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Summary 

ii 

Linear Systems Reduction and its Relationship to 

Multivariable Control Systems Synthesis. 

S.K. Woon 

It is recognised for sometime that reduced models play an important 

role in control systems synthesis; as a result~ much effort has been 

devoted to model reduction. This thesis is concerned ~ith the study of 

redUcing the order of the mathematical model~ representing a linear 

system~ and~ the consequence of using the reduced model in the synthesis 

of linear and nonlinear multivariable control systems. 

The effects of using the reduced model are studied in terms of 
I 

stability~ performance degradation~ departUl1e from optimality~ sensitivity 

reduction~ etc.~ of the final system. The research has a dual nature; 
for the results pertinent to reduced model applications are also vqlid 

for the original model of the plant in the design of the real plant. 

This is due to inacouracies in the model~ resulting from modelling errors~ 

as the drder of the plant cannot be accurately determined. 

The mathematical methods used for obtaining analyticaZ results~ or 

model reduction and its applications~ are linear algebra and functional 

analysis. 

The contributions to this thesis are: the fo~ulation of some 

feasible time and frequency doma1.:n reduction techniques; the estabtish

ment of multivariable theorems for reduced model applications; the 
derivation of some bounds for the originaZ Unear and nonUnear muZti-

variable systems~ and~ the adaptation of these bounds for use in con
junction with reduced models; and the integration of the above results 
with certain recent mathematical deveZopments in control systems theo~. 

A case study Of an industrial boiler is aZso included~ where 

different reduction techniques are used for obtaining lo~ order models. 

These are then used for control systems designJ andJ their effectiveness 

in application is assessed by obsel~ing tha final system response. 
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CHAPTER I. 

INTRODUCTION TO THE THESIS 

Introduction 

This thesis attempts to study the various methods of reducing the 

order of a linear dynamical system and the consequences resulting from 

the application of the reduced system (or appropriately called, reduced 

model). The reduced system can be used in simulation and design work, 

and, the effects of its application can be studied in terms of stability, 

performance degradation, departure from optimality and sensitivity, etc •. 

of the overall system. 

The nature and applications of linear systems reduction are briefly 

presented in the next section, from which a new problem to the 'model 

reduction theme' is formulated, the latter giving justification to the 

motivation for research. 

To assist the reader,. the general organisation and outline of the 

thesis are then explained. (It is recommended that this chapter be read 

before reading the other chapters.) 

TIle main contributions to the thesis are stated at the end of the 

chapter. 

1.1 Linear systems reduction. 

1.1.1 Its nature. 

The necessity to reduce the order of a mathematical model has been 

conscious to engineers for a long time. It is felt that a lower order 

model, that approximates the transient response of th~ original (higher 

order) model, could be used as a substitute for the latter, in simulation 

studies and synthesis of con,trol sys tems.. This is advantageous, as it 

results .tn computation and time savi.ngs, and, economising cOlnputer l~·.:orage. 
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In classical control studies, 'reduced (lower order) models' were used 

sub-consciously in design and approximate analysis, the simplest example, 

being that first and second order models were used freely in frequency 

response and root locus plots. The earliest reduced models used, were 

obtained by unsystematic 'common sense' rules. It was not until the 

early 1950's, encouraged by the frequent use of electronic calculating 

machines, that detailed and systematic 'ways of approach' were paid to 

model reduction, so much so, that the latter has become a 'state of the 

art'. Up to date, more and more methods evolved, some are different 

from others but most are variations of the same theme. As most methods 

are 'technique orienteg,. and emphasis placed on sophistication in reduction, 

rather than on practicability and effectiveness, the topic of model 

reduction, where it is supposed to be a valuable tool than to be a mere 

toy, has come under some criticisms. 

Closely related' to model reduction is the topic of approximate 

models, due to inexact modelling. Very often, in modelling a plant from 

its physical equations, or from experimental data, obtained from its 

input-output characteristics, inexact models are only obtained. This 

is because all detailed plant information cannot be precisely known, and, 

its behaviour can change due to internal parameter variations or external 

infl uences • Thus the order of the plant is different, usually lower, 

from that of the actual plant. However, past studies seemed to have 

treated model reduction and inexact modelling as two different types, and, 

very little effort had been made to correlate the two. 

1.1.2 Its applications. 

Reduced models can be used in the following areas: 

(1) Simulation studies. 

(2) Optimal control systems synthesis. 

(3) Multivariable systems design using linear state feedback 

or frequency response. 
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(4) Model reference adaptive systems. 

(5) Sensitivity analysis study. 

There are many cases in practice where complex models can be 

replaced by their lower order equivalents for simulation purposes. 

Examples can be drawn from the field of power systems and chemical 

engineering. The order of the derived model may be over a hundred, where 

a large number of grid points may be taken that produce a large set of 

differential equations, or, in chemical process plants, too many state 

variable points may produce a complicated model. 

In optimal control studies, computational methods are often employed 

to obtain non-analytic solutions for complicated cost functions. The 
~ 

chief examples are, the use of mathematical programming techniques to 

obtain the optimal state trajectories, and, the use of iterative a~gorithms 

to compute nonlinear performance indices. Essentially they are step by 

step techniques that require a great deal of computing time and storage. 

Model reduction is useful here in the sense that, when the high order 

model is replaced by its reduced counterpart, the iterative process is 

not only speeded up, but, the problem also becomes more simplified. 

For multivariable systems, a controller is usually required for use 

in a closed loop system to perform a specific task. If the model of the 

system is high, designing the controller would be tedious. Hence if a 

reduced model is used, the design would become simpler and faster. 

The design approach can be taken from the time domain or frequency domain. 

In the time domain design can be done using linear state feedback theory. 

A reduced model would thus produce a sub-optimal controller, (if 

design is done using optimal regulator theory) for the original system, 

whose dimension is lesser than that that could be designed without using 

the re~uced model. The difference in dimension is proportional to the 
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difference in order between the two models. In the frequency domain, 

where design is"done using the extended Bode or Nyquist plots, 

considerable simplification in design is possible by using first or 

second order models, to approximate the frequency and phase character-

is tics of the high order model. This is very desirable as frequency 

response methods are more tolerable to model inaccuracies and less 

sensitive to errors. 

In model reference adaptive systems (~~), the original plant is 

desired to be controlled by using a parallel model of the same order as 

the plant. The objective is to require the controlled plant to respond 

exactly as the model." Here the model is used as the reference and the 

plant loop is adaptive in such a way as to accommodate changes in the 

plant to changes in the model or to external disturbance. An interesting 

aspect of HRAS is Linear ~10del following systems (LMFS) where control is 

applied in such a way that the response of the plant follows that of its 

linear model. Hodel reduction finds application here, in that a reduced 

model of the plant, can be used to effect control of the system as a 

whole. This strategy is justified in the sense that the plant model is 

only a close approximation to the plant, for the latter's dynamics are 

not precisely known. Under these conditions the synthesis of the control 

system will be much simplified. The situation can also be viewed from 

another way by using the plant model to represent the actual plant, and 

the reduced model to represent the plant model. This arraneement is ideal 

for fast,'off-1ine' simulation studies and economical controller synthesis. 

Feedback systems tend to reduce parameter sensitivity and attenuate 

external disturbances. In a controlled system, parameter sensitivity 

plays a ~reat part in determining sy~~em performance and stability. 
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Using reduced models in the feedback scheme will reduce the sensitivity 

of parameters as there are fewer parameters in the reduced model. In 

some aspects of optimal control, where parameter sensitivity is an acute 

problem, a 'parameter sensitivity' model is modellcd separately from the 

dynamical model to enable bettcr analysis of the whole system. Thus, a 

reduced 'parameter sensitivity' model can be used instead. 

1.2 Problem formulation and motivation for research. 

It is observed, from the applications of model reduction, that the 

stability of the original system is uncertain under the influence of the 

reduced model controller. It is also expected that degradation of 

performance would result when reduced models are used to simulate, control 

or design the system. 

Considering the nature of reduction, reduced models and 'inexact 

modelling' cannot be viewed as two different topics, but should be 8lnal-

gamated. Throughout the thesis, where Sand S represent the original 
r 

and reduced models respectively, they could also be taken to represent 

the plant (assumed linear, though this restriction can be removed in 

certain cases) and plant model (equivalent to the inexact model) 

respectively. Thus all analytical results obtained from the study of 

reduced and original models are also applicable to the plant model and 

plant. The results are thus less restricted, hence they have wider 

interpretations. 

From the above formulations, it is motivating to pursue research . 

along the following lines. 

Any new reduction methods that are introduced, must be as feasible 

as possible, and, their theoretical framework must be justified from a 

practicnl viewpoint, and related to close concepts in dynamical sy&eems. 
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An attempt should be made to justify the reduction techniques by 

applying them to practical and very high order models. The reduced 

models, so obtained, should be used to design a controller for the 

original system, and, the effects that follow, such as performance, 

sensitivity and stability, should be observed. This would make the 

problem more meaningful and realistic. 

An attempt should be made to build a general theoretical framework, 

chiefly in the areas of error bounds and stability, of a system under 

the influence of a controller synthesized by a reduced model. General 

stability theorems, which indirectly infer the stability of the original 

system from the stability of the reduced system, irrespective of the 

method of reduction used, are needed. This, so far, has been a neglected 

topic. Adaptation of certain existing design methods, to incorporate 

design using reduced models, is beneficial. 

The sensitivity and optimality of a system under the influence of 

a reduced model controller must be studied. It is interesting to 

explain the departure from sensitivity or optimality of a system in terms 

of the characteristics of its reduced counterpart. 

The idea of using reduced models in nonlinear systems design, 

especially in Model Reference Adaptive Systems, and the subsequent effect 

on stability, deserves some investigation. This is a novel approach, 

and it seems has never been introduced before, nevertheless, it is worth

while pursuing as nonlinear systems play an integral part in practice. 

Any work that has been done in the above areas will be revi.ewed in 

Chapter II. 

1.3 General organisation and outline of the thesis. 

1.3.1. Layout and nomencl.1ture. 

Each chapter is more or less independent and self contained, emphasis 

on strict continuity throughout the chapters is slightly relaxed. For 
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ease of reference, the bibliography pertinent to a particular chapter 

is given at the end of the chapter concerned. Diagrams, where approp-

riat~are given adjacent to the page of description, otherwise, they are 

included at the end of the chapter if references to them are being made 

constantly throughout the pages. In general, the subscript r, of a 

quantity, indicates that the quantity describes the reduced model, and, 

the same quantity without the subscript, means that it describes the 

original model. The words, 'system' and 'model', are used interchangeably 

throughout the thesis, distinction only being made if the meaning becomes 

impaired. Thus Sand S are taken to represent the original and reduced r 

models respectively, or, the original and reduced systems respectively. 

Standard nomenclature in control systems theory are used throughout the 

text, explanation is given only when there is ambiguity. Examples are: 

A 

Q(s) means Q-l(s) (the inverse of the matrix Q(s» 
A 

G-l(s) G (8) means (the inverse of G (8») r r r 
'" not necessarily mean 11k (unless k does stated otherwise), it means 

" A A 
" k is associated with Q(s) as k is associated wltkQ(s). 

The main results are given in the form of theorems, and, their proofs 

are given as simple as possible. Where convenient, illustrations are 

given to aid the proofs. 

1.3.2 Outline of the thesis. 

Chapter II gives a brief but thorough survey of model reduction tcch-

niques and their applications. The survey is by no means detailed or 

exhaustive. 

A new frequency domain reduction method using harMonic synthesis 

method for single input-single output system is given in Chapter III. 

The icit!a is extended" to multivariable systems by using the Character-

is tic Loci concept approach. 
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Chapter IV details some new time domain reduction methods, from the 

complex plane and state space matrices point of view. The methods are 

'design oriented' and use approximating techniques for curve fitting in 

the time domain. The criterion for reduction is not specified, and, it 

is open to the subjective judgement of the designer. One method relies 

on the estimation of residues and modes and the other on the pseudo-

inverse of a matrix. However, both methods work on the principle of 

sequential approximation, where the model is continuously reduced and 

updated. 

All reduction methods in Chapters III and IV are tested using a 

seventh order and a fourth order model. 

The stability of iinear multivariable systems under the influence of 

a reduced model controller is studied in Chapter V. In all cases 

stability of S is expressed in that of S • 
r 

Some stability theorems for 

reduced model applications are derived using frequency response methods 

and Characteristic Loci criterion. Stability theorems are also derived 

by using the theory of M-matrices to study linear multivariable systems. 

This, together with the use of the contraction mapping principle, from 

functional analysis, widens some results, and, confirms some, derived 

earlier. The study on the characteristic polynomial of a system leads 

to some interesting results, and, the newly formed concept of Reimann 

surfaces and multivariable root loci is used in linking the stability of 

Sand S. 
r 

Lyapunov theory is also used to express certain stability 

bounds for the reduced system. The above methods have one factor in 

common; in that they all study the distribution of the characteristic 

roots in the-large. The chapter ends with the adaptation of the methods 

for discrete systems. 
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Chapter VI studies bounds on multivariable systems designed using 

reduced models. The analytical bounds are mainly expressed in 

transfer function matrices form, but could also be adapted to time 

domain design methods. Some modified bounds for the general multivariable 

system and a stability theorem for reduced models are also derived. The 

error estimates for using reduced models are expressed in the form of 

linear inequalities, using matrix theory and functional analysis. Some 

existing multivariable bounds are also modified, to cater for the 

inclusion of reduced models. The rest of the chapter adapts these error 

bounds, together with the stability results in Chapter V, to some exist-
1 

ing multivariable design techniques; example Inverse Nyquist Array 

method, Characteristic Loci method, pole shifting method and multivariable 

root loci method, etc., for use with reduced models. The results in 

Chapters V and VI form a general design philosophy of systems using 

reduced models. 

The effect on the sensitivity and optimality characteristics of a 

system, when reduced models are used, is investigated in Chapter VII. 

The emphasis is stressed on Comparison Sensitivity, in Bode's sense, in 

the frequency domain. Results are derived for using reduced models in 

sensitivity reduction design where the closed loop system behaves better 

than the corresponding open loop case. Conditions for the stability of 

a sub-optimal system are also investieated, by imposing bounds on the 

matrix Riccati! equations. The relationship between sensitivity and 

optimality in the application of reduced models is derived. The chapter 

rounds off by adapting some sub-optimal design methods, for use with 

the general reduced model, such that stability .is guaranteed. 

B~'mds for nonlinear multivariable systems, especially in the 

presence of a reduced model, are studied in Chapter VIII; the main 
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emphasis is again on stability. The nonlinear system considered here 

is composed of a linear, block, follm-1ed by a nonlinear block where the 

nonlinearities of the latter are either sector restricted, functionally 

approximated or bounded by integral constraints. Studies are also made 

on the stability of the original nonlinear system, in the absence of 

the reduced model, using the describing function method and the extended 

graphical method of Popov. It is then shown that these results can be 

more easily adapted for use with reduced models, thus increasing their 

power, than existing methods. Using reduced models in Model Reference 

Adaptive Control Systems design is also investigated, using the concept 

of positive realness of a matrix and the hyperstability criterion. 

Some existing MRACS design methods are adapted along this line to suit 

the use of reduced models. 

A case study of an industrial boiler is done in Chapter IX. Prior 

to reduction, the transfer function of the boiler model is first obtained 

and manipulated into various amenable forms. The order of the boiler 

model is very high (thirty three) and various reduction methods, both 

of time and frequency domains, are used to obtain lower order models. 

From this, a critical assessment is made on reduction methods; on their 

accuracies, difficulties and advantages. The reduced models so obtained 

are next used to design controllers for the original model. Two 

different design philosophies are considered; one an 'algorithmic computer 

oriented' method from the time domain, the other 'a state of the art' 

method from the frequency domain. Comparisons are then made on the 

boiler response under different controller actions. This enables the 

validity of reduced models to be assessed, and also gives a further 

assessment of their reduction methods. 

Chapter X concludes the thesis. 
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Z.4 Contributions to the thesis. 

AZZ theorems~ Zisted numeraZZy and accompanying an aZphabet~ 

exampZe~ theorem 5A~ 5B~ 6A~ 7B~ etc. are known muZtivariabZe system 

theorems. Only a Zimited number are stated~ when usefuZ~ for reference. 

All other theorems derived, that are pertinent to Zinear systems 

reduction~ or related to the general. system~ are obtained by the author~ 

as far as mu'ttivariable control systems theory is concerned~ and~ to the 

best of the author's knowledge~ have not been used before in the control 

'titerature. AZZ other results that have been obtained by other authors 

are also c'tearly stated. 

The frequency domain reduction technique~ for single input-single 
; 

output systems~ pl~esented from a different viewpoint~ based on harmonic 

synthesis~ in Chapter III is original. A novel approach to multivariable 

systems reduction is introduced~ by considering the behaviour Of the 

system's characteristic loci~ as the latter is known to govern the 

dynamics of the system. This concept is believed to be new~ and~ to 

the best Of the author's knowZedge~ has never appeared before in the 

literature. A part of this chapter has appeared in a Zetter in 

Electronics Letters. 

The ~o reduction methods~ sequential. approximation in the time 

domain~ presented in Chapter IV are original. One method works on the 

principle Of 'mode and residue' aggregation~ the other uses 'Zeast square 

error minimisation' from the state space point Of view. Both methods 

are combinations 0/ existing methods~ removing some Of their undesirable 

features and inherent difficuZties~ and they work best when adapted to 

use with interactive graphics. StabiZity of the reduced model with the 

methods is aZways guaranteed. 

In Chapter ~ the stabiUty theorems given in the fi.'equency domain 

for a multivariahZe system under the influence Of a reduced model 
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oontrolZer~ irrespeotive of the reduction method employed~ are 

generalJ original and believed to be ne~. Some" of the ideas have 

appeared as a letter~ in Electronios Letters. (An existing theorem~ 

due to AOki~ Vittal Rao~ et at is only applicable to systems that used 

a restrioted class of reduced models~ namely those obtained by project

ion methods~ only.) These theorems are advantageous s~nce they are 

flexible and can be used directly with any design methods. The idea 

Of using the methods of M~atrices and the contraotion mapping principle 

to study stability in terms of the reduoed system is original~ although 

the methods have been used independently before~ to investigate stability 

for the original. linear system directly. The contribution here lies in 

the interpretation of "these resuZts in graphioal fonn and the linking of 

them to ttle stability theorems established earlier~ thus widening their 

interpretations. The adaptation of these theorems to the reoently dev-

eloped muZtivariable root· loci concept~ for stabiZity invest-igation~ is 

ori(Jinal~ and~ believed to be n~. Studying reduoed model stability~ 

from the inertia Of the matrix of the characteristio equation and 

obtaining new graphical interpretations for the stability margins~ are 

also original. 

The modified bounds derived for the original linear multivariable 

system in chapter VI appear to be new~ though they are known to exist in 

various re Zated fonns. The advantage of these bounds is that they are 

expressed in simple forms~ in various degress of 8harpness~ and require 

modest computational effort for their evaluation. A stability theorem 

for remloed model application is also given here as an alternative to 

that simiZarZy given in Chapter V. The advantage Of this theorem is that . 
its bourds are easier to evaZuate~ a1though this may be compensated by . 

loss in sharpness. However~ modifioations are also made where the 
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sharpness can be adjusted in relation to computational complexity. 

The error bounds, due to using reduced models, expressed in the 

frequency domain are original. The method of preserving interaction 

structure of the system during reduction is introduced in this chapter. 

It is proved that this has desirable stability and performance character-

istics. The idea has appeared as part of a letter in Electronics 

Letters. 

In Chapter VII, some theorems are given regarding the role of 

reduced models in sensitivity reduction design. A theorem is given 

. here with gives priori conditions, for the stability of 8ub-optimal 

control systems. This is believed to be new and, to the author's best 

knowledge, no results regarding sub-optimal stability, for the multi-

variable system using a general class of reduced model, have appeared 

before in the literature. 

A criterion given in Chapter VIII for the absence Of limit cycles 

in nonlinear systems is new. It is believed that the proposed criterion 

is more flexible and less conservative than existing criteria, and, its 

main power is the ease to which it can be adapted to ~ork ~ith reduced 

models. Part Of this idea has appeared as a letter bl Electronics 

Letters. The graphical interpretations Of the circle criterion and the 

Popov criterion for multivariable systems, different from existing 

interpretations, are original and believed to be new. The bounds are 

more flexible and adjustable, hence tess conservative. Formulated in 

this way they are also very convenient for Wle w-ith reduced models. 

An original approach to estimating performance bounds between S and S 
r 

in nonlinear systems design, using integral. inequaUty estimates, is 

believ~~ to be novel. The advantages of the estimates is that the;, can 

be evaluated easily, requiring modest computational effort. 

AlZ simuZation results and evaluations given in Chapter IX are 

original. 
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Conclusions. 

Most of the mathematical results, where possible, are explained 

in simple graphical forms, in terms of frequency response and character

istic root loci plots. This would prove to be of advantage to the 

designer, who is familiar with graphical methods. 



II 

A GENERAL SURVEY OF HODEL REDUCTION TECHNIQUES AND 

TrllIR APPLICATIONS. 
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. CHAPTER ·U. 

A GENERAL SURVEY OF HODEL REDUCTION 

. TECHNIQUES AND THEIR APPLICATIONS. 

Introduction: 

• dId b 45 B· 44 d 46 Approx1mate mo e s were use y Evans, 1ernson an others for control 

system design in the early 1950 t s. They were obtained by 'rules of thumb', 

and, it is believed that a systematic mathematical procedure for model 

reduction was started by Dudnikov4, Kalyaev6, Kardashov7 and Golant5 et aI, 

after the mid 1950's, in the U.S.S.R. There was a great interest in model 

reduction in this country, after Nicholson84 used a reduced model to obtain 

control strategies for a boiler model. Up to date there is a vast· number 

of reduction techniques in the literature and they can be classified into the 

following 'schools of approacht. 

(i) 

(U) 

(iii) 

(iv) 

(v) 

(vi) 

modal synthesis 

geometrical methods 

time domain curve fitting 

frequency domain curve fitting 

Pade approximation techniques 

general methods. 

The above headings are only taken as a guide, and are not necessarily 

in chronological order. No hard and fast rules are laid on them, as in 

n~st cases they overlap, and one method can fall in either category. The 

methods in the last heading are either general 'combinations of those of the 

above headings, or, do not fall into any headings at all. 

2.1 
• 1-81 Survey of reduction techn1ques • 

(i) Modal synthesisS- 13; 

The basic philosophy here is the rptention of dominant modes and 

rejection of non dominant ones, based on the fact that poles near the origi.n 
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dominate the response and transients of farawa.y poles decay rapidly. 

Davison8 gave. a first mathematical formula.tion of the. problem by trans-

forming S(A,B,C) into its canonical structure and rearranging states in 

order of dominance. 

x = Ax + Bu 

Y '" ex 
(2.1) 

• Az + Fu z = 

A = TAT-l , x = Vz 

By retaining the. first ~ state variables a reduced model is obtained 

-1 
as A = A + Al Al A • roo 

It was pointed out by Chidambara9, that Davison's 

method produces a steady state error, and, this later caused the authors and 

FossardlO , to modify the method, to eliminate steady state error. Marshall
ll 

also produced a similar method that yields zero steady state (s.s.) error by 

partitioning the matrices in eqn.(2~} as 

A = , B = , A '" F .. 

Z 
- rZ

z2

1J and z partitioned as - L 

By equating • .. 0 s.s. reduced model is obtained as z2 a 

-1 
- B 

-1 -1 
(V 3B1 + V 4B2) A 0:: VI Al U1 ' B - A2 V4 11.2 r r 1 

Kappulajuru and E1angoven 12 noticed that the modal method of reduction 

has certain inaccuracies in certain regions of the transient, response. They 

divided th~ response time into three rC2':ons, and used different methods to 
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approximate the response, by considering dominant, sub-dominant and 

non-dominant modes in order. 

~T·I 13 • h 1 d·f· d h WL son , FLS er et a • mo L Le t e modal methods of Davison and 

l1arshall for discrete systems, by considering the equation 

~+l = A ~ + B. ~ 

(iil Geometrical methods14- l9 

Geometrical methods of reduction rely on the geometry of vector 

spaces where a reduced model is obtained by manipulating the model 

structure in vector spaces. Essentially geometrical methods are related 

to time domain curve fitting methods. Examples of geometrical methods 

16 are due to Anderson, Mitra, Nardall, De Sarkar et ale and Shaked et al. 

Anderson14 formulated the problem of reduction from the time domain 

response equations, 

x (rl {(k+l}T} = ~ (T) x(rl (kT) + &(T) u O<-Tl (2.2) 

i.e. b &: Mc (2.3) 
q q 

{(k+1)T} - - (kT) + - (T) u (kT) (2.41 x = ~ X & 

i.e. b &: Me (2.S) 
q q 

where eqns (2.3) and CZ.51 represent eqns (2.2) and (2.4) in matrix 

• t (r 1 (r) t, II. II. 
form, wl.th b &: ex' (T), ••• x «(k+llTl), c &: (VI l'··'Pqr ,& 1' ••• & ) q . q . q q q q qm 

and M is a rectangular matrix with an (i+ll th row given by Mi+l -= xir ) (iT), 

x?)(iT), ••• x~r)(i~l, u1(iT), u2 (iT),ooumCiT)o The aim of the reduction 

is to choose a vector c such that equation (2.5) i.s satisfied and also 
q. 

minimizes the inner product «h -b ), (b -b » 0 q q q q Eqn ~2.5) can be 

generali:!ed to the form B = Me, and f'~om the theory of linear spaces, the' 
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solution is given by the taking the pseudo-inverse of M in the equation 

B. = MC = M r~(T) X(T)]t (2.6) 

Ct = [i(T) 6(T)] = Bt M(Mt M)-l. BtM+ (2.7) 

t t where C = (c1,c2 •••• cr ). B = (b1,b
2

, ••• br l as in eqn (~.3). The 

pseudo-inverse M+ is equivalent to least square curve fitting in the time 

+ domain and the time' interval T is chosen large enough to ensure that M 

exists. 

u' 15,77 ,82 • d d d • b .• b l'll.tra conSl ere re uctl.Oll y proJectl.ng a vector onto a est 

linear sub-space, and, minimizing the projection error. The reduction is 

done in two stages as follows. 

Controllable 

system S 

,. 

. approximate 

d 
• ~ 

re uctl.on 

Uncontrollable ,.strict 

system S reduction~ 
Reduced 

system S 
r 

S has a controllable subspace of dimension n-m and is governed by 
• ,.,. A,. A ,. ~,. 

S x(t) = A x + B u, y = ~ x. The optimal projection matrix P is such 

(2.8) . 

that ~ = Px where the projection is on and along the sub-spaces £1 and £2 

A '" #It of dimensions n-m and m. S is related to S by A = PA, B .. PB. Here P 

t -1 -1 t -1 ( )/ is ch?sen as P = In - T1 (T
l 

W (Q)} T1} T1 W (0:», where dW t dt-= 

-1 t t 
exp(A(t1-t»BC B exp(A (t1-t» and T1 is an orthogonal matrix obtained 

from the modal matrix of A by the Gram Schmidt orthogona1ization procedure. 

The controllable subspace £1 is given by solutions of the equation 

If any n-m independent solutions of x 

form the columns of the matrix, F, the final stage of strict reduction 

yields Sr as 

Ar .. (CF) (F-
1 A F + F-1 A F ) (CF}-l , B = (CF) F-1 B (2.9) 

11 11 11 11 12 21 r 11 11 
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The chief disadvantage of Mitrats method is that it is computationally 

expensive, and is difficult to in~lement. 

Nordahl l7 and Melsa constructed a reduced model by matching the 

shape of the hyper surfaces of the Lyapc.mov functions, V and Vr ' as the 

latter determine the response of the corresponding system. The procedure 

involves minimising angles, he tween hypersurfaces in r-space, but, due to 

the geometrical complexity, the method is not reliable for high. order 

models. 

De Sarkerl6 and Dharma Rao used algebraic rather than geometrical 

approach in the above procedure. For the autonomous system x = Ax, the 

t 
associated LyaptUlov matrix equation can be written as PA + iQ = -A p-:-1Q = s, 

-1 where A = P (S-~Q). 

Lyaptlllov function 

A reduced model A is constructed such that its 
r 

V Iv ~ 
r r 

• 
v/V (l.lO) 

in r-dimensional space. The matrices P
r 

and Sr are determined by 

deleting' n-r smallest rows and columns of P and S respectively and the 

reduced model is given by 

(l.l1) 

For the forced system x = Ax + Bu, x is partitioned as xt a= (~, xl) 

and B is obtained by fitting original and reduced models, at steady 
r 

state point, i.e. setting Xl ~ 0, giving 

B = A (C B + C B 1 
r r 11 11 12 12 

(l.121 
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where B .. [:::J · = 

The main disadvantage of the above method, lies in the difficulty 

of choosing the P matrix, and, the choice is related to the nature of 

the system, just as the response depends on the latter. 

Shaked18 et aI, looked at reduction from the transmission zeroes 

and zero directions, point of view. The method exploits the structural 

properties of the state space matrices, and, a reduced model is obtained· 

by making zero direction vectors, of the. reduced model, to be obtained, 

to coincide witli that of the original model. 

With geometrical methods, they ara largely intuitive in approach, and, 

do not give an indication of the tgoodness t of .tbe reduced model so obtained. 

( .. ") .. d· f"" 20-36 ~~L tLme oma1n curve 1ttLng • 

Time donmin curve fitting, involves fitting tbe time response of S 
r 

to that of S, usually via minimization of a pe.rformance index. W"l 20 1.. son 

considered reduction, from the state. space matrices wbera S (A ,B ,e ) is r r r r 

to be obtained from S(A,B,C} via 

or 

J = min I <eCt}, QeCtl> dt 
o 

f... = trace (}?S) 

J .. min lim E {<e(tl. Qe(t»} ~ trace (RM) 
t~ 

(2.13) 

(2.14) 

where e(t) = y(t).- y Ctl. 
r 

The input can either he a vector of impulse 

functions, or, a white noise vector, with. zero nlean, and a covariance matrix 

E{u(t)utCs)}= Na(t-5), where N > 0 and symmetric. Associated with eqns 

(2.13) and (2.14) are the Lyap~ov equations 

FR + RFt + S = 0 (2.151 

Ftp + PF + H = 0 (2.l6) 
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where 

F = [: 
oJ, s = [BNB t BNB ~ J 
A B NBt B NBt 

r r r r 

(2.17) 

and P and R are symmetric nmtrices of the Lyapanov equations and can be 

suitably partitioned in conformity with eqn.(2.l7). Taking the deriv-

ations oJ/aa , aJ/ab , oJ/ac , where a , b , c are the elel~nts of A , r r r r r r r 

Br and Cr , one obtains 

== CR. R-1 
12 .22 

A = _p-l pt AR R-l 
r 22 12 12 22 

(2.18) 

If the eigenvalues for A are prespecified, thus fixing a canonical 
r 

form for A , then the solution for S is a linear one. 
r r 

If the eigenvalues 

are not specified, then a minimization algorithm must be used. iteratively 

to obtain S , for single input-single output systems. For multivariable 
r 

76 h .• 1 f • • d '2 15' (2 IS) b systems ,t e prlncl.p e 0 superpOS:ltlon an eqns \c. 1 to • can e 

used to obtain (Ar,Br,Cr ) iteratively. 

Aplevich
2l 

formulated the same problem, by considering a discrete 

time case, along the conceptual lines of controllability and observability. 

The cost function to be minimized is, 

J = (2.19) 

where Yk = CAk- l B, k=1,2 ••• , and, Yk is a weighting matrix of S(A,B,C), 

at time k. It is assumed that S is completely controllable and observable, 

and, that the controllable and observable part of S (A ,B ,C ), is at least 
r r r r 

of order r. By differentiating J w.r.t. the elements of A ,B ,C , one r r r 

obtains the Lyap~nov equations, 

= 0 (2.20) 
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2 where D = (B , A B ,A B , ••• ), r rr" rr 

= o (2.21) 

A 2 t 2 
D = (B, AB, A B ••• ), E = (C ,C A ,C A, ••• ) r r r r r 

At . 2 
and E = (C, CA, CA , ••• ). . Like Wilsonts method, a minimisation routine, 

example a gradient search method, can he used to ohtain S (A ,B ,C ). r r r r 

Alternatively, Ap1evich22 offered an approximate solution for S , using 
r 

simple matrix manipulations, via the modified form of B.L. Hots algorithm 

and optimality. ~ " The matrLces Yk are arranged as 

... 
Y 

n 

... 
y 
n-1 

•••• 

••• 

... 
y 

n 

where row and .,. 
column operations 

yield 

I A B r r r ........... 

The chief disadvantage of state space formulations. by minimising the 

error criterion, is that, it involves too much. labour in manipulating 

matrices, and, solving large order matrix equations. Another formidable 

problem is core storage, example, for a system whose order > 15, solution 

by Aplevichts approximate method is formidable and uneconomi.cal; and, to 

reduce the core storage, would result in a poorer approximation. Also, 

with. a large matrix, the great amount of computation can yield a final 

solution whose accuracy is questionable. 

Ga1iana t s23 method is also very similar to that of Wilson and 

Ap1evich, in that, he generated the reduced state space matrices, from 

24 input/output data. Band1er , et aI, used gradi.ent methods that are 

developed recently for reduced model solution. These algorithms provide 

faster rate of convergence than the steepest descent metlwd, used by 

Aplevich. Chi~ambara 25 also provided ~ method of reduction, based "n 

error minimisation, in the time domain. A set of non-linear equations 

result in the end as usual. 
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Instead of using a state space formulation, Renganathan26 represented 

th the n order model by a single differential equation 

y(n) + a 1 
(n-l) + ••• aoy· = 0 n- y (2.22) 

and a reduced model 

(m) 
+ b 1 

(m-I) + ••• by =0 Yr n- Yr o r (2.23) 

is constructed by equating term hy term the integrals 7 t [y{il]2 dt and 
~ .20 
J t[y (l)] dt of eqns (2.22) and (2.23). 

r 
o . 27 

Sinha and Pille considered reduction via using least square curve 

fitting of the responses of the discrete models. The reduced discrete 

model is expressed in terms of the pulse transfer function 'H(z) = C(z)/R(z} 

c. = 
1. 

m 
1: 

.jeo 
Zd r .. + l.-J 

n 
E b. c •. 

J l.-J j=l 

Eqn (2.24),1n matrix form is ~ ~ = 1k 

where 

r r_1 ••• r c_l c_2 • •• 0 -m 

t\ = r
l rl-m r c l-m 0 

• • • • • 
r
k r k- 1 r k - m ~k-l 

The least squares solution of eqn (2.25) is 

" rJk = 

(2.24) 

(2.25) 

c -n 

rJt = 
, 

(aoa1···amblb2···bn) 

Ct = (c1c2 .. ·ck) 
~-n k 

(2.26) 

The continuous transfer function is ob.tained By taking the inve.rse. 

z-transform of H(z) prece" ded by a zero order hold. By superposition, 

the abo·.·.,! can easily be adapted to multivariable systems. 
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28 Meier and Luenberger attempted reduction from the continuous transfer 

function of the system. They took into account random and deterministic 

inputs, and, for the former, they showed that model reduction is also 

related to the Wiener filtering problem. In fact the state space method 

of Hilson is a replica of their method. The error criterion to be mini-

mised is 

.jen ,. 2 
= (1/21Tj) r. IT(s}-T(s} I 4>x(s} ds (2.27) 

-Joo 

" where yet), yet) are outputs, 4> (5} is the rational power spectral density x 

(bilateral Laplace transform of E{X(-r)X(t+T)} of a stationary rand~m process· 

X(t), with E[X(t») = 0.1 
,. 

The transfer function T(s} = 
1'1 ... 

m 
r 

i=l 
... / " r. s-p., and 

1. 1. 

the optimum parameters a = r.,p •. i=l, •• m is oBtained by setting 'dJ/dcr = o. 
1. 1. 

If the poles are specified, the set of equations 3J/3a = 0 can be reduced to 

a linear set; otherwise, a minimisation algorithm is needed to evaluate the 

parameters. 
29 

Riggs and Edgar used a simplified version, by also expressing the 

transfer functions, inpartia1 fraction forms, Res) = t r./s-p., 
1. 1. 

H (s) = 1: r ./ s-p ., with the modes wri t tell. in time domain as, 
r r1. r1. 

n 
yet} = L 

j=l 

m 
r. exp {p. tl , y (t) =. L r . eX]? {p .t} 

J J r j=l rJ rJ 
(2.28) 

and minimising the. functional J z: 

h 
r < (y-y ), Q (y-y ) > dt. A set of 
a r r 

non-linear equations, which becomes linear when the poles are specified, is 

obtained by setting 3J/3rri = 3J/'dp • = O. 
rl. 

Instead of obtaining the optimal parameters from the non-linear 

equations, Sinha73 and Bereznai obtained them by using a hill climbing 

technique to minhlize the quadratic performance index J. 
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Another time domain reduction approach. is by moments approximation 

which does not minimise a performance index. Moments approximation or 

moments matching, which is also equivalent to the Pa.de approximant and 

continued fraction mc.thods 32 of reduction, that will be discussed in a later 

section, is a very old analytical tool, used by Paynther30 and Ba l11i31 in 

1 h "' I • 34 1 1 1 32 d 33 networ~ synt eSLS. lorowLtz, ater a so Bos ey an Lees employed 

moments approximation to model reduction. The transfer function is 

expanded as 

G(s) . == I 
o 

f etl exp' {-sd dt = 

0> 

2 2/2 , a -a s + a2s • o 1.· + ••• (2.29) 

Gr(s) .. I fr(tl e}."p {-stl dt = aro-arl;.s' + a;2 s2/2! + ••• (2.30) 
o 

o 
Ct. 

1.. = 

ex.. . 

I tLf(t)dt .. • I • th . l' d 1..8 tle L unnorma LSC where 

moment about the origin of the impulse response f (tl. The transfer 

.n~ n functions can also be wrl.tten as G(s) .. (b i·bls+ •• b IS )/(a +als+ ••• a s ), o n- 0 n . 
m-l . m 

G (s) .. (d +d1s+ ••• d IS liCe +cls+ ••• c s ). By matching the fi.rst rom- 0 m 

q moments, i.e. a. = a ., i .. O,l. •• q, of the original and reduced models; 
1.. r1.. 

gives the linear equation 

P 
l: a • d. 

i=O P-L 1.. 

P 
1: 

j=O 
b • c • 

P-J J 
.., 0 

which. could be solved to obtain the reduced model. 

(2.31) 

p=0,1, ••• 2m-l 

It can also be shown 

that if a. :II a. i .. 0, 1, 2, ••• 1U+n and if G (s) is asymptotically stable, 
1.. rl. r 

then G (s) is the. m/n Pade approximant of G(s). Using this approach, 
r 

Zakian35 extended the moments tIk'ltching method to multivariable systems. 

Kitamori36 obtained a reduced model by fitting to the impulse response, 

h(t), 0': G(s), a linear combination of orthogonal functions hr (e)iX ... 

al flee) + a2 £2(e) + •• arfr(e), where £i is Laplace fransformable and at 

is chosen to minimize, 
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E(a} / 
o 

(h(O)- h (e) )2pce) de . r a 

where pee) is a positive scalar. By setting aE(a}/aa. = 0, with 
1 

(2.32) 

I fi (e)fj (e) p (e) de = 6iJ. from the orthogonality condition, gives a. = 
1. 

I hCe)fi (e)p(e)de .Hence Gr (s) is given by tIle Laplace transform of 
r 

h (e) = l: a o f.(e). 
r a i=l L L 

The reduced models, Sr' obtained in state space forms are related to . 

S via the aggregation matrix, Z, (following Aoki) 83 by 

A Z = ZA, B = ZB, 
r r 

c Z = C 
r (2.3.3) 

where x = Zx. 
r 

In general, tbere are more than one solution for Z, 

.' , 19 except for special classes of reduced models, example projection methods. , 

where a unique Z exists. 

(
0 ) d 0 fOtt· 37-46, 2-7 lV frequency omaln curve L lng. 

A number of researchwork.ers have attempted to obtain a reduced model, 

by approximating its frequency response, to that of the original model. 

In 1952, Levy fitted a transfer function to a set of frequency data, at ahout 

the same tinle the Russian workers, Kardashov, Simoyu, Dudnikovetc., 

considered,a similar approach to model reduction. 

t 37 . m In Levy s approach toe transfer functions GCsl = K {1+a
1

s+ ••• a
m

s } 
. n 
l{l+b1s+ ••• bns } is rewritten as 

G(s) = K {R+jwr}/{Q+jwL} .,. K !'(w)!T(w) 

where R = (1 - a2w2+a4w4-••• 1, I = (a1- a3w·2- ••• ), Q = O-b2w2tb4w4_ ••• } 

2 4 
and L = (b1-b3w +bSw - ••• ). The generated data also assumes the form of 

cqn (2.34) and the error in fit at ~ is (Ok'" G(j~)-N(wk) /D(~). The 

error functional to be minimized is 
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E (2.35) 

By differentiating eqn (2.35) w. r. t. the unbtown coefficients, 

dE/da. = dE/db~ = 0 and using a simplification procedure, results in a set 
L 1. 

of linear equations, which when solved yields the unknown coefficients. 

Sanathanan38 and Koerner modified eqn (2.35), to improve fitting, 

over a region that spans over several decades, and, also in the low 

frequency region; by using an iterative procedure on eqn (2.3$). Sumner39 

and Payne 40 used a hill climhing algorithm. to minimize eqn (2.35). and 

found that the. method sometimes yields right hand open loop poles. and 

singularities can also occur in the non-linear least square equations. 

Vittal Ra04l and Lamua adapted Levvts method to model reduction. 

Following eqn (2.34),Gr (sl can be written as, 

GrCs} = K (a+;wf31/(o+iW'rl = KN(w)/DCw) (2.36) 

The error at a particular frequency fitting is e(w} = G(s) - G (s) 
r 

= K(P(w)D(w)-T(w)N(w»/T(w}D(w} and the error functional to be minimized 

is chosen as 

E '" 
. 2 

/ !T(w)D(w)e(w)! dw (2.37) 
n 

The derivatives of E, w. r. t. the. unknoun coefficients, of Gr (s1 

give the complicated set of linear equations. 

The Levy method needs a considerable amount of computation and its 

equations are rather tedious. Reddy42 offered a • l·f· d • b S1.mp 1. l.C verS1.on y 

minimizing the error in the phase of two transfer functions together with. 

magnitude. Referring back to cqns (2.34) and (2.35) the four error 

functio:.:l1s are 
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(2.38) 

The derivatives equated to 

2 

zero are aEl,ac~ = leR-a) (do./dc.)dw = 0, dE2/dc. = 
1. 1. 1. 

I (R-~)w (d~/dc.) dw = 0, . 1. aE3,ad. = I CQ-a)(dcr/dd.) dw = 0, aE4/ad. = 
1. .1.1. 

2 I (T-.)w ed./ddil dw = o. This simplifies the complexity of the work in 

solving for the p+q unknown coefficients, in the p+q linear equations. 

Hsici 43 looked at: reduction by taking as criterion the magnitude ratio 

of the frequency response of the models that deviate the. least at various 

frequencies. The magnitude ratio can De expanded by Taylor series as 

By requiring the ratio to be unity, i.e. ).(w}=l, G (5) can be 
r 

constructed by comparing the coefficients M2j with ~2j. 

Kardashov7 considered minimising the time. d~main criterion 
co 2 

J = I (y-Yr) dt, ,,,here Parseval ts theorem gives 
o 

J = 
j<G 

(l/21Tj) I 
-joo 

lo.(s)E(s) 12 ds 

where E(s) = G(s) - G (s), Gesl = Des) /K(s), G (s) .= D (s) /K (s). r r r r 

(2.39) 

(2.40) 

Linearisation is made possible by the factor o.(s) EO G(s)K(s)/G (s)K (5) in 
r r 

eqn (2.43) Setting aJ/ack = aJ/ad j = 0, and, using complex integration in 

the frequency don~in, after simplification, yields a set of linear equations 

for the unknown parameters of Gr(s). 

Simoiu3 employed the method of moments in a geometrical sense in 

frequency response fitting. The transfer functions are expanded into 
co • 

Taylor series form, G(sl = 1 + 1. 
~ a. s ,G (s) = 1 + 

• 1 1. r 1.== 

and G (sl is approximated by discarding cert~in terms. 
r 

r i 
~ c. s ; 

i=1 1. 

The unknown 

cocffic~~nt ci can be evaluated by successive integration using the ~ecursive 

formula , 
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i-Z 
+ 1: 

j=o 

CD 

s. 1 • M. 
1..- -J J 

(2.41) 

where M. = ! (k-(J(t)} (-tli/i~ dt, s1 = 
1.. 

! (k-¢(t})dt = lim 
8-+0 

0 0 
IX) 

! (k-0(t» exp (-st) dt = lim (k(s)-(J (s» and ~ (s) = k/sG(s). 
s-+o 

0 

Dudnikov4 gave a method of approxi~~ting a transfer function by 

expansion in continued fraction form. A reduced transfer function, is 

obtained by truncating certain quotients, and the coefficients are found 

from graphical plots and tables of experimentally obtained amplitude 

phase characteristics. Emphasis is placed on the initial portion of the 

characteristic. 

fraction form as 
(2.42) 

G (s) = A + o 0 

1 

. '1 

-1 
HI (jw) + AZ t 

• + 1 . 

fJ
2 

(jw) etc. By plotting G Uw), ••• G Uw) as Nyquist diagrams, constants o n 

A ,B ,Al,Bl, •• B l •• A can be determined from their real and imaginary o 0 n- n 

parts. In fact many forms of continued fraction can be used, example,' 

GolantS and Dudnikov later used the Cauerts J-type continued fraction in 

place of the ordinary continued fraction. 

Chen46 and Bicrnson44 considered reduction, from the Bode plot by 

using rules of thumb, example, the corner frequencies can be ignored if: the 

gains are below -15 dB or above +15 dB. E 45. 'I 1 . d vans Sl.nu. ar y approXlmate 

high order models from the root locus plot in the. complex dOllk1.in. 
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A disadvantage of reduction by frequency methods is that the time 

domain response of the reduced model is not known directly, and, large 

steady state errors can result. Furthermore, the linearised equations 

do not guarantee stable reduced models, and, implementation on the 

computer is normally uneconomical. 

() P d •. h· 47-67 v a e approx1mat10n tec n1ques 

Model reduction by Pade approximation is a very popular technique, 

as it is reported to have a high degree of success, and, to yield accurate 

reduced models. • 32 33 35 Reduction by tLme moments ' , (discussed earlier), 

~rkov parameters and continued fraction expansions etc., are all equi

valent methods, and, they form a sub-set of the general Pade approximation 

methods. 

Chen and Shieh
47 

introduced continued fraction in the s-domain for 

model reduction, by considering that 

can be expanded into Cauer type continued fraction (equivalent to Taylor 

series expansion about s cOl, 

(2.44) 

and G (s) is constructed by retaining th~ first Zr h. parameters and dis-
r L 

carding the remaining inner nested parameters. The hi parameters are 

48 
determined from the first column of the Routh table, 

AU A12 ~3 A14 ••• 

A2l AZ2 AZ3 ,A24 ••• h. 
IC A. 1/A'+11 (Z.45) 

1. L, 1. , 

A3l A32 A33 ••• i=1,2, ••• 

A41 A42 ••• 

• • 
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where A •. = A. 2 . 1 - CA. 2 1 A. 1 . ..L11/A~ 1 1 ' i=3,4, •• 2n+l, j=1,2, ••• l.J l.- ,J+ l.-, l.- ,JT 1..-, 
An algod.thmic method for converting the truncated continued fraction 

transfer function hack to tIle. original form is also given. Despitc the 

siU1plicity of the method, the reduced model so obtained can be unstable. 

Also as pointed by Wright4~, .the Routh. table can sometimes fail when the 

coefficients Ail = Ai +1,1 and Aij = Ai+l,j • This is equivalent to the 

fact that no Pade approximant exists for the particular transfer function. 

Ch 50,51,52 d'f" d uang mo 1. 1.e the method of Chen and Shieh by rewriting 

G(s) in descending powers of s, and, employed the expansion scheme as before, 

but, t.his time. it is equivalent to Taylor series expansion about s = IX). The 

modified procedure. yields better initial transient response. By using the 

51 modified Pade approximation (MPA} mcthod, Chuang also showed that reduction 

can be achicved by expanding 

about s = 0 

(2.46) 

about s r: IX) 

r-l r G (s) = (r + rls+ ••• r IS )/(d +dls+ ••• d s) is constructed by r . 0 r- a r 
r-l -r expanding likewise, and matching the cocfficients up to the s (rcsp.s) 

terms, gives a set of linear equations in terms of r. and d •• l. l. A biased 

reduced model is obtained in this way, with equal emphasis on initial 

transient and final transient response. However, the reduccd model 

obtained, is again not guaranteed stable. 

• 53 55 Instead of uSl.ng thc Cauer form, Shamash ' employed a J-type 

continued fraction expansion, where G(s) is e~~anded as 

(2.47 ) 

The above scheme was proved to be computationally cheaper and more 

cfficient than ordinary cxpansion. He also show'cd that by retaining 
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. • d. 54. . • . certa1.n onu.nant modes 1.n the expans1.on, and obta1.Il1.ng others by 

continued fraction, a stable reduced model can be obtained. For discrete 

systems
56 

G(z) = (aO+alz+ •• a zm)/(b +blz+ •• b zn), the linear transformation m 0 n 

z = p + 1 can be used to transform G(z) into continuous form and expanded 

as 

(2.48) 

A reduced model is obtained by truncating as before. Other than 

• (1 bOD • 58 d d . expand1.ng Gsa out s = , or s = co, aV1.son an Lucas expan ed 1.t about 
to 

any general point. From G(s) I: I g(t}exp (-st) dt, putting s=a+z, then 
co 0 • 

F(z) 0= G(a+z) = Ig(t) exp{-(a+z)t} dt = 1: (_Ill. M.z./i! l'lhere 
. 1. 1. 

.0
1 H. = I tl. exp(-at) get) dt is the it 1 time moment. A reduced model F (z) 

1. r 

is constructed by matching the moments of Fez) and F (z), i.e. 
r 

co co 

/ tig(tl exp (-at) dt .. = I tig (t) c.xp (-at) d t (2.49) r 
0 0 

i=O,l, ••• 2m-1 

co co. . 

a=2/T:. and T 
. 2 2 2 

where = I t g Ctl dt/ I g (t) dt 
o o 

La159 and Mitra also used moments evaluation algorithm for model 

reduction
J 

and) made comparisons on rade ap.proximatiol1 simplification techniques. 

60 61 • BrovlI1 and Brown et a1. used moments matchl.ng reducti.on techniques to 

pulse transfer function,and,lIutton62 and Friedland used Routh table approx-

imation methods, which is the same as continued fraction and moments matching, 

for model simplification. 

Shamash57 and Rickin63 and Sinha etc., also showed tpat minimal 

realization algorithms, example those of B.!.. lIo or Silverman's can be. used 

to obtain reduced models. -1 G(s) = C(sI-A) B can be expanded about 8=0 

and s=co ~s G(s) = E 
i=l 

i-I 
C • s and ~ (8) = 

1. 

-i D. s respectively, where 1. 
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C. = C A-i B 
1. 

4 ith time moment of system/i! and I:J = .th 
1. 

Markov parameters of the system. From the Hankel matrices, 

t • , t 

~1 Cz'" C ••• ~ C ~2 C3• 0 C • Cn+1 r l n r+J.,:· • 
• t • t 

F,= :r __ Cr+!'': C~r:1i o. F* = ?r+1 o. C2r : - ______ .J. 
0 

0 • 
C C •• C •• C Cn+1 Cn+2·Cn+r • • C2n n n+1 ~+r-1 Zn-1 

t t • • D • • • Pr •• D2 D1 D • o.:D 1 o 0 Dl C
1 n n-1 • r-• t • • • • • t t 

ll= D + 1 0 .:01 •• C Z C 1 H* .. D oo:C1 00 Cr - 1 C n-r r- r- n-r r • t.... ________ t _________ 

0 

• 0 • 
D1 C1 00 C n-2 C n-1 

F t 
t 

F1 = .. (C1 CZo.C : 00 C ) 
2 r, n 

. *-1 *-1 Silverman's algorithm gives SeA,B,C) as A ~ F F ,B = F2, C = FlF • 

A reduced model of order r is given oy S (A ,B ,C ). where A = F (F *)-1, r r r r r r r 
-1 

Br .. F2r , Cr .. FIr (Fr*) where the matrices F , F * are obtained by r r 

appropriate partitioning. S is equivalent to the (r-l, r) Pade approxi
r 

mant of G (s), which is equivalent to the CaueI;' type continued fracti.on 

expansion of Chen and Shieh. Similarly, considering the Markov parameters, 

S can be represented by A .. lI(H*)-l, B ... Hz, C ... (H
l 

11-1), An and Sr is given 

by A "" II (Hr*}-t, B = F2 ' C = (F
1 

F -l)A ro r r r r r r r r 

Most of the continued fraction methods described above are originally 

meant for single input single output system. Chen64 first extended the 

continued fraction method to matrix continued fractions for multivariable 

systems. The expansion scheme is as follows. 

G(s) 
-1 -1 -1 -1 

:: (HI + S (lI2 + s (H3 + 0" ~ (HZn) • • • ) ) ) (2.50) 

I 
.1 

I 

I 
I 

I 
I 
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A reduced order transfer function matrix is obtained by truncating the 

inner nested brackets. For example, the first simplest model is HI-I, 

-1 -1 65 the second simplest model is (Hl + s(Hz) ) etc. Following Chen, 

other authors, example Chuang51 , Shamash55 and Hutton62 et a1. extended 

the continued fraction methods to matrix continued fractions, for mu1ti

variable systems; and Shieh66 and Galiano modified the Routh table for 

evaluating the coefficients of the continued fractions. 

Unfortunately, model reduction by Pade appro.ximation of multivariab1c. 

systems is not as successful as for single input/single output systems. 

The reduced transfer matrix obtained can be physically unrealizable in 

that the order of its numerator elements can be higher than that of its 

denominator elements, and the order of the reduced transfer matrix is 

" h h . d -f" d67 normally h1gber t an t e or er specL LC • Sometimes the reduced model 

can also be unstable. 

vi) 
68-75 General methods . 

The methods stated below do not strictly come into anyone of the. 

above categories, but, however, can he loosely fitted into some of them. 

. 68 d 1 d S ~ .• 1 f f Arumugam an RamamoortlY use a c.~rz canonLca orm or systems 

reduction. The single input/single. output system SCA,D,c), assumed 

controllable, is transformed into Schwarz form SCR,f,c). The reduced 

model is constructed by making a ratio test of the eleme..nts of the Schwarz 

matrix B and the order r is determined by the last successful ratio test. j. 

i.e. r = n - .i. An inverse transformation is used to convert S (B ,f ,c ) r r r r 

back to S (A ,b ,c ). r r r r However, the method cannot be extended to multi-

variable systems, and, does not give any indication of goodness of the 

reduced model so obtained. 
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Towil170 et al. considered reduction by replacing certain aggregated 

far away poles by a single pole. This fact was also considered by 

71 Isermann , who gave some rules of thumb. methods for model simplification, 

example, by neglecting small time constants, replacement of time constants 

by time delays and replacement of different time constants by equal time 

constants, etc. 

Another method, due to Nagarajan72 , is oy dividing the characteristic 

equation repeatedly by the largest remaining eigenvalue until the range 

ratio of the smallest and largest eigenvalues falls to some reconlluended 

figure. In this "'Tay, the. smaller time constants are successively 

e timina ted. The method only lITorks ,,,hen there. arc· no dynamics in the 

numerator transfer function. 

Brown74 used a time. varying low order model to approximate. a high. 

order time invariant model. The procedure is based on an approximate 

minimization of the. difference between the time rate of change of the 

variable of Sand S , subjected to random signal inputs, and minimising r 

the conditional ensemble expectation, R = E {«xrl-xl ), (xr1-xl»lul, where 

xrl and Xl are the measurable states of Sr and S, respectively. 

Otller reduction methods include that of Brierly75 et a1., where 

reduction is done with the aid of computer graphics. This is a trial and 

error method, \-,here the root loc'us-of S is shaped, by shifting poles r 

manually, to approximate that of S. 

2.2 f l ~ • 82-110 Survey 0 app l..ca tl.ons 

Reduced 'models can be used in the following areas, 

(i) 

(ii) 

( ... ) l.v. 

(iv) 

(v) 

Simulation studies 

Optimal control synthesis 

Multivariable feedbac.': systems 

Model reference adaptive control systems 

Sensitivity studies 



- 36 

Only a cursory review of the listed references will be given. 

In the area of simulation studies, reduced models find \Vide 

I ~ ~ I • • ~ 86,87,89 d h • I app LcatLons, examp e 1n power systems eng1ueer1ng an c em1ca 

88 plants • Here the time or frequency response of the system is required, 
. . 

d 1 d d ··ff ~ 1 .. 85.. . t:. .. h an ,. a o\,zer or er l..erentl..a equatl..on l.S sougu.t to approX1mate t e 

higher order one, the latter being ob.tained Dy considering too many grid 

points or state var.iables. 

In optimal control synthesis, numerical techniques, such as dynamic 

. 84 d" ~ I .. hm 1 db" l' programmLng an LteratLve a gorLt s, are emp oye to 0 tal..n so utl..ons 

1 · f" 96 for non-ana ytl.C cost unctl-ons • .Using reduced models92 ,93 here will 

result in spee.ding up the iterative processes and economising storage 

and computation. Allwright9.1 has used low. orde.r models to determine. 

stopping criterion for optimisation algorithms and Chapman94 has used them 

to speed up iterative algorithms. Mitra82 and Aoki are probably the first 

to perform an analytical study of using reduced models in optimal control 

problems. Specific examples, like the linear optimal regulator82 and 

linear tracking problems, are studied in terms of performance deterior-

83,96 h h b .. 1 11 d· d· d d 1 ation w en t e su -opt1ma contro er, esigne USJ~g re uced mo e s, 

• d97 ,99,105 15 use • Aoki83 also first gave a stability tfleorem for SUt1-

optimal controllers,designed using a class of reduced models, the latter 

being obtained by projective reduction methods only. Following Mitra 

and Aoki, some papers began to appear~investigating the performance and 

stabili.ty of sub-opdmal controllers involving certain classes of 

projective reduction methods only95,98. 

Perhaps the rost popular use of reduced models is i.n designing a 

controller for the. general mu1tivariahle systems. The effectiveness 

of using reduced models in controller design, in terms of stability 
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and performance, using frequency response methods have not yet been 

thoroughly investigatedl • Associated with multivariable frequency 

d " , d 1 f d· 1 d • 108 (1'"' AC) h eSl.gn, l.S mo e re erence. a aptl.ve contro eSl.gn ·U\A. T 0. 

design philosophy of Linear MOdel Following systems is to control the 

plant in such a manner such that its response follows that of a modelllO • 

D~e to practical limitations1perfect model followingtis impossible, hence 

adaptive characteri.stics are implemented in the control loop to accommodate 

changes.in the. plant, due to parameter changes or external disturbance, 

so that the response. of the plant still follmvs ttlat of the model as close 

'bl 109. as pOSSI. e • ShalDedl07 has studied the. stability of linear model 

follovling systems, using reduced and original models, but, the application 

of reduced models in }fRAC systems is still noyel, and, few investigati.ons 

. 108 
have been made . • 

't' "t 100-104,106 • d Parameter sensl. l.Vl. y 1.8 a stu y of how closed loop 

parameters vary as a whole when an e.xternal disturbance is injected. 

; 
I 
~" 

~ 

( 

[ 

f 

f 
. t 

i, 
I 
! 

·1 ·d ,. f ~ In a control system, l.t pays a great part l.n eterml.nlng syst(~m per .ormance ; 
I. 
f I 

and stability, and, the application of feedback tends to .reduce sensitivd~O' 101: 

using reduced modelslOl in the. feedback scheme, will reduce the sensitivity . t 

of parameters as there are. few parameters in the. reduced model. Towi1l104 

and Hehdi have used low order models to predict the sensitivity response. of 

an aircraft system. 
• 106 103 In some aspects of optl.mal control ' ,a1para-

meter sensitivity! model is modelled separately from the dynamical model 

to enable better analysis of the whole system. K k ,100 d S ' o otOV1C an annutl. 

have used reduced models in optin~l control studies, where a reduced 

analytical model would result in a reduced 'parameter sensitivity' mode.1. 

Conclusions 

The surv'cy covered ahove is thorough, hut not exhaustive or detailed. 

Neither is it intended to be.· References land 2 list a wide rcfl.!rence 
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of reduction techniques and reference I gives some account of their 

applications. The ratio of published materials l on treduced model 

applications t to tbat on reduction techniques is comparatively small. 

Regarding the former, it seems that more empnasis is devoted to studying 

sub-optimal controllers, involving reduced models of a restrictive nature 

only. 

The next few chapte.rs investigate some lnethods of reduction, and the 

use of reduced models, outained by any reduction techniques, in the general 

multivariable control systems problem, in terms of performance bounds, 

sensitivity and stability. 
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CHAPTE R II I • 

SOME FREQUENCY RESPONSE METHODS FOR LINEAR SYSTE~1S REDUCTION 

Introduction 

In this chapter some frequency response methods are presented for 

linear systems reduction. The current trend in designing multivariable 

systems in the frequency domain yi.elds promising results, thus some insight 

may be gained relating design and reduction when the latter is considered 

in the frequency sense. 

Frequency response methods for reduction of single input-single output 

systems are not new, but, the' appro'ach given here is different from those 

reviewed in the last chapter. All frequency methods used in the past 

consider the amplitude and phase characteristics of a single sinusoid 

passing through a linear system and finding some ways to construct a 

reduced model whose response would approximate the characteristics9 • 

Guillemin's approach in approximating feedback system's design, considers 

input-output time waveforms, and, decomposes them into their odd and even 

Fourier components, with individual amplitudes and phases
l

• An approx-

imate system is synthesized by considering the effect due only to certain 

harmonics. However, the method is rather crude as a pure time delay 

function has to be approximated, and, tedious, if the system is not a low 

pass filter. Also, at the end of the synthesis it can yield an unstable 

system with right hand side (r.h.s.) s-plane poles. 

The method given here is based on harmonic decomposition of time 

. waveforms for single input-single output systems, and, the approach to the 

problem is entirely different from that of Guillemin t s. After reduction 
. 

a low-·ordp.r stable reduced Dlodel is obtained. It is shown that the method 

can be extended to multivariable systems in two \..rays • Th~ first way is 
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by using the principle of superposition and cnu3e-effect relationshipS. 

Th d • ~ h h •• 1 •6 f f f ° e secon way 15 V1a t e c aracter1stlc Del 0 a square trans er unet1on, 

the latter being a natural extension of the Nyquist locus for a single 

input-single output syst~n. 

3.1. .Harmonie synthesis of single input-si"ngle output systems • 

. The problem consiuered is shown in fig. 3.1 where H (jill) and 
o 

H (jill) represent the original and reduced model transfer functions of order r . . 

nand r, respectively. The time domain input signal is extended to be 

periodic, of period 2T, from -00 to +00 , and, is assumed to satisfy 

Dirichlet's condition, Le., having a finite number of discontinuities in 

any interval. By superposition, the steady state response of the kth 

output Fourier harmonic is related to the same input harmonic by the cause 

effect relationship, 

H (s) r· = 

If H (s) is represented in the form 
r 

P 
K . IT (s+z.) 

r, i=l 1 

l-p 222 IT (s +2a1 s+a. ~b. ) 
i=l· 4 1 1 

q r-q 
IT (stp.) IT (s2+2c.s+c.2"d,.2) 

j=l J j=l J J J 

(3.1) 

(3.2) 

its amplitude-phase characteristics can be conveniently written as 

P 2 2 
J( IT (w. +z. ) 
0'I' • 1 1<. 1 

1= 

£-p 2 2 2 2 2 
IT [(a. +b. -w. ) +{2a.w.} ) 

. 1 111 1 l<. 1= 

g 2 2 
IT (~+p.) 

r-q 2 2 2 2 . 2 
II [(c. +d. -tlk ) +(2c.~) ] 

j=1 J j =1 J J J 

(3.3) 
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r-q 2 2 2 
~ arg(jwkc.+c. +d. -~ } (3.4) 

j=l J ~ J 

H (s) can similarly be represented as in eqn.(3.2) and both H (s) 
0 0 

and H (5) are assumed to be stric.tly proper, i.e. IR (5) I .;. 0, IR (8) I -+0 r r 0 

as s .->a> • Thus H (s) and Ii (s) can be considered as low pass filters and 
0 r 

heavily attenuate high frequency signal amplitudes; the degree of 

attenuation depending on the pole/zero distribution and the value of r-R.. 

A reduced model is constructed by considering the effect due to the first 

few harmonics, as the response due to the higher harmonics are relatively 

less significa.nt, and, minimizing the error criterion, 

E .. T 
/ (y (t) - Y (t»2 dt o r (3.5) 
o 

The upper bound in the integral is finite due to the periodic nature 

of the input. The output due to the first h harmonics can be written as, 

eqn. (3.1), 

h 
y (t) .. 1: frk Sin (~t + ~rk) r k=l 

(3.6) 

h 
Y (t) = ~ fok Sin (Ilk t + 4> ok) 

0 k .. l 
(3.7) 

where frk .. (\.2 + Bk 2) ~ IHr(j~) I (3.8) 

~rk .. argllr(j~) + tan(L\/Bk) (3.9) 

and similarly·for fok and ~vk' where appropriate substituting the subscript 

r by 0 in eqn~(3.8). 

i.s . given by 

The optimum value of an unknown parameter e of U (s) 
r 



= 

- 50 -

T 
r (yo (tl - yr(t)} ayr (t}j()6 == 0 
o 

As there are no dis.continuities in the output waveform, its 

derivatives converge, hence from eqn. (3~6), 

where 

ay (t);aS = 
r 

tan y ::: rk 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

A maximum number of 2(R.+r)-(p+q)+1 equations in the form of eqn. (3.11) 

ean be obtained with e ~ zi(i=l, •• p), ai' bi(i""l, ••• .t~p), Pj(j~l, •• ·.q), 

c., d.(j=l, ••• r-q) and K. The derivatives af k/as and a~ k/as are 
J J r r, r 

obtained from eqns.(3.8) and (3.9) via (3.3) and (3.4), 

af ktaK ::: f k/2K a4> k/aK ::: 0 r r r r r r 

af k/az. 
2 2 2 2 

::: z.f k/(~ +z. ) a~rk/azi ::: - ~/(zi +wk } r 1. 1. r 1. 

af klaa. r 1. 
= 2a. Nf . f I IT . 

1. 81 r <. n1. a4> klan. ::: 2~N4> ./T . r 1. a1. n1 

Of k/ab. r 1. 
I: 2b.Nfb .f kIT. 

1. 1. r 111.. aef> k/C)b. r 1.. 
""-4a.b.~/T • 

1. 1.. nl 

Of k/aP. 
2 2 

a~ k/C)P, 
2 2 = -p.f k/(P. +~ ) "" ~ I (p j + C!1<. ) r J J r J r J 

Of k/ae. 
r J 

::: - 2e.N f .f k!Td . 
J . CJ r J 

aej> k/ac. 
r J 1:1 -2u\tN cf>cj IT dj 

af k/ad. 
r· J 

= - 2d.Nfd ·f 1 lTd' J . J rt J 
, acj> k/dd. 

r· J 
:: 4c. d.II\JTd . 

!)' J J 
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where N
f 

. 
2 2 2 = a. + n. +'\. al. 1. 1. 

Nfbi 
2 2 2 = a. + b. - '\. 1. . 1. 

(3.14) 

N
f 

. 
2 2 2 = c. + d. +"1<: CJ J J 

Nfdj 
2 2 2 

:: c. + d. - W 
J J k 

N¢ • 
222 = b. - a. - ~ al. 1. l.. 

Nc/> . 
2 2 2 = d. - c. -w 

CJ J J k 

T 2 2 
ni = Nfbi + (2 Cti '\.) 

Tdj 
2 2 = Nfdj + (2c

j
w
k

) 

The following trigonometric relations are used in the simplification 

belDlv 

A sin(x+a}+B Sin(x+6) = C Sin(x+y) (3.1Sa) 

2 Sin(x) Siney} :: Cos(x-y} - Cos(x+y) (3.1Sb) 

A Sin (x+o:) + B Cos (x+S) = R Cos (X+A) (3.1Sc) 

Substituting eqns. (3.6), (3.7) and (3.11) into eqn.(3.10) gives, 

T h h. o. 
! {l: f kSin(wkt+c/> k)- 1: f kSin(w t+c/> k)}{ I: F .Sin(w.t+~ .+1/1 .)} dt 
o k=l 0 0 k=l r k r k=l rJ J. rJ r1 

(3.16) 

Simplifying the first bracketed expression in eqn.(3.l6} using eqn. 

(3.15a)'l'ields, 
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T h h. 
r 1:. E h.. F .Sin(w1,t+n }Sin(w.t+tj> • .J.$ .)dt .... 0 
o k.=l j=l k rJ . ~ K. J rJ rJ 

(3.17) 

where (3.18) 

Using eqn.(3.15b) in (3.17) and integrating over the half period T t 

1 h h 
-2 1:. 1:. {Sin[(wk-w.)T-~ .-1/1 .+ckJ -Sin(-cj> .-1jJ .+ok)}F .A. I(w. -w.) 

k=l j=l J rJ rJ rJ rJ rJ-k 1<. J 
j :f'k 

1 h h 
- - E 1:. {Sin[(~+w.)T+cj> .+1jJ .+ok] -Sin(cj> .+1/1 .+ok)} F .~/(~+w.) 

