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This study has shown that the nain chara.cteristics of axial velocity

decay and recirculation in nultiple enclosed jets can be related to those

of single enclosed jets. This is achieved by considering each jet to be

boundedby an innginary duct whose dixoonsionscan be related to the nozzle

spacing parameters. If the nozzles are close together comp!lredwith the

surrounding chamber, the above tree.tment is only valid near- to the nozzles.

Further downstreamthe jets coalesce and their behaviour can be related to

that of a single jet by an equivalent nozzle radius.

Recirculation in both single and multiple enclosed jets has been

related to the Thring-Newbyparameter-Q by the equation:-

=

whereMr~ is the recirculated flux in relation to the total nozzle nass

flow. The value of Q (i.e. (.) is calculated from the equation:-

L'
L

+ 0.611 t R
exp O.396n ~L

where L' = radius of irrnginary duct (average value when~ > 0.5)

L = true radius of duct

n = numberof outer jets in configuration

R = pitch radius of outer jets
. R

This equation can only be applied ncar to the nozzles whenL ~0.5.

Further downstreamthe 'equivalent nozzle radius of the oonibinedjet is used

to calculate Q (=.,;,) from the relationship r' =p r.
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The introduction of a Ire sh grid to siIIUlate the tube banks of a boiler

causes greater recirculation due to back deflection of part of the main jet

flow. A Changeoverof the main recirculation flux from the outer zone

boundedby the duct to the inner zone between the jets is observed as the

grid is movedupstream. The nngnitude of grid resistance is shownto have

little influence on the flow patterns.

Water model studies have revealed that recirculation through the grid

can occur, although this was not observed in the air model due to rea suring

difficulties. Photographs and visual observations conf'Lrmthe air model

flow patterns.

Simple tube bank heat transfer calculations indicate that the ter.1pCrature

of recirculated gases re-entering the ooIribustionchaniberwill only be slightly

above that of the tubes. In practice this dilution with colder gases would

certainly be detrimental to the efficient operation of a marine boiler.
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CHAPI'F..R 1

INTROWerI ON

1.1. Scope of Research

This work is tho second stare of a research progransre aired at the

improvementof heat transfer and combustion conditions in oil fired multiple~

burner rrnrinc boilers. The first stage W3.S an aer-odynand,cstudy of a

twelfth scale mode'Lof a nU' shaped rrarine boiler(l). Although this was

generally useful, the data obtained can only be applied to other nnrine

boilers systcn~ of the samebasic shape. It did not yield data on the

behaviour of groups of enclosed burners. The present study uses a

fundtuncnta.lapproach to obtain data about the factors affecting burner

pcrforrranoo and thc subsequent effect ot tube banks in rrardne boiler

systems. This poses oert~in problems since boilers vary greatly in ei~e,

shape, nunibcrand type of burners, as well as tube bank characteristics.·'

It was proposcd to study 0. system of parallel axi-synuretrical jets

inside a circular cross sectioned duct, representing a muchsimplified

marine boiler syste~ The variables to be investigated were nozzle spucing,

diameter and Reynolds number. The subsequent introduction of a meshgrid

at v,1Xiousdownstreampositions was to simulate boiler tube banks.

hea.t transfer calculn.tions based on the data. obtained, were to be rrade in

order to afford SOlID coqnrison with practical conditions.

1.2. Literature Survey

The litemturc is rr.esented in the form which led to the choice of

experim:mtnl progrnmre, and subsequent interpretation of the results.



1.2 •.1. Conbustion NOdel Studies

One of the earliest studies of combustion aeroQynamics was 'by Rosin(2).

Rosin's study showed the recirculation eddies set up by a. two dimmsional

multiple burner arrangement in which the burner separa.tion distance could

be varaed, Oneof the techniques employedby Rosin was to study the

erosion patterns of lUIl1Psof rock salt, when water was used to siwlate the

gas now.

The combustion model work whieh providee the basis for manylater

studies was begun by Chesters and his associates in 1949(3). This team

worked on various enclosed jet systems, and also operated. a scale JOOd.elof

an open hearth steel nnking furnace. This 'WOrkis one of the earliest

which reports the existence of recircula.tion in enclosed jet flow, and

predicts that recirculation might be expected whenever jets are confined

within walls.

In 1951, Chesters(4) published a report of the agreement obtained

between a nodel and an open-hearth furnace. The prototype (with single

uptake and sloping ends) was probably the first furnace to be desd.gned

aero d3nami ca.lly. Later Cheaters(S) stressed the need for a nore

funda.Irental approach to oonibustion nodel studies, citing recirculation as

an example of a phenomenonwhich might otherwise rel'M.inunexplained and

therefore uncontrolled.

The work was extended from two dim:msioml slice JlX)d.cls(3) to three

dimensional modcls(6). The three-dimensional flow patterns (presented in

the form of isometric drawings) were very similar to those in the two

dimensiono.l slice roodels with the samebasic shape. One of the uain

differences between two and three dimensional rmde'l.sof the 5aIOO basic

- 2 -



shape, was the frequent occurrence of swirl in the latter. An excellent

revi.m of the funda.rento.l nerodynand.ca of jet systems was presented by

Chesters( 7) in which he progressed from free Jot studies to sirqple enclosures

and eventU'll1y to senle roodels of furnaces.

So far nninly water rrodel studies, of fund.rurento.ljet systems and

actual combustion systems havc been considered. Winter and Deterding(S)

advocated the use of wo.ter n'4ther than air models as o.llowing better flow

visunliS&.tion. Simultaneous observation of the whole flow ficld can be

rrade and thus the effect of o.ny changes rapidly assessed. There are also

advantages due to the absence of probing instrUIrents, and o.lso the lower

velocities required for si~~larity purposes. If accurate quantitative ~~ta.

is required, the usc of air m::>delsbecomea desirable. The basic principles

of combustion rodcl !i:udieS have been den.lt with by Putnn.mand Ungar(9) and

Curtis and Johnson(lO). A condensed treatment covering the modelling

cri teria relevant to nnrine boilers is contained in a text by Johnstone and

Thring(11)•

1.2.2. Single Jets - Theoretical and Experimental

There has beon n considern.ble amourrtof work on the theoretical and

experimental aspects of single free jets. Notable studies have been mde

by Tollmien(12) , Reichardt(lS) and Hinze and Van der HeggeZijnen(22). The

theoretic~ ana'lysca of Tollmien(12) , Howarth(13), Torrotika(14) and

Abra.movich(15)were based on the turbUlent trF:IIlsfer theories of either

Prandlt(16) or TaYlor(17) and each shows some diso.greerrent with experimental

data. Hinzols(22) solution was based on an eddy viscosity term which was

indcpendent of radial position and good agreement was obtained. The

solution of Rcichnrdt(18) VIas based on the correlation of the mdial

- 3 -



distribution of rroroontumwith the Gaussian error curve. Altho~gh there was

no theoretical basis for this assumption, good agreenent with practice was

observed by Baron and Alexander(19) who conducted experiments' which confirrred

Reichardts hypothesis. A later treatment of entrainment in turbulent free

jets was cond.uctedby Ricou(20) • The experim:mta1 technique involved the

use of a porous cylinder, which surrounded the jet, but was of a sufficient

size not to restrict the free expansion. The static pressure inside the

porous cylinder was kept at atrrospheric, and it was assured that in this

condition the jet was entraining freely. The rate of supply of entrainIrent

air could then be measured accurately. Ricou concluded that the entrainImnt

of a free jet could be represented by an equation of the form

= ••••••••••••..• 1

where Me

Mo

x

de

K

is the entrained air mass at x

is the nozzle air mass (x = 0)

- axial distance from nozzle

- effective diameter of nozzle (after Thring and Newby(21»)

constant

The value of K for all free jets was found to be 0.246, with the

exception of sene of the special multiple nozzles used, which will be

described later in section 1.2.4. An alternative way of expressing Rioou's

entrainment data WIlS

=
1

K' (G P )~ xo a ••••••••••••••• 2
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where Mj is mss of air in jet at x

Go - m:::>II~ntumof jet

p - densi ty of surrounding fluida

x arlal distance

K' oonstant

In this equation, which is independent of jet dirureter, the ability of a

jet to "forget" its origin can be seen. K' was found to be 0.28 for an

isothermal round jet. Ricou correlated burning jets by plotting

~ Fri against.!.. Fri where
Mo de

Fr = (W.odif'ied) Froude NuIriber

U0
2

~a
g de ~

• ••••••••••••••• 3=

u = exit velocity of jeto
g = gravity constant

To = nozzle tempernture

T = ambient temperature
Do

Ricou noted an important discrepancy between Hinze' s(22) measurerrerrt

of a full jet andle of 200 and his ownvalue of 300 for an unburning jet.

He attributed this to the infini tesimJ.l.y SIm.ll velocities existing in the

outer jet regions and the inability of norrral velocity and concentration

techniques to measure these flows.

Using the entrai.rurent equ..'\tion of Hinze and Van der He~e Zijnen(22),

Thring and Newby(2l) predicted the recirculation in an enclosed single jet.

- 5 -



The assum,ption was that the free jet entrairurent appetite was equal to the

total of the recirculation flow rate and the ambient air flow rate. The

most important feature of this treatment was the derivation of the parameter

Q which has been used to correlate recirculation in mst. of the subsequent

enclosed jet studies •

. g = ...............4

Q is the Thring-NewbyParaJreter

M is the ambient air flow ra.te supplied around the nozzlea
ro is the nozzle radius

L is the chaniber radius

'l!heir introduction of an equivalent nozzle diarreter concept enabled isotherrral

u.de1 studies to be 'ipplied to practical systems involving conibustion. The

equivalent nozzle radius ro' d . b= ..!was gav.en y
2

r •o :: M •••.•.••••••••• 5

Pf = density of nozzle fluid at flame temperature

Go = momentumof nozzle fluid

It crunalso be seen that

= ••••••••••••••• 6
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The equation given by Thring and Newbyto predict rec.irculation was

1 + = ~ ••......•••..••7
QM + M

• 0 a

where Mr is the recirculation mass flow rate. It was also shown that

dynamic similarity could be obtained between mode'Land combustion system

rmldng the pararre ter- 0 equo.l in both.

= [Mo + Ma.] r 0 I

Mo L(combustion system)•••••••••.•••••8
Confirm tion of the use of Equa.tion 6 was madeby Sunavala, Hulse and

ThrinJf~o used tracer techniques to study free and enclosed turbulent jets.

They found substantial agreement between cold and hot non-combusting jets.

In cases where conbuatd.onoccurred, the axial concentration decay was :found

to be 3~ greater than in the non-combusting case.

Since 1955 experimental work on confined jets has been conducted at

Grenoble, arising from theoretical treatm;nt of Crays. and Curtet(24).

Curtet's(25) experiments give the e~tion

+ 0.88 = •..••..•••••••.9
Ma

. r
when presented in the SBJro form as equation 7 and when 0 »,..2. Later

studies by Cohen de Lara et.a1. (26) have been summrd.eedb: HubbaraC27).

The recirculation nnas flow rate 'was found as a function of inlet conditions

for both cylindrical and conical Chambers. The results could be represented
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by the equation

+ 0.9 = 0.62 ••••••••••••••• 10
(rM +Mo a

whenro > 0.15. 'Whenro 'Wassmll such that ~ < 0.02 the experilrental
L L

points tended townrds the Craya-curtet prediction of Equation 9.

As well llS recirculation datil, the vnriation of arial decay of velocity

with distanoo from the nozzle wns given for several low values of ~, but the
L

higher vllluesd 0 were obba.Lned by varirttion of the (wibient air ne.ss flow

rate M '. Whenthere WlS no surrounding a.ir flow J increasing nozzle radiusa
had the effect of a.ccelerating axial velocity decay. Obviously this could

only occur up to a certain lirni ting va.Lue of 32 since as r 0 tends towards L
L

the conditions approached pipe flow. Although no axial velocity decay data

were given, recircul~tion rr.ca.surernentswere madeon enclosed jets when the

burner radius was lnrge in compnrisonwith the chamber di:rrensions. It was

found thnt the position of unxim.unrecircula.tion roved upstream towards the

nozzle as r 0 was Lncreaeed,
L

velocities with position wns given for various small values of Q. These

are fllirly similar increasing to a nnximumvalue of Ur L = 0.68 ± 6% atUr
An attempt to give a unique dimmsionless p1J.ot~f the ra.dial

The varia.tion of the mgnitudes of reaircula.tion

xL = 4.
veloci ty distribution was nndeJ but the scatter of points 'NO.S too grea.t to

give meaningful results. Little difference in recircula.tion flux and axial

veloci ty decay was found when the combustion air was supplied uniformly,

axially a.ndperipherlllly. Although restriction of the exit did not alter
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the recircubtion flow rate, it did cause the recirculation to take place
entirely wi thin the rodel, rather than from outside the model, as waS the
case without an exit venturi section.

When the cl:arnberwas of conical shape, it could still be treated as
equivalent to a cylindrical chamber. The characteristic diroonsion Lt used
to correlate recirculation was foUnd to be t.he radius of tre chaniberwhere
the IM.xiIIllm recirculation occurred.

Research into recirculation in cylindrical, conical, square and
r-ectangu'lar' shaped rmdeLs haa been conducted by Ibiricu(28).

