O.011 O.929±0.037 0.607±O.051 

1.27 512 0.32:3±0.008 0.296±0.009 O.938±0.031 O.612±O.O35 
1.2.5 512 O.322±0.008 O.295±O.OO9 O.939±O.O23 O.631±O.O27 

6.5 Critical behaviour and finite-size effects 

The existence of both an upper and a lower critical solution temperature in this 

particular system allows the study of the differences or the similarities between the 

two critical regions. The inadequacy of mean-field equations of state such as the 

SAFT-VR approach in the description of the critical region has been discussed pre­

viously. A means of obtaining critical point parameters from computer simulation 

data is an alternative approach which gives more satisfactory results. However, 
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Table 6.3: Liquid-liquid coexistence data obtained from N PT Gibbs ensemble 
Monte Carlo simulations for a mixture of square-well monomers with a single 
interaction site of reduced depth t:,b/t = 13, at a reduced pressure of P* = 
p(!3 / t = 0.756 for N = 1728 particles. The packing fractions 71 and mole fractions 
X2 in the coexisting liquid phases are labeled 11 and h. See Table 6.2 for details. 

T* % 7112 X2,Il x2h 

1.37 O.276±O.OO9 O.271±0.O07 0.875±0.035 0.139±0.O28 
1.375 O.272±O.008 0.273±0.009 O.849±0.045 0.146±0.048 
1.38 O.263±O.OO5 0.265±O.006 0.831±0.016 0.146±0.021 
1.39 O.278±O.OO9 0.272±0.OO6 0.915±0.O22 0.111±O.017 
1.40 0.269±0.OO8 O.271±0.OO8 O.872±0.033 0.119±O.033 
1.42 0.274±0.005 0.275±0.O06 0.911±0.014 0.093±0.014 
1.44 0.268±0.005 0.270±0.OO7 0.895±0.021 O.097±O.021 
1.46 0.275±0.OO4 O.276±0.005 0.925±0.014 0.071±0.013 
1.48 0.264±0.006 0.262±0.005 0.916±O.016 0.093±O.014 
1.50 0.270±0.005 0.262±0.004 0.93l±0.015 0.092±O.014 
1.52 0.267±O.004 0.267±0.004 0.928±0.011 0.073±0.011 
1.54 0.262±0.003 0.260±0.O04 O.9I9±0.014 0.090±O.OI6 
1 . .56 0.250±0.004 0.248±0.004 0.905±0.017 0.103±O.018 
1 .. ')8 0.246±0.003 0.241 ±0.003 0.900±0.OI4 0.123±0.OI4 
1.60 0.238±0.004 0.235±0.004 0.880±0.OI9 0.133±O.019 
1.61 0.246±0.003 0.24l±0.003 0.906±0.O13 0.120±0.014 

Table 6.4: Vapour-liquid coexistence data obtained from N PT Gibbs ensemble 
Monte Carlo simulations for a mixture of square-well monomers with a single 
interaction site of reduced depth t:,b/t = 13, at a reduced pressure of P* = 
p(!3 / t = 1.08 for N = 1000 particles. See Table 6.2 for details. 

T* 7lv 771 X2,v X2,' 

1.465 0.313±0.OO5 O.284±0.006 0.96.5±0.011 0.573±0.016 
1.425 0.320±O.OO5 0.29l±0.006 0.970±0.009 0.564±0.015 
1.400 0.319±0.005 0.290±0.007 0.964±0.014 0.570±0.023 
1.360 0.326±0.OO5 0.303±0.005 O.964±0.015 0.58l±0.019 
1.332 0.3:35±O.005 0.307±0.006 O.972±0.012 0.589±0.019 
1.300 0.3:J5±O.006 0.3l3±0.00S 0.965±0.O12 O.589±0.016 
1.250 0.339±O.OO5 0.3l8±0.OO5 O.96l±0.O13 O.620±0.O13 
1.190 0.359±O.OO4 0.343±O.005 0.980±0.O06 0.587±0.009 
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Table 6.5: Liquid-liquid coexistence data obtained from N PT Gibbs ensemble 
Monte Carlo simulations for a mixture of square-well monomers with a single 
interaction site of reduced depth e;,ble = 13, at a reduced pressure of P* = 
p(13 Ie = 1.08 for N =512 particles. See Table 6.2 for details. 

T* 171. 1712 X2,1. x2h 

1.35 0.33l±0.009 0.325±0.008 0.973±0.013 0.038±0.017 
1.40 0.3ll±0.00S 0.326±0.OO8 0.938±O.021 0.022±0.0 11 
1.45 0.3l3±0.00S 0.312±0.OO8 O.971±O.013 0.033±0.012 
1.50 O.294±0.007 0.307±0.O09 O.948±0.015 0.026±0.OI3 
1.55 O.303±O.OO8 O.295±O.OO8 0.973±0.011 0.045±0.015 
1.60 0.288±0.O09 0.285±0.009 0.958±0.0 17 O.047±0.O18 
1.65 0.28l±0.010 0.272±0.011 O.956±0.019 0.O65±0.030 
1.70 O.258±O.O12 0.269±O.008 O.906±0.042 0.O54±O.018 
1.80 0.242±0.010 O.242±0.OO9 0.891±0.034 0.114±0.033 
1.81 0.249±0.0 11 0.2:38±0.O08 0.916±0.031 0.135±0.030 

Table 6.6: Liquid-liquid coexistence data obtained from N PT Gibbs ensemble 
Monte Carlo simulations for a mixture of square-well monomers with a single 
interaction site of reduced depth e:,ble = 13, at a reduced pressure of P* = 
p(13 Ie = 1.08 for N = 1728 particles. See Table 6.2 for details. 

T* 1/1. 1712 X2,1. X2,1'l 

1.50 0.298±O.Oll O.297±0.O08 O.959±0.OI5 0.044±0.012 
1.75 0.257±0.O04 0.251 ±O.O03 O.926±0.OI2 O.094±0.013 
1.83 0.242±0.004 0.241±O.OO5 O.885±O.O16 O.120±0.019 

1.835 O.24:3±O.OO5 0.240±0.O04 0.889±0.019 O.128±0.019 
1.84 0.2:38±O.005 0.242±O.007 O.862±0.O24 O.114±O.O27 

1.845 0.23!>±0.O05 O.2:36±O.OO4 0.881±O.019 O.140±O.O19 
1.85 O.23:1±O.O05 O.233±0.005 O.853±0.O29 O.147±0.O25 

1.855 0.2:11 ±0.003 O.232±O.OO4 O.840±0.024 O.152±O.O23 
1.86 O.2:l:1±0.O05 O.232±O.O05 O.851±O.O23 O.151±O.O28 
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Table 6.7: Liquid-liquid coexistence data obtained from N PT Gibbs ensemble 
Monte Carlo simulations for a mixture of square-well monomers with a single 
interaction site of reduced depth E: ble = 14.5, at a reduced pressure of P* = , 
p(T3 Ie = 1.28 for N = 1000 particles. See Table 6.2 for details. 

T* 1llt '112 X2,/l x2h 

1.64 O.284±0.OO6 O.279±O.006 O.860±O.032 0.177±0.031 
1.65 O.292±O.OO7 O.285±0.OO7 O.886±0.O26 O.176±0.O36 
1.68 0.282±0.007 0.277±0.O06 O.864±0.027 0.166±0.025 
1.70 0.275±O.007 O.273±O.O07 O.859±0.032 0.152±0.031 
1.72 0.272±0.007 O.274±0.01O 0.852±O.O32 O.131±O.O41 
1.74 0.271±0.005 O.267±0.005 0.878±0.024 0.150±O.O24 
1.75 0.266±0.O04 0.266±0.004 0.849±0.027 0.154±0.027 
1.76 0.264±0.006 O.261±0.005 O.850±O.O33 O.170±0.O29 
1.78 0.262±0.007 0.257±0.OO6 0.854±0.032 0.193±0.030 
1.80 0.262±0.O05 0.260±0.OO4 0.860±O.028 0.154±O.029 

Table 6.8: Reduced energies per segment E* = Ele and chemical potentials J.Lt 
of component i in subsystem j obtained from N PT Gibbs ensemble Monte Carlo 
simulations for a mixture of square-well monomers with a single interaction site 
of reduced depth e* ble = 14.5, at a reduced pressure of P* = p(T3 Ie = 1.28 for a, 
N = 1000 particles. See Table 6.7 for details. 