2 k=l j =1 J rJ rJ rJ rJ rJ J 
jtk 

h -i k:1 {Sin(2~\T+cj>rk+1/1rk+ok)-Sin(cj>rk+1/1rk+ok)} Frk~/2~ 

(3.20) 

Simplification with eqn.(3.15a) yields, 

h h h h 
1: 1: l\.F . 

k=l j=l J rJ 
Ak Sin(Sk'-~ .-1/1 .+ok)- E E Pk·F. ~Sin(~ .+4> .+¢ .+ok) 

J rJ rJ k=l j=l J rJ KJ rJ rJ 
j:/k jlk 

h h 

- k:1PkkFrk~Sin(Ckk+~rk+1/1rk+o~)+T k:1FrkAkCos(ok-cj>rk-l/Jrk) 0: 0 (3.21) 

where 
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(3.22) 

. Using eqn.(3.l5a) on tht first two expressions and eqn.(3.l5c) on 

the last two expressions in eqn.(3.2l), further si.mplification yields, 

h h 
>.: >.: '\Tk' 

k=l j=l J 
(3.23) 

jfk • . 
2 

h n = K2j p2 2 ~t P C [2(~ ",} C S ] were vkj -k + kj- L'Kj kj oS't'rj +'I'rj + kj- kj . (3.24) 

(3.25) 

(3.26) 

tan(nk.);{K .Sin(Sk·-cp .-ljJ .)-pk.Sin(Ck .+¢ .+ljJ .)}/{K .Cos(Sk'-CP ,-ljJ .) 
J kJ J rJ rJ J J rJ rJ . kJ J rJ rJ 

- Pk,Cos(Ck ,+¢ .+~ ,)} 
J J rJ rJ . 

(3.27) 

Eqn.(3.23) represents a set of non-linear equations with a maximum 

nurrher of 2(!+r)-(p+q)+1 equations and the same number of unknowns, whose 

solution gives the optimal parameters of eqn.(3.2) in the sense that 

eqn.(3.5) is satisfied. Although eqn.(3.23) is complete and compact by 

itself, a simpler approximate. solution to the model reduction problem can be 

obtained by discretizing and minimizing cqn. (3.5), i.e. 

E 0: min < y (t) - y (t), Q(y (t)-y (t»> oro r (3.28) 
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and Q -= di,ag' {ql ,Q2" ·qN} is' a weighting matrix of N samples. 

(3.16) and G3.17} ¥oCti } and yrCtil can be expressed as 

k 

= t iSk. Sin{~ti+akl, 
k.=l . 

y (t.l-yr(t.} o 1. 1. 
1 < i < N 

From eqns. 

(3.29) 

3.2 Choice of operating frequency, inputs, and numerical feasibilities. 

The operational (fundamental) frequency is chosen as wo=1f/T, T ~ '[~, TR, 

being the largest time constant of the process, such as to ensure. that all 

modes are excited' sufficiently to give. good dynami.cs. For a system with 

dominant poles, it is necessary only to consider the first few important 

harmonics. The corresponding 'frequency range of interest' or the 

'critical range', which lies above W , where curve fitting takes· place,ia as o 

shmm shaded in fig.3.2. If the system has non-dominant modes, the 

critical range can be widened or shifted over a particular region so as to 

give better accuracy to the time domain response of the system. This of 

course depends on other factors. chiefly, on the spread of the eigenvalues. 

The critical range is proportional to the latter, as W is proportional to 
o 

the smallest eigenvalue. 

The Levyl and associated methods9 attempt to rit frequency data of 

similar amplitude and phase over the entire spectrum. This is undesirable, 

in the sense that difficulties are encountered when the band spreads over 

several decades, and, poor fittir.g is achieved in the low frequency region 

(corresponding to the sub-harmonic region, in fig.3.2). Both difficulties, 

however, can be alleviated by studying the eigenvalue distribution, then 

choosing a sufficiently large w , and, focusiIlg attention over a small, but 
o 

relatively high band,.,idth of interest. It can be argued with good 

justification that ignoring the high frequency region will result in poor 

initial time transient fitti.ng, while ignoring the low frequency rcgi\'!fl wi 11 

result in large steady state errors. 



H (jw) 
r rv- ¥\p, Yr(t) 

uCt) ~-
-"" "-r 

~(+ 
., eCt) 

yet) 
0 

aSjt..l) 

Fig. 3.1 Arrangement for Reduction by Harmonic Synthesis 

Fig. 3.2 Diagram to illustrate Harmonic Synthesis method 
and bandwith of interest 

sub harmonic region 
(~ow frequency) 

:., 

frequency range of interest : 
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The input function can be any convenient test signal but if it has 

a finite number of singularities, example for a square wave, the Gibbs 

phenomenon can occur at points of discontinuities in the Fourier 

representation of the signal. To suppress the oscillations due to the 

Gibhs phenomenon, the Lanczos damping factor~in ~a, can be weighted to 

the signal, 

h . 
f(t) ... lAo + k:I{Sin(k1J~!2h)/(k1T/2h)}{J\.COS(~t)+~Sin(~t)} 

(3.30) 

This is necessary as the output accuracy depends on the faithful 

representation of the input. The modification to eqn.(3.30} will reduce 

the oscillations by a factor of nine. Alternatively, the singularity 

problem can be overcome, by joining two discontinuous points by a straight 

line of very hi.gh but finite gradient. Impulse inputs can be approxim~ted 

by triangular functions of·very high an~litude and low base. The distance 

between two 'impulses' would depend on the time constants of the system. 

Stochastic signals can be difficult to simulate, but, as was indicated 

(Heier 1967)9, white noise and impulse inputs are equivalent. 

The reduction method presented, differs from the Levy and associated 

techniques, in the scnse that integration i.s done in the time domain, on 

the Fourier representation of the signal of different amplitudes and phases. 

The Levy and associated methods9 consider system response, due to a single 

sinusoid of constant amplitude and phase, and integration is done in the 

frequency don~in over a spectrum of interest. A correlation of the method 

and that of Levy is shown by the dotted line joining vadous frequency points 

on the solid line, in fig.3.'-. 

To flUeviate numerical difficult~~s associated with the large numher 

of paTRmeters in the nonlinear equations) 9. dominant poles can be retained, 
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and the remaining r-t poles and other zeroes found one at a time to give 

the best transient .response. Thus the order of the model is updated 

sequentially, one by one, from unity to r. Since the success of most 

minimization routin.es and the solution of nonlinear equations depend very 

much on initial parameter estimates and proper problem presentation, the 

initial parameters can be estimated "rith the aid of the phase-amplitude 

criterion in the s-plane by noting the response due to the fundamental 

harmonic. The local optimum is then expected to lie in the vicinity. 

Most singularity problems associated with the nonlinear least squares 

equations are merely computational, in that part of the intergrand of 

eqn. (3.17) can take an. infinite value at some point, when the integral 

itself at that particular point is finite. Associated with eqns. (3.23) 

and (3.28) are eqns.(3.1) and (3.l4}, and, it is observed that slngular 

points can occur in th.e form arc tan [N(al/Dca)] (where N(e) ~ RealeS), 

D(O) ~ t.. 2 2 2 t.. 2 2 2 • 
p., or = a. +b. -~ , or = c. +d. -hl }, when a pole or a zero 18 
J 1. 1. k J Jk 

at the origin, when a pole vector equals to a harmonic value, or when a 

pair of complex poles lie on the imaginary axis causing resonance. The 

singularity problem can be overcome in the first few cases by assigning 

arc tan [N(e)/D(8}] =TI/2 and the phenomenon of resonance can be overcome 

by constraining complex poles off the imaginary axis. 

To ensure that a stable reduced model is obtained, poles are 

constrained in the 1.h.s. s-plane, anr:l \-,here possible, also off the 

imaginary axis, as an oscillatory model is often undesl.rable, when a regulator 
re.21 

system is needed. The reduction wethod i.s such that initialAPole/zero 
Tfal 

estimates will remain as finalAPole/zeros and, initial complex pole/zeros 

will remain complex in the end, or take the form of double poles. This is 

advantageous to the designcr working in the frequency domain in the r.ensC 

that system performance can be specified by pole allocations. 
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3.3 Multivariable sys.tems and characteristic loci. 

The single input-single output reduction·method above can be extended 

5 to multivariable systems, as follows • For aG~xm) multi variable transfer 

function matrix Gr(s) , the ith output can be written as 

y • (5) 
r~ . 

m 
:: 1: 

j=l 
g •• (S)U.(5}J 'Vi 
UJ· J 

(3.31) 

h ( ) • h •. th 1 'f () were g •. s ~s t e ~J e ement 0 Gr s. r1J. By superposition, each term 

in the r.h.s. of eqn. (3.31) can be. considered independently, but, also 

preserving the interaction scructure of G (s), i.e. f .. (w) = f . . (w) and 
o r1J o~J 

m •. (w) = m .. (w), where f .. (w) = Is •. (s)I.:.,../ls •. (5)1, f •. (w) = 
r~J r~J r~J r~J lrJ r~1 O~J 

Ig .. (s)I·.t·/lg •• (s}1, m .. (w) = Ig .. (s)I'.t./lg .. (s)1 s.nd m .. (w) = 
OlJ lr-J 011 r1J r1J. lrJ rJJ OlJ 

Ig .Js)I·.t·/lg .. (5)1. This is important in terms of stability for the 
OlJ lrJ oJJ I 

original model when design is made on the reduced model (the proof and 

derivation will Be given i~ Chapter VI). The diagonal elements g •. (s) 
rll . 

are found as outlined above in section 3.1, and, g •. (s) i.s generated by 
r~J 

minimizing 

J = w 
2 2 In{[f .. (w)-f .. (w)] +[m .. (w)-m .. (w)] ) dw 

u n.J OlJ . . rlJ OlJ 
(3.32) 

over a selected band\",idth of interest, n. 

The second method of extending the frequency response reduction method 

to multivariable systems is by considering the characteristic loci, Poj(s), 

of G (s) (assuming G (s) is square), as P .(s) is a natural extension of 
o . 0 . OJ 

6 the Nyquist plot for single input-single output systens. Si.nce P . (s) 
. OJ 

determines the dynamical behaviour of G (s), G (5) can be constructed such o r 

that P. approxi.mates p • (5) over all possib 1e frequency ranges. A 
rJ oJ 

feasible method of achieving this is to expand p .(s) about a certain point 
OJ 

by perturbation, and, then construct ~ .(s) by neglecting certain terms of 
rJ 

h . 3,4 t e expanSlon. 
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t:. 
Le t G (s} :; G (6, €: ) = G (5, e:) be analytic in the region I €:-e: I <R, r , roo 0 

11 where e: is a variable in terms of s such that Go(s,c)-+Go(s,e:o} = Goes} 

as e~e and c can be taken as zero where abritrary. Since p .(S,E) of 
o 0 OJ 

G (s,e) depends continuously on G es,e}, such that p .(s] j P .(s,c)-+p .(s,e ) 
o 0 rJ OJ OJ' 0 

as e~E , then p . (S,E) is also analytic in, IE-e: 1< R. If P • (s,d is 
• 0 OJ . 0 OJ 

unrepeated for all s, it can be expanded as 

p .(s,e:) 
OJ 

= (e:'-e: ) i p • (i) (6 e: ) 
, 0 OJ ' 0 

(3.33) 

where p .(i)(s,e:) is the ith Taylor derivative, with p .(o)(s,e) = 
OJ . 0 OJ 0 

P .(s,e), G (s,e:) and the characteristic. vectors, a.' .(s,e)E. Nsp[p .(s,e:) 
OJ 0 0 OJ . . OJ 

1-G (s,e:»), f3 .(s,e) E. Nsp[p . (s,e}I-G t(s,e)], where Nsp means 'null space 
o OJ, OJ 0 

of' can similarly be ",ritten as, 

Go (5, c) 

ex .(s,e) 
oJ 

f3 .(5,e:) 
oJ 

:: 

= 

co 

E 
i=o 

ex> 

E . 
1=0 

E 
i=o 

i (e:-e: ) G (i) (5 e ) 
' 0 o ., 0 

i (e-e; ) ex • (i) (s e ) 
0 OJ ' 0 

(e:-e )i 6 . (i)(s e:) 
o 'OJ ' 0 

Furthermore, a .(s,e) can be defined by normalizing such that 
OJ 

E 
i=o 

i (e:-e: ) 
o 

t (') 
f3 • (s,e: )a . l (s,e ) :: 1 

OJ 0 OJ 0 

t and since f3 • (s,e: )a .(s,e: ) = 1, it follows from eqn.(3.37) that 
OJ 0 oJ 0 

~ .t(s,e: ) a . (i}(s,!': ) = 0, 
OJ 0 oJ 0 

i ~ 0, Vi 

(3.34) 

(3.35) 

(3.36) 

(3.37) 

(3.38) 

The index'e: in the coefficients above represents the unperturbed 
o 

components and for notational convenience it will be dropped, as hCl::eforth 
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it is understood that Go($}, p
oJ

' Cs) mean G (s,c ), p • Cs,e: ) etc. Since 
o 0 OJ 0 

G Cs,c} a. .(s,£l'" p .(S,E) a .(S,E) (3.39} 
o OJ OJ oJ. 

substituting the perturbed quantities from eqns. C3.33) to (3.36) in eqn. 

(3.,39) gives 

en co. ex) co 

1: 1: (c-E:) t+kG (~) (s) a • (k) (s) = 1: 1: (e:-e: l Uk P . (R.) (5) 
9.=0 k=o a 0 OJ· t=o k=-o 0 OJ 

Equating coefficients of (e:-e: )m gives 
o 

where 

(p .(s)I-G (slla. .(rol es ) = h(s) 
OJ 0 OJ 

m 
h(s) = 1: 

t=l 
(G (i)(s)_p . (t)(s)I)a . (m-i)(s) 

o oJ oJ 

(k) ( l a. 5 
OJ ' 

(3.40) 

(3.41) 

and m ~ 0, b(s) = O. Premultiplying both sides of eqn.(3.4l) by ~ .t(s) 
oJ 

yields 

~ e .t(s)(G (i)(s)_p . (i)(s)I)a . (m-i)(s) 
i=l OJ 0 OJ OJ 

a 0 (3.42) 

"[ t 1 as e .(s) c'Nsp p .(s}I-G (s)J. 
OJ OJ 0 

The orthogonal condition of eqn.(3.38) and 

the quasi-biorthogonal condition e .t(s)a. .(s) = 1 give 
OJ OJ 

p • (m) (8) = 
OJ 

(m-i) ( ) a. • s OJ 
(3.43) 

Since a unique solution vector for a. . (m) (8) in eqn. (3.41) exists if 
OJ 

h(s) € Rge[p .(s)I-G (s)], where Rge means'range of', it can be formulated 
OJ 0 

in tern~ of the spectral propertip.s of G (5) in Nsp[p .(s)I-G t(s)] with 
o OJ 0 

B • et) (s) quasi-orthogonal with h(s). Hence from cqn. (3.41), a • (m) (s) 
OJ OJ 

is given by 

a • (m) (s) 
oJ 

= 
p 
E 

k=l 
k#j 

d
k 
r 

q=l 
(q-1)! Zk (s)h(s) /(p • (s)oop 1 (s»q 

q OJ o~ . 
(3.44) 
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where p . (51 has. linear elenlentary divisor, p is the numher of 
OJ 

distinct loci and d
k 

is the inde.x of p ok (s) 

Proof: Define 

p '1t 
E(s) = 1: I: q (q-l)! Zk (s)/(p .(s}-p k(s)) 

q . oJ 0 
(3.45) 

k=l q=l 
k+j 

where Zkq(S) are linearly independent component matrices of Go(s}. 

By the spectral resolution theorem, 

P dk 
~ ~ fk (q-l) (s) Zkq(S} 

k=l q=l 
(3.46) 

be e>q)ressed as 

G (s) = o 
(3.47) 

d
k 

NOvT 
. p q 

E(s)(P .(s)I-G (s})={ I: ~ (q-l}!p .(s}Zk (s}/(p .(s)-p k(s)} } 
OJ 0 k=l q=l OJ qOJ 0 

p \ 
~{1: 1: 

k=l q=l 
k~j 

k+j 

P 
(q-l)!Zk (s)/(p .(s}-p k(s»q} 1: (p_ls)Znl(S) + Z~.,(s» 

q OJ 0 1=1 l1V ~ ~ 

Using the properties that Zkp(s)Z~r(s) = 0 if k F 1, the second 

expression on the r.h.s. of eqn. (3.48) simplifies into 

p dk P 
d . 
k 

(3.48) 

{ 1: 
k=l 
k/j 

1: (q--1}!p k(s)Zk (s}Zkl(s}/(P .(s}-p 1 (s»q}-{ 1: 
q=l o· q OJ 0 ~ k=l 

1: (q-l}!ZkQ(5}Zk2(s)/ 
q=l 

kt'=j 

(poj(s)-po~(S»q } (3.49) 
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Now 
q-1 . 

Zk Csl ,:: (G (s) - P I (s11) Zk1(s)} (q-l) ! q '0' ot . (3.50) 

Combining the first term on the r.h.s. of eqn.(3.~81 with that of 

expo (3.49), 'and using eqn. (3.S0), and remembering that Zkl (s) is idcmpote,nt 

and commutes with G (s), the r.b.s. of eq~.C3.48l becomes 
o 

P 
I: 

k=1 
k~j 

\-,Yhich can be written as 

(3.51) 

p P dk 
E Zk1(s} - ZJ'1(s) + I: I: (G (s)-p k(s)I)q-l Zk1 (s)!(p ,(s)':p , (s»q-l 

k::l k=l q=2 a 0 OJ o/.(. 

kf:j 

q ~ 
- E E 

k=l q=2 
k~j 

d 
1 '1 P k ~ (G (sl-p kCs}I)q- Zkl(s)/(P ,(s)-p ,.(s»q- -. I: (G (s)-p k(s)I) Z (s) 

o 0 OJ o~ k=l 0 a kl 
kf:j 

q-l 
(poj(s) - Pok(s» (3.52) 

d
k 

Since Rge [Zkl (s)] = Nsp [(Go (s)-p 1 (s}!) ], it follows that 
d 0(, d 

(G (s)-p k(s)l) k Zkl(s)y(s) ... 0, for some yes} i 0, hence (G (s}-p (5)1) k 
a 0 a a 

Zkl (s) .. 0. Therefore the last term of eqn. (3.52) vanishes, and, since 

~ Zkl (s) ,.. I, equ. (3.48) is simplified into 
k=l 

E(s) [p ,(5) - G (g)] :: 
OJ 0 1 - Zjl (s) (3.53) 

Premultiplying cqn. (3.41) by E(s} and cubstituting eqn. (3.53) 

(1-Z, (s»ex ,(m) (s) = E(s)h(s) 
J1 OJ (:.54) 
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. If the index d. of P • (sl = 1, from the spectral resolution theorem 
J OJ 

and Lagrange polynomials Zjl (s) is the sum of constituent matrices 

a. • (5) (3 • t (8) associated with p • (sl, thus Z.1 (51 a. • (m) (81 = r a . (s) 
OJ oJ oJ J oJ • 1 o~ 

(3 • t(s}a . (m) (51. A solution vector a . (m) (5) is sought Suc~=that 
o~ oJ oJ . 

(3 .t(s)a . (m)(s) = 0, (eqn.(3.3811, for every 8.(sl € Nsp[p .(5)I-G t(s)] 
01.· OJ .. ." Oil. o~ 0 • 

Hence Z"l (s) a • (m) (5) = 0, thus eqn. (3.54) reduces to 
J . OJ 

which is eqn. (3.44). 

a . (m) (g). = E(s}h(s) 
OJ 

The idempotent matrix Zkl (5) in the r.h.s. of eqn.(3.50) can be 

conveniently computed by the Lagrange Sylvester interpolatory polynomial as 

p P 
Zkl (s) = IT (G (s)-p k (s}I)/ IT (p . (s)-p k (s» 

k=l 0 0 k=l OJ 0 
(3.55) 

k~j kl=j 

Eqns. (3.43) and (3.44) can be used alternatively with m=l,2, ••• to 

find the coefficients p . (i)(s) and a • (i)(s) in eqns. (3.33) and (3.35), 
OJ OJ 

using also eqns. (3.50) and (3.55) 

into 

For simple Go (s), ~ = 1 for all P ok (s), then eqn. (3.41~) simplifies 

a . (ro)(s) = 
OJ 

P 
IT Zk (s)h(s)/(p . (s)-p k(s»q 

k=l q OJ 0 

kfj 

(3.56) 

The first coefficients p . (1) (5) and a . (1) (s) in equs. (3.43) and 
oJ oJ 

(3.44) can be simplified as 

p • (1) (5) .. < 8 . (5), G (1) (5) a . (5) > 
OJ OJ 0 oJ 

a. • (1) (s)=E(s)h(s)=E(5) (G (1) (s)-p • (1) (s}I}a (s) 
oJ 0 oJ oj 

c:E(s)G (1) (s)a • (s) 
o OJ (3.57) 



- 63 -

as E(s)o. • (51 = E(s) l:. (0.. (slB . t(5))CI. • (sl -= E(s}Z (sl~, after 
oJ i=l 01 OJ.. . OJ jl 

substituting for E(s) in eqn. (3. 45) as Z (s)Z. (sl -= O. Higher 
kq Jl 

coefficients a • (m)(SlCan thus pe built on tIle simplified fonus of c: • (1) (5) 
OJ OJ . 

in eqn. (3.57) 

3.4 Relation to the model reduction probiem. 

A reduced model Gr(s) can be constructed from Go(s) by approximating 

p .(5) by P .(5) and minimizing toe error criterion 
OJ rJ 

over a spectrum n, where the dimension of the error vector 
and 

to the dimension, m, of Go (s); APe (w) = (Pel (w), p e2 (w) , ••• 

where p .(w) =Ip .(s) - p .(6)1 
CJ . rJ oJ 

Further from eqn. (3.33), 

p • (w) 
eJ 

= I L 
i=l 

(e:-e: }i p • (i) (s) I 
. 0 OJ 

and Q 0:: diag {q1 ,q2'" .qn} is a weighti.ng l1k'ltrix. 

(3.58) 

p (w) is equal 
e 

p (w) ) t • 
em 

(3.59) 

However, Gres) is non-unique for a given 5et of Prj(s), but, is 

uni.que for a given set of p • (5) and the corresponding characteristic 
rJ 

vectors a .(5),13 .(s). 
rJ rJ 

Hence to obtain a unique G (s), from a gcoL,etrical 
. r 

point of view, it i5 intuitively satisfactory to have 0. .(5),0. .(s) and 
oJ rJ 

8 .(s), B .(s) in close alignm~nt. 
oJ rJ 

Since Cos(a) :: <a .(s), a .(5» 1110. .(s) II Ella. .(5)11 E' oJ rJ oJ rJ' 

it follows that a suitable error criterion is to minimize the angle between 

the vectors 

where 

e (w) = 
a 

C! (w) = 
·8 

d(l) (3.60) 

<et • (s),et . (s» - 110. . (5) II Ell ex • (s) II oJ rJ OJ' rJ E (3.61) 

<13oj (5) ,Brj (5) > - II B oj (s) II Ell Brj (5) II E 
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The perturhation coefficients p • tiles} in eqn. C3.59} can be calculated 
OJ 

in terms of p • (al and a . (sl, however G (i) (8) in eqn. (3.34) can be found OJ . oJ ' 0 

recursively by numerical extrapolation taking small step lengths 

G (i+l) (s) ~ 
o ' [Go (i) (s,e+Ae:) - Go (i}Cs,e:>.]/lI.ele=€ 

o 

and tir:. can be chosen as 

Ar:. = 1\ Go (s>.11 - \I Grk (51 II 

(3.62) 

(3.63) 

such that Grk (s)-?Go (s) as llr:.~ where Grk (5) represents tbe reduced model, 

Gr(s), in the kth iteration of the routine. 

If the perturbations of Go (s) are assumed linear in e:, Le. if 

G (s) = G (s,e) = G (s) + e:G k(s) where G k(s} is independent of e:, then roo . e e 

G (1)(5) = G k(s), where G k(s} = C (s}-G k(s), and, higher derivatives o e. e 0 r' 

G (i) (5) = 0, for i = 2,3, •••• (i:f1). Eqns. (3.43) and (3.44) yield 
o 

p • (m) (5) 
OJ 

= < ~ • (5) G (1) (s) a . (m-l) (s) '> 
oJ' '0 OJ 

a . (m) (s) 
oJ = 

(3.64) 

E(s) {G (1) (s)-p . (1) (s)I}a • (m-l) (s) 
o OJ OJ 

Using eqn. (3.64) avoids solving eqn. (3.62). l"urther savings in 

computation are achieved if the perturbations in p oj (s) and 

assumed linear Le. p • (i) (5) = a . (i) (s) = 0, Vi, i :I 1. 
OJ OJ 

a .(s) are also 
OJ 

A minimization routine with numerical integration can be used to solve 

eqns. (3.58) and C3.60) simultaneously to obtain G (5). 
r 

The solution can 

further be simplified by assigning constant values to e (s) and ears}, thus . a ~ 

treating eqn. (3.61) as an equality constraint and neglecting eqn. (3.60). 

Also, to ensure that p .(8) stays within the Gershgorin discs of G (s), 
rJ r 

the inequality constraints, 
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I Pdc. (s) - g .. (s.ll ~ I: I grij (5).1 rl .. l. itj 
(3.6S) 

I P rk (81 - gr j j (s II ~ 1: I g •• (s) I 
j:f-i rJL 

Vi, 'v'j, Vk 

are introduced. 

The accuracy in reduction can be determined by comparing the 

difference in open-loop response.' Now 

i.e. 

e(s) 

H e (5) = 

= Ge (slu(s) 

uH(s} GeH(s} 

(3.66) 

(3.67) 

wl"\ete e(s} = Yo(s),.;- Yr(s}, Ge(s} == Go(s} - Gr(s}, u(s1 is the input 

vector, and, the supersC'.ript H denotes the Hermitian matrix, eXaTnple . 
G R(s) =- G t (-s1. Premultiplying eqn. (3.66) by eRCs} and postll1ultiplying e e 

eqn.(3.67) by e(s} and combining gives,. 

eH(s}e(s}eR(s}e(s} == eH(s)H(s)eCs) 

i.e. lIe(s) II i &: < e(s}, H(s}eCsl >/< eCs}, e(s) > 

(3.68) 

(3.69) 

where R(s} &: G CS}U(s}GH(s) and U(s} = u(s)uH(s). 
e e The r.h.s. of cqn. 

(3.69) is a Rayleigh quotient, and, since RCs} is positive definite 

Hermitian, its eigenvalues ~ (s) are real and positive for e.ach s=jw. 

Courant Fischer'extremal bounds give 

The 

(3.70) 

Equality is observed in eqn.(3.70) in the ideal case when G (5) 
, . r 

... G (5), which implies y (5) = y (5), from which it is deduced that all oro 

n.(s) &: 0, and, the error in output response, e(s) &: O. 
J 
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For a multivariable system, it is difficult to a~sess the order of 

the model from the common denominator of its transfer function matrix. (unless 

the system is single input-sinr,le output) Working on the elements of the 

transfer function matrix leaves the order of Gr{a) uncertain, and, in general, 

the order of the final G (a) will be different from the order prcspecified. r 

If importance is stressed on a definite order of the final G (a), this can . r 

be achieved by workin~ on the state space matrices S (A ,B ,C ) of G (8). 
r r r r r 

For convenience, if Sr is ,?hosen in ca.nonical form, 

Ar =: diag(ar11t a 22, •• ,a ) r rrr 
Bt = 

r (b 1,b 2t •• b ) r r rr 

C = (c 1 I c. 2'" c ) r r r rr 

then G (s) can be written as 
r 

n 
G (s) = '~1(c .>~b i)/(6-8. . ,) r ~= r~ r r~~ 

(3.70a) 

c~. 70b) 

assuming arii is distinct. It is also desirable to impose the con

straint 

(3.70c) 

such that Sr is controllable and observable, hence a minimal realisation 

of Ores). The order of Ores) can thus be prespecified by the dimension of Ar • 

If the steady atate values were to be matched in C(s) B.nd Cr(S), 

then application of the final value theorem to eqn,(3.70l» gives 

n 

-(i~1 (cri> <bri)/arii)U = Y B.S. 

Some parameters arlit brit or Cri can be chosen to satisfy the 

equali ty const.~aint, cqn(3. 70d), and the rest found by a minimization routine 

used in matching the Characteristic Lot:..i.. 

For A not chosen in diagonal form, then G (s) can be written as 
r r 
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(~.70c) 

where 'Adj I is the adjoint of I (s) (= (sI - A) . ). 

Non square systems 

If G(s) is non square, i.e. the number of inputs is not equal t.o 

the number of outputs, reduction by the Loci method is still possHlle by 
. 

'squarinG' GCs), and proceed as before. This is done by assigning appro-

priate fictitious rows to B or columns to C such that G(s) is square. The 

corresponding fictitous rows of B or columns of C can b~ neglected afterwards. 
r r 

to yield a non square G (8). The fictitious input or output vectors 
r 

must be appropriatly chosen"such that their contributions are very small 

compared to the real input and output vectors. 
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Computational algorithm. 

The reduction can he done by the following algoritIun 

Retain some dominant modes of G (sl. 
o Fix ... : model order, 

ensure that it is physically realizable and choose inftial 

parameters for G (sl. via S (A ,£,C ). ·To simplify.the problem r r r r r 

some parameters may be fixed, example, to satisfy 8.5. error constraint. 

Evaluate Go (il Cs) by eqn: (3.62) and approximate Gr (s) C~Go (s ,E}) 

by eqn. (3. 34), till error term in the series expansion II En (s) II e:O. 

Use eqns. (3.43) and (3.44) to obtain p • ei) (sl and a . ei) Csl 
oJ oJ' 

i=1,2, ••• For G (i) (a) = 0, i=2,3,4, ••• , use the simplified 
o 

form of eqn.(3.64). 

(iv) Evaluate eqns. (3.58) and (3.60) by a minimization routine in 

view of the inequality constraint of eqn.(3.65). 

(v) If optiiual Grk (s) found, go to (vi), otherwise update Grk (s) 

and go to (ii), with k = k+1. 

(vi) Test for accuracy of y (sl by eqn.(3.70). 
r 

exit; otherwi.se,go to (i). 

If satisfactory, 

The advantage of using pe.rturbation analysis, in the above, is that 

the characteristic loci can be approximated to any degree of accuracy 

required, and, the eigenvalues of Gr(s) need not be calculated directly, 

by an eigenvalue subroutine, in every iteration of the algorithm; as the 

latter is tedious. However, the characteristic loci of G (s) must be o 

known for the reduction process. 

Repeated characteristic loci. 

If Go (5) is nonsirnple, i.e. if P oj (s) has n1ultiplici ty rn .such that 

pok(s,e:)-t})oj(s) as e:-+O for k = Yl'Y2""Ym' then pokes,£) is an analytic 

function of c1/m, l~m, in the regionlc-c I<r, and can be represented by o . 

the l?uis\;'ux seri.es in fractional pm·mrs of e:, 0(IEI 1
/ 2,}. 
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It can be s.how.n that onl¥ in special cases w.ben P oj (d has i.ndex 1, 

then Pok(s,e:) can he reduced, by Kato's reduction method, to the form3,4, 

wh~re'~lk(s) is an eigenvalue of Zl1(slGo~l}(slZl1(s}. Further, if hIkes) 

is also of index 1, a further reduction can yield 

[3.72) 

where h
2k

(s) is a characteristic value of Z (s} {G (l) (s}E (s) G (1) (s) +G (2) (s)} 11- 0 0 - 0 

In the special case, when G (s,e) is normal throughput in the 
o 

region 1 e:-e; 0 1 <r, then hlk (s) and h2k (s) have indices 1 for all k. By 

repeated use of the reduction process it is possible to nHke O{ 1 e: In+(1/n) }-+O, 

then pok(s,e:) in eqn.(3.72) becomes a Taylor series in integer powers of 

e:. 

In general the Puiseux series is numerically awkward to evaluate, at 

best the eigenvalues must be computed directly in every iteration of t.he 

minimization routine if G (s} becomes nonsimple at some value of frequency. r . 

3.5 Examples. 

The reduction methods discussed above are illustrated by two examples 

below. 

(a) The first example is a seventh order single input-single output system 

considered by Dorf, 

H(s) = (375E+03s + 312E+02) /(s 7+0.S364E07s6+0.4097EOlls5 

+ 0.7034E05s4 + 0.8537£0583 + 0.28143E07s2 

+ 0.331lE07s + 0.28125E06) 

whose poles are 

-0.09191, -2.0244 
+ + + 

j 0.9646, -7.6709 j 13.442, -32.08-j38.87 

and zero is -0.08333. 
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The harmonic synthes.i:l reduction method of section 3.1 was used, 

choosing the half period T = 20 seconds ( > 1/0.09191). A second order 

model 'vas required, and choosing initial pole estimates as -3.0!j2.0, the 

reduction procedure gave the final poles a~ -1.7101:!:jl.509, yielding the 

reduced model, 

UrCsl. = 0.612/(52 
+ 3.425 + 5.2) 

with the sum of squares err.or e.qual to 0.05183. 

'l'he response of HCs} and IIrCs) to a unit step input is shown in fig.3.3. 

The curve fitting is good with small steady state error. For comparison 

purposes, the continued fraction method of Chen and Shieh was also used, 

"lhich yieldeda model H (s) = (0.13s + 0.011)/(52 + 1465 + 0.0994) whose cr 

response is shO\m in the same figure. 

(b) To illustrate reduction by characteristic loci method, the multi-

variable system, G(s), considered by Nacfarlane in conunutative controller 

. 7 d 
des~gn, was use • 

2 gu (5) =(25 +35-1) Irs (s+l) (s+2l), 2 2 g12(s)= -2(5 +s-1)/s(5+l) (8+3) 

2 
g21(s)=(s +s-1)/s(5+2) 2 g32(s)= -(s -2)/s(s+1) (s+2) 

The characteristic loci and characteristic vectors of G(s) are 

PI (s) = 1/(s+1), P2 (S)'" 1/5(5+2) 

(\ t(s) I: (2/(s+I), 1) 02 t(s) = (1, s+1) 

and its characteristic polynomial is c.p. = s(s+1)(s+2}, hence G(s) is a 

3rd order model. 

A reduced second order model, G (s),was required; and observing G(s), 
r 

there is an infinite time constant present, which means that the response 

to a step input is unbounded. Since the infinite time constant dominates 

the response of G(s), it was retained ir. Cr(s). Tho canonical struc'''I.:re of 

S waf] chonen as. r A = diag( 0, a ~2 ). r rr.. 

B= 
[ 

br11 

1.0 
, . [:·.0 

C = 
cr 21 
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with some parameters fixed, to reduce the number of unknown variables. 

The initial unknown valueswere chosen as ar22 = -1.0, b
r11 

= 1.0. 

br12 = 1.0, cr21 = 1.0, cr22 = 1.0. Using a minimization routine, with the 

reduction procedure of section 3.4. gave. the final S as; 
r 

Ar =diag(0,-0.50a), B =f:0.4923 -1.00~ , 

L 1.0 0.4 J c = fi·o 
r LO.3149 

1.0J 
1.566 

which is controllable and observable. The final G (s) is. 
r 

G (s) 
r 

= r (0.5011s-o.250l}/ (S+0.508)S· 

~1.411S-0.018151/(S+0.5081S 
(-0. 606s - 0.5109/ (s+O. 508) sJ 

(0.J096s-0.1609l/(s+0.508)s) 

The response of G(s} and Gr(s) due to ~nit step inputs is shown in 

figs. (3.4a) to (3.4d). It is seen that the values of G(s) and G (s) r· 

coincides at infinity, except for gr22(s), the initial transient error 

being due to the difference in response attributed by the modes·0.508 and 

·1,-2. No eigenvalue subroutines were required in the reduction procedure, 

the eigenvalues of G (sl were computed directly from those of G (s). 
r 0 

Although the above complicated problem was simplified to yield the least 

number of unknown parameters, it nevertheless demonstrates the effectiveness 

of the method of reduction by characteristic loci. 

3.6 Conclusions. 

Two new methods of model reduction are introduced in this chapter. 

One uses the idea that a time waveform can be represented by its Fourier 

harmonics and reduction is affected by synthesizing its ha~onic components, 

in terms of its phase amplitude characteristics, for singl~ input single 

output systems. The approach to the reduction problem is new and it is 

shown how the proposed method differs from the Levy and associated frequency 

curve fitting techniques. 
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The other method, also novel, uses the concept of the characteristic 

function (eigenva1uel of a transfer function matrix, for a multi variable 

system, over the field of rational fractions in s. Since the dynamics 

of a system are dependent on its transfer matrix characteristic loci, it 

is intuitively felt that reduction in this direction provides a sound 

theoretical framework. This is justified oy the fact that the character

istic loci, is also related to mu1tivariable root loci, and, is a natural 

extension of the frequency response and root locus of single input single 

output systems. 

The methods are each illustrated by an example. 
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CHAPTER IV. 

SOME TIHE DOMAIN METHODS FOR LINEAR SYSTEMS REDUCTION 

Introduction 

Time domain methods of reduction like Mitrats and Wilson's (Chapter II) 

suffer from cOlnputational difficulties when large order systems are involved. 

This is due to the fact that the methods produce large matrices in matrix 

equations, and, problems arise in computer storage and numerical aspects of 

the solutions. The method of Marshall2 is also computationally unattractive 

for high order systems as it requires the computation of eigenvalues and eigen-

vector matrices, and, partitioning them for further manipulation. Besides, 

the method only yields accurate results if the neglected fast modes have 

small residues compared to those of the dominant modes. Otherwise, 

significant transient error can occur if the residues of the fast modes are 

numerically larger than those of the dominant ones. The same thing can be 

said of the method due to Davisonl • In practice, a system can have dominant 

residues associated with non-dominant modes. 

On the other hand, the Pade7 approximation and continued fraction methods 

are probably the most accurate and simplest methods, in terms of modest core 

requirements, ease in software implementation and number of computations. 

However, the methods can also yield unstable models and can fail in cases 

where the Pade approximation, for the required model order, does not exist. 

Towil14 and others have approximated a large system by r~placing 

certain poles by an equivalent pole or time delay. Marshall 3 et al used 

pole selection, time response and root-locus technique for systems reduction 

via interactive graphics. 

I 
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In this chapter, co.mhinations. of some of the above techniques are 

used to give some new methods of reduction where the model is approximated 

sequentially to yield the best type of response. Computational 

difficulties and storage problems inherent in the above methods are over-

come here. Further, one of the methods is design oriented, in that the 

poles of the reduced model can be made to lie in certain constrained regions 

in the l.h.s. s-plane. 

4.1 Moments and equivalent time constants. 

A single stable transfer function expression in terms of the ratio of 

two polynomials, can be isolated into its real poles and complex poles and 

their associated residues, respectively. The reduction analysis given below 

covers five parts, viz (a) reduction 

(b) complex modes to real modes, (e) 

of real modes to real modes, 
MO~ItS 

eomplexAto complex modes, Cd) real modes 

to complex modes, (e) existence of repeated modes. 

(a) Reduction of real mode to real mode. 

Consider a first order transfer function of the form 

(4.1) 

where a and b are real poles with real residues Rat ~ (assume Ra> 0, 

Ii, > 0). The impulse response of eqn. (4.1) is 

yet) - Ra exp(-at) + 1), exp(-bt) (4.2) 

Consider representing yet} by a single mode whose pole and residue 

are time dependent, i.e. 

Ra exp(-at) + \ exp(-bt) I: Rc (t)exp(-c(t)t) (4.3) 

The r.h.s. of eqn. (4.3) represents a time varying n~del. Replacing· 

R (t) and c(t) by constant values Rand c respectively, would result in an c c 

error e(t} .. yCt} - Rc exp(-ct}. One possible method of determining 
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optimal values for Rand c is by minimizing the criterion 
c 

(4.4) 

for an impulse input. This problem was ~tudied by Meier and Luenberger 

and others in the complex domain and by Wilson in the time domain. (see 

Chapter II). A set of non-linear equations result, and, if the poles are 

prespecified, the equations will reduce to a linear set with unknown 

residues. However, the error criterion in eqn. (4.4) is subjective and 

only restricted to impulse inputs. Also, parameters that are optimal in the 

mathematical sense may not be so in the engineering sense. 

Below, some approximation techniques are used to choose prospective 

values for Rc and c in eqn. (4.3) such that the response, y(t), is satis

factory to the designer's judgement. 

For convenience, R (t) is kept constant at R , such that the initial 
c , c 

error or steady state error, due to an impulse or step input, can be set to 

zero by the initial or final value theorem, (with later correction), 

respectively, i.e. 

R c 
.. R 

a 
+ 

or Rc .. Ra/a + ~/b 

. From eqn. (4.3) 

c(t) .. ~{[R.n (R /R )exp(-at)+(R/R )exp(-bt)]}/t a c -1> c 

The variation of c(t) with t is shown in fig.4.1. 

(4.5) 

(4.6) 

To select a constant 

value of c(t), a first approximation would be to take the average value of 

c(t) 

- T 
{l/(T-to)} tf c(t) dt 

o 
(4.7) 
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where T is the settling time of two exponentials, T» 11a + lIb, and 

t is the initial time, preferably t = O. Expanding eqn. (4.6), o 0 

where 
en 

R.n{1+(~/Ra)exp (-(b-a) t)}= L «-1) i+1 Ii) (!b/Ra)iexp(-i(b-a) t) (1 •• 9) 
.i=l 

assuming b > a and Ra > \. Now, 

T n 
~ (l/t)exp (-k(b-a) t)dt = R.~1 

R. R. T 
(-1) (R.-l) ~ [exp(-k(b-a)t)/(k(b-a)t) ] 

n,even 

T 
! n n+l + n! exp (-k(b-a)t)/(k(b-a» t dt 
t o 

t o 

(4.10) 

Using the recursive relationship of eqn.(4.l0) and from eqns (4.8) and 

(4.9), evaluating eqn. (4.7) gives, 

c =a-R.n(T It ) R.n(R IR }/ (T-t )-(11 (T-t » 1 o·a co· 0 

n,even 

(4.11) 

where the error term, 

(4.12) 

For n~ i.e. more terms are taken, the integral in eqn. (4.12) ~ zero, 

hence it is possible for O(t) ~ 0 as n ~ 00. 
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Suppose, now there are p exponential modes to be replaced by a single 

mode. The equivalent form of eqn. (4.3} is 

p 
R (t) exp (-c (tl) = r R. exp (-a. t) 

c i=l 1.. 1.. 

where 
f:,. p 

Rc(t) = R = r R. c i=1 l. 

f:,. P 
or R = r R./a. 

c ic:1 l. l. . 

from the initial and final value theorems. Thus from eqn. (4.13) 

P 
c(t) .. (-lIt) R.n {(l/Rc) L R. exp (-a.t)}- a. - (lIt) R.n (R./R ) 

i=l 1.. 1.. J J c 

where 

- (lIt) R.n {l+(l/R.) 
J 

p 
.1._ R. exp(-(a.-a.) t)} 
l.~ 1. l. J 
ic:j 

(4.13) 

(4.14) 

(4.15) 

p = p 
R.n{1+(l/R.) r R.exp(-(a.-a.t)}= L L «l-dt+lR. IkR.k)exp(-k(a.-a.) t) 

J i*1 l. l. J k-l i=l l. J l. J 
i=j 

(4.16) 

assuming a.>a. and R.>R.. Hence, as before, substituting eqns.(4.l5) and 
1 J 1. J 

(4.16) into eqn.(4.7) and using the recursive integral relation similar to 

eqn.(4.10}, eqn.(4.7) is evaluated as 

m n 
clc:a.":(1/CT-t }lR,n(T/t )R.n(R./R )-(1/(T-t )} I: I: 

J 0 0 J C . 0 k=l R."l 
n,even 

~ «_l)k+l /kR.+l) 
i-I 

«R.-1)~/(a.-a.)R.){(1/TR.)exp(-k(a.-a.)T}-(1/t R.)exp(-k(a.-a.)t )} +O(t) 
, 'l. J 'l. J 0 l. J' 0 

(4.17) 

where 
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Ineqn.(4.l7), by taking suitable number of terms OCt) can be made 

to converge. It is also noted that cl is the mean value or the first moment 

of cft}. Subsequent approximations to cCt) can be made by considering 

higher or lower order moments, ~, (k>l or k<ll. 

and ~ can be taken as 

.. 

T 
... (l/CT-toU I IckCt) I dt 

t o 

k an integer 

C4.l8) 

By taking different values of ~, the single exponential curve of the 

lower order model can be made to fit as close as possible, to the curves 

of the exponentials of the higher order model; see fig.4.2. This freedom 

also allows the designer to obtain a biased reduced model, i.e., one giving 

a better dynamic response in any stage of the transien't, or giving a better 

steady state response. From eqns. (4.13) and (4.18), 

T 
C1/(T-t » J IC-l/t)klnk {(l/R ) 

o tiC 

P 
I: R. exp(-a.t)}\ dt 

i-I 81, L 
o 

(4.19) 

Unlike the case, k=l, eqn.(4.l9} is best evaluated by numerical 

quadrature, example, Simpson's rule. If t .. 0, then the integral, crt), is 
o 

singular at that point if tR • - R i.e. matching initial values of impulse 
. aL c' 

response. However, from L'Hopital's rule, 

lim~ crt) .. ( ~ a. R ./R )k 
'-'v • 1 L aL c 

1.= 

(4.20) 
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T, in this case is chosen as T»(l/a.l, where a. is the smallest 
1. 1. 

exponential mode. Regarding eqn.(4.l91, it is necessary to introduce the 

constraint 

I:R .(exp(-a.tl1/R > 0 
a1. 1. c 

(4.21) 

so that the logarithm of the r.h.s. of exp.(4.211 is defined only for 

positive values. Also the modulus of c(tl in eqn.(4.l91 is taken so as 

to ensure that 1k>0, i.e. -1k lies in the 1.h.s. s-p1ane thus producing a 

stable reduced model. The inequality of exp.(4.2l1 is automatically 

satisfied for all R .>0 or all R .<0, given all a.>O. The constraint 
a1. a1. 1. 

can be violated if the R • are of mixed signs, thus in grouping modes with 
a1. . 

positive and negative residues, care must be taken to ensure that eqn.(4.211 

is satisfied. 

(b) 

(i) 

Reduction of complex modes to real modes. 

Complex modes can occ~r in either of two forms 

. { 2 2} R (s+a.) I (s+a) +e ++ (R u/e)exp (-at)Sin(at+¢) 
a a 

where 222 tan(¢) -131 (a.-a), u - (a.-a) +13 

where 2 2 n - (1-e; ) 

If eqn. (4.22) were replaced by a single time constant, 

R (t)exp(-c(t)t)-(R u/S)exp(-at)SinCSt+¢) c a 

from which 

c(t) - (-l/t)R,n {(R u/S)exp(-at)SinCet+¢) /R } . a c 

Similarly, for eqn.(4.23), 

c(t) • (-l/t)R,n {eR aIR n)exp(-£at)Sin(f3nt) } a c 

(4.22) 

(4.23) 

(4.24) 

(4.25) 
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The constant value ~ of c(tl can be evaluated by considering 

appropriate moments, 9k' The constant residue R can be fixed as before, c 

from the initial or final value theorem of the impulse or step response, 

respectively. For the case w.here there are more than one pair of complex 

modes, eqns. (4.24l and (4.25) generalize to, 

n 
c(t) ... (-l/t)R.n° { r (R .u./R 6.)exp(-a.tlSin(6.t+cp.) 

• 1 aL L eLL L L 
L- ° 

(4.26) 

c(tl ... (-l/t)R.n° { L(R .6./R n.)exp(-e:.6.t)Sin(S.n.t)} 
• aLL eLL L L L 
L 

(4.27) 

(clO Reduction of complex mode to complex mode. 

For the case of complex modes where the single time constant is also 

required to be complex, the real and imaginary parts can be equated . 

separately. Specifically, if 

n 
yes) - r 

i-1 
(R .+jb.)/(s+a.+j6.) + 

aL L ° L L (R .-jb.)/(s+a.-j6.) 
aL L L L 

(4.28) 

where the r.h.s. of eqn.(4.28) represents the response in conjugate 

pairs, and it is desirable to approximate yes) by a conjugate pair of 

complex modes, 

Yet) - (R (t)+jb (t»exp{-(c(t)+jB (tnt} +(R (t)-jb (t)}exp {-(c(t) c c c c c 

(4.29) 

From eqns. (4.28) and (4.29), by symmetry, equating only the modes 

with positive imaginary parts gives, 

n 
(R (t)+jb (t»exp{-(c(t)+j6 (t)}t}c L (R .+jb.)exp(-(a.+j6.)t) 

c c c. 1 aL L L L LC 
(4.30) 
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The conatant value of residue Rand jb can as before be determined 
c c 

from the initial or final value theorem. The initial value theorem gives 

from which R 
c - 1: R.,b "" a1. c .i0::1 

1: 
,i=l 

b. 1. 

The final value theorem gives 

R + jb - 1: (R .+jb.)/(a.+j(L) from which 
c c i-l a1. 1. 1. 1. 

2 2 2 2 R a r(R .a.+b.j3.)/(a. +13.), b - r(b.a.-R .a.)/(a. +13. ) c a1. 1 1 1 1 1 C 1 1 a1 1 1 1 

(4.31) 

To determine j3 (t) and c(t), equating real and imaginary parts of eqn.(4.30) 
c 

n 
exp(-c(t)t){R Cos(a (t)t)+b Sin{J~ (t)t} - r exp(-a.t){R .Cos(S t)+b.Sin(S.t)} c c c c • 1 1 a1. c 1 1 , 10:: 

(4.32) 
n 

exp(-c(t)t}{b Cos(S (t)t)-R Sin(j3 (t)t)}- L exp(-a.t) {b.Cos(B.t)-R .Sin(S.t)} c c c c • 1 1 1 1 a1 1 
.1"" 

(4.33) 

Eqn.(4.32) divided by eqn.(4.33), gives, 

S (t) - (lIt) arg tan' {(N(t)b -D(t)R )/(N(t)R + D(t}b )} 
c c c c c 

(4.34) 

where N(t) and D(t) represent the r.h.s. of expressions of eqns. (4.32) and 

(4.33), respectively. Hence, from eqn.(4.32), 

c(t) - (-1/t)1n {N(t)/[R CaseS (t)t)+b SinCS (tl)]} c c c c 
(4.3S) 
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As before t the best approximation of a (tl can be found by consid
c 

ering different moments of acCt), similar to eqn.(4.181, Le. 

T 11k 
I lackCt}I . dt } 
t: 
o 

(d) Reduction of real modes to complex modes. 
n 

(4.36) 

Consider a group of real modes I: R ./(s+a.l to be replaced by a 
• 1 al. l. l.= 

complex pair. The impulse respon~e matching yields, 

n 
I: R • exp(-a.t) D (R (tl +jB (tllexp{ -(c(t)-jS(t»tl 

• 1 al. l. c c 
.1.= 

+ (R Ctl-jB (t})exp {-(c(t)+je(tll} c c (4.37) 

A constant value R can be assigned to R (tl by levelling the initial 
c c 

value of the impulse responses, i.e. 

1 n 
R - I: R • (4.38) c "2 i-I a1. 

or choose R 
1 I: R ./a. - "2 c a1. 1. 

from the final value theorem of a step input. It is also desirable to 

choose constant values for B (tl and S(t) in eqns. (4.37). c 
B can be chosen 

c 

around the same magnitude as R , and, a should be chosen according to the 
c 

severity of oscillations present in the original response. Tentative values 

of B and a are best made by trial and error. 
c 

From, eqn.(4.37}, 

c(t} "" (-l/t)R.n{ I: R • exp(-a. t) 12(R Cos(f3t)-B SinG~t»} 
. a1. 1. c c (4.39) 

and the approximations ck can be found from eqn.(4.l8), taking into 

account, the constraint 



tR . exp c.-a. t) I (R Cos (Stl - B Sin C.St» > 0 
a1 1· C C (4.40) 

be satisfied. 

(e) Existence of repeated modes. 

For a mode a. to repeat, say, m times, its partial fraction transfer 
1 

function can be represented as 

m • 
r R • I (s +a • ) J. 

• 1 aJ 1 1-
(4.41) 

where R . and a. are real, or, if complex, have their conjugate counter-
aJ l. 

parts similarly written. The time domain representation of the impulse 

response due to a single mode is 

m • 1 
R (t) exp(-c(t)t) - t R .(tJ = l(j-1)!}exp(-a.t) 

c j-l a1 1 
(4.42) 

The initial value theorem (i.v.t.) yields R .. R 1 and the final value 
m • c a 

theorem (f.v.t.) gives R .. r R ./a~ Further, from eqn. (4.42) 
c j .. l aJ 1. 

. m .-1 
c(t) .. (-l/t)R-n { r (R ./R )(tJ IU-l)!}exp(-a.t)} 

j-1 aJ c 1 
(4.43) 

In general, if there are n modes, each repeated p. times, existing 
J . 

with other unrepeated modes, and, if all the n modes were to be replaced by 

a single mode, the general form of eqn.(4.43) is 

with 

n 
crt) .. (-l/t)tn { r 

i=t 

R -c 

R • c 

·-1 
(R •• /R )(tJ /(j-l)!)exp(-a.t)} 

aJ l. C l. 

n 

t R' l j a 1 aJ 
(i.v. t.) 

p. n J 
(R • • /ah 1: 1: (Lv. t.) 

i-I j-t aJl. 1 

(4.44) 

(4.45) 
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As before, the cons.traints £n' { } > 0 must be imposed on eqns. (4.431 

and (4.44). If the repeated modes a. and the residue R .• were complex, 
L aJL 

then the synthesis must be done along the similar lines given in sections 

(b) and (cl aoove. A pair of complex modeS can also be used to approximate 

repeated real or complex modes by following the synthesis of section Cd). 

The value of R determined from the initial value theorem always c 

gives zero initial error, after reduction, of an impulse response. However, 

by applying the final value theorem of the step response to both reduced and 

original models, and equating the two, we obtain 

n 
= ~ R./a. - R 

,i=l L L c 
(4.46) 

where R ' is the residue that will give zero steady state error, and, R c ' c 

is the exaggerated residue, that gives small s.s. errors, determined by 

applying the final value theorem to the original model. 

Thus, after reduction, 

R ' c -
4.2 Extension to multivariable systems. 

(see eqn. (4.14)J. 

(4.47) 

The synthesis given above can be extended to multivariable transfer 

functions in two ways. The procedure can be applied to every individual 

element of the matrix as if it is a single input-single output system. 

However, after reduction, it is not guaranteed that the order of the transfer 

matrix is the same as that of the required model; as the individual elements 

may not have a common denominator. The order of the model must be determined 

from the degree of the characteristic polynomial of the transfer matrix. 

(assumed proper). 

-
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An alternative method is to represent the transfer matrix in partial 

fraction form with matrix residues, i.e. 

n Pj 
G(sl = t t 

.1=1 j=l 
R ... /(s+a .. l j 

aJ 1. 1. 
(4.48) 

where R ... is a matrix residue (in general, can he complex). The same 
aJL 

synthesis given in section 4.1 applies to eqn.(4.48), except that R ... is 
aJL 

treated as a matrix. The matrix equivalent form of say eqn.(4.l5) becomes 

C(t)I. • (-lit) R.n { R -1 ~ R. exp(-a .. t} } 
ci=l L 1. 

(4.49) 

assuming Rc is non-singular, and, is similarly computed from the form 

of eqn.(4.14) and if necessary corrected by the form of eqn.(4.47). The 

In {} expression in eqn.(4.49) can be evaluated as R.n{ 1- R.n(Yl'Y2 •••. Yk) 

R.n(I+~) such that each matrix X. j-1, ••• k has 
-It, J . 

eigenvalues with modulus less than unity. This assures convergence of 

the expression of R.nCI+X.) by power series. 
J . 

The matrix equivalent equations of eqn.(4.32) , (4.33) and (4.37) etc. 

can similarly be written, care being taken to replace the reciprocal of a 

scalar quaqtity by the matrix inverse of the same quantity, and, mUltiply 

a scalar quantity by the unit matrix, I. When the unknown variable is 

a complex mode, the oscillatory part, a (tl, must be assigned a tentative c 

value to simplify the solutions of the matrix equations. (Example, the 

matrix equivalent form of eqn.(4.32}1. The real part of the mode c(t) need 

only be found, and can be represented in the form of eqn.(4.49) and evaluated 

easily, using eqn.(4.18}. (The matrix equivalent form of eqn.(4.34) does 

not exist, hence it is avoided.) 

Using the above method will require some slight modification in the 

approximation synthesis for the single input/single output case. This is 
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to simplify matters for the solution of the matrix equations. Although 

the method will yield the required 'reduced model, the final 

interaction structure of the transfer function may not be preserved. 

Also, the overall computational demands are high, compared to the single. 

input/single output case. 

4.3 Reduction by Sequential Approximations. 

The procedures outlined above. can be applied to the reduction of a 

high order single input/single output system in a systematic manner. 

Since the choice of parameters is opened to the designer's engineering 

judgement, the reduction is best done with interactive graphics where root 

l.o:CU.8 transient response and other performance specific·ations can be computed 

and displayed. Suppose, r, is the reduced model order. A systematic 

procedure of reduction is suggested below. 

Algorithm: 

1st reduction: 

1. Separate out repeating and non-repeating modes and treat them 

separately. Divide modes into dominant, moderately dominant and 

non-dominant groups. 

2. From the dominant tuple {Rli exp(-alt), ~ •• Ril exp(-aitl}, replace 

it by a single mode R exp(-ct) such that the transient response and 
c 

s.s. error are satisfactory. Repeated modes are replaced by a single 

time constant as far as possible. Preferably, group modes together 

whose residues have the same sign. The dominant tuple. can thus be 

divided into sub-tuples. Check that inequality and numerical 

constraints are not violated. 

3. Repeat procedure for the moderately dominant and non-donunant tuples. 

4. Check transient response and root locus plots etc. 

GO TO 3. Otherwise, proceed as below. 

If unsatisfactory, 
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2nd reduction: 

Suppose! modes are chosen from the 1st stage of reduction (r<!). 

Group the! modes into sub-tuples and proceed synthesis as above. 

3rd and sUDsequent reduction: 

.1f necessary, continue reduction stage till r modes are left in the 

final tuple, giving a model whose dynamics are satisfactory to the 

d • , • eSLgners requ1rements. 

Iteratively, from the original model, 

6. . { 
II 0: Ral exp(-al t) Ra2 exp(-a2t) ~ ••• Ran exp(-ant)} 

select p modes, say p - ~ from above grouping 

divide into sub-tuples again and take p modes or less • 
• • 

~ . {. } 
I j = Rcl exp(-clt), ••• Rcr exp(-crt) 

(final tuple) 

The squared error between original and reduced model due to a step 

response, assuming zero s.s. error is, 

00 n 
e2(t) .. f { 1: (R ./a.}(l-exp(-a.t» 

• 1 aL L 1 o 1'" 

n m r r 
.. 1: 1: (R.R ./a.a.){(l/(a.+a.»-(l/a.)-l/a.} + 1: 1: (R.R ./c.c.){ 

i ... l j"'l 81. aJ 1. J ]. J ]. J i-I j -=1 Cl CJ 1. J 

r n 
(l/(c.+c.)}-(l/c.)-l/c.} -2 t. 

1. J 1. J. i-=l 
1: (R .R ./a.c.){(l/(a.+c.»-(l/a.)-lic.} 

. 1 al. CJ 1 J 1 J 1. J J-
(4.50) 

and that for an impulse response is. 

r 2 
t. R. exp(-c.t)} dt 

i-I Cl. 1.. 
(4.51) 
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n n r r n r 
.. 1: 1: R.R j(a.+a.} + 1: 1: R .R ./ec.+c.}-2 1: I:. R .R ./(a.+c.) 

i=lj=l aL aJ 1 J i=l .j=l C1 cJ 1 J .i=l .j=l a1 cJ 1 J 

Figures 4.3 to 4.5 illustrate the proposed computational algorithm 

in flowchart form. The supervisor programme has three modules; Selection , 

and Bank, Reduction, and, Store and Simulation. All three modules inter-

act freely with each other and the supervisor programme. The Selection and 

. Bank module accumulates all modes that are constructed and found to be good. 

Further reduction by selecting tuples from the bank is possible. The 

Reduction module reduces the modes by computing effective time constants 

and residues. The Store and Simulation module regroups and temporari1y 

stores all modes after a subsequent iteration and simulates the transient 

response. 

6 For multivariable systems , if the above procedure is to be applied to 

every element of G(s} it is desirable to have the interaction structure of 

G(s) preserved as much as possible in G (s), i.e. f •. (w) .. f •. (w) and r r1J 01J 

n •. (W) .. n •. (w), where f •• (w) .. Ig •• (s)I.4.lIg •• (s}1 and n .. (s) .. r1J . 01J r1.J. rlJ 1.,. J rll rI.J 

Is •. (s)I',J.·/lg .. (s}l, and similarly for f •. and n ..• It will be 
r1J 10rJ rI.J OlJ OlJ 

proved in Chapter VI that this will ensure that So will be stable within 

the same range of gain, as S in the presence of the controller, K • 
r r 

Computational algorithm: 

(i) Obtain grii (s) , Vi, by procedures suggested earlier. 

(2) Obtain g .. (s), i~j, Vi,j, as in (1) 
r1J 

2 2 
(3) Compute M(w) - In(f .. (w)-f .. (w)) dw and N(w) - 1 (n •. (w)-n •. (w» dw . 01J r1J e 01J r1J 

(4) If M(w) and N(w} are small, EXIT, otherwise GO TO step 2 and correct 

any large deviations between g •. (s) and g •• es). r1J . 01J 



Fig. 4.' Baaic "tructure of the llRoritha 

select III 

tuples 
of distinct 
poles 

select III 

tuples of 
distinct 
complex 
poles 

I 
I 
I 

I 

I 

• 
I 
I , 
I , 
I 
I 

I 

regroup all 
reduced 
modes 

• 

to 
~ ,. I Selection 

&: Bank 
or to 
Supervisor 

to 
). ;fora ~ Selection 

110 

'" BanIc. 
(replace 
cantent.s in 
.Bank b7 
current 
contents in 
Store) 

Fig. 4.4 Flow chart of Selection &: BanIc and Store &: SiDNlation iIIodulea 

The Reduction program consista of 4 aub-programs, 

1) from real mode to real mode reduction 
2} 

~~ 
fro. complex mode to cOlllplex mode reduction 
Irom complex mode to real mode reduction 
from real mode to complex mode reduction 

Different routines are written for the four dependina 011 the foraula 1nTOl~. Or:U.7 
the first viii be illustrated. 

simulate 
equivalent 

DO 

~ ,es ~select c( t) 
from cliapl~ 
of 0(1.) 

no 

to 
Store a. Siaulati 

compute 
steady state 

i 

call Q\.adrat\l.re 
cOlllpute c~t) by 
mOllenta approx. 
=::oJ 

~8elect 
c(t) 
frca 
diBplq 
of 0(1.) -

simulate 
equivalent~IEf---------~ 

110 

Fig.4.5 :nov chart or a RedUction sub-proma 



- 90-

4.4 Reduction by state space methods. 

Consider an nth order single input-single output system S(A,b,c}, 

with xeO) .. 0, represented by' 

i.e. 

where 

:it .. Ax + bu 

t Y .. c x 

y' {(It+l}Tl = ct V{(.k+I)T} bu {(It+l)T} 

V{(lt+l)T}'" exp(AT)xeO) + A'{(k+l)T} 

T 
ACT) .. I exp(~(t-A)) l!(},) dA 

o 

(4.52) 

(4.53) 

Thus for an impulse input, ~(T) .. exp(AT), and, for a step input, 

~(T) .. A-1Cexp(ATl-I). To obtain a reduced model, S (A ,b ,c ), from r r r r 

eqn.(4.52), it is desirable to equate y (t) ... yet), and from there construct 
r 

Hence from eqn.(4.53), for k .. 0, 1, 2, 

< 

< 

• • • 

c , V (T)'b > r r r 

cr ' Vr (2T}br > 

< c, V (kT) b > r r r 

.. yCT) 

.. y(2T} 

.. y(kT) 

... 

(4.54) 

k » r 

where y' {(k+l}T } is given by eqn. (4.53). In matrix form eqn. (4.54) 

is 

.. q e4.55} 

where M is a (kxr) matrix whose ith row is cttVr(iT), and, qt.' {y(T), ••• 

yCltT) }. In general eqn. (4.55) is incompatible, and a b cannot be found 
r 

which satisfies q. An approximate solution is given by 

+ b ... M q 
r (" .56) 
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where M+ is the pseudo-inverse of M. + H-l In general, M. = R(R Rl 

F and Rare (kxi) and (lxrl matrices, and, the 

columns of F may be any ~ linearly independent columns of M, where rank 

(M) c ~. Thus, when R,=r,(the order of the reduced model), M+ .. (UtM}-lMt • 

The solution given in eqn.(4.56) is such that < (Mb -ql,(Mb -ql > is a 
r r 

minimum, i.e. < (q -q},(q -q) > is a minimum. r r 

An alternative convenient form can be written for eqn. (4.551. 

Transposing eqn.(4.54) 

i.e. 

< V (T}b ,c > 
r r r 

Nc 
r -

.. y(T) 

= y(2T) (4.57) 

.. y(kTl 

q (4.58) 

where N is a (kxr) matrix whose i th row is given by b tv t eiT). Thus 
r r 

from eqn. (4.58), 

+ c c: N q 
r 

(4.591 

Eqns. e4.56) and (4.59) can be used to find band c respectively. 
r r 

Both equations demand that the pair(A ,c ) or (A ,b ) need be known for the r r r r 

remaininjvector b or c to be found. . r r 
In any case, a canonical structure 

for A must be fixed for either eqns. (4.56) or (4.59). 
r 

Thus the time 

constants of the modes are specified. In general, choosing a c in eqn. 
r 

(4.56) and solving for br , does not guarantee the same c when b , from 
r r 

eqn.(4.56), is substituted into eqn.(4.59). Similarly choosing a b in 
. r 

eqn. (4.59) may not yield the same br in the l.h.s. of eqn. (4.56). To 

find the 'best' choice of the pair (b ,c ) for a given A , the following 
r r r 

scheme is ~uggested. 
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Initially, choose 

Call this value 0 (ll 
r • 

a c , called c (1) and find h from eqn.(4.56). 
r r r 

Substitute 0 (11 in e.qn. (4.59) and calculate 
r 

Call this value c (21 
r 

Use c (2) in eqn. (4.56) to find b (2) and 
r r 

then use b e2l to find c (3) in eqn. (4.59). 
r r 

Repeat the process till 

(i+1) • b (il is very close to b (i+ll and 
r r 

c (il is very close to 
r 

cr ·,1..e. 

II b (i) - b (i+l) II = 0 and II c (il 
r r r 

_ c (i + 1) \I = O. 
r The iterative scheme 

will converge if 

Lim 
i-+oo 

II b (i+l) _ c (i+l) II < II M.+ - N.+ II 
r r 1. 1. (4.60) 

If exp.(4.60) does not exist, then S (A ,b ,c 1 can only be found for r r r r 

a given pair (A ,b ) or (A ,c ) • . r r r r 

The reduction can be done sequentially by the following computational 

algorithm: 

(1) Choose a set of dominant eigenvalues () 1, •• A } for Ar from the . r rr 

set .(\, ••• An) of A. Find a canonical structure for Ar • 

(2) Choose an initial value of c or b and find the final pair (b ,c ) r r r r 

using the iterative scheme of eqns. (4.56) and (4.59). 

{3} Compute and display the time response y (t) of S (A ,b ,c ). r r r r r 

(4) If satisfactory, exit. Otherwise modify (A l, ••• A ) or modify the . r rr 

canonical structure of A or choose a different starting point for 
r 

(b ,c ) and GOTO (2). 
r r . 

The canonical structure of A can be formulated in many ways, example 
r 

the convenient companion form, after choosing a set of eigenvalues; or 

choosing also a set of basic eigenvectors V -(vl ,v2, ••• v ), A can be 
. r r r 

constructed as A • V diag(Al, ••• A) V -1. V can be constructed from r r r r r 

the original eigenvectors, V, of A, corresponding to Al, ••• Ar by suitable 

partitioning such that V is of full rank. Alternatively, by employing 
r 
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Gershgorin's theorem, Ar can be formed without actually knowing in detail 

the eigenvalues of A. Rowand column Gershgorin circles for A can be 

drawn, and, by inspection of their intersection, suitable new circles of 

different radii pertinent to Ar can be constructed such that they contain 

the dominant eigenvalues of A. To guarantee stability, the final inter-

section of circles must lie in the l.h.s. plane. 

From the 2r circles, centre aU' a22 , ••• arr and respective row and 

column radii RII , Rz2"" Rrr , RII ', ••• Rrr', the set of 2r equations. 

1: 1 a. ·1 a R .. 'tj 
i;!j 1.J 1.J 

1 a. ·1 
(4.61) 

1: II: R.! Vi 
j~i J1. J1. 

give~ r(r-l) unknowns. Hence r(r-3) of them can be assigned arbitrary 

values and the rest found accordingly. 

If it is desirable to have the state vector, x , similar to the first r. 

r elements of the original state vector, x, then c can be chosen as r 

c K c(r) where c(r) represents the first r elements of c. 
r 

Hence b 
r 

can be 

computed from the pair (Ar,cr ). In general if S (A ,b ,C ) is controllable 
r r r r 

and observable, Sr(Fr,gr,hr ) can be constructed from a similarity trans

formation such that hr = c(r). 

4.5 Extension to multivariable systems. 

For·multivariable systems, the analogous form of eqn.(4.53) is 

y(kT) - C'1(ltT) Bu(kT) k=I,2, ••• (4.62) 

and in component form can be written as 

1-
y.(kT) - 1: < c

J
., '1(kT)bi > ui(kT) 

J i=l 
(4.63) 
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column vectors of matrices a and C. By superposition, if all inputs are 

'shut down t except the jth input, eqn. (4.63) gives y.CkT) ~ <c.,V(kT)b.> 
. J J J 

u.(kT) which is identical to eqn. 
J 

(4.53). Thus the same reduction 

technique can be applied to eqn. (4.63) by considering one input and one 

output at a time, Le. for j - 1, 2, ••• r
J

ui CkT} .. 0, (i;lj). In this way, 

matrices Band C are generated column wise and row wise, sequentially r r 

B ... (b l,.b ),C t -(c I'C 2' •• c 1. The degree of interaction in r ,r rr r r r rr 

S (A ,a ,C ) can be defined from the time domain matrix r r r r 

• 
• 
• 

as rowwise 

= , 

••• < C I'V b > r r r 

< C ,V b > •••• < c .,V b ~> 
rr r I r1 r n 

f •• (t) - < c .,V b.> .~./<.c .,V b .> 
r1.J r1. r rJ 1"'J rJ r rJ 

(4.64) 

(4.65) 

colunm.wise m •. Ct) -< c .,V b.> .~./< c .,V b .> 
r1.J r1. r rJ 1.rJ rJ r rJ 

and m •• Ct), f •• Ct) for the original model is similarly defined. 1J 1J . 
Whenever 

necessary, it is desirable to preserve the interaction structure in S(A,B,Cl 

and S (A ,B ,C ) by checking that the squared error r r r r 

t 

·f . {(m •• (tl-m •. (t) )2 + (f •. (t)-f •. (t»2} dt 
1J r1.J 1J r1J o 

is small. 