He also used the Thring-Newby pararreter 0 for the correlation of
recirculation data with cha~ber characteristics and operating conditions.
He gives the experimental equation:-

1 + Mr = ••••••••••••••• 11

for the correlation of recircul~tion made from the analysis of velocity
profile CIata , and:-

1 + =
1°·92
Q ••••••••••••••• 12

obtained from the use of concentration data. The latter equation'gives
substantially lower values of Mr at low values of 0, and is in good

Mo +M
agreeIrent with the Crayn-Curtet Theo~y expressed in Equation 9. Above a.
value of Q = 0.1 there is better agreement between the two Equations 11 and
12, than between either and the Craya-Curtet theory. An important result of
this work wa.s the definition of a characteristic dimension for non-cylindrical
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L' = •••••••••••••••13

where Ll is the smllest radius of a conical chaniber, or half the

shortest side of a rectangular cross section

L2 is the largest radius of a conical cha.niber, or half the

largest side of a rectangular cross section

Lt is the characteristic cllxrensionof the cha.nroerused to

It can be seen that this equation is based on the hydraulio mean radius

of the chamber, a characteristic cllrension used by engineers for the

calcula.tion of the Reynolds Number(29).

1.2.3. Annul,'tr and Concentric Jets

These jets are not thought sufficiently relevant to this study to

include an exhaustive survey, There are, however, points of similarity

between the double concentrio jet, in which a central jet is surrounded by

an outer annular jet, and the rrul. tiple jet systems studied in this research.

Consequently the IOOreiq>Ortant papers on this topic are reviewed here.

Research into concentric jets ms probably initiated by Squire and

Trounocr(30) who analysed the expansion of a jet in a parallel stream and

Forstall and Shnpiro(3l) who investigated the mixing of two ~allel co-axial

streo.ms of fluid. The latter case differs from the double concentrio jet

in which the surrounding stream also behnves as an expanding jet. Research

into the velocity fields of double concentric jets has been carried out by

Chigier and,Be€r(.32). The results of these aerodynamic studies are
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particularly interesting due to comparisonvdth the hot pulverised fuel trials
,

employing the sane type of burner. Whenthe velocity ratio between the

annular jet and the central jet was nloost unity, the axial velocity decay

could be characterised in three regions. An initial perdod of velocity

decny unaffected by the outer jet, was fol1moled.by a jet mixing zone in which

the velocity increased. Whenthe outer and central jets have combinedinto

a single jet, nornnl axial velocity decay then occurred, which could be

related to a tree jet by use of the equivalent nozzle diameter. In this

region vhlch occurred eight nozzle diareters downstream,agreement with the

axial velocity decay observed during the coIWustiontrials was noted. When

the annular jet velocity was muchsmller than that of the central jet, the

effect on axial decay was negligible and direct comparisonwith a free jet,

could be linda. Later workby B~r and Chigier<33) showedthe effect of

velocity ratio for a double concentric jet. In the developed region of flow,

each condition could be related to the single free jet case by mans of the

axial. velocity decay, and the position of apparent origin of the jet was

found to vary with velocity ratio. A similar effect has been found by

Patrick(J4.) in a study of the pure annular jet, where the apparent origin of

the equivalent free jet depends on the diameter ratio of the nozzle. .An

inportant feature both of the annular jet and the double concentric jet was

the existence of a reoirculating vortex between the inside boundaries of the

jets. In the caee of the annular jet there is a return flow on the axis due

to the lack of entrninable fluid inside' the annulus'. With the introduction

of a weak centro.l jet , its fluid waa iIIlIrediately 'dragged' outwards to

satisfy the entrai.nJrent appetite of the annular jet, with a. oonsequent

weakening of the reciroub. tion vortex. As the norrerrtumof the central jet
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was increased the vortex was deflected into the region between the two

interfaces. As yet there is no theoretical treatment of the non-developed

flow regions ncar to the nozzle due to the influence of pressure fields

which nnke the problemvery complex.

1.2.4. Multiple Jet Systems

Very little relevant infornntion on multiple Jets was found in the

liteM.ture, the rmab useful being reports of boiler conibustion1rials, and

rocket rotor studies, in which multiple injection was utilised. The boiler

studies were concerned nninly with steam raising efficiency but the work on

rocket rotors was rror-e useful since sorre velocity measurementswere nade

during experdrrent s on blow-off conditions and flanc stJ.bili ty. Wright(35) ,

working on jet interactions in rocket motor systen~,obtained Schlieren

photographs of the flow PL~tternsexisting whendisc type stabiliscrs wore
placed in a single plane o.cross a duct, in either a vertical or staggered

array. Whenusing two disc stabilisers, one above the other, he obtained

a f'Luctuatdng condition in which the flarres paased from an assym::tric flow

pattern, through the syrIJIretrical to the opposite assymetric flow pattern.

Whense~ral discs were used distortion and pinching together of adjacent

jets was observed, with fluctuations from side to side as before. A drastic

reduction in flame blrr~-off velocity occurred due to the crowding together

of the jets, with consequent difficulty in flare stabilisation. Wright

suggested thn.t each flaIreholder appeared to 'behaveas if it were" a single

fla.n~holder in a srm.Ll.er'duct". This not only accounts for the reduction

in flarre blow-off velocity but also explains the shorter combustionCharrber

length required for multiple flame arrays. Single flameholder tests appear

to corroborate this theory. Whenthe disc stabilisers were staggered,
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pinching together of the jets was again observed, but blow-off velocities

were generally much higher than the single row case. The precise blow-off

conditions were found to be related to the type of staggered array employed.

Corrsin(36) investigated the flow of gases through grids, during a study

of the flow patterns and stability of several parallel two diroonsional jets.

The systemwas made two diroonsionalby the use of side screening plates, and

the jets were of high aspect ratio. He found that whenthe blockage ratio
covered area

Total area

be reredied by the use of a fine wire rre sh of low density, which did not

= 0.83 instability of flow resulted, but this could

otherwise affect the flow. The stablising effect of the grid was reduced

by increasing distance from the nozzles, or placing the grid too near to the

nozzles. The ranges given were:

Completestabilisation 1.25 - 7.5 jet widths

Parti~l stabilisation 7.5 - 10.6 jet widths

Outside these limits instabili tywas recorded. The instability was in the

form of fluctu9.ting velocity profiles, with unequal peaks and troughs, which

movedfrom one specific jet to another. Corrsin attributed this instability

to the rapid amalgamationof the separate jets adjacent to each other.

Earlier workon similar systems was referred to by Corrsin, notably

Gran 011sen(37) and cgr.des(38) both of whomdiscovered no instability when

the blockage ratio was sImller ( A CoIO.25). Side Screening plates were not

used by either author, and hence an influx of a;r into the zones between the

jets was permitted thus eliminating the recirculation zone. This has been

shownto rennve instability in such systems, although in this case it was

probable that the blockage ratio would fall outside the range of insta.bility
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deducedby Corrsin. It was concluded that the physical meChanismof multiple

jet systems hinged on the entrainment of air by the individual jets from the

dead air spaces between themwhich resulted in recirculation. The reduced

static pressure in the recirculation zone tended to pull the jets together.

For a given air jet, wider spacing of the jets re~ired a greater diffusion

angle before adjacent jets could impinge to form stable flow. Whenthe

spacing becamelarge enough the diffusion angle was prohibitively large and

breakdownof flow occurred. Corrsin discovered that increased turbulence

had no effect on the stability of the systems studied. He concluded the.t

the instability nust occur over a range of blockage ratios, whose limiting

values depend on conditions such as nozzle Reynolds NuIriberand nozzle shape.

Ricou(20) neasured the total entrairnrent of five parallel ·~tt diareter

jets, arranged with one central and four on a pitch circle of radius t'.
He found this compared favourably with a single jet with the same total naas

flow rate and nozzle area, after a. certain downstrea.mdistance. Inclination

of the outer jets towards the axis, and renoval of the central jet, had the

effect of increasing the jet angle, giving higher entrainIrent rates with

increasing angle of inclination. For given inlet conditions, inclination

of the outer jets at 450 to the aerodynamicaxis almost doubled the

entrainment rate.

Investigations into· free mIltiple jets have been madeby Laurence and
; ..

Benninghoff(39). Turbulence and meanflow characteristics were determined

for a linear array of slots with different sp:l.cings, and also for a circular

nozzle, in,vhich three 600 sectors were blanked, thus dividing the flow into

the three remnining sectors. The flow patterns were obtained by velocity

traverses and turbulence intensities were measured using a hot wire
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anemmater. Assymetric flow patterns were observed for both systems,

probably due to structural irregularities. As the jets were un.conf'anedno

recirculation v~s found for either nozzle assembly. An interesting feature

of the linear array of slot jets was that all jets behaved as free jets

(Fig.1). The end jets showedgood agreement when the axial velocity decay

was comparedwith that of Hinze(22) but the middle jets seemed to behave as

a. free jet which originated two diamters downstreamof the ideal free jet of

Hinze. In both cases the rate of decay of velocity was the s ane, The

nnxim..unturbulence intensity occurred at the outer fringes of the end jets,

indicating that jet intera.ctions in the between jet zones causes a reduction

in the turbulence.

1.2.5 Conclusions from the Litera.ture

No systematic study has been D1~deof three dimensional multiple jets,

either unconfined or enclosed. Models of rrnrine boi1ers(1) give results

that can only be directly useful to the purticular type of boiler studied,

n1though sometrends are observed which can be applicable to all multiple

burner systems. It rdght be ar'gued that the logical first step in obtaining

funCla.roonta1knowledgeof multiple jet systems is thE..study of an array of

nozzles discharging into free Sp:lCC. However, since muchof the confined

single jet data has yet to be reb.ted to the Single free jet, it is improbable

thnt relationships can be found between free and confined multiple jets.

It was concluded the.t a. fundamantal study of confined multiple jets would

provide a basis from which work on nore prnctical systems employing swirl

~d complexaerodynamic arr-angenerrta could proceed, and to provide knowledge

regarding th€; existing flow patterns and heat transfer characteristics of

mnrine boilers. Useful idens were obtained from the literature about the
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type of flow patterns expected in multiple jet systems. Particularly

useful. wasWright' s(35) conccpt suggesting tba t ea.ch;jet wouldbehave as if

confined in a. smner separnte duct, although this appeared to contradict

Ricou' s(20) work suggesting the conibin.'l.tionof jets. However,when the jets

are close together in relation to the size of the enclosure, conibinntion of

the jets into a. single jet probnbly occurs but if the jets are widely spaced

then it wouldbe impossible for them to coa.lesce with eaeh other before

hitting the vmll of the duct. Here, Wright's theory is likely to apply,

and recirculrt tion wouldbe expected around each jet. Double concentric jet

studics(32, 33) indicate that recirculation between the jets occurs, due to

low sta.tic prcssure regions caused by jet entrainment. Laurence and

Benninghoff(39) also found that multiple free jets behaved a.s single free

jets whenthe separation distance was sufficiently large (Fig.1).
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CI-tUTER 2

APPARATUS AND EXF'fRD.:ENTAL TECHNIgmS

2.1~ The Air ModelsLabor~tory

Facilities wero provided for operation vdth air over a suitable range

of flow rates. Loon1velocities could be measuredat desired points

within tho rrodcls.

2.1.1. The Perspex Models

The apparatus used for the bulk of the single enclosed jet studies

consisted of a 4.2 inches outside dio.neter 3.7 inches inside dirureter

perspex duct of k!lf,th 3 feet (Plate 1). The duct was provided with 7 inches

square , ~ inch thick per-apex flanges, whichwere glued on to each end so

tmt various nozzle and exit asserriblies could be changed fairly easily. A

nntching end plate was nnde with a detachable section so that the radius of

the nozzle could be varied. The duct was drilled, tapped and plugged at

2 inch intervals along its length to give access for probes. The sarm duct

was also utilised for the calibration of the nT'" shaped pitot-probe.

The rest of the single jet studies and all of the multiple jet studies

were effected in the second modelwhich represented a simplified 1/12th

scale nnrine boiler as shownin Appendix3 (Plate 10 and Fig. 32). It

consisted of a pcrspex duct 9" outside dia.rreter, 8" inside diameter and

3 feet in length, which was rrountedwith two 16" square t, thick perspex

flanges at each end. Holes were drilled along the sides of the cylinder

in two lines separated by one quarter of the circumference to enable

traverses both through and betvleen the axes of tho outer jets. These ports
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wore situated at 1" intervals for the first 6", 2" intervals for the next

14" and ~1 intervnls for the rcxminder of the length of the duct. Each

hole was tn.pped\nth -l" Enots thread, and a rcxrovableblocking plug

inserted. The rodel is shovmin ;Plates 2a.and b and.Fig. 2.

2.1.2. TheNozzles

Each of the seven nozzles consisted of an 1&' length of 1/&' outside

diameter, i" inside diruretcr brass tubing. Half-way along each tube was

plo.ccd a tight-fitting brass sleeve 2" long, and~' outside diameter and

5/811 inside dirureter. Pressure tappings were located t, upstream and

3/8" downstreamof the constriction. Abraes flange l~" dia.rooter1/16"

thick WIlS soldered 1" from the discharge end of the tube, so the''"teach

nozzle could be secured to the end plate of the nodeL, To vary the jet

dianeter, 0. z-erroveab.l,ebrnss sleeve could be fitted into the end of each

nozzle. Each sleeve was l~" long and -:, outside diamster, t, inside

dio.neter and was bevelled at 450 on the leading edge. The sleeves are

shownin Plate 3a and the nozzles in Plates 2 and 3 and Figs. 2.

A modification of the central nozzle with two -l" inside diameter

tangentia.l a.ir intakes si tU'lted It' from the nozzle discharge, enabled a.
/

swirling single jet to be studied (Appendix1). This modific'ltion can be

seen in Plate )b.
2.1.3. The End Plates

Severnl end plates were used to enable different nozzle ar-rangerrenbs

to bc studied. Each plate was n 16" diaxreter 1" thick perspex disc

drilled with eight 3/S" diarroter holes on a pitch circle dirureter of 12".

These were uscd for bolting the plate to the perspex model. Ea.ch

end plnte was drilled with a central hole, and six other holes, equa.1ly
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spaced on a pitCh circle around the central hole. The holes were 7/&,

d.i.n.Ireterto accommdabethe nozzles, which could then be fastened to the

end plates by ncans of self tapping screws, or countersunk bolts. The

pitCh circle ro.dius of the outer nozzles was one of the variables studied in .

this r-esear-chand coneequent.Lythe value was different for each end plate.

