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SUMMARY

Results of a study of the production of hollow-ware by
deep~drawing and bulge forming are presented. Axisymmetrical
and asymmetrical shapes were successfully produced from soft
aluminium flat blanks in one stroke of a punch. The process
consists of drawing, ironing and bulging inside a closed die

cavity. The constituent operations are studied individually.

In deep drawing without a blank-holder, an approach to
convex type die design is presented. The investigation
evaluates the effect of die profile geometry on the drawing
performance. Three dies of the second degree spiral type,one
near to the tractrix shape and the other two with larger
radius of curvature, are considered. The materials tested
include mild steel, stainless steel, soft aluminium and brass.
The drawing process through tractrix, exponential spiral,
second degree spiral and conical type dies is analysed using
a numerical solution formulated earlier and the theoretical
results on the punch load and the strain develoément are com-
pared with the experimental results. Good correlation is
obtained on the development of strains. The theoretical
prediction of the punch load is reasonably good except for
mild steel which is highly anisotropic. It is shown that by
modifying the die profile, the ‘punch load can be signifi-
cantly reduced. The reductions predicted by theory are in
good agreement with experiment which means that optimum die

design for minimum load is possible.



In ironing of cups, using soft aluminium blanks, it was
found that punch speeds in the range 7-45 mm/sec have
negligible effect on the drawing load. The ironing 1oaa
decreases slightly as the speed increases in this range.

The reduction is more significant with higher degrees of
ironing. Measurement of ironed cup wall thickness showed
that thickness variations are attributed to planar aniso-

tropy of the blank and geometrical errors in tooling.

Free bulge forming is used as a simplified approach to
closed die forming. The bulge profile modes under different
loading conditions of internal pressure and axial force, the
effect of the unsupported cup length and the effect of the
cup wall thickness on the bulge ratio were investigated using
a specially designed test rig. For bulging of as deep-drawn
cups, the bulge ratio increases with increase of cup wall
thickness, and it decreases with increase of length. For
bulging of annealed cups the length effect is negligible and
the bulge ratio increases slightly with increase of cup wall

thickness.

The procedure used in producing different hollow-ware .
shapes is described together with typical failure examples.
The thickness reduction and bulge ratio distributions are

shown and comparison is made between annealed and as deep-

drawn cups.



CONTENTS

ACKNOWLEDGEMENTS

SUMMARY

NOMENCLATURE

CHAPTER 1

CHAPTER 2

INTRODUCTION

SURVEY OF PREVIOUS WORK
2.1 Deep Drawing

2.2 Ironing

2.3 Hydraulic Bulge Forming

PART ONE: DEEP DRAWING WITHOUT A BLANK-HOLDER
CHAPTER 3 GEOMETRY AND DESIGN OF CONVEX TYPE DIES
‘3.1 Theoretical Geometry of Convex Type
Dies
3.1.1 The Tractrix Curve
3.1.2 The Second Degree Spiral Curve
3.1.3 The Exponential Spiral Curve
3.1.4 The Conical Die
3.2 Design of Convex Type Dies
3.3 Selection of Die Profiles for
Theoretical and Experiméntal
Investigations
'CHAPTER 4 THEORETICAL ANALYSIS OF DEEP DRAWING

THROUGH A CONVEX TYPE DIE
4.1 General Description
4.2 Effect of Anisotropy in Sheet Metals

4.3 Anisotropic Plasticity Relations

17
19

22

22
23
25
27
29

30

33

38
38
42
43



CHAPTER 5

CHAPTER 6

CHAPTER 7

4.5
4.6
4.7
4.8
4.9

Determination of the Equivalent
Stress/Straiﬂ Relationship

4.4.1 Simple Tension Test

4.4.2 Balanced Biaxial Tension Test
The Volume Constancy Relations
Equilibrium Equations

Punch Stroke and Cup Height

Boundary Conditions

The Computer Programme

EXPERIMENTAL APPARATUS AND METHOD

5.1
5.2

5.3

5.4

5.5

Deep Drawing Test Rig

Measurement of Punch Load/Reducfion
of Blank Diameter

Measurement of Circumferential and
Thickness Strains

Strain Ratio and Simple Tension Test
Apparatus

Balanced Biaxial Tension Test

Apparatus and Method

MECHANICAL PROPERTIES OF MATERIAL

6.1
6'2
6.3

General Description
Strain Ratio Measurement

Simple Tensionfand Balanced Biaxial

Tension Resuits and Their Correlation

THEORETICAL RESULTS AND THEIR

INTERPRETATIONS

7.1 Stress and Strain Distribution

Page

46
47
48
51
59
62
63
67
79
79

79

80

8l

84

87

87
87

92
94



7.3
7.4

Effect of Friction Between Material
and Die Profile
Effect of Punch Profile Radius

Optimum Die Design

CHAPTER 8 EFFECT OF DIE GEOMETRY

8.1

8.2

8.3

Comparison of Theoretical and
Experimental Strains

Theoretical and Experimental Punch
Loads

Effect of Die Geometry on Punch Load

CHAPTER 9 CONCLUSIONS

PART TWO: TIRONING OF CUPS

CHAPTER 10 EXPERIMENTAL APPARATUS AND METHOD

10.1
10.2
10.3

10.4

Deep Drawing Tools
Ironing Dies
Measurement of Punch Load/Travel

Test Procedure

CHAPTER 11 EXPERIMENTAL RESULTS AND THEIR DISCUSSION

11.1

11.2

11.3

11.4

Distribution of Thickness and
Hardness Aloné and Across the Cup
Walls

Effect of Punch Speed on Punch Load
in Deep Drawiné and Ironing

Effect of thé Degree of Ironing on
the Punch Load

Prediction of the Punch Load/Travel

in Deep Drawing from Theory

Page

94
95
96
98

99

101
101
105

108

108

109

110

112

114

114

118

121

122



CHAPTER 12 CONCLUSIONS

PART THREE:

FREE BULGE FORMING

CHAPTER 13 THEORETICAL ANALYSIS OF FREE HYDRAULIC

CHAPTER 14

CHAPTER 15

CHAPTER 16

BULGE FORMING OF CUPS

13.1
13.2
13.3

Plasticity Relations
Equilibrium Equations

Determination of the Stress/Strain

" Relationship of the Cup Material

13.4
13.5
13.6

Volume Constancy Relation
Boundary Condition

Computer Programme

EXPERIMENTAL APPARATUS AND METHOD

14.1

14.2

14.3

14.4
14.5

Design of a Test Rig for Free Bulge
Forming
Free Bulge Forming Apparatus

Measurement of Internal Pressure and
Axial Force
Preparation of Specimens

Test Procedure

MECHANICAL PROPERTIES OF THE MATERIAL

15.1

General Description

Results of the Cup Bulge Test

COMPARISON BETWEEN EXPERIMENTAL AND

THEORETICAL STRAIN DISTRIBUTIONS

126
126
127

128
132
132
132
137

137
137

138
138
140
143
143

143

145



CHAPTER 17

EXPERIMENTAL RESULTS AND THEIR DISCUSSION

17.1 Investigating the Effect of the
Unsupported Length of Cup on the
Bulge Limit

17.2 Investigating the Effect of the Cup

Wall Thickness on the Bulge Limit

CHAPTER 18 CONCLUSIONS
PART FOUR: BULGE FORMING INSIDE A CLOSED DIE CAVITY
CHAPTER 19 BULGE FORMING OF HOLLOW-WARE FROM FLAT

CHAPTER 20

" CHAPTER 21

CHAPTER 22

REFERENCES

BLANKS

EXPERIMENTAL APPARATUS AND PROCEDURE

20.1 The Bulge Forming Machine

20.2 Design and Selection of Forming Dies
20.3 Test Procedure

EXPERIMENTAL RESULTS AND THEIR DISCUSSION
21.1 Axisymmetric Hollow-Ware

21.2 Asymmetric Hollow=~Ware

CONCLUSIONS

BIBLIOGRAPHY

APPENDIX A

APPENDIX B
APPENDIX C

HILL'S THEORI OF PLASTIC ANISOTROPY
A.l1 The Yield Criterion

A.2 The Flow Rule ‘

A.3 Stress and Sﬁrain Relations
DEEP bRAWING COMPUTER PROGRAMME

HILL'S NEW YIELD CRITERION

FIGURES AND PLATES

Page

147

148

149

150

152
155
155
156
157
160
161
165
169
171
174

iii
vi



NOMENCLATURE

Die profile constants

Radial clearance between punch and die
External axial compressive force

Single variable function

Derived function of the function £

Die height

Cup height

Current element of material

Current stage of deformation

Punch load

Internal‘pressure

Initial radius of an element of material
Blank radius

Initial mean radius of cup

Punch stem radius

Current radius:

Die lip radius

Die throat radius

Current rim radius of the partly drawn cup
Currént contact r&dius between die profile
and material

Current contact radius between punch profile
radius and material

Pﬁnch flat base radius

Radius at the bulge crown centre

Initial radius of the polar zone

Punch stroke



Current thickness of material
New value of thickness in successive
approximation of t

Initial thickness of material

Reduction in the cup wall thickness during

ironing
Ratio of width strain to thickness strain
in simple tension test

Surface area of an element of material
Current height of the polar zone dome.
Current height of the crown zone
Initial length of an element of material
Half width of the crown zone

Principal strains

Equivalent strain

Coefficient of friction between material
and die

Coefficient of friction between material
and punch

Radius of curvature of die profile
Principal radii of curvature

Radius of curvature of the polar zone
Punch profile radius

Principal stresses

Equivalent stress



(o,t) Unit-tangential force according to
plasticity relations

(0¢t)' Unit-tangential force according to
equilibrium equation

¢ | Profile angle

¢! New value of angle in successive
approximation of ¢

Superfix, ', Denotes parameter referred to the inner
plane of material

Superfix, ", Denotes parameter referred to the~outer

plane of material

Suffix, n, Denotes number of iterations



CHAPTER 1

INTRODUCTION

The production of hollow-ware from sheet metal by means
of spinning has been well established in industry. The
process is simple and efficient especially in the production
of large and deep cylindrical or conical vessels. But for
spinning components of more complicated shapes such as
spherical or barrel shaped articles, a segmented mandrel has
to be used and several separate stages of forming are
required. This reduces considerably the productivity of the
process. However, when asymmetric and non-rotational compo-
nents are to be made, other forming techniques and hydraulic

bulge forming in particular are of great interest.

A nev forming process was suggested by Turner and Woo
[11* in which vessels or containers of required shape are
produced from flat blanks. The prdcess involves deep drawing
without a blank-holder, ironing and bulging in one continuous
operation. Recently, Woo [2], described a bulge forming
.machine which is under development. This prototype produc-
tion machine incorporates drawing, ironing and hydraulic
bulging in one stroke of a punch. He reported that spherical
and conical vessels were successfully formed from aluminium
and pewter blanks and the process appeared to be promising.
The wofk was entirely experimental. Further investigation of

the new forming process is desirable in order to have a

* Number in brackets means source is given in reference list.



better knowledge of its individual stages. This knowledge
may be applied to improve the performance of the forming
process and the tooling design and to widen the range of
application. Also, this may help to define its advantages
and limitations. It is believed that by examining each of
the constituent processes separately, the benefit of this

research work may be identified.

Although deep-drawing without a blank-holder and
ironing are simple forming processes, they have received
little scientific study and the published work is mostly
presented in the form of empirical rules. This may be due
to their physical complexities. A great deal of research
work has been carried out on the hydraulic bulging of a
circular diaphragm, Small proportion of this work deals with
hydraulic bulging of cups inside a closed die cavity under

the effect of internal pressure and axial force.

The present work is presented in four parts. Part One
deals with the process of deep drawing without a blank-
holder. An approach to die geometry and design is outlined.
A general analysis of the deep drawing process without a
blank~holder was developed. It was based on a numerical
solution using the plasticity theory and the work-hardening
charaéteristic of the material together with the equations
of equilibrium of forces and the strain relationship accord-
ing to the volume constancy condition. The analysis was
applied mainly for the predictipn of the punch load, and for
examining the effectiveness of reducing the.punch load by
modifying the die profile. Three die prqfiles including



the tractrix were considered, and the materials used were
mild steel, stainless steel, soft aluminium and brass. To
compare theory with experiment, comprehensive tests were
performed. The punch loads, thickness and circumferential
strains were measured. In particular, the effect of die

profile on the punch.load was noted.

In Part Two, the prospect of the new procéss productivity
is investigated. Experiments were carried out to study the
effect of the punch speed on the drawing and ironing loads
for different reductions in the cup wall thickness. The
distribution of hardness and thickness in the cup wall was

also measured.

Since the analysis of bulge forming inside a closed die
cavity is complicated and because of the dependence of the
instability conditions on the geometry of the die cavity and
on the frictional condition between the material and the die
cavity, it was decided to use the free bulging tests as a

simplified approach to the problem.

' Part Three of this work is concerned with the free bulging
of cups. The instability conditions, bulge ratio and bulging
profile modes which occur in the cup under different loading
conditions of internal pressurg'and axial force were investi-
gated. The effect of the cup.wall thickness and length on
instability and the limiting bulge ratio were also examined.

A theoretical analysis of cup bulging under internal pressure

and axial force was made and verified by experiments.



In Part Four the capabilities of the new forming process
is demonstrated. Axisymmetric articles of basic shapes as
spherical, conical, cylindrical and others, as well as the
more difficult asymmetric hollow-ware of square and elliptical
sections were studied and produced from flat blanks of
aluminium of 172 mm diameter and 2.5 mm thickness. The blanks
were drawn, ironed and then bulged to the required shape under
the effect of internal pressure and axial force, in one stroke
of the punch. 1In some cases annealing was necessary after
ironing. The art of controlling the internal pressure, axial
force and axial compression of the cup is described, and
typical failures are given. The distribution of thickness

reduction and bulge ratio of different articles was measured.



CHAPTER 2

SURVEY OF PREVIOUS WORK

2.1 Deep Drawing

Deep drawing of circular flat blanks for producing
cylindrical cups is a simple and well known process. As far
as its essential tooling is concerned, the process may be

divided into two categories:

1. Deep drawing with a blank-holder or conventional deep
drawing. As shown in Figure (2.1), the essential
tooling in this case consists of a die of constant
profile radius, cylindrical punch and a blank—holder..

2. Deep drawing without a blank~holder. Its essential
tooling is shown in Figure (2.2). It consists of a
convex type die and a cylindrical punch. The die pro-
file may take the form of a tractrix curve or any other
suitable curve., It 1is been known that for a certain
die profile and blank material, the ratio of the blank
diameter to its thickness determines whether a blank-

" holder is needed or not.

The limiting drawing ratio is defined as the ratio of
the diameter of the largest blank which can be drawn
successfully to the diameter of the punch. The maximum
limiting drawing ratio that can be achieved in conventional
drawing, on a single draw basis, is approximately 2.2, in
drawing without arblank-h61&er this ratio can be increased

to 2.7 or even more when a relatively thick blank and a



convex type die such as a tractrix type die is used. The
mechanism of drawing and the theory of deformation in both
categories are similar. A special reference is made in the

present survey to deep drawing without a blank-holder.

Conventional deep-drawing, according to Smith (1908)*
was invented in Rhenish in Prussia in the early nineteenth
century. Since then the process has been studied many times.
The early work of research on conventional deep-drawing can
be thought of as starting with the work of Sommer (1926) and
culminating in the work of Chung and Swift (1951). 1In this
period several attempts have been made to formulate theories
for radial drawing. Sommer (1926), Siebel and Pomp (1929),
Crane (1932), Asimow (1936), Fukui (1938), and Voce (1948)
were concerned with stresses and punch loads. Sachs (1931),
Swift (1943), Jackson (1949) and Hill [3] have attempted
also to predict the strains involved during plang radial
drawing of a non-hardening material, but the effect of fric-
tion over the die profile, the blank-holding force and
bending were neglected. The early experimental work was on
a limited scale to provide a reliable standard for comparison
with theory, and frequently omitted essential measurements,
such as strain distribution measurements. Eksergian (1926),
Siebel and Pomp (1929), Crane £1931), Sachs (1930,1934),
Herrmann and Sachs (1934), Mijon (1938) and Bartholomew (1943)

were concerned with punch load measurement. Oehler (1937),

* Date in brackets means source  is listed in bibliography in

alphabetical order.



Fukui (1938), Swift (1939) and Jackson (1949) attempted also
to measure thickness changes. The first comprehensive and
successful investigation in both theory and experiment is due
to Chung and Swift (1951). This work led to a good under-
standing of radial drawing and to an appreciation of the
thinning of the material as it passes over the die profile.
The following assumptions were made in the theoretical

solution:

1. The blank-holding force is exerted at the cup rim only;

2, The equivalent strain is numerically equal to the
circumferential strain;

3. The material is subjected to bending and unbending on
reaching and leaving the die profile respectively; and

4. The variation of the material thickness can be neglected

in the equilibrium equation.

These assumptions were shown to be justified in a detailed
comparison between the theoretical and experimental results.
In the first éésumption, it is apparant that the blank-holding
force must be distributed over a certain area near the rim.
The second assumption may iﬁtroduce significant errors in the
die profile region. 1In their comparison of the theoretical
and experimental strain distribution only the final strains
were compared and an adjustment of 7 per cent was made in the
flow stress for mild steel to allow for different straining
rates between cup drawing and the tensile test. They were not
able to extend the solution to gnalyse the stretch forming

over the punch head and they did not attempt to predict the



limiting drawing ratio. They were however able to predict
the punch load/punch stroke relation with reasonable accuracy
by assuming that the contribution of the punch stretching to

the total load was negligible. .

It is believed that deep drawing without a blank-holder
was first used in Germany in 1934, when May (1934) introduced
the tractrix type die. It was proposed that considerably
larger values of drawing ratio are obtainable by drawing the
blank through a die having a wide entry section in the form

of tractrix. The used tractrix has the following equation:

1

t:
y = _(32_x2)_§ + a In ( a + (82-x2)

- ) , see Figure (3.1),

where a is a constant and y is the axis parallel to the die
centre line. The same result was confirmed later by Bauder
(1951) .A Similar conclusion was reached by Beisswidnger (1950,

1950a) when using conical dies.

Although the above theorétical work assumed that the
material was isotropic, it was well known that all materials
exhibit anisotropy to a certain degree and sheet metal in
particular could be strongly anisotropic. Lankford, Snyder
and Bauscher (1950) recognized the importance of planar

vanisotropy in unsymmetrical operations.

various theories of anisotropic yielding were developed
durinélthe second world war and they were released for publi-
cation after the war. The theories which have proved most
useful in engineering applications are based on modifications

of the von Mises yleld criterion and its associated rule.



The theories developed independently by Jackson, Smith and
Lankford (1948), Hill (1948) and Dorn (1949) have several
points in common. The theory of Hill has the advantage of
rigor within the basic assumptions adopted and it is perhaps
the simplest to understand. Consequently it is most generally

quoted today.

Fukui,quri and Yoshida (1958) analysed the deep drawing
process using plane and conical dies. The total strain theory
combined with shearing strain energy theory has been used.

The authors revealed that they were able to predict the punch
load with good accuracy and that the strain distributions
over the flange region are nearly independent of the mechani-
cal properties of the sheet material., In their formability
investigations they suggested that the conical dies can be

used in comparing the formability qualities of materials.

A numerical solution of conventional deep drawing
was suggested by Yamada (1961). The theory assumes Mises
yield condition and adopts the Hencky's total strain
theory or Lévy-Mises equation in incremental theory. Solu-
tions of radial drawing and drawing over the die and punch
profile radii were presented. The punch load predicted by
the total strain theory and the incremental strain theory
showed no essential difference 'in radial drawing of non-

hardening material.

Whiteley [4] showed that preferred orientation is the
most important material variable influencing the performance

ofkordinary ductile metals in cylihdrical cup-drawing with a
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flat headed punch. He reported that the limiting drawing
ratio increased as the average y=-value of the material
increased. Other investigators, Fukui, Yoshida and Abe
(1960) and Warwick and Alexander (1962-1963), found low
correlation between limiting drawing ratio and material
properties. Experiments by Lilet and Wybo (1964) provided

results in good agreement with those of Whitely.

In 1963, Oehler [5] discussed the results of previous
investigations by Haverbeck [6] and Shawki (1961) in connec-
tion with the advantages of deep drawing without a blank-
holder and die design using tractrix and conical die profiles.
He proposed'that conventional deep~drawing tools can be
operated without a blank-holder for small drawing ratios,
and that the pressing depth h attainable without a blank-
holder depends on nominal sheet thickness to and punch

diameter dp in accordance with the empirical relationship:
% y

Comparative tests by Shawki (1961) on deep drawing with
tractrix shaped dies and conical dies (in most cases with a
die .angle of 30 degrees) have shown that the amount of work
required is the same in both cases, but that the punch load
for a conical die is about 1.4 times greater than that for a
tractrix shaped die. It was reported that the limiting curve
separating the wrinkle-free region from the region with a
tendency to wrinkle, when a tractrix or conical die is used,

can be approximated as a straight line with a negative slope.
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Thus, for sheet of good deep-drawing quality, the limiting

drawing ratio B is given by the equation:
For sheet of moderately good deep-drawing quality,
B = 3.4 - 0.06 (dp/to).

Although it has been mentioned in this work that the tractrix

entry section is better from the point of view of any tendency
to wrinkle than the conical entry, no allowance has been made

in the above relations for the die type. The following

relation was given for the determination of the cup depth h,
2 2
h= (D" -4 4d
( p )/ p!

where D is the blank diameter.

It is clear that the above relation has disregarded ﬁhe
effect of anisotropy and the effect of the radial clearance
between punch and die throat. Haverbeck [6] found that even
better results can be obtained by using a modified tractrix
cur#e, situated betWeen two particular tractrix curves, the
first curve beiné drawn with a die breadth of h equal to
(D—dp)/z, and the’second being 'drawn with a die breadth of
h as determined from the above equation. The modified
tractrix is’dréwn between the top point of the first curve
and the bottom point of the second curve. It can be seen

that the modified tractrix is arbitrarily determined and that
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no consideration has been made for the radial clearance

between punch and die throat and for the effective die height.

A géneral solution has been suggested by Woo [7] for
the study of the axisymmetric forming processes of sheet
metal such as cup-drawing and hydroforming. The method
involves the application of the plasticity theory together
with the work-hardening characteristic of the material,
equations of equilibrium of forces and the strain relation
which can be deduced from the volume constancy of an element.
Successive approximations are used to determine the stresses
and strains at each element boundary. Woo [8] applied this
general solution by developing a numerical analysis for the
study of the conventional drawing process with a pressure
‘blank-holder which included radial drawing over a die and
stretch-forming over a punch. Agreeﬁent was good between the
theoretical and experimental circumferential strains and
punch load, but the correlation of the thickness strains in
the stretch-forming region was unsatisfactory. This was due
to the simplifying assumption of the material being in full
- contact with the punch profile radius at early stages of
drawing, Thé solution was recémmended for moderate die and
punch profile radii., It was found that there is not much
difference between assuming thqt the blank-holding force is
congentrated on the rim or uniformly distributed in a certain
area near the rim. In a further investigation by Woo [9] the
above analysis was modified to include material anisotropy

and the boundary conditions in the drawing and stretch-forming



- 13 -

region were determined for different stages of drawing. The
punch load/punch travel diagram was constructed and the
general correlation between the theoretical and experimental

results was satisfactory.

There have been several theoretical studies of the
dependence of the limiting drawing ratio on the work-hardening
exponent n (as in the empirical equation G = K £") and the
average strain ratio y. In most cases failure was assumed
to occur by necking under plane strain tension in the region
where the punch profile radius joins the straight punch stem.
The maximum loads in pure radial drawing were calculated for
various n and y values and various drawing ratios. At the
limiting drawing ratio the maximum radial drawing load is
equal to the load neceséary to cause necking in plane strain
tension in the material on the punch stem. This criterion
was used by Yamada (1964) and Moore and Wallace (1964).
Chiang and Kobayashi (1966) gave more details about stress
and strain distribution due to drawing using an incremental
method. Budiansky and Wang (1966) employed a finite defor-
mation theory of rigid-plastic orthotropic sheet that is
isotropic in its plane to study the Swift cup test. El-Sebaie
and Mellor (1972) presented both theoretical and experimental
investigations. Their theory gredicted higher limiting
drawing ratios compared with experiment. In all these solu-
tions, any possible weakening effect due to stretching over
the punch head and the presence of a blank-holder and its

effect on the deformation are ignored. Nevertheless, the
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theoretical results give a useful guide to the important
effect of n and y on the limiting drawing ratio in deep

drawing with a flat headed punch.

Among others, the problems of failure by wrinkling in
the flange or puckering of unsupported material between punch
and die have been investigated. Senior (1956) has suggested
theoretical relations for wrinkling in the flange. He con-
cluded that the critical diameter is affected to a far
greater extent by the geometry of the drawing tools and
material thickness. Naziri and Pearce (1970) concluded from
experiments that a high average strain ratio was beneficial

for resisting wrinkling.

In recent years, with the progress of computers, there
have been more advanced and comprehensive studiesto analyse
the deep drawing process. Wifi (1976) has used an incremental
variational method to analyse axisymmetric elastic plastic
solids at large strains including deep drawing with a hemis-
pherical headed punch. He formulated the contact problem at
different zones and used the finite element method. The
material was assumed to be isotropic. He stated that such
problems are computationally time consuming. Lee and
Kobayashi (1975) have used a matrix method of analysis for
rigid-plastic materials to solve the problmes of plane-stress
bore expanding and flange drawing. The analysis was performed
for two materials, one having normal anisotropy and the other
possessing planar anisotropy. ?he results for planar aniso-

tropy showed that in the bore expanding, the bore remained



- 15 -

closely round even after considerable expansion but the
thickness strains near the bore varied with orientation. 1In
flahge drawing, the method enabled an analysis of ear forma-
tion to be made. The authors concluded that the nonuniform
thickness distribution, caused by planar anisotropy, appears
to have important implications for the occurrance of insta-
bility, such as necking in bore expanding and wrinkling in
flange drawing. Gotoh (1980) analysed the deformation of the
flange in the cylindrical cup drawing process by the newly-
designed hybrid rigid plastic finite element method on the
basis of a fourth-degree yield function t of orthotropy and
the results were compared with those based on traditional
quadratic function g and the experiments. He concluded that
irrespective of ear-configuration, deformation of the flange
which produces at most 8 ears can be numerically simulated
very well up to the end of drawing by this method, including
the distribution of drawing force along the inner periphery.

~ Kobayashi and Kim (1978) described the development of a finite
element model for analysing the sheet-metal forming processes.
Materials were assumed to be rigid-plastic with the view that
fhe usefullness of an analytical method depends largely on
solution accurécy and computation efficiency. First, the
variational formulation applicable to sheet metal forming was
described by considering solution uniqueness and the effect
of geometry change involved in the forming processes. From
bthis variational formulation, a finite element process model
based on the membrane theory is deVeloped. Then, three

basic sheet metal forming processes including deep drawing of
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a sheet with a hemispherical head punch, were solved. When
comparing the strain distribution predicted by this theory
with the experimental data, the agreement was excellent over
the flange of the sheet. However, over the punch head, the
agreement was not as good. Wang and Budiansky (1978)
developed a general finite element procedure on the basis of
the nonlinear theory of membrane shells for calculating the
‘deformations in the stamping of sheet metal by arbitrary
shaped punches and dies. The sheet material was assumed to
be elastic-plastic and to satisfy a rate-insensitive, Mises-
type flow rule taking into account finite deformation, work-
hardening and normal anisotropy. Theoretical results were
compared with existing solutions and experimental data of the

stretch forming process using a hemispherical punch.

Zienkiewicz, Onate and Heinrich (4978) have made a study of
both the deep drawing and stretch fofming of a circular

blank with a hemispherical punch. Constitutive relations for
a von Mises type flow were developed using the viscous shell
formulation. The finite element method was applied for dis-
cretizing the equilibrium equa#ions using a linear element.
The effects of friction and work-hardening were conidered and
the material was assumed to be rigid-plastic. The authors
showed thaf their theoretical rgsults on the punch.load,thick-
ness and circumferential strains agreed well with the existing
results by Woo [9]. It may be noted, however, that in this
work, the anisotropy of the material was neglected. In stretch
forming a great discrepancy was noticed in the zone near the
punch centre line. This was attributed by the authors to the
prestrain imposed in the experiment which‘had not been takén

into account in the énalysis.
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Mellor and Parmer (1978) presented a paper in which they
surveyed the application of plasticity theory to sheet metal
forming problems including deep drawing. The authors dis-
cussed the current position of the plasticity theory and con-
cluded that it is necessary to check the validity of any
theory by careful experiments, paying particular attention to
the correlation between the theoretical and experimental

strain distributions.

The only available analysis of deep-drawing without a
blank-holder is due to Woo [10]. He used previous solutions,
Woo [8] and Woo [9], to develop an analysis of the deep
drawing of a circular blank into a cylindrical shell through
a tractrix type die. Because of the difficulty in deducing
the strain relationship when the material is in contact with
the die’profile, he used a modified tractrix of the following

polar equation:

p = al¢ + a2¢2.
The constants a, and a, were determined by considering two
points on the curve so that the resultant curve fits well with
the tractrix curve. An expression for the straip relationship
using the modified tractrix was given. Experiments were per=
formed using aluminium blanks. - Comparison between the
theoretical and experimental thickness and circumferential
strain distribution was made for the die contact zone, as
shown in Figure (2.3) and Figurg (2.4). The punch load was
compared at three stages of drawing using total and incre-
menfal strain solutions. The author concluded that the com-

parison between the theoretical and experimental results
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showed reasonable correlation. It may be said therefore that
the solution could be applied for the design of die profile

for minimizing the load required for deep-drawing.

2.2 Ironing

Ironing is applied principally for reducing the wall
thickness of a cup by restricting the clearance between punch
and die. Ironing process has received little scientific
study. The first systematic investigation can be traced is
the work of Lowe and Swift [11]. This work was extended by
Knowles and Swift [12]. In these two works experiments were
carried out on a standardized form of cup ironed in a small
hydraulic subpress fitted with an autographic indicator.
They found that a linear relationship exists between the
ironing load and the reduction for cup wall thickness. They
concluded that for general use over a fairly wide range of
reductions in common practice, a die angle of 10 degrees to
15 degrees is apparently a highly satisfactory compromise.
Leeming and Freeman (1952), Freeman and Leeming (1954) and
Loxely and Freeman (1954) made an attempt to determine the
constituents of the ifoning load, namely the direct load on
punch head and the tractional or frictional load transmitted
to the punch through the cup wall. The ironing load and its
constituents were measured independently by means of strain
gauges mounted on a special hemispherical headed punch. The
punch load is, in fact, a measure of tension in the ironed'
cup wall, and is consequently a'prime factor in determining

maximum reduction.