(4.66) 

An alternative approach to multivariable reduction is to consider 

eqn.(4.62) as a single input-multiple output or its dual, multi input-single 

output, problem. From eqn. (4.62), consider observation being made on the 

output vector, yO) (kT), when all inputs are set to zero, except the jth input; 
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i.e., u
i 

OtT) .. 0, Vi, except i .. j. For j .. 1, 2,.. , eqn. (4.62) 

can sequentially be written as, 

.. C V (kT)b 1 r r r 

y(2) OtT) ... C V (kTlb 2 
r r r 

• · • 
y(..() (kT) .... C V (kTlb ~ 

.r r rJl. 

which can be arranged in matrix form as 

Y(kT) .. C V (kT)B 
r r r 

(4.67) 

(4.68) 

where Y (kT) III [y (1) (~T)y (2) (kT) ••• y CR.) (kT)] ia an (R.xR.l matrix, evaluated at 

th the k sample, of S(A,B,C). For k .. 1,2, ••• the sequence of matrices 
'-~ . 

generated by eqn. (4.68) can be arranged as 

(yt:(I) :y~ (2I) : •• yt (kI» _Bt (Vt (I) ct: Vt (2I) ct: ... Vt (kI) Ct ) 
. •.• r r r. r r. r r (4.68) 

• • • 

i.e • 

. giving 

(4.70) 

where Qt and Kt are (R.xR.k) and CrxR.k) matrices as shown. 

Analogous to eqn. (4.69) , the sequence of matrices generated by eqn. 

(4.68) for k-l,2 ••• can also be written as 

. . .. 
(y(I):Y(2I): ••• YOtI» - C (V (I)B :V (2I)B : ••• V ~IlB ) • • . r r r. r r. r r 

i.e. (4.71l 

where pt and Lt are (R.xR.k) and (rxR.kl matrices as shown, 

Eqn.(4.7l) gives 

(4.72) 
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The solutions given by eqns.(4.70} and (4.72l are such that 

the matrices Br and crt have least norms which minimize IIKB-QII i . and 

"Lct-pl~ respectively. Sufficient samples (kTl are taken such that 
. t 

k » r so as to ensure that KtK and L L are non-singular. However, if 

they still become singular, then the generalized form of the pseudo-

inverse must be used. Like the single input-single output case the pair 

(A ,C ) or (A ,B ) must be known before eqns.(4.70} or (4.72) gives the r r r r 

remaining triplet. The pair (~r,Cr) can also be obtained iteratively, 

for a given A , from eqns. (4.70) and (4.72) if 
r 

Lim 
i-+<:o 

" B (i + l) _ C t (i + 1) II < II K ~ - L ~ II 
r r L L 

(4.73) 

Reduction by using the method of pseudo-inverse-was also employed by 

Anderson7and sinha and Pille'. Anderson chose the reduced state vector, 

x (t), from the first r elements of the original vector x(t) and attempted 
r 

a least square fit between x (t) and x(t). 
r The matrices Ar and Br 

obtained in the end are expressed in the forms of state transition and 

driving matrices, ieT) and fl(T), respectively; and reconstructing 

(A ,B ) sometimes Can be difficult. 
r r 

The pseudo-inverse method suggested in this chapter assumes an 

arbitrary state vector xr(t) and a chosen canonical form, Ar • The method 

is iterative and works with interactive graphics. The triple S (A ,B ,C ) r r r r 

can be updated as necessary, subjected to designer's requirements. 

Sinha and Pille's method is very similar to Anderson's, except that 

they avoid the problem of matrix inversion in the pseudo-inverse by using 

an iterative algorithm. However, convergence properties and large amount 

of matrix computations do not justify the method proposed. Also, in the 

end like Ander~on's, the reduced model is expressed in its discretized 
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form and an inverse z-transform is necessary to convert it to continuous 

form. Thus extra time and effort are necessary in the conversion of high 

order transfer function matrices. 

Unlike the method proposed in this chapter, the methods of Anderson, 

Sinha et al do not guarantee a stable reduced model. For multivariable 

systems, their methods do not provide a means for preserving the inter

action structure of the model in the reduction. 

4.6 Example. 

(a) The sequential moments approximation reduction method is illustrated 

by the following 7th order single input-single output example, 

H(s)~.375 E06(s+1)/~7+59.5s6+l838s5+35,l20s4 "-

+0.4485 E06s3+O.3772 E07s2+O.l963 E08s+O.4876 E08) 

and in partial fraction form is 

RCs) ." {l.234 E-06/Cs+8.5)} +{(-1.124E-05-j8.24lE-05l/(s+8.5-jll.O)}* 

+{ (l.037E-04+j2 .54E-05) I (s+9 .O-jlO .Ol }*+{ (-9. 303E-05+j5 .543E-05) 

l(s+8.0-j lO.Q)}* 

where the expression { } * denotes that the mode occurs in complex 

conjugate pairs. Inspecting the expression for HCs), it is found that 

pairs of complex modes dominate the response, hence it is useful to 

retain a pair of complex modeS, giving a second order model. The 3 

pairs of complex modes were reduced sequentially to a single pair. 

Finally, the real mode and the single pair of complex modes were replaced 

by an equivalent pair, giving the reduced model as 
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H. (sl == . {-j3.252/(s+4.472-jO.41}}* 
r 

. .. 0.612/(a2 + 3.42 + 5.21 

In the above reduction procedure, it was found that taking the first 

moment Le. ~ - ml of the effective pole, c(tl was sufficient to produce a 

good response. The responses of HCsl and U (sl are shown in fig.4.6, 
r 

following a unit step input. 

(b) Next,a fourth order boiler model was considered, 

matrices, S(A,B,e), are 

2.47 

-3 
A" 10 x -3.37 

2.34 

-4.83 

e • 
[ 

3.0 

4.0 

8.16 

-12.6 

6.65 

-7.00 

3.0 

5.0 

5.42 

-6.77 

2.53 

-5.77 

5.0 

3.0 

3.36 

-3.11 -3 ,B .. 10 x 

2.61 

-7.07 

4.0 J 
2.0 

whose state space 

-0.605 -0.00361 

1.35 0.0309 

-2.54 0.0309 

1.64 -0.151 

It was desirable to obtain a second order model S (A ,B ,e ) using the r r r r 

method of least square minimization by matrix pseudo-inverse. The eigen-

values of A are 

A1 .. -O.2l3E-02 

A2 .. -o.414E-02 

A3 .. -0. 783E-02 

A4 .. -0. 62SE-03 

and the dominant modes Al and A4 were retained in the r'educed model. 

For convenience, e was set as e .. I, the unit matrix. 
r r 

Choosing A .. 
r 

diag . {AI' A4} in its simplest form, the pair (Ar,er ) yieldeda Br where 
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the response of S was fairly close to that of S, but the interacting 
r 

termsdid not match closely. MOdifying the structure of Ar , but keeping 

the eigenvalues roughly the same, @ve, the triple (Ar,Br,Cr ) whose response 

was close to that of the original system, following separate inputs to both 

channels. The final values of Sr are 

A -r 
[

-2.l3E-03 

2.SIE-06 
1.3lE-03 ] , 
-6.30E-04 

Br • [-o.,28E-02 
, 4.69E-06 

-S.06E-OS] , 
-o.S8E-04 

The responses of Sand Sr to unit step inputs are shown in figs. 4.7(a) 

to 4. 7 (d) • They can be further improved by updating A , but this does 
r ' " 

" 

not justify the effort involved. The sampling time waa taken as T-lOO seconds 

and k • 20 samples were taken. '-, 
4.7 Conclusions. 

Both methods of reduction discussed in this chapter are iterative in 

nature, and, to obtain the best reduced model finally, is wholly based on a 

trial and error scheme. No single reduction method works well for the 

general practical system, hence it is best to use a method, systematic in 

its approach but at the same time flexible in its orientation, that meets 

the particular characteristics of the system., This is justified by the 

fact that end results are important, with the view that the model is needed 

in a specific task in control studies5 • 

Like all iterative methods, the'initial guess' plays a crucial role 

in deciding how far is the final solution. 
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CHAPTER V 

STABILITY OF LINEAR MULTIVARIABLE SYSTEMS 
DESIGNED USING REDUCED MODELS 

Introduction 

One of the chief uses of reduced models is in the design of controllers 

for multivariable systems. The main problem associated with this is the 

stability of the original system, S, after design. MOre often than not, 

after the controller, K , is implemented, S becomes unstable, although the 
r 

'reduced' system, S , with same K implemented is stable. The designer is r r 

thus faced with a serious problem, and, the validity of using reduced models 

is somewhat limited. Few work has been done in investigating the stability of 

. d * systems uSlng re uced models • AI though Mitra32 and Aoki 23 had studied the 

role of reduced models in some clas~fbf optimal control problems, the stability 

of systems associated with reduced models is still not satisfactorily solved; 

hence the stability question is still left open. Following Aoki's23 formulation, 

vi ttal Rao and Lam !ba24 had partially solved the problem by showing that Scan 

be stable, provided that the reduced state space model used is obtained in a 

certain way. However, this is restricted to a very limited class of reduced 

models only, and, S considered, must be in the time domain with full state 

feedback. For the general class of reduced models, not obtained by 'projective 

. 23 32 
teChniques', the stability of S is not guaranteed • Chen and Shieh had used 

a reduced model for single input-single output system's design, and, although S 

is stable, it is due to the fact that intuitive engineering judgement is used 

in the design, rather than analysis based on formal mathematical treatment. 

This chapter investigates the stability of S based on that of S , under 
r 

the action of the same K , figs. 5.l(a) and 5.1(b). New results are obtained 
r 

in the frequency and time domains, which to the author's best knowledge, have 

not appeared before in the literature. "J.'he stability resul ts given are general, 

for they apply to all reduced models obtained by any valid reduction techniqucs. 

* before the publication of this thesis 
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Before going into the main results, two well known multivariable stability 

theorems are reviewed for reference. It is well known from the Hsu-Chen 

2 theorem, that provided det(I + Q(oo) H(oo» f 0, then 

A A 

det F(s) .,. det Q(s)/det R(s) = det R(s)/det Q(s) .,. ~ (s)/~ (s) c 0 
••• \5.1) 

where. R(s) = F(s) Q(s), F(s) .,. I ,., Q(s) H(s), is the return difference matrix 

and Q(s) = G(s) K(s). The superscript 'hat' denotes inverses, example F(s) -
_1 A _1 

F (s), R(s) .,. R (s) etc. ~ (s) .,. det(sI - A + BK), ~ (s) • det(sI ~ A) are c 0 
chauctedsH.c 

the closed looPAPolynomial (c.l.c.p.) and open loop characteristic polynomial 

(o.l.c.p.) of the controllable and observable triple S(A,B,C), respectively. 

Let D be the contour in the s-plane consisting of the imaginary axis from -jw 

to +jw and the semi-circle of radius w in the right half s-plane. Here the 

radius is chosen large enough to enclose every zero of'det Q(s) and det R(s) 

and indentations are made around every pole on the imaginary axis to include 

them in the right half plane. Let p and p be the number of right-half plane 
c 0 

A 

zeroes of ~ (s) and ~ (s) respectively. Also let det Q(s) (resp. det .Q(s»map c 0 
A 

D into r (resp. r ) encircling the origin n times clockwise (resp. counter 
o 0 0 

A A 

clockwise). Similarly, let det R(s) (resp. det R(s» map D into r (resp.r) c c 

encircling the origin n times cloCkwise (resp. counter cloCkwise). Let c 

det F(s) map D into rf encircling the origin nf times cloCkwise. 
m 

let t. the characteristic loci of F(s), where 
l 

ffj' encircling the origin nfj times clockwise. 

IT t(s)"· det F(s) 
j-l 

Finally, 

map D into 

Then by application of the principle of the argument to eqn. G.I) 

rn
fl

• .,. n .,. n - n .,. p - p • 
f 0 c c 0 

653 Theorem SA ' , 

For closed loop stability, p .,. 0, it is required that 
c 

m 
r nf . • n • n - n "'-p 

j=l J f 0 c 0 
••• (5.2) 

Eqn. (5.2) is a well known result and expresses stability in terms of 
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characteristic loci encirclements in the Nyquist sense. Since F(s) • I 

+ Q(s) H(s) and if p.(s) is the characteristic loci of the return ratio matrix 
J 

Q(s) H(s), then t.(s) = 1 + p.(s). Thus the same stability theorem applies 
J J 

when working with Pj(s) with the critical point being shifted from the origin 
A A A A 

to '-1'. Since R(s) = I + Q(s) 'and if p.(s), A.(s) are the characteristic loci 
J J 

A A A A 

of Q(s) and R(s) respectively, then A.(s) D I + p.(s). 
, 3 J 

Returning to eqn. (5.1) 
,.. .... A 

it is seen that det F(s) = n(l + p.(s»/np.(s). 
J J 

Thus for stability Ln . -C1. ,.. ....,.. 
Ln • = -p , where n • and n • are the number of counter clockwise encirclements 01 0 C1. 01. 

A ,.. 

of the origin by the loci A.(s) and p.(s) respectively. Following RosenbroCk, 
J J ,.. 

the eigenvalues can be expressed in terms of the individual' elements q .• (s), 
1J ,.. ,.. .... .... 

r •• (s) etc. of the matrices Q(s), R(s) by diagonal dondnance. 
13 

Let qii(s) and 
,.. .... ,.. 
r •. (s) (i • 1, 1.1. 

••• m) map D into r . and r . encircling the 01. C1. __ . origin n • and n . 01. C1 

times respectively. The~ it has been ShOwn~:~ 

5 Theorem 5B 

Assume system is open loop stable, i.e. p - 0 in eqn.(5.2). A sufficient o 
•. . that . 

condition for closed loop stab1.11ty 1sAthe follow1ng be satisfied 

m m 
(i) L n • • L n • 

,i-1 01. i=l C1. 

,.. ,.. 
(ii) Iqii(s)I > d. or Iq·· (s) I > O. 'v's~D, Vi 1. 1.1 1. 

,.. .... 
(iii) Ir .. (s)1 > d. or Ir .. (s)1 > O. VsED, Vi • •• (5.3) 11. 1. 1.1 1. 

.... ,.. 
where d. • L Iq .. (s) I, c5. • • L. I q •• (5) I, \1sED means "for all s on contour D". 

1. it~j 1.J 1 J'1. J 1. 

5.1 Some frequency domain multivariable stability theorems for reduced models 

Without loss of generality, it is assumed that the feedback matrix H (s) r 

• I. Some stability theorems are derived below. 

TheoT~m 5.1 
,. 

Let p .(5) (resp. p .(s» be the characteristic loci of Q (s) = G (s) 
rJ rJ r r 

A A At A 

K (s) (resp. Q (s) = K (5) G (s» where Q (s) (resp. Q (s» is simple. Then r r r r r r 
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'" A,.,,., 

all loci p.(s) (resp. P.(s»)of Q(s) = G(s) K (s) (resp. Q(s)= K (s) G(s» 
J J r r 

lie in the union of discs with 

A 

centre, p .(s) (resp.p .(s» 
rJ rJ A,. ,. 

radii, II G (s) K (s) II infK(P(s» e r . {resp.1I K (s) G (s) II inf K(P(S»} r e 

AI A A A 

where G (s) c G(s) - G (s) (resp. G (s) ... G(s) - G (s), in general G (s) f ere r e 
_1 A A 

G (s». K(P(S»'" II pes) II II pes) II'" K(P(S» and inf K(P(s) is taken w.r.t. 
A A A A 

all matrices pes) (resp. pes»~ for which pes) Qr(s) pes) (resp. pes) Qr(s) 
A A A A 

P(s» is diagonal [p(s) D(s) (resp. D(s) pes») where D(s) (resp. D(s» is 
A 

diagonal, also diagonalises Q (s) (resp. Q (s»J. Here II II is a matrix norm 
r r 

induced by an absolute vector norm h( ). [II W(s)1I - sup . h(W(s)x{s)Yl.h(x{s» 

is an induced norm]. 
xes) fO 

Proof: The above is a result similar to Bauer and Fike's7. For 

convenience only Qr{s) , Prj(s) etc. are used in the proof, as similar,results 

follow by working with their inverses. The following lemma is also used. 

Lemma 5.1 

If W(s) a(s) ... V(s) a(s) ••• (5 .4) 

h • f h(Wes) aes» h(W(s)a(s». h(V(s) a(s» So Ilu(s) II 
t en a(s)~o h(a(~» ~ h(a(s» h(a(s» ~ IY ••• 

from which 
A -1 

II W(s) II ~ IIv(s) II ••• (5.5) 

Returning to the proof, since Pk(s) is a characteristic value of Q(s), 

then 

••• (5.6) 

yes) ~ 0, from which 

,. A 

pes) {diag(Prl (5), ••• p (s» + pes) G (s) K (s) PCs)} P(s)y(s) • Pk(s)Y(s) rm e r 

... (5.7) 

Eqn. (5.7) gives 
A U\ (s) 1- diag{P

rl 
(s), ••• p rnl (s)}] a(s) • pes) Ge (S) Kr(S) pes) a(s) • • • (5.8) 
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,.. 
where a(s) = pes) yes) f O. Applying lemma S.l to eqn.(S.8) yields 

min. Ipk(s) - p • (5) I ~ II G (s) K (5) II infK(P(s» 
J "rJ e r ••• (5.9) 

The l.h.s. of eqn.(S.9) is obtained by min. Id.1 -1/max.11/d.1 and the 
J J J J ,.. 

r.h.s. is obtained since II pes) Ge (s) Kr(s) pes) II ~ II Ge (s) Kr(s) II II pes) II 
,.. 

II pes) II and inf K(P(S» is taken as eqn. (S.9 ) is true for every pes) 

which diagonalises Q (5). Hence all p.(s) lie in the union of discs defined 
r J 

in theorem S.l. Q.E.D. 

Theorem 5.1 is used to derive some mu1tivariab1e stability theorems 

for reduced models. For the moment, Sand S are assumed to be open loop 
r 

stable i.e. G (5) K (s) and G(s) K (s) have no right-half plane poles. r r r 

Theorem S.2 "-" ,.. 
Let p . (s) (resp. p . (s» map the D contour in the s-plane into the 

rJ rJ 
" frequency response contour r . (resp. r .). Then sufficient conditions for 

rJ rJ 

S to be closed-loop stable are: 
,.. 

(1) every rrj (resp. rrj) locus individually satisfies the Nyquist 

cd terion (Ne) 

(2) 11 + p .(5) I > II G (s)"K (s) \I inf K(P(S» VsED, Vj 
rJ e r 

••• (S.lO) 
,.. "" 1\ 

[resp.1 1 + P • (5) I > II K (s) G (s) II inf K(P(S»] 'VsED, 'v'j 
rJ r e 

Proof The geometrical interpretation of theorem S.2 is shown in fig. S.2. 

If the above conditions are satisfied it is seen that the band of 

circles cannot overlap the critical point and by theorem S.l no 

locus r.,"due to p.(s) can enclose it, hence S is closed loop 
J J 

stable. The" dual theorem for the inverse locus is "illustrated 

in fig. S.3. 

A less sharper bound is obtained from eqn.G.1d if 

. 
11 + p .(s) I > II G (s) II II K (s) II K(P(S» Vj, VseD 

rJ e r " ,.. ,.. "-

[resp. 11 + p . (s) I > II G (5) II II K (s) II K (P(s»] \lj, VSED 
rJ e r 

•• {S .11) 

J 
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as II Ge(s) Kr's) II ~ II Ge(s) 1111 Kr(S) II , but the form given in eqn.(5.l~ is 

sometimes useful as a guideline in design, since II Kr(s) II is isolated and 

'" limiting values can be estimated for K (s). Inf K(P(S» (resp. inf K(P(S») 
r ,., 

is estimated by post (resp. pre) multiplying a diagonal D(s) (resp. D(s» 
,., ,., ,., 

to pes) (resp. pes»~ such that K(P(S) D(s» (resp.K(D(s) P(s»)is a minimum. 

If G(s) = G (s). then G (s) = 0, and as expected from theorem 5.1 r e 

p.(s) = p .(s), V'j. As the area of the disc depends on" /I inf K(P(S», 
J rJ 

their optimum size can be foUnd by the following modification to allow 'greater 

freedom in choosing K (s). 
r 

Theorem 5.3 
,., A 

Let p .(s) +13 (resp.p .(s) + a) map' D into r . +13 (resp. r . + a),' 
rJ rJ rJ rJ 

where 13 and a are arbitrary complex numbers. Then sufficient conditions for 

S to be closed loop stable are: 

(1) 

(2) 

or 

(3) 

Proof 

,., 
r . + S(resp. r . + a) individually satisfies NC Vj 
rJ rJ 

11 + 13 + p .(s)1 > II G (s) K (s) - SIll inf K(P(S» ''1j, 'v'seD ••• (5.12) rJ e r' , 
A A A A 

[resp.ll + a + p .(s)1 > 11K (s) G (s) - alII inf K(P(S»] Vj, "seD rJ r e ' 

11 +S +p .(s)1 > (IIG (s)IIIIK (s)II+lsI'IIIII)infK(P(s» 'ij, VsED rJ e r ' 
••• (5.13) 

,.. ,.. A, A 

[resp.ll + a + p .(s)l> (II G (s)1111 K (5)11 +laIIlIII) infK(P(s»] Vj.VsED 
~ e r . 

Since pes) diagonalises Q (s). pes) will also diagonalise 131 + Q (s), 
r r 

and since 

••• (5.14) 

substituting the l.h.s. of eqn. (5.14) into eqn. (5.6) and following the 

arguments of eqns. (5.7) and (5.8) 

,., . ,., 
pes) [diag{Or1 (5) , ... Prm(S)} + S1 + pes) Ge (5) Kr(s) pes) - 61J pes) yes) 

• Pk (s) y(;) 

from which 
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" (Pk(S)I - diag{Pr1(s), ••• Prm(s)} + aI)a(s) .. (P(s) Ge(s) Kr(s) pes) - aI)a(s) 

••• (5.15) 

Applying lemma 5.1 to eqn. (5 .l~) yields 

min. Ipk(s) - (a + P .(s»I'~ 1\ G (s) K (s) - arll inf K(P(s» J rJ e r. ... (5.16) 

Comparing eqns. (5.16) and (5.9) it is seen that the geometrical 

interpretation of theorem 5.3 is similar to that of theorem 5.2 except that 

the discs centres are shifted by a (resp. a for the inverse loci) with 

appropriate modifications in radii. 

Here a can be chosen to minimize II II of eqn. (5.16), hence minimizing 

the disc areas, by requiring 

a II \I laRe(a) .. a II II /arm(a) .. 0 ••• (5.17) 
.-.., 

or arbitrary chosen, by designer, subject to engineering constraints. Eqn. 

(5.12), deduced from eqn. (5.16), gives a sharper bound than eqn. (5.13) as . 

\I G (s) K (s) - alII ~ /I G (s)/1 11K (s)/I + lal II I II e r , . e r 

but the form given in eqn. (5.13) is useful in estimating 11K (s)1I in design r 

and it offers a wide'r stability margin. 

If nl(s), n2(s), ••• nm(s) are the characteristic loci of Ge(s) Kr(S) 

and if V(s) diagonalises G (5) K (8) another useful stability theorem can be 
e r 

obtained as follows 

Theorem 5.4 

Let all conditions be the same as in theorem 5.3 together with the 

above modifications. Then sufficient conditions for closed loop stability 

of S are: 

" (1) r . + a (resp. r . + a) individually satisfies NC 
rJ rJ 

(2) 11 +a +p .(s)1 > max. I n.(s) -si :nfpVK(P(S) K(V(S») Vj, Vse D 
rJ J J • 

". A A A A 

Cresp. 11 + a + P .(5)1 > max. \ n.(s) - alinfp V K(P(S»K(V(S»] \lj,VsED 
. rJ J J • . 

... (5.18) 
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Proof: The r.h.s. of eqn. (5.16) becomes 

~ A 

II V(s) U(s) V(s) - 1311\ infK(P(s» ~ II U(s) - 13111 \I V(s) II II V(s) I~nf K(P(s») 

~ max. In.(s) -131 infp V K(P(S» K(V(S» 
J J , 

where U(s) = diag{ n1(s), n2(s), ••• nm(s)1 hence eqn • (5.16) becomes 

min·1 Pk(5) - (13 + P .(s»1 ~ max. In.(s) -131 infp,V K(P(S» K(V(S» J rJ J J ••• (5.19) 

The proof follows. 

As in theorem 5.3,S(resp. a) can be chosen to minimize max. In. (s) - all 
A J J 4 

(resp. max. In.(s) - all) or as in theorem 5.2 taken to be zero. Although theoremS. 
J J . 

~ 

is useful in testing for stability if n.(s) (resp. n.(s» can be easily 
J J ,. 

calculated, it has poor connections with design, as Kr(S) (resp. Kr(s» is not 

directly assessable. '-' 

The stability conditions stated above are expressed in terms of the 
,. ~ 

return ratio matrix T (s) - 0 (s) H (s) • Q (s) (resp. T (s) • Q (s). r T r r r r 

Similar results to the above can be expressed in terms of the return difference 
,. 

matrix, F (s) (resp. R (s». r r 

Theorem 5.5 
,. ,. 

Let V .(s) + S(resp. ~ .(s) + a) map D into A . + 13 (resp. A . + a) 
rJ' rJ rJ rJ 

A ,. 

where V .(s) (resp. ~ .(s» is the characteristic loci of F (s) (resp. R (s» 
rJ rJ r r 

and S(resp. a) is a complex number. Then sufficient conditions for S to be 

closed loop s table are : 

A 

(1) A • + S(resp. A • + a) individually satisfies NC Yj 
rJ rJ 

(2) 'Iv .(s) + 131 >11 G (s) K (s) - 13111 inf K(P(S» \/j, V's~D ••• (5.20) . ~ e r ,. ,.,. ,. 
Crespo Iv .(5) + al >11 K (s) G (s) - alII inf K (P(s»] \v'j, 'Is € D rJ r e 

or 

(3) Ivrj(s) + sl > maxj Inj(s) - alinf}l,V K(P(S» K(V(S» 'lij, 'Vs £ D ••• (5.21) 

,. ,. ",. 
[resp •. IAr.(s) + al > max. In.(s) - alinfp V K(P(S» K(V(S»] 'Vj, 'Vs £D 

J J J , . 
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,.. ,.. 

Since F(s) • I + Q(s) (resp. R(s) • I + Q(s)1 it follows that 

II F(s) - Fr(s) II - II Q(s) - Q (s) II r 

,.. 
.. II Ge (s) Kr(s) II (resp. II R(s) II 

A ,.. 
A " ,.. 

II Q(s) - Qr(s) II = II Kr(s) Ge (s) II ) and pes) (resp. P(s» which 

diagonalises Q (s) (resp. Q (s» will also diagonalise F (s) (resp. . r r r ,.. ,.. ,.. 
R (s» ~ Thus substituting II F{s) - F (5) II (resp. II R(s) - R (s) II) 
r r r 

into eqn. (5.6) will produce the same circular disc as defined in 

theorem 5.1.· Further, by the eigenvalue shift theorem, V .(s) -
rJ ,.. ,.. 

1 + p . (5) {resp. A . (s) - 1 + P . (s»). 
rJ rJ rJ Thus, the conditions for 

stability are exactly the same as in theorems 5.3 and 5.4, except 

that the critical point is shifted from '-1' to the origin, with 

the disc areas remaining unaltered. The proof for stability is . 
, 

exactly the same as given in theorems 5.2 to 5.4. The result follows, 

'-see figs. 5.4 and 5.5. 
,.. 

Special cases In the special case when Q (s) (resp. Qr(s» or G (s) K (s) r e r 
,..,.. . 

(resp. K (s) G (s) is a normal r e matrix i.e. QH(s) Q (s) -
. r r ,.. ,.. 

Qr(s) Q~(S), then pes) (resp. pes»~ or V(s) (resp. V(s» 

can be chosen to be Unitary, and using the spectral norm II 11 2 , K(P(s»-l 
H ,.. 

or K(V(S» - 1 (since pes) P (s) - I, therefore II pes) 112 - II pes) 112 _. {Amax 

(P(s) pH(s»}l • 1). Thus the stability boundaries in theorems 5.2 to 5.5 

are much simplified for computation. 

Open loop unstable systems: The stability conditions given in theorems 

5.2 to 5.5 are sufficient but not necessary. The first condition requires 

that the reduced system, S , be closed loop stable in the sense of the Nyquist 
r 

criterion. However, this is not necessary for closed loop stability of original 

system, S. S is only closed loop stable if its characteristic loci, say, 

p.(s) do not enclose the critical point. Also as far as closed loop stability 
J 

of S and S is concerned, either or both Sand S can be open-loop unstable. 
r . r 

Assume now that S is open-loop unstable and has z right-half plane zeroes in r 

its open-loop characteristic polynomial (o.l.c.p.). Then, 



1m 

Re 

r=J!Ge(s)l1lkr (s)1I 
infJ{(P(s) ) 

" 0(+,\ (s) 
rj 

r z:nKr(S)Ge(s)-C(ItlinfJ«p(s» 

Fig.5.5 Illustrating stability for S 
uSing return difference inverse loci 

( In both cases, for stability band 
must not touch or overlap origin) 

Fig. 5.4 Illustrating stability for S 
USing return difference direct loci(theorem 5.5) 

1m 1m 

~E»rj (s) 
loci 

q (s)"'~ q(s) loci 
r loci 

Fig. 5.6 Illustrating closed loop 
stability for S when p = 1 (theorem 5.6) 

o 
(i.e. right hand side pole = 1 ) 

Re 

1m 
(-1,0) 

Fie. 5.8 Illustrntinr, stability for 
S b cti~v"on~l dominance and 

Fig. 5.1 Illustrating stability for S' 
when it is single input-sin~le output 

(theorem 5.1) 

1m 

(-1,a) 
Re 

loci 

loci" 

Fig. 5.9 Illustrating stability for S 
using diagonal dominance and Nyquist loci 
of S 
_--=-r (theorem 5.9) 
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Theorem 5.6 

'Sufficient conditions for S to be closed-loop stable are: 

m m A 

(1) S satisfies NC in the sense E nf . - -z (resp. En. 
ricl J i-I C1 

m,.. 
En ... -z) 

. I 01 ,1-

(2) Condition (2) of one of the theorems 5.2 to 5.5 be satisfied 

(3) S has z right-half plane zeroes in its o.l.c.p. 

Proof : Since S is closed-loop stable, the total number of encirclements 
r 

of the critical point is Enfj .. -Po .. -z. It follows that if 

condition (2) is satisfied, i.e. the bands do not overlap the critical point, 

it is seen that the loci of S encircle the critical point the same number of 

times as that of Sr' Hence by theorem SA, S is closed-loop stable if Po • z 

in its o.Lc.p. This is illustrated graphically in f~g. 5.6. 

Theorem 5.6 is the gener'al case of theorems 5.2 to 5.5 where both Sand 

S are open-loop stable. However, if the number z is different in the o.l.c.p's 
r 

of Sand S, then closed-loop stability of S is uncertain, and, to determine 
r 

the latter in terms of that of S , will, in general, be difficult. 
, r 

In practice, normally a stable G(s) is given, and a stable G (s) is 
r 

derived from it. If G (s) derived is unstable, then the reduction method is 
r 

ineffective and G(s) is not closely approximated, hence, its dynamics, together 

with the overall dynamics when controller K (5) is implemented, cannot be 
r 

properly studied. Thus in terms of'dynamical interest in the design, G (s) 
r 

must be stable. However, if G(s) given is unstable, then during the design 

process, extraneous right-half plane zeroes must be added to G (s) or K (s) 
r r 

such that the number of right-half plane zeroes in the o.l.c.p. of S is equal , r 

to that in the o.1.c.p. of S. This is necessary before theorem 5.6 can be 

applied where closed-loop stability of S is to be deduced from that of S 
r 

during design. 

Non-simple matrices The stability conditions of theorems 5.1 to 5.6 are 

only valid when Qr(s) is simple, i.e. similar to a diagonal matrix. If Qr(s) 
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has repeated characteristic loci, but is not normal, then theorem 5.1 breaks 

down~ In computing the loci. usually rounding errors make them distinct. 

However, at a specific w , p .(w ) can be non distinct or the structure of c rJ C 

Q (s) can be such that p .(s) is repeating for all s = jw. The modification r . rJ 

to theorem 5.1 of Bauer and Fike is added below for completeness. 

Corollary 5.1 

Let Qr(s) (resp. Qr(s» be a general. not necessary simple, matrix with 
,..' ,.. 

p .(s) having index m. > 1 (resp. m. > 1. where in general m. 111m.). Then 
rJ J J J J ,.. 

p.(s) (resp. p.(s». 'Vj. lie in the union of discs with 
J J 

. ,.. 
centre p .(s) (resp. p .(s» 

rJ rJ ,.. 
radii II G (s) K (s) + pes) H pes) II inf K(P(s» e r p 

A A A '" 

[resp. II K (s) G (s) + pes) H"P(s) \I inf K(P(s» J rep 

where H (resp.-R,,) is a matrix with entry unity or zero depending on m. 
p p J 

(resp. ~.) along its superdiagonal and null elsewhere. Inf K(P(S» (resp. 
" J ,.. ,.. 

inf K(P(S») is taken as the minimum of K(P(S) D(s» (resp. K(D(s) P(s»)for 
,.. ,.. 

which pes) (resp. pes»~ quasi-diagonalises Q (s) (resp. Q (s» to diaidC l(s) .. r r r 
,.. " 

• 00 C (s)) (resp 0 rp diag- {J l(s), •• oJ (s)}) 0 [P(s) D(s) (resp. D(s) P(s» r rq ,.. ,.. 
where D(s) (resp. D(s» is diagonal also quasi-diagonalises Q (5) (resp. Q (s»J. 

. r r 

C .(5) (resp. J .(5» is a Jordan Block, p (resp. q) being the number of 
rJ rJ 

" " elementary divisors.;; of p . (s) I - Q (s) (resp. p . (s) 1 - Q (5». 
rJ r rJ r 

Proof : _ Following eqn. (5.7), 
,.. " 

pes) [diag{Crl (s), ••• Crp (s) }+P(s)Ge (S)Kr(S)P(s)]P(s)y(s) cPk (s)y(s) ••• (5.22) 

Bow write 

diag' {C l(s), ••• C (s)} = diag{p·l(s), ••• p (s)} + H r rp r rm p ••• (5.23) 

Substituting eqn. (5.23) into (5.22) and manipulating gives, 

" . 
lPk(s)I - diag{Prl (s) •••• Prm(s)}]a(s) .. [f(s)Ge(S)Kr(S)P(s) + H~a(s) ••• (5.24) 
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"-
Where a(s) = pes) yes) ; O. Applying lemma 5.1 gives 

A 

min, I P
k 

(s) - P ,(s) I ~ II G (s) K (s) + P (s) H P (s) II inf K (P (s) ) 
J rJ e r p 

The corollary follows. 
• 

Since pes) will also quasi-diagona1ise BI + Qr(s) to diag' {Crl(s), 

••• (5.25) 

••• C' (s)} where C ',(s) .. BI + C ,(s) and B is a complex number, eqns. (5.15) 
rp rJ rJ . 

is still valid if diag{p l(s), ••• P (s)} is replaced by diag{p l(s), ••• P (s)} r rm . r rm 

+H. Rearranging the modified form of eqn. (5.15) and applying lemma 5.1 
p 

yields the modified form of eqn. (5.16), 

A 

min. 1Pk(s) - (B+p ,(s» I ~ II G (s) K (s) - BI + pes) H pes) II infK(P(s» 
J rJ e r p 

••.• (5.26) 

Further, if V(s) quasi-diagonalises G (s) K (s) to U(s) + H where H e r ._. v v 

is similarly defined as Hand U(s) .. diag{~l(s) ••• ~(s)}, the r.h.s. of 
p m 

eqn. (5.26) becomes 
,.. ,.. ,.. 

II V(s) U(s) V(s) - BI + V(s) Hv V(s) + pes) Hp pes) II infK(P(s»' 
A 

. {maxJ,I~J'(s) -BI +H + W(s) H W(s)} inf K(P(S» K(V(S» v p p,v ... (5.27) 

A 

where W(s) .. pes) V(s). Thus eqn. (5.26) becomes 

" 
(B+Prl,(s»I~{ max·I~,(s) -BI + H +W(a) H W(s)}inf K{P(S»K(V(S» 

1 1 v P p,v 

••• (5.28) 

Since IIFr(s) II - II I + Qr(s) II , it follows that pes) will also reduce 

F (s) to its Jordan form, and by the eigenvalue shift theorem, V ,(s) .. l+p .(s), 
r . rJ rJ 

the critical point is shifted from '-1' to the origin. Hence change in critical 

point is invariant to the nature of Q (s). Similar results apply to the inverse 
r 

,.. " 
case, \I Rr(s) II .. II I + Qr(s) II • 

Coro11ories 5.2, 5.3, 5.4, 5.5 and 5.6 

Sufficient conditions for closed-loop stability of S are the same as 
A 

those given in theorems 5.2 to 5.6 except that the terms pes) H pes) (reap. 
p 

pes) H,.. P{s», Hv' V(s) Hv V{s) (resp. V(s) H,.. V(s» are included in the II II 
p v 
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expressions as appropriate, thus increasing the radii of the discs. 

Proof: The proof and geometrical interpretation follows exactly as those 

given in theorems 5.2 to 5.6. 

Hence when Q (s) and G (s) K (5) are non-simple, the stability bounds r e r 

are less sharp than those when the matrices are simple, (H • H = 0, for 
p v 

simple Q (s) and G (s) K (s») assuming that the bounds are expressed in the same r e r 

form for both cases. The bounds can also be adjusted to isolate II K (s) II 
r 

" (resp. II Kr (8) II ) though at the expense of diminishing sharpness, during design 

and then 'tuned' down by the scaling factor a (resp. a) in the final stage to 

offer the maximum stability margins. For example, the sharpest band, eqn. 

(5.25), to satisfy the Nyquist criterion with r . locus doing likewise, is' 
rJ 

" . I 1 + a + p • (s) I > inf II P G (s) K (s) pes) -SI + H II 
rJ e r p ••• (5.29) 

although computationally the r.h.s. of expo (5.29) may be unfeasible to 

evaluate. Also, it is noticed that II H II - II H II .. II H II • 1 (the 
Pl Pex) P2 

sare applies for Hv)' thus when isolating II Kr(S) II , it is convenient not 

to isolate II H II as an added term near the critical point, as overlap of the 
p 

critical point by the disc is likely to occur. The norms that are used above 

can be computationally obtained as 

IIA(s) II = II AH(s) II = max. 
1 00 J 

m 
1: 

i-I 

II A(s) II .. [A (AH(S)A(S»]i 
2 max 

la .. (s)1 
LJ 

Single input-single output systems : The stability conditions given in 

theorems 5.2 to 5.6 are stated for multivariable systems having m inputs and 

m outputs. '. In the spe'cial case, when m ... 1, the single input-single output 

system is obtained. The stability conditions are as follows, 

Theorem 5.7 

" " tet q (s) + S (resp. q (s) + a) map r r D into rr + S (resp. rr + a). The 

sufficient conditions for closed-loop stability of S are 
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" 
(1) r + a (resp. r + a) satisfies NC 

r r 

(2) 11 + a + q (5)1 > Ig (5) k (s) - 131 r e r '1s € D •• .(5.30) 

Proof The geometrical interpretation of theorem 5.7 is shown in fig. 5.7. 

Eqn. (5.30) is the special case of eqn. (5.12) for m • 1. The 

transfer function matrices Qr(s), G (s) K (s) reduce to single expressions e r 

qr(s) ,ge (5) kr(s) etc. Thus the characteristic locus becomes the single loop 

classical Nyquist locus. Stability is obvious if the band does not overlap 

the critical point. Theorem 5.7 can also be derived by considering Qr(s) 

and G (s) K (s) diagonal. Then from eqn. (5.12), e r p . (s) becomes q .. (s) , 
rJ rJJ 

II G (s) K (s) - alII becomes max.lg .(s) k .(s) 
e r J eJ rJ - all and infK(P(s» • 1 

as P • I. Hence the condition' 

11 +a+q •. (s)1 > max.lg .(s) k .(s) - all, 'tj, "Is E D 
rJJ J eJ rJ 

is required for stability, which reduces to eqn. (5.30) for j • 1. 

As before, the 'tuning' factor a (resp. a) can be chosen to 
" 1 

minimize Ig (5) k (5) - 131 (resp. Ig (s) k- (5) -al') to obtain the narrowest ere r 

band, or chosen to be zero as appropriate. 

Sometimes it is convenient to express stability of S in terms of 

the diagonal elements of Q (5) and the structure of Q (s), example via 
r r 

Gershgori~ s . theorem, theorem 5B. Thus, 

Theorem 5.8 

" Let q •• (s) + a (resp. q .. (5) + a) map D into r . + B (resp. 
rJJ rJJ rJ 

" rrj + a). Then sufficient conditions for S to be closed loop stable are: 

(1) 

(2) 

" r + a (resp. r + a) satisfies NC, \1j 
r r 

m "" 11+f3+q •• (s~> l: Iq .. (5)1 (resp.ll+ +q .. (s)l> I: Iq .. (s)I), \lj, Vs ED 
rJJ i=l rlJ rJJ i;j rlJ 

• J.' 1rJ . ••• (5.31) 
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(3) Il+S+q .. (s) 1>11 G '(s)K (s)-SIII infK(P(s» + I: Iq •• (5) I, 
rJJ e r i~j r1J 

Yj, 'Is e. D 

···(5.32)' 
" "" A 

Crespo Il+a+q .. (s)I>1I K (s)G (s)-aIII infK(P(s» +.I:.lq .. (s)l] 'Vj, 'Vsc:.D rJJ r e l.'fJ r1J 

Proof: The graphical interpretation of theorem 5.8 is shown in fig. 5.8. 

Condition 2 requires that the S be diagonally dominant, hence by Gershgorin's 
r 

theorem, the characteristic loci, p .(s) of S are trapped in the Gershgorin 
rJ r 

band. Condition 3 is an application of Gershgorin's theorem and theorem 5.1, 

where the loci Pl.(s) of S are trapped in the band centred on P .(s). Hence 
rJ 

it is easily seen that if all three conditions are satisfied, the band defined 

by condition (3) cannot overlap the critical point, meaning no loci of S can 

enclose the critical point, thus S is closed loop sta~~e. 

Theorem 5.8 expresses stability of S in terms of that of Sr via 

Gershgorin's theorem and theorem 5.1. The next theorem gives stability of S 

in terms of theorem 5.7 and diagonal dominance of S. 

Theorem 5.9 

Let r . be as defined in theorem 5.8. Sufficient conditions for closed 
rJ ' 

loop stability of S are : 

(1) r . (resp. r .) satisfies NC, 't/j 
rJ rJ 

(2) 
,.. ,.. 

11+a+q •. (s)I>lq .. (s)-al[resp. Il+a+q .. (s)I>lq .. (s)-al] 
rJJ eJ J rJJ eJJ 

V'j, 'Vs e D 

m A A 

(3) Il+l3+q .. (s)I>lq .. (s)-I3I+ t )q .. (s)l[resp.II-Kl+q .. (s)I>lq .• (s)-al 
rJJ eJJ i=l l.J rJJ eJJ 

h'j 
, A 

+ I: Iq·,·(s) I], 
'./.' 1J l.TJ 

Vs € D 

A A ,.. 

where Qe(s) - Q(s) - Qr(s) = Ge(s) Kr(S), Qe(s) = Q(s) - Qr(s) 

.'. • (5.32) 

Proof : Th~ graphical interpretation is shown in fig. 5.9. Conditions (1) 

and (2) ensure that the Nyquist loci r. of S satisfies the Nyquist criterion. 
J 
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Condition (3) ensures that S be diagonally dominant, hence by theorem 5B, S 

is closed loop stable. 

Theorem 5.9 does not require the stability of S to determine the 
r 

stability of S. It works on the diagonal elements of Qr(s) and computes the 

off-diagonal elements of Q(s). This is particularly attractive since q .. (s) 
rJl 

is used in the design. To determine the stability of S , would be an 
. r 

independent piece of work, example by theorem 5B, S need be independently 
r 

diagonal dominant. 

The theorems above constrain the characteristic loci in some circular 

discs. Another useful result can be obtained by employing .a theorem of Hirsch3l 

. 
where, instead of circular disc, the eigenvalues are constrained in a ,rectangular 

region. 

--. 
Theorem 5.10 

Let every loci defined by Cartesian co-ordinates, in the complex plane, 
.... .... 

S +(1l • (w), V • (w» [resp.a + (A • (w), 0 . (w»] map D into a + r .. (resp. rl. rJ rl. rJ rl.J .... .... ,., 
a + r .. ) where ~ .(w), V .(w) (resp. A .(w), a .(w» are the real eigenvalues r1J r:L rJ . n rJ 

of the Hermitian matrices B (s) • I(Q (s) + QH(s», C (s) • -jl(Q (s) - QH(s» r r r r r r 
,., .... ~ ,., H 

rresp. B (s) - l(Q (s) + Q (5), C (s) - -jl(Q (s) - Q (s»J and a (resp. a) W r r r r r r 

is a frequency dependent complex number. Let Be(S) - B(s) - Br(s) - I(Ge(s) 
H ........,., 

K (s) + K (s) G (s» (resp. B (s) - B(s) - B (s», C (s) - C(a) - C (a) (resp. r r e ere r ,. ,., ,. ,., .... 
C (s) = C(s) - C (s») and t 2 . . (w) • 1l 2. (w) + V 2.(W) (resp.tl •• (w) -= A2. (w) 
e r rl.J rJ. rl rl.l rl. ,. 

+ 02.(W». Then sufficient conditions for closed loop stability of S are 
rJ 

(1) r .. + l3 (resp. r .. + a) individually satisfies NC, 
r1J rl.J 

Vi, V'j 
. 

(2) Il+13+t •. (w)I>1I B (s)-13II1 infK(P(s»), r1J e Vi,j, 'tis € D ••• (5.33) 

.... ,., 
rresp.ll-ta+.!l, •. (w) 1>11 B (8) - alII infK(P(s»J'Vi,j 'Is E D 
L.! rl.J e 

(3) Il+l3+t •• (w)I>lIc (s) - alII infK(W(s», \fij, 'VsE D 
rl.J e ••• (5.34) 

,., .... 
Crespo Il-ta+t .• (w)I>1I C (s)-aIIi infK(W(s» J. V'i,j, 'Is € D 

rl.J e 
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where pes) and W(s) diagonalise Be(s) and Ce(s) respectively. (If they quasi-

diagonalise B (s) and C (s), then pes) H pes), W(s) H W(s) must be added e e p w 

in the respective II II expressions). 

Proof: The graphical interpretation is shown in fig. 5.10 for m - 2. It 

is well known from Hirsch theorem that max. p . (w) ~ Re(p (s» ~ min. p .(w) 
1 r1 r 1r1 

and max. V .(w) ~ I (p (s) ~ min. V .(w). In other words all characteristic 
J rJ m r J rJ 

loci Pres) of Qr(s) lie in the rect~gular region defined by Cartesian 

co-ordinates (min p • (w), min V • (w», (max p • (w), min V • (w», (max lJ • (w) , r1 . rJ . r1 . rJ r1 

max V • (w» and (min II • (w), max V • (w». Now at every co-ordinate point rJ r1 rJ . 

(lJ .(w), V .(w», for i, j - 1, ••• m, two concentric circles of radii given 
r1 rJ . 

by the r.h.s. of eqns. (5.33) and (5.34) are drawn. From theorem 5.1, the 

union of circles contains all lJ. (w) of B(s) and all v-:-{w) of C(s). Hence the 
1 J 

rectangular region defined by the grid points (min ll.(w), min v.(w», (max 
1 J 

p. (w), min v.{w», (max p.{w), max v.(w» and (min ll.{w), max v.(w» lie 
1 J 1 J 1 J 

within the circles. Thus S is closed loop stable if expres. (5.33) and (5.34) 

are satisfied, i.e. no circles, hence no rectangles will overlap the critical 

point. Q.E.D. 

For stability investigation, only the circle of greater radius in 

exprs. (5.33) and (5.34) need be drawn and a total of m2 circular bands are 

required. The above theorem assumes open loop stability of Sand S , for . r 

simplici ty. If they are open-loop unstable, the similar form of theorem 5.6 

can be used. 

5.2 Stability of reduced systems using M-matrices 

Mrmatrices are quite useful in stability studies of dynamical systems 

(Siljak, Cook, Araki etc.). Recently Araki et al lO derived a stability 

theorem, which generalises Rosenbrock's diagonal dominance ~heorem, for 

multivariable systems using the theory ~f M-matrices. [A ~s called an 

M-matrix (semi-M-matrix) if its off-diagonal elements a .• , i,j, are non-
1J. . 

positive and its principal minors are positive (or non-negative)] • 
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d 

Re.(Arj (8)+ f) 

. .,.. + t i' (oil) loci d • lice (s) -~Il\infj{(W(s» 

..,. r J 

(a, b) = (max1ri (Go) ,maxlfrj (IV» 
~c,d) = (min.AJri ("'), D1aXrjY(W» 
(e,f) = (max-fri (~), min~j (w» r

1
=Bc

e 
(s) -pfJinfl{(w(s» 

(g,h) = (min"ri (~), minl{.j (e.J» r
2 

- nBe 
(s)-FIlIinrJ{(p(s» 

Fig. 5.10 Illustrating stability for S 
for theorem 5.10 

fI\ 

dj (s) ~ ,~rij (s)1 Xj/Xi 

1i6. 5.12 Illustrating stability for 
Sj theorem 5.1~ 

'1m 

Fig. 5.13 Illustrating stability for S; 
theorem 5.14 

( for all cases, circular bands must avoid critical' point for stability) 

r 
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Just as Gershgorin's theorem links theorem 5B (diagonal dominance) to theorem 

5A (characteristic loci), the M-matrix stability theorem is connected to 

theorem SA by a theorem of Ky Fan. 

Thus following Araki10 , a unity feedback open loop stable system is 

closed loop stable if, 

Theorem SC10 

A 

(1) The Nyquist (resp~ inverse Nyquist) diagram of q •• (s) (resp. q .. (5» 
. Jl JJ 

does not encircle the critical point. 

A A A 

(2) C(s) I: A(s) - B(s) (resp. C(s) • A(s) - B(s») is an M-~atrix, 

5 En: {oo < W < co}, where b •• (5) - Iq .• (5)1 ,b .. (s) - 0, a .. (s) -
1J 1J i~j 11 11 

. A A 

11+q •• (s)l, a .• (s) • 0, (i~j) (resp. for the elements of A(s) and B(s). 
11 1J ._~ 

To determine that C(s), (c •• (s) - 11+q .. (s)l, c •• (s) - -Iq •• (s)1 ) 
JJ JJ 1J 1J i;j 

is an M-matrix it is necessary and sufficient that all det(L.(s» > 0, 
. J 

j - l, ••• m where Lj(S) is a leading principal sub-matrix of C(s), or, that 

all eigenvalues of C(s) have positive real parts. 

Hence when designing 5 based on S , the stability of S must be assured 
r . 

based on the stability of S. Using M-matrices, it follows that 
r 

Theo rem S.l1 

Let q .• (s) + a (resp. q .. (s) + a) map D into r . + a (resp. r . + a). 
rJJ rJJ rJ rJ 

Sufficient conditions for closed loop stability of S are :. 

A . 

(1) r , + a (resp. r . + a) individually satisfies NC, Vj 
rJ rJ 

A 

(2) C (5) (resp. C (5» is an M-matrix. 
r r 

(3) 11 + a + q •. (5)1 > Iq . ,(5) - al rJ J eJ J 
\lj. Vs E. D ••• (5.35) 

A A 

rresp.1 1 + a + q .. (5)1> Iq .. (5) - al ] 
l2 . rJJ eJJ 

(4) 11 + q .. (s)1 ~ 11 + q .. (5)1, Iq .. (~)1 ~ Iq .. (5)1 \fij, \lsGD ••• (5.36) 
J J rJJ 1J. J.' rlJ . 1rJ 

A A A A 

Iresp.ll + q .. (s)I.~ 11 + q •. (5)1, Iq .. (s)1 ~ Iq •• (s)1 J. 
JJ rJJ 1J 'J' r1J . 1rJ 
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Proof Conditions(l) and (2) require that S be stable in the sense of r 

~matrix requirements. Condition (3) ensures that the loci r. of q •. (s) 
J JJ 

of S satisfies the.Nyquist criterion by theorem S.7. Condition (4) ensures 

that the matrix C(s) of S is an M-matrix. The latter makes use of a theorem 

b 0 k ··ll y strows 1.L • It states that if A is an M-matrix and if some elements are 

perturbed such that a .. ~ lb .. I and la •. 1 ~ lb •• I, 'ti, i=lj, then the value LL LL LJ 1.J 

of any principal minor does not decrease. Thus it follows that if some 

elements of an M-matrix, A, are increased without changing their signs, the 

new matrix, B, is also an M-matrix, i.e. b •• ~ a .. , 'Vi, and 0 ~ b •. ~ a .. , 1.1 11 1J 1J 

i;j. Hence C(s) is an M-matrix in condition (4), thus S is, closed loop stable. 

'. Q.E.D. 

A criterion in estimating the error between Sand S in the design 
r 

A "- ,.. 

can be chosen by comparing the C (s), C(s) (resp. C (s), C(s» matrices. 
r r 

From a result of Fan1S, for two M-matrices C(s) and C (s) (resp. C(s) and 
r ,.. "" ,.. 

C (s» with c •• (5) ~ c •• (s) (resp. c •• (5) ~ c •• (5», 
r r1J 1J rLJ 1J 

det L (9Uy) (det L(9)/det L(9Uy»)det L (9) ~ 1 
r r 

•• • (S .37) 

,... ,.. ,.. A 

Crespo det Lr (8Uy)(det L(8) Idet L(8Uy» det L/8) ~ 1] , and, 

whe re 8, Y E' {1, 2, ••• m} • For the null set, <p, det L(<P) • det L (<P) = 1 J Q,T\J..1 . r 

det L(aUy) is the principal minor formed by the union of sets SUy. Thus for 

9 • <p and y = (1,2, ••• ,), expo (S.37) reduces to det Cr(s)/det C(s) ~ 1. 

(Equality is observed if there is no error involved in the reduction) • 

. As a special case,. Rosenbrock's diagonal dominance criterion for 

stability can be deduced. Thus if S is stable in the sense that Q (s) is r r ' 

diagonal dominant, then a sufficient condition for S to be st'able is that Q(s) 

is also diagonal dominant. This is seen as follows. If \1 + q •• (5)1 > 
rJJ 

Iq .• (5)\ and Iq •. (s)1 > L Iq •• (s)\, it is easily seen that det L .(s) 
rJJ rJJ i~j rLJ rJ 

> 0, 'tt'j, by Gershgorin' 5 theorem, hence C (s) is an M-matrix. But condition 
r 

(4) of theorem S.ll gives Il+q •. (s)1 > L Iq •. (5)\, which gives C(s) as an 
JJ 'J' LJ ,LrJ 
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M-matrix. Now if II+q •. (s)1 > Iq .. (s)l> ~ Iq .. (s)I, it is easily seen that 
JJ JJ i;j 1J 

S is stable in the sense of diagonal dominance requirements. 

Theorem 5.11 expresses the results in 'analytical form'. A graphical 

interpretation, suitable to the designer, can be obtained as follows, 

Theorem 5.12 
A 

Let r ., a be as defined as in theorem 5.11 and let A .(s) (resp. A .(s» 
rJ A • rJ rJ 

be an eigenvalue of Cr(s) (resp. Cr(s». Then sufficient conditions for S to 

be closed loop stable are 

A 

(1) r . + a (resp. r . + a) individually satisfies NC, Vj 
rJ rJ 

A 

(2) C (s) (resp. C (s» is an M-matrix r r 

(3) I 1 + 8 + q .. (s)1 > Iq .. (s) - 81 rJJ eJJ 
Vj, 'Vs E D ••• (5.38) 

A . ,. 

[resp. I I + a + q .. (5) I > I q .. (5) - a I ] 
rJJ eJJ 

(4) Re'" . (s)+8) > II C (5) - 81 II infK(W(s» 'Ij, Vs € D . rJ e ••• (5.39) 

'" A 

[Fesp. Re(A .(s) +a) > II C (s) - alII infK(W(s»] 
rJ e 

'" " " 
where Ce(s) = C(s) - Cr(s) (resp. Ce(s) • C(s) - Cr(s» 

Proof: Conditions (1), (2) and (3) are as explained in theorem 5.11. 

Condition (4) derived from theorem 5.1, is based on the fact that all Re(A.(s» 
J 

must be positive. Since all eigenvalues of an M-matrix have positive real 

parts, it follows that a matrix with positive real part eigenvalues, and 

nonpositive off-diagonal elements is an M-matrix. Thus if A.(s) lie in the 
J 

right half plan~ an~since by definition, all off-diagonal elements of C(s) 

are non-positive, it follows that C(s) is an M-matrix. 

Stability of S follows from theorem 5C. 

Theorem 5.12 is illustrated in fig.5.ll. As a special casei when Q (5) 
r 

and Q(s) R~e diagonal dominant, from Gershgorin's theorem all A .(5) and A.(s) 
rJ J 

lie in the r.h.s. plane. Thus it is possible to find a a (scaling factor) 
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such that condition (4) of theorem 5.12 is satisfied. The advantage of the 

above theorem is that circular discs can be displayed graphically, and be 

tuned by a, so as to enable the designer to have more freedom and ease of 

determining stability margins for S when design is made on S. The M-matrix 
r 

stability requirement can also be interpreted by a theorem of ~'_'. Fan13• 

In this case, like the Inverse Nyquist Array method, ci rcul ar bands 

are drawn on the diagonal elements of Q (s). 
r 

Theorem 5.13 

Let r ., a be as defined as in theorem 5.11. 
rJ 

Sufficient conditions for 

S to be closed loop stable are .11 

A 

(1) r . + a (resp. r . + a) individually satisfies NC, ~j rJ rJ 

(2) 11 + a + q .. (s) I > I q •. (s) - a I 
rJJ e1J 

'Q'j. ~s € D ••• (5 .40) 

A '" 

Crespo 11 + a + q .. (s)1 > Iq .. (s) - al ] 
rJJ eJJ 

(3) 11 + a + q •. (s) I > d. (s) + I q .. (5) - a I Vj, 'Vs E D 
rJJ J eJJ 

••• (5.41) 
,.. ,.. A 

[resp.ll +a +q .. (s)1 > d.(s) + Iq .. (s) -alJ 
rJJ J eJJ 

m m 
(4) d. (s) ~ I: Iq .. (8) I x./x ... . d. (8) ~ I: Iq •• (s)\ x./x. ••• (5.42) , 

J ic:l . UJ J. 1 J i-I 1J J 1 

i"j i"j V'j, Vs E D 

A m A ,.. m A 

Crespo d. (s) ~ I: Iq .. (s)1 y ./y. ; d. (8) ~ I: I q •• (s) I y ./y .J 
J i-I r1J J 1 J i-I 1J J 1: 

i,&j i,&j 

Proof : Conditions (1) and (2) ensure that q .. (s) and q .• (s) satisfy the 
rJJ JJ 

Nyquist criterion. Conditions (3) and (4) satisfy the remaining conditions 

of a theorem of Ky ·Fan which ensures that the characteristic loci of S 

satisfy NC provided those of S also satisfy NC. The theorem states that if 
r 

A ~ a .•. is indecomposable and non-negative, a .• > 0 and a .. ,- 0, and if the 1J 1J 11 

matrix B • b •. with lb .• 1 = a .. , i " j, has every eigenvalue inside the circle 
1J 1J 1J 

set IA - b .. 1 ~ d., Vi, then there exists n positive numbers xl, ••• xn such . 11 1 
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that d. ~ 1: a •• x./x., 'Vi. The graphical interpretation of theorem 5.13 is 
1i;'j 1J J 1 

shown in fig. 5.12. If conditions (3) and (4) are satisfied, no band, hence 

no loci, can overlap the critical point, thus S is closed loop stable. 

Fan's theorem can also be used to prove the stability result due to Araki 

et aI, i.e. theorem 5C. From d. - 1: a .. x./x., Vi, it follows that d.x.-
1 j,i 1J J 1 1 1 

1: a .• x. ~ 0, 
'.,U 1J J 

Vi, which implies (d. I - A)x ~ 0 where x is a positive vector 
1 

J TJ. II 
and A = a •• , i 'j. Hence d. I -A is a semi M-matrix (d. I-A has nonpositive 

1J 1 1 

off-diagonal elements and (d. I-A) x ~ 0 for x > 0). Recall the matrix C(s) 
1 . 

of theorem 5C. Comparing C(s) with d.I-A it is seen that d. • Il+q .• (s)l, 
1 1 11 

a •• - 0, a .• • Iq •• (s)l, i 'j. Choose b •• • q •. (s). Thus it follows that 
11 1J 1J 11 11 

C(s) is a semi M-matrix if Ipk(s) - q •. (s)1 ~ Il+q •. (s)1 where Pk(s) is an 
11 11 

eigenvalue of Q(s). Hence C(s) is a M-matrix if no Pk(s) loci enclose the 

critical point, thus system is closed loop stable •. 

A further useful stability theorem for Sand Sr can be derived from a 

f 1 k ··26,3l resu1 t 0 Kate yans 11 • 

Theorem 5.14 

Let r ., a be as defined in theorem 5.11. Sufficient conditions for 
rJ 

closed loop stability of S are; 

(1) 

(2) 

(3) 

(4) 

" r . + a (resp. r . + 0.) individually s~t.isfY';j« Ne, V'j 
rJ rJ 

11 + a + q .• (s)1 > Iq •• (s) - al 
rJJ eJJ 

Vj, "Is E D 

" " .-resp.II + a + q .. (s)1 > Iq .. (s)- al ] 
l:' rJJ. eJJ 

11 + a + q •• (s)1 > "'B(w) - Ib •• (s)1 + Iq .. (s)-al Vj, Vs E D 
rJJ JJ eJJ 

A A A "'-

[resp.1 I + a +q .. (s) I > "'B(w) - lb .. (5) I + Iq .. (s)-a I ] 
rJJ JJ eJJ 

q •• (s) ~ lb .. (s)1 
r1J 1J 

" " 

• , q .. (5) ~ I b .. (s) I 'Vi f j, 
1J 1J 

" " [tesp. q .. (s) ~ I b .. (s) I 
r1J 1J 

q .• (5) ~ lb .. (s) I ] 
1J 1J 

'Vs € D 

···(5.43) 

• •• (5.44) 

••• (5.45) 

where B ~ lb •• (s)1 is a non-negative matrix and "'B(w) is the spectral radius 
1J 
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,or Perron-Frobenius characteristic root of B, AB{W} • IA {B)I. , , max 

Proof: Kotelyanskii theorem states that if Iq .. {s}1 < Ib .• {s)l, i f j, 
, r1J 1J 

then all characteristic loci of Q {s} lie in the union of discs Ip .(s) -
r rJ 

q •• (s}1 ~ 1 (w) - Ib •• (s}l. Theorem 5.14 is shown graphically in fig. 5.13 rJJ .~ JJ 
which is similar to fig.5.l2 of theorem 5.13. Conditions {l} and (2) ensure 

that q •• (s) and q •. {s} satisfy the Nyquist criterion. The remaining conditions 
rJl JJ 

(3) and (4) result from the application of Kotelyanskii's theorem to both S 
, ' r 

and S. If all conditions are satisfied, it is seen that no loci of Sr' hence 

that of S, can enclose the critical point, thus ensuring stability. 

Theorems 5.13 and 5.14 expressed stability of S in terms of that of S • 
r 

This is convenient, as S is used to design S, but at the expense of lesser 
r 

sharpness in the stability conditions for S. As the conditions are only 

sufficient, in practice, separate tests can be made on S to invoke stronger 

stability conditions. However, the latter may be too costly and involvedJand 

do not provide a correlation between the stabilities of Sand S. Whereas in 
r 

the former case, scaling factors can be suitably chosen to reduce the width of 

the bands to provide an economical and simple controller that guarantees the 

stabilities of S and S simultaneously. 
r 

The stability theorems from theorem 5.11 to 5.14 are based on 
"-

encirclements by diagonal elements q •• {s} (resp. q •• {s}} of Q (s) (resp. 
ru rJJ r ,. 

Q (5)). This is advantageous if design is made on the diagonal elements 
r 

instead of on the characteristic loci. For open-loop unstable systems, 

theorems 5.11 to 5.14 can be modified in the following way. 

Theorem 5.15 

Suppose S has z right half plane zeroes in its o.l.c.p. Let ~ • + S 
r ~ 

(resp. ~ • + a), r . + S(resp. r . + a) be the images of D, under the mapping 
rJ rJ rJ ,. ,. 

r .• (5) ~ S(resp. r .. (s) + a), q •. (s) + S(resp. q .. (s) + a}, and c~circle 
rJJ rJl rJl rlJ ,.. ,.. 

the origin n • (resp. n .), n • (resp. n .) times clockwise (resp. counter C1 C1 01 01 

i 
I , 

. I 
i , 
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clockwise). Then sufficie~t conditions for closed loop stability of S are 

m m m m 
S satisfies NC in the sense t n. - t n • - -z I A t fi . n • (1) (resp. r .i-1 C1. .i .. l 01. 

i-I C1. i-I 01. 

- -z). , 

(2) Shas z right half plane zeroes in its o.l.c.p. 

(3) The remaining condi tions of one of the theorems 5.11 to 5.14 be satisfied. 

Proof: The proof follows parallel to that of theorem 5.6 (see fig. 5.6). 

Condition (1) is a direct consequence of'the Hsu-Chen theorem and Gershgorin's 

theorem, theorems SA and SB. The M-matrix theorems of S.ll and S .12 are 

related to the characteristic loci encirclement theorem by Ky Fan's theorem, 

hence conditions (2) and (3) are as similarly proved as in theorem S.6. 
....,. m 

Since r .. (s) - 1 + q •• (5), from condition (1r~-·t £l. 
rJJ rJJ i-I C1 

as the number of encirclements of the '-1' point by Blol loci 

can be interpreted 
m " 
I r . + Cl. If 

. I rJ ," "J- m 
the characteristic loci are considered, ~ .(s) - 1 + P .(s), then t fi . in 

rJ rJ i-l C1. 
theorem 5.6 is interpreted as the total number of encirclements of the '-1' 

point by all the loci p • (s). 
rJ 

5.3 Stability of reduced systems using contraction mapping principle. 

19 h d h • d f • • '. f • 1 l' Freeman as use t e 1. ea 0 contract1.on mapplng 1.n unct1.ona ana YS1.S 

to study the stability of linear multivariable systems. It is based on the 

fact that the system of fig. 5.1 is stable when inputs u. (t) which are 1. 

integrable on finite intervals and bounded as lu.(t)1 ~ M. exp(-a.t) for a. > 0 
1 1. 1. 1. 

and Vi produce output y.(t), for all initial conditions with finite L norms, 1. CIO 

which are integrable on finite intervals and are bounded by ly.(t)1 ~ N. exp 1. 1. 

(-a.t) for some a. > a > 0 and Vi. These assumptions assume that the Laplace 
1. 1. 

transforms of the inputs exist in a domain 0 .' {s : Re s > c }, which is an 

open connected set, and the transforms are infinitely differentiable in O. 

Thus the ~nput and output transforms of a stable system are ho101OOrphl.c 

(regular, single-valued) functions in the domain 0, hence the problem of 

finding a condition for stability reduces to deriving conditions under which 
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the operation on input u(s), maps u(s) transforms which are on the space of 

holomorphic functions on 0 into yes) transforms which are also in the space 

of ho1omorphic functions on O. 

Hence in a linear metric space, Y, if 

••• (5.46) 

where d{ } represents metrics in Y, T : Y ~ Y (T is an operator which 

transforms the elements of Y into the elements of the same space Y), and M is 

a constant such that M < 1, then a contraction is obtained and by the fixed 

point theorem there exists exactly one point yes) € Y such that yes) - Ty(s), 

where in Banach space, T is a matrix norm and yes) can be solved iteratively 

in the space of stable transforms. 

The outputs of figs. 5.1(a) and 5.1(b) can be wrjtten as 

Y (5) • Q (5) u(s) - Q (s) y (s) +Z (5) r r r r r ••• (5.47) 

yes) • Q(s) u(s) - Q(s) yes) + z(s) ••• (5.48) 

where Z (5), z(s) are effects due to initial conditions. Adding A(s) yes) to 
r 

both sides of eqn. (5.48) and assuming (I + A(s» has an inverse, 

_1 _1 
yes) - (I+A(s» Q(s) u(s) - W(s) yes) + (I+A(s» z(s) ••• (5.49) 

_1 
where W(s) • (l+A(s» (Q(s)-A(s» and Q(s) - G(s) K (5). From eqn. (S .49), 

r 

considering two points Y1(s), Y2(8) in Y, 

and identifying eqn. (5.50) with (5.46), a contraction is obtained if 

1\ W(s) II < 1. Thus 

19 
Theorem 5D 

A sufficient condition for S to be closed loop stable is 

(1) \I W(s) 1\ < 1 

If A(s) is chosen diagonal, A(s) = diag' {Q11(s), ••• ~s)} and 

• • • (5.51) 
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II II or \I II are taken, then 
1 co 

m 
\I W(s) II .. max sup 1: Iqij(s)/(l~i (s» I < 1 

i s~an . j=l 
• •• (5.52) 

.j;i 

theorem 5B, the 
which is a form. of '/\ diagonal dominance theorem; shown in fig. 5.14. 

Following theorem 5D, stability conditions for both Sand S can be 
r 

derived. 