At tho eri t cnd of the roodel , a 16" square i" thick per-apexplate was

used with a central 6" dirureter hole. It was also drilled with 3/&,

d.ia.rncterholes nntching the flange of the nodeL, The grid resistances used

in the L."I.terstudies were secured to the ends of three lengths of i B.S.F.
screwed rod, and these wcre attached to the end plate by means of !B.S.F.
nuts. For this purposc three 3/&, diareter holes were' drilled on a 7'

dL~nter pitch circle a.bout the centre of thc end plate. The position of

thc f~id could then be vQTiedby altering the position clamping nuts.

2.1.4. The Grids

Thrce types of grid were used in the experizoc:ntalworkwhich studied

the effect on the flow pattern of resistances placed inside the model.

The first grid was of a. course IOOshof low resistance, consisting of

perforated aluminium sheet, secured to an B" outside diaJretcr l' inside

diazoc:tcrt, thick perspex ring (Plate 4). The second grid was a finer

resh brass gauze and was secured to a perspex strengthening ring of 8"

outside diareter "It, inside dio.rooter, and~' thick. This grid is shown

in Plate 5 together with the fibre ~d which could be added to mnkethe

third high resistance grid.

2.1.5. The Air Supply

Air was supplied by an Al1d.o.ysand Onions 30 h.p. fan along an

18 inch diameter overhead duct. The supply was regulated by 0. gatc-vn1ve
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and metered with an orifice plate prior to passing into a manifold for

distribution to the individ~~l nozzles. Each offtake on the nnnifold was

fitted vdth a valve for exact control of the air flow to the nozzles. The

valves were connccted to the nozzles by suitable lengths of 7/&' outside

diruooter colourless polythene tubing.

2.2. The Velocity Measuring Technique

2.2.1 ••The Bea.udouinPressure TrlU1sducer

The fluctu~ting pressure signals from the primary sensing element

were rectified into a d.c. millivoltage output suitable for Chort

recording, using the Bcaudoui.nPressure Tra.nsducer and ancillary 1000 cvp, a,

generator and bridge circuit.

PengellY<40)•

This equipm::nthas been described fully by

The output from the transducer circuit was recorded on 0. high speed

HoneywellBrownsingle-pen recorder. The recorder had three ranges, and

whenused in conjunction with the three ranges of output from the transducer

bridge unit enabled a wide range of differentio.l pressures to be recorded.

2.2.2. The liT" Sha.pedVelocity Probe

The primry sensing element consisted of a "T" shaped probe mounted

in 0. motor driven traversing rig (Plute 6). Tho probe was one foot long

with a in long rmasurdng head, at right angle s to the longi tudinn.l axis of

the probe. The stem'was nude from two, eleven inch, lengths of 1/16" bore

brass tube which were soldered together for strengtll. Into one end of each

bro.ss tube, a length of 1/16" outside dhmetcr stn.inless steel hypodermic

tube was secured with one inch protruding. These ends were bevelled to

sen.l the dynamicheud from the suction head of the probe. The head

consisted of l.l ~" length of 1/1611 bore 1/811 outside diameter brass tube
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which was drilled with two 1/16" dio.IOOterholes on one side only, to

accommodatethe stainless steel tubes. Two~, outside di~meter copper

tubes were soldered on to each pressure tapping in order that *' bore
rubber tubing could be used to trnnsmit the pressure sign'11s to the

transducer. This arrnngerrent was later rodified, so that 1/16" bore

pressure tUbing could be used. This gave a constnnt 1/16" bore from the

probe head to the transducer, and in view of the reduction of the total

volurooof the connecting tubing, 0. faster response time was anticipated.

Atrospheric venting was allowed by sui table three way va.lve.s and the

arrangement is seen in Plate 1.
2.2.3. The Traversing Rig

The frnmeworkfor the rotor driven traversing roochanismwas made from

slotted metal angle. The base was f'ormed .from four 18" lengths of dexion

fi tted with -!n dirureter meccano wheels which could run along ra.ils above

the rmdal., At right angles to the plane of the frameworkwere mounbed

two 18" lengths of ~, B.S.F. screwed rod driven by cc-oz-dfnabedgears from

a snnll l/SO h.p, Edwards mrtor-, 1\. piece of threaded per-apex 2" x 1" x "

wa.sdriven by the threaded rod, and nounted between four guiding surfaces

to prevent lateral movement. A t, diameter holder rod attached to the

perspex block could be roved up or downthrough a t, diarreter guiding hole

a.t the base of the traversing rig. Tho "T" shaped velocity probe was

secured to the rod by means of a per-apex cln.mp. With this arr-angecent;

it wa.spossible to traverse for distances up to la'. Various speeds could

be arranged by m:url.pullltionof the driving gears, the fastest being 2" per

minute and the slowest being 1" per minute. These speeds proved to be

quite adequate for use in conjunction with the transducer, the slowest being
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preferred as this gave loss error when Ireasuring up the trlloosfor conversion
to velocity profiles. A view of the traversing ele~ent is shovr.nin Pla.te 6.
2.3. The Water Models Laborllto~

Facilities were provided for operation of the water model, and for
photographs recording the flow patterns.

2.3.1~The Perspex Model
The perspex model used for the air model studies was modified for use

with water flows. In order to expel all the air from tho duct it Was
necesso.ry to increase thc upstream pressure by constricting the outlet of
the system. This VIIlS a.chieved by securing a 900 elbow of 2" internal
diruooter pipe and control va.Lve to the crit f'Iange, Jrny rennining air wa.s
removed through a snnll bleed valve. The saI!pling ports were sealed with
fibre washers and blocldng screws. To obtain photographs with minimum
distortion due to the ~ed perspex surface, the duct was surrounded with
a water jacket, contained in a flat-sided box fitted to the end flanges.
The whole ar-rangerent,was teD'pOrarily sea'Ledwith a nnstic compound.

2.3.2. The Nozzles
The nozzles were identicnl with those used for the air nodel studies.

Pressure t appdngs were not utilised for flow IOOtering nnd were thus blanked-
off with short lengths of *' plastic hose, secured by wire.
flow to eacl1 jet from the manifold was assumed.

2.3.3. The Grid
The low resist~oo grid was used to indicato the effect of a downstream

resistance on the system. The nesh size of the higher resistance grids

Uniform water

w~s smallcr than the polystyrene particles used for flow visualisation.
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Fer part ef these studies, the pcrspex strengthening riDg was I:X1Ved6" 'further-'

dowIlstrea.m,to' minimise its effect en the flow pat tern in the imrrediat.e

vicini ty ef the grid.

2.3.44 TheWater Supply

The water supply was previded by a Werthingten-SimpsO'n1~ herse power

recirculatien pumpusing a large reservO'ir,intO' which the water frem the

lOOdel was dischnrged. The water from the pumppassed into the rrnnife1d

threugh Ii" inside dianeter strengthened rubber hosea, Each line included

a 0-1500 gal1ens/hour rotameter to' meter the flew to the nezzles. The

Ir.l~ifO'1dconsisted of a drum 6 inches diameter and 12 inches leng. At one

end twO'inlet sectiens ef It' eutside diameter pipe were welded,on to' which
the strengthened hoses were fastened with" jubilee" clips. The~' d.io.tn:3ter

efftakes to' the seven nezzles en the epposite end ef the cylinder were

secured with -i" dia.rrotcr hose to' the noaz l.ca in the rmde'Lend pla.te. The

geerntrical arrungenerrt ef the efftakes wns identical with that ef the

nezzles sO't~~t they could be jeined with the minimumdifficulty. The tep

of the nnnifeld Viasfitted wi,th a tap to' vent the tr[tpped air inside the

clu:unberduring the initinl eperatien ef the rrodel ,

2.4. The Phetegraphic Technique

Pho'togrnphe of the flew pn.ttcrns inside the rmde'lwere obtained using

the standard t.echnfquc oi: slit lighting and polystyrene tracer. Light wa.s

previded by twO',two kilewntt la.mpshoused in an nir coe1ed chancer', The

sli twas forIred by sui ta.b1e n-.:;t,1-1screens, whosewidth could be vnried.

The 1 millimetre diameter polystyrene PL~tic1es were intreduced intO' the

water supply at the reserveir. Photegraphs a.ndvisu~l ebservation~ of the

flow pat terns 'Wereebtained at sectiens corresponding to' the positien ef the

light slit, and thGse can be seen in Plates 7, 8, 9 and Figs. 24 a-e.
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CHAITER..3

AERODYNAMICSTUDIES OF F.NCLOSED JETS

3.1. Single Enclosed Jets

It was found necessary to obtain IIDrecomplete data than that available

for a single jet issuing into a duct in the absence of an ambient air strea~

In an attempt to becorre familiar with the rreasuring techniques several

measurerrentson single jets were nade, and it was found that there was a

difference between these results and those obtained by the French Teamat

Grenoble(26). The differences were only slight and could be attributed to

a numberof possible factors such as presence of a front wall, nozzle type

or rodel exit conditions. In view of this, it was decided to study single

jets over a range of ~ from 0.0625 to 0.669. In view of the later
L

comparisonbetween single and multiple jet data, care was taken that the

inlet and exit conditions in both investiga.tions were similar. In the

absence of an anibient air stream the only variables possible were the inlet

nozzle velocity, and the ratio of the nozzle dimensions to those of the duct
ro, In this case 3? was equal to the Thring-Newbyrara.neter Q. The purposeL L
of these experimmts was to obtain aria I velocity decays, especially for high

values of Q, and to correl:-'tte recirculation in terms of Q.

'3.1.1. The Effect of rg/L nn axial velocity decay

There are two extreme cases, tha.t of the free jet whenr0 is extrezrely
L

SIml1, SO that the walls do not hinder the jet expansdon, and ordinary pipe

flow in which.:2 reaches its nnximumvalue of unity, and there is no axial

velocity decay.L In the former case the well established equation of Hinze(22)
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will describe the axial velocity decay

= ••••••••••.••..• 3.1

where Uo is maximum nozzle. exit velocity

and Umis a..xia.lvelocity a.t point x.

This equation becomes applicable after the potential core region which is

norIm.lly presumed to extend about 6 jet diameters downstream. The equation

for pipe flow is simply UO/Um = 1. As expected, all interm::diate values

of 52 produce axial velocity decay graphs which lie between these two
L

extremes, (shown in Figs. 3 and 4). Since a free jet cannot be represented

whenUO/umis plotted against L because L is infinite, another IOOansof

indicating the effect of ~ between the two extremes would be a plot of
L

UO/umagainst E. In this case a simple fall from Hinze' 8 free jet
o

equation (Equation 3.1) downto the UO/Um = 1 of pipe flow does not occur.

An initial increase of .:2 from zero is accompanied by an increase inUolum
1.1

at the samevalue of ~ •
o

r 0 is reached, when values
L

This trend continues until a critical value of

of UQ/Umbegin to fall again at the same value of

The value of the critical Q was 0.5 in the present case, but it appearsx •-2ro
to depend. on the experimental conditions prevailing. The nnx:im.unvalue

given by Cohen de Lara et al(26) in the absence of aIIbient air flow was

g = 0.089, although it is not certain that thls WIlS the inversion value,

since no higher va.lues of Q whenMa, = 0, were published. After inversion

the values of UO/Umfall for the sam value Of~, when Q is further
o

•increased. There was also n flattening of the curve to an assymptotic

value of UO/Umat higher values of axial distance which was to be expected
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since there will be a tendency towards pipe flow conditions as 0 tends to

unity.

3.1.2. Effect of roiL = 0 on Recirculation

The recirculation was computedfrom the velocity profiles, both by

integrating the forward flow profile, and the reverse flow, the difference

between these two being the nozzle inl0t mass flow rate Mo. A correlation

betweenMr whereM was t he recirculation mBS flow rate I and ~ waa foundlie r '"
and is shownin Fig.S. Very close agreerrent was observed at high values of
r (26). (28) r...2 with both Cohende Lara and Ibir1cu ,although as....2 decreased,
L M L
the values of_! were found to lie between these studies. The recirculation

Mo
data are given in table Nv.4.3. in Chapter 4.

3.2. Multiple Enclosed Jets

In this study, the situation was madermre complexthan that of the

single enclosed jet, by surrounding the single jet with other jets in a

parallel uniform configuration. Manyextra. variables are introduced by

such an arrangement, although SOIre of these were not investiga.ted in the

present research. The radii and velocities and consequently nomentaof

the outer jets were rmdrrtadried the sameas the centa.a'l jet, as in the nnrine

boiler case. The anibd.errb air euppl.ywas omrnittedas the pressure jet burner

employedin rrardrie 'bod.Ler-s is of the swirling concentric jet type, which can

be replaced in .the first instance by a simple jet.

3.2.1 • .!he Effect of Reynolds N'lroer.

TheReynolds Numberwas varied over a range 1.19 - 3.19 x 10', which was

less trutn those of practice but it has been shown(ll) that for fUlly

turbulent conditions (Re )104), similarity should result. In order to

achieve the sameReynolds Numbersas in practice, (approxilmtely 117 x 10")



prohibitively large supersonic nozzle velocities would have to have been used.

The first arro.ngenent studied wa.s that of six t, diamter nozzles equally

spaced on a pitch circle of radius 2", and one ~, diameter nozzle placed

centrally. Velocity traverses were trade in two planes, through and between

the axes of the outer jets. It was thought that these would yield sufficient

inforImtion about the flow patterns. A genera.l feature of the variation of

flow rate, in which the Reynolds :timber was alm::>sttrebled, was the basic

similarity of all the flow pat terna, These are shown in Figs. 7a-f. The

recirculation zone between the central and outer jets is seen to extend

about 2~" downstream in all cases, and this can be comparedwith the

stagnation point in double concentric jet studies. The outer recirculation

zone was observed to diminish fairly uniformly as the outer jets expmded.

