

Design Patterns and Component Framework

for Building

 RTSJ-Based

Real-Time Middleware

Mohammed Fathi Alrahmawy

PhD

The University of York

Computer Science Department

YORK, UK

September 2010

Abstract
The middleware is a software layer located on top of the operating system that

uses its facilities, integrates with it, and extends its functionality in order to support the

development of effective and reliable distributed systems; however, the architectures of

most of the conventional middleware solutions, e.g. Java RMI, do not either offer the

predictability required to support the real-time behaviour in these systems, or the

reconfigurablity required for these middleware solutions to be applicable in a wide

range of distributed systems.

Java has a great support for building distributed systems; however, due to its

unpredictability, Java does not support building distributed real-time systems and

middleware solutions. Hence, this thesis argues that the RTSJ can be used to build

reusable and reconfigurable software components and design patterns that have high

levels of predictability and reliability. These proposed real-time components and design

patterns can be used for building real-time middleware solutions in Java. Therefore, the

RTSJ has to be used as a base for modifying the existing reconfigurable and reusable

software patterns and components for distribution models. It could also be used to

create a new set of these patterns and components, in order to support the real-time

behaviour and the predictability in the real-time middleware.

The key contributions in this thesis include the presentation of a component

framework design model for building RTSJ-based middleware and distributed systems;

this framework focuses mainly on the memory model, the communication model of

building the components and it also provides the management mechanism of these

components, which uses a set of design patterns that integrates with these models. This

includes a memory model for the RTSJ components associated with a set of reusability

and life-management sub-components that support building real-time components in

the RTSJ. Also, we provided a design of a real-time reconfigurable communication

component based on the RTSJ that can be used to support predictable low level remote

communications in distributed real-time Java applications and we showed how this

component could be integrated within the component model as a sub-component, to

provide communication services within the component model. Also, we presented our

own model of integrating both the framework and the component model within the

RMI architecture to provide a reconfigurable real-time Java RMI middleware based on

the RTSJ.

Table of Contents
Abstract ...

Chapter 1 .. 1

1.1 Overview of Distributed Real-Time Systems 3

1.1.1 Definitions of Real-Time Systems ... 4

1.1.2 Classification of Real-Time Systems ... 5

1.1.3 Definition of Distributed Real-Time Systems 7

1.2 Overview of Real-time Middleware .. 8

1.2.1 Definition of Middleware ... 8

1.2.2 Middleware Characteristics .. 9

1.2.3 Middleware Classifications .. 10

1.3 Motivations and Research Scope .. 13

1.4 Thesis Goals, Hypothesis and Contribution 15

1.5 Thesis Structure ... 17

1.6 Summary ... 20

Chapter 2 .. 21

2.1 Message Passing Paradigm ... 22

2.2 The Client Server Paradigm .. 26

2.3 The Peer-to-Peer Paradigm ... 27

2.4 The Message System Paradigm ... 30

2.5 Remote Procedure Call Paradigm (RPC) .. 34

2.6 The Distributed Object Paradigms .. 34

2.6.1 Remote Method Invocation (RMI) ... 35

2.6.2 The Network Service Paradigm ... 35

2.6.3 The Object Request Broker Paradigm (ORB) 36

2.7 Component Oriented Architecture (COA) Paradigm 36

2.8 The Application Server Paradigm ... 37

2.9 The Tuple Space (Object Space) Paradigm 38

2.10 The Collaborative Application (Groupware) Paradigm 41

2.11 Summary ... 42

Chapter 3 .. 45

3.1 Java and Real-Time systems ... 45

3.2 Overview of Java RMI System Architecture..................................... 48

3.2.1 RMI Layers .. 49

3.2.2 RMI Distributed Garbage Collection (DGC) 51

3.3 RMI Framework Implementation .. 52

3.3.1 RMI Client Implementation ... 52

3.3.2 RMI Server Implementation ... 53

3.4 Problems and Requirements of RMI in RT Systems 55

3.4.1 Java and JVM Requirements .. 55

3.4.2 RTSJ Support.. 57

3.4.3 RMI Tools .. 58

3.4.4 RMI programming model ... 58

3.4.5 RMI Implementation .. 60

3.5 Levels of Integrating RTSJ and RMI... 62

3.5.1 Level-0 Integration: Minimal Integration 63

3.5.2 Level-1 Integration: Real-Time RMI ... 63

3.5.3 Level-2 Integration: Distributed Real time threads 64

3.6 RT-RMI (Level-1) Models .. 68

3.6.1 Adaptations in the RMI-HRT ... 69

3.6.2 Adaptations in the RMI-QoS .. 72

3.7 RT-CORBA ... 75

3.7.1 RT-CORBA Features ... 75

3.7.2 RT-CORBA and the RTSJ ... 76

3.8 Summary .. 79

Chapter 4 ... 81

4.1 Real-time Java ... 81

4.2 Real-time Java Enhancements ... 82

4.2.1 Threads and Scheduling ... 82

4.2.2 Memory Management in the RTSJ ... 84

4.3 Component Based Software Engineering .. 90

4.3.1 Component Definition .. 91

4.3.2 Characteristics of the Components ... 92

4.3.3 Disadvantages of Components ... 93

4.3.4 Basics of Component Based Systems ... 94

4.3.5 Components in Real-time Systems ... 97

4.3.6 Components Models in Java for Distributed Systems 101

As we mentioned in the last chapters, Java language supports middleware

for distributed systems mainly in Java RMI and CORBA. The

component technology found its way in these two middleware

solutions, to support components in distributed systems. There are

mainly two component models built over these two middleware

solutions. These two models are: ... 101

4.3.7 Components in Real–time Java .. 101

4.4 Software Patterns ... 103

4.4.1 Definition of the Software Pattern ... 104

4.4.4 Classifications of Patterns .. 105

4.4.3 Combination of Patterns ... 107

4.4.4 Software Development Using Patterns....................................... 107

4.4.5 Patterns in Real-time Systems .. 108

4.4.6 Software Patterns and the RTSJ ... 110

4.5 Pros and Cons of using Software Design Patterns 111

4.5.1 Practical Benefits of using Design Patterns 111

4.5.2 Inhibitors to Patterns Applications ... 112

4.6 Summary ... 113

Chapter 5 .. 115

5.1 Components Framework Design Views .. 116

5.1.1 Business/Functional View .. 117

5.1.2 Thread Management View ... 118

5.1.3 Communication View .. 118

5.1.4 Memory Management View ... 120

5.1.5 Other Design Views ... 120

5.2 The Component Framework .. 121

5.2.1 The Component Meta Model ... 121

5.2.2 The Component .. 122

5.2.3 The Container ... 125

5.2.4 Interfaces .. 127

5.2.5 Memory Model ... 127

5.2.6 Component Composition and Communication 131

5.3 Memory Model Implementation ... 139

5.3.1 A Memory Sub-Component Model .. 140

5.3.2 Memory Integration with the Component framework Model 146

5.4 Object Allocation Management ... 147

5.4.1 The Design of the Reusable Object Allocator 148

5.5 Memory Model Lifetime Management ... 150

5.5.1 The ForkThread Pattern ... 151

5.5.2 The DualForkThread Pattern .. 158

5.5.3 The Memory Pinner Pattern ... 164

5.6 Reusability of Schedulable Objects ... 165

5.6.1 Pools of Reusable Schedulable Objects 166

5.6.2 Reusable Schedulable Objects Sub-Component 166

5.6.3 Reusable Stack Logic Sub-Components 168

5.7 Memory Contracts ... 171

5.8 Example: The Method Invoker .. 173

5.9 Summary .. 179

Chapter 6 ... 181

6.1 Basic Strategies for Network I/O in Distributed Systems 182

6.1.1 Strategies for issuing multiple I/O operations 183

6.1.2 Strategies for Handling Clients‘ Requests 187

6.1.3 Models of Network Communications Processing 189

6.2 Low Level NW Communication Support in Java............................ 190

6.2.1 Networking Package ... 191

6.2.2 Standard I/O Packages .. 192

6.2.3 Java NIO Package ... 194

6.3 Server Model Design Patterns ... 198

6.3.1 Multithreaded Synchronous Server .. 199

6.3.2 Non-blocking Synchronous Server ... 200

6.3.3 Non-blocking Asynchronous Server .. 201

6.4 Design of a Configurable Communicator Component 204

6.4.1 Internal Elements .. 204

6.4.2 Design and Configuration of the Component 207

6.4.3 Component Lifetime ... 220

6.5 Using the Framework in a Client-Server Application 232

6.5.1 The Client Side ... 232

6.5.2 The Server Side .. 244

6.6 Summary .. 249

Chapter 7 ... 251

7.1 Basic Patterns of Remote Communication 252

7.2 Extension Patterns of Remote Communication 254

7.2.1 Invocations Patterns .. 255

7.3 RMI-HRT Overview.. 259

7.3.1 The Broker Pattern ... 260

7.3.2 Configuration and Parameter Assignment Pattern 264

7.3.3 Marshaller ... 268

7.4 The Proposed Architecture of the RT-Middleware Model 272

7.4.1 Server Side ... 273

7.4.2 Client Side .. 277

7.5 The Modified RMI Protocol .. 283

7.5.1 Handshaking ... 283

7.5.2 Message Handling .. 285

7.5.3 Parameters Retrieval and Assignment .. 287

7.5.4 Call Execution .. 291

7.6 Models and Patterns of Executions in the RT Middleware 292

7.6.1 Models of Call Execution at the Client Side 293

7.6.2 Call Execution at Server Side ... 294

7.7 Call Handling of the Remote Method in the Stub 301

7.8 Representation of the Remote Call Data ... 304

7.9 Example: The Future Remote Call Pattern 307

7.9.1 The FutureObjectComp class ... 308

7.9.2 The Invocation/Access Operations ... 310

7.9.3 The Usage of the Future Call Pattern ... 318

7.10 Summary ... 323

Chapter 8 .. 327

8.1 Evaluation of the patterns of the component framework 328

8.1.1 Evaluation of the Forked Thread, Dual Forked thread and Memory

Pinner Patterns ... 329

8.1.2 Evaluation of the Executable Logic Stack Pattern 330

8.1.3 Evaluation of the Reusable Objects Allocator Pattern 333

8.1.4 Evaluation of the Multi Named-Object Pattern 335

8.1.5 Evaluation of the Reusable Executors Pattern 337

8.1.6 Evaluation of the Executors Pool Pattern 338

8.2 Communicator Component Memory Predictability 339

8.2.1 Creation Context Problems .. 339

8.2.2 Execution Context Problems .. 342

8.2.3 Solutions to the Memory Problems .. 347

8.3 Evaluating the memory model of the future calls 353

8.4 Empirical Evaluation ... 362

8.4.1 Comparing DualFork and WedgeThread Patterns 363

8.4.2 Response Time of the Communicator Component 364

8.4.3 The Priority Assignment of the of the Communicator 366

8.4.4 The Predictability of the Communicator in the Case of Multiple

Clients .. 367

8.5 Summary .. 379

Chapter 9 ... 381

9.1 Summary of the Key Thesis Contributions 383

9.2 Limitations of this work .. 386

9.3 Future Work ... 387

9.4 Final Word ... 388

Appendix A ... 393

A.1 The Component Model .. 393

A.2 The Container Model ... 401

A.3 The Forked Memory Model Pattern .. 403

A.4 The Reusable Objects Allocator Pattern .. 415

A.5 The Wedge Thread Pattern .. 419

A.6 The Dual Fork Thread Pattern ... 421

A.7 The Handlers Pool Pattern ... 429

A.8 The Reusable Runnable Stack Pattern ... 432

A.9 The Communicator‘s Events Handling Loop [NB mode] 435

A.10 The Communicator‘s Event Handling Loop [B mode] 437

A.11 The ClientLogic Class [Emulated Blocking Mode] 441

A.12 The AcceptLogic Class [Blocking Mode] 444

A.13 The ClientLogic Class [Non-Blocking Mode] 446

A.14 The AcceptLogic Class [Non-Blocking Mode] 449

References ... 453

List of Figures
Figure 1-1 Types of Real-time Systems .. 6

Figure 1-2 Middleware layers ... 12

Figure 2-1 Distributed Computing Paradigms and their Levels of Abstraction 22

Figure 2-2 Message Passing Paradigm .. 22

Figure 2-3 The Client Server Paradigm .. 26

Figure 2-4 The Peer To Peer Paradigm ... 28

Figure 2-5 JXTA Architecture .. 29

Figure 2-6 The Message System Paradigm ... 31

Figure 2-7 DDS provides a relational data model. .. 32

Figure 2-8 The Remote Procedure Call Paradigm .. 34

Figure 2-9 The Remote Method Invocation Paradigm .. 35

Figure 2-10 The Network Service Paradigm ... 35

Figure 2-11 The Object Request Broker Paradigm ... 36

Figure 2-12 Component Based Architecture Paradigm .. 36

Figure 2-13 The Application Server Paradigm ... 37

Figure 2-14 The Object Space Paradigm .. 38

Figure 2-15 The Collaborative Paradigm .. 41

Figure 3-1 The RMI Communication mechanism. ... 48

Figure 3-2 RMI Layers .. 49

Figure 3-3. RMI Model. -a- without Caching -b- with Caching 51

Figure 3-4 Classes of the Client in the RMI .. 53

Figure 3-5 Static Diagram of the RMI‘s Server classes .. 54

Figure 3-6 Level-0 of Integrating RTSJ and RMI ... 63

Figure 3-7 Level-1 of integrating RTSJ and RMI ... 64

Figure 3-8 Level-2 of Integrating RTSJ and the RMI ... 65

Figure 3-9 he Distributed Thread .. 66

Figure 3-10 RMI Memory Management Model for RMI-QoS 74

Figure 3-11 Real-Time CORBA Architecture .. 76

Figure 3-12 Scoped Memory Application- ORB Internal View 78

Figure 3-13 Scope Nesting the ORB of RTZEN ... 78

Figure 4-1 Class diagram of RTSJ's schedulable objects .. 83

Figure 4-2 Classes of Memory Areas in RTSJ .. 86

Figure 4-3 Scope Stack and Changing Context Methods .. 88

Figure 4-4 Example of memory Assignment Rules .. 89

Figure 5-1 the IComponent Interface .. 124

Figure 5-2 The Container and its inner components ... 125

Figure 5-3 The IContainer interface ... 126

Figure 5-4 Basic Component Memory Model ... 129

Figure 5-5 Simple Component Memory Model .. 131

Figure 5-6 shared Memory Model ... 132

Figure 5-7 Simple Composite Component Model. ... 132

Figure 5-8 Isolated Memory Model... 133

Figure 5-9 A class implementing the IBindController interface 134

Figure 5-10 Communication through a the CMA shared memory 134

Figure 5-11 Communication through a the ContMA shared memory 135

Figure 5-12 Communication through an attached scoped memory area 135

Figure 5-13 Component Attaching – case (a) .. 136

Figure 5-14 Component Attaching – case (b) ... 136

Figure 5-15 Remoting communication between components 137

Figure 5-16: Basic Component‘s Forked Memory Model .. 141

Figure 5-17 IMemoryModel interface ... 142

Figure 5-18 The Multi Named-Object Portal Pattern .. 146

Figure 5-19 Object recycler pattern ... 149

Figure 5-20: ForkThread Pattern ... 152

Figure 5-21 General Fork Pattern .. 156

Figure 5-22 ForkThread Sequence Diagram ... 155

Figure 5-23 Fork thread with fixed scoped memory list ... 157

Figure 5-24 Fork thread with append-only/remove-last scoped memory list 158

Figure 5-25 DualForkThread States [continued] ... 160

Figure 5-26 DualForkThread States .. 161

Figure 5-27: Activity Diagram of the DualForkThread Pattern 163

Figure 5-28 pattern used in run() method of reschedulable object. 168

Figure 5-29 code pattern used in the handleAsyncEvent() .. 168

Figure 5-30 the task‘s scoped memory stack ... 169

Figure 5-31 The Runnable Stack Pattern ... 170

Figure 5-32 Algorithm for the run() of the Runnable Stack .. 170

Figure 5-33 IStackLogic interface ... 171

Figure 5-34 A component class implementing the IStackLogic interface................... 172

Figure 5-35 The Hand-Off Pattern .. 174

Figure 5-36 The Mehod Invoker Example .. 174

Figure 6-1 Buffers in the User Space and Kernel Space ... 184

Figure 6-2 Execution of Synchronous I/O Operation ... 184

Figure 6-3 Execution of a non-blocking I/O Operation .. 186

Figure 6-4 Execution of Asynchronous Calls ... 187

Figure 6-5 Integration of Sockets with the Stream Model in Java 193

Figure 6-6 Basic Server Handling of Client Requests using Standard I/O Package ... 193

Figure 6-7 Direct and Non-Direct Byte Buffer Allocation ... 195

Figure 6-8 I/O Multiplexing using Selectors in Java NIO ... 197

Figure 6-9 Proactor Design Pattern ... 202

Figure 6-10 Elements of the Communicator Component ... 205

Figure 6-11 The Communicator as a sub-component ... 207

Figure 6-12 The Communicator as a separate Component ... 207

Figure 6-13 Interfaces of the Communicator Component ... 209

Figure 6-14 Communicator Class Diagram... 211

Figure 6-15 Handlers Class Hierarchy .. 219

Figure 6-16 The Asynchronous Proactive server model ... 228

Figure 6-17 Synchronous Reactive Mode ... 229

Figure 6-18 Multi-threaded – Emulated Design Mode ... 231

Figure 6-19 Multi-threaded-Direct Implementation Mode ... 230

Figure 6-20 Example Structure ... 232

Figure 6-21 The NWHandlerStackLogic class ... 236

Figure 6-22 ClientLogic [Emulated-Blocking] ... 239

Figure 6-23 The NWHandlerStackLogicStateMachine .. 240

Figure 6-24 ClientLogic [Non-Blocking] ... 242

Figure 6-25 AcceptLogic[Emulated-Blocking] ... 247

Figure 6-26 AcceptLogic [Non-Blocking] .. 248

Figure 7-1 Broker Pattern Architecture ... 253

Figure 7-2 Basic patterns of the remote communication .. 254

Figure 7-3 Synchronous Invocation Pattern .. 256

Figure 7-4 Asynchronous Fire and Forget Pattern .. 257

Figure 7-5 Synch with Server Pattern ... 257

Figure 7-6 Poll Object Pattern ... 258

Figure 7-7 Result Callback Pattern ... 259

Figure 7-8 Hierarchy of the Broker Pattern of the HRT-RMI open source model 261

Figure 7-9 Operations of the createClientReservation() Method 262

Figure 7-10 Call Handling at the Server Side ... 263

Figure 7-11 Predictable Serialization Classes ... 272

Figure 7-12 Proposed Model for the RMI-HRT Implementation 273

Figure 7-13 Changed Patterns of the HRT-RMI .. 274

Figure 7-14 Patterns in the new Server Object Model .. 276

Figure 7-15 Sharing the Communicator Component among several Server

 Components ... 276

Figure 7-16 Sharing a single communicator sub-component by multiple clients 279

Figure 7-17 Communicator Component at the Client Side ... 280

Figure 7-18 Modified RMI Protocol [Handshaking] ... 284

Figure 7-19 Modified RMI Protocol [Message Handling] .. 286

Figure 7-20 Modified RMI Protocol [Parameters Retrieval and Assignment] 288

Figure 7-21 Example of the Parameters Packet ... 290

Figure 7-22 Modified RMI Protocol [Call Execution] .. 292

Figure 7-23 RMI Executor Class .. 295

Figure 7-24 Pseudo code of the logic of Synchronous RMI Server 296

Figure 7-25 One Executor for all Requests Sequences ... 297

Figure 7-26 Pseudo Code of the Runnable logic (State Machine) of the Non-Blocking

RMI Server mode .. 298

Figure 7-27 One Executor per Request Sequence ... 300

Figure 7-28 Internal Stub structure .. 302

Figure 7-29 Decoded Format of the Remote Call ... 306

Figure 8-1 The Executable Runnable Stack Pattern (V1) ... 331

Figure 8-2 The Runnable Stack Pattern (V2) .. 331

Figure 8-3 registering a selection key.. 343

Figure 8-4 Selection-Operation ... 344

Figure 8-5 Cancelling a key .. 345

Figure 8-6 Creating a s new selected keys hash set ... 346

Figure 8-7. Nested Model .. 355

Figure 8-8 Fixed Nesting ... 358

Figure 8-9 Independent Forked Temporary Scoped Memory Model 360

Figure 8-11 Comparing DualFork and WedgeThread updating Times [SP] 370

Figure 8-12 Comparing the updating Times Predictability of both

 the DualFork and WedgeThread [MP]. .. 371

Figure 8-13 Emulated Predictability of the Response Time [Blocking Mode] 372

Figure 8-14 Emulated Predictability of the Response Time [Non-Blocking Mode]. .. 373

Figure 8-15 Predictability of the Response Time [Non-Blocking Model]. 374

Figure 8-16 Response time [NO RTSJ+SP+Blocking Mode] of two

 concurrent executing clients. .. 375

Figure 8-17 Response time [RTSJ+SP+Blocking Mode] of two concurrent

 executing clients where client1 priority (P1)< client2 priority (P2). 376

Figure 8-18 Response time [No RTSJ+MP+Blocking Mode] of two concurrent

executing clients where client1 priority (P1)< client2 priority (P2)............................ 377

Figure 8-19 Response time [RTSJ+MP+Blocking Mode] of two concurrent executing

clients where client1 priority (P1)< client2 priority (P2) .. 378

Acknowledgements

In the Name of Allah, the Most Gracious, the Most Merciful

Praise be to Allah, the Lord of the worlds, for His favour to me in completing

this thesis, praying Him to accept this work from me as a service for His sake, and for

the benefit of mankind, and I thank Him for supporting, helping, and guiding me, not

just in completing this thesis, but in my entire life from birth to death, and I ask Him

for His mercy and forgiveness, and I pray to Him to guide me to the Straight Path in

this life and in the Hereafter.

There are many people I would like to thank who have contributed to this

thesis in various ways.

Firstly, I would like to thank deeply my parents, who helped, guided, and

supported me all my life. Deep thanks especially for my mother, for the encouragement

she provided and the sacrifices she made to help me and my sister after my father

passed away, which without, I would not be able to achieve my goals and to overcome

the difficult times during the PhD journey.

I would like to thank my family, my wife Shaymaa and my two little daughters;

Mennat-Allah and Toqa, for their patience, sacrifices and support. I also thank my

sister Ghada and her children; Yara, and Yousef, for encouraging and supporting me

throughout my PhD.

I would like to thank my supervisor, Prof. Andy Wellings, who has guided and

supported me in various aspects through the entire journey in completion of my thesis

work.

I would like to thank the Egyptian Government who provided the funding and

the support for my work.

I would like to thank all my friends and colleagues in the University of York,

particularly the members of the Real-time systems group, who provided me with the

help, the advice, and the support during my studies, which made this entire journey

much more enjoyable.

At last, but not the least, I would like to thank all my friends, both in my

country Egypt, and in the city of York, for their help and support especially during the

difficult times during the PhD journey.

Declaration
This thesis has not previously been accepted in substance for any degree, and it

is not concurrently submitted in candidature for any degree other than degree of Doctor

of Philosophy of the University of York. This thesis is the result of my own

investigations, except where otherwise stated. Other sources are acknowledged by

explicit references.

Some of the material presented in this thesis has previously been published as follows:

1- Chapter 2, 3, 4 are extension to the material previously published as a technical

report entitled ―Real-time Middleware‖ (Computer Science Department,

University of York, MPhil, DPhil ―Qualification Dissertation, 2006).

2- Chapter 5 is an extension on the work presented in (Alrahmawy and Wellings

2007; Alrahmawy and Wellings 2009).

3- Chapter 6 is based on the work published in (Alrahmawy and Wellings 2009)

All of these publications were written by me with advice from my supervisor, Prof

Andy Wellings.

I hereby give consent for my thesis, if accepted, to be made available for

photocopying and for inter-library loan, and for the title and summary to be made

available to outside organisations.

Signed ……. (candidate)

Date ……. .

-1-

 Chapter 1

Introduction

The need for distributed applications is of major concern, and this need is

increasing rapidly nowadays and will continue to increase in the next generations. In a

wide range of these distributed applications there is an increasing demand for real-time

support. At the moment, over 99% of all the microprocessors are used within

networked embedded systems (Burns and Wellings 2001) that control, in real time;

physical, chemical, biological, or defense processes and devices. This has resulted in a

new set of distributed applications known as distributed real time embedded systems

(DRE) that need strong support of real-time behavior. Examples of such systems

include (Krishna, Schmidt et al. 2003).

1. Telecommunications networks (e.g. wireless phone services)

2. Telemedicine (e.g. robotic surgery)

3. Process automation (e.g. hot rolling mills)

4. Multimedia streaming (e.g. web broadcasting)

5. Avionic systems (e.g. flight guidance and control systems)

6. Defense applications (e.g. total ship computing environments)

The complexity of distributed systems complicates their development and

testing, as many of the current languages and tools used for building such systems have

low levels of abstraction. Also, the use of highly specialized technologies can make it

hard to adapt the software to meet new functional or QoS requirements,

hardware/software technology innovation, or emerging market opportunity.

One of the most successful strategies used to simplify and speedup distributed

software development is the use of middleware solutions. However, the process of

building and designing middleware solutions itself is not an easy task, as different

distributed systems have different requirements. Hence, it is difficult to build a single

middleware that can be used in all distributed systems. So, in order to ease the building

of reliable and efficient middleware solutions and distributed systems, there is a need

Chapter 1

-2-

for defining and constructing tested and generalized reconfigurable software constructs

that can be used in building such systems.

The development of efficient middleware architectures that ease, enhance, and

speed up the building of distributed systems in general and in particular for developing

distributed real time systems is a common challenge. Reusable software patterns and

components technologies are two main technologies that integrate together in order to

provide reusable software constructs for building software systems. Therefore, these

technologies have been widely used for developing many conventional middleware

solutions.

However, the conventional middleware solutions have been found not to be

suitable to build most of the distributed real-time and embedded systems. One of the

main reasons of this, is that the conventional technologies of software design patterns,

and components off the shelf (COTS) used in building such middleware solutions have

been found unsuitable for use in DRE systems due to either being (Schmidt 2002):

- Flexible and Standard; but incapable of guaranteeing stringent QoS demands,

which restricts assurability.

- Partially QoS-Enabled; but inflexible and non-standard, which restricts

adaptability and affordability.

An additional important challenge that faces the development of middleware

solutions is the complexity of building reliable communication mechanisms and

paradigms over the networks. Hence, many programming languages provide integrated

communication and networking mechanisms to ease the development of distributed

software systems (for example, Java and Ada).

The Java language is one of the best programming languages in providing

integrated communication and networking mechanisms. There are many distribution

middleware solutions built using Java. RMI is the basic middleware provided in the

Java language, and many other distribution middleware solutions have been

implemented over it. However, in addition to the unpredictability of the Java language

and the lack of support of QoS guarantees or the end-to-end timeliness, the Java

middleware solutions have not been widely used to build distributed real-time systems.

So there is a high demand for enhancing the Java middleware technologies, particularly

RMI, to push it for use in distributed real-time systems. We aim in this research to see

how the use of the Real-Time Specification of Java can help to build real-time

reconfigurable middleware in Java.

Chapter 1

-3-

1.1 Overview of Distributed Real-Time Systems

The revolution in the communications and software technologies caused

distributed real time systems to grow in size and complexity. The development of

distributed embedded real-time systems faces key technical challenges. One of these

major challenges is satisfying multiple QoS requirements in real-time. Examples of

QoS requirements include (Wang, Schmidt et al. 2003):

- Real-time requirements; that guarantee the end-to-end timeliness, low latency and

bounded jitter.

- High availability requirements; such as fault propagation/recovery and load

balancing across distribution boundaries.

- Physical requirements; such as limited weight, power consumption, and memory

foot print.

To ensure that the DRE systems can achieve their QoS requirements, various

types of QoS provisioning must be performed to allocate and manage system

computing and communication resources end-to-end. This can be performed in the

following ways (Wang, Parameswaran et al. 2001):

- Statically; by ensuring that adequate resources required to support a particular

degree of QoS is pre-configured into an application. Examples of this are task

prioritization and communication bandwidth reservation.

- Dynamically; where the resources required are determined and adjusted at run time.

Examples of dynamic QoS provisioning include; run time reallocation and re-

prioritization to handle burst CPU load, and competing network traffic demands.

Due their characteristics, reliability is of a major concern in real-time system.

Reliability of a system is a measure of success of how the behaviour of this system

meets its required specification; hence, system specification should be complete,

consistent, comprehensible, and unambiguous; otherwise, the behavior of the system

deviates from that which is specified for it, this deviation is called a failure. Failures

result from unexpected problems internal to the system, which eventually manifest

themselves in the system‘s external behavior. These problems are called errors, and

their mechanical or algorithmic causes are called faults. In general, any system is

usually composed of components, each of these components may be considered itself

as a smaller system; hence, a failure in any of those smaller systems may lead to a fault

in another, which results in an error and potential failure of that system. This in turn

introduces a fault into any surrounding system and so on. (Burns and Wellings 2001).

Chapter 1

-4-

Real-time middleware is categorized as a subset of distributed real-time

systems. This means real-time middleware has all the characteristics of both real-time

systems and distributed systems with additional properties that specializes it. In this

section we aim to discuss the basic definitions and properties of both real time systems

and distributed real time systems in order understand the characteristics of real-time

middleware, then we will show some middleware definitions that identify its specific

properties.

1.1.1 Definitions of Real-Time Systems

There are several definitions of real time systems amongst different groups,

such as vendors, software developers, practitioners, academics, researchers and so

forth. Some of these definitions are given below.

The Oxford dictionary of computing offers the definition as:

"It is a system in which the time at which the output is

produced is significant. This is usually because the input corresponds

to some movement in the physical world, and the output has to relate to

that same movement. The lag (delay) from the input time to output time

must be sufficiently small for acceptable timeliness".

The above definition covers different types of systems, from workstations

running under UNIX operating systems, where the user expects to receive a response

within a few seconds, to aircraft engine control systems which must respond within a

specified time. Failure to do so could cause the loss of control and possibility loss of

passengers lives (Palue 2002).

A second definition was presented in the Journal of Systems and Control

Engineering, and it defines real-time systems as follows (Cooling 1991):

"Real-Time Systems are those which must produce correct

responses within a definite time limit. Should computer responses

exceed these time bounds then performance degradation and/or

malfunctions results."

From a software developer point of view, the following is an alternative

definition to the above, presented in (Palue 2002):

"Real-Time Systems read inputs from the plant (a physical

system to be computer controlled, e.g. robot, supermarket automated

Chapter 1

-5-

entrance sliding door, factory automation process, digital camera and

so forth) and sends control signals to the plant at times determined by

plant operational considerations - not at times limited by the

capabilities of the computer systems".

From all the above, we can see that all the definitions of real-time systems are

referring to the systems that have execution time constraints, which have to be satisfied

otherwise the system performance would degrade and it might fail to provide its

predicted functionality required from it.

1.1.2 Classification of Real-Time Systems

As concluded from their definition, real time systems are systems in which

time plays a critical role in its functionality. A distinction can be made among those

systems which will suffer a critical failure if time constraints are violated (hard or

immediate real-time), and those which will not (soft real-time). It is important to note

that hard versus soft real-time does not necessarily relate to the length of time available

(Laplante 2004). A machine may overheat if a processor does not turn on cooling

within 15 minutes (hard real-time). On the other hand, a network interface card may

lose buffered data if it is not read within a fraction of a second, but the data can be

resent over the network if needed, without affecting a critical operation, perhaps

without a delay noticeable to the user. According to this, the following definitions were

presented for the different types of the real-time systems:

- Soft Real time System: This type of systems was defined in (Laplante 2004) as;

"A soft real-time system is one in which performance is

degraded but not destroyed by failure to meet response-time

constraints"

This definition means that missing even many deadlines will not lead to

catastrophic failure, only degraded performance. Hence, a soft deadline will often have

a few characteristics, which describe the deadline (Newcombe and Seraj 2002)

including the deadline itself, the upper bound on the probability of missing the

deadline, and an upper bound on the lateness of the delivery.

- Hard Real-Time System: This type of the real-time systems has a high level of

timing constraints as seen in the following definitions (Laplante 2004);

"A hard real-time system is one in which failure to meet a

single deadline may lead to complete and catastrophic system failure"

Chapter 1

-6-

For instance, missing the deadline to launch the missile within a specified time

after pressing the button can cause the target to be missed, which will result in

catastrophe.

- Firm Real time System: Several definitions of firm real-time systems exist. In

(Laplante 2004) it is defined as;

 "A firm real-time system is one in which a few missed

deadlines will not lead to total failure, but missing more than a few

may lead to complete and catastrophic system failure”. For instance

missing critical navigation deadlines causes the robot to veer

hopelessly out of control and damage crops"

A slightly different definition is found in (Burns and Wellings 2001), where it

is defined as:

"A deadline that can be missed occasionally, but in which

there is no benefit from late delivery, is called firm."

A third definition is found in (Newcombe and Seraj 2002), defines it as:

"The firm real time is a variation of soft real time system. The

firm real time system will recover from a missed deadline but once the

deadline is missed, the activity is stopped. It is important to note that

the obvious objective is to meet these deadlines but failure to do so is

not catastrophic"

In conclusion, according to the above definitions of real-time systems types, we

can represent the real time systems as shown in the diagram in Figure 1-1, which shows

the relation between the correctness-value of the system against the number of

deadlines.

V
a

lu
e

Time

Hard

Soft

Firm

Deadline

Catastrophic

Limited

0

V
a

lu
e

No. of DeadLines

Hard

Soft

Firm

Catastrophic

Limited

1

(a) Value vs. Time Relation (b Value vs. No. of Missed Deadline Relation

Figure 1-1 Types of Real-time Systems

Chapter 1

-7-

1.1.3 Definition of Distributed Real-Time Systems

Distributed real time systems are a special category of real time systems that

apply the real-time constraints defined for real time systems to distributed systems. So,

a definition for distributed system is needed first before providing a definition of such

systems. As it was in the case for the real-time systems, there are many definitions of

the distributed systems that say similar things; some of these definitions are given

below:

In (Burns and Wellings 2001) a distributed system is defined to be:

"It is a system of multiple autonomous processing elements

cooperating in a common purpose or to achieve a common goal."

 This definition is a wide definition of a distributed system, without descending

to details of physical dispersion, means of communication and so on.

Another definition of distributed systems is found in (FOLDOC 1994) as:

 "It is a collection of (probably heterogeneous) automata

whose distribution is transparent to the user so that the system appears

as one local machine. This is in contrast to a network, where the user

is aware that there are several machines, and their location, storage

replication, load balancing and functionality is not transparent.

Distributed systems usually use some kind of client-server

organization"

A third detailed definition of distributed systems is found in (Microsoft 2002),

and defines the distributed systems as:

 "A non-centralized network consisting of numerous computers

that can communicate with one another and that appear to users as

parts of a single, large, accessible ‘general storehouse’ of shared

hardware, software, and data. A distributed system is conceptually the

opposite of a centralized, or monolithic, system in which clients

connect to a single central computer, such as a mainframe."

As they are concerning distributed systems in general, the above definitions do

not say anything related to real time. However, we can consider distributed real-time

systems as a system that has a combined definition of both real-time systems and

http://onlinedictionary.datasegment.com/word/client-server

Chapter 1

-8-

distributed systems. For example, one of the more explanatory and specific definition

co-related to real-time systems defines distributed real time system as(Urbano 2002):

 "A distributed real-time system is an integrated system

composed of a set of dedicated hardware that monitors real-world

processes; acts and reacts on events respecting time requirements. The

elements of such system are inherently concurrent, and the need of

synchronization arises when co-operation is required. The co-

ordination of action between the elements is achieved using a shared

resource such as a communication channel in which the elements

exchange data and messages. "

1.2 Overview of Real-time Middleware

As stated before, middleware technology has a set of characteristics and

properties that are specific to it and make it different from other types of distributed

systems; here we have discussed these characteristics, then we will consider how the

different types of the middleware can be classified from different points of views.

1.2.1 Definition of Middleware

Many interesting definitions of middleware exist, all centered on sets of tools

and data that help applications use networked resources and services. This breadth of

meaning is reflected in the following working definition provided by :

 "Middleware is the intersection of the stuff that network

engineers don't want to do with the stuff that application developers

don't want to do"

In (The Computing dictionary 2010) middleware is defined from a functional

point of view as:

 "It is software that functions as a conversion or translation

layer. It is also a consolidator and integrator”

Gartner Group (commercial software provider) (Gartner Inc 2001) defines middleware

as:

"It is run time system software that directly enables

application level interactions among programs in a distributed

computing environment"

Chapter 1

-9-

In (Schantz and Schmidt 2001) it as defined as follows:

"Middleware is reusable software that resides between

applications and the underlying operating system, network protocol

stacks, and hardware"

1.2.2 Middleware Characteristics

The purpose of using middleware is to isolate the application from the platform

specific differences, both hardware and software, and provide facilities to hide the

undesirable aspects of distribution. These are often referred to as distribution

transparency mechanisms that can be classified into the following different aspects

(Macmillan 1995):

- Location Transparency: masking the physical locations from services.

- Access Transparency: masking differences in representation and operation of the

invocation mechanisms.

- Concurrency Transparency: masking overlapped execution.

- Replication Transparency: masking redundancy of the resources.

- Failure Transparency: masking recovery of services after failure.

- Resource Transparency: masking changes in the representation of a service and

resources used to support it.

- Migration Transparency: masking movement of service from one application to

another.

- Federation Transparency: masking administrative and technology boundaries.

Properly developed and deployed middleware can reduce the task of

developing distributed applications and systems by helping to (Wang, Schmidt et al.

2003):

 1- Provide a set of capabilities closer to the application design level abstractions to

simplify the development of distributed applications.

 2- Manage system resources by using higher-levels of abstractions.

 3- Avoid the use of the low level, tedious and error-prone platform details.

 4- Reduce system-lifecycle costs by building trusted reusable software patterns.

 5- Provide a wide array of the ready to use services for developers.

 6- Ease the integration and interoperability of software over diverse heterogeneous

and separated environments.

 7- Provides industry-wide standards for the higher levels abstraction of portable

software.

Chapter 1

-10-

1.2.3 Middleware Classifications

Several standardization efforts are ongoing in several areas of middleware.

These efforts have resulted in different classifications of middleware. Some of these

classifications are discussed below.

A- Architectural-Based Classification

A classical classification of middleware solutions classifies them according to

their design and architectural elements used to build them as follows (Duran-Limon,

Blair et al. 2004):

- Remote Procedure Calls Middleware (RPCM): By allowing procedures in

heterogeneous distributed platform to be called as if they were local. For example many

operating systems support the Open Group‘s DCE Standard.

- Transaction-oriented Middleware (TOM): Aims to interconnect heterogeneous

database systems, offering high performance, availability and ensure data integrity

database systems.

- Message-Oriented Middleware (MOM): Provides asynchronous rather than

synchronous interactions.

- Object-Oriented Middleware (OOM): Supports the remote invocation of object

methods. CORBA, Java RMI, DOCM, and .NET are important OOM platforms.

- Component Oriented Middleware (COM): Enables reusable services to be

composed, configured and installed to create distributed applications rapidly and

robustly. Examples of these technologies include the CORBA component model

(CCM) and the Enterprise Java Beans (EJB).

B- Heterogeneity-Based Classification

A broader approach for classifying middleware was defined in (Medvidovic

2003) according to the type of heterogeneity as follows:

- Platform heterogeneity. Middleware can allow communication among components

running on different platforms. For example, many CORBA ORBs have compatible

implementations on various flavors of UNIX, Windows, etc. Java based middleware

like RMI (Plášil and Stal 1998) also allow this, but depends on the portability of the

underlying virtual machine.

- Language heterogeneity. Middleware can allow communication among

components written in different programming languages. Microsoft‘s COM, for

example, allows communication among components written in Visual Basic, C++, and

Chapter 1

-11-

other Microsoft languages. In contrast, RMI middleware allows communication among

components written in Java only.

- Connectivity heterogeneity. Middleware can allow the ability to store-and-forward

information. This middleware is useful for connecting components with unreliable

network connectivity to other components or components that are nomadic. For

instance, QoS-enabled middleware for media delivery can download sample

multimedia stream that is viewable by someone with 56kbit connection.

C- Classification According to the Non-functional Requirements

A middleware taxonomy with respect to non-functional requirements can be

found in (FP6IPRUNES 2005); it depends on the fact that middleware itself is a

distributed system that needs to meet the requirements of any type of distributed

system. So any middleware can be evaluated and classified according to whether, and

in what degree, it can meet each individual requirement. These requirements are

(Huston and Schmidt 2001; FP6IPRUNES 2005):

- Heterogeneity; The capability of working in different programming languages,

running on different operating systems and executing on different hardware platforms.

- Openness; The capability to extend and modify the functionality of the middleware.

- Scalability; The ability of the system to accommodate a higher load at some time in

the future.

- Failure handling; the ability to recover from faults without halting the system.

- Security; Mechanisms such as authentication, authorization, and accounting

functions may be an important part of the middleware in order to intelligently control to

system resources, enforcing policies, etc.

- Performance; It can constitute a requirement of the middleware in various

situations as in QoS and real-time systems.

- Adaptability. The presence of adaption mechanisms within middleware may be

needed to cope with changes in the applications‘ and users‘ requirements.

- Feasibility. Constraints of available resources may limit the feasibility of

performing certain tasks or offering certain services in a given environment.

D- Layered-Based Classification

Just as a networking protocol stack can be decomposed into multiple layers, a

specific classification that is specific to the Object Oriented Middleware was presented

in (Schmidt 2002), and decomposes middleware into multiple layers, shown in

Figure 1-2.

Chapter 1

-12-

Applications

Domain Services

Common Services

Distribution

Host Infrastructure

OS & Protocols

HW Devices

M
id

d
le

w
e

 L
a

y
e

rs

Figure 1-2 Middleware layers

According to this classification, the common hierarchy of object-oriented

middleware includes the layers described below:

- Host Infrastructure Middleware; encapsulates and enhances native OS

communication and concurrency mechanisms to create portable and reusable network

programming components, such as monitor objects and active objects. These

components help eliminate many tedious, error-prone and non-portable aspects of

developing and maintaining networked applications; via low level OS programming

(e.g. Java virtual machines).

- Distribution Middleware; defines higher-level distributed programming models

whose reusable APIs and mechanisms automate and extend the native OS network

programming capabilities encapsulated by host infrastructure middleware. It enables

developers to program distributed applications much like standalone applications, i.e.;

by enabling the invocation of operations from target objects regardless of location, OS

platform and communication protocols (e.g. CORBA and Java RMI).

- Common Middleware Services; extends distribution middleware by defining

higher level domain-independent reusable components that allow application

developers to concentrate on programming application logic, without the need to write

the plumbing code needed to develop distributed applications by using lower level

middleware features directly. It focuses on allocating, scheduling, and coordinating

various end-to-end resources throughout the distributed system using a component

programming and scripting model (e.g. CORBA Services, CORBA component Model).

- Domain Specific Middleware Services; these services are tailored to the

requirements of a particular DRE system domains, such as avionics mission computing,

telecommunications, e-commerce, health care, etc. Boeing Bold Stroke architecture for

mission computing avionics capabilities is an example of such middleware services

(Sharp 1998).

Chapter 1

-13-

1.3 Motivations and Research Scope

The Java programming language is one of those languages that support the

mapping of operating systems facilities for communication and networking facilities,

e.g. sockets, into very efficient and highly abstracted libraries, which are easy to use by

developers. This support, along with Java‘s strong semantics and object-oriented

programming model, and its support for building reusable components, has resulted in

Java being one of the first choices for distributed software designers and developers

when building highly efficient non-real-time middleware for distributed systems.

Java not only provides packages that abstract the low level communication

operations offered by operating systems, but also, it comes with a remote

communication middleware solution, the Java RMI. Java RMI is a middleware that

enable the invocation of methods defined in remote objects that exist on remote nodes,

as if they are invocations to local methods, i.e.; it hides the complexity of using the low

level operations such as the initiation of the connection, the transfer of objects into

bytes to be sent over the network, the locating of the remote method, the passing of

arguments to it, executing it, and the return of the result from the server object to the

client as bytes over the network, and then it rebuilds the returned object and delivers it

to the client.

The importance of Java RMI is not just because it has the basic middleware

that is presented in Java, but also because it represents the base layer of other advanced

middleware solutions that have higher level of abstractions such as Jini. So, developing

real-time RMI is a key element for building advanced real-time middleware solutions

in Java.

However, the conventional Java RMI middleware implementation is lacking a

lot of the important features required for real-time systems. The most essential reasons

for this are:

1- Java RMI is built using the Java language, so it inherits the unpredictability of the

Java language, which was the reason that Java has not found the same success in

building real-time systems; this unpredictability is due to the lack of support of

predictable memory and scheduling models.

2- The software patterns used for the implementation of the Java RMI both at the

server side and the client side use only a single model of communication, blocking

communication, which is not suitable for many distributed real-time systems.

Chapter 1

-14-

3- Java RMI has no built-in mechanism to guarantee the required end-to-end timelines

of the remote call execution.

Much of research has been attempted to overcome the unpredictability of the

Java language. This research has resulted in the release of the Real-Time Specification

for Java (RTSJ) (G. Bollella, B. Brosgol et al. 2006), that has been proposed to provide

the required extensions necessary to be integrated with the Java platform to provide

more predictability.

The RTSJ is an extension to Java that aims to solve the unpredictability

problems of Java and to support the real-time concepts and requirements directly in the

language itself. The RTSJ provides a predictable memory model that uses scoped

memory areas to avoid the unpredictability due to the garbage collector. Also, RTSJ

defines a scheduling model that provides an integrated real-time scheduler and

predictable schedulable objects.

However, the RTSJ has not targeted distributed systems, as it focused only on

centralized systems. Hence, using it to build real-time RMI middleware faces additional

challenges to the above challenges, not only due to the real-time constraints, but also

due to its new memory model and scheduling model. This is because:

1- The currently used patterns and components in the current Java-based middleware

solutions require modifications to the existing architectural patterns and models used to

build them, or even the invention of new ones, in order to be able to provide the

patterns necessary to build reusable software components.