T* E/~ E~ J1.1 J.L~ J.L~ J.L~ 

1.64 -4.602±0.154 -4.649±O.155 -0.869 -0.833 -0.867 -0.850 
1.65 -4.621±O.148 -4.694±O.148 -0.759 -0.741 -0.753 -0.759 
1.68 -4.487 ±0.173 -4.500±0.171 -0.793 -0.759 -0.781 -0.770 
1.70 -4.:J49±0.156 -4.347±O.169 -0.811 -0.787 -0.827 -0.803 
1.72 -4.267±O.150 -4.257±O.149 -0.761 -0.771 -0.774 -0.800 
1.74 -4.148±O.135 -4.148±0.135 -0.793 -0.764 -0.783 -0.759 
1.75 -4.136±0.148 -4.146±0.138 -0.787 -0.783 -0.770 -0.770 
1.76 -4.06:J±O.1,54 -4.054±0.151 -0.799 -0.795 -0.798 -0.797 
1.78 -3.989±0.151 -3.992±0 .150 -0.779 -0.761 -0.774 -0.764 
1.80 -3.9:J4±O.l37 -3.926±O.144 -0.713 -0.718 -0.718 -0.729 
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Table 6.9: Liquid-liquid coexistence data obtained from N PT Gibbs ensemble 
Monte Carlo simulations for a mixture of square-well monomers with a single 
interaction site of reduced depth e:.b/e = 14.5, at a reduced pressure of P* = 
p(13 / e = 1.28 for N = 1728 particles. See Table 6.2 for details. 

T* % T'Jl l X2.1! X2.l2 

1.58 0.289±0.004 0.289±0.004 0.810±0.021 0.195±0.020 
1.59 0.289±0.004 0.290±0.003 0.814±O.O33 O.185±0.035 
1.60 0.291±0.00:3 0.292±0.004 0.835±0.026 0.159±0.028 
1.61 0.292±0.00:3 0.292±0.00:l 0.860±0.017 0.136±0.017 
1.62 0.289±0.004 0.290±0.OO4 0.862±O.020 0.140±0.023 
1.63 O.290±0.O05 0.290±0.OO5 0.864±0.022 0.135±0.027 
1.81 0.254±0.004 0.254±0.004 0.827±0.029 0.177±0.029 
1.82 0.256±0.003 0.255±0.003 0.833±0.028 0.178±0.030 
1.83 0.254±0.003 0.255±0.003 0.816±0.021 0.168±0.021 
1.84 0.254±0.00:1 0.254±0.003 0.824±0.020 0.169±0.021 
1.85 0.251 ±0.004 0.249±0.004 0.813±0.029 0.202±0.028 
1.86 0.247±0.005 O.247±0.005 0.796±0.038 0.214±0.037 

Table 6.10: Reduced energies per segment E* = E/e and chemical potentials J.l1 
of component i in subsystem j obtained from N PT Gibbs ensemble Monte Carlo 
simulations for a mixture of square-well monomers with a single interaction site 
of reduced depth t:.b/t = 14 . .'5, at a reduced pressure of P* = p(13/e = 1.28 for 
N = 1000 particles. See Tahle 6.9 for details. 

T* E* 11 E~ J.l~ J.l2 J.l~ J.l~ 

1 .. ')8 -4.962±O.122 -5.020±0.128 -0.870 -0.898 -0.912 -0.922 
1 .. 59 -4.93(HO.131 -4.948±0.144 -0.881 -0.873 -0.879 -0.874 
1.60 -4.866±0.131 -4.863±0.136 -0.872 -0.819 -0.850 -0.863 
1.61 -4.777±0.110 -4.747±0.116 -0.836 -0.797 -0.830 -0.812 
1.62 -4.G82±0.096 -4.739±0.112 -0.852 -0.842 -0.823 -0.825 
1.63 -4.676±0.114 -4.694±0.106 -0.805 -0.812 -0.793 -9.828 
1.81 -3.826±0.124 -3.845±0.117 -0.802 -0.780 -0.754 -0.771 
1.82 -3.843±0.120 -3.826±0.112 -0.718 -0.708 -0.723 -0.756 
1.83 -3.811 ±0.102 -3.80:1±0.099 -0.720 -0.712 -0.712 -0.698 
1.84 -3.772±0.105 -3. 762±0.1 08 -0.731 -0.682 -0.710 -0.718 
1.8.'5 -3.720±0.118 -3.696±0.107 -0.711 -0.706 -0.707 -0.715 
1.86 -3.647±0.126 -3.658±0.110 -0.708 -0.713 -0.699 -0.695 
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Table 6.11: Liquid-liquid coexistence data obtained from N PT Gibbs ensemble 
Monte Carlo simulations for a mixture of square-well monomers with a single 
interaction site of reduced depth t:.b/t = 14.5, at a reduced pressure of p. = 
Pu3 / t = 1.48 for N = 1728 particles. See Table 6.2 for details. 

r* 1]11 1]12 X2,lt X2./~ 

1.54 0.:107±0.003 0.305±0.OO:) 0.808±O.027 0.206±0.025 
1.555 0.:112±0.OO3 0.310±0.003 0.870±0.015 0.143±0.015 
1.56 0.:106±0.004 0.305±0.O04 0.863±0.018 0.145±0.019 
1.57 0.:102±0.003 0.30:3±0.004 0.832±0.021 O.169±0.019 
1.58 0.299±0.003 0.300±0.004 O.851±0.018 O.146±0.017 
1.59 0.295±0.004 0.295±0.OO4 O.822±0.025 O.177±0.O26 
1.61 0.:301 ±0.005 0.300±0.O04 0.877±O.020 O.136±O.O20 
1.63 0.295±0.006 0.295±0.OO6 O.878±O.014 O.124±O.O15 
1.65 O.292±0.OO:) O.294±O.O03 0.882±0.O14 O.110±O.O14 
1.67 0.296±0.007 0.292±0.O05 0.905±0.016 O.125±0.015 
1.70 0.292±0.OO5 0.289±0.004 0.911±0.017 O.122±0.O17 
1.73 0.287±0.004 0.282±0.00:3 0.909±0.014 0.113±O.015 
1.75 0.286±O.004 0.284±0.004 0.906±O.014 0.108±O.O16 
1.77 O.282±O.OO4 O.279±O.OO3 O.901±0.017 O.119±O.O16 
1.79 0.280±0.004 O.280±0.004 O.895±0.015 0.103±O.O14 
1.81 0.268±O.O04 0.268±O.004 0.869±0.O18 0.129±O.O19 
1.8:3 0.264±0.OO5 0.265±O.O04 O.856±0.O24 O.137±0.O23 
1.85 O.271±O.OO5 0.265±O.OO4 O.889±0.O24 O.146±0.O20 
1.87 O.272±O.OO4 0.268±O.O04 O.896±0.O16 O.131±O.OI6 
1.88 0.26!)±O.OO4 O.264±O.OO4 O.891±O.O17 O.145±O.O19 
1.89 0.2G2±0.OO4 O.258±0.O03 O.867±0.023 0.163±0.021 
1.90 O.26:3±O.OO:1 0.261 ±O.OO:) O.871±O.O19 O.141±O.O20 
1.91 O.2GO±O.OO4 O.259±O.OO4 O.865±O.O19 O.145±O.OI9 
1.92 O.255±O.OO5 O.252±O.OO3 0.845±O.O23 O.187±0.022 
1.93 0.256±O.OO4 0.254±0.O04 O.844±0.025 O.172±0.022 
1.94 0.250±O.OO4 O.249±0.O04 O.818±0.032 0.193±0.O30 
1.95 0.247±O.OO3 0.248±O.OO:3 O.819±O.O27 O.206±O.O26 
1.96 O.252±O.OO3 0.251 ±0.O04 0.833±0.O23 O.173±O.O24 
1.97 0.250±O.OO4 0.248±0.O04 O.8l9±0.O28 O.202±O.O28 
1.98 0.248±0.OO4 0.246±0.004 0.811±0.031 0.210±O.030 
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Table 6.12: Reduced energies per segment E· = E/c and chemical potentials J-lt 
of component i in subsystem j obtained from N PT Gibbs ensemble Monte Carlo 
simulations for a mixture of square-well monomers with a single interaction site 
of reduced depth C;,b/C = 14.5, at a reduced pressure of p. = p(13/e = 1.28 for 
N =1000 particles. See Table 6.11 for details. 