Theorem 5.16 

Let S be closed loop stable in the sense of theorem 5D, i.e. its 
r 

bounded input transforms produce bounded output transforms 'and are holomorphic 

in the domain O. A sufficient condition for S to be similarly stable is any 

one of the following : --. 
(1) II Wr(s) II < 1 - II W(s) - Wr(s) II < 1 

If A (s) is chosen such that A(s) - A (s), then 
r r 

(2) . II Wr(s) II < 1 - infAIi (I+A(s» _1 G
e 

(s) Kr(S) II < 1 

If II Ar(s) \I .. \I A(s) II < 1 and II III - 1, then 

(3) II Wr(s) II <1 - (II Ge(s) Kr(S) II 1(1-11 Ar(s) II » < 1 

If A (s) • A(s), then r 

···(5.53) 

••• (5.54) 

••• (5.55) 

(5) II Qr(s) II < \I Ar(S) II + glb A(s) - II G
e 

(s) Kr(S) II < 1\ Ar(s) \I +glb A(s) 

••• (5.57) 

If A (s) - A(s) .. 0, K (5) ; 0, then, 
r r 

(6) II Q (s) II < 1 - II G (5) K (s) II < 1 r e r ... (5.58) 

_1 _1 
II G (s) II < II K (5) II - II G (5) II < II Kr (5) II r r e (7) ••• (5.59) 

_1 
where W (s) .. (I+A (s» (Q (s)-A (5», Q (8) • G (5) K (8), G (s) .. G(5) 

r r r r r r r e 
_1 _1 

-G (s) and the greatest lower bound glb A .. II A II • 
r 
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Proof: Since W(s) can be written as Wr(s) + W(s) - Wr(s), for stability, 

theorem 5D gives II W (s) + W(s) - W (s) II < 1. Since II W (5) + W(s) - W (s) II 
r r r r 

~ II W (5) II + II W(s} - W (s) II = E(s), hence provided E(s) < 1, it is sufficient 
r r 

to deduce that" W(s) II < 1. Since II II ~ 0, then 1 - II n ~ 1, condition 

(1) follows, thus S is closed loop stable. The extreme inequality "W (s) II r 

< 1 in condition (1) indicates that S is likewise stable. However, if 
r 

II E(s) II > 1, the status of II W(s) II < 1 or II W(s) II > 1 is uncertain. 

Condition (2) is a consequence of condition (1) when A (s) = A(s). and 
r 

infA II II is taken w.r.t. all matrices A(s) which make II II a minimum. The 

proof for stability of S, i.e. II W(s) II < 1 is exactly the same as in condition 

(1) as condition (2) is a special case of condition (1). 

The remaining conditions (3) to t7) are special cases of condition (1). 
'-. 

Hence stability of S Le. II W(s) II < 1 is guaranteed if condition (1) is true, 

as the proof for stability of S in the remaining conditions make use of that 

for condition (1). The remaining conditions are now derived. 
1 . 1 

Since II W(s) - W (s) II • II (I + A(s»- G (s) K (s) II ~ II (I + A(s) - 1\ r e r 
_1 

II G (5) K (s) II and thatll (I + A(s) "~1/(1 - II A(s) 1\ ) if 1\ A(s) 1\ < 1 e r 
and II I II co l, condi tion (3) fo llows • 

Condition (4) is obtained from condition (2) by isolating \I (I+A(s» -111 

as II Wr(S) 1\ ~ II (1 + A(S»_1 11 II Qr(S) II and mUltiplying the inequality 
_1 

throughout by 1/11 (I + A(s» II. 
Condition (5) follows by isolating II Q (5)" from II Q (s) - A(s) II • r r 

Condition (6) follows from condition (2) by putting A (s) - 0, thus W (5) • 
r r 

Q (s), and condition (7) follows from condition (6) by isolating II G (s) II from 
r r 

II Q (s) II • r 

Q.E.D. 

Some of the bounds are stronger than others, particular strong ones 

being conditions (1), (2) and (6). However their main advan.tage is that they 

provide a r~nge of flexible margins to the designer and are express~d in 

different forms suitable for computation. The stability bounds above are 



- 128 -

analytical in nature but can also be interpreted in graphical forms. For 

example, for closed loop stability of Sr and S it is seen that II Wr(s) II in 

conditions (1), (2), (3) and (6) must lie in the inner circle, concentric 

with the unit circle, centred on the origin of the Nyquist plane. The design 

and graphical interpretation can be made more flexible, for example by choosing 

W (s) such that S is diagonal dominant. 
r r 

If A (s) - A(s) - diag' {q 1l(s), ••• q (s)}, then from the definition of r . r rnm 

w (s), W(s) and eqn. (5.52) 
r 

m 
II W(s) - Wr(s)U - max. sup ,\f"I ~ Iq •• (s) 1/11 + q •. (s) I 

1 s~o~, j=l e1l r 1l • • • (5.60) 

Subs tituting eqn. (5.60) in exp. (5.53) (condition (1) of theorem 5.16) 

yields 
m 

maxi sup SEen ~ 
j-l 
j;i 

'- m 
Iq .• (s)1 < max. sup ~a~{ll+q .• (s)1 - ~ Iq •. (s)l} 

r1J 1. S ... ~, rJJ j-l e1J. ' 

< Il+q •• (s)1 
rl.J ... (5.61) 

The graphical interpretation of eqn. (5.61) can be evaluated as follows. 
m 

Define R.(s) .. Il+q .• (s)1 - ~ Iq •• (s)l. Consider the Nyquist loci of the 
1 rJJ j-1 e1J 

diagonal elements q .. (s) of Q (s) be drawn, with appropriate Gershgorin circles 
rJJ r 

drawn around them. Then the systems Sand S are closed loop stable if the 
r 

second band of circles of radius R.(s) centred on q •• (5) contains the first 
1 rJJ 

band (the Gershgorin band) and does not overlap the (-1, 0) point. This is 

shown in fig. 5.14. Interpreted in this way, it is seen that condition (1) 

of theorem 5.16 is similar to the graphical interpretation of theorems 8, 9, 

13 and 14. (figs. 8, 9, 12 and 13). For stability of S, the second band must 

not contain the critical point. 

The other conditions of theorem 5.16" expr. (5.54)· to (5.59), can be 

interpreted in a similar way. Other than obtaining a diagonal dominance 

condition in S , it has also been suggested that by choosing various canonical 
r 

structures for A(s), example diagonal or upper or lower triangular, different 
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versions of Nyquist loci with bands centred on them can be obtained. This 

will offer greater flexibility and choice in designs, but the stability 

conditions of theorem 5.16 will still hold for Sand S. 
r 

It is noted that the contraction mapping principle does not derive the 

Nyquist criterion. The latter is automatically satisfied if the system is 

stable. Even if Sand S or both are open-loop unstable, but using the r 

contraction mapping principleJare shown to be both closed loop stable, then 

the Nyquist criterion is automatically satisfied by Chen-Hsu or Rosenbrock's 

stability theorem, theorems SA and 5B. 

Stability of sub-optimal controllers by contraction mapping principle. 

Consider the optimal linear regulator problem for systems S and S , with 
r 

performance indices 

J - < Xj. Q x > H + <u, Ru> H 
n m 

+ < U, Ru >H 
m 

where x e H , x e H , u e Hand H , H , Hare (nxn), (rxr) and (mxm) n r r m n r m 

••• (5.62) 

••• (5.63) 

Hilbert spaces with Q ~ 0, QM ~ 0 and R > O. It is well known that for a 

controllable pair S (A, B ), the control law u • -K X where r r r r r 

K • R-
1 

B t P 
r r 

It .(5.64) 

and P is the solution of 

t _1 t 
Ar P + PAr - PBr R Br P + QM - 0 ••• (5.65) 

* minimizes eqn. (5.63), J M • <x, Px > and when implemented, the closed loop r r 

system S (A - B K·, 0) is stable Ls.L. (in the sense of tyapunov). Now r r r r 

consider controlling S(A,B) with u • -K x i.e. u • -K ZX where X • Zx s rr s r r 

and Z is the aggregation matrix of Sand S. It can be shown that the use of 
r 

the sub-optimal controller, ti , in S re~ults in the value of the criterion 
s 

• h T ° fO 23 funct10n J - <x, TX>, were sat1s 1es J 



- 130 -

(A-BK Z)tT + T(A-BK Z) + ZtKt RK Z + Q - 0 r r r r 

23 provided A-BK Z is a stability matrix. This is not always the case 
r 

Sufficient conditions are now derived to show when A-BK Z is stable. 
r 

••• (5.66) 

For the systems described by the state space equations S(A,B), S (A ,B ), 
r r r 

with.u '= -K ZX, U = -K x • the equivalent form of eqns. (5.4n and (5.48) are s r r r 

A (5) X (5) + X (s) - A (s) x (s) - ~(s) B K x + ~(s) x (0) r r r r r ~ rrr r 

A(s) xes) + xes) = A(s) xes) - t(s) B K Z xes) + ~(s) x(O) 
r 

_1 _1 

••• (5.67) 

••• (5.68) 

where ~ (s) = (sI-A) ,~(s) - (s1-A) ,xr(O), x(O) are initial conditions r r 

and the terms A (s) x (s), A(s) xes) are as before added to both sides of the r r . 

~quations to invoke greater flexibility in the stability margins. Rewriting 

eqn5. (S.6D and (5.68) in the form yes) - Wy{s) , where W is a mapping from 

the Banach space Y of bounded holomorphic functions defined in the interior n 
of a semicircle of radius R and boundary an in the right half complex plane 

into itself, one obtains, 

_1 
W (s) - (I+Ar(S» (A (s) - ~(s)B K ) r r t r r 

W(s) 
_1 

- (I+A{s» (A(s) - ~(s)BK Z) 
r 

••• (5.69) 

••• (5.70) 

where W (s) and W(s) are (rxr) and (nxn) matrices respectively. Consider 
r 

augUlEnting W (s) by block matrices such that 
r 

W I (s) -r ••••••••••••••••••• 

21(s) 

II. (5.71) 

such that W; (s) is (nxn) and ~2(s), X2l (s), X22 (s) are general matrices of 

appropriate dimensions. 

Thus from expo (5.53) of theorem 5.16, a sufficient condition for closed 

loop stability of S i.e. for A-BK Z to be a stability matrix is 
r 

II w I (s) II < 1 - II W(s) - Wi (8) II 
r r 
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i.e. 
n n 

maxi sUPsfan j:l W;i/s ) < 1 - maxi sUPseanj:l' {Wij(s) - W~ij(s)} ••• (5.72) 

The X .. (s) matrices in eqn. (5.71) can be chosen to test if expo (5.72) 
1J 

is satisfied. Although expo (5.72) is conservative, nevertheless it illustrates 

that. the contraction mapping method is a rigorous method of invoking sufficient 

stability conditions. Because optimal control is restricted in design, once a 

performance index is chosen, there is no room for alteration if the sub-optimal 

controller happens to be unstable. At best the values of Q and R must be 

adjusted afterwards in eqn. (5.62) such that exp (5.72) is satisfied. But 

then the sub-optimal control is only stable and near optimal to a performance 

index not specified earlier. 

5.4 Stability investigation by system eigenvalues and closed loop 
characteristic polynomial. 

The stability of closed loop systems can be studied from investigating 

the behaviour of its c.l.c.p. (closed loop characteristic polynomial). 

For 
. 1 

R (s) - (I + Q (s) H (5»- Q (5) 
r r r r "'(5.73) 

the c.l.c.p. is the least common denominator of all minors of R (s) and the 
r 

o.l.c.p. (open loop characteristic polynomial) is that of Q (s). r 

For stability it is required that the c.l.c.p. of Rr(s) have inertia 

In(O, r, 0) i.e. it is a Hurwitz polynomial. The Routh-Hurwitz (R-H) stability 

test involves finding conditions where all roots are confined in a certain 

region in the complex plane, namely, in the left half complex plane (the 

problem in the large). However, establishing conditions in the R-H test for 

stability between Sand S is difficult, and if such conditions exist, the latter 
r . 

may be impractical. Below, two known polynomial theorems are modified and 

adapted to investigate the stability between S and S • r 

Let the c.l.c.p. o~ S be r 
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and assume that it is a Hurwitz polynomial of inertia In(O,r,O). 
n-r· 

••• (5.74) 

Now consider n-r factors II (S+A.), where Re(A.) > 0, Vi, and if 
, . 1 . 1 

.1=1 
I~(Ai) exists, it occurs in conjugate pairs. Consider the modified c.l.c.p 

of S as 
r 

n-r 
n n-l d' (s) .. d (s) ,n (S.+A

1
,) .. s + ams + ••• arl r r 1-1 

and let the c.l.c.p. of S be 

and let 

des) .. sn + a sn-l 
n 

qb, - a. - a • 
1 1 r1 

Theorem 5.17 

+ ••• 

'-. 

••• (5.75) 

• •• (5.76) 

• •• (5.77) 

Sufficient conditions for closed loop stability of S if S is likewise 
r 

stable are: 

(1) 
e . k 

2 ~ (_1)1+ b ° qkk" Lo a.. > , i-a 1 J 
k • 1, ••• n ••• (5.78) 

with j .. 2k-i, 

. B .. 1 for 2k-1 , n t 

.. 2k-n for 2k-l > n, 

e .. 2k-1 for 2k-1 ~ n t 

c n+l for 2k-1 > n 

n 

(2) q > - mi~ qkk/~ .1:
1 

bi
2 

) •• '(5.79) 
1= 

Proof: The above is based on a theorem given by Shane and Barnett20 • If 

each coefficient a , of eqn. (5.75) is changed by the addition of q b, of n . 1 

eqn. (5.77) and if exps. <S.7S) and <5.79) are satisfied,then des) of eqn. 

(5.76) i& a Hurwitz polynomial of inertia In(O,n,O) given d' (s) is a 
r 

Hurwitz polynomial of inertia In(a,n,a). Thus S is closed loop stable. 

Q.E.D. 
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Let A be the companion form matrix of d' (5), i.e. 
r [

0 : I 1] • n-

A= • • • • • • : • • • • • • • • -a 1-' ... -a r m 

and let P = (p .• ) and Q be positive definite matrices. Then, 
1.J 

Theorem 5.18 

Sufficient conditions for closed loop stability of S if S is likewise 
r 

stable are : 

(1) 

(2) 

(3) 

i • 1,2, ••• n 

n 
- A • (Q) I(l 1: p 2.) < q 
. mn . 1 n1. 1.-

where A • (Q) is the smallest eigenvalue of Q. 
mn 

• • • (5.80) 

••• (5.81) 

••• (5.82) 

Proof : 
. '-. 20 

The above is also based on a known polynomial result •.. If the 

conditions of theorem 5.18 are satisfied, then the inertia of des) of S is 

the same as that of d ' (5) of S. Hence des) is a Hurwitz polynomial given 
r . r 

d ' (s) is a Hurwitz polynomial. 
r 

The disadvantage of theorems 5.17 and 5.18 is that the theorems are 

expressed in algebraic forms which makes the stability regions complicated 

and unattractive to design. It is also noticed that the augmentation of n-r 
n-r 

spurious roots n (S+A.) to d (5) to obtain d ' (5) in eqn. (5.57) involves 
'1'1. r r 1.-

computational labour. A theorem is next given where stability margins are 

easily expressed in graphical form and more amenable in design. 

For convenience, define the companion canonical structure matrices 

for des) and d (5), although other forms may be assumed, 
r 

M-

o I . 
n-l . . . . . ' ............ ' , 

-a' 
1 -a2,··· -a n 

, 
M -r 

o · I r-1 
• ••••••••••••••••••• 
• 

-a' -a 2" •• -a r1 r. rn 
• , • (5.83) 

where M and M are of dimensions (nxn) and (rxr) respectively. Define M' as r r 

M' r ••• (5,84) 
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where X, Y .and Ware arbitrary ~ugmented matrices such that dimension of M' 
r 

is (nxn). If X = 0, from Schur's formula29 

det M" • det(M ) det (W-YM -IX) 
r r r ••• (5.85) 

• det (M ) det (W) r 

which means the n eigenvalues of M' are those r of M and the spurious n-r 
r 

of w. 

Theorem 5.19 

Let A' • be the eigenvalues of M' , j • l, ••• n and let 8 be an arbitrary 
~ r 

complex number. Then S is closed loop stable, i.e. M is a stability matrix if 

(1) 

(2) 

Re. (h' .+13) < 0, . rJ 

... 
II M - M' -fH+PH pil infK(P) < IRe(h' .+6)1, V'j r p . ~ 

where P in general quasi-diagonalises M'. 
r 

... (5.86) 
'-. 

••• (5.87) 

Proof: The above is a direct consequence of theorem 5.1. If the circles 

centred on Re(h' .+13) do not overlap the imaginary axis all eigenvalues A. of 
rJ J 

M lie in the left half plane, thus c.l.c.p. of S is a Hurwitz polynomial, 

hence S is stable. 

Q.E.D. 

The graphical interpretation of the above theorem is similar to fig. 

5.11. The theorem is more flexible than the polynomial theorems of 5.17 and 

5.18 in that M' need not be a stability matrix. Provided a is so chosen such 
r 

that Re(h' .+13) < 0, it is possible for expo (5.87) to be satisfied. Suppose 
rJ 

dr(s) is Hurwitzian, i.e. Mr is a stability matrix. To use theorem 5.19, n-r 

spurious eigenvalues. h l, ••• h of W must be chosen in conjunction with r r+ . n 

eigenvalues. AI' ••• Ar of Mr· 

A convenient canonical structure for W is usually chosen where its 

eigenvalues can be easily determined and Yean be chosen such that II II in 
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expo (5.87) is minimized. Other canonical forms 
_1 

using the similarity transformation TM' T • but 
r 

for M' can be chosen by r 

the simples t form is M' ... 
r 

diag{A' I' ••• A'. } assuming the eigenvalues of M' are found beforehand. r m . r 

Assuming M' is simple, condition (2) of theorem 5.19 becomes 
r 

II M-diag{A' 1+6' ••• A' +B} II < IReo.' .+B) I. 'Ij . r . rn . rJ 

and B can be chosen to obtain the sharpest bound. 

••• (5.88) 

If the dimension R (s) of eqn. (5.73) is large, then determining the 
r 

c.l.c.p. is not computationally attractive. An alternative procedure is to 

make a minimal realization for Q (s) and Q(s). For simplicity assume the 
r 

feedback matrix H is a constant. If Q (S) and Q(s) are minimally realized r r 

by 

s • -Ax + B u S . it - Ax +-Bu x . r r r r r 

y-ex r r y .. ex ••• (5.89) 

u .. -H Y r U .. -H Y r 

then eqn. (5.89) is controllable and observable, its system eigenvalues equal 

to the zeroes of the c.l.c.p. Thus d (5) .. det (sI-A + B He) and des) r r r r r 

• det(sI - A + BH e). M and M' in eqn. (5.83) are identified as 
·r r 

M .. A - BH e • 
r 

Theorem 5.19 can then be applied. 

M'· r 

A - B H e r r r r • • 
o 

•••••••••••••••••• • 
y • • w 

•• • (5.90) 

The state space matrices in eqn. (5.89) can be obtained from, example, Ho 

, 1 . h 28 I 1· f and Kalman s a gorlt m • n genera • 1 

Q(s) • Q(oo) 

h(s) .. sr + 

_1 _2 
+ H s + HIS o 

r-1 
f 1 S +. •• fr 

...... 

where Q(s) is dimension (qxp) and h(s) is the least common .denominator of 

Q(s). define 
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r-i 

r M-

2r-

• 
o • block diag (1 ) 

.. 0 q .......................... 
• 

-f 1 • 
r q, 

Suppose K and L are jqr x qr), (pr x pr) nonsingular constant matrices such 

that KTL: [In 0 = It I , where I • (I 0), n being the rank of o 0 n.qr n.pr n,qr n 

T. Then S(A,B,C) is given by A a 1 KMTLlt • B = 
n,qr n,pr' 

1 KTlt . 
n,qr p,pr' 

C .. I TLIt • q,qr n,pr 

Theorem 5.19 can also be adapted to investigate stability of S by 

the multivariable root loci (characteristic frequency loci of Q (s» of S • 
r r 

Suppose Q (8) is the return ratio matrix for a linear multivariable feedback 
r 

system, S ,then following MacFarlane22 , S can be associated with a set of 
r r 

characteristic algebraic functions by means of the characteristic equation 

/). (1,s) .. det ~ I - Q (s)' r rm r :.J • 0 ••• (5.91) 

where m is the dimension of Q (s) and ~(1,s) is irreducible over the field of 
r 

rational functions in the complex variable s. If ~r(1,s) is regarded as a 

polynomial in 1r with coefficients which are rational functions of s, i.e. 

1 (s), then1 (s) is called the characteristic gain function of Q (5) (in the 
r r r 

above sections, 1 (s) is termed p (s), the characteristic loci of Q (s». 
r r r 

However, if ~ (1,s) is regarded as a polynomial in 8 with coefficients which 
r 

are rational functions of 1, i.e. s (1), then s (1) is called the characteristic 
r r 

frequency function (multivariable root loci) of Q (s). Here the algebraic 
r 

functions 1 (s), s (1) can be defined on their appropriate Riemann surfaces. 
r r 

It is also known that the multivariable root loci are given by the 

solution of the equation 

for s in terms of the scalar gain parameter k. 

••• (5.92) 

Here b (s,k) is such that mr 
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det [fr(s,k)I - F (s,k)] ... b (s)fm(s,k) + bl (S)fm-l(s,k) m r or r r r 

+ •••• b (s ,k) = 0 mr 

where F (s,k) m I + k Q (s), e (s) is the least common denominator of all r m r r 

non-zero non-principal ndnors of Q (s) with all factors common to b (5) r or 

removed, Pdr(s) has as its zeroes the decoupling zeroes of Sr' and pxr(s) 

has as its zeroes those poles of G (s), K (s) (assumed feedback matrix Hr(s), 
r r 

- I) which are lost when Q (5) is formed. It can also be shown that provided r ' 

p (s) ~ Pd (s) ~ e (5) ~ 1, the multivariable root loci for the system of xr r r 

fig. 5.15 are, given by 

pxr(s) - 0 

Pdr(s) - 0 

e (5) - 0 r 

1 . (s) - -11k 
rJ 

'-, 

•• ,. (5 .93a) 

••• (S.93b) 

••• (5.93c) 

••• (S.93d) 

The last equation, (5.93d) is a direct generalization of the classical 

single log root locus. The first three equations give single point solutions 

that are invariant with gain k. A similar set of equations can be written' for 

s. Assuming the non-existence of single points, Le. p (5) - Pd(S)' • e(s). - 1, , x 

then l(s) - -11k gives the multivariable root loci for S. A theorem relating 

the multivariable root loci of Sr to that of S can be now constructed as 

follows. 

Theorem 5.20 

Let L .(k) and L.(k) be (nxn) and (r~) companion form matrices of 
rJ J 

the polynomials R.rj (s) • -11k and R.j (s) • -11k, respectiveiy, as k varies. 

Define 

, 
L • (k) 

rJ 

lLrj (k) 01 
- L X zJ t 

where L • (k) is' (nxn) and 
rJ 

X and Z are arbitrary matrices of compatible dimensions. •• Let Prji and Pji 
t 

be eigenvalues of L .(k) and L.(k) respectively. 
rJ J Then S is closed loop 



stable if: 

(1) 

(2) 

t 

Re (p .• + S) < 0 
rJl 

- 1~8 -

\J. 'Jl.. vJ, 

• • II L. (k)-L . (k) II inf K(P.) < IRe(P •• + 8)1 Vj, Vi 
J rJ J rJl. 

(5.94) 

(5.95) 

(3) Existence of singular point loci (if any) occurs in the left hand 

plane. 

Proof: The eigenvalues of L .(k) and L.(k) are the solutions of the 
rJ J 

polynomials t .(s)- -11k and t.(s) - -11k, respectively, as k varies. 
rJ, J 

By theorem 5.1, conditions (1) and (2) require that ,the multivariable 

root loci of S be confined in the left half t-surface. 

Since there are m sets of root loci t.(s1 - -l/k, j·l, •••• m, each set J __ . 

can be shown on an appropriate Riemann surface. However~ for the case ~l, 

then the single loop classical root locus defined on a single sheet of the 

complex plane is obtained. 

Single input-single output systems 

In this case px(s) • Pd(s) - e(s) - 1. Hence 

Theorem 5.21 

(1) 

(2) 

S is closed loop stable if 

• Re(p . + S) < 0, 
rJ 

• • II L(k) - L (k) II inf K(P} < IRe(P . + e) I Vj r rJ 

Proof: Follows from theorem 5.21 with j • 1. (see fig. 5.16) 

(5.96) 

(5.97) 

For multivariable systems, theorem 5.20 requires computing the eigen

• values of L .(k) m times. A differe~c approach 
rJ 

to computing the root loci is via the state space matric~s. 

r 
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I , 

If the" triple (A , B , e ) is a minimal realization of Q (s) in fig. r r r r 

S.lS, then the closed loop poles are given by 

det(sI - A + k Be) = 0 r r r r ••• (S.98) 

At a closed loop pole, eqn. (S.93d), 1rj (s) • -l/k holds, hence 

det(sI _. A - B e /1 .) • 0 
r r r r rJ ••• (S .99) 

The multivariable root loci can then be calculated as the eigenvalues 

of (A + (B e /1 .» as 1 ., (hence as k) varies. The solution of eqn. (S.99) r r r rJ rJ 

also satisfies eqns. (S.93a) to (S.93c), hence obtaining the multivariable 

root loci by this method also includes single point loci. Similarly, the 

eigenvalues of (A + (Be/1.» are the mu1tivariab1e root loci for S where 
J 

(A, B, e) is a minimal realization for the transfer function of S. Here A 

is of dimension (nxn) while A is (rxr). To establish a theorem for the root 
r 

loci of Sand S define, 
r 

T. - A + (BC /1. ) 
J J 

, T '. -rJ 

A + (B e /1 .) : 0 
r r r rJ • 

• 
•••••••••••••••••••• • 

y .: w 
•• • (S .100) 

where Y and Ware arbitrary matrices with compatible dimensions such that T '. rJ 

is (nxn). Then, 

Theorem S. 22 

Let A' .. be the eigenvalues of t' ., j - 1, ••• m, i-I, ••• r. rJ1 rJ 

Then S is closed loop stable if 

(1) 

(2) 

Re(h' •• +a) <0 Vj, rJl 'Vi 

liT. - T'. - eIIi infK(P) < IRe(A' .• + B)I Vj, Vi. 
J ~ ~l 

•• • (S .101) 

••• (5.102) 
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Proof: The proof follows "exact1y as given in theorem 5.19. If the above 

conditions are satisfied, then T. is a stability matrix, i.e. the eigenvalues 
J 

Ajiofthe multivariable root loci of S lie in the left half plane, thus S is 

closed loop stable. 

It is noticed that theorem 5.22 is more flexible than theorem 5.20, 

in the sense that numerically it is less complicated, and, the bands can be 

made sharper by tuning the extra parameter matrices, Y and W. 

State feedback systems and eigenvalue assignment 

Consider the system Sr with state or output feedback. 

i -A x +B u 
t r r r 

u - -K x r r 
• , u • -K y o ' 

It is desired to implenent u on S such that 

••• (5.103) 

i-Ax + Bu y - Cx ••• (5.104) 

where Z is the aggregation matrix between Sr and S, with xr .. Zx. The 

1 • h' 23 b (5 103) d (5 104)' . b re at10ns 1p etween eqns.. an • 1S g1ven y 

A Z r 

B r 

CrZ 

A k· 23 f' o 1 1rst 

-ZA 

• ZB 

.. C 

showed that the feedback system A + BK Z is stable if 
r 

Z is chospu from the modal matrix of A. Generalizing a result of Vitt~l 

"'(5.105) 

Rao and Lamba, Hickin and Sinha24 showed that this is true for all classes 

1 • 
of projective reduction techniques, i.e. for Z .. (E~l : 0 )P where K+ .. Bt 
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• (Eh E~ ), the r columns of E are chosen to span the controllable subspace 

of the pair (PA, PB) and P is a projection matrix. 

24 Theorem 5E 

(a) 

(b) 

For state feedbaCk, let Af • A - BKr Z, Arf • Ar - Br Kr' then 

AfV •. • A. v. 
111 

If Af v
1
.'· • A 'v' ii' 

i • r + 1. r + 2. • •• n 

then A v."· A.' v." for i • 1, 2 •••• r rf 1 . 1 1 

where A. is an eigenvalue of A and A.' an eigenvalue of Arf 
1 . 1 

For output feedbaCk, suppose A". is an eigenvalue of A-BK C and 1l. is 
. 1 0 1 

an eigenvalue of A - B K C , then r r 0 r 

(c) 

(d) 

A." = A. 
1 . 1 

A." = 1l. 
1 1 

i • r+l. r+2, ••• n 

i • 1. 2, ••• r 
0-

Theorem 5E is not true for nonprojective reduction techniques. 

To determine stability between S and S for the latter class of r 

reduction techniques, a similar form of theorem 5.19 can be employed. 

For state feedback, let 

[: :] F • A-BK Z , F • A -B K , F' . • r r r r r r 

for output feedback, let 

[: :] F • A-BK C. F • A -B K C aild F' -0 r r r 0 r r 

then 

Theorem 5.23 

Let A'. be the eigenvalues of F' (i.e. ). '. consists of all the r eigen-rJ r . rJ 

values of Fr and all the n-r eigenvalues of W). Then S is closed loop stable 

(a) Re(A '. + S) < 0 . rJ ···(5.106) 
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(b) II F '- F - ~III infK(P) < IReG\'" + ~) I r r . ~ ••• (5.107) 

Proof: The proof follows exactly that of theorem 5.19. The above conditions 

establish the fact that F ,. is a stability matrix, when the inertia of F' is 
r r 

known (possibly F is a stability matrix). 
r 

Thus for the class of nonprojective reduction techniques, theorem 5.24 

offers a computationally feasible method for assuring stability of S when 

design is made on K. It is also noted that the theorem is applicable for 
r 

both state or output feedbaCk whereas theorem 5E of Sinha and HiCkin offers 

only approximate (hence uncertain) solution of stability for systems with 

output feedback. The only disadvantage of theorem 5.24 is that it cannot be 

used for eigenvalue assignment. but then so is theorem 5E for nonprojective 

reduction techniques. 

5.5 Stability investigation using Lyapunov theory 

Stability determination using the Lyapunov approach is very useful 

f " 1" 30 because 0 1tS. genera 1ty • In order to adapt Lyapunov' s methods to stability 

investigation of Sand S. a domain of stability, V • that is common to both r c 

S and S is sought. r . 

Theorem 5.24 

Consider Snxn : i - f(x) and Srxr : x - f(x ). Augment S by n-r states r r r r 

i.e. x - f(x ) where x -'(L t ••• x ,x l' ••• x)~ Both Sand S are ar ar ar 1 r r+ n r 

asymptotically stable if there is a V (x) ~ Vex) (\ V (x) > 0 such that c ar ar 
• V (x) < 0 for both S and S. c r 

Proof 

• 

Sar is asymptotically stable if there is a V (x ) > 0 such that ar ar 

V (x ) < 0, and, S is similarly stable if there is a Vex) > 0 such that 
ar ar 

Vex) < O. Hence S and S have a common region of stability for V (x) ~ Vex) r c. 

f'v (x ). The fictitious n-r augmented states can be chosen such that the ar ar 

augmented equations are stable. 
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If a V (x) exists, theorem 5.24 only provides a sufficient condition c 

for stability of S and S, however the theorem is quite general in its 
r 

presentation. For linear systems described by state space equations (A, B, C), 

Barnett and Storey have obtained sufficient conditions for stability when 

(A, B, C) is perturbed to (A', B', C'), which is a special case of theorem 5.24. 

'For the systems of eqns. (5.103) and (5.104), in the sequel, let 

Frll = F .... A 
r 

F = A-BK C ... r 

Fr21 and Fr22 where Frl2 , 

dimensions. Then, 

Theorem 5.25 

- B K r r r 

[Fll F12] -[Frll Fr12] , F " 
F21 F22 r Fr21 Fr22 

are arbitrary augmented matrices of compatible 

--. 

••• (5.108) 

Sufficient conditions for F to be a stability matrix provided that F' r 

is also a stability matrix, its .L., are either of the following: 

(a) Sll ... ~1 + Pll Fell + P12 Fe21 

2Sl2 ... P11 Fe12 + P12 Fe22 - F!il 
t 

P12 - Fe2l P22 

. ':'2~2 ... Pll Fe12 + P12 Fe22 
t P12 

t 
+ FeU + Fe21 P22 II. (5.109) 

S22 • R22 + P22 Fe22 
t + P12 Fe12 

(b) Sll • ~l 
-1 

+ Fell QU -
t 

(S12-~2) Q12 
-1 Qll 

S12 
-1 

m R12 + Fe12 Q22 
-1 

- ~S11-~1) Q12 Q22 
t t -1 t -1 ... (5.110) 

-R12 ... S12 + Fe21 QU (S22-R22) Q12 Qll 

S22 ... ~22 + F -1 t t -1 
e22 Q22 + (S12+Ri2) Q12 Q22 

where P, Q are arbitrary positive definite matrices that satisfy the Lyapunov 
, 't . 

equations F' P + P F't • -N, F Q + QF ... -M .. where N > 0, H > 0 and Sand r r r r . 

R are arbitrary skew and positive semidefinite. 
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27 Proof: From a result of Barnett and Storey • A+B is a stability matrix 
_1 

given A is a stability matrix if B • P (S-R) or if B - (S-R)Q where Sand 

R are arbitrary skew and positive semidefinite, and P and Q satisfy AP + PAt 

t • -N, AQ + QA • -M, the usual Lyapunov equations. 

is a stability matrix if 

F' P + PF't .-Q r r . 

Thus F' of eqn. (5.108) r 

••• (5.111) 

Identifying B with F • F-F' . in eqn. (5.108) it is seen that F is a e r 

stability matrix given F' is a stability matrix if 
r 

i.e. 

or 

. i.e. 

_1 
F • P (S-R) e 

PF - (S-R) e 

F. - (S-R)Q e 
_1 

F eQ . - .(S-R) 

Partitioning the matrices as 

F -e 

Q -

~11 - Fr11 
= 

, S- • R -

"-... 

,P -

···(5.112) 

• •• (5.113) 

••• (5.114) 

• •• (5.115) 

and substituting in eqns. (5.113) and (5.114) with direct expansion yields 

eqns. (5.109) and (5.110). A similar set of equations can be written for 

eqns. (5.112) and (5.115). 

These sets are only sufficient conditions for F to be a stability matrix 

based on F' being a stability matrix. It is noticed that the unaugmented r 

matrix F r" F rll need not necessarily be a stability matrix. This is !lade 

possible by the interconnecting elements t given by the 'off diagonal terms' 

.. 
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of the sub-matrices P12' P21 , Q12' Q21 etc. that coupled Fr to F;. The 

'interconnecting elements' correspond to the tuning factors a and a in the 

frequency domain stability theorems. To simplify matters Frl2 or Fr2l in 

F; can be set to zero. Thus F; is a stability matrix if Frll and Fr22 

are stability matrices. A canonical structure for Fr22 can easily be set up 

with known eigenvalues. 

Much simplification is still obtained if F' is decoup1ed, Le. the 
r 

'off diagonal elements' sub-matrices of F' , P and Q are set to zero. In 
r 

this case, eqn. (5.111) becomes 

t 
where Frll PII + Pl1 Fr11 • -Qll indicates closed loop stability for reduced 

t 
m:>del and Fr22 and P22 are so chosen to satisfy Fr22 P22 + P22 + Fr22 • -Q22 

and eqns. (5.109) and (5.110). 

Although decoupling simplifies the stability conditions and lessens the 

choice of parameters, it is Compensated by weakening the stability conditions 

of eqns. (5.109) and (5.110). These conditions do not offer an easy graphical 

interpretation, hence in certain cases, their applications to design are 

restricted. Being of an algebraic nature. their main value lies in theoretical 

utility, like providing a limt in proving theorems. 

5.6 Extensions to discrete systems 

In dealing with discrete systems the unit m:>dulus circle in the z-plane 

plays the fundamental'role in contrast to the D semi-circle in the s-plane for 

continuous systems. It is well known that det F(z) • c.l.c.p./o.l.c.p. where 

c.l.c.p. and o.l.c.p. are polynomials in tel~ of the variable z. Thus if 

det (F(z» mapped the 0 contour, the unit circle centred at 'the origin and 

the outer circle of infinite radius. in the z-plane into the closed" curve r 
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in the frequency response plane, the well-known stability theorems in terms of 

return difference and return ratio matrices and characteristic loci apply 

exactly for the discrete as for the continuous system3• The stability theorems 

in the earlier sections can be modified below. 

Theorem 5.26 

Let p .(z) (resp. p .(z», t .(z) (resp. A .(z» be the characteristic 
rJ rJ rJ rJ 

A A 

loci of Qr(z) (resp. Qr(z», Fr(z) ·(resp. Rr(z»where the symbols have their 
A 

usual meaning as in theorems 5.1 to 5.15. Further let a+p .(z) (resp. a+p • 
rJ rJ 

A A 

(z» and B+t .(z) (resp. a+A .(z» map 0 into B+r • (resp. a+r .) and B+~ . 
rJ . rJ rJ' rJ rJ 

A 

(resp. a+A .) respectively. 
. rJ 

Then the conditions for closed loop stability of the discrete multi-

variable system, S, are exactly the same as those given in theorems 5.1 to 

S.15, except that quantities in s-variables are replaced by quantities in 

z-variables. 

Proof The proofs follow exactly the same lines of argument as those given in 

their continuous counterpart, since det F(z) • c.l.c.p.(z)/o.l.c.p.(z) and 

det F(s) a c.l.c.p.(s)/o.l.c.p.(s). 

Alternatively,' instead of direct mapping from z-plane into r, the 

contour 0 can be mapped into a fictitious's' plane via the bilinear trans-

formation z -= (l+W)/(l-W). This W plane has the same stability boundary as 

the ordirtary s-plane. and a second mapping by p .(W), det F (W) etc., will 
rJ r 

transform the fictitious 'D contour' into r, the usual Nyquist frequency domain. 

This extra effort has the advantage that the classical Nyquist contours, 

obtained in this way, offer familiar design techniques to the designer. 

The state space matrices S(A,B,C,) describing the discrete multi variable 

system as 

~+l • A~ + B"\t 

k -= 1,2.· •• • •• (5.116) 
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and the associated Lyapunov equation is 

F t R F - R .. -M 
d . d ••• (5.117) 

where F > 0 and M > 0 and Fd = (A + BKr Z) is the discrete closed loop system 

matrix (assuming state feedback). For Fd'to be a stability matrix, it is 

required that all eigenvalues, IAj(Fd)I < 1. 

The continuous version of theorem 5.25 can be easily adapted to the 

discrete system of eqn. ~.116) by using the transformation 

_1 
F - (Fd - I) (Fd + I) 

.' . 

••• (5.118) 

Here the interior of the unit circle is mapped into the left half region 

of the complex plane, hence the stability of eqn. (5.116) can be determined 

by the direct application of theorem 5.26 via eqn. (5.118). 

Stability of the discrete system can also be determined from the Lyapunov 

equation of (5.117) and the c.l.c.p. of the controllable and observable state 

space system. Suppose 

' .. (5.119) 

in the c.l.c.p. of S. Let F represent the companion matrix representation 
r r 

of eqn. (S.119). Augment F (rxr) such that 
r 

F' .. 
r 

is (nxn) and is a stability matrix, 

, e' 
F PF t - P - - Q 
r . r 

Similarly let F .. F - F' 
e r 

i.e. F i 
r 

satisfies 

where F is the discrete system matrix of S(A+BKrZ). Then, 

• •• (5.120) 

••• (5.121) 

••• (5 .122) 

.' 
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Theorem 5.27 

(1) 

F is a stability matrix given F' is a stability matrix if 
r 

. 1 

F - (R - lP)- (RY + lpy + PF') e .. r 

where Y is symmetric and satisfies the Riccatti-type algebraic equation 

YPY + F ,~ Py + YPF' + Q - 0 "r . r 0 

where Q is any symmetric matrix for which (Q+Q ) > 0, R is any skew-o . 0 

symmetric matrix and P any solution of eqn. (5.121) •. 

••• (5.123) 

••• (5.124) 

Proof: Theorem 5.27 is an adaptation of a matrix result of Shane and 

20 Barnett • If the roots of F' are inside the unit circle, then the root· 
r 

distribution of F' + B is unchanged if B satisfied eqn. (5.123). 
r '_. 

Another result can also be stated in terms of the c.l.c.p.'s of Sand r 

S. Suppose areA) in eqn. (5.ll~ is augmented by n-r spurious roots all with 

modulus less than unity, i.e. 

n-r 
a ' (A) - a (A) n" +d.). ... An + b A n-l + b 

r . r ,i-i V1. 1. rn •• • •• rl ••• (5.125) 

••• (5.126) 

where a(A) is the c.l.c.p. of F. Then 

Theorem 5.28 

S(A+B~·Z)is stable if S (A +B K ) is stable and if .-r r r r r 

(1) b. - b • - qa. /(2+qp ) 
1. r1 ln nn i - 1 •••• n ••• (5.127) 

where either 

n 
(2) q > 0 or -2q/(2+qp )2 < A . (Q) I: 0..2 

nn mn. 1 ln 
1.-

•• • (5.128) 

whe re P III (p •. ) is a so 1 ution of eqn. (5.120) (F' in this case is the 
1.J r 

companion matrix for a' (A» and a. is the inth element of F'tp. 
r 1n r 
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Proof: The above is also an adaptation of a known polynomial result20 • The 

root distribution (inside the unit circle) of the polynomial a ' (A) is 
r 

unal tered, if a ' (A) is perturbed to a(A), where a ' (A) and a(A) are of the 
r r 

same degree. and conditions (1) and (2) are satisifed. Hence IA.I < 1, 
J 

\7'j t 

if I A '., < 1, rJ 
V'j. Thus the discrete system S is stable given S is stable. 

r 

The results of theorems 5.21 and 5.2S are in algebraic form, and can be 

very conservative when it comes to design. A graphical result is thus needed 

that is more amenable to computation and design. To this end, an equivalent 

form of theorem 5.19 for discrete systems is sought. 

Theorem 5.29 

The discrete system S(A-BK Z) is stable if r 

(1) tx . + al < 1, rJ 
'v'j ···(5.129) 

(2) ••• (5.130) 

If F' - diag(A '1' ••• A' ), eqn. (5 .• 130) can be replaced by r r m 

(3) II F - di ag (A '1 + a ••••• A' +a) II < 1 - I A '. + a I r rn rJ ••• (5.131) 

Proof: Theorem 5.29 is the discrete version of theorem 5.19. Here the 

circular bands are all contained within the unit circle instead of lying in 

the left half plane. Thus if the conditions of the theorem are satisifed. 

no band can overlap the boundary of the unit circle, hence all roots of F lie 

in the unit circle, thus S is closed loop stable. 

Q.E.D. 

The graphical interpretation of theorem 5.29 is shown in fig. 5.11. 

Again, as wi th the continuous case, theorem 5.29 is more flexible and 

easy to iuq:,1enlent than theorems 5.21 an~ 5.28. Also, theorem 5.29 has the 

• advantage that the reduced model Sr need not be closed loop stable to determine 

stability of S. 
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Conclusions 

The results in this chapter are mainly of theoretical interest, however, 

they are of great practical value if used in conjunction with interactive 

graphics. The main result was, given in terms of original model stability 

based on reduced model stability. The bounds for original model stability 

could be adjusted by 'tuning factors' a and e, and engineeri,ng constraints 

can be accotllIOOdated. The optimal choice of a and e can be found mathematically, 

but the best choice in the engineering sense is 'an art'. Here trial and 

error adjustment is the best procedure in relation to system stability and 

integrity. As graphical interpretations of these bounds are necessary and 

evaluation of them involves computation, computer aided design with graphics 

is indespensable. 

The stability conditions given are very general and they are applicable 

to a wide class of design techniques. both vector methods and frequency response 

methods. Adaptation of these results to design will be studied in the next 

chapter. 
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CHAPTER VI 

BOUNDS FOR MULTIVARIABLE SYSTEMS DESIGNED 

USING REDUCED ORDER MODELS. 

Introduction 

The last chapter investigates the stability of multivariable systems 

designed using reduced order models. This chapter is concerned with the 

performance and integrity of multivariable control systems, designed using 

such models, and, the adaptation of reduced models to variou~ design 

techniques. 

Multivariable design can be classified broadly into two categories;. 

namely, the state vector method and frequency response"method4• The first 

method involves such techniques as toptimal control designt, where the 

linear regulator problem with quadratic cost function is a popular example, 

pole shifting and unity rank feedoack, etc. where the central point of focus 

here is the manipUlation of the closed loop characteristic polynomial. 

Recently, attempts have heen made to develop the multivariable root loci 

design in the s-plane, a natural extension of the classical single loop root 

40, 41 Th d • f • locus • e secon method, USLng requency response, are extens~ons 

of the Rode and Nyquist plots for single loop systems in terms of return 

ratio and return difference matrices4• Examples of such methods are 

Inverse Nyquist Array, Characteristic Loci and Sequential Return Difference. 

These techniques are not algorithmic in nature, in contrast to pole 

shifting and optimal control, for they rely very much on design experience, . 
but, they give more room for flexibility. Also, in contrast to time 

domain methods, they often yield simpler controllers. 

The chief interest in using reduced models in multivariahle systems 

design i~ to determine the degree of accuracy in the final phase of the 
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design. To this end, it is desirable to find conditions to impose. 

error bounds on the transient response of the system. Aoki44 and Mitra45 

had studied the role of reduced models in multivariable systems in terms 

of the sub-optimal control problem. Ganderson and George had made error 

estimates for the performance of approximate dynamic systems using the 

theory of differential inequalities and Lyapunov functions in the time 

d 
• 19 omal.n • 

In this chapter, error bounds are given in the frequency domain for 

multivariable systems, des ignJus ing reduced models. The bounds are 

general, and, h are. 11 • t eYAappll.ed to a systems desl.gned using reduced models, 

the latter being obtained by any valid reduction technique • Some new 

bounds for multi variable frequency response designS are also given, where 

they are not rela~ed to the topic of model reduction. 

6.1 Some modified bounds for multivariable systems. 

It is well known that stability of mu1tivariable systems can be 

• d f h •• l' • 1 46 , 4 determl.ne rom c aracterl.stl.C OCl. enCl.rc ements • Alternatively, 

conditions can be imposed on the structure of the transfer function matrix 

to constrain the characteristic loci in certain regions in the complex plane 

to yield sufficient conditions for stability, of which Rosenbrockts 

1 diagonal dominance criteria is an example • Cookt s2 modification of 

Rosenbrockts result using Gershgorin mean bands offers significant improvementJ 

on stability boundsJthough it is more suitable for non-linear multivariable 

system~ which will be discussed in Chapter Eight. Cook's result is 

related to various theorems of Ostrowski 5, but in fact, there are various 

theorems scatte~ere and there that determine stability bounds, with 

some giving sharper results than others. All these methods have one point 

in connoon, in that it concerns solving the zeroes of the c.·~.c.p. in the 

large. The recent results of Araki et al.
3 

using M-matrix theory for 
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investigating stability is related to the loci encirclement criteria 

12 18 through a theorem of Ky Fan ' ,hence they are also concerned with solving 

the zeroes of the c.~.c.p.in the large. One disadvantage of using M-matrix 

approach is that a graphical interpretation of the results is difficult to 

obtain. 

Some results for determining stability bounds a,re derived below, 

of which some are new and some known in other forms. They are related to 

5 11 • 10 12 results due to Ostrowski ,Brauer ,Lederman, Kotelyanski and Ky Fan ' • 

Theorem 6.1 
It 

Let every q.o.(s} (resp. ~o.o.(s)} of Q(s) (resp. Q(s) map, D into r1.. 
11 11. 

" Crespo rile Then sufficient conditions for closed lo~p stability are: 

(I) r. (resp. r.) satisfies NC (Nyquist crite~ionl, Vi 
1. 1 . 

either (2) 11 + q.o. (s) I > r(ACs») - la.o. (s) 1 , 
11 11 

Vi,YstD 

[resp. 11 + t. (s) 1 > rcA(s» - I~·. Cs) \l 
1.1 11 

(6.l) 

or (3) Il+q •• (s) [>max. t 111 •. (s)1 -min •. Iq •• (s)1 (1-16lSJ> , Yij, VseD 
11 1. it'j 1J 1J 1J 

[resp.ll + q .• (sll>max. t \q .. Cs) 1- min •• lei •. (s)1 (l-v6(s»] (6.2) 
11. 1 it'j 1J 1.J 1J 

or (4) 11+q •• (s) I>maxo. 1: Iq •• (sll - min •• Iq .. ·(sl 1 (l-a(s) 1 , Vij,'Vsr.D 
11 1. it'j 1J 1J 1J 

[resp. Il+<1 •• (8}I>max. t \<1 •. (s)l- min •• Iq •• (s} I Cl-a(s))] (6.3) 
11 1 i;j 1J 1J 1J 

or (5) 11+q •• (s) I>max. t 1 q •. (s) 1 - min •• Iq •• (s) I (l-A(s)) , V'ij, 'v'seD 
11 1 i;j 1J 1J 1J 

[resp. 11+q •• (8) 1 >max. t Iq .. (s) 1 - min •• lei •. (s) 1 (l-!(s»] (6.4) 
1.1 1. • J.' 1J 1J 1.J 

1rJ 

or (6) [l+q •• (s},[>max. t Iq •. (s)1 - e(s) (t(s)-y(s»,'V'ij, 'v'SED 
11 1 ".Jo' 1.J 

, 1rJ 

[resp. Il+q •• (s}\>max. I: 1<1 .. (s)l- ~(s) (t(s)-y(sn] (6.S) 
11 1 i;j 1J 
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where r(A(s» = infll 'II E N [sup II A(s}x(s} II 11\ xes} \I] is the spectral 
, l.fo 0 n 

radius of the non-negative matrix A(s) , t.(s)· t Iq •• (s)l, 6 • max ' 
, , 1. j -1 1.J 

(t.(s}/t.(sl) with t.es} < t.(s), t(s} • max. t.(s), T(S)· min. t.(s), 
1.. J 1. J 1..1. 1.1. 

a
2 (s) = (T (s) - min .. I q •• (s 11> I (t (8) -min •• I q •• (s) I) 

1.J 1.J 1.J 1.J 

des) =2('( (s}-min I q •. (sl\)/ (t(sl-2min I q •• (s) 1 + [t2 (s)-4min Iq •• (s) I (t (s)-
1.J 1.J 1.J 

T(S»] ~) 

yes) - I:t.(s}/m, £(s) .{(mi~ • .L.lq .. (s)l/t(s»-minlq •• (s)l] m-l 
1. 1.rJ 1.J 1.1. 

and the superscript 'hat' A symbol denotes quantities relevant to the inverse 

loci theorem. 

Proof: 

A theorem due to Ky Fanl2 ,S and KotelyanskiilO~~ states that the 

characteristic loci of a matrix Q(sl lie in the union of discs 

(6.6) 

-
where n is the spectral radius of a real non-negative matrix 

B (i.e. b •. > 0, Vi,j) where Iq •• (s)1 'b •• (i.jal •••• m, i f: j). 
1.J l..J 1.J 

Condition (2) of theorem 6.1 is the direct consequence of the Fan-

Kotelyanskii theorem, and. if condition (1) 'is satisfied, no loci can 

encircle the critical point. thus ensuring stability. Other conditions 

are obtained as follows. 

By the Ferron-Frobenius theorem8 for non-negative B (i.e. B ~ 0) and 

assumed irreducibleJ 

Hence 

min. 
1. 

n 
b.. , T1 ,max. 1: b •• 

1.J 1.. j-l 1.J 

T1 - h •• ~ max. 
1.1. 1. 

b ... 
1.J 

(6.71 

(6.81 
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To obtain the sharpest bound, b •. is chosen as b •. - Iq .• (s} I. Hence 
1J 1J 1J 

from eqn. (6.6) 

Ip. (s) - q •• (s) I ,max. I: Iq •• (s) I 
1 11 1 jli 1J 

(6.9) 

which is a modified form of Rosenbrock's diagonal dominance criterion 

(Gershgorin's theorem). Sharper bounds to eqn. (6.8) can be obtained by 

using the results due to Ledermann, Ostrowskii5 and BrauerS as follows 

n , max. I: I q •. (s) I · Iq·· (s) I (l-IB'W) (6.10) - m1.n •• 
1 1J 1.J 1J 

n ~ max. I: Iq •• (s) I · I q •• (s) I (1 - a (s» (6.11) - m.1n •• 
1 1J 1J 1J 

n , max.' I: I q •. (s) I · Iq •. (s) 1(1 - ~(s)) (6.l2) - IIl1.n •• 
1 1J 1.J 1.J '_ 

n E max. 
1 

I:\q •. (s)\ - £(s1 
1J 

(t(s) -'y(s» (6.l3) 

Substitution of eqns. (6.101 to (6.13) individualI'y into eqn.(6.6)yields a 

sharper form of (6.9). By similar argument as in condition (1), sufficient 

conditions for stability can be ensured. The results follow, eqns. (6.2) 

to (6.S) • Theorem 6.1 is shown graphically in fig. 6.1 • 
Q.E.D. 

Consider the return difference matrix F(s) - I + Q(s} (H.(s) - Il. 
5 12 By the Fan-Kotelyenskii theorem, , 

I~.(sl - f •. (s}1 , nt - h!. , 1. 1l. l.l. 
(6.l~) 

where Ai(s) is the characteristic loci of F (8) and I f ij (s) I ~ Dlj 

Theorem 6.2 
A A A 

Let f..Cs) (resp. f •• (s» of F(s) (resp. R(s)} map D into r1.. (resp. r1..l. 
11 11. • 

Vi. Then sufficient conditions for closed loop stabilitY,are exactly the 

same as tt>,ose given in theorem 6.1, except that the critical point is shifted 

from '-1' to the origin. 



Re ~--..:----"7'F~~~I---

. Fig, 6.1 Exterldp.d bounds(stabili ty) 
for linear multivariable systems 

(Illustrating theorem 6.1) 

1m 

1m 

~rj(s) + t(s) 10c1 
r • (m+2)M(s)(d (s»1/m . 

e 

Fig. 6.2 Illustrating theorem 6.4 
for stability of S and S 

r 

Im 

Fig. 6.3 Bounds for Sr and S; illustrating theorem 6.9 

Fig. 6.4 Contraction mapping error 
estimates for dia~onal s;stem1s 
design (see eqn. (6.4_) ) 
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Proof: Choose If •• (s}1 = h·.(s)1 = b~.(irj). Since Il+q •• (s)l~l+lq •• (s}l, 
1J 1J 1J 11 11 

choose If •• (s) I = b!. - 1 + !q .• (s) I • Hence nt is the spectral 
1L 11 1L 

radius of Bf = I + B. By the eigenvalue shift theorem n' ... 1 + n, the r.h.s. 

of expo (6.14) becomes n t - b! .... 1 +n - (1 +b •• )... n - b ••• 
1.1. 11 11 

Comparing this to 

expo (6.6) it is deduced that the radii of the bands remain unchanged, but 

the critical point is shifted from '-1' to the origin. A similar argument 
#II ,. 

applies to the inverse case, since R(s) - I + Q(s) and by the eigenvalue shift 
.. ,. #II -#II #II,. 

theorem, nt = 1 + n where n' and n are the spectral radii of R(s} and Q(sl 

respectively. 

Since the eigenvalues of a matrix are the same as its transpose, columns 

instead of rows can also be considered in the above, with the eigenvalues 

lying in the intersection of the bands, the sharper _~a~d being taken. The 

results are sharper than Rosenbrock's diagonal dominance criterion, in that only 

the maximum or minimum row or column need be dominant, even so, very coarse 

~iagona1 dominance' is required,'rendered possible by the correction factors 

min Iq •. (s) 1(1 ~ lICs)} etc. The results are also related to that of Araki 3 
LJ 

et al. who used M-matrices6 but the latter has a computationally unattractive 

graphical evaluation. 

6.2 A multivariable theorem for reduced models. 

An important multivariable theorem for reduced models will be derived 

below, using a result due to OstrowsU10• This tbeorem is very similar to 

theorem 5.1 of Chapter V except that the radii of the discs are evaluated 

by using the elements of Q (sl and Q(sl in a more straightforward and simple r 

manner. 

Theorem 6.3 
,. 

Let p • (sl (resp. p . (8» be the characteristic loci of Q (sl (resp. rJ rJ r - , 

Qr(S» and, further, let MCsl - max' {\qij(sll, !qrij(S) \} .(resp. M(sl -
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m m 
max {[~ .. (5) \, \q .. (5) \} ) and d (s) = (t t Iq •• (s) - q •. (s) \ ) IM(s) 

1J r1J· e i-I j=l 1J r1J 
f\ m m ~ ~ ,. 

(resp. d (s) = C t t Iq •• (s) - q •• (s)\)/M(s». Then p.(s} of Q(s) 
e i=l j=l LJ rLJ J 

,. 
(resp. e.(s) of Q(s) ) lies in the union of disc. 

J 

centre; 
~ 

P .(5) (resp. p .(s) ) (6.l4b) 
rJ rJ 

radii: Cm+2)MCs>" {d (s)}l/m (resp. (m+2)M(s) {d Cs)}l/m} 
e e 

Proof: 10 The above is a direct consequence of Ostrowskii's theorem ; if 

a. ,6. are eigenvalues of A and B E Cmxm, then le.-a.1 < (m+Z)Mdl/m 
J J J J 

where M a max· {la .. l, lb •. \l, Vij, and d - t Ib .. - a .. 1 ,Vij. The 
1J 1J 1J 1J . 

result follows. 

Ostrowskii's theorem can be modified to adjust t~e sharpness of the 

bounds. If 0 Cs) is replaced by Q (s) + tCs}I, then p .(s) is replaced by 
~ r rJ 

p .(s) + t(s). Then P.(s) is contained in the disc Ip.(s} - (p .(s) + tes) ) \ 
~ J J ~ 

. 11m I· I < (m+2)M(s) {d (s)} , where d (s) - (t q •. (s)-q .. Cs)-tCs)6 .. )/Mes), 
e e. . . 1J r1J 1J 1,J 

Vij, where the Kronecker 6 •• -1, V'i-j, 5 •. -0, 'Vi"j, and, M(sl -
1J 1J 

max·{ 10 •. (s) + tCs)o •• [, Iq •• Csll}, Vij. 
~1J 1J 1.J 

The disc centres are replaced by t(s) with appropriate changes in discs 

radii. The tuning factor t(s) can thus be selected to minimize the area of 

the discs i.e. min· {MCS)Cde(S»l/m}. 

A stability theorem based on the encirclement" criterion of Prj(al can 

also be derived from theorem 6.3. 

Theorem 6.4 

Let tCsl + p . (sl (resp. t(s) + p .(s})map D into r. + t(sl 
rJ rJ rJ 

(resp. r . + ~(s» ,where t(s), t(s) are convenient ttunin~t factors (in 
rJ ,. 

general t(sl "l/tCs». Then sufficient conditions for closed loop 

stability of S are: 

(1) 
,. ,. 

r . + t(s) (resp. r . + t(~ll satisfies NC, ~j 
rJ rJ 
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(2) 11 + P .(s) + t(s)1 > (m+2)M(s)· {d (s)}l/m, 'tj, \fun 
rJ e (6.15) 

(resp. 11 + P .(s) + tCs}1 > (m+2)M(s) {d (s)}l/m) 
rJ e 

Proof: . The proof is very similar to that given in theorems 5.2 and 6.1. 

By theorem 6.3, condition (2) ensures that all loci of Q(s} cannot 

overlap the critical point, and by condition (1) stability is assured. The 

graphical interpretation is shown in figure 6.2. 

A similar theorem can be stated in terms of the return difference 

matrix. Since 0 (s) is replaced by I + Q (s), then p .(sl is replaced by 
'r r rJ 

1 + p .(s), which means shifting the critical point from '-1' to the origin. 
rJ 

The radii of the discs are governed hy MICs) .. max {I~ •• + q •• (sl I, 1.J r1.J 

Ic •. + q •• (s) \} - max {\q •. (s) I, Iq .. (s) \}- M(s}, as~uming max' {II + q •• (8) I. 
~J ~J r~J ~J --. r~~ 

11 + q.,:(s>l} ~ max~{lq •. (s>l, Iq •. (s)I}, V'ij 
~~. r~ ~ 

Theorem 6.4 is very general in its nature and can be used as an 

alternative to theorem 5.2 and associated theorems where reduced models are 

concerned. 

6.3 Error estimates for multivariable systems designed by reduced models. 

It is desirable to relate bounds for multivariable systems of reduced 

models to that of the original model. This not only aids design consider-

ations, in terms of stability and performance etc., hut also gives a measure 

of validity using reduced models in design. 19 Gunderson and George have 

made error estimates, on using reduced models in the time domain, via 

Lya 1 pu1lov functions, and differential inequalities. This section examines 

error bounds from the frequency domain point of view. 

For a multivariable model with feedback described by' 

xes) .. u(sl - HCs) yCs} 

yCs) - Q(sl xCs} (6.16) 
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yes) is related to u(s) by' yes} ... R(slu(s), where R(s)=Q(s) [I+Q(s)H(s) rl 

- Q(s) [I+H(s)Q(s} r1 where for simplicity assume H(s) • diag (hl'h
2

, •• ·.h
m
). 

• (H) ha 1 h' th h • th • Cons1der r. s, . ,t t re ates t e J output Y
J
• to t e J 1nput u., where 

J J J 

the jth loop is open but all the other loops closed. Here Hj - diag {hl(s) •• 

h. 1(5), 0, h. l(s}, •• h (s)}. 
J- J+ m 

Araki et a1. 3 have given a bound for 

Ir.(s,F.) - q •. (s)1 using M-matrix theory. 
J J JJ 

The well known theorem is 

reproduced below. 

3 Theorem 6A • 

to 
Let R (resp B) be an mxm matrix that satisfies Djj • 0 (resp. b.. • 0) 

JJ 

and b .... (q •. (sl( (resp. h .. ~ Iq •• (sl!l, \;/i, i;j. 
~ ~ ~ ~ 

Choose A • diag 

matrix. --. 
For 

Ih:l (s) + q •• (s) I 
A 

> :.), Vi, > a. (resp. Ih. (s) + q •• (s) I i;j 1 11. 1 1 11 1 

then 

Ir. (s,H.) - q .. (s) I < a. \:j a. > 0 
J J JJ J J 

- 0 Va. 
J • 0 (6.17) 

-1 A A V;.. resp. ! r • (s)l.) - q .. (8 >l < a. > 0 
J J JJ 3 J 

- 0 "/: . - 0 J 

It was shown that A can be chosen as sma11 as possible. such that A-R is 

a semi-M-matrix, i.e. A-R is chosen locally minimum in the sense of A-B-~ 

is not a semi-M-matrix for any diagonal matrix d - diag {ol' •• om}with 

6. ~ 0 and t 6. > 0, ~j. For a given B, A can be chosen as follows: 
J J. 

(1) By a simultaneous permutation of rows and columns, B can be brought to 

the normal form (composed of lower triangular sub-matrices) 
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Bl 
B • B2l B2 0 

Bvl ••• B v 

where each B. (j - 1, •• v) is an M xM irreducible matrix8• 
J v v 

(2) Choose a weight matrix W = block diag {WI'" W } where W. is a diagonal 
v J 

matrix with positive diagonal elements (j - 1, ••• v). 

(3) Compute the maximum eigenvalue max (~.) of B. w.-l for J' - 1, •• v. 
. . J J J 

Then A - block diag {max '(~l)Wl"" max '(~v)Wv} makes A-B a locally 
minimum semi-M-matrix. 

It was also shown that trade-off among loops is possible in that a!a! -
. 1. J 

a.a. , 
1 J 

i, j • 1, •• m, ilj, where At - diag {ai, •• a' } •. Then A'-B is a 
m 

semi-M-matrix if A-B is a semi-M-matrix. 

It is also clear that similar hounds can be written for the reduced model, 

Sr' using theorem 6A. However, the bounds for S will exist independently 
r 

from those of S, in general, therefore, it is meaningful only to make a 

comparison between the bounds, by relating S to S. In the sequel, 
m r 

Q (s) • G (s)K (s), q •• (s) • 1: g .k(slk k'(s), H (s}-=H(s)-diag' {h l(s), •• h (s)} r r r r1J k-l r1. r J r r. rm 

etc. 

Theorem 6.5. 

Let S be bounded as in theorem 6A. r Suppose brij - Iqrij (s) I, hrii - 0 

and A .. diag (a 1, •• a ) such that A -B is a semi-M-matrix and locally r r rm r r 

minimum. If, 

(la) a. ~ a • (resp. a. ~ a .) , Vi, Vs£D 
.1. r1. 1. r1 

(lb) Iq •• (sl I ~ I q •• (s)1 (resp. Iq .. (s) I 1= Iq .. (s)I), Vilj 
r1J 1J r1J 1J 

(2) 
-1 A \h .(5) + q •• (s)\ > a. (resp. Ih .(s) + q .. (s)1 > a.),' 'v'ilj, r1 11. 1 r1 11 1. . 

then S is bounded by, 

Ir.(s,H .) - q .• (s)1 < a. , Va. > 0 
J rJ JJ J J 

• 0 , Va. - 0 
J 

(6.18) 

(6.19) 

(6.20) 



Proof: 

(resp. 
·1 A 

Ir.(s, H .) - q .. (s)\ 
J rJ JJ 

A 

< a., 
J 

- 0 , 

V~. > 0 
J 

V~. - 0 ) 
J 

The proof makes use of a theorem of Ostrowski7,6 • If some 

elements of a semi-M-matrix are increased without changing their signs, the 

new matrix is also a semi-M-matrix, i.e. B is a semi-M-matrix if b •• ~ a •• , Vi, 
11 11 

o ~ b .. ~ a •. , Vi;j, given that A is a semi-M-matrix. 
1J 1J 

Condition (1) ensures 

that A-B is a semi-M-matrix given Ar - Br is a semi-M-matrix. 

follows from theorem 6A for the original model. 

The result 

Remarks; In general, a. ; a ., hence the models are bound~d by circles of 
J rJ 

different radii on the locus of q .• (s}, q •• (a) respectively. 
JJ rJJ 

The matrix A 

is determined in the same way in theorem 6A such that the semi-M-matrix A-B 

is locally minimum. If the bounds are chosen to be'the same radius for 

both models, i.e. ai - ari , then eqn. (6.18) is obsolete and the semi-M-matrix 

A-B = A -B is not locally minimum. 
r 

An interesting point to make is that 

q •• (s) is also bounded by q .• (s) by bands as given in theorem 5.11 of 
JJ rJJ 

chapter v. 
A special case; Theorem 6A offers bounds on multivariable systems.by 

imposing constraints on the structure of the transfer function matrices in 

that certain matrices formed must be M-matrices. The diagonal dominance 

theorem of Rosenbrock for multivariahle bounds1, using a theorem of Ostrowoski
16 

is a special case of theorem 6A. 

1 Theorem 6B • 

Let d. (sl • 
1 

1: I q •• (s) I 
i;j l.J 

Thus, 

(resp. d. (s) - 1: Iq •• (s) I) and 
1 i"j l.J 

~ri (s) - ~:' j 
l.rJ 

(resp. dj (s) !Ihjl (s) + qjj (s) I - max • • ~. J 1rJ 

A 

dJ. (s)!lh .(s)+q •. (8)1 ) 
J 1J 

If Ih:l(s) +q •• (s)1 
1. 11 

> d. (s) 
1. 

(resp.lh. (s) + q .. (s) I > d. (s) ), Vi then 
1. 11 • 1. 

the multiv~dable system is bounded by 

I 
i"'o 
I 
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Iq .. ·.(s) - r.(s,H.)1 < f/J. d .(s) < d.(s), 'v'j 
JJ J J J J J 

(6.21) 

,. ·1 ~ A ,. 

(resp. Iq .. (sl - r.(s,H.)1 < VJ. d.(s) < d.(s) ) 
JJ J J J J J 

Exp. (6.21) represents row dominance of Q, (s), and, if the latter is 

satisfied, the closed loop dynamics are contained in the inner band of circles 

f/Jj(sl djes), given by Ostrowskits theorem for diagonal dominant matrices. 

The results are also app1icahle for the case of column dominance by inter-

changing the subscripts i and j. Theorem 6B can also be proved as a special 

case of theorem 6A. 

Proof: Identifying dies) in expo (6.21) with ai in expo (6.17) and 

choosing b •. - In (sll i~J', where A. and B are as defined in theorem :1J ~. ij' , T 

6A, it is seen that A - B is diagonally dominant.-. Hence its leading 

principal minors are non-negative, thus A,,-R is a semi-M-matrix (though it 

may not necessarily be locally minimum). 

A parallel theorem to ,theorem 6.5 can he obtained for reduced model 

applications. 

Theorem 6.6 

Let S be bounded as in theorem 6R i.e. w.r.t. 'diagonal dominance' 
r 

conditions. Then if 

(la) 

(lb) 

(ll 

Iq .. (s)I > Iq •• (sll l.1 . rl.l. (resp. I q .. (sll > I q •• (s) I) t l.l.' rl.1 

Iq •• (s)1 > Iq .. (sll rl.J l.J 
(resp. I q .. (sl.1 > I q .. (8) I) " rl.J l.J 

I h - ~ (s 1 + q .. (s 11 > rl. l.l. Iq .. (s) I l.1 (resp. I hri (s) + q .• (al I l.1 

the original model is bounded by 

Iq .. (s) 
JJ 

(resr· 

- r.(s,H.)1 < f/J.(a1d.(s) < d.(s) 
J J J J J 

,. ·1 ~ A Iq .. (s) - r. (s,H.ll < 'I. (~} d. (s) 
JJ J J J J 

, 
,. 

< d. (8) ) 
J 

Vi (6.22) 

Vi.,lj (6.231 

> I q .... (s) 11, Vi l.l. 
(6.24) 

(6.25) 
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Proof: Theorem 6.6 is a special case of theorem 6.5. Choosing 

a. m Iq .. (s) I and a • = Iq .. (s)l, exp (6.18) becomes expo (6.22), condition 
1 11 r1 r11 

(la) of both theorems. Conditions (lb) and (2) follow exactly as in theorem 

6.5, making appropriate symbol changes. Conditions (1) and (2) of theorem 

6.6 indicate that S is diagonally dominant, when S is likewise so. This 
r 

is proved in a mathematical way, and it corresponds with intuitive reasoning, 

that when both models are diagonally dominant, they are bounded in similar 

forms by exps. (6.21) and (6.25), though the bounds may not necessarily be 

locally minimum. 