Shawki [13] presented an experimental investigation into

the ironing of cylindrical cartridge brass cups under various
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conditions of operation including die geometry and severity
of cup wall reduction. He showed that the ironing load is
fairly constant during ironing and that it increases with the
degree of ironing in a manner not quite linear. He found that
the ironing operation leads to increased hardness in a manner
quite similar to the true stress/strain characteristic of the
material. Increasing the die’land gives rise to higher punch
loads on account of increased frictional resistance at the die
thfoat and that the efficiency of irohing operation is found
to attain a maximum value at an optimum value of cup wall
reduction of some 58 per cent. A theoretical study of
ironing considering work-hardening was made by Fukui and

Hansson (1970) .

When ironing is combined with deep drawing without a
blank-holder using a tractrix die profile, the operation
seems to have special advantages. Shaw [14] illustrated
this method. He claimed that the products of a press can
exhibit qualities of predictable and consistant accuracy.
Excellent surface finish and mechanical properties can be

obtained when producing cylindrical deep~-drawn pressings.

2.3 Hydraulic Bulge Forming

The deformation of a clamped sheet metal diaphragm by
applying hydraulic pressure on one side of the diaphragm has
been studied many times in the past. The importance of this
method of deformation has been in the field of sheet metal
forming research where the bulge test (balanced biaxial ten-
sion test) has been extensively employed to study the behaviour

of sheet metal without the complications-arising from friction



- 20 -

between tool and specimen. Hydraulic bulging of tubes by
méans of internal pressure is a useful industrial process, but
its application has been limited due to thinning in the
expanded wall of the tube and to the relatively small bulge
ratios which can be obtained before instability and fracture

take place. The bulge ratio obtained is usually quoted as 25-30%.

The process can be improved by the application of an
indipendent axial force. 1In 1965, Wallick (1965) reported
that hydraulic tube bulging combined with axial pressure
upsetting enables expansions of more than 60 per cent to be
obtained in one operation. According to Wallick (1965),
Fuchs (1965), Ogura, Ueda and Takagi (1966), Ogura (1969) and
Limb, Chakrabarty, Garber and Mellor (1973) axisymmetric and
asymmetric shapes_can be produced by this method. Woo and »
Hawkes (1968) adopted this technique to develop a method for
determining the stress/strain characteristic of tubular
materials. They showed that the bulging process can be
greatly extended by applying an axial compressive force to
the tube‘subjécted to internal pressure. The manner in which
the internal pressure and axial load must be varied during
the process, has been theoretically worked out by Limb,
Chakrabarty, Garber (1974) for minimum thickness change in
fhe formed tube. They found reasonably well agreement
between tﬁeory and experiment for radial expansion up to 50%.
Deep-drawing and hydraulic bulge forming in one continuous
operation was introduced in 1975 by Turner and Woo [11].

They suggeéted a forming process for producing vessels or

~ containers of required shape from sheet metal by drawing,

ironing and bulging under internal pressure and axial com-
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pressive force in one continuous operation. Soft aluminium
speherical and conical vessels were produced by this method.
They concluded that the continuity of the process gives an
advantage over other forming methods such as spinning and

forming with a rubber punch and that the success of the

process is much dependent on the axial force which in turn
has to be closely controlled relating to bulging pressure.
Woo [2] described a prototype production machine for manu-
facturing a wide range of vessels. The machine incorporates
drawing, ironing and hydraulic bulge forming in one stroke of
a punch. Aluminium and pewter vessels were successfully
formed. Measurement of thickness strain distribution in a
certain axisymmetric and asymmetric components was made by
Limb, éhakrabarty, Garber and Roberts (1976). In asymmetric
forming of a tee-piece, they investigated the effect of using

different lubricants on the bulged height of the tee dome.

A numerical solution for analysis of the bulging process
of a thin-walled tube under internal pressure and axial force
was proposed by Woo [15]. The solution is applied to a case
in which the longitudinal stress resulted from the internal
pressure and axial force is tensilé along the whole length of
the bulged tube. The material was considered to be isotropic.
He concluded that total strains may be used in the theory,
thus the computation is much simplified. Recently, Woo and
Lua [16] extended the analysis by taking into consideration
the anisotropy effect. The comparison of the theoretical and

experimental results was shown to be satisfactory.



PART ONE

DEEP DRAWING
WITHOUT A BLANK-HOLDER
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CHAPTER 3

GEOMETRY AND DESIGN OF CONVEX TYPE DIES

The success of the deep drawing of cups without a blank-
holder depends largely on the correct choice of die geometry.
For a certain material, blank size, die and punch geometries

are the decisive factors for a successful draw.

3.1 Theoretical Geometry of Convex Type Dies

The favourite general features of a good die geometry

can be summarized in the following:

1. An increasing radius of curvature towards the die throat
to give the lowest possible drawing load. The lower the
drawing4load the higher is the drawing ratio which can
be obtained.

2. A smooth continuous curve to ensure a homogeneous flow
of material during drawing. This may reduce the
tendancy of the material to wrinkle or buckle.

3. A flexible mathematical curve which can be easily fitted
with any overall dimensions of the die, and which can be
adjusted to alter its steepness during the design stage.
.The latter may be necessary so that the die profile thus
designed will not cause buckling of the cup during drawing.

4. A die geometry which has & relatively flat entry to
avoid slipping of the blank during the initial stage of
drawing.

5. A die geometry which results in a simple deep drawing

die assembly and a low production cost.
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6. A profile which enables a theoretical strain relationship

to be deduced. This is essential if a theoretical
analysis of the drawing process is required, for

instance, the prediction of the punch load.

In the present investigation, the theoretical die profile

geometry is assumed:

3.1.1 The Tractrix Curve

The‘Tractrix Curve is perhaps the most widely used in the
actual workshop practice. Figure (3.1) shows the geometry of
this curve. The formation of the tractrix can be physicaliy
illustrated by assuming a man standing at, O, holding a rope
of length, a, to which a weight is attached, initially at Woe
The man walks along the Y-axis dragging the weight after him,
when the man is at m, the weight is at w. The path of the

weight (the tractrix) will at least resemble the curve shown,

where

2 2
-4y _ = Ya~ - x_ .
ax tand " / (3.1)

which can be integrated to give

’ 2 2
y = - /a2 - x% + a in (2tra - X, (3.2)

X

From the mathematical definition of the radius of curvature,

2% .2
dy ay, .,
[1 + (35) 1 /(dxz)

p=
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It can be shown that the tractrix radius of curvature at any

point is

Using equation (3.1) we get
p = a tand. (3.3)

The radius of curvature increases from p = O at the die rim
to relatively high values depending on the die height to be

used. Theoretically, p = «, when ¢ = n/2.

From the practical point of view, only the upper part
of the tractrix is used in the workshop applications, so that

the die height is not excessive.

From the overall dimensions Iy, I, and H of the die,

the tractrix parameter a can be determined from equation (3.2)

with

X =a - (rl - rz) and y = H .,
Let b = r, -r, and ¢ = vY2ab - bz.

From equation (3.2)

a+c
H=a in (-a_—b') C o

Using Newton's method of successive approximations [171],

the value of a can be determined as follows:
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a+c
f(a) = a 4n (E:B) -c -H,

a+c a

a
(a-b) + a+c

b
L+3) -5~

L} —
f'(a) = 4n Py

/ (3.4)

alo

f(a)n
@p41 = @y~ @y

For the first approximation, a, may be chosen slightly higher

than the value of b. The tractrix curve is traced from

r=r, - a (1 - cos¢), (3.5)
Yy = - a sind + a n (lggégg)- (3.6)

The tracing is terminated at ¢2 where

_ -1 b
¢2 = COs (1 - g)l

which corresponds to die throat radius.

3.1.2 The Second Degree Spiral Curve

The second degree spiral curve shown in Figure (3.2),
was suggested by Woo [10], in analysis of the deep drawing
problem over a tractrix die. The radius of curvature of

this curve is given by the polar equation

2
p = a1¢ + a2¢ .

The curve can be traced from

r=r1r -a (cosd + ¢sind - 1) = a2[2 dcosd + (¢2 - 2) sin¢l,

(3.7)
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y = a, (sing - ¢cos¢) + a,[2 ¢sing - (2 = 2) cosé - 21.

(3.8)

It has been shown by Woo [10] that this curve fits with
the tractrix for certain values of a; and a, and it has the
property over the tractrix that at the die throat radius the

curve terminates at ¢2 = 7/2.

To fit this curve to a certain die with known parameters,
we put ¢ = /2 in equations (3.7) and (3.8), taking into

account that at this point: r = r, and y = H. Thus,

o]
]

3.0989 [H - 1.7519 (r; - r,)1,
' (3.9)
- 0.8189 a

V]
It

1.7519 (r; = r,) 24

when chosing p = al<b+ a2¢2, the constants a and a, are
supposed to have positive values so that p of the die profile

is positive.

The die height H is a consequence of &, value, chosen

2
to give increasing radius of curvature o,

H = 0.3227 a, + 1.7519 (rl - r2)- (3.10)

2

If a; is negative, p is negative for the values of ¢ given

by
a

¢<-(-5§).
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A special case of the second degree spiral curve is
obtained when a, = 0. 1In this case the curve polar equation

becomes

p = a¢2-

To get the tracing equations we substitute, a; = 0, into

equation (3.7) and (3.8)

r r, - al2 ¢cosp + (¢2 - 2) sin¢], ’ (3.11)

al2 ¢sing - (¢ - 2) cosd - 21. (3.12)

<
]

Taking into account that ¢2 = 7/2 at the die throat

radius, and y = H, the constant a can be obtained from

0.876H , (3.13)

o
I

where

H = 2.4423 (rl - r2), (3.14)

H in the last equation is restricted to the value of (rl - rz)

and cannot be chosen independently from that value.

3.1.3 The Exponential Spiral Curve

The idea for introducing Fhis new curve comes from the
need for a die geometry which satisfies the features
described earlier for a good die profile. It was reported
by Haverbeck [6] and Oehler [5] that to produce cups from

sheet of good deep-drawing quality, it has been proved to be
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more suitable to use a modified tractrix instead of the usual
tractrix for maximum attainable values of drawing ratio. The
modified tractrix described by Oehle; [5] is steeper towards
the lower part of the die, and it is drawn between two

tractrices and approximated by the designer.

" The exponential spiral curve 1s given by the polar

equation

a2¢ .
p=a; (e -1). (3.15)

The tracing equations are:

a2¢
a,e aa,
r=r, - -—————é(sin¢ + a, cos¢) + a, sin¢g + —_—
.1l + a l +a
2 2
a0 (3.16)
ale ay
y=—" (a2 sin¢ - cos¢) + a; cosp + ———5 - a; *
1 + a, 1 + a,

The two constants ay and a, can be determined by
substituting ¢ = m/2 into the last two equations, and noting

that at this point,

y=Handr=r2,

hence,
1r/2a2 a
ry = r, =a; (e 5 2 5 - 1),
1l + a2 1l + az
m/2a
1+ a, 1l + a,
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By dividing the first expression by the second one, and

denoting 4 = (rl - rz)/H, we get the equation

m/2a 2
(a2d - 1)e + (1 - 4d) a, + a,

2

This equation can be solved, using Newton's method of
successive approximations, to determine the value of a, as

follows:

1r/2a2 2

f(aZ) = (a2d - 1)e + (1 - 4d) a, +a, + 1,

n/2a

f'(a)) = Ta,d+a-De 2+20-aa,+1, (3.17)
f(a,)
-— 2 n .
@)ne = B2)n “ £

The first wvalue (az)o can be chosen as H/(rl - rz) and the

other constant al can be obtained from

H(L + a22) |
a = [ (3.18
1l ﬂ/Za2 2

ae - a

Figure (3.3) demonstrates the flexibility of this
curve and its ability to increase its steepness and radius

of curvature by increasing the die height.

3.1.4 The Conical Die

The conical die is a special case of the convex curves
when p = w, Figure (3.4) shows the geometry of this die.

The die is usually characterized by its cone angle ¢c'



The current radius at any point is
r=r; -y tan (dc/2)

3.2 Design of Convex Type Dies

Die design when a convex type die is used, may be
considered as an easy task to perform when the following

information is available:

1. Dimensions of the cup to be produced.

2. The average strain ratio y of the blank material.

3. The maximum drawing ratio, which is defined as the ratio
of the maximum blank diameter which can be drawn
successfully to the punch diameter. This ratio should

not be exceeded in the die design.

From the plasticity conditions at the cup rim,

The derivation of the above expression will be shown later
in section (4.8). Using this expression, the maximum thick-

ness tmax when the cup rim approaches the die throat can be

-

written as
1_
R Pl
1 )1+Y . (3.19)

i
§
§
it
i
I
H
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As far as the lower part of the die is concerned, the

radial clearance, c. between the punch and die throat

diameter is very important and may be expressed as

or, in terms of the cup maximum thickness as

(3.20)

(3.21)

where X is a constant which determines the maximum amount of

ironing between punch and die as follows:

1. When X > 1, no ironing and the final interior shape of

the cup is not fully cylindrical.

2. When X <1, ironing will take place.

3. When X = 1, the material is just £filling the clearance

between punch and die throat.

It would be better for the designer to chose the value of X

so that the maximum load due to ironing does not exceed the

maximum drawing load. However, excessive ironing between

punch and die should be avoided because it would result in

high loads and localized wear on the die throat zone.

The following expression can be deduced using eguations

(3.19), (3.20) and (3.21):

r2 - R 1l+y

(

This equation can be used to determine the die throat radius,

Newton's method of successive approximation is used as

follows:
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r, - R_ 1l+y
£(r,) = ( XE_ ) [r (2% - 1) + Ryl = 2R;X,
r, - R 1l+y [(1 + Y)(2r2x -r, + R )
£'(r,)) = ( ) + (2X - 1)1
2 xto (r2 - Rp) /
f(rz)n
na = Fdn ~giryy (3.22)

The first value (r2)o in the approximation may be taken

slightly higher than Rp.

The cup height may be approximated by assuming that
€g = O at the punch radius, the cup wall thickness is

linearly increased from t, at the cup base to tmax at the

cup top and allowing for partial ironing between punch and
die throat. Using the above assumptions, the following
relationship can be obtained:

2 2
(R - R 7)) t
h=—=>I B0 ¢ 24c et 1+t (3.23)
2Rp Critpax =~ %)

where t_ < ¢c_ < t .
o) r max

- For full ironing of cup walls, by assuming that €4 = o
at the punch radius. The cup height for fully ironed cup

walls may be approximated as

2 2

h = Ry Rp ) %o, (3.24)
2R ¢ .

P r

The maximum reduction ratio in ironing O ax at the cup rim

may be approximated as,

- - '} . 3025
a =1 =X . ( )

e b b et it A
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Once the required cup size 1s obtained, the die curve
can be selected, the die height is assumed and the die curve
constants can be determined so that the die profile can be

traced as it was described earlier.

3.3 Selection of Die Profiles for Theoretical and

Experimental Investigations

Five different die profiles were selected for the
theoretical and experimental investigations of the deep
drawing problem through a convex type die without a blank-

holder.

Die profiles 1-4 were designed to produce experimental
cups of 50 mm internal diameter from circular flat blanks of
120 mm diameter and 1.6 mm nominal thickness. The punch
profile radius is 10 mm. Die profile 5 is fitted on the
bulge forming machine to éroduce cups for ironing and
hydraulic bulge forming tests, This die is an exact tractrix

type die and its details and results are given in Part Two.

Die profiles 1-3 were chosen from existing dies used in
the department research laboratory in some preliminary experi-
ments on the effect of die geometry on punch load. The die
curves were corrected slightly to suite the purpose of this
work. These dies are used mainly to investigate the effect
of the die radius of curvature on the punch load, and there-
fore, their profiles have been given the same second degree
spiral curve. It can be seen in Figure (3.6) that the radius

of curvature has been increased from die profile 1 to die
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profile 3. Since the radius of curvature varies along the
die profile and is not constant as in the conventional deep
drawing die with a blank-holder, therefore, it was thought
that in order to get a marked reduction in the punch load
the radius of curvature should be increased greatly, i.e.

more steep dies should be used.

The reason for selecting the second degree spiral curve
was to examine further possibility of reducing the punch

load in deep drawing.

The die design procedure given in Section (3.2) was
not followed here because of the variety of material under
cosiderations. 1In order to reduce the number of dies
required to a minimum, a radial clearance of 1.75 mm was

assumed for die profiles 1-4.

The die throat diameter for die profiles 1-4 is

calculated from equation (3.20), hence

25 + 1075[

N
"

26.75 mm.

)
1. Die Profile 1:

The die curve is given by the polar equation

o = 214 + L5.3¢2,
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where the two constants of this equation have been chosen to
obtain a close fit with a tractrix curve of a = 37.11 mm.

The die lip radius is equal to the blank radius,

rl = 60 mm.

The die height is calculated from equation (3.10),

H=72.72 mm,

Die profile 1 and the tractrix which fits closely with it
are shown in Figure (3.5). The tractrix is shown for
comparison. Both curves were traced using equations (3.7),

(3.8) and (3.5), (3.6) respectively.
2. Die Profile 2:

The die curve is given by the following polar equation:
p = 15O¢2.
The theoretical die height is deduced from equation (3.13),

H = 171.24 mm,

The theoretical die lip radius is determined according to

equation (3.14) as

rl = 96.86 mm.

Since the blank radius is 60 mm, therefore only the latter

part of the curve is used, which corresponds to
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¢l = 1.012 radians and ¢2 = m/2 radians

The working die height is found from equation (3.12) as

follows

faef
il

y(r/2) - y(1.012)

136.21 mm.

The die curve shown in Figure (3.5) was traced using

equations(3.11]) and (3.12).
3. Die Profile 3:
The die curve is expressed by its polar equation as

o = 214¢2.

rys Ht’ ¢l’ ¢2 and Hw are found in the same way as is

used for die profile 2, hence,

126.77 mm, Ht = 244 mm,

R
i

1.132 radians, ¢2 = /2 radians, and

-
"
]

H = 167.76 mm.

The die curve shown in Figure (3.5) was traced using

equations (3.11) and (3.12).



- 37 =

4. Die Profile 4:

This die profile was designed after experiments on die
profiles 1, 2 and 3 were completed, in an attempt to reduce
the punch load for aluminium blanks which showed a tendency
to buckle during drawing when die profiles 2 and 3 were used.
It was also an opportunity to examine the performance of the
new exponential spiral curve as a profile for deep drawing

die.

For the purpose of comparison,die profile L4 was given the

same working dimensions as die profile 3, hence,

r, = 60 mm, r2 = 26,75 mm and H = 167.76 mm.

The dle constants a, and a; were determined from equations
(3.17) and (3.18) respectively, giving the following polar

equation:

o = 0.341 (2% - 1) .

The die curve was traced using equations(3.16), and it is

shown in Figure (3.5).

The radius of curvature versus the current radius

relation for die profiles 1-4 is given in Figure (3.6) for

comparison.
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CHAPTER 4

THEORETICAL ANALYSIS OF DEEP DRAWING

THROUGH A CONVEX TYPE DIE

4.1 General Description

'The deep-drawing operation, through a convex type die
without a blank-holder, is used to produce cylindrical cups

- from flat circular blanks of sheet metal.

The success of the process depends on the drawing ratio,
blank thickness, material drawability and the frictional
conditions at the interface between the drawn material and

each of the punch and the die profiles.

The essentials of the tools are shown diagrammatically
in Figure (4.1), where the blank is shown in two positions.
The first position is before the'operation and the second
position shows the partly drawn cup as a result of the punch

movement.

The main advantages of this operation over the conven-

tiohal deep drawing with a blank-holder are:

1. Higher drawing ratios can be achieved in a single draw,
. Oehler [5].
2. Simpler tooling design and hence lower tooling cost.
3. Lower drawing load which means that lower press capacity
is needed to produce a certain component.
4. Quicker setting-up times and hence higher production

rate.
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5. The operation can be easily followed by ironing, to
achieve even higher drawing ratios, Shaw [14].

6. The operation can be followed by ironing and hydraulic
bulging to produce vessels or containers from flat

blanks, Turner and Woo [1] and Woo [2].

Regarding the final cup shape, the conventional operation
has the advantage of being capable of producing cups with a

flange on their top end.

With reference to Figure (4.1), the deep drawing opera-
tion without a blank-holder may be considered as consisting

of the following parts:

1. Drawing through the die profile.
2, Stretching between die and punch.
3. Stretching over the punch profile radius.

4. Plane-stretching over the flat bése of punch.
1. Drawing Through the Die Profile

Drawing takes place in the annular zone between r, and
rb.' The material in this zone is drawn progressively inwards
towards the die throat under an applied tangential tensile
stress and the effect of continuously decreasing the radii in
this zone is to induce a comprgssive circumferential stress
which causes a considerable increase in material thickness.
The maximum increase in thickness occurs at r.: the'value of

the maximum thickness for a certain blank is a function of

the current outer radius and the strain ratio. As the draw
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proceeds, more material from the stretch forming zone comes
into contact with the die profile and becomes thicker. This
material has been previously thined under tension in the zone
between die and punch. The net effect for the outer parts of

this zone is an incresse ih the thickness of the material.

As far as the punch load is concerned, die profile
geometry and the frictional conditions at the interface
between material and die play a major role in determining the

punch load behaviour for a given blank.

While the material is being drawn through the die, it is
also subjected to bending. This bending effect lasts until
the moment when the material comes into contact with the die
profile. After that moment the material undérgoes unbending
over the convex shape of the die profile. Under the effect
of unbending the material is gradually straightend-up over
an increasing radii of curvature until it finally forms the
cylindrical shape of the cup wall., In the present analysis,
the effects of bending and unbending are neglected. This
assumption will be justified later when comparing the

theoretical results with those done by experiment.
2. Stretching Between Die and Punch

Stretching takes place in'the annular zone between I,
and Tor where ry lies on the die profile and r. lies on the
punch profile radius. The material in this zone is stretched
under the effect of the punch load which causes a decrease in

the material thickness. As the operation proceeds the
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material in this zone moves gradually to zones i and 3, where

it will be caused to increase in thickness in zone 1,

and a further decrease in thickness in zone 3.
3. Stretching Over the Punch Profile Radius

This process occurs in the annular zone between r, and
ry over the punch profile radius. The material in this zone
is stretched progressively outwards under an applied tangential
tensile stress and the effect of continuously increasing the
radii in this zone is to induce a tensile circumferential
stress which causes decrease in the material thickness. By

moving from r_ towards Tqr the tensile tangential stress

c
decreases and the tensile circumferential stress increases in
a way which depends on the punch profile radius and the
frictional conditions in this zone, until they become equal
at Ty The effect of bending of material in the punch

profile region is neglected in the present analysis.
4. Plane-Stretching Over the Flat Base of the Punch

~ The process of plane-stretching occurs in the circular

zone of radius Tqe According to Woo [81]1, in this zone,
ct=.0, the material is therefore stretched under biaxial
stress conditions. The stress and strain state is identical
to that in pure uniaxial compression plus the addition of a
uniform hydrostatic state of tensile stress equal to the
uniaxial yield stress. It follows, therefore, that the state

of stress and strain is uniform.in the flat base of the cup.

SHEFFIELD,
UNIVERSITY
LIERARY
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Under the effect of the biaxial tensile stress the
material thickness in this zone is uniformly decreased and
part of the material slides outwards from this zone to zone

3.

4.2 Effect of Anisotropy in Sheet Metals

Ail metals exhibit anisotropy to a greater or lesser
degree when deformed at room temperature, that is the
mechanical properties of the metal vary in different direc-
tions. The amount and type of anisotropy is characteristic
of its mechanical and heat treatment history. In sheet

metals it is convenient to define two types of anisotropy:
1. Planar Anisotropy:

Planar anisotropy describes the variations of mechanical
properties in the plane of the sheet and is characterized by
the amount of earing that occurs when drawing a cylindrical
cup from a flat circular blank. As such, planar anisotropy
is usually considered objectionable in drawing quality sheet
metals, because it represents a waste of material. 1In the
drawing of a cylindrical cup, ears would be expected to
develop from the rim of the blank at positions where the
uniaxial yield strength has a minimum value in the circum-
ferential direction. The numbér and form of ears vary from

material to another.
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2. Normal Anisotropy:

Normal anisotropy describes the strength of the metal
through the thickness of the sheet relative to its strength
in the plane of the sheet. Whiteley [4] mentioned, that its
practical importance lies in the fact that the resistance of
sheet metal to thinning, which is advantageous for deep
drawing operations, is a function of its normal anisotropy,
and that normal anisotropy indicated by a high average strain

ratio is desirable for good drawability.

The tensile strain ratio, vy, is commonly accepted as a
measure of anisotropic plasticity and has been widely
employed as a parameter for the measurement of plastic normal
anisotropy in subsequent investigations. The tensile strain
ratio is defined as the ratio of the natural strains in
width and thickness measured in simple tension test,

n (W_/W)

Y = EHTE;7€T ' (4.1)

where Wo and W are the initial and current width of the

speéimen respectively.

4.3 Anisotropic Plasticity Relations

The theory of plasticity for anisotropic materials is
applied in the present analysis to describe the mechanics of
plastic deformation of the material during the deep drawing
operation. Since the material in deep drawing undergoes
1érge plastic deformations, it follows that the relatively

small elastic strains can be 1gnoréd. That means that the



- 44 -

total strain increment is equal to the plastic strain incre-

ment, and the material is considered to be rigid plastic.

Hill's theory of plastic anisotropy (see Appendix A)

will be applied for its simplicity.

Figure (4.2) shows an element of the drawn material over
the die profile, when the material is in contact with either
the punch or the die, and whenever a relative slide between
-tool and material exists, there 1is frictional force at the
interface opposite to the sliding direction. If ordinary
Coulomb friction is assumed to be valid in this case,
the frictional shear stress is proportional to the contact
pressure and the proportionality factor is the coefficient
of friction. 1In deep drawing practice, lubricant is usually
used, which means that the coefficient of friction is rela-
tively small, and therefore, the frictional shear stress is
small if compared with other stress components and can be
neglected. Furthermore, the stress in the thickness direction
due to the contact force N is comparatively small and can be
ignored. Therefore, the stress state is reduced to a plane

stress condition.

Rotational symmetry of the sheet metal about the z-axis
is assumed. Following Bramely and Mellor (18], the average
of planar anisotropic properties of the haterial is con-
sidered, and according to Woo [10] the average planar
properties can be represented by the average strain ratio y

from the following equation:
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Yo * Y45 ¥ Yoo t Y_y4g

'Y == 4 . (4.2)

For sheet material subjected to plane stress, with
rotational symmetry about the z-axis, it is known from Hill's

theory that,
H H
‘Y =a-=-f‘-0 (403)

From the above equation and equation (A.13), see Appendix A,

it can be seen that the equivalent strain increment is,

- _12(2 +v) 2 2 %
de = {_—_3(1 oY) (284" + (1 + v) de, ® + 2dey de 1} «(4.4)
Assuming, Gt = 0, it can be shown using equation (4.3) and

equations (A.1l2), see Appendix A, that the principal stresses

are given by the following equations:

2(2 +y) o

°¢ = - §—(1'—+—2—Y-T e [d&e + (1 + ¥v) det], (4.5)
_ _2(2+y) ©
g = 9 = 3(L % 2y) af (2de, + de,) - (4.6)

From equation (4.5), the following equation is used for

successive approximations of t in the numerical solution,

- o,.t
1 3(1 + 2y) de, (o) j 4.7
1 = - — -
de’y T+ 2y ) ety (4.7)
where (o¢t)' is the unit tangential force determined from the

equilibrium equation.

The relationShip between the equivalent stress o and
the equivalent strain € for a given material is determined

experimentally as described in the following section (4.4).
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Because of the variety of materials considered in this
investigatibn, it is more conventient to represent the stress/

strain relationship as:

G=A+B (E-0c)?, (4.8)

which may take any of the following forms:

When A = ¢ = O,

g =B ()", (4.9)
when ¢ = 0 and n = 1,

c=A+Be, (4.10)
When ¢ = O,

O=A+B ¢, (4.11)

where A, B, c and n are constants, and € is equal to fde,
de being the incremental equivalent strain calculated from

equétion (4.4).

4.4 Determination of the Equivalent Stress/Strain

Relationship

The equivalent stress/strain relationship is experi-
mentally determined in this investigation using two methods;
balanced biaxial tension and simple tension tests. This is

used as a means to check the validity of Hill's anisotropic
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theory of plasticity for individual materials under
consideration. The results of the balanced biaxial tension
test are used in the theoretical analysis of the deep

drawing operation for two reasons:

1. The strain range which can be obtained by biaxial
tension test is usually wider than that obtained by
tension test. |

2. The biaxial tension test simulates the stress

conditions in the deep drawing operation.

The simple tension test results are used for comparison
and for determining the strain ratios which are needed in

the biaxial tension test and the theoretical analysis.

4.4.1 Simple Tension Test

Simple tension is the most widely used test for

determining the mechanical properties of materials.

According to Hill's theory, Taghvaipour and Mellor [191]
showed that, the equivalent stress, o, and the equivalent
strain, €, can be written in terms of the longitudinal stress

or strain in simple tension as follows:

From a simple tension test in the direction of rolling,

- 3
o = [5 ( Yo)] Oq 1
1 + 'Yo +Y——
20 (4.12)
Yo
1 +y + —
A 2 Y"’O)J!5 €
3 1l + v o
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From simple tension test perpendicular to the rolling

direction,
g = [% (T% : +-:90 7 )]% 990 »
Yoo T Y90/ Y0
(4.13)
- _ (2 (l + vy t Y90/Yo) ]% .
3 1 + Yoo 90

According to the theory, y-values between 0° and 90o do not

affect the results.

4.4.2 Balanced Biaxial Tension Test

The tensile conditions are achieved by clamping a
circular diaphragm at its periphery and applying oil
pressure on one side. Since the materials under considera~-
tion are relatively thick, it is more accurate to determine
the equivalent strain in terms of r in the middle section
of the specimen. From the measured r" and Ah" in the

experiment, the value of r is determined as follows:

With reference to Figure (4.3a), the radius of
curvature pc" can be found from the geometry of the bulged

diaphragm at the outer surface of the polar zone as,

r?s (anm? | (4.14)

Pe” = T2 am"

With reference to Figuie (4.3b), -

r =" - LE° . (4.15)
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From the incompressibility condition,

€, = - 2 €q

2t

r O
EA

(4.16)

Using equations (4.15) and (4.16), it can be shown that

the radius at the middle section of the diaphragm is given

by the following equation,

where

The third degree equation in r can be solved™ using

Newton's method of successive approximations as in the

following:
f(r) = r3 - r" r2 + c ,
' f'(r) =3rl -2z r,
f(r)n

The first value in the approximations can be chosen as,

(r)o

(B ne1 = )y = g3y

= r", Similar equation can be obtained in terms of

t, using the same equations (4.15) and (4.16)

4 t r 2 P n2

3 n ’ o "o (o]

t" =4 p " t2 + 4 p

c c t- - 2

(4.17)

(4.18)

* An exact solution can be obtained using the goniometric °

method, see Reference [24] , p. L7.
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and can be solved to find the value of t in the same way

described above.