T· E~ E~ J-li J-l2 J-lt J-l~ 

1.54 -5.363±0.122 -5.365±0.142 -0.715 -0.810 -0.736 -0.800 
1.555 -5.111±0.101 -5.143±0.106 -0.835 -0.6.54 -0.721 -0.649 
1 .. 56 -5.04:l±0.108 -5.076±0.102 -0.799 -0.758 -0.801 -0.750 
1.57 -5.112±0.118 -S.140±0.122 -0.806 -0.783 -0.765 -0.718 
1.58 -4.972±0.117 -4.971±0.118 -0.803 -0.805 -0.787 -0.813 
1.59 -5.015±0.132 -.5.014±0.130 -0.821 -0.794 -0.830 -0.819 
1.61 -4.841±0.128 -4.881±0.122 -0.679 -0.695 -0.710 -0.705 
1.63 -4. 706±0.1 07 -4.716±0.12:l -0.751 -0.737 -0.721 -0.763 
1.65 -4.612±0.109 -4.637±0.102 -0.721 -0.734 -0.694 -0.704 
1.67 -4.556±0.10:1 -4.627±0.094 -0.668 -0.611 -0.672 -0.607 
1.70 -4.437±0.lOl -4.507±0.112 -0.621 -0.599 -0.624 -0.594 
1.73 -4.3:14±0.091 -4.300±0.089 -0.675 -0.609 -0.633 -0.631 
1.75 -4.297±0.O91 -4.306±0.101 -0 . .556 -0.556 -0.568 -0.555 
1.77 -4.216±O.101 -4.22:1±0.1 0 1 -0.610 -0.561 -0.581 -0.571 
1.79 -4.166±0.094 -4.156±0.120 -0.595 -0.548 -0.550 -0.5,59 
1.81 -3.989±0.101 -3.987±O.106 -0.623 -0.634 -0.628 -0.610 
1.83 -3.9HHO.097 -3.929±0.104 -0.635 -0.618 -0.610 -0.640 
1.85 -3.95:1±0.109 -3.870±O.107 -0.560 -0.536 -0.578 -0.545 
1.87 -3.925±0.105 -3.898±0.100 -0.481 -0.470 -0.481 -0.450 
1.88 -3.854±0.OO6 -3.825±0.109 -0.496 -0.488 -0.505 -0.474 
1.89 -3.77 4±0.099 -3.731±0.107 -0.531 -0.528 -0.559 -0.533 
1.90 -3.74:3±0.09:1 -3.729±0.102 -0 . .'519 -0.508 -0.512 -0.518 
1.91 -3.69:3±0.102 -3.684±0.109 -0 .. 525 -0.516 -0.522 -0.502 
1.92 -3.613±0.110 -3.574±0.103 -0.565 -0.548 -0.550 -0.556 
1.93 -3.622±0.104 -3.S63±0.104 -0.513 -0.S13 -0.531 -0.507 
1.94 -3.509±0.120 -3.484±0.104 -0.545 -0.545 -0.541 -0.544 
1.95 -3.41O±O.098 -3.:39:3±0.100 -0.565 -0.563 -0.560 -0.573 
1.96 -3.467±0.09:1 -3.4 76±0.112 -0.494 -0.510 -0.490 -0.489 
1.97 -3.467±0.104 -3.424±0.101 -0.483 -0.492 -0.497 -0.483 
1.98 -3.397 ±0.109 -3.366±0.117 -0.504 -0.491 -0.496 -0.499 
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it is important to understand the differences between the coexistence and critical 

regions before such an analysis can be performed. In this section we give a detailed 

description of the nature of the critical region in fluids. Two procedures which can 

be used to obtain accurate estimates for the critical parameters of model systems 

using computer simulation are discused in subsequent sections. 

It is known from statistical mechanics that a true phase transition, that is, a 

singularity in the free energy of a system, can only occur in the thermodynamic 

limit L - 00, where L is the linear system size [67]. The free energy surface of 

a finite-sized system is regular, it has no singularities. Hence a phase transition 

in a finite system is smeared or rounded over a particular temperature region, 

the centre of which corresponds to the critical temperature of the finite system, 

Te(N). This temperature is shifted from the critical temperature of the infinite 

system, Tc(oo). Various critical exponents such as~, the shift exponent and fJ, the 

rounding exponent, control the dependence of the critical region on the system size 

N, whilst other exponents control the the size dependence of critical properties. 

In finite fluid systems the order parameter ~x, which can be given in terms of 

either density or composition, is defined 

~X = Xpha6tl - X phaae2. (6.19) 

In the infinite system limit ~x vanishes at the critical point, but for finite system 

it obeys the scaling relationship [68] 

(6.20) 

which is controlled by the critical exponents f3 and 1/. Finite-size effects are impor­

tant in experimental systems, which are homogeneous only for finite-sized regions, 

and in computer simulation studies, where small system sizes are used to obtain 

the thermodynamic properties of model systems. 

In order to understand the nature of the critical region, we must introduce the 

correlation length (a of a specific property a. This property a is a well defined 

function of the positions rj and the momenta Pi of all the i particles, such as an 

energy per particle, and is intensive, that is, does not scale with system size. This 

correlation length is characteristic of the critical point and is defined [69] 

( = roo d < 8a(O)8a(r) > 
a Jo r < Oa2 > ' (6.21) 

where < 8a(0)Ua(r) > is the spatial correlation function of the property a. This 

correlation function becomes < Va2 > for an infinitesimally small system, i.e. 

T = O. As T increases to infinity the correlation function decays to zero since 
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< Ba(O) > and < Da(r) > become uncorrelated, so that < Ba(O)8a(r) >-< 
Ba(O) >< Ba(r) >. Away from the critical point the correlation length ((I is small 

(only a few molecular units in magnitude). In order to ensure good statistical 

sampling, the simulation box size L should be larger than ((I for all a properties 

studied in the simulation. The continuous nature of the phase transition which 

occurs in fluids can be characterised by the divergence ofthe correlation length and 

by the increase of the order parameter to macroscopic dimensions. This divergence 

can be used as a means of signaling the approach to criticality of a specific fluid 

system. In the vicinity of the critical point the correlation length may hence exceed 

the simulation box length, resulting in a shift and a rounding of the singularities 

and the discontinuities which characterise critical behaviour in the thermodynamic 

limit [70, 69], which in turn lead to finite-size effects. The shift in the phase 

transition caused by finite-sized simulation cells is a result of the correlation length 

((I only having to reach a value of L in finite systems, to reach critical behaviour, 

rather than its divergent value in infinite systems. The rounding of the phase 

transition is caused by the partition function of a finite system being analytic, 

whereas in the limit L - 00 it has the singularities which lead to discontinuous or 

divergent properties [69]. 

The increase of the correlation length beyond the linear dimensions of the simula­

tion box, leads to the critical point of a finite sized system Te(N) usually being an 

overestimation of the infinite volume critical point Te( 00). The difference between 

Te(N) and Te( 00) as N - 00 is given by [68] 

(6.22) 

where d is the spatial dimensionality of the system and v is the correlation length 

critical exponent. 