2- Building reusable software components in RTSJ for real-time systems using the

current component-based systems strategies is a complicated task, and it is not easy to

enforce the use of the RTSJ rules into them, especially when components integrate

together.

3- Most of current communication and networking technologies have been designed

and built without, or with a limited, consideration of supporting real-time behavior.

However, RTSJ is silent on providing communication mechanisms suitable for

distributed real-time systems.

4- The diversity of the types, platforms and requirements of distributed real-time

systems, requires flexible and reconfigurable architectures of both the middleware and

the software components that can be easily configured by the developer in order to be

used according to the requirements of the target distributed system.

Chapter 1

-15-

Therefore, in order to integrate Java RMI with the RTSJ, researchers in (A.

Wellings April 2002) proposed three levels of integration (the three levels are discussed

in chapter 3). Also, in (Clark, Jensen et al. 2002) the users proposed an extension of the

Java RMI model that adopts the distributed thread model as a base for the distributed

real-time specification of Java, DRTSJ. There is still much work needed to cover all the

aspects needed to support a complete model for the real-time RMI.

1.4 Thesis Goals, Hypothesis and Contribution

The Java-based middleware technologies, particularly Java RMI, have been

shown to be appropriate for building distributed systems. However, due to both the

unpredictability of the Java language and the unpredictability of the software patterns

used in building them, they are not suitable for building distributed real-time systems.

In addition to the unpredictability, many of the software patterns used for building Java

middleware solutions are not flexible enough to be used in the wide range of distributed

real-time systems that have different architectures, requirements and functionalities. So,

building distributed real-time systems in Java requires not just a real-time support from

the language itself, but it needs a set of reusable and reconfigurable software models

and constructs for distribution. These software models must have high degree of

predictability in order to ease the development of these real-time systems.

The presentation of the RTSJ is a promising step toward taking the Java

language to the area of developing real-time systems, since it provides predictable

scheduling and memory management models that are integrated within the language

itself. So, our first goal in this thesis is to determine the extent to which new memory

and scheduling models in the RTSJ can be used to build an RTSJ-based real-time

middleware with high levels of abstraction, and how the RTSJ features and the real-

time requirements of the middleware can affect the design phases of building it.

Since the RTSJ memory and scheduling models have a set of constraints and

rules, the current design patterns and component models cannot be directly used within

the RTSJ-based real-time middleware solutions. Hence, our second goal is to provide

reusable software design patterns and simplified component models that support

building reusable components models that are compatible with the RTSJ memory

models and hides its complexity.

Also, as the communication mechanisms of distributed systems can affect

greatly the predictability of the system, one of our goals is to see how the RTSJ can be

integrated with efficient communication software patterns to build a reusable and

Chapter 1

-16-

predictable communication software facility that offers different mechanisms of

communications, that enable the developer either to use it directly within a distributed

real-time system or to use it as the communication layer of a real-time middleware

solution of higher abstraction.

Finally, Java RMI is not just the main distribution middleware in Java, but also,

it has been used as an underlying layer in many Java-based distribution middleware

solutions that have higher levels of abstractions, e.g. Jini. Hence, one of our main goals

is to investigate its architecture to find out the sources of the unpredictability in it, and

then provide a proposal for the changes and enhancements required of the software

patterns used for building it; both at the server side and the client side parts of it, in

order to provide a real-time model of it.

In relation to above goals, the thesis is stated in the following:

"The Java platform does not provide sufficient support for

building real-time middleware for distributed real-time applications in

general, and particularly the middleware solutions. However, it is

possible to enhance the Java platform’s ability to build such real-time

middleware solutions, by building a component framework that

supports building real-time components, where these components are

built using predictable RTSJ-based design patterns. This framework

can support the building of simplified and flexible reusable

components, which hide the complexity of the RTSJ memory and

scheduling models, in addition to supporting configurable and flexible

low-level communication services that can integrate with the

component model, to implement higher middleware models such as

RMI, in order to support building distributed real-time applications"

In order to support this hypothesis, the thesis provides the following

contributions:

In order to support the RTSJ based component-oriented real-time applications, we

propose a component framework model that integrates the real-time requirements into

the component model, and abstracts the complexity of the RTSJ using carefully

selected design patterns. In this framework, we propose a memory model for the

internal design of the RTSJ-based components and we associate with it a set of design

patterns that integrate with the memory model; including a novel set of patterns for

managing the life-time of the memory model, including the ForkThread, Dual

Chapter 1

-17-

ForkThread, Pinnable Scoped Memory, the Runnable Stack pattern and patterns for

easy memory sharing within the component.

Then, we present a model for a configurable real-time communication component

based on the RTSJ, the Real-Time Communicator, which can be used either as a

separate component or as a sub-component within other components. The design of this

component adopts the non-blocking mechanisms of communication as its basic model

for supporting communication; which is more efficient for real-time systems. The

flexible structure of the component enables configuring the component to use it for

other models of communications; e.g. blocking synchronous by emulating these models

within the component‘s internal elements. The component supports two modes, a server

mode to accept connections and a client mode to initiate connections, while, the

handling of the communications events is done internally using a pool of RTSJ

schedulable objects to limit the concurrency, and to ensure the predictability.

We provide a new architecture of the Java RMI that evaluates the real-time

communication model and the component model by using it at both the server side and

the client side. This proposed Java RMI architecture inherits the efficiency and the

predictability of the communicator component and can work in several configurations

both at the server side for handling the calls, and at the client side for invoking calls.

The model supports using the FUTURE objects design pattern to enable the use of the

POLL object invocation pattern for making non-blocking calls where the RTSJ model

of this invocation pattern is integrated within the stub of the remote object at the client

side.

We propose an architecture in which the same communication component can be used

by several stubs at the same time.

We provide an evaluation of the use of our forked memory model and its associated

lifetime management models, e.g. ForkThread, Dual ForkThread, Pinnable Scoped

Memory, etc. within the stub to specify the constraints of using them.

1.5 Thesis Structure

In order to prove the above thesis hypothesis, the thesis is set out as follows: In

chapter 2 and chapter 3 the general and specific approaches for presenting middleware

for real time systems are presented. In chapter 2, a hierarchy of middleware paradigms

is presented, this hierarchy categorizes the general paradigms of middleware into layers

presented from the lowest level to the highest level of abstraction, where for each layer

of abstraction we provide the main structural patterns of the middleware technologies

lying in this layer associated with the efforts made, within our knowledge, to support

the real-time behaviour within these middleware technologies. Then, in chapter 3, we

Chapter 1

-18-

investigate why Java is an efficient language for building distributed systems but not

real-time distributed systems; then we provide a brief overview of the architectures of

the distributed object paradigm in Java; e.g. Java RMI and CORBA, as they are the

most widely used and efficient paradigm for remote communication. Then we

investigate in details the reasons that make these middleware technologies not

predictable, where our investigation will focus mainly on the problems and

requirements in the Java RMI, resulting from the Java and JVM limitations, the RTSJ

support, the RMI tools, the RMI programming model and the RMI implementation

model. Then, we review the literature of the present research made toward supporting

predictability and real-time behaviour in the RMI and RT-CORBA using the RTSJ

including the three levels of integrating the Java RMI and RTSJ.

In the first part of chapter 4, we revisit the RTSJ to provide a deeper overview

of its new memory and scheduling models in order identify the constraints of using

these models and how these constraints have to be considered when designing RTSJ-

based systems. Then in the second part of this chapter we introduce both the software

design patterns and the components software engineering technologies that enable

reusability. The idea of introducing these technologies is that they have proved to be

efficient technologies for building guaranteed and reliable middleware solutions. After

introducing each of these technologies, we discuss their applicability for use in real-

time systems and the research efforts made to provide standardized RTSJ-based design

patterns and component models, especially to overcome the constraints provided in the

beginning of the chapter.

As the use of the new scoped memory areas for predictable memory

management in the RTSJ has a set of constraints, existing software design patterns

cannot be mapped directly to the RTSJ, due to the complexity of the internal

communication mechanisms. Hence, in chapter 5, we try to hide the complexity of the

RTSJ memory model by providing a general component framework that integrates a set

of design patterns that enable building RTSJ components, as well as providing

pluggable real-time supporting facilities such as thread pooling and remote

communication into the component hierarchy.

After building our component framework in chapter 5, we move in chapter 6 to

survey the remote communication mechanisms, and their pros and cons for building

distributed real-time systems, and from this survey we provide our own novel design

and implementation of a reconfigurable low level communication component that

adopts the non-blocking mechanisms for processing the networking mechanisms,

Chapter 1

-19-

where the internal design of this component can be reconfigured through a set of

configurable properties in order to use it either in a server or a client mode, and to

reconfigure it to emulate other communication mechanisms that are usable in a wide

range of distributed real-time systems. The handling of the networking communication

events is done in this component using a pool of the RTSJ‘s schedulable objects that

can have a limited size to limit the concurrency level within the component, to ensure

the predictability. The model is presented in a design that enables using it either as a

sub-component within the hierarchy of other components, or as a separate component

that integrates with other components.

In chapter 7 we show an analytical evaluation of our communicator

component, where we show that the real-time communicator component provides

predictable low level of networking communication, which can be used as the

communication networking layer of many real-time Java middleware solutions. Also,

the proposed memory model of the component and/or its associated design patterns can

be used in the building of the Java‘s real-time middleware solutions. We start the

chapter by first analysing the general design patterns used in the general remote

middleware, then we show how these design patterns are mapped into the architecture

of the RMI-HRT, which is an open source of the Java RMI that support real-time

features. We analyse the structure of this middleware, to find the defects that exist in it

and then, we propose our own modifications to this middleware which we consider

important to avoid the blocking in the original model. Where our main modification is

the integration of the communicator component at both the server side and the client

side to investigate how it can handle the networking I/O operations. Also, we specify

other changes that are required on the RMI protocol to support the use of this

component. We then evaluate how the embedding of the communicator component can

provide different configurable models of making and handling the remote calls on both

the server side and the client side. Then, we discuss the possibility of integrating the

component among several stubs concurrently. Finally, we made an overview of the

serialization within the model and how we could extend it to support the propagation of

the client‘s temporal parameters.

In chapter 8, we provide additional evaluations that include evaluation of the

patterns and subcomponents used in developing our proposed component model, we

then evaluate the use of the life control memory management patterns in processing

future calls on the client side. Then, we evaluate the support given by the component

model to solve the unbounded memory usage of the Java NIO as the basic library used

for developing the communicator component.

Chapter 1

-20-

Finally, in chapter 9, we provide our conclusion of the work done on the thesis,

and discuss the possible future work that can extend the work presented in this thesis.

1.6 Summary

In this chapter, we introduced to our research in the real-time middleware,

where we provided an overview of the real-time middleware, its characteristics,

categories, and the challenges of building it. Then we presented the scope of work of

developing real-time middleware in Java using the RTSJ, We presented our hypothesis

and the thesis plan to proof the hypothesis. In the next chapter, we provide the structure

and paradigms used for building middleware in general and examples of applying them

in the real-time domain.

-21-

 Chapter 2

Structural
Paradigms and Technologies

for
Real-time Middleware

The emergence of distributed computing as a dominant computing paradigm is

well acknowledged. Along with the increased demand for such applications came the

need for tools to facilitate their development. Middleware is a common solution for the

development of such applications. In this chapter, a review of distributed systems and

middleware paradigms is presented and examples of using these paradigms in

developing distributed real time systems, if they exist, are discussed.

Many architectural paradigms and models are commonly used in the

development of distributed systems, here we provide a classification of ten of these

paradigms and models that are used to build middleware systems and classify them

according to their level of abstraction; this classification is an extension of the

classification that was presented in (Liu 2001) to classify some of these paradigms, see

Figure 2-1. We will present ten different patterns starting from the lowest level of

abstraction to the highest, where we will present each paradigm with its architectural

pattern(s) and discuss the efforts that have been made to apply it in building real-time

middleware.

1. The Message Passing Paradigm

2. The Client Server Paradigm

3. The Peer-To-Peer Paradigm

4. The Message System Paradigm

a- The Point-To-Point Message Model.

b- The Publish/Subscribe Message Model.

5. The Remote Procedure Call

6. The Distributed Object Paradigm

a- Remote Method Invocation.

Chapter 2

-22-

b- Network Service.

c- Object Request Broker (ORB).

d- The Object Space Paradigm.

7. The Application Server Paradigm

8. The Tuple Space Paradigm

9. The Collaborative Application (Groupware) Paradigm

Object Space, Collaborative Applications, Tuple Space, Mobile agent

Network Services, Object Request Broker, Mobile Code (REV, MO, COD)

Remote Procedure Call, Remote Method Invocation

Client-Server, Peer-To-Peer, Message Systems Paradigms (Point-To-Point, Publish-Subscribe)

Message PassingL
e

v
e

l
o

f
A

b
s
tr

a
c
ti
o

n

Low

High

Figure 2-1 Distributed Computing Paradigms and their Levels of Abstraction (BASED ON (Liu

2001))

2.1 Message Passing Paradigm

Message passing is the basic approach for inter-process communication, where

data messages are exchanged between two processes, a sender and a receiver.

Figure 2-2 illustrates the message passing paradigm where in (a) the process A sends a

request message to process B. The message is delivered to process B, which processes

the request, and sends a reply message (b) back to process A. In turn, the reply may

trigger a further request (c), which leads to a subsequent reply, and so forth. A direct

application of this approach is the socket application-programming interface.

Process B

Message

Message

Message

(a)

(b)

(c)

Process A

Figure 2-2 Message Passing Paradigm

As the message passing paradigm is at the bottom level of distributed systems

paradigms, designers of real-time middleware (based on this paradigm) are usually

overly involved with their immediate target platform to make reasonable use of its

communication features in order to get the most valuable quality of service for this

platform. This makes this middleware non-portable to other platforms (2002; Skjellum,

Kanevsky et al. 2004).

Chapter 2

-23-

To achieve the portability in real-time applications and communication

middleware implemented based on the message passing paradigm; researchers at

Mississippi State University published The Real-Time Message Passing Interface

(MPI/RT-1.1) Standard in 2002 (MPI-RT 2002). The design of MPI/RT was based on

MPI specification (Message-Passing-Interface-Forum 1994), the widely used standard

of message-passing, but provides an application programmer interface that enable plan

in advance, reserve resources, admit sets of channels with timing guarantees. The

standard has been designed using object-oriented design principal and defines bindings

for C and C++. However, it does not preclude implementations for other languages.

In MPI/RT, the real time parallel programming world is classified into three

categories according to their requirements for QoS as follows (Kanevsky, Skjellum et

al. 1997):

- The Time Driven, Real Time Paradigm; specifies timing intervals during which

messages transfers over channels should take place.

- The Combined Event-Driven-With Priority Real Time Paradigm; specifies

priority as the real time requirement and events for the start and completion for a

channel message transfer, handler execution, or event delivery from a trigger to a

receptor. Where transferred messages inherit the channel priority that is specified as the

channel QoS. Moreover, any application that requires multiple priority levels can

construct multiple ―parallel‖ channels with different priorities to achieve this

requirement.

- Time-Driven-With Priority Real Time Paradigm. This paradigm specifies either a

priority as the real-time requirement, a timeout as the completion event, or a deadline

as both the real-time requirement and the completion event.

The design of MPI/RT adopts the concept of deferred early binding, in which

the application is required to set up the communication architecture and its parameters

but the actual resource allocation is performed when the application enters its real-time

phase. In order to emphasize the deferred early binding approach, MPI/RT defines four

phases for the real time application as follows (MPI-RT 2002):

- Initialization Phase; initializing both the MPI/RT library and the various processes

that will participate in the real time communication.

- Non-Real-Time Phase; starts once the initialization phase succeeds in order to

create all the required MPI/RT objects with their requested QoS, without allocating

system resources for these objects.

Chapter 2

-24-

- Real-Time Phase; starts by allocating system resources and performing global

admission testing within the MPI/RT implementation to guarantee the predictability of

communication and other MPI/RT operations. The admission test matches the

resources requested by the application to available system resources. If any of the

requested objects cannot be honoured, the entire test fails. Once the system passes the

admission test it goes into a real time mode (by calling a committing operation with a

set of the required set of MPI/RT objects) in which the application uses system

resources (e.g. network bandwidth and memory) in a controlled and predictable manner

so that the communication operations complete within the QoS requirements and if a

violation should occur, any user specified handlers defined for the events for these

conditions will fire. Theses handlers may correct the system behaviour.

It is possible for the system to transit to another real-time mode within the

same real-time phase by calling a committing operation with a different set of user-

requested objects, so that only one real time mode is active at a time.

- Finalization Phase. The application enters this phase only from the Non-Real-Time

Phase and after destroying all the created MPI/RT objects.

As seen above, the design of MPI/RT is based on a set of objects called

Committable Objects that participate in the admission test performed in the committing

function. Each of these objects has both object descriptors and attributes but does not

have an object body, which should consist of implied system communication resources,

until they are committed. Committable classes designed for those objects include the

following (Kanevsky, Skjellum et al. 1997; 2002):

- Containers; a set of classes to create objects capable of storing references to

selected MPI/RT objects and the operations for manipulating them.

- Buffers; the concept of buffers and their management emphasize that, in MPI/RT,

all needed system resources are allocated outside of the application‘s real-time modes

to reduce the dynamic memory allocation and the associated unpredictability during

communication operations.

- Buffer Iterators; provides a mechanism for managing the order in which buffers

are accessed. The standard specifies LIFO, FIFO, Sorted and Unsorted user selectable

policies, in addition to other policies if the container is a vector container.

- Instrumentation; to measure the metrics that has to be measured automatically by

the MPI/RT, e.g. the number of messages transmitted over a channel, MPI/RT provides

probing objects that can be attached to the metrics in order to measure the change of the

metric over time.

Chapter 2

-25-

- Channels; channels are unidirectional, logical conduits through which data travels

from one process to another with a particular QoS. An instance of the class of the

channel represents a point-to-point channel end point and has two buffer iterators, for

input and output that can be shared among several channels to form a collective

channel in order to support collective operations such as broadcasting, besides the

point-to-point channel.

For point-to-point and collective channels, MPI/RT supports three models:

1. Two-Sided (Send-Receive) Communication. The application issues data transfer

for two sides of the data exchange. Under this configuration, all channel end points

must call the starting operation for the message transfer to occur.

2. One-Sided (Push/Pull) Communication. Only one side of the application issues

data transfer operations. Under this configuration, all but one channel end points

must call the activation operation, while the remaining channel endpoint call the

starting operation for the message transfer to occur.

3. Zero-Sided Communication. It is characterized by the absence of any data

transfer operations, at the user thread level, by all sides participating of the data

exchange. There is no rendezvous with processes at the communication end points.

In (Neelamegam 2002), it is stated that:

"It is the responsibility of the underlying middleware to

schedule data transfer depending on the application’s QoS, which

translates to data transfer calls to/from pre-specified application

memories at pre-specified times. Zero-sided communication

necessitates early binding and hence eliminates the delay caused by

handshaking, synchronization, and system calls".

 Under the Zero-Sided configuration, messages are automatically

transferred either at fixed time intervals for the time driven paradigm,

or by event occurrences for the event driven paradigm.

- Event Triggers, Receptors and Handlers. During application real-time mode,

MPI/RT supports both:

1. Implicit events: MPI/RT generated events, such as QoS error or a buffer iterator

overflow. The user can receive these events by creating receptors with MPI/RT

identifying names of those events.

2. Explicit events: by calling a raising function of the event trigger object and

deliver it to a user created receptor object.

Chapter 2

-26-

The trigger object has a QoS parameter describing the frequency by which the

event is raised, while the receptor object‘s QoS parameter describes the requirements

for the event delivery from a trigger to the receptor once an event is raised.

The handler objects specify the application-defined functions that are executed

in response to receiving event notification by receptors; they can be invoked

synchronously or asynchronously with respect to the receptor to which they are

attached. The asynchronous handlers are scheduled by the receptor according to the

handlers‘ QoS outside the context of the receptor thread, prior to processing the

synchronous handler. Also, MPI/RT offers controlled event synchronization by

providing a wait operation on a synchronous event.

2.2 The Client Server Paradigm

The client-server paradigm is the most common paradigm for distributed

applications, and many other paradigms are built upon it. In this paradigm, shown in

Figure 2-3, asymmetric roles are assigned to two collaborating processes. One process,

the server, acts as a service provider, which waits passively for the arrival of requests

from clients. The other, the client, issues specific requests to the server and awaits its

response. This paradigm is the principal paradigm for the Internet as many Internet

services are client-server applications. These services are often known by the protocol

that the application implements, such as HTTP, FTP, and DNS (Liu 2001).

Figure 2-3 The Client Server Paradigm

Also, the middleware for database management systems; DBMS, and

transaction processing, are built using the client-server paradigm and there has been

much research to support real time and quality of service concepts within these

middleware approaches; e.g. Beehive (Stankovic, Son et al. 1997). Although several

commercial real time DBMS exists (e.g. Eaglespeed, TimeTen and PolyHedra), these

systems have not yet solved all the problems of real time database systems (Son and

Kang 2002). In such real-time middleware, many issues must be considered other than

Server Host Client Host

Servic

Servic

Servic

Proces

Process

Process Client Host

Proces

Proces

Chapter 2

-27-

those considered in traditional ones; these issues include (Ramamritham, Son et al.

2004):

- Data, Transaction and System Characteristics; a transaction can be soft, firm or

hard deadline transaction and can be periodic, e.g. periodic sensor measurements, or

aperiodic one. Also, it can be static or dynamic. Consequently, the middleware must be

able to satisfy the transaction‘s timing constraints, e.g. deadlines, earliest start times

and latest start times, as well as data temporal consistency, i.e. how old a data item can

be and still be considered valid.

- Quality of Services and Quality of Data; sometimes there is a need for making a

trade off in the quality of data and accept a lower level of service in order to meet

specified time constraints.

- Scheduling and Transaction Processing; the consideration of the tradeoff between

the qualities of data vs. timeliness of processing is inherited in the scheduling of real

time transactions. For hard deadline transactions, table-driven or rate monotonic

priority assignment can be used but with many restrictions to keep the characteristics

known a priori. In soft deadline transactions, the priorities are assigned according to the

transaction time constraints rather than whether the transaction is CPU bound or I/O

bound. Possible policies for scheduling of software transactions include:

- Earliest deadline first.

- Highest value first.

- Highest value per unit computation time first.

- Longest executed transaction first.

- Distribution; in many distributed applications, the real-time databases are not

located on a single computer. Rather, they are distributed. This requires facilities for

data replication, replication consistency, distributed transaction processing and

distributed concurrency control.

2.3 The Peer-to-Peer Paradigm

In the peer-to-peer paradigm, the participating processes play equal roles, with

equivalent capabilities and responsibilities. In this paradigm, shown in Figure 2-4, each

participant, e.g. process A and process B, may issue a request to another participant and

receive a response. This is different from the client server paradigm in that the client

server paradigm makes no provision to allow a server process to initiate

communication (Liu 2001).

Chapter 2

-28-

Process B

REQUEST

RESPONSE

Process A

REQUEST

RESPONSE

Figure 2-4 The Peer To Peer Paradigm

The main concept of the peer-to-peer computing is that each peer is acting as

both client and server at the same time. Each peer is responsible for releasing and

allocating the following (Loeser, Altenbernd et al. 2002):

- The Processing Power; the distributed computation is performed by a group of

peers.

- The Data Storage; data is not owned by a particular member or server, but is

passed around, flowing freely towards the end subscribers.

- The Control; each peer can offer the possibility of being controlled or illustrate

monitored data.

Several peer-to-peer middleware technologies currently exist such as Gnutella,

Jabber, FreeNet, and JXTA. Among those technologies, JXTA is the most significant

because it was initiated to standardize a common set of protocols for building P2P

applications. Also, Boeing adopted JXTA for the U.S. Army Future Combat System

(Sun.com 2005). JXTA was introduced as an open source project by Sun

Microsystems, the name JXTA was chosen as an abbreviation of the word ―juxtapose―,

because to juxtapose is to put things next to each other, which is really what peer-to-

peer is all about.

JXTA is a set of open protocols and implementations that allows any connected

devices on the network ranging from cell phones and sensors to PCs and servers to

communicate and collaborate in a direct P2P manner, where any peer can interact with

other peers and resources directly, even when some of the peers and resources are

behind firewalls. The JXTA reference implementation was in Java but other

implementations are now available in other languages like C++ and C#. The main

features of JXTA are (Sun Micro Systems Inc 2004):

- Interoperability; it can be used across different peer-to-peer systems and

communities.

Chapter 2

-29-

- Platform Independence; it can be used and implemented in multiple/diverse

languages, systems, and networks.

- Ubiquity; it can be used on a range of digital devices such as PC‘s, PDAs, routers

and servers.

The architecture of JXTA, shown on Figure 2-5, is divided into a three layered

software stack as follows:

- JXTA Core; It is at the bottom of the stack, and it deals with the creation of peers

and peer groups, ensures security within the network and manages the communication

and routing between peers.

- JXTA Services; Provides services such as indexing, searching and file sharing.

- JXTA Applications; The actual applications that are built to make use of the JXTA

P2P services such as messaging or document management systems.

JXTA Applications

JXTA Services

JXTA Core

Peer

JXTA

Peer

Monitoring
Peer PipesPeer groups

Security

JXTA Applications

JXTA Services

JXTA Core

Peer

JXTA

Peer

Monitori

ng

Peer PipesPeer groups

Security

PIPE

Figure 2-5 JXTA Architecture

Communication between peers in JXTA makes use of peers‘ advertisements.

Once a peer connects to JXTA network, it publishes an advertisement that represent a

summary of the peer (name, location, etc.) and what services it can offer. JXTA

provides a discovery service that is used to locate an advert. Once obtained, a pipe

connection can be established between the two peers. The pipe itself is a virtual

communication channel that can be used for sending and receiving unidirectional

messages asynchronously and does not belong to any one peer(Sun Micro Systems Inc

2004).

A broadcaster and listener form of communication among peers is supported in

JXTA by using the Resolver. The Resolver is simply a query and response protocol,

where the client sends an XML message targeted with a name and payload. The target

peers look for the name of the message, process the payload, and return an answer if

one is required. There is also another mode of operation for the Resolver called

Chapter 2

-30-

propagation; it is different from broadcasting, in that each computer may forward the

message to others, rather than everyone listening to the same message all at once (Sun

Microsystems Inc 2004).

The challenges of building real time applications on peer to peer networks and

enhancing the current structure of JXTA to support such systems needs much research

effort to support additional properties such as reliability, security and quality of service.

This is due to the fact that peer-to-peer systems are (Chen, Repantis et al. 2005):

1. Inherently heterogeneous in terms of processor capacity, transmission loss rate,

network inbound/outbound bandwidth, displays resolution as well as decoding

software.

2. Peers are more dynamic than dedicated servers; they may fail or leave the

system unexpectedly.

There have been some current effort to enhance the real time features of the

JXTA peer-to-peer middleware; for example, in (Parker, Collins et al. 2004), the

researchers analyzed the JXTA architecture for near real-time applications

developments. They identified and tested the XML protocol handling and the Resolver

service. The results from the Resolver service tests indicate that this component is

suitable for near real-time applications, as it presented no unacceptable delays into the

system performance. But on the other side, the results of the XML protocol handling

tests indicated that it is not suitable for near-real time applications, as it introduces

delays that are not within acceptable time limits.

2.4 The Message System Paradigm

This paradigm is an elaboration of the basic message-passing paradigm. In this

paradigm, shown in Figure 2-6, a message system serves as an intermediary among

separate, independent processes. The message system acts as a switch through which

processes exchange messages asynchronously in a decoupled manner. A sender

deposits a message with the message system, which forwards it to a message queue

associated with each receiver. Once the message is sent, the sender is free to move on

to other tasks. This paradigm can be classified into two subtypes as follows (Liu 2001):

I- The Point-to-Point Message Model

The point-to-point message model handles messages intended for a single

receiver. Within a point-to-point message system, the messaging provider establishes

queues to help ensure that a message is delivered to only one receiver only once.

Chapter 2

-31-

II-The Publish-and-Subscribe Messaging Model

Publish-and-subscribe systems handle messages intended for multiple

receivers. Publish-and-subscribe systems support the sending of messages to a

destination by defining it as a topic or event. Applications interested in the occurrence

of a specific event may subscribe to messages for that event. When that waited event

occurs, the process publishes a message, announcing the event or topic. The message

system is responsible for distributing the message to all the subscribers. This model

offers a powerful abstraction for multicasting or group communication.

SENDER

SENDERRECEIVER

RECEIVER

depositForward

depositforward
MESSAGE SYSTEM

Queue

Figure 2-6 The Message System Paradigm

There are many examples on implementing this model as a middleware

including Microsoft‘s Message Queue (MSQ) and Java‘s Message Service (JMS), but

those systems were not targeted to the real-time domain.

One of the most important efforts to build a real-time message based

middleware is the Data Distribution Services middleware, DDS. DDS is a formal

standard middleware specification published by the OMG group (The object

Management Group (OMG) 2007). DDS specification is not targeted to a certain

platform or language, although it has implementations mainly in Java and C++, but

other implementations in other languages are possible.

DDS targets mainly real-time systems; the API and QoS are chosen to balance

predictable behaviour and implementation efficiency/performance. DDS is built on the

idea of global data space of data objects that any entity can access, where the data

object is uniquely identified by its keys and topics and the global data space itself is

identified by its domain id; each publisher/subscriber must belong to the same domain

to communicate. The architecture of DDS, shown in Figure 2-7, consists of the

following entities:

- Domain Participant; this represents the publisher/subscriber holder object within a

domain.

Chapter 2

-32-

- Publisher; to publish the data, where the data could be of different types.

- Data Writer; used by the participant to communicate the value of and changes to

data of a given type published by the publisher.

- Data Reader; used by the participant to access the typed received data and deliver

it to the subscriber.

- Subscriber; receives the published data and makes it available to the participant.

- Topic; represents an association of a compatible Data Writer object, i.e. publication,

with Data Reader objects, i.e. subscriptions. This association is by a name, a data type,

and QoS related to the data itself.

Figure 2-7 DDS provides a relational data model. The middleware keeps track of the data objects

instances, which can be thought of as rows in a table(Pardo-Castellote, Innovations et al. 2005).

Each one of these entities can be configured through a corresponding

specialized set of QoS policies, notified of events, and support conditions that can be

waited upon the application.

Since the DDS discovery is spontaneous and decentralized, the topics can

dynamically change over the lifetime without any administrative impact, where end-

points are discovered automatically, and dynamic dataflow established in a plug-n-play

fashion, which means DDS is suitable for scalability.

As DDS is targeted for real-time systems, its design supports a set of features,

in a form of QoS policies, to enhance its performance. Some of these features include

(Pardo-Castellote, Innovations et al. 2005; The object Management Group (OMG)

2007):

Chapter 2

-33-

I- Predictable Delivery

In order to have predictable delivery of messages, the following QoS features are

supported:

1. DEADLINE: It is defined as the maximum duration within which a Data

Reader expects a data object instance to be updated.

2. TIME_BASED_FILTER: a minimum separation value that allows a Data

Reader to ask for an un-sampled set of the values of the data object.

3. TIME LATENCY_BUDGET: A maximum acceptable delay from the time

of writing a data by a publisher to the time of receiving it by the subscriber.

II-Delivery Ordering of Received Samples

In order to have a predictable delivery of messages, the following QoS features are

supported;

1. DESTINATION_ORDER: To control the criteria of determining the

logical order among changes made by different publishers to the same data

object, either by a reception timestamp or by sending timestamp.

2. PRESENTATION: To specify how a coherent set of changes of a data

object made by a single publisher are presented to a subscribing application.

III-Transport Priority

 This includes the important QoS feature; TRANSPORT_PRIORITY, to

allow the application to transport messages with different priorities.

IV- Resource Management

To manage the resources of the system in a predictable manner, the following

QoS features are included:

1. RESOURCE_LIMITS: Specifies the resources that the middleware can

utilize in order to meet the requested QoS.

2. HISTORY: Specifies how the middleware should behave when the value of

a data changes before it is successfully communicated to one or more

consumer.

V-Status Notifications

DDS support a number of status changes that can trigger a listener invocation

on one of the DDS entities, e.g. OFFERED_DEADLINE_MISSED, SAMPLE_LOST

OFFERED_INCOMPATIBLE_QOS, etc.

Chapter 2

-34-

2.5 Remote Procedure Call Paradigm (RPC)

This paradigm was generated as a solution for the requirement of an abstraction

that allows distributed software to be programmed in a manner similar to conventional

applications running on a single processor. In this paradigm, inter-process

communication proceeds as procedure calls which are familiar to application

programmers. As shown in Figure 2-8, a process, A, wishes to make a request to

another process, B, which may reside on another machine; this can be done by making

procedure call by process, A, to the other process B. The remote procedure call

involves (a) passing off a list of argument values to the procedure executing on the

remote machine by process B, (b) at the completion of the procedure, process B returns

a value to process A (Liu 2001).

The only well-known standard of this paradigm is the Open Group Distributed

Computing Environment DCE‘s RPC (Opengroup). DCE‘s RPC is a language and

platform independent middleware that runs on most major computing platforms and

designed to support applications in heterogeneous hardware and software

environments. It supports a limited set of services including thread management and

distributed time services, but it has no support either for real time systems or embedded

systems. The last version of this standard was released in 1997.

Proc1 (arg1, arg2, …)

Return Result

(a)

(b)

Process A Process B

Machine X Machine Y

Figure 2-8 The Remote Procedure Call Paradigm

2.6 The Distributed Object Paradigms

In centralized object oriented software development, the software system can

be built as a set of objects, where these objects communicate and coordinate among

themselves on the same machine, in order to provide the required functionality of the

system. The Distributed Object paradigm was introduced as a natural extension of

object oriented software development, by enabling the communication among objects

that reside on different machines in order to build a distributed system. In this paradigm

the applications can access objects distributed over a network, where these objects

provide methods that can be invoked to obtain access to services. This paradigm is

considered currently the most active field of research in real-time middleware.

Chapter 2

-35-

The distributed object paradigm is built upon the client-server paradigm and

can be represented by several models. The main models of this paradigm are discussed

briefly here. Then, in the next chapter, a detailed discussion of the most widely used

two models (ORB and RMI) is presented.

2.6.1 Remote Method Invocation (RMI)

This type is the object-oriented equivalent of the remote method call. As shown

in Figure 2-9, a process invokes the method in an object, which may reside in a remote

host. As in RPC, arguments can be passed with the invocation. Java RMI is the most

known example of this paradigm (Liu 2001).

Method1(arg1, arg2, …)

Return Result

(a)

(b)

Process A Process B

Machine X Machine Y

’Method1

’Method2

’Method3

R
e

m
o

te
 O

b
je

c
t

Figure 2-9 The Remote Method Invocation Paradigm

2.6.2 The Network Service Paradigm

In this paradigm, shown in Figure 2-10, service providers register themselves with

directory servers on a network. A process desiring a particular service undertakes the

following steps; (a) it contacts the directory server at run time; then (b) if the service is

available on it, it will be provided a reference to the service; finally in (c) the requestor

can access the service using this reference. In this manner, this paradigm is an

extension to the remote method call paradigm. The difference is that the service objects

are registered with a global directory service, allowing them to be looked up and

accessed by service requestors on federated network. Java‘s Jini is a middleware

example that is based on this paradigm , but, to our knowledge, it does not support real-

time features.

Service Object

Directory Service

Service

Requestor

(a)

(c)

(b
)

Figure 2-10 The Network Service Paradigm

Chapter 2

-36-

2.6.3 The Object Request Broker Paradigm (ORB)

In this paradigm, see Figure 2-11, an application issues requests to an object

request broker (ORB), which directs the request to an appropriate object that provides

the desired service. Again, this paradigm is close to the remote method invocation

paradigm, the difference is that the ORB acts as an intermediary which allows the

object requestor to potentially access multiple remote (or local) objects, even when

those objects were heterogeneous. This paradigm is the basis of the CORBA (Common

Object Request Broker Architecture) Specifications, specified by the OMG (Object

Management Group). Many implementations of the CORBA specification is available

including Inspire‘s Visio Broker, Java‘s Interface Development Language, Orbix‘s

IONA, and TAO from the Object Computing, Inc. (Liu 2001).

A
c
tu

a
l
M

e
s
s
a

g
e

A
c
tu

a
l
M

e
s
s
a

g
e

Apparent Message

Object Requestor Object

Object Request Broker

Figure 2-11 The Object Request Broker Paradigm

2.7 Component Oriented Architecture (COA) Paradigm

Component Oriented Architecture is based on set of well-known object

oriented programming practices such as encapsulation, and separation of concerns.

Applications built using the COA paradigm, are decomposed into Components that

have clearly defined responsibilities and interact with one another through standardized

interfaces, Figure 2-12. The components are hosted in a Container that is responsible

for managing component lifecycle, and facilitates communication between

components, either by providing a Service Locator or by Dependency Injection design

patterns. Also, the Container architecture provides a runtime engine with a set of

common services that all components use. These services include common interfaces to

functions such as security, transactions and database connectivity. Examples of this

paradigm include Microsoft‘s COM, EJB (Plášil and Stal 1998).

Container A Container B

S
e

rv
ic

e
s

Figure 2-12 Component Based Architecture Paradigm

Chapter 2

-37-

2.8 The Application Server Paradigm

The application server model is known as the second-generation client-server

architectures or three-tier architecture model (RENAISSANCE Consortium 1997). In

this paradigm, shown in Figure 2-13, application logic is not tightly connected with

either of the data or objects management or presentation, and is implemented in a

separate layer; i.e. the application server is a middle tier layer. The Application Server

is the middleware responsible for providing the access to objects or components to the

clients requesting it.

Client Server

Application

Server

A
ccessR

eq
ue

st

Figure 2-13 The Application Server Paradigm

Web Services adopts this paradigm to provide the next wave of web based

computing. Web services were defined by World-Wide Web Consortium (W3C 2010)

as follows :

"A Web service is a software system identified by a URL,

whose public interfaces and bindings are defined and described using

XML. Its definition can be discovered by other software systems. These

systems may then interact with the web service in a manner prescribed

by its definition, using XML based messages conveyed by Internet

protocols. "

The core web services standards are the following (Jammes and Smit 2005):

- Web Service Description Language (WSDL); for abstract description of the

service interface.

- XML Schema; to define the data formats used for constructing the messages

addressed to and received from services.

- SOAP; protocol for transferring the service related messages.

- WS-Addressing; concentrates message addressing information into the header of

the SOAP message envelope, to enable message contents to be carried over any

transport protocol.

- WS-Policy; to express policies associated with the service.

Chapter 2

-38-

- WS-Metadata Exchange; to enable dynamic retrieve of metadata associated to a

web service.

- WS-Security; optional set of mechanisms to ensure end-to-end message integrity,

confidentiality and authentication.

One of the great strengths of Web services is that they are atomic transaction-

based. However, the transaction-based has its limitation as each transaction incurs the

overhead of the request response protocol and requires a long time in processing and

causes much network traffic. Also, there is no mechanism to subscribe for a ―push‖

service; a client must pull the values it needs. Moreover, the transforming of messages

into XML format and XML parsing processes is a time consuming process. This

requires extending the Web services to overcome these limitations to use it in real time

applications (Morse, Brunton et al. 2004).

2.9 The Tuple Space (Object Space) Paradigm

This paradigm, shown in Figure 2-14, assumes the existence of logical entities

known as object spaces where the participants of an application converge in a common

object space. A provider places objects as entries into an object space, and requesters,

who subscribe to the space, access these entries. The object space provides a virtual

space or meeting room among providers and requestors of network resources or objects

in a manner that hides the details involved in resource or object lookup needed in other

paradigms (Liu 2001).

Requestor

Provider

Requestor

write

read

re
ad

Figure 2-14 The Object Space Paradigm

Several models can be used to implement Tuple-Spaces in distributed memory

systems including (Wells, Chalmers et al. 2000):

- Centralized Systems; all the tuples are stored on a single processing node.

- Hashing System; contents of tuples are used to allocate them to particular

processors

- Partitioned Systems; tuples with a common structure are allocated to a specific

processor.

Chapter 2

-39-

- Fully distributed; any tuple may reside on any possible node.

The Tuple space paradigm was first proposed as a part of the Linda

coordination language for parallel and distributed processing, where the data is

represented by elementary data structures called tuples, in a form of shared object, and

the shared memory is a multiset of tuples called tuple space. Each tuple is a sequence of

typed fields such as <‖data‖, 22, 4.5>. Processes in the system have a handle to the

tuple space and they can do a basic set of pre-defined operations in the system

including:

- out(t) operation to add tuple t to the tuple space.

- in(p) operation to remove a set of tuples by, where p is a pattern.

- rd(p) operation to read a set of tuples by, where p is a pattern.

Where both in(p) and rd(p) are blocking operations.

Another extension of this model is provided by using a pair of asynchronous

operations inp(p) and rdp(p), which return null if no matching tuple exists in the tuple

space.

Although it is not quite as efficient as message passing systems, Tuple space

provide a simple, yet powerful mechanism for inter-process communication and

synchronization which makes it easier to write and maintain for the following reasons

(P. Wyckoff, S. McLaughry et al. 1998):

- Destination Uncoupling; the creator of the tuple requires no knowledge of the

future use of the tuple, nor its destination, so Tuple space communication is fully

anonymous.

- Space Uncoupling; the addressing scheme used for addressing tuples in Tuple

space paradigm is the associative addressing rather than a physical one. So, it provides

a globally shared data space for all processes, regardless of the underlying machine or

platform.

- Time Uncoupling; each tuple has a life span independent of both the process that

generated it, and the process that may read it. This independence enables processes to

communicate seamlessly even if they are not available at the same time.

Tuple-Spaces have found their way to the commercial implementations; two

such implementations are compared in (Wells, Chalmers et al. 2000); Java Spaces from

Sun, and TSpaces from IBM. Both are using a centralized implementation of the Tuple

space. Each of them provides a Java object oriented implementation of the original

Chapter 2

-40-

Linda model (using different names of the original instructions) with some extensions

of their own. Some common extensions in both products include:

1- Supporting the blocking operations with a time out.

2- Supporting the execution of a set of Tuplespace-operations as a

transaction.

3- Giving an expiry date for the tuples (leases in JavaSpaces).

In JavaSpaces, tuples are created from classes that implement the marker

interface Entry, where only the public fields are considered, and the tuples are

transmitted by serialization of the public fields only (Sun Microsystems Inc 2003).

On the other hand, tuples in TSpaces consist of a number of Field objects

classes, e.g. String.Class that can be transferred using the standard Java serialization.

Also, it extends the original Linda‘s operations by a rich set of operations for deleting a

tuple, input/output operations of multiple tuples and operations to specify tuples by

means of tuple-ID rather than the usual associate addressing mechanism. Moreover, the

TSpaces extended the querying of a tuple space to 4 basic methods: Matching,

Indexing, And-ing, and Or-ing. Also, TSpaces supports the concept of handling events

at the source process, when a tuple is read or taken by a target process.

In general TSpaces is more simpler to run and needs only a single server

process to run on the network, while JavaSpaces is itself a basic service of a larger

middleware for heterogeneous system called Jini, and its network support is provided

by the Java RMI. This means that it cannot work without starting all those services.

From a real-time point of view, in 2004, Sun designed, a new soft real-time

system to manage telemetry data for Formula-1 racing cars in real time, using software

implemented using Java and Jini technology with the aim of achieving the required

performance (Sun Microsystems Inc 2004), to support multiple platforms, such as

Linux and Windows, and to provide high availability and location transparency of

components.

A common criticism of the Linda model is that it is inefficient and subject to

unpredictable performance. The simplicity of the model hides the underlying

complexity of the required data sharing and communication. In order to overcome some

of these problems the authors of (Wells, Chalmers et al. 2000) proposed an extended

version of the original Linda model, the new model adopts a fully distributed

Tuplespace model, called eLinda, which is implemented in Java.

Chapter 2

-41-

2.10 The Collaborative Application (Groupware) Paradigm

In systems such as Virtual Organization and Video Conferencing, multiple

parties collaborate in order to provide a particular service. These systems are using the

Collaboration paradigm, Figure 2-15, to implement the required sharing of a common

state. According to the placing of the common state of the system, the collaboration

can be implemented in two ways (Liu 2001):

- The Message Based Groupware; by using messages to propagate the state to each

local copy of the shared state.

- The Whiteboard Groupware; the shared state is kept in a central location where

collaboration parties can access it.

(b) White Board Groupware

M
e

s
s
a

g
e

M
ess

age

(b) Message Based Groupware

M
essage

Figure 2-15 The Collaborative Paradigm

One of the most interesting soft real time middleware approaches using this

paradigm is H.323, which is a protocol suite published by International

Telecommunications Union (ITU) for the first time in 1996 and the last version (Ver. 5)

was published in 2003. The H.323 supports media (voice and video) communication

and data collaboration over networks that do not provide a guaranteed quality of

service. The H.323 itself is an umbrella specification because it includes various other

ITU standards such as Real-Time Protocol (RTP) and Real-Time Control Protocol

(RTCP), with additional protocols for call signaling, and data and audio-visual

communications.

The architecture of the H.323 includes mainly a set of collaborating

components (Mark A. Miller 2005) as follows:

- Terminals; represents the end device of every connection, it provides real-time

two-way communications with another H.323 terminal, GW or MSU.

- Multipoint Control Unit (MCU); allows three or more H.323 terminals to connect

and participate in a multipoint conference.

- Gateway Device (GW); to establish the connection between the H.323 terminals

with terminals which belong to networks with different protocols.

Chapter 2

-42-

- Gatekeeper Device; to translate between telephone number and IP addresses. Also,

it manages the bandwidth and provides mechanisms for authentication and registration.