The axial velocity decay curves shown 1n Fig.6 fallon a smooth curve at

all Reynolds Nwribers.

3.2.2. Effect of Nozzle Diameter

In these experirents the sane nozzle configuration was used as in the

previous section but the nozzle diameter was t'. The Reynolds Number

varied over a range 1.06 - 3.19 x 10" but there was no corre~ponding change

in flow p!l.ttern (see Figs. Ba-f). Goodagreenerrt was found between i and t
di.a.!oot~rnozzles in terms of basic flow pat terri, the only differences being

in the axial velocity decay, and the rmgnitudes ef recirculation velocities.

3.2.3. The Effect of Pitch Circle Radius of the Outer No.zzles

The pitch circle radius of the outer nozzles was v~ied for five ~lucs

of ~ from 0.375 to 0.656. As in section ,.2.1. the nozzle dianeters

were .:' and six outer jets were used. For this study the Reynolds Nunber
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was nnintained constant in each jet a.t a value of 2.87 x 10'. It was thought

that the lower values of £ would showconsiderably rrore jet interference, and

consequently turbulence, due to the closer proximity of the jets. This

proved to be the case, and when! < 0.5 the jets rapidly conilinedwith a loss

of individual profile. Abovethis value the jets nnintained their

individuality. An interesting feature at large ~ was the difference in

axial velocity decay between inner and outer jets, indicating crowding of the

<outer' jets by each other and by the walls of the duct. The flow patterns are

shownin Figs. 9 and the axial decay of velocities in Figs. 20. Recirculation

velocities were found to be higher when the jets were further apart.

Twoother experdrrents were perf'orrredwith ~n nozzles for B of 0.5 and
L

0.656, but the flow patterns were basically similar to those when the diaIreter

was ~t (Fig. 10).

3.2.4. The Effect of reduction of Nunfuerof Outer Jets

A further configuration of three outer nozzles uniformly spaced about the

central jet was studied. The pitch circle radius 'l;78.S varied over the range

of ~ from 0.375 to 0.656 and the nozzle d:i..alooterw.'3.S. -it'. The Reynolds

Nunft>erwas again rradrrtadnedconstant at 2.87 x 104• Additional experiments

were conducted a.t ~ = 0.5 and 0.656 when the noazle d.i.runeterswere is' •.
In this case the Reynolds Numberwas 3.19 x 104• The flow patterns are

shownin Figs. 11 and the axial decay of velocity in Fig. 21. The recircu1a-

tion velocities were lower, probably due to the increased area available for

flow, as well as the decreased nozzle total mass flow rate. There was a

complete absence of mixing between outer jets at all pitch circle radii

because of their wide spacing. This is shownin the traverses between the
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axes of the outer jets, which indicate a smooth jet expansion, with none of

the irregular peaks observed with six outer jets, when,due to their mutual

proximity SOIre turbulent miring was observed between the. outer jets. For

the higher pitch circle radius, the axial decay of velocity of both central .

and outer jets was the same, contrary to the observations \vith six outer jets.

A possible explanation of this is the fact that the outer jets are less

crowded, and hence are able to expand as freely as the central jet.

A further investigation of two outer ~, diameter jets on a pitch circle

di Rra us L = 0.5 was nade , (i.e. in the sane plane as the centre jet)

obtaining point values of the axial velocity. The axial velocity decay is

shownin Fig. 22.

3.3. The Study of the Introduction of a DownstreamResistance

An investigation was madeof the effects of placing a downstream

resistance, in sorre of the IID.ll tiple jet ar-rangerrerrbsstudied above. This was

intended to take account of the tube banks in practical boiler installations,

and also to discover the effects of decreasing combustioncha.rriberlength.

In prototype boilers (Plate 10 and Fig. 32), the tube banks are situated

alongside the flames, so that the combustiongases IDJStturn through a right

angle prior to entry. Thus combustionat the outer wing burners maynot be

completedbefore the gases are swept into the tube banks. The grids were

placed at various points inside the jet expansd.onzone, where in practice

combustionwould still be taking place. Althouph the data obtained in this

study cannot;be directly applied to rrnrine boilers, the results give a

qualitative picture of the probable effects of tube banks upon flow.
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3.3.1. TheE~fect of Grid Position

The ~irst investigation was mae on the seven jet systemwhen.E = 0.5.
L

The grid was roved successively from downstreamto a point -t = 0.375 and

the flow patterns are shownin Figs. 12. Whenthe grid was placed at

of = 1. 75, a reduction in the size of the inner jet recirculation zone was

noticed. Without the grid in position the zone extended some2t' dbvlnstream,

but with the grid in place the zone was barely detectable 1" downstreamfrom

the nozzles. This recirculation appeared to be displaced into the outer

zones, and a corresponding 50ft increase in velocity Wasobserved. This

effect was also indicuted by the mor-e rapid axial velocity decay of the

outer jets when compared with the centre. This effect was only observedub

higher values of S whenno resistance was introduced.
L

Whenthe grid

was tmved nearer to the nozzles, a "compression" effect was noticed, with the

outer jets spreading out to the wall prior to the grid. The flow patterns

between£ = 1.75 and .1.25 were all similar, with the rrad.n recirculation

occurring in the outer zone. Movementof the grid to t = 1revealed a

drastic change in the flow pattern (seen in Fig.12c). A recirculation zone

extending to the grid was nowestablished between the jets. It appear-ed

tmt this recirculation had been produced at the expense of the outer zone,

becauso the recirculation velocities were drastic~lly reduced in the latter.

The axial velocity decay was the sarre in all jets, as had been the case with

no grid present. Further upstrea.m,moverrerrt of the grid increased recircu1a.-

tion between the jets, and further reduced it outside. In a.ll cases ,

In)vementof the grid tmvnrds the nozzles accelerated the axial velocity

decay. This can be seen in Figs. 13, 16. The initial effect of the grid

introduction was to deflect the outer jets into the outer recirculation zone.
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Recirculation from behind the grid my also have occurred but the velocities

involved were too ~ll to be neasured, Also a high turbulence level was

pre sent dovmstreamof the grid, with the fluctuations often exceeding the

meanpressure reading from the probe. In oontrast to this the turbulence

level before the grid was much less than with no grid at all, resulting in

better velocity traces. This result agreed vdth Corrsin's observations(36).
3.3.2. The Effect of Grid Resistance Magnitud.e

1 . '. '. _ • . • •

The same arrangcnEnt of jets as in the previous section were investigated

using grids of higher and lower resista...Tl.ccres:pectively. The resistance

ca.librll.tions of the grids are given in Appendix 3. The high resistance grid
did not alter the bll.sic flo~Jpattcrns as can be seen in Fig. 14 a and b,

although slightly more rapid axial velocity decays were noticed. The

boundaries of the recirculation zones in eaCh grid position were not altered

by incr.eased grid resistance. The low resistance grid initially had a less

drastic effect on the system, the flow patterns (shown in Figs. 15 a and b)

fn.1ling between those without a grid, and those with the mediumresistance

grid. The initial grid placings fromt = 1. 75 to 1.25 showedan inner

recirculation zone extending l~' downstr-camcomparedwith 2f' in the open

system and 1" with the mediumresistance grid. The Changeover of maximum

recirculation flow occurred at t = 1 as before, tut in general all

recirculation velocities wore lower than with the m;diumresistance .grid.

The effect of eaCh grid on the axial velocity de~y can be seen in Fig. 16.

3.3.3. The Effect of Nozzle Diameter

In this study with the samepitCh circle radius of the outer jets

R
L = 0.5, the no2zle diam::ters were reduced to t'. The flow·patterns

(Fig. 17 a-c) have the samerecirculation zone limits as those for the same,
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~ diareter nozzle configura.tion and this result comparedwell with the

variation of dirureter whenno grid was present (Figs. 7 and B). The change-

over of the nnin recirculation flow which was observed at r = 1with ~I

xdia.n:eter nozzles was observed here at L = 1.25, although eorre reverse flow

was noti-eed near to the grid when it was positioned at t = 1.5. As before,

after the Changeover, the outer zone recirculation velocities were reduced

alrrost to zero.

3.3.4. The Effect of Pitch Circle Radius of Outer Nozzles

The main effect of the grid in the previous sections, (where E was
L

constant at 0.5) was to increase outer zone recirculation at the expense of

that between the jets, but as the grid was roved towards the nozzles,' a

changeovcr was observed. At a grid position of I Co! 1, the nnin recirculation

flow changed from the outer recirculation zone to the inner zone between the

jets. It was also apparent that in these ~ses (~ = 0.5),when studied

wi thout a grid the between jet recirculation zone was the minor one. A

study was thus made of the effect of the grid introduction when£ = 0.656,

where even without the grid the Imjor recirculation zone was between the

central ana outer jets. Seven ~I diameter nozzles and the nedium resistance

grid (C-rid 2) were used. An iIIlIOCldiateeffect of the grid introduction at

~ = 1. 75 (spovm in Fig. IBa) was a redu~tion in smaller outer recirculation
L
zone velocities. In the between jet zones, the recirculation took the farm

of a reversed jet, an effect which had also been noticed in the above studies

where the inner zone of recirculation was predominant. This phenomenon was

not observed in any of the systems prior to the grid studies. A rrovemenb of

the grid upstream, (shown in Figs. 18 b, c) caused increased recirculation

in both zones, and sorre jet interaction was observed in the form of regions
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of isolated forward flow in the plane between the outer jets. In the present

case, no changeover of recirculation flow was noticed, only a. gradual
strengthening of all the zones as the grid was movedupstr~

of the grid on axial velocity deCay can be seen in Fig. 19.

Let each grid have a limiting velocity which depends on the pressure

drop acroes it~ As the grid is movedupstream, it encounters velocities

The effect

which exoeed the limiting value I and consequently jet fluid. wUi be defiected

back into the recirculation zones. It Canbe seen that this effect will be

rwre pronounced as the grid is roved further upstream. For closer jet

configurations (! :S 0.5) I the changeover of recirculation flows can be

explained by the saJOO reasoning. Upstream of the changeover-poiht each jet

behaves separately, nnd so recirculation is deflected back into both zones.

This effect is ncre pronounced in the inner recirCulation zones because of the

smaller cross sectional area available for return flow. Downstreamof the

changeover point the grid causes the jets to coalesce into a single jet.

Since no inner recirculation zones would then exist, all the deflected flow

of this" jet" would be to the outer zone..

In the widely spaced jet systems (~ > 0.5), where both recirculation

zones persist to greater downstreamdistances, a.ll the studies nnde were

upstream of the changeover point, and enhanoerrerrtof both recirculation zones

resulted from introduction and roovernentof the grid upstrea.m.

3.4. Water ModelStudies of Enclosed Multiple Jet~

The nnin objective of the water roodelworkwas to obtain q).lalitative

confirzmtion of the flow patterns obtained in the air model studies. Although

quantitative measurementsfrom flow pattern photographs are possible, these

would have proved extr-erre'lytedious sinoe they involve reasurement of rarticle

trace lenp..ths. The photographs were nnrred by the presence of minute air
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bubbles which adhered to the inside 31.lrfaceof the perspex and were not easily

r-enoved, It was felt that. the visual observations rrade during the operatdon

of the water rrode'L could be best represented as line drawings an'd these, in

conjunction with the photographs, would present a fairly clear picture of the

various flow' patterns. These are shownin Figs. 24 a-e and Plates 7, 8, 9.

3.4.1. The Eff'ect of Pit co Circle Radius of' Outer Noz~les---- --....--.

Since the pitch rad.':"'1301 the outer nozzles proved to be an inqx>rtant

pararreter in the air nodel stuUies three values of E were chosen to represent
L

Rnormal and extz-eme cases. The va.Luea were L = 0.375; 0.5 and 0.656 and

corresponding water flow patterns can be seen in Figs. 24 a, b , c.

For ~ = 0.375 the conib.Lna+Lon of the j.ets was clearly seen, with

pronounced areas of reci!'culation occurring around the outside. The combined

jet flow appeared to have soma insta:bj.l~ty as the" jet" oscillated very slowly
R

from top to bottom of the section. WhenL = 0.5, close agreement with the

air nodel studies was observed, with the size of recirculation zones comparing

favourably with the va'Lue s recorded j;Jl'u";r:i.(j<lsl.;,· (Figs. 8 and 9). The outer

recirculation zone extended 10" dovvnstream(t = 2.5) and.a general forward

flow indicating amlganution et' the jets Viasobserved 6" downstir-eam (t = 1.5).

The inner recirculation zone was poorly defined but. the extension dovm.streum

xwas about L = 0.375
Rvalue of t = 0.656,

The higher

as expected, showedthe indiv:i.duo.lnat.ure of the jets,

which persisted beyondt :::.;3, and the recirculatjrm zones were very similar

in size to those of the air model studies(Fig. 9a).

3.4.2. The Effect of Grid Position

An immediate obser-vatd.onwas the distortion of the flow Plttern near the

grid caused by the per-apex strengthening ring so it was located downstreamof
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the grid. Somerecirculr.l.tion through the grid was then noticed, a feature

which had not been notd.cec,in the a.ir nodel studies. The flow p.q.tterns shown

in Figs. 24 d, e are similar to the air nodcl observations (Figs. 12, 14 and

15). The Changeover of recirculation flow from the outer zone to the inner

zone as the grid was movedupstream, was observed.
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CHAITER 4

ANALYSIS OF RESULTS

4.1. Single Enclosed .ret Studies

The basis for the correlation of recirculation in single enclosed jets

MS been provided by Thring and NeWby(2l). In an attempt to predict the

recirculation of a singl~ enclosed jet from the entrainment of a free jet

they arrived at the equation

1 + = ••••••••••••••• 4.1
M +Mo a

To obtain this they used an entrai.rurent equation derived from Hinze's free

jet velocity deony data(22). Enclosed jets do not behave like free .. ~~

jets(26, 28) and thus discreInncies arise between Equation !hI. and pf-aotice.