Much theoretical interest lies in the accurate determination of the infinite system­

size critical point, as a result of the universal nature of fluids precisely at that 

temperature. The most important of the theoretical studies in this area are finite­

size scaling (FSS) techniques [67]. Such techniques have been developed in order 

to give an understanding of the relationship between properties obtained for finite 

systems and their counterparts in the thermodynamic limit of L - 00. Defore 

presenting the details of such methods we examine the finite-size dependence of 

simulations performed in the Gibbs ensemble. We also illustrate how the GEMC 

simulation data for the closed-loop coexistence regions presented in the previous 

section can be extrapolated to give initial estimates for the critical parameters 

of the system. The results obtained are subsequently compared with equivalent 

results obtained using FSS methods. 
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6.6 Finite-size effects in the Gibbs ensemble 

The large density fluctuations which appear as the critical point is approached 

prevent the direct study of the critical region using conventional simulation tech­

niques. Hence, simulations performed in standard ensembles such as the canonical 

or the isothermal-isobaric ensembles, give estimates for the critical point of a par­

ticular system which are an overestimate of the infinite system critical temperature, 

Te( (0). Conversely, for the Gibbs ensemble it was initially proposed, via a study 

of the surface contributions to the free energy in Ref. [71] that values for the criti­

cal point could be obtained which would slightly underestimate Te( (0). The work 

of Ref. [71] illustrates that close to but below Te(N) no coexistence is observed 

in the Gibbs ensemble. At temperatures well below Te(N) the densities of the 

individual phases in the Gibbs ensemble are obtained by sampling the individual 

subsystem densities at regular intervals. Closer to Te(N), the subsystems may 

continuously cllange identity from being rich in one of the coexisting densities (or 

compositions) to the other. lIenee, in order to obtain an estimate for the density 

in one of the two phases it is necessary to construct a probability distribution for 

the observed order parameter in a particular subsystem, which samples the density 

in both subsystems. This distribution function is not affected when the identity 

of the subsystems is interchanged. At low temperatures the surface tension of the 

system is high so that the two phases present will not tend to coexist within the 

same subsystem. This results in a density distribution function for tile overall sys­

tem which has two sharp peaks, representing each of the coexisting phases. As the 

temperature of the system increases, the surface tension decreases and becomes 

similar in magnitude to the enthalpy of formation of the interface [72]. This leads 

to the formation of a third peak on the density distribution function which exists 

at a density corresponding to the average overall density of the system. A further 

increase in temperature leads to the dominance of the entropic contribution, so 

that the central, average density, peak becomes more pronounced. This leads to 

the disappearance of the two individual phase density peaks in the probability dis­

tribution at temperatures close to, but below Te(N). The system hence appears 

to have undergone a phase transition at a temperature below the critical temper­

ature of the finite system. These theoretical findings are confirmed by simulation 

studies of the Lennard-Jones fluid [71]. However, the study of finite-size effects in 

the Gibbs ensemhle rE'portE'd in Ref. [68] indicate that no such third central peak 

is observed in the probability distribution function for the 2D lattice gas model. 

In this case, the douhle peakE'd structure of the probability distribution function 

merges directly into a single }>E'ak at the average system density as the tempera­

ture of the system approaches Te{N). It is shown in Ref. [68] that for any model 

system, providing that the linear size of the simulation cell, L, is greater than the 

correlation function of the density fluctuations (a, the height of the third peak, if 
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it occurs, is exponentially smaller than the height of the two peaks corresponding 

to the coexisting phases. Additionally, they indicate that in order to study the 

density probability distribution function close to the critical temperature, when 

L ~ (0' the finite-size rounding of the interfacial free energy must be accounted 

for, a fact which was ignored in the analysis of [71]. It is also important to note 

that finite-size effects in lattice models are significantly greater than those observed 

for continuum models, such as the Lennard-Jones fluid, hence they may be more 

difficult to detect in the latter [72]. 

Numerous studies of the finite-size dependence of the Gibbs ensemble exist which 

report small or negligible finite-size effects; examples include studies of three­

dimensional systems interacting via the square-well potential [73, 54] and [74] 

and via the Lennard-Jones potential [62, 71]. Two studies which are a source of 

particular interest in this area are the examination of the lattice gas model in 2-D 

presented in Ref. [68] and that of the symmetrical square-well mixture with no 

association sites given in Ref. [53]. In the work of Ref. [68] a critical tempera­

ture for a finite system of a 10 x 10 lattice is reported which is 20% greater then 

the known infinite system critical temperature. However, the simulations reported 

in Ref. [68] are performed in the so-called 'restricted' Gibbs ensemble, where no 

volume exchanges between the two subsystems occur, and the authors concede 

that use of the 'restricted' Gibbs ensemhle for simulation of real fluids could lead 

to "a behaviour rather different from the full Gibbs ensemble". Large finite size 

effects for both the two- and the three-dimensional systems are also reported for 

the square-well mixture in Ref. [53]. In this case simulations are performed in the 

'restricted' Gibbs ensemble at constant NVT, so that the density of the system re­

mains constant. The estimated critical temperatures of the finite systems studied 

are all significantly greater than the estimated infinite-volume critical temperature 

for the square-well system, even for systems of greater than N = 1000 particles. 

It is noted in Ref. [54] that the suppression of volume changes (allowed due to 

the system's symmetry) in the version of the Gibbs ensemble used in the work of 

Ref. [53] is responsible for this large finite size effect. Since the simulations are 

performed at constant density, the additional constraint of not performing any vol­

ume changes leads to the suppression of both the density and volume fluctuations 

in the work of Ref. [.'):3]. Such fluctuations are known to influence the properties 

of a system as the critical point is approached. By means of illustrating that the 

lack of volume change steps does not affect the results of Ref. [53], a system of 

N = 3200 particles in 2-D is simulated in the 'full' Gibbs ensemble and no signifi­

cant difference is observed between the results and those obtained when no volume 

changes are performed. This is not surprising due to the large system size studied, 

the difference between the two sets of results is expected to increase as the system 

size decreases [54]. A similar system size dependence is observed in the canonical 
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(NVT) ensemble where the system volume is kept constant, lending further evi­

dence to support the idea that the absence of volume fluctuations in simulations 

performed at constant density, leads to a large finite size effect. Other results in 

Ref. [53], for the pure Lennard-Jones fluid in 3-D, where simulations are performed 

in the 'full' Gibbs ensemble (where volume changes are performed), show little or 

no system size dependence, which is in agreement with the studies of Refs. [62] and 

[71]. However, a recent study [74] indicates that the system-size effect observed 

in Ref. [.53] is merely a result of the means by which the equilibrium compositions 

are defined. This point will be disussed in greater detail later. 

Generally, finite size effects in the Gibbs ensemble are considered to be negligible in 

regions away from the critical point, so that simulation data from these regions can 

be used as experimental data and lead to an estimate of Te(N) via extrapolation 

of a Wegner expansion which includes scaling corrections. This method has been 

used successfully to predict the critical parameters of the pure Lennard-Jones 

fluid [75], the pure square-well fluid [7:3], and also for the square-well mixture of 

Ref. [.54]. Before such a fitting can be performed it is necessary to identify to 

which universality class [76] the phase transitions occurring at the UCST and 

the LCST belong in the symmetrical associating mixture of interest here. As the 

critical point is approached the critical exponent f3 is defined in terms of the critical 

temperature of the finite system as, [77] 

~x(N) = Bo(N) 11 - TerN) r
3 

• (6.23) 

Here, Bo(N) is the leading amplitude term. We assume that the phase transitions 

occurring at the LeST and at the UCST both belong to the Ising universality 

class, so that the critical exponent takes the universal value of f3 = 0.325 in both 

cases. The coexistence curve thus has a cubic form in the critical region. Providing 

that the correlation length (/I remains less than the linear box length L, the value 

of f3 = 0.325 can be assumed to be valid over the entire duration of the simulation. 

The cross-over of the value of the critical exponent from universal to mean-field, 

where f3 = 0.5, only occurs when the correlation length becomes greater than L 
[68]. A value of f3 = 0.5 results in a quadratic coexistence curve close to the critical 

point.This type of behaviour has been observed in Gibbs ensemble simulation 

studies of a 2-D lattice gas [68] and in a 2-D square-well mixture [53]. A plot of 

the square of the order parameter ~x2 with temperature in this case, is linear, 

whereas in the case wIlere {3 = 0.325, a plot of ~x3 with temperature is linear. 

Simulation studies of the the square-well fluid in 3-D [53] and [74], show no sign of 

this cross-over behaviour. This can be explained by considering the relationship 

between the dimensiona1ity of the system and the temperature dependence of the 
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correlation length, 

I
T I-v 

(a ex: 1 - Te(N) (6.24) 

The exponent v takes a value of unity in 2-D and of 0.63 in 3-D, so that the correla­

tion length grows more rapidly with temperature as T - Te(N) in two dimensions 

than in three [78]. Hence the cross-over from universal to classical (mean-field) 

exponents occurs further away from Te(N) in 2-D than in 3-D, making it more 

easily observed in simulations of 2-D systems. It is generally agreed that this type 

of cross-over behaviour cannot be observed in 3-D systems using regular simulation 

techniques [79]. The other critical exponents can hence also be attributed their 

universal values, a = 0.11 for the heat capacity, "y = 1.24 for the compressibility 

on the critical isochore, and 6 = 4.8 for the critical isotherm [80]. Away from the 

critical region the power law of Eq. (6.23) fails to accurately describe the shape 

of the coexistence curve. It is hence necessary to include corrections to the renor­

malisation group (RG) based scaling laws in order to obtain more accurate results. 