Communication Door is another soft real-time middleware communication

middleware that uses the collaboration paradigm. It enables developers to build custom

multimedia streaming solutions via broadband Internet. It supports three major features:

a. Real-time synchronization of contents among web browsers connected to the

same web application.

b. Real-time voice and video communication.

c. An HTTP-based push server that can autonomously send differences in data

maintained by the server to web browsers connected to the application.

The architecture of Common Door consists of the following collaborating parties

(TABUCHI M, NAKAJIMA K et al. 2004):

- ASP Applications; web pages as interface for the user to access the application.

- ActiveX Controls; hosted in web pages to send and receive data and media with the

Push server.

- Web Browser; to render the web pages.

- Push Server; sends the updated media/data to ActiveX controls on the web

browsers via HTTP in real time.

- Audio/Video Relay Server; to relay audio/video streams sent by an ActiveX

control one browser to other ActiveX control on another browser.

Another example of this paradigm is found in (Gong, Kulikowski et al. 1997),

where a real-time collaborative system was presented for medical image analysis and

distributed radiological reporting. The system was based on AI methods for intelligent

control and it was implemented using Java and CORBA standards.

2.11 Summary

In this chapter, proposed structural paradigms of the middleware technologies

are presented from the least abstracted to the most abstracted. The basic elements of

each paradigm structure and its advantages for building distributed systems are

presented, and examples of existing real-time implementation of some of those

paradigms are discussed. We have seen that although that the Java language has found

its way for implementing many of the middleware technologies; there are no

commercial Java implementations of any of these real-time technologies. Hence, there

is a need to study the reasons that inhibit the use of the Java language in building real-

Chapter 2

-43-

time systems, particularly the middleware solutions, and we need to survey the recent

research made to use the Java language for building real-time middleware solutions.

Hence, in the next chapter, we present the limitations of the Java language; then, we

cover how the Java language adopted the RMI as the distributed object paradigm for

building middleware solutions, and how the real-time Java community addressed the

RMI middleware technology to build real-time middleware solutions using the real-

time specification for Java (RTSJ). In addition to RMI, we will cover the work done on

CORBA, as a language independent implantation that supported in Java and we will

show the efforts done to implement it using RTSJ.

-45-

 Chapter 3

Real-time Middleware in Java

In the previous chapter we presented general overview of the different

middleware paradigms, and the discussed some real-time implementations of these

paradigms. In this chapter, we aim to focus on the recent research efforts on building

real-time middleware using the Java language.

Java supports mainly two middleware-frameworks to program distributed

system: Remote Method Invocation (RMI) and CORBA. Both frameworks implement

the Distributed Object application paradigm, where a typical client application gets a

reference to one or more remote objects in the server and then run methods on them.

Both frameworks are used as a base for building many other distribution and

middleware frameworks in Java (e.g. Jini and EJB). Both middleware, just as the Java

language itself, were originally implemented without any consideration to support real-

time distributed systems.

In this chapter, both frameworks are presented with concentration on the

current efforts to support real-time features. So, we first present the basic features of

the Java language that helped it to be one of the most used programming languages at

the moment. Then we present the factors that made it less appropriate for building real-

time systems and we will discuss the new models and features that have been presented

in the RTSJ to overcome these limitations. After that we will discuss in detail the Java

RMI structure and the properties that make it not applicable in distributed real-time

systems. Then we will review the research that has been done to integrate the RTSJ

with the RMI and distributed systems in general.

3.1 Java and Real-Time systems

Java is a modern object oriented programming language that has many features

which make Java very efficient in building software systems in general, and distributed

systems in particular. The success of Java in building distributed systems and

middleware solutions is due to its packages that simplify the network programming and

abstracts a lot of its complexity.

Chapter 3

-46-

Java has many enhanced features and properties that enhance the speed and

quality of the software development, these features include (Wellings 2004):

- It has a high level of abstraction, and it is easier/faster to master than other

languages (e.g. C++ or Ada); this makes it have a faster learning curve that allows for

increased programmer productivity.

- As it using object oriented principals of accessing objects, it is relatively secure,

keeping software components protected from each other.

- It includes high levels of dynamism, by allowing dynamic loading of classes and

supporting dynamic creation of objects and threads.

- It supports component integration and reuse as it supports building reusable

software packages and libraries.

- It is platform independent and supports application portability which makes it very

efficient for distributed applications.

- It provides well-defined execution semantics and supports strong typing. Hence, it

offloads many tedious and error-prone programming details.

- It has a powerful and portable standard library.

- Its byte code representation is more compact than native code.

- It has portable support for concurrency and synchronization.

As Java has met a lot of success in building commercial software systems,

there was a strong motivation in the real time community to consider using Java in real-

time computing. However, it has not met the same success in building real-time

systems. So, there was a requirement to analyze the language to discover the required

real-time features that are missing of the Java language as well as its current features

that makes it non-usable in many real-time systems.

A set of the limitations that made Java unsuitable for use in real time systems

includes (Sun Microsystems Inc 2005):

- Its memory management models offer unpredictable latencies due to using garbage

collectors.

- The inadequate scheduling control.

- Unpredictable synchronization delays.

- Very limited timer support.

- No support for asynchronous event handling (AEH).

- No support for safe asynchronous transfer of control (ATC).

Chapter 3

-47-

In the last few years, many efforts have been made by researchers in real-time

systems to overcome these limitations. These efforts led to the RTSJ; Real Time

Specification for Java (first published in January 2002); that made using Java in real

time systems a reality (first commercial implementation in 2003). RTSJ offered many

features that overcome the limitations of original Java including (Wellings 2004; Sun

Microsystems Inc 2005):

- New Memory Management Models; RTSJ offers the use of memory regions

(immortal memory and scoped memory) that are not subject to garbage collection.

Where immortal memory region holds objects without destroying them until the

program ends, and scoped memory region is used only when the process works within a

particular scope of the program (e.g. a method), where the objects are destroyed

automatically when the process leaves this scope.

- Access to Raw Physical Memory; RTSJ offers completely Java securely protected

direct access to physical memory instead of linking to native code libraries. This means

that device drivers can be written completely in Java.

- Strong Guarantee on Real Time Thread Semantics; RTSJ introduces two new

types of threads: real-time threads, and no-heap real-time threads (a thread that cannot

be interrupted by garbage collector). These threads offer more precise scheduling than

standard Java threads. They have 28 levels of priority and unlike Java their priority is

enforced.

- Higher Resolution Time Granularity and Clock; RTSJ offers several ways to

specify relative and/or absolute high-resolution (Nano-second accuracy) time.

- Support for Asynchronous Event Handling (AEH); RTSJ allows developers to

schedule the response to asynchronous events in order to avoid disrupting the temporal

integrity of the rest of the real-time application.

- Support for Asynchronous Transfer of Control (ATC); RTSJ provides a

carefully controlled way for one thread to safely interrupt another thread.

- Support for Schedulable Objects and Scheduling; RTSJ has two types of

schedulable objects: real-time threads, and asynchronous event handlers. Where each

schedulable object can be associated with attributes such as release parameters,

scheduling parameters, memory parameters, and/or processing group parameters. RTSJ

also defines the priority scheduler that uses the fixed priority policy where the

processing resource is always given to the highest priority runnable schedulable object

allocated to the processor.

- Support for Synchronization and Resource Sharing; to bound the blocking

suffered by schedulable objects, RTSJ supports two priority inheritance algorithms:

Chapter 3

-48-

simple priority inheritance and priority ceiling emulation inheritance. Also, RTSJ

provides a non-blocking communication mechanism to avoid the unpredictable

interactions with the garbage collection (e.g. in case of schedulable objects that

communicate with non-real-time objects).

Distributed real-time systems were not addressed in the RTSJ and it was

deferred for later stages but, after the success of RTSJ, many researches targeted the

Distributed Real Time Specification for Java (DRTSJ) (Clark, Jensen et al. 2002).

3.2 Overview of Java RMI System Architecture

RMI is a Java mechanism to call methods of objects that do not exist in the

same virtual machine in the same way as if they were local methods. The architecture

of RMI aims to hide most of the network communication implementation details and to

allow programmers to build safe and robust distributed Java programs with nearly the

same syntax and semantics used for non-distributed programs.

In RMI, see Figure 3-1, there is always a server, which acts as a service

provider, and a client that act as a service receiver. Both server and client are Java

objects that can interact asymmetrically. The server must document the description for

the remote service it provides as an interface that extends the Java Remote interface.

From this description, the rmic compiler creates additional classes, which, are used, by

both the client and the server as proxies to hide the communication details
1
. To be

accessible by clients, the server should register the service‘s object in the RMI registry,

which acts as a naming server to hold references to the remote services. Once the client

needs to use the remote object, it looks up the registry to get a remote reference to this

object and then uses this remote reference to invoke the required method of the remote

object (Boger 2001).

Server

Client

Registery

R
M

IRMI

RMI

Figure 3-1 The RMI Communication mechanism

1 The wire protocol starting from Java 2 SDK uses reflection to make connection to the remote service

object instead of using the skeleton helper classes (server side proxy) generated by the rmic in JDK 1.1 and

JDK 1.1.

Chapter 3

-49-

The RMI structure can be divided mainly into three sets of models as follows (Borg and

Wellings 2003):

- The Programming Model; this includes the interfaces and exceptions required to

define the remote objects and its failure semantics.

- The Implementation Model; the transport mechanisms by which one Java platform

can request and access objects of another Java platform.

- The Development Tools; one example of such tools is rmic, which takes the server,

objects and generate the proxies required to facilitate the communication.

In the following sections the details of the structure is presented followed by a

discussion of its problems and requirements to act as real time middleware.

3.2.1 RMI Layers

The RMI architecture is built basically from three architectural layers, shown in

Figure 3-2. The architecture of each one of these layers is presented here.

A- The Stub Layer

The stub at the client side acts as a proxy to forward the method invocations to

the server‘s JVM that holds the object. It is responsible for:

1- calling the remote reference layer,

2- informing the remote reference layer by starting/ending of invocation,

3- marshalling passed arguments and un-marshalling the return value, or

exception from a marshal stream.

A corresponding layer, skeleton layer, used to be responsible to communicate

with the stub to carry on the invocations at the server side. From Java 2 implementation

of RMI, the class responsible of this layer became obsolete and RMI now uses

reflection to do its functionality dynamically.

Figure 3-2 RMI Layers

Network (TCP/IP by default)

Chapter 3

-50-

B- The Remote Reference Layer

This layer is responsible for the interpreting and managing references made

from clients to server‘s objects across JVM‘s through the RemoteRef object, that

represent the link between the client and the remote object. The Stub objects use the

invoke() method in RemoteRef to forward the method call. Each remote object

implementation chooses its own remote reference subclass that operates on its behalf

(Sun Microsystems Inc 2004). In JDK 1.1 implementation of RMI, only unicast point-

to-point connection was implemented using UniCastRemoteObject class for creating

and exporting remote objects, where the remote object should be instantiated and

exported first to the RMI system before a client can use it. Later, in Java 2 SDK

implementation of RMI, a support for activatable remote object is added to enable the

RMI system to instantiate the object and restore its state from a disk file into the

memory before accessing it (Sun Microsystems Inc 2003; Sun Microsystems Inc 2004).

C- The Transport Layer

The transport for Java RMI can be divided into four basic abstractions as

follows (Sun Microsystems Inc 2004):

- An End Point; it is the abstraction used to denote an address space or JVM.

- A Channel; represents a virtual connection between the local and the remote end

points.

- A Connection; is the abstraction for performing input/output data.

- The Transport; it is an abstraction used for managing the channels.

The responsibility of the transport layer include building, managing,

monitoring and maintaining the stream based network connection between the client

and server endpoints (Sun Microsystems Inc 2004).

The current implementation of Java RMI is using TCP sockets as a default

implementation of the transport layer. On top of TCP/IP, RMI supports two protocols:

1- JRMP; Sun‘s wire-level Remote Method Invocation Protocol between

RMI objects.

2- RMI-IIOP; Internet Inter-Orb protocol that provides interoperability of

RMI objects with CORBA Objects. It is available starting from the Java 2

platform standard edition, version 1.3.

Other types of connection semantics are possible at this layer other than the

Unicast point–to–point (Sun Microsystems Inc 2004), such as the invocation to

Chapter 3

-51-

replicated object groups by using multicasting where a single proxy could send a

method request to many replicates or caches simultaneously and accept the first reply.

In (Krishnaswamy, Walther et al. 1998), the remote reference layer was extended to

cache the remote objects at the client nodes, see Figure 3-3. In this approach, the client

(C) at node (Pi) is allowed to transparently invoke remote objects (O) from node (Ps)

independent of whether they are being cached. When a cached copy (O’) of an invoked

object is available, the invocation is executed locally; otherwise, the invocation is done

remotely. In order to maintain the consistency of the replicated (cached) object copies

in this approach, consistency protocols benefit from using flexible modified transport

layer that supports multicasting communication semantic.

o

s

Crefs

ó

S

 s

C

Crefc

o

s

Refs

C

Refc

Direct Reference

Network Reference

-a- -b-

Figure 3-3. RMI Model. -a- without Caching -b- with Caching

3.2.2 RMI Distributed Garbage Collection (DGC)

Distributed Garbage Collector (DGC) is used to keep track of all the references

used by an RMI-based application in order to free them when they are no longer used.

The reference-counting garbage collection algorithm is used by keeping track of the

live references within each JVM (Sun Microsystems Inc 2004). The DGC uses the

leasing mechanism whereby remote references are leased for a period of time by the

client holding the reference to overcome the problems appearing when a client crashes,

or the network goes down. If the client does not renew the lease before it expires, i.e.

using another call to the dirty() method, the DGC assumes that client no longer

references the remote object. On the server side, the RMI runtime keeps track of the

active clients in a Client Reference List. When a remote object is not referenced by any

client it is removed from the RMI DGC, thus makes it possible to be reclaimed by the

local garbage collector. The interface DGC abstracts the distributed garbage collector

of objects at server side. It has two main methods: dirty() and clean(). The dirty()

is invoked by the client‘s stub once instantiated, to lease the remote object at the server

for a certain period, whereas the clean() is invoked by the stub when no more

Chapter 3

-52-

references to the remote reference exists in the client to let the server know that the

client finished using the remote object (Sun Microsystems Inc 2004).

3.3 RMI Framework Implementation

Classes and interfaces used to implement the layers of RMI framework at both

the client and the server are presented here with a brief description of the rules of each

(de Miguel 2001; Sun Microsystems Inc 2004).

3.3.1 RMI Client Implementation

The main classes and interfaces to implement the client side of the RMI

framework is shown in Figure 3-4 taken from (de Miguel 2001). The classes and

interfaces according to the layers of the RMI are as follows (Sun Microsystems Inc

2004):

- Transport Layer; the RMI transport implementation includes the class

java.rmi.server.RMIClientSocketFactory, which is the default resource provider

for client socket (through its createSocket() method) that is used to send and receive

RMI calls. The interfaces representing the Endpoint, Channel and Connection abstracts

of the transport layer are implemented using the TCP protocol in the TCPEndPoint,

TCPChannel, and TCPConnection classes.

- Remote Reference Layer; the main interface in this layer is the RemoteRef

interface, it represents the abstract of this layer and it is realized in the UniCastRef

Class where the execution of the two methods newCall() and invoke() create new or

(reuse) connection and socket instances via LiveRef and the transport layer. When the

method call ends, both the connection and the socket are destroyed after 30 seconds

unless reused by another call.

- Stub Layer; the rmic compiler generates the Class-Stub as a subclass of the

java.rmi.server.RemoteStub, which extends the Remote Object class that

implements the

- RemoteRef interface; the RemoteRef represents the handle that contains the

concrete representation of a reference and is used by the stub to carry out remote calls

on the objects for which it is a reference.

The generated Class-stub acts as a surrogate that supports exactly the same set

of remote interfaces defined by the actual implementation of the remote object. The

Stub carries out a call to a remote object by implementing the RemoteCall interface,

which includes basically the methods:

Chapter 3

-53-

- getOutputStream(): returns the stream in which the stub marshals

arguments.

- releaseOutputStream(): releases the output stream.

- getInputStream(): returns the stream in which the stub unmarshals results

after ending the invocation.

- executeCall(): to execute the call.

Figure 3-4

Classes of the Client in the RMI

3.3.2 RMI Server Implementation

 The implementation of the server side is rather more complicated than that of

the client side. This is due to the nature of the server that is responsible for both

exporting the object for remote invocation and the execution and returning the result to

the client. Figure 3-5 shows the most important classes and interfaces used in the

implementation of the server side of RMI. The implementation elements according to

the layers of the server layers are as follows:

UnicastRef

+invoke()

+newCall()

+done()RemoteStub

RemoteObject

Class_Stub

LiveRef

getChannel()

exportObject()

TCP EndPoint

TCPChannel

newConnection()

freeStreamRemoteCall

ref

ref

TCPTransport

Socket

TCPConnection
<<instaintiate>>

<<instantiate>>

<<instantiate>>

EndPoint

RemoteRef

Channel

EndPoint

EndPoint
Connection

Chapter 3

-54-

- Transport Layer; the RMI transport and its implementation at the server side are

identical to that used at the client side, except for a few differences that support some

added server functionality. One such difference is that the TCPTransport class at the

server side is an active class waiting for new connections requested by clients. Once a

connection requested, TCPTransport spawns a new non-system thread (i.e. Java thread)

and creates a new instance of the ConnectionHandler active class that is responsible of

receiving the client calls and delegating them to the UnicasetServerRef at the

reference layer. The ConnectionHandler delegates the invocation, but does not wait for

the result.

- Remote Reference Layer; the hierarchy of this layer is close to its correspondent in

the client side. However, in this layer, the UnicastRef class is extended into the

UnicastServertRef Class that contains the static exportObject() method that is

responsible for invoking the exportation function of the TCPTrsnsport class to do the

exportation of the object. Also, UnicastserverRef has the dispatch() method that

receives the client calls delegated by the ConnectionHandler class in the transport

layer, and then it calls the skeleton to dispatch the invocation.

UnicastRef

+dispatch()

+exportObject()

UnicastServerRef

+exportObject()

+getChannel()

LiveRef
RemoteObject

RemoteServer

+exportObject()

TCPEndPoint

+exportObject()

+run()

TCPTransport

+dispatch()

ClassSkeleton

+exportObject()

UnicstRemoteObject

+run()

ConnectionHandler

Class_Implementation

StreamRemoteCall

TCPChannel

TCPConnection

«extends»«extends»

«extends»

«extends»

disp

<<Instantiate>>

<<Instantiate>>

<<Instantiate>>

<<Instantiate>>

Skeleton

-conn

-skel

-ref RemoteRef -ref ep

Endpoint

Figure 3-5 Static Diagram of the RMI’s Server classes

- The Skeleton Layer; as it generates the stub for the client, the rmic compiler

generates the Class-Skeleton that is used by Class_Implementation which extends the

UnicastRemoteObject and is acting as the application implementation of the RMI

server. The UnicastRemoteObjec at the server side differs slightly than the client side,

Chapter 3

-55-

as at the server side it extends the RemoteServer that defines the functions needed to

create and export remote object. Once invoked method is executed at the server side,

the skeleton returns the results using an instance of StreamRemoteCall that had been

created during the invocation at the server side to implement the RemoteCall interface.

3.4 Problems and Requirements of RMI in RT Systems

To understand the problems inherited in the structure of the RMI middleware

that makes it unsuitable to be used as a real time middleware, a classification of the

problems and the requirements of it are presented here with respect to:

1. Java and JVM limitations.

2. RTSJ support

3. RMI tools

4. RMI programming model.

5. RMI implementation model.

Each of the above components suffers from some problems that make it

unpredictable and unsuitable for distributed real time applications. Here the main

problems in RMI are identified and possible solutions as offered by researchers are

presented to solve these problems.

3.4.1 Java and JVM Requirements

Using the Java language in real time systems in general and distributed real

time systems particularly, faces many challenges to fulfill and overcome some of the

limitations in the language and the JVM specifications. Some of the requirements in

regard to RMI are mentioned here.

A- Global Clock

RMI assumes the clocks at both client and server sides progress approximately

at the same rate. This assumption is not strong enough and can be easily violated

resulting in unpredictable behaviour. For example, the distributed garbage collection is

dependent on the leasing mechanism in which the leasing period is defined by the client

to reserve the remote object at the server, for a certain period of time. If the clocks at

both sides are not progressing at the same rate, the remote object may be unpredictably

removed resulting in a remote exception being raised when access is attempted

(Wellings, Clark et al. 2001). To solve this problem JVM at both client and server

should progressively synchronize their clocks.

Chapter 3

-56-

B- Dynamic Java

As in centralized systems, it is currently unclear how the dynamic class loading

fits into a real-time framework of RMI. Also, the dynamism resulting from

polymorphism makes the real-time analysis hard or pessimistic (Borg and Wellings

2003).

C- Circular Referencing

The problem of absence of any facility in RMI to avoid the circular referencing

in distributed systems makes it possible for the deadlock to occur. The following

scenario for two objects A and B on different virtual machines describes this problem

(Clark, Jensen et al. 2002);

"A client thread calls a synchronized method in remote object

A, which calls a synchronized method in object B. The called method in

object B then directly (or indirectly) calls a synchronized method in

Object A.”

 As JVM and RMI do not collectively support the notion of a distributed

thread, the proxy thread executing the method on object A is not considered the same

as the original client thread.

This same scenario, leads to another problem in the thread local-data; that the

data read by the second call to object A will not be the data that is read by the original

call. The solution to such a problem needs coordination among the JVM to globalize

the identifiers of the references.

D- The Distributed Garbage Collector

The unpredictability of the garbage collection execution leads to latencies and

priority inversion that must be avoided in real-time systems. To avoid the effects of the

garbage collector there are two main solutions (Tejera, Tolosa et al. 2005):

- Use real time garbage collector (RT-GC)

- Use memory regions concepts to allocate memory out of the heap.

RT-GC cleans up memory in a predictable way, but at the cost of introducing

overheads in program execution. Where, the memory region solution requires the

programmer be aware of the lifetime of objects to group them in the same memory

region, which is not easily done (Basanta-Val, García-Valls et al. 2004).

Chapter 3

-57-

RTSJ supports the second solution by providing special thread types (e.g.

RealTimeThread) and a memory model (e.g. immortal memory, scoped memory) that

are not subject to the garbage collection which ensures that the DGC does not interfere

with the system timeliness. In this model, developers of the implementation should

follow the rule that a reference variable cannot contain a reference to an object which

could be released before this reference variable, so that objects in immortal or heap

memory cannot contain references to objects in scoped memory (Wellings 2004).

But, using RTSJ memory models introduces the problem of how to implement

an identification mechanism into DGC to identify objects in scoped memory area

model not referenced remotely.

E- Object Serialization

Distributed schedulability analysis requires the bounding of the message size.

In RMI, the message size is defined by both the wiring protocol and the size of

serialized objects. The serialization protocol used by RMI allows for non-statically

computable classes in case of using open array attributes (de Miguel 2001). Some

methods exist to estimate the size of the serialized object (de Miguel 2001), but these

methods leave it up to the application developer to ensure that all serialized objects are

statically computable.

Also, the authors of (Tejera, Tolosa et al. 2005) referred to the problem that

some current implementation of RTSJ of classes that support object serialization, e.g.

ObjectStreamClass, ObjectOutputStream, and ObjectInputStream, do not respect

the rule of RTSJ memory model that a reference variable cannot contain references to

an object which can be released before this reference variable.

3.4.2 RTSJ Support

RTSJ itself still is required to provide solutions for some internal problems.

One such memory management problems inherited from RTSJ and affect the

implementation of any real time implementation of RMI was mentioned in (Tejera,

Tolosa et al. 2005), that RTSJ initializes static object variables in the immortal memory

to make them reachable from all memory areas. When the developer tries to place or

use these classes in a scoped memory, and there is a reference from the static object to

some object in scoped memory, an illegal reference error is thrown.

Chapter 3

-58-

3.4.3 RMI Tools

The tools used in the development and the running of the RMI-based

applications should support the real-time requirements of the middleware as follows.

A- The Registry

Although the registry is a tool used within the framework to look up for remote

services, it is basically a remote object. So, just like any remote object it should be

modified to work in a real time and a predictable manner.

B- The rmic Compiler

The rmic takes the server objects and generate the proxies (stub and skeleton)

required to facilitate the communication. The generated classes do not support any kind

of predictability of real-time requirements.

3.4.4 RMI programming model

The programming model of real time RMI needs to make the time required for

end-to-end RMI calls predictable, to guarantee timeliness and to avoid unbounded

priority inversion. In RMI, the remote invocation is modeled as a synchronous client-

server communication mechanism based on a control flow model. For the server, an

implementation is free to choose between a single-server invocation thread mechanism

(Tejera, Tolosa et al. 2005) or a multi-threaded server model and it may use a load

control system by queuing of request and using a thread pool. In order to achieve

timely invocation, the RMI programming model and implementation must be able to

control the following:

A- The Real Time Parameters of the Involved Threads

The scheduling or release parameters are not considered in operations

implementing the remote method invocations at both the client and the server (Tejera,

Tolosa et al. 2005). RMI needs to support a different real time scheduling and

dispatching mechanisms; this requires flexibility in assigning the different parameters

required for each policy (Borg and Wellings 2003).

B- The Network’s Real Time Parameters

 Of those parameters, i.e. network parameters, current implementations of RMI

only allow the exportation of the remote object on a specific port. In general, real time

RMI requires to support a broad range of real time networks (e.g. CAN and AFDX) and

not to be bound to the unicast classes‘ implementation of the TCP/IP (Borg and

Wellings 2003).

Chapter 3

-59-

C- Resource Configuration

Resource usage is completely transparent in the current RMI structure. Hence,

the RMI is not configurable for QoS. Two main technologies are used in general to

configure the network to reserve some of the available resources to determine the

required level of QoS:

1. Integrated Services; these services control the QoS of a particular session by

using packet classification, packet scheduling, policy control, and admission control. It

was used by (de Miguel 2001) to support a resource reservation protocol (RSVP)

within the RMI transport layer to provide bandwidth reservation facilities that limit the

delivery time of sessions of remote invocations, and to provide end-to-end

predictability.

2. Differentiated Services; this is a packet based priority service used to prioritize

the traffic at specific type. It was used by (García 2004) to build an RMI transport layer

that allows the application designer to specify the required level of QoS as a vector of

minimum bandwidth, maximum delay allowed, and maximum delay bounds allowed.

The vector is mapped by the middleware into a marking code that is inserted into the IP

packets of the remote invocation to specify a particular per-hop forwarding behaviour

on nodes along their path.

D- Failure Semantics

That current programming model of RMI is not concerned with transient

communication errors, as it assumes a reliable transparent mechanism using the TCP

for implementing its communication wire-level protocol. RMI has exactly once

semantics in case of absence of failures, and at most once semantics in the presence of

failures, as in the RMI model; in case of no failure, the data of a single remote method

invocation is received at the server side and the call is executed, then the result is sent

to the client (call is executed exactly once); otherwise, in case of a failure at the server,

this failure can be either before the execution of the required remote method (call is

executed zero times), or the failure can be after the execution of the remote method, but

before the return of the value to the client (call is executed only one time). These call

execution semantics guarantee that the specific instance of access to the remote object

is not repeated more than once, enabling one to reason about the safety properties of

this remote object. For example, using these semantics guarantees that the invocation of

a withdraw() method of a remote object, that represents a bank account, is executed at

most once time in case of failure, which ensures the safety of this remote object.

Chapter 3

-60-

These semantics is reflected in the current RMI programming model, RMI

throws the RemoteException to indicate node or permanent communication failures.

This exception is thrown only from the server to the client when the implementation is

unable to run the call, or makes the call but detects a failure before the call returned.

There is no ability for the server to be informed if a client node fails whilst a server is

executing a request invoked by this client (Wellings, Clark et al. 2001).

E- Asynchronously Interrupted Exceptions (AIE)

To be real time, RMI needs to allow appropriate areas for safe interruption and

to be able to propagate the exceptions through the network and interrupt the execution

on the remote machine. The safe interruption areas are especially important for the

network dependent classes not just to enable interruption, but also to ensure that the

network is left in a consistent state after handling the exception (Wellings, Clark et al.

2001).

F- Asynchronous Event Handling and Other Services

Using RMI in systems that allows the firing of events and handling those

events in remote machines requires the support for asynchronous event handling

mechanism. Also, other services may need to be added to the framework such those

used in CORBA. For example a service that allows the remote machine to get the

propagation type used in the server (i.e. client propagation, server propagated, etc.)

(Wellings, Clark et al. 2001).

3.4.5 RMI Implementation

The current implementation of RMI does not consider the real time aspects and

they use features and implementation techniques that are not compatible with the

specification required for real time Java systems specified in RTSJ (Tejera, Tolosa et

al. 2005). Here are some of the problems in the implementation of RMI.

The work in (de Miguel 2001) identified a set of problems that make the JDK’s

implementation of Java-RMI unpredictable, these problems are basically concerning

the latencies and blocking times of the communication transport layer of the RMI

middleware implementation, the problems are identified and classified into client-side

and server side problems as follows:

A- Client-side Problems

RMI uses a connection-oriented mechanism for communication. This

mechanism allows the creation of a new connection and hence a new socket for each

Chapter 3

-61-

new invocation and this can lead to using unlimited number of sockets to communicate

the same reference with the same server. A proposed solution to this problem is using a

session oriented communication instead of the connection oriented communication,

where the multiplexing facilities supported by RMI-JRMP protocol is used to enable

RMI to create sessions that reuse the same socket for all method invocation in the same

reference.

Remote invocation uses the wait operation in the synchronized methods that

can produce priority inversion. The proposed solution was to use RTSJ‘s priority

inheritance and priority ceiling mechanisms to limit the blocking time of RMI services.

Also, some information such as the socket address is encapsulated in the

classes of the transport layer. Adding any new layer, e.g. reservation layer, requires

methods to be added to both the transport and the reference layer to access this

information.

B- Server-Side Problems

The wire-level protocol, i.e. JRMP, does not include any scheduling

information, e.g. priority; thread deadline, remote invocation deadline, into the call

stream. So, distributed real-time scheduling concepts cannot be used. A possible

solution is to extend the JRMP to include arguments representing the scheduling

parameters. However, this solution prevents the communication between real-time and

non-real-time RMI implementations. Alternative solution is to extend RMI to identify

the server threads priority either by associating a fixed priority to the server, or to allow

it to inherit the client priority.

Similar to the client side, the implementation of the server side uses the wait

operation in the synchronized methods used for accepting the connection and delegates

the method invocation. Although, the execution times of these methods are limited,

they can pre-empt application threads. As in the client side, using RTSJ‘s Priority

Inheritance and Priority Ceiling mechanisms can solve this problem.

A new connection handler thread is created without any assigned priority for

each new received invocation, this leads to an unlimited number of threads without

priority. Assigning a maximum number of the allowed created handlers and using a

thread pool of them can solve this problem.

Although TCP/IP is the default streaming protocol of the RMI implementation,

it is not predictable. Hence, it is not recommended for real time systems. Other

Chapter 3

-62-

protocols based on UDP or ATM can replace it to enhance it (Sun Microsystems Inc

2003). For example authors of (G. Sampemane et al 2006) used Fast Messages (FM) as

the underlying transport instead of TCP to minimize the overhead resulting from the

marshaling and transport mechanism of the TCP/IP in order to build a high

performance Java RMI. Also, as the more efficient user datagram protocol (UDP)

cannot be used directly as a streaming protocol in RMI, since it does not guarantee a

reliable delivery of invocation request and response messages, a reliable message

delivery protocol (R-UDP) was developed based on the UDP protocol in

(Krishnaswamy, Walther et al. 1998) to exploit the request-response nature of RMI

communications. This protocol (i.e. R-UDP) benefits of the request-response data flow

model of RMI where the client sends a single request to the server, followed by the

server sending a single reply to the client. Dependent on this model, any explicit

acknowledgements used by TCP for requests can be avoided in a reliable protocol (R-

UDP) that is aware of the RMI communication. In addition to implementing the R-

UDP; the authors in (Krishnaswamy, Walther et al. 1998) extended the RMI framework

to support caching. In order to maintain the consistency of the replicated cached

objects, a multicasting protocol was implemented in the flexible RMI transport layer to

enable the client to propagate updates to all the replicates when required.

3.5 Levels of Integrating RTSJ and RMI

The programming model of Java RMI as a distributed object middleware is

based mainly on the control flow of its programming model, in which the execution

point, with or without parameters, is moving among application entities (Clark, Jensen

et al. 2002).

In order to enhance RMI to support distributed real-time systems, it should

maintain the end-to-end timeliness, e.g. time constraints, expected execution time,

execution time received thus far, etc., of trans-node application behaviour that is the

main defining characteristics of such systems. Where in static distributed systems, these

requirements can be instantiated a priori; while in dynamic distributed systems, these

properties must be propagated among corresponding computing nodes resource

managers in OS, JVM, middleware, etc. (Wellings, Clark et al. 2001).

To achieve the requirement of building a real time RMI that maintains the end-

to-end timeliness, In (Wellings, Clark et al. 2001), a three level framework was defined

for integrating the RTSJ and RMI, these levels are discussed in the following section.

Chapter 3

-63-

3.5.1 Level-0 Integration: Minimal Integration

In this level, see Figure 3-6, both the client and the server are implemented as

RTSJ objects, but the RMI is used without any modifications. In other words, the

remote object implements the java.rmi.Remote interface that says nothing about the

real time properties of either the server or the underlying transport system. Hence, the

stub and skeleton threads, although generated within RTSJ client and server

respectively, are generated as ordinary Java objects without any support of real time

features and the transport protocol used to implement the connection between the client

and the server is not required to be timely. Hence, in this level of integration, the real-

time threads at the client can invoke remote methods but they expect no timely delivery

of the RMI requests.

RTSJ ServerRTSJ Client RMI

Figure 3-6 Level-0 of Integrating RTSJ and RMI

Although this level of integration has the benefit of not requiring any

modifications to the RTSJ or to the RMI middleware, the application programmer is

completely responsible for passing explicitly any scheduling or release parameters

between the client and the server. Also, it does not provide any enhancements regarding

the problems discussed earlier such as the at most once failure semantic and the

relationships between the client and server clocks.

3.5.2 Level-1 Integration: Real-Time RMI

This level targets implementing RMI in RTSJ in order to achieve the real-time

requirements, see Figure 3-7. In other words, all the elements of the RMI framework

(stub, skeleton, etc.) need to be modified to be RTSJ components. This modification is

applied along the whole three levels of the framework structure:

- The Programming Model Level; where real time remote objects implement the

RealtimeRemote interface instead of the Remote interface to be identified remotely.

- The Implementation Level; where the transport mechanisms should be modified to

allow the propagation of any timing constraints or scheduling parameters between the

RTSJ client and the RTSJ server.

- The Development Tools Level; development tools, such as rmic, are needed to be

enhanced to allow the generation of RMI elements, e.g. proxies, stub, using the RTSJ

rather than ordinary Java to facilitate the real-time communication.

Chapter 3

-64-

RTSJ ServerRTSJ Client Real time RMI [RT-JRMP]

Figure 3-7 Level-1 of integrating RTSJ and RMI

The above proposed modifications lead to a Real-time RMI, in which the proxy

at the server side can be viewed as a real-time thread that either:

- Inherits the timeliness parameters from the client if invoked by an RTSJ

client.

- Use default timeliness parameters if the client is non-RTSJ client.

Using this level of integration between RTSJ and RMI does not just support the

propagation of timing constraints between the client and the server. But also, one more

benefit of this level is that it enhances the failure semantics of the RMI. In this level,

failures at the client can either be ignored as in ordinary RMI, or the server can be

informed by one of the RTSJ asynchronous mechanisms, i.e. firing asynchronous event

handler (AE) or throwing asynchronously interrupted exception (AIE). On the other

side, this level still offers a set of limitations; these limitations include (Wellings, Clark

et al. 2001):

- Missed Relationship between Real-Time Clocks; the real-time clocks at both

sides are still independent of each other. Also, the serialization of timing constraints as

RTSJ timing object requires converting them first into suitable type before

serialization, and then reconstructing them after serialization as the RTSJ timing classes

are not serializable.

- Circular Referencing Problem; it does not introduce any solution to the problems

that can result from the circular referencing, i.e. the deadlock and the thread-local data

problems.

- No Remote RTSJ Services; none of the RTSJ classes define the remote interfaces.

Consequently, they can offer no remote services.

- No Serialization of the RTSJ classes; most of the RTSJ classes do not implement

the serializable interface. Consequently, they cannot be passed across a remote

interface.

3.5.3 Level-2 Integration: Distributed Real time threads

As discussed earlier, the implementation of the RMI in real time Java offers a

set of limitations; one of the main sources of these limitations is the missing of any

system-wide identification of the currently executing thread in the JVMs of the whole

nodes in the system. Level-2 of integration, shown in Figure 3-8, aims to solve this

Chapter 3

-65-

problem by using the model of the Distributed Real-Time Threads in which each thread

has a unique system-wide identifier.

DRTSJ ServerDRTSJ Client Distributed Real time RMI

Figure 3-8 Level-2 of Integrating RTSJ and the RMI

The Distributed Real Time Threads model is the core on which the DRTSJ is

based. DRTSJ (not finished yet) aims to extend the RTSJ to distributed systems. So, all

the components of the RMI framework (stub, skeleton, etc.) need to be modified to be

compatible with the DRTS. This modification has to be applied along the whole three

models of the framework structure as follows:

- The Programming Model Level; distributed real-time remote objects should

implement the DistributedRealtimeRemote interface for remote identification and

then exported by passing them as a parameter to the static method exportObject() of

the DistributeRealtimeRemoteObject, or directly sub-classing them of the

DistributeRealtimeRemoteObject.

- The Implementation Level; changes are needed in the RMI framework; mainly in

the transport layer, to facilitate the implementation and accessing of the distributed

thread, and allowing the passing of scheduling and state information among DRTSJ

platforms, e.g. by extending the RTSJ‘s RealtimeThread. The required changes are

required as well in the JVM itself to support the system-wide nature of the distributed

thread.

- The Development Tools Level; modify the development tools to generate RMI

elements based on the DRTSJ, e.g. the server proxy thread can be distributed real time

thread.

A- Distributed Real-time Thread Model

The distributed thread model, (shown in Figure 3-9), was pioneered first in

Alpha kernel (Clark, Jensen et al. 1992) and Mk7 (Wells 1994) as a part of those

distributed operating system. Then, used on middleware level (e.g. Real-Time

CORBA(Object Management Group (OMG) 2005)) and DRTSJ aims to use it as part

of the Java programming language to support the real-time RMI middleware (Clark,

Jensen et al. 2002).

The model of distributed real-time thread abstracts the control flow of the

distributed object systems. It executes remote methods, like a local one, directly itself

by extending and retracting itself between objects and (transparently) nodes. In other

Chapter 3

-66-

words, the thread‘s locus of control can move freely across the distributed system by

calling methods in remote objects [74, 81-83].

In the whole distributed system, there may exist one or more concurrent

distributed thread, see Figure 3-9, where each distributed thread has some defined

distinct features as follows (Anderson and Jensen 2006):

- It has a unique system-wide identifier.

- It has only one root that is the site from which the distributed thread

originated.

- It has exactly one execution point called the head at any point of time.

- Other sites that are hosting a part of the distributed thread are called

segments sites.

- The end-to-end timeliness of the sequential execution of methods along its

segments makes the distributed thread the entity to be scheduled.

- It uses a model of client propagated release and scheduling parameters to

carry its scheduling parameters as it transits node boundaries.

- Some of its internal segments may have its own timeliness (scheduling

segments) rather than the whole end-to-end timeliness.

- The internal segments may be composed of other nested segments that also

can have their own timeliness.

- Control flow can be forked by creating or awaking other distributed threads

explicitly or implicitly. The newly forked distributed thread may be

explicitly created as two-way (synchronous) invocation, which means that

the original thread waits for it to finish its execution; or be implicitly created

by a one-way invocation that is executing in parallel with the original thread.

- It define several categories of scheduling events including:

Actions on Scheduling Segments. Such as entering, exiting, or updating a scheduling

parameter.

Actions on Resources. Such as requesting or releasing a managed resource.

Actions on Nodes. Such as entering or exiting a node.

DThread1

[Two-Way]

DThread2

[One-Way]

Thread Segmnent

Object 1 Object 2 Object 3 Object 4

Forking Point

Figure 3-9 he Distributed Thread

Chapter 3

-67-

For a distributed thread in distributed real time system a set of basic methods

can be defined, these methods are classified into two main groups (Wellings, Clark et

al. 2001):

- Manage Execution State Methods; this group includes methods to start and

interrupt the distributed thread even on a remote site.

- Schedulability Management Methods; in order to enable operations like mode

changes, a set of methods are assumed to set and get the release and scheduling

parameters of the running distributed thread at any time and at any node.

B- Requirements to Support Level-2

In (Wellings, Clark et al. 2001) the requirements of the RTSJ and JVM to

support level-2 was investigated and summarized in the following:

- The remote invocation of the schedulability management methods requires enabling

the release and scheduling parameters to be serialized and or accessed remotely across

node boundaries. However, RTSJ‘s classes of those parameters, e.g.

ReleaseParameters, and SchedulingParameters, do implement neither the Remote

interface nor the serialization as stated before. Hence, RTSJ classes still need

modification or extension of these classes to support the distributed real time thread

model.

- Also, event handlers in RTSJ may be bound to a thread either permanently or at run-

time, but it is not clear how many handlers are bound to each schedulable thread. In

DRTSJ, the proposed definition of distributed events and their handlers interfaces

assume that they are defined as distributed remote objects that for:

1- Distributed Events; extends the RemoteAsynchronousEvent interface that supports

the methods for remote firing of an event and attaching a remote handler to it.

Distributed Event Handler; extends the GlobalAsyncEventHandler interface that

supports only the method getSchedular() needed by the remote node to determine

which scheduler to be informed when an event occurs.

- The attaching of a remote handler to an event is not allowed. This is because any

distributed event should not be serializable; otherwise, interrupts responsible of its

occurrence should be passed across the network. Also, handlers should not be

serializable; as if it is serializable, it would be confusing and unclear where the handler

should be scheduled.

Chapter 3

-68-

- The level-2 model assumes the hosting of the distributed thread within a cluster of

nodes. So, DRTSJ is responsible to provide and coordinate a cluster-wide clock and

synchronize it to some delta and within a defined accuracy of UTC.

- Failure responses and semantics resulting from a segment crash failures can be

coordinated by DRTSJ according to the location of the failure into three types as

follows:

 1- Failure at Head; a remote exception is thrown to the site hosting the previous

segment.

 2- Failure at Internal Segment (Non-Head-Non-Origin); there are two semantics:

a. The head site either ignores, or throws an AIE or fire an AE).

b. DRTSJ throws exception in the segment site previous to the failed one if

it tried to access the failed segment

 3- Failure at Origin; the same as part (a.) stated in type 2.

- Applying the ATCs to distributed threads adds extra complexity as the fired AIE can

be generated at any segment but must be propagated to the moving head segment.

Furthermore, there may be outstanding AIEs for the thread. So, two models are

assumed for the implementation:

 1- All outstanding AIEs need to be stored at the origin to be checked each time the

distributed thread is interrupted to see if AIE should be thrown.

 2- All outstanding AIEs have to be carried with the head of the thread.

3.6 RT-RMI (Level-1) Models

This section presents two models proposed in (Tejera, Tolosa et al. 2005) for

implementing the second level (Level-1) RT-RMI in RTSJ as a part of their high

integrity Java project (High Integrity Java Application Project):

RMI-HRT. This model was built for safety critical systems. It is based on the

Ravenscar Java proposed by the authors of (Kwon, Wellings et al. 2002). In Ravenscar

Java, the features with overhead and complex semantics; which may prevent the

predictability, are eliminated. Two execution phases are defined in Ravenscar Java:

a. Initialization Phase; in which the non-real time tasks are carried out, e.g.

creation and exportation of the remote objects, pre-load the required classes, etc.

b. Mission Phase; where the application‘s real time tasks are executed.

Chapter 3

-69-

RMI-QoS. This mode target business-critical systems; i.e. soft real-time. This model

aims to build a communication model that provides a service with a minimum required

quality by reserving CPU, memory, threads and bandwidth to guarantee enough

resources for that goal. The phases of this model in sequence are as follows:

a. Server Initialization; the server is initialized to be ready to accept sessions from

the client.

b. Reference Phase; the client gets a reference to target remote object, and

establishes a session with the server.

c. Negotiation Processes; clients try to negotiate and manage reservations as best

effort invocations over the sessions.

d. Data Transactions; once a reservation is made, clients can make remote

invocations to the server with QoS guarantees.

In the RMI-QoS, the phases, except the server initialization, may occur at any

time during the application lifetime to support the dynamic nature of this model.

The authors of (Tejera, Tolosa et al. 2005) identified the approaches of the

adaptation of RMI to support the Level-1 integration with RTSJ in their proposed two

models. These adaptations are summarized here for both models.

3.6.1 Adaptations in the RMI-HRT

The RMI-HRT targets safety critical systems, so its model has many

restrictions that are required for such systems as explained in the following.

A- Thread Concurrency Model

In the RMI-HRT, the researchers adopted the model presented in (Borg and

Wellings 2003), where at the server, the schedulable threads of the process are

separated into two main parts; acceptor threads and handler threads. The acceptor

listens to the incoming invocations and once received, a suitable handler is chosen from

the pool and assigned to manage the invocation according to the scheduling

information indicated by the client‘s invocation, and the acceptor starts to wait for other

invocations. Once the method is executed and the return parameters are sent, the

handler returns to the pool.

On the client side, the remote invocation is done transparently through a stub,

which carries all the necessary parameters including the scheduling parameters, and

propagates them, with the invoked method, through the net. Also, the stub waits for the

Chapter 3

-70-

return values by listening to a port that can be specified by the developer. Hence each

invocation will listen to a different port.

According to Ravenscar Java, acceptors and handlers (which are schedulable

objects), should be generated at the initialization phase. Consequently, a set of

acceptors is created for each exported object to handle different clients, where all the

handlers are kept in a pool of handlers. There may be one pool of handlers for each

exported object or just one pool of handlers shared by several exported objects. To

attend all the invocations, it is enough that the server has for each client, one handler

for each method invoked with different scheduling parameters (Tejera, Tolosa et al.