The response error, e(s) - yCs} - y (sl, between original and reduced 
r 

model can be estimated in a number of ways, using functional analysis and 

contraction mapping principle~etc. A general theorem·can be stated as 

Theorem 6.7 

The fractional response error be~een Sand S is bounded by 
r 

C6.26) 

Proof: The lower bound error is ohvious, the upper bound will he given as 

follows: 

i.e. 

• • • 

yrCa} • Rr(sl uCal 

yCs)-YrCsl - (R(sl-Rr(snu(s) 
,. 

(R(sl-R
r 

(s)JR
r 

(s)y r (sl 

II y(s1-y (sl II ~ II R(sl-R CsllI II R (s) II IIY (slll r r r r 

Exp. (6.26) follows. 

(6.271 

C6.28) 

(6.29) 

Alternative convenient expression to theorem 6.7 can ~lso be ohtained, 

in terms of return difference and return ratio matrices and their inverses. 

Since R(s)-R (sl - {F(s}G(sl - r (s)G (51} K (sl and II R (s) II ~ r . r r r r . 
\I Fr(S)Gr(s) 1111 Kr(s) II and u(s} - Kr (:1} arCs) Fr(s), following the arguments 

from eqns. (6.27) to (6.29}J gives 

... 
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o ( II e(s) II III Yr(s) II ~ II F(s)G(s)-F (s)C (s) \I II G (s)F (s) II K(K (s) ) r r r r r 

(6.30) 

where K (K (s» = 1\ K (s) II II K (s) 1\. The fractional error in open loop r r r 

response is 

(6.31) 

from exps. (6.29) and (6.30). 

Another way of expressing lIe(s}1\ is by using the Courant-Fisher min-

I . hi 5 max re at~ons p. 

Theorem 6.8 

The response error between Sand S is bounded by r ._ . 

. {min. n. (s)} I ~ II y(sl-y (sll\ E ~ . {max. n. (sl) I 
J J r J J 

. . II 
where n.(s) is an eigenvalue of W(sl • {R (slu(s)}{R (slu(sl} where 

J . e e 

R (s) • R(s) - R (s). e r 

Proof: From eqn. (6.27), y(sl-y (sl • e(s} - R (slu(s) r e 

(6.32) 

i.e. e(s}eR(sl • . {Re (slu(sl} {Re (slu(sUR (6.33) 

Premultiplying both sides of eqn. (6.331 by eR(sl and postmultiplying 

by e(s) 
II II R e (8)e (8le (sle (sl • e (s)W(s)e (s) 

from which II e(s) \I E - < e(s},W(s}e(s»/<e(s),e(sl> (6.341 

Application of the Courant Fisher min-max relationship to eqn (6.34) 

yields eqn. (6.32) •. 

It is noticed that Wes) is positive definite Hermitian, hence n.(s) > 0 
J 

and is real,. 'Ij. Also rank (W(s) 1 • 1, hence the lowet; error bound 

. {min. n.(~l} • O. When the model ordp.rs are equal, R • 0 i.e. Wes) - 0, 
J J e . 
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hence max. n.(s) = 0, as expected. For the open loop case R (s) is 
J J e 

replaced by Q (s) = Q(s) - Q (s) in Wes). . e r 

6 • • d due to • • Theorems .7 and 6.8 glve peak magm.tu e errors A Sl.nusol.da1 

In the time domain, the bounds can be expressed as 

II e(t} III\: V r (tl II :; Il Re (tl II 1\ Rr (tl II 

II e(t) Il E~ . {max. n. et)}! 
J J 

where the Laplace transform operator relates L' {y (t)} - y (s), r r 

L{R (t}} = R (s) etc. r r 

inputs. 

(6.35) 

If given the state space matrices SeA,B,C) and S ~ ,B ,C ), the error r r r r 
e(t) = yet} - y (t) can be computed from the spectral components of these r 

matrices. 

Corollary 6.1 
n m t 

e(t)· 1: exp (-A.tl[<a.,x(O»+ t I (exp (-)..T}u.(T)dT) 
i-I . l. l.j_I 0 l. J 

<8., b.> I Ca. 
l. J l. 

r 
t exp (-A .t)[ <13 .,x (O» + . rl. rl. r 

where ).., A • are the eigenvalues of A, A ., 
o l. 0 rl. r 

t 
(I exp(-A .T)u.(T)dt)<a .,b .> . rl. J rl. rJ 

o 

t 
a., 8., a ., l. l. rl. 

] ca. r rl 

at. are the 
rl. 

column and row vectors of the modal matrices of A and A respectively, and, r 

b., b . the column vectors of Band B. The initial conditions are x(O), 
J rJ r 

x (0) and u. (j=l, ••• m) is the input function. It is seen that for e(t) 
r J . 

to be small,. \i sho,u1d be close to some dominant 0 Ai' assuming that the 

square bracket terms are approximately equal. 

Error bounds between Sand Sr can also be established in terms of the 

matrix st1:uctura1 properties of the transfer function. 

... 
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From y (s) = R (slu(s), r r 

y .(s) -r •• (s)u.(s) + 
r~ r~~ ~ 

r •. (s)u. (sl, Vi 
r~J J 

If h • th 1" b 11 1 1 d· () d· {h ( ) t e J oop ~s open ut a oops c ose , ~.e. Hr S - ~ag 1 s ". 

h. l(s}, 0, h.+l (sl, •• h (sl}, then r ... (s) - r . (s, H .l and the error J- J m ru. rJ rJ . 
e. (s 1 • r • (s, H .) u. (s) 
~ e~ rL ~ 

+ t 
j~i 

r •. (s}u.(s) , Vi 
eLJ J 

(6.36) 

where r .(s,H .) - r.(s,H .) - r .'(s,ll .l, e.:(s) - "l'(s} - Yrfs), etc. 
,e~ r~ ~ rl r~ r~ • 

can be expressed in the following bounds. 

Theorem 6.9. 

If Sand S are bounded in the sense of M-matrix requirements of theorem 
r 

6A, then r .(s,H .) can be bounded as , e~ rL 

(1) 

(2) 

(3) 

1 r . (8, H .) - C (8) I 2i d I 
J rJ 

'v'j 

1 r . (s, H .) - c (s) I 
rJ rJ 

~ d J 'Vj 

1 r • (s, H .1 I ~ 2d J eJ rJ 
Vj 

subjected to Iq .. (s)l+a .>a. or 
eJJ rJ J 

If : I q .. (s) I +a . <a., then d ~ a.; 
eJJ rJ J J 

lq .. (s)l+a.>a. , Vj 
eJJ J rJ 

(6.37) 

(6.38) 

(6.39) 

if: [q •• (sl [+ a.<a .,then d ~ a . 
~J J rJ rJ 

In the above, r .(s,H .) - r.(s,H.} - r ,(s,H .), q .. (sl - qJ'J,(s}-qr"(s), 
eJ rJ J rJ rJ rJ elJ JJ 

c(s) is the centre of the circle given by [c(s}-q .. (s)l+ a, • Ic(s)-q .. (s)l+a ., 
JJ J rJJ rJ 

d is its radius given by 2d - Iq .. Csli + a. + a .,and,the quantities 
eJJ J rJ ' 

a., a. are also radii of circles for S and sr,respectivelyJas defined in 
J rJ 

theorem 6A. 

Proof: The graphical interpretation of theorem 6.9 is shown in £ig.6.3. 

Both r.(s, H .) and r .(s,H .1 are contained in the new circle, centre 
J rJ rJ rJ 

c(s), and, radii d, where the circumference of the new circle touches the 

original circles that bound r.(s,H .J and r .(s,H .l. 
J rJ rJ rJ 

In the case when 

one of the circl~moves into the other, then the sharper radius d • aj or 

... 
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Eqn. (6.39) is explained by the fact that the 

distance between two points in a circle is always less than or equal to its 

diameter. Also the same equation, Ir.(s,H .) - r .(s,H .) I , 2d, can also 
J rJ rJ rJ 

be viewed as r.(s,H .} being contained in the hand of circles, centre r . J rJ . rJ 

(s,H .) and radius, 2d. When r .(s,H .) .. r.Cs,H .) meaning q •. (s)-.q •. (s), 
rJ rJ rJ J rJ rLJ LJ 

u .. , then 2d .. a. + a .• 
v lJ J rJ 

Corollary 6.2 • 

. Returning to eqn. (6.36l, the error in output response can be expressed 

by theorem 6.7 as 

leL.(sll' lr .(s,R .)lIu.(sll + .t. [r •• (slllu.(s)1 eL. rL L J11 eLJ J 

where from theorem 6.9 and assuming a unit impulse,~. 

Ie. (8) I , Iq •• (sll + a. + a • + t lr •• (s}1 
1 eLL L rl j~i eLJ 

In matrix form, eqn. (6.40) becomes 

where Q •• Cal eLL 

"/i;j, R •• (s1 eLL 

- diag· {qe11(s}, ••• q (sl) and R •• (s) ~ r 'j(sl, e.mm . eLJ eL 

• 0, 'Vi-j. 

(6.40) 

(6.411 

Eqn. (6.40l expresses a bound for a particular output. The radii 

a., a • in one loop can he made as small as possih1e oy trade-off among 
J rJ 

loops a! a! 
1. J 

at. at. 
rl. rJ - a , a •• rl rJ 

Parallel to theorem 6.9 the error hound can also he expressed for 

diagonal dominant systems. 

Theorem 6.10. 

Let Sand S be bounded in the sense of 
r 

diagonal dominance 
. 

conditions, theorem 6B. Then r .(s,R .1 is hounded exactly as in theorem 6.9, el. &:L 
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except that the radius d of the new circle is given by 

2d .. Iq .. (s)1 +1J.(s)d.(s) +cJ .(s)d .(s) 
eJJ J J rJ rJ 

(6.42) 

(It is noticed here that d # d .(sl, where d .(s).. t Iq .. (s}1 and 
rJ rJ j:H n.J 

the symbols ~.(slJ ~ .(s) have their usual meanings as given in theorem 6B.) 
J rJ 

Proof: The proof and geometrical interpretation follow exactly as that 

given in theorem 6.9. 

Corollary 6.3. 

t 
ilj 

When the models are diagonal dominant, then t r~.(s) = 0, 
i.Jj 1.~ 

r •• {sl = 0, hence following eqns. (6.40) and (6.41) r1.J 

le.(sll ~ Iq .. (s)1 + 1J.(s)d.(s) + ~ .(s)d .Ca) 1. ell. 1. 1. r1. r1.. "-. 
i.e. \I e(slll , II Q •• (sl + (1J.(sld.(s)+ IJ .(s}d .Csl )111 e1.1. 1. 1. r1. r1. 

Error estimates by contraction mapping principle. 

The response error can also he estimated by using the contraction 

• •• 1 • f • 1 1· 21 (Ch V) In B h mapp1ng prLnC1p e 1.n unct1.ona ana YS1.s. see apter a anac 

space of holomorphic transforms, it is well known that the error involved in 

th • () • the n I.terate, Ym s 18 

n 
d{Yr*(s) - YmCa}} ~ [II WAr II /l-li w

Ar II J d{Yrl(sl -Yro(s)} (6.43) 

is 
where y (8), the initial point, y 1 (s) .. W. v (sl, the first iterate ro r Ar ro 

and "yr*(s), the final solution. Choosing Yro(s) - 0 and n .. 1, eqn. (5.49) 

of Chapter V becomes 

(6.44) 

which means eqn. (6.44) is a first approximation for yr*(s},the approximation 

being involved, because A only approximately represents Q (s). Hence from 
r 

eqn. (6.~31, the fractional error, erfCsl, resulting from designing the system 
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r 
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This has a simple graphical interpretation shown in fig.6.4. Since 

WA - (I+A )-1 (Q (s)-A 1, and, if A (sl - diag {q •• (s)}, Vj, then r r r r r rJJ 

(6.45) 

e f ~ n /~ -n) where II WAr II - n /d. After Kr(s} is implemented on the roo 0 0 0 

original model, S, a similar equation to eqn. (6.45) can be written. 

(6.46) 

where ef(s) is the error involved in designing the system Q(s) by the matrix 

A(sl. It is useful to express ef(s) in terms of II wA- wAr Il ,II wArIi and 

erf(s) • 

Since II WA II ~ It WAr II + 11 WA - WAr Il, eqn. e6.46} gives 

and rearrangement gives 

(6.47) 

where WAe - WA - WAr· Letting. ar • II WAr II 11 - 11 WAr II and E - Il WAell/1-I~ArIl 

eqn. (6.47) gives 

(a + E) 1(1 - E) 
r 

(6.48) 

It is noticed that for stability of S, IIwAIl < 1 and it was proved that a 

tighter condition for stability of both Sand Sr is 1 - II WAeI! < 1, given 

that II WAr II < 1. Hence 0 < 1 - II WAr II -II wAel1 < 1 - II WAr II < 1. Thus 

ef(sl ~ 0 in eqn. (6.47). Further 0 < E < 1, and this with eqns. (6.451 

and (6.48) gives 

ea + E)/(l- E) 
r 

(6.49) 

... 
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Thus eqns. (6.48) and (6.49) becomes 

(6.50) 

Eqn. (6.50) states that the response errors for both models are bounded 

by a common bound, when S is stahle, given S is stahle. 
r 

The graphical interpretation of eqn. (6.45) is shown in fig.6.4 for 

the special case when S is diagonal dominant. r The graphical interpretation 

for eqn. (6.50) is similar to that shown in £ig.5.l4. 

6.4 Adaptation of reduced models to multivariable systems design. 

This section studies the application of reduced models to existing multi-

variable design techniques by frequency response and time domain methods. 

The approach is by considering single input-single output systems, then 

generalizing to multivariable systems, where convenient, otherwise, the 

approach is to consider the problem in its multivariable form. 

Single input-single output systems (s.i.s.o.). 

It was shown in Chapter V that the classical Nyquist and root locus of 

s.i.s.o. models are bounded by bands of circles centred on those diagrams of 

the reduced model, theorema 5.7 and 5.21. Stability is guaranteed if the 

bands satisfy the encirclement theorem or avoid the imaginary axis. These 

single loop ideas can be used in later multivariable designs, after the 

reduced IOOdels are obtained, say, from the reduction techniques, given in 

Chapters III and IV. 

6.4.1 Inverse Nyquist Array (rNAl method24 ,1 

The reduction and design are achieved by two suggested propositions26 • 

It is assumed that Sand Sr are open-loop staDle. 

Proposition 6.1. 

It interaction effects are negligible and accurate reduced models are 

obtained for the diagonal terms of the transfer function matrix, particularly 

retaining certain dominant modes and maintaining the shape'of the root locus 

... 
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diagram in the vicinity of the origin, it is possible to design the 

diagonal compensator K Csl with a predictable amount of stability margin, . c 

such that S is stable with good dynamics within the range of design gains 

in which 

Froof: 

. S is likewise stable. 
r 

It was shown in tbeorem 5.21 that the root locus of S is contained in a 

band of circles, centred on the root locus diagram of Sr. The art of the 

procedure is to choose tuning factors a and a,such that the circles are 

made as small as possihle,such that stability margin is high and performance 

error between the two models is small. The root locus is basically a 

'reduction method' in that a dominant second order system is heavily used in 

the approximation, the latter being very successful ··from past design 

experience. Similarly, by theorem 5.7 the single loop inverse Nyquist design 

can be used. 

Proposition 6.2. 

As far as interactions are concerned, it is sufficient to ensure that 

S will be closed loop stable within the close range of gain values for 

which Sr is likewise stable,i! and only if Sr is diagonal dominant,and the 

interaction structures of Sand Sr are similar,i~ the sense that the ratio 

of proportionality of the interacting terms to the diagonal terms of the 

inverse transfer function is the same. 

Proof: 

The proof makes use of the extension of the diagonal dominance theorem 

of theorem 6B. By theorem 5.9 it was shown that a sufficient 

condition for stability of S is that S should be diagonal dominant. If 

diagonal dominance is achieved by matrix operations such that Iq ... (s} I rl.l. 
,. A· ,. ,. A 

> d .(sl, Ir •• Csli > d .(sl where d .. Csl - t Iq· •• (s>.l,then the matrix r1. . rl.L rl. r1. i ';jrl.J . . 
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Ka Kb(s) required to achieve diagonal dominance would be the same for both 

models as their interaction structures are similar. Hence S is closed loop 

stable, as far as interactions are concerned, in the presence of Ka Kb(s}. 

o 0 6 2· I ff 0 • dO. 1 Propos~t~on • ~s on y a su ~c~ent con ~t~on • Failure to satisfy 

it does not imply closed-loop instability, however, if proposition 6.2 is 

satisfied, proposition 6.1 is botn necessary and sufficient. As was shown 

in theorem, 6B, the stability margin is determined by the Gershgorin circle 

bands of radii d .(sl, and dynamic information of a loop is concentrated in 
r~ 

the narrower band of radii rJ • (sl d • (sl. Since the interaction structure r1 r1 

is closely maintained, the radii for botn models, by theorem 6.2, would be 

approximately equal for the range of gain between zero and k .• 
rJ 

Preserving interaction structure. 

Th .tn ~. e 1 output can ue wr~tten as 

Y • (sl r1 

m 
.. I g •• (sl u. (sl , 'Vi 

j-1 r1J J 
(6.51). 

where each term can be considered independently. However, in general, this 

will not preserve the interaction structure. Neither will it if Gr(sl is 

obtained in whole. This fact, which is important in design in terms of 

stability, has been neglected or ignored in many reduction methods. 

Davison et a1. 25 have investigated the severity of interaction in multi-

variable closed loop systems by computing the interaction index as a ratio 

of two performance indices from the state space equations, 

* (J. - J.)/J. 
J J J 

(6.52) 

CD 
2 * 

CD 

*2 where J. III max r y. (tl dt, J ... r y. (t) dt, 1 ~ . ~ R. and y.(tl, J J 0 J J 0 J J 
* Yj (t) satisfy the equations 

~ + ej 

n 
• . tJ x .. I (-k~ B.ld . x, Y .. Dx 

i-I ~ ~ J 

~+ e I (-k~ Boldt + e I (-k~ B. )d t 
+ (6.53) x .. •••• 1 • 1 ~ ~ 1 2 • 1 ~ ~ 2 

~ ... 1" 

I (-k~.) dt ] * e x , y = Dx m o 1 ~ ~ m 
~ .. 

, 
• 
~ .. 
, 
I 
! 
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In the above, output feedback 
• • . t 

u(t) = u (tl + e.(-kL1, •• -kJ ) y., is 
o J n J 

used and it is assumed that the m controllers are stable. The interaction 

index, eqn. (6.521 gives a measure of the relative change in the control of 

y.(t) when all the controllers are simultaneously. applied to the system 
J 

compared with the jth controller only being applied to the system. 

Davisonts method of computing the interaction index is numerically demanding 

and it involves the solution of Lya~novts equation. 

·A different definition of interaction will be defined here. In the 

frequency domain, the degree of interaction between two.consecutive loops can 

be given as the ratio of the magnitude response between the off-diagonal and 

diagonal ·terms. As the inverse transfer function matrix gives an easy 
,. 

"transition from open loop to closed loop systems, Gr(s} will he considered 

here. Define 

#It 

f -rij I g •. (s 11 • .l ./1 g •• (s} I rLJ LrJ rLL 
(6.54) 

#It 
m .. -rLJ I g .. (s) I . .l ./1 i .. (s 11 r1.J LrJ rJJ 

(6.55) 

To preserve the same interaction pattern, it is desirable that 

,. A 

£ ••.• f •. 
rLJ LJ 

(6.561 

'" m •• 
rLJ 

,. 
- m •• 

LJ 
(6.57) 

for 0 < II) < .... Infinite sets of frequency dependent parameters exist that 

satisfy eqns. (6.561 and (6.571 separately and if the diagonal ratios are such 

that Is •• (sll/Is •• (sll ~ Ii .. (sll/\g .. (s} I. satisfaction of one equation r1.1. 1.1. . r1.l JJ 

also satisfies the other with the same parameters. In general, a fixed set 

of constant parameters can be obtained by minimizing the performance index 

over a spectrum of interest. 

- '" '" 2 #It A 2 I {(fr.:J·Cwl-fl..J.Cwn +(m •. (wl-m •• (w» )dw o .... rl.J LJ 
(6.58) 
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In the ideal case, the bracketed terms vanish and the error is 

zero. 

Jt 
w 

,. 
For severe interactions, f •• > 1, the following 

l.J 

. A A }2 {A A _ 1}2 - I {Cf •• 1 f. . 1 - 1 + (m • • /m •• 1 n rl.J l.J rl.J l.J 
dw 

index 

(6.59) 

is suggested for faster convergence near the optimum. If the diagonal 

ratios are equal, then only one term in eqn. (6.58l need be considered. 

To alleviate computational Durden, where possible, certain dominant 

modes of G(sl should be retained. As usual, non-minimum phase can give rise 

to design difficulties and any r.h.p. or t.h.p. zeroes must be separately 

constrained in Gr (sl. This uniformity makes it easier to assess stability 

margins. By virtue of its flexibility, the i.n.a. is more tolerant to model 

inaccuracies; hence it is not necessary that the i~~eraction pattern be 

rigidly maintained·, hut should be such that the same KaRb. (s) controller 

matrix is applicable to both models and the remaining stability margins he 

determined by single-loop approaches alone. Also, any valid s.i.s.o. 

reduction method can be used on the diagonal terms of G(s}, and the off-

diagonal terms can then be obtained in conformity with the interaction pattern 

suggested above. 

Algorithm for i.n.a. design using reduced models. 

Step 1. 

Step 2. 

Step 3. 

... ... 

Design K h(slK (sl to obtain stability by diagonal dominance 
r ra 

• A 
of Sand desl-gn compensator K for each individual loop. 

r . rc 

Test for diagonal dominance of S by theorem 6B and stability of S 

by theorem 5.9. {Note: Diagonal dominance is automatically achieved 

if design is done according to Proposition 6.2.l If diagonal 

dominance achieved, proceed, otherwise go to Step 1 and redesign 

K. (sl. ra 

Determine output error between Sand S by theorems 6.7 or 6.8. 
r 

If tolerable exit, otherwise go to Step 1. 



- 171 -

Characteristic Loci design28 ,29 

It was shown in Chapter V that the characteristic loci of S are 

bounded by bands of circles determined by the characteristic loci of S • 
r 

In design, compensators can be employed to shape" the loci of S to obtain 
r 

the required dynamic response. The bands are thus shaped according to how 
. 

the loci of Sr are shaped. Before going into the algorithm for 

Characteristic Loci design, an integrity theorem is stated for design using 

S • 
r 

1 1 29 ha· • • h • hi h. 1 d Macfar ane et a • ve g~ven an ~tegr~ty t eorem ~ w c c ose 

loop stability can be studied resulting from error monitoTing, actuator and 

transducer failures. For a reduced model, let 

T (sl u • K (slG (slK. (sl U re r r r .-.. , 

T (sl U • K. CslK (alG Cal U ru r r r 

T (sl U - G (slK. (slK Csl U ry r r r 

where Tr(S) are return ratio matrices and U is a switch. matrix having all 

diagonal elements I (for a normally operating channell or a small quantity E 

(for a failed channel), and, let Prij (sl, i=l, ••• j 

of a principal suh-matrix Taj , j=l, ••• m of Tre(s}, 

29 
Theorem 6C • 

be the characteristic loci 

or T (s) or T (s). Then ru ry 

The reduced model, Sr' has high. integrity against a failure condition 

if, and only if, 

(ll The locus p •. (sl satisfies NC , Vi, Vj. 
r~J 

A "similar theorem can be stated for S, in terms of Sr. 

Theorem 6.11. 

Let p •. (s) + l3 map D into r .. + e. 
r~ r~ 

Then S has high integrity 

against all failure conditions if: 

(1) r .. + ~ individually satisfies N~, Vi. Vj 
rLJ . 

either 
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I 

(2) !l+~+P •. (s)! > II G (s)K (s)H (s)-~IIl infK(P(s)), Vi, 'ij, 'VsftD rLJ err (6.60) 

or 

(3) 
11m 

11+~+P •. (s} I > (m+2}M(sl {d (sl} ,Vi, V'j, 'tseD rLJ e (6.61) 

where M(s):max{!t •. (s)+BIS •. !, It •• (s)ll, d (s)=( t It •. (s)-t •. (s)-BIS .• !)/M(s) 
. rLJ 1J 1J e i,j r1J 1J 1J 

Proof: Conditions (ll and (2) ensure that all characteristic loci of the 

principal sub-matrices of T(s) satisfy Nyquist criterion (see Theor~m 5.1). 

Similarly, conditions (1) and (3) ensure that all loci of the t:ub-matrices of I-

Tes} do likewise (see Theorem 6.3). Hence by theorem 6C, S has high 

integrity against all failure conditions. 

Another convenient way of interpreting theorem 6C in terms of reduced 

Let t rjj (sl + 6 map D into rrj + a, where t rjj (s) is a diagonal element 

of the return ratio matrix Tr (s). Define the matrix Cr (s) where Crjj (sl - f 

(1 + t •. (5) (, C •• (s) • -It •• (s)l, i~j. Then sufficient conditions for S 
rJJ r1J r~J 

to have high integrity against a failure condition (depending on how TCs) 

is specified) are: 

(1) 

(2) 

(3) 

(4) 

r • + a individually satisfies Ne, \fj 
rJ 

C (sl is an M-matrix. 
r 

!l+~+t· .. (s)( > It .. (s}-el Vj, V'seD 
rJJ ell J 

Il+t .. (s)1 ~ 11+t .. (s)l; !t •• (s)l, It •• (s)l, \fj, ~sf.D 
J J rJJ 1l rl.J 

where t .• (s) = t •. (s)-t .• (sl and t •• Cs) is a diagonal element of TCs). 
eJJ . JJ rJJ JJ 
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Proof: 

Conditions (I) and (2l ensure that S is stable in the sense of 
r 

M-matrix requirements (see theorem 5C). Condition (31 ensures that the 

Nyquist locus of t •• Cs) satisfies the encirclement criterion by theorem 5.7. 
JJ 

Condition (4) (Ostrowskii's theorem, see the last condition of theorem 5.ll) 

ensures that the matrix C(s) of S is an M-matrix, given that Cr(s) is an 

M-matrix. Thus S i~ stable, by theorem 5C, and, by theorem 5.13 (KY Fan's 

theorem) it i~ seen that all the characteristic loci of T(s} satisfy the 

encirclement criterion. Now since every principal sub-matrix of C(s) 

(an M-matrixl is an M-matrix, it follows from theorems 5C and 5.13 that all 

characteristic loci of every principal sub-matrix of T(s) satisfy the 

encirclement criterion. Hence, by theorem 6C, S has hig~ integrity against 

a failure condition. 

As a special case, if the matrix T(sl is diagonal dominant and its 

diagonal elements satisfy the Nyquist criterion, it can easily be deduced 

from theorem 5.12 that S has hig~ integrity. crf C(s} is' diagonal dominant, 

then it is an M-matrix}. Alternatively, from Gershgorints theorem it can 

also be seen that all characteristic loci of the principal sub matrices of 

T(s) satisfy the Nyquist criterion. 

It is well known that the Characteristic Loci design has four phases: 

(ll stability phase, (2l integrity phase, (31 interaction phase, 

(4) performance phase. 

Stahility and integrity are effected by modifying phases of appropriate 

sets of loci 

m 
1: phase (p • Cs»'" phase {det (JC Cs})} + rl. r iel 

m 
1: phase (Ari (sll 

i-I 

where p .(s) and A .(sl are the loci of Tr(s) and Gres) respectively. rl. . rl. 
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Interaction is effected by aligning the characteristic directions at 

high frequencies and balancing the gains at low frequencies to get acceptable 

interaction. From 

R (s) 
r 

m 
= . l: (q ~ (s) Il+q .. (s}la ~ (s1><6 • (s) rL rL rL rL 

pair o£ 
where a ~(s) and 6 .(8) are a > ~ ~ dyadicAvectors, for s~, Iq .(s) 1«1, rL rL rL 

hence R (sl+l: q • (s}a • (s) ><6 • (s} =Q (sl. r rL rL rL r It follows that to achieve low 

interaction, it is necessary that·~(sl+I as s+m. The angle of alignment 

is Cose.(sl=\<a .(s},e.>(/1i a .(sl!! where e. is the jth column of a unit 
J rJ J rJ J 

matrix. Thus if e.(s1 is small at high frequencies, interaction arising 
J 

from the j th. input will be correspondingly small. For low frequencies,. 

usually Iq .(s11»1, \;Ij, hence R (s}+1: <a .(s1,S .(sl.> .. I • rJ r rL. rL-. m . 

Satisfactory overall performance is achieved by injecting gain into 

the phase compensated and aligned system. 

m 
- 1n det IKr(sll + t 1n.1Ar i(s1( 

. i-I 

The design using S , including check on stability and integrity of S, 
r 

can be done using the following algorithm. 

Step 1. Design K (s1=~K .(sl,j-I,.~. accumulatively, such. that r rJ ... 

G (slK (s) is stable by theorem SA. r r . 

Step 2. Test for stability of S by theorem 5.3. If stable proceed, 

Step 3. 

Step 4. 

otherwise go to Step 1. 

Test for integrity of S (assuming S has high. integrity) by 
r 

theorem 6.11. If satisfactory, proceed, otherwise go to 

Step 1 and redesign K .(sl. rL 

Determine output error e(tl between Sand S by theorems 6.7 or 
r 

6.8 (assuming performance phase of Sr is satisfactory}. If 

tolerable,exit, otherwise go to Step 1. 
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In the above it is assumed that open loop error between Sand S is 
r 

fairly small. 

6.4.3 Mu1tivariab1e systems design by sequential method30• 

Mayne introduced a design method where the compensator matrix is 

designed by a succession of single loop approaches using Nyquist loci. Each 

loop is designed separately and then closed to see the effect on the overall 

stability of the system. As the loops can be renumbered, they can be 

closed in any sequence and design accordingly. The method also allows 

attenuation of external disturbance and provides security against component 

failures. 

For a full explanation of nomenclature, refer to Maynets design 

1 • hm30 . a gor1t • 
'-, 

(i) Record inputs and outputs. 

(ii) 

(iii) 

I Choose K (sl. o a a Ie Set G ' Csl .. G (slK: s), a=l, ••• m. 

Set i-I. 
a i-I a Set t. (8) == I + kislg •• ' (s), a-I, •• m. 
~ ~ ~~ 

Choose k. (sl. 
l. 

(iv) If i==m stop. Otherwise for a=l, •• m, set ~(s)=k. (s) It~(sl. 
~ ~ ~ 

(v) 
i+l Choose K (s) (renCs) -I ). m 

Set i=i+I 

(vi) Go to (ii). 

The final compensation matrix K (s) 
c 

• i-I - i-I i-I by G~(s)=G (s)-k (s)g . (s)g~ (sl and 
.~ ~. 

i· . 
- nK (s)G~(s) and tl.(s) is generated 

i i-I t (s)-l+k. (slg •• (s). 
~ ~~ 

The closed loop input-output equation is 

,. ,. 
yes) II T(s) Ges) Kes) YdCs) + Tes) n(s) 

A 

where T(s) is the inverse return ratio matrix and nes} the external 

disturbance. For the system to reduce the effect of external dist\.u:bance in 
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w € n, it is required that IIT(s)1I < 1 for sen. Since det T.(s) = 1. m 
IT t.(s}, by applying theorem SB, the stability of the system at the stage 

j=l J 
of closing the ith loop can be investigated by the encirclement criterion of 

t.(s), j=l, ••• i. 
J 

Algorithm for sequential design using reduced model, S 
r 

Step 1. 

Step 2. 

Step 3. 

. Step 4. 

Step 5. 

Step 6. 

Record inputs and outputs. 

• • th 1 b • 1 hod • Des1.gn 1. oop y sequent1.a met , US1.ng S , such that 
r . 

stability criterion is satisfied and performance satisfactory. 

Predict stability of original model, S, if Kr(S) is implemented 

on G(s), when ith loop is closed, by theorems 5.3, 5.9 or 5.11. 

If stable proceed, otherwise to go Step 2. 

Determine output error between Sand S by theorems 6.7 or -·r 

6.8. If tolerahle, proceed. Otherwise go to Step 2. 

Repeat for i=i+l from Step 2. 

'" Test if II T(s) II < 1. If yes , exit, otherwise go to Step 2. 

Design algorithms, using S , for other frequency design methods such as 
r 

d• • 32 d • 11 hn· 31 b ··1 1 dya 1.C expansl.on an commutatl.ve contra er tec l.que can e Sl.ml. ar y 

generated. The stability criterion used is loci encirclement, thus theorems 

5.3 and 6.4 are general in their applications. 

6.4.4 De • b 1 hif· hn" 34-39 • S Sl.gn Y po e s tl.ng tec 1.ques US1.ng. r 
34 Wonham showed that controllability of an open loop system is equi-

valent to assigning an arbitrary set of poles to the transfer matrix of the 

closed-loop system by linear state feedback. For the system 

S : x • Ax + Bu , y • ex 

state feedback u = Kx is introduced such that A • A + BK has a c 

(6.62) 

specified set of eigenvalues. If t t o ObI D ° 35 some s a es are 1.naccessl. e, av:son 

has shown that using output feedback, u • K*y, a constant matrix K* can 
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always be found such that 1 eigenvalues of the closed-loop system A+BKC 

are arbitrary close (but not necessary equal) to 1 preassigned values. 

Here 1 Iii n where R. - rank (cl. 

37 MacFarlane et ale gave a simple pole shifting algorithm, derived 

from the Hsu-Chen theorem, for design. However, K is unity rank and r 

sacrifices much design freedom. In general, the problem of determining K 

or K* is non-unique and non-linear for multivariable systems39
• Several 

methods due to Fa11side et a1. 36
, Munro et al. 38 and Sridhar et al. 38 are 

proposed that circumvent the non linear problem, but these methods restrict 

the degree of freedom in choosing K at the expense of linearity. 

39 Paraskevopou10s and Tzafestas ~ave introduced a general method that yields 

a family of K and several linear methods o'f obtainin~, K. are also suggested. 

Also, the problem of pole assignment with respect to minimum eigenvalue 

38 
sensitivity to parameter variations was studied by Gourishankar et a1. • 

The main interest here is to study the following problem. 

Given 

u • K x r r 
or u • K* Y r 

x • Zx r 

(6.63) 

determine u = K x or K* y such that when implemented on the system S 
r r r 

of eqn. (6.62), the closed loop system A • B + BK Z (state feedback) or rc r 

Arc • A + BK~ C (output feedback) is stable. 

It was shown that for reduced models obtained by projection methods, 

the eigenvalues of A + BK Z are those of the reduced model A + B K and r r r r 
• 43 46 the remaining n-r eigenvalues of the open loop matrLx A ' • However, 

this is not the case for non projective model reduction techniques46 • In 

this cas~, theorem 5.23 can be used in the design algorithm below.' 
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Algorithm for reduced model design by pole shifting. 

Step 1. 

Step 2. 

Step 3. 

Step 4. 

Determine Kr or K~ based on a set of assigned eigenvalues 

such that· Sr is stable. 

Test for stability of S by checking eigenvalues of A+BK Z or 
r 

A+BKrC by theorem 5.23. If stable go to Step 4. Otherwise 

proceed. 

Modify spurious eigenvalues or try to reduce circle size by 

theorem 5.23. Test for stability of S. If stable, proceed. 

Otherwise, modify the set of pre-assigned eigenvalues and go to 

Step 2. 

Determine output error between Sand S by theorems 6.7 or 
r 

6.8. If satisfactory, exit. Othe~se go to Step 3. 

One of the chief inaccuracies of design by pole shifting is that the 

control of the transmission zeroes of the system is not possible, for the 

1 0 lOd 0 4 latter pays an ~mportant ro e ~n yna~c response. 

6.4.5 Design by multivariable root loci using S 40-42. 
r 

Single loop design using the classical root locus method can be done 

with relative ease on S • 
r 

Theorem 5.2l.is of main importance for checking 

the bounds of the c.t.c.p. of s. The root locus of S is bounded by bands 

of circles centred on the root locus of S • 
r 

Stability and transient response 

of S can be assessed at each stage of the design on Sr' 

MacFarlane et al. 40 ,4l extended the root locus technique to multi-

variable systems in terms of characteristic frequency loci. The algehraic 

function 

(6.64) 

that is irreducible over the field of r=tional functions in s, is r~barded 

as a polynomial in s with coefficients that are rational functions of t, i.e. 
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s(~), is considered. The function s(~) is called the root loci for multi-

variable systems and can be defined on their appropriate Riemann surfaces 

(see also Chapter V, section 5.4). 

An alternative expression for obtaining the multivariab1e root loci is 

given by 

R.. (51· -11k 
J 

det (s1-A-BC/~.) • 0 
J 

(6.6S) 

where 1.Cs) is the function, AC1,s}, in eqn. (6.64), this time being 
J 

considered as a polynomial in ~ with coefficients that ar~ rational functions 

in 5, and the triple S(A,B,C) is a minimal realization of the transfer 

function matrix Q(s). The root loci are then calculated as the eigenvalues 

of {A+(Bq/1.}as ~.(s) (hence as gain k) varies. 
J J 

This method includes all 

sin~lar point loci, if any. 

" 
Theorem 5.22 can he used in this case for design 

42 Kouvaritakis and Shaked computed the multivariahle root loci from the 

state space matrices and the c.~.c.p. of S, as the gain parameter k varies. 

The e.L.c.p. is given by 

A(s,k} c det(s I -A+kRKC} 
n 
. -1 

• det(s1-A)det(1 +kC(s1-A} BKl 
m 

• det (s1-A) det (I +kG(s)K) 
m 

(6.661 

For a given K, the solution of A(s,k)· 0, for s in terms of k gives 

the root loci of the system S. It has also been shown that all the n root 

loci begin at the open loop poles (k=O), each n locus terminates at a system z 

finite zero (invariant zero) and the remaining n-nz loci tend to infinity. 

The n finite zeroes are the roots of the equation 
z 

de t (sNM - NAM) - 0 
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where the rows and columns of the full rank matrices Nand M span the left 

null-space and kernel of B. and C, respectively. The invariant zeroes are 

1 • b 23 a so glven y 

zes) ... detCP(s)) ... 0 

where PCs) ... 

is the Rosenbrock system matrix. . Alternatively, zCsl can also be interpreted 

as the product of the numerator zeroes of M(s), the Smith MacMillan form of 

G(s) while pes) is the product of the denominator poles of G(~)23,41. 

In the case of KouvaratakLs et. a1 ~2 a similar form of theorem 5.19 or 

theorem 6.3 is applicable for design on S using S. " 
r. "-. 

Algorithm for multivariable root loci design using Sr. 

Step 1. 

Step 2. 

Step 3. 

Step 4. 

Plot the c.1.c.p. (i.e. multivariable root loci} of S , as 
r 

a function of gain parameter, k by solving the polynomial 

1 (5) - -11k (excludes singular point loci), or by computing 
r 

the eigenvalues of {A +(B C ) 11 .} as to (5) (hence as k) 
r r r rJ ~J. 

varies. 

Draw circle bands on the root loci of S • 
r 

Use theorem 5.20 

if 1 (s) ... -11k is considered or use theorem 5.22 if loci of 
r 

5 are computed from eigenvalues of A +(B. C 1/1 . or from r r r r rJ 
eigenvalues of NA M. 

r 
These circles contain the root loci 

of S. 

Reduce circle size, by adjusting 'tuning' factors or modifying 

spurious eigenvalues, to obtain high stability and good 

transient characteristics for S, with respect to S • r 

Determine output error, e(t) between Sand S by theorems 
r 

6.7 or 6.8. If tolerable, exit. Otherwise go to Step 3. 
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6.5 Conclusions. 

This chapter investigates some error bounds in multivariable systems 

designed using reduced models. The hounds are expressed mainly in terms 

of transfer function matrices, however, they can also be modified to cater 

for time domain design methods. Together, with the stability conditions 

developed in Chapter V, they form a general design philosophy of systems by 

reduced models, using any multivariahle design techniques. The later half 

of the chapter adapts these bounds into design algorithms for existing 

design methods. A consequence of these analytical error bounds is that it 

offers a good estimation of accuracy when design is made on reduced models, 

or when the order of the plant is different from that of the model. 
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CHAPTER VII 

SENSITIVITY AND OPTIMALITY SYNTHESIS 

USING REDUCED MODELS 

This chapter investigates the sensitivity and optimality characteristics 

• • d d' of a system des~gned us~ng re uce models. In some aspects the two 

characteristics are intimately related, hence they are studied together. 

It is well known that feedback can provide a reduction of sensitivity, 

to variations of plant parameters, from their nominal values, and, to added 

disturbance signals. There are many definitions of sensitivity of which 
- 7 

two have been termed classical. The first is the dependence of solutions' 

to differential equations or parameters, and, the secQ~d- is the sensitivity 

function, discussed by Bode using return ratio and return difference in 

7 22 1 feedback systems' • Cruz and Perkins defined a new form of sensitivity 

function (comparison sensit~vity) in Bode's tradition where the sensitivity 

of the output of the closed loop multi variable system is related to that 

of the nominally equivalent open-loop system •. Horowitz7 also used a similar 

6 
definition of sensitivity in feedback system design and later McMorran 

extended Bode's sensitivity definition to multivariable systems with particular 

emphasis on the Inverse-Nyquist-Array design method. Other definitions of 

• •• • 1 d' . •. d' 22 f • • . 
sens~t~v~ty ~nc u e trajectory sens1t1v1ty re uct10n , per ormance sens1t1v1ty 

and incorporating a sensitivity function in the performance index in optimal 

-control systems. However, such treatment of sensitivity in state space 

design is unnecessarily complicated, and, Horowitz had pointed out that 

comparison sensitivity in the tradition of Bode, used in frequency response 

7 design is much superior than those used in state space methods • 

Kalman8 had given a frequency domain interpretation of single input 

. 5 
optimal systems and the multi variable C~Je was generalized by Anderson • 
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The latter also proved the converse frequency domain optimal theorem for 

multivariable systems. From Kalman's result, it is known that the optimality 

of a system is related to its sensitivity (in the sense of Bode). Thus an 

optimal system is also one that is less sensitive to parameter variations. 

For the multivariab1e system, Cruz et al
l
- 3 and Kwakernaak4 etc showed that 

the optimality result of Anderson5 is consistent with the sensitivity 

criterion of Bode. 

However, when using reduced models in design, the desirable characteristics 

of optimality and sensitivity may not be maintained. It is shown later in 

the chapter, that a compromise between optimality and sensitivity is possible 

in sub-optimal design, in that, although optimality is lost, the design can 

still satisfy the sensitivity requirement. 

For reasons of computational tractability, Medi~;h12 proposed using a 

reduced model to design a sub-optimal controller. Later, A6ki13 used 

aggregation matrices to study stability and performance of sub-optimal control 

systems, and, also studied bounds for the solution of matrix Riccatii 
, 14 ' 

equations. Mitra also studied the role of reduced models in such systems, 

namely the minimum energy, the tracking and the linear regulator problem. 

By extending the concepts of Aoki, on aggregation, Vitta1 Raol5 et al made 

similar studies on certain classes of optimal control systems. 

Using'a general class of reduced models, the stability of sub-optimal 

control systems cannot be guaranteed, although, it is possible to obtain 

stable designs with a restricted class of reduced models, namely, those 

obtained by projection methods. It will be shown later on in the chapter, 

that priort condition can be established to ensure stability of sub-optimal 

multivariable systems design (different from Mee's9 single input result). 

The aims of this chapter are: (i) to study comparison sensitivity in the 

frequency ~omain when reduced models ar~ used for design, (ii) find sufficient 

conditions for stability of sub-optimal control systems, and (iii) study the 

departure from sensitivity and optimality when reduced models are used. 
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7 1 C • S···· P . 17 • ompar1son ens1t1v1ty ropert1es 

Let Q'(s), R'(s) be perturbations, caused by parameter variations, 

from the nominal Q(s) and R(s), respectively, i.e. 

Q' (s) = Q(s) + oQ(s) 

R' (s) .. R(s) + oRCs) 
A A ,. 
Q' (s) .. Q(s) + oQ(s) 
A A A 

R' (s) .. R(s) + ORCs) 
A A 

" -1 
where Q'Q' = I, R'R' - I, and in general 8Q ;. (8Q) • 

Defining the sensitivity matrix 

M(S) - (I + Q'(S)H(s»-l 

McMbrran6 has shown that for equations (7.1) to (7.4) 
A 

ORCs) .. oQ(s) 
" A A 

oQ(s) = -Q'(s)oQ(s)Q(s) 
,.. ,. ,.. 

oRCs) = -R'(s)oR(s)R(s) 

(7.1) 

(7.2) 

(7.3) 

(7.4) 

(7.5) 

(7.6) 

(7.7) 

(7.8) 

oR(s)R(s). = M(s)OQ(s)Q(s) (7.9) 

Further, if variation:in parameters is in G(s) alone, i.e. 

oQ(s) .. oG(s).K(s), equations (7.6) to (7.9) yield 
A A 

~R(s)R(s) .. M(s)(G'(s)G(s) - I) 
A ,.. 

~R'(s)oR(s) = -M(s)(G'(s)G(s) - I) 

oRCs) - -Q'(s)(G'(s)G(s) - I) 

(7.10) 

(7.11) 

(7.12) 

where the last equation is used in the Inverse Nyquist Array design. 

Cruz and Perkins1 have shown that M(s) in equation (7.5) is 

related to the open loop output error and closed loop output error by 

e (s). - M(s)e (5) (7.13) c 0 

where e (s) = y (5) - y'(s), e (s) = y (s) - y'Cs). Here the c 0 coo 0 

prime represents the perturbed quantitities and the subscripts a and c 

represent open-loop and closed loop quantities. For a feedback system 

to bp better than a corresponding open-loop system, in the prese11l!e of 

parameter perturbations, Cruz and Perkins formulated the following 
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criterion to be satisfied, (see figure 7.1) 

< <e (t) ,e (t»H o 0 
(7.14) 

m 

where < >H is the L~[ O,t l ) Hilbert space inner product, and tl~ 5T, 
m 

where T is the largest time constant of the system. The class of signals 

is restricted to those such that equation (7.14) exists. Simplifying 

equation (7.14), 

co 

k=-= Eok[ ~(S)M(S) - IJ Eok < 0 (7.15) 

1 Theorem 7A 

A sufficient condition for equation (7.15) to be satisfied is: 

JI(S)M(s) - I , 0 't/ s € n (7.15a) 

or ~(s)~(s) - I ) 0 'V S E ·n (7.15b) 

over a frequency band of interest, n. 
Provided M(s) or M(s) is not unitary at all frequencies, 

equations (7~15a) and (7.15b) will be satisfied. If M(s) or M(s) is 

unitary, then the feedback performance will be equal to the corresponding 

open-loop performance. For single input-single output systems, 
,. 

theorem 7A requires I M(s) I < 1 or I M(s) I > I 

7.2 Reduced Models in Sensitivity Red~ction Design 

When K (s) and H (s) are designed using G (s), it is interesting 
r r r 

to note the effect of parameter variations on Sand S. Similar to 
r 

equation (7.5), defined for S , 
r 

Mr(s) - (I + T~(S»-l (7.16) 

where T'(s) = Q'(s)H (s). To give a meaningful role of using reduced 
r r r 

models in sensitivity reduction design, the following question can be 

posed. 

Suppose a reduced model G (s) is obtained from adplant model G(s) r 

and a controller K (s) is designed for it. Now assume some plant r 



rCs}"" ---~ Kl (al G(s) 

the open loop system 

r() + C ) a 
"' 

11c a 
. 'J K(s) G(e) 

... , r;> 
y~(s) 

J. -

the corresponding closed loop system 

the prime represents perturbed quantities due to parameter variations 

Fig. 7.1(a) Diagram for Bode's 'Comparis .on Sensitivity' set-up 

the open loop system (reduced model equivalent) 

r{a) 
+ ( ) 
" 

11 a 
K (s) rc G(s) "' I ,)( , 

rl) " r -j > 

the corresponding closed loop system(reduced model equivalent) 

• • (8) = y (8) - y (s) ro ro ro 

tl.d prime represents perturbed 1uanti ties due to pa~ameter variations 
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parameter changes, due to drift or inaccurate modelling such that G(s) 

becomes e' (s) • The appropriate modification in e (s) is then e'(s). 
r r 

Now. under what conditions is K(s) insensitive when G(s) ~ G'(s) 
r 

when the same K (s) is insensitive when e (s) ~ e'(s), in terms of r r -r 

M (s)1 In other words, under what conditions is theorem 7A satisfied, 
r 

for original model S, in terms of that for reduced model, S 1 
r 

(see also figure 7.1) 

Many sufficient conditions can be found for the above. Below 

are stated some results that can be easily interpreted graphically. 

The sensitivity criteri~-_, to 12 satisfied are: 

~(s)M (s) - I ~ 0 Vs en (7.17) r r 

resp. ;{I(s}~ (s) - I ) 
r r 0 Vs En '_ (7.l8) 

Ji(s)M(s) - I , 0 Vs en (7.19) 

resp. ~ (s)~(s) - I ) 0 Vs E n (7.20) 

Theorem 7.1 

Assuming S satisfies the sensitivity requirements of equations 
r 

(7.17) and (7.18), a sufficient condition for S to satisfy the sensitivity 

requirements of equations (7.19) and (7.20) is that the matrix 

E (s) 
e 

,.. 
(resp Ee (s) 

Proof: 

.- MH(S)M(s) - ~(S)M (s) 
r r 

, 0 

- ;{I(s}~(s) - ~(s)~ (s) r r 
:;. 0) 

~(S}M(S) - I - MH(S}M (s) - I + E (s) , O~ if MH(S)M (s) ( 0 r r err 

and E (s) , 0 (follows from the fact that if A and B 'are both negative 
e 

semidefinite, then A + B is negative semidefinite) 

It is noticed that Ee(S)=E:(S)= ~(S)Me(S) + Ji(S)Mr(S) - ~(S)M(S) 

where :"8(S) • M(s) + Mr(s), Me(s) • M(s) - Mr(s), aI.1d if Ji(S)Mr(S) 

is also hermitian, then Ee(s) = ~(s)M (s). 
a e 
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The theorems stated below regarding equations (7.17) to (7.20) 

are given in terms of the eigenvalues of the matrices. 

Let A (resp i ) be the eigenvalue of MH(S)M (s) 
. r' r r . r 

(resp ~(s); (s» 
r r 

.and similarly A be eigenvalue of MH(S)M(S) etc. 

Then, 

Theorem 7.2 

A sufficient condition for equations (7.19) (resp (7.20» to be 

satisfied is: 

(1) Re{Arj + B} < 1 , 'v'j' vs~n 

(2) 

"-

. (resp Re{A . + a} > 1) 
rJ 

IRe(A. + e)1 .:a -1 + liE (s) - eI I12 'rIJ·t\7'sH~ rJ . e 
A " 

(resp IRe(A . + a)1 :a 1 + I IE (s) - all 12 rJ e 

Proof: 

(7.21) 

. The eigenvalues of MH(S)M(s) are real and positive, hence for 
r 

MH(s)M (s) - I , 0, it is necessary that A. , I, Yj. Condition r r . rJ 

(1) ensures that all eigenvalues lie to the left of the '+1' line 

and condition (2) (application of the~rem 5.1) ensures that Aj , 1, 

Vj, hence ensuring that MH(s)M(s) - I , O. Here a and Bare 

arbitrary complex n~ers, and, since ~(s)M (s) is normal, the spectral 
r r 

norm II 112 is used, with inf K(p(S» • 1. 

Theorem 7.3 

Let· Al :a A2 ) ••• Am be as defined above and let c l ' ••• cm-l' 

d1 , ••• d be 2m - 1 frequency dependent real numbers. Let a •. (s), m r1J 

a .. (s) be jl'n element of MH(S)M (s), MH(s)M(S) respectively, and let 
1J r r 

the superflex A represent the respective dual quantities. Then a 

sufficient condition for equations (7.17) and (7.19) to be satisfied is 

(1) c.(w) > 0, d.(w) 
1 1 

"-

resp[ c. (w) > 0, 
1 

- d. 1 (w) ~ 1/c. (w), Yi, 'Vwm 
1+ 1 

(7.23) 
" A • "-

d.(w) - d.+1(w) ) l/c.(w) ] 
1 1 1 • 
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(2) 1 ) d.(W) ~ la .. (s) I + c.(w) E la .. (s)1 2, Vi, V'wc:r2 
1 r1J 1 '>' r1J J 1 

" " i\ " " 
resp d.(w) ~ \a •• (s)\ + c.(w) E \a .. (S)\2, d.(w) ) 1 

1 r1J 1. >' r1J 1 . J 1 

(3) 1) d.(w) ) \a .. (s)\ + c.(wLI: \a .. (s)\2, Vi, V'WErl 
. 1 1) 1 '>'~ 1J J 1: 

A " " " A 

resp d.(w) ) la .. (s)1 + c.(w) E la .. (s)1 2, d.(w») 1 
1 1J 1. >' 1J 1 J 1 

Proof: 

If A is hermitian with eigenvalues Ai ) A2 ) ••• A and if 
m 

(7.24) 

(7.25) 

c. > 0, d. - d'+ i ~ 1/c., d. ) a .• + c. L la •• 12, then A. , d., Vi. 
1 1 1 1 1 11 1. >' 1J 1 1 

J 1 

-Using the well known theorem for the 10ca1izatio~ of eigenvalues 

in the large23 , conditions (1) to (3) ensure that A . , 1, A. 
r1 1 

" (resp A . 
r1 

Ji(s)M(S) 

) 1, i. ) 1), hence ensuring that MR(5)M (5) , 0, 
1 r r 

, 0 (resp ~(s)~ (s») 0, ~(s)~(s) ) 05-
rr 

,._ •••• , •• - <- • - •• ~ ~. ..,. , _ .. " " •• - --.- • 

, 1, Vi. 

Theorem 7.1 or equations (7.17)· to (7.20) can also be evaluated 

in terms of the characteristic loci of Mr(s) and M(s), resp in the 

special case when Mr(S) and Mes) are both normal. 

Consider 

MH(S)M (s) - 1.< 0 
r r 

;a(s)~ (s) - I > 0 
r r 

WHen M (s) and M(s) are normal, then A .(s) - Ip .(s)1 2
, 

. r rJ rJ 

A.(S) - Ip.(s)1 2, where A .(s), A.(S) and p .(s), p.(s) are the 

(7.17) 

(7.18) 

J J rJ) rJ J 

eigenvalues of M (s)MH(s), M(S)~(S) and M (s), M(s) respective1y23. 
r r r 

Thus for equation (7.17) to be satisfied, it is required that 

Ip .(s)1 < 1. The converse case is also true. 
rJ 

Hence when Mr(s) and M(s) are both normal, and letting 
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Thus 

Theorem 7.4 
,.. 

Let p .(s) + 8 (resp p .(s) + a) map D into r . + 8 (resp r . + a), 
rJ CJ . rJ rJ 

and let C be the unit circ1ecentred on the origin in the Nyquist plane. 

The sufficient conditions for the sensitivity criteria of equations 

(7.19) and (7.20) to be satisfied are: 
,.. 

(1) The locus r . + a (resp r . + a) lies inside (resp outside) c, Vj 
rJ rJ 

either 

(2) 1 p • (s) + 81 
CJ ,.. 

, 1. - \\Me(S)- 81 \1:2 , Vj, \1sGO (7.26) 

[resp I p . (s) 
rJ + a I ~ 1 + II~ (s) -. aI 11:2 J . :' \/j, 'v'SEO 

'-. or 

(3) Ip .(s) + 8\ , 1-
rJ 

(m + 2)M (s)(~(s»l/m, Vj, VsEO (7.27) 
max ,.. 

(resp \p .(s) + a\ 
rJ 

~ 1 + (m + 2)~ (s)(~(s»l/m), \fj, ~s~O max 

where M (s) - max{M .. (s), M .• (s) + o .. a} max 1J r1J 1J 

~(s) • {11M (s)} L IM .. (s) - M .. (s) ~ o .. el, where 0 .. • 1, ~i • j, max •• 1J r1J 1J 1J 1,J,.. ,.. 
0 .. • 0, otherwise. M (s) and ~(s) are similarly given, with the 
1J max 

respective quantities replaced by their invers~and,e by a. 

Proof: 

Condition (2) is a consequenc~ of theorem 5.1 and condition (3) 

is a consequence of theorem 6.4.(Ostrowski's theorem)20,24. The graphical 

interpretation of theorem 7.4 is shown in figures 7.2(a) and 7.2(b). 

It is required that the band on the loci p .(s) + 8 (resp p .(s) 
rJ rJ 

lies inside (resp outside) C. This means that \p.(s)1 < 1 
J ,.. 

(resp Ip.(s)1 > 1), \0, which 
J 

(resp ~(s)~(s) - I > 0). 

satisfies ~(S)M(S) - I < ° 

+ a) 

~ince,from equations (7.16), ~c(s) = I + T~(s), it follows from the 

eigenvalue shift theorem~ 
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p . (s) . = 1 + t • (s) (7. 28) 
rJ rJ 

where t .(s) is the characteristic loci' of T'(s). Thus when 
rJ r 

considering t .(s) instead of P .(s), the same result of theorem 7.4 
rJ rJ 

. applies, with the centre of the unit circle shifted to the '-1' 

point and the locus of P .(s) + a replaced by the locus of t .(s) + a. 
rJ rJ 

7.2.1 State space descriptive systems 

For state space descriptive systems, S(A,B,C) Cruz et a12 showed 

that the equivalent form of equation (7.14) is 

<e (t), Qe (t»H c c 
n 

< <eo(t), Qeb(t»H 
n 

(7.34) 

where < >H is the L~[O,tl) Hilbert space inner product, Q > ° is a 
n 

state weighting matrix, e (t) • x - Xl, e (t) • x - x'. A sufficient c c coo 0 

condition for equations (7.34) to be satisfied is 

or 

~(S)QM(S) - Q < 0, vs€n 

~(s)Q;(s) - Q > ° 
where in this case, 

_1 _1 
M(s) - (sl - A' - B'K) (sl - A') • (1 - ~'(s)B'K) 

is the state sensitivity matrix of order n x nand K is a constant 

state feedback matrix. 

or 

with 

The parallel equations for S (A ,B ,C ) are 
r r r r 

<e (t),Q e (t»H < <e (t),Q e (t»H 
rc r rc r ro r ro r 

Ji(s)Q M (s) - Q < 0, VsEn r r r r 

~(s)Q ; (s) - Q > ° r r r r 

-1 
M (s) . = (sl - A' - B'K) (sl - A') - (1 - ~'(s)B'K ) 

r r rr r r rr 

(7.35) 

(7.36) 

(7.37) 

(7.38) 

(7.39) 

of order r x r. Taking into account design considerations, K is related 

to K by 
r 
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(7.40) 

where x . = Zx. As the dimensions of M(s) and M (s) are incompatible 
r r 

in state space systems, the dimensions of M (s) must be extended before 
r 

equation (7.38) can be used in conjunction with equation (7.35). 

Define 

[ Mr:SJ 
Y:SJ] or N (s) - [Y~.J 

r -
" 

- [ Mr~S) 
Y:SJJ Q" - [; r N (s) 

r 

where yes), yes), diag(qr+l' ••• ~) are such that the Nr(s), Nr(s), 

Q; are. of dimension (n x n) and Q; > O. 

" Suppose the characteristic loci of M (s) (resp M (s» ,are A' .(s) 
r r rJ ,. 

(resp Arj(S», j = 1, ••• r and the arbitrary assigned characteristic 
~ A 

loci of yes) (resp yes»~ are A .(s) (resp A .(s», i = r+l, ••• n. 
r1 r1 ,. 

Thus the characteristic loci of N (s) (resp N (s» are A .(s) 
r r rJ ,.. 

(resp A .(s», j - l, ••• n. rJ 

The modified form of expression (7.38) becomes 

NH(s)Q~N (s)'- Q~ ~ ° r r r r 

"H A 

N (s)Q~N (s) - Q'" > 0 r r r r 

(7.41) 
( 

Expressions (7.35) and (7.38) can be interpreted using the 

Ostrowski-schneider-Ta~3sky18 (OST) theorem of the Lyapunov equation. 

The theorem states that for BEM (C), and the inertia of B, 
n 

In(B) - (n,v,c), there exists a Hermitian H such that BHBH - H > 0, 

if and only if B has no eigenvalues z such that I z I • L 1£ 

BHBH - H > 0, then B has n(H) Crespo V(H)] eigenvalues z such thu~ 

Izi > 1 [resp. Izl < 1]. The converse case of the theorem is also 
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true. Suppose B has ~(resp. n-~) eigenvalues outside (resp. inside) 

the unit circle. Then there exists a Hermitian P such that 
H ' 

BPB - P > ° where In(P) = (~, n-t, 0). 

The OST theorem can now be applied to expressions (7.35) and (7.38). 

Theorem 7.5 
,.. 

Let X .(s) + a (resp X .(s) + a) map D into r . + a (resp r . + a), 
rJ rJ rJ rJ 

and let C be the unit circle as in theorem 7.4. Then expression (7.35) 

is satisfied, i.e. S satisfy the sensitivity criterion if 
,., 

(1) r . + B (resp r . + a) lies inside (resp outside) C, V j 
rJ rJ 

either 

(2) IX .(s) + al < 1 - liN (s) - alilinf K(P(S», \;fj, 'VsE.o, rJ e (7.42) 
,., ,.. 

[resp IXrj(s) + al > 1 + IINe(s) - alllinf K(l'(S»],' Vj, V'sEo, 

or 

(3) Ix .(s) + al < 1 - (m+2)M (s)(~(s»l/m, 
rJ max Vj, 'v'sHl (7.43) 

,., ,.,,, 11 
[resp IX ,(s) + 0.1 > 1 + (m+2)M (s)(~(s» m], ~j, VsEO rJ max 

,.. ,.. ,., 
where N (s) - M(s) - Nr(s), N (s) - M(s) - N (s), M (s)· max{M,.(s), e e r max 1J 

N ,,(s) + eS •• a}, ~(s) - {lIM (s)}1. IM .. (s) - N .. (s) - o .. al, 
r1J 1J max . • 1J r1J 1J 

1],., ,., 

and similarly for the inverse quantities, M (s), ~(s) etc. max 

Proof: 

The proof is very similar to that given in theorem 7.4. 

Regarding expressions (7.41) and (7.35), with Q~ > 0, Q > 0, it 
r 

is seen that In(Q~) • In(Q) - (n,O,O). Thus when applying the OST 
r 

" theorem to expression (7.41), all Ix .(s)1 must lie outside the unit 
rJ 

disc. The converse case of the OST theorem is used to explain that 

~(s)Q;(s) - Q > 0 for a particular Q. Since the circular bands, given 

by expression (7.42) or (7.43) also lie outside the unit disc, all 

" eigenv~lues IX.(s)1 of M(s) also l;~ outside the unit disc. Thus a 
J 

Hermitian Q exist such that ~(s)Q;(s) - Q > 0, or ~(s)QM(S) - Q < 0. 
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(When considering M(s) instead of M(s), all loci IA.(s)1 must lie 
J 

inside the unit disc.) 

The graphical interpretation of theorem 7.5 is similar to that 

of theorem 7.4. In theorem 7.5 it is noted that the weighting matrices 

Qr and Q cannot be chosen arbitrarily. All is known is that a class 

of matrices Q and Q. exists "H " 
such that N (s)Q N~s) - Q > 0 and r r r r 

~(s)Q~{s) - Q > o. Q and Q can be solved directly from these r 

equations. Prespecification of Q and Q cannot guarantee the r 

applicability of theorem 7.5 • . If they are prespecified, then a 

similar form of theorem 7.2 or 7.3 can be used. However, this is 

disadvantageous in design, as theorem 7.2 does not work on the 

characteristic loci of S • 
r 

7.3 Reduced models and frequency domain optimality 

For the observable system Sr(Ar,Br,Cr ) minimizing the functional 

J • <y,Q y> 
r H 

m 
+ <u,Ru>H 

m 
(7.44) 

where Hm is the L~[O,oo) Hilbert space Qr ) 0, R > 0, it is well 

-I t 
known that the control law u • -K x -.-R B P x , where P satisfies 

r r r r r r 

the Riccati equation 

P A + Atp· + P B R-1Btp • CtQ C 
r r r r r r r r r r r 

. h f .• f . 1· 8,17 results ln t e requency doma1n equat10n or optima lty. 
H . 

F (s)RF (s) 
r r 

H = R + G (s)Q G (s) 
r r r 

(7.45) 

(7.46) 

.Equation (7.46) gives a necessary and sufficient condition for 

optimali ty. 
-1 -1 

Fr(s) = I + K (sl - A) B, G (s) • C (sI - A) B r r r r r r r 

are the return difference matrix and forward path transfer function of 

the optimal system respectively. It was also shown that a necessary 

condition for optimalityl7 from equation (7.46) is Idet F (8)1 ) 1 
r 

or I p • (s) I ) 1, 'V., "Is = jw, where p . (s) is the eigenvalue of 
rJ J rJ 

F (s). Viewed graphically the characteristic loci p .(s) cannot penetrate 
r rJ 

the unit circle at the origin, and Sr is stable. 

Let t .(s) be an eigenvalue of K (sI ~ A );I B , then 
rJ r r r 

p .(s) - 1 + t .(s), thus the unit circle is shifted to the '-1' point 
rJ rJ 

if th ('locus of t .(s) is considered. Now, suppose sub-optimal control 
rJ 
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is applied to the original model S, where xr - Zx. The lmcus t.(s), 
J 

resulting from sub-optimal control, would then penetrate the unit circle 

and, can encircle the critical point, thus causing an unstable system S, 

(see figure 7.3a). Conditions are sought such that the stability of S 

is ensured. 

From figure 7.3a, S is closed. loop stable if 

It .(s)1 < 11 + t .(s:il,· \;jj 
eJ rJ 

(7.47) 

where t .(s) - t.(s) - t .(s). Frequency domain theorem established 
eJ J rJ 

in Chapter V can be adapted to study the stability of'S. Let 

Q(s) 

-1 
- Kr(sl - Ar) Br - Kr~r(s)Br 

-1 
• KrZ(sI - A) B a KrZ~(S)B 

• Q(s) - Q (s) . r 

and trj(s), tj(s) be eigenvalues of Qr(s), Q(s) respectively 

Theorem 7.6 

The sub optimal control system, S, will be stable given that the 

optimal control system, S , is stable, if 
r 

(1) The locus t . (s) + B satisfies Ne, V j ) V seD 
rJ 

either 

(2) 11 + B + t .(s)1 > IIQ (s) - 13lllinf K(V(S», Vj, 'tJ s~ D rJ e . 

or 

(3) 11 + e + t .(s)1 > (m + 2)M (s){~(s)}l/m, Vj, V s~ D 
rJ max 

(7.48) 

(7.49) 

where V(s) diagonalizes Q (s) and M (s), ~(s) are as defined as in r max 

theorem 6.4. 

Proof: 

Given that condition (1) is satisfied, condition (2) or (3) ensure 

that the locus t.(s) satisfies the Nyquist criterion; follows fr~m 
J 

theorems 5.1 and 6.4 (see figure 7.3b) 
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If the arbitrary scali~g factor ~ is chosen.~= 0, condition (1) 

is automatically satisfied, as the optimal system, S , is always stable. r 

Writing Q (s) = K (Z~(s)B - ~ (s)B ) and since I lAB II , IIAII liB II and err r 

letting S - ° and assuming the special case when Q (s) is normal, 
r 

condition (2) reduces to 

11 + t .(s)1 > 11K II IIZ~(s)B - ~ (s)B II ,Vj, Vs€D rJ r 2 . r r 2 

i.e. 11 + t .(s)I/IIK 112 > IIZ~(s)B - ~ (s)B 112' 'Vj, V se D rJ r r r (7.~0) 

Althoug~ the righthand-side of expression (7.50) is independent 

of P, Q and R, the bound is inconvenient, as it is expressed in terms 

of t .(s). A more useful bound can be derived from condition (3). 
rJ 

For an optimal Sr' with ~ ... 0, it is necessary that 11 + t .(s)1 > 1~ rJ 

Equation (7.49) is satisfied if 

1 > (m + 2)M (s){fI(s)}l/m 
max 

where M (s) III max .. (Iq .. (s)l, Iq .• (s)I), max 1,J r1J 1J 

'-. 

m m 
4(s) •. { E . E Iq •• (s) - q .. (s)I}I/m / M (s). Rearranging 

i-I j =1 1J r1J max 

expression (7.51) 

m/m-l .} l/(m-l) (m.+ 2) M (s){t L Iq~.(s) ~ q •• (s)1 < 1 
max . i j.J r1J 

Now, 

(7.51) 

(7.52) 

L L Iq .. (s) - q .. (s)1 , IIQ(s) - Q (s)11 '"K (s)11 II~ (s)B i j 1J r1J r c r c r r 

- Z~(s)B II c (7.53) 

where the cubic norm I IAI I - m maxla •• I. For the time being it is c 1J 

assumed that r = m such that K and B are square matrices. Also, r r 

M (s ) .. max. . ( I q .. (s) I , I q .. (s) I) max 1,J rlJ 1J 

(7.54) 
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substituting expressions (7.53) and (7.54), into (7.52), and letting 

W(s) .. O/m)(m +'2)m/(m-l) max'{II4l (s)B (s)1I , 
r, r c 

IIZ~(S)Bllc}ll~r(S)Br - z~(s)BIII/(m-l) (7.55) 

one obtains 

IIKr(S) Ilcm/(m-l) Ilw(s) lie < 1 Vs ... jw (7.56) 

Since 11K (s)11 ... IIR-1p Btll < IIR-~:II lip II IIBtll, evaluating r r r r r 

expression (7.56), one dbtains 

Coro llary 7.1 

The sub-optimal system S is stable if 

II Pr il c < IIW(s) II:/O-m) r IIR-lllcIlB!lIc Vs ... jw (7.57) 

Expression (7.57) requires that the solution of.!~e matrix Riccati. 

equation P be bounded. An effective method to ensure that P satisfies 
r· r 

expression (7.57) is as follows. 