Such corrections can be written as an expansion in t = 1 - T/Te(N) [80], in a 

so-called Wegner expansion [81] 

(6.25) 

where ~1 is a RG gap exponent, equal to 0.5 in the case studied here, and the B, 

terms are the correction amplitudes. This expansion leads to the estimation of the 

critical temperature whilst assuming a universal value for the critical exponent. A 

similar expansion can be writteu for the diameter of the coexistence curve [80] 

(6.26) 

where (e is the critical composition, the C, terms are the coefficients of the ex­

pansion, and 1/, is au exponent which characterises the anomaly in the diameter of 

the curve. These two expansions can be c.ombined to give one expression for the 

coexisting compositions 

X± = Xe + c1ltr" + C2 1tl + C3IW'+~1 + ... 
± ~ (Boltl lJ + B l ltl lJ+.:1 1 + B2ItllJ+2.:11 + ... ), (6.27) 

where x_ and x+ represent the smaller and larger coexistence compositions, re­

spectively. Similar expressions can be written in terms of the coexistence densities. 

For the sYlUmetrical square-well mixture studied here this expression can be sim­

plified due to the sYlllmetry of the system. The critical composition is known to 

be equal to 0.5, and the non-linear Ci coefficients can be disregarded, since the di­

ameter is symmetrical about 0.5. Additionally, only the first correction to scaling 
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term Bl is required in order to give an adequate description of the liquid-liquid 

coexistence region. Hence the expression for the compositions of the coexisting 

phases becomes 

(6.28) 

Assuming values of f3 = 0.325 and At = 0.5 the above equation can be fitted to the 

simulation data using a standard least-squares procedure [82] to give estimates 

of the critical temperature. Since the coexistence curves obtained by GEMC sim­

ulation in Figs. 6.11 and 6.14 have two critical points it is possible to use two 

such power laws, one to estimate the UCST, and one to estimate the LCST. These 

two expressions can be combined to give a complete description of the region of 

closed-loop immiscibility. A hyperbolic tangent function of the form: 

h() 
_ex....!..p~(x~) _-_ex....:..p~( -_x...:,.) 

tan x = 
exp(x) + exp( -x) 

(6.29) 

is used as a switching function between the expression for the UCST and that for 

the LeST. lIenee, only the expansion fitted to data close to the UCST is used 

above a certain temperature T,witch, and the expansion fitted to data close to the 

LCST is used at temperatures below this point. The compositions of the coexisting 

liquid phases in tIle dosed-loop region are obtained as 

x~op = F(T)x~CST + (1 _ F(T»x~CST, 

where F(T) is given by 

with 

1 1 
F(T) = 2 + 2 tanh(y), 

T - TI/witl'h 
y= 

2>"Ji;z: 

(6.30) 

(6.31) 

(6.32) 

The parameter >"Ji;z: controls the steepness of the tanh function. In order to de­

scribe the coexistence curves in Figs. 6.11 and 6.14 we assume >"Jix =0.1. This 

procedure is seen to provide a.n excellent description of the shape of the closed-loop 

of immiscibility at the two pressures in question (see Figs. 6.11 and 6.14). The 

estimated critical temperatures, together with the values of the coefficients Bo, Bl 

and C2 are given in Table 6.13 for the temperature-composition slice at a reduced 

pressure of P* = 1.28 and in Table 6.14 for a pressure of P* = 1.48. 

As with all ensemhles, data ohtained in dose proximity to the critical point has 

to be treated with care, especially in systems of low dimensionality. This is due 

to the cross-over from universal to mean-field critical exponents which occurs as 

the critical temperature is approached. However, the selection of data which can 

be considered far enough away from the critical region to be included in the ex-
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Table 6.13: Estimated critical constants for the symmetrical square-well mixture 
with ~ = 1.5 with a single bonding site of reduced energy e:.b =14.5 at a re­
duced pressure of P* = 1.28. The errors represent the maximum possible error 
which is estimated from the reported errors in the compositions obtained from the 
simulation data. 

UCST 

1.915±O.689 
2.32±1.85 
-2.61±3.20 

O.067±O.O!>5 

LCST 

1.557±O.009 
3.00±O.21 
-4.94±O.54 
O.17±0.42 

Table 6.14: Estimated critical constants for the symmetrical square-well mixture 
with ~ = 1.5 with a single bonding site of reduced energy e;.b =14.5 at a re­
duced pressure of p. = 1.48. The errors represent the maximum possible error 
which is estimated from tIle reported errors in the compositions obtained from the 
simulation data. 

UCST LCST 

2.068± 1.038 1.466±0.239 
2.01±2.27 2.03±O.89 
-1.45±3.01 -1.51±1.12 

0.078±0.056 O.051±O.038 
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trapolation is an arbitrary process. An alternative and more rigorous route to the 

estimation of critical point parameters is via finite-size scaling methods. 

6.7 Finite-size scaling theory 

It is well-known that finite-size effects can lead to serious errors in computer simu­

lation estimates of critical point parameters, and FSS techniques have been devel­

oped in order to overcome such problems [67]. Application of these techniques to 

finite systems which are close to criticality, allow the infinite system-size quantities 

to be estimated accurately. The basic FSS hypothesis states that for sufficiently 

large values of the correlation length (a and of the linear simulation cell L, the 

coarse-grained properties of a specific system close to criticality are universal [76] 

and only depend on the length scale L and on the appropriate scaling fields. These 

fields measure deviations from criticality [81] and are quantities which are specific 

to each universality class. Exactly at the critical point the probability distribution 

functions of certain observable quantities such as the density or composition, do 

not vary with system size: they are said to be scale invariant [83]-[85]. Another 

feature of these critical distribution functions, which is central to the FSS analy­

sis, is that they are all identical for systems which belong to the same universality 

class, that is, they are universal functions. These concepts of scale invariance 

and universality provide the basis of the way in which FSS methods are used to 

estimate the infinite volume critical parameters of specific, finite, systems. 

It is well known experimentally [86]-[80], theoretically [88, 89], and from computer 

simulation studies [DO], that simple fluids belong to the Ising universality class. 

This enables the matching of the (easily measured) critical distribution function 

for the Ising model with those obtained from simulation studies of fluid systems, 

due to their universal equivalence. This matching allows the infinite system size 

critical properties for fluid systems to be estimated. 

Here, we will only give a brief outline of the FSS analysis method; more details 

can be found in Ref. [91] (see also Ref. [92] for a review). For the Ising universality 

class, the critical point is characterised by two scaling fields: T the thermal scaling 

field, and h the ordering scaling field. For systems which posses the so-called 

particle-hole symmetry, such as the Ising magnet, T is the reduced temperature 

and h is the reduced magnetic field [67]. Fluid systems have a reduced symmetry 

with respect to the Ising model, so that the scaling fields T and h take a different 

form [93]; they consist of linear comhinations of the potential well-depth wand of 

186 



the chemical potential Jt [91]: 

T = Wc - W + s(Jt - Pc), h = p - Jtc + r(wc - w) (6.33) 

where sand r are system specific quantities which control the degree offield mixing. 

In the case of the Ising model, s = 0 and r = O. This field mixing does not affect 

the universal properties of fluids, it only has an observable effect on non-universal 

properties close to criticality. The most familiar effect of field mixing is that of the 

failure of the law of rectilinear diameters due to the weak, energy-like singularity 

in the coexistence diameters at criticality [94]. Conjugate to the the scaling fields T 

and h there are two scaling operators C and M [91], which are linear combinations 

of the particle density p and the energy density u, 

1 1 
M = -1 -[p- BU], C = -1 -[u- rp]. 