After r is found, the hoop strain and the thickness

can be calculated from

€y = in (ﬁ;) ’ and

-2€
t =t

0
The equilibrium equation of forces along the vertical

direction at the pole gives,

p (pc" - t:)2

$ = T (o - €/2) (4.19)

By applying Hill's theory of plastic anisotropy (see
Appendix A), assuming a rotational symmetry about the z-axis
and considering the biaxial tension condition at the pole,

it can be shown that the equivalent strain is given by the

equation

X

Ml

5 | (4.20)

and the equivalent stress is

4.21
2 +.Y) °¢' . ( )
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4.5 The Volume Constancy Relations

The volume constancy relation is used in the present
analysis as a relationship between the geometrical variables
of the deformation process of an element of material. It
will be applied specifically to deduce the relationship
between €4 and €g in the theoretical analysis. The volume
constancy relation is obtained from the condition of
incompressibility of an element, that is, for each element
of thevmaterial, the volume before and after deformation
remains constant. Let us consider the circular blank of
uniform thickness to’ in Figure (4.4). Each element has

the shape of a circular ring. The volume constancy relation

may be approximated as,

t, + t
2 2 _ i i+l
T (Ry" = Ry 17) t = MA (),
where AA is the surface area at the middle section of that
particular element after deformation. From the above
equation, the surface area at the middle section is,

2 _ 2
2m (Ry™ = Ryyqp It

.2
(ti + t (4.22)

AA = )
i+l

When the material is in contact with a tool of known

geometry, then the surface area can be determined from the

following integration:

27 (r" - t/2 sing) (p" + t/2) d4d¢, (4.23)

®i41
AA=]

oy

where r" and p" are functions of ¢.
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(a) The volume constancy equation when the material is

drawn through the die profile:
1. Tractrix die curve

Referring to Figure (3.1l), the surface area of an
element of material in contact with a tractrix type die can
be found using equation (4.23) where r" and p" for a tractrix

curve are given by equations (3.5) and (3.3) respectively:

$i41
- |

27 (rl - a + a cosp - t/2 sing) (a tand + t/2) do.
3

By integrating this equation, we get

AA = 21r{(rl - a) t/2¢ + a t sin¢ + (t2/4 - az) cos¢d

®541
- QZE [&n (%—é—ﬁ%ﬁ%)] + (a - rl) a n coscb}¢ .
i

By substituting the above expression into equation (4.22),
we obtain,

2 2

( i T ti+l ) t, = {(rl - a) t/2¢ + a t sin¢ + (t2/4-a2)‘cos¢
i i+l .
1 . %141
a t + sin - .
- = [2n (-l—_—-—sTn—%)] + (a rl) an COS¢}¢i
(4.24)

In the present analysis of the deep drawing problem,
¢i and ti are known from previous step. If ti+l of the next

step is assumed, ¢i+l can be determined from the above
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equation and hence r can be found from, r =r, -

i+l i+l 1
a(l - cos¢i+l) - ti+l/2 sin¢i+l. This shows how the strains

Et and ee are related to each other using the volume con-

stancy principle.

To determine ¢, from equation (4.24), Newton's method

i+l
of successive approximation is used as follows:

£(6,,1) = {(r; - a) t/26 + a t sinp + (t7/4 - a®) cos¢

&
t + sing¢ - i+l

£ - [¢n - 51n¢) + (a rl) alncosd)}qi
2 2
(Ri “Rin
t, + ti 1

) ts
i

E
i
f'(¢i+l) = (rl - a+ a coscpi+1 - t/2 51n¢i+l)(a tan¢i+l + t/2»4;

£004410n ,
(¢i+l)n+l = (¢i+l)n - W’ (4.25)

t, + t

where t = —i__i—iil . _ (4.26)

The first value, (¢i+l)o' in the approximation may be
found by considering the volume constancy of an element and
assuming that Pis1 = P4 and Ty = ry according to the
following equation,

2 t

R R .
¢ = ¢, + ( i i+1 ) o __., (4.27)
i+l i (ti + ti+l) Py Ty
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2. Second degree spiral curve

‘The volume constancy relation corresponding to this
curve, see Figure (3.2), was shown by Woo [1l0] as,

2 2
R - R, r, +a r, +a
I N S R R e S

( 2
ti + t o

) a ¢
1+1 1

rl+al

+ 3

a - —

3 3
) a2¢ + (20 a; a, > alt) sind

2 + 4 a,t - 40 a 2 . t2/4) cos¢

- (3 ay 2 2

- (3 a.,2+3a.t - 40 a22) ¢sind -

1 2

- (20 a a2 - alt) ¢cosp - 9 a; a2¢2 sind

1

+ (al2 + 243 sing

t - 20 a22)¢2 cosd - 6 a,’

a

9541
%y

2.4

3
+ 2 ay a2¢ cosd + a, ¢ cosl

Newton's method is used to determine ¢i+l'

‘ r a r, + a ¢
2 i+l
f(¢i+l) = [(—1—7——10 té +.(—l—§—"l) a; ¢ + ---]¢i

2 2

(t

- t I4
1 b)) ©

£'(¢;,9) = {r] - ay (cos¢y ) + ¢34y sindgyy = 1)

2
= ay [204,) c0sbyyy * (45,7 = 2) sindqly

) )
- t/2 sin¢i+l}(al¢i+l +a,b," * t/2),

equation cont.




- 55 =

£005410n
Cindn ",

(5410 n41 = (4.28)

where t and (¢i+l)O are given by equations (4.26) and (4.27)

respectively.
3. Exponential spiral curve

From the geometry of the exponential spirai curve, r"
and p" are given by equations (3.16) and (3.15). Using
these two equations and equation (4.23), the surface area

of an element is given by the expression,

¢ az¢
i+l ale
AA = 27 {r, - ——— (sin¢ + a, cos¢) + a sin¢
1 1 + a 2 2
¢i 2
a; 3, ay¢
+ ——=5 - t/2 sin¢}[a1 (e -1) + t/2] d¢ .
l1 + a

2

By integrating this equation, and using equation (4.22), the

volume constancy relation of the exponential spiral curve is,

2 2 2
R.” - R a a a,a, t/2
i i+l 1l + a, 1l + a,y

a
a2¢(r1 3%

+ (al2 - a;t + t2/4) cosd + @

2! ( in¢ ¢)
+ ) + a, sine - cos
2 (1 + a22)2 2

] 2 2
[al (1L + a, ) + a;” - a t/2

a,¢
2
- agt 2 aja,e
- —= (1 + a, H-+-—————5—§(sin¢-+a2cos¢)
2 (1 +a,%)
2 a. ¢
227

a, e
1 [3a22

(al - t/2) - p)

(1 + a,”) (1 + 4a,°)

+ (2622 - 1) cos¢]}Ii+l .
i

sin¢
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Newton's method is used for approximating ¢i+l’

al2 a, a; a, t/2 ¢i+l
£(¢;,) = {(-r; a - —5 +1r, t/2+ ——) b + ..}
1 + a l +a b,
2 2 i
2 2
) (Ri + Ryp7) .
(b + i) ©
a2¢
£ ) C 1 © ( "L 72
¢ = [r, = ——— (sin¢ + a, cos¢) + a, sinp + —5
i+l 1 1l + az2 2 1 1l + a22
a2¢
- t/2 sin¢] [a; (e - 1) + t/21,
£(,,.4)
i+l'n (4.29)

@isdnrr = Csndn " TG, 0

where t and (¢i+l)o are given by equations (4.26) and (4.27)

respectively.
4. Conical die

The deformed element over the die has the shape of a
conical frustum of a cone angle equal to ¢c. It can be
shown using equation (4.22) that the volume constancy rela-
tion of a conical die may be approximated as
2 _ ﬁiz !

) .t  sin (¢c/2)] .

it tia

R
2 i+l
+ 2(—

r = [ri

i+l

From the above expression, the following relationship

between ee and et can be obtained:

r,? R,?  sin (6,/2)
=% oan [ 5 + 2 (1-

~ 5 1. (4.30)
i+l Ry 41 R e Yoy tinl

€o
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(b) The volume constancy relation when the material is

stretched between die and punch:

The idea of approximating the shape of the deformed
element in this zone to the frustum of a cone was adopted by
Woo [15] in his work on tube bulging under internal pressure
and axial force. The derived volume constancy relation
proved to be simple and effective. By applying this method
of approximation and using equation (4.22), the volume
constancy relation, when the material is stretched between
die and punch, may be written as,

2 2

R - R b, + ¢, X i
2 i+l i i i+l :
r = [r + 2 { ) t_ cos (——s—)1 (4.31) ?
141 i ti + ti+1 (o) 2 ;3
or, in terms of €q and €y as |
¢, + ¢ '
ri2 Ri2 cos ( 1 > 1+l ) 8
So141 = ¥ In [— + 2 (1-—) 1l = 1 B
Rin Rivi g "1 4 "1l ’

where ti+l’ € and ¢i+l are to be assumed before it

tia

becomes possible to deduce r 1 and €g .

i+ 1+1

(c) The volume constancy relation when the material is

stretched over the punch profile radius:

The volume constancy relation for this zone is derived

in a similar way to that of the die zone, see Woo [8].

With reference to Figure (4.5), the current radius r!

is given by,

r' = ry + (pp + t/2) sing . . (4.32)
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The surface area of an element at the middle section,

may be approximated using equation (4.32) from the following

integration:
141
AA = l 2m [rg + (py + t/2) singl (p, + t/2) d¢.
i

By integrating this equation and using equation (4.22), the
volume constancy relation over the punch profile radius can

be shown as

R, 2 2 %541

- R
( i' T ti+1 ) t, =[xy (pp + t/2)¢ - (pp + t/2)2 cos¢]¢ .
i

i i+1

To determine ¢i+1 from the above equation, Newton's

method is used as follows:

5 %141
£(054)) = [xrq (o + £/2)¢ = (py + £/2) cos¢]¢
1
2 2
_ (Ri -~ Rin -
ty i O

£'(0541) = [rg + (py + t/2) singy ] (b, + £/2),

f(¢ )
i+l’n
- - _*i+l’n .32
(43417041 = Y3410 (05,10, " (4.3
£+t

The first value in the approximation, (¢i+l)o' may be
found by considering the volume constancy of an element and
assuming that ri+1 =1 from the following equation:

2 2
ty (Ry" = Ryyq’)

= ¢ - ¢ (4.33)
$i+1 L7 TE ¥ E5,)0p, +0.25 (£, ¥ € T 5
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4.6 Equilibrium Equations

Equilibrium equations are used in the present
theoretical analysis of the deep drawing problem to determine
the value of the unit-tangential force, (c¢t)', to be com-

pared with the unit tangential force, (o,t), which is found

¢

from the plasticity relations, and to be used as a new value

in the process of successive approximations of t.

At the tool-material interface the frictional force is
assumed, on the basis of ordinary Coulomb friction, to be
proportional to the normal force whenever relative sliding

occurs.

(a) The equilibrium equation when the material is drawn over

the die profile:

From the condition of static equilibrium of forces in
the directions parallel and perpendicular to o¢, two equa-
tions can be obtained. By eliminating N from these equations,

an expfession for (o,t) can be found.

¢

1. The equilibrium equation when a convex-type die is used:

With reference to Figure (4.2), this equation was shown

by Woo [10] as

=(c

%541
(o I

¢th;1 ¢t)i - ¢ [cet (cosd + uy sin¢)-—o¢t cosd]
i

o]

%41
j t dé .

(p +rt42) a¢ +

%5
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The above equation can be numerically integrated using

the trapezoidal rule [17], thus

(0p€ 302+ (9349 = 0y) (By +Ugd 1= (4549 = 6y) (B +A4,0)

(o, t)! =
erit 2= (0541 = 04) (Byyy +ug)
(4.34)
where
A= o¢t (cos¢ + Mg sing¢) iQ_I;EZZL,

B = (B_+.r_t£) cos¢ .
2. The equilibrium equation when a conical die is used:

With reference to Figure (4.6), it can be shown that

the equilibrium equation is,

(o {ogt [1 + uy cotg (95/2) = bt} %_,’3 .

Ti+1
ptlisn = (og8)y + f

r
i (4.35)

By numerical integration, using the trapezoidal rule,

we get,
ag.t T oLt o,t
0 8 -
@ty = (048) 4 + ALYy + () g 1= ()4} (ryy = my)
¢ 1+l 2 (r g mry)/rin
(4.36)

where

A=1+ Bg cotg (¢c/2)-

(b) The equilibrium equation when the material is stretched

between die and punch:

Since the deformation process in this zone is not

bounded by the tool surface as in the previous case. The .
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values of t and ¢ have to be assumed in every step and two

equilibrium equations are required.

1. Equilibrium equation to determine (o,t)'.

¢

Referring to Figure (4.7), the equilibrium equation is

obtained by putting g = O in equation (4.35), hence

Tiv1
(o J

(0, = 0,)
_ 0
otV 141 = (OpB)y # “"E“i‘ dr .

r,
1

By numerical integration, using the trapezoidal rule,

(4.37)

we get,
cet—ct Uet
(0.t) ! =2(o¢t)i+[( r )i+(r)i+l](ri+l-ri).
¢7 1+l 2+ (X34 =T /T

2. Equilibrium equation to determine ¢°'.

The equilibrium of forces in the vertical direction
gives,

P =21 ri(°¢t)i sin¢i = 27 ria (°¢t)i+l sinq;i+l
hence,

-1 P (4.38)
o! = sin ~ [ 1 .
i+l 27 T (°¢t)i+1

where P is the punch load.
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(c) The equilibrium equation when the material is stretched

over the punch profile radius.

Referring to Figure (4.8), this equation can be
obtained in a similar way to that mentioned above for the

die. Woo [8] showed that this equation has the following

form:
9141 :
(°¢t)i+l = (o¢t)i - J [oet (cos¢-+up sing) -c¢t cos¢ ]
¢i
(o + £/2) %141
rqg + (pp + t/2) sing d¢ + i up °¢t dé .
i

The above equation may be numerically integrated using

the trapezoidal rule,

(0,8) 402+ (87,9 =¢y) (By +u;)] = (9141 = 9) By +Ay )

(o, t)! = :

¢ i+l 2 - (d)i"’l = ¢i) (Bi+l +Up) ’ 5

(4.39)
where
p_ + t/2
A= cet (cos¢ + pp sin¢)(-E-—;———)/
p. + t/2

B - (—E—r———) .

4.7 Punch Stroke and Cup Height

Figure (4.9) shows the deep drawing operation through
a convex-type die without the use of a blank-holder, in two
positions. Position I shows the beginning of the drawing

operation and position II shows an intermediate stage of
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drawing corresponding to a punch movement Sj and cup height

h, . A
J L

The current cup height, which corresponds to.a certain

stage of drawing, j, may be approximated using the following

equation:
. o )]¢b 13?0 by + by
.= [y" (¢ + (x! = r? ;) tan (———s—=)
3 ¢, 1=1, i i+l 2
+ pp - (pp + tc) cos¢c + td' (4.40)

where y" (¢) depends on the type of the die curve to be
considered. For example, y"(¢) is given by equation (3.8)

when the second order spiral is considered as the die curve. !

The stroke which corresponds to this stage of drawing,

j, may be approximated in a similar way from the equation,

d>b i=ic
%1 + %141
S. =t + [y"(¢)1 + [ (' -1x", ) tan (——s—)
J o 6 1=1 i i+l 2
. o b
+ Dp - (pp + tc) cos¢c . (4.41)

4.8 Boundary Conditions

The boundary conditions in this theoretical analysis
are divided into two categories, edge boundaries and inter-

mediate boundaries.
(a) Edge Boundaries

Edge boundaries describe the conditions of the partly
draw cup at the cup rim radius and at the flat base of the

cup.
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1. Edge boundary condition at the rim radius, r.» of the
partly drawn cup, can be obtained from the fact that the

tangential stress at this radius is equal to zero, hence

(o’¢)a =0 . (4.42)

By substituting this value into equation (4.5), it can be
shéwn‘that

(de )
(dst) = - —e_a P
a 1l + vy

Since the ratio of de, to de, remains constant, as it is

t ]
shown in the above equation, therefore, total strains can

be used,

= - (ee)a
t’a l + v
1

. . (4.43)

It can be shown using the above equation and the
second degree spiral curve as an example that it is possible
to adjust the inner rim radius, ré, to a predgtermined

value required in the theoretical analysis as follows:

From the geometry of the second degree spiral curve,

r' = ry-a; (cos¢ + psing ;i)-a2[2¢cos¢-+(¢2 -2) sin¢l.
' (4.44)

The current radius, ros is given by

t

— en - 2 .
LI = ra 5 sing
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By substituting ta from equation (4.43), we get

1
t R, 1+y
r =r" - 7; (—l) sin¢ .
a

It can be seen from this equation that for a certain
value of ¢ the outer radius, r;, is determined from equation
(4.44), and r, can be calculated using Newton's method of

successive approximation according to the following

equations:
1
t R, 1+
f(r.) = =-r_ - 1" - =2 (—l) Y sin¢
a a a 2 r, !
t = - (&
' - - (o) 1+y 1+y
£ (ra) 1 + TR Ry r, ’ (4.45)
f(r )
(ra)n+l = (ra)n - f'(ra )n
a’n

ta can be found from equation (4.43), and the inner rim

radius, ré, is given by
' = " 4.46
rl =r}-t, sing. ( )

It is clear from the above procedure that it is possible
by adjusting ¢ 1in a particular manner, to set . ré to a
predetermined value within the required accuracy. The way

in which, ¢, is adjusted will be explained in the next

section (4.9).

It is obvious that setting r; to a predetermined

value would be easier to perform when required.
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2. Edge boundary condition at the flat base of the partly
drawn cup. Due to the balanced biaxial stress condition in

the punch flat base zone,
Op = Og (4.47)

By substituting the above equation into equation (4.6),

we get

de, = - 2 de (4.48)

The first edge boundary condition is automatically
verified during computation, while the above condition is
to be checked. Computations start from the rim radius of
the partly drawn cup. The theoretical analysis of any
stage of drawing is considered to be valid only when the

above boundary conditions are satisfied.
(b) Intermediate boundaries

Intermediate boundaries represent the conditions at
the shared sections between different zones of the partly
drawn cup. At each section the stresses and strains should

have the same values at either side of the section.

1. Intermediate boundary con@ition at the die contact
radius, Ty between the drawing zone and the stretching
zone. Since ry, is unknown, therefore, it will be given a
rouch estimate and then‘adjusted until the edge boundary

conditions are satisfied.
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2. Intermediate boundary condition at the punch profile
contact radius, Tor between the stretching zones 2 and 3:
from the punch geometry, this condition is satisfied when

r = r

at (pp + t/2) sin¢ . (4.49)

This equation can be used to check the intermediate
boundary condition at r, when computations are carried out
from the outer zone towards the inner zone. If the process
of computation is reversed then r. 1s assumed and the
boundary condition at Iy is satisfied when r = r" - t/2 sin¢,

where r" is a function of the die curve under consideration.

3. Intermediate boundary condition at the punch flat base
radius, rye between stretching zone 3 and punch flat base
zone 4. This boundary condition is satisfied when the punch

profile contact angle approaches zero, thus

¢ =0 (4.50)

4.9 The Computer Programme

The present numerical solution of the deep drawing
problem through a convex type die, without the use of a
blank-holder, is based on the general solution suggested
by Woo [7] for the analysis of ‘axisymmetric forming of sheet
metal and hydrostatic bulging process and on another work by

Woo [10] for the analysis of deep drawing over a tractrix die.
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The solution is formulated as follows:

The initial conditions of the material are represented
by the blank which is divided into small elementary rings of

known initial radii and constant thickness.

The current conditions of the partly drawn cup at any
stage of drawing, such as stresses, strains and punch load,
can be determined}by the application of the plasticity
theories together with the work-hardening characteristic of
the material. Equilibrium equations in one or two directions
are used in the solution depending on the number of unknowns.
The volume constancy relation is also employed in the solu-
tion to determine the relation between €t and €ge The
computations for a certain stage of drawing start at the rim
radius of the partly drawn cup. The die contact radius, r,,
is assumed, and computations are then carried out from point
to point towards the centre of the partly drawn cup. The
dié contact radius, Iy is changed in a logical order, as
will be described later, until the boundary condition at the
punch flat base radius is satisfied. As an illustration of
this general solution, the main procedure for deep drawing

through a second degree-spiral type die is given below.

The procedures for other convex type dies can be
obtained by conveniently replacing the relevant equations in
the given solution with those of the die type required.
These replacements are to be done in the die contact zone

only; other zones remain unchanged. All necessary equations
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for other common convex type dies have been given in previous

sections.

The procedure of the numerical solution for a second

degree-spiral type die may be outlined as follows:
(a) The die contact zone:

Let us consider a certain stage of drawing, j,
corresponding to a certain inner rim radius of the partly

drawn cup.
1. Rim radius:

Computation starts at this radius, ror which is
considered as the step, i = 1. 1In this particulsr stage, j,
the rim radius, r,r which corresponds to a certain value of
the die contact angle, ¢a’ is found from the set of equations
(4.45), using Newton's method, and ta is given by equation
(4.43). The method of adjusting r; to a predetermined value
r;p is as follows: ¢a is assumed equal to that in the
previous stage, and is then increased by a suitable increment,
A, until r; is less than, r;p.‘ Thenlthe increment is halved
and ¢a is decreased by A/Z‘until r; is greater than r;p.
After that ¢, is increased or decreased by (A/4, A/8, A/16 ..)
depending on whether r; is smaller or greater than r;p. The
cycle is repeated until, rg =,r;p, within a specified

accuracy. The values of thickness and circumferential strains

are deduced from the following equations:
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™
|

= 2n (ti,j/to)' (4.51)

™
|

91 o= n (ri,j/Ri’j). (4.52)
v]

If finite strain increments are assumed, then, the strain

increments are

de, = € - € (4.53)
(1,9 f,3 0 fia
and de = € - € . (4.54)
eilj eilj eirj-l
The equivalent strain increment, dgi j¢ is computed
14
from the plasticity relation (4.4), and the equivalent
strain is given by
€, » =de, . + €, 5  ° .
eilj eirJ eirj'l (4.55)

The equivalent stress, 5, is deduced from the work-

hardening characteristic of the material, equation (4.8).

From the edge boundary conditions at the rim radius,
the tangential stress, 0¢, is equal to zero, and the

circumferential stress, oe, is deduced form the plasticity

relation (4.6).

At this point, control is tranferred to the next part

of the programme.
2. Other steps in the die contact zone:

. In this part of the programme, computations start with

the second step, i = 2, in the die contact zone. As a first



- 71 -

approximation, the value of t is assumed to be equal to that
in the previous step, hence €¢ and det can be calculated.
The value of the die contact angle is given its first
approximation from equation (4.27), and then the value of ¢
which.corresponds to the assumed value of t is computed from
the set of equations (4.28) using Newtons's method. The
curfent radius, r, is determined from the following

equation:

r=1r" - t/2 sin¢,
where r" in this case is given by equation (3.7).

- The values of €4, de , de, €, 0 and 0, are computed
from the same expressions given in the previous step, and o¢
is determined from equation (4.5). Hence the plasticity
relation-value of the unit-tangential force, (o¢t), can be
found. The equilibrium equation-value of the unit-tangential

force, (o t)z is calculated from equation (4.34). The two

¢

values of the unit-tangential force are compared using the

following inequality:

(o,t)

|(0¢t)' - 1| s Accuracy . (4.56)

If the above inequality is correct, this means that the
assumed value of t is correct and the control is tranferred
to the next step in the die contact zone. If the inequality
is not satisfied, a new value of the thickness; t', is
assumed frém equation (4.7), anq the procedure of this step

is repeated. If the value of t' during the process of



- 72 -

successive approximation reaches a very small value, then
necking is assumed and the control is tranferred to part

(d) in the programme.

Computations are carried out for the remaining steps in
the die contact zone,in the same way as is described above for
step, 1 = 2, until the die contact radius, Ly is reached.

After that, the control is transferred to the next zone.
(b) The stretching zone between die and punch:

In the first step of this zone, both ¢ and t are given
the same values of ¢ and t in the previous step as a first
approximation. The current radius, r, is found from equa-

tion (4.31), hence the values of e, de,, €g, deg, de, €, O,

tl

and (o,t) are computed in the same way as described

%’ % b
above for step, 1 = 2, of the die contact zone. The value
of (o¢t)' is determined from equation (4.37). The two
values of the unit-tangential force are compared in the same

way as described earlier.

When t is found to be correct, then ¢' is determined
from equation (4.38), and the two valueé of the angle are

compared using the following inequality,
I(é%ﬂ - 1| sAccuracy . . (4.57)

When the above inequality 1is satisfied, it means that the
assumed value of ¢ is correct, and the control is traferred

to the next step in the stretching zone between die and punch.
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If the inequality is not satisfied, a new value of the angle,
$, may be assumed from the following equation

o1 = 9 ; o' (4.58)

and the procedure of this step is repeated.

Computations are carried out for the following steps in
this zone in the same way described above, until the condi-

tion given by the following inequality is reached
r < ry + (pp + t/2) siné, | (4.59)

which means that the control has just passed the intermediate
boundary between this zone and the stretch forming zone over
the punch profile radius. The position of the boundary is

checked by the following inequality:

r + t/2) sing

+ (p
d 2 ] - 1| <Accuracy -

| C

r

If the above ineqﬁality is found to be valid, then the
current radius, r, is considered as the punch profile contact
radius, L and control is transferred to the next zone. If
the inequality is not valid, then the initiél radius, R,
which corresponds to this step, is increased by adding an
increment, Al, equal ﬁo half the distance between this step
and the step before, i.e. Al = Ei—:ifizl. The procedure
of computaﬁion for this step is repeated with the new value
of R and the above inequality is checked. If it is not

correct, then the increment, Al, is halved in the sequence,

Al/2, Al/4, Al/8 ... The manner in which the resulting
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increment is added or substracted from R depends on the
sign of the inequality. When the above inequality is

satisfied, the control is transferred to the next zone.
(c) The stretch-forming zone over the punch profile radius.

In the first step of this zone t is assumed and the
value of the punch contact angle is given its first approxi-
mation from equation (4.33), then the value of ¢ which
corresponds to the assumed value of t is found from the set
of equations (4.32) using Newton's method. The current

radius, r, 1s determined from the following equation:
r =ry+ (pP + t/2) siné¢ .

Hence the values of e _, de,, €4, deg, de, €, O, Tgr Oy and

t

(o,t) are computed from the same equations used in step,

¢
i = 2, of the die contact zone. The value of (o¢t)' is
determined from equation (4.39), and the two values of the
unit tangential force are compared in the same way described

for step, 1 = 2, at the die contact zone.

Computations for this zone are carried out from step to
step following the same procedure for the previous step
until the condition given by the following inequality is

reached,
d <O

Which means that computations has gone beyond the intermediate

boundary between this zone and the punch flat base zone. The
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accuracy of this boundary is checked using the following

inequality:
| ¢ | s Accuracy.

The procedure of adjusting the initial radius, R,
which corresponds to this step, is similar to that given in
the previous zone for finding the punch profile contact

radius, r _.
' e

As the punch profile contact angle approaches zero, the
punch flat base zone is reached. Since the stress and strain
conditions in this zone are uniform, therefore, no computa-
tions need to be carried out for this zone and control is

transferred to the next part of the prbgramme.

(d) Boundary condition at the flat base.

At the flat base, €, must be equal to - 266-

t

The following observations were made during the initial

testing of the programme:

1. €y > = 2 ee, when the assumed die contact radius, Ty

is less than the actual one.

2. et < =2 Ee, when rb is greater than the actual die

contact radius.

3. €, =2 €g7 when ry, is approximately equal to the actual

t
die contact radius.
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This behaviour can be explained by considering a certain
stage of drawing, when the assumed die contact radius is less
than the actual one (case 1). As a result of that, the die
contact zone with the material is larger and the punch load
is higher than the actual value. Consequently, the material
in the zones following the die contact radius undergoes extra
thinning, and the thickness strain becomes more pronounced

than the circumferential strain.

It was found very useful to apply this logical relation
between the boundary conditions at the punch flat base con-
tact radius and the die contact radius. The relation can be
used to control the assumed die contact radius in order to
obtain the correct boundary condition. If the adjustment
was done manually, the computation would be very tedious, and

the application of this solution would be very limited and

impracticable.

For economical reasons, the adjustment of the die contact
radius is performed in two modes. 1In the first mode a rough
adjustment is made by shifting the step number, i, which
corresponds to the assumed die contact radiﬁs, by adding one
or subtracting one for as many times as required until the
inequalities in 2 or 1 respectively are reversed. This means
that the acéual die contact radius lies somewhere between
this step and the step before. Then the second mode of fine
adjustment is applied in which a technique of halving the
distance between two consecutive steps is used in the same way
as is described previously for finding the punch profile con-

tact radius. After each adjustment of the die contact radius,
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the control is transferred back to the die contact zone.
Since the steps before ry, are not affected by its adjustment,
therefore, the control is transferred to the step, i, which

corresponds to, rb.

The assumed value of the die contact radius is considered

correct when the following inequality is valid:

2¢
|279 + 1| < Accuracy -

However, it should be pointed out that in order to get
a rigourously traced strain history, any change to be carried
out 1n a certain initial radius of a particular stage of
deformation must be preceded by doing a similar change in
all previous stages starting with the first stage. At the
same time the appropriate corrections in the values of
strains should be made. These changes proved to be vital
whenever incremental strains are used, especially in those
stages near to the maximum punch load, when, the strain incre-
ments become very small. Also, care has to be taken so that
after each unsuccessful adjustment of the die contact
radius, every change carried out in previous stages must pe
recovered to its original value before the adjustment.
Otherwise the initial element distribution will be severely
disturbed, which may lead to inaccuracies or even failure of
the program. Therefore, the programme is provided with
separate memory locations, reserved for some of the variables,
especially strains. These varigbles are stored in this
separate memory after each successful stage, so that they

kee§ the up-to-date values for future reference during

computations.
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The following equations are used to extrapolate the first

approximate values of t and ¢, as applicable:

t = 2

o . t . -
i,3 i-1,5 ~ ¢

1-2,3° when i = 3
’

t, . =3 ¢t . = 3t + t ,whe_n3<i<iband

i,] i-1,3 i-2,j i-3,3

ic< i< id

R, . -R . when
%3,53 = ®4-1,1 F (931,57 %-2,97 & =)

i-1,5 "Ri-2,5 1 = i

i =1 and
R a’

i-2,5' &

t, . =t t

1,3 "Ri-1,4
i,3 i-1,j .