The general form of the equa'td.onhas been retained with SOIre success by
Cohende Tara et al(26) and Ibiricu(28). The general form of the equation

18:-

A + = B
Q

•••••••••••••••

In order to correlate recirculn.tion whereMa = 0, it was decided to plot

Mrftlo against i and coII1pU'ethe results of the present studies with those of

the above mentioned workers.

4.1.1. Calculation and Correlation of Single Enclosed .ret Recirculation

The recirculation mass flow rate was computedfrom the velocity profiles.

A simple ~tegration of the fO~Nardand reverse flows at any section of the

duct gave ll. double check of the recirculation va.lue at that distance downstream,
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Values of the nnx:im.unrecirculation nnss flow rates are given in Table-4.1.

A plot of MrlMoversus ~ is shownin Fig. 5 and the results comparedwith the

data of Cohende Lara et a1(26) ,and Ibiricu(28) • Table 4.2. shows comparatdve

values of A and B in Equation 4.2. due to various workers.

Mr

Nomenclature used in Table 4.1.

= axial posit~.on of nnximlmrecirculation
rmas flow rate

= Recirculation Area (Square Inches)

AverageRecirculation velocity (ft./aec.)

Recirculation nnss flow rate (lb./hr.)

Area of forward flow (Square Inches)

AverageVelocity of forward flow (ft./sec.)

Mass of forward flow (lb./hr.)

Mass flow rate in nozzle (lb./hr.)

=
=
=
=
=
=
= Recirculation n~ss flow rate based on

integration of forward fl~
(Mf - Mo) (lb./hr.)

Average recirculation mass flow rate (lb./hr.)
(Mrl + Mr2)/2

=

==

fxl the above values are computedfrom the velocity traverse at

\~)c·
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TABLE4.2,

Values of the constants in E~tion 4.2.

Comparison between various Investigators

Investigator Nature of' study It. B

Thring and Newby Enclosed Jet Models I 0.9

Curtet Enclosed JetlTheoretical 1 0.5
Models ExperiJrental 1 0.6

Riviere Combustion System i 0.45
(Gas analysis)

Cohen de Lara et al Enclosed Jet Models 0.9 0.62
above ~ = 0.15

Craya and Curtet Enclosed Jet t,rheoretical) 0.88 0.44
below r 0.020 =L

Ibiricu Circular, S~e and 1 0.73
rectangular cross-section
rmdaLs (velocity profiles)

Whaley Circular, cross-section, 0.6 0.661
no ambient air stre~

I
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It can be seen from Table 4.2" that the slopes of the experinantal lines
(B) from the results of the later single jet studies are very similar
(approximately 0.65). The lines originate from different points, (different
values of constant A), which are functions of the inlet conditions of both
the nozzle and the a.ni>ientair stream.
4.2. Multiple Enclosed Jet Studies

A theoretical analysis of the non fully developed regions of turbulent
multiple jet flows, near to the nozzles, where there is considerable
influence from pressure fields would be extrmely complex. The Wright
conccpt(35) that each jet behaves as though it were enclosed in its own
separate duct allows a considerable simplification of the syste~ This
enables direct comper-Lacn to be nade with the single enclosed jet results
of previous sections. In order to compare single and multiple jet data it
was necessary to assign a.value to the radius of the innginary enclosing
duct (L'), in order to calculate the value of the Thring-Newby Paramater Q

This was a.chieved by relo.ting the axial velocity decay graphs of
the multiple jet arrangements to those for single jets. It was only
possible to do this over the downstream distnnce where the multiple jets
rennin separate from each other. Good agreement between nultiple jet and
single jet axial velocity decay plots (Uo/Um versus of or D-) was observed
for a greater downstream distance when the nozzles were further apart

R(i.e. L > 0.5). When the nozzles were closer together, it was impossible
to compare the axial velocity decay graphs except in the immediate vicinity
of the nozzles where the jets were still separate. Further dmvnstream the
graphs flattened towards an assymptotic value of UO/Um which was nuch
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smIler than that expected for the single jet 'as predictedtrom the upstream

characteristics. This indicated an interaction between the jets, resulting

in tho fornntion of a single equivalent jet, which rreant that the" separate

duct" theory of Wright was inapplicable. Consequent.lyan alternative

treo.trent was required in which the upstream flow pattern could be described

by considering each jet individually !'.ndthe downatr-eamfle"wPlottern could

be regarded o.s tho.t of a single coIIibinedenclosed jet. The coa.lesced jet

conditions were treated using the theory demonstrated by Ricou(20) that a

multiple nozzle behaves downstreamaa 0. single jet vdth the same total nozzle

mass flow rate and velocity.

4.2.1. Determimtion of the Radius of the Inngin'U'yEnclosing Duct

The values of L' the radius of the ficticioua enclosing duct, were

determined by comparisonwith the single jet axial velocity deQ~yplots

shownin Figs. 3, 4. Here we had values of UO/Umversus i for single jets

with various values of Q, and in order to compare, it was necessary to

interpolate for intetmediate values of Q. the compardsons are shownin

Figs. 20 a, b , 21, 22 and the values of L' for the ,various multiple jet

systems are given in Table 4.3. These values were precise, since small

errors in the va.Lueof Lt ehosen could result in large devie.tions inUO/Um

for that particular location, due to the rapid rate of axial velocity decay

a.t downstreampositions. The effect of closer spacing of the jets can also

be seen in Figs. 20 a, b , 21, 22 where departure from single jet data was

observed after the initio.l zone of jet development. The ranges over which

the va.lues of L' describe the axial velocity dcc~y of the multiple jet

systems are also given in Table 4.3.

It was found that the nozzle dimensions had no effect on L', the value of

R n SHEffiELDthis depending solely on the nozzles ann cing nn"'ruootera(... and )
r-~ r-- .LI ' • UNlVEr.SITY
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TABLE 4.3•

.~timcntn1 V~lucs of L'

t

t

ro R n L' centre or (-t)oins. ins. ins. outer jets

0.375 2.625 6 2.70 centre 2.125
0.375 2.625 6 2.30 outer 2.125
0.25 2.625 6 2.70 centre 2.125
0.25 2.625 6 2.30 outer 2.125
0.375 2.625 3 3.10 both 2.125
0.25 2.625 3 3.10 both 2.125
0.375 2.375 6 2.50 centre 2.125
0.375 2.375 6 2.00 outer 2.125
0.375 2.0 6 1.79 both 1.625
0.25 2.0 6 1.79 both 1.625
0.375 2.0 3 2.30 both 1.625
0.25 2.0 3 2.30 both 1.625
0.375 2.0 2 2.50 both 1.875
0.25 2.0 2 2.50 both 1.875
0.375 1.75 6 1.60 both 1.125
0.375 1.5 6 1.30 both 0.625
0.375 1.5 3 1.70 both 0.875

t indic..'\tesonly axial velocity neasurenent a ta.ken
n = no. of outer jets
(t)0= axial downstream distance over which L ' applies
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For a fixed numberof outer jets the relationship between the parameter
Lt RL andL was linear. "''henn = 6 the eC].-lationwas

L'
L = 0.895 E

L
••••••••••• 4.3

and whenn = 3 the equation was

Lt-L = 1.15 E
L

•..•....... 4.4

Although insufficient points were obtained for n = 2, if it is assumed

that the lines paae through the origin as in the previous equatdons the

following equation can be obtained.

L'
L = 1.25 E

L
•••••..•••• 4. 5

Averagevalues of Lt were used to obtain the above equations as in

sene cases (~ > 0.5, n = 6) the outer jets behaved differently to the central

jet.

In order to relate all these equations into a single equation involving

n, the nuniberof outer jets, an additional point can be utilised. The

single jet rose whenn = 0, gives Lt = L. It is seen that plotting f
against n would yield a family of graphs for different va~ues off, all

pa.ssing through the point n = 0, f = 1, suggestdng an exponential form of

equation. The following equation was deduced from the e...cpcrimentalvalues

for uniform configurations of nozzles.

= + 0.611 '\g
expo 0.396 n /L

• •••••••••• 4. 6
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where obviously R *L and R has no meantngwhenn = O. This equatdon fitted

all the results with a mnximum error of! 6.5%. At higher vnlues Of~

when the outer jets were closely spaced (i.e. for large n}, the proximity of

the outer jets to each other and the waLl, of the duct caused a oore rapid

axial velocity decay than tr~ centre jet, and consequently a lmver value of

L'. Since this did not occur at the sane value of f, whenn = 2 and 3 it

was concluded that wall effects were accerrtuabed by increasing the numberof

outer jets.

The critical separation distance betwecn the outer jets,and the duct

wall was half the duct radius (~). In the present case, this mearrt that

whenf > 0.5 and n 2!: 6 the outer jets will restrict each other, and hence

behave differently to the central jet. By decreasing the numberof outer

jets the ccnknl jet Vr.:1.S no longer f'ully boundedand could" see" beyond the

outer jets to the wall of the duct. This was proved since whenthere were

only two or three outer jets, the values of Lt were greater than R. In

order to assess the values of L' for the central and outer jets where these

were different, the hydraulic nean diazreter was used (see Ibiricu (28)).

This diameter was that 'used for the calculation of Reyn.oldsNumberfor fluids

flowing in irregular shaped ducts or open chp..nnels(29). In the calculation

for multiple jet systems, the distances between the jets and the duct wall

were used. Whenf < 0.5, the distance between the jets was snnll and was

the limiting value in the calcula~ion of the hydraulic meandiaIn3ter. When

! >o.5 the distance between outer jets and the du'ct wall was sImller than

the distance between the jets and thus becamethe limiting value. Two

stages were involved in the computation. Ini tially the central jet was

-44-



boundedby the outer jets and the duct wall, and BO the initial hydraulic m

meand.i.a.nEterof the imginary duct was thus harnx>niomeanof the p~tch

dirumter of the jets and the duct diameter.

Initial hydraulic nean
diameter at x = 0 = Item

L+R •••••••••••• 4. 7

Further downstream, the jets were still separate whenf > 0.5, and the value

of the effective diameter of the duct was given by the average value of

equation 4.3.

DownstreamDial:nter = 1.79 R •••~••••••••4.8

The central jet ann nowbe r-egar-dedas entering a conical section, of which
\

the e~i valent cylindrical radius 0::Ul be computedas follows:-

Lt central jet - [ 4.LR. 1.79R ]- IJ + R

t·~ + 1.79R
•••••••••••• 4. 9

this being half the hydraulic rrean diameter. The value of L' for the outer

jet can be calculated from this value and the average value from Equation

4.3. For the two cases in the present investiga.tion whenB > 0.5 and n = 6
L

and different Characteristics were observed for the central and outer jets,

the calculated value agreed VIith the experimental value, the rna.xinumerror

being 3%.
4.2.2. Calculation and Correlation o~cir~llation in Multiple

Enclosed Jet Studies

The recirculation lIl!lSS flow rate at any C':"oss-sectivn in the enclosed

nultiple jet ar-rangenerrts studied, was co.Lcu'Iat.ed from the velocity profiles
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obtained by traversing through and between the axes of the outer ring of
jets. In the absence of a complete radial analysis at each section, the
reverse flow was calculated by finding the average recirculation velocity
and the area over which this velocity applied. The average recirculation
velocity was found by integration of the velocity profiles, and the area
for recirculation by sub~acting the area for forvvard flow from the total
duct cross-section. The double check of integration of the forward flow
could not be applied to the multiple jet studies vdthout a complete radial
analysis. However, since the recirculation velocities were generally
greater than those encountered in the single enclosed jet studies, their
lOOasurcmcnt was made rmre accuro.tely. The turbulence intensities were
quite snnll in the recirculation regions and so it was considered
satisfactory to use the momentum flux velocity values rather than the mean
velocity, since the latter would have involved the measurement of turbulenoe
intensity. It has been shown in Appendix 4 th.'\tunless the system is
highly turbulent with intensities of tl~ order of 0.75 the error involved
in thi s assumption will be less than 4.5%.

The values for the recirculation mass flow rane are given in Table 4.4.

These are naxfmim values except when ~ < 0.5, where the values given ar-e
the recirculation mass flow rates in the region where Lt applies. A
comparison between the values of Table 4.4 and those for single jets given
previously in Table 4.1. is given in Fig.23.

In the cnse of the downstream regions of the single equivalent jets
(£ < 0.5) the maximum recirculation was computed as before and the value
of Q cnlculated from Rd.cou+a theory. This assuned that the conibined jet
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might have issued from a single nozzle of the same total cross-sectional

area. The values of nrud.num recirculation IInSS flow rates ore given in

Table 4.5. The comparisonbetween these values and thos of Table 4.1.
are also shownin Fig.23.