2005).

B- Programming Model and Specification

The following changes have been proposed in the programming model of the RMI-

HRT:

1- The use of RMIClassLoader and RMISecurityManager should be restricted to the

initialization phase only.

2- The support of the propagation of scheduling parameters can be through the re-

implementation of the invoke() method to include a field that represents them.

3- The RTRemoteStub, RTRemoteServer classes and interface RTRemote are created

instead of the original ones, to support the real time semantics of the remote objects as

proposed in (Borg and Wellings 2003).

4- rmic must be modified to manage the stub that should implement the RTRemote and

predictably manage the memory.

5- An interface to act as the abstract of the ConnectionHandlers‘ pool is required to

include operations such as creating it. Also, operations to support the binding of a

remote object dynamically to a certain ConnectionHandlers’ pool is needed, e.g.

setHandlerPool().

6- The constructors and methods of UnicastRTRemoteObject are updated to support

acceptors, scheduling parameters beside the net and port parameters.

7- The serialized objects should implement the RTSerializable interface that allows

computing the network resources required in the transmission of an object, and the

maximum execution time needed for serialization.

8- For safety, networks that provide mechanisms to guarantee the message delivery on

time (e.g. CAN, AFDX, etc.) should be used instead of the TCP that is used by default

in RMI.

Chapter 3

-71-

C- Memory Model

As the RMI- HRT follows the Ravenscar Java profile in order to simplify the

design and implementation of virtual machine and eliminating sources of

indeterminism, it does have some restrictions on memory management. It does not

allow for nesting memories or sharing different scoped memory areas by different

schedulable objects. Two approaches to achieve this in both client and server

implementations are as follows:

I- Using Immortal Memory

At the server side, if arguments of the remote method are immortal, they can be

referenced by other objects in immortal memory or by new objects in scoped memory.

Hence, the handler of such remote method must exit the scoped memory first before

calling the corresponding method. However, the server‘s temporary objects must be

created in scoped memory, otherwise they will never be reclaimed; this requires the

developer to enter the scoped memory before creating any temporary object. At the

client, temporary objects created by the stub can be created as immortal memory and

reused in each invocation. This approach is simpler for the developer to avoid nested

scopes but requires more immortal memory.

II-Using Scoped Memory

At the server side, if arguments of the remote method are in a scoped memory

area, the developer should avoid to make references from objects that are in immortal

memory. Also, to avoid nesting of scoped memory, it is not allowed to enter a new

scoped memory area as the handler is already in one (where the arguments are).

At the client, the stub can enter scoped memory at the beginning of execution

and exits when finished. So, the created temporary objects are reclaimed. However, this

requires the invoking thread to be out of any scoped memory at the moment of

invocation to avoid generating nested scoped memory. A variation of this is to consider

that the calling thread is itself within a scoped memory and knows the required memory

consumption needed for the stub. Hence, the temporary objects are created in this scope

and eliminated after the calling thread destroys that memory. This approach requires

more effort from the developer but requires less immortal memory.

Chapter 3

-72-

3.6.2 Adaptations in the RMI-QoS

This model is a resources-reservation based model and it targets the business-

critical systems, so it has a less degree of the constraints as explained in the following.

A- Thread Concurrency Model

In this model, the client negotiates the server for a reservation of its resources,

once the reservation is admitted it needs to be kept along all the remote invocations

from the client to the server. In order to support this requirement, this model enforces

the session-oriented approach to be used instead of the RMI default connection-

oriented approach. Therefore, once a connection is made between a client and a remote

server, any subsequent invocations will use the same connection. In this model, the

server has the following threads for every remote object:

- Listener Thread. Waiting for incoming requests from clients to the remote object.

Once the listener accepts a session with a client, it bounds an acceptor thread to this

session.

- Acceptor Thread. To hand out negotiation requests, best-effort, and guaranteed

remote invocations to the associated handlers to execute it.

- Handler. To carry out negotiation processes, best-effort, and guaranteed remote

invocations. Where any negotiation or remote invocation sent before reservation is

carried out as best effort. Once a reservation is admitted, the remote method invocation

is carried out with QoS guarantees.

B- Programming Model and Specification

The following adaptations have been proposed for this model:

- The interface RTResRemote is introduced to identify the remote object with QoS

facilities based on the resource reservation.

- Classes RTResRemoteStub, RTResUnicastRemoteObject are assumed to provide

negotiation methods needed before building the session.

- RTResRemote methods manage dynamic negotiation and reservation of resources

(CPU, memory and bandwidth) as well as sessions.

- Methods for reservation management (create, modify and delete reservations) take

into account the following parameters:

1. The required level of thread concurrency at the server.

2. If the negotiation is to a specific method or to a group of methods.

3. The rate of the invocations and the execution time budget.

Chapter 3

-73-

- A new Class Reservation is defined to keep track of the reservations made and

available resources. This class provides get and set methods to access this information.

- The rmic and are adapted as in HRT-RMI.

C- Memory Model

Memory management proposed in the RMI-QoS requires that threads with

application lifetime, e.g. Listener thread, are to be created during the initialization

phase in immortal memory. However other objects, e.g. acceptor and handlers, are

allowed to be created and destroyed dynamically at any phase in any scoped memory,

to avoid consuming the immortal memory. Also, using and creating nested scoped

memory areas is allowed at any phase in this model. This enables the stubs to execute

in a nested scoped memory area to make sure that marshaling and unmarshaling

processes do not consume memory.

A memory management model based on the memory model of the RTSJ was

presented in (Basanta-Val, García-Valls et al. 2004; Basanta-Val, Garcia-Valls et al.

2005) for the RMI-QoS. The model was proposed for simple distributed systems that

keep their internal state and create well-known number of objects of a known size per

remote invocation. This model includes two scope stacks as follows, see Figure 3-10:

- Client Side Scope Stack; it uses the default allocation context of the invoking

thread to allocate the object that returns as a result of the remote invocation.

- Server Side Scope Stack; it is more complex and the authors defined two structures

of it according to the situation at the server:

1. The scopes stack when a remote object is created. The scopes stack of the

thread that creates the remote object on the server.

2. The scopes stack when a remote object is invoked. The scopes stack of the

handler thread.

The scope stack of the allocated memory at the server in this model is

fragmented into two memory contexts as follows:

- Creation Context; it stores the state of the remote object, i.e. the remote object

instance and the objects referenced by its attributes. Objects in this context are never

destroyed before the remote object is destroyed. Hence, it contains a set of scoped

memory instances and immortal memory. Where the scoped memory in this context is

maintained along the lifetime of the object by incrementing their counter once the

object is exported, and decrement the counter once the object is un-exported. The

Chapter 3

-74-

memory required for this context has to be either pre-allocated during the creation of

the remote object or taken from shared pool of objects.

- Invocation Context; it stores the temporary objects of the parameters of the remote

invocation. Hence, it contains a set of scoped memory instances only, as objects created

within this context are destroyed after the remote invocation ends. The amount of

memory needed in this context has to be finite and bounded. An internal counter is used

for each invocation context, when the counter changes from one to zero, the objects

that it contains are destroyed and the memory of the invocation context is reclaimed.

A new assignment rule; the No-heap Remote assignments rule (NhRo); was

assumed in this model to extend the RTSJ‘s assignment rule. This rule is stated as

follows:

"The NhRo rule forbids the references from objects stored in

the creation context to objects stored in the invocation context. The

opposite is possible: objects allocated in the invocation context may

reference objects allocated in the creation context. "

iMMORTAL

Scope a

Scope b

iMMORTAL

Scope a

Scope b

Scope c

[Invocation]

C
re

a
ti
o

n

C
o

n
te

x
t

C
re

a
ti
o

n

C
o

n
te

x
t

In
v
o

c
a

ti
o

n

C
o

n
te

x
t

Scope Stack Scope Stack

Scope Stack when

the Remote Object is invoked

Scope Stack when

the Remote Object is Created

Default

Allocation Context

Illegal

assignment Rule

NhRo ruleRo

Ro=new RemoteObject()

Ro

Figure 3-10 RMI Memory Management Model for RMI-QoS

To support the assumed memory model, the authors assumed an extended RMI

middleware structure. The key elements of the server side structure are:

- Remote Object Table; contains the information of the remote objects, e.g. remote

object identifier, reference, and creation context of the remote object.

- Thread Pool; to supply the schedulable handler threads used at server side during

each remote invocation.

- Memory Area Pool; provides a scoped memory for each invocation context and

recycles it after the remote invocation. The memory of the memory area pool is pre-

allocated as a linked list and configured by two parameters; the maximum number of

invocation context and its size.

Chapter 3

-75-

During the remote invocation, the proposed extended structure at the server

side works as follows:

- The handler thread reads the ObjID sent by the client; then

- The handler uses the ObjID to query the Remote Object Table to get the creation

context and push it to its stack.

- Then, it allocates the memory required for the invocation and pushes it on top of the

stack.

- Then, it allocates the parameters of the remote invocation in the invocation context,

and executes the required method of the remote object.

- Finally, it sends the result of the invoked method to the client and pops the

invocation context and the creation context.

3.7 RT-CORBA

CORBA is a language independent framework standardized by the OMG to

support distributed object computing. CORBA is a distributed object framework based

on the ORB design pattern, where the ORB is the central component that is responsible

of finding the required object implementation, transparently activating it if necessary,

delivering the requested invocation to it and finally returning the result to the client.

The Real time CORBA specification (Object Management Group (OMG) 2005) was

presented by the OMG group to support the QoS needs of distributed real time systems

within CORBA architecture by providing extensions that identifies capabilities that

ORB end systems must integrate and manage both vertically from network interface to

application layer, and horizontally from peer to peer (Schmidt and Kuhns 2000).

3.7.1 RT-CORBA Features

RT-CORBA, see Figure 3-11, improves the distributed systems predictability

by bounding the priority inversions and managing system resources end-to-end through

standard features that allow configuring and controlling the following system resources

(Object Management Group (OMG) 2005):

1- Processor Resources. RT-CORBA offers the following configurable properties and

mechanisms for managing the processor resources:

a. Thread pools; it supports using thread pools of maximum allocation size and

with the ability of partitioning it into lanes of certain priority for each lane.

b. Priority Mechanisms; it supports both client propagated, and server declared

models and it uses the CORBA priority as a unified priority for all objects,

Chapter 3

-76-

and provides mapping mechanisms to map it to the native priority at each

node.

c. Intra-Process Mutexes; it offers a global mutex interface to ensure semantic

consistency between CORBA applications and internal synchronization

mechanisms used by the ORB.

d. Global Scheduling Services; it supports both fixed and dynamic real time

scheduling services.

2- Communication Resources. It enables the selection and the configuration of

protocol policies. Also, allows the explicit bindings to server objects using priority

bands and private connections.

3- Memory Resources. It buffer requests in queues until a thread of the thread lane is

free to handle it. Also, it bounds the size of thread pools by specifying a maximum

limit for it.

Figure 3-11 Real-Time CORBA Architecture

3.7.2 RT-CORBA and the RTSJ

RT-CORBA was adopted several years before the RTSJ was standardized.

Hence, the Java mapping of the original RT-CORBA does not use any of the RTSJ

features (Krishna, Schmidt et al. 2004). Some work has been made to implement the

RT-CORBA using the RTSJ features. For example, RTZEN is an open source that

uses an RTSJ-based implementation of the RT-CORBA‘s ORB (Raman, Zhang et al.

2005). The RTZEN targets the need to have a Java-based predictable implementation of

Object Servant

Client

H/W Devices

OS & Protocols

H/W Devices

OS & Protocols

ORB

ORB

CORE

ORB
Interface

IOP

ORB
Interface

IDL
Stubs

IDL
skeleton

Obj Ref

In

arguments

Out

arguments

Operations

Priority
Mapping
interface

RT ORB

CORBA-
Current
Interface

CORBA-
Priority

Interface

Scheduling

Object

O
b
je

c
t

A
d
a
p
te

r
(P

O
A

}

Thread
Pools

IOP

Chapter 3

-77-

real time CORBA by taking advantages of the RTSJ features in order to eliminate the

unpredictability caused by the GC, and improper support of thread scheduling, and to

ensure predictability through the use of appropriate data structures, threading models,

and memory scopes (Raman, Zhang et al. 2005).

A- Architecture of the RT-ZEN

The original architecture of ZEN was an optimized Java implementation of the

RT-CORBA built, where the key ORB components involved in request/response

processing, i.e. acceptors, connectors, transports, and thread pools; are originally

allocated in the heap, without any consideration to real time Java (Krishna, Schmidt et

al. 2003). In order to build the RT-ZEN, the ZEN‘s client-request processing steps was

analyzed in (Krishna, Schmidt et al. 2004) and it is found that it spans the following

layers:

- I/O Layer; including acceptor-connector and reactor.

- ORB Core Layer; GIOP message parsers, CDR streams and buffer allocators.

- Object Adapter Layer; thread pools and the POA.

Along these layers, the request/reply processing is a thread bounded repetitive

task that is independently processed, i.e. two requests do not have any context. Also,

each request has a set of allocated objects that remain valid only for one cycle.

Therefore, the RTSJ features can be applied in RT-ZEN using the following three

strategies (Krishna A.S. and Schmidt D. C. 2004):

- Real-Time Threads; the logic of each thread-bounded component, e.g. Acceptor,

Transport, Connector, are executed using real-time threads, where each real-time thread

is associated with a scoped memory region as the current allocation context.

- Scoped Memory; as objects in the up-call processing are valid only for one cycle, it

is associated with scoped memory regions that enable reclaiming memory safely after

finishing each cycle of processing, thus minimizing the number of garbage collection

sweeps. Creation of scoped memory regions requires the size of the memory region to

be specified. However, the request/response processing in ZEN is dynamic. Hence, RT-

ZEN uses nested scopes for each response/de-multiplexing phase resulting in a set of

memory spaces, shown in Figure 3-12, as explained below (Krishna A.S. and Schmidt

D. C. 2004).

1. I/O Space; the inner logic class of each thread bound component is created within a

scoped memory mI/O. So, during ORB execution, multiple clients can connect to it,

Chapter 3

-78-

creating transports with dedicated mI/O for every active client. These regions are

collectively referred to as I/O space.

2. ORB Space; for each new data event received by the transport, a buffer is created to

hold the message and an appropriate message parser is associated to it. Both the

request buffer and message parser are created in a new nested memory region called

mORB.

3. POA Space; once the parser detects the appropriate POA and the servant, a new

object is created to hold the up-call information on the skeleton and a worker thread

in the thread pool performs the up-call. Also, a CDR buffer is created to hold the

response that will be sent to the client. Both the up-call objects and the output

buffers are created in a new nested scoped memory region mPOA.

NETWORK

Connector

Transport Transport Transport

IO SCOPE

CDR Streams

GIOP MessageParsers

ORB CORE SCOPE

Acceptor

Upcall ObjectsPOA

SCOPE

HEAP ALLOCATEDServantServant

IDL

SKELETON

IDL

SKELETON

Thread Pool

Figure 3-12 Scoped Memory Application- ORB Internal View

I/O
 S

pac
e

R
ef

er
en

ce
s:

 In
ner

 O
ute

r

en
te

r(
)

N
es

te
d s

co
pes

ex
it

I/O Space

ORB Space

POA Space

POA

Space

ORB

Space

I/O

Space

Figure 3-13 Scope Nesting the ORB of RTZEN

The Scope stack of structure above nested regions within the ZEN ORB core

shown in Figure 3-13 is typically an extension of the RTSJ scope stack structure, where

Memory regions are entered from the outermost to the inner most, while the references

are allowed only from the inner most to the outer most. On completion of the request,

Chapter 3

-79-

the memory is regions are exited from the inner most to the outer most (Krishna,

Raman et al. 2003).

B- Support RTSJ Features via CORBA Policies.

One of the main goals of RT-ZEN is to incorporate the RTSJ features within

the ORB core and POA layers without requiring any modifications to the RT-CORBA

specifications. However, it is important to allow the RTSJ developers to enhance the

predictability of their CORBA applications using RTSJ aware features. This can be

achieved by creating custom policies in the ORB, e.g. at the POA level(Krishna,

Raman et al. 2003). Two possible policies are assumed in (Krishna A.S. and Schmidt

D. C. 2004):

- The Type of RTSJ Memory Region; the POA conceptually is responsible for

managing the lifecycle of application defined servants that are generally are heap

allocated. But for servants implemented in RTSJ, the developers may create it in non-

heap regions to enhance predictability. In this case, it is not possible to register these

RTSJ servants with non-RTSJ aware POA. Hence, for RTSJ servants, a policy can be

used to specify the allocation of memory used in POA to be RTSJ aware.

- The Type of Real Time Thread Policy; in the design of ZEN architecture, the

NoHeapRealTimeThread cannot be used for request processing, as the application layer

is allocated in the heap memory to be compatible with RT-CORBA, which is language

independent. Hence, in case of RTSJ aware server application, a policy at the POA

level can be used to customize the type of the real time thread used in the request

processing to be NoHeapRealTimethread to enhance predictability.

3.8 Summary

In this chapter, we aimed to discuss the recent research efforts made on Java to

support building real-time middleware solutions. So, the RMI, CORBA technologies in

Java that support the distributed object paradigm of middleware were presented from a

real-time perspective. The general structure of each of them was presented, and how

these structures do not support the real-time requirement were discussed; also, the

recent research to enhance these structures using the new facilities of the emerging real-

time Java, like scoped memory and distributed threads, was presented. We have seen

that using the RTSJ is still in the early stage of developing real-time middleware, and

there is no RTSJ-based commercial middleware implementation in the market yet, as

there is still a lot of work to be done on in order to get the RTSJ-based middleware

solutions to reality. Many of these problems are related to the difficulties of using the

Chapter 3

-80-

new memory model presented in the RTSJ, especially that most of the current Java

libraries cannot be used directly in the implementations, as they are not restricted to the

rules of this new memory model. Hence, there is a need to build new elements that

respect the rules of the RTSJ, and in the same time support the basic elements required

for the middleware solutions. We propose that these software elements can be built as

RTSJ-based software reusable components, which can be integrated together to form

the required middleware, where these components are built using design patterns that

have to respect the RTSJ memory rules, and have to have a predictable timings of

execution. So, in the next chapter, we first present the basic concepts of RTSJ, as it is

the core over which the proposed patterns and components can be built. Then we

provide a quick overview of the design patterns and components technologies as two

commonly used software mechanisms that are used in building many middleware

solutions, real-time and non-real time in order to understand the challenges that are

faced when using them in the real-time domain in general, as well as discussing the

research work done on them to be used in RTSJ-based applications.

-81-

 Chapter 4

Patterns and Components
for

Real-time Java

Distributed Systems

In the previous chapter, we discussed the recent research made to build real-

time middleware solutions, where we discussed the research toward developing real-

time implementations of the RMI and CORBA models. Most of these implementations

are based on using the new features of the RTSJ to build the inner structure of these

models. So, in this chapter, we aim to provide a deeper view of the new features of the

RTSJ that make it more appropriate for building real-time middleware applications.

Then, as we aim to build our real-time middleware model based on the component

technology, we provide an overview of the principles of the software components

technology. In addition to that, we provide an overview of the software patterns

technology, which represents a cornerstone of building our proposed component model

presented in the next chapter.

4.1 Real-time Java

The Real-Time Specification for Java (RTSJ) (G. Bollella, B. Brosgol et al.

2006) was formalized in June 2000, and it aims to support the writing of real-time code

from a different direction used by other software development platforms; e.g. real-time

operating system application programming interface, as it aims to enable the developer

to write a portable, real-time, high-level Java code. In order to achieve this goal, the

RTSJ embraces the notion of real-time scheduling theory as a fundamental principle for

the development of applications that have temporal correctness requirement (Eric J.

Bruno and Bollella 2009).

An important goal of developing the real-time Java is to provide a general

purpose Java implementation for use in real-time environments, such as servers and

embedded systems without precluding its implementation to any of the existing Java

Chapter 4

-82-

environments. So, for developing the RTSJ, the authors assumed that the Java syntax

should be used without any additions or changes to the language syntax. Also, to ensure

compatibility, it was required that the current non-real-time Java programs should run

on the virtual machines that support the RTSJ. However, as the predictable Java

application execution is the primary concern of the RTSJ, tradeoffs in the area of

general purpose computing can be made where necessary.

Another goal of the real-time Java is the support of features of real-time

systems, such as resource budgets, reservation for CPU time, and managing the

memory allocation rate and the total memory usage, as well as the ability to specify the

real-time constraints within the application code. Also, it has to be flexible in the

degree of the real-time support and associated resource management, e.g. offering

support for both soft real-time and hard read-time systems.

4.2 Real-time Java Enhancements

In this section, we summarize the important enhancements outlined by the

RTSJ for supporting real-time programming in the RTSJ.

4.2.1 Threads and Scheduling

Non-real-time environments are not concerned with the details of scheduling,

but in real-time systems, the scheduling must be precise as the main concerns of real-

time programming is to ensure the timely or predictable execution of sequences of

machine instructions, where in general, various scheduling schemes name these

sequences of instructions differently. Examples of the names of these sequences of

instructions include threads, tasks, modules, and blocks. The RTSJ introduces the

concept of a schedulable object to represent the element of the language that its

scheduling and dispatching is managed by the instance of the scheduler to which it

holds a reference (G. Bollella, B. Brosgol et al. 2006).

The schedulable object is any object that is instantiated from a class that

extends the schedulable interface, which itself extends the Runnable interface. In

RTSJ, there are four basic classes that implement the schedulable interface, see

Figure 4-1.

RealtimeThread (RTT). This class represents a real-time thread that runs by default in

the heap; however, it is possible to initialize it in any other RTSJ memory area defined

by the RTSJ by specifying the required memory area in its constructor. During its

lifetime, it can move to any other memory area without restrictions.

Chapter 4

-83-

NoHeapRealtimeThread (NHRT). It is a type of RTT with the additional semantic

that it cannot access the heap in any way. So, it has to be initiated either in any one of

the scoped memory areas or in the immortal memory (both are described later in this

chapter). Once, it is started it has to continue execution through its lifetime in scoped

memory area(s) and/or in the immortal memory, and its code must never access or

reference an object on the heap otherwise, a MemoryAccesError exception will be

thrown.

AsyncEventHandler (AEH). As many real-time systems are event driven, the RTSJ

introduces the asynchronous event handler to encapsulate code that is to be released

after an instance of an AsyncEvent, which is a class that represents an event. Internally

in the JVM, one or more server real-time threads can be used to handle several AEHs

as, in general, the AEH is assumed to be a task that is not frequently occurring and

there might not be a need for dedicating a real-time thread to handle it individually.

BoundAsyncEventHandler (BAEH). A bound asynchronous event handler is an

instance of the AsyncEventHandler that is permanently bound to a dedicated real-

time thread. Bound asynchronous event handlers are useful in situations where the

added timeliness does worth the overhead of dedicating an individual real-time thread

to the handler. An individual server real-time thread can only be dedicated to a single

bound event handler.

Thread

RealtimeThread

<interface>

Schedulable

AsyncEventHandler

BoundAsyncEventHandlerNoHeapRealtimeThread

implements«extends»

«extends»«extends»

implements

Figure 4-1 Class diagram of RTSJ's schedulable objects

Instances of the above classes have to be managed by a scheduler. Although it

permits the use of other schedulers, the RTSJ supports a real-time scheduler that uses

the fixed-priority preemptive scheduling mechanism, this scheduler extends the abstract

class Scheduler and it requires the underlying JVM to support at least 28 real-time

priority levels in addition to the 10 priorities called for by the normal JVM.

http://www.rtsj.org/specjavadoc/javax/realtime/AsyncEvent.html
http://www.rtsj.org/specjavadoc/javax/realtime/AsyncEventHandler.html

Chapter 4

-84-

The RTSJ requires a number of classes, parameters classes, that defines the temporal

information required to support the execution of the above schedulable objects. An

instance of any of these parameters classes should hold a particular resource demand

characteristics for one or more schedulable objects. For example PriorityParameters

sub-class of the SchedulingParameters class contains the execution eligibility metric

of the base scheduler, i.e. priority. So, when it is assigned to a certain schedulable

object, it is used by the scheduler to schedule the execution of this schedulable object

amongst the other schedulable objects in the system. Another important example of

these parameters classes is the ReleaseParameters class, which defines exactly the

timing characteristics of starting the execution of the code attached to a certain

schedulable object. A final example of these parameters classes is the

MemoryParameters which defines the memory context in which the schedulable object

will run in and its characteristics; e.g. initial memory size, maximum size, types of

allocation rate, etc.

4.2.2 Memory Management in the RTSJ

Java adopts an automatic memory management scheme that uses garbage

collection algorithms to optimize the use of the heap memory offered by the JVM.

However, garbage collected memory heaps have always been considered an obstacle to

real-time programming, due to the unpredictable latencies introduced by the garbage

collector (G. Bollella, B. Brosgol et al. 2006). Therefore, the authors of the RTSJ

sought two directions; the first direction is to allow the use of a garbage collector that

allows as much as possible for the job of the garbage collection to not intrude on the

programming task and it gives the developer the ability to reason about its effect on the

execution time, preemption, and dispatching of real-time threads. For this direction, as

the RTSJ authors know that multiple garbage collection algorithms exist, the RTSJ

does not specify or endorse any garbage collection algorithm. The other direction is to

avoid the use of the garbage collector completely by allowing the allocation of objects

in other memory areas other than the heap, where objects in these memory areas are not

collectable by the garbage collector. In the following sections we will focus more on

these memory areas introduced by the RTSJ as well as the rules and constraints of

using them.

A- Memory Areas in the RTSJ

The RTSJ introduces the concept of a memory area. A memory area represents

an area of memory that can be used for allocating objects. The idea behind defining

these memory areas is to add the support of different memory management solutions

Chapter 4

-85-

that have higher predictability, by defining restrictions on what the garbage collector

and the system can do on objects allocated within these memory areas. RTSJ defines

four different memory area types that are shown in Figure 4-2. In this section we

discuss the features of these different memory areas.

The Heap

The heap memory is referenced by the singleton Java object, HeapMemory. As

it was in the standard Java, the heap represents the area of the free memory used for the

dynamic allocation and automatic reclamation of Java objects. The garbage collector is

the main player for the dynamic memory management of the heap. However, the heap,

due to the unpredictability of the garbage collector, may not be used by schedulable

objects that have hard real-time requirements. So, in order to have predictable memory

management for objects created and accessed in the heap, it is important to present a

real-time garbage collector as stated before.

The Scoped Memory

 The scoped memory is introduced in the RTSJ as a new concept for memory

management where it represents a temporary memory that is not using garbage

collection algorithms. The scoped memory areas are represented by the abstract

ScopedMemory class or one of its subclasses shown in Figure 4-2, where instances of

these subclasses are created at run time dynamically to represent memory areas regions

with certain parameters such as the initial size, the maximum size that it can grow to.

The main memory management feature of the scoped memory areas in RTSJ is that

objects created in it are not garbage collected like those objects that are created in the

heap. Instead it uses the reference counting mechanism to discard the full contents of

the scoped memory area at once when all the schedulable objects that are entered it or

started running in it terminates their execution in it. At the point of discarding all the

objects in the scoped memory area, the finalized method of all these discarded objects

is executed, although no garbage collection occurs in the scoped memory area. It is

shown in Figure 4-2 that the RTSJ defines two main subclasses for the scoped memory

areas; the LTMemoryArea that represents a scoped memory area with linear-time

allocation, and VTMemoryArea to represent a scoped memory area with variable time

allocation. As seen from its features, the scoped memory area type has high

predictability, so it can be used by tasks that use schedulable objects with either hard or

soft real-time requirements.

Chapter 4

-86-

<abstract>

MemoryArea

<abstract>

ScopedMemory

LTMemoryArea VTMemoryArea

HeapMemory ImmortalMemory

ImmortalPhysicalMemory

LTPhysicalMemory VTPhysicalMemory

Figure 4-2 Classes of Memory Areas in RTSJ

The Immortal Memory

The immortal memory is represented in the RTSJ by the singleton class

ImmortalMemory. The immortal memory from one point of view is like the heap in that

there is only a single immortal memory region and it is created when the real-time JVM

starts up. The difference between the immortal memory and the Heap is in the way of

managing the lifetime of the objects created within it. In the immortal memory, the

lifetime of the objects created in it, is the life of the JVM, i.e. objects created in it are

never deleted before the application termination. Hence, the garbage collector is not

responsible for managing this memory area and it is the responsibility of the

programmer to optimize the management of the object allocation within it, to not

overflow its capacity. By default, all static objects are created in the immortal memory,

as are interned String objects, and static initializes execute there. The programmer is

also allowed to create any objects within this memory area without restriction, so it can

be used as an allocation context for any schedulable objects.

The Physical Memory

The use of physical memory as an allocation context may not be needed by

many real-time Java developers, as it will be needed when the application has to

communicate through certain hardware to the outside world, e.g. robotics applications.

So, RTSJ defines the classes that can be used to create memory areas within a specified

Chapter 4

-87-

range of physical memory. These classes are LTPhysicalMemory, VTPhysicalMemory,

and ImmortalPhysicalMemory.

B- Rules of using Scoped Memory as an Allocation Context

A certain instance object that represents a scoped memory area can be used as

an allocation context for a schedulable object using one of the following three methods:

1- By assigning it as the memory area parameter of its constructor, so that the

schedulable object will consider it as its allocation context once it starts execution.

2- By using the method enter() of this memory area instance object to change the

allocation context from the current one to be this instance. The use of this method

creates a nested scope within the current scope for the schedulable object that executes

it. So, as this method can be used several times by the same schedulable object to

change the allocation context among several scoped memory areas then, each

schedulable object in RTSJ is assumed to have an associated scope stack/cactus that

include all the scoped memory areas that this schedulable object has entered and has

not ended the execution within it.

3- By using the executeInArea() method of this memory area instance object to

change the allocation context from the current memory area to be this memory area

instance.

According to the RTSJ, the single parent rule must be respected in the both

cases; when passing a scoped memory area as an initial memory area, and when the

method enter() is used to change the memory allocation context. This rule requires

that each scoped memory area has to have either zero, or one parent memory area,

where zero parent means that the parent memory area is not a scoped memory area, i.e.

it is one of the primordial memory areas (the heap or the immortal memory area). On

the other hand, the use of the executeInArea() method requires that the target scoped

memory area has to be down within the same scope stack of the schedulable object that

executes this method, i.e. the schedulable object has entered it and has not finished

execution in it before entering the current memory area.

In the example in Figure 4-3, the scope stack SMA is assigned to be the

initialization scoped memory area for the schedulable object X. So, it comes as the

lowest scoped memory area in the scope stack of it when it starts execution. Then, to

change the allocation context by entering the scoped memory area SMB, the

schedulable object calls the enter() method of this memory area, i.e. SMB.enter().

Then later, if it is running in scoped memory area SMC, it can change the allocation

Chapter 4

-88-

context to by executing in either the SMA or the SMB using the executeInArea()

method, e.g. SMA.executeInArea().

S
M

B
.e

n
te

r(
)

Scoped

MemoryArea

SMB

S

M
A

.e
x
e

c
u

te
In

A
re

a
()

Scoped

MemoryArea

SMA

S
c

o
p

e

S
ta

c
k

1

2

3

X
.s

ta
rt

()

Scoped

MemoryArea

SMC

Figure 4-3 Scope Stack and Changing Context Methods

C- RTSJ Memory Assignment Rules

In the memory model of the RTSJ, it is assumed that several memory areas can

coexist to offer different allocation contexts for the different schedulable objects

created within the RTSJ real-time application. Hence, there is a possibility that an

object running within a certain memory area may want to access an object residing in

another memory area. However, these memory areas may have different memory

management schemes, and objects within them may have different lifetimes. Then a

strict assignment rules is placed in the RTSJ on assignments to or from the memory

areas in order to prevent the creation of dangling references, and thus maintain the

reference safety of Java. These restrictions are summarized and shown in Table 4-1.

As seen in the table, the access to objects allocated in the heap memory area

and the immortal memory area is allowed from any other memory area, this is because

it is guaranteed that the objects created in these memory areas have a lifetime longer or

equal to the calling object. On the other hand, to avoid the dangling references,

accessing objects in any scoped memory area is not allowed from objects created in the

heap or the immortal memory area. This restriction is because objects allocated in the

scoped memory area can have a shorter lifetime than those objects allocated in the heap

and the immortal memory. In case of accessing objects in a scoped memory area from

other objects that exist in another memory area, the access is allowed with the

restriction that the target scoped memory area should be the same as the scoped

memory area of the calling object or it has to be within an outer scoped memory area

within the same scope stack of it.

Chapter 4

-89-

Table 4-1 Memory Assignment Rules in RTSJ

 Reference to Heap Reference to Immortal Reference to Scoped

Heap Yes Yes No

Immortal Yes Yes No

Scoped Yes Yes Yes, if same, outer, or shared scope

Local Variable Yes Yes Yes, if same, outer, or shared scope

T
2
è

 S
M

B
.e

n
te

r(
)

ObjA ObjI

ObjB ObjH

Scoped

MemoryArea

SMA

Scoped

MemoryArea

SMB

Heap

Memory

Immortal

Memory

X

X

X

X

X

ObjX

Scoped

MemoryArea

SMY

X

X

T
1
è

S
M

Y
.e

n
te

r(
)

Scoped

MemoryArea

SMX

Figure 4-4 Example of memory Assignment Rules

The diagram in Figure 4-4 clarifies these rules. In this diagram ObjH and ObjI

are created in the Heap and immortal memory respectively and they have access to

each other. However, these two objects, i.e. ObjH and ObjI, cannot access objects

ObjA and ObjB that exist in the scoped memory areas SMA, SMB respectively. In the

same example, ObjX and ObjB cannot access each other as they are allocated in

scoped memory areas that are not in the same scope stack. Also, ObjA cannot access

ObjB although it is in a scoped memory area within the same stack scope; however,

this memory area is an inner scoped memory area SMB which means that it has a

shorter lifetime than SMA. On the other hand, the ObjA is accessible form ObjB

because the scoped memory SMA is in the same scope stack with SMB, and SMA is an

outer memory area of SMB.

Chapter 4

-90-

4.3 Component Based Software Engineering

Development of software systems in general is a complicated task that requires

a lot of time and effort along the different stages of the development process. This

process is even more complicated for distributed real-time systems due to the

predictability requirements and the timing constraints required for these systems.

Hence, it is important to provide technologies that support the reusability of the

software in order to simplify and accelerate the development of high reliable services,

and these technologies are even more important in case of designing distributed real-

time systems.

The importance of reusability was known in the early days of software

engineering. For example, in (Siddiqui 1996), it is mentioned that in the NATO

conference in 1968, a paper was presented with the title ―Mass-Produced Software

Components‖ in which the author said:

 "My thesis is that software industry is weakly founded, in part

because of the absence of software components."

Many technologies have been presented to support software reusability.

Subroutines or functions technologies are considered to be the oldest and the lowest

level of reusability as they provide a very simple form of reusable code. Over time, the

development of newer technologies with higher levels of abstractions helped the

emergence of newer reusable entities such as objects which provides a higher level of

reusability.

The research of providing software reusability architectures is a research area

in the software engineering which is commonly known as component-based software

engineering (CBSE), or Component-based development (CBD). According to

(Crnkovic 2002), the major goal of CBSE is the provision of support for the

development of systems as assemblies of components, the development of components

as reusable entities, and the maintenance and upgrading of systems by customizing and

replacing their components. This goal requires established methods and processes, not

only in relation to the development/maintenance aspects, but also to the entire

component and system lifecycle, including organizational, marketing, legal, and other

aspects.

As a sub-field of software engineering, there is a strong relation between object

oriented programming (OOP) and CBSE. The CBSE uses software engineering

Chapter 4

-91-

principles to apply similar ideas of OOP to the whole process of designing and

constructing software systems. For example CBSE focuses on reusing, composing, and

adapting existing components, as opposed to just coding a particular style (Siddiqui

1996). Moreover many components models have been built using object technology,

e.g. COM, Java Beans, etc., and in these models, the component models adopted object

principles of unifications of functions and data encapsulation (Crnkovic 2002).

 However, according to (Crnkovic 2002), the difference between OOP and

CBSE is mainly in the concept of modeling; where the OOP focuses on modeling real-

world interactions and attempting to create ―verbs‖ and ―nouns‖ which can be used in

an intuitive way by both the users and the programmers. In contrast, CBSE makes no

such assumptions and instead states that developers should construct software by gluing

together pre-fabricated components. One more difference lies in the fact that an object

has state and it is a unit of instantiation, while a component is a unit of deployment, and

it can be either stateless or stateful. A stateful component is a component that can retain

information from a call to a next, where the properties of a component hold its state; in

contrary, a stateless component has no memory from one call to the next; hence,

statless components do not have any public properties.

4.3.1 Component Definition

It is easily recognized from its name that the CBSE is based on using

components, so it is important to know exactly what the component is from a software

engineering point of view and what its characteristics are. However, it is not easy to

give a single general definition for the component that summarizes its characteristics,

as the characteristics of the component can depend on many factors including the level

of abstraction, the technology used for the design and/or implementation, the specific

language or middleware in which the component is used, or even the business

applications in which the component is used. Several definitions and different

characteristics of components was contributed by many experts were discussed by

email and published in (Broy, Deimel et al. 1998). One compact definition of the

component was mentioned by Szyperski as follows:

"A software component is a unit of composition with

contractually specified interfaces and explicit context dependencies

only. A software component can be deployed independently and is

subject to composition by third parties."

Chapter 4

-92-

From this definition we see that the internal working of the component is not

known to the software engineer, instead he is given only a well-defined external

interface from which he must work.

In the same publication (Broy, Deimel et al. 1998), Michael Stal added his own

definition as follows:

"A component is a binary unit that exports and imports

functionality using a standardized interfaces mechanism. The

underlying component infrastructure supports composition of

components by providing mechanisms for introspection, event

handling, persistence, dynamic linking and layout-management. "

A criticism of this definition was presented in the same publication, because in

addition to using some terms those are not clear and need to be explained, it looks to be

too dependent on a special technology. So, Michael Stal provided another non-

technology biased definition as follows:

"A component denotes a self-constrained entity that exports

functionality to its environment and may also import functionality from

its environment using well-defined and open interfaces. In this context,

an interface defines the syntax and semantics of the functionality it

compromises (i.e. it defines a contract between the environment and

the component). Components may support their integration into the

surrounding environment by providing mechanisms such as

introspection or configuration functionality".

4.3.2 Characteristics of the Components

As a software entity, the component has a set of characteristics that are specific

to it; these characteristics are dependent on the definition of the component. For

example, the component in (Broy, Deimel et al. 1998) was assumed to:

- Represent one or more logical or organizational-related processes or tasks

- Be more coarse grained than single classes; in other words, a component usually

consists of several logically coherent classes.

- Be unique from other components because a class can be assigned only once to a

component.

- May consist of other components.

- Uses precisely-defined interfaces to communicate with other components.

Chapter 4

-93-

- Is independent of the release and can be delivered separately.

- Frameworks form the underlying technology of components.

- May be a client and server for other components.

Another view of defining the component characteristics was given in (Wang,

Rho et al. 2004), where the authors identified the following three basic characteristic

properties of components:

1- Isolation; a component should act as a self-contained function unit with well

specified interfaces, and it has to be deployable independently as an isolated part,

neither the environment nor other components or a third party has access to its

construction details.

2- Compatibility; the component has to be composable with other components, where

other components can access it through a contractually specified interfaces.

3- Opaqueness; a component has no externally observable state.

4.3.3 Disadvantages of Components

In order to provide a good design of the component, it is necessary to know the

possible disadvantages of using it, so that the design of the component can avoid the

scenarios that can lead to these disadvantages. In (Crnkovic 2002) some of the well-

known disadvantages of using components were presented and we summarize them as

in the following:

1- Components need more time and effort required for development as components are

exposed to changes more often than non-reusable parts of software at the beginning of

their lives, until they reach a stable state.

2- Components have unclear and ambiguous requirements as it cannot be predicted for

all applications in which these components are going to be used in.

3- The design of reusable components enforces adding a lot of complexities that may

increase the demands of computing resources; this makes building a simpler and

flexible abstract level be more useful in some cases.

4- The component can be applied in different applications with different requirements

so, its maintenance support can be high in order to be able to respond to the different

requirements of these different applications.

5- Components have separate lifecycles, different than the application in which it will

be running and it may have some sensitive characteristics that are not known to the

application developer. So, there is a risk that doing changes in the application, e.g.

Chapter 4

-94-

updating the virtual machine, operating system or other components, may cause system

failure.

4.3.4 Basics of Component Based Systems

There are two prerequisites that enable components to be integrated and work

together:

 1- A component model specifies the standards and conventions that components must

follow to interact with each other and with the component framework, in order to

be that these independent components can be deployed in the composition

environment.

 2- A component framework is the design-time and run-time infrastructure that

manages resources for components and supports component interactions. In many

respects, component frameworks are like special purpose operating systems that

provide the execution and resource management services to the components.

Both of component model and the component framework can be specified at different

levels of abstractions, these include:

 1- The component model on the level of binary executable and the framework consists

of supporting OS services, e.g. COM.

 2- The component model and framework are specified on the level of byte code, e.g.

JavaBeans, CCM.

 3- The component models are specified on the level of a programming language. The

framework can contain ―glue code―, and possibly a runtime executive, which are

bundled with the components before compilation, e.g. koala.

In component based systems, the following terms are defined for the component:

- The component interface: the component interface summarizes the properties of

the component that are externally visible to the other parts of the system, and which can

be used when designing the system. The interface may just list the signatures of the

operations, or it can be a rich interface that contains additional information about the

component‘s patterns of interaction with the environment, or extra functional properties

such as the execution time, memory use, etc.

- The component implementation: this is the executable realization of the

component, obeying the rules of the component model, and it conforms to the

properties stated in its interfaces.

Chapter 4

-95-

- The component contract. The specification of the functional or extra-functional

properties of a certain component is defined as the contract of this component.

Contracts ensure independently developed components obey certain rules so that the

component can interact in predictable ways, and can be deployed into standard build-

time and run-time environments.

The contracts were presented in hierarchical representation in (Beugnard,

Jézéquel et al. 1999), where contract hierarchy is defined of the following four levels:

 1- Level 1: Syntactic interface, or signature, i.e. types, fields, methods, etc.

 2- Level 2: Constraints on values of parameters and persistent state variables, e.g. by

using pre- and post- conditions and invariants.

 3- Level 3: Synchronization between different services and method calls, e.g.

expressed as constraints on temporal ordering.

 4- Level 4: Extra-functional properties, such as real-time attributes, performance,

QoS, e.g. constraints on priority, response time, etc.

Most of the current component models support only level-1 contracts, while

some models support others. For the real-time systems, it is important to consider all

the four levels, in particular level-3 and level-4, as, by definition, they are directly

related to the real-time domain, where level-3 concerns the synchronization and

temporal ordering which is timely-based, while level-4 concerns both the timing

properties and the quality of services.

Component Based System Development

Component based software engineering uses the software engineering

principles and techniques, with a slight difference in the requirements and business

goals in the two cases. Hence, there are two different approaches:

1- Component Development; the main emphasis in this approach is the reusability,

where the components are built for reusability in many applications. So, the component

has to be precisely specified, easy to understand, sufficiently general, and easy to adapt,

deliver, deploy, and replace.

2- System Development with Components; in this approach, the main concern is the

identification of the reusable entities and the relations between them. So, the main

techniques in this approach include the locating of components, select the most

appropriate, adapting them, and verifying them.

In the two approaches mentioned above, different activities can be done

independently during the development process. Hence, (Ed Brinksma 2003)

Chapter 4

-96-

distinguishes between the life cycles of these approaches and summarizes their specific

activities as following:

Life Cycle of Component-based Systems

The component based systems have the following specific activities:

 1- Specify logical and structural system architecture. An early design will create the

functional and the logical system architecture, where the architecture specification has

to take into account that the system requirements should be compatible with those of

available components, so a tradeoff analysis may be needed to adjust the system

architecture and to reformulate the requirements to make it possible to use the

components.

 2- Find and select components that may be used in the system. Available components

are collected and investigated to choose among them a set of candidate components,

where the selection should be after identifying the requirements of the system.

 3- Alternately, create proprietary components to be used in the system. If the

available components do not support requirements, so new components have to be

developed, which always takes more time than using existing components.

 4- Match component requirement with system requirements and verify system

properties from component properties. These are basically for components that have

rich interfaces that offer extra-functional properties that enable the prediction and

verification.

 5- Adapt the selected components, so that they suit the requirement specification and

the system architecture. Sometimes the component cannot be used directly and it has to

be adapted either by using a wrapper code or through a parameterization process.

 6- Compose and deploy the components using a framework for components. To

obtain a certain function, several components must be composed into a single

assembly, these assemblies may result in conflicts between the components, and hence

there will be a need for mechanisms for reconfiguring the assemblies.

 7- Replace earlier with later versions of the components. New revised components

replacing old ones have to have the same interface to be transparent to the system

behavior.

Life Cycle of Components

The component development process have many steps of its life cycle similar

to those of the system development, the component must be designed, implemented,

verified, validated, and delivered. However there are some significant differences as

components are built to be reusable, these differences include:

Chapter 4

-97-

 1- There is difficulty in managing requirements, caused by the interplay between

component and system requirements.

 2- Precise component specifications are more important.

 3- Greater efforts are needed to develop reusable units.

 4- Verification against component specification must be stringent and documented.

 5- In a market for components, property rights and their protection become an issue.

After delivering the component for distribution, the next phase in the life cycle

is the deployment of the component into a system, which has to be done without

making changes in the rest of the system and this should happen in an automatic way.

4.3.5 Components in Real-time Systems

Component-based system models have proved to be a successful choice for

building many software systems as it allows faster developments by reusing tested

components that provides the required functionality which minimize the cost and the

time of building these software systems. However, according to (Pasetti A and W 1999;

Wang, Rho et al. 2004), most existing standards of components such as COM+, EJB,

etc. does not address some issues which are essential for real time systems to make it

predictable, this makes these technologies unsuitable for use in developing real-time

systems.