+ (t
i_llj R

) i, <41 <4,
C

i-l'J 1_2,]0 b

This programme is capable of analysing stresses, strains,
punch load, etc., for a given case, up to the point of

maximum punch load which is considered sufficient for the

purpose of the present investigation.

Figure (4.10) shows a general flow chart of the

programme.
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CHAPTER 5

EXPERIMENTAL APPARATUS AND METHOD

5.1 Deep Drawing Test Rig

The deep drawing test rig used in the present work is
an existing one used in the department for investigating the
deep-drawing process without a blank-holder. Figure (5.1)
shows a sectional view of the test rig. It can be seen that
the tooling design is simple as a blank-holder is not
required 1n the case of the deep-drawing through a convex
type die. The test rig is designed so that it can accommo-
date different dies with the same outside diameter but
different die geometry or different height. This is done

by adjusting the height of the spacer under the die housing.

The drawing tests have been carried out using an Avery
self indicating universal testing machine available in the
department research laboratory. The maximum capacity of the
machine is 50 tons. It has a load indicating unit consisting of
four capacity charts and two load indicators,one is a live load
pointer and the other is a max}mum load pointer. Plate (5.1)
shows a photographic view of the deep-drawing test rig in

position on the universal testing machine.

5.2 Measurement of Punch Load/Reduction of Blank Diameter

Several measurements of punch load/reduction of blank
diameter have to be taken at successive stages of drawing.

For each measurement during the test, the punch was stopped
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and the corresponding punch load was read from the load
indicating unit at the point of the maximum load pointer.

The corresponding rim diameter of the partly drawn cup was
measured in four directions, corresponding to Oo, t 45° and
90° to the rolling direction, the average rim diameter was
determined and the reduction of blank diameter was determined

from the following equation,

Reduction of blank diameter = —l—ﬁ—-é— .
1

The measurements for different stages were taken in the
same way until the punch load reached its maximum and started

to decrease.

5.3 Measurement of Circumferential and Thickness Strains‘

The initial conditions are represented by a grid of
circles of 2.5 mm intervals and four lines passing through the
circles centre, indicating the direction 0%, % 45° and 90°
to the rolling direction. The grid was scribed lightly on
the flat blank, see Plate (5.2). The initial diamters of
theSe circles were measured ;n the four directions, using
X-Y travelling microscope. The travelling microscope
provides an accuracy of measurement better than 0.0l mm in
both directions. The initial thickness was measured using
a dial gauge (Figure (5.2)), at 8 points of 45 degree
intervals, starting with 0° which corresponds to the rolling
direction. The dial gaugé provides an accuracy of measure-

ment better than 0.0025 mm. The current diamters of a
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particular stage of drawing were measured at four directions
using the travelling microscope. The current thickness at
each circle was measured at 8 points, 45° intervals,
starting with the rolling direction. The dial guage
arrangement described above was used. The average values

of thickness and diameter were considered in the determina-

tion of the strain distribution.

5.4 Strain Ratio and Simple Tension Test Apparatus

Since there was no standard method or device which
could be used to determine the strain ratio in simple tension,

it was necessary to design a special device for this purpose.

The design criteria were adopted following recommenda-
tions by Atkinson [20] for accurate strain ratio determina-

tions which include:

1. A sample large enough to accommbdate variations in
plastic anisotropy.

2. A large extension to minimize measurement errors and
strain sensitive variations in anisotropic plasticity.

3. Precise measurement since the calculated strain ratio
value is hypersensitive to small errors.

4, Co-ordination of measurements to compare accurately

related strains.

The direct method of measuring the change in width and

thickness was adopted for the following reasons:
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1. Materials under investigation are of 1.6 and 2.5 mm
nominal thickness and may be considered as felatively thick
materials. Therefore the sensitivity to measurement error
in thickness is less than those encountered in thin
materials.

2. The variety of materials to be tested and hence the
large number of tests to be carried out necessitate a quick
method of measurement. The strain ratio measurement is only

a small part of this investigation.

Plate (5.3) shows a general view of the strain ratio and
simple tension test apparatus. The strain ratio and the
stress/strain values are measured using the same specimen.
The tensile specimen is gripped on a Hounsfield tensile
testing machine. The changes which occur in the width and
thickness directioﬁs of the specimen, under tensile loading,
are detected by two displacement transducers(L.V.D.T.), while

fixed on a specially designed attachment.

Figure (5.3) shows two sectional views of the transducer
attachment. The tensile specimen is maintained in line con-
tact with two reference piﬁs 1 and 2 by means of spring
loaded discs 3 and 4., Each disc is fitted around the trans-
ducer's stylus which‘slides freely inside a hole at the
middle of the disc, for detecting the change in thickness or

width. The transducers have the main specifications given in

Table (5.1).
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Table (5.1). The main specifications of the displacement

transducers (L.V.D.T.)

Thickness Width
Transducer Transducer

Rated stroke, mm 2.5 5.0

Sensitivity, mv/v/mm 88.7 75.2

Max. permitted error,
$ total stroke 0.1 0.3

The transducers are connected to a twin channel digital

a.c. carrier amplifier with the following main specifications:

1. Linearity at constant temperature: 0.1% ¥ 1 digit.
2, Digital indicator reads up to t 1999 digits.
3. Sensitivity: From 2.3 mv (maximum gain of 500) to 5V

(minimum gain of 2) for 1000 digit on

D.V.M.

The system was calibrated by removing the transducers
from their attachment and applying a known displacement to
each transducer individually..»A dial gauge stand with
standard block gauges of different sizes was used in the

calibration. The gains given in Table (5.2) were adjusted

on the amplifier.
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Table (5.2). Adjusted values of amplifier gains

Width Transducer | Thickness Transducer
(Channel A) (Channel B)
Coarse gain value 5.0 5.0
Fine gain value 0.3255 0.7145

Input/output diagrams are given in Figure (5.4). The

sensitivity of measurement is defined as output/input, hence

Width measurement sensitivity is, 0.5 digit/um, and

Thickness measurement sensitivity is, 1 digit/um

5.5 Balanced Biaxial Tension Test Apparatus and Method

Plate (5.4) shows a general view of the balanced
biaxial test apparatus. An existing clamping die of 100 mm
is used. The hydraulic oil pressure is obtained from a two-
speed hand pump, which is capable of producing pressure from
O to 675 bars. A hydraulic accumulator of 1.15 litre capacity
and 340 bars maximum working pressure is fitted on the
delivery line of the hand pump. The pressure is measured by
a pressure ﬁeasuring system which consists of a pressure
transducer, and the twin channel carrier amplifier described

earlier. The pressure transducer has the following main

specifications:

1. Range: 0-270 bars.
2. Full range output: 1.521 mv/v.
3. Maximum input voltage: 30V.

4. ' Accuracy (linearity and hysteresis): I 0.26%.
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The pressure measuring system was calibrated on a dual
range dead weight tester. The error of this tester when
. used at standard room temperature of 20°C does not exceed

0.03% of the pressure being measured.

The following gain values were adjusted on the

amplifier (Channel A):

Coarse gain: 500

Fine gain: "1.195

The calibration curve of the pressure measuring system
is shown in Figure (5.5) as a straight line. The sensitivity

of measurement is 3 digits/bar.
The method of testing may be summarized as follows:

A circle of 25 mm and four lines, corresponding to Oo,
+ 45° and 90° to the rolling direction were lightly scribed
on the outer surface of the specimen. The four lines cross
the centre of the circle which coincides with the clamping
die centre. The specimen was clamped firmly on the die. 1In
the”first staée of the test, phe pressure was gradually
increased until a movement of 2.5 mm was approximately
achieved at the centre point of the polar zone. This move-
Ament was detected by using an electrical circuit. The arrange-
ment consists of the specimen, a vertical micrometer with its
point end stylus, an electrical power supply (batteries) and
an indicating lamp. The lamp was on when the micrometer
stylus came into contact with the centre point of the polar

zoneé. Once the lamp was on, pumping was stopped and the
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pressure was slightly released to avoid creeping and the
danger of bursting. The pressure value before releasing was
recorded from the D.V.M. of the amplifier. The current
radius r" was measured using X-Z travelling micrometer
placed over the bulging die as shown in Plate (5.4), along
four lines corresponding to Oo, + 45° and 90° to the rolling
direction. The accuracy of the travelling micrometer in the
X-direction is better than 0.0025 mm. The current radius of
curvature pc" at the pole, was determined indirectly using a
depth micrometer which has a span between its two legs of

25 mm, the current depth Ah" was measured at the four lines.

The accuracy of -the depth micrometer is better than 0.025 mm.

The average results of the current radius r" and the
depth Ah" were considered for deducing the stress/strain
curve. The following stages in the experiment were performed

in the same way as is given above until bursting occurred.
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CHAPTER 6

MECHANICAL PROPERTIES OF MATERIAL

6.1 General Description

For comprehensive study of deep-drawing through a
convex type die without a blank-holder, four different
materials were used in the present investigation. The
materials are mild steel, stainless steel, aluminium and
brass. Some genefal description of the matérials is given

in Table (6.1).

Table (6.1). General description of materials

Material Nominal thickness
mm
Mild steel 1.6
Stainless steel
B.S' 304 1.6
99.5% pure, soft 1.6
aluminium 2.5
¥ hard brass 1.6

All materials were commercially supplied.

6.2 Strain Ratio Measurement

v

A standard tensile specimen'of a relatively large size
was selected for all sheet materials under consideration
according to B.S.18, part 1, 1970 and part 3, 1971. The

tensile specimen dimensions are given in Figure (6.1). The
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specimens were cut to the required size on a milling machine
using an existing special fixture. Care was taken to avoid
scratches and overheating. The same specimen was used to

determine the strain ratio and the stress/strain curve.

The changes in width and thickness were recorded with
the corresponding load value. The test was stopped at the
point when necking started to take place and the condition
of the test was not uniaxial any more. Figures (6.2) to
(6.13) show the width/thickness strain relationship for mild
steel, soft aluminium, stainless steel, and brass respec-
tively. In the case of mild steel and soft aluminium, three
specimens were tested in each direction corresponding to Oo,
+ 45° and 90° to the rolling direction. In the case of
stainiess steel and brass; it was decided, due to material
shortage, to do one test in each of the four directions for
stainless steel and one test in each direction corresponding

to OO and 90o for brass which had shown a fair amount of

rotational anisotropy in preliminary tests.

It can be seen from the width/thickness strain curves,
that the strain relation can be very’well approximated as a
straight line which passes through the origin of co-ordinates.
The slope of this line represents the strain ratio. A
computer progfamme was used to fit the experimental points to
a straight iine which passes‘thrpugh the origin of co-
ordinates, using the least square method. The resultant

strain ratio values of different materials are given in

Table (6.2).
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Table (6.2). Values of strain ratio

Material Yoo Y450 Y90° Y-h5° YAV

Mild steel 2.061 1.619 2.363 1.403 1.862

Stainless steel 0.993 1.123 1.091 1.079 1.072

Soft aluminium
1.6 mm thick 0.618 0.750 0.635 0.664 0.667

Soft aluminium
2.5 mm thick 0.663 0.775 0.775 0.710 0.731

Brass | 0.846 - 0.856 - 0.855

6.3 Simple Tension and Balanced Biaxial Tension Results

and Their Correlation

To avoid any possible effect of the strain rate on the
experimental results, the strain rate in both types of test
was maintained approximately within the same low range values
by observing the loading speed in simple tension and the
speed of raising the pressure in biaxial tension. The simple
tension results for mild steel, stainless steel, soft
aluminium and brass are given in Figures (6.14) to (6.18)
respectively. The anisotrOpic-E/E curves, of 0° and 90° to
the rolling direction, were deduced using equations (4.12)
and (4.13). In the case of ba%anced biaxial tension, three
specimens of each material were tested, except stainless

steel where one specimen was carefully tested due to material

shortage.
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A special computer programme was prepared for
determining the stress/strain curve from the experimental
data. The programme follows the theoretical procedure given

in (4.4.2).

An investigation was made to study the difference
between the suggested method which calculates o and € in
relaﬁion to the stresses and strains in the middle-section
of the specimen thickness and considers the pressure to be
applied underneath the specimen, and the conventional
method which calculates 0/€ curve assuming that the material
thickness is negligible. Typical results of this investiga-
tion are shown in Figure (6.19) and Figure (6.22). It can
be seen that the suggested method gives lower stress/strain
curve in general, the difference being under 5% for materials
of 1.6 mm nominal thickness. This difference is increased to
about 7.5% for soft aluminium of 2.5 mm nominal thickness.
The results of the suggested method are used throughqut the

following investigation.

For the purpose of comparison, the biaxial test E/E
curves for different materials are included with the relevant
simple tension results in Figures (6.14) to (6.18). It can
be seen that when anisotropy is considered, there is a
difference generally under 10% between the biaxial and simple
tension o/¢ curves. A difference slightly higher is observed
in the case of mild steel at low strain values. The biaxial
test curves fall below the simple tension curves at low

strain values and the correlation is generally better at high
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strain values. This may be attributed to underestimating
the radius of curvature of the polar zone at the initial
stages of bulging. When anisotropy is neglected, the corre-
lation is poor especially in the case o§ mild steel which is
highly anisotropic as indicated by its high average strain
ratio. The éorrelation for stainless steel is approximately
the same as before and the correlation for brass and soft
aluminium®of 2.5 mm thickness is slightly better, in general,

than the correlation when anisotropy is considered.

Since the balanced biaxial G/ relationships for
different materials are to be used in the theoretical analysis,
they have been fitted to empirical equations as appropriate.
The experimental and empirical curves of the materials are
shown in Figures (6.19) to (6.23). It is clear that the
strain ranges obtained from the biaxial tests are higher than
those obtained from simple tension, from about 40% higher in
the case of stainless steel to more than 250% higher in the
case of mild steel. However, it should be mentioned that the
biaxial tension results showed a very good degree of con-
sistancy and repeatability. The experimental points have

been omitted from the 0/ curves for clarity.

* Hill has proposed a new yield criterion, which might
accomodate the results for balanced biaxial tension, and
which is particularly sapplicable for those materials having

Y-values less than unity, see Appendix (c).
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CHAPTER 7

THEORETICAL RESULTS AND THEIR INTERPRETATIONS

The theoretical solution of the deep drawing problem
through a convex type die using the computer programme
described earlier was tested and verified for different die
profiles including the tractrix, exponential spiral, second
degree spiral and conical type dies. A complete list of the
programme using a second degree spiral type die is given in
Appendix (B). Comment statements are provided to explain
the main steps in the programme and a typical stage input/
output is also given to illustrate the data requirements and
the results obtained. Mild steel and die profile 1 were used
in this typical example. The programme is written in Fortran
and it was run and tested using the University ICL 1906S

computer.

The element width and the number of stages required in
the solution were investigated. It was found that an element
width less than 0.6 mm and number of stages more than six do
not give any appreciable change in the results within the
uséd accuracies. Therefore, an element width of 0.6 mm and
six stages have been used to obtain the theoretical results
with the exception of using an element width of 0.3 mm for
the punch profile radius zone where the radius is small com-
pared with the die profile. The accuracy used for elements
and edge boundaries is of the order of 0.000l1. Typical com=-
putation time using the above figures is between 250-300

seconds. Higher accuracies give more exact results of strains
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and stresses in the punch profile zone, especially in the
latter stages of drawing. The punch load remains practically

unaffected.

In the cup drawing experiments, the die profile was
lubricated using graphited grease while the punch was kept
dry. Therefore, in the analysis the values of the coefficient
of friction between the material and each of the punch and
die profile were assumed with reference to the work by Swift
[21]. The coefficient of friction for stainless steel is
assumed to be similar to that of mild steel. The values of
the coefficient of friction for different materials are given

in Table (7.1).

It was noted that the theoretical punch load determined
by assuming total strains in the theoretical analysis or

according to the approximate boundary condition, €Eg = 0 at

Table (7.1). Values of coefficient of friction

Material di;1§£g¥lle pungﬁ?b;z}ile
Mild steel 0.06 0.13
Stainless steel 0.06 0.13
Aluminium 0.028 0.1
Brass 0.04 0.13
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the punch radius, do not differ significantly from the
result based on the more exact solution. Figure (7.1) gives
a comparison of the punch load as determined by the three

methods with mild steel and die profile 1.

7.1 Stress and Strain Distribution

Figures (7.2) to (7.5) show the strain and stress
distribution for a typical case, using mild steel and die
profile 1. The circumferential and thickness strain develop-
ment is illustrated by showing the strain path of particular
elements, the contact boundary on the die and the contact
boundary on the punch., It can be seen from the thickness
distribution curves that due to the thinning effect over the
punch profile radius, one neck on either side of the punch
profile zone has been initiated in the laét two stages of
drawing. It can also be seen from the stress distribution
that the stress level at the neck near the flat base radius
is higher. Great resistance to thinning is noticed for mild
steel as indicated by the small thickness strains at the
lower parts of the partly drawn cup, this is attributed to

the high material anisotropy. -

7.2 Effect of Friction Between Material and Die Profile

There was uncertainty regarding the values of the
coefficient of friction assumed in the theoretical solution
particularly in the case of stainless steel. Figures (7.6)
and (7.7) demonstrate the effeqt of friction on the stress

and strain distribution in a stage of drawing near to the
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maximum punch load. Aluminium and die profile 1 are used in
this example. The coefficient of friction between the
material and the punch was kept constant. It can be seen
that the increase in the thickness strain, when the
coefficient of friction ¥y is inéreased from 0.028 to 0.1,
is more pronounced than the increase in the circumferential
strain. This is because the thickness strain is more
sensitive to small changes in thickness, caused by the
increase in friction and hence the punch load, than the
circumferential strain which is mostly determined by the
geometry of tooling. Accordingly, it was noted that the
frictional conditions between the die profile and material

have a small effect on the die contact radius.

Figures (7.8) and (7.9) illustrate the significant effect

of the chosen value of Hgq on the theoretical punch load for

different materials.

7.3 Effect of Punch Profile Radius

The importance of inﬁestigating the effect of punch
profile radius arises from thg fact that instability and
fracture usually occur over the punch profile radius. Four
- values of the punch profile rédius, 5, 10, 15 and 20 mm,
.were investigated. It was found that the maximum punch
load does not change significantly with the change of the
punch profile radius pp. The more generous the pp, the
longer is the punch stroke and the more gradual is the punch
load/stroke relation. The stress and strain distribution

curves for a typical stage of drawing using aluminium and
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die profile 1 are shown in Figures (7.10) and (7.11), where

a comparison is also made between the results for values of
punch profile radius of 5 and 20 mm. The strains, stresses
and the die contact radius in the die zone remained practi-
cally unchanged, which explains the reason for the punch

load being unaffected by the change of pp. The present
theory predicts that stresses and particularly strains in

the punch profile radius zone increase with iﬁcrease of the
punch profile radius. This may be interpreted as instability
and fracture are more likely to occur in a spherical headed
punch than in a flat headed one. These results are not in
agreement with the experimental evidence shown by Swift [22].
However, inaccuracies in predicting the strains and stresses
over the punch profile head are inevitable in the present
analysis because of neglecting the bending effect over the
punch profile radius. Bending effect decreases with increase
of the punch profile radius. It is expected that the present
solution would give better results with a spherical headed

punch rather than a flat headed one.

7.4 Optimum Die Design

An attempt is made here using the present theoretical
solution, to show that for a given material, die lip diameter,
die throat diameter and die curve, there is an optimum die
height at which the load becomes approximately minimum and
any further increase in the die height beyond a certain

limit is not of any practical use.
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Stainless steel with tractrix and exponential spiral
curves are used in this investigation together with die
heights of 60, 100, 140, 180 and 220 mm. The punch load/
blank reduction ratio relations are shown in Figure (7.12),
and the maximum punch load versus the die height relations
are shown in Figure (7.13). 1In the case of a tractrix type
die, the maximum punch load is reduced by 37% when the die
height is increased from 60-150 mm. Further increase in-
the die height over 150 mm has no effect on the maximum
punch load. In the case of an exponential spiral type die,
the maximum punch load is reduced by 59% when the die height
is increased from 60-220 mm. It can be seen from the
results that the tractrix cﬁrve has a better performance at
die height between 60-120 mm while the exponential spiral
has a better performance for die height exceeding 120 mm.
Of course, the application of these results in the workshop
depends mainly on the material deep drawability and the

available stroke of the press to be used.
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CHAPTER 8

EFFECT OF DIE GEOMETRY

One of the main objectives of the present work is to
examine both experimentally and theoretically the effect of
die geometry on the punch load and to suggest the required
modification in die geometry to achieve the least punch load

in a certain deep drawing operation.

Comprehensive deep-drawing tests were carried out using
the universal testing machine and the deep drawing test rig
described previously. The materials investigated include
mild steel, stainless steel, soft aluminium and brass blanks
of 120 mm diameter and 1.6 mm nominal thickness. Die
profiles 1, 2 and 3 were used. In order to eliminate any
material strain rate sensitivity, when comparing theoretical
and experimental results, a drawing speed of 0.5 x lO'-4 m/sec
was maintained throughout the course of the tests. This
speed was chosen to be comparable with those speeds of simple
tension and balanced biaxial tension tests so that the
resulfing strain rates in different tests are approximately

of the same order.

It was noted that the aluminium and brass blanks tended
to wrinkle during drawing on tbe die profiles 2 and 3, hence
results on die profile 1 only could be obtained. This
difficulty did not arise when drawing mild steel and stainless
steel blanks. Unfortunately, there was no sufficient stain-
less steel material for the tests to be carried out on die

profile 3. Die profiles 2 and 3 showed some tendency of the
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blank to slip during early stages of drawing near the steep
die entrance. The problem was solved in the experiments by

manually pressing the blank against the punch flat base.

8.1 Comparison of Theoretical and Experimental Strains*

As the investigation concerns primarily the effect of
die profile on the drawing process, comparison of the
theoretical and experimental strain distributions is made
mainly for the drawing region as shown in Figures (8.1l) to
(8.6), although in the case of aluminium the comparison
extends also to the punch region as shown in Figure (8.7).
From the results it can be seen that the correlation in the
drawing region is generally good for stainless steel,
aluminium and brass. The agreement is less accurate in the
second stage of drawing for brass. This may be attributed
to a slight variation in the material properties of this
particular specimen. For mild steel, the comparison is
fairly close for the circumferential strain but significant
difference exists for the thickness strain near the punch
region particularly at latter stages of drawing. Regarding
the punch profile region in the case of aluminium, the
correlation is generally poor especially over the neck and
in the latter stages of drawing. It is believed that this
poor agreement is mostly due to neglecting the bending effect

over the punch profile radius in the theoretical analysis.

* Some of the results obtained have appeared in an article

in Int. J. Mech. Sci., see reference [23].
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The experimental value of the die contact radius which

represent the contact boundary between the partly drawn cup

and the die profile was estimated from the marking left on

the surface of the cup, as the zone in contact with the die

has smooth surface finish. Comparison between the theoretical

and experimental values of the die contact radius indicated

good agreement as given in Table (8.1l) where a typical

example is presented using mild steel and die profile 1.

Table (8.1). Die contact radius

Stage (Therobr'eﬂmcal) (Exngingtal)
1 44.4 45.7
2 37.8 38.5
3 32.5 33.2

It was noted that only a small change occurred in the

die contact radius of a certain stage when different

materials were drawn through the same die, this shows that

the material work-hardening characteristic and the strain

ratio have a minor effect on the die contact radius. It

may be seen that the correlation between the theoretical

and experimental strains at the rim of the partly drawn cup

is excellent in all cases as shown in Figures (8.1) to (8.7).

This suggests that the average strain ratio values determined

in simple tension are quite accurate.
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8.2 Theoretical and Experimental Punch Loads

Three blanks were drawn to determine the punch load/
reduction of blank diameter relation. Comparison between
the theoretical and experimental punch loads for mild steel,
when die profiles 1, 2 and 3 are used, indicates generally
the same poor agreement as shown in Figure (7.8b). This may
be due to the fact that the mild steel tested has high
planar and normal anisotropy as indicated by the high values
and variation of the strain ratio values as given in Table
(6.2) . However, when the stress/strain relation determined
from simple tension test at zero degree to the rolling
direction is used in the theory, the punch load is higher
and the correlation is imprerd as shown in Figure (7.8a).
FPor stainless steel and aluminium the comparison is better
as shown in Figures (7.9) and (8.8) because the anisotropy
of these two materials is nearer to the rotationally
symmetric condition. A very good correlation is obtained,
as shown in Figure (8.9), in the case of brass which is very
close to the rotétionally symmetric condition assumed in

the theory.

8.3 Effect of Die Geometry on Punch Load -

Figures (7.8b) and (7.9) show the effect of die
geometry on ﬁhe punch load for mild steel and stainless
steel respectively. It can be seen that the maximum punch
load is significantly reduced when die profile 1 is replaced

by die profile 2. In the case of mild steel it is clear
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that another reduction lower than before was obtained when

die profile 2 is replaced by die profile 3.

Table (8.2) gives the reductions in the maximum punch
load. It is shown that reductions of 35% and perhaps more
may be achieved by using die profiles with higher radius of
curvature. This offers a good advantage when drawing tough
materials especially when high punch loads are involved. 1In
spite of the difference between theory and experiment in
determining the punch ldad, the reduction in maximum punch
load predicted by theory shows generally a fair agreement

with the reduction determined by experiment.

Table (8.2). Reduction in maximum punch load

Dies replacement Mild steel Stainless steel
order Theo. Exp. Theo. Exp.
1 -2 29% | 25% 26% 21%
2 -3 14% 13% - -
l -3 39% 35% - -

’ In an attempt to explain'the reason behind this
reduétion in‘the punch load, the theoretical unit tangential
force distribution for mild steel, when’drawn through die
profiles 1, 2 and 3, 1is shown in Figure (8.10) at a stage
near the maximum punch load;' The following observations

were made for the same stage of drawing on the three die

profiles.
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1. From the theoretical and experimental results, the die
contact radius is increased from die 1 to 3, hence the die
contact zone between the material and the die profile is
decreased . The difference between the die contact radii of
the three dies decreases until near the point of maximum load
when they become very close, but with decreased contact area
from die 1 to 3.

2. The unit tangential force at the die contact radius is
significantly reduced from die 1 to 3.

3. The die profile contact angle at the point of maximum
load increases slightly, and is generally in the range 1.38
to 1.43 radians. Since the punch load is given by the

equation:

P = 21r (o,t) sind¢,

¢

therefore, the reduction in the maximum punch load is
mainly due to the reduction in the unit tangential force when
different dies of higher radius of curvéture and greater

depth are used.

In an attempt to reduce the punch load for aluminium and
to overcome its tendency to buckle, an éxponential spiral
type die (die profile 4) was designed with more flat entrance
than die profiles 2 and 3. When aluminium blanks were drawn
using the die profile 4, they tended to buckle again, but at
later stages than before which indicated that an even flattér
enfrance is required. However, mild steel blanks were

successfully drawn using this die. The punch load/reduction
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in blank diameter relation is shown in Figure (8.11). By
comparing the maximum punch load of this die with that of
die profile 3, see Figure (7.8b), it is found that they are
almost the same. It is expected that exponential spiral
type dies may offer a good alternative to the experimental
die profiles 2 and 3 for actual production application,
since they give the same maximum punch load, and reduce the
tendency of buckling and slipping of the blank near the die

entrance and also they are relatively easier to design.

The author regrets that due to time limitations it was
not possible to carry out more experiments on the effect of

die geometry using exponential spiral and tractrix type dies.
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CHAPTER 9
CONCLUSIONS

A numerical solution for the deep-drawing problem
through a convex type die without the use of a blank-holder
is formulated. The solution is general in nature and any
suitable die profile curve may be analysed provided that its
mathematical expression can be used to obtain a relationship
betweenEe and Et using the volume constancy condition. A
computer programme is presented and the performance of deep
drawing through different die types could be studied. The
die types treated include tractrix, exponential spiral,
second degree spiral and conical type dies. Computation time
for a typical case of complete analysis is about 300 seconds.
If only the punch load/stroke relation is to be predicted,
total strains may be used in the numerical solution and the
computation time is reduced by about 3 times., If the maximum
punch load is the main interest, the approximate solution
considering the drawing region only may be used and the

computation time is reduced by about 10 times.

According to the theoretical investigations given in

Chapter 7, the following conclusions may be drawn:

1. Increasing the coefficient of friction between the
drawn material and die profile .increases the punch load
significantly.

2. The punch profile radius has no appreciable effect on
the maximum punch load, but the punch stroke increases with

increase of punch profile radiué.
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3. The maximum punch load is greatly reduced by increasing
the tractrix die height (depth) and the radius of curvature
of the die profile up to a certain limit. Heights beyond
this limit give no appreciable reduction in the maximum
punch load. Further reduction in the maximum punch load is
possible by drawing through an exponential spiral type die
of greater height. The tractrix is superior when relatively
short die heights are to be used while the exponential
spiral is superior when greater die heights may be used.

4. The present theoretical solution may be applied in
optimum die design, for finding the optimum die height which

gives the least drawing load.

From the theoretical and experimental results given in

Chapter 8 the following conclusions may be made:

1. The correlation between the theoretical and experimental
thickness and circumferential strain distribution in the
drawing region is generally good when using different die
geometries and materials.

2. The correlation is not satisfactory when comparing the
theoretical and experimental thickness strain distribution

in the punch region, especially over the punch profile
radius. Only soft aluminium was used in the comparison. The
discrepancy is mainly due to disregarding the bending effect
over the punch profile radius.

3. The punch load/reduction of blank diameter relation for
any die geometry may be very well predicated from the theory

provided that the material anisotropic properties are nearly
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rotationally symmetric in the plane of the sheet material,

as assumed in the theory. The accuracy of prediction
decreases with increase of the planar anisotropy of the
material.

4, The die profile geometry has a great influence on deep
drawing without a blank-holder and on the maximum punch load
in particular. Significant reductions in the maximum punch
load of 35% and more may be achieved by using die profiles
of more depth and steepness with increased radius of curva-
ture. Less unit-tangential force and die contact area are
the most influencing factors behind the load reduction.

5. Using dies of steep entrence may cause buckling for
some materials, at early stage of drawing. It seems there-
fore that for some materials, a die of flat entrance , such
as the tractrix type die entrance , is necessary. Flat die
entrance prevents the tendéncy of the blank to slip at the
on-set of the drawing process.

6. The reduction in the maximum punch load predicted by the
theory when using two different dies, is in reasonable agree-
ment with the reduction determined by experiment. This
suggests that the present theoretical solution may be
reasonably used in optimum die design to find the theoretical

die profile required for drawing a particular cup under

-

minimum load requirements.



PART TWO

IRONING
OF CUPS
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CHAPTER 10

EXPERIMENTAL APPARATUS AND METHOD

The testing machine used for carrying out the planned
experimental investigation on ironing is the experimental
bulge forming machine described by Woo [2], see section (20.1).
The machine has a capacity of 250 kN and a working stroke of
about 500 mm. The arrangement of the drawing and ironing
dies 1is shown in Figure (10.l1). 1In this arrangement the cup
is first drawn from a flat blank and is followed by the

ironing process.