Assume lip \I < a r c . 

where a is a constant, then from expression (7.57) 

, 'Vs - jw 

Algorithm to find Pr 

(7.58) 

(7.59) 

Step 1. Choose a valu~ of a and compute R such that expression (7.59) is 

satisfied 

Step 2. 

Step 3. 

Choose the matrix Q and find Pr by solving equation (7.45) 

If lip I I < a, exit, otherwise go to Step 1 or Step 2. r c 

It is far easier to find a R such that expression (7.59) is 

satisfied for all frequencies, and then checking that lip II < a, . r 
then 

by solving Pr from equations (7.45) and checking that it satisfies 

expression (7.57). The constant, a, can be chosen from 'open loop' 

quanti.ties. For the optimal systf''1l, 
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where for the closed loop system 

P
K 

' ... ,r exp'{(A - B K ) tt}(CtQ C + KtRK") exp' {(A - B K ) t} dt 
orr r r r r r r r r r 

For the open loop system 

P - 1: exp (Att) (CtQ C ) exp (A t) dt ro 0 r r r r r 

If the open loop system is stable, then 

<x ,P x >E r r r 
< <x ,P , x > 

r ro r E 

From expression (7.61), P - P > 0, i.e. positive definite ro r 

symmetric. Using a general inequality of Minkowski33 , 

~.(A + B) > ~.(A) 
J 'J 

j • 1, .•• m 

for symmetric positive definite matrices A and B, and identifying 

(7.60) 

(7.61) 

(7.62) 

A with P and B with P - P, it is seen that ~.(P ) > ~.(P ), and r ro l_ ro J r 

P and P are symmetric positive definite. From expression (7.62) r ro ' 

it is easily deduced that det P > det P • ro r 

Hence, if a is chosen as a - det P , P in expression (7.58) ro r 

is required to satisfy lip I I < det P or lip I I < det P • Other r err c ro 

convenient norms or different values of a can be used. Since P is 
r 

symmetric lip 112 - ~ (P) where the spectral norm of P is equal r max r r 

to its spectral radius. From expression'(7.62} ~ (P) < A {P } max r max ro ' 

the P can be computed, by using the spectral norm instead of the cubic 
r 

norm, provided that (11m) IIQ (s) II < IIQ (s) 11 2 , (11m) IIQ(s) II < I fQ(s) II" r ere ' 

'and 1::1: Iq .. (s) - q .. (s)1 < IIQe(s) 11 2 , 'Is - jw. 
i j ~J n J , 

In the above analysis l all matrices are assumed square, i.e. r - m. 

In the case of r > m, r - m fictitious inputs can be introduced into the 
, 

modified system St(A ,BIC ), where BI - (B : 0) . r r rr r r' 

Rt - diag {r1 , r 2 , ••• r m, 0, ••• oJ, assuming R - diag {r 1 , r 2 , ••• r
m

}. 

Sl in this case is still observable. However, if r < m, then m - r 
r 

fictitious stat~must be augmented to S (A ,B ,C ) such that the modified r r r r 

system St(AI, BI CI ) is observable, with r r r' r 
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• , c' - (C ! e) r r. 

and 1£1, I lal I, Ilel I must be chosen very small such that the dynamical 

response of Sl is very close to that of S. In practice, m is usually 
r r 

low, hence S must be modelled such that r ) m. The plant order n is 
r 

usually very high with n » m. 

The stability of S can also be expressed in terms of the 

determinants of Fr(s). For an optimal, Sr' the locus of det Fr(s) 

cannot penetrate the unit circle centred on the origin. Thus, parallel 

to equation (7.47) the locus det F(s) of S, that penetrates the unit 

circle, will satisfy the Nyquist criterion if 

Idet F (s)1 > Idet F (s) - det F(s)1 r r 
'-. 

where from equation (7.46), pre and post multiplying throughout by 

R- I and taking determinants 

Idet Fr(s) I • detl(I + R-1GH(s)Q G (s)R-I) 
r r r 

(7.63) 

The determinantal bound, however, is complicated and inconvenient. 

7.3.2 Reduced Model and Sub-optimal Filtering 

• 11 k h hI' f h . 1 f °1 16. It 1S we nown t at t e so ut~on or t e opt1ma ~ ter 1S 

very similar to that for the optimal regulator and the two problems 

can be treated separately. The optimal filter also has the same 

f d • 10 h . t . . 1 1 requency omaln C aracter1sa 10n as the opt1ma regu ator. Thus 

the same problems arise in using reduced models for sub-optimal 

filter design. 

For a given system SeA, B, C) suppose the observed signal z(t) 

is corrupted by 'an additive noise disturbance vet), i.e. 

z(t) - yet) + vet) 

and suppose that the statistical properties of the noise and input are 
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COy [u(t), U(T)] - Q~(~ - T) 

COy [Vet), VeT)] - R~(t - T) 

COy [u(t), VeT)] - 0 

(7.64) 

16 Then.it is well known that the Kalman Bucy filter has a 
'.'1 

feedback structure with gain 

K _ PC t R- 1 

where P is the solution of the steady state matrix Riccati equation 

t t -1 t 
PA + AP - PC R CP + BQB - 0 (7.65) 

and P is also the covariance matrix for the error in the state 

estimate (~ - x). The frequency domain interpretatioq of the optimal 

f OlIO 0 

1 ter .~1S 

(7.66) 

where F(s) 
-1 . '- ~1 . 

- I + C(sI - A) K, G(s) - C(sI - A) B and ~(s) is 

the Hurwitz factor of the spectral factorisation of the spectral' 

density matrix of the observation vector Zo In equation (7.66) it is 

known that Ip(s) I ) 1 and Idet F(s)1 ) 1 where pes) is the characteristic 

loci of F(s). Thus to determine stability in sub-optimal filter 

design, a similar form of theorem 7.6 and corollary 7.1 can be used. 

Instead of solving the Riccati equation (7.65), the filter gain K, can 

also be computed iteratively from the discrete state space system 

S(~, r, C) 

Pk - (I - ~C)~Pk_l~t 

t t t t -1 
~ - ~Pk-l~ C (C~Pk-l~ C +~) 

for k - 1, 2, ••• , N with initial condition P specified. o 

It is also essential to know the overall stability of the system, 

i.e. the optimal system with the optimal filter incorporated. To 

study the stability of the sub-optimal system incorporating a sub-

opti~a1 filter, in terms of the stability of an optimal system 

incorporating an optimal filter, is complicated, as it involves too 
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many parameters, and the systems are interconnected. The stability of 

the system and filter arrangement can be best studied from the 

frequency domain point of view in terms of sub-systems and their 

11 interconnections, using a result of Cook • 

Suppose that the optimal system y • Su is decomposed into an 

interconnection of sub-systems S. represented by 
1. 

y 

y 

• L L.y. 
.1.1. 
1. 

- S.u. 
1. 1. 

u. - K.u + L R •• y. 
1. j 1.J J 1. 

(7.67) 

Then if S., R •• , K., L. are LP-stab1e, with Ils.11 .,. 0, 'fIi, Vj 
1. 1.J 1. 1. 1. P 

and the matrix W, with element, W .. - I Is. 11-
1
0 •. ~ IIR .• I I is an 

. 1.J 1. P 1]" 1.J P 

M-matrix, then the total system S is LP stable. (Here LP stable means 

Ilsll p < 00 and Ilsll p = inf IK : II (Su)Tll p , KII~llp' 'rIu, 'VT1) 

The stability of the total sub-optimal system S' can be interpreted 

in terms of that of the optimal system S as follows 

Theorem 7.7 

Given the total optimal system S is stable, the total sub-optimal 

system Sf is stable if 

(1) S!, R!., K!, L! 
1 lJ 1. 1. 

are LP-stable, Vi, Vj 

(2) W!. ) W •• , 0) w:. ~ W •• , ~i, ~j. Vi .;. j 
11 11. 1.J 1.J .. 

(7.62) 

Proof: 

Condition (2) determines that W' is an M-matrix and with condition 

(1) s' is stable. 

Theorem 7.7 is general. The M-matrix requirement of W, can be 

interpreted graphically as diagonal dominance requirement of Rosenbrock, 

or characteristic loci requirement of Ky Fan (see Chapter V). 
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7.3.3 Reduced Models and Relationship between Sensitivity and Optimality 

The optimality of a system is also intimately related to the 

sensitivity problem of the system. For a single input system, Kalman 

showed that an optimal system is also one which is less sensitive to 

parameter variations. 5 Anderson generalized the result to multivariab1e 

systems. SeA, B, 

J • I<Qlx, 

only minimize 

+ <R1u, R1U>H 
m 

(7.63) 

where (A, Ql) is observable and R > 0, with the control law u • -Kx, 

if and only if, the closed loop system A - BKC is asymptotically stable 

and 
H 

F (s)F(s) - I ~ 0, Vs • jw (7.64) 

where F(s) - I +·R-1K~(s)BR-l, is the return difierence matrix of the 

optimal system. Conversely, if expression (7.64) is sattisfied with 

strict inequality sign, then the closed loop system S is optimal, 
.c 

with respect to some performance index, J, under the condition that 

Sc is stable and that (A, K) is completely observable. 

Expression (7.64) is also the criterion for sensitivity reduction 

in closed loop systems, see expression (7.20) where M(s)· F(s). 

As s~, F(s)~I, thus strict inequality will never be satisfied in 

expression (7.64) for a strictly proper transfer function matrix 

R-1K~(s)BR-1. 

Hence to satisfy the sensitivity reduction criterion it is necessary 

s (~) dO, as Ip.(s)1 • 1 at s • m, where p.(s) is the characteristic ~ . J J 

loci of F(s), assuming F(s) is normal and n is the spectrum of interest 

where the sensitivity condition is satisfied. 

Thus in sub optimal design, the original system, S, assuming F(s) 

is normal, will weakly satisfy the sensitivity reduction criteri~n 

since Ip .(s)\ < 1 for some s • jw. 
rJ 
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7.4 Reduced Models in Sub-optimal Control Systems Design 

The linear optimal regulator problem and tracking problem, 

designed using S , have been studied in some detail by Aoki, Mitra, 
r 

Meditch and Vittal Rao et al12
- l5 • A6ki had also used reduced models 

to obtain upper bounds for the solution of matrix Riccatti equations. 

For completeness, this section reviews some of the earlier work 

of the above authors. The sub-optimal design procedures are then 

incorporated into a general design algorithm~ based on the stability 

theorems developed in section 7.3 and those in ChapterV. 

For controllable SeA, B, C) and S (A , B , C ); the associated r r r r 

performance indices to be minimized, are 

J • <x, Qx> 
H 

n 
+ <u, RU>H 

m 

Jr. <x, Q x > r r r H 
r 

+ <u, RU>H 
m 

(7.65) 

(7.66) 

where x f P. , x € H , u £ Hand H ,H and Hare (n x n), (r x r) 
n r r m n r m 

and (m x m) Hilbert spaces, with Q ) 0, Qr ~ 0 and R > O. For 

equation (7.66), the cor..trol law, u .. -K x (t), yields J . • <x(!I\P x to) r r r,mln r ·r r 

where 

and 

K 
r 

-1 t 
• R B P r r 

the solution of 

+ P A - P B R-1Btp Q 
r r r r r r + r • o (7.67) 

The resulting closed loop system matrix A - B K is also stable and r r r 

satisfie~ the closed loop equation 

. (A - B K ) tp + P (A - B K ) 
r r r r r r r r • (7.68) 

Similar equations to equations (7.67) and (7.68) can be written for 

the index J in equation (7.65), i.e. 

-1 t 
.. R B P 

Atp + PA - PBR-1Btp + Q • 0 

(A - BK)tp + peA - BK) • -(KtRK + Q) 

(7.69) 
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for J, = <xco'JPX(oJ>. The chief interest is to use control 
mln 

u - -K x , from S , on S, where Sand S are related by the matrices r r r r 

A Z = ZA 
r 

Br ,m ZB 

C Z .. C 
r 

(7.70) 

with xr = Zx, i.e. it is desirable to use u = -K Zx on S to obtain s r 
t t t-l 

a sub-optimal control. If ZZ - zz (ZZ) .. I, exists, then pre 

and post multiplying equation (7.67) by zt and Z respectively and using 

equation (7.70) 

Atztp Z + zp ZA - ztp ZBR-1BtZtp Z + ztQ Z - 0 
r r r r r (7.71) 

Comparing equation (7.7l) to (7.69) it is seen that ztp Z 
r 

corresponds to P if ztQ Z is made to correspond 'to Q (they cannot be 
r 

equated as P and Q are of rank n while ztp Z and ztQ Z are at most 
r r 

of rank r). 

.. 
Hence if Q is ehosen as 

r 

(7.72) 

then the sub optimal control u will result in a J .. <X(O)JTx{o))where 
s 

T satisfies 

(A - BK Z) tT + T (A ~ BK Z) + ztK RK Z + Q .. 0 (7.73) 
r r r r 

provided ~f and only if (A - BKrZ) is a stability matrix, and in this 

, , • A k,l3 h d h sltuatlon 0 1 S owe t at 

(7.74) 

(T ) P means T - P ~ 0, i.e. T - P is positive semi-definite). 

Equation (7.74) can also be used to provide upper and lower bounds on 

solutions of matrix Riccati equations. 

Equations (7.65) and (7.66) deal with the state regulator problem. 

15 The output regulator problem is considered by considering the 

perfoIllance index functional, 

J .. ~y, Qy> 
Hm 

+ <u, Ru> 
H 
m 

(7~75) 
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for an m input-m output system. Analysis following the same lines 

from equations (7.65) to (7.74) can be applied to equation (7.75). 

For the 9utput tracking problem the functional to be minimized is 

I«y - f), Q(y - f»H 
m 

+ <u, RU>H 
m 

(7.76) 

assuming A(A, B, C) to be observable. Substituting y - f • Cx - f . 

in equation (7.76) and introducing the Hamiltonian 

H - I<e, Qe> + I<u, Ru> + <p, Ax + Bu> 

where e - Cx - y and p is the co-state vector it can be shown that 

by evaluating dH/dU - 0, the following equations pertinent to equation (7.76) 

can be obtained 

pet) • Kx(t) + w (7.77) 

It 

The 

ctQC + KA+ AtK - KBR- 1Bt K - 0 

Atw - KBR-
1
BtW - CtQf - 0 

A similar set of equations can be written for the reduced 

is desirable to use control u __ R- 1Bt p derived from S r' r r r' 

equations of the two controls are 

Sub optimal S; u - _R-
1
Bt zt K Zx _ R-

1
Bt Zt W 

r r r 

-1 t -1 t 
u - -R B Kx - R B W 

model S .• r 

on S. 

It is seen that ztK Z and ztw correspond to K and W respec tively. 
r r 

Pre and post multiplying the Lyapunov equation 

ctQ C . + K A + AtK - K B R-1BtK - 0 
r r r r r r r r r r r 

for S r 

t by Z and Z respectively and using equation (7.70) 

ctQ C + ztK ZA+ AtZtK Z - ztK ZBR-1BtZtK Z - 0 
r r r r r 

Comparing the above t6 th~ third equation of (7.77) it is seen 

that ztK Z corresponds to K if Q corresponds to Q. (Here they can 
r r 

be eql!ated as they are of the same dimension and can be of same rank.) 

Similarly mUltiplying the last equation of (7.77) by zt and simplifying 
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(7.78) 

Comparing equation (7.78) to the last equation of (7.77), with 

the correspondence of K, Wand Q to ztKrz , ztwr and Q
r 

as defined 

above, it is seen that f can be made to correspond to f , i.e. f - f 
r r 

and Q • Q etc. The closed loop equation for the tracking problem 
r 

is 

• 
x • (7.79) 

Equation (7.78) is true if and only if equation (7.19) is stable. 

It was shown in Chapter V (theorem SE) that if z is obtained from 

projection methods of model reduction (Aoki, Hickin e~ al), then, 

for state feedback, the eigenvalues of the original closed loop system, 

A - A - BK Z or A 
f r f 

-1 t t 
- A - R B Z K Z, are the r eigenvalues of the 

r 

reduced closed loop 
'- . -1 t 

system, Af • A - B K or Af - A - R B K , r r r r r r r r 

and the n-r unretained eigenvalues of the open-loop matrix A. For· 

output feedback, an approximate relationship holds. Theorem SE is' 

not true if Z is obtained non-specifically. 

Here for a general S, in order to assess stability of the sub-

optimal control, corollary 7.1 of theorem 7.6 or theorem 5.21 can 

be used. 

Algorithm for designing sub-optimal controllers with stability 

assessment. 

Step 1. 

Step 2. 

Step 3. 

Step 4. 

Choose Q ~ 0, R > 0 for performance index J 

Calculate corresponding Q and R in J r r r 

Determine sub-optimal control u - -K Zx or u - -K Y on S, r . r 

using Corollary 7.1. 

Compute transient error e(t) - yet) - y (t). 
r 

exit, otherwise go to Step 1. 

If tolerable, 

~Tsin~ Corollary 7.1 in the at-,.,ve algorithm, to determine sub-

optimal control action, will guarantee the stability of the sub-optimal 

system. 
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7.5 Conclusions 

Using ceduced models in design, it is seen that the sensitivity 

properties of the closed loop system (or plant) is important. The 

controller is thus designed such that the closed loop plant satisfies 

the sensitivity criterion in terms of the sensitivity function of 

the reduced model. 

Designing sub-optimal control systems via the frequency domain 

approach, it is seen that a prior condition can be determined, such 

that the sub Qptimal feedback system is guaranteed stable. However, 

gain in stability is compensated by loss in sensitivity. As the 

characteristic loci of the sub-optimal system penetrates the unit 

disc, a sub-optimal system is less immune to parameter variations 

that an optimal system. 
"-. 

The bounds established in this chapter are best evaluated using 

interactive graphics, when immunity to parameter variation has a 

high priority in design. 
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.. CHAPTER VII I 

BOUNDS FOR NONLINEAR MULTIVARIABLE'SYSTEMS AND REDUCED MODEL DESIGN 

Introduction 

This chapter looks at nonlinear multivariable systems, and, the 

adaptation of reduced models in systems design, the main emphasis being 

on stability. The classical Lur' ~ problem2,,7,lOis investigated in the 

multi variable setting, consisting of a linear transfer function, in the 

forward path, and a slope restricted, nonlinear, time dependent, 

memoryless feedback structure. The results of Rosenbrock, Cook and 

Fa1b et a14 are adapted to the use of reduced models. Araki~ following '-" 5 
the lines of Zames, have extended the idea of conicity and positivity to 

investigate stability of 'nonlinear systems, in L2 space. Following the 

same lines, stability bounds are derived for reduced models in nonlinear 

systems. 

The describing function method has proved to be an attractive design 

tool for nonlinear multivariab1e systems. Sufficient conditions are 

derived for the absence of limit cycles. The 'derived criteria are less 
, 

conservative and more flexible tlt.anexisting criteria, than those of ~feeS , and 

Ramani and Atherton12
• It is also shown that the new criteria can be 

easily modified, to accommodate the use of reduced models in design,' by 

widening the bounds. 
2 3 Rosenbrock and Cook studied the Lur'e problem by giving a graphical 

interpretation of the ~circ1e' criterion,lO,30 in terms of 'diagonal 

dominance', starting from Anderson's genera1ization19 of the Kalman-

Yacobovitch lemma. The other solution for the Lur'& problem is the 
, . 

7 Popov crit~'~ion, and it has been extended to multivariab1e systems by 

Jury and Lee9• Using Geshgorin's theorem, Shankar and Atherton11 gave 
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a graphical evaluation of the Jury-Lee criterion, in special cases, their 

results coincided with those of Cook3• Viewing stability from the 

Characteristic Loci (eigenvalue) concept, the stability results of Falb, 

4 Freedman and Zames , for normal matrices, are rederived by a shorter 

method. New graphical interpretations are given for the multi variable 

Lur'e problem in terms of the 'circle criterion' and the Jury-Lee criterion. 

The new graphical results are more flexible, and in certain cases, less 

conservative than existing ones; however, their main advantage is the 

easewii~hich they can be used, to obtain a stability relationship between 

reduced and original models. 

MOdel Reference Adaptive Control Systems (MRACS)l6,l7 is an 

interesting aspect in system design. The adaptive mechanism is usually 
'-. 8 

nonlinear in nature; to this end, Popov's hyperstability criterion and 

Lyapunov synthesis method find attractive design applications. Hsia3l 

showed that reduced models can be used beneficially in designing MRACS. 

In the chapter .the role of reduced models in·~CS. design. is studied with 

emphasis on stability. 

8.1 Stability analysis of nonlinear systems designed using reduced models 

8.1.1 The circie criterion This section studies nonlinear control systems 

shown in figure 8.1. ·The forwa~d path consists of the linear block 

Q (s) 5 G (s)K (s), where Q (s) is assumed to be strictly proper r . r r . r 

and real ration~l. The nonlinear transfer function in the 

feedback path N - diag {nl(t,y), ••• , n (t,y)} consists of time 
m 

dependent, memoryless nonlinearities, lying in the sector (a.,b.), 
]. ]. 

i.e.a1ope restricted by 

o , a. 'n.(t,y) , b. 
].]. ]. 

, a. , b. 
]. ]. 

, 

The:aim is to find the closed loop stability of the systems 

- (F - G NH )X r r r 'X' 

• 
S x - (F - GNH)X 

( 

(8.1) 

(8.2) 

(8.3) 



y{s) 

y 

N ( t, y) 1-------' 

e b 

Fig.'8.1 Nonlinear system configuration 

Re·~~--~--~--~~~--~------

qrii(S) loci 

direct loci inverse loci 

Fig. 8.2 Illustrating theorem 8B 

1m 

Fig. 8.3 Illustrating theorem 8.2 
( bands must avoid criti~al disc for 

stability) 

theorem 8. 
case when G s K s is normal 
----- r -r'-!----;.;;;. 
bands must avoid critical disc 

for nonlinear system stability) 
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where S (F ,G .H ), S(FfG.H) 8Fe.minimalrealizations of r r r r 

Q (s) - G (s)K (8), Q(s) - G(s)K (s) respectively. Graphical r r r r 

solution in the frequency domain is best suited to design and 

stability assessment of Sand S in equation (8.2). Many graphical 
r 

solutions are available and a few will be adapted to study Sand 

Sr. In the sequel, it is assumed that the linear systems:' defined 

by S (F ,G ,H ), S(F,G,H) with u - -Ay and u - -By where r r r r 

A- diag {aI, ••• , a }, B -diag {bit ••• , b }, are closed loop m . m 

stable 

Theorem 8A2 

It is well known that if 

W (8) -r 

resp': 

resp 

~"resp 

• 
exist and be posi*e real, then the system S ·(A - B NC ) is 

r r r r 

stable in the sense of Lyapunov (i.s.L.). Theorem SA gives 

sufficient conditions for stability and can be proved using 

Anderson's generalization of the Kalman-Yac~ovitch lemma. 

The stability of S will now be based on that of Sr' via 

theorem SA. 

Theorem B.l 

Given that Sr is stable i.s.L., in terms of theorem BA then 

S is likewise stable if We(s) - W(s) - Wr(s) is positive real, 

where W(s) has.the same definition as W (s), in equation (8.4), 
r 

except that the subscript r is dropped. 

Proof: 

From theorem 8A, it can be ~cduced that S is staple if W(s) 

is positive real. Hence if Wr(s) is positive real (thus ens~ring 

(8.4) 

(8.5) 

(8.6) 

(8.7) 
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stability of Sr) and W {s}' is also positive real, then W (s) + toT (s) ere 

is also positive real (follows from a theorem of positive real 

matrices)23 .'Thus \1(s) is stable Ls.L. 

The algebraic content of theorem B.l is cumbersome and to test 

for positive realness of W (s) would be tedious. Some graphical e 

methods will be developed in section B.3 to give graphical interpretations 

of theorem B.l. Below are stated some known mu1tivariab1e stability 

theorems for S , and, they are adapted to study the stability of S r 

via perturbation techniques. 

Theorem BB3 

Let the linear system S (F - G BH ) (resp S (F - G AH » be r r r r r r r r 

asymptotically stable. Then the nonlinear system S (F - G NH ) is r r r r 

stable i.s.L. if 

(1) I~. + q •• (s)1 - Id .(8)1 > r. 1 r11 r1 1 , Vi, 'VsCD 

A A A A ' 

{resp I~. + q •• {s)1 - Id .(s)1 > r.) ~i, VscD 1 r11. r1 1 

where Id .{s)1 r1 • I L {Iq •• (s)1 + Iq .• {s)I}, 
i"j rlJ rJ 1 

-1 -1 " 
~. - {a. + b.)/2, r. - (a. - b. )/2, r. • {b. - a.)/2 111 111 111 

Theorem 8B is shown graphically in figure B.2. The locus q •. (s) r11 

(resp q •• (s» automatically satisfies the Nyquist criterion if r11 

Sr(Fr - GrBHr) (resp Sr(Fr - GrAHr» is stable. Theorem BB is Cook's 

modification of Rosenbrock's theorem. Here stability is determined by 

mean diagonal dominance. The next theorem gives the stability of S 

in terms of theorem 8B. 

Theorem 8.2 

(8.8) 

" Let a + q .. (s) (resp e + q •• (5» map D 
r " 

into a + r . (resp e + r .). 
rJJ rJJ rJ rJ 

Let In .. (s)1 • Iq .. (5)1 - Id .(s)1 > 0 (Le. rll r11 r1 diagonal'dominant). 
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Define q .. (s) - q .. (s) - q •• (s), 6 - Iq •• (s)1 - Iq .. (s)l; 
eJJ JJ rJJ e JJ rJJ 

Id .(s)I-ld.(s)l- Id . (s)l, where Id.(s)1 has the same definition 
e1. 1. rl 1. 

as Idri(s)l, minus subscript r. (Similar definitions for inverse 

quantities are defined by adding superflex ~ on top.) Then sufficient 

conditions for S to be stable i.s.L. are: 

(la) 

(1b) 

(2) 

(3) 

P . + a (resp 
rJ 

,. 
r . + a) satisfies NC, with critical point _b: 1 

~ . J 

(resp -a.) 
J 

, 'tj 

11 + a +q •• (s)1 
rJJ 

> Iq .. (s) - al 
eJJ 

~ ~ 

, 

(resp 1 + a + q •• (s)1 > Iq •• (s) - al) 
rJl elJ 

6 ) Id .(8)1, or In .. (s)1 > Ide1.·(s)1 - 6e , 
e el. "rl.1. 

(resp for inverse quantities), 

10. + q •• (5) + q •• (5)1 > Id .(s)1 + r. 
1. r1.1. e1.1. r1. 1. 

(resp for inverse quantities) 

Vi, 

, . \fi, VseD 

Proof: 

Conditions (1 a) and (lb) ensure q •• (s) satisfies NC when q .• (s) 
. JJ rJJ 

likewise satisfies NC (see theorem 5.7). Condition (2) requires mean 

diagonal dominance of Q(s) based on that of Q (s) and increment r . 

Q (8). Condition (3) requires system S to satisfy expression (8.8). e 

Hence S is stable i.s.L. by theorem 8B. Theorem 8.2 is shown 

graphically in figure 8.3. 

It is also desirable to express stability of S in terms of its 

(8.9) 

(8.10) 

(8.11) 

characteristic loci. To this end, when designing multivariable systems 

with nonlinear feedback, the results of theorems 5.2 or 6.4 can be 

adapted to a stability condition due to Falb 4 , et al • 

Theorem 8.3 

Let Qr'(s), Q(s) both be normal, and p • (s), p. (s) their 
rJ l 

characteristic loci. Let p .(s) + a map D into r . + a. Also let 
rl rJ 

r. and ~. be as defined in theorem.:8B and other pertinent quantities 
1. 1. • 
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as defined in theorems 5.2 or 6.4. Then the nonlinear system S is 

stable if: 
_1 

(1) r- . + a satisfies NC (critical point -b. ) 
rJ J 

, 

either (2) ItS. + p .(s) + al > Ip (s)K (s) - alII + r., 
J rJ e r J 

\fj. VSED (B.12) 

or (3) 10. + p .(s) + al > (m+2){M(S)}(m-l)/m{ t Iq •• (s) - aII}I/m, 
J rJ •• e1J . 1,J 

,!j, "SED 

Proof: 

Theorem B.3 shown graphically in figure B.4, is s~riU.larto 

figure 8.2. Here the critical disc is the same. If Q (s) is normal 
r 

. and N(t,y) is slope restricted in the sense of equation (8.1), then 

Sr is stable i.s.L. if P~j(s) do~s not· encircle ~r penetrate the 

critical disc. Conditions (1) and (2) or (3) ensure that p.(s) of 
J 

Q(s) cannot encircle or penetrate the critical disc, and, since Q(s) 

is normal, S is. stable i.s.L. 

In the special case when Q (s) ~ Q(s), q •• (s) ~ 0, G (s) ~ 0 
r e1J e 

and the bands on p .(s) vanish, and, letting a • 0, theorem 8.3 
rJ 

reduces to the result of Falb et a1. 

8.1.2 Input-Output Stability in L2-spaceS,6 

The circle criterion deals with global stability i.s.L. Araki6 

proposed a stability criterion, in Hilbert space, following the 

formulation of ZamesS, on conicity and positivity. However, in many 

practical systems, stability in the latter case implies stability in 

the former case. If x(t), yet) e L2 space, then the inner product is 

defined on a Hilbert space, L~(~,O], i.e. <x,y> • <x,PY>H with 
m 

P > 0, and, the system is L2 stable if bounded inputs produce bounded 

outputs. 

(B.13) 
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Suppose that the nonlinear part of figure B.1 is bounded by 

expression (B.1). Define u .... 0. u ... - max Rlq .. (s) I, i :/- j, 
rJJ r1J W£ r1J 

v • - min Rlq .. (s) - 0.1; ·where as before o. - -l (a:
1 

+ b:
1
), 

rJ WE rJ J J J J J 

r. - l(a:
l 

- b:
l
). Further let matrices be defined such that 

J J J 
V - diag (v.), R - diag (r.) and U - (u •• ). Then following Araki6, 
r· rJ J r r1J 

'Theorem 6 . BC 

Case 1: ° , a. ~ b. J. J 
, 

The system, Sr' figure B.1 is L2-stab1e if the locus of q .. (s) 
rJJ 

satisfies the Nyquist criterion (NC), with critical point (0 .• 0) and 
J 

if V - R - U is an M-matrix. r r 

Case 2: a j - 0, b j > 0, Vj 

S is L2-stab1e if D - B- 1 
- U is an M-matrix. Here B - diag (b

J
.), 

r r r 

Dr - diag (d .), d • - min ... _nRe{q .. (s)} rJ rJ ~ rJJ 
Case 3: a. < 0, b. < 0, Vj 

J J 

Sr is L2-stab1e if R - V; - U
r 

is an M-matrix. 

where v' ... max Rlq •. (s) - o. I 
rJ W£ rJJ J 

Here V' - diag (v'.) 
r rJ 

Theorem BC can be adapted to investigate the L2 stability of S 

after K is implemented. The results of theorem S.lland a main result r 

due to Ostrowski will be used. Let Q(s) - q .. (s), Q (s) - q .. (s) 1J e e1J 

where Q(s) - Q (s) + Q (s). Further. assume that the same slope r e 

restrictions of equation (8.1) app1~ to S. (If they are changed, 

appropriate changes on the bounds 

the analysis follows exactly.) 

Theorem B~4 

Case 1: o < a. ~ b. 
J J 

, 

a. , 
J 

b. can be made accordingly. and 
J 

S is L2-stab1e if S is likewise stable and if 
r 

(1) The locus of a + q .. (s) ~atisiies NC, critical point (o.,C) 
rJJ J 
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(2) Ie + q •. (s)1 > Iq .. (s) - el 
rJJ eJJ 

, Vj, 

u •• , u •• , Vi f j 
1J r1J 

(3) v. - r. - u .. ~ v . - r. - u .. 
J J 1J rJ J r1J 

, 

V'seD 

where v. - min Rlq .. (s) - 0.1, u. • max ERlq .. (s)l, Vi f j 
J we: J J J J W 1J 

Case 2: aj • 0, bj > 0 , Vj 

(1) 

S is L2-stable, given S is likewise stable, if 
r 

-1 
d. - b. - u .. 

J J JJ 
;it d • 

rJ 
-1 

- b. - u .. 
J. r1J 

, u .. , u .. 
1J r1J 

'Vi ; j , Vse:D 

where d
J
• • min RRe{q .• (s)}, u •. - max Rlq •. (s)1 we: JJ 1J we: 1J 

Case 3: a. < 0, b. > 0 
J . J 

S is L2-stab1e, given S is likewise stable ,1.f 
r 

(B.14) 

, 

(8.15) 

(8.16) 

(1) r.- v! - u .• ;it r. -v'. - u •. 
J J JJ J rJ rJJ 

, u .• " u •. 1J r1J 
, ~i; j (B.l7) 

where v! - min Rlq .. (s) - 0.1 
J Wi JJ J 

Proof: 

In case 1, conditions (1) and (2) state that the loci of q .. (s) 
. JJ 

must satisfy NC (see theorem 5.B for single input - single output 

systems). Conditions (3) of.case 1, (1) of case' 2 and (1) of case 3, 

equations (B.15), (B.16) and (B.17) respectively, are obtained from 

a theorem of Ostrowski, This states that if F ~ (f •• ) is an M-matrix, .... 1J 

then H ~ (h •• ) is ~lso an M-matrix if f .. , h •. , ~i, .f .. , h .. , 0, 
..,. 1J 11 11 1.J 1.J 

'Vi; j (i.e. If •• 1 )'Jh .. J, 'Vi; j, as the off diagonal elements of 
1J 1J 

F and Hare nonpositive). Hence the latter condition states that 

the respective matrices of S must also be M-matrices. The stability 

conditions of theorem B.4 thus follow from theorem BC. 

The graphical method for evaluating theorem BC is shown in 

figure B.5a.Theorems 5.2 and 6.4 can also be adopted to interpret 

theorem B.4 in graphical terms. 

" f 
j 

t 
; 
I' 
I 

I' 
I 
r 
I 
i 
! 
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iJ~I.JER lqrij (s)1 

calculation of Vr=diag(V
rj

) calculation of U
r 

= (u
rij

) 

£.;Fi~g:&..! • ...:a~.~5~( a~),--.:..:1 l~l::.:::u::::.s t.::.:r::.:::a;.:.ti=.:n:.l;;g~th:.:::e::.:::o.::.;re:::::m::....::::.8C=--....::.:ca::::::s:.:::.e_w:.:.h:.:::e.:.:.n~O;...<~a j ~ bj 
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Theorem B.5 

Let A ., p • and 9 . be eigenvalues of V - R - U , D - B 
rJ rJ rJ r r r 

-1 
- U r 

and R - V' - U respectively. Let a, Band y be arbitrary scaling 
r r 

factors. Then S is L2 stable if: 

Case 1: 

(1) The locus of a. + qrjj (s) satisfies Ne, critical point (OJ ,0) , 'Q'j , 

(2) la + q .• (s)! > !q •• (s) - a! 
rJJ eJJ. 

, Vj , (B.lB) 

either 

(3) Re (A . + a) > II V - U - aI II inf ~P i(s» 
rJ re re 

, 'Ij , 'Vs 6fJ (B.19) 

or 

(4) Re (A . 
rJ 

+ a) > (m+2)Ml(S){de1 (S)}1/m ., Vj , 'tfseD (B.20) 

Case 2: 

(1) Re (Prj. + B) > liD - U . - BIll inf K(P 2 (s» , \t'j • Vs£D (B.21) re re 

or 

(2) Re (Prj + B) > (m+2)M2 {s){de2 (s) }l/m .• Vj • \ts£D 

Case 3: 

(B.22) 

(1) Re· (9rj + y) > I( -V;e - Ure - iI II inf K(P 3 (s» , Vj , 'VSED (B.23) 

or 

where V -v - V , U - U - U D - D - D V' - V' - V' re r re r' re r'. re r 
Proof: 

Equations (8.19) to (8.24) result from the application of ': . 

theorems 5.2 and 6.4 to condition (3) of theorem B.4. The real parts 

of the eigenvalues of an M-matrix are positive, and since V - R - U, 
-1 

D - B - U, R - V' - U and R - V' - U have nonpositive off-

diagonal element's and their eigenvalues are confined to the r.h.s. 

plane, they are M-matrices. Stability of S thus follows from 

theorem BC. 

(B.24) 

~' 
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Another situation where M-matrices can be used to determine 

the stability of composite systems is shown in figure 8.50. Here the 

linear system is diagonal Q(s) - diag' {q •• (s)} and the nonlinear 
11 

blocks satisfy 

a. < n.(y.,t) < b. 
l l l l 

m 
14>.(EhEh ••• ,E ,t)I' 1: e!. IE.I 

1 • m j-l ~l l 

Theorem 8D6 

The system of figure 8.5 is L2 stable if, for each j, n - ~, 

is an M-matrix where n - diag {~l.}' ~. > 0, ~, - (e!.).and q .• (s) 
l II II 

satisfies one of the following conditions: 

(1) 

(2) 

a. > ~. 
l l 

The Nyquist diagram of q •• (s) does not encircle or intersect 
II 

the disc with centre (-I(l/(a. - ~.» + (l/(b. + ~J.»'O) and 
l l l 

radius II (l/a. - ~.» - (l/(b. + ~.»I 
l l l l 

a. - ~. 
l l 

(8.25) 

(8.26) 

The Nyquist diagram lies to the right of the vertical line passing 

(3) 

through (-l/(a. + b.),O) 
l J 

a. < 1T. 
J J 

The Nyquist diagram lies inside the disc with centre and radius 

as defined in condition (1). 

Now assume original and reduced models, Sand S satisfy expression 
r 

(8.25) and the following bounds. 
m 

for S 1~.(El, ••• ,E tt)1 , 1: e' •• IE.1 (8.26a) r 1 m • l. rll l J- -
m 

for S 1~.(€l""'€ ,t)1 , 1: e!·I£·r (8.26) 
1 m. j-l II l 

Then: 

F 
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Theorem 8.6 

Let ~ + B be the Nyquist locus of q •• (s) + B with bands of rJJ . 

radius Iq •• (s) - BI centred on q .• (5) + B, ~s - jw, Vs£D. Then 
~J ~J 

S of the configuration of figure S.5 is L2 stable given that Sr is 

likewise stable if: 

(1) e ~ •• 
r1J 

, ~i (a.26b) 

(2) ~ + B satisfies conditions (1), (2) or (3) as appropriate of 

theorem SD. 

Proof: 

Since S ·r 
is L2 stable (1T. 

J 
condition (1) with a!. ~ a' .. , 

1J r1J 

- a' .. ), Vij, is an M-matrix. 
r1J 

From 

it follows that (1T. - e!.) is 
J 1J 

also 

an M-matrix. (Ostrowski's result) Condition (2)_.requires S to 

-satisfy the remaining conditions of theorem SD, given that S satisfies 
r 

the same remaining conditions. Hence S is L2 stable by theorem SD. 

8.2 Describing functions and reduced models in nonlinear multivariab1e systems 

synthesis 

8.2.1 Limit cycles and describing function (d.f.)l,l3 

The use of describing function techniques have been extended to 

multivariable nonlinear systems by MacFarlanel4 , where it was shown 

that the d.f. method is a valuable analytical tool in analysis, 

expressed in the form of return difference and return ratio matrices. 
. 1 

Mees extended the first order frequency independent d.f. expression, 

for single input - single output systems, into the describing 

function matrix for multivariable systems. The feedback configuration 

has the form sho~ in figure 8.1. Using Rosenbrock's idea of 

diagonal dominance, Mees formulated a criterion for the absence of 

limit cycles. Ramani12 and Atherton also gave two crit;ria for non

limit ~yc1es. The first is algebraic in nature, using a theorem of 
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Hirsch that constrains the eigenvalues in a rectangle; the second, 

for a (2 x 2) Q(s), requires all the d.f. and q .• (s) loci and an 
JJ 

eigenvalue locus to be nlotted. 

The use of d.f. techniques in stability analysis is heuristical, 

and, it does not guarantee stability as does the circle criterion (c.c.). 

However, compared to the c.c., it has more information to the non-

linear part, and, it can also have a non-diagonal nonlinear N(t,y) 

matrix, and, the nonlinearities are not slope restricted. Thus 

it can handle hard nonlinearities like hysteresis and backlash. It 

has been argued that the d.f. and c.c. are complementary to each 

other and that neither contradicts one another in stability 

d 
• . 1 etermLnatLon • been In fact, it has A shown that the inverse d.f. locus 

lies in the critical discI. 

For the nonlinear feedback system of figure 8.1, where the 

nonlinear block N(a) is the first order frequency independent d.f. 

matrix, and, alis the vector amplitude of the first harmonic of 

the vector x, the d.f. equations are 

(Q(s)N(a) + I)x .• 0 

(N(a)Q(s) + I)y • 0 

or equivalently, (Q(s) + N(a»x • 0 

(Q(s) + N(a»y • 0 

For the limit cycles to exist14, equations (8.27) to (8.30) 

must have non-trivial solutions, which require det (Q(s) + N(a» • a 
A 

or det(Q(s) + N(a» • 0, i.e. there " must be at least one zero 
A A 

eigenvalue in Q(s) + N(a) or Q(s) + N(a). 

Using Geshgorin's tneorem, 

Theorem 8E l ,13 (Mees' criterion) 

Fo~ the absence of limit cycle:, . figure 8.1, it is sufficient Ln 

that 

(8.27) 

(8.28) 

(8.29) 

(8.30) 

!. 
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i 
~ 
t 
\ 
i 
i 
! 

(1) I (n •• (a.) + q .. (8) I > 1: In .• (a.) 1 + 1: I~ .• (s) 1 
JJ J JJ ifj IJ J ifj IJ 

, \fj , Va. 
J 

(8.31) 

(resp Iq .. (s) + £1 •• (a.)1 > 1: I£L.(a.) + 1: Iq •• (8)1), 
JJ JJ J i;j l.J J i;j l.J. 

, \fa. 
J 

Theorem 8F12 (R~mani and Atherton's criterion 1, RA1) 

When N(a) - diag {n .• (a.)}, for the absence of limit cycles, it 
JJ J 

is sufficient that: 
,.. ,.. 

Wes) + U > 0 or W(s) + L < 0 or V(s) > 0 or Ves) < 0 

where W(s) - !(Q(s) + QH(s», V(s) - -ji(Q(s) - QH(s». When N(a) 

(8.32) 

is non-diagonal, modifications can be made such that (m2 x m2) matrices 

are used. 

Theorem 8G13 (Ramani et a1 criterion 2, RA2) 

When N(a) - diag n .. (a.) and Q(s) is (2 x 2), a limit cycle ·.is 
. JJ J 

possible if, for a consistent pair of (a, s • jw), K satisfies 

A. (s) - qll (s)K 
J 

-£122 (a2) - q22(S) • A.(S) - Q22(S)K 
J 

where A.(S) is an eigenvalue of Q(s) 
J 

(8.33) 

(8.34) 



. . 
- 2~1 -

Using equations (B.27) to (B.30), some new criteria can be 

derived as follows. The matrices in equations (B.29) and (B.30) can 

be written as 
A A A A A 

Q(s) + N(a) =' {(a + k)I + Q(s)} + N'(s) - aI 

A A 

Q(s) + N(a) .' {(a + k)I + Q(s)J + N'(a) - aI 

where 

kI + N'(a) - N(a) 
A A 

kI + N'(a) • N(a) 
A A 

(B.35) 

(8.36) 

(8.37) 

(B.38) 

and 'a, a are tuning factors, k, k are arbitrary 'critical points', and, 
,. A 

in general, a ~ l/a, k ; 11k. Thus, 

Theorem B.7 (New criterion)14 

The system, S, of figure 8.1 will have no limit cycles if 
,. A A ,. 

(1) Ik + a + Aj(s) I >11 N' (a) - alilinf K(P(S» , Vj , 'Is - jw (B.39) 

A 

resp Ik + a +.Aj(s)1 > IIN'(a) - <lIllinf K(P(S», 'r/j, Vs - jw (B.40) 
,. 

where A.(s) (resp A.(s» is the characteristic loci of Q(s) 
J J ,. 

(resp Q(s».and pes) diagonalizes Q(s). 

Proof: 

S will have no limit cycles if the matrices in the r.h.s. of 

equation (8.35) or (8.36) have non-zero eigenvalues. A direct 

application of a theorem of B~~er and Fike, BF, (used in theorem 5.1) 

to the r.h.s. of equations (8.35) and (8.36) yields expressions (8.39) 

and (B.40). 

Th.$ graphical interpretation of expressionsl:(B.39) and (8.40) 

means that the circular bands, of halfwidth given by the~ r.h.s. of 
,. A 

expression (8.39) (resp expression (8.40» centred on a + A.(s) 
J 

A 

(resp a + )..(s», must not touch or overlap the -k (resp -k) 'critical 
J 

point'. The constants k and a are :dvisable not to be chosen as 

zero if Q(s) is strictly proper, as in this case p .(9) ~ 0 as 9 ~~. 
rJ 

I 
! 
i • f , 
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This means that the cir~u1ar bands must avoid the origin, Vs • jw. 

Specifically, when the d.f. locus is required, the l.h.s. of 

equations (8.29) and (8.30) can be written as 
A A A 

Q(s) + N(a) - {(a + n •• (a.»I + Q(s)} 
11 1 

A A 

.Q(s) + N(a) - {(a + n .• (a.»I + Q(s)} 
11 1 

where 

Thus, 

n •• (a.)I +N'!(a) - N(a) 
11 1 

A A A 

n •• (a.)I + N"(a) - N(a) 
11 1 

Theorem 8.8 

S will exhibit no limit cycles if: 
A A A 

,. 
+ Nil (a) - aI 

,. 
+ Nil (a) - aI 

(1) In .• (a.) + a + A.(s)1 > IIN"(a) - alilinf ·K(l~(S», 'tj, Vs - jw' 
11 1 J 

A ,. 

. {resp In •• (a.) + a + A. (s) I > IIN"(a) - aI" inf K(P(S»}, 
11 1 J 

(8.41) 

(8.42) 

(8.43) 

(8.44) 

(8.45) 

Vj, Vs - jw (8.46) 

Proof: 

Application of BF theorem to the r.h;s. of equations (8.41) and 

(8.42) yields expressions (8.45) and (8.46). 

The graphical interpretation of theorem 8.8 requires that the 
,. 

-n.
1
.(a.) (resp -n •. (a.» locus must not penetrate the 

1 1 11 1 
A ,. ,. 

. {a + A.(s)}+ II Nil (a) - aIlI inf K(F(s» exp(j~), 0 < ~ < 21T (resp 
J 

A. 

{a + Aj (s)} + I [N"(a) - alII inf K(P(s» exp(j~), 0 < ~ < 21T) bands. 
,. A 

This is shown in figure 8.6, where n •. (a.) is an element of N(a). 
11 1 

When N(a) - diag {n.(a.)}, theorem 8.8 becomes 
1 1 

Corollary 8.1 

S will exhibit no limit cycle if: 
,. ,. A 

(1) In.(a.) + a + A.(s)1 > max.ln.(a.) - n.(a.) - alinf K{P(s» 
11 J JJJ 11 

\!j , Vs - jw (8.47) 

(resp.ll/nl.(al.) + a + A.(s)1 > max.ll/n.(a.) - l/n.(a.) - alinf K(P(s», 
J J J J 1 1 

Vj , Vs ,- jw (8.48) 



Re ~----~MA~------~-----

ol+~ s) loci 

r = IIN'r ~ (a)- 0(111 infj{(p(s» 
Illustrating theorem 8.8 

OC+).j(e) loci 

Fig. 8.6eb) Illustra-
ting theorem 8.7 

(for nonlimit cycles, the 
-k point must avoid the 
band) Similar explanRtion 

for absense of limit c cles d.f. locus 
must avoid circular bands Theorem 8.12 

for reduced model application is similarly 
explained. 

Fig. a.7ea) Illustrating theorem 
8.1 usin direct Characteristic Loci 

for stability of nonlinear system, 
the circular b~nd must lie to the 

right of the - Xj vertical line) 

Similar explanation for theoremf8.11 
(reduced model application) & 8.18 

qjj(S)+ 1j 10 i 

r= IIw(s)- 1-11 infj{(V(s» 
J 

~ :?lqij (s)\ 
IT'J 

8rl(e) Illustrating theorems 
and 8.16 'circle criterion' 

for stability. band must lie to 

for theorem 8.11 

Re~~----~-+~~---+--~~-

loci 

" -Jj ,. ,. 
r - IIW(e)- rj II infl{(V(s» 

Fig. 8.7(b) Illustrating theorem 
8.13 using inverse Characteristic 

Loci lfor stability. circular band 
must lie to the right of the 

-=-i
j 

vertical line) 

-1/d.f -2.8 

-1/d.t. -3.14 

Fig. 8.9 IllustratIon of 
example. (See section 8.2.1) 

J 

right side of vertical line) Similar explanation for theorems8.17 & 8.18 

(reduced model applications) 
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Proof: Follows from theorem 8.8 and equations (8.43) and (8.44) 

In the special case, when the transfer function matrix, Q(s), is 

normal, pes) can be chosen unitary, and using the spectral norm, I Ilia, 
infK(P(s» - 1, thus the radii of the bands are frequency independent 

when Q(s) is normal. It is also interesting to note that when 
A 

n.(a.) - n ,Vj ,and setting a - a - 0, 
J J c 

Corollary 8.2 
A 

When N(a) • diag {n }, N(a) - diag {lIn }, 5 will exhibit no c c 

limit cycles if 
,.. 

(1) In +A.(s)1 > 0 Vs . (8.49) , • JW e J 

(resp. 11/ne + Aj (s) I > 0) , Vs • jw (8.50) 

Proof: Follows from corollary 8.1. 
._-

Thus, for nonlimit cycles, the -lIn (resp -n ) locus must not . c c ,.. 
intercept with any A.(s) (resp A.(s» locus. This can also be derived 

J J 
A A 

by applying the eigenvalue shift theorem to Q(s) + N(a) or Q(s) + N(a). 

The same result was reported in the RA2 criterion, but, using Gershgorin's 

theorem, the bands will not vanish. 

Theorem 6.3 (Ostrowski's theorem) can be adapted to study the 
,.. 

eigenvalues of Q(s) + N(a) in terms of the eigenvalues of Q(s). Thus 

parallel theorems and corollaries to theorems 8.7. 8.8. corollaries 8.1 

and 8.2 can be stated. 

Theorem 8.9 

S will exhibit no limit cycles if: 

(1) Ik + ~ + ~.(s)1 > (m+2){~(s)}(m-l)/m{ L In:.(a) _ ~~ •• I}l/m 
J i,j 1J - 1J 

\fj , 'Is· jw (8.51) 

( resp Ik + a + )..(s)1 > (m+2){M(S)}(m-l)/m{ 1: I~!.(a) - a~ .. \}l/m) 
• J i' 1J' 1J ,J . 

\fj , "Is;' jw (8.52) 
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A """ " 

where M(s) a max {I(a + k)O •• + q .. (s)l, In .• (a) + q •. (s)I}, 
1J 1J 1J 1J 

" M(s) - {I(a + k)O •• + q •• (s)l, In .• (a) + q •• (s)I}, 0 .. is the Kronecker 
1J 1J 1J 1J. 1J 

delta (0 .. - 1, Vi - j, 0 .. - 0, other~ise) and m is the dimension 
1J 1J 

of Q(s). 

Pr~of: Direct application of theorem 6.3 to equations (8.35) to (8.38) 
. 
Theorem 8.10 

S will exhibit no limit cycles if: 

I' () +" + ~ ( ) I > (m+2){M"(S)}(m-l)/m{ ',~ n .. a. a 1\. S w 
11 1 J • i,J 

In':.(a) - ~o.·.nl/m 
1J 1J 

(1) 

Vj , Vs - jw (8.53) 
,.. 

( resp In •• (a.) + a + )..(s)1 > 
• 11 1 J 

(m+2){M(s)~m-l)/m{ l: i~'!. (s) - ao •. nl/m) 
•• 1J 1J , 

, 1,J ,I,· 

'_ Vj , 'Vs - jW (8.54) 
A A A A 

where M(s) - max {I(a + n .• (a.»o •. + q .• (s)l, In •. (a) + q •• (s)n, 
11 1 1J 1J 1J 1J ,.. ,.. 

M(s) - max' {I(a + n •• (a.»o •• + q •. (s)l, In •• (a) + q •• (s)l} 
11 1 1J 1J 1J 1J 

Proof: Application of theorem 6.3 to equations (8.41) to (8.44) 

Corollary 8.3 
,.. 

When N(a) • diag' {n.(a.)}, N(a) • diag {l/n.(a.)}, S will exhibit 
1 1 , 1 1 

no limit cycles if: 

(1) \'n:(a.) + ~ + ~.(s)1 > (m+2){~(s)}(m-l)/m{ ~ In.(a.) - n.(a.) _ ~I}l/m 
1 1 J j-l J J 1 1 

\fj , 'Vs - jw (8.55) 
m . 

(resp Il/n.(a.) + a + A.(s)1 > (m+2){M(S)}(m-l)/m{ l: Il/n.(a.) 
• 1 1 J . j-l J J 

- lIn. (a.) - aj}l/m ) 
1 1 

, Vs - jw (8.56) 
,.. 

where M(s),:M(s) have the same interpretation as theorem 8.12. 

Proof:'Follows from theorem 8.10 and equations (8.43) and (8.44). 

" " When N(a) - diag {nc}' N(a) - diag {l/nc}' and setting a - a • 0, 

corollary 8.3 reduces to corollary ~.2. Thus Ostrowski's theorp~, 

in this special case, gives the same result as Baper and Fike's theorem. 
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In general, the Ostrowski's bands differ in sharpness from those: 

obtained by the BF theorem, but in many cases, both require different 

computational demands in their evaluations. 

8.2.2. Use of reduced models·in·d.f.synthesis14 

The accuracy of d.f. methods increases with the order of the 

linear system, where the higher harmonics are more heavily 

attenuated. In design, where reduced model, S , in place of the 
r 

high model, S, is required, this may not be the case, so the accuracy 

may be doubtful. However, provided Sr is not too low, and, if the 

transient response error of the models is small, it can be assumed 

that the higher harmonics of S are attenuated in roughly the 
r 

same proportion as those'9f S. Hence it is assumed that the d.f. 

method is reasonably accurate in S , and, if no limit cycles exist 
r 

in the latter, it is reasonable to expect no limit cycles in S, 

. provided conditions, based on S Characteristics, can be found for l't r • 

S can be represented as 

Q(s) - ~(s) + Qe(s) 
,.. ,.. ,.. 

(8.57) 

Q(s) - Qr(s) + Qe(s) (8.58) 
,.. ,.. ,.. ,.. 

where Q (8) • G (8)K (8) a {G(S) - G (s)}K (S), Q (s) • Kr(S){G(S) - G (s)}. e err r e r ,.. ,.. ,.. 
Thus replacing Q(s) by Q (s) + Q (s), Q(s) by Q(s) + Q (s) in equations r e . e 

A 

(8.35), (8.36), (8.41) and (8.42), and, letting A .(s) (resp A .(s» 
rJ rJ ,.. 

be the characteristic loci ·of Q (s) (resp Q (s», similar theorems 
r r 

and corollaries in section 8.2.1. can be constructed for S, in terms 

of the characteristics·of S. All other quantities remain unchanged 
r 

in equations (8.37), (8.38), (8.43) and (8.44). 

Theorem 8.11 

5 will have no limit cycles i: one of the following conditions 

is satisfied: 
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(1) 
~ ~ ~ ~ ~ 

Ik + a + A .(8)1> II N'(a) + Q (S) - alllinf K(Pr(s». 
~ e· 

(8.59) 
~ 

(resp Ik'+ a + A .(s)1 >IIN'(a) + Q (s) - alilinf K{P (s») . rJ e r 

Vj , Vs· jw (8.60) 

(2) 
~ ~ ~ ~ ~ ~ 11m 

Ik + ex + A .(s)1 > W (s){ L In!.(a) + q •. (s) - aa •. I} 
rJ r. . 1J elJ 1J 1,J 

\fj ., Vs· jw (8.61) 

(res.~ Ik + a + ArJ.(s)1 > W (s){ ! I; .. (a) + q •• (s) - aa •• I}l/m ) 
r •• ~ e~ ~ . 1,J 

Vj , Vs • jW (8.62) 

where Q (s) • (q •• (s»; Q (s) - (~ •. (s», w (s) • (m+2){M
r

(S)}(m-1)/m, 
e elJ e elJ r . 

,. ~ (m-1) 1m I w (s) - (m+2){M (s)) . , M (s) - max {I (a + k)8 •• + q •• (s) , 
r r r 1J rlJ ,. ,. ,.,.,. ,. . 

In •• (a) + q •• (s)I}, M (5) - max {I(a+ k)a •• + q •• (s)l, In .. (a) + q •• (8)1} 
lJ lJ r lJ rlJ lJ lJ 

Proof: '-. 
Application of theorems 5.1 and 6.3 to the modified form of 

equations (8.35) and (8.36). 

Theorem 8.12 

S will have no limit cycles if one of the following conditions 

is satisfied: 
~ ~ A A 

In •• (a.) + a + A . (8) I > II N"(a) + Qe(s) - cdllinf K(Pr(S» 11 1 rJ 
(1) 

\fj , Vs· jw (8.63) 
~ ~ 

resp In •. (a.) + ex + A .(s)1 > II N"(a) + Q (s) - alilinf K(P (8» 
11. 1 rJ e r 

Vj , ~s· jw (8.64) 

(2) 
,. ~ ~ ,. ~ 11 

In .. (a.) + a + A .(s)1 > W (8){ L In':.(a) + q •. (s) - aa •• !} m 
11 1 . rJ . r •• 1J elJ lJ 

1,J 
Vj , Vs· jw (8.65) 

resp I~ •. (a.) + a + A .(8)1 > W (s){! I;'!.(a) + q · •• (s) - ao .. I}l/m 
11. 1 r Jr. • 1J elJ 1J 

1,J . 
Vj , Vs· jw (8.66) ,. 

where W (8) - (m+2) {t1 (8)} (m-l) 1m, 
r r -', . ,. ~ 

M (s) • max {I(a + n .• (a.»o .. 
r 11. 1 1J 

(m-l) 1m 
Wr(s) • (m+2){Mr (8)} , 

,. ,. 
+ q .. (s) I, In .. (a) + q.: (s) I} 

~1J 1J 1J 

,. 
M (8) - max {I(a + n .• (a.)a •• + q •• (s)l, In •• (a) + q •• (s)1l 

r 11 1 1J rlJ 1J 1J 
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Proof: 

Application of theorems 5.1 and 6.3 to the modified forms of 

equations (8.41) and (8.42). 

Corollary 8.4 

" When N(a) - diag' {n.(a.)}, N(a) - diag' {l/n.(a.)}, there will 
1 1 1 1 

be absence of limit cycles in S if one of the following is satisfied: 

" " " (1) In.(a.) + a + A .(s)1 > {max. In.(a.) - n.(a.) - al 
1 1 rJ J J J 1 1 

" + "Q (8)" }inf K(P (s», 'ij, ~s • jw e r 

(resp Il/n.(a.) + a + A .(s)1 >' {max. Il/n.(a.) - l/n.(a.) - al 
• 1 1 rJ. J J J 1 1 

+ 1IQe(s)IIHnf K(Pr(S») Vj, Vs - jw 

",.. ,.. m ,.. 
(2) In;(a.) + a + A .(s)1 > W (s){ ~ In.(a.) - n.(a.) - al 

1: 1 rJ r. 1 J J 1 1 
J- '-. 

+ ~ f~ .. (s)l}l/m 
• • e1J 
1,J 

\fj, 'fIs - jw 

(resp Il/n.(a.) + a + A .(s)1 > W (8)(ll/nj(a.) - l/n.(a.) - al 
• 1 1 rJ r , J 1 1 

(8.67) 

(8.68) 

+ ~ I q ., (8) III 1m ) (8.69) 
• • e1J 1,J . . 

Proof: 

Follows from theorem 8.12 and using the fact that 
" ,.. ,.. 

\I diag {it.(a.) - n.(a.) - a} + Q (s) II , II diag {n.(a.) - n.(a
1
,) - alii 

JJ 11 e . JJ 1. 
. ,.." 

+II'Q (5)11 and 1: Idiag {n.(a.) -n.(a.) -a} +q .. (s)I' 
, e . . J J 1. 1 e1J 

1,J 
m ,..,.. 
~ Idiag {n.(a.) - n.(a.) - a}1 + ~ Iq··(s)1 

J
• -I J J 1 1. •• e1J 

. 1.,J 

Corollary 8.5 
,.. 

In the special case, when N(a) • diag {n }, N(a) ·'diag {lIn }, c ' c 

S will have no limit cycles for anyone of the following conditions: 
,.. ,. 

(1) In + A • (s) I > I I Q (s) II i nf I( (P (s» V j , V s • j w 
c rJ e r 

,.. 
(r~sp Illn +).. (s) I > IIQ (s) I linf K(P (s» ) • c rJ e r 

(8.70) 

(8.71) 
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(2) 
A A A 1/ 

In· + A .(s)I·> w (sH L; Iq .. (s)1l m Vj , 'Vs - jw c rJ r.. el.J , 
1,J 

resp 11/n + A .(s)1 > W (s){ ~ Iq •. (s)I}1/m 
• . c rJ r.. elJ 1,J 

Proof: 

Follows from corollary 8.4. '. When Q (s) ... 0, corollary 8.5 becomes e . 

corollary 8.2 as expected. 

Thegrapqicalinterpretation of t~eorems 8.11 to corollary 8.5 is 

similar to that shown in figure 8.6, with appropriate changes in the 

radii of the bands. 

8.2.3 Discussions'andComparisons with:other Criteria 

The proposed criteria (theorems 8.7 to 8.13) have a number of 

distinct advantages over existing criteria. •• • • Mee s crlterlon '-. A 

requires diagonal dominance of Q(s) + N(a), whereas the new criterion 

relaxes diagonal dominance, but ·.the width of the .band depends on 

the structure of Q(s) via inf K(P(S» or Qe(s). In the special case, 

when Q(s) is normal, for theorems 8.7 to 8.10 the width of the bands 

is frequency independent. Also, for a nondiagonal N(a), Mee's' 

criterion requires the nonoverlapping of every corresponding pair 

of m bands - this can be overcome by transforming to an equivalent 

N(a), but this would involve m squared bands - whereas the proposed 

criterion requires the nonoverlapping of every m band with the locus 

of one chosen diagonal element of N(a), irrespective of the latter's 

structure. This thus gives a ,less conservative result and can be 

computationally cheaper. Further, in Mee s'case, by a modified form 

of Geshgorin's theorem, it is possible to reduce a bandwidth at the 

(8.72) 

(8.73) 

expense of increasing the others; however, with the proposed criterion, 

the width of all bands can be tuned simultaneously. Also, when the 

'nonoverlapping-loci' criterion fails, the '-k critical point' cri~erion 

can be used as an alternative. In the special case, when N(a) - diag (nc)' 

1----·· -.... ..... . 



- 239 -

it is possible to reduce the bandwidth to zero. with the proposed 

criterion, but, using Mee's criterion the width of the bands will 

not reduce to zero. 

The RAl criterion does not offer an easy graphical representation 

from the designer's point of view, and determining the sign 

definiteness of the high order matrices when N(a) is nondiagonal 

would be computationally unattractive. Besides, being of algebraic 

form, it is not simple to incorporate 'tuning factors' in the· 

expression to obtain less conservative results. 

The RA2 criterion is restricted toa 2 input - 2 output system 

with diagonal N(a) only. Also, it requires all the d.f. and q •• (s). 
JJ 

loci and a Aj{S) locus to be plotted, thus causin&.undue graphical 

labour. 

Due to its flexibility, the proposed criterion gives less 

conservative results than other criteria in the general case. The 

attractiveness of applying it when reduced models are used in design 

has been illustrated. This would be more difficult with the other 

criteria when absence of limit cycles in S is to be deduced from 

that in S. For example, using Mee s'criterion, when S is r r 

diagonally dominant, S need not be so, or, using the RAl criterion, 

the sign definiteness .afthe S matrices does not necessarily imply 
r 

sign definiteness of the S matrices, unless restrictive conditions 

are imposed. With the RA2 criterion, this would be messy, as error 

bands are required to be drawn around all the loci of the linear 

system. 

Besides limit cycle investigation, the proposed criterion can 

also be adapted to stability investigation in the Nyquist sense. 
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E xamp 1 e 8 ~ 2 • 1 

Consider the following example
4

, with 

-2 ] 

s+5 

Q(s) is normal, and, AI(S) - l/(s + 6)(s + 1) 

A2(S) - lIes + 1)2 

Suppose the nonlinear feedback, N(t,y), is diagonal and is . 

characterised by the describing functions, (ideal relay with hysteresis), 

where Al - A2 - 1, bl - b2 - 1, Yl - 1/4, Y2 - 1/3.5 

'The characteristic loci, AI(S), A2(s) are plotted against the 

inverse describing function loci, -l/nl(al), -l/n2(a2), as shown 

in figure B.'. Setting a- 0, in equation'(B.4B), the bandwidth is 

As seen in:figure B.9 the bands do not intercept any of the 

d.f. loci, hence by corollary B.l the system canno,t sustain a limit 

cycle. 

8.3 Graphical Interpretation for 'Stability of Nonlinear Systems 

8.3.1 The Popov Criterion and Jury-Lee Criterion 

7 Popov gave a stability criterion for the nonlinear system of 

figure B.l where the nonlinearity is slope restricted in the sector 

(O~S) instead of (a,S). The criterion is based on positive realness 

of a function. 9 Later Jury and Lee extended Popov's criterion to 

multi variable systems, using the concept of positive real matrices. 

It is well known that an (m x m) matrix A(s) is positive real 

if and only if23 

(1) A(s) is holomorphic in Re (s) ) 0 
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(2) A*(s) - A(s*) for Re '(s) > 0 

(3) Poles on Re (s) - 0 are simple, and the associated residues K(s) ) 0 

and K(s) - KH(s) 
H ~H ~ 

~aj A (s) + A(s) ) 0 or A (s) + A(s) ) 0 for Re (s) ) 0 

:Alternatively, let S(s) - (I + A(s»-I(A(s) - I). Then A(s) is 

positive real if and only if, 

(1) S(s) is holomorphic in Re (s) ) 0 

(2) S(s) is real rational 
H ~ ,. 

(3) I - 8 (s)8(s) ) 0 or S (8)8(8) - I ~ 0 

The stability theorem of Falb et a14 (see Theorem 8.3) can be 

derived using positive real matrices. From equation (8.4) of theorem 8A, 

A(s) 
-1 -1 -1 

• (B + Q(s» (A + Q(s» 
--., 

i.e. s -
-1 -1 -1 -1 -1 

(A + Q + B +Q) (A + Q - B - Q) 

-1 -1 -1 -1 -1 
- I(Q(s) + leA + B » (A - B ) 

If A • diag {max a.l - aI, B - diag {max b.} • bI, then equation 
4 J J , 

(8.76) can be written as 

S(s) - l(l/a - I/b)I(Q(s) + l(l/a + l/b»-l 

Now consider the expression, 

'{(l/p)(M - kI)}{(l/p)(M - kI)}H - I > 0 

where M is an arbitrary complex matrix, p a positive constant and k a 

complex n\tmber. If M is normal, then the eigenvalues A. of M satisfy 
J ' 

IA. - kl > p, i.e. A. lies outside the critical disc centred at k. From 
J J 

equation (8.77) 
,. 
S(s) • (~/p)(Q(s) + l(l/a + lIb» 

where p • I(l/a - lIb). If A.(s) is the characteristic loci of Q(s), 
J 

and if Q(s) is normal, comparing equations (8.78) and (8.79). it is seen 

(8.74) 

(8.75) 

(8.76) 

(8.77) 

(8.78) 

(8.79) 

-
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~H ~ 

that 5 (s)5(s) - I > 0, if and only if IA.(s) + l(lla + lIb) I > l(l/a - lIb). . J 

Thus by theorem 8A, the system of figure B.l is stable i.s.L. if the 

characteristic loci of normal transfer function matrix do not intercept 

or embrace the critical disc centred on (-l(l/a + 1/b),0) with radius 

I(l/a - lIb). Here the nonlinear part is slope restricted in the sector 

(a,b). This is the theorem of Falb, Freedman and zames4, rederived by a 

shorter method. 
~ ~ 

The dual case, using the inverse loci,.A.(s) of Q(s) can 
J 

also be rederived, using equation (B.6) of theorem BA. 

w ~t 

-1 
A(s). (I + Q(s)A) (I + Q(s)B) 

then S(s) .' {(I + Q(s)A)-1(I + Q(s)B) + I}-l{(I '+ Q(s)A)-1(I + Q(s)B) -'I} 
, -1 

• (21 + Q(s) (A + B» (Q(s)(B - A» '--. 
A -1 

• (Q(s) + I(A + B» I(B - A) 

i.e. 
~ -1 A 

S(s) - (I(B - A» (Q(s) + I(A + B» 

Following the lines of argument from equations (B.76) to (B.79), it 

can easily be deduced from equation (B.BO), that for stability, the loci 
~ ~ 

Aj(S) of Q(s) must avoid the critical disc centred on (-l(a + b),O), with 

radius l(b - a). It is noted that the above only satisfies equation (B.75) 

for positive realness test. The other conditions for positive realness of 
A 

Q(s) are satisfied, if A.(s) (resp A.(s» does not encircle or intercept 
J J 

the critical line segment, which is the diameter of the critical disc, on 

the real axis. 
3 Cook's theorem can similarly be rederived, using Gershgorin's 

theorem and equations (B.76) and (B.BO), but it will not be done here. 

(B.80) 

Returning to the ,Popov criterion, or the Jury-Lee criterion, mentioned 

earlier, for later reference, their theorem, regarding figure 8.1, can be 

stated. 
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Let the nonlinear block of the system in figure 8.1 be slope restricted 

in the sector' {a.,b.}, or equivalently, in the sector' {O,b.-a.}. Thenthe 
1. 1. 1. 1. 

nonlinear system is absolutely stable if 

(1) pes) + pRes) > 0 , \:Is • jw 
_1 

where pes) - (I + sL)Q (s) + K c 

and L • diag {t.} is a'real (m x m) matrix, K- 1 
• diag {l/(b. - a.)}, 

1. 1 1. ' 
-1 

Q (s) - (I + Q(s)A) Q(s) represents the equivalent closed loop transfer c 

function, and A - diag {a.}. Thus for the sector {O,b.}, Q (s) becomes 
1. 1. c 

Q(s). Condition (1), equation (8.81) is equivalent to the fact that pes) 

is positive real ,provided pes) also satisfies the remaining conditions 

for positive realness. 