The set of challenges of developing real-time components was presented in

(Isovic, Lindgren et al. 2000) and includes:

1- The real-time component needs to optimize the use of the available target resources,

e.g. memory.

2- Many real-time systems have to manage the external load from the external

environment; hence, the component must handle the load in a priority driven

mechanism that ensures the execution of the tasks of higher priority.

3- Real-time systems have to respond to the events within predictable and specified

time limits; hence, components must support predictable event handling mechanisms.

4- The execution of real-time tasks is always bound by timing constraints, e.g. worst

case execution time; hence, the design of the task component should provide facilities

to manage and handle these constraints.

A wider view of the challenges facing the development real-time component

based systems that covers the whole development life cycle of the components was

presented in (Ed Brinksma 2003), these challenges are:

Chapter 4

-98-

- Component Specification; it is obvious that the interface specification of the

component must cover the four levels of contracts hierarchy; however, there is still

no consensus about how components for real-time systems should be specified.

- Component evaluation and verification; the trustworthiness of the component in

relation to its specification is an important and difficult issue as the components are

usually delivered in binary form.

- Prediction of system properties from component properties; composing well

components with well-defined properties is necessary in producing a system with

well-known properties, as the current component models do not provide support for

predictable composition.

- Component models; component models are the most essential part of the

component based systems, for the real-time systems, these models are still in the

very early phase of development and the current component models do not support

the needs for real-time development.

- Architecture specification; the use of components has an impact on the choice of

the system architecture, as the available components have to be considered as well

as the system requirements when system architecture is chosen.

- Managing the interplay between achievable system requirements and

component specification; the relations between the system requirements and

component requirements are complex, this makes it possible that candidate

components usually lack one or more features which is required by the system.

- Managing changes in component requirements; the changes of the components

and building of new versions may result in conflicts of using multiple versions of

the same component within the same system.

- Update and replacement of components at run-time; this is an important feature

of many real time systems, where the main challenge facing it, is how to combine

the optimization of the design-time composition process with this feature.

- Tool-support; supporting tools are essential for developing successful component-

based systems, various successful tools exist in the non-real-time domain; however,

in the real-time domain there is a lack of such tools.

- Architecture Description languages (ADLs); these are languages that express the

component-based system architectures as compositions of software modules and/or

hardware objects, where these description languages concentrate on the description

of a system, whose properties, functional and the non-functional, are the

composition of properties visible in component interfaces. As the use of component

Chapter 4

-99-

in real-time systems is not common, then there is a lack of these description

languages for real-time systems.

- Component Repositories; to allow storing and retrieving components, indexing

them, in libraries, and finding the similar components.

From the above, the mission of building a real-time component requires the support of

a set of features that overcome the above challenges, but this is not an easy mission as

some of the current definitions of the component complicate this mission. For example,

some of the component definitions mentioned before characterizes it as a binary

reusable unit, this feature is not easy to achieve for real-time components, as the timing

behaviour required for the real-time component depends on the target architecture and

memory organization on which it has been implemented, so the component may not be

portable to other architectures. Moreover, in case of hard real-time systems, the worst

case execution time of the task(s) within the component cannot be analyzed and it is not

guaranteed that doing the schedulability analysis of the component can give the correct

values of it.

Requirements on real-time components

One important issue with the real-time components is that their external

interface should be well defined and well specified to enable good use of it. For

example, to exchange the information between two components, there are two general

models defined in (Isovic, Lindgren et al. 2000):

Buffered (Message Queues); in this model, the two components do not communicate

directly, but they use intermediate buffer for communication where the sender

component puts the data message in the buffer, then the other components access it.

This model, in case of hard real-time systems, requires setting upper bounds on the

number of produced/consumed messages through the component interface, to enable

guarantee of temporal properties.

Unbuffered (Shared Memory); in this model, the receiving component sends a

request first to the client asking for the data, and then the client answers this request

and sends the data to a shared memory, which is accessible by the server. This

asynchronous model is recommended for hard real-time systems. So, interfaces of hard

real-time systems have to be un-buffered.

Another feature of the external interface that is usually needed in many real-

time systems is that the access to the external interface has to be limited to a small set

of authorized clients, i.e. a security issue, for example the authors of (Pasetti A and W

Chapter 4

-100-

1999) confirmed that in a satellite control systems, the operation to reconfigure a set of

redundant sensors, should only be callable from a failure management system or from

the ground control station, so the external interface ideally should have information on

which operations can be performed by which clients

As seen from the above two examples, the nature of real-time systems means

that it has different requirements from that of non-real-time systems. The general

requirements on real-time component based techniques were divided in (Möller,

Åkerholm et al. 2003) from industrial perspective of view into:

Technical Requirements

The technical requirements of the real-time component based systems require

the real-time component to be:

Analysable; the chosen technique for building the real-time component has to be easy

to analyse with respect to its non-functional properties such as timing behaviour and

memory consumption, where the component has to be configured at compile time, to

ease statically analyses its properties.

Has a standardized modelling language; the design of the component should be

based on a standard modelling language like UML.

Open; the component should be in a source code form, i.e. not in a binary form. This

will help the application developers using the component to find functional errors and

analyse its behaviour.

Portable; the component should achieve a high level of independency by not using the

specific operating system primitives or the processor features directly.

Resource constrained; the distributed real-time systems are always constrained in

resources, especially the memory and the CPU, so the component structure should be

light weight and its infrastructure has to be minimized.

Development Requirements

From an industrial development point of view, the following features are

required in real-time components:

Maintainable; in order to be used for other application or environments other than

those in which it has been implemented, the component has to be easy to maintain and

change.

Chapter 4

-101-

Introducible; it is required that the technology of the component to be inexpensive and

dependent on or extending existing technologies, so that the companies can migrate to

use it easily.

Reusable; the component should be easy to use and the technology used for building

and developing it has to support component versioning management, to reduce the risk

of reinventing components.

Understandable; the system should be easy to understand in order to simplify

evaluation and verification both on the system level and on the component level.

4.3.6 Components Models in Java for Distributed Systems

As we mentioned in the last chapters, Java language supports middleware for

distributed systems mainly in Java RMI and CORBA. The component technology

found its way in these two middleware solutions, to support components in distributed

systems. There are mainly two component models built over these two middleware

solutions. These two models are:

- Enterprise Java Beans (EJB); this is a server side component model which is

based on containers that provides runtime services for managing component activation,

concurrency, security, persistency and transactions. The EJB specification defines a

component model by standardising the contracts and services offered by the runtime

environment and the patterns of interaction between components. The EJB relies

heavily on the Java RMI to support dynamic class loading, automatic activation, remote

exceptions, and distributed garbage collection, in addition to the support of the

transparent distribution of component functionality.

- CORBA Component Model (CCM); the goals of CCM are very close to EJB,

where CCM is a server side component model that is used to assemble and deploy

multilingual components. CCM standardizes and automates the component

development cycle by defining a middleware infrastructure and a set of support tools.

This architecture uses proven design patterns for handling security, transactions, events

and persistency associated with a container infrastructure that enable the access to these

services. In its operation, the container is heavily dependent on the CORBA services

for distribution component functionality.

4.3.7 Components in Real–time Java

The National Institute of Standards and Technology (NIST) was working in

parallel with the authors of RTSJ to outline the required real-time extensions for Java

Chapter 4

-102-

and they state that one of the important goals to be addressed by a real-time Java design

is the need of the support of components as black boxes, where they assumed the

following to be supported by the real-time Java:

a. Dynamic loading of component code.

b. Component-critical section code should be locally analyzable.

c. The ability to enforce space/time limits.

d. The usage of RTJ-based components should be supported from other

languages.

The current RTSJ has not addressed these issues yet and it is still an open area

of research that needs a lot of work to be done in order to use the current features of the

RTSJ or even change or extend it to satisfy these requirements. Most of the research

made in supporting components in RTSJ was targeting the integration of software

patterns, and particularly RTSJ-based memory management patterns, to provide simple

component models. For example,, a component framework for RTSJ was proposed in

(Colmenaresy, Gorappa et al. 2006), in this framework, the components were classified

according to the existence of schedulable objects running within them into passive and

active components and they proposed a framework for interaction among these

components. Then, in (Hu, Gorappa et al. 2007), an enhancement of this framework

was made to provide an XML-based component architectural definition language, and

to extend the model to enable composite components definition. The authors assumed

that the composite component model is based on the message passing design patterns

across memory scopes, e.g. the handoff pattern mentioned above, shared objects and

serialization. In addition, the authors assumed that the communication among parent

components and their child components has to be done through a scoped memory

manager defined for each component.

In (Plšek, Loiret et al. 2008; Plsek, Merle et al. 2008) another RTSJ component

model was provided, this framework is based on the Fractal component model

(Bruneton, Coupaye et al. 2006; Coupaye and Stefani 2006). In this model, the

classification of components in RTSJ was extended to include passive, active,

composite, and binding components (cross threads and cross scopes components).

Furthermore, the separation of concerns concept was adopted in designing this model,

where the design flow of the component model is divided into a business design flow,

and a real-time design flow. Moreover, the real time design flow is divided to include a

thread management view and a memory management view.

Chapter 4

-103-

In (Etienne, Cordry et al. 2006), another component model for RTSJ was

proposed that also adopted the fractal component model, but their aim was to make the

components contract aware, based on the assumptions first presented in (Beugnard,

Jézéquel et al. 1999).

Another direction of the development of components in the RTSJ was

presented in (T. richardso 2009), in their work, the authors used the RTSJ to study how

to provide temporal isolation in the OSGi framework using RTSJ, where they proposed

it in two levels: the thread level and the component level. The same authors presented

another work in (Thomas Richardson 2010) on adding an admission control protocol to

the OSGi framework based on the RTSJ to solve the problem of unbounded dynamism

inherited in the OSGi framework. They also presented in (T. Richardson 2010) a model

for solving the problems of providing memory management in service oriented

architectures. In their approach, they used a technique that allows the calculation of the

memory requirements of threads which are used to generate GC parameters, in order to

allow the addition of the threads only when it is guaranteed that neither the memory nor

the CPU would exhaust.

One more work was presented in (Ruth Tolosa 2003), in this work the authors

presented a proposal or a container model based on the RTSJ services; this model was

inspired by the EJB model. They provided simple models for invocation,

synchronization, resource reservation and memory management based on the available

RTSJ services.

Finally, in (Alrahmawy and Wellings 2007) we presented a model that uses

movable components in distributed real-time systems. This model was a base of the

work that will come next in this thesis.

4.4 Software Patterns

Building software architectures in general, and in particular reusable

components and middleware solutions, is a complicated task that not only requires a

deep understanding and analysis of the system requirements, but also requires a deep

experience of choosing the best design that will provide the most efficient solution that

meets these requirements. In general, to build a software architecture, this software has

to be divided in smaller units that integrate together to provide the services required by

this software. These small units together can be represented in several software forms

e.g. modules, classes, components, etc., where each one of these small units needs to

provide a particular service or functionality within the system.

Chapter 4

-104-

Due to the variations of the solutions of the same design problems, several

algorithms or design models can be used to build the software units of these solutions;

these variations in the solution algorithms have led to presenting some generalized

forms of software algorithms as solutions for different kinds of the software units.

These solutions algorithms are commonly called patterns and they have been accepted

as a mainstream software development technique.

4.4.1 Definition of the Software Pattern

In order to understand what the patterns are and their importance in software

developments in general and real-time middleware in particular, we are going to

discuss the definition of the patterns, their components, and their types.

Within the patterns community, patterns have been defined in several ways,

one very short definition was mentioned in (Lavagno, Martin et al. 2003) to define the

design Pattern as:

 "A generalized solution to a commonly occurring problem",

This definition is very short and does not give details on the characteristics of

the pattern, a more detailed definition of the Patterns was given in (Appleton B. 2000)

to define Patterns as follows:

"A pattern is a named nugget of instructive information that

captures the essential structure and insight of a successful family of

proven solutions to recurring problem that arises within a certain

context and system of forces"

Another clear and concise definition of the term pattern was given in

(Alexander 1979) as:

"Each pattern is a three-part rule, which express a relation

between a certain context, a certain system of forces which occurs

repeatedly in that context, and a certain software configuration which

allows these forces to resolve themselves"

From all the above definitions, we see that a pattern involves a general

description of solution that has been verified to be a recurring solution for a recurring

problem with various goals and constraints, where the good pattern will do the

following (Appleton B. 2000):

Chapter 4

-105-

 1- It solves a problem not just abstract principles and strategies.

 2- It is proven concept, not theories or speculation.

 3- The solution is not obvious.

 4- It does not just describe modules, but describes deeper system structures and

mechanisms.

 5- The pattern should provide useful utility for its user.

4.4.2 Classifications of Patterns

The software development process goes through several stages, and in each of

these stages the system is divided into smaller units in order to simplify its

development, where patterns are applied in each one of these development stages.

Hence, one way of classifying the patterns is to classify them according to the stage in

which they are applicable in. For example, patterns applicable in analysis stage, are

called analysis patterns, whereas patterns applied in the design stage are called design

patterns. However, currently in software development, the design patterns are the most

popular.

A common way of categorizing the software patterns is according to the

software level of abstraction used in the pattern. According to this, the patterns were

classified in (Shaw and D 1996) into:

1- Architectural Patterns; an architectural pattern is a high level abstract that

expresses a fundamental structural organization for software systems by providing a set

of predefined subsystems with specific responsibilities, rules, and guidelines for

organizing relationships among these subsystems. One example of architectural

patterns is the Client-Server model of networked communication in which the system is

divided in subsystems such as client object, server object, proxies, etc.

2- Design Patterns; a design pattern is a medium scale abstract that provides a scheme

for the subsystem of a software system that describes a recurring structure that solves a

general design problem within a particular context. The Proxy Pattern which is a class

functioning as an interface of another is an example of this kind.

3- Idioms (Coding Patterns); an idiom is a low-level abstract specific to a

programming language that shows how to implement a particular aspect or

relationships of components using the features of an implementation language. The

RTSJ‘s Portal pattern is an example of an idiom that is defined to enable saving or

accessing a shared object saved in a scoped memory area.

Chapter 4

-106-

Another way of categorizing patterns is classifying them according to the

stages of developing them in the software development life cycle as follows (Riehle

and Züllighoven. 1996):

1- Conceptual Patterns; a conceptual pattern is the pattern whose form is described

by means of terms and concepts from an application domain. The Object Pool pattern

can be considered as a conceptual pattern if we expressed its concept as a fixed-sized

collection of objects that can be retrieved to be used within certain operations of the

application and they return back to the pool once they are not required any more, in

order to be ready for reuse in other operations.

2- Design Patterns; the design pattern is described here by means of software

constructs such as objects, classes, inheritance, aggregation, etc. These patterns

elaborate upon the conceptual patterns, for example the classes, objects, methods, etc.

used for designing the Object Pool pattern described above are considered a design

pattern.

3- Programming Patterns; a programming pattern is provided in the form described

by means of the programming language constructs. This kind is equivalent to the

idioms pattern presented before.

One more method of categorizing the software patterns was presented in

(Gamma, Helm et al. 1995; Lavagno, Martin et al. 2003) , where software patterns are

classified according to their functionality within the software system to be either:

1- Structural Patterns; this is the most common type as it describes how classes and

objects can be combined to form larger structures. The proxy pattern which is used to

implement both the stub and the skeleton of the remote method invocation is an

example of a structural pattern, as it acts as a place holder for an object to control

references to it, i.e. the stub pattern acts at the client side as is a place holder of the

remote server object.

2- Creational Patterns; the creational design patterns deal with mechanisms of object

creation, by creating objects in a manner suitable to the situation. These patterns are

required in problems that can arise when the basic form of object creation could result

in design problem or complexity. The Singleton Pattern is a very well-known example

of the creation pattern that enable the creation of only a single object instance of a

certain class. The Immortal and Heap memory area classes in RTSJ are using the

singleton pattern as they are assumed to be singular objects.

3- Behavioural Patterns; this type of patterns identifies and realizes the common

communication patterns between objects in order to increase flexibility. A well-known

Chapter 4

-107-

example of this pattern is the Observer pattern in which an object registers with a

certain entity to observe an event which may be raised by another object. The observer

pattern is used for observing incoming client connections in many server models, and

in RTSJ it is used by the scheduler to observe the occurrence of the AsyncEvent(s) in

order to release the AEH(s) registered with these events.

4- Concurrency Patterns; Patterns of this kind deal with the multithreaded

programming paradigm. The scheduler, pattern is a very common example of this

pattern, where it is used to explicitly control when threads may execute single-threaded

code, like write operation to a file. This explicit control is done according to a

scheduling policy that is encapsulated in the classes and objects of this pattern. For

example, in RTSJ, the scheduler is using the pre-emptive fixed priority policy as its

own scheduling policy.

4.4.3 Combination of Patterns

As mentioned before, software architectures are commonly built of several

software units, and these software patterns have to combine with each other in order to

satisfy the system requirements, the combination of patterns can be on several levels

from building small software components up-to building full systems. A classification

of the levels of combinations of the patterns is defined in (Voelter, Kircher et al. 2004),

where the authors classified the following levels of combinations:

1- Compound Patterns; these are patterns that are assembled from other smaller

patterns, e.g. the Broker pattern used in remote middleware.

2- Families of Patterns; these are collections of patterns that solve the same general

problem, e.g. patterns for networking communication.

3- Collections or Systems of Patterns; collections that comprise several patterns from

the same domain or problem area, e.g. patterns for supporting server-side non-blocking

communication.

4- Pattern Languages; pattern languages do not only specify solution to specific

problems, but also describe how to create a certain complete domain, e.g. pattern

language for creating remote communication middleware.

4.4.4 Software Development Using Patterns

In the previous section we discussed what patterns are and how they are

classified and combined together. In this section we will show how the patterns can be

used. In general, during the design procedure, the patterns can be used in one of three

ways as follows (Lavagno, Martin et al. 2003):

http://en.wikipedia.org/wiki/Thread_%28software_engineering%29
http://en.wikipedia.org/wiki/Execution_%28computers%29
http://en.wikipedia.org/wiki/Source_code

Chapter 4

-108-

1- Pattern Hatching; this way of use aims to use an existing pattern from the available

pattern models and libraries, by analyzing the design problem in order to characterize

its nature and its requirements and whether its scope is architectural or mechanistic, in

order to match it with an existing pattern that can provide its requirements and satisfies

the set of qualities of service required for it.

2- Pattern Mining; it is not necessarily that the design problem to be one of the

common design problems that have already an existing pattern to solve it. Hence, a

procedure is required to find a new pattern may be needed to deal and solve the

problem, this procedure is known as pattern mining, and involves abstracting the

problem to its essential properties and requirements; then, providing a generic solution

to it; finally, studying the consequences of using this pattern in the context in which

this new pattern is to be used.

3- Pattern Instantiating; the pattern instantiating is the process of applying the pattern

to the problem at hand; this involves the specialization of the general patterns roles,

modification of application classes to take on properties of the pattern elements, etc.

4.4.5 Patterns in Real-time Systems

One important approach of classifying the design patterns was presented in

(Lavagno, Martin et al. 2003). In this approach the patterns are categorized from a real-

time perspective, where the design patterns are categorized on the basis of what quality

of service (QoS) they seek to optimize into a set of fine grained mechanistic patterns.

The mechanistic design pattern is assumed to be a way of organizing some aspect of a

design to improve its optimality with respect to one or a small set of qualities of

service. Some of these qualities of services that can be optimized by design patterns

include:

1- Performance; this includes the patterns for optimizing either or both of the worst

case execution time and/or the average execution time of subsystems that are

implementing these design patterns.

2- Resource Management; any software system has a set of resources that are limited

and constrained somehow; hence, one of the most important kinds of the optimization

required for real-time systems is the correct management and optimization of resource

usage, whether this resource can be memory, CPU, hardware, storage, etc. One of the

most common examples of hardware resources that have a lot patterns to manage it, is

the memory. Memory management patterns include both architectural patterns and

behavioural patterns, where the architectural patterns include patterns such as Fixed

Allocation patterns, Pooled Allocation pattern, and Garbage Compaction pattern. The

Chapter 4

-109-

behavioural patterns for managing the memory targets mainly the support of the

memory sharing in a concurrent environment, such as the Critical Section pattern, to

ensure exclusive access to a part of the shared memory and the Priority Inheritance for

bounding priority inversion.

3- Concurrency Patterns; concurrency is a critical aspect of real-time systems, so the

design patterns for managing concurrency are very important in designing real-time

systems. The main issues of concurrency patterns are performance and schedulability.

In real-time systems, the scheduling patterns include both patterns that:

a. Represent the scheduling policies, such as Interrupt pattern, Guarded Call

pattern (Douglass 2003), or mechanisms for optimizing schedulability.

b. Limit blocking and priority inversion, these patterns overlap with the resource

management patterns as the blocking is a result of locking a resource in a

concurrent situation. Priority Inheritance and Priority Ceilings are examples of

patterns that can be used for limiting the priority inversion.

4- Throughput; throughout is a very important quality of service for many real-time

systems especially for networked systems. The system throughput for networked

system can be specified in one form of the following:

a. Average Throughput; the average throughput is average rate of quantity of data

that can be transmitted successfully through the system over a certain period of

time. For networked systems, average throughput is usually measured in

bits/second, and sometimes in packets/second.

b. Sustained Throughput; the sustained throughput is the throughput averaged or

integrated over a very long time, and it represents the rate at which the data can

be sent continuously through the system.

c. Burst Throughput; the maximum rate that can be sent through the system at

any time.

Hence, any pattern that aims to enhance, observe, or control the rate of the transmission

of the data in the system is considered a throughput pattern.

5- Safety and Reliability; safety and reliability are two important categories for many

real-time systems where safety ensures the system freedom from accidents or losses,

while reliability is the probability that the system will process the required computation

successfully. Patterns for these two qualities of services focus primarily on monitoring

the violation of things that are supposed to be always true in the system, invariants, and

taking appropriate action when such violations are detected. The Redundant Storage

Chapter 4

-110-

pattern is an example of the reliability patterns, where in this pattern the value is stored

twice in two different forms, so that it can be validated and corrected if required.

6- Software Quality, Reusability Patterns; real-time systems like any software

system have some issues that are non-time related qualities of service, such as

reusability, correctness, portability, simplicity, scalability, complexity, recurring cost,

development effort and cost, maintainability, etc. Hence, all patterns defined for these

non-time qualities work for real-time systems as well.

7- Distributability; the distribution patterns targets the development of a simple and

transparent separation of objects patterns that are located at multiple address spaces and

it should provide efficient communication among them, using protocols that maximize

the throughput, server response time, reliability, etc. of message transfers among them.

Distribution can be classified into:

a. Asymmetric; the location of the objects is decided at design time. It is less

complex, but suffers from a lack of flexibility.

b. Symmetric; the location of the objects is decided at run time, so additional

patterns can be built for this type that enable dynamic load balancing of the

distributed objects among several processors.

8- Reactive (Behavioural) Patterns; patterns of this category define structural

elements to control the behaviour of the objects constituting the system. The State

pattern (Gamma, Helm et al. 1995) is an example of this category, where it is

responsible for controlling and organizing the execution of the different sates that

define the object‘s state machine.

4.4.6 Software Patterns and the RTSJ

One of the main areas that impact the development of RTSJ applications is the

introduction of memory areas into the RTSJ. The constraints and memory access rules

required by scoped memory inhibit developers from the direct use of general software

design patterns. Hence, there has been a requirement to enhance existing software

patterns or even to present new ones that can be integrated with scoped memory areas.

Therefore, an active trend of the research in the RTSJ is toward providing new RTSJ

compatible patterns, for example, in (Pizlo, Fox et al. 2004) software patterns that

predictably execute loops and methods in scoped memory areas were presented,

moreover, the wedge thread pattern was proposed to keep a certain scoped memory

area with shared objects alive even without any schedulable object being active inside

it. Furthermore, a handoff pattern was presented as a mechanism to enable

Chapter 4

-111-

communication among objects running in different scoped memory areas that have a

common outer scoped memory area.

In (Benowitz and Niessner 2003), a survey of software patterns for RTSJ was

presented, where an object factory pattern for allocating objects in a specific memory

area was proposed. Also, in the same survey, the memory pools and memory blocks

patterns were defined as design patterns for reusing objects especially those allocated in

the immortal memory area.

In (Corsaro and Santoro. 2004), the authors presented a memory-scoped

version of the leader-follower software pattern. In this pattern, a leader-follower

selector thread is proposed to be running in a single scoped memory area and can select

the leader thread from a pool of threads allocated in the same memory area. Authors in

(Corsaro and Santoro. 2004; Corsaro and Santoro. 2005), proposed the memory tunnels

pattern as an extension to the RTSJ specification; in this pattern, data transfer among

objects in different scoped memory areas is done by deep copying objects in a

temporary memory tunnel proposed by the authors.

In (Raman, Zhang et al. 2005), the authors presented their experience in using

software patterns for developing RTZEN, a real time CORBA Object Request Broker

using the RTSJ. The immortal exception pattern is one of the patterns they used in their

implementation. This pattern provides an exception handling mechanism capable of

handling exceptions thrown from objects allocated in scoped memory areas by using

reusable exception objects created in a pool in immortal memory.

4.5 Pros and Cons of using Software Design Patterns

Design patterns have a number of practical benefits that make them valuable as

tools for software development; however, they also have a number of common

problems, which inhibit some developers of using them. In this section, we summarise

the pros and cons of adopting and applying design patterns in software development as

presented in (Cline 1996).

4.5.1 Practical Benefits of using Design Patterns

Using software design patterns in software development has the many benefits that

encourage many developers to use them, these benefits include:

1- Design patterns coordinate the entire process and community; they provide

standard vocabulary among developers; so, they enable the communication of

Chapter 4

-112-

information between designer, programmer, and maintenance programmer at levels

higher than individual classes or functions.

2- Design patterns can be used reactively; they can be used as a documentation tool

to classify the parts of the design, which makes the design easier to understand,

especially for new developers.

3- Design patterns can be used proactively; they can be used to build robust designs

that consist of well understood design-level parts. This requires the designer to abstract

the design problem into parts that can be matched to existing, or new, design patterns.

4- Design patterns can be used to give the software a hinge; hinges are required to

enable software adaptability to future changes. Design patterns are one of the most

useful ways to manage and support hinges, for example, the Abstract Factory pattern,

makes the addition of new kinds of derived classes (a hinge) is much easier, even

though some parts of the system have to create objects of these derived classes.

5- Design patterns can turn a tradeoff into a win-win situation; in many cases,

there are tradeoffs, e.g. generality and performance, among some of the qualities of the

design. Some design patterns enable the designer to work around these tradeoffs, for

example, the Composite pattern provides an efficient mechanism for building recursive

structures that are used only when required; this helps to ensure that the design supports

generality in a way that affects the performance only when it is used.

6- Design patterns constrain maintenance programmers; any change made during

the maintenance of the software should not affect the adaptability support of this

software. Using documented design patterns helps the maintenance programmers to

easily identify and understand the hinges within the code; so that, the maintenance of

the system can be planned and implemented without affecting the adaptability of it.

7- Design patterns let management reward self-directed designers; To gain the

skill and experience, object oriented designers willing to use software patterns in their

designs, should expend unpaid overtime hours to self-train themselves how to apply

design patterns in simple examples. So, those self-directed designers should be

rewarded for their extra effort.

4.5.2 Inhibitors to Patterns Applications

Using design patterns in software development is not always the best methodology

for developing software for the following reasons:

1- Design patterns have been oversold; design patterns have their importance

especially when adaptability is valuable nonfunctional objective. But the benefits of

using design patterns are wasted, unless the overall software development process is

Chapter 4

-113-

modified to take design patterns into account. For example, every code review made

during the development lifecycle has to respect the constraints of all design pattern

used in the design, every maintenance change has to be evaluated to ensure that it does

not break any of the constraints of the design pattern.

2- Some design patterns are unnecessary difficult to learn; sometimes the chosen

design pattern is built over other patterns; which makes it difficult for an average

designer to understand it; or sometimes its description/documentation is not clear

enough and/or misleading.

3- Design pattern classifications are not yet useful for practitioners; for the people

who already understand design patterns, the various classifications of design pattern are

helpful to organize and search among them; however, some average developers face

difficulties of understanding these classifications during the learning stage of using the

design patterns. For example, some developers may consider that the criteria used for

categorizing the design patterns do not appear to map easily into mental models.

4.6 Summary

In this chapter, as we aim to use the RTSJ in developing our proposed real-time

solution, we presented an overview of the new scheduling and memory management

models defined in the RTSJ, in order to clarify both the real-time support it adds to the

Java language, and the restrictions it adds to the memory model, in order to ensure the

required predictability.

Then, as we aim to use the component technology for building our model, we

provided an overview of the characteristics and basics of both components and

component based systems, and their importance in developing software systems, then

we discussed the challenges and problems facing using the component based

engineering in the real time systems.

Moreover, we provided an overview of the software patterns as an important

software engineering mechanism for developing reusable components and middleware

solutions, where we covered their classifications, and the different levels of applying

them during system development. Also, we discussed some of the qualities of services

that can be optimized using software patterns.

Finally, we discussed the benefits of using the software design patterns for

developing RTSJ-based applications, e to overcome the limitations of using the RTSJ‘s

new memory model.

Chapter 4

-114-

 We conclude from this chapter that component technology is a well-known

technology commonly used in building middleware solutions; however, developing

real-time components in general and particularly using the RTSJ is facing many

challenges, many of these challenges are related to the new memory model of the

RTSJ, as the common software patterns used in building components for real-time

middleware are not easily implemented using this new memory model. Hence, we need

to build a new component model, where this component model can be built using

existing and/or new design patterns that have to satisfy the memory rules of the RTSJ,

as well as provide predictable execution times and memory usage. These patterns

support building the components that can integrate together within middleware models,

in order to develop component-based real-time middleware solutions. However, in

order to build these components, we first need to define a framework that can be used

to build light weight components that can be built over the RTSJ platform and

accommodate with the complicated restrictions of using its memory model and

scheduling model, So, in the next chapter, we present our proposed framework for

developing components in the RTSJ.

-115-

 Chapter 5

RTSJ-Based

Component Framework

The growing complexity of real-time middleware systems has made a need for

methodologies to facilitate the design and implementation of such systems. These

methodologies should provide high levels of abstractions, to ease the software

development, and to enable software reuse. In the previous chapter, we showed that

component reuse and modularity features have found great success in supporting fast

development of large scale adaptive distributed middleware architectures. This in turn

has drawn the attention to using component based software engineering to receive

increasing attention for developing distributed real-time systems. Many of the current

component frameworks use Java as an implementation language, e.g. EJB. However,

these frameworks, as they are Java programs, inherit the unpredictability of the Java

language as mentioned in chapter 3. So, they are not applicable in building components

for real-time systems.

On the other hand, as discussed in chapter 3, the RTSJ has overcome the

unpredictability of the Java language by providing new memory and scheduling models

for building real-time applications in Java. To achieve the required predictability in the

language, the RTSJ‘s memory model has some constraints that make it unusual and

makes the development of the applications on it a complicated process compared to the

standard Java‘s memory model, which is one of the key advantages of the Java

language, due to the automatic memory management provided by the language‘s

garbage collector.

To overcome complexity added by the constraints of the RTSJ‘s memory

model, several design patterns have been proposed in the literature. However, writing

these patterns directly within the programs complicates the readability and debugging

of the code, and even can cause memory leakage if not properly applied.

Hence, we can see that the above three technologies, RTSJ, design patterns,

and the component software engineering technologies, are required to be integrated

Chapter 5

-116-

together to provide frameworks for building components for real-time middleware

solutions that have the following characteristics:

1. Hide the difficulties of using the RTSJ memory model.

2. Provide an easy to understand programming model.

3. Facilitate the development of majority of real-time applications.

4. Based on the standard RTSJ features with no additional extensions.

5. Does not add a significant overhead compared to other standard methods.

6. Provide a predictable memory model that does not have any memory leaks.

7. Provide the common services required in real-time middleware architectures,

e.g. communication models, where these services have to have predictable

execution times.

8. Supports various models of real-time, including static and dynamic

architectures.

9. It must provide high degree of configurability and adaptability of its structure

to suite different kinds of applications.

Hence, in this chapter, we develop a component framework for building

components for real-time middleware applications; we begin the chapter by presenting

a design procedure for gradually extracting the components and building the

components and objects of the system. Then, we present the design and implementation

of our own component framework using a set of existing, modified and new design

patterns, which are chosen/created to be compatible with the RTSJ‘s memory model; at

the end of the chapter we present an example of using the framework and its associated

sub-components to build a method invoker pattern.

5.1 Components Framework Design Views

As presented in the previous chapter, the elevation of the new RTSJ features,

e.g. the new memory model, the different types of schedulable objects, and the new

constraints and rules of using them, adds an additional complexity to the design phase

of the RTSJ based real-time applications in general, and in particular to the middleware

systems that require high levels of abstractions. This added complexity is not just for

the provision of the architecture that support the required functionality of these system,

but also for embedding the real-time requirements in them using the RTSJ scheduling

and memory model. Therefore, there is a need to build a framework for building our

proposed real-time middleware, where this framework has to:

Chapter 5

-117-

 1- Use some form of separation of concerns concept to decouple the design phase into

several steps, where each step focuses on one type of the system or middleware

requirements.

 2- Provide new design patterns, or modify the existing ones, to be compatible with the

RTSJ scheduling and memory models, in order to provide reliable solutions that

can be used in the design of the RTSJ based systems.

 Hence, in order to design a component framework model for developing real-

time middleware systems using the RTSJ, the framework has to be analysed from

different design views that cover the requirements of the environment and the

applications in which these components will be used.

 In this section, we discuss the different views which we considered when we

designed our framework. These design views are extension to the views presented in

(Colmenaresy, Gorappa et al. 2006) and the framework presented in (Alrahmawy and

Wellings 2007) and they include four basic design views: Business/Functional View,

Thread Management View, Communication View, and Memory Management View.

These design views are explained next.

5.1.1 Business/Functional View

 In this design view, the designer focuses only on the functional aspects of the

system by dividing the system into a set of functional units; e.g. component or objects,

where these units represent the major functional elements of the system including both

the passive elements and the active elements. In this model, the active element is an

element that contains its own thread(s) of executions, i.e. it uses an active object

pattern, whereas a passive element can provide services or require services but it does

not have its own threads of executions as it depends on other active elements to provide

or use these services. An example of a passive element is a buffer; this object has no

threads running in it but it provides reading/writing services that can be used by the

active element(s) that wants to access the buffer. Also, in this view, the user tries to

specify the required interfaces that should be provided by these elements to use its

services, and at the same time, select an initial set of the common design patterns that

can be used to build the different services provided by the component from known

design patterns, and filter them to the set of the design pattern that can provide real-

time behaviour, or find new design.

Chapter 5

-118-

5.1.2 Thread Management View

 In this design view, the functional units created in the business view are

filtered, where the passive units are filtered out and only active elements are

considered. The active elements can be even classified into single threaded and multi-

threaded. Also, as we assume the implementation to be using the RTSJ, the active

elements are analysed to determine the execution characteristics of them in order to

choose the best schedulable objects that can be used to implement these active

elements. For example, the NHRT can be used to implement the active elements with

time-critical requirements, whereas the RTT can be used to implement soft real-time

tasks. Also, for multi-threading, we have to decide if it is static-multi threading, i.e. the

component has a fixed set of threads that runs concurrently during its lifetime, or it is

dynamic-multi-threading, i.e. the component has a set of threads that have a lifetimes

shorter than the component where they are created dynamically and finishes before the

component terminates, e.g. a server component that generates threads to process the

clients‘ requests, these threads are alive only during the processing of the request and

each of them terminates once the client request is processed and the result is sent back

to the client. This classification may lead to reusing schedulable objects to limit the

concurrency within the component.

5.1.3 Communication View

 In this design view, the mechanisms required for processing the required

communications among the active elements of the system is decided and the

components and patterns required for implementing them is added to the components

generated in the business view. In general, there are four types of communication

mechanisms that can be used within and among the active components/units of the

distributed real-time applications:

A- Inner Communication Mechanisms

 As we assume that multiple active components can be built by composing a

set of active and/or passive components; hence, there is a need to define the

mechanisms that can be used for the inner-communication among these internal

elements. In other words, these communication mechanisms provide the required

composition and integrity of the schedulable objects and their associated passive

elements composing a single composite component. The use of the shared memory

model is a common example of this type of communication, and it is offered in the

RTSJ by either using portals of the scoped memory areas, or through the heap or the

immortal memory area. In RTSJ based applications, these mechanisms are mainly

Chapter 5

-119-

dependent on the types of the chosen schedulable objects and it can result in a new set

of passive elements added to the design. For example, a wait-free queue, which is a

passive element, can be used for inner-communication and binding between a soft-time

and a critical-time task that exist within the same component.

B- Inter-Components Communication Mechanisms

 These mechanisms are responsible for the communication among the

individual components of the application, i.e. these communication mechanisms

represent the required bindings among the isolated components that form the

application. The techniques used for this type of communication are quite similar for

the inner-communication mechanisms, as they both represent communication within

the application, i.e. local communication within the same virtual machine. However,

they are restricted by the level of communication support offered by the interfaces of

the communicating components.

C- Local Communication Mechanisms

 These are the mechanisms that offer the active components the ability to

communicate across the application boundary with other components in other

applications in the same virtual machine.

D- Remote (Network) Communication Mechanisms

 These mechanisms are the most important design issues for any distributed

real-time system in general and particularly for real-time middleware, as they provide

the interface which is used to transfer the data and method calls over a network

connection from the active components within an application running on a certain

operating system to another application within another node with the same or different

operating system. It must be noted that the remote mechanisms used for this type of

communication can be used in any other form of communication, i.e. intra, inter-

components, or local but with the added cost of time and efficiency.

 As presented in chapter 2, in the Java language, remote communication is

supported by both the Java RMI, which is Java-dependent, and CORBA, which is Java-

independent mechanism. From a real-time point of view, as surveyed in chapter 3, the

original Java RMI and the implementations of CORBA for the Java language do not

provide the predictability required for use in real-time systems; however, there have

been some work to support real-time features in them as presented also in this chapter.

Chapter 5

-120-

5.1.4 Memory Management View

 The memory management view allows the developer to focus on managing

the different memory regions of the application. In this view, the different stages of the

lifetime of the active and passive units are analysed in addition to the different

communication possibilities amongst these units in order to choose the best allocation

memory area(s) for each of them, in addition to the memory area(s) that will be used

for allocating run-time objects, that are created as a result of executing the active

elements. For example, active components that are to exist for the life time of the

application are initialized in the immortal memory area, whereas temporary objects that

are created during processing a certain task are allocated in a scoped memory that the

active component should enter into it while executing this method, i.e. using the

encapsulated method pattern, in order to ensure that these temporary objects will be

reclaimed once the active component finish executing this encapsulated method. In

addition to the memory area assignment, the designer should provide any additional

memory management facilities that may be required to manage the lifetime of the

scoped memory areas, e.g. the developer may need to use the wedge thread pattern or

any similar patterns as will be described later.

5.1.5 Other Design Views

 The above design views are not the only views that can be considered when designing

the component framework, for example we can consider an additional view, the

scheduling view. The aim of the scheduling view is to provide the scheduling

mechanism and policies that controls the execution of the active elements of the

system. In RTSJ, the scheduling is done using a pre-emptive fixed priority scheduler.

Hence, the schedulable objects generated from the previous views can be assigned their

priorities and their execution parameters that will be used by the priority scheduler(s)

controlling the system. However, for some real-time systems, it might be required to

either use other models of scheduling, e.g. EDF scheduling by implementing it over the

RTSJ‘s fixed priority scheduler (Wellings 2004), or even add additional levels of

scheduling within the system, e.g. using a distributed scheduling mechanism. In our

design of the component framework, we will assume that we are using the priority

scheduler provided by the RTSJ, as this is the standard RTSJ model.

 The Executable logic view is another view, where logic of the component

functionality is addressed and analysed to see how it would be executed and if it will be

executed by a single schedulable or it needs multiple schedulable, and how it would be

assigned and its execution properties are analysed.

Chapter 5

-121-

 It is seen from the above design views that the design of a component is not a

trivial process, and it takes a lot of effort and can be repeated several times to reach the

required level of predictability, but we consider that using reusable software

components is a good way of simplifying the development of real-time middleware

systems, especially by implementing these components using efficient, and reliable

design pattern that offers high levels of predictability in both memory usage and

execution time. In the next section we present the design of our own component

framework.

5.2 The Component Framework

In the component frameworks, the structure of the component and the relations

among its parts are developed and the relations and communications mechanisms of the

component with other components are defined. This makes using component

frameworks simplify the design and development of software systems. In the following

sections, we are discussing the main parts of our model and how they can collaborate

depending on the different design views presented in the previous section.

5.2.1 The Component Meta Model

The component meta-model represents the summary of the framework as it has

to link all the parts of the framework together. In general, the hierarchy of the

component should not just define the units forming the internal architecture of the

components, but also it has to define the external relations with other components or

software elements in the systems, as well as the execution models within the

component and how all these elements are integrated together. In addition to these

general properties, as this component model targets the real-time domain, in the design

of our component model, we are going to consider some important features required for

many real-time applications such as the reusability of resources and the avoidance of

memory leaks.

Also, as we are building the component using the RTSJ, then the component

model has to hide the complexity of the RTSJ‘s memory model. This requires careful

consideration when structuring the component memory model.

We assume that the structure of the component has to be flexible and

lightweight to fit the requirements of the tasks that it contains or the functionality it

provides. Hence, our design assumes that the structure of the component is not

monolithic, in other words, the structure has to be built in such a way that enables the

Chapter 5

-122-

developer to configure its structure to support different hierarchies and services. In the

following, we present the basic parts of our component framework.

5.2.2 The Component

The component entity in our model represents and provides a complete unit of

service or functionality. In general, the component can have some inner components,

and it can itself be part of another component. As said before, the structure of the

component needs not to be monolithic; i.e. the inclusion of unwanted structural units

within it has to be avoided. So, the structure of the component in our model is based on

using individual internal units of structure that provides different services, whether

these services are functional services or control services. These internal units do not

need to be in all the components, but it can be configured for the components requiring

them only, so that these units can be plugged in the component during the creation

process as required by the developer. In our model, the component itself is contained

within a container that provides facilities and services such as binding, remote loading,

etc. to the component.

A- Component Types

The component structure that enables the internal units of the component

model to be pluggable only, enables the definition of various types of components

according to their structure. Examples of these types include:

1- Structural Sub-Components; these are not independent components, but they are

the components that represent a certain structural unit within the component model, in

other words any sub-component that does not have an independent functionality and it

has to be part of other component(s), e.g. a memory model component, or threading

pool component, each of these sub-components can be just a simple object within the

container memory area that offers its services to the included components and to other

sub-components in the container.

2- Control/Management Sub-Components; these are the sub components that are

responsible for managing the structural sub-components constituting the component

hierarchy, e.g. a memory lifetime controller that manages the lifetime of the inner

scoped memory areas, as the structural sub-components, these can be just objects in the

container.

3- Active Components; these represent components that have inner executing tasks, in

other words they have their own executing thread(s) and they can work either

independently or cooperatively with other components. This type of component can be

even divided into two main categories:

Chapter 5

-123-

a. Static-Structure Components; these components have a static structure that does

not change along the life-time of the component, e.g. a component that encapsulates a

timer or a client in a middleware that makes a request to the server and waits for

results.

b. Dynamic-Structure Components; the structure of these components can be

changed over the life time of the component, i.e. other components are attached to it or

other tasks components are generated within it, e.g. a server component that handles

connection from clients, where it can create inner tasks as inner components to handle

the execution requests of the clients.

4- Passive Components; these represent components that have no internal thread of

execution, and hence they cannot work by their own independently of other

components. In other words, these are (hospitable) components that enable the

execution units of other (guest) components to execute within them, e.g. a buffer

component.

5- Logic Components; these are components that represent the execution logic of a

certain task. In other words, they have neither inner memory nor threads of execution,

so that they have to be attached to a certain active component to run within it. The use

of the logic component enables the flexibility of the execution of the logic by not

making it tied to a certain executing component, which gives the flexibility for the logic

to be executed by more than one executor, e.g. the migration of the code in mobility

application.

In this chapter, we will show some of these components and how they integrate within

the framework.

B- Component Design

In our framework model, we assume that the component entity is represented by

the class ComponentsCls, so that any component has to be created from a class

extending the ComponentCls. The ComponentCls class implements the interface

IComponent, shown in Figure 5-1. The interface IComponent defines a set of

functions which can be classified into four different groups:

Group 1: This group defines the management operations of the component, and it

includes four different operations:

start(). To start the execution of the inner schedulable tasks of the component; if

they exist.

init(). To do all the initialisation operations required for the component.

Chapter 5

-124-

package RTCOM;

public interface IComponent

{

//Group 1

String getComName();//retrieves the name of the component

void start();//start the driver thread of the component

void init();//initialize the component

void terminate();//terminate this component

void setContainer(IContainer container);//assign a container

IContainer getContainer();//get the container of the component

MemoryArea getCMA();//get the common memory area of the component

MemoryArea getContainerMA();//get the container memory area

Queue getSMAQueue()//get the Queue of SMAs

//Group 2

void initMemoryModel(IMemoryModel memModel);//initialize the memory model

void initMemoryModel(Class memCls, long initSize, long MaxSize,

 int LIMIT,Class SMAClass, long[] initialSizes,long[] maxSizes,

 Class memCtrlCls);//initialize the memory model

void initMemoryModel(LTMemory theCMA, int LIMIT,Class SMAClass,

 long[]initialSizes, long[] maxSizes,

 Class memCtrlCls);//initialize the memory model

IMemoryModel getMemModel();//retrieve the memory model

//Group 3

Schedulable getTask(String TaskName);//retrieves a certain task by name

ReusableRunnableStack addSMATask(String taskName, Class SchedulableExecutor,

 SchedulingParameters schedulingP, ReleaseParameters releaseP,

 long scopeSize, long immortalSize , Class mareaType,

 ProcessingGroupParameters group,

 Class StackLogicCls);//adds SMA task

ReusableRunnableStack addSMATask(String taskName, Class SchedulableExecutor,

 SchedulingParameters schedulingP, ReleaseParameters releaseP,

 ScopedMemory memArea, ProcessingGroupParameters group,

 IStackLogic logic);//adds SMA task

//Group 4

IMemoryModelControler getMemoryController();//get the memory controller

void setMemoryController(IMemoryController

 memController);//assigns memory controller

void setMemoryController(final Class

memControllerCls);//assign memory controller

IObjectAllocator getObjectAllocator()//get the reusable object allocator

void setObjectAllocator(Class memoryControlerCls)//assign object allocator

void setObjectAllocator(Object memoryControlerObj)//assigns object allocator

IHPool getHandlerPool(String poolName);//Get the pool of handlers

void addHandlerPool(String poolName, IHPool pool);//add a handler to the pool

void addHandlerPool(String poolName, Class poolCls);//add handler to the pool

}

Figure 5-1 the IComponent Interface

terminate(). To terminate all the schedulable objects running in the component,

and then terminate the component itself.

void setContainer(IContainer container): to assign the container

that holds this component.