Since the machine has no facilities for measuring the
punch load and the punch travel, it was decided to provide
the machine with a measuring system before carrying out the

experiments.

10.1 Deep Drawing Tools

The deep drawing die is a tractrix type die designed
empirically and fitted on the bulge forming machine. The die

has the following main dimensions:

Die 1lip diameter = 172.72 mm,
Die throat diameter = 71.61 mm,

Die height = 115.57 mm.

The tractrix curve constant, a, is found from equation

(3.4), hence

a = 55.70 m.
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The die curve is given by the polar equation
p = 55.70 tan¢.
The die profile is shown in Figure (10.1).

‘The punch diameter is 65.9 mm, and the punch profile

radius is 10 mm.
The radial clearance between the punch and the die is

cr = 2,86 mm,

The maximum thickness of the cup at its rim when the
cup approaches the die throat is calculated from equation

(3.19) as

tmax = 4,32 mm.

The maximum reduction of cup wall thickness in ironing

is obtained from equation (3.25), and hence

Orax = 33% .

10.2 Ironilng Dies

In order to get different reductions in ironing, it was
found easier to use different die throat diameters rather
than different punch diametersx Four ironing dies were
selected from an existing setkof dies designed previously
for the bulge forming machine. All dies have the same
ironing die semi-angle of 15° which is in the range of

ironing die semi-angle recommended by Knowles and Swift [12]
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for general use. The dimensions of the four dies were
chosen to be the same with the exception of the die throat
diameter which has to be changed for getting different
reductions in the cup wall thickness. The die shape and
dimensions are shown in Figure (10.1), and the planned

reductions of different dies are given in Table (l10.1).

Table (10.1). Reductions in ironing

Ironing | pie throae | Moy SRCEOn | Biic fon,
theo. exp. per cent
1 69.19 42.6 41.1 3
2 68.86 48.3 47.8 1
3 68.68 51.5 50.9 1
4 68.4 56.4 56.6 -0.3

10.3 Measurement of Punch Load/Travel

It was intended to carry put an autographic measurement
of the punch load/travel relation. The arrangement is shown
in Figure (10.2). A load cell is used to detect the changes
in the punch load and the displacement transducer 1s

used to detect the punch travel. A special attachment for the

load cell had to be designed, so that it could be fitted on the

punch any time a punch load measurement is required. The
designed attachment is shown in Figure (10.3). The load and
displacement signals are transferred to a twin channel
amplifier, and the amplified signals are taken to the X-Y

plotter. Once the system is calibrated,_an autographic
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representation of the punch load/travel relation can be
obtained.

The load cell used has the following principal
specifications:
1. Capacity, 30 ton.
2. Sensitivity, 100 x 10~°/ToN (G.F. 200).

3. Non-linearity, 0.2% F.S.

The long stroke displacement transducer has the following

principal specifications:

1. Rated stroke, 300 mm.
2. Sensitivity, 1.73 mv/v/mm.

3. Linearity, 0.3% of full stroke.

The twin channel A.C. carrier amplifier described in
section (5.4) was used. The load cell was connected to
channel B of the amplifier and calibrated on an universal
testing machine. The calibration curve is shown in Figure
(10.4) as a straight line,and hence the sensitivity of punch

load measurement is
50 digits/ton.

The displacement transducer was connected to channel A
of the amplifier and was calibrated to the nearest 0.5 mm
using a long metal ruler. The following gains have been

adjusted on the amplifier:
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Course Gain Fine Gain
Load cell 500 6.215

Displacement transducer 2 3.250

The X-Y plotter was then connected and adjusted to

obtain the required scales.

10.4 Test Procedure

Soft aluminium blanks of 172 mm diameter and 2.5 mm
nominal thickness were carefully turned from the supplied
discs of 215 mm diameter, using an existing fixture. The
blanks were lubricated on one side only, the blank side
facing the punch was kept dry. The lubrication process was
performed by brushing a layer of colloidal-graphite in
alcohol on one side of the flat blank and allowing it to dry.
Graphited oil was then spread over the graphited side of
the blank and the die profile surface just before the onset
of the drawing/ironing operation. This procedure proved to

be satisfactory for the purpose of the present work.

For each punch speed and reduction in the ironing
process, two specimens were tested and an autographic
plotting of the punch load/travel in deep drawing and
ironing was obtained. The average speed of the punch was
assessed by determining the to£a1 stroke of the punch and
measuring the time taken, using a stop watch. A photographic
view of the full apparatus used for carrying out the experi-

ments is shown in Plate (10.1) .
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The hardness measurements were taken using a Vickers
hardness testing machine with 5 kg load. A punch of a
similar size to that of the cup internal diameter was
inserted inside the cup and a V-block was used to stop the
cup from rolling during measurement. The cup wall thick-
ness was measured using the dial gauge arrangement
described earlier in section (5.3). To measure the hardness
and thickness distributions, three longitudinal lines at
120° interval were marked on the outside surface of the cup
and measurements were taken at 10 mm intervals along these

lines starting from a point 20 mm from the cup base.
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CHAPTER 11

EXPERIMENTAL RESULTS AND THEIR DISCUSSION

The material used in this investigation is soft
aluminium sheets of 2.5 mm nominal thickness. The material
strain ratio and its work-hardeniﬁg characteristic have been
determined in part one, see section (6.3). The average
strain ratio of the material is 0.731 and its stress/strain

characteristic is given in Figure (6.22).

11.1 Distribution of Thickness and Hardness Along and AcCross

the Cup Walls

In the present experimental investigation of the -
ironing process, ironing takes place after deep drawing and
the two processes are performed in one stroke of the punch.
It follows as a result of the drawing process that the cup
specimen to be ironed has a variable thickness along its
walls due to thickening in the upper part and thinning in

the lower part of the drawn cup.

Although some amount of ironing of about 33% maximum
reduction occurred between the punch and the drawing die in
the top part of the drawn cup, this ironing was not suffi-

cient to make the cup walls fully cylindrical, as it is shown

in Pigure (11l.1).

A photograph of the drawn cup and the ironed cups with
different reductions is given in Plate (11.1). It can be
seen that the ironed cups have éot a brighter and smoother

surface finish than the drawn cup on the left of the picture.
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The number and type of ears showed that the supplied
material has variable anisotropic properties. Three types
of ears were observed in the tests: cups with four, six
and eight ears. The lengths of the ironed cups are given in
Table (11.1). One cup specimen was used for measuring both
thickness and hardness distributions for reduction in the
ironing process. The punch speed used in the tests was

6.7 mm/sec.

As shown in Figure (1l1l.1), the distribution of the
drawn cup wall thickness has two modes of variations, the
first mode being at the lower part of the cup with a rela-
tively small and consistant variations, the second mode
being at the top part of the drawn cup with relatively
larger and inconsistant variations. It should be noted that
some amount of ironing occurred between the punch and the
die in the top part of the cup during drawing. Accordingly,
it is clear that the first mode of variation is due to the
planar anisotropic properties of the blank material. The
second mode is mostly caused by the superposition of the
planar anisotropy variation and other variations due to one
or more of the following factérs; ovality of the die throat,
misalignment between punch and die centre lines and stiff-

ness of the tooling system.

The distributions of the cup wall thicknesses for
different degrees of ironing using ironing dies 1, 2, 3 and
4 are shown in Figures (11.3), (11.5), (11.7) and (11.9).

It can be seen that in all ironing dies, larger thickness
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Table (11.1). Thickness and length of ironed cups

Ironing | CUp total Radial Wall Variation
die. no. length, clearance, | thickness, [ of thickness
mm mm mm %
1 148 1.64 1.71 4
2 164 1.48 1.52 3
3 177 1.39 1.43 3
4 204 1.25 1.26 1
Drawing
die 96 2.86 2.91 2

variations in the top part of the ironed cup are possibly
reproduced from the drawing stage. The distributions of the
cup wall thickness in the lower part have generally the same

amount of small variations reflected from the drawing stage.

From the results, it may be concluded that to improve
the uniformity of the cup wall thickness, the following

points should be observed.

1. Geometrical errors such as ovality have to be minimized.
2, Concentric alignment hetween punch and die.

3. Higher stiffness of the tooling system.

The average cup wall thickness distributions in the
ironed cups are quite uniform along the cup as 1is shown
in Figure (11.12). It was noted that the average wall thick-

ness of the ironed cup was greater than the nominal radial
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clearance between the punch and the die throat, see Table
(11.1) . This can only be explained in terms of elastic
deformation under high radial pressure between die throat,
material and punch during the ironing process. The same
feature occurred in ironing between punch and deep drawing
die in the upper part of the drawn cup. The thickness
deviation is not consistent as shown in Table (11.1). This
is possibly due to differences in material and heat treat-
ment history between the ironing dies. This feature was

first reported by Lowe and Swift [1ll].

For the drawn and ironed cup using ironing dies 1, 2,
3 and 4, the distributions of the hardness which have been
measured at the same points of thickness measurements are
shown in Figures (11.2), (11.4), (11.6), (11.8) and (11.10).
It was observed that the hardness distribution is generally
similar to that of the pattern of thickness distribution and
the reduction in the cup wall thickness. The distributions of
the average hardness are shown in Figure (11.11). The
maximum hardness versus the maximum reduction in ironing is
included in Figure (11.16). It can be seen that the hardness
increases with the degree of ironing and the distribution
curves become flat at higher reductions. This is analogous

to the material work-hardening characteristic.
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11.2 Effect of Punch Speed on Punch load in Deep Drawing

and Ironing

Three different punch speeds of averagely 6.7, 33 and
44 mm/sec were investigated. Higher speeds have not been
attempted due to saféty precautions when using the manual
mode of operation. Two cups were tested for each speed and
reduction of wall thickness, giving a total of 24 tests. A
typical punch load/travel autographic output for continuous
deep drawing and ironing is reproduced in Figure (11.13).
It can be seen that this typical punch load/travel relation
has three separate and consecutive humps. These humps
correspond to deep drawing, ironing between punch and drawing
die and the ironing stage respectively. The punch load/
travel relation in drawing is similar to that shown in the
previous experiments described in part one. The sharp and
narrow hump of the punch load in ironing between the punch
and the drawing die indicates that only the top part of the
cup was ironed. The punch load in the ironing stage rises
sharply at the start of the process due to the sudden appli-
cation of a certain degree of ironing. It then increases
gradually with increase of wall thickness reduction towards
the top of cup until it reaches approximately a constant
level with a little hump near the end. This constant load
part of the curve corresponds to the fully ironed part at

the top of the drawn cup which has approximately a constant

thickness.
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The effect of speed on the punch load in deep drawing
is studied by considering the average of 8 test results.
The average maximum loads for different speeds in the deep

drawing stage are given in Table (11.2).

Table (11.2). Effect of speed in deep drawing

Punch Max. punch load Max. punch load in
speed, in drawing, drawing die ironing,
mm/sec. KN KN

6.7 35.7 42,4

33 35.9 41.8

44 35.9 40.6

The results indicate that the punch load in deep
drawing remained practically unaffected by the increase in
the punch speed within the present range. The situation
for ironing between punch and drawing die is different.
The punch load values showed a tendency to decrease as the
punch speed was increased as indicated in Table (11.2).
This was more evident when tﬁe reduction of wall thickness

was higher, see Table (11.3).

Table (11.3). Effect of speed in ironing

Punch Max. punch load, KN

speed,
mm/sec. Die 1 Die 2 Die 3 Die 4

6.7 42.5 46.5 49.5 52.5

33 42.0 45.5 48.0 50.5

44 42.0 45.5 47.0. 51.0
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The approximately constant punch load in deep drawing
may be understood as the material has a negligible sensi-
tivity to strain rate within the present range of speed.

The reason for the decrease in punch load with increase of
punch speed in ironing is probably due to change in the
frictioﬁal and lubricating conditions at the interface
between material and ironing die, where the contact pressure
1s very much higher compared Qith the pressure involved in
deep drawing. For identical cups, the contact area between
material and ironing die depends on the die semi-angle and
the reduction in the cup walls thickness. Since the die
seml-angle is the same in the four ironing dies, the contact
area A is a function of the reduction a. The relationship

between A and a is derived from the geometry of the ironing

zone as
A= th [2 (—E +1) a - a ]
- cos¢ /

where ¢ is the ironing die semi-angle, t,,the thickness of

cup and Rp, the punch radius.

qu relatively large values of (Rp/tg in the above
equation, the relatiénship between A and o may be assumed
proportional. The reduction in the ironing ioad with
increase of speed is probably due to the fact that the
lubricant is less likely to be squeezed out during ironing
at high speed, and that the increase in the contact area
between material and ironing die at higher reduction

reduces further this possibiliéy which is indicated by the
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more significant reductions in the punch load at higher
reductions. It can also be seen that the speed effect

becomes less evident as the speed gets higher.

Although the reduction in the cup walls thickness in
ironing between the punch and the deep drawing die is about
33%, the punch load is similar to that in ironing using
ironing die 1 which gives a reduction of 41.2%. This is
due to the small ironing angles near the throat of the
drawingvdie. It may be recommended that the drawing die
curve be terminated at a die profile angle of about 80° so
that the zone near the die throat may act as an ironing die
of die semi-angle of about 100, thus insuring a minimum
ironing load. This is more important if higher reductions
are to be carried out. According to previous experience,
it is unlikely that this termination would have any signi-

ficant effect on the maximum punch load during drawing.

- 11.3 Effect of the Degree of Ironing on the Punch Load

Typical punch load/travel autographic measurement for
different reductions in ironing using dies 1 to 4 respec-
tively are reproduced in Figuré (11.15). The maximum punch
load values versus the maximum reduction in ironing is
shown in Figure (11.16). The rgsults for each punch speed
gives a relation close to a straight line. It was found
difficult to fit the experimental points to an exponential

curve similar to the findings by Shawki [13] who used copper
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in his experiments. Since the suggested exponential curve
is very flat and close to a straight line, it seems that a
high number of tests should be carried out to assess fhe

shape of the relation correctly.

11.4 Prediction of the Punch Load/Travel in Deep Drawing

from Theory

Since an accurate autographic measurement of the punch
load/travel was made for deep drawing as well as ironing,
it was thought that the prediction of this relation in the
drawing part using the theoretical solution developed in
Part One could be made. This would give an opportunity to
examine the correlation between theory and experiment, when
a cup of a relatively large size is drawn through an exact
tractrix type die, as in the present case. The average
strain ratio and the stress/strain relationship of the
material have already been determined in Part One, see
Chapter 6. The coefficients of friction between material
and die and between material and punch'are assumed to be
the same as those assumed for soft aluminium of 1.6 mm
thickness in the previous part thus,

My = 0.028, up = 0.1.

-

The theoretical and experimental results are compared in

Figure (11.14).

It can be seen that good agreement exists between

theory and experiment, and by comparing this result with
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that given for aluminium of 1.6 mm thickness in Part One,
see Figure (8.8), it is clear that the maximum load
predicted in this case is slightly more accurate. The
general correlation of the whole punch load/travel relation
presented here is better than the punch load/reduction in
blank diameter given previously in Figure (8.8). It may be
said that because of its continuity, the autographic method
of measurement is generally more accurate than the other
method which involves measuring the punch load and the rim
diameter of the partly drawn cup at certain stages of
drawing, although the latter is necessary when strain com-

parison is to be made.
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CHAPTER 12

CONCLUSIONS

According to the experimental results presented in

Chapter 11 the following conclusions may be drawn:

1. The punch speed within the range tested has no
significant effect on the maximum punch load in deep
drawing.

2. The maximum punch load in ironing decreases slightly
as the punch speed increases up to a speed of about 35-45
mm/sec. The reduction in maximum punch load is more
significant with higher degrees of ironing.

3. According to conclusions 1 and 2, the punch speed and
hence the process productivity may bé increased with con-
fidence to about 45 mm/sec or more without increase in the
punch load.

4. The ironing load increases approximately in a linear
manner as the reduction in the cup wall thickness increases.
-5, Variations in the cup wall thickness in the ironed
cup are caused by planar anisotropy of the cup material and
the geometrical errors in tooling. These variations are
reproduced in subsequent ironing. Rotational anisotropy in
sheet metal and accuracy in tooling are necessary to reduce
these variations and hence give more uniform cup wall thick-
ness.

6. The hardness of the wall of the ironed cup increases

with increase of reduction in the cup wall thickness in a
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manner similar to the work-hardening characteristic of the
material.

7. The average wall thickness of ironed cup is slightly
greater than the nominal radial clearance between punch
and die throat. This increase is mainly due to elastic

deformation of die.



PART THREE

FREE
BULGE FORMING
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CHAPTER 13

THEORETICAL ANALYSIS OF FREE HYDRAULIC

BULGE FORMING OF CUPS

A theoretical analysis of free hydraulic bulge
forming of cups under internal pressure and axial compres-
sive force is presented. The analysis is based on a
general solution suggested by Woo [7] for the analysis of
axisymmetric forming of sheet metal and hydrostatic
bulging processes. The present work is also related to
two other works, Woo [15] and Woo and Lua [16], on tube
bulging. The analysis is based on a numerical solution
using the plasticity relations and the work-hardening
characteristic of the cup material together with the
equilibrium equations and the strain relationship according to
the volume constancy condition. The material is assumed to
be rigid plastic and anisotropy is taken into account in
the analysis. Annealed cups are considered in the investi-

gation and the deformation of the cup base is neglected.

13.1 Plasticity Relations

The material is deformed plastically under the effect
of internal pressure p and axial compressive force F. The
stresses induced in an element of the cup wall after defor-
mation are shown in Figure (13.1). The stress O in the
present case is relatively small and may be neglected, and
therefore, the stress condition is reduced to one of

plane stress ‘. Accordingly, when rotational anisotropy
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about the Z-axis is assumed, the principal stresses c¢ and
Tgr the equivalent strain increment de and the new value

of the thickness t' used in the successive approximation
of t in the numerical solution, are determined from the same

expressions as are used for deep drawing, see Section (4.3).

The stress/strain relationship is determined
experimentally as will be described later. The following
relationship is used as an empirical representation of the

stress/strain curve:
g = ag"?, (13.1)

where A and n are constants.

It is known that this empirical relation fits well

with soft aluminium.

13.2 Equilibrium Equations

The first equilibrium equation used in the analysis is
to determine (o¢t)'. The equation is similar to that given
previously for stretch forming of material between the |
punch and the drawing die. It may be numerically integrated

in the same way, see Section (4.6).

With reference to Figure (13.2), the second

equilibrium equation for forces in the vertical direction is:

mP(r")% - F = 2mr (04t) sing. (13.2)
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Depending on the values of P and F, the following

cases of the tangential stress 0¢ may be obtained:

1. o, is tensile, when r' > VF/nP.

¢

¢
3. c¢ is compressive, when r' < VF/7P.

2. o, is zero, when r' = VyF/1P.

The following equation is obtained from the
equilibrium equation (13.2),

P(r')2 F

25 (0,8 ~ Znr (o 1 (13.3)

-1
' = sin [
o®)

This equation is used for the successive approximations

of ¢ in the numerical solution.

The following equation is obtained from the
equilibrium equation (13.2). When substituting ¢ = /2, at
the crown centre of the bulge:

P(r)% _ F

(o¢t)' = 5T T (13.4)

This equation is used to find the unit tangential force

at Ehe crown centre of the bulge for the successive

approximations of t.

13.3 Determination of the Stress/Strain Relationship of the

Cup Material

The cup thickness is usually small and it is difficult
to obtain a tensile test specimen of a reasonable size out

of the cup wall. It should be noted that the axes of
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anisotropy in the original sheet blank have been distorted

due to the plastic deformation in deep drawing and ironing.

The cup bulge test is used to assess the stress/strain

relationship of the cup material as follows:

From the conditions at the crown centre of the bulge

(¢=7/2):

P, = T " - /2. (13.5)

The average value of Py is found from the geometry at the
crown of the bulge. With reference to Figufe (13.3) the

following equation is obtained,

2 Ah
_ X c _Lt,
PL = 2an, " T2 T 2 (13.6)
The strains are determined from the following equations:
it 13.7
€e=£n(-§—); ( .7)
(o)
e, = fn (), (13.8)
t t
o
= - . ' 13.9)
€4 (eg + €) (

The equilibrium equation of forces in the direction of

p, see Figure (13.1), is:

PL(py - t/2) d¢ll(r - t/2 sing) d8]

d
= 20e (t.pl.d ) sin~§g sin¢g + 20¢ (t.r.de) sin-éz-

) 2
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In the above equation, the values of Pyr Por Ts Ty

and o¢ are related to the middle plane of the element.

From this equation, it can be shown that

P.p,'.p0,"' p
1 2 2

When the thickness t is small in comparison with Py
and pz, the above equation can be reduced to the well known

equation for a thin membrane,

o (o]
-E—:-—e-'--io
P2 P
The following equation is deduced from equilibrium
equation (13.2), by substituting ¢ = /2 at the crown

centre of the bulge:

P(p,")? . ( )
0 = - » 13011
$ 20,t 2mp,t
The stress Op is assumed negligible,
o, = O . (13.12)
Assuming rotational symmetry about the Z-axis, it
follows from Hill's theory that:
(13.13)

o] ke

= 0 _
Y =3

By substituting equations (13.9), (13.12) and (13.13)
into equation (A.12), see Appendix A, the following

equation may be obtained:
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Oy - 0¢ _ 2dee + det ) (13.14)
0¢ (1+y) det + dee
Putting
de o]
X = EEE and m = FQ ]
8 ¢

it can be shown that the average strain ratio y may be

determined from the equation,

y = (1T§lﬁ); 1. (13.15)

The equivalent stress may be obtained from equation
(A.9) by substituting equations (13.12) and (13.13) into
the above equation, hence,

2 2
3 (1+Y)(G¢ +ce) -2yc¢oe]}%

0 = {5 L Ty . (13.16)

The equivalent strain increment is determined from

equation (4.4).

The procedure for calculating the 0/ relation is as

follows:

re", t, P, F, X and Ahc ere measured in the
experiment. Then Par Pyr Egr Epv e¢, ce are deduced from
equations (13.5), (13.6), (13.7), (13.8), (13.11) and (13.10)
respectively. The average strain ratio y is determined from
equation (13.15) preferably by considering several experi-

mental points. The equivalent stress o and the equivalent

strain increment de are deduced from equations (13.16) and

(4.4) respectively.
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13.4 vVolume Constancy Relation

According to Woo [15], the volume constancy relation
for tube bulging may be obtained by approximating the
profile to the frustum of a cone. Similarly, the volume

constancy relation for cup bulging is

t $, + ¢ X
- 4 R_ AL (m—3—) cos (i—-z—ill-):l . (13.17)

2
r =[r
i+1 i ti + ti+1

In the first approximation ti+l and ¢i+l have to be

assumed.

13.5 Boundary Condition

The boundary condition is obtained from the condition
at the clamping ring of the cup, that is, radial outward

deformation at the clamp is assumed to be restricted, hence

€ = 0 o (13.18)

By substituting the above value into equation (13.14),

13.6 Computer Programme

The present numerical solution for analysing the cup
bulging process under the effect of internal pressure and

axial force is formulated as follows:
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The stresses and strains in the cup due to a certain
internal pressure P and axial force F are determined in the

following way:

The computation for a particular stage of bulging
starts at the crown centre of the bulge. The radius r, at
the crown centre bf the bulge is assumed, and computation
is carried out from point to point towards the clamped
radius of the cup. The radius r, is changed in a logical
order, as will be described later, until the boundary con-
dition at the clamped radius is satisfied. Due to bulge
symmetry about the crown centre, only one half of the cup

is considered in the analysis.

The procedure of the numerical solution for the case
when the tangential stress 0¢ is tensile along the whole

profile of the bulge may be outlined as follows:
(a) The step at the crown centre of the bulge

Let us consider a certain stage of bulging j which
corresponds to internal pressure value of Pj and axial
force value of Fj. Computation starts at the crown radius
r, which is considered as the step i = 1 in this particular
stage j. As a first approximation, the values of re and t
at the crown centre of the bulge are assumed. The values

of thickness and circumferential strains et and € '

1,3 °1,3
are deduced from equation (4.51) and (4.52) respectively.

The strain increments, de and de , are obtained from
B3 0 P13
14 ’ .
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equations (4.53) and (4.54). The equivalent strain increment
dEi,j is computed from the plasticity relation (4.4) and the
equivalent strain Ei,j is given by equation (4.55). The
equivalent stress 0 is deduced from the work-hardening
characteristic of the material represented by the empirical
relation (13.1). The tangential and circumferential
stresses 0¢ and % ére computed from the plasticity rela-
tions (4.5) and (4.6). The value of the unit-tangential
force (o¢t)', according to the equilibrium condition is
determined from equation (13.4) and is compared with the
plasticity relation value (c¢t) using the inequality (4.56).
If the inequality is correct, it implies that the assumed
value of t is correct and control is transferred to the

next step in the bulge profile. If the inequality is not
satisfied, a new value of thickness t' is assumed from

equation (4.7) and the procedure of this step is repeated.
(b) Other steps along the bulge profile

In the first step of this part, which corresponds to
i =2, ¢ is assumed slightly lower and t is assumed slightly
higher than the values of ¢ and t in the previous step as a

first approximation.

The current radius is found from equation (13.17),
hence the values of €., de,, €,, de,, de, €, O, I4r T and

(0,t) are computed in the same way as described above for step

¢

i = 1, at the crown centre of the bulge. The value of

(o,t)"' is determined from equation (4.37), and the two values

¢
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of the unit tangential force are compared in the same way as
described above. When t is found to be correct, then ¢' is
determined from equation (13.3) and the two values of the
angle are comparéd using the inequality (4.57). Once the
inequality is correct,so also is the assumed value of ¢
correct and control is then transferred to the next step in
the bulge profile. If the inequality is not satisfied, a
new value of the angle ¢' is assumed from equation (4.58)

and the procedure of this step is repeated.

When the value of t' during the process of successive
approximation reaches a very small value, then necking is
assumed to be occuring and control is transferred to

part (c) in the programme.

Similar computation is carried out .step by step
along the bulge profile until the following condition is
reached: 1 = m, where m is the total number of initial
elements of the cup. This means that the stresses and
strains have been computed for all the cup initial elements.
At this point, control is transferred to part (é) in order
to check the boundary condition at the clamping end and to

make the right adjustment of re if necessary.

The following equations are used to extrapolate the

first approximate values of t and ¢, as applicable:

When 1 = 3,

o
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When i > 3,

rr
|

W

t

and ¢y 9 = 303,35 7 30%3.2,5 * %3,

(c) Boundary condition at the clamping end

At the clamping end of the cup, €g must be equal to

Zero.,

The following observations were made during the

initial testing of the programme:

1. ee > 0, when the assumed crown radius re was greater
than the actual one.

2. €. < 0O, when re was less than the actual crown radius.

0
3. €g O, when r, was approximately equal to the actual

crown radius.

This logical relation between the boundary condition
at the clamping end and the crown radius is used to drive
the'programme towards the righp boundary condition within
a specified accuracy. The same technique used in deep

drawing for adjusting the die contact radius, see section

(4.9), may be used here.

A general flow chart of the programme is given in

Figure (13.4).
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CHAPTER 14

EXPERIMENTAL APPARATUS AND METHOD

14.1 Design of a Test Rig for Free Bulge Forming

A special test rig was designed for free bulge
forming tests. The test rig is shown in Figure (14.1). It
can be seen that the hydraulic oil which provides the
internal pressure is admitted through the feed tube 1 and it
then passes through a hole in the punch 2 until it reaches the
cavity of the cup specimen 3. Good sealing is ensured
between the punch 2 and the clamping ring 4 by using two O~
ring seals. The clamping ring is so designed that its
surface which is in contact with the outer surface of the
cup can be machined again to a bigger diameter to suit
cups of greater thickness. The hydraulic oil which
provides the axial compressive force is admitted through
the union5 to push the piston 6 upwards. The resultant
axial force is transmitted through the cup walls to the
punch 2 until it reaches the load cell 7 which is firmly
supported from the topvby the cup-height adjusting screw 8.

This screw can be adjusted to suit the required height of

the cup.

14.2 Free Bulge Forming Apparatus

A photographic view of the free bulge forming
apparatus is shown in Plate (14.1). The hydraulic pressure
required is supplied by two high pressure hand pumps,

described earlier in Section (5.5). A hydraulic accumulator
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of 1.15 litre capacity is connected on the delivery line of
each pump. The first pump is connected to joint 1 of the
test rig, shown in Figure (14.1), to supply internal
hydraulic pressure inside the cup. Another hydraulic
accumulator of 4.5 litre capacity is connected on the
delivery line of this pump, and a relief valve is fitted on
the same line. A pressure transducer is fitted on joint 1
of the test rig for measuring the internal pressure. The
pressure transducer and the load cell are connected to the

twin channel amplifier.

14.3 Measurement of Internal Pressure and Axial Force

To ensure accurate measurements of the internal
pressure and the axial compressive force, the same measuring
system which was calibrated and used in the balanced biaxial
tension test, was used for measuring the internal pressure,
see Section (5.5). The load measuring system which was
calibrated and used for measuring the drawing/ironing load,
was used for measuring the axial compressive force, see

Section (10.3).

14.4 Preparation of Specimens

About 110 blanks of 2.5 mm thickness and 172 mm
diameter, were machined carefully from the supplied
material. They were drawn/ironed using the drawing die
described in Section (10.1) and the ironing dies described

in Section (10.2). The bulge forming machine which is
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described in Section (20.1) was used as the drawing press.

The cup sizes and quantities are given in Table (14.1).

Table (14.1). Cup specimens

Cu .
Ironing lenggh, Thickness Quantity of
die mm specimens

mm

1 148 1.71 12

2 164 1.52 12

3 177 1.43 12

4 204 1.26 72

The quantity of each cup size was devided into two
halves; one half is to be tested as in the drawn/ironed
condition and the second half is to be tested in the

annealed condition.

For the purpose of studying the effect of length on
the bulge ratio, the cup size obtained by ironing die 4 was
used. Five different lengths were carefully cut, using a
hard-wood mandrel in order not to damage the specimens, to
the heights of 115, 125, 135, 145 and 155 mm. For the
purpose of studying the effect of thickness on the bulge

ratio, a unified cup height ofr135 mm was used.

The specimens to be annealed were first cleaned using
a degreasing agent and an air circulating electrical furnace
was used in the heat treatment. The cup specimens were kept

in the furnace at a temperature of about 400°¢c for about 30



- 140 -

minutes. To ensure that the material was well annealed,
the hardness of the cup after annealing was compared with
the hardness of the original flat blanks. The following

results were obtained:

The average V.D.P. hardness (5 kg) of the original

flat blank = 20.8.

The average V.D.P. hardness (5 kg) of the annealed
cup = 21.

The results were considered satisfactory.

14.5 Test Procedure

The free bulge forming apparatus was used in all the

experiments described below.