- ST - ST 
(6.34) 

M is the ordering operator (conjugate to h) and C is the energy-like operator 

(conjugate to T). For the Ising model M is simply the magnetisation and C is 

the energy density. The symmetry of the square-weB system studied here leads to 

the simplification of tlJese scaling expressions. The fact that the critical compo­

sition of this system is fixed at Xc = O.S together with the symmetrical nature of 

the square-weB interactions between species, leads to the absence of field mixing, 

between the thermal and ordering scaling fields T and h in Eq. (6.33). Hence, 

the field mixing parameters Band r are zero, and we are effectively examining 

the critical behaviour of a system which had an equivalent symmetry to that of 

the Ising magnet. In this case, the ordering operator M is equal to the density 

(or composition) of the individual species, and the energy-like operator C is equal 

to the energy density. lIenee, a study of the distribution of the order parameter 

for this system is equivalent to a study of the distribution function of the Ising 

magnet, which is considered to be a llallmark of this universality class. 

Finite-size scaling methods [91] which are based on the renormalisation group 

theories [83], predict that the concentration distribution ofthe symmetrical square­

weB system of linear dimensions L exactly at criticality scales with system size as 

P ( ) _ -I L/3/11 D (L/3/11 -I ~ ) L 1n "'" am S m am v11t , (6.3.,» 

where m = :z: -:Z:c and 6m = m - mc. am is a non-universal scale factor which can 

be assigned a specific value in order to ensure the universality of Pm(y), which is a 

universal function of the scaling variable y = L/3/lIa~16m. Performing simulations 

close to the critical points of the symmetrical square-weB mixture at a series of 

different system sizes should therefore result in universal concentration distribu­

tions at two specific temperatures; corresponding to the UCST and the LCST of 
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the infinite system. The observation of these size-independent distributions enable 

the accurate estimation of infinite system critical temperatures for this system. 

An initial estimate for Te( 00) is obtained from the linear relationship between the 

critical temperature of the finite system Te{N) and the system size N given in 

Eq. (6.22). This relies on the prior estimation of critical temperatures for a series 

of finite-size systems. This is achieved using the relationship given in Eq. (6.23). 

Such results rely on the successful simulation of the system in regions close enough 

to the critical point so that Eq. (6.23) is valid. This in turn relies on the choice of 

a suitable ensemble. 

The majority of FSS studies have been implemented in the grand canonical (aC) 

ensem ble wi th JL VT fixed. The mai n ad van tage of this ensern ble over other common 

ensembles is that it allows the total number of particles to fluctuate during the 

simulation, via particle insertion steps. This allows the fluctuation in the order 

parameter (density or composition) to be observed over the full length scale of the 

system itself, hence minimising corrections to scaling. FSS ideas have also been 

applied to systems in the canonical ensemble NVT fixed [95, 96]. In this case the 

simulation box is divided into suh-sections of length I, within which the density is 

allowed to fluctuate. Use of FSS teclllliques in the canonical ensemble has been 

found to be less successful than those in the GC ensemble, which is partly due 

to the introduction of an additional length scale I into the FSS analysis. The 

magnitude of this length has to he significantly larger than the individual particle 

diameter (1, and significantly smaller than the total simulation box length L. This 

leads to the situation where prohibitively large simulations are necessary in order 

to ohtain satisfactory results [92]. A study of the FSS properties of the Lennard­

Jones fluid at constant pressure P, within the isothermal-isobaric (N PT fixed) 

ensemble has also been reported [97]. Here, the number of particles is fixed, as in 

the canonical ensemble, but the overall density is allowed to fluctuate by means 

of volume changes of the simulation box. This leads to complications for the 

application of FSS ideas since these are based on the concept of comparing the 

correlation length of fluctuations with the linear dimensions (L) of the simulation 

box. In the N PT ensemble L is varied during the simulation, however, it has been 

shown that the critical scaling distribution functions in the N PT ensemble are 

equivalent to those in the GC ensemble [97]. This equivalence can be rationalised 

by considering that either ensemble only has one extensive variable, N in the grand 

canonical ensemble and V in the isothermal-isoharic ensemhle. Other statistical 

ensembles, such as the microcanonical (NV E fixed) or the canonical, have different 

characteristic scaling functions, which are in turn different to those in the GC 

ensemble, since they have two extensive variables; Nand V. However, use of the 

N PT ensemble is not preferred over the GC ensemble, since in the N PT ensemble, 

the correlation time (the time equivalent of the correlation length) is much longer, 
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hence making it less efficient. One advantage of the N PT ensemble over the pVT 
ensemble, is that no particle insertions have to be performed, so that the N PT 
ensemble is favoured in simulations of high density systems. 

No method currently exists to implement FSS methods within the Gibbs ensemble, 

which is mainly due to the fact that the two subsystems in the Gibbs ensemble 

both undergo volume fluctuations during the simulation, so that there is no length 

scale which remains constant over the whole course of the simulation. It is only in 

simulations of symmetrical fluid systems (such as the square-well system studied 

here) or the Ising lattice gas [98], where volume fluctuations can be excluded due 

to symmetry, that accurate results can be obtained via a full FSS analysis in the 

Gibbs ensemble [92]. Use of the Gibbs ensemble to provide estimates of the critical 

point and its associated phenomena is hence currently restricted to extrapolation 

of data obtained well away from the critical region itself. 

The semigrand canonical ensemble (SGC) [99, 100], described in Chapter 3, is 

an ensemble which can he used to obtain data which can be analysed using FSS 

methods. The total numher of particles N is kept constant, but the concentration 

of the individual species is permitted to fluctuate by enforcing that the difference 

in chemical potentials Aft = ftl - Il2 is kept constant, together with the variables 

NVT. The symmetrical square-well mixture with no interaction sites has has 

recently been examined using FSS ideas in the SGC ensemble [74]. As a result of 

the symmetry of this binary mixture, the SGC ensemble can be used to simulate 

two-phase coexistence in a single simulation but by performing the simulation in 

a single subsystem. Additionally, as mentioned previously, the symmetry of the 

system results in the simplification of the complex FSS expressions involved in the 

description of the critical behaviour of the mixture. The combination of a single 

box simulation and partirle identity changes, lead to the efficiency of simulations in 

the SGC ensemble being much higher than that of simulations performed in either 

the Gibbs or the GC ensembles. This is advantageous since a full FSS analysis 

for a specific model system is very time consuming, for example, in the FSS study 

of Ref. [91] the simulations are performed on 4096 distributed array processors 

(DAPS) for runs up to 2x 106 Monte Carlo cycles. 

6.8 Semigrand canonical ensemble simulation results 

The binary mixture of square-well molecules with one off-centre bonding site is 

examined by simulations performed in the semigrand canonical ensemble at con­

stant AltNVT, where a simulation cycle consists of N trial displacements and 
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a fixed number of trial particle identity changes, following the acceptance rules 

given Chapter 3. Displacements are performed in such a way to give a 30% to 40% 

acceptance rate, and the number of identity changes is controlled so that between 

1% and 3% of the particles are given a new identity. A smaller number of iden­

tity changes are required as the critical point of the system is approached. The 

strength of the site-site interaction energy is fixed at e; b = 14.5 and simulations , 
are performed at a constant packing fraction of 7J =0.287 and 7J =0.247, which cor-

respond to tIle packing fractions of the UCST and the LCST, respectively, of the 

p. =1.28 closed-loop GEMC simulations reported in the previous section (cf. Fig 

6.11). Simulations are performed for systems with N=108, 256 and 864 particles, 

for a range of temperatures at both densities. 

For the symmetrical square-well mixture it is possible to guarantee equilibrium be­

tween a single liquid pllase and its symmetrical counterpart by fixing 6p,o = 0 [74]. 

Hence the two coexisting phases need not be simulated individually. The liquid­

liquid phase equilibria of a system with equivalent symmetry can be therefore be 

obtained by fixing AJLo = 0 at constant NVT in the semi grand canonical ensem­

ble, and allowing composition fluctuations to occur by performing identity changes. 