Tl1erecirculation t.1.'1SS flow rates given in Ta.ble4.5 were higher than

those given for the samearrangement of jet s in T£Lble4.5, .since the .

mo.ximumrcc.i.rcul.n.tion flow occurred after the jets had coalesced. In

order to describe suChsystems it was better to use the equivalent nozzle

radius to cs.lcula.te Q, since the equivalent duct ra.dius L' would only

apply for a lind.ted distance downstream. WhenE ~o.5, t.' was used since

the jets retained their individuality and could be treated separately.
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CHAPl'ER 5

CONCLUSIONS FRCl.{ THE ENCLOSED JET STUDIES

S.l. Single Enclosed Jets

The studies of single enclosed jets are simplified by the absence of aJl

ambient air strea~ The axial velocity decay characteristics are found to

lie between the free jet and pipe flow eases as the relative nozzle size is

inCl"eased. The axial decay of velocity is acceler-ated as Q is decreased

from unity (pipe flow) to zero (free jet) (Figs. 3 and 4). It is also

possible to correlate the recirculation of such systems by the use of the

Thring-Newbyparaneter- Q. The equation calculated from the experim:!ntal

dntn of Fig. 5 is:-

0.6 + , = 0.66-g •..••.•.•• 5.1

This equation fits the experimental valuos with El. z:nxinumdeviation of

! S%.
5.2. Multiple Enclosed Jets

The recirculation and axial velocity deeay characteristics of multiple

enclosed jet systems can be related to those of single enclosed jets. This

is achieved by considering each jet to be enclosed by an inaginary duct of

radius Lt, obtained by co~ison of the axial velocity decay curves with

tho~,eof single jets (Figs. 21, 22 and 23). The obtained values of Lt were

then related to the nozzle configuration by the following empirical equation:-

Lt
L = 2 50.389 + 0.611 l E

( exp 0.396n 5 L
•.•••••.•••• 5.2

(where ~ ~ 1).
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RWhent ) 0.5 and n = 6, due to the proximity of each outer jet and.

the duct wall, the outer jets are observed to decay more rapidly than the

central jet, resulting in different values of Lt. The mean value is used

for correlation in Equation 5.2. The value of Lt for the central jet of

such systems is obtained by initially reducing the aerodynamic network \

around the jet to a conical and then to a cylindrical chamber. This

results in the equntion:-

Lt central =
L ~ + 1. 79 (R + L)

7.16 R •..•••.•••• 5.3

(B 0for the central jet. L > .5 n = 6). The value of L' from the outer

jets can then be found from Equa.tion 5.2. and 5.3.

Whenf < 0.5 the values of L' given by E~tion 5.2 only apply in the

vicinity of the nozzles. Further downstreamthe jets coalesce and thus

the "separate duct" concept is invalid. The equivalent radius of the

comined jet is calculated to give the Bare nasa flow and nozzle exit

velocity.

It is also possible to relate the recirculation of multiple jet systems

to that of single jets by use of the pararooter Q (where Q = ~ or ro'L r;-
and L' = value in Equation 5.2). COIIIplrisonof m.lltiple and single jet

recirculation is good, (Fig. 23) the nrudlIUlD. error being! 8%. in Equation

5.2.
Photographs and visual observations of someIIn.1ltiple jet water flow

patterns are shownto be in good agreement with those of air jets (Figs. 24

and Plate 7).
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5.'. The Introduction of a Grid into Enclosed Multiple Jet Systems

The min effect of the grid is the deflection of the jets back into

the recirculation zones. Each nozzle configuration has a critical down-

stream location, beyondwhich the grid causes outer recirculation prominence.

Upstreamof this location the recjrculation to both zones is increased as

the grid is movedtowards the nozzles. In the two configurations studied

(n :; 6, ~ ;: 0.5 and 0.656) whenthe jetE;>are widely spaced <! = 0.656)

the critical point is not observed and is assumedto be downstreamof the

experimental section (~ = 0 to t = 1.625). For closer jet spacing

(~ = 0.5) the critical point can be observed at t ex 1. The critical

point can be explained by the interference of the grid with the complex

pressure fields of the rultiple jet systems at the point whenthe jets

are tending to coalesce.

·R •• d.as 'L 1S 1ncrease

The variation of the grid resistance characteristics to cover a range

Obviously this point will be further downstream

comparablewith marine boiler tube bank resistances had little effect on

the flow patterns or axial velocity decay (Figs. 12 to 17).

Operation of the nultip1e jet systems with wa.ter showsthat

recircu1a.tion can occur back through the grid (Fig. 24 d and e, and Plates

8 and 9). This is not observed in air node1 studies due to rreasuring

difficu1ti~s in the proximity of tho grid.

5.4. Suggestions for further work

This study of multiple enclosed jets provides a ba.sis for work on mor-e

practical systems. Such studies would include swirling jets, irregular
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shaped enclosures, and side offtakes, as well as actual and novel boiler
models. This would then enable more pertinent heat transfer studies to
be made both from the steam raising and combustion aspects.
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CHAPrER 6

SIMPLE CALCULA,TION OF THE HE4T TRANSFER IN !!lARINE BllnER TUBE BANKS

6.1. Introduction

Cohenand Fritz(41) have studied heat tra.nsfer in D-shaped In9.rineboilers.

The rm.inpurpose of this investigation W'"I.S to investigate the oontrol of

superheat temperature without the use of dampers or attemperators. This

was achieved by "turn off" of sui table burners and although the influence on

final steam te~rature was sunIl, adverse operating efficiencies.were

noticed. A complete temperature traverse at the inlet to the tube banks

under overload conditions gave a naxinn.lmgas temperature of 3200~ at the

centre, falling to 2300"Fat tm rear wall. The average gas temperature

was 29500Fand the steam production at 12010 of full power (overload

conditions) was 314,000 lbs. per hour. An important result of the gas

temperature traverses was that flow patterns are not affected subtantially

by the right angle bend through which they have to pass to enter the tube

banks. Under the same loading the average gas temperature was reduced to

2l00oF at the inlet to the rrnin generating tube banks and l200~ at the erl'f;.

Tbe "shut down"of groups of burners to give 45% of full power

conditions, showedth."l.tby using burners further away from the tube banks

there was a decrease in superheater heat transfer and an increase in furnace

heat absorption. This emphasised the :importanceof burner coIribinations for

control of superheater ten~ratures.

6.2. Heat Transfer Calculations

.It is shownin Appendix 3 that the tube banks of a selectable superhea.t

boiler can be rClpardedfor pressure drop calculations as equivalent to 29-

staggered rows of 1" diarreter tubes on a pitch of l~ inches.
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Heat transfer calculations were mde on this simple equivalent bank of

tubes. The boiler rodel chosen was that described in Appendix .3, but the

effect of the right angle gas offtake was not considered. The boiler was

therefore 4' in equivalent chaniberradius, and ea.chburner diamter was i'.
Calculations of the heat transfer coefficient to banks of staggered

tubes are based on the following equation r-ecomrendedby UcAd.'lms(42)•

= ••••••.•••• 6.1

where Do = outside dianeter of tubes (feet)

hm is the heat transfer coefficient (B.Th.U./hr.ft.2.oF.)

Gm is specific mass velocity between the tubes, based on the

ndrdmim area between the tubes (lb./hr.ft.2)

Kf istherual conducti.ityof fluid at the film temperature tf
~f is viscosity of fluid at the film temperature

tf is film temperature or arithIretic moanof surface temperature

and bulk fluid tempera.ture.

In the case of tbe min gencrvrtdng tube banks in the selectable

superhc'lt boiler

D = 1/12 feeto = 0.0834 feet

x, = transverse pitch = 0.1354 feet

per unit area of tube bank
= 0.1354 - 0.0834

0.1354
Minimumarea for flow
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For 29 rous of tubos· in the cquivn.lellt tube bank

Heat transfer surface = Tt 29.
1.625per unit area of tube bank

= 5-6 ft. 2 /ft, la

Let the
0be 2600 F.

tf =

• Pf• • =
I-lf =

Kf =

steam temperature be lOOO~. and the average gas temperature,

1000 + 2600
2

0.0162 Ib./ft.3

0.1185 f.p.h. units at

0.048 f.p.h. units at

=

at 1800~
l800~
l8000F

If the Lccaf, velocity is U. ft./sec. at any point prior to the tube banks

Gm = U x 0.0162 x 3600
0.385

•• • Re = D G'o m-I-lt = 151.5 U
12 x 0.1185

= 106.5 u

From equation 6.1.

0.048 x 4.94 Uti•e
0.0834

2.84 Uo.s B.Th.U./tt.2hr.oF.

=

= 151.5 U lb./hr.tt.2

=

=

B.Th.U./ft.2hr.~.

-
let us consider an eLerrerrtof tube bank in which the velocity is U"

Hent lost by convection = hm A ATm
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where A is the surface area of tubes
~Tm is too logarithmic mean teII1perature difference between

surface and fluid
•• • Heat lost by convection

Heat lost by convection
Sensible heat lost by gasos.e

where Cp = specific heat of gas =
Pr = density of combustion=

• gases
Sensible Heat lost by gases =

~T =

= B.Th.U/hr.ft.2
tube bank area

.:: l59.0Uo•e ~Tm

U. Pf. Cp. ~T 3600 B.Th.U/hr.ft.2
tube bank area

u x 0.013 x 0.31 x 3600 ~T

= 14.5 U. ss,

However, the heat lost by convection and the sensible heat losses by the
temperature (\ropof waste gases

•• •

gas are the same if trnnverse heat transfer is neg1octed.
14.5 U. t:.T=

=

Substitute values of temperatures in equa.tion

log (2600 - 100C ) 11.0
e Te 1000 = Y- u

• loge ( 1600 )• • 11.0Te 1000 = •••••.•••• 6.2- -If .4
where T is the teIJilCrature after passage through the tube banks,e
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Equation 6.2 indicates that for each velocity profile, a temperature

profile can be plotted for the" gas exit from the tube banks. Two
:','

calcula.tions have beeri nndcj based on different gas inlet temperature

assumptions.

(a) The gases were aSS'\Joodto have a uniform temperature equal to the

average value of 2600~ at the inlet to the tube banks.

(b) The gases were aasumcd to have a temperature proportional to their

veloci ty. "At the nnximumvelocity, the temperature was aasumsd to be

2950"F, and at zero velocity the temperature aeeunod was 100000. It Vias

thought that the practical case might lie somewherebetween these two

extremes. Tho calculations were performed for six cases of burner spacings,

and the cross-section chosen corresponded to the downstreamaverage path

length of tho gases in a nnrine boiler. Reynolds simile..rity between the

theoretical model and an actual marine boiler under operating conditions

was observed.

FromAppendix 3 for each burner the Reynolds Numberunder operating

conditions is 3.47 x lOs•

••• Velocity in i' diameter burners = 1610 ft./scc. at 2900~.

In the boiler average path length of gases = 0 ft. (half length and width)

• •• Ibwnstream distance in 1/12 scale model = 8" •

Velocity ImPS at the inlet to the tube banks wore plotted for each burner

spicing, and the corresponding temreraturcs at the exit from the tube banks

can be seen in Figs. 25 a-f for the two temperature assumptions. In

general the min difference between the two temperature assumptions was that

a JlX')reuniform exit temperature distribution was observed for the assumption
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of uniform temperature at the inlet. For the calculation' of recirculation

temperatures, the gases were aasurred to return through the f'ull tube bank

having been cooled to an average temperature of l2000F by the first pasa,

6.,. Conclusions

The co.lcula tions of hellt transfer in m..."I.I'ineboiler tube banks, based

on the flow patterris observed in a simplified rrodel, have indicated that

tube bank exit tempera.tures in the region of 19000F can be expected in

regions of highest velocity caused by closer grouping of the burners.

C:llculations of probable recirculation temperatures have indicated that

gllses mnyre-enter the combustion chamberat temperatures in the region of

l0600F. On mixing with the hot combustion gases which are recirculated to

the flames, these gases cause a reduction in flame temperature. Since one

of the advantages of recirculation in pressure jet burner systems is flam

stability caused by preheating the oil ~oplets before co~hustion, then

adverse operating conditions can be expected if this preheat temperature is

lowered by colder recirculated gases.
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APPrnDIX 1

THE sruDY OF A SrnGLE EI-JCLOSED'SWIRLING JET

The pressure jet oil burner is a complexsystem in which angular

rmmerrtumis i.Inp\rted to the conIDustionair, by passing it through an annulus

around the oil a.tomi~erwhich contains a mechanical swirling device. This

consists of a circular arrangement of vanes inclined at an angle to the

direction of flow, whidl is placed in the throat of the burner. There are

wo tyPes of swirl. of which only one can be regarded as stable. This is

the "free vortex' swirl system where the radial static pressure gradient is

balanced by the centrifugal forces of rotation. In this condition there

is no tendency for the jet to spread, other than by the normal entrainment

process at the jet periphery. In comroonpractice the unstable It for ced

vortex' swirl system is utilised in which the centrifuga.l forces are not

balanced and so the jet diverges from the burner mouth, This gives a region

of low static pressure on the jet axis, producing a recirculation zone whiCh

a.ssists flame stabilisation by the recirculation of' hot combustionproducts

to both inside and outside fringes of the oil spray.

It is possible to achieve a similar flow pat tezn without swirl and

investigation is required to decide whether it is the best meansof achieving

the desired characteristics of flame stability and high combustion intensity.

A prcl:im:in3rystudy is madehere of the effect of increased swirl on a

single jet, 'using the simple T-pitot probe mea.suringtechnique. Although

the effect of rotational flow on the probe is not known, it is possible to

distinguish between the two types of swirl zrentioned previously and also to

detect the transition from one condition to the other (Fig. 26). The swirl
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is characterized by taking· the ratio of tangentially injected air to the

total nozzle nass flow. Measurementsof rmss flows from the velocity traces

were not attenpted due to the uncertainty of the measuring technique. The

results ~re plotted as velocity contours showingthe effects of increasing

degrees of swirl in Fig. 26. In these studies the nozzle d:iareter was ~,

and the radius of the duct 4". The relative g).lantity of tangentially

injected air covers the range from 0 to 45%of the total flow. The results

are comparedwith similar studies at the International FlameHesearch

Foundation(47) carried out on an annular swirling free jet of outside

diazreter 25 centimeters in which the ratio of tangentially injected air

varies from 0 to 6710 of the tota.l flow. To enable oompardeon, each swirling

jet is related to the non swirling case by the parameter U~Umo.
U = nrudnumforward velocity componentin svrirling jet at
ID

downstrerunpoint x

u
llb

= nnx:i.num(i.e. a.xial) velocity in non-swirling jet of sarm

dirureter at dov.rnstreampoint x,

Similar trends are shownfor each case in Fig. 26d, as the swirl

characteristics of each je~ were increased.
,

From the flow pa,tterns shownin Fig. 26 it can be seen that increased

swirl increases the angle of sIread of the jet, finally resulting in forced

vortex conditions at 35.4%tangential air input. At the rrnxinumdegree of

swirl studied (45%of tangentia.l air), wall jet conditions are observed

with very low forward velocities occurring along the wa'l.Lsof the duct, and

recirculation along the axis. Since the nozzle diarmter is not varied , it

is not possible to makea wore detailed analysis of the r'eaul,ts,
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Conclusions

Increasing the proportion of tangential air flow in a swirling jet

caused accelerated nnxinumvelocity decay (Fig. 26d). Belowa value of

35.4% tnngential air, the conditions corresponded to free vortex swirl for

n ~I die.Ireter nozzle and the jet did not spread from the axis other than by

a norIm.l jet errtr-afnnerrtand slight angular damping(Figs. 26 a and b).