1. The procedure of the bulge test for the determination

of the stress/strain relation 1s summarized as follows:

Four longitudinal lines at 90° intervals were lightly
scribed on the outer surface of the cup wall. A small
mark was scribed across each line to mark the position of
the crown centre of the bulge. The cup specimen was fitted
in position on the free bulge forming test rig and internal
pressure and axial force were increased conveniently until
an increase of about 2.5 mm in the crown diameter was
obtained. The internal pressure and axial force values were
recorded from the D.V.M. of the twin channél amplifier. The
pressuré was released and the cup was removed from its .
position. The crown diameter and thickness were measured.

To find the radius of curvature pl“, the specimen was

-~
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fitted on a punch and two V-blocks. The depth Ahc at equal
distance AX”of the crown centre of the bulge was measured
using the travelling micrometer described earlier in Section
(5.5). AX being taken as 2.5 mm. The specimen was fitted

again and the same procedure was repeated until fructure.

2. The following procedure was used in bulging specimens
with theaim of comparing their strain distribution with that

obtained by theory:

Four longitudinal lines of 90° intervals were lightly
scribed on the outer surface of the cup wall. A small mark
was scribed across each line to mark the position of the
crown centre of the bulge, and then small marks of 5 mm
intervals were scribed along the cup length for identifying
the initial elements. Internal pressure and axial force
were applied and recorded. The current radius and thickness
for each initial element were measured. The specimen was
then fitted on a punch and two V-blocks. The current
positions of elements along the cup were measured using the

X-2Z travelling micrometer described in Section (5.5).

3. The experimental procedure used for investigating the
effect of the cup initial length and thickness on the bulge
ratio was the same for both annealed and as drawn/ironed

cups. The procedure is summa;ized as follows:

A certain value of the internal pressure was chosen by
adjusting the relief valve and then the specimen was fitted

in position on the free bulge forming test rig. Oil was
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pumped simultaneously from the two high pressure hand pumps.
Because of the existance of the relief valve on the internal
pressure line, only the axial force was alloWed to vary
during the test and the internal pressure remained
practically constant. The axial compression was increased
until splitting or buckling occurred. The values of
internal pressure, maximum axial force, total compression

and the maximum bulge radius were recorded.

A simple technique was used to obtain the maximum
bulge ratio in a single stage of internal pressure. In this
technique the internal pressure was given a certain value.
If the cup after bulging was split, the next specimen was
tested under lower internal prgssure; if the cup after
bulging was buckled, the next specimen was tested under
higher internal pressure. The process was repeated until a
stage was reached when a slight increase or decrease resulted
in splitting or buckling. The pressure was increased or
decreased in steps. The step was halved every time the

result was changed from splitting to buckling or vice versa.
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CHAPTER 15

MECHANICAL PROFERTIES OF THE MATERIAL

15.1 General Description

The material is a commercially supplied 99.5% pure
soft aluminium of 2.5 mm nominal thickness. The strain
ratios of the material were determined in simple tension,
see Section (6.2). The stress/strain characteristic of
the sheet material was determined in both simple tension

and balanaced biaxial tension tests, see Section (6.3).

15.2 Results of the Cup Bulge Test

Two annealed cups of 66 mm internal diameter, 1.26 mm

thickness and 923 mm unsupported height were tested. The

results of the average strain ratio as determined from

equation (13.15) are given in Table (15.1).

Table (15.1]). Strain ratios determined

in cup bulge test

Bulge 1l 2 3 4 5 6 7 Average
stage )

specimen | g1710.899|0.689|0.721 [0.660 [ 0.742|0.855| 0.769

Speﬁ;men 0.837]0.778|0.651]0.708|0.665|0.791|0.934 | 0.766

The average strain ratio from the results of the two

tests is y = 0.767. As compared with 0.731 determined in
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simple tension, the difference may be caused by the
deformation process during drawing/ironing of the cup. The
stress/strain relation obtained from specimens 1 and 2
showed a good degree of consistancy. The average curve is
compared in Figure (6.22) with the stress/strain curve
determined in the balanced biaxial tension test using a
flat blank of the same material. It can be seen that the
bulge test curve is lower than the balanced biaxial tension
curve by about 10%. However, the bulge test curve is much
' éloser to the tension test curves, measured at o° and 90O
to the rolling direction, than the balanced biaxial tension

test curve, see Figure (6.16) .
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CHAPTER 16

COMPARISON BETWEEN EXPERIMENTAL AND

THEORETICAL STRAIN DISTRIBUTIONS

Experimental and theoretical results were obtained
for annealed cups with five different unsupported lengths
of 83, 93, 103, 113 and 123 mm. The cups were bulge=—
formed under the same internalrpressure of 2.77 MN/m2 and
the same axial force of 9.2 KN. The cup wall thickness

was 1.26 mm.

In the experiments, the circumferential strains were
measured for the five specimens, while only one typical
thickness strain distribution of the cup with 93 mm

unsupported length was measured.

In the theory, the computer programme described in
Section (13.6) was written in Fortran, tested and run on
the departmental ICL 1906S computer. The effect of the
number of elements and accuracy used in the successive
approximation were investigated. It was found that an
element step less than 1 mm an@ an accuracy less than
0.0001 did not result in a significant difference in the
result. A typical computation time for one stage of
bulging is about 20 seconds. The average strain ratio of
0.767 and the cup bulge test stress/strain curve shown in

Figure (6.22) were used in the analysis.

The theoretical and experimental strain distributions

are shown in Figures (16.1) to (16.6). It can be seen that
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the correlation of the circumferential strains is good in
the top half of the bulged cup but not as good in the

lower part. This is due to the effect of the cup profile
radius near the cup base which was left unsupported in the
experiments. The thickness strain distribution of a
typical case is shown in Figure (16.3). Again the agreement
between theory and experiment in the top half is satis-
factory, while a significant difference exists in the lower
Part-of the cup due to the Sinking of the cup profile

radius under the effect of the axial compressive force.
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CHAPTER 17

- EXPERIMENTAL RESULTS AND THEIR DISCUSSION

Numerous tests have been carried out in this part of
the investigation. Figure (17.1) shows the typical test
results for two specimens, the first specimen being annealed
and the second being as drawn/ironed specimen. Two typical
test sets are given. The first set of the experimental
results is shown in Plate (17.1), where as drawn/ironed
cups of the same size were‘bulged under the effect of
increasing internal pressure from épecimen A to F. It can
be seen that in all cups the bulge took place near the cup
base. This is due to the relatively lower work-hardening
in the cup wall near its base which was caused by the
drawing/ironing process. When the internal pressure was
relatively low as in specimens A and B, severe buckling
occurred. When the internal pressure was relatively high
" as in specimen F, an early split occurred. The bulge was
at its maximum near the boundary between splitting and
buckling as in specimen D. However, the mode of bulging in
both cases 1s similar, but different in size. The second
typical set of experimental results is shown in Plate (17.2),
where annealed cups of the same size were bulged under the
effect of increasing internal pressure from specimen G to L.
Two distinguishable modes of bulging were observed. The first
- mode occurred at relatively high internal pressure as in
specimens J, K and L, where one large bulge occurred in the
unsupported part of the cup. In the second mode twin

similar bulges occurred under relatively low internal
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pressure as in specimens G, H and I. The twin bulges were
formed under relatively high axial force. The formation of
the twin bulges is attributed to the symmetry of the bulging
process about the crown centre and to the homogenous material
properties as well as the relatively low internal pressure
and high axial force. The maximum bulge occurred near the

boundary between the two modes of bulging.

These modes of bulging may be exploited in closed die
bulge forming according to the die profile shape. This
investigation has produced some practical results about the
effect of internal pressure and axial force on the bulge

forming process.

17.1 Investigating the Effect of the Unsupported length of

Cup on the Bulge Limit

The maximum bulge ratio*for each cup length was
investigated as described above. The specimens which gave
the maximum bulge ratio for each length are shown in Plate
(17.3) and Plate (17.4) for annealed and as drawn/ironed
cups respectively. The maximum bulge ratio versus the
unsupported initial cup lengtﬁ relation is shown in Figure
(17.2). It can be seen that, within the range of the cup
length tested, there is no not%cable effect of the unsup-
ported length of cup on the maximum bulge ratio for
annealed cups. In the case of as drawn/ironed cups, the
maximum bulge ratio was generally increased with decrease of

cup length from 123 to 93 mm. This is due to the fact that

-

' Current diemeter of vessel
» =
The bulge ratio Initial diemeter of cup
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the cup wall is less work-hardened near the cup base.

Therefore, for shorter cups, greater part of the cup length
can be severely bulged resulting in greater bulge ratio. No
noticable change occurred in the bulge ratio for cup lengths

between 83-93 mm.

17.2 Investigating the Effect of the Cup Wall Thickness on

the Bulge Limit

The maximum bulge ratio for each cup wall thickness
was investigated aé described earlier. The specimens which
gave the maximum bulge ratio for each cup wall thickness
are shown in Plate (17.5) and Plate (17.6) for annealed and
as drawn/ironed cups respectively. The maximum bulge ratio/
cup wall thickness relation is shown in Figure (17.3). It
can be seen that within the investigated range of thickness,
the bulge ratio is increased slightly with increase of cup

wall thickness.

In the case of as drawn/ironed cups, the maximum bulge
ratio increased significantly with increase of cup wall
thickness. For cups of 1.71 mm wall thickness, the bulge
ratio was nearly equal to that for annealed cup. This
increase in the bulge ratio is due to the lower degree of
work-hardening obtained when 1qwer reductions in ironing
are used. The result indicates that for the soft aluminium
used in this investigation, a reasonably low reduction in
ironing may give a bulge ratio coﬁparable to that obtained
when annealed cups are used. The results of the present
work may be donsidered of special,importance for the con-
tinuous bulge forming process required for producing holloﬁ-

ware from flat blenks which will be described later in Part Four.
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CHAPTER 18

CONCLUSIONS

According to the theoretical and experimental results

given in Chapter 16, the following conclusions may be drawn:

1. The average strain ratio for the wall material of an
annealed cup may be reasonably determined from the cup

bulge test using the theoretical relations given in Section

(13.3).

2. The stress/strain relationship for the wall material

of an annealed cup may be determined satisfactorily using
the cup bulge test method. The method simulates the defor-
mation occurred in a bulge forming process and gives results
more representative of the material behaviour in such a

process.

3. The stresses and strains induced in free bulge forming,
when the tangential stress 0¢ is tensile along the
unsupported length of the cup may be well predicted from the

suggested numerical solution.

Within the scope of the experimental work presented in

Chapter 17 the following conclusions may be made:

1. Only one mode of bulging occurs for as deep-drawn/ironed
cups under different loading conditions of internal pressure

and axial force. The bulge zone is usually shifted from the

centre of the unsupported cup length towards the cup base.

The bulge size is relestively small when buckling occurs.
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In the case of annealed cups, two modes of bulging are
possible. The first mode occurs at relatively high internal
pressure and low axial force values. The bulge shape is a
full bulge of the unsupported length of the cup. The second
mode has two similar bulges at the ends symmetrical about the
centre of the unsupported cup length. This mode occurs at

relatively low internal pressure and high axial force.

2. The effect of varying the unsupported cup length on

the bulge limit of annealed cups is negligible.

3. The effect of varying the unsupported cup length on the
bulge limit of as deep-drawn/ironed cups is significant for
cup lengths between 93 and 123 mm. The effect is small for

cup lengths between 83 and 93 mm.

4. The bulge limit is slightly increased with increase of

cup wall thickness for annealed cups.

5. The bulge limit is greatly increased with increase of
cup wall thickness for as deep-drawn/ironed cups by applying

smaller reductions in ironing.



PART FOUR

BULGE FORMING -
INSIDE A CLOSED DIE

CAVITY
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CHAPTER 19

BULGE FORMING OF HOLLOW-WARE

FROM FLAT BLANKS

Bulge forming of hollow-ware from flat blanks is a
process in which hollow-ware articles of required shape are
produced from circular blanks of sheet metal in one con-
tinuous stroke of a punch. The process consists of the

following three consecutive operations:

1. Deep=-drawing without a blank-holder, in which a
relatively thick blank of sheet metal is deep-drawn, through
a convex type die such as tractrix type die, into a
cylindrical cup of a certain height. This method of deep
drawing has several advantages over conventional deep
drawing including simpler tooling, higher cup height/
diameter ratio and lower punch load. The drawn cup has
generally a variable wall thickness due to thickening in

the upper part and thinning in the lower part of the cup.
Also it has inconsistent and poor surface finish, and there-
fore, ironing of the cup wall is necessary before hydraulic

bulging can be carried out.

2. Ironing of the drawn cup, where single or multi-stage
ironing dies may be used depen@ing on the total reduction
required in the cup wall thickness. Ironing may be performed
when one or more of the following requirements are necessary:
extra cup height, good surface finish and uniform wall thick-

ness. The acceptable 1limit of total reduction is determined
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by the effect of work-hardening on the bulging process that
follows. The cup height for a fully ironed cup may be

approximated using equation (3.24).

3. Hydraulic bulging under internal pressure and axial
compressive force, in which the cylindrical cup is deformed
plastically inside a closed die cavity. The die is in two
halves to allow the formed article to be removed. The
split die has to be clamped with a sufficient force to
ensure good sealing of the pressurized oil inside the cup
and to prevent the split die from outward movement during
forming. ‘The values of internal pressure, axial force and
axial compression must be closely controlled and related to

each other during the bulge forming of a certain shape.

Assuming that the formed article has a uniform thick-
ness the same as that of the original cup, the axial com-
pression Ahb required may be deduced on the basis of surface

redistribution of the cylindrical cup wall over the die

cavity, thus

0

=4 _ .1
Ahb =5 hb' ) (19.1)

where S,4 is the surface area of the die cavity, D the cup

outside diameter and hb the height of the die cavity.

The value of Ahb may be used for rough assessment of
during the stage of experimental production of a particular

component. Values of Ahy in excess to the above value means
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that thickening will occur, while values less than the above

means that thinning will occur which is mostly the case.

The actual success of the process depends on the
values of the internal pressure and axial force, the shape
of the component and the frictional conditions between

material and die cavity.

Assuming that the time required to bulge form a
particular component is T, the flow rate required to

supply the internal fluid for bulging is:
Flow rate = (V2 - Vl)/T ’

where V, and V, are the initial and final volumes of the

bulged part of the component.

The corresponding speed of axial compression is given

by

v o= Ahb/T .
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CHAPTER 20

EXPERIMENTAL APPARATUS AND PROCEDURE

20.1 The Bulge Forming Machine

The experimental investigation of this part was carried
out on the bulge forming machine shown in Plate (20.l1). The
electro-hydraulic control unit is on the left of the view
and the machine proper is on the right of the view. The
main part of the machine shown in Figure (20.1) has been
described by Woo [2]. The sequence of operation is as
follows: (a) At the start of the forming opération, the
punch 1 and the compression plate 6 are moved to their top
positions., The compression plate is in two halves and is
attached to the annular piston 5. When moving up with the
piston, the plate opens out as its two rollers, one at
either side, comes into contact with the cam 4. This is
necessary so as to allow the cup to pass through during the
drawing and ironing stage. (b) A blank is placed on the
tractrix type die 2. The punch which is connected to the
piston rod of a hydraulic cylinder is driven downwards
drawing the blank through the tractrix type die 2 and the’
ironing die 3 until it reaches a suitable position inside
the split die cavity 8. (c) Oil'undef pfessure is admitted
through the top of the punch and pushes the cup away until
it reaches the bottom‘positioh, thus leaving a space for
oil to bulge the cup. (d) The split forming die 8 which is
connected to the piston rods of two cylinders, driven by

hydraulic pressure, one at either side, is closed in and the
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two halves of the ring 7 are pressed firmly on to the cup
to prevent any leakage of oil, thereby maintaining the oil
pfessure necessary for bulging. (e) While the oil pres-
sure inside the cup is building up, the pressure plate is
moved downwards compressing the cup. (f) At the end of
the bulge forming operation the punch lifts up and the
forming die opens out allowing the formed vessel fo be
removed from the press. For more accurate measurement of
the internal pressure, the pressure gauge fitted on the
machine was replaced by the calibrated pressure measuring

system described earlier in Section (5.5).

The machine has the following main specification:

1. Drawing/ironing capcity: 200 KN.

2. Total punch stroke: 500 mm.

3. Maximum punch speed: 50 mm/sec.

4. Maximum internal pressure: 210 bars.

5. Maximum axial compression: 40 mm.

20.2 Design and Selection of Forming Dies

To investigate the hydraulic bulge forming of
axisymmetric hollow-ware, five different dies were selected.
Three of them were of basic shapes including cylindrical,
conical and spherical. The other two were of more complex
shapes including the double bulge and barrel shapes.

Conical and spherical dies have been successfully used by
Woo [2]. The other three dies were chosen from an existing

set of dies provided with the machine for testing. All dies
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are of split die design. The shapes of axisymmetric die

cavities are shown in Figures (20.2) to (20.6).

Three forming die cavities were specially designed to
investigate the hydraulic bulge forming of asymmetric
hollow-ware. One square and two elliptical die cavities of
different sizes were designed. The shapes of the asymmetric
die profile cavities are shown in Figure (20.7) and Figure:

(20.8).

The above shapes were chosen to demonstrate the
capability of the process. The shapes were carefully
selected so that they cover a number of basic shapes
encountered in the actual production of a typical component

in industry.

20.3 Test Procedure

The flat circular blanks were prepared and lubricated
as mentioned in Section (10.4). The tractrix type die
described in Section (10.1) was used for deep drawing, and
ironing die 3 described in Section (10.2) was used for the
ironing of cups. This was followed by hydraulic bulge
forming. The experimental procedure for determining the
optimum values of internal pressure, axial force and axial
compression for each shape is based on the previously gained
experience in the experimental investigation of free bulge

forming described in Part Three.
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The procedure is summarized as follows:

1. The internal pressure was adjusted to a certain value
Pl which was the optimum value determined in the free
bulging experiments described previously. The cup was com-
pressed by a small amount. The split die was opened and

the forming process was observed. The die was closed again
and further small steps of axial compression were applied
and observations were followed closely until one of the
following situations was reached: (a) The cup buckled.

In this case, the internal pressure was slightly increased
and the above procedure was repeated using a new specimen.
(b) The cup split. In this case, the internal pressure

was slightly reduced and the above procedure was repeated
using a new specimen. (c) The deformation of a cup was
estimated to be close enough to the shape of the die cavity
under consideration. In this case, stage 2 described below
was attempted. (d)A Small decrease or increase of Pl led to
the splitting or buckling of a cup and the obtained shape was
not close to the required shape. In this case, no further
attempts were made and the production of this particular

article was considered not possible.

2. The internal pressure was considerably increased to a
level of P2 which was estimated to be sufficient to give
the deformed cup its final shape. No axial compression was
applied at this stage. One of the following results was
obtained after the appiication of P,: (a) the required

shape was obtained.
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A second test was carried out to ensure that the results

are repeatable. (b) Splitting of the cup occurred. A new
specimen was used as stage lb described above. (c) The
required shape was fully formed but a local wrinkle appeared
somewhere in the final shape. This indicated excessive
axial compression. Therefore, the test was repeated and Pl
and P, were kept the same. The axial compression was

2
slightly reduced.

The same procedure was used for the bulge forming of
annealed cups. The annealing process was performed in the
same way described in Section (14.4). The stress/strain

relationship of the material is similar to that given in

Figure (6.22).
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CHAPTER 21

EXPERIMENTAL RESULTS AND THEIR DISCUSSION

The cups produced by deep drawing/ironing have an internal
diameter of 66 mm and an average wall thickness of 41.43 mm.
The resultant cup height varied according to the type of
earing which occurred in drawing.Three types of earing were
observed in the tests due to variation of the supplied
material. They include four, six and eight ears, see
specimens 1, 2 and 4 in Plate (21.1). This variation
presented great difficulty in obtaining the optimum values
of internal pressure and axial compression for a particular
shape. However, the average cup height may be considered
as 175 mm. The produced articles of axisymmetric and
asymmetric shapes are presented in the form of vases for
illustration. 10-15 tests or more were made for each shape

before a successful result was obtained.

21.1 Axisymmetric Hollow-Ware

1. Axisymmetric hollow-ware produced from flat blanks in
one continuous operation: Four different shapes were
produced successfully from flat blanks in one continuous
operation including deep drawing, ironing and hydraulic
bulge forming. The produced shapes are: cylindrical,
conical, spherical and double bulge. They are shown as
specimens 5, 1, 3 and 2 respectively in Plate (21.2). It
was not possible to produce the barrel shaped article due

to the large expansion in volume involved. More axial
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compression was needed, but this was not possible due to

the insufficient height of the cup produced with the present
tooling. The problem of the buckling of the ears made the cup
height more critical. The optimum values of Pl’ P2 and Ahb

used in producing the above shapes are given in Table (21.1).

Different techniques were essential to produce
different shapes. These techniques are mostly dictated by
the shapé to be made and by the fact that the cup wall
material has been work-hardened particularly towards the top
of the cup. This means that the material starts to flow, if
the die shape allows it, from the part near the cup base.
The technique used for each of the above shapes together
with typical examples of failure and defects are giveh

briefly in the following:

1. Conical-shape: It was found necessary to allow the

cup to buckle, see specimen 1 in Plate (21.1), near the top

where the bulge ratio is maximum. This enabled the material
at the top part to thicken. The next stage was to increase

the internal pressure to a fairly high value, thus

allowing the shape to expand and fill the die cavity.

2. Double bulge shape: No difficulty was experienced in
this case when a small buckle was allowed at the top bulge
as shown in specimen 2 in Plate (21.1). If the buckling was
severe, it was difficult to rectify it , see specimen 2 in

Plate (21.1).
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3. Spherical shape: This shape was difficult to form.

It was vulnerable to splitting and buckling. The best
results were obtained by bulging the lower half of the shape
in the first stage as shown in Plate (21.1) specimen 4. 1In
the second stage, the shape was pressed out to give the
required profile inside the die cavity. Specimen 5 shows a
severe buckling situation when the internal pressure is
lower than the optimum value. Specimen 6 shows the case in
which the internal pressure is higher than the optimum
value. Specimen 7 in Plate (21.3) shows a buckled ring at
the middle of the spherical shape. This is due to excessive

axial compression.

4. Cylindrical shape: This was a straight forward job.
The available maximum pressure was not sufficient to force

the cup to £ill the small radii at the corners of the die

cavity.

The thickness reduction and bulge ratio distribution
of axisymmetric shapes including cylindrical, conical,
spherical and double bulge shapes are given in Figures

(21.1) to (21.4).

As an example, the ideal axial compression of the
spherical shape, deduced from equation (19.1), is about
26 mm. By comparing this value with the actual value of
19.5 mm given in Table (21.1), it indicates that a fair
amount of compression was possible and not much thinning

effect is expected as shown in Figure (21.3).
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Table (21.1). Values of Pl' P2 and Ahb used in bulge

forming of as drawn/ironed cups

Shape (baks) | (baZe) | (m
Conical 60.0 125.0 20,0
Double bulge 58.3 125.0 18.0
Spherical 59.3 125.0 19.5
Cylindrical 63.3 116.7 7.5

2, Axisymmetric hollow-ware produced with intermediate

annealing before bulge forming:

The forming process in this case was found to be
easier than that in the previous case. Providing that the
internal pressure is high enough in relastion to the axial
férce, bulging starts to take place gradually with the
maximum bulge at the middle point of the unsupported zone.

The process in this case is less sensitive to the magnitude

of the internal pressure. Since the material is annealed,

the first and second stage pressures are much lower than

those required in the previous case. This is considered to
be particularly important in reducing the sealing problems
when materials of high strength, such as stainless steel,

are to be used in bulge forming. Three shapes were produced.

The first one is the barrel shape which was not possible to
form previously. This shape is shown as specimen 4 in Plate

(21.2) . The other two shapes, the spherical and cylindrical
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ones, were formed especially to make a comparison of the
thickness reduction distribution between annealed and non-
annealed cups in bulge forming. The values of Pl' P2 and
Ahb used in producing the above mentioned shapes from

annealed cups are given in Table (21.2).

Table (21.2). Values of Pl' 2 and Ahb in

bulge forming of annealed cups

P

‘Shape (baks) | (bads) | (mt
Barrel shaped 31.7 70.3 20.0
Spherical 26.7 68.0 12,5
Cylindrical 31.7 80.0 5.0

Typical sections of the produced axisymmetric
shapes are shown in Plate (21.4). Quarter sections were
made from the formed shapes to show their thickness,

profile and interior surface.

3. Comparison of thickness reduction and bulge ratio when
annealed and non-annealed cups are used in the production

of axisymmetric hollow-ware:

The results for cylindrical and spherical shapes are
given in Figures (21.1) and (21f3) respectively. It can be
seen that the thickness reduction distribution for the spherical
shape is fairly uniform over the spherical zone when both

annealed and non-annealed cupslare used. This indicates the
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favourable effect of the axial compressive force in over-
coming the thinning effect especially at the part of maximum
bulge ratio, and in smoothing the thinning effect in the
forming zone. It also indicates that there is no special
advantage in using annealed cups. Similar results may be
noted for the cylindrical shape. 1In addition to that,a small
difference can be seen in the bulge rétio distribution near to
the corners of the cylindrical bulge zone. This shows the
difficulty of filling small radii at dead corners even when

the material is softer.

21.2 Asymmetric Hollow-Ware

Three different asymmetric shapes were produced
successfully. The produced shapes are square and two
elliptical shapes of different sizes. Theykare shown in
Plate (21.5). The production of these shapes were more
sensitive to the frictional conditions between material and
die cavity surface. Unlike the dies for axisymmetric
shapes, good surface finish was necessary before successful
results could be obtained. Due to the asymmetric shape,
the.material is forced to slide later in the deformation
process along the narrower zones in order to fill the
larger parts of the die éavity. Although no additional
lubricant was used between the ‘material and the die cavity
in the present experiments, it is believed that adding a
special lubricant to the bulge forming process may improve
the material flow and thickness distribution particularly

when high internal pressure is used.
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1. Asymmetric hollow-ware produced from flat blanks in

one continuous operation:

Square and elliptical shapes were produced. The
square shape tended to buckle easily in its flat walls.
The amount of axial compression must be closely adjusted.
The forming of an elliptical shape, using elliptical die 14,
showed that the die shape at the parts of the ellipse which
have a smaller radius of curvature offered high resistance to
material flow. Slight increase or decrease in the internal
pressure resulted in splitting or buckling as seen in
specimens 8 and 9 in Plate (21.3). The final shape was
formed with the part around the major axis of the ellipse
not fully formed. Similar behaviour was observed when
using elliptical die 2, see specimens 10 and 11 in Plate
(21.3). The values of Pl' P2 and Ah, used in the successful

b
tests are given in Table (21.3).

Table (21.3). Values of Pl' P2 and Ahb used in

bulge forming of as drawn/ironed cups

Py P2 Ahp,

Shape (bars) (bars) (mm)
Square 60.0 116.6 20
Elliptical 1 59.3 66.0 12

2. Asymmetric hollow-ware produced with intermediate

annealing before bulge forming:

. Square, elliptical 1 and elliptical 2 shapes were

produced successfully. The forming techniques of the
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process were easier than those in the previous case. More
effort was needed to obtain the optimum axial compression.
It was found that the success of the process is less sensi-
tive to internal pressure but more sensitive to axial com-
pression.A typical example of buckling due to excessive
axial compression is shown in specimen 1l0OA in Plate (21.3).
The values of Pl' P2 and Ahb used in the successful tests

are given in Table (21.4).

Table (21.4). Values of Pl' P2 and Ahb used in

bulge forming of annealed cups

Shape (baks) | (baZe)| (el
Square 29.7 70 14.0
Elliptical 1 31.7 70 11.5
Elliptical 2 30.0 72 7.5

Typical sections of asymmetric shapes are given in
Plate (21.6). Thickness reduction and bulge ratio

distributions are given in Figures (21.5) and (21.6).

3. Comparison of thickness reduction and bulge ratio when
annealed and non-annealed cups are used in the production of

asymmetric hollow-ware:

The comparison is made for the square and elliptical 1
shapes. It can be seen from the results for the square

shape, shown in Figure (21.5), that the thickness reduction
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distribution across the specimen is more uniform in the case of
an annealed cup. This may be attributed to the difference
in frictional conditions and mechanical properties. Two
clear necks were found in the case of as drawn/ironed cups
near to the point where the two sides of the square meet the
radius of the corner. This indicates that high frictional
forces along the sides of the square restricted the material
flow in this direction. It can also be seen that the bulge
ratio at the radius of the corner across the specimen is
short of the maximum theoretical value for the as drawn/
ironed cups. The results for elliptical shape 1 showed that
the full bulge ratio was obtained along the major axis of
the ellipse of annealed cups. For as drawn/ironed cups, a
considerably lower bulge ratio was obtained along this axis.
The results are shown in Figure (21.6). A high thickness
reduction of more than 50% was obtained for annealed cups.
The thickness reduction near the minor axis of the ellipse

is small in both cases.
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CHAPTER 22

CONCLUSIONS

With reference to the experimental results given in

Chapter 21, the following conclusions may be drawn:

1. It is possible to produce axisymmetric and asymmetric
hollow-ware of conical, spherical, cylindrical, double bulge,
square and elliptical shapes from flat blanks in one con-
tinuous operation which includes deep drawing, ironing and

hydraulic bulge forming in one stroke of a punch.

2. Providing that the blank material has consistent
mechanical properties, the success of the process is

repeatable.
3. Bulge ratios of 1,45 or more could be obtained.

4. High friction between material and bulge forming die
cavity is undesirable especially when asymmetric shapes are

to be produced.

5. Corners of small radius are not recommended in any
position, because they require relatively high internal
pressure for forming, thus introducing sealing problems.

In this case, bulge forming of annealed cups is generally

-

more effective.

6. Blank material having rotationally symmetric anisotropic
properties in the plane of the sheet metal is desirable.

This is important in the forming process to ensure uniform
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application of the axial compressive force, thereby
preventing buckling of the cup ears. This also helps to

reduce material wastage.

7. The tooling used in the process is fairly simple and
the same set of deep drawing/ironing dies may be used to
produce different shapes by changing the bulge forming die.
This gives an economical advantage in the production of

small and medium batches.

8. Not much difference in the forming capability was
observed when bulge forming a particular shape from as drawn/
ironed cup or from annealed cup. Greater axial compression
is usually needed in the forming of a particular shape from
as drawn/ironed cup. Higher thickness reductions can be
obtained when bulge forming annealed cups. The process in
the latter case is less sensitive to internal pressure but

more sensitive to axial compression.

9. The internal pressure required for the bulge forming of
annealed cups is considerably lower than that required for
as drawn/ironed cups. This will be advantageous when

forming strong materials such as stainless steel.
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APPENDIX A

HILL'S THEORY OF PLASTIC ANISOTROPY

The theory of plasticity was described by Hill (3] and
Johnson and Mellor [24]. The following account of Hill's
theory of plastic anisotropy is based on the latter

reference.