11 Shankar and Atherton ,gave a graphical interpretation of theorem 8R, 

using Gershgorin's theorem and the Popov polar plot, and, showed:that in 

certain cases, Cook's result is a special case of the Jury-Lee criterion. 

They showed that if the area, defined by the circular bands 

A(s) - q' •• (s) + d.(s)exp(j~) 
C11. 1. 

, V~E.(O. 211') 

lies t'o, the right of the line drawn through the point (-l/(b. - a.),O) and 
1 1 ' 

of slope lIt., Vi, then the system is absolutely stable. Here 
1. 

Re (q' •• (s» = Re (q .• (9» 
C1.l Cll 

1m (q' .. (s» • wlm (q •. (s» 
C1.1. C1.1 

d. (s) 
1. 

• Hll + sq •• (s)1 L Iq .. (s)1 + I I: (11 + sq .• (s)"q .. (s)I)} 
11 j"i JJ j;i JJ JJ 

(8.81) 

(8.82) 

In this section, a different graphical interpretation will be given to 

theorem 8R, in terms of characteristic loci and Nyquist polar plots. 

Consider the non.linearity be bounded in the sector {a.,b.}. From equations 
1. 1. 

(8.81) and (8.82) 
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T(s) • pes) + pH(s) - Q (s) c 

H H " Q (S)T1 (s)Q (s) ... Q (s) [Q (s) c c c c 

+ QH(s) + s(LQ (s) - QH(s)L) 
c c c 

"H "H " 
+ Q (s) + seq (s)L - LQ (s» c c c 

" -1" -1 
where K - K ,Q (s) • Q (s), etc and c c 

. 
Q ·(s) 

c 
,- (I + Q(s)A) -1 Q{s) 

" " Q (a) 
c - Q{s) + A 

(iH(s) 
c 

"H 
• Q (s) + A 

+ 2K 

-1 assuming (I + Q(s)A) exists. Substituting equations (8.86) and (8.87) 

into equation (8.84). 

Tl(S) - Q(s) + QH{s) + a«(iH{s)L - LQ(S» + 2A + 2QH(s)iQ (s) 
c c 

"H " Writing Tl(S) = Q (s)Ti(s)Q(s), from equation (8.88) T2(S) can be 

written, using equation (8.86), as· 

T2(S) - Q(s) + QH(s) + a(LQ(s) - QH{S)L) 

H H" 
+ 2Q (s)AQ(s) + 2(1 + AQ(s»-~(I + AQ{s» 

Equations (8.88) and (8.89) can be rewritten as 

where 

" '" A A A "-

Tl(S) • Q(s) + [a. + 2B/(b. - a.)]I + W(s) - [a. + 2B/(b. - a.)]I 
J J J J 

T2(S) • Q(s) + [a + 2S/(b. - a.)]I + W(s) - [a + 2S/(b. - a.)]I 
J J J J 

" ..... H "H..... .....H ..... " 
W{s) • Q (s) + seq (s)L - LQ{s» + 2A + 2Q (s)KQ (s) c c 

W(s) - QH(s) + s(LQ(s) - QH(s)L) + 2QH(s)AQ(s) 

+ 2(1 + AQ(s»Hi(I + AQ(s» 

..... " _1 " -1 " 
and a, a, a, a are complex numbers. In general a ~ a, a 1 a, 

" -1 
W(s) . f W(s). 

It is clear that T(s) is positive de~inite if and only if Tl(S) O~ 

T2(S) is positive definite. The graphical interpretation of theorem 8H 

(8.83) 

(8.84) 

(8.85) 

(8.86) 

(8.87) 

(8.88) 

(8.89) 

(8.90) 

(8.91) 

(8.92) 

(8.93) 
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can now be stated. 

Theorem B.13 
A ~ 

Let ~(s) (resp Ak(s» be the characteristic loci of Q(s) (resp Q(s». 

Then the system of figure 8.1 is absolutely stable if 

, , "Is • jw (B.94) 

A .... 

(resp Re (~(s) + Yj ) > 0) 

(2) Re (~(s) + Yj) >'11 W(S) - YjI IlinfK(V(s» , , Vs • j,w (8.95) 

A A A A 

(resp Re (A (8) + y.) > II W(s) - y.I II in! i<:(V(s» ) 
'K J J 

A ~ ~ 

where y. • a + 2S/(b. - a.), y. • a + 2S/(b. - a.) and V(s) diagona1izes Q(s). 
J J J J J J 

Proof: 

Conditions (1) and (2) follow from the application of the BF theorem
27 

(theorem 5.1) to the r.h.s. of equations,l8.90) and (8.91). If the above 

conditions are satisfied, then Tl(S), T2(S), hence T(s) is positive definite. 

Stability follows from theorem BH. 

The graphical interpretation of theorem B.13 is shown in figure B.7(a) and (b). 

If the cicu1ar band defined by Aj (s) + IIW(s) - yjI II infK(V(s) )exp(j$), 

$e{0,2n}, ~s • jw lies to the right of the vertical line through (-Re (y.),O), 
J 

the system is absolutely stable. The same explanation applies to the inverse 

loci. 

In the above theorem, it is assumed that Re (A.(O» < ~ and Re (A.(~» < ~, 
J J 

i.e. the real part of the characteristic loci is bounded. If Re (A.(s» is 
J 

unbounded, the above theorem may break down. This problem can be overcome 
A ~ 

by adding and subtracting D(s) • diag' {dies)} (resp D(s) • diag {dies)}) to 
A A 

T2(S) (resp TI(S» such that q .• (s) + d.(s) (resp q •• (s) + d.(s» is bounded. 
11 1 11 1 

A' 

The perturbed loci Re (X~(s» (resp Re (A:(S» is thus bounded. 
. J J 

When the nonlinearity is bounded in the sector {O,b.} i.e. a. • 0, 
. 1 1 

hence A • 0, the equations (8.92) and (8.9~) simplify to 
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"H "H ,.. ~ "" = Q (s) + seQ (s)L - LQ(s» + 2Q (s)KQ(s) 

• QH(s) + s(LQ(s) - QH(S)L)+ 2 diag (lIb.) 
. J 

The width of the band is determined greatly by the choice of matrix 

L and by the scaling factors a and e. There is no simple method to choose 

L such that the bandwidth is minimum. Trial and error procedure seems to 

be the best method. 

(8.96) 

(8.97) 

An alternative, sometimes more convenient, method to express stability 

is via the diagonal elements of Q(s) using Nyquist or Inverse Nyquist loci. 
. H 

Let ~j be the eigenvalues of T(s) - pes) + P (s). 

Since 

It - y. - q •• (s)1 ~ I~ - y. - ~.(s)1 + I~.(s) - q •• (s)1 
J 11 J J J 11 

i.e. min I~ - y. - q •• (s)1 ,miu·lt - y. - ~.(s)1 + I~.(s) - q •• (s)1 
J 11 J J ._J 11 

By Bauer and Fike's theorem, 

min I~ - y. - A.(s)1 , fIW(s) - y.Illinf K(V(s» 
J J J 

By Gershgorin's theorem, 

I A
J
• (s) - qii (s) I , .3. Iq.· (s) I 

1TJ 1J 

Equations (8.99) to (8.101) give, 

min It-y. - q •• (s)I' IIW(s) -y.II\ inf K(V(S»+ l:' Iq •• (s)1 
J 11 J i;'j 1J 

Equation (S.102) means that t lies in at least one of the disc centred on 

q .• (s) and radii given by the r.h.s. expression. Thus 
11 

Theorem S.14 

The nonlinear system of figure 8.1 is absolutely stable if 

.(8.98) 

(8.99) 

(8.100) 

(8.101) 

(8.102) 

(1) Re (q •• (s) + y.) > IIW(s) - y." inf K(V(s» + l: Iq .• (s)1 Vi, Vs· jw (S.103) 
11 J J i;'j 1J J 

,.. " ,.. ,.. .... 
(resp.Re (q •• (s) + y.) > "W(s) - y.1 inf K(V(S» + l: Iq .. (s)1 ) 

11 J J i;'j 1J 

Proof: 

Follows a .similar line of argument as in theorem 8.13. 

Theorem 8.14 is illustrated in fig.8.7{c). 
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The graphical interpretation requires that the band defined by 

q .• (s) +'{llw(s) -y.llinfK(V(s» + L Iq .. (s)llexp(j<p), <P~{0,27T}, 'Is -jw 
11 J ifj 1J 

lies to the right of the vertical line passing through the point (-Re (y.),O) 
J ' 

Ostrowski's theorem, theorem 6.3, can also be used for theorems 8.13 

and 8.14. Thus, 

Theorem. 8.15 
.",'1 , .. 

The nonlinear system of figure 8.1 is absolutely stable if anyone of 

the following conditions is satisfied, 

(1) Re (A.(s) + y) > (m+2){M(s)}(m-I)/m{ L 
J i,j 

" '. 11m 
IW •. (s) - y~ •• I} - Z 

1J 1J 

Vj , Vs - jw 
A A 11m ' A 

IW •• (s) - Y~ •• I} *.Z 1J 1J ' 
,(8.104) resp.Re (~.(s) +~) > (m+2){~(s)}(m-l)/m{ L 

J i,j 

(2) Re (q •. (s) + Y) > Z + 1: Iq .• (s)1 , \1j , Vs-.- jw 
11 

i"j 1J 
(8.105) 

A A A A 

resP.Re (q .• (s) + y) > Z + L Iq.· (s) I 11 
i"j 1J 

where M(s) - max {yo •• + q •. (s),q •• (s) + W •• (s)}, 
1J 1J 1J 1J 

A A A A A 

M(s) - max' {y~ •• + q •• (s),q •• (s) + W •. (s)} and 0 •• is the Kronecker delta. 
, 1J 1J 1J 1J 1J 

Proof: 

Follows similar reasoning as in theorems 8.13 and 8.14. 

Theorems 8.13 to 8.15 offer a graphical interpretation, of the Jury-

Lee criterion, in terms of the characteristic loci, or Nyquist loci, of the 

linear part of the transfer function, Q(s). This approach differs from that 

11 used by Shankar and Atherton ,who employed the modified (Popov) polar 

plot. The usual Nyquist polar plot is preferable, as designers are more 

familiarwiihit.,to the medified plot., Also, theorems 8.13 and 8.14 are very 

flexible and tuning factors are incorporated to obtain less conservative 

results. The width of the bands depends very much on the structure of Q(s). 

For example, in theorem 8.14 if Q(s) is hllth noma1 and diagonal domhlant, 

then sharper results are likely to be obtained. 
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The "circle criterion" of theorem 8A can also be interpreted graphically 

as in theorems 8.13 to 8.15. As shown in equation (8.76), for expression 
I'H I' 

(8.4) to be positive real, it is required that S (s)S(s) - I > 0 where from 

equation (8.76), 

~(s) _ 2(A-1 _ B-1)-1(Q(s) + I(A- 1 + B- 1» 

Suppose A - diag (max{a.})- aI, B - diag (max{b.})- bI, then 
. J J 

I'H I' 

pes) - S (s)S(s) - I 

• eI(QH(s) + ~)eI(Q(s) + ~) - I 

• e2~I(;QH(s)Q(s) + ;QH(s)~ + Q(s) + (~ -e2;)I) 

• e2cpT2 (s) 

where a - 2/(l/a - lIb) is a positive constant, ~ • l(l/a + lib) is also 

" " positive and a - lie, ~ - 1/~. Since pes) - a2~T2(S), pes) is positive 

definite if T2(S) is also positive definite. Writing T2(S) as 

(8.10Sa) 

T2(S) • Q(s) + yI + (W(s) - yI) (8.10Sb) 
AH I'H ,. 

where W(s) • ~Q (s)Q(s) + ~Q (s)~ + (~ - a2~)I 

it is seen that equation (8.10Sb) is equivalent in form to equation (8.91). 

To work with the inverse loci, equation (8.80) can be used. 

" -1 " 
S(s) - 2(B - A) (Q(s) + I(A + B» (8.80) 

pes) "H " 
• S (s)S(s) - I 

"H" "H AA 
- £2LI (LQ (s)Q(s) + LQ (S)L + Q(s) + (L - £2L)I) 

• £2 LTl (s) 

where £ - 2/(b - a) is a positive constant, and, L - lea + b) is also positive, 
" A 

£ - 1/£ and L - IlL, resp. Writing TI(S) as 
" A " " 

- Q(s) + yI + (W(s) - yI) (8.10Se) 
"AH ~ " H " " 

- LQ (s)Q(s) + LQ (S)L + (L - £2L)I. " where W(s) 

equation (8.10Sc) is made equivalent to equation (8.90). Thus, 
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Theorem 8.16 

The system of figure S.l is asymptotically stable, i.s.L., in the sense 

of theorem 8A (expressions 8.4 and 8.6) if either theorems 8.14 or S.ls are 

" satisfied, with W(s) and W(s) given in equations (S.105b) and (S.l05c). 

Proof: 

Follows from theorems 8.14 and 8.15. (see also fig. 8.1(0) ) 

The above theorems .assume that Q(s) is real rational and holomorphic in 

n where n a Re (s) > O. 

8.3.2 Applications of reduced models 

In design, 'it is convenient to use a reduced model, Q (8) in place of r 

Q(s). The nonlinear block, N(t,y) is assumed intact. 
,.. ,.. ,.. 

Writing Q(s) - Qr(s) + Qe(s), Q(s) - Q (s) r + Q (s), e -_ equations (S.90) 

and (8.91) are modified as 
,.. ,.. 

" 
,.. 

" T1 (8) - Qr(S) + y.I + W(S) + Q (5) - y. I 
J e J 

T2(S) - Q (s) + y.I + W(s) + Q (s) - y. I r J e J 

Stability results of the original system S, of figure 8.1, can be 

represented by the reduced system S. Theorems 8.13 to 8.15 are modified , r 

appropriately in terms of Qr(s). 

Theorem 8.17 

(8.106) 

(8.107) 

Let ~rj(s) (resp Arj(S»be the characteristic loci of Qr(s) (resp Qr(s», 

and q •• (s), q •. (s) be elements of Q (s), Q (s) respectively. Then S is rl.J el.J r e 
absolutely stable if anyone of the following conditions is satisfied. 

(1) Re (\j (s) + y) > II'W(s) + Qe (5) - yI II inf ~(V(s» 

,.. ,.. ,.. " " 
- X, Vj, Vs - jw (8.108) e 

( resp. Re (Arj (s) + y) > IIW(s) + Qe (s) - yI II inf K(V(S» - X e ) 

(2) Re (q .. (5) + y) > X + ! Iq '. ~ (s) I Vj, 'tis - jw 
rJJ e ·ri· rl.J ,1 J 

(8.109) 

,.. ,.. 
" " (resp Re (q •. (s) + y) > X + 1: ,\q .~(s)l' ) 

• rJJ e .'j rl.· 1 '. 
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Re (A .(s) + y) > (~+2){M (s)}(m-l)/m{ L Iw .. (s) + q •. (s) - yo .. I}l/m 
, rJ r •• lJ elJ lJ l,J 

'. Z e , Vj, 'Vs - jw (8.110) 
,.. ,.. 

(resp Re(A .(s) + y) > (m+2){~ (s)} (m-l) Im{ l: I~ .. (s) 
,.. ,..,.. 11m 

+ q •• (s) - yo .. I} 
• rJ 

,.. 
• z ) e 

r .. lJ 1,J elJ lJ 

(4) Re (q .. (s) + y) > Z + l: Iq •• (5)1, Vj, Vs - jw (8.111) 
rJJ e '';' rlJ 1 J 

,.. ,.. 
" " (resp Re (q .. (5) + y) > z + l: Iq •• (s)1 ) . rJJ e '.r rlJ 1 J 

where M (s) - max' {Iyo .. + q .. (s)I,lq .. (a) + W .. (s11}, 
r lJ rlJ lJ lJ' 

A. A,.. A A-

M (s) - max' { I yo.. + q < •.• (s) I , I q .. (s) + W .. (s) 11 
r ,1J rlJ lJ lJ 

Proof: 

Follows directly from theorems 8.13 to 8.15 and considering equations 

(8.l06) and (8.107) in place of equations (8.90) and (8.91). (see also f'ig.8.7) 

Thus, when reduced models are used in stability investigations,the bounds 

are modified, by having the width of their bands increased accordingly. 

This is similar to the describing function synthesis method, using reduced 

models, discussed in section 8.2. 

8.3.3 Error estimates for dynamic response 

The dynamic response of the nonlinear system of figure 8.1 can be 

estimated using integral inequalities22 • Specifically, individual estimates 

can be made for the reduced,' system and original system. To determine the 

effectiveness of using reduced models, in the system, figure 8.1, the error 

Ilx(t) - x (t)1 I is estimated for all t ~ t. In state space form, the system r 0 

can be described by 

• 
S x • Ax + Bf(t,x) 

• xr1 - A x + B f(t,x) 
r1 rl r1 

vectors respectively. To make the dimensions of x and x equal, suppose that 
r 

(8.l11a) 

(8.l11b) 
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different reduced models, with state vectors, xrl ' xr2 ' xr3 ""'xrk, etc, 

are obtained for x, such that the response of xri is very close to some 

partitioned elements of the state vector x, i.e. Ilx ·1 I ~ I l(x.,x·+l ,x·+2,···)tl I. r1 J J J 

Equation (8.11lb) can be written as 

S 
r 

• 
X 

r • A x + B f(t,x) r r r 

where x - (x ,x , ••• ,x k)t is of' dimension '(n x 1), A - block diag r rl r2 r r 
{ } t t t t A 1,A 2, ••• ,A k ' B - (B 1,B , ••• ,B k)' The matrices A and A , Band B r r r r r r2 r r r 

are of equal dimensions respectively. From equations (S.lllb) and (S.llle), 

S e 
• x e - A x + B f(t,x ) e e e e 

h A A A B B B Th 1 · 21 f t' were • - - - ,x - x - x. . e so ut10n or equa 10n e r' ere r 

(8.l1ld) can be written as 

x (t) • yet ,t)x (t ) + f t
t Y(T,t)B f(T,X (T» dT e 0 e 0 e e o 

where Y(T,t) satisfies 

Y(T,t) - AY(T,t) , Y(T,T) • I 

Before expressing equation (8.ll1e), using integral estimates, in known 

parameters A , B , etc, it is assumed that x is defined and continuous over 
e e e 

t ) t and 
o 

Ilxell , H, a constant, 

liB f(t,x II ,p(t)llx II + Q(t)llx Ii a 
e e e e 

IIY(T,t)1I 'exp {f~Y(t) dt} , 

, a ) 0 

where pet), Q(t) and yet) are non-negative continuous functions on t > t • o 

(8.Ulc) 

(8.1Ud) 

(8.lue) 

The solution x for equation (8.l1ld) then satisfies the following estimate2l • e 

I x (t) II. , exp' {ftt (y. (t) + P(t» dtl{ Ilx (t ) I r~-a + (1 - a)R(t) }l/(l-a) 
e 1 1 e 0 1 o 

R(t) • J~ 9(t)exp{(a - l)f~ (Yi(t) + pet»~ dt} dt 
o 0 

for t > t , where for i-I, 2, 3, 
o 

(8.l11f) 
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'Yl • max'. {Re (a •• ) +.L la •• j} 
1 e11 j:/i e1J 

'Y2 - max'.{Re .(a •• ) + L la •• j} 
. J eJJ i;j e1J 

'Y3 • leA + AH) e e 

[Ix 111 - max. I x • I . e 1 e1 

. The significance of the estimate in equation (8.lllf) lies in its 

capability of giving estimates for the solutions in terms of given quantities, 

i.e. a •• of A and functions pet) and Q(t), all of which can be calculated e1J e 
at a given time t. --. 

If the reduced models are very accurate, then UXe II ~. 0, and the r.h.s. 

of expression (8.111£) should be very small. It can also be shown that 

expression (8.l1lf) gives the best estimate for x (t) in equation (8.llld). e . 

The initial solution x (t ) in expression (8.lllf) can be computed from e 0 

the following estimate. . 
Ilx (t )" , (H/M(t»{l - (1 - a)N(t)(H/M(t»a-1}1/(1-a) 

e 0 

where M(t) - exp {maxt I~ ('Y(t) + pet»~ dt} 
o 

N(t) - r; Q(T) exp {(ex - 1) J~ (Y(T) + peT»~ dT} dT 
o 0 

Expression (8.l11f) and (8.lllg) can be used to obtain numerical estimation 

for x (t) 'v't) t e J 0 

8.4 Model Reference Adaptive Control Systems (MRACS)16-l8 

B.4.l Reduced Models and Hyperstability Design 

Popov has proposed a hyperstability theoremS for the nonlinear system, 

(B.lllg) 

S, of figure 8.1, where this time the nonlinearity N(t,Y),is not slope restricted, 

but the input signal ti(t) is constrained to satisfy 
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<u(t),y(t»H '.011 x(o)1I supl! x(t) II 
m 

where H is the L~(O,TJ Hilbert space, 0 > 0 is a constant depending on 
m 

x(O) but independent of time T. Thus, 

Theorem B1' 

S is asymptotically hyperstable if 

(1) II x(t) II , k( II x(O)1I + 0) 

with lim x(t) = 0 for t ~ ~ 

(2) Q(s) is strictly positive real 

Theorem B.1 can be used to assess positive realness of Q(s) in terms 

(8.112) 

(8.113) 

(8.114) 

of Qr(s), but this is rather inconvenient in design. A graphical criterion 

is thus sought in terms of the familiar characteristic"l.oci and Nyquist polar 

, plots. 

Theorem 8.18 

Let Arj(S) be the usual characteristic loci of Qr(s), and assume 

Q(s) and Q (s) are real rational and holomorphic in the region n, (n6Re(s) > 0), r " 

and that the input/output constraints satisfy expression (8.112). Then S 

is asymptotically hyperstable if: 

(1) II x(t) II , k( 1\ x(O) II + 0) (8.115) 

and anyone of the following conditions be satisfied; 

(2) Re (Arj (s) + y) > II Q~ + Qe + Q! - yI II in£ ~(Vr (s» - Xe , Vj, 'tis - jw (8.116) 

(3) 

( resp Re (X . (8) + y") > I QH + Q + Q"'H - y'" I II in£ K(V (s» • i ) 
• ,rJ U r e ere 

Re(A .(s) + y) ;> (m+2){M (s)}(m-l)/m{ L Iq .. (s) + q* .. (s) 
, rJ r . . elJ rlJ 

1,J 

.+ q* .. (s) - yo .. l}l/m - Z 
e~ ~ e 

( resp'Re (X .(s) + ~) > (m+2){~ (s)}(m-l)/m{ I: I ~ .. (s) + q"* •• (s) 
• 'rJ r i' elJ ,J . rlJ 

" "" 1 1m " + q* •• (s) ~ yo .. \} • Z , \fj, 'Is· jw ) 
e1J lJ e 

(8.117) 

I~ 
I 
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(4) Re (q .• (s) + y) > Y + 1: I q .• (s) I , \/j , Vs - jw 
rJJ e' . ..1. rl.J 

.1.TJ 

'" '" '" '" ) (resp. Re (q •. (s) + y) > y + 1: I q .• (s) I 
rJJ e .';. rl.J 

1 J 

"" " '" '" where Y - X or Y - Z (resp. Y . - X or Y - Ze)' Vr(s) diagonalizes 
e e e e e fa e 

o (s), Q (s) - Q(s) - Q (s), q*." .. q .• (-s), etc; cS ••. is the Kronecker 
'r e r r1J rJl. 1J 

delta, and, M (s) - max {Iq •• (s) + yc5 •• I,lq •. (s)+ q~.(s)n, r rl.J 1J lJ lJ 
A '" A '" A 

M (s) - max'{lq .. (s) +yc5 •• I,lq .• (s) + q~.(s)n. 
r nJ lJ lJ lJ 

Proof: 

Condition (1) is equation (8.113) of theorem 81. 

Conditions (2) to (4) ensure that Q(s) + QH(s) > 0 in terms of the 

structural elements of Qr(s). These conditions are a consequence of theorems 

8.13 to 8.17 that are proved earlier. Hyperstability of S follows by 

(8.118) 

theorem'81. (see also fig.8.1(a) to 8.1(0) for similar graphical interpretations) 

In the above y,y are suitable complex numbers (tuning factors) incorporated 

to adjust bandwidth. Thus, graphically, to test that Q(s) is positive real, 

it is required that the band Re (A .(s) + y) + Y exp (j~), or Re (q •. (s) + y) 
rJ' e rJ.J 

.. {y + t Iq •• (s)l}exp(j~), ~E{O,21T};must lie to the right of the vertical 
e i,lj rlJ 

line passing through the point (-Re (y),O). 

8.4.2 Reduced models and MRACS 

Other than designing mu1tivariable systems, by frequency response or 

optimal control methods, it is sometimes convenient to design them by 

MOdel Reference Adaptive Control (MRAC) approach. The MRAC method is basically, 

to design a self adaptive controller to stabilize the dynamic characteristics 

of a feedback control system, under conditions of environmental disturbance 

and plant parameter changes. Many forms of MRAC design methods:exist l6 ; the 

common ones being: (1) Lyapunov design method, (2) Hyperstability design 

m~thod,l8,' (3) Least square error method, and (4) Generalized s~uare error 

technique with parameter optimization. The purpose of this se~tion.is to 

examine two important methods, viz, Hyperstability arid Lyapunov method, with 
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reduced models in design. 

Figure 8.8(a) shows' a typical MRAC structure, with reference model, 

adjustable model and plant. The purpose of the adaptation mechanism is to 

update the nonlinear time dependent gains following a change in output error, 

such that some performance index is minimized. 

The reference model is characterized by 

• (8.119) x - Ax +Bu. m m m m 

Ym - Cx m 

and the adjustable model by 

• x - A (t)x + B (t) u 
s s s s (8.120) 

Ys - Cx s '-. 
and the error by 

e • x - x m (8.121) 

Equations (8.119) to (8.121) give 

• 
e • A e + (A - A (t»x + (B - B (t»u m m ss m s (8.122) 

and a linear compensator, D, which generates the vector v is constructed 

as 

v • De (8.123) 

Hyperstabi1ity design is composed of separating equation (8.122) into 

the linear and nonlinear parts. Equations (8.122) and (8.123) can now be 

written as 

• e • A e - W m (8.124) 

v • De 

where 

-w • (A - A (t»x + (B - B (t»u m. ssm s 

is defined as a function of v(t,t). 

w - . {ft ~(v(t),t) dt - A + A (O)}y + {ft ~(v(t),t) dt - B + B (O)}u 
o • m s 0 m s 

(8.125) 

I~ 
I 
I 

... 
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Equation (8.125) defines the nonlinear part N(t,y) in figure 8.1. 

'h' b'l' d' • 8,18 '" ,', In order to satisfy Popov s ypersta 1 lty'con ltlon ~ and 0/ must be 

chosen such that 

'<v (t, T) , W> H' ~ . :Y~ -y ~ s up II x (T) I I 
m 

Y ) 0, 0 , T , t 
o 

where H is the L~(O,t] Hilbert space and m is the number of inputs or 
m 

outputs of the system. Particular solutions for ~ and $, sltisfying 

equation (8.126) are 

A (t) • ~(v(t),t) • Rvyt 
s 

Bs(t) - $(v(t),t) - ivut 

(8.126) 

(8.127) 

where Rand R are positive definite. The system, equation (8.124) is hyperstable 

with respect to equation (8.125) if there exist positive constants 0 and y 

such that any solution of the system satisfies 

II x ( t ) II < 0 (II x (0 )11 + y), 't t ~ 0, 15 > 0, y ) 0 (8.128) 

To obtain asymptotic hyperstability (lim x(t) • 0 as t ~ ~), D should be 

designed such that the linear transfer function matrix Q(s) • D(s! - A )-1 
m 

is strictly positive real, i.e. 

Q(s) + QH(s) > 0 (8.129) 

19 By the Kalman-Yocubovitch-Popov (KYP) lemma suppose SeA ,I,D) is m 

a minimal realization of Q(s), and if Q(s) is positive real, th~matices 

P, K and L satisfy 

KtK • 0 

PA + Atp • LLt 
m m 

P + KtL t • D 

(8.130) 

Now, suppos.e in design, reduced models A and A (t) are' used in place rm rS 

of A and A (t). m s 
The crucial question is; under what conditions is the 

original system SeA ,A (t» m s stable, when the reduced system S (A ,A (t» is r rm rs 

I~ 
,I 
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hyperstable? For simplicity, it is assumed that the nonlinear partS of S 

and S satisfy the Popov hyperstability conditions. The remaining . r 

condition for stability is that Qr(s) and Q(s) must be positive real. 

From the KYP lemma, equation (8.130), stability can also be assessed 

bv the I.Vapunov method, ~based on the stability of S , theorem 5.25. 
r . 

Proposition 8.1 

The original MRACS will be hyperstable given the reduced MRACS is 

hyperstable if.. theorems 8.18 or 5.25 be satisfied 

Proof: 

Requires Q(s) to be positive real 

Other than using hyperstability approach, the Lyapunov method can also 

be used. From equation (8.122), choose a tyapunov fun~tion V in terms of 

e and the difference between the parameters 

v • 
t . t-l 

e Pe + tr (A - A (t» - Rl (A - A (t» m s m s 

from which 

• 
V· • et(Atp « »t t -1· 

m + PA )e + 2 tr A - A t (Pey - Rl A ,(t» m m s s 
t t -1. 

+ 2tr (B - B (t» (Peu - R B (t» 
m s s s 

To assure the stability of the system it is sufficient that the first 

term is negative definite and the second and third terms vanish. This 

requires 

A~ + PA --Q m m 

where Q > 0, and the adaptation law is chosen as 

A (t) • R (Pe)yt 
S 1 

B (t) • R (Pe)u
t 

S s 

Proposition 8.2 

In MRACS design, using Lyapunov synthesis, Sand S will be stable if 
r 

theorem 5.24 is satisfied. 

I 
/. 
I 
I 
I 

(8.131) 

(8.132) 

(8.133) 

(8.134) 
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Propf: 

Given in theorem 5.24. 

17 An attractive feature of MRACS is Model Following Adaptive systems , 

MFAS. Here, the dynamics of the plant are made to follow the dynamics of 

a reference model in the presence of adaptive mechanisms and parameter 

changes. As opposed to MRACS, the reference model plays a more prominent 

role in MFAS. The essential features of MFAS are simple control laws and 

strong stability characteristics. Typical set-ups of MFAS are shown in 

figures S.S(b) and a.S(c), called parameter adaptation and signal synthesis, 

adaptation. 

A linear model following system (LMFS) can be described by17 

• 
x m • Ax +Bu m m mm 

- Ax +Bu 
P P P P 

- -K x + K x + K u 
ppm m u 

'-. 

(S.135) 

where the plant and model state vectors, x and x , are of equal dimensions. 
p m 

• • The Erzberger conditions for perfect model following, where x - x • 0, 
,In P 

(1 - B B+)B - 0 ppm 

(I - B B+)(A - A) • 0 ppm p 

where B+ is the pseudo inverse of B. For the model following adaptive 
p p 

system, with parameter adaptation, the plant input can be written as 

(figure S.S(b», 

u • -K (t,e)x + K (t,e)u + K x 
P P P u m mm 

where K (t,e), K (t,e) can be further written as, 
p u 

Kp (t,e) • .K - 6.K (t,e) p p 

K (t,e) • K + 6.K (t,e) u u u 

(S.136) 

(8.137) 

(8.138) 

1-
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The plant input can be written as 

u - u + u 
P PI P2 

where • -K x + K x + K u pp mm um 

- ~K (t,e)x + ~ (t,e)u p p u m 

The input u is the contribution of the adaptive loop. The adaptive p2 

mechanism is decomposed into a linear time invariant part, 

e - x - x m p 

v - De 

and a nonlinear part which generates ~K (t,e) and ~K (t,e) as a function of 
p u 

v. Equations (8.135) and (8.140) give 

• e - (A -B K )e + B WI m p m p 
0-

v • De 

where 

-WI • 
+ ' . 

(~ (t,e) - B (A - A ) + K - K )x p pm p m pp 

+ + (~ (t,e) - B B + K )u 
° u pm.um 

The nonlinear part is designed in accordance to hyperstability conditions, 

i.e. 

(8.139) 

(8.140) 

(8.141) 

(8.142) 

<v(t),W(t»H) -y~, Vt) 0 (8.143) I 
n 

where H is the n-dimensional Hilbert ~pace L~(O,t] and n is the order of 
n 

the system. Particular choices for ~K (t,e), ~K (t~e) such that equation up. 
(8.143) is satisfied~are, 

~ (t,v) • It Lv(Qx )t 
po, p 

dT + Lv(Qx )t + ~ (0) 
p p 

~ (t.v) - It ~(Ru )t dT + Mv(Ru )t + ~ (0) 
u 0 m m u 

where L, Q, M, R are positive definite, and, L, M are positive, or non-

negative,definite. The linear part 

(8.144) 
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-1 
• D(s! - A + B K) B m p m p~ 

must be positive real, for the system to be asymptotic hyperstab1e. By 

the KYP lemma, matrices P and H satisfy 

(A - B K )tp + peA - B K) • -H m pm m pm 

D • 

Now suppose reduced models A are used in the design. 
rm 

Proposition 8.3 

(8.145) 

(8.146) 

In a LMFS des1gnwith parameter adaptation, the original system S, will 

be hyperstable if the linear part of S "satisfies theorems 8.18 or 5.25, 
r 

assuming the nonlinear parts of Sand S satisfy equation (8.143). 
r 

Proof: 

Requires G(s) to be positive real. 

Conclusions 

The stability bounds expressed in this chapter, for design of multivariable 

nonlinear systems, using reduced modesls, are closely related to those for 

linear multivariable systems, given in Chapters 5 and 6. The nonlinear 

elements above are either sector restricted, functionally approximated or 

bounded by integral constraints. The bounds imposed on the linear part of 

the system are thus" a natural consequence of those developed in prece' ding 

chapters. 

Stability bounds are also derived for the original mu1tivariable systems, 

using describing functions, the Jury Lee criterion and the circle criterion. 

These bounds are easily modified, with bandwidth widened, when reduced 

models are used. 

As in linear multivariable systems, computer aided graphics"are 

indispensable for the evaluation of these bounds in design work. The linear 

parts of the system can thus be designed, using the methods described in 

Chapter 6, bearing in mind the constraints imposed by the nonlinear parts. 
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CHAPTER IX 

APPLICATION OF REDUCTION TECHNIQUES TO CONTRUL SYSTEMS DESIGN 

-'A CASE STUDY OF AN INDUSTRIAL BOILER 

Introduction . 

This chapter is concerned with a case study of an industrial boiler 

11 model. The linear model, given in state space form ,is thirty third 

order, and, has five inputs and four outputs. From these the transfer 

function of the model was obtained, and, manipulated into various forms, 

using algorithmic methods, to meet the requirements of different applications. 

Such a model was chosen, because, firstly, it is of very high order, hence 

strengthening the necessity of using reduction techniques and making their 

applications meaningful, and, secondly, it represents a prac·tical example 

from a 'real life' process. 

The purpose of this chapter is to make a comparison among existing 

reduction techniques and to investigate the effectiveness of using reduced 

models, in relation to them, in control systems design. The main interest 

is to study the advantages and effects of using such models in design, 

rather, than on obtaining particular control strategies13 or emphasizing 

on design sophistication. The latter area is believed to be too broad to 

be restricted to a single case study. Instead, attention will be focused 

on the areas of model adequacy, overall system stability and performance 

deterioration, studied analytically in Chapters V and VI. 

S •. d· h· 1":8 h· h h d 1 d orne eXlstlng re uetlon tee nlques ,toget er Wlt t ose eve ope 

in Chapters III and IV were applied individually to obtain lower order models. 

Two different design approaches were considered. The first is the linear 

optimal regulator design method in the time domain9, and, the second is the 

. fo Inverse Ny~uist Array design method in ~he frequency domaln • These two 

design philoaophies were used since they are contrasting, hence, different 

controllers, designed using different models, would be expected. In addition, .. 
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they would provide logical conclusions on using reduced models,with respect 

to their reduction techniques, in different design methods. 

PART I - Comparison of reduction techniques 

9.1 The boiler model and its transfer function 

The system considered here, is a mathematical model of a 200 MWatt 

d • •. Th kll system generator, use 1n a power stat10n 1n West uroc • The unit is 

comprised of firing and coal preparation system, air supply system, 

combustion gases supply system, steam circuit systems, superheaters, 

attemperators and reheater systems. It is a :oal fired installation with 

a rated load capacity of 1.35 x 106 lb/hr and is of the natural circulation 

radiant type. At full load, the system conditions are 2450 p.s.i.g. pressure 

and 10500F temperature at the turbine throttle with 10000F reheat. 

The boiler has four outputs, which are, water level, t, outlet 

temperature, T • outlet pressure, P ,outlet reheat temperature, T and, 
S1 S1 SlO' 

four inputs, which are, feed (372.5 lb/sec), spray (2.482 lb/sec), fuel 

(50.64 lb/sec), damper (0.04, as a fraction), and, steam (375 lb/sec) 

is considered as a disturbance input. The input and output vectors are thus; 

t t 
CUI, U2, U3, u~, us) - (steam, feed, spray, fuel, damper) 

The schematic diagrams' of the boiler and its control loops are shown 

. in figures 9.1(a) and 9.I(b). 

11 The linearized model, obtained by Marshall ,represented in state 

space form is, 

(9.1) 

y • [I~x33: o]x 
• 



Rad s/H 

Riser , 

LP 

?R/H 
..-.--+-~:; 

Primary s/H 

Die. DOWncomer 
s/H - Superheater 
R/H - Radiant heater 
HP. High Pressure 
LP. Lov Pressure 

Simplified Arrangement of Boiler 

Fig.9.1(b) Boiler vith Control Loops attached 

123 

feed va ve 

Dam~ 

C - Controller 
1 = super heater temperature 
2 = super heater pressure 
, - steam demand 
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where {A, B, C} are given in Table 9A. The system matrix, A, is of order 

(33 x 33) and rank 32. This is due to the presence of a zero vector in 

the first column of A, associated with the water level state, 1. 

From equation (9.1) the transfer function matrix is, 

GCs) 
• [ (ar2(sI - A22)-IB2 + bh/s] 

• (I : 0) 
"x33 • (sI _ Au) -IB2 

(9.2) 

where an arbitrary state is included to obtain a square (5 x 5) G(s). 

Due to the high order of the model, special numerical techniques 

must be used to obtain an accurate transfer function. 

The normal Faddeevalg6rithmlS , 

n n-l 
(s - hIS - ••• h s - h )1 n-l n - + ••• C s + C )(sI --A22) 

n-2 n-l 

C 
n 

• I, ~ - tr (ACk_
1
)/k 

c.., = A Col_I - "A. I • 
- 0 

"-. 

and in this case, the reverse Faddeevalgorithm15 , 

... t IS - t )1 n- n -
where h • det A22 ~ 0 n 

h n-k - -t h Ck k n' • 
-1 

h T k A22, k n n- -~ 

. .. 

- 1, 2, ••• n-1 

-1 
were used to evaluate (sl - A22 ) in equation (9.2). Use of the reverse 

algorithm is necessary, as the forward algorithm will give erroneous 

coefficients (contaminated' by rounding errors) .of the higher powers of s. 

With the reverse algorithm, accurate coefficients of higher powers of s 

will be obtained, while the lower power coefficients will be contaminated 

(9.3) 

(9.4) 

by rounding errors. It was found that, using the above algorithms, the two 

sets of coefficients ,overlapped reasonably well midway, and, values were 

taken from the accurate ends of the polynomials. Bosley, et aI, used the 

same numerical technique15, and obtained good results for v:ry high order 

models • 

The Fadde~ algorithm evaluates G(s) in the form 
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G(s) -
where C. is an (n x n) matrix, n, the order of the system. G(s) can 

1 

also be expressed in partial fraction form as 

G(s) n m / k - B + r r C' k (s + p.) 
n i-I k-1 1 1 - K./(s + p.) 

1 1 

as there are no repeated eigenvalues in A. In equation (9.10) K is the 

residual matrix corresponding to the pole p. and complex poles and 
1 

residues occur in conjugat"e pairs. By using" the basic 'cover up rule' a 

computer program was written to evaluate G(s) in equation (9.10). It 

is also desirable to find the zeros of G(s). The zeros can be evaluated 

by finding the roots of the numerator polynomial of each g .. (s), \f ... 
lJ lJ 

This was converted into an 'eigenvalue problem' by finding the eigenvalues 

(9.5) 

(9.10) 

of the corresponding companion matrix. The procedure was repeated for every 

g •• (s). 
1) 

i.e. g •• (8) 
1J -

Alternatively the zeros of G(s) were found from the state space 

• S (A B C)' h d d D" 16 equations " USing a met 0 ue to aVison • A transformation 

z • Tx 

where 

o In- k 

(9.11) 

h t. h h f . (1) d h f d were c is t e rt row 0 C, was used on equation 9. , an , t e trans orme 
r 

. equation was converted into an 'eigenvalue problem' by solving 

det (A - sI) - 0 (9.12) 

where 
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0 .2707£-oS, 0. 1418£-02, 0 . 3964, 0.644£02, 0 .6208£04 , 
0.2172E09, 0 . 2443&10 , 0 . 173£11, 0 . 7667£11, 0 .20S4E13, 
0 ·.1348EI3, · 0.1295EI3, 0.9604£12, 0.5473E12 , 0.2405£12 , 
0.4192EIO, 0.6224£09, 06804E08, 0.S341E07, 0. 291SE06 , 
0.3083£01 , 0 . 168E-<lI , 0.0 

0 . 0, -o.3S46£-o8, -o.2497£-<l5, -<l.735E-03, -<l.129.3, -<l.1666£O2 , 
-<l . 164I£04 , -<l.I1ISE06, -<l.4752E07 , -o.12S8£09 , -o.2139E10 , -<l.2353Ell, 
-<l. 133rEI2, - 0 . 1412EI4, 0 . S677£16 , -o.71S8EI3 , -<l . 6702EI3, -<l.70IEI3 , -<l.S281E13, 
-0.29IEl3, -0.1112£13, -0. 3417£12, -0.706£11 , -0. 9953£10 , -o.8941E09 , -0.4406£08, 
-0.629£06 , 0 . 3366£OS , 0. 1429E04 , 0 . 1542£02, 0.0, 0.0, 0. 0 

eU CI ) 

0.0, -0.1732£-09, -0.1778£-06, -0 . 7684&-04 , -0. I 838E-ol , -0.2692£01, 
-<l . 2475£03, -0 . 1419£OS, -<l.S03E06 , -<l. 1109£O8, -<l.IS8IE09 , -<l.ISI7EIO, 
-0.9235£10, -o . 4221E12 , 0 . 1646£1S , 0 .4 146El4 , -0.178£13, -0·. 114£13, -o . 1288E13, 
-<l.1096E13 , -<l . 719SEI2 , -<l. 364 2£12 , -<l . 1418E12, -<l . 422Ell, -<l.9508£10, 
-0.1599EIO , -<l . 1968£09 , -<l.I72SE08, -0.1039£07, -<l.4106£Ot, -0.9996£03, 

.-0.1346£02 , -o.761SE-01 

C
42 

(0) 

0 .0, 0 . 6863£-11 , 0.2154E-08, 0.2819E-06, 0 .2139£-<l4, 0.1125E-<l2, 0 . 4427£-01, 
0.1239E01 , 0 . 1905£02, -0 . 4818£02, -0. 8405£04 , -0. 2895£05 , -o . 5132EQ8, 0.1961£11 , 
-0.75'9£13, -0.5244£08 , -o.8146E08 , -o.7828m., -o.S106E08, -0.2246£08. 
-0.6SS7E07, -<l.1233£0 7, -<l. 14ISE06, -<l.9004E04 , -<l. 2647E03, -<l. 27SEDI, -<l.139IE-<l5 , 
0 .0, 0 .0, 0.0, 0.0, 0.0, 0 . 0 

e
43 

(a) 

0.0, -<l.2638E-09 , -0.2529£-06 , -o.995SE-04 , -0 . 2069£-01 , -<l.1504EOI, 
-0.1873E03, -<l . 9E04 , -<l.286E06, -<l.610IE07, -<l.88£O8, -<l.8634£09 , -<l.6658£IO, 
0.357 2E12 , -<l.1832£ IS , -<l.1497 £12, -<l . 3903£12 , -o.495E12 , -<l.4633£12, 
:-O.3193EI2, -<l .1 619E12 , -<l.6019£I1 , -<l. 1631£I1 , -<l.3187EIO, -<l . 4422E09 , 
-C.42S7E08 , -<l. 2752E07, -<l.114SE06 , -<l. 289.2.E04 , -o. 3997E02 , -0 . 2305, 0 ,0, 0 .0 

C
44 

( I) 

0.0 , 0.1708£-08 , 0. 1781!,--05, 0.7675£-03 . 0.1813. 0.2586E02, 0.228&04 , 
0.1231£06 , 0. 4£0 7, 0.777£08 , 0.9396£09 , 0 .7411£10, 0 . 3164£11, 0 . 3S24£13, 
-<l . 149EI6, 0,1214£13, 0. 1064£13, 0.116£13 , 0.9505£12 , 0 . 594£12, 0 . 2841£12 , 
0.1039 £12 , 0.2899E11 , 0.6122£10, 0 . 9677£09 , 0 . 1126E09, 0.94 13£07 , 0 .546SE06 , 
0.2102F.oS, 0.5024£03, 0. 6677£01 , 0 ,3744£-01 , 0 , 0 

CU h) 
0.0, -<l.2018E-07, - 0 .2064E-04 , -0.8682£-02 , -<l. 195EOI , -0 . 2524£03 , 

-<l . 19.37EOS , -0.8973£06 , -<l.2S4IE08 , -0.4472£09 , ~,SOS£10 , -0 . 3794111, 
-<l.141 4E12, -<l . 2289E14, 0 . 9S17£16, -<l. 318IEI3 , -o . 4S44F.13, -o.4635!13 , 
-o.3S35ElJ, -<l.2018ElJ, -o.8612E12, 10.273S£12, -o.64 I S£U , -o. 1098Ell , 
-o, 13S£10 , -0,1165£09 , -0,6859£07 , . -o.Z644E06 , -0.6294£04, -0.8313£02, -0.4631, 
0 , 0, 0.0 

C
ZI 
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0.0 , -0.1 399£-09 , -0. 1568£-06 , -0.7142E-04, -O . I7I n-OI, -0.2377EOI , 
-0.1968E03 , - 0 . 9809£04 , - O.281.ohF.06 . -O.4hA2E01, -O.4 001f.08 , -O.1l0l0E09, 
0.1529 £10, -o . 1554 E12, 0.7476E1 /" -0.6458£ 14 . 0.2137[\3. 0.1072EI3, 0.1323El3, 
0 . 12L2F.13, 0 . 88 3K12 , 0.47671:12. 0.19 53~: I2, 0.6042£11 , 0 .1 401£11 , 0. 2402E IO, 
0.2994 E09 , 0.2644E08 , 0.1599E01 , 0.6331£05 , 0.1~43E04 , 0 . 2079l02, 0.11 7. 

C
22 

(.) 

0.0 , 0 . 9441£-11 , 0.5777£-08 , 0 . 1265£-OS, 0.1399 E-03, 0.9 491£- 02 , 0 . 4709 , 
0. 1756E02 , 0.40HE03, 0.217Sf.04 , -c . I ) 18f.06 , -<l. 2746£07, -0.4937£08, 0 . 6485£10, 
-0. 240IH3 , 0 .1693EII , -<l.3509E IO, - ".3545EIO, -o . 2954EIO, -<l . 1755EI0 . 
-0 . 7459£09 , -L.22SE09 , -<l.4734E08 . -<l.6732£07 , -<l.614E06 , -<l.3274E05, -0.8627£03 , 
-o . 8408EO I , 0.0, 0 . 0 , 0 . 0 , 0 . 0 , 0. 0 

C23 (·) 

0.0 , -<l.3678E-<l9, -<l.464 2E-06 , -<l.246E-03 , -<l.7 1£-<lI , -<l. 1218E02 , 
-0.1289£04, -o.8537E05 , -0.3572£0 7, -0 . 94 83£08 , -0.1612El 0, -<l.1795Ell, 
-<l . 135IEI2, -<l . 4955E12 , -0.9736£14, 0 . 3S14£15, -o . 2175EI4 , -<l.1932EI4 , 
-0.2146£14 , -<l.179EI4 , -<l.1l38f.14, -<l.S526EI3, -0. 2046E I 3, -<l .57S 7El2 , -<l .IZZ2El2 , 
-o . 19 )4E II , -<l . 7.245EIO , -o . 1864E09, -0.1011£08, -o.4073E06 , -<l . 9626£04 , . 
-o . 1267E03, -<l .7048 

C
24 

( . ) 

0.0,0.1319: -08, 0.IS05E-<l5, 0.697£-<l3 . 0.1707,0 . 2426£02, 0.2081£04 , 
0 . 1081E06 , 0.34 28£0 1, 0.649£08, O.76 5E09 , 0.S864 £IO , 0.2611tl1 , 0.1647£13, 
-0. 6802£15, 0.7002£12 , 0. 6923E12, 0 . 7103EI2, 0.5455£12, 0 . 3177EI2 , 0.1408£12, 
0.474 8Ell, 0.1215EII , 0.2344EIO , 0 . 3376E09, 0 . 357SE08, 0.2124E07 , 0.145E06, 
0.S161£04 , 0.1l59E03 , 0 . 1465EOI , 0.7887£-<l2, 0.0 

CH (I ) 

0.0, -o,8514E-08, -0.1843£-05, -0 . 2845£-02, -0.5382, -o . S872£02 , 
-o.3869E04, -<l . IS78E06 , -0 . 4032£07, -<l.6S02E08 , -<l.673IE09 . -<l.4602£I O, 
0.2942EIO , -<l.9903£13, 0.4232EI6 , 0 . 2371£12 , -<l.816SEIO, 0 . 139E12 , 0.20481:12, 
0.1659£12,0.87)2£ 11 , 0.3115E11 , 0.7551£10 , 0 . 1216£10 , 0 . 1236£09 , 0.7084E01, 
0.1657E06 , -<l. 1856E04 , -0 . 1493£03, -<l.1804EOI, 0 . 0, 0.0,0.0 

e
3l 

( . ) 

0.0, -<l . 3S42E-09 , -<l.4938E-06 , -<l . 2844E-03 , -<l.8755£-oI, -<l . 1583£02 , 
-o.1743E04 , -<l . 1l82E06 , -<l.4972E07, -<l.1304E09, -0.2159£10, -0.231£11 , 
-0.164£12, -O.IOOIE13, 0 . 8574EI4, 0 . 368E15, -<l. 2136£14 , -o . 1728E14, -<l. 185E14 , 
-<l.1503EI4 , -o.9432E13 , -o.457E13, -<l. 1705E I3, -o.481 2E12 , -<l.1055£12, 
-0.171£11 , -<l.2034ElO, -<l.173E09, -<l.1016£08 , -<l.3934E06, -<l. 9438£04 , -<l.1257E03 , 
-<l.7053 

C32 (1) 

0.0, -<l. 6762£-IO, -o.8127E-<l7, -<l . 3692£-<l4, -<l . 8S93£-<l2 , -<l. 1l 2SEOI , 
-<l.839 £02 , -<l.3362E04 , -0.563EOS , 0.299 E06 , 0.2244£08 , 0.3119£09 , 0.214£10, 
0. 2972£11, -<l.8014£13, -o.74 27Ell , 0.6485£11, 0.586 8£11, 0.4081£11 , 0.2079£11, 
0. 7756EIO, 0 . 2096£10 , 0.4022£09 , 0.S306£08 , 0.45S8E01, 0.2323E06, 0 . 5947E04, 
0.5696£02 , 0.0 , 0.0 , 0.0, 0.0 , 0. 0 

C
33

CI) 

0 . 0, 0 . 3IS6E-09 , 0.4736E-06, 0.2766£-03 , 0 . 851£-01 , 0.1531E02 , 0.1674E04 , 
0.1126£06, 0.4671E07, 0.1206£09 , 0.1494£10 , 0 . 2016Ell , 0 . 1365E12 , 0 . 764S£I1 , 
-<l.1I2I EI4, 0 . 3544£15, -<l.1337£13, O. 79E13, 0.6111E13, 0.3205E13, 0.856£12 , 
-o.154EI2 , -0 . 2676£12 , -<l.1342£12, -o.407 8EII, -0.833£10, -o.II7lUO, 
-<l.1l27£O9, -<l.7245£O7 , -o. 2995E06, -<l . 7S25£04, -<l. 1036£03, -<l.59S4 

l'JJIlZ iC , 
33 

rca ) . t J:i(o+Pt1, "b .. r" ~ l& tb. tulduo matr!" at tlla 1'01. ""i 
i -I 

-<l.213£-o3 0.213£-<l3 0 . 213£-<l3 -<l .1 2S£-06 0. 204£-06 

0. 0 0.0 0 . 0 0.0 0 . 0 
0 .0 0 .0 0 .0 0 .0 0. 0 re81dua matrb of 
0 .0 0 . 0 0.0 0 .0 0.0 1/(1-0 .0) 

-O.804E-07 -0. 923£-06 -0.126£-06 0 .3!2£-<l7 -0.173£-05 
0.3 36£-07 0 . 386£-07 0 . 527£-07 -0.13£-07 0.723E-<l6 residua mltrtz of 
-0.217£-06 -<l.2SE-OS -<l. 341 £-07 0.842E-07 -o.46 7E-<lS 1/(0-0. 391£02) 
0.854E-11 0.98IE-IO 0.134£-10 -o.331E-11 0 . 184£-09 

0.107£-13 0.688£-1 7 0.152£-13 -0 . 34S£-<l8 -<l.717£-<l7 
-0.933£-11 -o.S99£-14 -0.132£-10 0 . 30IE-05 0.625£-<l4 red.due ... ttla: of 
0.69£-10 0.443E-13 0 . 971£-10 -o.222E-04 -0. 462E-<l3 1/ (a-o . 427m2) 
-o. 207E-14 -0.133E-17 -<l . 293£-14 0.668£-<l9 0. 139£-<l7 

0.S09£-06 -0. 382£-<l8 0 .706£-06 -o . 143£-<l7 0.616£-07 
0.354£-03 -0. 266£-05 0 . '91£-03 -0.995£-05 0.428 £-04 r •• tdue ma~'I'{Jl of 
-0 . 233£-02 0. 167£-04 -0.309£-02 0.627£-04 -0.27£-03 11<&-0.256£02 ) 
0.232£-06 -<l.174l-<l8 0,322£-06 -o , 6S3E-<l8 O,281E-<l7 

0 . 187£-17 0.139£-18 0 . 24E-17 -<l.483E-12 -<l.477E-ll 
0.489E-IS 0 . 363E-16 0 .627E-IS -<l . 126E-Q9 -0. I 25E-<l8 re.idue .. tria 01 
-<l.132£-14 -0.98E-16 -<l . 169E-14 0.34E-<l9 0.336£-08 1/(a+O.282E02) 
-<l.54£-lS -<l. 40IE-16 -<l.69 2E-1S 0.139E-<l9 0.138E-<l8 

-<l.4'6E-05 -<l.42[-<l7 -<l. 688£-05 0.281[-06 O.12E-04 
0 . 69 3E-oZ 0 . 639£-04 O.IOSE-<ll 0.427E-<l3 -0. I 82£-<l1 re.idue .. tria of 
-0.364£-01 -0.336£-03 -0.549£-01 -o.225[-<l2 0.958£-01 !/(I +O . 809tol) 
0 . 105E-03 0 . 964E-06 0. 158E-<l3 0 . 645&-05 -<l.2"E-<l3 

-<l.63IE-ll 0.593E-14 0.78SE-11 -0.8S9E-<l7 -0.163£-11 
-<l.U8E-07 0.139E-09 0.184 £-06 -<l.201£-<l2 -0. 381E-07 .... ldue utri a of 
0.714£-06 -0.67E-09 -<l.887E-06 0.971£-02 0 . 184£-06 l/(a-o . 653£01) 
-0.129E-05 0 .121£-08. 0 .16E-<lS -0.1 76E-ol 10.333E-06 

-0.553E-l0 -0.166£-13 -o.167E-10 0.2IE-<l8 0.2S7£-09 
0.961£-07 0.288E-IO 0 . 289 E-<l7 -<l.365E-<lS -<l . 446E-06 r .. ldul .. trL. ofl -0 , 386£-06 -0. 116E-09 -o,116E-06 0 , 146£-04· 0 .1 79E-05 1/ ( I -o,472tOl) 
-o.S42£-01 -0. 163E-04 -<l.163E-ol 0 .206£01 0.252 

-o,818E-09 0.91£-12 0. 778E- 09 -0. 499E-<l5 -o.602E--D9 
0.157£-oS -0. 174E-<l8 -O.149£-oS 0.956[ -02 0.IISE-05 rulduo .. tria of 
-o.481£-OS 0.535r.-o8 0.4S7E-<l5 -o. 29 3E-oI -<l. 354£-<l5 l/(x-o.469E01) 
-0,341£-03 0,38£-06 0 .325E-03 -0.208£-<l1 -O,2SIE-<l3 

0. U7E-08 0 . 777£-11 - 0,816£-08 0 .266£-04 -<l.277E-03 
-O.1I1E-05 0.202£-<l8 0.212£-OS -0.69IE-02 0.719£-<l1 r .. iduo ... trla of 
0.398£-OS ..o,725E-<l8 -o.761E-oS 0 . 248£-01 -0.258 I/CI+O.411£Ol ) 
0,61£-05 -o.1l3£-<l7 -<l. 1l8£-<l4 0.386E-<l1 -<l. 402 
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0 . llIE-06 -{).269f. -05 -0.182£-0. -0.2~)f.-04 0.762£-{)4 
0.717£-<l6 -{) .148E-04 -0.998E-06 -0.161 £-0) 0 .4 18r.-o3 
0 . 22t:-04 -O . 453E-o) -o.307E-04 -o.49 4E-02 0.12 8£-01 
O. :;62E-07 -O.745E-06 -o . 504E-07 -o.811r.-o5 0.211£-04 

0.648£-04 0.496£-04 -0.719£-04 0.111£-03 0.625[-02 
-0.224£-05 0 . 65£-04 0.2 4£-05 0.12£-03 0.188£-02 
-{).362£-04 0. 666£-02 0 . 311E-04 0 . 118F.-o l 0.207 
0 .7GE-06 0.221£-05 -0.845£-06 0.155£-05 0.124£-03 

0 .913E-05 0 . 652E-05 -O.IOIE-04 -0.164£-04 0.865£-03 
-0 . 825£-07 0.868£-05 0.798£-07 0 . 154E-04 0.267E-03 
0. 183£-04 0 . 89£-03 · -0 . 215£-04 0.15£-02 0.293£-01 
0. 113E-06 0. 294E-06 -0.125£-06 O.I71E-06 0 . 174£-04 

0. 822£-03 -0.233E-03 -0.668£-03 0. 165£-02- -0 . 858£-03 
0. 242£-04 -0.685£-05 -0.256£-04 0.481£-04 -0.25)£-04 
0. 448£-02 -{).127E-02 -0 . 473£-02 0. 902£-02 -0 . 468£-02 
0. 6:1£-06 -0 . 176£-06 -0 . 655£-06 0.125£-OS -0.648£-06 

0. Z89£-04 0 . 364£-06 -0.286£-04 .0. 156£-03 O. US£-o3 
0 .171£-03 0 . 216£-05 -0 . 11£-03 -0.926&-03 0 . 151£-02 
0 .146£-02 0.184£-04 -0. 145E-02 -o.79E-02. 0.129£-01 
-{). 159£-04 -0.201£-06 0 . 158£-04 0.862£-04 -0.141£-03 

0 .J.<9E-04 0.482£-06 0.345E-{)4 0 . 183£-03 -0.449£-03 
-o .105E-02 -{).15E-04 0 . 107E-02 0 . 57£-02 -0.139£-01 
-0.342£-02 -0.472£-04 0 . 338£-02 0.18£-01 -0.44£-01 
0 .835£-04 0 .115£-05 -0.826£-04 -0 . 439£-03 0.107£-02 

-0. 123£-07 -0.605£-09 -0 . 225£-06 0.363£-06 0 . 434£-06 
-{). 396£-o5 -0.194£-06 -0 . 723£-04 0.116£-03 0.139£-01 
0. 133£-05 0.653£-07 0.24 3£-94 -0.392£-04 -0.469£-02 
-0.125£-03 -0 . 611£-05 -0. 228E-02 0.367E-02 0 . 439 

0. 109£-03 -0 . 554£-05 -o.987E-04 -0. 553E-03 0.ll9£-o3 
0 . 441E-02 -0.225£-03 -0 . 401£-02 -0 . 225£-01 0.565£-02 
- 0. 146£-01 0 . 746E-03 0.133£-01 0.744E-ol -0.187£-01 
-0. 443E-02 0.226E-03 0.403E-02 0 . 226E-Ol -0. 568£-02 

0. 206£-05 -0. 462E-05 0 . 252E-04 0.35SE-04 -o.3Z8£-o3 
- 0 .376£-02 0.554£-05 -0.403£-02 0 . 216£-01 0.215 
-0.469£-03 0.S45E-03 -o.322£-oZ -0. 289E-oZ 0 .517&-01 
0. 427&-02 0 . 943£-03 -0 . 142£-03 -0.343£-01 -0 . 201 

0 .374£-07 -0.196&-07 0.138E-06 -0 . 141&-{)7 -o. 303£-{)5 
-0.197[-04 -0 . 173&-05 -0.123&-04 0.13IE-03 0 . 104&-02 
-0.561£-05 0 . 221£-05 -0.17£-04 0.956E-05 0.421 £-03 
0.16U-04 0.62£-05 -0 .129£-04 -0 . 161&-03 -0 . 679£-03 

-0 . 267£-04 0. 253£-04 -0.724£-04 0 . 809£-04 -0 . 231&-02 
0 .827E-03 -0.785£-03 0.225£-02 -o.251E-02 0.716&-01 
0 .391£-02 -0. 371£-OZ 0.106E-Ol -0.119£-01 0.338 
0 .0«£-02 -0.336£-02 0. 961E-oZ -0. 107&-01 0 . 306 

0. 195£-04 -0 . 698£-05 0 .368£-04 -0. 149£-03 0.212£-02 
-{).285£-o2 0.102£-02 -0.565&-02 0.219&-01 -0.311 
-0.329£-02 0.118E-02 -0.653£-02 0. 253£-01 -0.36 
-{). 613£-o2 0. 22&-02 -0.122£-01 0.471-01 -0.669 

TWZ 9D 1 

lIumerator •• ro .. of e1...,l1tl of CCI } (cl0 •• Ipproximattol1) 

Cu (I) 

residue matrix of 
1/ CI<O. 333) 

re..i~ue IMtria: of 
I/Ca <0.272 •• 

0.184E-ol) 

re.i~ue. matrix of 
I/C •• 0.2721. 
0.184E-ol) 

residue matrix of 
1/ CI<O . 926£-(1 ) 

re.idue matris of 
1/ (1<0. 223£-(1 ) 

re.idue. matrix of 
1/ (1<0.163£-01) 

relidue matrix of 
1/ (1<0. 946E-02) 

re.ldue matrix of 
I/CI<O.736£-o2) 

r~8i~ue. matrix of 
1 / (1 <0.969£-021. 

0 .26£-(4) 

re..i~ue matru of 
I/(1 +O.969&-OZI. 