At 40.6% tangential air, the onset of forced vortex swirl was observed.

Here the nnxiI!l.UIlvelocity was not on the axis and sytIllOOtricaltwin peaks

were noted in velocity traverses. An axial recircula.tion zone wa.sformed

under forced vortex conditions and for the wall jet which occurred with

45% of tangcntial air, thi s was the only re circul"ltion zone.

These results suggest the possibility of relating single and nultiple

swirling jets for the free vortex condition. At higher degrees of swirl,

whcn the jet spread 1s grenter, considerably more interaction between

multiple jots 1s expected, and they are not expected to behave as separate

enclosed single jets.
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APPENDIX 2

CALIBRA.TION OF FLOlI MEASURING DEVICES

(2tl) The T shnpedvelocity probe

The T shaped velocity probe was calibrated by comparisonwith a.

standard N. P. L. pi tot tube placed in the SalOO stream. The calibration rig

was built from a small per-spcx duct (Plate 1).

(fig. 27) resulted in the equation

The linear calibration

Veloc:i.ty nt 60~ = 60.6 "{b.P

where ~p = pressure differential (inches w.g.)

The };:C"obewna inclined at an angle to the gl).~ flow to obtllin t~ pitching end

yawing characteristics (Figs. 28) • Anangle of acceptance up to 450 was :

observed from the yawing characteristic. This was useful, since muchof

the recirculation near the burners was non-axial in direction. The pitching

charn.cteristic in which the probe was turned about its ownlongitud:inal axis,
ogave an angle of acceptance of 25 • Here the acceptance angle is defined

as the maximum angle between the probe axis and the velocity vector at

which the probe gives 95% of the true velocity reading.

(2b) The Nozzles

The calibration of the constrictions inside the nozzles was double-

checked using orifice metering and a rotameter. The calibra tiona are given.

in Fig. 29. Although all nozzles except the central one (No.3) had the

same sleeve inserted, different characteristics are observed, possibly

due to the difficulty of exact positioning of the sleeve within the nozzle

body.
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(20) The Pressure TrMsducer

The Bea.udouinPreasure ;'rr~sducer was calibrated with referenoe to the

statio pressure differential acro~s a Prandtl rnicromanometer. The applied

pressure differential could be rend accuro.tely to = 0.0005" w.g. The

calibration of the transducer for the various output ranges ~s given in

Fig. 30.

(2d) The SupplXLine Orifice

The diameter of the orifice used to net.er the flow to the apparatus was

calculated o.ccording to B.S.1042 FlowMeasuremcnt(43). A now sufficient

to give a nozzle exit velocity of 100 feet per second in seven~' diameter

jets, would also give a la' water gauge pressure differentio.l for a 1~"

dL~ter orifice in a~' diameter pipe. The overall flow rate could be

checked by summingthe individual jet flows. The final equation calcula.ted

for the above orifice with air flow at 60~ was

= 2439 "(rh

where Q = Volwootric flmv rate (cu. ft.,/hr. )

lIh = Pressure differential across orifice (ins. w.g.)

Table A.1. gives calculated and experimental values of ~h from the

equation calculated from the value of the volumetric flow rate Q.
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TABLE A.l. Calibration data for Orifice Flate

Mean Velocity Q ~h cal,c, thin ~, dia. nozzles ft.3/hr. expo
tt./sec. ins. wg. ins. wg.

80 6190 6.411- 6.45

70 5410 4.94 4.90

60 4640 3.61 3.65

50 3870 2.51 2.5

40 3090 1.605 1.6

30 2320 0.9 0.9
..
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APPENDIX 3

MODEL DESIGN C,l\LaJLA'l'IONS .AA"!) OPERATING CONDITIONS

(,3a.) ModelDesign Calculations

The duct used for the mult1plejet investigations was one twelfth of the

equivalent diaIMter of a typical marine boiler. . Since a nnrine boiler

front wall is not circular. the hydraulic meandiareter was calculated. The

compactD shaped boiler shownin Plate 10 and Fig. 32 has a hydra.ulic mean

diareter of' 8'. Burner diameters of l' were used in this boiler, although

the operating dimension ls smller due to the blockage effect of the air

register and atomiser.

It has been showntm.t the discharge coefficient of such an assenibly

is 0.65(45). The equivalent radius ls thus 10.65 roa where ro is true

diameter. This equation is based on mass flow and monerrtum equivalence.

Since r ls 6", the equivalent radius r ' will be 4.85". Therefore. for00'

nodelling purposes the similarity parameter Q (r~') was 0.101. In the node1,

using a standard pipe size of' ~1 inside diameter for the nozzles the para-
,

meter Q was 0.094 giving fair geometric similarity with the ~rine boiler.

It proved impossible to construct a mdel with Q comparableto the hot

operation of a marine boiler using the equivalent burner diameter suggested

by Thring and Ncwby(21). This wouldbe approxinntely 2' in diarooter giving

Q = 0.25. Since there were seven burners assembled on the front wall of

the 1/12 scale nodel, it can be seen that this would have been impossible to

construct. It was thus decided to build the node1with geometric similarity,

and application of the results to operating conditions using an equivalent

hot radius wouldbe possible.
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(3b) Operatine Conditiona and DynamicSimilarity

It is instructive to calculate the Reynolds Nuni>erin a typical marine

boiler burner for both hot and cold conditions of operation.

Cold Operating Conditions

The oil flow to each burner was taken 0.8 2100 Ib./hr. which corresponds

to a combustion air flow of 33600 lb./hr. (Air : Fuel Ratio 16 : 1). The

equivalent unrestricted diaIreter of the burner was lOt.

Reyn61dsNuni>erat 60~ = U. d. Pc

J..Lc

d = diameter of burner = 0.8}4 feet

U = velocity of air in burner

Ilc = viscosity of air at 600F. = 1.209 x 10-6 f.p. s. units

Pc = density of air at 60oF. = 0.077 Ib./cu.ft.

u = 33600 x 4- = 222 ft./sec.
3600 x 0.077 x n(0.834)2

Re = 222 x 0.834 x 0.077

1.209 x 10-e

= 1.18 X 10&

Hot Operating Conditions

The temperature of the combustion gases was taken from Cohenand Frt;iz' s

Iaper(41). The average temperature in t'he combustion charroer-was given as

2900~. at full power conditions for a D shaped rm.r:ineboiler. Assum:ing

that the eases behave like air, and reach the burner throat at 2900~, the
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Reynolds nunber- in the throat j a therefore

Reynolds Nurr.berat 2900~ = U. d. Ph

~

'1l = viscosity of air at 29000F = 4.1 x 10-& f.p.s. units ~lculated
from Sutherlands Fornula ~44) •

Ph = density of air at 29OO~. = 0.0118 lb./cu.ft.

u = 33600 x 4 = 1450 ft./see. at 2900oF.
3600 x 0.0118 x n(0.834)2

Re = 1450 x 0.834 x 0.0118
4.1 x 10-3

s= 3.47 x 10

The equivalent diameter of the burner is given by:-

d' = de,r;;; = 0.834
Y
O.On

V ~ 0.0118
h

= 2.125 feet

•• • The Reynolds Nuniberbased on this diarreter is:-

Re = 33600 x 4 x 2,125 x 0.0118
3600 x 0.0118 x n(2.l25)2 x 4.1 x 10·e

8= 1.36 x 10

(3e) Reynolds Numberin !Jodel Studies

The nrudnum velocity which it was possible to obtain in the 1lX)delwas

80 ft./see. for a t diaxmter nozzle.

R at 60~. = 80 x i x 0.07] = 3.19 x 1()4e
12 x 1.209 x 10~

The cpcratdng range of Reynolds nunibers of the cold air mdel was less than

that of operating r.urine boilers. Since flow patterns and mixing are

essentially independent above Reynolds numbers of 10,000, it was considered
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justifiable to operate the roodelat these lower values.

(3d) Grid Similarity and Pressure .TrropthroughTubeBanks

It was necessary to establish SCIre basis of similarity between the

grids and a typical set of tube banks. Calculations were made using data

giv n in McAdams(42) and it was possible to obtain a pressure drop versus

specific nass flow rate characteristic for a tube bank. This can be

comparedwith exper~tal results for the grid presented in the Bam:l form

. (Fig.31).

Pressure Drop Calculations for a MarineBoiler TubeBankunder full loa.d
conditions

Full details of the tube banks of a marine boiler of the selectable

superheat type were obtained. A simplified diagram of this boiler is

shown in Fig.32. The boiler has five l' dianeter burners and conesquently

at 1\111 load, the same fuel rate for each burner as that nentioned previously

can be used. In the selectable superheat boiler, pirt of the waste gas

flow paasea dovm the superheater side of the bank, and pu-t downthe

saturated steam side. Control of the steam requirements can be obtained

by usc of danpers which divert gas preferentially through either side of

the tube banks. Calculations were nado , assuming a uniform flow distribution,

except through the superheater, for both hot and cold conditions of operat.Lon, '

The calculated characteristics are shown in Fig.3l.

Cold Operating Conditions

The tube banks can be divided into six parts, three on each side of

the boiler. The first two sections, which can be regarded as one for the

calculation,are the fire tubes, which extend fully across the tube banks.
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These are larger tubes than the rest of the bank, and a larger pitch gives

radiant heat transfer to tubes other than the first row. Next the

superhcatcr section and the saturated steam pass are followed by the nnin

ste,a.mgenerating bank of closely pitched tubes, which also extend across

the full width of the furnaces. No effect of the damperswas considered,

and in the superheater and saturated sections, the flow was assumed to be

distributed so that the pressure drop across each side vias equal.

Fire tubes - full width

Overall diJrensions of tube bank 8' x 6.67' consisting of a staggered

bank of 2" outside diarreter tubes in which there are 18 tUbes/row for 3 rows,

tube pitch = 47/16". The total waste gas naas flow rate is 5 x 33600 =
1.68 x 108lb./hr. = 46.7lb./sec. (where 33600lb./hr. is air

requireIOOl'ltper burner as given previously).

Total free area. of tubes = 8 x 6.67 = 53.4 ft.a

= 8 (6.67 - l8l~ 2)
or this, area. available
for Flow

•• • Spa cific 1~ss flow rate G =

G = 1.59 lb./sec.ft.2

Now Re at 60'7.

where Do = diameter of tubes (feet)

G = specific IIe.5S flow lb./ft.2 sec.

= viscosity at 60~. = 1.209 x 10-5 ~.P.s. units
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Re at 60'7. = 2 1.59 Id'
12 1.209

= 2.2 x 10'

Now flp = 4 iN G2

2gc p

where flp = pressure drop (lb./ft.:P

N = l.Uni:>erof rows of tubes

gc = gravity constant = 32.2 ft./sec.2

p = density of air at 600F = 0.077 lb./cu.ft.

f = friction factor = (0.23 + 0.11 ) Re-o•u
(x _ 1)1.08

x = pitch to tube diarreter ratio where 1.5 < x <4.0

lin this case x = 47/16 = 2.22
2

•• • f = ,(0.23 + 0.11 )
(1.22)1.08"

•• • f = 0.0714

•• • flp = 4 :r 0.0714 x 3 x 1.59"l
2 x 32.2 x 0.077

I= 0.436 Ib./ft.8 = 0.084 inChes w.g.

Main Generating Bank - full width

Overall dimenaions of ~ube bank 8' x 6.67' consisting of a staggered

bank of 1" outside dia.Ireter tubes in which there are 47 tUbes/row for 21 rows,

tube pitch I: 15/8". Here x will be 1.625. By a similar calculation to

that above we obtain

- 71 -



Re = 1.45 x lQ4

f = 0.098

6p = 7.31 Ib./ft.2 = 1.41 inches w.g.

Superheater a.nd Saturated Bank

Details of superheater-r» Frce area = 3.9' x 8'. The tubes are

horizontal rather than vertical as in the other sections. There are 50

li" outside diameter tubes per row in a staggered bank of 20 rows. The

tube pitch = 1.875" giving x = 1.5. If the lInSS flow through the

superheater is ms Ib./sec.

Nowarea for flow = 3.9 (8 - 50 ~) = 10.91 ft.212

••• Specific mass flow rate = IDS

10.91

Re -' 1.25 Ins le!
12 10.91 1.209

= 7.89 x loa ms

Now f = (0.23 + 0.11 )
\ (1.5 _ 1)1.0S

Re-O•iS =

•• • 6p = It- x- 0.464 x 20 rns2

~7.89 x 1()2 )0 .16 (rIls)O.16 • 2 x 32.2 x o,on (10.91)2

= 0.0231 IDa1•S6 in Superheater

Details of Saturated Bank:- Free area = 2.75' x 8~. There are 12

It' outside diameter tUbes/row in a staggered bank of 3 rows. The tube

pitch = 27/16" giving x = 1.625.