A.l The Yield Criterion

The theory of Hill [3] describes a state of a simple
orthotropic anisotropy, that is, there are three mutually
orthogonal planes of symmetry at every point. The inter-
sections of these planes are known as the principal axes of
anisotropy. The yileld criterion proposed by Hill when

referred to these axes has the form

2
Yz

2 2

> = - - - 2
2£(cij) _F(oy oz) +G(o, ox) +H(cx oy) + 2LT

2 2 _ '
+2Msz -+2ery =1, (A.1)

where f(cij) is the plastic potential,

ox, cy and o, are normal stresses,

T T and Txy are shear stresses, and

yz' ‘"zx

F, G, H, L, M and N are parameters characteristic of
the current state of anisotropy. It is assumed that there
is no Bauschinger effect and that a hydrostatic stress does
not influence yielding. Hence, linear terms are not
included and only differences between normal stress com-

ponents appear in the yield criterion.
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If X, Y and Z are the tensile stresses in the principal

directions of anisotropy, it is easily shown that

S =G+H, 2F=—+1 oL
x? v2 22 %?
= =H+F, 6=+ - %
Y 24 %% v
S=F+c wm==+1 21,
z x> ¥v2 oz

If R, S and T are the yield stresses in shear with

respect to the principal axes of anisotropy, then

A, M= ana av=-1.
3 5 =2

R S

2L =

The condition of planar isotropy (rotational symmetry
about the Z-axis) are determined by noting that equation

(A.1) must remain invariant for arbitrary (x,y) axes of

reference, 1t can be shown that

N=F+2H=G+2H, L=M. (A.2)
For complete isotropy

L=M=N=3F=23G=3H. (A.3)

When anisotropy is vanishingly small the expression
(A.1) reduces to the von Mises criterion. Substituting from

(A.3) into (A.l) the yield criterion then becomes
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2 2 2 2 2 2

1
g,-0 + (o, - + - ==
( y 2) (o, o) (oX oy) -+61yz +6T,, -+6rxy 5
Since for pure shear

O, = - oy = k, oz =0
and Tyz = T,x = xy =0
giving

1 2

F=6k'

where k is the yield shear stress.

A.2 The Flow Rule

By analogy with the Lévy-Mises equation for isotropic
material it is supposed that f(oij); in equation (A.1l), is
the plastic potential. The incremental strains are thus

derived by partially differentiating f(cij) with respect to

cij.
af _ - _
53;-— G(ox oz) + H(cx oy)
and hence
g P
£
X = dl.

G(o, - oz) + H(cx -‘Gy)

Assuming a rigid-plastic material the superfix 'p' in
the above equation can be dropped. Similar expressions are
obtained for the other components of the strain increment

and can be written down as
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dex=dA[H(ox-oy) +G(cx-oz)], dez=d)\LTyz ;

(A.4)

dey =d)\[F(oy - oz) +H(oy - ox) 1, dex =d>\Mrzx ‘

dez =dA[G(cZ - ox) +F(cz - oy) 1, dny=d>‘NTxy .

The above equations give the relation between stress

and strain increment.

If a simple‘tension is applied to a strip lying in the
(x,y) plane and cut parallel to the X-axis of anisotropy
the incremental strain ratios are obtained from equation

(rA.4).
dex : dey H dez =G+H:-H: -G.

The ratio of thickness to width strain is known as the

r-value and therefore

where the suffix 'x' denotes that the specimen is oriented

along the 'x'-direction. For a strip cut in the y-direction.

de : de¢ : de =-H : FP+H:: ~-F
de
- _x _H,
and ry = dez = F

In order to derive the required anisotropic parameters

for plane-stress deformation of sheet it is ncessary to carry



out a tensile test in at least one other direction in the
plane of the sheet. 1If anisotropic sheet is subjected to
forces in the plane of the sheet, the (x,y) plane, then Tyz
and T, will be zero. Suppose a strip tensile specimen is
cut at an angle to the x-direction then from consideration
of equilibrium

2 2
c, =0 o = n =
% cos o, y osin”a, Txy osina cosa,

where o is the applied tensile yield stress. Substitution

of these values in equation (A.4) gives

((G + H) cos®a - H sin?alo dx,

de =
X
2 2
dsy = [(F + H) sin“a- H cos“alo di,
2 2
dez = =[F sin"a + G cos“alo dX.

From considerations of the geometry of small strain,

the width strain increment dea_+(w/2),is given by
de = de sin2a + de coszu - 2 dy sina cosa
a+ (1/2) X y Xy

and therefore

2 2, - sina coso
_ dsa_+("/2) dex sin a-+dey cos“a - 2 dny

r = E—
o dsz dez

H+ (2N - F - G - 4H) sinza cosza
a © p) 2 ’
F sin“o0 + G cos™ a
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In sheet metal the rolling direction is usually an axis
of anisotropy and the x-direction is then taken to coincide

with the rolling direction. The above equation yields

= =B
T's © ¥ = &
= = B
'y = Too = ¥
= W= (F+G6) N _ (g4 0,
45 F + G G 45 rgo'

ro, r45 and r90 indicate r-values along, at forty-five

degrees and ninty degrees to the rolling direction.

A.3 Stress and Strain Relations

When a material is deformed plastically the state of
anisotropy changes. However, it will be assumed here that
this change in anisotropy is negligible compared with the

anisotropy existed in the material at the start of the test.

If the state of anisotropy remains constant the yield
stresses must increase in strict proportion as the material
work-hardens and it follows that the anisotropic parameters
must decrease in strict proportion. The ratios of the
parameters will therefore remain constant and it is the

ratios not the absolute values of the individual parameters

that are determined by experiment.
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Hill [3] has proposed that the equivalent stress should

be defined as
2 %
Y 7.

_ 2 - 2 _ 2 2 2 .
F(o‘Y oz) +G(cz cx) +H(ox oy) +2Lryz +2MTZX +2Nrx

g =73/20 F +G +H

(A.5)

When it is understood that only ratios of the anisotropic
parameters, not the absolute values, will be considered.

When anisotropy is negligible the expression reduces to

X
- _ 2 2 2 2 2 2
0 = {%[(oy oz) + (o, ox) + (o, oy) +61yz +Grzx +srxy 1},

which is the equivalent stress for isotropic material based

on the von Mises criterion.

Following Jackson, Smith and Lankford (1948), Hill [3]
assumed by analogy with isotropic theory that o is a function
of the plastic work. The increment of plastic work per unit

volume, for an assumed rigid-plastic material, is

- - _Bf
dw = oij dsij = oij acij dx,

where cij and deij are stress and strain increment tensors

respectively.

From equations (A.4) we obtain

G dey - H dsz (FG + GH + HF)(Gy - cz) dx,

(FG + GH + HF) (0, - o.) di, - (a.6)

H dez - F dsx

F dex - G de (FG + GH + HF)(Ux -‘oy) dxi .

Y
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Assuming that loading is along the principal axes, the
increment of plastic work per unit volume can be expressed

as
dw = o de =0 dex + cy dey + oz dsz . (A.7)

Substituting the strain increment from equations (A.4)

gives

2 2

_ _ _ _ 2
dw = dix [F(dy cz) + G(cz ox) + H(oX oy) . (A.8)

From equation (A.5) we get

F(cr-c:)?'+c(cs-cr)2+H(c-0)2!5
- o v z z X X v
o =v3/21 F + G + H 1 (29
2 2 2

or, %5%F+G+H)=Fw -0,)

y +G(oz-ox)

From equations (A.7), (A.8) and (A.9) we obtain

ar = 3 1

i ;
T2(F+G+ H G (A.11)

By substituting equation (A.ll) into equations (A.6) we

get
_20 [ F+G+H )
9 = 9% =5 a7 Fc vam +rm (F dey - G dey)
-0, = 3 & e - | (A.12)
23 _F+G+H ) .
o, = % =3 & (fc+cH = FH)(H de, - F de_)

+H(ox-cy) « (A.10)
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An expression for the equivalent strain increment de

may be derived as follows:

From equations (A.7) and (A.8),

2 2

2
ax [F(cy - oz) + G(oz - ox) + H(oX - cy) ]

de = =
(o)

By substituting equations (A.G) and (A.9) into the

above, it can be shown that

%
- (F + G + H) _ 2
A€ = V273 (565 oi F pay L[F(G de, - H de))

X
2 2
+ G(H dez - F dex) + H(F dex - G dsy) 1. (A.13)



o

APPENDIX B

DEEP DRAWING COMPUTER PROGRAMME

o, Sth;R t4,C5,C6,C7,C8,C9,6,TA
FOMHON Ct c3 ' +C8,€9,6,
DIMENSION' T(10R012), R2(1AM,12) 1E1C107,12),E2(108,12),53(108,12),54

€139,12),R(103,12),55(192,12),E3(173,12),FI(140,32),01(100,12),D2(
éfgz.1é)303(193.12J.82(169.12).R0(105.121.TS(lﬂw.12).RC(12)aAB(198o
312),Y1(109,12),Y2(124,12),Y5(1008,12),CH(122,12),PC(12),FBC(12),WS(
4133,12),T05(123,12),R7(100,12),ER(127,12),STG(12),RA(12)

THIS IS A NUMERICAL SOLYTION OF THE DEEP DRAWING PROBLEM THROUGH

a CUNVEX TYPE DIE WITHOUT A BLANK«HOLDER,
THIS PROGRAM EVALUATES THE STRESSES ,STRAINS ,PUNCH LOAD ,ETC.,qs



OO0

OO0

OOOOO0O0

(]

OO0

o0

[a X}

982

WHICH OCCUR IN THE CUP NURING THE DEEP DRAWING PROCESS,
NJM33 NO, OF CASES TO RE STUDIED,
READ(1,981)NUMR
NF=d
NF=NF ¢
WwRITE(2,70A)
Mg NO, OF STEPS ,
N3 NO, OF STAGgS
Ris THEORETICAL DIE LIP RADIUS,MEASURED AT v=8, ,(MM) ,
R331 PUNCH RADIUS, (MM),
R653 BLANK RADIUS, (YM),
A3 AND Ad4: CONSTANTS OF DIE PROFILE CURVE, (MM) ,
ACC,PRE,AC1 AND PR13ACCURACIES FOR APPROXIMATING STEPS BOUNDARIES,
READ(C{,29)M,N,R}1,R6,R3,A3,A4,ACC,PRE,AC],PR]
WwRITE(2,731)M,N,R1,R6,R3,A3,4A4
WRITE(2,732)ACC,PRE,ACt1,PR!
PRy PUNCH PROFIE RADIUS, IN(MM),
PBR3PUNCH FLAT BASE RADIUS, (MM),
AC4; ACCURACY FOR APPROXIMATING EDGE BOUNDARY CONDITIONS,
Wi COEFFICIENT OF FRICTION BETWEEN MATERIAL AND PUNCH,
READC1,345)PR,PBR,ACA,H
NRITE(207”3JPR0PBRUAC4'N
MES CONSTANT, IF EQUAL ZERO TOTAL STRAINS ARE USED , IF GREATER
THAN ONE INCREMENTAL STRAINS ARE ASSUMED,
KNg MAXIMUM NO, OF ITERATIONS ALLOWED FOR CONVERGANCE,
NNg MAXIMUM NO, OF ITERATIONS ALLOWED FOR APPROXIMATING THE
INTERMEDIATE BOUNDARIES,
pD2s INCREMENT USED FOR HALVING THE STEP WIDTH WHEN CHANGING
INITIAL RADII AT DIFFERENT BOUNDARIES, (MM),
READ(109BH)HE,KN.NN,DDZ
WRITE(2,704)ME,KN,NN,DD2
R2t INITIAL RADII OF ELEMENTS, (MM),
READ(Lo17)(R2(I,1),1I58,")
WRITE(2,705)(R2(I,1),I21,M)
63 AVERAGE STRAIN RATIO,
3 COEFFICIENT OF FRICTION BETWEEN MATERIAL AND DIE,
C1«CO; CONSTANTS OF MATERIAL WORKHAROENING RELATIONS DEFINED AS
FOLLOWS?
{, S=C3In(E#aC4) FOR E LESS OR EQUAL C1 ,
2, S5=CS5+C6xE FOR E BETWEEN C1 AND C2 ,
© 3, S=3C7+C8x((E=C2)2x2C9) FOR E GREATER THAN C2 ,
WHERE S 1S MEASURED IN(MN PER METRE SQUARED) ,
TAp INITIAL THICKNESS OF MATERIAL,(MM),
READ(l,»17)G,U,C1,C2,C3,C4,C5,C6,C7,C8,C9,TA
WRITE(2,706)6,U,C1,C2,C3,C4
wRITE(2,797)C5,C6,C7,C8,C9,TA :
RAl CUP IMNER LIP RADIUS OF A PREDETERMINED STAGE OF DRAWING, (MM),
READ(!:JO)(RA(J)3J=20N) .
WRITE(2,708)(RA(J),J32,N)
RCS RSUGH ESTIMATE OF THE INITIAL ELEMENT NO. WHICH CORRESPONDS TO
THE CONTACT BOUNDARY BETWEEN MATERIAL AND DIE FOR A CERTAIN STAGE
0OF DRAWING,
READC1+39)(RC(J)sJ32,N)
WRITE(2,709) (RC(J),J32,N)
§TG3CONSTANT, IF GREATER THAN ONE IT CAUSES NO CHANGES IN THE DIE
CONTACT RADPIUS TO BE CARRIED OQUT ,
READC1,39)(STG(J),J=2,N)
WRITE(2,710)(STG(J),J=2,N)
WRITE(2,25)nF -
JO=i



c START A NEW STAGE,
1A1 J3Jusd
WRITE(2,79)J0
c SET C)NSTANTS OoF MONITORING BQUNDARY CONDITIONS TO THIER INITIAL
o VALUES.,
ND1=DD2
ND3I=3,1
15=4
17=0
NB=Y
NC=9
N9=J
MO=Q )
cALL cONS(JA.JZoJJ.J”,JOK,JOD,JS.DDZ.ACS,DDA,NS,Nﬁ,N?,NB)
c SELECT INCREHENTAL OR TOTAL STRAINS MODE,
1F(ME,GT,1)GO YO 621
nd 19 Iag,M
R2(1,JIsR2(I. 1)
E{(I,(Ja1))=0,
£2(1,(J=1))=0,
E3(I, (J=1))=7,
19 CONTINUE
c0 10 643
621 DO 622 Iz, M
R2(1,J)=R2(I, (J=1))
622 CONTINUE
c START THE DIE CONTACT ZONE,
c START AT THE CuP EDGE RADIUS,
643 139 '
c SET THE I'INER RADIUS OF CUP EDGE TO ITS GIVEN VALUE,
FIC(I+1),J)3FIC(Iel)y(JI=1))

605 NO3)
E:Rl-A3t(C03(FI((I*l).J))’FI((Ifl).J)tSIN(FI((I*l),J))-l.)-Adt(2.t

lFI((I*l),J)*COS(FI((1+1).J)J*(FI((I¢1)'J)**Z.-Z.)*SIN(FI((I*l),J))

2)
R(CI+1),J)=E
600 NO=NO#Y
xsE-R((I#l),J)-O.StTAySIN(FI((I+1).J))*((R6/R((I¢110J))t*(1./(1o*G

1)) ‘
z=-1.+B,5tTA*SIN(FI((I#1)pJ))ﬁ(R6*a(I.I(I.OG)))*(R((I+l)oJ)**(('20

16)/7€1.4G)))/(1:4G)

RCCI+1),J)ISR((I+1),J)=X/Z
IFCHO,GT,KN)STOP

Y=ABS(X/Z)

1F(X,GT,AC4)GO TO 620 ' '
TCCI+1),I)=TARC(RG/R(CI+1), I *n(1,/(1,46)))
jF(ABs(((R((I+1).J)-ﬂ.5*7((I#l),J)t?IN(FIttlfl)aJ)))/RA(J))-loioLT
1. ACC)GO TO 243 .
IF((R((I.l),J)-U.StT((If[),J)*SIN(FI((I+1)0J)))oGT.Rﬂ(J))GO TO 244
g0 TO 245 -

244 M8si _

1F(M9,GE.1)G0 TO 246

FIC(I+8),J)SFIC(I+1),J)+DD3

I N92NOel :
GU TO 635

245 MSsat ,

tF(N9,GE,1)GO TU 246
FICC(I+1),J)SFIC(I#1),J)=D03
MO39 ¢l :
G0 TO 605



o0

246

243

75
79

59

91

9

DD3=DD3I/2,
FIC(I+1),JISFIC(I+1),J)+DD3«M8

G0 TO 635
CALCULATE STRESSES AND STRAINS FROM PLASTICITY RELATIONS,

cAlLL STR(I,J,R,R2,EL,E2,E3,52,83,54,D1,02,D3,T)
ROC(I+1),JISAISFI(CI¢1),J)+A4x(FI((I¢1),J)2n2,)
START THE SECOND STEP IN THE DIE CONTACT ZONE,

I=4

ASSUME THE VALUE OF THICKNESS,
T(gI‘l)lJ)=T(IoJ)

K=

APPROXIMATE YHE VALUE OF THE DIE CONTACT ANGLE,
KzKel

1D0=]

IF(K.GT.KN)IGO 70 508
VE4, wASIN(1 ¢ INTAR(R2(I,JI %22, =R2((141),J)##2,)/(T((1+1),J)¢T(1,J))
71'51(on)*Vlﬁdo'ASIN(lo)*R(I,J)*RO(I,J))

NDB¢ ‘

NOEND !
Y34, %ASINCI @) ((R1ISAZIw(T((Ie1),J)+TCI,J))I#(FLI=FI(1,J))/4,40,5%(R

11fA3)¢A3t(F1t*2.-FI(I,J)t*Z.)+(R1§A3)*A4*(F1**3.-FI(IaJ)**J.)/3.+(
zga.aAatA4-0.75-A3n(T((Ifi).J)oT(IpJ)))*(SIN(FI)-SIN(FI(I.J)))-(3.t
JCAIAR2,) 42,00 AdR(T((141),J)4T(1,J))=dD,#(Ad222,)=D,0625+((T((1¢1),
4J)+TC(ToJd))%%2,))#(COSCFIICOS(FI(Iod)))(San(AInt2,)41,0%AdR(T((I+
51)eJ)¢T(1,J)) a0, x(Adax2 ) )x(FINSIN(FL)=FI(I,JI#SIN(FI(I,J)))=(20,
6-A3*}4~A3~G.5*(T((101),J)fT(I.J)))t(F;tCDS(FlJ-FI(I.JJ*COS(FI(I,J)
7))-Q.tAthdtt(Fl*tZ.)*SIN(F1)-(FI(I.J)**?.)*SIN(FI(IpJ))))
x:v,a,wasxucl.ﬂ)-((A3ta2.fA4t0.5t(T(tI+1).J)+T(I,J)J-20.*(A4tt2.))
13((Fl~*2.)tCDS(F1)-(FI(I.J)**Z.)tCOS(FI(IpJ)))-6.t(A4**2.)‘((Fl*ts
2,)tS!u(Fl)-(FItIoJ)t*J.)-SIN(FI(I'J)))¢2.*A3*A4*((F1t*3.)tcostrl)-
J;FI(I,J)tus.)-COS(FI(I.J)))¢tA4**2.)*((Fltﬂd.)tCOS(Fl)-(FI(I.J)tta
4.)%COSCFI(I,J))))=V
gca,gAstcz.a;.(nx-As.cCoscrx)+F1*51N¢F1)-1.)-A4.¢2.*F1*costr1)ocr
11&02.-2,)*SIN(F1))'(7((I#l)uJ)+T(IoJ))*SIN(F!J/4.)*(AJ*Fl#A4*(F1**

22, 0¢C(T((I+1), +T(1,J))/40)
FIC(Is1),J)5F1mX/2 .

Xx=ABS(X/Z) '

tF(Xx.,LT,ACC)GO TO 98

FISFI((I+1),d) |

IFC¢NO,GT.KN)GO TO 520

G0 TO 91

cHECK WHETHER THE VALUE OF THE DIE CONTACT ANGLE IS IN THE

WORKING RANGE DR NOT,

TFCFICCIe1),J) GE,ASIN(1,))GO0 TO 1a00
n((1¢1),J):Ri-AJt(COS(FI((I+l),J))+FI((I+1).J)tSIN(FI((I+1).J))-l.
1)-A4t(2.ﬁFI((I+1)aJJ*COS(FI((I+l)aJ))*(FI((I*l)oJ)**Z.'Z-)*SIN(FI(
zcxox).J)))-r((1+1).J)tsIN(FI((I+1).J))/Z.

CALCULATE STRESSES AND STRAINS FROM PLASTICITY RELATIONS,

cALL STR(1,J,R,R2,E1,E2,E3,52,53,54,D1,02,03,T)

RUCCI+1), JISASRFI((I41),J)+A4-(FI((I¢1)yJ)4%24)

FINO THE VALUE OF THE UNIT=TANGENTIAL FORCE FROM EQUILIBRIUM
EWUATION,
55((x¢1),J):(SS(I,J)*(Z.G#(FI((Iol),J)-FI(I,J))t(COS(FI(IoJ))*f(RO
1iI.J)#U.S*Y(I.J))/R(IoJ))*U))-(FI((Iol),J)-FI(I.J))t(SS(I.J)*T(I,J
2)-(COS(FI(I.J))0U~SIN(FI(10J)))*((RO(IoJ)¢0.5tT(IoJ))/R(IoJ))+SJ((
Jrfx),J)*T((I+1).J)*(CUS(FI((I+1J.J))+U*SIN(FI((Io:).J)))-((ROC(I¢1
4,,J)¢9.5-T((xoi).J))/Rt(1¢1J.J)))J/(2.-(FI((Ifl)oJ)-FItIoJ))*(COS(
5?1((I+1).J))*(!RO((IOIJ.JJ+H.5*T((I+1)'J))/R((I+l).J))+U))
TF(SA((I¢1),0).LT¢2,IG0 TO 89

1F(S3((1+1),J).6T,?,)60 TO 89



o0

82

80

154

142
143

o0

o0

144

c
151

754
c

ERABS((SACCI+1)pJ)aTC(I+1),J)/55((1+1),J))=14)

COMPARE THE VALUE OF THE UNITeTANGENTIAL FORCE OBTAINED FROM
FQUILIBRIUM EQUATION WITH THAT OBTAINED FROM PLASTICITY RELATION
IF(E.GT,PRE)GO TO 83 *
IF(JZ,GE,1)GO TO 19¢

1C=1

CHECK THE END OF THE DIE CONTACT ZONE,

IFCI.GEL,RC(JIIGO TO 154

START A NEW STEP IN THE DIE CONTACT ZONE,

1=1+4

1F(1.EQ,2)GD TO B2

IF(1.GE.M)GO TO 84 )

ASSUME THE VALUE THICKNESS,

TOCI+1), 0023, aT(1,0) 03T ((I21),d)¢T((1=2),J)

a0 T0 75

T(CI+1) 0227 (L, J)=T((I=1),J)

GO T0 75

ASSUME A NEW VALUE OF THICKNESS,

CALL APP(IDJ001'D3052552'55'T)
IFCTC(I¢1),J),LTa(TAZ20,))G0 TO 508

GO TD 79

START THE STRETCHING ZONE BETWEEN PUNCH AND DIE,
10=]

K=2

NDZD

NU=d

NUsHU+L

;F((R(IaJ)**?.)oLTo(2.*(RZ(IoJ)**2.'R2((1*1)oJ)**Z-)*TAtCOS((FI((I
161),J)¢FI(1,3))72,)/CT(1,J)eT((141),J))))G0 TO 500
g((141),J)=SGRT(R(I,J)**Z.-Z.*(RZ(I,J)**Z.'Rat(I+1).J)*t2,)*TAtCUS
1‘(FI((I’1)OJ)fFI(IOJ))/20)/(Y(IIJ)*T((I’l)IJ’))

COMPUTE STRESSES AND STRAINS FROM PLASTICITY RELATIONS,

CALL STR(IOJORDRZIEIOE20E3032053084'DlaDZ.DJ’T)

FIND THE'VALUE OF THE UNIT=TANGENTIAL FORCE FROM EQUILIBRIUM
EQUATION, _
35((101)¢J3=(2.*85(10J)+(R((I#l)'J)'R(IIJJJ*(((53(10J)'54(11JJ)*T(
11,J)/R(10J))0(83((I+1),J)*T((I#l)aJJ/R((IOI)vJJ))J/(?.#((R((Itl)oJ
2YeR(1,J))/R((I+1),J))) '
IFCSACCI+1),J).LT,8,)G0 TO 144
g:AeS((SA((I+1)-J)*T((I#l).J)/sst(I+1).J))-1.)

COMPARE THE VALUE OF UNIT=TANGENTIAL FORCE OBTAINED FROM EQUILIBRe
TUM EQUATION WITH THAT OBTAINED FROM PLASTICITY RELATION,
IF(E.LT.,AC1)GU TO 754

NOBNO0el |

IF(NU,GT.15)60 TO 754

ASSUME A HEW VALUE OF THE THICKNESS,

cALL APP(1,J,D1,03,E2,52,55,7)

IFCTCCI+1),J),LTo(TAZ2R,))G0O TO 500

IFC(KGT KNGO TO 530

GO TO 143

KK=RC(J)
cHECK WHETHER THE ASSUMED VALUE OF THE ANGLE IS CORRECT OR NOT,

!F(A“S(SS(KKgJ)*R(KKoJ)*SIN(FI(KK,J))/(85((I#l)oJ)tR((I+l),J))).GT

1.(1,7))G0 T0 1002
FEASTHCR(KK, J)#S5 (KK, JYRSINCFICKK,J))/(RECI41),JIAS5C(T+1), DI

!=§BS((FI((I+1):J)/F)-1o)
IFeX.LT.PR1IGO TO 170 v
ASSUME A NEW VALUE OF YHE ANGLE,
FI(({+l).J)=(FI((I*1)aJ)4F)/2-
KsKe



IF(K.GT KN)GO TO 522
60 TO 142

1202 K=Kel

c ASSUME A NEW VALUE OF THE ANGLE,

FICCIe1),JISATAN(R(KK, JI«S5(KK, JI#SINCFICKK,J))/(RCCI+1) I #SSC(T4
11),J)*COSCFIC(I+1),J))))
TF(KLT,KNIGO TO 142
WRITE(R,10A3)
G0 10 529

170 IF(E.GT.AC1)GO TO 151
IF¢JS,GE.13G0 TO 192
IF(JOK.GE,1)60 TO 191
IF(JJ,GE.1)GO TO 192

c CHEEK THE END OF THE ZONE BETWEEN DIE AND PUNCH,

TFC(R3R((I+1),J)+B,5xTCCI+1),J)*SINCFIC(CI#1),J))) GT4(PRa(1,o5IN(
1FICCT+1),J)))))60 TO 1@3
IFCJIN,GEL.1)GO 7O 523
131¢} :

145 1F(1.GE,M)GO TO 84
cAlL EXTCI,J,FI,T,R2)

GO 10 154
185 15=1
c CHANGE THE INITIAL RADIUS WHICH CORRESPONDS TO THE PUNCH PROFILE
c CONTACT RADIUS,AND ALL PREVIOUS STAGES AS APROPRIATE,

TFCABS(((R3=R((I+1),J)#B,54T((1+1),J)#SINCFIC(I+1),J)))/(PRu(1,=S1
INCFICCI#1)00)))))=1,),LT,ACLIGO TO 106
IF(N6,GT,NN)GO TO 366
IFC(R2(I,J)=R2((I+1),J)),LE,ACI)IGO TO 527
IF(N7,LT.1)G0 TO 528
AC3sACI/Z2,
N6sSMN6¢+!
528 JAsJAsl
R2C(1+1),J)3R2C(I¢+1),J)+ACT
JJzdJsl
JN2JIN+ !
¢0 10 127
523 N7zaN741
TFC(N6 . GT.NN)GO TO 366
RZ((IS+1)0J)=R2((IS&t),J)-ACl
60 TO 185
527 aC3=3AC3/2,
NOG3N6*]
GO0 TO0 135
127 JUNSJ
tF(ME,LT,1)G0 TO 128
J=1
192 JsJsd
1F¢J.GE,JUN)GO TO 128
R2((1+1),J)SR2CCI+1),JUN)
KK=FRC(J)
ZF(RZ((1801)0JUN)oLE.R?(KK,J))Go 10 192
!((Ibl)oJ)=(RZ((I+l)aJ)-R2(IoJ))t(T(:,J)-T((1-1),J))/(RZ(I,J).RQ((
11=1),0))¢T(1l, )
KK=PC (J)
IP(Qz(‘IS?I’JJU"”oLtoR’(KK,J))GO TO lﬂ’
FI((Iol).J):FI(I.J)t(FI(I;JJ-FI((I-l),J))*(ch(101),J).p2(1,J))/(R
12(1,J)=R2((1=11,J)) '
GU TO 124
128 JAs)



o0

136

1a7
111

198

199

115

116

135

cALL EXT¢I,J,FI,T,R2)

g0 TO0 154 .
sTART A NEW STEP IN THE PUNCH PROFILE CONTACT ZONE
151+

1F(I1.GE,M)GO TO 84

10=]

EXTRAPOLATE THE VALUE OF THICKNESS,
TCCI*1),J)=(R2C(I+1)pJI=R2(IsIIIX(T(I,J)eT((I=1),J))/(R2(I,J)=R2((

11=1), J))eTCI D)

K30

APPROXIMATE THE VALUE OF THE PUNCH PROFILE CONTACT ANGLE,

K=K+l ‘
51=r1(I,J)-rAacRZ(I,J)*tz.-RZ((I+1).J)ttz.)/((PR+B.25*(T(I.J)+1((I
161),0)))*(R(I,JIR(T((I¢1),J)¢T(I,J))))

NO=3

NO=HO#!
XSC(R2((I+1),J)a%2,®R2(TsJ)a%2,)#TA+((PR¥DBe25%(T((I+1),J)¢T(I,J)))%

1*20)*((PBRﬁ(FI(IOJ)'FI)/(PR‘UoZS*(T((I*l)oJJ’T(IIJ)))J'(COS(FI(I,J
29)=COSCF1)))*(T((I+1),J)+T(I,J))

z='((PR+E.25*(T((I*l).J)#T(IoJ)))*tZ.)*((PBR/(PR+3.25t(T((I+1).J)+
1TC1,3))))+SIN(FLI)w(TCCI+1),d)¢T(1,0))

FIC(I+1),J)sFleX/Z

xSABS(X/2)

IF(X,LT,ACC)GO TO 129

Flzrl((1+1),J)

1F¢40,GT.kKN)Gp TO 520

GO 10 108

R((I+1)cJ)=R3-PR+(PR*U.5*T((I+l)oJ))tSIN(FI((I+lJaJ))