For the square-well system studied here, simulation of the region of liquid-liquid 

coexistence between the upper and the lower critical solution temperatures will 

yield equilibrium compositions of the individual phases. As a result of the ability 

of the simulation box to change identity during the simulation, from being rich in 

component 1 to being rich in component 2, it is necessary to use histograms to 

monitor the relative frequency at which specific compositions of either component 

appear in the distribution function. Away from the critical region, the histograms 

are singly peaked, since the simulation samples either phase a, rich in component 

1, or phase b, rich in component 2. As the critical region is approached the his­

tograms are double peaked, indicating that the system is sampling both coexisting 

phases. Above the critical temperature, for the UCST, below for the LCST, the 

histograms display a broad peak centred at the critical composition. This varia­

tion in the shape of the concentration distribution functions with temperature is 

shown in Figure 6.17 for simulations performed at 77 =0.287, and in Figure 6.18 for 

the simulations performed at 71 =0.247. The average concentration of species i in 

each phase is given by an average over the distribution function, x = E XPN(X). 
When the histograms exhibit two peaks, the total histogram may be approximated 

by PN(X) ~ PIV(x) + P~(x), where PIV(x) is the concentration distribution of a 

component in phase a, and P~(x) is the distribution in phase b. In this case the 

average concentration of species i in each phase can be written as a sum over the 

corresponding distribution function, 

(6.36) 
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Figure 6.17: Concentration distrihution functions PN(X} of a component in the 
symmetrical square-well mixture with t:,b = 14.5. Simulations are performed in 
the semigrand ensemble at a constant packing fraction of 11 =0.287 with N =864 
particles. The curves are labelled with the corresponding values ofthe reduced tem­
peratures T* = kT/t. The estimated VeST for this finite system is r;(N) =2.382. 
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Figure 6.18: Concentration distribution functions I\·(x) of a component in the 
symmetrical square-well mixture with e;,b = 14.5. Simulations are performed in 
the semigrand ensemble at a constant packing fraction of 71 =0.247 with N =864 
particles. The curves are labelled with the corresponding values of the reduced tem­
peratures T* = kT/e. The estimated LCST for this finitl' system is T;(N) =1.570. 
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where PN(x) and PJv(x) are normalised to unity. Due to symmetry, xa = 1 - xb• 

The importance of correctly identifying the equilibrium value Xeq of the concentra­

tion of a given species with the average value of x taken over the whole distribution 

function x, as in Eq. (6.36), rather than with the most probable value is discussed 

in Ref. [74]. The assumption that the concentration distribution functions can be 

approximated by symmetrical Gaussians in regions close to the critical temperature 

of the system, as used in Ref. [.1)3] is found to be invalid. The large finite-size effect 

observed in the critical temperatures estimated for the symmetrical square-well 

system in the work of Ref. [53] are explained in terms of the use of this incorrect 

assumption in Ref. [74]. 

The effect of varying the system size on the form of the composition distribution 

function for the simulations performed at a packing fraction of 7] =0.287 is shown 

in Figure 6.19, at a temperature well below that of the UCST. The curves are seen 

to become more asymmetric as the system size decreases. A similar comparison 

is made in Figure 6.20, now at a temperature close to the estimated UCST. Here 

the distributions are asymmetric for all system sizes and the peak heights are seen 

to approach the thermodynamic limit of x =0.5 as the system size increases. The 

equivalent curves for tlle system at a packing fraction of 7] =0.247, away from the 

LCST and close to the LeST are given in Figures 6.21 and 6.22, respectively. In 

this case, the trends exllibited by the curves are not as clear as those for the UCST, 

nevertheless the shift of the maxima of the distributions to the thermodynamic 

limit as the system size increases can be observed. 

In this work we follow the methodology of Ref. [74], and fit the doubly-peaked 

concentration distribution functions to two asymmetric Gaussians [82], in order to 

obtain x. We assume that the distribution function PN(X) can be written as a 

sum PN(X) = PN(x) + Pj.,(x), where 

(6.37) 

(6.38) 

For sufficiently large system sizes the asymmetry coefficients Ai become equal in 

each phase, since the Gaussians become symmetrical as the system size increases, 

so that Ai = Aj and A~ = A~. A typical fit to one of the doubly-peaked con­

centration distributions is shown in Figure 6.23. The values obtained for the 

equilibrium compositions x using this fitting procedure are given in Table 6.15, for 

three system sizes of N = 108, 256 and 864 particles for the simulations performed 
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Figure 6.19: Effect of a variation in system size on the concentration distribution 
function PN(X) for a component in the symmetrical square-well mixture with t":.b = 
14.5 at a a constant packing fraction of 71 =0.287, at a reduced temperature of 
T* = kTjt" =1.80, which is well below the estimated UCST for the system. The 
dashed curve corresponds to simulations of N = 108 particles, the dotted curve 
to simulations of N =256 particles and the bold curve to simulations of N =864 
particles. 
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Figure 6.20: Effect of a variation in system size on the concentration distribution 
function PN( x) for a component in the symmetrical square-well mixture with t:,b = 
14.5 at a a constant parking fraction of TJ =0.287, at a reduced temperature of 
T* = kT Ie =2.30, which is close to the estimated UCST for the finite, N =864 
system. The dashed curve corresponds to simulations of N =108 particles, the 
dotted curve to simulations of N =256 particles and the bold curve to simulations 
of N =864 particles. 
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Figure 6.21: Effect of a variation in system size on the concentration distribution 
function PN{X) for a component in the symmetrical square-well mixture with £* b = 

II, 

14.5 at a a constant parking fraction of 11 =0.247, at a reduced temperature of 
T* = kT/e =1.68, which is well below the estimated LeST for the system. The 
dashed curve corresponds to simulations of N =108 particles, the dotted curve 
to simulations of N =2.'>6 particles and the bold curve to simulations of N =864 
particles. 
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Figure 6.22: Effect of a variation in system size on the concentration distribution 
function PN(X) for a cOmpOnE'llt ill thE' symmetrical square-well mixture with e:.b = 
14.5 at a a constant packing fraction of 71 =0.247, at a reduced temperature of 
T- = kT/e =1.60, which is close to tht' E'stimated LeST for the finite, N =864 
system. The dashed curve corresponds to simulations of N =108 particles, the 
dotted curve to simulations of N =256 particles and the bold curve to simulations 
of N =864 particles. 
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Figure 6.23: Typical fit of the composition distribution function PN(Z) obtained 
from simulation (dotted curve) to the sum of two asymmetric Gaussians (bold 
curve). The simulation is performed at a constant packing fraction of." =0.287 at 
a reduced temperature T* = kT/t =2.35 for a system of N =256 particles. 
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at 7] =0.287. The equivalent values for the simulations performed at a packing 

fraction of 7] =0.247 are given in Table 6.16. 

Table 6.15: Liquid-liquid coexistence data obtained from semigrand canonical 
ensemble simulations at constant packing fraction 7] =0.287 for the symmetri­
cal square-well system with A =1.5 and with a single interaction site of depth 
E* b =14.5. The data for the concentration of component 1 were obtained as aver-a. 
ages over the distribution function for three different system sizes. Due to symme-
try the composition of component 2 is given by 1 - z. The reduced temperature 
is defined as T* = kT / e. 

T* :t(N = 108) :t(N = 256) z(N = 864) 

2.35 0.314 0.282 0.234 
2.30 0.259 0.293 0.313 
2.25 0.239 0.268 0.276 
2.20 0.230 0.238 0.253 
2.15 0.210 0.217 0.231 
2.10 0.194 0.202 0.216 
2.00 0.183 0.188 0.203 
1.90 0.188 0.195 0.201 

Table 6.16: Liquid-liquid coexistence data obtained from semigrand canonical 
ensemble simulations at constant packing fraction 7] =0.247 for the symmetri­
cal square-well system with A =1.,1) and with a single interaction site of depth 
e* L =14 .. 5. See Table 6.15 for details. a." 

T* :t(N = 108) :t(N = 256) z(N = 864) 

1.,1)8 0.294 
1.60 0.190 0.218 0.211 
1.62 0.157 0.153 0.177 
1.64 0.13:1 0.144 0.146 
1.66 0.120 0.126 0.140 
1.68 0.108 0.117 0.118 
1.70 0.006 0.108 0.082 

These values of the equilihrium compositions can be used to give an estimate of 

the respective critical temperature for each system size at a fixed packing fraction. 