Nowarea for flow = 8 (2.75 _ 12 x 1.5) = 10 ft.2
12
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•• •

mass flow rate = (46.7 - ms) Ib./sec.

Speoific nasa flow G = (46.7 - ~) lb./sec.ft.2

10

Re = 1.5 (46.7 - IDa) 105

12 • 10 • 1.209

-r = (0.23 + 0.11 __ ) Re-o•18

(0.625) 1.0S

.'. t::.p =
4 x 0.413 x 3 (46.7 - ms)2

= 0.00353 (46.7 - lIls)l ..SIi for the Satura.ted Bank.

If the nass flow is a.ssumedto be distributed so that there is equal pressure

drop across the two banks then:-

•• • IDa = 12.4 lb./seo •

Ap = 2.45 lb./ft.2 = 0.471 inches w.g.

Total Pressure Drop across tube banks = 0.084 + 1.41 + 0.471

= 1.965 inches w.g. at 60~.



Hot Operating Conditions

Similar calculations were madefor the sametube banks but assuming an

average gas temperature at the inlet of 2600oF. The pressure drops

calculated for each section were as follows:-

ap fire tubes = 0.60 inches w.g.

6p superheater and saturated pass = 3.29 inches w.g.

ap nain bank ; 9.91 inChes w.g.

Thusthe total pressure drop is 13.8 inches w.g. This is in good agreement

with a practical value of 13 inches w.g. at full power.

It is also possible to calculate the numberof rows of tubes contained

in an equivalent bank composedentirely of generating bank tubes.

Cold A:> total bank = N = ~-
6p generating bank 21 1.41

• N= 29.3 rows• •

Hot f.E total bank = .1L = 13.8
f.p generating bank 21 9.91

•• • N= 29.3 rows

Since this figure seems independent of temperature it is possible to simplify

other temperature calculations of pressure drop.

(3e) Comparisonof tube banks with grids

The pressure drop across the tube banks of a narane boiler can be

related to the specific mass flow rate, based on the' full tube bank area,

by an equation of the form

=
.

k • a.l•es
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t.p is pressure drop (inches w.g.)

~ is specific mass flow rate based on total tube bank area
(lb./sec.ft.2 )

k is a constant (inches w.g./(lb./sec.ft.2)1.S8

Values of k for both hot and cold operation are as fo11ows:-

=

= 2.51 ins. w.g./(lb./sec.ft.2 )1.85

The lines representing these conditions are comparedwith those values for

the three grids in Fig. 31. The calibrations of the grids are given in

Table A.2.

It can be seen fromFig.31 that for cold flow conditions the values of

the grid resistances used in the air model studies are of the earrenagnitude.

The rrediumresistance grid has a1rrost identical characteristics to the type

of narine boiler tube banks analysed in the previous section. Presunab1y

for higher waste gas terrperatures, steeper slopes wouldbe observed for all

three grids, similar to those calculated for the tube banks for cold and

hot operating conditions. It is concluded, therefore, that t~£ range of

grids studied covered a range of practical characteristics which can be

encountered in marine boilers of both high and low ratings.
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TABLE A.2. Grid Calibrations

n ro Ua G Grid 1 Grid 2 Crid3
!

inches rt./sec. 1b./sec.ft.2 ins. w.g. ins. w.g. ins. w.g.

6 0.375 80 0.382 0.650 0.44- 0.110
6 0.375 70 0.334- 0.495 0.34 0.090
6 0.375 60 0.287 0.350 0.24- 0.060
6 0.375 50 0.239 0.235 0.18 0.055
6 0.375 40 0.191 0.170 0.12 0.025

6 0.25 120 0.253 0.310 0.205 0.050
6 0.25 80 0.169 0.140 0.100 0.035
6 0.25 70 0.147 0.110 0.063 0.025
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APfENDIX 4

Estimation of Errors due to Turbulence

In the present studies, the velocities treasured are nonentumflux

velocities which are based on the nean line drawnthrough the pressure

differential traces. Since the velocity is proportional to the square root

of the differential pressure, the rmmerrtumflux velocity 1ffj2 will be in

error if the turbulence ~s appreciable.

intensity given by Corrsin(46) was

The definition of turbulence

T = E-
O

where T = turbulence intensity

U' = turbulence velocity (deviation from man velocity U)

It follows that the titre meanaverage of U is zero since

U = u + U'

where U = instantaneous velocity.

In the case of the norrerrtum flux velocity recorded from pressure traces

The tine rrean of :u;a is not zero so VfPI will differ fromU. In these

error estizmtions it is assurred that SOIre measure of the turbulence is

indicated by the width of the pressure differential trace. If ~ p is the

differential corresponding to the meanline through a trace then

Momentumf'lux ve10cl.ty "{U'1 = K" 'I.{!rP by definition

where K" = probe constant
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Nowif ! ~Pt corresponds to the mean pressure differential of the turbulent

peaks we can define the norrerrtum flux turbulence intensity Tmas

Nowthe nrudmumand minimumvelocities will therefore, be Kt t Yll.p + ~Pt

and Kt' VlSp - l'.Pt respectively.

•• • -U = K"-2 + by sL~le average.

Simplification of this equation gives:-

Yu2-2
providing Tm< 1, which is true for the greater part of the pressure trace.

+ T am +=

A~near to zero velocities, the fluctuations often exceed the mean pressure

and in this case Tm> 1. The corresponding equation then becomes:-

= Y!l!
2

{11 + T am

WhenT »1 this equation reduces to

This equation indicates that considerable error can be introduced by assuming

u = "I{'fji' under highly turbulent conditions. In the present studies

measurements of velocity were not madeunder conditions of Tm> 1, except to

locate the position of zero velocity. Here, where T = co (U = 0) it is

assumed'that the momentumflux velocity will also be zero.
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In a systemwhere 'ij is the nean velocity and U~ is the turbulent

velocity, then the naxfmimand rnindmim velocities are (U + UI) and

(U - U') respectively. By squaring these velocities and taking the mean

we can obtain the momentunlflux velocity.

+ (U - Ut)2 ]

The definition of the turbulence intensity is U',tV and the equation can be

simplified to:-

= 'ij2 (1 + ~)

=
Hence from the two values of ~ / U we have:-

T 2m

This equation corroborates Corrsin Is observation (46) that the rraxdmim error

between the monerrtum flux velocity and the meanvelocity in a free jet is

12%which corresponds to a value of T = 0.57.

In the present studies, apart from forward flow - recirculation

boundaries, the ma.xim.un velocity fluctuations were about 75%of the mean

pressure differential (i.e. Tm = 0.75). This gives a value of T = 0.31

which is in accord with Laurence and Benninghoff's(39) conclusion that the

turbulence intensity of multiple nozzles is considerably less than in free

jets. The error involved in using the rromerrtum flux velocity rather tban

the IOOan velocity was therefore 4.5%whenTm = 0.75. It was concluded

that using the rmmerrtum flux velocity in the present research is valid

because the errors involved were quite small, and appreciable simplification

in the calculations and experimentation were made.
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Fig. No. 1 - Comparison of Multiple Free Jet
Data' with Free Jet rata of Hinze
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Fig. No. 2 - Diagram of Perspex Model used in
Multiple Enclosed Jet Studies
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Fig. No. 3 - Axial Decay of Velocity in Single
Enclosed Jets for Q from 0.063 to
0.446

Fig. No. 4. - Axial Decay of Velocity in Single
Enclosed Jets for Q from 0.486 to
0.669
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Fig. No.5 Recirculation in Single Enclosed
Jet Systems
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Fig. No. 6 Variation of Nozzle Velocity in
Multiple Enclosed Jets. Effect
on axial velocity decay when
R = 2", n = 6, r0 = 0.375"
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Fig. No.7 - Velocity Contours when R = 2",
n = 6, ro = 0.375" for nozzle
Reynolds Numbers from 11950 to
31900

Fig. No.8 - Velc:>cityeontour& wbenR = 2",
n~' 6,ro5:::0• 25" for nozzle
Reynolds Numbers from 10620 to
31900
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Fig. No. 9 - Effect of Pitch Oircle Radius of
Outer Nozzles when n = 6, ro = 0.375",
RjL from 0.375 to 0.656

Fig. No. 10 - Velocity Oontours when R/L = 0.656,
n = 6, ro = 0.2511
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Fig. No. 11 - 'Effeot of reduotion of number of
outer nozzles, n = 3~ for R/L ~
0.375 to 0.656, ro :;:0.375", and
R/L = 0.656, ro = 0.25"
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Fig. No. 12 - E~~ect of Grid 1 on Flow Patterns
whenR . = 2" , ro = 0.375" , n = 6,
Re = 27900 and X/L from 0.5 to 1.75

Fig. No. 13 - Initial Effect of Grid 1 on Axial
Velocity Decay, Re = 27900, R = 2" ,
ro = 0.375", n = 6, Grid Position
x/L = 1.75
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~ VERSUS X ( Re = 27900)

___ le centre Jet

. ....:- - - x cute r Jets
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FIG .13. It)LIL~\Ef[~~J v_F y..RIPON VELOCI_TY DEC_A~,



Fig. No. 14 -
,
t,

I
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Fig. No •.15 -

Fig. No. 16 -

Effect of Increased Grid Resistance
on Flow Patterns when x/L = 1to
1.75, Re = 27900, R = 2", ro = 0.375",
n = 6

Effect of decreased Grid Resistance
on Flow Patterns xjL = 0.75 to 1.75,
Re = 27900, R ::2", ro = 0.375" ,
n = 6

Effect of Grid Resistance on Axial
Velocity Decay when x/L = 1.25,
Re = 27900, R = 2" I ro = 0.375"
n = 6
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FIG. 1 ,6. EFFECT OF GRID RESISTANC E



Fig. No.• 17 - Effect of Grid 1 on Flow Patterns
when x/L = 1 to 1.75, Re = 31900,
R = 2", ro = 0.25" , n = 6

Fig. No. 18 - Effect o£ Grid 1 on Flow Patterhs
when x/L = 1 to 1.75, Re = 28700,
R = 2.625" J ro :::0.375", n :::6

Fig. No. 19 - Effect of Gl'id 1 on axial velocity
decay when x/L :::1.25, Re = 287001
R = 2.,625"', ro :::0.375'~ n :::6
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Fig. No.2') '" Comparison of axial velocity decay
of single and ltIultip1e J-ets, n = b
and G from 0"09 j to I 'J. 29

Fig. No. 21 - Comparison of anal velocity decay of
single and multiple jets when n = 3,
G from 0.08 to 0.22

Fig. No. 22 - Comparison of axial velocity decay of
single and multiple jets when n = 2,
G = 0.1 and 0.15
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Fig. No. 23 - Comparison of Recirculation in Single
and Multiple Enclosed Jet Systems
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Fig. No. 24 - Water Model Flow Patterns when
Re :.::14700, r8·:,::0.375", n = 6,
for R/L from .375 to 0.6;56 and
Grid 3 introduction at X!L :.::1
and 1.5 when.R/L :.::0.5



u~
If) .-.. If).-.... c.....o·_

. - 0 10
N r-- r-....

l.O<":1-ic:>
M ..- 0

'II II 11,"

C 0 ~ •:::>0::-"':-
Vl III
Z C
Cl:
w I 0
l-

I - ,l- I .

n:i \
eo

. lJ_ I

0;

-1-.
~;! N
0:: "
till
1,/)'
all

0;

->

o





i
_)
~j
:Ji
(/)1

>1







Fig. No. 25 ~ Temperature Profiles at Exit from
Tube Banks based on Flow Pattern
Studies, rojL = 0.094 for RIL =
0.375 to 0.656, n = 3 and 6
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Fig. No. 26 - Effect of Increased Swirl on a Single
Enclosed Jet Flow Pattern, ro = 0.375"
and Tangential Aiu input is varied from
to 45.1% of the total nozzle fluid
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Fig. No. 27 - Calibration Characteristics of the "T'
shaped Probe. Comparison with standard
pitot tube

Fig. No. 28 - Calibration Characteristics of the "T"
shaped Probe, Pitching and Yawing
Characteristics.
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Fig. No. 29' - Calibration of Ncaal.es
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Fig. No. 30 Calibration of Pressure Transducer
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Fig. No. 31 - Comparison of Resistance Charaoteristios
of the Grids with typical Marine Boiler
tube banks
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Fig. No. 32 - Simplified Diagram of Marine'Boiler
of the selectable Superheat type

•.. 1



to economser

J)ELEVA nON

o

o o

saturated
pass"

burners

FIG. 32



I

Plate No. 1 -, End View of SIrall Model a.ssembled for
calibra.tion of probe,

\





Plate No. 20. - General View of Large Perspex Model
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Plate No. 2b .View a.long axis ofmdel

..





Plate No. 3a - Sleeves used for nozzle radius var.iation

Plate No. 3b - . Modif:1eticentral nozzle used' for swirl
studies showing tangential injeotionports .
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Plate No.4 - LowResistance Grid (Grid 3)





Plate No.5 - Mediumand High Resistance Grids
(Grids 1 and 2)
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Plate No. 6 - .Traversing Rig and Probe ~sseIIibly
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Plate No. 7,- Water Model Photograph illustrating flow
.patterns when '"
Re ,= 14700, R = 2", ro = 0.375", n = 6
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Plate No.8 - Water Model Photograph illustrating
flow patterns when
x/L = 1.5, Re = 14700, R = 2",
ro = 0.375", n = 6 ~.
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Plate No. 9 - Water Model Photograph illustrating :f'low
. 'patterns when.
x/L = 1.0, Re = 14700, R =2", ro = 0.375"
n = 6 ..





Flate No. 10 - Selectable Superheat type :Ma.rineBoiler



BABCOCK & WILCOX LIMITED TYPICAL MARINE SELECTABLE SUPERHEAT BOILER