CALCULATE STRESSES AND STRAINS FROM PLASTICITY RELATIONS,

cALL STR(IDJ'R.RaaEIIE2953032'S3034IDI'DZ'0307)

FIND THE.VALUE OF THE UNIT=TANGENTIAL FORCE FROM EQUILIBRIUM
EQUATION,
35((I+1).J):(SS(I.J)*(2.+(FI((I#lJ.J)-FI(IaJ))*(CDS(FI(I;J))*((PR+
19.5*T(I,J)J/R(IaJ))#N))-(FI((I+1),J)-FI(IoJ))*(SS(IoJ)*T(I.J)*(COS
2(F1(1,J)>+waIN(FI(IoJ)))t((PR+0.5*T(I,J))/R£I:J))483((101).J)-T((
3;01).J)t(COS(FI((I+1)pJ))+H*SIN(FI((I+!)oJ)))*((PR+0.5tT((I+1).J)J
A/R((I+1).J))))/(2.-(FI((I+1)pJ)-FI(IoJ))*(COS(FI((IolJ.JJ)*t(PRoa.
55:7(tI#l),J))/R((Iil)'J)J+N))

E=ABS((S4((I*130J)*T((I’IJoJ)/SS((I*l)IJ))'10)
COMPARE THE VALUE OF THE UNITeTANGENTIAL FORCE UBTAINED FROM EQUl=

LIBRIUM EQUATION WITH THAT OBTAINED FROM PLASTICITY RELATION,
IF(E.LT,PRE)GO TO 116

ASSUME A NEW VALUE OF THE THICKNESS,

cALL APP(Il,J,D3,D3,E2,52,55,T)

TFCTCCI+1),J)oLT,(TAZ2A,))G0 TO 500

IF(KoeGToKH)GO TO 509

c0 710 111

IF(JODLGE,1)60 TO 191

1F(JA,GE,1)G0 TO 192
CHECK THE END OF THE PUNCH PROFILE CONTACT ZONE,

IFCFICCIes), ),LT,B,)60 TO 135
TFCFI((I¢1),0),LT,ACC)GO TO 118
1FCJOK.GE,1)G0 TD 520
TFeS4cCI*1),J),LT,2,)6G0 TO 84
GO TO 106

1T=l
CHANGE THE INITIAL RADIUS wHICH CORRESPUNDS TO THE PUNCH FLAT

BASE RADIUS,AND ALL PREVIUUS STAGES AS APROPRIATE,
1F(N5,6T NN)GO TO 366
1F((R2(I.J)-R2((If!JoJ)).LE.Doa)Go TO 526



529

191

137

529

526

118

5a0

153

IF(N8,LT,1)GO TO 529

pD4=0D4/2,

NSNS+

JOK=JOK+ 1

R2C(I+1),J)=R2((I+1),J)+DD4

JOoN=J0D+1

JUN=J )

TF(ME,LT,.1)GO TO 137

J=1

JeJel

1F(J.GE,JUN)GO TO 137

R2C(I+1),sJ)3R2((I¢1),JUN)

KK=FBC(J)

Ii:ﬂ2(§13;1).gu?%.LE.R7(KK.J))GO T0 191
TCCI+1),J)3(R2((I¢1)0J)=R2(I,JIIX(T(I J)=T((l= -
1701)s00)4TCT, ) (Ledd=Ttcl=1),J0)/(R2(T, J)=R2 (L
KKaPC(J)

I;:RZ(:ITfl)nJUN)uLT.R?(KK,J))Go 10 §187

FIC(I+1), ISFICT )¢ (FICI,I)=FI((I=1),J))%(R2((1+ oR
1501,y R2((I=1),d)) R20LL41), J)=RRAT,IN/(R
G0 TO 124

JoDz0

CALL EXTCI,JsFI,T,R2)

G0 10 107

NS=NS+l

IF(NS,GTNN)GO TO 366

R2C(IT+1),J)=R2((IT+¢3),J)=DD4

GO TO 135

pb4=DD4/2,

N9ENS+1

G0 TO 135

151¢1 :

IF(1.,GE,M)GO TO 84

10=]

E1C(1+1),)=ELCINJ)

E2((1+1),J)3E2(¢1,J)

E3C(I+1),J)SE3¢IJ)

GO TO 118

CONVERGENCE IS NOT OBTAINED,

ASSIGH STRESSES AND STRAINS TO ZERD AND MAKE ONE STEP BACKWARD,
ELC(Ie1), D)0,

E2((1+1),J)52,

E3C((1e+1),J)=0,

§3((1+1),J)59,

84((1+1),J)20,

103]0=1

cHECK WHETHER THE BOUNDARY CONDITION AT THE PUNCH FLAT BASE RADIUS
1S VERIFIED OR NOT,

IF(STG(J).GT.I.)GU TO 83

cALL CONS(JA,JZOJJpJN'JOKIJDD.JS'DDZoAC30004'N5'N6,N7'N8)
CHANGE THE INITIAL RADIUS WHICH CORRESPONDS TO THE DIE CONTACT
RADIUS, AND ALL PREVIOUS STAGES AS APROPRIATE,
IF(2.tEII(ID¢1)pJJ.LV.(-EZ((Ioti)uJ)))GO YO §153
IF(ABS((?-*EI((ID+1):J)/EZ((ID¢1)0J))*l.)oLT|AC4)GU TO 83
IF(NC,GE,3)GO TU 854

NB=:HBe1

RC(J)=RC(J) =1,

o0 10 193 '
TF(ABS((2.%E1((ID#1)»JI/E2C(ID+1),J))¢1,),LT,AC4)GO TO 83

tF(n8,GE, 1160 7O 833



RCCJISRC(J)+1,
GO TO 193

195 1S8=¢
1T=3
151C=2
60 70 75,

193 IF(ME,GT.1)GO YO 629

623 R2C(IT+1),J)=R2((IT+1),1)
R2C(I5+1),J)=R2((IS+1),1)

GO0 T0 195 '

620 IF(J.GT,2)G0 Tn 788
R2C(IT*1),J)=R2((IT+1),(J=1))
R2C(IS5+1),J)=R2((1S5+1),(J=~1))
g0 TO 195

788 nRn2((Is+1),J)=R7((IS+1),(J~1))
R2C(IT+1),J)=R7((IT+1),(J=1))
JUN=J
J=1 )

194  JzJsy
IFC¢J.GE,JUN)GO TO 195
cAlLL REVA(IS,I7,J,R2,E1,E2,E3,R,T,F1,S3,84,55,R7,Ws,TS5,TOS,ER,AB,Y

18,CH,Y1,Y2)
G0 TO 194

8A8 TF(HC,GT,NN)GO TO B3

i IFC(R2CIC,J)=R2((1C+1),J))LE,DD1)GO TO 869
R2(¢1C,J)=R2(IC,J)=DDY

870 0Di=DDYI/2,

NCeNC+l
60 TO 103

858 JF(NC,GT,HN)GO TO 83 :
IF((RZ((IC-!);JJ'RZ(ICoJ)).LE.DD!)GO TO 875
R2(1¢,J)=SR2(IC,J)+DDI
cD0 7O 870

868 DDISODI/2,

NC=NC+
G0 TO 840

875 nDi1=DD1/2,
NCSNCe1l
GU TO 859

103 IF(HE,LT.1)GO TO 623
1F(J.GT.2)G0 To 787
R2C(I5¢1),J)=R2((1S5+1),(J=1))
92((IT*1)pJ)=R2((1T¢l)o(J-l))
c0 TO 109

787 R2((IS+1),J)=R7((1S+1),(J=1))
R2C(IT+1),J)8R7((IT+1),(J=1))
JUNsJ
Js1

199 J=Jed
1F(J,.GE,JUN)GD TO 110 '
cALL REVA(IS,IT,J,RZ.E!,EZ,EB,R,T,FI,SB,84,85,R7,NS,TS,TOS,ER,AB.Y

18,CHyY1,Y2)

151C=1

RE(IC,J)=R2(IC,JUN)

J55J5+1

JZ=JZ+14

kKeRC(J)
1F(R2(1C,JUN),GT,R7(KK,J)IGO TO 75
JZ=s9

gJ TO 154



1093

83

356

555

666

256
257

I1=IC=2

JZs9

35=9

IT=d

1522

G0 TO 75

JO=J0+!

COMPUTE THE PUNCH STROKE AND THE CUP HEIGHT,

FBC(J)=IT+!

PC(J)=15+1

no 356 I=1,ID+y

ABCI,JISRCI,J)=T(I,JIaSINCFICI,J))/2,

CONTINUE

D0 555 I=IC,(IS+1)
1v%(;ﬂ).J):YZ(I:J)*(AB(I.J)-AB((Iol).J))*TAN((FI(I,J)oFI(tIﬂ),J)
y/¢c. ,

CONTINUE
Y1CLoJ)SAIR(SINCFICIC,J))=FICIC,J)RCOSCFICIC,J)))+A4n(2,%FI(IC,J )
{SINCFICIC,J))#(2,=FICIC,J)an2,)%COSCFICIC,J))=2,)=A3n(SIN(FI(1,1))
2eFI(1,1)2COSCFICL,1)))mAdn(2,%FI(1,1)4SINCFIC1,1))4(2,=FI(1,1)nx2,
3)4C0OS(FI(1,1))2,)
Y1CIC,J)=A32(STN(FICIC,J))=FICIC,JIXCOS(FICIC,J)))+Ad%(2,+FI(IC,J)
1aSTHCFICIC,J)) ¢ (24=FICIC,JIn%2,)*COS(FICIC,J))=2,)=A3#(SIN(FI(1,J)
2yFI(1,JIXCOS(FICL,J)))=A4n(2,#F1(1,J)*SINC(FI(1,J))¢(2,=FI(1,J)nx2

3. )4COS(FI(1,J))=2,)
YS((IT*I),JJ?Y!(loJ)+Y2((IS+1J.J)-(PROT((IS+1JoJ))*COS(FI((ISoz),J

1))+PR+TA
cH((IT¢1).J)=Y1(IC,J)+Y2((IS¢1).J)-(PR+T((IS+1J,J))tCOS(F!((IS+1),

1J))+PR&T((IT+1),J) :

WRITE THE RESULTS,
WRITE(2'333)Y5((II¢1)pJ).CH((IT+1),J)

WRITE(2,18)

WRITE(2,712)

00 666 I=i,IT+}
ER(I,JI=R(I,J)+T(I,JI«SINCFI(I,J))/2,
T0S(1,J)=ALOG(AB(I,J)/R2(1,J))
TS(IoJ):ﬂ.ﬂUthSIN(l-)*R(IoJ)*SS(IoJ)*SIN(FI(I,J))
NRITE(?,QQ)I:AB(I:J)'TOS(I,J)'EZ(IpJ)053(I0J3584(1,J),SS(I:J),FI(I
1,J),R2(1,J),TS(1,J),ER(I,J) ‘
IF(I.EQ.ICIWRITE(2,713)

XF(I.EO.IS)NRITE(2,714)

CONTINUE

IF(ME, LT,1)G0 YO 257

STORE THE UP TO DATE RESULTS IN A SEPERATE MEMORY FOR FUTURE
REFERENCE,

no 256 J=2,J0

N0 256 I=1,1D¢1

R7CI,J)SR2(I,J)

WS(I,J)SEL(I, D)

!S(IoJ)=EZIIoJ)

YOS(I,J)=E3(I,J)

ERCI,J)=R(I,J)

AB(I,J)=T(I,J)

YS(I.J)=FI(IOJ)

cHCL,J)=S3(I, )

Yl(IoJ)=s4(InJ)

v2(1,3)=s85¢1,d)

CONTIHUE

J=J)e+y

cHECK THE NUMBER OF STAGES,




366
1030

10
17
25
29
39
69
18

99

980
345
981

79
777
333

883
504
611
1903
7292
701

702
703

704
705
706

787

778
739
719
712
713
714
715

IFCJ.LE,N)GO :TO 111

CHECK THE NUMBER OF CASES,
IF(NF, LT ,HUMB)GO TO 982

sToP

WRITE(2,715)

sTOP

WRITE(2,880)

sTOP

FORYAT(BF9.,474F9,4)
FORYAT(I0OF7,4)
FORMAT(//33X,aHTEST NO,=,13)
FOQHAT(21302x,5F9.4,2F9.6/2F9.6)

FORMAT(12F6,3)

FORMAT(12F6,2)

FORMATCIH ,3%X,103H] INNEReRAD C=STRAIN T«STRAIN (CIJReSTR TANeS§
{TR U=TuFORCE ANGLE ELE=RAD LOAD QUTER=RAD/BX,4H(MM),

2?8X.13H(MN/SO.HETRE)'IX,16H(MN.MH/SQ.HETRE),2x,5H(RAD),3x,4H(MM).7

3X,4HIKN) ,6X,4H(MM))
FUR"AT(IH ,ZX,13,2X,F6.2,5X,F7.5,3X,F7.5,2X,F7.2,2X.F7.2,4X,F7.2.6
IX,F6.4oZX0F80402xlr70204xlr5|2)

FORHAT(3II3,2X,F7,5)

FORMAT(2F6,3,4F9,6)

FORMAT(3IJ)

FORMATCLH »5X,10HSTAGE NO =,13)

FORMAT(IH ,5X,3HK =,13)

fORHAT(//4X,14HPUNCH TRAVEL =,F7,2,1X,4H(MM) /74X, 12HCUP HEIGHT =,F?
1.2:41%,4H(HM))

FORHAT(//dX,17HLARGE SYAGE ANGLE)

FORMAT(H odxozHJ=01302x03HID=v1312x.2HK='13p2Xp3HN0=,13)
FORMAT(IH ,4X,3HIS=,IJ,ZX'3H1T=,13)

FORMAT(/74X,15HF1 QUT OF RANGE)

FORMAT(//74X,28HTHE GIVEN DATA ARE 1t)

FORMAT(//74X,34M =,13,2X,3HN s,13,2x,4HR] =,F9,4,2X,4HR6 =,F9,4,2X,
{141HR3 =,F9,4,2X,4HA3 =,F9,4,2X,4HA4 =,F9,4)

FORMAT(/4%,5HACC =,F9,6,2X,5HPRE 5,F9,6,2X,5HACY 3,F9,6,2X,5HPR] =

1,F9,6)
VORWAT(/AXI4HPR =,F9.3.2X'5HPBR ='F6.3'ZXp5HAC4 ='F9.6'2X'SHW =,F9

1°.6)

FURHAT(/‘X'dHHE =01302x'4HKN =,13,2X,4HNN =,1302X,5HDD2 ='F7.5)
FORMAT(/4X,4HR2 =,/ (4X,8F9,4))

FORMAT(/4X,3HG =0F904'2Xp3HU =,F9,4,2X,4HC1 =,F9.4.2X,4HC2 =,F9.4p
12X, 4HC3 =,F9,4,2X,4HC4 =,F9,4)

FORMAT(/4X,4HCS =,F9,4,2X,4HC6 =,F9,4,2X,4HC7 =,F9,4,2X,4HCE =,F9,
14'2XD4HC9 =0F90402x04HTA =0F904)

FORMAT(/4X,4HRA =, (8FB,3))

FORMAT(/48X,4HRC =, (8F8,3))

FORMAT(/4X,545TG =, (8F8,3))

FORMAT(/4X,184D1E COUNTACT ZONE 8,/)

FORMAT(/4X,28HZUNE BETWEEN DIE AND PUNCH $¢/)

FORMAT(/4X,28HPUNCH PROFILE CONTACT ZONE $,/)

FORMAT(/4X, 1BHPLEASE INCREASE NN)

END

éWENr, LENGTH 3878, NAME STRSTR

i

SUBRNUTINE sTR(I,J,R,R2,E1,E2,E3,52,53,54,01,02,D3,T)
cuMmoy Ct1,C2,C3,C4,C5,C5,C7,C8,C9,6,TA
DIMENSION R(102,12),E1(100,12),R2(128,12),E3(183,12),52(107,12),53



11103,12),54(192,12),01(193,12),02(130,12),03(168,12),E2(183,12),7T(

2100,12)
) c THIS SUBROUTINE COMPUTES THE STRESSES AND STRAINS ACCORDING TO THE
o PLASTICITY RELATIONS,

E2C(I+1), JISALOGCTC(I+1),J)/TA)
D2((1¢1)eJIZE2¢(TI41),J)=E2C(I41),(J"1))
E1((1+1),J)EALOGCRC(I+1),J)/R2((1+1),J))
DLC(I+1),I)SELC(Ie1), J)=ELC(I+1),(J=1))
o D3C(I+1)sJ)=SART((24#(2046)/(3ox(1,4244G)))#(2,%(D1((1+1),J)%42,)¢
1001, +GIX(D2CCI+1),J)*%2,))+2,4D1((I+1),J)*D2((1¢1),J)))

E3C(I+1),J32D3¢C1+1),JI+E3((1¢1), (J=1))

TFCE3(CI+8),J).LE,CL)GO TO 224

IF(E3((I+1),J).LELC2IGO TO 205

G2 10 206
bl 204 §2((I1+41),J)5CIw(E3((Ie1),J)nxC4)

G0 10 2u7
205 §2((1+1),J)=C54CHXEI((I+1),J)
60 10 207 ~

206 S20(I1+1),J)=SC7+CBa((EIC((I+1),J)=C2)x2CT)
207 S4C(141),J)Ew(24#(2,4G)I%S2((I+1),J)*(D1CCL+1),J)¢(1,4G)xD2((1+1),J
2 19))/(3en(1at2,4G)2D3((I+1),0))
s3<(1+1).J)=54;(:+1).J)*((2.-(2.4G)aszc(1+1).J)*(2,*o1((I¢1).J)+oz
1e(Ta1)0J)))7C€3,2(1,42,%GI%D3((141),J)))

RETURN

gND

>
GMENT, LENGTH  391s NAME STR

SUBRDUTINE EXT(I,J,FI,T,R2)

nIMENSION FI(1R0,12),7(im0,12),R2(100,12)

2 C . THIS SUBROUTINE EXTRAPOLATES NEW VALUES OF THE ANGLE AND THE

c THICKHESS FROM PREVIOUS STEPS,
FI((141)oJ)ﬁFI(IoJ)¢(FI(IcJJ'FI((I-I),J))*(RZ{(Itl)pJ)-RZ(I.J))/(R

12(1,J)="R2((I=1),J))
T((I*l).J)=(R2((I+1)aJ)-R2(IoJ))*(T(IaJJ-T((I-l)oJ))/(R2(IoJ)-R2((
llﬂl)oJ))OT(I'J)

2 RETURN

£ND

iwsnr. LENGTH  $15, NAME EXT

2
SUBROYTINE APP(1,J,01,03,E2,52,55,7)
coMH0l C1,C2,C3,C4,C5,€6,C7,C8,C9,6,TA

NIMENSION 01¢1A9,12),03(100,12),E2¢180,12),52(1008,12),55(132,12),7

10137,12)
(o TH1S SUBROUTINE CUMPUTES NEW VALUE OF THE THICKNESS FROM THE

2 c PLASTICITY RELATIONS,
T((1¢1)pJ)=TA~EXP(-((((3.*(1.02.*6)*03((I+1).J)*SS((Itl)oJ))/(Z.*(
12.00).82((Iol).J)tY((I+l)oJ)))¢Dl((I+1).JJ)/(1.06))+E2((I¢1).(J-l)
2))

RETURY
END

2
{
‘WENT, LENGTH 118, NAME APP

¢
i
t
|
t

s



) SUBROUTINE CO"S(JA,JZ,JJ,JN,JO0K,J0D,J5,D02,AC3,DD4,N5,N6,N7,N8
c THIS SUBROUTINE SETS THE ValUES' OF THE VARIABLES UQED'TO'COQTRAL
c DIFFERENT SEGMENTS OF THE PROGRAM TO THIER INITIAL VALUES,

pD4=DD2
AC3=0D2
JAEB]

) JZeo
JJ=z2
JN32
JOK=0
JoD=a
JS=n

b NIB
NOEY
N7ED
N839Y
RETURN
END

GMENT, LENGTH 104, NAME CONS

SUBROUTINE REVA(IS,1T,J,R2,E1,E2,E3,R,T,F1,83,54,55,R7,%5,T5,T70S,¢E
k 1R, AB,YS,CH,Y1,Y2)

coM+0n C3,C2,C3,C4,C5,C6,C7,C8,C9,G6,TA

HIMENSION R2(188,12),E1(190,12),E2(100,12),E3(120,12),R(102,12),T(
xgaa.!2),FI(100,12).33(1nn,12),34(103.12).85(1nm,12),n7(1ag,12,,ws(
3¢190,12),Y1(102,12),v2(109,12)

THIS SUBROUTINE ASSIGNS THE VALUES OF STRESSES,STRAINS,,ETC, OF
PREVIOUS STAGES TO THEIR MATCHING VARIABLES STORED IN THE
REFERENCE MEMORY,WHENEVER A FUTURE CHANGE IN THE DIE CONTACT

RADIUS 1S CARRIED 0UT,
R2((1S+3),J)ER7((IS+1),J)
Q?((1T‘1)0J)3R7((1701)0J)
b ELC(IS*1),J)aHS((I5¢1),J)
~ £2(c1301).J)=TS((IS¢1).J)
£3C(15+41),J)sT0SC(IS+1),d)
E1CCIT*1),J)2HS((IT+1),J)
E2C(1T¢1),J)=TS((IT+1),J)
E3C(IT*1),J)STOSCC(IT+1),J)
S RCCIS+1),J)=ERCCIS+1),J)
R((IT+1),J)ZER((IT+1),J)
TCCIS+1),J)5ABCCIS+1),d)
TCCIT+1),J)3AB(C(IT¢1),J)
FIC(15+1),J)sY5((I5¢1),J)
FICCIT+1),J)eY8(CIT+1),J)
Y $3C(15¢1),J)SCH((IS+1),J)

§3((1T¢1),J)=CH((IT+1),J)
S4C(15¢1),J)=Y1((I5+1),J)
SA((IT*1),J)=Y1((IT+1),J)
SSC(ISe1),J)=Y2((ISe1),J)
QSCCIT+L),J)=Y2((1IT+1),0)
Y RETUJRN

gND

OO0

TENT, LENGTH 343, NAME REVA




THE GIVEN DATA ARE j

M =395 N= 2 Rt =z 6A,A000 R6 s 63,0000 R3I = 25,8080 A3 21,0000 45,3000
ACC = 3,000A18 PRE = 2,0890018 ACl = 2,080010 PRy 5 3,000210
PR = 10,000 P3R =15,000 AC4 = 0,0002010 W = 9,139000
ME = 50 KN =250 NN = 16 DD2 =0,323090
R2 =

63,0000 59,4328 58,8308 58,2003 57,6800 57,0008 56,4200 55,8204

55,2090 54,6808 S54,mp06 53,4000 52,8008 52,2008 51,6000 51,0020

58,4000 49,8208 49,2000 48,6208 48,8900 47,4000 46,8290 46,2992

45,6880 45,0230 44,4p89 43,8308 43,2000 42,6099 42,0200 41,4089

42,8209 43,2208 39,6493 39,3add 38,4908 37,8028 37,2000 36,6000

36,8000 35,4080 34,8000 34,2003 33,6000 33,0897 32,4200 31,8020

31,2208 32,6000 33,0000 29,4300 28,8800 28,2000 27,6300 27,2000

26,4990 25,8300 25,2000 24,6003 24,0008 23,4000 22,8200 22,2¢930

21,6090 21,0409 22,4089 19,8000 19,2970 18,6008 18,8000 17,7030

17,4000 17,1038 16,8320 16,5300 16,2000 15,9908 15,6380 15,3320

15,0000 14,7000 14,4099 14,1900 13,8004 13,5030 13,2200 12,9000

12,6000 12,3808 12,0008 11,7003 11,4998 11,1700 13,8800
G = 1,861@ U= 32,8609 C1 = ©8,2230 C2 = 32,0872 C3 = 630,0800 C4 = @,2745
C5 = 8,000 C6 s ,0008 C7 = 04,8000 C8 = 560,3458 C9 = @,2817 TA = 1,5950
RA = 56,830
RC = 16,000

STG = a,8a0



TESTY
STAGE NO =

PUNCH TRAVEL =
CUP HEIGHTY =

19,78 (M4)
18,69 (M4)

1

DIE CONTACT ZOMNE 3

INNER®RAD CaSTRAIN TeSTRAIN
(MM)

t 56,09 -,169382 p,N2192
e 55042 'oﬂ6°37 3.9215‘
3 54,85 26957 2,082196
4 54,29 ., 26958 2,22055
5 53,74 ., 36942 2,020330
6 53,29 w6938 2,019402
7 52,66 -,36856 3,01876
9 51,62 -,86721 3,01734
19 51,11 v, 06597 2,01657
i1 53,61 o, 76474 2,01577
12 50,12 =, 6334 P,01492
13 49,64 26175 2,01404
14 49,16 -,35997 2,01313
15 48,69 =,085799 3,a1219
16 48,903 »,85482 2,81079

NOo.= 1

CIR=STR TANeSTR

-275038
.273.43
-271,27
-268,91
=266,35
«263,58
=263,60
257,39
“253,95
250,26
w246,31
=242,08
237,55

«232,69
=227,47
219,25

D,09
2.84
568
Bo52
11,36
14,29
17,03
19,85
22,67
25,47
28,25
31,92
33,76

36,47
39,16
42,94

UsTeFORCE
(MN/SQ,METRE) (MN,MM/SQ, METRE)

NP

4,62

9,24
13,87
18,48
23,09
27,68
32,25
36,79
41,309
45,78
50,22
54,61

58,94
63,22
69,24

ANGLE
(RAD)

0,4488
80,4795
b.,52377
@2,5337
B,5580
a,58a7
8,6222
4,6226
0.6422
2,65605
0.6783
2.6953
80,7117

B,7275
80,7428
02,7638

ELE=«RAD
(MM)

60,0000
59,4000
58,8000
58,2000
57,6000
57,0300
56,4000
55,8400
55,2000
54,6090
54,0200
53,4000
52,8200

52,2000
51,6000
56,7385

LOAD
(KN)

2,24
0,75
1.56
2,42
3,33
4,27
5,23
6,22
7.21
8,22
9,23
10,24
11,24

12,24
13,23
14,62

OUTER=RAD
(MM)

56,71
56,17
55,64
55,12
54,60
54,09
53,58
53,089
52,59
52,11
51,63
51,16
50,69

53,24
49,78
49,15



ZONE BETWEEN DIE AND PUNCH 3§

17
18’
19
22
21
22
23
24
25
26
27
28
29
32
31
32
33
34
35
36
37
38
39
‘49
41
42
43
44
45
46
47
48
49
5@
51

%2

47,79
47 ,35
46,89
46,42
45,94
45,44
44,94
44,43
43,91
43,39
42,86
42,32
41,78
41,24
43,69
42,14
39,59
3o, 04
38,48
37,92
37,36
364,79
36,23
35,66
35,09
34,52
33,95
33,38
32,81
32,23
31,66
31,08
38.51
29,93
29,35

28,78

-.ﬂ5315
«,35044
..64863
«,34391
w4214
=, 34253
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APPENDIX C

HILL'S NEW YIEID CRITERION

It can be seen in Figures (6.14) to (6.18) that using
Hill's theory [3] the correlation between the tensile and
biaxial stess-strain curves is fairly good for mild steel and
stainless steel whose {-values are greater than one. The
correlation is poor for aluminium and brass whose Y-values are
less than one. This phenomenon agrees with those observed by
Bramley and Mellor[18],Pearce*and Dillamore**. It seems that

further improvement on Hill's theory is necessary.

According to Mellor and Parmar (1978) and Parmar and
Mellor[25] a new yield criterion has been proposed by Hill,
For deformation under plane stress, the yield criterion has

the form,
m ‘m
(1 + 206, - 6| + |61 + 65| =201 41" (C.1)

Y is the yield stress in simple tension, ¥ is the strain ratio
measured in simple tension (assuming zero planar anisotropy)

and m is a8 new index which must be determined experimentally.
When m=2 the equation reduces to Hill's original yield criterion,

see Appendix (4).

* Pearce, R. "Some Aspects of Anisotropic Plasticity in
Sheet Metals". Int. J. Mech. Sci., Vol. 10, p. 995 (1968)
*¢ Dillamore, I. L. "The Relevance of Tensile Properties to

Sheet Formsbility". J. Phys. D: Appl. Phys., 7 (1974),
p. 979.



If Th is the yield shear stress in a torsion test,

and Gg

(C.1) cen be written as:
( G} + 0, )m ( 0} - Oé )m
26, + Eﬁ;—‘
From the yield criterion the equivalent stress 6:18

is the yield stress in a diaphragm test, then equation

"'1 Oo

defined by,
- m my/m
6-=[ETT_%7_T{(1 + 2]),0} - Oé] +'0} + Gél}] (c.2)

and from the assumption of equivalence of plastic work it

follows that the equivalent strain increment,

_ 1/m -1
R 7ty |46 'dezm/(m g

(4 + 2Y)

n/(m=1) (m=1)/m
|a€, +aE, +(C.3)

The value of m for a particular material can be determined by

comparing the experimental work-hardening characteristics for
simple tension and balanced biaxiasl tension. Assuming
rotational symmetry about an axis normal to the sheet in the
balanced biaxial tension and considering the conditions at
the pole, it i1s possible, assuming an average Y-value and an
average stress-strain curve in simple tension, to predict the
variation of the polar stress 55 with polar thickness straint
in the belenced biaxisl tension. Using equations (C.2) and

(C.3) it can be shown that,

1/m
+ 7 ] ~
6, - [2(4 1) G (C.ly)
snd €& = 2 7 é-- (c.5)
&(1+X)]/

Using the experimental data for soft aluminium and mild



steel(having Y-values less than unity) and applying equations
(c.4) and (C.5), Mellor and Parmar (4978) have shown that by
choosing certain m-values for these two materials, a good

correlation can be achieved between theory and experiment.
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Drawing stages and specimens
for strain measurement.
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Deep drawn and ironed cups.
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Free bulge forming of as drawn/
ironed cups,typical set of results. Plate(17.1)

Free bulge forming of annealed
cups,typical set of results. Plate(17.2)

Effect of cup length on the bulge Plate(17.3)
ratio of annealed cups.



Effect of cup length on the bulge
ratio of as drawn/ironed cups. Plate(17.4)

Effect of cup wall thickness on the
bulge ratio of annealed cups. Plate(17.5)

Effect of cup wall thickness on the Plate(17.6
bulge ratio of as drawn/ironed cups. ate(17.6)
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Typical examples of forming technique
and failure in closed die forming.

Axisymmetric components produced by
hydraulic bulge forming. Plate(21.2)

Typical examples of failure in closed plate(21.3)
die bulge forming.



Sections in axisymmetric components. Plate(21.4)

Asymmetric components produced by
hydraulic bulge forming. Plate(21.5)
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Sections in asymmetric components.