IContainer getContainer(): to get a reference to the container that holds

this component.

MemoryArea getCMA(): to get a reference to the common memory area, CMA,

of this component.

MemoryArea getContainerMA():to get a reference to the container memory

area, ContMA, of this component.

Chapter 5

-125-

Queue getSMAQueue(): get the Queue that holds all the forked/pinned scoped

memory areas within the CMA of this component.

Group 2: This group includes all the operations responsible of the memory model

assigned to this component including operations for initializing it or retrieving a

reference to it.

Group 3: This group includes all the operations responsible of the adding and getting

attaching schedulable objects (reusable or not) to/from the component.

Group 4: This group includes all the operations responsible for the adding or

accessing the optional sub-components to/from the component or its container.

 An example of a basic implementation of the ComponentCls class is presented

in A.1.

5.2.3 The Container

The container is a common structural unit used in many component frameworks;

the main function of the container is to manage the lifecycle of the component i.e. it

provides the control interfaces that enable starting, initializing and terminating the

component. In addition to that, the container offers a set of services to the components

running within it, including communication, resources reservations, etc. The container

itself has its own memory area in which all the main memory areas of the inner

components are allocated. In our model, we consider the container is acting as a host

of the component that isolates it from other containers, components and/or objects in

the program. Also, we consider that the container is assigned a thread that is

responsible for managing the component and its inner component lifecycles, i.e.

Manager/Driver Thread.

COMPONENT

Reusable

Object

Allocator

Sub-

Component

COMPONENT

Container

C
O

M
P

O
N

E
N

T

C
O

M
P

O
N

E
N

T

C
O

M
P

O
N

E
N

T

Forked Memory SubComponent.

Reusable

Memory

Allocator

Sub-

Component

Memory Controller Comp.

Compound

Component

Reusable

Executors

Sub-

Component

Communication

Services

Figure 5-2 The Container and its inner components

Chapter 5

-126-

We assume that the container can have multiple components inside it, see

Figure 5-2, either as a single composite component or as a set of components or

attached (communicating); where this container can provide one or more of wrapper

interfaces that enable the external access to the services provided by its inner

components. Moreover, the container in our model works as a provider for the optional

reusable resources and communication services required for the component(s) running

within it that require them. The container provides these reusable resources; e.g. object

pools, ... etc. in the form of structural sub-components composed within it as will be

explained later in this chapter.

In our model the Container is implemented using a class that extends the abstract

class ContainerCls which implements the IContainer interface, shown in

Figure 5-3.

package RTCOM.

public interface Icontainer

{

ScopedMemory getMemArea();//Get the memory area of the container

HashMap getComponents();//Get the components in the container

void addComponent(IComponent com);//add a component to the container

IComponent getComponent(String ComName);//Get a component from the container

void BuildComponents();//Build the inner components

void InitializeComponents();//Initialize the inner components

void start();//start the execution of components in this container

void terminate();terminate the execution of components in this container

…..

….

}

Figure 5-3 The IContainer interface

void InitializeComponents():To do the initialization phase of all the

components running within this container, by calling the initialize() function of

each component.

void start(): To start the execution of all the components running within this

container, by calling the start() function of each component.

void terminate(): To terminate all the components running within this

container, by calling the terminate() of each component.

In addition to the above functions, the class that extends the ContainerCls

in our model can provide the additional interface, e.g. IContainerServices that

gets references to the set of optional sub-components that are created, within the

Container, e.g. memory pools, etc. this interface should define a set of functions like:

getMemoryPool(), getObjectAllocator(), etc. An example

Chapter 5

-127-

implementation of a class that represents our model of the Container is presented

in A.2.

5.2.4 Interfaces

Interfaces play a major role in component models; they represent the entry to

the component services and structures. In our framework, each component can have

one or more interfaces which can be categorized into the following:

- Information interface(s); one or more interfaces can define certain information of

the component like its name, id, etc. In our view, these can also include the information

that defines real-time and predictability properties of some inner tasks of it, like its

worst case execution time, maximum memory, etc.

- Control Interfaces; these are the interfaces that are responsible for managing the

inner configuration and operation of the component, i.e. its start, termination, size of its

memory, or type of its threading model, etc.

- Functional/Business Interfaces; these are defining the different services offered by

the component, i.e. these are the ones that are defining the component job, so we

assume that each component has at least one interface that defines its functions.

- Communication interfaces; these interfaces are defining how the component is

linked to other units in the program, including other components in the same container,

or other components in another component i.e. binding interfaces, or even with other

components in other applications on the same machine or other machines, e.g. remote

interfaces.

- Scheduling Interfaces; these are the interfaces that are managing the scheduling of

the component inner schedulable objects, or even the schedulability of the component

itself in case of using a multi-level scheduling mechanism that enable scheduling the

components, i.e. the mobility scheduling of components over a distributed system (see

(Alrahmawy and Wellings 2007)).

 In our model, it is not necessary that each interface is to be of a single specific

category of the categories mentioned above, but it is possible that the same interface

can be a combination of more than one category.

5.2.5 Memory Model

As one of the main aims of designing our component framework is to abstract and hide

the complexity of the RTSJ that results from its unusual memory model and its

associated rules and constraints, then, in our design we consider that the cornerstone in

our component model is its memory model. This memory model should be built in such

a way that it optimizes the use of the memory structure and the associated memory

Chapter 5

-128-

management and communication design patterns. Then, from this memory model, we

derive the other elements that can integrate with this memory model to build the

component.

So, here we present the memory model for our proposed component model, where

we will first define a structure model for the component itself, and then we will discuss

how we can provide rules and mechanisms over this model to present a full memory

management model of the proposed system.

A- Component Memory Structure Model

In our system, from a memory structure point of view, there are two types of

components:

- Memory-Owner Components; these are the components that have their own

memory structure, which they use during the lifetime of the component. Examples of

these components include server components that provide services to multiple clients.

- Memory-Guest Components; these are the components that do not have their own

memory structure, but they are using the memory structure of other memory-owner

components, e.g. the control sub-components that control the life time of other

components.

In our system we assume that, regardless of being a structural or functional

component, there are two general types of components active components and passive

components. The passive ones do not have any schedulable objects running within

them, but they have a memory structure and they allow schedulable objects from other

components to access their memory structure, e.g. as in the case of defining a buffer

component, or they can be guest components that do not have their own memory

structure but they are using the memory structure of some other components, e.g. the

reusable logic components that are assigned dynamically to other components that

execute the logic they are defining.

On the other hand, the active components can have one or more schedulable

objects depending on the functionality of the component. For a component that

encapsulates a single task, the component can have a single schedulable object that runs

on a simple memory structure that can consist only of a single memory area, while for

the component that encapsulates multiple concurrent tasks that integrate together to

provide the functionality of the component, the component can have multiple

schedulable objects running inside it with different memory areas assigned for these

schedulable objects. Also, the components that have multiple concurrent tasks can have

Chapter 5

-129-

either a static structure or dynamic structure depending on the functionality of the

component, for example a component acting as a server for multiple clients can have a

dynamic structure by creating dynamically a schedulable object to handle any new

received request, or it can have a static structure by queuing the requests and processing

them in a certain order using the same schedulable object handler(s).

So the memory model has a general structure that supports one or more tasks

that can be running concurrently and collaboratively within a single component to

define its functionality. At the same time, the memory model that represents this

component model has to respect the RTSJ memory model and its assignment rules. In

order to provide this component memory model, we proposed the following, see

Figure 5-4:

CMA[B]

SM
S[

n
]

Component B

SM
S[

2]

SM
S[

1]

CMA[A]

SM
S[

n
]

Component A

SM
S[

2]

SM
S[

1]

HMA

IMA

Container MA

Figure 5-4 Basic Component Memory Model

Every component has at least a single component memory area (CMA), where

in case of the non-real-time components, i.e. components that have only normal Java

threads; it can be the Heap or the Immortal memory area. But for the case of the real-

time component, i.e. a component that has one or more schedulable objects, its CMA

has to be either immortal or scoped memory area. In the next steps, we will restrict

ourselves to the real-time component case, as this is our main concern, as there is no

restriction on using the heap memory with the normal Java threads.

During the component creation procedure, the component CMA is created by

the container‘s Manager Thread as a memory area instance from within the

component‘s container, where we are assuming that the container memory area

(ContMA) will be a parent memory for all the CMAs of its internal components. This

assumption is important to ease the communication among the components within the

same container as will be discussed later. An exemption of this assumption is for some

of the sub-components that have to exist in the container memory area, to provide

services to the other components; these sub-components have their CMA as the

ContMA itself.

Chapter 5

-130-

For the case of passive components, we assume that the component must be

assigned at least one memory area that defines the context in which the objects of the

component are to be allocated, and schedulable objects from within other components

are allowed to enter this memory area, subject to the restrictions of the RTSJ memory

access rules, and they can build internal scope stacks inside it.

All schedulable objects within a single real-time component are initiated so that

they are sharing both the container‘s ContMA and the component‘s CMA as their deep

most parent memory areas, This assumption ensures that:

 1- All the schedulable objects in a single component are sharing the same CMA, so

they can use it for communication among them.

 2- All components in a single container are sharing the same ContMA, so that they

can use it for communication, if required.

 3- As in our model, we assume that the container can provide pools of recyclable

schedulable objects, then, initiating all the schedulable objects from within the

container supports that all the schedulable objects within the same container can be

reused within any of the components sharing this container where all idle or non-

used recyclable objects are created and kept waiting in the container until they are

assigned to a certain task in a certain component in this container.

 4- During component execution, each schedulable object can have its own scoped

memory stack (SMS) that enables it to execute in different memory areas other

than the CMA and the ContMA, to avoid the creation of the redundant objects in

the CMA and the ContMA. This allows each schedulable object to use its own

scoped memory areas for temporary object allocation according to its demands in

order to optimize the memory allocation, while allocating the component‘s

common objects that are valid along the lifetime of the component in the CMA

memory area.

 5- We assume that the scoped memory stacks of the active components (one or more

nested scoped memory) are exclusive, i.e. a single scoped memory stack cannot be

shared among several components, while the scoped stacks of the passive

components are sharable by multiple active components to enable communication

among the components, where these schedulable objects have to respect the single

parent rule when they access these shared passive components.

 6- According to the RTSJ memory model, the immortal and heap memories are

accessible from any schedulable object of the component that is running in any

memory area within the component, this allows that the class data and static objects

are always allocated in the immortal memory area. Also, the heap and immortal

Chapter 5

-131-

memory can be used as a shared memory area for communication with other

component executing in the same JVM, except with the components that have no-

heap objects which have to use the immortal memory or cross scoped methods for

communication.

 7- In the case of the simple component that has a simple function that is represented

by single task, the component memory model presented earlier in this chapter is

simplified to the model shown in Figure 5-5, which has a single scope stack with

the CMA, ContMA as the most outer memory area of it.

Figure 5-5 Simple Component Memory Model

5.2.6 Component Composition and Communication

In our component model, the component itself can be composed of a set of

integrated components, i.e. structural components such as a memory pool component

that integrates with memory structure components and other components to form the

required functional component. In our model, the functional components themselves

can be integrated together to either provide us with the ability of the construction of

composite components and/or to build a system of communicating components

running together in the same JVM. This is important for building real-time middleware

solutions, as the middleware solutions are usually built of several software units that

integrate and collaborate together to provide the required middleware structure. In the

following section we will discuss the different models of composing and integrating

the components in our framework.

A- Functional Composite Component

The functional composite component is assumed to be a component that has

multiple internal components running within it. In our model, we assume that each

composite component can be build inside a single container that encapsulates all the

required components. According to this assumption, we can derive two different

models of the functional composite components:

1- Shared Memory Model; in this model, see Figure 5-6, the internal components,

C1, C2… Cn have all the same component memory area CMAC; hence, this

CMA

Component A

SM
S[

1
]

ContMA

Chapter 5

-132-

memory area can be seen as the common memory area of a single functional

composite component that embeds these internal components.

SM
S B

[m
]

Cn

SM
S B

[2
]

SM
S B

[1
]

SM
S B

[m
]

C2

SM
S B

[2
]

SM
S B

[1
]

CMA

SM
S A

[n
]

C1
SM

S A
[2

]

SM
S A

[1
]

HMA

IMA

Container MA

Figure 5-6 shared Memory Model

If we consider that each inner component of this model has only a single

scoped memory area stack (SMS), then the model will be reduced to a model

equivalent to our assumed basic component model as seen in Figure 5-7, where each

inner component of the composite component will simulate a single SMS model of the

basic component.

CMA

SM
S C

n
[n

]

SM
S C

2
[2

]

SM
S C

1
[1

]

C1 C2 Cn

ContMA

Figure 5-7 Simple Composite Component Model.

2- Isolated Memory Model; in this model, see Figure 5-8, each component of the

internal components, C1, C2… Cn has its own component memory area CMAi.

Hence, they do not share a common memory other than the container‘s memory

area ContMA. Hence, the ContMA memory area can be seen as the common

memory area of the functional composite component that embeds these internal

components.

Chapter 5

-133-

CMA2

SM
S B

[m
]

C2

SM
S B

[2
]

SM
S B

[1
]

CMA1

SM
S A

[n
]

C1

SM
S A

[2
]

SM
S A

[1
]

HMA

IMA

Container MA

CMA2

SM
S B

[m
]

Cn

SM
S B

[2
]

SM
S B

[1
]

Figure 5-8 Isolated Memory Model

B- Components Binding

In our framework model, we assume that multiple components can coexist in a

single container in order to build a composite component. This requires these

components to be linked to each other in order to support the communication among

them. We proposed a simple way of linking each two components through the

interface injection pattern (Etienne, Cordry et al. 2006), in this pattern as shown in

Figure 5-9, the class of a component that has dependency on other component has to

implement the IBindController interface that has two methods:

bindInterface(): it takes a name of an interface and a reference to the class that

implements it. The function checks if the given interface name is one of the required

services for it, if so, it assigns the given component reference to the corresponding

private references in the class.

unbindInterface(): this function just removes the reference of the component

that was linked to a certain interface within the class of the component.

C- Inner/Inter Components Communication

Inner and outer communication mechanisms represent the communication among

the components residing in the same virtual machine. In this section we present the

communication models between each two individual components in the same JVM as

defined in our framework. In our framework we can define the following models of

communication in the same JVM:

Inner Communication through the Shared CMA Model

 In the shared memory model of the composite component defined above, two or

more individual components are initialized with the same common memory area, so

that any communication can be done through objects allocated within this shared

memory area. As seen in Figure 5-10, the two composite components A, B are created

with the same common memory area CMA. Hence, all the sub components C1, C2 …

Chapter 5

-134-

Cn from component A can communicate easily with any of the sub-components Ca,

Cb … Cz of component B, through this memory area, by allocating shared objects in it

to be accessible from both components through the CMA‘s portal. As the life time of

the CMA is the life time of the both components, then objects created in it has to stay

there for the life time of the two components, or they have to be allocated from a

reusable pool of objects saved in the CMA.

public class myComponent extends Component implements IBindController

{

private IReaderWriter irw;//ref to an external Component

private ICommunicator icom;//ref to another external comp

//The following method binds a certain component/object

//to a a corresponding reference in the class

public void bindInterface(String itfName, Object component)

{

If(itfName.compareTo(“ReaderWriter”)==0)

irw=(IReaderWriter) component;//bind the first component

elseif(itfName.compareTo(“Communicator”)==0)

icom=(Icommunicator) component;//bind the second component

}

//The following method unbinds a reference of the component

//given its name itfName

public void unBindInterface(String itfName)

{

If(itfName.compareTo(“ReaderWriter”)==0)

Irw=null;//free the ref

elseif(itfName.compareTo(“Communicator”)==0)

icom=null;//free the ref

}

}

Figure 5-9 A class implementing the IBindController interface

SM
S[

n
]

Component B

SM
S[

2
]

SM
S[

1
]

 CMA CMA

SM
S[

n
]

Component A

SM
S[

2
]

SM
S[

1
]

ContMA

Ca Cb CzC1 C2 Cn

Shared Object

Figure 5-10 Communication through a the CMA shared memory

Inner Communication through the Shared ContMA Model

This model is exactly the same as the previous one, except that the communication

is done through the container‘s ContMA itself, not the CMA, see Figure 5-11. This

makes this model applicable to the both models of composition defined above, i.e. the

shared memory and the isolated memory models. However, in the case of the shared

CMA model, the use of the shared CMA for communication offers higher level of

isolation and encapsulation for the communication process as it isolates it from the

Chapter 5

-135-

other components that exist in the same component but do not share the CMA with the

communicating components.

SM
S[

n
]

Component B

SM
S[

2
]

SM
S[

1
]

CMA

SM
S[

n
]

Component A

SM
S[

2
]

SM
S[

1
]

 ContMA ContMA

Ca Cb CzC1 C2 Cn

Shared Object

Figure 5-11 Communication through a the ContMA shared memory

Inter Communication through an Attached Scoped Memory Model

The shared memory model is relatively easy to use, but the creation of the shared

object in the CMA or the ContMA enforces the need for techniques for reusing these

shared objects if they are frequently and dynamically created. In our model, we can

overcome this limitation, we can use the model shown in Figure 5-12, in this model it

is allowed for any schedulable object either to use an existing passive component with

a SMS attached to its CMA and or ContMA, or to create an external scope stack

SMS[Ψ] which can be seen as a virtual passive memory buffer component CΨ that

enable the creation of temporary objects that can be accessed by schedulable objects of

both components A, B using the handoff pattern (Pizlo, Fox et al. 2004). This virtual

memory component can be used to save the required object(s) used for

communication, where they can be created by any of the schedulable objects that share

its parent memory area, i.e. CMA and/or ContMA. However, the use of this attached

memory requires a special handling of the framework as it requires at least one thread

to be running in it to be able to keep the shared objects inside it alive. This can be

managed by using one of the models of the memory lifetime management control

presented later in this chapter.

SM
S[

n
]

Component B

SM
S[

2]

SM
S[

1]

Ca Cb Cz

CMA

SM
S[

n
]

Component A

SM
S[

2]

SM
S[

1]

C1 C2 Cn

 S

M
S[

Ψ
]

CΨ

Shared
Object

Figure 5-12 Communication through an attached scoped memory area

Chapter 5

-136-

Inter Communication using Attached CMAs.

In this model, any component can access the memory of the other component by

attaching the other component‘s scope stack as an inner scope stack. For example, in

Figure 5-13 and Figure 5-14 , the component A is attached to component B by one of

two ways:

 1- Component B is created dynamically by one of the scheduler objects of

Component A when this scheduler object is running in its component memory area

CMA[A] and assigned CMA[A] as its container‘s memory area, see Figure 5-13. .

 2- Component B is entered from within one of the scheduler objects of Component A.

when this scheduler object is running in its component memory area CMA[A] , see

Figure 5-14.

ContMA[A]

CMA[B]

SM
S[

n
]

Component B

SM
S[

2
]

SM
S[

1
]

Ca Cb Cz

CMA[A]=ContMA[B]

SM
S[

n
]

Component A

SM
S[

2
]

SM
S[

1
]

C1 C2 Cn

SM
S[

Ψ
]

CΨ

Figure 5-13 Component Attaching – case (a)

ContMA[A]=ContMA[B]=(Immortal MA/Heap MA)

CMA[B]

SM
S[

n
]

Component B

SM
S[

2
]

SM
S[

1
]

Ca Cb Cz

CMA[A]

SM
S[

n
]

Component A

SM
S[

2
]

SM
S[

1
]

C1 C2 Cn

SM
S[

Ψ
]

CΨ

Figure 5-14 Component Attaching – case (b)

In these two cases, the CMA[A] will be a common memory area of both

components, and any communication between the two components can be done

through it in the same way as stated before. However, in the second case, i.e. using

enter, the RTSJ single parent rule must be considered, i.e. it requires that the CMA[B]

to have no other parent scope, other than CMA[A] to make the attachment possible.

This can be only valid if the two components have the similar container which has the

immortal memory area or the heap memory area as its memory area.

Chapter 5

-137-

In this model, like the previous model, a virtual passive component CΨ can be

created dynamically to enable the communication; however, in this case, this a virtual

passive component will have a scope stack with at least three memory nested memory

areas, the ContMA[A] as the most outer scoped memory area, the CMA[A] itself as a

second outer most, then the CMA[B] as a third most outer scoped memory area, objects

created during the communication in all of these three scoped memory areas will be

alive even after finishing the communication as long as the components are alive. So,

their inner scoped memory areas are used for allocating temporary objects during the

attachment.

We must note in both cases above, i.e. using shared memory model, or attachment

model that the communication among the schedulable threads can be done through a

virtual passive component that can be accessed by both of the two communicating

components. However, this passive component may have a stack scope that, according

to the RTSJ rules need at least one schedulable object running within it to ensure that it

will not be de-allocated. So, techniques to keep this virtual passive component need to

be used, e.g. wedge thread. We discuss some of these techniques later in this chapter.

D- Local/Remote Components Communication

Local and remote communication mechanisms represent the communication

among the components residing in different Java virtual machines. In this section we

present the communication models between each two individual components in

different JVMs as defined in our framework.

JVM X

JVM Y

SM
S[

n
]

Component B

SM
S[

2
]

SM
S[

1
]

Ca Cb Cz

SM
S[

n
]

Component A

SM
S[

2
]

SM
S[

1
]

C1 C2 Cn

Memory ModelRemoting Infrastructure
Proxy YMemory Model Proxy X

Figure 5-15 Remote communication between components

As presented in chapter 2, there are several paradigms that allow remote

communication among objects/components on different JVMs. Most of these

paradigms require a remote communications infrastructure with proxies for doing the

communication operations on behalf of the objects/components themselves as will be

declared in details on the next two chapters. We can classify these levels of

communication into two levels:

Chapter 5

-138-

 1- Low Level of Communication; this level represents the communication between

the proxies themselves. In this level, the two proxies handle the communication in a

form of exchanged packets over the network, where the sender‘s proxy receives the

request from the sending component and packs the request and the related parameters

in a byte form and sends it to the other receiving‘s proxy that receive the packet,

decode it, and forwards it to the target component to run the request, then it waits for

the result to return it back to the proxy at the client side.

In this model, we suppose that the proxies should have lifetime at least equal to

the components using them; hence, the choice of the memory region in which these

proxies will be allocated can be:

- In the component memory area of the component, CMA, this is in case if the

proxy is servicing this component only.

- In the immortal memory area (in the real-time case) or heap memory area (in the

non-real-time case), if this proxy is shared among several components in different

containers in the application, i.e. it offers its services along the lifetime of the

program.

- In the container memory area, ContMA, this is in the case that this proxy will be

used by one or more components within this container.

In general, the second and third choices are more efficient as in addition to using a

single proxy for multiple components; it can be built as a service that runs independent

of the component itself.

However, to support concurrent use of this low level communication service, this

requires:

- The proxies have to be able to multiplex/demultiplex the different requests;

- The low level communication infrastructure needs to be implemented as separate

component/sub-component with minimum binding with the components using it.

- As it is responsible for the real-time communication in the system, the proxies

should offer high predictability and efficient communication mechanisms, and at

the same time should be predictable in their memory consumption.

In chapter 6, we will provide our model for building a communication component that

support a low level-communication in our proposed component model.

Chapter 5

-139-

 2- High Level of Communication; this level is built above the low-level mentioned

above, and it provides a communication infrastructure between the schedulable objects

of the communicating components. In this level, the communicating components

exchange Java objects in a form of sent parameters and/or return results. In our model,

this level requires that:

- It has to be subject to the restrictions of the RTSJ memory model.

- The definition of paradigms that enable the easy use of the underlying proxies.

- It has to support different communication schemes to be useful for several kinds of

applications, e.g. synchronous calls, asynchronous calls, etc.

In chapter 7, we will go into the details of designing a component that support the

high level of remote/local communication.

5.3 Memory Model Implementation

In the previous sections we discussed the basics of our proposed component

framework, where we showed that the component itself can be built from smaller

structural components, i.e. subcomponents like the memory model, the object

allocators, etc. In the following, we are going to provide the set of the structural

components that are used to build the memory model of our proposed component

model. We will focus on defining the software pattern used for building the basic

memory model for the components, and then we will provide some software patterns

that integrate with it to manage the lifetime of this memory component to overcome

the life management problems of RTSJ‘s scoped memory areas and to provide

memory management services within the model.

Beside the usual requirements of designing components in general (i.e.

configurability, integrity with other components, etc.), designing a model for

components based on RTSJ must also take into consideration both its memory and

threading models. This involves the patterns and techniques used to construct the

internal elements of the components and how they can be integrated together to satisfy

the general constraints defined in the RTSJ. Hence, from our viewpoint, the structure

of any memory model based on the RTSJ should satisfy a set of requirements that

include:

 1- it must be constrained to conform to the RTSJ memory access rules,

 2- it must provide an efficient use of memory resources with minimum overhead,

 3- it has to avoid the redundant use of resources,

 4- it has to provide a coherent model that is easy to build and to use,

Chapter 5

-140-

 5- It has to support a high degree of isolation from the other components to ease

operations such as maintenance and replacement.

In the following sections we will present our proposed new memory model, the

Forked Memory Model, we develop this model as a simple sub-component that can be

hosted within the component model defined in the previous sections. Then we will

present a set of sub-components that integrates with the memory model subcomponent

to manage the lifetime of scoped memory areas and reusable shared objects using

some new software patterns. After that, we will present another set of sub-components

that support the using reusable schedulable objects and reusable logic patterns within

this memory model.

5.3.1 A Memory Sub-Component Model

In order to develop our proposed Forked Memory Model, the following

assumptions have been considered:

 1- The component can consist of one or more tasks co-operating together to perform

a single integrated service offered by this component, where the task can be either a

single thread that represent an operation to be executed by the component or an event

handler that handles a certain event occurring within the component. In other words,

each task can be executed mainly by a single schedulable object.

 2- The task set within the component model can either be static, i.e. they are created

at the start and initialization of the component as a fixed set and no other tasks are

added to them, or they can be dynamic, i.e. any task can initiate another set of tasks

within the component, e.g. a task thread fires an event handler.

 3- The task itself may be divided into a set of inner sub-tasks that are initialized and

executed within scoped memory areas nested in its scoped memory stack.

 4- The tasks within the memory model may need to communicate with each other in

order to provide the required service.

 5- As it is a subcomponent within the component model, the memory model

subcomponent should be easy to integrate with the component framework. In other

words, it can access and be accessed by other parts of the component model such as the

container.

From an RTSJ‘s viewpoint, we propose that these assumptions can be mapped into

the Forked Memory Model (shown in Figure 5-16) where this proposed model consists

of:

Chapter 5

-141-

- A single parent memory area (CMA); this memory area acts as shared memory

area (root MA) for all memory area stacks (leaves MAs) of the tasks within the

component.

- A set of single memory area stacks (SMAi…n); where each memory area stack

SMAx[1,n] represents a separate memory area assigned for each inner task x, and its

nested inner sub-tasks. The scoped memory areas within the stack are nested, where

each scoped memory area within the stack is created from its next lower scoped

memory in the stack which holds the memory object of it.

- The Container Memory Area (ContMA); the component memory area itself is

created from within the container memory area, ContMA.

CMA

Scoped Memory

Areas (Leaves)

SMAa SMAb
SMAc SMAn

Parent Scoped

Memory Area

(Root)

memForkQueue

Figure 5-16: Basic Component’s Forked Memory Model

A- Memory Model Sub-Component Design

In our design of the memory component sub-component, we have proposed that

the component is implemented using a class ForkedMemoryModelCls, see an example

implementation in A.3. The ForkedMemoryModelCls implements the interface

IMemoryModel shown in Figure 5-17, as we assume in the functional component model

that it defines a reference to this memory model interface to access its services. We

have chosen this way to ensure that the component model is not tightly linked to a

single implementation of the memory model, but it can accept different forms of the

implementation as long as it implements this interface.

The configuration, initialization and creation of a memory hierarchy within the

component according to the proposed model and the above assumptions are explained

in the following sections.

B- Memory Configuration

The memory areas used within the memory model of the component has to be

configured by the developer. This involves the configuration of both the component‘s

Chapter 5

-142-

common memory area and the tasks‘ memory areas. So, in this section we will discuss

how these memory areas are configured.

package RTCOM;

import javax.realtime.*;

public interface IMemoryModel

{

public void buildForkedMemory(Class typeOfCMA, long CMA_InitialSize,

long CMA_MaxSize, int maxSubStacks,Class typeOfSMA,

long[] SMAs_InitialSizes, long[] SMAs_MaxSizes, Class MPortalType,

Class SMAsQueueType, Class ObjAllocator, Class MemCtrl);//builds the inner

//structure of the component, including the SMAs and the sub-components

public MemoryArea getSMAMemory(String smaName);//Get the memory of a certain SMA

public MemoryArea getCMA();//Get the Common memory area

public Object getPortalOfCMA()//Get the portal of the CMA

public IQueue getSMAsScopes();//Get the SMAQueue

public IQueue getHeldSMAsScopes();//Get the held SMAs

public ScopedMemory attachNewSMA(final Class reqMemType,final long initSize,

final long maxSize);//Attaches a new SMA

public void setObjectAllocator(IObjectAllocator objectAllocator);//Assign an

//object allocator to be used

public IObjectAllocator getObjectAllocator();//Get the Object Allocator

public void setMemoryController(Class MemoryCtrlCls);//Assigns a memory life

//time controller

public IMemoryModelController getMemoryController();//Retrieves the memory

//lifetime controller

public ScopedMemory getContainerMA();//Get the container memory area

}

Figure 5-17 IMemoryModel interface

Configuration requirements of the parent memory area (CMA/root)

The parent memory area must be externally configurable by the developer during

the component configuration stage at design time (in statically created systems) or

during runtime (in dynamically created systems).

The memory model interface should enable the developer to configure the memory

source from which the parent memory would be allocated, according to the required

lifetime and requirements of the program using this component; e.g. for non-real-time

applications, it can be created from heap memory. Otherwise, for real-time systems, it

can be allocated from immortal memory as long as this component is going to be alive

for the system lifetime, or from a linear (or variable) time scoped memory area if the

component has a shorter lifetime than the program using it. The selection of a certain

memory area can be reflected later on using some patterns internally to construct the

component‘s memory model, e.g. the use of portals of the parent memory areas, as

explained later, will be restricted to a parent memory area that is configured to be of a

scoped memory area type. Hence, we have put a restriction on all the patterns

associated with the forked memory model presented in this chapter to by assuming that

the parent memory area is of a scoped memory area type, where this restriction does

not limit these patterns to be extended to work with other memory area types with

some modifications.

Chapter 5

-143-

Configuration requirements of the child memory areas (leaves)

All the tasks‘ leaves memory areas are by default configured by the component creator

within the parent memory area to be of a single subtype of RTSJ scoped memory areas.

However, for the dynamically created tasks, the developer should be able to externally

configure each one of the added memory areas individually according to the operation

specified for each task assigned to them. On the other hand, the developer is not

allowed to configure the tasks memory areas to be created neither from the heap

memory area nor from the immortal memory areas; this is a basic constraint, as we

assume that these memory areas are only for tasks that have lifetimes less than the

program in which they are running in and they require predictable memory

management.

C- Memory Creation

The method public void buildForkedMemory (…) of the

IMemoryModel interface is responsible of the building of the memory model

according to the set of configuration given to it as parameters. These parameters are as

follows:

- Class typeOfCMA: specifies the class of the type of the CMA memory area.

- long CMA_InitialSize: specifies the initial size of the CMA memory area.

- long CMA_MaxSize: specifies the maximum size of the CMA memory area.

- int maxSubStacks: specifies the initial number of tasks‘ memory areas.

- Class typeOfSMA: specifies the class of the type of all tasks‘ memory areas.

- long[] SMAs_InitialSizes: an array that holds the initial sizes of all the

tasks‘ memory areas.

- long[] SMAs_MaxSizes: an array that holds the maximum sizes of all the

tasks‘ memory areas.

- Class MPortalType: specifies the class of that implements the multi-named

portal.

- Class SMAsQueueType: specifies the class that implements the

memoryForkQueue that holds references to the tasks‘ memory areas that are currently

pinned in memory.

- Class ObjAllocator: specifies the class of the memory object allocator to

be used by this memory model.

- Class MemCtrl: specifies the class of the memory controller that manages this

memory model.

Chapter 5

-144-

The execution of this method is responsible of the creation of the memory model

in a way that integrates the model parts together by using our proposed Multi Named-

Object Pattern in order to enforce the use of RTSJ memory access rules as explained

next.

At the initialization stage of the component, its initial/static memory areas are

created according to its design time configurations. Firstly, according to the given

parameters, the CMA memory area is created from the component‘s source memory

area. Then, the scoped memory area of each inner task is created. The creation of

objects representing these scoped memory areas (leaves) in our proposed Forked

Memory model is done by an initialization thread running within the CMA memory

area (e.g. by the Manager Thread of the container holding the this memory sub-

component). Also, we assume that the references for these objects are allocated within

the CMA memory area and all these created references are kept inside a single

predefined collection (memoryForkQueue) within this CMA memory area.

Adopting this mechanism enforces the RTSJ memory access rule as required in

this model, as any real-time thread that wants to access an object within any of the leaf

scoped memory areas has first to enter or execute in the CMA memory area to be able

to get a reference to the required task‘s scoped memory area from the references

collection, i.e. memoryForkQueue.

In addition to the static addition of the memory areas, the model also allows

dynamic addition of any more task memory areas, either explicitly by using the

method attachNewSMA() that creates and adds a new task memory area to the

memoryForkQueue of the specified scoped memory area type and initial and

maximum memory sizes, or implicitly by allowing the creation dynamic tasks using

the method createReusableStackTask()that creates a new task and add it

dynamically to the component.

D- Memory Access

Accessing the inner memory areas of the memory structure should be subjects to

the memory access laws of the RTSJ, e.g. the CMA can be accessed from the CMA

itself or from any inner memory area, where the model provides the following methods

to access its inner memory areas:

- getCMA() method: retrieves a reference to the CMA memory area.

Chapter 5

-145-

- getPortalOfCMA() method: retrieves a reference to the portal of the CMA

memory area.

- The getSMAScopes () retrieves a reference to the memForkQueue.

- The getHeldSMAScopes () is provided to retrieve a reference to the

memHeldQueue which has references to scoped memory areas held by the memory

lifetime controller as will be explained later.

- getSMAMemory() method: retrieves a reference to a certain task‘s memory from

the memForkQueue using the task‘s identifier.

The implementation of the getSMAMemory()is based on the assumption that the

required stack memory area is saved in the memoryForkQueue which is created in the

CMA memory area, so, the memoryForkQueue collection can be accessible as a shared

object from any thread running within the component. So, according to the RTSJ

memory model, it has to be saved as a memory portal object for the memory area in

which it is created, i.e. the CMA memory area. However, RTSJ allows the definition

of only one single object to be a portal for any scoped memory area and using it.

Hence, in order to extend the use of the portal for multiple objects, i.e. objects other

than the memoryForkQueue, in our proposed model, we assumed a new simple pattern

―Multi-Named Objects Portal‖ pattern (MNPORTAL), in which shared objects are

given names in order to be accessed by these names through a single portal of an RTSJ

scoped memory. This pattern (shown in Figure 5-18) assumes that the portal of the

scoped memory is assigned a single object as required by the RTSJ. This shared

object, the MNPORTAL in our model, is a hash map object, where each element in

this hash map is an object holding both a reference to a shared object created in the

memory scope, and a string name acting as a key that can be used to access this

reference from the hash map. As seen in Figure 5-18, a simple shared-object naming

scheme can be used to ease using it, one suggested scheme is that the name of the

object to be saved is the same as its object references and preceded by the prefix

―_ref‖, where the size of the name should not exceed a specified maximum length to

bound the memory usage. Hence, according to this proposed pattern, getting a leaf-

scoped memory is done using the following three predefined steps:

1. Retrieve the object saved as portal of the root memory by calling the method

getPortalOfCMA() which in turn calls the CMA.getPortal(), defined in the

javax.realtime.ScopedMemoryArea class, and then cast it as MNPORTAL object.

Chapter 5

-146-

2. Retrieve the shared object representing the memForkQueue collection from the

MNPortal object using the proposed method MNPortal.getObject

(“_refMemForkQueue”) and cast the returned object as memForkQueue object.

3. Retrieve the reference object of the required scoped memory using its predefined

name from the memForkQueue object using the method

memForkQueue.getObject(“_refRequiredScopedMemory”).Where the string

“_refRequired ScopedMemory” is the name of the required scoped memory

shared object.

CMA
ObjA ObjB memForkQueue

Hash map of

Shared Objects

keys

“_refObjB”

“_refmemForkQueue”

“_refObjA”

 MNPortal

 MNPortal

 MNPortal

 MNPortal

 MNPortal

 MNPortal

Figure 5-18 The Multi Named-Object Portal Pattern

We have to note that the getSMAScopes () method can be used to replace the

first two steps mentioned above. Also, we have to note that the memForkQueue holds

references to each scoped memory area in the stack that is nested above the CMA, not

to any other inner scoped memory areas, where the other nested memory areas above it

can be accessed by a chain of calls to the MNPORTAL(s) of this scoped memory area

and its inner scopes.

The use of the MNPORTAL is not limited to the CMA memory area, but it is used

in all the memory levels of the component model to enable sharing multiple objects.

For example, they can be used in the ContMA to share objects among different

components that do not share the same CMA memory. Also, in the scoped memory

area of the SMA, they are used to enable sharing multiple objects as there is at least one

shared object that has to exist in each one of these nested coped memory areas which

holds a reference to the next inner scoped memory area in the stack.

5.3.2 Memory Integration with the Component framework

The memory model provides a set of methods that enable the integration with

the other parts/subcomponents of the component model. These methods include:

Chapter 5

-147-

- public IComponent getComponent(): This method retrieves a reference

to the component that holds the component in which this memory structure is located.

- public ScopedMemory getContainerMA(): This method retrieves a

reference to the container of the component that holds the component in which this

memory structure is located.

- public void setObjectAllocator(IObjectAllocator

objectAllocator): This method assigns a certain object allocator to be used by

this memory model.

- public IObjectAllocator getObjectAllocator(): This method

retrieves the object allocator assigned to this memory model.

- public void setMemoryController(Class MemoryCtrlCls): This

method assigns a certain memory controller that manages the life time of the inner

memories of this memory model.

- public IMemoryModelController getMemoryController(): This

method retrieves the memory controller of this memory model.

5.4 Object Allocation Management

The memory structure model in our component model, the Forked Memory

Model, consists mainly of the following memory levels:

- The Tasks‘ Stack Memory Areas (SMAs) Level

- The Component Memory Area (CMA) Level

- The Container Memory Area (ContMA) Level

- The Immortal Memory Area(IMA) Level

- The Heap Memory Area (HMA) Level

It is a requirement to manage the memory allocation in these levels in order to

guarantee the memory required in our framework of the real-time component model.

The types and characteristics of these memory areas can affect the allocation

management mechanisms that can be applied in the component‘s memory model. For

example, the use of short life time scoped memory for the object allocation areas in the

SMAs Level guarantees that the allocated object will be alive only during the lifetime

of these scoped memory areas, whereas the allocation of any object in the CMA will

enforce this object to be alive during the lifetime of the component itself even if this

object is required for only a short period of the component lifetime. In the same way,

the allocation of an object in the container itself makes it available for the duration of

the container itself even if the component that created it is de-allocated and removed

from this container. The same problem exists for the objects allocated in the immortal

Chapter 5

-148-

memory as these objects will never be deleted untill the program that created them

exited. On the other hand objects created in the heap can be de-allocated dynamically

using the garbage collector. However, using the heap for allocation is not

recommended for real-time applications, unless a real-time garbage collector is used, to

avoid the unpredictability. So, in order to have a real-time memory model, it is required

that the object allocation mechanism to be predictable, i.e. to be bounded by the

memory sizes assigned to the memory areas used in the component memory model

structure. This can be relatively easy to achieve and control in static components in

which it is well known in advance all the objects that are going to be used within them

so it is easy to estimate the memory sizes required for the different memory areas in the

memory structure of the component. But, in the components that have a dynamic nature

of processing, e.g. a server component that can respond to multiple concurrent clients

in the same time this cannot be known in advance unless the number of concurrent

requests made to this server component is bounded. Even, if the number of concurrent

requests is bounded there will be another memory problem, this problem is that the

dynamic tasks that are generated within the component to handle the clients‘ requests

may require allocating objects in the CMA or the ContMA or even the IMA Level.

After finishing the handling of these requests these objects will be unusable and they

will cause a leakage in the component memory which makes the memory model

structure of the component unpredictable and makes the component fail to provide its

function properly. So it is important in this case to have a mechanism that enable the

reusing of these unusable objects from within other dynamic requests to keep the

required memory for allocating objects bounded.

Hence, we are assuming that the use of a reusable objects allocator is an

important feature that has to be available within the component framework to enable

the developer to manage the memory allocation particularly in the CMA and the

ContMA, and it is recommended to have another one in the IMA as well if required.

This proposed reusable objects allocator, as it controls the object allocation,

can be built as an optional control sub-component within the framework to be used if

the component functionality requires reusability of objects. So, in the following section

we will present the proposed structure of this sub-component.

5.4.1 The Design of the Reusable Objects Allocator

In our design of the reusable object allocator, we will borrow the general

purpose object recycler pattern presented in (Dibble 2008). See the implementation of

this pattern in 0.

Chapter 5

-149-

Type

Header

Carrier

Carrier

Recycable

Object

Recycable

Object

Carrier
Recycable

Object

Type

Header

Type

Header

Figure 5-19 Object recycler pattern

As seen in Figure 5-19, this recycler keeps the objects in a list of lists. The first

list has an entry for each class of which the recycler has created an instance. Each of

those entries is attached to a list of carrier objects that contain references to each

recyclable object of that class that is in the recycler‘s inventory of free objects.

- The interface IObjectAllocator of this proposed reusable object allocator consists

mainly of three methods:

- object getInstance(Class type). This method is used to get an object instance

of the given class name from the list of the free objects of this type in the allocator

structure.

- object getInstanceLike(Object Obj). This method is used to get an object

instance of the class of the given object name from the list of the free objects of this

type in the allocator structure.

- void recycle(Object unwantedObj). This method is used to return an unwanted

object, i.e. the object that its current state is not needed any more, back to the list of

free objects of its type in order to be reused later.

Due to its internal design, the worst limitation of using the above allocator, that it can

works only for objects that have no-args constructors. This requires special handling

from the developer to encapsulate the classes that have no no-args constructors into

new classes that have a no-arg constructor that creates objects of these classes with a

set of default parameters, and at the same time these encapsulating classes should

provide accessory methods to control the encapsulated objects change, e.g. assigning

the fields‘ states of the encapsulated objects within them.

 As mentioned before we can use instances of this sub-component in the

ContMA, CMA, and/or the IMA. This has to be configurable in the component

Chapter 5

-150-

framework during the creation of the component, so there are references of the

IObjectAllocator in both the ForkedMemoryModelCls and in the ContainerCls, and

there are accessory methods for both of these two classes to optionally create these

two reusable object allocators. Where, in general the reusable object allocator created

in the CMA provides reusable objects created in this CMA for all objects/components

sharing this CMA only, while defining it for the ContMA makes its reusable objects

are accessible by all the components and inner objects embedded in this container.

5.5 Memory Model Lifetime Management

In the proposed memory structure for the component, the Forked Memory Model,

presented above, the memory is composed of a set of nested scoped memory stacks,

these memory stacks can be shared among the schedulable objects running within this

component or using it. Hence, their lifetimes must be well defined and manageable.

In the RTSJ, a certain scoped memory area is assumed to be valid as long as there

is at least one schedulable object running inside it either explicitly using

MemoryArea.enter() or MemoryArea.executeInArea() family of methods, or

implicitly as its initial memory area which either assigned to it or it inherits from its

parent thread. This model was presented as a memory management model that

predictably and dynamically manages memory de-allocation to avoid the

unpredictability due to Java‘s garbage collector. However, this imposes a restriction on

using shared objects created within these scoped memory areas. In the RTSJ‘s memory

model the portal object of each scoped memory area instance is used to share objects,

where the model assumes that the shared object (or any other object in the memory

area) will be valid only as long as a schedulable object is running in it. This has led to

the use of the wedgeThread pattern presented in (Pizlo, Fox et al. 2004).

A wedge thread is a real-time thread that is created within a scoped memory area,

and waits inside it, as long as there is one or more shared objects are to be accessed

from this scoped memory area, by a schedulable object which has not yet entered it.

The use of this pattern has an overhead, due to the amount of resources needed for the

wedge thread. This overhead becomes greater when multiple shared objects exist, and

each one of them is created in a different scoped memory area, in this case a wedge

thread will be required for each scoped memory scope area to keep it alive (Etienne,

Cordry et al. 2006). In future releases of RTSJ, a pinned memory model is to be added

to the specification.