0.26£-(4) 

relidut. matrix of 
1/(I<O.28Z&-o2) 

r&lidu .. IIItru of 
1/ (0<0. 223£-02) 

0 .0, -4.627 , -1. 147 , - 1 . 295 , -0.006632 , -1.7Z1, 0.041S9, -0.1203 , 
-0. 4699 , -0.1428, -24.82, -2.123. -0.7636, 0.007292 . -3.999 . -0. 8932 . 
-0. 3274, -39 . 5 , 0 .1674 , -0 . 003802 . -5 . 732, -0.6055 , - 1.529, -0 . 00295 1, 
-0.00693 , -0.04 , - 3.822 , -42.52 

C
12

(o) 

0 . 0 , 0 . 5982, - 0 . 04045, -41 . 94 , -4.035 , -202.2; -3.611. -0.693 . 
-3 , 723 , -2 . 79 , -1.39 1, -18.63. -1 . 943 , -4.848, -11 . 59 , -4 . 645, -o.736S, 
-2.705 , -6.446 , -0 . 512, -29.39 , -1.992, -0.03421, -0.009386, -0.003443, 

- -0. 003996, -0.002109, -0.03907, -0.2419, -0. 1521, -1.254 , -0.01 

C
13

(I) 

0 .0, -42.64 , -4.045 , -0 . 0756 , -0. 0083, - 1.358 , -0.4924 , -0.1075 , 
-3 . 054 , -28.16, -0 . 1332, -25.21, -0.414 , -0 . 004372. -4 . 654 , -1.423 , 
-0.3265 , -41.7', -6.411, -0. 6078. -0 . 008998 , 1.149, -0.5061, -0. 1307 , 
-o. 00429S, -1.203, - 1.267 , -0.0005168 

014 (I ) 
38 . 46, -4.328, -0.3336 , -0 . 005112, -24 . 93 . -9.3 , -1.663, -0.03262, 

-24 .93 , -4 . 715, -0 . 8222 , -35.66, - 3 . 503 . -o.82Z2 . -0.005962. -35 .66 , -3.503, 
-1 .027, -0.1438, -28 . 42, - 1.823 . -0.9 7, -0 . 007306 , -6.826, -1.823 , 
-0.00756 1, -26.14, -1 . 844 , -0 . 128 . -0. 004255 

°15 (1) 
-6 . 645 , -0 . 9839. -0.1384 , -{).007463 . -10.37. -4.715, -0 . 9839, 38 . 63, 

-6 . 526, -1.05 , -{) . 02095, -62.32. -4.687, -0 . 4818, -0.01937. -27.65 , -2.312, 
-1.303, -0.01937 , -42.78. -2 . 312, -1.303. -0.01937, -42.78 , -2.312 . 
-0'.001043, -25.43, -1.674, -0.3334 , 0.006097 , -5.261, -0.9839, -0.003448 

0-
11 

(I) 

0. 0 , -41 . 99 , -3.133 , -0 . 05767, -{).01068, -4 . 877, -0.0008048, -{).1079 , 
-3 . 146, -27.73 , -5.732, -0.04645, -11.62, -1.309 , -0.5209. -0.337, - 15.9, 
- 1 .788, -1.412 , -0.1161 , -4 . ~17, -6.247 , -0.9868, -0.005218. -39.27 , 
-0. 8835, 0.1407, -0.008794 , -5.732, -1.085 , -1.268, 0 . 002051 

°22 (1) . 
0 .0 , -0.1514. -0.19 , -0.007068 , 1.7 , -0.779. -0.138, -4.327. -1.675 , 

-5.114 , -0.9935 , -0.03359, -3.723, 0.003218, -0.3243, -0.002639, -1.548 . 
-4 . 73 , -0.09487, - 11. 59 , -7. 156. 0.02442, -0 . 0298 . -3.153. -3.916, -1.281 . 
-0.005783 

°23 (1) 
. 0 . 0, -42.66 , -1 . 799, - 1. b .... -0.003291 , -0.6409, -0.602 , -0 . 1071, 

-0.01131 , -28.13,-5 . 215 . -o.12U , -6.969. -1.152. -0.8428 . -0 . 3541, -24 . 43 , 
-0.4153, -0.006946. 0.01769 . -3.322, -4 . 038, -4.717 . -0.008976. -39.23. 
0.2443. -1 .281, -0.02989 . -5.961. -5.887 . -0.03291. -0.004448 

C
24 

(I ) 

0.0 , -34.97 , -4 . 833 . -0.02846. -0.006325. -3.317. -4 . 4, -0.3368. 
-25.12 . -1.308 . -0.02242 . -6.404, -2.666. -0. 2897 , -0.1247, -28.02 . -7 . 387 , 
-0.9438 , -0.1046, -7.339, -4.393. -1.702. -0.009932, -2.485. -0.3592 . 
0 . 0239. -0 . 00674, -4.124, 0.9273 , -0.8378, -0.00358 

C2S CJ) 
0.0 . -1.329 , -0 . 1232, -0.005688 , -7.61 , -0.3304. -4 . 111, -23.52 , 

-{). 9202 , -0.03417 , -42.67 , 0.007 853 . -o.GH8 . "".02286, -28.18. -0.6187 , 
-0.0873, -0.06715, -l. 147, -l . l76. -0.03157, -25.79 , -4 . 611, -0.7003 . 
-0.001617 . -19.02 , -o.5b53. -1.314 , -o.02~H , 

-0. 176E-03 
-0 . 379E-{)1 
0.115 
0 .51, 4£-02 

0.266£-03 
0.144 
-0.65 
-o.)24E-02 

0.546[-03 

0.271£-06 
0.583E-0l0 
-0.177£-03 
-0 . 838£-05 

-o.616E-06 
0.139£-03 
0.IS6E-02 
-0.101£-03 

Tablo 9C 

-0 . 569£-03 
-0.122 
0 . 373 
0.176£-01 

0 . 368£-03 
-0.556 
-0.981 
0.168 

-o.31E-04 

111 

-0.3665-04 
-0 . 787£-02 
O.23QE-OI 
0.11)£-02 

0 . 166E-04 
0.563£-02 
-o.411E-01 
0.572£-03 

0 . 307-04 

0.8J2E-03 
0.179 
-0.545 
-0.258£-01 

-o .273 E-03 
-0.122 
0 .671 
-0.261£-02 

-o.534E-03 

re.idue m.1.td:r of 
1/( •• 0.344EOl) 

resi~ue matrix of 
1/( •• 51.6 . 53) 

0.176 
-0.773&-06 
0.125&-02 
0 . 207£-02 
-0.373£-03 

-0 . 241£01 -0 . 853£-03 -o.901E-Ol· re.i~ue matrix of 
-0.135£0 1 
0 . 207£-01 

-o.769E-01 0.133£01 I/(1 .50.6.53) 
0.362£-02 -0 . 392£-01 

-0 . 184 
0 . 548 

-0 . 351£-(8 0 .243£-10 -0.259&-01 0.151£-08 0. 652E-ol 
-0.211£-05 0.146£-07 -0. 156E-04 0 . 909£-06 0.392£-04 re.sidue matrix of 
-0.255£-05 0 . 177£-07 -0. 189E-04 0.l1E-05 0.474£-04 1/1<0.167£01) 
-0.224£-01 0.1 55£-03 -0. 165 0.964E-02 0.416 

-0.988£-06 -0. 173E-06 0 . 541&-05 -0.154£-03 -0. 638E-De 
-0 . 672£-03 -0.118£-03 0.368£-02 -0.105 -0 . 434 residue 1It.J.triJ: of 
-0.186£-02 -0.326£-03 0 . 102£-01 -0.29 -o.12EOI 1/(0+0.141£01) 
-0.244£-0) -0.427£-04 0 . 136£-02 -0. 38E-ol -{) .1 58 

0 . 601£-05 0.982E-07 -0 . 205£-04 -0 . 928E-04 0.188£-03 
0.767£-02 0 . 125£-03 -o.262E-01 -0.118 0.241 residue m.1trix of 
0 . 445£-01 0.728E-03 -0.152 -0 . 688 0.14[01 1/(1<0.115£01) 
0. 129£-02 0.211£-04 -0.44£-02 -0.199£-01 0.405E-ol 

0.579£-08 0 .238£-09 -0. 256E-07 0.273£-03 0.343£-06 
0.454£-05 0.186£-06 -0 . 2£-04 0.214 0.269E-03 residue matrix of 
0 . 199£-04 
0 .496E-06 

0 . 936 0 . 118E-02 1/(I<O . I)EO l) 
0.234£-01 0.294E-04 

0.815£-06 -0. 876£-04 
0. 203£-07 -0 . 219E-05 

0 .408£-04 -0. 248£-04 -0.932£-04 0.196E-03 -o . 975E-03 
0 . 233£-04 -0 . 141£-04 -0 . 531£-04 0.112£-03 -0.556£-03 residue matrix of 
-0. 1£-02 0 . 603£-03 0.2Z8£-o2 -o.401E-02 0.239E-ol 1/ CI<O.844) 
0.228£-05 -0. 138E-05 -0.521£-05 0 . 11£-04 . -o.54 5£-Dr 

-0.135£-03 -0.421£-04 0 . 138E-03 0 . 802£-03 0.141£-02 
0 . 317£-02 
-o.433E-01 

-0.353&-02 0.123 re.~due matrix of 
0.255 0.431 S/ ( •• 1.271 +0.406) 

-0.531£-03 -o.9E-02 
-0.133£-01 0. 45E-OI 

0.391£-03 -0.213£-04 -0.942£-03 -0.88£-03 0 . 106£-01 

-0. 14&-03 -0. 323£-04 0.186£-03 0.717E-03 0.304E-04 
0.313£-03 
-0.444 £-01 
0.125£-03 

0.438£-02 0.604E-<>1 rl.~idue IIl.Hrtx of 
0 . 227 0.883E-ol 1/ CI .1.271+0.406) 
-o.77£-<l4 0 . 548£-<>2 

-0.522£-03 -0.267£-<>2 
-o.102E-01 0.593E-ol 
-o.pIE-<l4 -0.379£-<>3 

-0.767£-03 0.49£-04 0 . 101£-01 -0.198£-02 -o.522E-02 
-0. 364£-02 0 . 232&-03 0 . 477E-02 -0. 94£-02 -o.248E-01 r ... idu. tll4tru of 
-0. 118 0.752£-02 0 .155 -0.304 -0.803 1/1+0.321) 
-{). lSa-03 0 .116&-04 0.238£-03 -0.468£-03 -0. 123£-02 

___ _ ~blo 9~ ~ 

0.0 , -28 . 35 , -1.541. -0.3308 . -0.03008 . -1.934, -3.908. -4.702, 
-1.296. -41.13 . 0.1027. -0.0494. -4.08 , 2.085 . -1.626 , -0.046, -2.253. 
- 22 .66, -0.7845, -0.1485, -0.06227. -7.55, -0.03506 . -0 . 01368. -41 . H, 
-2.302, -0.676 , -0.017, -6 . 501, -4.88. -0.707 , -0.006303 

032 CI ) 

0 . 0, -3.388 , -4.154. -0.2338. -0.009999, 0.708£-08. - 1. 308, -1.327. 
-1.453, 1 .758, -0.3247. -0. 005903, - 1. 281. 0 . 001692. -3 . 385, -4 . 283. 
-0.07821, -3.723 , -4.21 , -0.6834 , -0 . 007821 , 0.7147 , -0. 4092 , -{) . 009878 , 
-6.567 t -0.752. -0. 002475 

C
33

(1) 

0.0, -41 . 96, -1 . 406, -0.1038, -0 . 003288 . 2 . 171, -1.382. -0.1717. 
-0.224$, -28.04 , -0.5893. -0.08877, -11.62, -1.559. -4.812. -0.3312. -15.9, 
-6.447 , 0.1543, -0. 1272, -4.217, -0.6175 . -1.33 .. , -0.006425 . -39.27 , 
-4.448 , -0.7635 , -0 . 003844, -5 . 732, -4 .052, -1.251 , -{).0126 

034 (I) 

0. 0 . -4.124 . 1 . 25, -o.043S8, -0.005773 , -34 . . 51, -4.336 , -0 . 8507 , ' 
-3.236,0.06665 , -0.1064, -39 . 12, -24 . 86. -1.632. -0.03109. -6.404,-4 . 453, 
-0.781. -0 . 05351, -28.02, -6.474, -0.1641, -o.0337S , -7.339 , -0.7308, 
-1.634, -0.0162, -2.485 . -5.708 . -0 . 3204 , 0.003022 

°35 (1) 

0 . 0 , -19 . 37, -6.503 , - 1. 272 , -0.004666. 0 .7081£-08. -0.4031. -1.399, 
-0.06363 . -1.453, -6 . 324, -0.1388 , -0.0487 , -4.111, -0.05335, -0.0592 , 
-3.301 , -4.684. -0.1298 , -2.517 , -0 . 5513. -0.01371 . -2.147 , -0.2463 , 
-{) . 8996 , -0.008908. -0.2891, -0 . 2987 , -0.02512 

°41 (I) 

0.0, -39 . 27, -2.61 7. -0.1509 , -0.004263. -1.427 , -5.732. -5.695, 
-0.02621 , -2. 185. -42.0. -0.6025 , -0.09574. -1.34, -0.396. -0.1212. -3.262. 
-2.8 . 01, -1.297, -0.3161 , -1l.J7, -1.194, -o~8224. -0.04038, -15.9, -6.862, 
-0. 08139 , 0.001603. -4.217 , -0.2528 , -1.284, -0.01068 

°42 (I) 

0.0 , -1.286 , -0.01164, -1.42~ , -5.413 , -3.916 , -0 . 402. 2.36 , -0 . 1514 . 
0.07835, -4 . 021 . 0.5549 . -0.779. -0.03303. ~.327 . -0.005451. -3.74, -0.9932, 
-0. 01987, -3 . 723 , -0 . 5644, -0.3251, -0.04782 , -1. 155, 0 .0101, -{).002929 

°43 (1 ) 

0.0, -5 . 702 , -{).02B45. -0.003977 , -1.427 , -5.961 . 0.06283. -0 . 1039. 
-42 . 29 , - 1.8, -0.1296, - 1.019. -5 . 202. -0.31<73, -3.253 , -28.12, -0.6174 . 
0 .01152 , -13 . 46, -1. 151, -0. 8427. -0.02709 . -14.47 . -4.077, -0.008727, 
-0 "~13, -88.69 , -<>.3765 , -1.285 , 0.002551 

C4• ',I . 
0.0, -2 . 48.2, -3.036. -0.7223. -0.005116. -4.125. ~.9125. -0.05946, 

-46.45 , -3 . 59S. -0.3307, -4.021, 5.4 43 . -1 . 332. -0.09587. -39.12, -Z2.ll. 
-0. 2619. -0.1193. -6.404, -11 .34. -1.189. -0.02516. -28 . 02 . 1.805. . 
-0 . 3799, 0.00162, -7 . 338 . -0. 7031. -o.123Z , -0.01117 

0.0 . -2 . 529 , -7.742, -1.298. -0.009371, -31.64. 0 .04545. -0.04073, 
-8.281. -4.181, -0. 3246. -6.773. -0.351. -0.1079, -4.111, -3.337. -1.125, 
-0.1311 , -42.67, -25.61, -0.09794, -0.003452 . -28. 18 , -0.2659 , -0 . 8006, 
-0.02847 , -2 . 141, -1 . 348. 0.05331 , -0.0002369 

i 
I 
'. 
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rbl ... a In 

a k ' ••• a n, +1 nn 

The zeros of G(s) are the eigenvalues of A as r~. Various values of 

r ranging from 10 8 to 10 20 were tried, and, it was found that the same 

spurious roots vary over a large range while the numerator zeros remain 

sensibly constant. 

The transfer function, G(s), represented by equations (9 •. 5), (9.10) 

and the numerator zeros are given in tables 9B to 9D. 

The time response of the model was computed from 

x{(k + l)T} • ~(T)x(kT) + ~(T)u(kT) 

y{(k + l)T} - Cx{(k + l)T} 

~(T) and ~(T) were obtained recursively as 

~(t) • exp (At) , , then ~(2kt) • ~(kt)~(kt) 

k - I, 2, • e .• and repeating n times, ~(T) is obtained • 
co 

(9.13) 

6.'(t) - fa exp [A(t - 't)] d't • A-I: [~(T) - r] • t E Antn/(n + l)! 
n-o 

then 6.' (2kt) - A-I [~(2kt) - I] - ~, (kT) [~(kt) + Il, k - 1, 2 •••• 

and rep~ating n times, 6.'(T) is obtained. Finally, 6.(T) • 6.'(T)B. 

ihe above procedure was employed to overcome initial overflow of 

machine, as T was chosen reasonably large (10 seconds), since the boiler 

has large time constants, to speed up computation. The time response of 

the boiler is shown in figures 9.2(a) and 9.2(b), following ~ 1% step 

increment to each input,with the other inputs kept constant. 
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9.2 Application of reduction techniques to obtain lower·order models 

• 1-8 Eight existing reduction techm.ques plus i:two reduction techniques 

17 proposed by the author were applied to the reduction of the 33rd order 

boiler model. In view of design, the order of the reduced models was kept 

as low as possible, in most cases a second order model was found to be 

both practical and feasible. Obtaining higher order models (say greater 

than tenth order) would be of little value, although, this may be a good 

exercise, to compare the accu~acies and effectiveness of different reduction 

techniques. Thus, to facilitate design, stable second order models, where 

possible, were used. 

Only two input - two output reduced models were obtained from the five 

input - five output higher order model. The corresponding input-output 

vectors are: for 1st model; u
t 

• (~feed ' Wspray)' yt • (1, Ts7)' 
t . t 

2nd model; u • (Wfuel ' Wdamp) ,y • (PS7 ' TslO )' 

Out of the ten reduction techniques, five were chosen from the time 

domain and the other five from the complex or frequency domain. From the 

time domain were those of: (1) Wilsonl , (s) Mitra2, (3) Marshal13, 

(4) Anderson
4

, and, (5) sequential approximation, given in Chapter IV. 

The metho~chosen from the frequency domain were those of: (6) Chen and Shieh5 , 

(7) Sinha and Pille6, (8) Riggs and Edgar7, (9) modified Levy's method8, 

and, (10) harmonic synthesis, given in Chapter III. 

The computational algorithm of the above methods are briefly given 

below. The theory of the methods are outlined in Chapter II, and, 'can also 

be found in the relevant papers. 

9.2.1 Time domain methods 

(1) Wilson's reduction methodl 

Given SeA, B, C) and cost functional, 

J • r: <e(t), Q..e(t» dt • trace (PS) • trace (RM} 
o 

E[u(t)ut(t)] - N~(t - s) (9.14) 



-------

with 

Ftp + ptF + M = 0 

FR + RFt + s· • 0 

where 

F • [: :J 
[R:I RUJ R • 

Ru Ru 

S (A ,B C ) is r r r r given by 

A - al A8 2 r 

Br - alB 

Cr - C82 

where el 
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[CtC 
-CtC 

r 

[P:1 

Pu 

-ctc, J 
CtC 

r r 

Pul 
pu· 

--. 

(9.15) 

(9.16) 

BNB~ ] . 

B NBt 
r r 

,(9.17) 

(9.18) 

(9.19) 

(i) Choose a canonical structure for.Ar (egcompanion form) with a 

fixed set of eigenvalues. 

(ii) Choose initial matrix B(l)with pair (A , B(l» controllable. r r r 
(iii) Solve equation (9.16) for R, and, compute C(l) from equation (9.19). 

. r . 

(iv) Use pair (A , c(l~) and $Q1ve.equaticn (9.lS) for P. 
r r· . 

(v) Solve equation (9.18) for B(2) using P. 
r 

(vi) Go to step (iii) and solve C(2) from pair (A , B(2» r r r 

(vii) Continue until a pair (A , B(i» yields a pair C(i), and, also the r r r 
pair (A , c(i» yields the same B(i). The. triple (Ar,B(i), c(i» 

r r r r r 

is thus obtained, with cost, J, remaining constant. -

(viii) Update eigenvalues of A using a minimization routine (i.e. hi11c1imbing) r 

(ix) If optimum obtained, exit,- otherwise go to step (ii). 

The model~ obtained are: 

I = (W W ) 0 t t nput - feed' spray' u pu - (R" T ) s 
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[ -7 

-00:28 ] 

_ [00323 000206 ] -1: A = B 
r r 7.431 -215.0 

[00011;6 -So 7SSE-OS] 
c = r -0.131 -3.6l7E-07 

Input - (Wf l' Wd ), Output - (P s 7' Ts 1 0) ue amp 

Co 0 22:SE-02 

-fl02S:SE-02 ] 

['00401 1 o 322E-03] 
A - . Br • r 0.198 1.371E~0·3 

c • r [ 

0.561 

0.l38E-03 

. -0.6557 ] 

-3. 73E-04 

(2) Mitra's reduction method2
, algorithm 

Given SeA, B, C) and 

W • r: exp {A(oo - t)}BR-
I
B

t exp {At(oo - t)} dt 

t -1 t 
(i) SeNe for W, AW + WA + BR B • 0 

(ii) Consider m smallest eigenvalues of W, i.e. • •• A-m 

Where n - m is the order of the reduced model. From (n x m) 

(9.20) 

matrix U ~ {Ul, U2, .... ... u } where u. is the eigenvector associated m 1 

with the eigenvalue A .• 
1 

Use Gra~Schmidt procedure to construct orthogonal matrix 

T A {th t2, t } from U, . 
• • • l.e • m 

r-l 
. t . <t

k
, ur>tk s - u -r r k-1 

tr • srI II sr II , with SI • Ult r· 1, ••• m 

(iii) Form projection matrix, P • I - T(TtW-
1T)-ITt W-l 

,.. 

Compute A • PA • ~12 ] 

Au 
B • PB • 

(9.21) 

(9.22) 
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(iv) Solve non-trivial solutions of equation. 

(Tt W-1T)-lT t W- lx - 0 

(v) Let any (n - m) independent solutions of x form columns of matrix, F. 

F - [Fll] 
F21 

where det Fll ~ 0 is required 

det (CF) ~ 0 is assumed 

(vi) Compute S (A , B , C·) from r r r r 
_lA _lA -1 

A • (CF)(FllAlIFll + FIIA12F21) (CF) r 

.-. 
The reduced models are: 

Input = (Wfeed , W ), Output -spray 

[-11.26 5.63] _. [-3.706E-02 
A - xlO B • r -16.89 8.445 J .r 

-1.667 

C • [: :] r 

[ -0.7732 2.358] _, _ . [0.04385 
A - xlO B r -0.1179 0.2879 ' r 0.0104 

C • [~ :] r 

(9.24) 

16.49 ] 

-23.62 

61.35 ] 

9.322 

Both Wilson and Mitra's methods require the solution of the Lyapunov 

equation, 

Atp '" PA _ -Q (9.25) 



- 272 -

Many methods of solution to equation (9.25) are possible such 

as eigenvector and state transition matrix methods. However, due to the 

size of the A matrix, those methods are uneconomical. An iterative 

scheme18, with fast convergence was employed to solve equation (9:25). 

If A is a stability matrix, then 

a • 
(I + At) (I _ At)-l 

is a convergent matrix. 

Equation (9.26) transforms (9.25) into . 

P - apat • M 

with M -
. t 

lea + I)Q(a + I) 

Equation (9.27) can be written as 

(I - 'lI)P • M 

such that P • 
-1 2 

(I - '1') M - (I + '1' + '1' + ••• )M 

The infinite series in equation (9.29) converges, if a converges, 

(9.26) 

(9.27) 

(9.28) 

(9.29) 

i.e. if A is a stability matrix. Further, if A., ~. are the eigenvalues 
1 1 

of a and A respectively, then by equation (9.26) 

A
1
• • (1 + ~.)/(1 - ~.) 

1 1 
(9.30) 

showing the convergence of P in equation (9.29) is fastest when 1',;. • -1 
1 

and slowest for I~.I very small or very large. The following modification, 
1 

suggested by Smith19 , speeds up the convergence of equation (9.29). 

Expanding equation (9.28), 

M • 
t t I(Q + aQ + Qa + aQa ) 

and sUDstituting into equation (9.29) yields 

P • T - lQ + l(aT + (aT)t) 

(9.31) 

(9.32) 
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(9.33) 

Equation (9.33) can be summed by the recursive relation until 

convergence occurs. 

Set T1 • Q 
« 

then T2 • Tl + aTla
t 

T3 • T2 + a 2T2(at )2 
• 
• 

Tk +1 • T + ajT (at)j 
k k 

(9.34) 

where j • 

In the above, the system matrix A is singular, and to convert A into 

a stability matrix, the last element in the zero column vector of A was 
16 . -10 

slightly perturbed in the negative direction • i.e. from 0.0 to -O.~ x 10 • 

The algorithms of equations (9.32) to (9.34) solved p. in equation (9.25), 

very effectively, with the new 'value' of A. 

(3) Marshall's reduction method~ algorithm 

(i) Rearrange state equation-i • Ax + Bu such that eigenvalues A. of A 
1. 

associated with state x. are in order of increasing moduli, 
1. 

~. , ~2 , ••• A • 
1. n 

(ii) Obtain modal matrix U, and its inverse V, of A. 

U • 
U2], V _ 
U .. 

A . [AI 0.] . VAU 
o A2 

(iii) Partitioned A and B as 

A2] , B • 

Ait 
(n-m) (n-m) 

V2] , UV 
V .. 

[ 

BI ]mxR. 
B2 (n-m)xt 

• I 
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A complex matrix, U - W + jX whose inverse Y + jZ is obtained as 

follows 

(W + j X)(Y + j Z) - I 

Le. WY - XZ - I 

XY + WZ - 0 

from which 
. . -1 -1 . -1 

Z - (X(W + X) (W - X) - W) X(W + X) (9.35) 

Y - (W +X)-l(I - (W - X)Z) (9.36) 

-1 where X(W + X) (W - X) - Wand (W + X) are nonsingular if (W + jX) is 

nonsingular. If some of the A. are real,then X is singular, or, if some 1 __ 

A. exist in complex conjugate pairs, then W is singular, but W + X is 
1 

not singular for both cases. Hence a real matrix inversion subroutine is 

required to obtain Z and Y. 

The reduced models are: 

Input - (Wfeed ' Wspray)' Output - (1, TS7 ) 

A -r [

0.1655 

0.331 

-0.2483J 
xlO- 2 

B -
-0.4965 ' r 

Input (Wfue1 ' Wdamp), Output -

b
3•665 0.27851 -3 

A • x10 B 
r -0.8356 -2.342 ,r 

• 

[

0.2013 

0.1342 

-406.1] -5 
xlO 

:"492.1 . 

[

0.1303 39.17] 

=0.9037 413.1 
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(4) Anderson's reduction method; alsorithm 

(i) From S(A,B) compute ,.x{(k + l)T} - ~(T)x(kT) + ~(T)u(kT) 

t 
C 

q 

• 

-
where x{r) is the qth element of the vector, x(r), comprising of the 

q 

first r elements of x, and, ~ .• , ~ .• are elements of ~ (T), ~ (T) 
lJ lJ r r 

respectively. 

(ii) Form (k + l)x(r + 1) matrix, M .. • •• mr , m l' ••• m n) r+ . r+~ I 

where m~ • 
J 

t 
m. • J 

det (MtM) ; 0 

(x~r)(O), x~r)(T), ••• x~r)(kT», ~l<j<r 
J J . J 

(u.(O), u.(T), ••• u.(kT», Vr<j<1-
J J J 

where 1 is the number of inputs, and, k the number of sampling points. 

(iii) Form Grammian. G • (SI, g2, ••• gr' Sr+l' ••• gr+m) 'where 

t g • 
J 

• «ml, m.>, <mz. m.>, 
J J 

. .. <m n' m.» Vl<j<r 
r+~ J' 

t 
gr+J· •. (~mlt m . >. <m2t m . > •••• <m n' m . » Vr<j<1 

r~ r~ ~~ r~' 

(iv) Compute vt 
«b. ml>, <b • m2>' ••• <b ,m n» for q .. I, ••• r q q q r+~ -

ci • det (81, g2, ••• gi-l' v, Si+1' .··gr+1)/det(gl' g2, ••• 

(v) Form vector dt • (Clt C2 •••• C n) q r+~ 

(vi) Set q • q+l, and go to step (iv) 

(vii) Compute{~ (T).~ (T)} .. 
r r (I + X)Y • 

co 

(viii) Obtain A r 
.. (l/T)1n(I + X) - (1 IT) 1: 

n-1 

co 

i • 1, 

(_l)n-lXn In 

provided IA.ex)1 < 1. Vi 
1 

••• 

( 
l 

gr+t 

r+t 
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S (A , B , C ) : Input - (W
f 

d; W ), Output : (1, T ) r r r r ee spray s 7 

[ -2.681 0.8936] _. [ 2.479 196.0] _. 
A - xlO B - xlO r -1.34 0.4468 r 0.292 -36.27 

C -e :] r 

Input - (Wfue1 ' Wd ), Output - (Ps7' T
S1O

) amp 

A - xlO B -r 
[-5.715 

-5.8 . 

1.74] _. 

0.665 r 
[ 0.1225 

0.08682 

0
6•978 ] 

68.86 

C - [:. :] r 

(5) Sequential approximation method of chapter I~algorithm 

(i) Choose a canonical fom£c:rr A 
r 

(ii) For SCAt B. C), S (A • B • C ). considering each input and output r r r r 

separately, 

• 1.e. 

Yl.(kT) - <c., V(kT)b.>u.(kT) 
l . J J. 

yl.(kT) - <c ., V (kT)b .>u.(kT) 
rJ r rJ J 

<c ., V (T)b .> - yeT) 
rJ r rJ 

<c ., V (2T)b.> • y(2T) rJ r rJ 

• 
• 
• 
<c •• V (kT)b.> • y(kT) . rJ r rJ. 

from which 

b • 
rJ 

+ 
- M q (9.37) 
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(iii) 
t 

<b ., V (T)c.> = yeT) 
rJ r rJ 

<b ., Vt (2T)C.> - y(2T) 
rJ ,r rJ 

• 
• 
• 

t <b ., V (kT)c .> - y(kT) 
rJ r rJ 

from which 

c. -rJ 
N+q (9.38) 

(ivj Use pair (b ., c .) 'iteratively, till II b(~) - b(~+l)11 = ° 
rJ rJ rJ rJ 

d II (i) (i+l) II an c. - c . 
rJ rJ = ° 

(v) Set j - j+l, till j - m, and go to step (ii) till matrix pair (Br , ~r) 

is obtained. 
'.-.. 

(vi) MOdify A , if necessary and go to step (i) till suitable S (A , B , C ) r r r r r 

is obtained. 

S (A , B , C ) : Input _ r r r r (W W ), Output = feed, spray 

A 
r 

C 
r 

-

-
Input 

A -r 

. ° ] 
-0.002~35 

B 
r 

[ 0.432 327.9 ] _, 
x10 

0.03196 0.6643 . 

- (Wf l' Wd ), Output ue amp 

[ -0.:235 

[

5610.0, 

1. 38 

.0 ] ' x10- 2 

-0.2815 

-6557.0] _It 
x10 

-3.73 

-

-

B 

[

0.03891 

0.00146 

-164.2 ] 

0.3574 

(P 87' T
SIO

) 

[0.3198 -1.157Et04 ] -r 0.2061 -3. 956E+03 
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9!2.2 Frequency Domain Methods 

In frequency domain methods, the transfer function G (s) was obtained 
r 

element by element, i.e., gr 11 {s), gr I2 's), ••• grmm{s); thus single input-

single output reduction methods were considered. This was because, with 

som~ methods, it was far easier to obtain G (s) in that way and also 
r 

proved to be computationally more feasible. 

(6) Chen and Shieh's ~eduction method~ algorithm 

(i) Consider 

g •• !s) .. (Au + Aus + Aus2 + ••• A sn-l) I (All + A12S + A13s2 + ••• 
1J 2n. 

A n) 
1 ,n+~ S 

(ii) Construct Routh table 

All A12 Au A 
1,n+l 

Au Au Au ... A 2n 

Au Au ... 
Altl Alt2 ••• 
• 
• 

j - 3, 4, ••• 2n+1; k - 1, 2, ••• n+1 

(iii) Compute hj • Aj1 /A(j+l)I' j - 1, 2, ••• 2n 

Take h., j - 1, ••• 2r, Le. take first 2r h:s_if rth order model 
J J 

required. 

(iv) Compute g .. (s) from 
n.J 

o o 

o 

• • 

A 
rll 

1 o 

.. o 
• 

• 
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For convenience, set A-I, where A is the coefficient r,l,r+l r,l,r+l 
r of s • 

(v) Go to step (i) for other elements till Gr(s) is generated. 

Input = .(Wf d' W ); Output = ee spray 

grll (s) • (O.7646E-04s + O.7694E-07) I (S2 . + O. 3911E-03s 

gr12 (s) - (O.18S3E-03s + 0.1778E-07) I (S2 + 0.8347E-04s 
0' 

+ 0.0) 

+ 0.0) 

gr2l(s) - (-0.46SSE-048 + 0.421lE-06) / (8 2 + 0.4443E-02s + 0.S273E-OS) 

g (8) - (-0.2267E-Ol8 - 0.9635E-04) / (82 + 0.1667E-Ols + 0.3099E-04) r22 

Input = (Wf l' Wd ), Output = ue amp (P s7' T~lO) 

gr11 (S) - (O.8715E-Ols + O.2805E-03) / (8 2 + O.9401E-02s + O.156E-04) 
0_. 

grI2(8) - (0.63lE-02s - 0.lS37E-03) / (8 2 + 0.439lE-02s + 0.S127E-OS) 

gr21(8) - (O.2404E-Ols + O.1039E-03) I (8 2 + 0.S419E-02s + 0.7l92E-OS) 

gr22(s) - (-0.19519 - O.2378E-02)/ (S2 + 0.8702E-02s + O.l394E-04) 

(7) Sinha and Pille's redu~tion method~ algorithm 

(1·) From g .. (z) ( -1 -1)/( -1 1J - ao +'alz + ••• amz 1 - bIZ 
-n 

- ••• b z ) n . 

the sampled value of the output at ith instant can be written as 
m n 

y. - 1: a.u •. + 1: b.y. . (9.39) 
1 j-o J 1-J j-i J 1-J 

where u. • is a sequence of unit step inputs. 
1-J 

(ii) Form equation (9.39) in matrix form 

~~ • 9k 

where 
A. 

(Yo' 
t 

Yk • Ylt ••• Yk) 

~ • (a , alt • •• a , bit b2, • •• b )t 
0 m n 

(9.40) 
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u , u , ••• u ,y, y , ••• y 
1 0 I-m 0 1 I-n 

• 

~,~ , ••• Uk 'Yk ' Yk ' ••• Yk K k-l -m -1 -2 ~n 

(iii) $ - ~9k (9.41) 

~ exists if rank (~) - min {m,n} where m and n are its number of 

rows and columns. This condition is assured if the sequence of step 

( inputs, u. - 0 for k < n, p. - I, for k > n, Alternatively, to avoid 
1 1 

matrix inversion in evaluating ~, use the Albert and Sitter recursive 

algorithm below. 

(iv) Let p be the number of equations represented by equation (9.40). 

Define .-. 

~+1 -[~+ll 
for k , P 

$k+l - $k + [Qk~+l(Yk+l - a~+l$k)]/a~+IQkak+l 

Qk+l • Qk - [Q~8k+l (Qk8k+l) ~ /~+1 Qk8k+l' with $0 • 0, Qo • I 

for k > P 

4>k+l • 4lk + [Pkak+l(Yk+l - a~+l$k)]/(l + 8~+lPkak+l) 

Pk+1 • Pk - [?k8k+l (Pkak+l)~/(l + ~+IPk8k+l)' with Po • 0 

-1' _1 
(v) Obtain g (5) - Z~ {zg (z)/(z - l)} where Z represents the inverse z-

r r 

transform of g (z) preceeded by a sample and zero order hold. r . 

(vi) Go to step (i), and consider other elements till G (s) is generated. 
r 

Input -

• 

• 

(Wf d' W ), Output -ee spray (R., T ) 
S7 

(0.2289E-038·+ 0.5528E-06) / (52 + 0.614E-038 + 0.611E-09) 

(-0.8631E-05s + 0.4909E-06) I (8 2 + 0.7081E-048 + 0.7668E-10) 
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g (s) - (-0.617E-04s + 0.6489E-06) / (S2 + 0.735E-02s + 0.1325E-04) 
r21 

g (s) - (-0.2097E-Ols - O.8033E-04) / (S2 + O.1339E-01s + O.2174E-04) 
r22 

Input = (W
f 

l' Wd ), Output = (P ,T ) ue amp 87 810 

grll(8) - (0.4516E-018 + 0.403E-03) / (s2 + O.lOO7E-Ols + 0.1508E-04) 

g (s) - -(0.17l8E-0Is + 0.1353E-03)/ (82 + 0.5l27E-02s + 0.6273E-05) 
r12 

g (8) - (O.3235E-Ols + 0.5669E-04) / (S2 + 0.503E-02s + 0.5959E-05) 
r21 

. . 
gr22 (S) - (-0.4834s - 0.289lE-02) / (S2 + 0.9621E-02s + 0.1789E-04) 

(8) Riggs and Edgar's reduction methodI algorithm 
n r 

(i) From yet) - ~ r.exp (p.(t», y (t) - ~ r. exp (PrJ.(t» 
j_l J J r j_l rJ 

J - Jb (y(t) - y (t»2 dt a r 

obtain 

aJ/3Prl' - Jb (y(t) - y (t»t exp (p .t) dt - 0 a r rl 

i-I, •.• r 

aJ/ar. - Jb (y(t) - y (t» exp (p .t) dt - 0 rl a r rl 

i-I, ••• r 

(ii) Simplifying equations (9.42) and (9.43) 

(9.42) 

(9.43) 

(9.44) 

(9.45) 

PI is a vector with ith component 
n 

Pli - ~ (r./(p. + p.»[exp (p • +p.)b - exp (p . + p.)~ 
j-l J rJ J rl J rl J 

P2 is a vector with ith component 
r 
~ r.{[exp (p. + p .)b/(p • + p.)]rb - l/(p • + p.)] • J J rl rl J a.: rl J 

J-l 

- rexp (p • + p.)a/(p· . + P.)] ra - 1/(p • +P.)]} 
~ rl J rl J L.: rl J 

SI is a matrix, with ijth component, 
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8 11'J' - (exp{(p. + p.)b}/(p . + p.»(b - l/(p , + p.» rl J rl J rl J 

- (a - l/(p • + p.»(exp (p • + p.»/(p • + p.) rl J rl J rl J 

52 is a matrix with ijth component 

8 •• - (l/(p. + p.»(exp{(p . + p.)b} - exp{(p , + p.)a}) 21J rl J rl J rl J 

R is a vector of residues ... t r .) 
rJ 

. -1 
(iii) Compute R - Sl P 1 (9.46) 

(9.47) 

If poles are specified, equation (9.46) gives a linear equation for 
. . 

R. If poles are unspecified, the nonlinear equation (9.47) gives solution 

for poles and residues. 

(iv) Go to step (ii) for other elements of Cr(s). 

Input = (Wf d' W ), Output = (t, T ) ee spray 87 

grll (s) - (0.2684E-03s + 0.1316E-07) / (8 2 + 0.4903E-04s + 0.5547E-ll) 

gr12 (s) - (0.1476E-03s + 0.2828E-06) / (s2 + 0.7376E-04s + 0.7733E-II) 

gr21(s) • (0.1477E-04s + 0.2173E-06) / (s2 + 0.4171E-02s + 0.3543E-05) 

gr22(s) - (-0.106E-0Is - 0.7593E-04) / (s2 + O.1368E-Ols + O.2169E-04) 

Input : (Wf l' Wd ), Output - (P ,T ) ue amp s7 810 

grll(S) - (0.1089s + O.545E-03) I (s2 + 0.1199E-Ols + 0.2938E-04) 

gr12(s) • (-0.1525E-01s - 0.2229E-03) / (8 2 + O.6686E-02s+ O.5858E-05) 

grZl(s) - (O.4714E-018 - 0.538E-04) I (s2 + O.2314E-02s + O.1338E-05) 

8r22(S) - (O.8956E-02s - 0.3026E-02) / (s2 + O,1159E-Ols + 0.1693E-04) 

(9) Modified Levy's method! algorithm 

(Th~,algorithm of 'modified Levy's method' by Vittal Rao and Law. is 

considered). 

T __ -" - -- --
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(i) Consider Tr(s) - K(l + ClS + ••• C sP)/(l + dls + ••• d sq) 
P q 

• K{(l f a2w2 + ••• ) + jw(al - asw2 + ••• ) / 

(1 - b2W2 + ••• ) + jW(bl - b3w2 + ••• )} 

• K(~ + jwB)/(cr + jwt) • KN (W)/D (w) r r 

Similarly, T(s) • K(R + jwI)/(G + jwL) • KN(w)/D(w) 

(ii) e(jw) - Tr(jW) - T(jw) - -K(N(w)D (w) - N (w)D(w»/D(w)D (w) r r r 

- 2wG(wRt + wlcr - wGB - wLa,-) dw 

-0· 

(iii) Simplifying equation (9.48) yields, MN. P 

and A is the (p + q) x (p + q) matrix given by 

(T2 + V .. ) o 

A • o • 

-T .. + Ts 

, 

Bh • In LIw
h 

dw, etc 

-1 
(iv) Compute N· M P 

(Ts + Ta) ••• 

(v) Go to step (i) and consider other elements of G (s) 
r 

(9.48) 

(9.49) 

(9.50) 
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Input :: (W W ), Output feed' spray 

grll(S) • (0.7449E-035 - 0.1874E-05) I (S2 + 0.338E-03s + 0.276E-07) 

grI2(s) - (0.5123E-035 - 0.1046E-05) I (s2 + 0.1091E-03s + 0.1079E-08) 

. gr21(s) - (-0.5053E-04s + 0.5185E-06) I (8 2 + 0.3585E-02s + 0.4084E-06) 

g (s) - (0.1197Et058 - 0.1961E-01) I (s2 + 0.1561+ 0.6084E-02) 
r22 

Input :: (Wf l' Wd ), Output :: ue amp 

. grll (s) - (0.3398 + 0.1421E-02) I (8 2 + 0.83558 + 0.3003E-04) 

grI2(s) - (-0.2225E-01s - 0.1918E-03) I (8 2 + 0.6431E~02s + 0.~665E-05) 

gr21 (s) - (O.3082E~018 + 0.5059E-03) I (8 2 + 0.1365E-018 + 0.4435E-04) 

gr22(8) - (-0.70028 - 0.1027E-02) I (8
2 + 0.619I~-028 + 0.7945E-05) 

(10) Harmonic synthesis method of Chapter II~algorithm 

(i) Gr (8) - K IT (8 + zo) IT (8 2 + 2a08 + a~ + b~) I 
. r i _1 1 i-1 .1 1 1 

. IT (8 + po)TI(8 2 + 2cos ~ C~ + d~) 
j_l J Je' J J J 

yet) - 1t;1 fk Sin (,\t + <Pk) 

frk - (~+ B~)iIGr(j~)I, <Prk • arg Gr(j~) + arg tan (~/Bk) 

(iil min E - JT (y(t) - y (t»2 dt o r 

aE/ae - JT (y(t) - y (t» ay (t)/ae - 0 orr 
h 

aYr(t)/ae. t Frk Sin (wkt + <Prk + $rk)' e 
k-l 

• Zo, 1 
a o, bo, po, Co, d. 

1 1 J J J 

and K 
r 

(iii) Specify initial poles and zeros for G (s) and solve non-linear r 

equations 

.' . 



(iv) 

h h . 
t t Vk,F ,~ Sin 

k-l j-l J rJ 
: j~2<. 
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cO to step (i) for other elements of G (s). 
r 

Input :: (w W ), Output feed' spray 

- 0 

grll(S) - (O.3509E-03s - O.4047E-06) I (S2 + O.511E-03s + O.1032E-09) 

grI2(s) - (O.188E-03s + O.274E-06) I (s2 + 0.2316E-04s + 0.7242E-12) 

gr21 (s) - (-O.187E-04s + 0.6086E-06) I (s2 + 0.9056E-02s + O.1884E-04) 

gr22 (s) • (-O.1394E-02s - O.3251E-03) I (S2 + 0.258E-Ols + 0.8733E-04) 

Input :: (Wfuel ' Wdamp)' Output 

grl1(S) - (O.489E-Ols + O.l492E-03) I (s2 + 0.7574E-02s + O.1119E-04) 

gra(s) - (-0.7174E-02s - O.l067E-03) I (s2 + 0.5334E-02s + 0.4772E-OS), 
. 

g (s) - (O.3785E-Ols + O.ll95E-03) I (s2 + O.6894E-02s + O.llSE-04) r21 

gr22 (S) • (-0.4891s - ·0.1047E-02) I (S2 + 0.642E-02s + 0.5886E-OS) 

Discussions 
" 

The response graphs obtained by state space reduction techniques are 

shown in figures 9.3 and 9.4. Those obtained by the transfer function 

reduction techniques are shown in figures 9.S and 9.6. By inspection 

the transfer function results are more accurate than the state space results. 

The chief reason is that the state space graphs are those of second order 

models while the transfer function graphs are those of eighth order models. 

Although the individual elements of the transfer function matrices are of 

second order, application of a minimal realization algorithm yields eighth 

order state space models for the transfer function matrices. Thus, the 

transfer :unction models are of higher order, hence, approximate closer 

to the original thirty third order response. 
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Figures 9.3 and 9.5 show the same graph, with Wf d and W as ee spray 

inputs, and, 1 and T as outputs. Figures 9.4 and 9.6 represent the S7 
·t 

response, whose input vector is(Wf l' Wd ),and, output vector is (PS7' . ue amp -

Ts10): All computations were done on the ICL 1905 computer, and, where 

necessary, the scientific subroutine packages were used. As the dimensions 

of the matrices involved were large, the storage problem was facilitated 

by employing external storing facilities, in the use of magnetic tapes and 

disc files. 

The graphs,obtained by state space reduction methods, that are out of 

range with the original thirty third order graphs are not $hown, in 

figures 9.3 and 9.4. In this aase of the boiler model, reduction techniq~es 

using state space matrices are inferior. This is chiefly due to the large 

number of multiplications involved in handling high dimensional matrices. 

Thus inaccuracies in the final result could arise due to computational 

rounding errors. Another reason is core storage. Efficient computer 

programmes must be written to economize core storage, and, this together 

with the transfer of control, involving numerous matrix manipulations, made 

them troublesome to implemerit. The algorithms of the time domain reduction 

methods, were written in the best way that, numerically, would give the least 

computational errors. 

On the other hand, transfer function methods, using the complex or 

frequency domain approach, prove to be more convenient than state space 

methods. One reason is that transfer function methods view the system as 

a 'black box' and operate on its input and output characteristics. 

Compared to state space methods, core storage in this case is lesser, and, 

the ready availability of transfer function matrices makes the programmes 

easier to implement. The number of computations is generally smaller, hence, 

the end rp.sults would be less affected by rounding errors. Also, since 

transfer function methods avoid the problem of regrouping states, the 
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computer programmes are easier to write than those of state space methods. 

Of the ten reduction methods, for this example, the continued fraction 

" method of Chen and Hsieh, for single input - single output systems, is by 

far the most accurate and the most convenient to implement. It requires 

modest core storage and is computationally cheap. It does not require prior 

knowledge of the poles of the reduced models. The accuracy of other reduction 

methods, that require initial specification of poles, depends on subjective 

pole specifications and performance indices. In terms of complexity, the 

reduction methods of Mitra and Wilson are difficult to implement. They are 

also costly, and so is the method using the modified Levy algorithm. All 

results that employ 'Hill-climbing' optimization routines are costly, and; in 
m~~ 

"most cases, failures areAlike1y to be encountered than successes. The chance 

of success depends very much on the correct initial specification of poles 

and the scaling of the problem. 

MOst methods yield a steady state error, except that of Marshall 

(however, in some cases it is compensated by large transient errors) and the 

continued fraction method of Chen and Hsieh. In the case where the steady 

state value is infinite (an 'unstable' model with a pole at the origin) 

Chen and Hsieh's method is inferior to the other methods. The modified Levy 

method gives the poorest result compared to other transfer function methods. 

This may be due to the 'linearization used for approximation' in the method. 

Of state space methods, the author's method of sequential approximation and 

Wilson's reduction method seem to give the most consistent results for all 

outputs. Also they have reasonably small transient errors and seem to give 

acceptable steady state errors. Mitra's, Anderson's and Marshall's methods 

fit well in some outputs and give very poor fitting in other outputs. On 

the other hand,. most of the transfer function methods give reasonably small 

transient and steady state errors. 
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PART II - Application of reduced models in control systems design 

The reduced models obtained above were used to obtain control 

strategies for the original boiler model. The state space models 

were used to design sub-optional controllers using a time domain, 

linear optimal control, technique 12. The transfer function models, 

on the other hand, used a frequency domain method, employing the 

Inverse Nyquist Arrayl0, to obtain closed loop controllers for 

the boiler, see figs. 9.7(a) and (b). 

9.3 Sub-optimal ~ontrol design using linear optimal regulator 

theory 12 • 

The discrete optimal algorithm was considered here, as it 

is more suitable to digital computation. In all models, the 

inputs were considered noise-free and all states were assumed 

accessible. 

Associated with, 

s 

S r 

. • (9.51) 

(9.52) 

where Sand S are controllable, the performance indices are 
r 

(9.53) 

(9.54) 

where xrk • xr(kT). ~ • x(kT) , etc. Using dynamic programming, 

it is well known that the optimal control law for S , can be 
r 
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computed from the recursive relationship, 

where 

• -K x rk rk (9.55) 

(9.56) 

Prk • ~rt(I-(O + P k+l)6 (R + 6t {Q + p. )6 )-l6t ){Q +P )~ 
~ r, r r r r,k+l r r r r,k+l r 

Prk can be solved backwards, starting from PrN • 0, in order 

k • N-l, N-2, ••• 2,1,0, and in considering the i~~inite time 

optimal regulator, K k~ K - K as N~ • r ro r The steady state 

optimal gain, K, associated_ with S, in eqn. (9.Sl) can similarly 

be solved. For convenience the regulator can be converted into a 

set-point change problem, by adding a reference input in eqn. 

(9.55) Le. 

u = rk -Kxk+r r r 
(9.56) 

The closed loop optimal response is given by, from eqns. (9.52) 

and (9.56), 

S : r x • (~ - 6 K )x k + 6 r r,k+l . r r r·r r 

Similarly, for S, 

S: ~+l • (~ - ~K) ~ + ~r 

(9.57) 

(9.58) 
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Sub-optimal control policy is obtained by using K in place r 

of K to control S. Using eqn. (9.56), 

u • -K Zx. + r rk r K 

where xrk • Z~, and eqn (9.5l), the closed loop sub-optimal 

response is given by 

The weighting matrices Q and Qr' are re1ated~y 

(9.59 ) 

(9.60) 

(9 ~61) 

+ t t -1 where Z • Z (ZZ) ,and the aggregation matrix, Z, that relates 

S to Sr can in general be approximately obtained (least square sense) 

from the equations 

as 

A Z • ZA r 

B • ZB r 

c Z • C r 

n-l r-l 
where W • (B,·AB, •• A B), W - (B , A B , ••• A B) are the r r r r r r 

(9.62) 

'1' , Vt (C CA CAn- l ) t (C CAe A r-l) contro11abi ity matrices, • , • •• , V· t ,..:" r r r r r r 

the observa1ity matices of Sand S , respectively'. r 
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However, for the reduced state space models above, in most 

cases, Z was obtained, from C z· C, since C is a square (2 x 2) r r 

matrix. 

In computing the optimal responses, it was found that K 

and K converged very accurately after N - 30 iterations with a r 

sampling time interval of T • 100 seconds. 

In the above analysis, all states are assumed aecessible and 

noise free. In practice, such is not the case, and a filter is required 

to estimate the states. 

Corresponding to eqns. (9.57) and (9.58), 

S '.y -C x +~ r ' • r,k+l r r,k+l ~ (9.57) 

S Yk+1 - C ~+l + ~ (9.58) 

'-
a zero mean noise vector, ~, of known statistical properties, is 

added to the output measurements, the other dynamical equation remaining 

the same. Using a Kalman filter, the zero mean estimated state vector 

irk can be constructed from the output measurements such that the 

control law, urk - -Krk irk + r, minimizes eqn. (9.54). The filter 

can be computed from".the well known recursive algorithm12
, (;k and xrk 

assumed statistically independent) 

SC • ~ SCrk + AUk + W k (y 1 - C (~ 5(rk + Ar urk» r,k+l r r r .r, +1 k+ r r 

(9.63) 

. 
~i~ere Lrk .. E [(5(rk - xrk»«~t:'k - X rk>], ~ • E [~ ><~] 

are co-variance matrices of state errors and measurement noise, 

respectively. For unbiassed estimatesJ E [Xrk J • E [xrkJ ' the initial 
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conditions can be set to x • x • 0, and L • L ro ro ro o. 

A similar filter, dropping the subscript r, in the sets of 

eqn. (9.63), can be used for the original model, S, such that the 

control law, ~ • -K~ + r, minimizes eqn. (9.53). 

Assuming 

2 -z~ rk it 
(9.64) 

sub-optimal control policy, corresponding to eqn. (9.59), 

urk - -Kr z~ + r (9.65) 

can be implemented on S, with a 'sub-optimal' filter. The resulting 

closed loop dynamical equation, see eqn. (9.60), is given by 

~-... 

Yk+l • C ~+l + ~ 

The estimated vector, xrk can be computed from the filter 

equations, eqn. (9.63), and K computed as before. This would 
r 

result in considerable computational savings (r«n) in the sub-

optimal control scheme. The respective closed loop-optimal 

response for Sand S are, 
r 

s ~ + 1 • ~ ~ - bo(K \ - r) 

Yk+1 - C ~+l + ~ 

x - ~ x r,k+l r rk 

(9.66) 

(9.67) 

(9.68) 

The optimal responses of S , with and without the Kalman filter, 
r 

are shown in figs. 9.8(a), (b) and 9.9(a), (b). The corresponding 

sub-optimal response and optimal resonse of S are shown in figs. 9.10 

to 9.11. The matrices R, Q, Qr , Z, K, Kr associated with the models 

are given in table 9E. 
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TABLE 9£ 1 

Original model: 
1st 0 - diag(0,0.lE-03,0.lE-03,0, ••• 0)i R: dia(0.lE-02,0.1£-02) 
2nd Q - diag(0,0,0,0.lE-03,0.lE-03,0, ••• 0~R = diag(0.lE-02,0.lE-02) 

Reduced model: 
Wilson 1 

Wilson 2 

MitIa 1 

MitIa 2 

Marshall 1 

Marshall 2 

Anderson 1 

Anderson 2 

Author 1 

Author 2 

[ 
0.1737E-05 -0. 7977E-I0] [0.2209E-Ol -o.1l27E-06] 

Or - -0.7977E-I0 0.335£-12 , Kt 0.1688£-02 -0. 7279E-05 
Z • . [0,0.4761£-01 -0.7629£01 : 01 . 

0, -0.1727E05 -0. 1924E04 : 'j . 
° _ [0.314 8E-04 -0.3679£-04J I< .r-0.4036E-0),-0.3766E-0)] 

r -0. )679£-04 0.430lE-04' r l-o. 3742E-04, 0.4133E-04 
z -ro ° 0 3.141-5521.0 !oJ 

Lo 0 0 1.162 -4724.0 : 
• 

Q .r0.lS-O) 0 ] 
r L 0 0.lE-03· 

z • ro, 1.0,0: 01 
lo, 0,1.0. J 

K _ [-0.5959£-03 -o.4829£-02J 
r 0.2826B-0) 0.103LE-03 

. 
Q _ [0.lE-03 0 ] K _ [-0.2615E-Ol 0.1663£00 J 

r 0 0.lE-03 ' r 0.919£-04 0.2557E-0) 
z • fo, 0, 0, 1.0, 0:0 ] 

Lo, 0, 0, 0, 1.0, . 
[
0.lE-03 0 1 

Qr - 0 0.lE-031' 

z -[ 0, 1, 0: 0 ] 
0, 0, 1 : 

K _[ 0.3246E-O) -0.1274E-031 
r -0.4441 0.135 J 

• 
Q _ [0.lE-03 0 ] 

r 0 0.1£-03 
Z - ro, 0, 0, 1, 

lo, 0, 0, 0, 

, K 

° : ~1 
1 i OJ 

rO.3736E-Ol 
lO.8085E-04 

-o.3218E-021 
0.1444E-04j 

Q _ rO.l£-03 0 ] 
r l 0 O.lE-O) 

z -ro 1 0: oJ 
Lo 0 1: j 

K _ rO.170)E-02 0.2251E-02] 
r Lo.16Y!i -0.3042 

. 
[
0-1E-03 0 ] 

Or a 0 O.lE- ) , 

Z -rOO 0 1 0: 01 
Lo 0 0 0 1 , :.J 

I 

[ 
O. 595E-Ol -0.189 5E-021 

Kr - -0.1151E-03 0.1513E-03J 

Q _ rO.1877E-lO O.1417E-071 K JO.7818E-05 o.3166E-0:!1 
r lO.1417E-07 0.107SE-04j' r ~0.6626E-04 -0.8063E-0~ 

Z _ [0 -65.17 0.3217E05: 0] 
o 3.136 -42.38 • . • 

[ 
0.3148E-04 -0.3679E-041 

Or - -0.3679E-04 0.4301E-04j,Kr -

Z _ ~O 0 0 3.141 -552°'°:01 
o 0 0 1.162 -4723.6. J • 

[
-0.5686E-07 0.1614£-061 
-0.1262£-05 0.1392E-05J 

For frequency response IilOde1s, L(t) or Lr(a) - I, un1es. otherwise stated. 

" 

Original model: 
15t . 

2nd 

Reduced model: 
Chen & Shieh 1 

Chen • Shieh 2 

- --- .. --~. -- ---- - - ' 

Table 98 11 

K(5) - diag (0.118(0.35+1)/(0.055+1), -0.01667) 

K(9) • [ (0.42255+1. 408) /(5+20) , 0.07] 
- (35+10)/(5+20) , 0.5 

[
(65+20)/(5+20), 0 ] 

Kr(S) - (-0.02255-0.075)/(5+20), -0.005 

iCr(S) -dieg {(65+20l/(s+20), - O.S} 

Sinha. Pille 1 j{ (s) - dlag {(69+20) /(s+20, -o.005} 
r . . 

Sinha & Pille 2 I< (9) _ [(69+20) /(5+20) 0 J 
r (0.65+2)/(5+20) -0.1 

Mod. Levy 2 Kr(S) - diag {(O.)5+1)/(O.OSs+I). - I} 

Riggs & Edgar '~ Kr(S) - diag {(65+20)/(s+20), - 0.02} 

Riggs & Edgar 2;x (B)=[(9.333E-oG5+2.667E-oS)/(S+20l, 1.333E-c61 
r 0, 1.0E-OS j 

() [ 
0.4348, 0 ] 

Lr 8 - -0.4348, 1.0 

Author 1 Kr(S) - diag {(6s+20)/(s+20), -1.0} 

Author 2 [
(0.065+0.2) /(&+20), 

Kr(S). (0.006&+0.02)/(.+20), -~.OO2] 
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9.3.1 Discussions 

It can be seen from the graphs, figs. 9.l0(a} and 9.ll(a}, noise 

free case, that some sub-optimal responses do not guarantee stability, 

unlike all optimal responses. A prominent feature of the sub-optimal 

responses, for both models one and two, is that they have very close 

transient periods compared to the relatively large offsets in 

steady state values. The open loop responses of the reduced models 

have small transient errors compared to their steady state errors, 

and in general, no hard and fast rules exist that relate .the open 

loop performance of Sand Sr to the sub-optimal and optimal response 

of S. The optimal responses of S , on the other hand, guarantee 
r 

stability, figs. 9.8(a} and 9.9(a), but the errors, transient and 

steady state, between Sr and, the sub-optimal response, Ssub are 

relatively large compared to those between Sand Ssub' All the 

responses computed correspond to a given set of weighting matrices, 

Q and R, only. 

The responses involving inaccessible states and the use of the 

Kalman filter are shown in figs. 9.8(b) and 9.9(b) and those 

involving the sub-optimal filter in figs. 9.10(b) and 9.1l(b). 

For both models, one and two, the signal to noise ratio was kept 

large, by introducing a zero-mean gaussion noise generator of small 

magnitude. This was to ensure, sufft~lor the purpose of this 

experiment, that the measurements were not overwhelmingly 

contaminated by noise. Again, as can be seen from the graphs, the 

errors of the filter responses between Sand S b are larger than r su 

those between Sand S b' su As expected, the filter responses 

are 'irregular', due to the nature of the state estimator, compared 

to the smoother responses without stuce estimation. The filter 

responses of Sand S b of the first model, in general, have small su 
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transient times compared to those of the second model. Of 

particular interest, the first output, y, of S, of the second 

model has very large transient times, while the output Y2' of S, 

has small transient times, characterised by peak magnitudes, and 

small steady state values. A common feature of the sub-optimal 

response, S b' is that they all settle and yield small steady . su 

state errors with the optimal response, S. This is more noticeable 

in the first model than in the second •. Like the sub-optimal 

regulator with accessible states, the sub-optimal inaccessible state 

case does not guarantee stability, while the optimal filters of 

Sand S are all stable. 
r 

9.4 Frequen~y response design using the Inverse Nyquist Array 
(INA)lO • 

The design here was done using the CAD package on the 

PDP-lO computer at UMIST. The INA design method, by Rosenbrock, 

was used to design compensators for the reduced transfer function 

matrix models, obtained in section 9.2.2. 

Algorithm for INA design: 

The controller K (s) - K ~ (s) K (s) is designed as follows. r a -0 c 

K(S) - R ~ (s) K where K is a permutation matrix for preliminary c .'0 a a 

renumbering of inputs to G(s), so that the it~ input is regulated 

by the i th output. ~ (s) - ~n (s) ••• ~l (s) is chosen to make 

Q(s) - Kc ~(s) G(s) diagonal dominant, and, it consists of elementary 

row or column operations. " Kc(s) is diagonal, and is designed at the 

last stage using siDgle loop approach. 

t 

!. 
I 

i 



(i) 

(ii) 
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Obtain a(s) (Le. G-l(s» 
A 

Choose K as desired a 

(iii) Design ~ (s) • ~n (s) ••• ~l (s) such that interaction is 

reduced, 'Vs • j~ eo, choosing ~l • G(O) giving Ql (s) 

• Kbl(s) G(s); final form ~(s) • Knr(s) ~_l(s). 

Check stability from INA theorems, (or from characteristic 

Loci criterion, to give sufficient and necessary conditions~ 

(iv) Choose K (s) to be simple, example first order lag or simple c 

proportional controllers} Q(s) • f (8) Q (s): check c n, 

stability of overall system from INA theorems. Go to step 

(iii) if necessary. 

(v) fr(s). fees) ~(s) ,fa' Kr (8). (f«s» __ ~ 
-1 

(vi) Simulate closed loop step response for R(s) • (I + Q(sn Q(s). 

The post compensator Lr(S) can be designed, if necessary, in the 

same way using column operation. 

9.4.1 Design examples 

Two design examples are chosen here to illustrate the INA method. 

(a) Author's 2nd model; u· (fuel, damper); y. (Ps7' TsIO) 

1st stage: 

A [01 0l~ ~ Set Ka • .J and L - I, since fuel output was chosen to 

regulate output, Pa7' and damper input chosen to regulate output, 

INA diagram was plotted for frequency range 0 to 10 

radian-.s, increment o. I radian. 

2nd stage: 

Choose'~l • [~ ~]SUCh that element Q22(s) is scaled 5 times 

(see first diagram of fig. 9.12(a». Interaction is heavy in 

second loop and sys~em possibly closed loop unstable. 
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A rl 
Choose ~2 = lO.S 01 . h • • 

_lJtW~t v~ew to reduce lnteraction in 

loop 2 and ensure closed loop stability by inverting element Q2'2(s). 

(See 2nd diagram of fig. 9.12 (a») • 

3rd stage: 

~3(.)I:te[:~io:g:jdUlg~~!!~:ti:fjc::~:dd::a::-:::a:::.:O::::S::O:mprove 

performance. 'Resulting ~NA diagram found satisfactory and stable (3rd 

~i~gram of fig. 9.12(a». 

• A [100 Flnal controller Kr(s) • 0 

. ' . .. K (s) - 0.06s+0.2 
r s+20 ° 

[

0.05S+1 
0.35+1 

o 

0.006s+0.02 _ 0.002 
s+20 

0] fl ,01 lo.s -lJ 
1 

'-. 

The closed-loop response of the above design is shown in 

fig. 9.l2(b). Both loops have low interactions to unit step inputs. 

(b) Author's 1st • model; u· (feed, spray); y - (1, I s7) 

1st stage: 

Set i a • [~ ~],£. I, as first input chosen to regulate 

first output, and second input chosen to regulate second output. 

Choose ~l· [~_~] to invert ~22(s). in view of stability. 

2nd stage: 

In this example, not much emphasis was laid on interaction, 

however, interaction was sufficiently reduced in both loops. 

Again phase-advance compensator 23(s) · [(O.05'+1)~ (O.3s+~)·· 

introduced in first loop. . 

Final INA diagram shown in fig. 9.13(a) and time response 

shown in fig. 9.l3(b). 
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The other reduced models were used in design like in the 

above examples. Their INA diagrams are shown in figs. 9.l4(a) 

to 9.20(a) and their time responses shown in figs. 9.l4(b) to 

9.20(b). Controllers were also designed independently by using the 

two original models. This is shown in figs. 9.21 and 9.22. The 

responses of the original models and that of the reduced 

models' controllers on the original models are given in figs. 9.23 

and 9.24. 

9.4.2 Discussions 

The simulation for the closed loop responses of the original 

models was done • off-line' using the ICL digital .. computer, since 

their orders were too large for the PDP-lO interactive CAD package to handle. 

If Sl(A
l

, Bl , Cl ' Dl ) represents the minimal realization of the 

pre-compensator Kr(s) or K(s) and S2 (~, B2, C2) represents the 

state space description of the model, G(s), then S (A, B, C) represents 

the tandem connection Q(s) - G(s) K (s), where r 

The above representation can also be used for the post 

compensator, Lr(s), and G(s) by interchanging Sl and S2. By 

introducing unity feedback, the state space description for R(s) 

• (I + Q(s~-l Q(s) is given by Sf(A-BC, B, C). The standard 

discrete transition matrix method can be used to compute the 

response of Sf. 
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Looking at figs. 9.23 and 9.24, it can be said that the 

performances of the reduced models' controllers are fairly 

close to each other. The transient errors are small in 

relation to the apparently large steady state errors. In 

particular, the interaction structure of the system is not 

violently disrupted, in fact, it is more or less preserved as all 

loops have low interactions. The original design on the first 

model yields a low interacting system in both loops, in conformity 

with the designs using reduced models. The original design on the 

second model was unsatisfactory, as it produced an unstable model. 

This was partly due to the tediousness in design, because of the 

model order, and lar~y due to the storage facil~:y for simulating 

the titoo response using interactive, graphics. All original models 

using reduced model controllers are closed l,oop stable, except for 

one whose controller was designed using the "Modified Levy" reduced 

model. 

The design objectives were not specified in the task, neither 

was interaction considered a too important factor. The main aim 

was to compare controller actions. The open loop responses of the 

reduced models, computed earlier in section 9.2,are much closer to 

that of the original model than their closed loop counterparts , 

in figs 9.23 and 9.24~Because of focusing attention on the high 

frequency region, in the large frequency range specified, (large 

in the sense that relatively the titoo constant of the models are 

small and the sp,read of their eigenvalues is wide) on the INA 

diagrams, the closed loop transient, especially initial transient. 

errors are small, while the steady state errors are rel~tively large. 

That the steady state errors fall within a very tolerable margin, . 
may be due to the close proximity, of the steady state open loop 
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response, of the reduced models, to that of the original model. 

9.5 Conclusions .. 

The use of reduced models in design, in the above sections, 

is, in general successful. The advantages and disadvantages of 

the various reduction methods have been discussed in section 9.2. 

The main justification in using reduced models lies in the success 

and economy of the final design or in the effectiveness on which 

reduced models are put to use. This is balanced by the cost and 

complexity of reduction, the accuracy afforded when using the 

original model, and the order of the original model. For the 

thirty third order boiler model discussed above, _.the application 

of reduced models is justified in this direction, when the reduction 

method is fast, economical and reliable. 

A comparison of the cost for reduction and application of the 

models used is roughly summarized in the table below. The units given 

correspond to computing time and are proportional to the unit time 

of one of the author's reduction method (time domain). 

Model Reduction Q2timal control Sub-oEtimal Freguencl desi~ 
Cost 20licI cost* EolicI cost· & simulation cost 

1. Original 8.0, 12.0 150 

2. Wilson 3.0 1.1, 1.5 1.4, 1.8 

3. Mitra 3.5 1.1, loS 1.4, 1.8 

4. Marshall 2.2 1.1, 1.5 1.4, 1.8 

5. Anderson 1.1 1.1, 1.5 1.4, 1.8 

6. Author (time) 1.0 1.1. 1.5 1.4, -1.8 

7. Chen & Shieh . 0.5 3 

8. Sinha & Pi lle 1.2 3 

9. Mod. Levy 1.8 4.5 

10 •. Ri~8s & Edgar 0.9 3.S 

11. Author(frequency)l.2 3 

* first and second column corresponds to the case of filtering and non 
filtering, respectively. 
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The above cost, in general, corresponds roughly to the size 

and complexity of the computer programmes. In the applications, 

the design objectives were not critically specified, the chief 

intention was to compare reduced model controller performance 

on original model. For this reason, the reduced models obtained were 

assumed 'normalized', in the sense that unit input to the models 

would correspond to the desired input to the plant. In reality, 

because different states have different static levels under quiescent 

conditions, it can only be meaningful to talk in terms of unit 

percentage inputs. The reason for assuming unit inpu~s was that 

it was more convenient for studying the effects of interaction, 

especially in the frequency design method. In the general setting 

'-. 
of the problem, it would not invalidate the accdracy of using 

reduced models. 

The design using the linear optimal regulator is more 

algorithmic in nature, compared to the INA method. The former method 

does not study the effects of interaction; it relies on the dynamic 

properties of the states, and, if the latter is inaccessible, an 

estimator is required for on-line application. Thus in the case of the 

optimal regulator, the interaction pattern between the reduced 

and original models need not necessarily be preserved, to obtain a 

good sub-optimal controller. It depends on which dynamic variables are 

more dominant than others, their overall contributions, and, the 

nature of the aggregation matrix, that relates the states of the reduced 

and original models. 

The frequency INA method, on the other hand, stresses that 

the interaction structure is important. It thus follows that the 

interaction pattern between the orig:~al and reduced models must 

roughly be preserved to produce a final controller that works for 



- 301 - . 

both models. As with most frequency response met~ods the INA is 

more tolerable to model inaccuracies, and, design experience is 

required. The important thing is that the frequency response 

curves must fit closely. In general, this would correspond to 

good fits in the time response curves as well, but, there are 

specific cases where this rule can be violated. However, due to 

the flexibility of frequency response methods, and, the permissible 

inclusion of engineering constraints during design, modelling errors will 

be less penalised. This is in contrast to time domain methods where they 

are usually more sensitive to modelling errors. For all the reduced 

models used above, both their open loop frequency and time response 

curves fit admirably well, with those of the original model. This is 

chiefly due to the fact that the models are dominated by very large 

time constants. 

During design on the reduced models it was difficult to predict 

the state of stability or performance degradation of the original 

models. This, however, can be overcome by incorporating the 

facilities for pre-determining stability, developed in Chapters V and 

VI, into a computer interactive graphics software. 
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" "CHAPTER "X. 

""CONCLUSIONS OF THE "THESIS. 

10.1 Conclusions. 

Linear systems reduction has been reviewed, analysed, and, its 

application and subsequent effects, studied in the thesis. This is 

a fairly wide area in research, and, during the study, some related 

areas of interest have also been uncovered. 

Two eminent questions regarding model reduction are: 

(i) are reduction techniques now considered saturated and should 

future efforts be concentrated on them? (ii) how valid must a technique 

be, for it to"be regarded as a useful tool rather than a toy? 

Any novel" techniques of reduction are worthwhile investigating, 

other than satisfying the basic theme of reduction, it must also be 

feasible, reliable in general and computationally cheap. Sophistication 

in reduction takes second place to the simple and direct approach method, 

if end results are considered important • Even to now there are many 
. 

more studies being made on model reduction alone." Perhaps, if studies 

are still to be made they should concentrate on improving existing 

techniques to widen their scope to cater for various classes of models 

and inputs. (Some latest techniques examine a number of related Bade 

approximation methods and as to how they are linked up.) Chiefly, the 

heart of the problem should be looked at, to obtain more stable and 

accurate open loop response, to yield less complicated, yet faster 

computer programmes. Any new techniques produced that do not have these 

qualities would make reduction unattractive, for the cost of reduction 

may not justify its application. It would be much better off to do 

with th"e original model. Perhaps it could be said that a reduced model 
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is only considered 'valid', apart from it being accurate and open 

loop stable, if it is only used successfully in applications; otherwise 

it or its reduction method may be considered as a toy rather than a 

useful tool. An example is that, the original model under the 

influence of a controller, designed using a reduced model, may not be 

stable under the same range of gain (or may be totally unstable) as the 

reduced model would be under the same controller. In this particular 

situation, it is difficult to judge the 'validity' of the model or its 

reduction technique. for different models, derived by various techniques, 

would yield different results in similar circumstances. 

Therefore, in general, it is only fair to say that a model and its 

associated technique is 'successful' if it is reasonably successful in 

a wide class of applications. For example, in feedback design, it is 

desirable that closed loop behaviour of the original system can be 

easily predicted when using the reduced model. This would not be a 

fair test if the model is used for open loop simulation purposes. 

Ironically, open loop unstable reduced models can also be used in design 

which can result in a closed loop stable system. (The unstable model 

may be obtained by a reduction method, where the Nyquist plots fit 

well, although the time responses do not.) In general, there are no 

hard and fast rules as to how a reduced model should be obtained, such 

that the result of its application is deemed good. The model is good, 

only if the error bound between reduced and original model simulation, 

is small. 

Hence it is important that error bounds be formulated in applications 

to estimate the response of the original system in terms of that of the 

reduced system. The wid th of the bOU'lds should depend on the difi~rence 



306 -

between the models, among other factors; thus the closer the models, 

the narrower the bounds. All the error bounds derived for reduced 

model applications in the thesis have this property. In the limit 

as the models coincide, they vanish. 

The bounds obtained are expressed in various simple analytical forms, 

suitable for different design applications and computation. They are 

also very flexible, in the sense that their sharpness can be adjusted, 

by 'tuning factors', according to the situation. To find the optimum 

width of a bound analytically is normally a difficult task; for it is 

expressed in terms of the structure of transfer function matrices, and" 

is frequency dependent. A nonlinear expression would result whose 

solution is required. Therefore, trial and error procedures, with the 

aid of interactive graphics, would provide the best width. Besides, 

in the latter methods, engineering constraints can also be incorporated. 

Although the bounds are general in their formulation, and are applicable 

to a general class of models, most of them impose only sufficient 

conditions. This is the only restriction. For example, in the case 

of stability, they do not express necessary and sufficient conditions, 

but only sufficient conditions, for the system to be stable. This 

limitation can be overcome by posing stability conditions on the original 

model, instead of on the reduced model, but, this would defeat the 

purpose, as it would not give a stability relationship between the two 

models. 

The main results obtained in the thesis are analytical in nature, 

and they also have theoretical interests, other than practical utility. 

Due to the d~a1ity between model reduction and inexact modelling they 

can be used in dual ways. In the study of reduced model applicat~ons, 
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new areas are also uncovered; example some modified bounds results are 

derived for both the original linear and nonlinear multivariable system. 

This could lead to further areas of investigation. 

10.2 Suggestions for further work. 

It would be useful to develop an interactive graphics package, for 

computer aided design purpose, for those bounds given in the preceeding 

chapters, especially in the areas of stability and performance. The 

package can be adapted to any useful multi variable design or simulation 

methods, where reduced models are made use of. If design is done without 

using a reduced model, the bounds would still be useful, for they can be 

used to provide a valuable estimate of the likely response error in the 

system, if the system model is inexact due to crude-modelling, or, if 

the system undergoes parameter changes during or after design. 

If future efforts are still to be devoted to model reduction, in 

addition, it would be advantageous, if possible,to obtain necessary and 

sufficient conditions for original system stability in terms of that of 

the reduced system. 

Further theoretical investigations, seems worthwhile, in the area 

of nonlinear systems, where reduced models are concerned. This is a 

new field, and, it is interesting to consider the situation when the 

nonlinear part of the system is designed using a 'reduced nonlinear 

system'. 