This is achieved by assuming the linear relationship between temperature and the 

order paramet('r given in Eq. (6.23) and fixing {J = 0.325. The estimates of Te(N) 
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obtained by this mechanism can, in turn be used to estimate the value of Te( 00) for 

both the LeST and UeST of the symmetrical square-well system. In this case, the 

shift of the infinite system critical point is given by the linear relationship between 

Te(N} and the size of the system given in Eq. (6.22). The dimensionality of the 

system is given as d =3 and the correlation length critical exponent is assumed to 

take the value II =0.63. The estimated critical temperature for each of the system 

sizes are given in Table 6.17 for both the UeST and the LeST. 

Table 6.17: Estimations for the critical temperatures obtained from the semi­
grand ensemble simulation data at a constant packing fraction of 7J =0.287 (for 
the UeST), and 7J =0.247 (for the LeST). Te(N) is the estimated critical temper­
ature of a system of N particles, obtained by extrapolation of Eq. (6.23) assuming 
a value of {3 =0.325, The infinite system-size critical point is obtained by extrap­
olation of Eq. (6.22), see text for details. 

N T;(N} ueST T;(N) LeST 

108 
256 
864 

00 

2.523 
2.4.51 
2.382 
2.314 

1.528 
1.549 
1.570 
1.590 

In order to check the validity of the estimations of Te( 00) for the upper and lower 

critical solution temperatures, we turn to the finite-size scaling analysis described 

earlier. The order parameter distribution function exactly at criticality for a sys­

tem belonging to the Ising universality class is known not to scale with system 

size. The form of the distribution function is given in Eq. (6.35). Simulations 

are therefore also performed for the three system sizes at the estimated infinite 

system-size critical temperature of T* =2.31 with a packing fraction of 71 =0.287. 

The resulting concentration distribution functions are plotted in Figure 6.24 in 

terms of the scaling variable y = LfJ/ lla;;.!fJm, where the non-universal scaling fac­

tor a;"t is chosen so that each of the distribution functions has unit variance. The 

fact that the individual functions for each system size lie on the same curves is an 

indication that the estimate of Te( (0) for the UeST is consistent with the results 

of a finite-size scaling analysis. This estimate of the critical temperature is signif­

icantly greater than that obtained by the Wegner fitting using a first correction 

to scaling term, where T;(N) =1.915, however the estimate does fall within the 

error bars of the fitted critical temperature. Similarly, simulations are performed 

at the estimated infinite system-size critical temperature of T* =1.59 for the sys­

tem with a packing fraction of 71 =0.247. The distributions obtained are plotted 

as a function of the scaling variable y in Figure 6.25, and in this case the universal 
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Figure 6.24: Scaled composition distribution function PN(Y) at the estimated 
infinite system-size VeST of T* =2.31 plotted in terms of the scaling variable 
y = a"iJ Lf3/ 116m. The distributions for each system size (N =108-dashed, N =256-
dotted and N =864-bold) are obtained in the semigrand canonical ensemble at a 
constant packing fraction of fJ =0.281. 
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Figure 6.25: Scaled composition distribution function PN(Y) at the estimated 
infinite system-size LeST of T- = t..'59 plotted in terms of the scaling variable 
Y = aAJ LfJ/v6m. The distributions for each system size (N =108-dashed, N =256-
dotted and N =864-bold) are obtained in the semigrand canonical ensemble at a 
constant packing fraction of 71 =0.247. 
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nature of the curves for each system size is not so clear. It is expected that bet­

ter agreement will be observed after completing longer simulations. However, the 

agreement between this FSS estimate of the LeST and that obtained using the 

Wegner expansion with a first correction to scaling, T;(N) =1.557, is much better 

than that of the UeST. 

6.9 Conclusions 

This chapter has formed a case study of the phenomenon of closed-loop immisci­

bility in mixtures. A specific model system is examined using both a theoretical 

equation of state and computer simulation methods. The SAFT-VR approach is 

seen to predict re-entrant miscibility for a range of pressures and temperatures; the 

extent of which also depends on the strength of the site-site interaction potential. 

We present the first simulation results which display a closed-loop region of liquid­

liquid immiscibility for a specific model system. The Gibbs ensemble simulation 

results are shown to have a dependency similar to the SAFT-VR prediction on the 

pressure, temperature and the strength of the association energy of the system. 

The closed-loop of immiscibility for this system only exists for a narrow range of 

temperatures at specific pressures and at a relatively large value of the site-site 

interaction energy. The existence of both an UeST and a LeST for this model 

system in results obtained by computer simulation confirms that the short-ranged 

directional interaction site which is responsible for the low-temperature miscibility 

of the system. Previous GEMC simulation studies of square-well mixture with no 

association sites [53,54] and [74], only report regions of liquid-liquid immiscibility 

below an UeST with no low temperature features on the phase diagram of the 

system. An examination of the extent of association present in the system, using 

both the SAFT-VR equation of state and the simulation results, indicates that 

the amount of inter-molecular association increases dramatically as the tempera­
ture of the system approaches that of the LeST. This t>ndorses the idea that the 

low-temperature miscibility is a (!irect result of the bonding which occurs at low 

temperatures between unlike species in the mixture. The experimental observation 

of closed regions of immiscibility only in systems which have the ability to form 

hydrogen bonds between unlike components adds to the validity of our findings. As 

a general conclusion it is possible to state that any theoretical approach which in­

tends to predict dosed-loop immiscihility, must include a directional, temperature 

dependent interaction in order to give physically reasonable results. 

Additionally, simulations performed in the semigrand canonical ensemble are used 

to estimate the finite system critical temperatures at both the UeST and the 
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LeST. These estimates are found to differ from those obtained by a Wegner ex­

pansion which includes corrections to scaling. These finite system values can be 

used to estimate the infinite system critical temperature. The validity of these 

estimates are confirmed by the use of finite-size scaling methods. Further work 

in this area is required in order to obtain a complete description of the critical 

behaviour of the system in the vicinity of the LeST. 
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Chapter 7 

Concluding Remarks 

The ultimate aim of theoretical studies of the liquid state is to obtain an under­

standing of the interactions which govern the phase behaviour in real systems. In 
this work we illustrate how the phase bellaviour of even simple model mixtures 

can be made surprisingly complex by varying the size, the chain length and the 

nature of the intermolecular interactions of the system. 

Specifically, we have examined the mixing rules involved in the application of 

the SAFT-VR equation of state to mixtures. The vapour-liquid and liquid-liquid 

coexistence regions of a series of model mixtures have been investigated using the 

SAFT-VR approach. The predictions obtained are seen to compare favourably 

with corresponding molecular simulation results. The extension of the SAFT­

VR methodology to incorporate systems which interact via soft-core potentials is 

presented. The proposed recipe is sllOwn to give an accurate description of c11ain 

molecules interacting with the Lennard-Jones potential. 

The effect of the addition of an anisotropic interaction site, which mimics hydro­

gen bonding in real systems, on the phase diagram of a specific model system is 

carefully monitored. For a specific association strength the SAFT-VR equation of 

state predicts that the system ('xhibits a region of low-temperature miscibility, a 

finding which is confirmed by a computer simulation study performed for the same 

model system. This re-entrant phase behaviour is a phenomenon which is exhib­

ited experimentally for a range of aqueous solutions of many organic molecules, 

such as alcohols and surfactants. It is satisfying that a simple model system, con-
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taining the essential physical features of the experimental systems can be used 

within a theoretical approach to give a qualitative representation of this kind of 

novel phase behaviour. Accurate results have been reported for mixtures of alka­

nes, perfluoroalkanes, refrigerants, alcohols and the more complex polyoxyethylene 

surfactants. 

An advantage of a molecular based approach such as the SAFT-VR equation of 

state is that it can be easily applied to a range of model systems of various diame­

ters, chain length and number of associating sites. Additionally, the non-conformal 

properties of the model can be accounted for in the approach, since the range of 

the interaction potential can be used as a variable. Hence, the application of the 

SAFT-VR methodology to more realistic model systems than those considered is 

a straightforward process. The phase behaviour of mixtures of real systems using 

the SAFT-VR approach (and the simpler SAFT-HS version) is currently a source 

of interest both theoretically and industrially. 

As a closing statement, it is important to note that the work presented here is 

by no means an exhaustive study of the phase behaviour of these type of model 

systems. Routes of future research include the study of IIlulticomponent systems, 

simulation studies of more complex models and the study of systems with long­

range interactions such as electrolytes. 
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