Chapter 5

-151-

In our model, we propose that in some cases a certain scoped memory area stack

needs to be kept alive, while there is no thread running within it. One example, is

when building a component that use the future call pattern. In this case, a thread can

create a new scoped memory area to hold the future object and then leaves this scoped

memory area to continue other tasks, while another thread, from the same or other

component, can enter this scoped memory area later to process the call, and put the

result back. Then later, the calling thread can check for the result. This kind of

communication is supported in our component model as an inner/inter communication

mechanism as mentioned in section -C- in 5.2.6.

From the above, we can see that it is important to have a memory lifetime

controller to manage the lifetime of the memory model of the component. This lifetime

controller can be built as a control sub-component of the component model that

controls the lifecycle of the scoped memory areas that are required to be kept alive.

To build this memory lifetime control sub-component, we can either;

- use the wedge thread model design pattern as a base for the sub-component, an

example implementation of the wedge thread pattern, which is compataible with our

proposed forked memory model, is presented in A.5., or

- develop enhanced design patterns, which overcome the limitations of the wedge

thread pattern.

In the following sections, we first develop a set of enhanced design pattern(s) that

can be used to build the required memory lifetime controller sub-component, where

these parts have to integrate with the other parts of our proposed component

framework. Our proposed enhanced design patterns include two new integrated

software patterns, the forkThread pattern, and the dualFork Pattern. The structure of

these patterns and how they work are explained in the next sections.

5.5.1 The ForkThread Pattern

In the forkThread pattern, instead of creating a single wedge thread for each

scoped memory area that is required to be kept alive, we assume that we use a single

thread for all scoped memory areas that have a common shared memory (CMA). A

simple illustrating diagram for this pattern is shown in Figure 5-20. In the diagram, all

the scoped memory areas share the same CMA. Hence, a real-time thread can enter

them all at the same time by making a sequence of a pair of MemoryArea.enter(), and

MemoryArea.executeInArea() calls. Then finally, it waits either in the last scoped

Chapter 5

-152-

memory area or in the parent memory area. An example implementation of this pattern

is presented in the class ForkThread, which is an internal class of the DualFork class

given in A.6.

SharedMmoryArea [CMA]E
n

te
r(

)

e
x
e

c
u

te
In

a
re

a
()

 Figure 5-20: ForkThread Pattern

Due to the RTSJ memory access constraints and the nesting required,

implementation of this pattern in RTSJ is not a trivial task. Here, we provide our own

implementation based on our proposed component memory model presented above. In

our proposed implementation, for ease of explanation, we assume that all the scoped

memory area stack, which are required to be kept alive, contains only one scoped

memory area above the CMA and all these memory areas are saved in another Queue

with the name memHeldQueue which is similar in the structure to the

memoryforkQueue, but it contains references only to the scoped memory that have to

be kept alive. Also, we assume that the shared objects are accessible through the multi

named-object portals defined for each scoped memory area as mentioned before.

Figure 5-21 shows a detailed sequence diagram of the pattern.

A- The Propagation Operation

In order to propagate through the scoped memory areas, the following sequence of

operations in this pattern is executed:

 1- The real-time thread, forkThread object, is created and starts in the common

memory of the component (CMA), and it waits there waiting for an explicit request

from the developer to do a propagate operation into a new scoped memory area.

 2- Once a request to propagate arrives, the forkThread, retrieves the MNPortal object

of the common memory.

 3- A reference of the memHeldQueue is retrieved from the MNPortal object. Then, the

first scoped memory area is retrieved from the queue.

 4- The forkThread starts a recursive propagation process among all the scoped

memory areas saved in the queue. The recursion process is provided in a method called

propagate(), and it includes a repeated sequence of two operations

Chapter 5

-153-

a. Entering stack scoped memory area using a reference retrieved from the

memHeldQueue.

b. Executing back into the common memory area, CMA.

 5- The implementation of these two operations is done using the encapsulated

runnable pattern presented in (Pizlo, Fox et al. 2004), where each operation is

implemented as a runnable object and then executed by the forkThread when it enters

(or calls executeInArea() of) the appropriate scoped memory area. These two

operations are processed by running two encapsulated methods. Hence, as shown in the

sequence diagram, they require two nested runnable objects as follows:

- executeInAreaRunnable: for executing back in the common memory area.

- propagateRunnable: encapsulates the propagate() method to enter the next

scoped memory area of a certain leaf memory area.

 6- The above recursive steps are repeated to propagate into any scoped memory area

added to the memHeldQueue.

 7- The Stop-Propagation Operation. This operation is responsible for stopping the

recursive propagation operation defined above, i.e. instead of entering the next scoped

memory area, the forkThread stops propagation at this memory area waiting for

external notification. This operation is implemented again using the encapsulated

method pattern (Pizlo, Fox et al. 2004), where a single runnable, TailRunnable, holds

the necessary code for causing the forkThread to wait at the current (last) scoped

memory area.

The recursive nature of the forkThread pattern requires careful consideration of

the creation of objects to avoid waste of memory resources. Runnable objects are the

main objects used as they encapsulate the methods that constitute the recursion process

mentioned above, these objects are created within the parent memory area, CMA, so

they have a life-time equal to the lifetime of the component. This makes the memory

leakage very high as each time the fork thread propagate, it creates a new set of

runnable objects that are never reclaimed before the component terminates. Hence, to

avoid this accumulated memory leakage, we have used the reusable object allocator to

create these runnable objects as reusable objects, where each runnable object is

recycled once it finishes its execution. An example of this usage is in the next code

snippet:

Chapter 5

-154-

IObjectAllocator allocator=(IObjectAllocator)memPortal.getObject("allocator");

executeInAreaRunnable rbranch= (executeInAreaRunnable)

 allocator.getInstance(executeInAreaRunnable.class);

ScopedMemory branch = (ScopedMemory)(item.item());

rbranch.ITEM=item;

branch.enter(rbranch);

allocator.recycle(rbranch);

In the above code, taken from the propagate() method of the class that implemnts

the ForkThread pattern, a reference to the allocator object is retrieved from the

MNPORTAL. After that, an instance of the executeInAreaRunnable class is

allocated by the allocator, then the parameter ITEM of this runnable, is assigned the

next scoped memory to be held. Then, the method executed within the branch

memory area, which represents the current scoped memory area in this iteration.

Finally, once the method finishes execution, there will be no need for the runnable

object, so it is recycled back to be used in next iteration.

A- Generalization of the Fork Pattern

As said before, the algorithm of the above pattern is working for one level only

of nested memory scopes, in order to extend it to nest a full scoped memory area scope

stack; we need to a modification to the propagation algorithm as explained next.

The generalization of the fork pattern, see Figure 5-22, requires that the fork

thread to propagate to all the nested memory scopes within each stack it enters and

execute in the CMA only after it reaches the top scoped memory area in this stack. In

our model, this can be achieved by making the thread to check the MNPORTAL of the

scoped memory area that is propagated into it to see if there is any non-null reference to

inner scoped memory within it or no, if there is an inner one, the forkthread enters it

and redoes another check in its MNPORTAL for a next inner scoped memory area, and

so on. Once, the forkThread reaches the top of the stack; it can execute in the CMA and

continue the propagation algorithm.

Chapter 5

-155-

MemoryController

executeInAreaRunnable

TailRunnable

BranchMemoriesforkThread MNOPORTALcommonMem
Reusable

ObjectAllocator

getPortal

returnn mPortal

memHeldQueue

branch=getFirtsBranch()

firstBranch

propagate(branch)

isLast=isLastBranch()

tailRunnable

run()

wait()

[!isLast]run()

getForkThread[!
Is

L
a

s
tB

ra
n

c

h
]

loop

propagate(nextBranch)

alt

[I
s
L

a
s
tB

ra
n

c

h
]

e
ls

e

getMemHeldQueue

retturn memHeldQueue

tauilRunnable=Allocator.getInstance(TailRunnable.class)

executeInAreaRunnable=Allocator.getInstance(executeInAreaRunnable.class)

executeInAreaRunnable

nextBranch.enter(executeInAreaRunnable)

PropagateRunnable=Allocator.getInstance(PropagateRunnable.class)

propagateRunnable

forkThread.propagate()

update()

Figure 5-21 ForkThread Sequence Diagram

Chapter 5

-156-

This modified algorithm requires executeInAreaRunnable to support the propagation

into the stack, this can be done by changing its run() to have the following design

pattern:

public void executeInAreaRunnable implements Runnable

{

Public void run()

{

MNPORTAL mnportal=getCurrentMemoryArea().getMNPORTAL();

 ScopedMemory sma=mnportal.getObject(“nestedMemory”);

if (ma==null)

{

CMA.executeInArea(propagateMethodRunnable)

return;

}

else

ma.enter(this)

)

}

The above design pattern ensures that the fok thread will propagate within all

the nested scoped memory areas of the stack before executing back into the CMA

memory area.

CMA
memHeldQueue

 MNPortal

 MNPortal

 MNPortal

 MNPortal

 MNPortal

A

B C

Figure 5-22 General Fork Pattern

B- Limitations of the forkThread pattern

The forkThread pattern enables the pinning of a set of RTSJ scoped memory areas

however, it is not flexible enough to handle dynamic creation and de-allocation

because only two variations of the forkThread pattern can be built according to the

scoped memories queue associated with it:

A forkThread with a fixed scoped memory list; here neither individual addition nor

individual removal of scoped memory areas to/from the memHeldQueue is allowed.

Hence, applying this model is very restrictive to components that have internal memory

stacks with a requirement to be waiting for a certain event (e.g. waiting for other

Chapter 5

-157-

schedulable objects to enter them), and then unpinned when there is no longer need for

keeping all of them alive at the same time. Once unpinned, objects in these scoped

memory areas can be deallocated; if there is no other schedulable objects running in

them. Hence, this model is not suitable for systems with dynamic scoped memory

creation, or deletion, which is one of the main purposes of RTSJ scoped memory areas.

 One simple use of this form of the forkThread pattern is in building pre-initialized

static fork-like memory structure, i.e. a set of inner memory areas are created as inner

memory areas of a single shared memory area and kept alive using a fork thread

running within them. When the system that usees this assumed memory structure

terminates, the fork-thread, can be un-forked to release all the system resources created

and associated with this static memory structure. In our framework, this memory model

can be used in the container model that is initialized with and holds a fixed set of

components. In this model, see Figure 5-23, the container memory area ContMA

represents the shared memory area, while the CMA of each component can represent

the branches of the fork. These memory areas have to be kept alive from the time of the

creation of the components, during the initialization, untill they are all terminated

together. This model is valid as long as there is no dynamicity in addition or deletion of

the components.

ForkThread

COMPONENT

A

COMPONENT

B

COMPONENT

C

CONTAINER

CMAACMABCMAC

ContMA

Figure 5-23 Fork thread with fixed scoped memory list

A forkThread with append-only/remove last scoped memory list; this model is a

simple extension of the previous one, by allowing the forkThread to propagate only

within a new memory area(s) appended to the end of its associated scoped memory list,

or de-propagate from the last memory area(s) removed from its associated memory list.

This model does not add much to the previous model, as it only relaxes the restrictions

on a subset of the associated scoped memory areas (i.e. the memory areas appended or

removed to/from the tail) not all of them.

 An example of possible use of this pattern in our model is in building the memory

structure of a static set of components within a container with the ability to dynamically

Chapter 5

-158-

bind an external component(s) to them, see Figure 5-24, where this external component

(Component X) can be appended in to the memory areas queues. Then later, when it is

not needed, this bound component can be unbounded and de-allocated by de-

propagating the fork thread from it.

ForkThread

COMPONENT

A

COMPONENT

B

COMPONENT

C

CONTAINER

CMAACMABCMAC

ContMA

COMPONENT

X

CMAX

Figure 5-24 Fork thread with append-only/remove-last scoped memory list

The Life Time Controller Implementation

The fork pattern can enable us to build the scoped memory areas life time controller,

e.g. by implementing the ISMALifeController that supports these patterns:

synchronous hold (String SMAname, Scoped Memory SMA)

{

 memHeldQueue.ADD(SMAname ,SMA);

 FORKTHREAD.upDateFork(HOLD_SMA_Queue);

}

synchronous unHold (String SMAname)

{

 memHeldQueue.REMOVE(SMAname);

 FORKTHREAD.upDateFork(HOLD_SMA_Queue);

}

In the above patterns, the memHeldQueue represents the named queue that holds

all the scoped memory area objects that are currently held.

5.5.2 The DualForkThread Pattern

In order to have a more generalized memory life cycler controller model, we need

to remove the limitations of the forkThread pattern. In order to do that, we propose the

dualForkThread pattern, see an example RTSJ implementation of this pattern in the

DualFork class presented in A.6. The dualForkThread pattern is formed simply of two

individual fork-threads that are running concurrently and cooperatively to achieve the

requirement of keeping a set of scoped memory areas sharing a single memory area

alive as long as needed, where this set of scoped memory areas is a dynamic set, i.e.

inserting new scoped memory areas or removing some existing ones is allowed during

the lifetime of the dualForkThread. To explain how the dualForkThread pattern

works, the diagram shown in Figure 5-25[a-h] shows the different states of the two

fork-threads (T1, T2). This is explained in the following:

Chapter 5

-159-

a. Initially, there is no scoped memory areas assigned to the two threads so, they wait

in the parent memory area (CMA).

b. Once a scoped memory area set has been created, the first thread T1 propagates

among all scoped memory areas defined in it, as explained before for the

forkThread pattern, and finally waits at the last scoped memory area, while the

other thread T2 is still waiting in the parent memory area.

c. Then, at any time, a new scoped memory area can be inserted anywhere into the

scoped memory area set hence, the two threads are required to take actions to

update their state.

d. So, the second thread starts to propagate within all the scoped memory areas within

the memory areas set including the new one, and finally stops and waits at the last

one.

e. Once the second thread arrives at the last scoped memory area, it notifies the first

one to de-propagate, i.e. to exit from all scoped memory areas it has entered before

and then it stops and waits at the parent memory area.

f. Hence, in this manner, the dualForkThread pattern enables dynamically inserting

scoped memory area(s) to its associated list, which was not possible with the

forkThread pattern.

g. Now assume that one of the current scoped memory areas within the memory set is

not needed any more and it is required to release it. So, the two threads swap their

actions done in steps (c, d, e), i.e. thread T1 propagates within the scoped memory

area set, which does not include the removed scoped memory area, then it stops and

waits at the last scoped memory area however, before stopping, it notifies T2, to

de-propagate back to exit all the scoped memory areas it has entered before,

h. Hence, as the removed scoped memory area has no thread running in it, it can be

freed (if it has no more schedulable objects running within it), and the threads wait

for new requests for updating its status or for terminating.

In our design, we assume that the dualForkThread pattern with its associated

concurrency control mechanism of the operations explained above is encapsulated into

a single control component, where the main function of this component is initializing

and managing two fork thread object (T1, T2) as shown in the activity diagram given in

Figure 5-27, where T1 and T2 have the same sequence of activities along their lifetime

within the component, and each one of them is either in one of four states:

Chapter 5

-160-

CMA=SMAParent

SMAa SMAb
SMAc SMAn

T
1 T
2

a- Initial State

CMA=SMAParent

T
1

SMAa SMAb
SMAc SMAn

T
2

b- Propagation of Thread T1

CMA=SMAParent

T
1

SMAa SMAb
SMAc SMAn

T
2

SMAi

c- new Scoped Memory inserted

CMA=SMAParent

``

T
1

SMAa SMAb
SMAc SMAn

SMAi

T
2

d- Propagation of Thread T2

Figure 5-25 DualForkThread States [continued]

Chapter 5

-161-

CMA=SMAParent

SMAa SMAb
SMAc SMAn

SMAi

T
2

T
1

e- Thread T1 Depropagates

CMA=SMAParent

SMAa SMAb
SMAc SMAn

SMAi

T
2

T
1

f- Ready for next addition/removal of Scoped Memory Areas

CMA=SMAParent T
1

SMAa SMAb
SMAc SMAn

T
2

g- Removal of a Scoped Memory

CMA=SMAParent

SMAa
SMAc SMAn

T
2

T
1

h- Ready for next addition/removal of Scoped Memory Areas

Figure 5-26 DualForkThread States

Chapter 5

-162-

1- Waiting for a request to propagate. In this state, the fork-thread is waiting for an

update command on a forkLock object. The forkLock object is a simple object saved in

the shared parent memory area, CMA, accessible by both fork-threads. Once an update

command is received, a signal is sent to the forkLock to notify both fork-threads to

start to propagate through the scoped memory areas, if both of the fork-threads are

waiting in this state, i.e. no scoped memory areas were associated with the dual-fork

threads; then, only one of them is woken, while the other is enforced to wait for the

next update operation, the choice of the thread to be woken is simply done by testing a

simple primitive value turn defined in the dual-fork object which alternates its value

between 1 and 2 on each update call. However, before the woken thread proceeds, it

has to be confirmed that the other thread is not active, i.e. it is not currently propagating

or de-propagating, to ensure exclusive operation of each of them. Hence, it has to check

if the other thread is in states (b or d). If the other thread is neither in state (b nor d)

then, this thread moves directly to state (b). Otherwise, the thread stops again on

another shared object updateLock waiting for a notification signal from the other thread

to inform it that it is safe to continue to move to state (b).

2- Propagating through the scoped memory area set. In this state the thread

recursively propagates to enter all the current members of its associated scoped

memory set. Once the thread enters the last scoped memory area, it becomes safe for

the other thread to continue propagation if it is waiting for this thread to finish

propagation. So, this thread sends a signal (updateFork.notifyAll()) to release the

other thread.

3- Stopping in the last scoped memory area. In this state, the thread stops waiting

for the other fork-thread to receive a command to update in order to replace this thread.

Once the other fork-thread receives the update command and propagates and reaches

the last scoped memory area of the scoped set, it sends a notification signal

(updateLock.notifyAll ()) to this thread to release it and enable it to move to state

(d).

4- De-propagate back to the beginning. In this state the thread exits from all the

scoped memory areas it is currently entering them, i.e. it returns back to its initial state

(a). Once it returns to the initial state, it sends a notification signal

(updatLock.notifyAll()) to enable any waiting fork-thread to start to propagate as

explained before.

Chapter 5

-163-

forkLock.wait()

dualFork : DualForkComp

T1 : ForkThreadT2 : ForkThread

forkLock.notifyAll() [turn=2]

[else]

Initialize

forkLock.wait()

forkLock.notifyAll()[turn=1]

[else]

updateLock.wait()

updateLock.notifyAll()

Propagate(nextMA)

[reached last memory area]

forkLock.wait()

forkLock.notifyAll()

depropagate()

updateLock.wait()

Propagate(nextMA)

[reached last memory area]

forkLock.wait()

depropagate()

updateLock.notifyAll()updateLock.notifyAll()

[h
e

a
d

2
 is

 A
c
tiv

e
 (p

ro
p

a
g

a
tin

g
 o

r d
e

p
ro

p
a

g
a

tin
g
)?

] [h
e

a
d

1
 i
s
 A

c
ti
v
e
 (

p
ro

p
a

g
a

ti
n

g
 o

r
d
e

p
ro

p
a

g
a

ti
n

g
)?

]

forkLock.notifyAll()

[else] [else]

updateLock.notifyAll()

finishpropagationfinishpropagation

updateLock.notifyAll()

updateLock.notifyAll()

[else] [else]

S
ta

te
 (

a
)

S
ta

te
 (

b
)

S
ta

te
 (

c
)

S
ta

te
 (

d
)

Figure 5-27: Activity Diagram of the DualForkThread Pattern

Chapter 5

-164-

The Life Time Controller Implementation

The dual fork pattern can enable building a scoped memory areas lifetime controller,

e.g. it can be used to build a class that implements an ISMALifeController using these

patterns.

synchronous hold (String SMAname, Scoped Memory SMA)

{

 memHeldQueue.ADD(SMAname ,SMA);

 DUALFORKTHREAD.upDateFork(HOLD_SMA_Queue);

}

synchronous unHold (String SMAname)

{

 memHeldQueue.REMOVE(SMAname);

 DUALFORKTHREAD.upDateFork(HOLD_SMA_Queue);

}

In the above patterns, the memHeldQueue represents the named queue that holds

all the scoped memory area objects that are currently held.

5.5.3 The Memory Pinner Pattern

In RTSJ, the lifetime management of any scoped memory area is managed by

counting the number of schedulable objects references running within this memory

area, where each schedulable object enters the memory area increases a reference count

variable, and this reference count variable is decremented each time once this

schedulable object finishes executing its logic in this scoped memory area. Once, the

reference count goes to zero, i.e. there is no more schedulable object running within

this scoped memory area, all the objects created within this memory area are reclaimed.

In the current RTSJ, the user has no explicit access to the reference count

variable; so, he cannot manage to prevent the reclaim process once the last schedulable

object exits the memory area. This enforces the user to keep at least one schedulable

object running within the scoped memory area to keep it alive.

The Life Time Controller Implementation

As seen, the above methods enable the user to explicitly manage the life time of

the scoped memory areas. So, we can build our proposed scoped memory life controller

using a memory pinner controller that implements the ISMALifeController using these

patterns.

synchronous hold (String SMAname, Scoped Memory SMA)

{

 memHeldQueue.ADD(SMA);

 SMA.PIN()

}

synchronous unHold (String SMAname)

{

 ScopedMemoru SMA= memHeldQueue.REMOVE(SMAname);

Chapter 5

-165-

 SMA.UnPIN()

}

In the above patterns, the memHeldQueue represents the named queue that holds

all the scoped memory area objects that are currently pinned.

5.6 Reusability of Schedulable Objects

In our component framework model, we assumed that the inner tasks of the

component are executed by schedulable objects. The component can have a fixed set of

schedulable objects that are executing its inner tasks during the lifetime of the

component; in this case instances of the RTSJ‘s schedulable objects can be assigned

during the initialization of the component to execute its internal tasks as required.

However, in the case of a component that dynamically creates inner task, e.g. a server

component that creates handlers to handle the client requests, which means that these

dynamically created tasks needs the dynamic creation of schedulable objects to execute

them, where these schedulable objects will be required only for the duration of the

execution of their tasks, e.g. in the case of the server component the schedulable object

that replies to the client request is required only for the duration of processing the client

request and it is not needed afterwards. As these dynamically created schedulable

objects are created within the memory structure model of the component, so they are as

any other object can cause memory leakage if their allocation is not controlled and

bounded. In addition to that, as the number of concurrent existing instances of these

schedulable objects determines the level of the concurrency of the component. So, as a

requirement of many real-time systems, there is a requirement to limit this number to

guarantee a predictable level of service. Hence, the component framework must present

a mechanism to enable the reuse of the schedulable objects within it. This mechanism

should support the following:

1. The creation of schedulable objects pools of a maximum size of a certain required

schedulable object type.

2. The presentation of reusable forms of the schedulable objects that can be inserted

in these schedulable object pools.

3. As the schedulable objects are executing the task‘s logic defined by the users,

there is a need to separate the logic from the schedulable object, so that the same

reusable schedulable object can be reused in executing other task‘s logic when it is

recycled.

4. As the task logic is assigned by the developer, the separated representation of the

task‘s logic must be in a simplified and abstracted form that enables the execution

Chapter 5

-166-

of the logic along the different layers of the memory model without the

complication of the RTSJ memory model.

To achieve these requirements we assume that the component should have optionally

the following:

1. Reusable schedulable objects Pools as Structural sub-component.

2. Reusable schedulable objects, or Executors, as Structural sub-components that can

be saved within these pools.

3. Reusable Logic sub-component that can be assigned by the developer to be executed

by the reusable schedulable objects.

We will present our design of these three sub-components in the following sections:

5.6.1 Pools of Reusable Schedulable Objects

 We assume in our design that the pool of any schedulable objects implements

the IHandlerPool, where this interface has the following methods:

- public IHandler getFreeHandler().To get the next free executor of the poll with

the given minimum memory size.

- public IHandler getFreeHandler(long reqMemSize). To get a free executor of

the poll with the given minimum memory size.

- public void appendHandler(IHandler executor). To add either a new or

recyclable executor to the pool.

- public int getSize(). To get the total size of the pool.

- public int getFreeCount(). To get the size of the current free executors in the

pool.

 The class HandlerPool, which is given in A.7, provides an example

implementation of the IHandler interface, this class is using a queue that is filled,

during the initialization of the component, with the required maximum number of

reusable schedulable object instances of the required type.

5.6.2 Reusable Schedulable Objects Sub-Component

The reusable objects in our model are implementing the interface IReusableExeutor

which defines the following methods:

- public void start(): to start the execution of this reusable

schedulable object.

- public long getMaxSize():to get the maximum size of the memory area assigned

to this executor.

Chapter 5

-167-

- public MemoryArea getExecutorMemoryArea(): to get the memory area assigned

to this schedulable object.

- public SchedulingParameters getSchedulingParameters(): to get the

currently assigned scheduling parameters of the executor.

- public ReleaseParameters getReleaseParameters(): to get the currently

assigned release parameters of the executor.

- public Runnable getHandlerLogic():to get the current logic to assigned to this

handler.

- public void setSchedulingParameters(SchedulingParameters schParamas):

to change the currently assigned scheduling parameters of the executor.

- public void setReleaseParameters (ReleaseParameters relParamas): to

change the currently assigned release parameters of the executor.

- public void setHandlerLogic(Runnable executorLogic): to assign the logic to

be executed by this handler. This method is important for reusability of the schedulable

object as it enables to change the logic that it runs.

 It must be noted that the last three methods are important methods as they are

responsible of updating the execution parameters of the executor to be reusable.

 As there are different types of schedulable objects, we need different classes to

implement the above interface. Where each of these classes represents one type of

schedulable objects defined in the RTSJ. These classes should have the ability to offer

the last three methods in the IReusableExeutor mentioned above, i.e. changing the

logic, the scheduling and the release parameters. The schedulable objects in the RTSJ

already offers the methods that enable changing the scheduling and the release

parameters but it does not offer any method that enable the change of the logic run by

these schedulable objects. To solve this problem, we use the design patterns defined in

(Dibble 2008) to support reusability of schedulable objects. These patterns are:

1- Encapsulation of the schedulable object in a wrapper class that implements the

schedulable interface. This method is applicable to real-time threads, where a wrapper

class is created with an instance of the RealtimeThread class, where this wrapper

class implements the methods of the schedulable interface by forwarding them to the

inner RealtimeThread instance, with a special handling for the run() method, where

the constructor of the wrapper class creates an instance of the inner thread with its

runnable logic is the wrapper class instance itself, this to force the inner realtime

thread to execute the wrapper class‘s run method. While in the run method of the

wrapper class a code similar to the code pattern in Figure 5-28 is inserted.

Chapter 5

-168-

This pattern enforces the inner method to run the run method of the assignedLogic

object, which is a member variable of the reusable thread class that represents the

runnable object that can be assigned when reusing this reusable real-time thread.

2- Extending the class of the schedulable object. This method is more suitable for the

Asynchronous Event Handlers, because the AEH‘s handleAsyncEvent() method or

its run() method is executed repeatedly each time an event is fired. So, it is easier to

make it reusable in a new class that extends the AsyncEventHandler class and

overrides its method handleAsyncEvent() to run the pattern shown in Figure 5-29.

while(keepAlive)

{

try

{

assignedLogic.run();

}

catch (Exception e){ }

}

Figure 5-28 pattern used in run() method of reschedulable object.

if(assignedLogic!=null)

assignedLogic.run();

Figure 5-29 code pattern used in the handleAsyncEvent()

This enforces the AEH to run the logic defined by the assignedLogic object, which

is a member variable of the reusable AEH class that represents the runnable object

that can be assigned when reusing this reusable AEH.

 In our component framework, we assume that all the pools that hold the

reusable schedulable objects are kept in the container that acts as the executors‘

supplier for all the components that reside in this container. Hence, according to this

assumption and in order to satisfy the RTSJ memory access rules, all of the reusable

object instances have to be created within the container memory area ContMA so that

these references can be saved in the schedulable objects pool(s).

5.6.3 Reusable Stack Logic Sub-Components

 As mentioned in the previous section the reusable schedulable objects have to

be created within the container‘s memory area. So, we assume that all the schedulable

objects are initialized from the container memory area and each schedulable object

Chapter 5

-169-

can have its own stack that has the container memory area ContMA and the

component memory area CMA as the lowest memory areas in this stack, see

Figure 5-30.

SMA

CMA

ContMA

CMA

ContMA

Scope Stack of

Reusable Schedulable Object

Figure 5-30 the task’s scoped memory stack

 According to this model the reusable schedulable object has to start its

execution in the ContMA, however, according to our framework model, the

schedulable objects of a certain component has to execute in the CMA and the SMA

memory areas of this component, where the CMA should be used for communication

with other schedulable objects within the same component and SMA, and any scoped

memory nested within it, can be used for operations that require temporary objects.

Hence, the developer has to write his own code that propagates to the CMA then the

SMA to execute his code there.

 In order to simplify this and make it less complicated, we assume the

Executable Runnable Stack design pattern. In this new design pattern, we assume the

following, see Figure 5-31:

1. we have n of nested scoped memory {SMA0, SMA1, …, SMAn} areas within a

single stack, and

2. each scoped memory area SMAj is nested within in another scoped memory area

SMAi where j=i+1and this memory area SMAj is created from within SMAi

which stores a reference for it in its multi-named portal object portal,

MNPORTAL, defined earlier in this chapter.

3. It is assumed that one or more of the scoped memory areas in the stack are pre-

existing, i.e. the deep most scoped memory areas exist, while the inner ones are

created dynamically when the next operation in sequence does not have its own

memory area in the stack.

4. there is a set DOPS of 2n sequential tasks that have to be executed within these

memory areas in sequence using a single schedulable object, where

5. Only two operations are executed in each single memory area, one when the

schedulable object enters the memory area and the other one is executed when it

leaves the memory area.

Chapter 5

-170-

6. each operation can be dependent on the previous operation(s) i.e.

7. DOPS={OP-UP0,OP-UP1, .., OP-UPn, OP-DNn,OP-DNn-1 , …., OP-DN0}

8. Also, we assume that the first sequence of these operations OP-UP0=>OP-UP1=>

…=> OP-UPn are executing in a bottom-up approach in the memory areas of the

stack when the schedulable object enters them, while the OP-DNn=>OP-DNn-1

=> …., OP-DN0 are following them and executing in each scoped memory of the

stack before leaving it in a top-down approach.

9. The logics of all the operations are to be supplied by a single file by the developer

which hides the details of entering and leaving the memory areas.

SMAn

SMA2

SMA1

SMA0

U

P

W

A

R

D

D

O

W

N

W

A

R

D OP0-UP

OP1-UP

OP2-UP

OP0-DN

OP1-DN

OP2-DN

OPn-UP

OPn-DN

PreExisting

Dynamically

Created

Figure 5-31 The Runnable Stack Pattern

 According to the above assumptions we can build the reusable stack as a class that

implements the Runnable interface in order to be executed by the schedulable object,

while the run() method is implemented using the recursive algorithm shown in

Figure 5-32, An example implementation of this class is presented in the class given

in A.7.

1- If(Current Memory Area Level above or the same Existing Memory Area Levels

and less than the maximum number of nested memory levels)

- Create a new nested Memory Area M

- add a reference “ChildMA” to M in the MNPORTAL of the current memory area

2- Call AssignedStackLogic.runUpward(Current Level Number, current Component)

3- Enter the memory area of the next level

4- Call AssignedStackLogic.runDownward(Previous Level Number, current

Component)

Figure 5-32 Algorithm for the run() of the Runnable Stack

 The algorithm shown above recursively propagates in the scoped memory stack

where it creates the required nested scopes memory areas if they do not exist already,

and each time it enters a scoped memory area it calls the runUpward() method of the

Chapter 5

-171-

object, where it passes to it the current memory level, and a reference to the

component in which the schedulable object that executes this runnable object is

running. In our model we assume that the AssignedStackLogic object is assigned by

the developer and it holds logic(s) of the individual operations that are required to be

executed within the scoped memory areas. The AssignedStackLogic object is

assumed to be created by the developer from a class that implements the interface

IStackLogic shown in Figure 5-33.

package RTCOM;

public interface IStackLogic

{

//The following method executes during the propagation into the memory areas of the stack

void runUpward(int CurrentMemoryLevel, IComponent currentComponent);

//The following method executes during exiting into the memory areas of the stack

void runDownward(int CurrentMemoryLevel, IComponent currentComponent);

}

Figure 5-33 IStackLogic interface

The IStackLogic interface defines two methods:

void runUpward(…): this method is to be called each time the schedulable object

enters one of the scoped memory areas of the stack, it has two parameters that help the

developer to manage his code. The first one is the current memory level within the

stack, the second one is a reference to the component itself, so he can access any of the

component‘s elements.

void runDownward(…):this method is to be called each time the schedulable object is

about to leave one of the scoped memory areas of the stack, and it has the same

parameters as the runUpward(…)method.

 According to this model, the complexity of entering the memory areas within the

stack become hidden and abstracted, as all what the developer needs to write is a class

that implements the IStackLogic and looks like the pattern shown in Figure 5-34, if

applied within our component framework.

5.7 Memory Contracts

In our component model, we proposed that the logics of the tasks are separated

from the reusable schedulable objects executing these tasks, this separation is important

for the memory management of the component model, as this allows us to define two

memory states of the component model:

Chapter 5

-172-

- The Zero or No-Logic Memory state: this is the memory status that results from the

sub-component composing this model, i.e. Object pools, schedulable pools, etc. This

state can be analyzed for the component during its design time and can be provided for

the component developers to consider it when using the component.

- The With-Logic Memory state: this is the memory status of the component after the

developer inserts his own logic to be run using this component. This memory status

includes the Zero Memory state in addition to the memory required by the logic

provided by the developer.

package RTCOM;

public class TaskLogic implemnets IStackLogic

{

void runUpward(int CurrentMemoryLevel, IComponent currentComponent)

{

switch(CurrentMemoryLevel)

{

case 0://Code to be executed when entering the ContainerMA

{

//Code to be executed when entering the ContMA

}

Case 1://Component MA

{

//Code to be executed when entering the CMA

}

Case 2://Task’s SMA

{

//Code to be executed when entering the SMA

}

}

}

void runDownward(int CurrentMemoryLevel, IComponent currentComponent);

{

switch(CurrentMemoryLevel)

{

case 0://Code to be executed when entering the ContainerMA

{

//Code to be executed when leaving the ContMA

}

Case 1://Component MA

{

//Code to be executed when leaving the CMA

}

Case 2://Task’s SMA

{

//Code to be executed when leaving the SMA

}

}

}

}

Figure 5-34 A component class implementing the IStackLogic interface

Chapter 5

-173-

 In our component model, we assume that the developer has to include with the

logic that is required for execution within the component, the memory requirements for

this logic in a form of a contract supplied with the logic that specify the memory

requirements in the ContMA, CMA, and immortal memory area as well. In order to

provide these values, we proposed the interface IForkedMemoryContract that has the

following methods:

public long getCMA():the developer specifies in it the worst case of memory size

consumed by the logic in the CMA memory area.

public long getContMA(): the developer specifies in it the worst case of memory

size consumed by the logic in the ContMA memory area.

public long getIMA():the developer specifies in it the worst case of memory size

consumed by the logic in the immortal memory area.

In order to use this memory contract, we assumed that the developer can present the

logic of the task in a class that extends the IForkedMemoryContract interface in

addition to the IStackLogic interface resented earlier.

The importance of using the IForkedMemoryContract that it enables the check of the

ability of the container to accept the given logic to run within it or no, where the

container can provide an admission control checker that checks this contract for all the

components added to it, where this check can be done:

- Statically Configuration/initialization time: by testing the memory requirements

of all the added components in addition to the memory required for the Zero Memory

state, to check if the current memory sizes within the component satisfy these

requirements or not before starting to run the components.

- Dynamically at task/component insertion time: to ensure that the memory

requirements of this added task or component is satisfied by the current forked memory

sub-component and it will not affect the predictability of any other component running

within this container.

5.8 Example: The Method Invoker

In order to see how the different patterns and subcomponents of our framework

can be integrated together to support the inter communkication among components, we

present here an example that shows how the hand-off pattern can be integrated with the

proposed memory model and its associated patterns to make calls from a component to

another, where the caller and the called components are examples of the component

model provided in the framework.

Chapter 5

-174-

The hand-off pattern, see Figure 5-35, enables the communication between two

sibling memory areas, by enabling one object, the source, in a certain memory area to

be accessed by another object, the target, in another memory area, where these two

memory areas have at least a single shared memory are, parentMA. The basic structure

of this pattern requires, for each communication operation, the execution of two joined

objects (BH); Bridge, to jump through the parent memory area, and Handoff, to deliver

the data; generalization of these classes is explained next.

a BH

ParentMA

bSource Target

ParentMA.executeI

nArea(BRIDGE) b.enter(H
OFF)

Bridge

Handoff

BH

Figure 5-35 The Hand-Off Pattern

In our example, see Figure 5-36, to use the handoff pattern for method

invocation, we assume that the called component has the target object saved in one of

the scoped memory areas forming the scoped memory stack of this component, and a

reference to this target object is stored in the multi named-object portal of this scoped

memory area. On the client side, the caller component has a single task running within

it, where the call to the target object is initiated by this task. In this example, we assume

that each of the caller and the called components has its own stack of scoped memory

areas, where the container memory area is the lowest memory area, i.e. level [0] of each

of these tasks‘ memory stacks.

ContMA.executeInArea(

METHODBRIDGE)

_t
ar

ge
tC

o
m

p
.e

n
te

r
(_

st
ac

kH
an

d
O

ff
)

Calling Component [C1] Called Component [C2]

CMAC1
CMAC2

ContMA

SM
S C

1

D

B

A BHLM1 BHLM2

BHLM1 BHLM3C

SM
SC

2
.e

n
te

r(
In

it
ia

liz
e

r C
2
)

HeapMA ImmortalMA

ReceiverObj1

BHLM4

`

ReceiverObj2

SM
S C

2

R
es

u
lt

Figure 5-36 The Mehod Invoker Example

This memory structure enables the communication between any two objects

residing in the two memory areas stacks of two different components sharing the same

container memory area. In this example, we see how we can use our framework to

Chapter 5

-175-

build a general pattern of making calls between two components using this memory

structure; the implementation of this general pattern is made using the MethodBridge

class that provides, in addition to the call invocation methods, the bridge from the caller

component to the called component. The MethodBridge class implements the

Runnable interface, and it has an inner class StackHandOff that extends the

ReusableRunnableStack class that execute the handoff on the scoped memory stack of

the target component. The StackHandOff class itself runs the logic provided by its

inner class MethodCallLogic that implements IStackLogic interface, to make the logic

executable on the scoped memory stack of the target component. In the following, we

present these classes.

The MethodBridge class: This class is the front-end of the pattern; it provides the

methods required to make a call from the calling component to another component.

This class has the following key methods:

makeCall(). This is a static method, and it is the method that is used to make the call

using this pattern, the implementation of this method is shown next.

static Object makeCall(IComponent caller, IComponent calledComp, final

Object [] MethodArgs, int MethodIndex,

 final int targetLevel, String tObjName) {

 IObjectAllocator allocator =

 caller.getMemModel().getContainerObjectAllocator(); //Get the object

allocator of the caller

 MethodBridge bridge =

(MethodBridge)allocator.getInstance(MethodBridge.class);

 bridge.setParameters(caller, calledComp); //create an object for the

future call

 Object result = bridge._makeCall(MethodArgs, MethodIndex, targetLevel,

tObjName); //calls the call internally

 return result; //this object has to be recycled by the caller once it

finishes using it

 }

As seen abovem the implementation of this method starts with retrieving the reusable

object allocator; then, an instance of the MethodBridge class is retrieved, using the

allocator, from the objects pool to be used to process the required call. This instance is

initiated with references of the two communicating components. Then, the call is

forwarded to the internal _makeCall() method to process it, using the following

parameters:

MethodArgs: represents the object passed to the target component from the

source component. This can hold for example method arguments to the target method.

Chapter 5

-176-

MethodIndex: This is an ID of the required method of the target object; this ID

is used in this pattern to avoid using the reflection to get the required method.

taregtLevel: this defines the memory level of the scoped memory stack in the

target component, in which the handoff operation is processed.

tObjName: The name of the target object in the target component.

_makeCall(): This is an internal method that starts the processing of the method

invocation, the logic of this method is shown next.

 Object _makeCall(final Object [] methodArgs, int methodIndex, final int

targetLevel, String tObjName) {

//In this implementation, we pass args by ref; the method args have to

implement the ICloneable interface if passed by value and they have to be

cloned in the doMethodCall

this.getStackHandOff().useLogic(StackHandOff.MethodCallLogic.class);

 //reset the parameters

 this.getStackHandOff().handoff(methodArgs, methodIndex, tObjName,

targetLevel); //deliver parameters

 return this.getStackHandOff().Result; //this object should be saved in

the container

 }

}

As shown above, the logic of this method starts by assigning MethodCallLogic class as

the stack logic subcomponent that is to be executed during the handoff operation; then,

the handoff()method of the associated StackHAndOff object is executed with the

given parameters to handoff the required data to execute the call; these data include the

arguments passed to the required method, its index, and the object holding it, in

addition to the memory level of the target component, in which the call has to be

executed. Finally, after the call is executed, the result of the call is returned to the

caller, where this result is stored in the container memory area by the

handoff()method.

run(): This method is called by the handoff() method from the container memory

area, i.e. parent memory area of the communicating components, during the handoff

operation to transfer the execution of the current calling thread from the container

memory area to the scoped memory stack of the target component using the statement:

 _targetComp.enter(_stackHandOff);

Chapter 5

-177-

The StackHandOff class: This class extends the ReusableRunnableStack class to

encapsulate the hand-off operation and make it executable on the scoped memory stack

of the target component. This class defines the following:

_targetName: the name of the target object

memLevel: the memory level in the target component in which the invoked method is

executed.

_methodArgs[]: this is an array holding the arguments passed to the target method.

Result: A reference to the object returned as a result of the execution of the required

method at the target component, where this object has to be allocated in the container

memory area, in order to be accessible from within the calling component. This object

is allocated using the reusable objects allocator in order to be recycled by the calling

component, once it is no longer required.

slogic: This is an instance of a class implementing the IStackLogic class that defines

the stack logic which is executed within the target component to execute the required

operation at the assigned target memory level of the target component. In this example,

this logic is assigned to be of the MethodCallLogic class to execute the required

method, as explained later.

In addition to the above, the StackHandOff class defines the following key

methods:

useLogic(): This method is used to assign the slogic member of this class, which is the

stack logic sub-component that is required to be executed by this class. In this method,

see the following code, the existing object referenced by the slogic reference is

recycled first, and then a new instance of the inner class holding the required logic, e.g.

the MethodCallLogic class in our example, is created and then assigned.

public void useLogic(Class LogicCls) {

 IObjectAllocator allocator =

 MethodBridge.this.caller.getMemModel().getContainerObjectAllocator(); //

 if (slogic != null)

 allocator.recycle(slogic);

 if (LogicCls.isAssignableFrom(HandOffLogic.class)) {

 slogic = this.new HandOffLogic();//we may use the allocator to create

the stack logic object to avoid memory leaks

 } else if (LogicCls.isAssignableFrom(MethodCallLogic.class)) {

 slogic = this.new MethodCallLogic(); //create the stack logic object

 } else {

 slogic = (IStackLogic)LogicCls.newInstance();

 }

 setStackLogic(slogic); //set the ref of stack logic in this class

 }

Chapter 5

-178-

handoff(): This method, see the following code, initiates and starts the method

call/handfof operation, it initializes the parameters of this class that encapsulates the

handoff process of the target method; then, it executes the logic of the target method

by calling the executeInArea() method of the container memory area to execute the

logic defined in the run() method of the MethodBridge, as explained earlier.

public Object handoff(Object args [], int mIndex, String targetName, int

memLevel) {

 _targetName = targetName;//set the target name

_memLevel = memLevel;//set the memory targetLevel of the obj

backward = false;//set the handoff direction

_methodArgs = args;//set the source

_methodIndex = mIndex;

_targetComp.getMemModel().getContainerMA().executeInArea(

MethodBridge.this); //executes the call

 }

The logic of executing the required call in this class is defined in the inner class

MethodCallLogic, which extends the IStackLogic class, to support the multi-level

scoped memory architecture of the component model in our framework. In the

MethodCallLogic class, the logic for executing the method call operation is defined in

the runUpWard() method of this class as shown next.

 public void runUpWard(int curLevel, IComponent parentComponent) {

 if (curLevel == StackHandOff.this._memLevel) {

 StackHandOff.this.doMethodCall(parentComponent); //execute the handoff

pattern

 }

 }

In the above code, the doMethodCall() method is executed when the calling

thread enters the memory level _memLevel of the StackHandOff class, which is

assigned by the developer, when calling this pattern.

doMethodCall(). This is the key method in this class; it is called by the handoff()

method from within the memory level of the called component as specified by the

caller, it is responsible of executing the required method call of the target object in the

scoped memory stack of the target component, the logic of this method starts by

retrieving the named portal of the current memory area, which is the memory area

specified when this method is called, then the target object is retrieved from this portal

using its name, after that the required target object is retrieved from this portal, and

then the method index of the required method is used to identify the required method of

the target object, then this method is executed. In the implementation of our example,

shown next, we assume that one of two target object; ReceiverObj1, ReceiverObj2,

can be specified by the user, where the ReceiverObj1 has three methods process0(),

Chapter 5

-179-

process1(), process2() with the method indices 0,1,2 respectively; whereas, the

ReceiverObj2 has only two methods run0(), run1() with the method indices 0,1

respectively. We have to note here that method call is made here by passing the

references of the parameters, where accessing these parameters that exist in the sibling

memory area of the calling component is allowed in the hand-off pattern. Finally, after

executing the required method, the returned value of the executed method, if there is a

one, is assigned to the Result reference, where the returned object has to be a

recyclable object from the container object pools, to be accessible by the caller, which,

after it finishes using it, is responsible of recycling it back to the object pool. 

 private void doMethodCall(IComponent parentComponent) {

 //thismethod has to be provided by the user of the method implementer/

user

Object R;

 LTMemory curMem =

(LTMemory)RealtimeThread.getCurrentMemoryArea(); //Get

current memory area

 INamedObjectCollection namedPortal =

(INamedObjectCollection)curMem.getPortal(); //Get the MNOP portal

 if (_targetName == "ReceiverObj1") {

 Object tgt = (Object)namedPortal.getObject(_targetName); //retrieve the

target by its name from the named portal

 if (_methodIndex == 0) {

 R=ReceiverObj1.process0(_methodArgs[0], _methodArgs[1]); //note no

need to clone the args as they are

 }

 if (_methodIndex == 1) {

 R=ReceiverObj1.process1(_methodArgs[0]);

 }

 if (_methodIndex == 2) {

 R=ReceiverObj1.process2(_methodArgs[0], _methodArgs[1],

_methodArgs[2]);

 }

 }

 if (_targetName == "ReceiverObj2") {

 Object tgt = (Object)namedPortal.getObject(_targetName); //retrieve the

target by its name from the named portal

 if (_methodIndex == 0) {

 R=ReceiverObj2.run0(_methodArgs[0], _methodArgs[1]);

 }

 if (_methodIndex == 1) {

 R=ReceiverObj2.run1(_methodArgs[0]);

 }

 }

 Result=R;//assign the result as a return value

 } //end of doMethodCall

5.9 Summary

We aimed in this chapter to design a component framework for the RTSJ. This

framework requires a set of software patterns that can be integrated to build predictable

Chapter 5

-180-

and reusable software components based on the RTSJ specification. To derive these

design patterns, we proposed a procedure for dividing the design process into a set of

design views; Business view, Thread mangaemnet view, Communication view,

Memory Management view, etc. We studied the features of each view from RTSJ

perspective, in order to derive the required patterns for each phase. This procedure

resulted in a set of design patterns, the cornerstone of these patterns for is the Forked

Memory design pattern, which is an RTSJ compatible component memory model that

enforces the constraints of the RTSJ memory model, and provides easy-to-configure

and use elements. We associated with the Forked Memory pattern a set of patterns that

integrate with it, e.g. a life manager sub-component patterns to manage the lifetime of

the scoped memory areas that constitute the proposed component model.

In order to have predictable component model, the patterns used to build the

memory model have been designed with a consideration of reusing objects to avoid the

waste of systems resources, where patterns for the reusability, e.g. object pools, and

thread pools, are provided as sub-components that integrate with the component model.

Moreover, we presented execution patterns for running reusable real-time tasks on the

proposed component memory model.

Regarding the Communication view, we presented in this chapter the patterns

that can be used for inner and inter communication, and we shows an example at the

end of this chapter that apply the memory model and some of the associated patterns to

build a method invoker that enables inter communication between two components

residing in the same container.

We postponed the discussion of the local/remote communication to the next

chapter; as it is dominant in our real-time middleware model, we present reconfigurable

low level communication component that can be used either as a sub-component of

other components, or as a separate component. This component integrates a set of

communication patterns that support both synchronous and asynchronous

communication, in order to be useful in various applications.

-181-

 Chapter 6

Real-time Reconfigurable

Communication Server

Component
Based on the RTSJ

In the previous chapter, we proposed a component framework to for

developing our proposed middleware. In this framework, we showed the possible

models of communication; inner-communication, inter-communication, local-

communication, and remote communication. We showed that the models for both

inner-communication and inter-communication are very similar, and presented the

models of using them in the RTSJ. Also, we showed that the models for local

communication and remote communication are very similar, but we have not presented

models for implementing them in the RTSJ. As the remote communication models are

essential part in any communication middleware, and as there are are various remote

communication models; e.g. synchronous, asynchronous, our aim in this chapter is

todesign an RTSJ based component for remote communication, using the framework

presentd in Chapter 5, where this component can be configured to support different

communication models as required.

As presented earlier in this thesis, the Real-time Specification for Java provides

predictable memory and scheduling models for developing real-time systems using the

Java language. However, it is does not provide communication mechanisms suitable for

distributed real-time systems. So, the design of proposed component model aims to

integrate the framework, which was presented in the previous chapter, and the other

new features added by the RTSJ, with the available network packages provided in Java

language, in order to support different models of communications used by many real

time middleware solutions.

In our design, we assume that this proposed communication middleware

component can be used either as a pluggable sub-component, which offers

communication services to the functional component in order to support the

communication facilities within the component model, or it can be built as a separate

Chapter 6

-182-

component, i.e. using the principles proposed in the framework, as presented in the

previous chapter, where this component can be linked with other components to build

the required model.

As presented in chapter 2, distributed systems have many different paradigms;

however, the most commonly used is the client-server paradigm in which the

communication is usually done concurrently among multiple clients and server(s) in

order to achieve high performance and throughput. To achieve this high and efficient

concurrency requirement, several methods and techniques have been provided. In order

to build our own component, we need to study these different approaches and models;

so, in this chapter, we provide an overview of the different I/O strategies used in

distributed systems, either for issuing multiple concurrent I/O operations, or for

concurrently handling clients‘ requests. Then, the several models for integrating

different combinations of these strategies are overviewed with the support of the

currently available underlying environment and operating system. Then, the Java

packages‘ current support for networking communication models is presented.

We also present a review of the basic structure of three software patterns

commonly used by servers, followed by a discussion of their pros and cons. Finally, we

present our proposed model of a server component based on the RTSJ, which can be

configured for reuse in developing real-time middleware solutions. In our presentation

of the design of the component model, we will present its design as a sub-component,

and how this design can be modified to make it a separate component using the

framework presented in the previous chapter. At the end of the chapter, we provide an

example that illustrates how the developed communicator component can be integrated

with the patterns developed in the last chapter, for building a simple client-server

application for exchanging packets of bytes.

6.1 Basic Strategies for Network I/O in Distributed Systems

Achieving efficient communication over networks has been a target for

software developers and researchers to enhance the development of efficient distributed

systems. Hence, a lot of research has been made toward optimizing these I/O

operations; this resulted in the development of many strategies that are available for use

in developing distributed systems. These strategies have been classified into two main

groups as follows:

Chapter 6

-183-

6.1.1 Strategies for issuing multiple I/O operations

Processing communication operations, i.e. sending or receiving data, over a

network is much slower than local calls. So, the long time taken to make a

communication operation does not just affect the performance of the calling thread, but

also, it affects other threads that might block waiting for some data of the calling

thread. This problem is very serious in the case of real-time systems, as it leads to the

priority inversion problem when a thread of high priority has to wait for some other

thread of lower priority that is blocked during making a call operation over the

network. Moreover, the calling thread becomes inhibited from doing any other

concurrent operations, during the execution of the remote call. To provide a solution for

these problems, several strategies have been introduced to enhance the ability of a

calling thread to make a communication operation over the network, the differences

among these strategies comes from the fact that the communication operations are

executed into two layers of the operating system, the user space, and the kernel space,

see Figure 6-1. In the kernel space, the device drivers are responsible of executing the

actual communication operation by sending/receiving the data associated with the

communication operations from/to its associated buffers over the network stream;

whereas the user space, holds the user buffer used by the calling thread in the user‘

program. Different scenarios can be used by the calling thread to transfer the data of the

communication operation call from/to the user space to/from the kernel space. These

scenarios lead to the following basic communication strategies:

A- Use blocking/synchronous calls from several threads.

This strategy adopts the blocking/synchronous method of communication. The

processing of a synchronous call goes through the following steps (see Figure 6-2):

1- At a certain moment T0, the calling thread, which is running in the user space, issues

an I/O operation, e.g. read().

2- Calling the synchronous I/O operation, causes the thread to switch to the kernel

space in order to run the I/O synchronous operation, e.g. reading/writing the data

from/to the device buffers in the kernel in order to transfer the data into/from the user

buffer in the user space.

3- The thread checks the device buffers, if the device buffers are ready to make the I/O

operation, the thread makes the transfer process and immediately returns to the user

space, otherwise;

Chapter 6

-184-

4- If the device buffers are not ready at T1 to run the operation; e.g. they have no data

in the case of the read () operation, the thread blocks are waiting for the buffers to

become available.

5- Once the data arrives at T2, and after the device buffers become available, the thread

is activated to transfer the data from/to the device buffers into/from the user buffer.

6- Once the byte transfer operation finishes, at T3, the call finishes and the thread

becomes ready to execute other calls.

U
s
e

r
S

p
a

c
e

K
e

rn
e

l
S

p
a

c
e

Buffer

Buffer Buffer

in
p

u
to

u
tp

u
t

Device

re
a

dw
ri
te

Figure 6-1 Buffers in the User Space and Kernel Space

re
a

d
()

T0 T1 T2 T3

U
s
e

r
S

p
a

c
e

K
e

rn
e

l
S

p
a

c
e

BLOCKING

Time

N
o

tR
e

a
d

y

R
e

a
d

y

U
s
e

r
B

u
ff
e

r

Is
 F

ill
e

d

Thread

Figure 6-2 Execution of Synchronous I/O Operation

According to the scenario explained above, it is clear that the synchronous

network I/O operations requires one thread for each concurrent network I/O operation

and this in turn has the following defects:

Chapter 6

-185-

1- Each thread requires its own execution stack; hence the memory size required will

proportionally increase with the increase in the number of threads running concurrent

I/O operations.

2- Increasing the number of concurrent threads running in the system will result in a

high rate of memory references due to the increase in the number of context switches

among threads of execution.

3- In many operating systems, the kernel has a limited number of data structures to

schedule the concurrent running threads; e.g. file descriptors in Linux. So, using a

single thread for each I/O operation will limit the number of the concurrent I/O

operations to the maximum limit provided by the operating system.

So, this strategy does not facilitate the ability of making concurrent calls from a

single thread, hence, to achieve the required concurrency, multiple threads have to be

used; where each thread makes a single synchronous I/O operation call and waits for its

completion.

B- Use non-blocking calls from a single/multiple thread(s)

This strategy uses the non-blocking techniques of communication where the

calling thread can initiate the I/O operation on a non blocking socket in order to be able

to do other tasks without waiting for the I/O operation to finish. The steps of executing

a non-blocking call are as follows, see Figure 6-3.

1- Initially, at the time T0, the calling thread, which is running in the user space, issues

an I/O operation, e.g. read().

2- Once the thread calls the non-blocking I/O operation, the thread switches to the

kernel space in order to see if the device buffers are available.

3- The thread checks the device buffers, if the device buffers are ready to make the I/O

operation, the thread makes the transfer process and immediately returns to the user

space, otherwise;

4- If the thread found the device buffers, at time T1, are not available, the thread returns

back to the user space

5- Once the thread returns back to the user space at T2, it becomes free to make any

other calls either I/O calls or other local calls.

6- Later, at a certain moment T3, device buffers become available.

7- Hence, at any moment T4, where T4>T2, the thread tries to execute the same I/O

operation, if the buffers are still not ready, i.e. T4<T3, it again goes to the user space to

do other operations; otherwise, if the device buffers are ready, i.e. T4>T3, it transfers

the data from/to the device buffers to/from the use space buffer.

Chapter 6

-186-

8- Finally, when the I/O operation completes at T5, the thread returns to the user space

to continue execution.

re
a

d
()

T0 T1 T2 T5

U
s
e

r
S

p
a

c
e

K
e

rn
e

l
S

p
a

c
e

NON-BLOCKING

Time

N
o

t
R

e
a

d
y

R
e

a
d

y

U
s
e

r
B

u
ff
e

r

Is
 F

ill
e

d

T3

re
a

d
()

T4

Thread

Figure 6-3 Execution of a non-blocking I/O Operation

The main benefit of using this strategy over blocking calls is that as the calling

thread does not block waiting for the termination of the operation; hence, it can do

other operations, either I/O operations or local operations, at the same time, which

enhance the throughput and efficiency of the system. However, as explained in the

above steps, as the calling thread won‘t block waiting for the completion of the slow

I/O operation, a mechanism is required for declaring the readiness of the device buffers

to complete the execution the I/O operation called by one of the non-blocking threads,

this operation is well known as I/O multiplexing. Modern operating systems provide

several mechanisms to support the I/O multiplexing, as will be explained later in this

chapter.

C- Use Asynchronous calls from a single/multiple thread(s).

This strategy uses asynchronous methods to make the I/O operations calls. The

steps of executing a non-blocking call are as follows (see Figure 6-4):

1- Initially, at the time T0, the calling thread, which is running in the user space, issues

an asynchronous I/O operation, e.g. async_read().

2- The thread switches to the kernel space to enqueue its required I/O operation in the

kernel‘s asynchronous I/O system, associated with a reference to the user space buffer

if required and it returns back to the user space; this may even happen before the

device buffers become ready at T1.

3- Once the thread returns to the user space, at T2, it runs asynchronously independent

from the I/O operation.

Chapter 6

-187-

4- The kernel‘s asynchronous I/O system monitors the device buffers required for the

enqueued I/O operation, and once, the device buffers required for the I/O are ready, at

T3, the operating system, transfering the data from/to the device driver buffers to/from

the user space buffer.

5- Finally, when the I/O completes, the operating system asynchronously interrupts the

execution of the calling thread in the user space, at T5, to notify it that its required I/O

operation which has been completed in order to take any required action and it calls any

call-back method registered with the enqueued I/O call.

a
s
y
n

c
-r

e
a

d
()

T0 T1 T2 T5

U
s
e

r
S

p
a

c
e

K
e

rn
e

l
S

p
a

c
e

Run Asynchronous

Time

N
o

t
R

e
a

d
y

R
e

a
d

y

U
s
e

r
B

u
ff
e

r

Is
 F

ill
e

d

T3 T4

Thread

A
s
y
n

c
h

ro
n

o
u

s

N
o

ti
fi
c
a

ti
o

n

Figure 6-4 Execution of Asynchronous Calls

6.1.2 Strategies for Handling Clients’ Requests

As it is normal for a server within a distributed systems to serve multiple

concurrent requests from different clients concurrently, several approaches for

providing handlers for these requests have been used:

One process for each client; this is the classic Unix approach, in this approach for

each new client request the server forks a new process to handle it using the fork()

command.

One Operating System thread for each client; this is the approach used by Java

programs that run on a JVM that maps each Java thread into a native thread, i.e. it uses

1:1 mapping from user space threads to kernel threads. In this approach, the server

creates a separate Java thread, which is a kernel thread, to handle the client request.

One Operating System thread for each active client; the thread pool approach is a

very common example of this strategy. In the thread pool approach; the server has a

pool of a predefined number of created and initiated worker threads waiting. With each

new client request, the server retrieves one thread of this pool to handle the client

Chapter 6

-188-

request and once the thread finish handling the client request, it does not terminate, but

it returns to the thread pool, to be ready for handling other clients‘ requests in the

future. The main advantage of this strategy is that it limits the number of threads

created in the system.

One Operating System thread handles multiple clients; the following three common

approaches are good examples of using this strategy:

- Java with green thread; this approach is used in JVMs that uses n:1 mapping from

user space threads to kernel space threads, i.e. all the Java threads are green threads that

are created within the JVM process, where the JVM process itself is running in a single

thread in the kernel level. Hence, all the green threads that are created by Java to handle

the clients‘ requests will be processed by a single kernel thread.

- State machines; this approach assumes using a single thread for processing all

clients‘ connections where the communication is using an event-driven mechanism. In

this approach the same handling thread is called each time an event occurs on one of

the connections in order to handle it. However, the thread cannot store in its own stack

the individual processing state of each connection. In order to overcome this problem,

this strategy assumes using a finite state machine attached with each connection, where

the occurrences of the events on each individual connection drive the states‘ transitions

of the state machine attached to this connection.

Examples of using this strategy is found in (JSpasm Open Source ; LimeWire

Web Site), where the concept of finite state machines have been integrated with the

event driven programming model provided by Java NIO to implement this strategy.

- Continuation. The processing of individual client requests requires independent

paths of execution and it requires at the same time that each of those paths to provide

the ability of saving the state of its associated connection along its path. This is exactly

what the continuation techniques is assumed to do, as the continuation technique refers

to the ability of saving the current execution state of a running execution unit, with the

ability suspending and later resuming its execution. Hence, the continuation technique

has been adopted by many researchers and developers for providing the server‘s

request handling mechanism by integrating it with the Java NIO event facilities to

provide an event driven programming model that use a single thread. This thread uses

the continuation mechanism to save the state of the currently executing connection

when another event occurs on another connections, and restoring this state back again

when an event related to this connection occurs.

Chapter 6

-189-

The difficulty of using the continuation mechanism is that it requires special

support from the underlying programming language environment, for creating and

managing independent execution paths/units within each individual thread. This

support is not provided in many programming languages. A lot of research has been

made to support continuations in the Java programming language, where several

methods of implementations have been used; these implementations methods include

(Jose A. Ortega-Ruiz, Curdt1 et al.):

1. Modifying the JVM

2. Hook into existing JVM though the JIT or JVMDI

3. Rewrite the byte code level

4. Rewrite the source code level

6.1.3 Models of Network Communications Processing

The previous two sections showed that there are various strategies that can be used

for both multiple I/O operations and handling requests. This variation results in a set of

different models for network communication processing. The most widely used among

those models are (Kegel D. 2006):

A- Serve Many Clients with each Thread and use Non-Blocking I/O

In this model the kernel should provide the support of providing the readiness

status of the I/O event through operating system interfaces. These operating system

interfaces can be categorized into two sub-models, where each interface can support

either one or both of these two submodels, these two submodels are:

- Level Triggered Readiness Notification; each time the calling thread requests the

status of the I/O operation, the kernel notifies it if the I/O operation is ready for

completion or not, whether the thread already has been told this in a previous call or

not, i.e. the notification of the readiness status of a certain event is made as long as the

I/O operation that caused this event has not been processed yet. Examples of operating

systems interfaces supporting this sub-model are;

1. POSIX commands select(), and poll(), and

2. Solaris‘s command /dev/poll, and

3. The level triggered version of FreeBSD‘s command kqueue.

4. The level triggered mode of the epoll() provided by the Linux kernel v2.6+.

- Edge Triggered Readiness Notification; the kernel notifies only the requesting

thread when the first time the I/O operations becomes ready, and any next requests

Chapter 6

-190-

from the thread will not be notified even if the I/O operation has not been processed

yet, as the kernel will assume that the thread already knows that the I/O operation is

ready.

 Examples of operating systems interfaces supporting this sub-model include:

1. The edge triggered version of FreeBSD‘s command kqueue().

2. Real-time Signals by the Linux kernel v2.4+.

3. The edge triggered mode of the epoll() provided by the Linux kernel v2.6+.

B- Serve Many Clients with each Server Thread and use Async. I/O

In this model the kernel has to have the support of asynchronous I/O over the

sockets in order to asynchronously notify the thread of the completion of the I/O

operation. Unfortunately few operating systems provide asynchronous I/O over sockets.

The Windows Operating System is one of those, as it provides it through the use of the

I/O completion ports, whereas the Linux operating system provides support for

asynchronous I/O over files only but not over sockets.

C- Serve One Client with each Server Thread and Use Blocking I/O

This method is supported by many operating systems as it is based on the

classical blocking I/O POSIX operations; read() and write(). However, to ensure that

only a single kernel thread will handle only the request of a single client, this method

requires the operating system threading library to support the 1:1 thread mapping from

user space to kernel space. Examples of such threading libraries are the IBM‘s NGPT

and the NPTL POSIX-Compliant threading libraries for Linux which are both using 1:1

thread mapping method.

D- Kernel Built In Server

The final model assumes that instead of building the server in user space, it

should be built in the kernel itself in order to minimize the number of hooks required to

enhance the server performance. An example of this type of server is the khttpd web

server for Linux; it is built as a kernel module to act as http server for handling static

web pages in Linux.

6.2 Low Level NW Communication Support in Java

The Java language has been used to build a great number of applications,

components, and packages that run on distributed systems as the language offers good

and easy to use networking packages which hide many of the complications of

Chapter 6

-191-

communications over networks. The Java language supports networking

communication mainly through the following three main packages:

- Networking Package; this package is encapsulated in the java.net package and it

was introduced in JDK 1.0 but additions, enhancements, and modifications have been

made to it later; especially in J2SE 1.4 to integrate its classes with the NIO packages.

- Standard I/O Package; This package is encapsulated in the java.io package and it

was introduced in JDK 1.0 to support very basic blocking communication mechanisms.

- NIO Package; This package is encapsulated in the java.nio package. This package

was a result of the work done in JSR51 (JSR-051) to complement and enhance the

standard I/O package and it was first introduced in J2SE 1.4. It has got this name as it

provides New I/O package, or as it supports Non-Blocking I/O.

These three packages provide support for general I/O operations and not just

networking operations; e.g. it supports file manipulation operations. However, we will

discuss here only the very basic networking support offered by all of these packages

and see how much support they do offer to satisfy the requirements for building real-

time systems.

6.2.1 Networking Package

This package provides a set of classes dedicated for networking in Java, the

most important classes in this package are the following:

- java.net.ServerSocket; this class represents the server side end point at one side

of a two way communication link between two programs running on a network. This

class mainly offers the accept () operation required by the server side of the connection

to monitor the arrival of incoming connection requests from the clients, and it

implicitly creates sockets for each accepted connection at the server side a new socket

of the type java.net.Socket class that communicate with the client‘s socket over the

network stream.

- java.net.Socket; this class does not just offer the connect() operation required by

the client side of the connection in order to initiate a connection with the server, but it

also provides operations to access both the input and output stream of the connection

both at the server side and at the client side. The java.net.InetSocketAddress is a

subclass of this type that implements IP socket addresses.

- java.net.DatagramSocket; this class represents a socket that sends and receive -

datagram packets of the type java.net.DatagramPacket over the network. The

Chapter 6

-192-

java.net.MulticastSocket is a subclass of this class that enable sending and

receiving IP multicast packages over the network.

- java.net.SocketAddress; this abstract class represents a socket address with no

specific protocol. Its sub class Java.net.InetAddress implements an IP socket address

of an endpoint which consists of IP address and a port number.

6.2.2 Standard I/O Packages

This package has been built assuming the representation of the I/O operations in a

form of the Reading/Writing Stream model. In the case of networking, the stream

represents a sequence of transmitted bytes over the network, see Figure 6-5. Hence, the

I/O operations have been represented according to this model by the following classes:

- java.io.InputStream: This is an abstract class, and it is the super class of all

classes representing an input stream of bytes, i.e. classes extending this class will

represent a sequence of bytes coming as an input to the system, where the stream can

be network stream, file stream, etc.

The basic operations offered by subclasses implementing this class are mainly

read operations that enable reading either the next single byte of the stream, using

read() method, or the next group of n bytes from the incoming stream, using

read(byte[] b). These read operations are blocking operations, i.e. the calling thread

will block waiting for a result if there is no data available on the input stream.

- java.io.OutputStream: This is another abstract class, and it is the super class of all

classes representing an output stream of bytes, i.e. classes extending this class will send

a sequence of bytes as an output to the target stream.

The basic operations offered by this class are write operations to write either a

single byte or group of bytes to the end of the output stream.

Limitations of the Standard I/O package

The limitations of the standard I/O package come from the fact that the

standard I/O package is mainly dependent on using blocking operations for accessing

the networking stream. This can be clarified by the diagram shown in Figure 6-6

through the following steps:

1. First the server waits for the call request using the blocking method accept().

2. Once the request arrives, the server starts to read the client request using another

blocking method read().

http://java.sun.com/javase/6/docs/api/java/io/InputStream.html#read%28byte[]%29

Chapter 6

-193-

Finally, to send the result back to the client, the server calls a third blocking method

write ().

Client Object

In
p

u
tS

tr
e

a
m

O
u

tp
u

tS
tr

e
a

m

Socket

w
ri
te

()

re
a

d
()

Server Object

Socket

w
ri
te

()

In
p

u
tS

tr
e

a
m

O
u

tp
u

tS
tr

e
a

m

re
a

d
()

ServerSocket

c
o

n
n

e
c
t(

)
a

c
c
e

p
t(

)

Figure 6-5 Integration of Sockets with the Stream Model in Java
When running the server as a single threaded program, the blocking nature of

the calls will inhibit the calling thread from doing any useful work during this time, and

this will affect the performance of the server; this problem is even more serious if the

server is required to run within a real-time environment, as it may lead to priority

inversion if other threads with higher priority have to wait for this server thread to

continue execution.

Read the client request

read()

Reply to the client

write()

Wait for a request

accept()

Ready

Close Connection

 Figure 6-6 Basic Server Handling of Client Requests using Standard I/O Package

Chapter 6

-194-

The usual solution to overcome this problem is to use multi threading, where

the server thread becomes responsible for monitoring the requests coming from clients,

and initiate a dedicated thread, or reusing a thread from a thread pool, for handling the

request and replying to the client. Unfortunately, this solution is not scalable and adds a

lot of overhead to the system, due to the problems arising from using multiple

concurrent threads concurrently, which is not just because it is always limited by the

physical resources, but also due to the fact that increasing the number of concurrent

threads affect the response time and the predictability of the execution of the server,

and all other threads within the system.

6.2.3 Java NIO Package

The Java NIO package is not a replacement of the Standard I/O package, but it

complements and extends its functionalities. The aim of introducing it is to provide an

enhanced access and manipulation of the I/O operations supported by many new

operating systems, in order to overcome the limitation imposed by using the standard

I/O package in Java, as mentioned in the previous section. It should be mentioned here

that a set of enhancements to complete the asynchronous model, e.g. returning future

object for pending results, is supposed to be provided by the JSR201 and to be added to

the NIO, called NIO2 (The JSR-203), but we will not consider these additions here, as

they are going to be part of JDK-7 which is not supported by any JVM that supports

RTSJ.

The main force behind the Java NIO is the inefficiency of the blocking model

of the standard package, so Java NIO adopted the non-blocking Reactor pattern (D. C.

Schmidt 1995), as a more efficient model for communication. It is required that a Java

server object running in a distributed system has to be able to handle multiple

concurrent client requests at the same time efficiently. The Reactor pattern is assumed

to provide a higher efficiency than that which is provided by the blocking methods

found in the Standard package. The idea of the Reactor pattern is to consider the

clients‘ requests as events occurring on the networking stream that it, the Reactor, has

to react to by multiplexing theses events, and dispatching a dedicated service provider

of each event in order to reply to as many events as possible concurrently.

To provide the Reactor pattern, Java NIO package has provided a set of

important features. The most important features offered in the Java NIO package, from

the networking point of view, are the following.

Chapter 6

-195-

A- The NIO Byte Buffers

These are buffers that hold the data to be transferred by channels to/from the

networking stream. They can be created to buffer raw bytes using the class

java.nio.ByteBuffer, or they can be created to buffer primitive types, where each

primitive type, except the boolean data type, has its own subclass e.g.

java.nio.IntBuffer. The interesting thing, about NIO buffers, that they can be

allocated either direct using the factory method ByteBuffer.allocateDirect() or indirect

buffer using normal constructors. The difference between the two types as was

mentioned in the Java SE API Javadocs (Java SE API) is as follows:

 "A byte buffer is either direct or non-direct. Given a direct

byte buffer, the Java virtual machine will make a best effort to perform

native I/O operations directly upon it. That is, it will attempt to avoid

copying the buffer's content to (or from) an intermediate buffer before

(or after) each invocation of one of the underlying operating system's

native I/O operations. "

This can be clarified more by the diagram shown in Figure 6-7; as the diagram

shows in both cases the direct allocation and the non-direct allocation, the byte buffer

object itself is created in the heap; the difference will be mainly in the place of the

allocation of the inner buffer of the byte buffer object that will hold the bytes of the I/O

operation. As shown in the diagram, in the case of the direct allocation, this inner

buffer will be allocated outside of the heap, whereas in the case of the direct allocation,

it will be allocated within the heap. Hence, in the case of the direct buffers, the garbage

collector will have no interference with the inner buffer, and hence the allocated space

cannot be moved by the garbage collector.

Native Address SpaceNative Address Space

Java Heap

Direct

ByteBuffer Object

Native Memory

Buffer
Java Heap

ByteBuffer Object

Array of

Java Bytes

Figure 6-7 Direct and Non-Direct Byte Buffer Allocation

Chapter 6

-196-

B- The Selectable Channels

A channel is a new abstraction of representing the endpoint of communication

link on a networking stream. This does not mean that it replaces completely the older

abstraction, i.e. the socket, but it complements and extends it. In Java NIO each

networking channel has still to be attached to a socket. But, it expands the range of

operations that can be offered by the endpoint over the networking stream.

Channels can be seen as tubes that are responsible for transferring data

efficiently to/from the byte buffers, as mentioned next, to the networking stream. There

are three main types of networking channels offered by the packages, and all of them

are inheriting their common properties from the

java.nio.channels.SelectableChannel class:

Server Socket Channel; this type is created from the class

java.nio.channels.ServerSocketChannel. It is responsible only for listening for

incoming connection requests, and when it receives a request it creates another

dedicated Socket channel object to handle this request.

Socket Channels; this type is created from the class

java.nio.channels.SocketChannel and it is responsible for reading and writing

operations on the networking stream socket object, created from the class

java.net.Socket, attached to it using stream oriented connections.

Datagram Channels; this type is created from the class

java.nio.channels.DatagramChannel. Like the Socket Channels, objects of this type

are responsible for reading and writing through the network stream. However, each

object created of this type is attached to an instance of java.net.DatagramSocket

through which it accesses the stream using the datagram protocol.

C- The Selector

A selector object is created from one of the subclasses inherited from the

java.nio.channels.Selector class. The selector plays the central rule in mapping the

Reactor pattern to the Java NIO as it, the selector, is responsible for monitoring the I/O

events occurring on the stream, see Figure 6-8. Once an event occurs on a registered

channel this event is captured by the selector in order to be dispatched to the

corresponding selectable handler to handle it.

Chapter 6

-197-

A selectable channel is registered with a certain Selector via the channel‘s

SelectableChannel.register() method. The SelectableChannel.register() method takes

two parameters:

1- The Selector with which the Selectable Channel is to be registered.

2- The set of the events this Selectable Channel is interested and wants the Selector to

monitor them. These operations include:

- SelectionKey.OP_ACCEPT: The SelectableChannel is of a Server Socket

Channel type and it is ready to receive a request from a client to establish a new

connection.

- SelectionKey.OP_READ: The selectable channel is ready to read data when it is

available on the input stream.

- SelectionKey.OP_WRITE: The selectable channel is ready to write to the output

stream when it is ready.

- SelectionKey.OP_CONNECT: The selectable channel is ready to complete its

connection sequence.

Selector

Service

Handler 1

Service

Handler 2

Service

Handler 3

ByteBuffer3

R
e

q
u

e
s
t
2

N
e

tw
o

rk
S

tr
e

a
m

R
e

q
u

e
s
t
3

R
e

q
u

e
s
t
1

ByteBuffer1 ByteBuffer2

CH3 CH1 CH2

Figure 6-8 I/O Multiplexing using Selectors in Java NIO

Each registration process of a Selectable channel with a Selector creates a

Selection Key Object created from the class java.nio.channels.SelectionKey. The

Selector maintains three sets of selection keys as follows:

1- The Key Set; this set maintains all the selection keys of all selectable channels

currently registered with this selector.

Chapter 6

-198-

2- The Selected Key Set; this is a subset of the Selection Key Set. It maintains a list of

all keys of selectable channels that are detected to receive at least one of the occurred

events on the stream.

3- The Cancelled Key Set; this is another subset of the Key Set. It maintains all keys

of selectable channels that have been cancelled, i.e. the selector is not monitoring

interested operations defined for them, and their channels have not been deregistered

yet.

The selection operation, i.e. the operation of monitoring an event and

dispatching it to its corresponding handler, is done by calling one of the select()

methods of the Selector Object. There are three versions of the selection operation:

- Selector.select (): This method performs a blocking selection operation

waiting for the occurrence of any of the defined set of events. However, it can be

interrupted by calling the wakup() method or if the thread calling it is interrupted.

- Selector.select (long timeout): This method is similar to the select()

method with the added ability to return after the expiration of the provided

timeout. However according to the Java NIO specification, this method does not

offer real-time guarantees as it schedules the timeout similarly to calling

Object.wait (long) method.

- Selector.selectNow(): This method performs a Non-blocking selection

operation, i.e. it returns immediately if there are no available events on the stream,

of those events which the selector is registered to monitor them.

6.3 Server Model Design Patterns

To be able to communicate with the client, the server should provide a set of

basic operations including accepting client connections, receiving the request, decoding

it, processing it, and finally returning the result to the client. Different software patterns

can be used to provide the integration and handling of these operations in one

consistent model.

In this section we review three of the software patterns. These three server-side

patterns provide different server-side I/O networking communication mechanisms and

scheduling models for handling user requests. We will review three server models:

multithreaded synchronous, reactive synchronous and proactive asynchronous. In this

review we will present the basic architecture of each model followed by a discussion of

its pros and cons.

Chapter 6

-199-

6.3.1 Multithreaded Synchronous Server

In this pattern, the calling thread blocks waiting for the result of the execution

to return back from the server. This is the most common pattern used for designing

many software systems, e.g. the Java RMI remote object implementation. The

acceptor-handlers pattern (M. Voelter 2004), which is an example of this category, has

the following main elements:

- Acceptor Thread; this thread blocks monitoring a network endpoint waiting for

connection requests coming from clients. Once a request is received, this thread

initiates another thread, a handler, to synchronously react and handle the request while

the acceptor resumes monitoring the end point waiting for other connection requests.

- Handler Thread(s); this is created, or initiated, by the acceptor thread to

synchronously handle the request(s) received and return its results, if any, to the client.

Although this pattern is very simple, it is not scalable and not efficient for high

performance I/O required by many real-time systems due to the unbounded nature of

the pattern. The pattern in this form will need the server to be able to create as many

dedicated handler threads at the server side as the number of concurrent calls arriving

to it, which makes it inefficient for handling high number of concurrent requests as (D.

C. Schmidt 1995; D. C. Schmidt et al Aug. 2000):

1- Some operating systems do not provide threading facilities.

2- The high concurrency-overhead (e.g. context switching, synchronization, and cache

coherency management).

3- The requirement for coordination among threads accessing server shared resources

in order to prevent race conditions, and

4- The dependence on the physical limitations of the server, e.g. memory, networking

capacity, and processing resources. This in turn can affect the predictability of client

calls, as a high number of concurrent calls on the same server over its physical capacity

will enforce the delay of even the rejection of the clients‘ requests. Furthermore, as the

client requests are blocked and not reusable during call execution at the server, they are

considered as wasted resources until receiving the call result. This can be a very

sensitive problem for many real time systems with very limited resources.

Some variations of these design patterns can provide enhanced performance to

make the synchronous blocking I/O pattern applicable in real-time systems. These

patterns reuse handler threads from thread pool in order to limit the degree of

concurrency allowed at the server in order to have a predictable execution time of the

Chapter 6

-200-

requests. Moreover, the thread pool mechanism allows multiple threads to coordinate

themselves and protect the critical sections during the receiving and executing the

requested calls.

A common example of such enhanced patterns is the Leader-Follower pattern

(D. C. Schmidt et al Aug. 2000), in which only one thread, the leader, at a time is

blocked waiting for receiving client requests. Meanwhile, other threads, followers, are

queued up waiting for their turn to be the next leader. Once the leader thread receives a

request from the client, it firstly notifies the thread pool to promote one of the followers

threads to be the next leader. Then, it starts to act as a handler thread to handle the

client request. Once, the handler finishes processing the requested call, it reverts back

as a follower thread in the thread pool. In this manner, multiple, but bounded, number

of handlers can handle clients‘ requests while only a one leader is waiting for the next

request.

6.3.2 Non-blocking Synchronous Server

In this category, the calling thread does not block-waiting for the call to be

finished. Rather, the invoked system immediately returns either the result of the

execution, if it was able to process it. Otherwise, it returns an acknowledgement to the

caller that the call cannot be processed. Hence, it is the responsibility of the caller to

remake the request later, if required, or just ignore it.

An example of a server belonging to this category is the reactive server whose

design is based on the reactor design pattern presented in (D. C. Schmidt 1995). This

pattern has the following elements:

1- Handles; to identify resources managed by the OS, e.g. socket endpoint of a

network connection.

2- Synchronous Event Dispatcher; blocks monitoring events occurring on the

handles, e.g. accept connection, read, or send data request. Once an event occurs on one

of the handles, it notifies the initiation dispatcher to react to it.

3- Initiation Dispatcher (Reactor); defines an interface for registering, removing,

and dispatching event handlers associated with the events that occur on handles. Once

it is notified by the synchronous event dispatcher of an event occurrence, it triggers the

event handler associated with this event.

4- Concrete Event Handler; defines a set of methods that represent the operation to

be executed when a certain event occurs on one of the handles, Event handlers are

responsible for writing the return result, if any, to the client and sends this result in a

Chapter 6

-201-

non-blocking mode, i.e. if the client is busy and cannot receive the result, the write

operations returns immediately with an acknowledgement of blocking possibility,

hence the operation can be repeated later to avoid blocking the server thread.

As the principle of work of this pattern is the direct reaction to events

registered within the systems, all these software elements can be running within the

context of a single reactor thread. Therefore, this server model acts as a single threaded

server and it offers the following benefits (D. C. Schmidt 1995; Pyarali 1999):

1- Portability of the Design among Many Operating Systems; as it does not need

multi-threading, it can be built on any operating system.

2- Low Concurrency Overhead; as there will be no context switching, nor

synchronization, as it is using single threaded model.

3- Modularity; as it decouples the application logic from the dispatching mechanisms.

Although the Reactor pattern has many good features, the reactive server

pattern has a set of drawbacks including (Pyarali 1999):

1- Program Complexity; the server logic can be very complicated to avoid blocking

the server during handling client requests.

2- Less efficiency for multithreaded systems; it adopts a single threaded model;

hence, it cannot utilize the hardware parallelism effectively. Hence, it is less efficient

for servers on multicore hardware.

3- Has no use of the predefined system schedulability; operating systems of

multithreaded architectures supporting pre-emptive threads are responsible for

scheduling and time-slicing the runnable threads onto the available CPUs. This

scheduling support is not useful for a single threaded server mode. Hence, it is the

developer responsibility to carefully time-share the thread among all clients

communicating with the server. This can be possible only for requests that require non-

blocking operations with short duration.

6.3.3 Non-blocking Asynchronous Server

In the non-blocking asynchronous pattern, the control immediately returns to

the calling thread reporting that the call has been delivered to the called system. The

called system resources, e.g. using kernel threads and system buffers, handle the call.

Then, when the result of the call is ready, the called system notifies the calling thread,

e.g. using a call back method. Hence, the calling thread can retrieve the result of the

call. As the call is handled by a called system on behalf of the calling thread, the calling

thread can be reused to do some other processing during the call execution. This pattern

Chapter 6

-202-

requires some supporting facilities from the operating system capable of performing

true asynchronous operations on behalf of the calling thread.

The Proactor design pattern (Pyarali 1999) is a non-blocking asynchronous

pattern. The key elements of this pattern, as shown in Figure 6-9 are:

1- Proactive Initiator; this is the entity of the server application that initiates the

asynchronous operation and registers with it both a completion dispatcher, and a

completion handler to be notified when the asynchronous operation completes.

Completion Handler(s); to be notified by the completion dispatcher to start execution

when the associated asynchronous operation is completed.

Asynchronous Operations; these are the operations to be executed by the operating

system on behalf of the server application.

Asynchronous Operation Processor; this is the operating system implementation

responsible for executing the asynchronous operation, and notifying the completion

dispatcher when finished.

Completion Dispatcher; this is responsible for monitoring the completion events of the

asynchronous operations executing by the asynchronous operation processor. Once

notified of a completion of an event by the asynchronous operation processor, it calls

back on the completion handler associated with the completed operation to start

execution.

Asynchronous Operation
Processor

Asynchronous
Operation

Operation
Dispatcher

Operation
Handler

Proactive Initiator

Figure 6-9 Proactor Design Pattern

Servers built using proactive patterns offer a set of benefits over the

multithreaded or reactive servers, these benefits include:

Chapter 6

-203-

1- Higher level of separation of concerns; in this pattern, two decoupled groups of

operations are defined: application independent asynchronous operations, and

application-specific functionality operations. Hence, each group can be built as

reusable configurable component to perform the required level of service.

2- Better application logic portability; as mentioned above, the decoupling of

asynchrony operation from event dispatching operations, help to build reconfigurable

components which make it more portable to work on different platforms and operating

systems.

3- Encapsulation of concurrency within the completion dispatcher; in this pattern,

the completion dispatcher can be configured with several concurrency strategies

independent of the number of concurrent requests, e.g. it can be configured to run as a

single threaded, unlimited multithreaded, or limited multithreaded using thread pools.

4- Decoupling of threading policy from the concurrency policy; as the

asynchronous operation processor executes the asynchronous operations on behalf of

the proactive initiator, the server will not need to spawn new threads to increase

concurrency if a lengthy asynchronous operation is to be executed. Hence, the server

can assign a concurrency policy different from the threading policy. For example, in a

multiprocessor server, the server can be configured to use a single thread for each CPU,

but it can service a higher number of clients simultaneously.

5- Higher performance; the call-back notification mechanism, used by the

asynchronous operation processor to notify the completion of asynchronous operations,

enhancing the system performance as no logical application thread will be blocked

waiting for operation completion. This in turn will minimize the number of concurrent

threads running to be equal to the number of completed operations, which in turn

minimize the context switching time and the required system resources.

6- Simpler application synchronization model; as the completion handlers use the

asynchronous operations instead of spawning additional threads, the synchronization

and concurrency required among the server application elements is minimized.

 With all these benefits, the proactor pattern has two major drawbacks:

1- It is hard to debug; due to using a call-back mechanism from the operating system,

it is difficult to trace the flow of the execution to find out sources of errors.

2- Lack of the order of execution; proactive control may need to have a control over

the order of execution of outstanding asynchronous operation, so the asynchronous

operation processor must support efficient scheduling facilities such as, prioritizing,

termination, etc.

Chapter 6

-204-

6.4 Design of a Configurable Communicator Component

Due to the variations in the communicating requirements of real-time

middleware solutions, there is a need to provide software reconfigurable components

that enable the real-time middleware developers to configure and use them according to

the functionalities and requirements proposed in their target middleware solutions. As

there are several paradigms of communications, it is impossible to combine them all

into a single component. In our work, we are considering only the Client-Server

Communication Paradigm.

In our design, we assume that this proposed communication middleware

component can be either used as a pluggable sub-component that offers communication

services to the functional component to support the communication facilities within the

component model or it can be built as a separate component, i.e. using the principles of

the framework as presented in the previous chapter, where this component can be

linked with other components to build the required model.

In this section, we present our proposed design of a general model for a real-

time communication component that integrates the predictable memory and scheduling

model provided by RTSJ with the current networking and communication packages

provided by Java. This real-time communication component is assumed to provide a set

of reconfigurable properties from which the programmer can configure several

properties of the component including its scheduling and concurrency policy, etc, that

are required for the design of his own real-time middleware. The design of this real-

time component will be using the proposed RTSJ component model presented in the

previous chapter.

In the following, we will first present the basic elements that form our

component, then we will discuss how it can be built using the RTSJ and what are the

reconfigurable properties of this component that define its behavior in order to adapt to

the requirements of the environment in which it is going to be used in.

6.4.1 Internal Elements

In the design of our real-time communication component we assume that the

component should provide flexibility in configuration so it can support as many as

possible of the server strategies and concurrency models discussed in this chapter.

Hence, we adopt the Proactor design pattern as a basis of our design as it is the most

flexible (and can even be used to emulate some other models). Hence, from our

Chapter 6

-205-

understanding of the Proactor pattern, we assume the communication component has

the following elements, see Figure 6-10:

Service

Handlers 3
Service

Handlers 3

Service

Handlers 3
Service

Handlers 3

Service

Handlers 3
Service

Handlers 3Service

Handlers 3
Runnable(s) of

CH3 Events

Service

Handlers 3
Runnable(s) of

CH2 Events

Runnable(s) of

CH1 Events

ByteBuffer3
R

e
q

u
e

s
t
2

N
e

tw
o

rk
S

tr
e

a
m

R
e

q
u

e
s
t
3

R
e

q
u

e
s
t
1

ByteBuffer1 ByteBuffer2

ConnectHandlers

Pool

WriteHandlers

Pool

ReadHandlers

Pool

AcceptHandlers

Pool

Proactor-Dispatcher

Selector

 JVM ________________________________

 Operating System

CH2

CH3

Pools of Executors

Executors

 CH1

Figure 6-10 Elements of the Communicator Component

- Selectable Channels; these are the communication endpoints used by the

component; these channels can be classified as server channels or client channels.

These channels are not configurable by the user. However, they are affected by the

configuration of the component‗s synchronization policy, i.e. the channel can work in

blocking mode, when the component is configured to be synchronous, or non-blocking,

when the server is running as reactive or proactive.

- Selector; this element blocks waiting for the notifications coming from the

JVM/OS, to indicate the occurrence of certain predefined events occurring at the

channels, i.e. the readiness of the device buffers to complete the I/O operation, in order

to notify the Proactor Dispatcher to react to these events.

Chapter 6

-206-

- JVM/OS Operation Processor; this is the interface provided by the JVM to

forward processing of the asynchronous operation to the operating system. Again, this

can be configured to use one of the commands offered by the operating system, e.g.

select, poll, etc.

- Proactor Dispatcher; both of the Proactor Initiator and the Completion

Dispatcher parts of the Proactor pattern are combined and integrated within this

element. This element is responsible for initiating the communication event handling

operation either synchronously or asynchronously according to the synchrony policy

configuration, i.e. it creates synchronous operation for reactive servers, and

asynchronous operations for proactive servers. Also, the Proactor dispatcher registers

with the operation a completion handler. So that, when an event notification arrives

from the selector, this element acts as an event firer, in order to start an event

completion handler either for the accepted connection or the incoming request. Where

the component‘ policy of handling requests can be configured to allow the acceptor to

define different forms for the creation of the handlers, e.g. create a new handler for

every new client request or reuse one free handler from a handlers pool.

- Runnable(s) of the Event Handler(s); these are the set of operations that are

executed by the completion handlers in order to react to the events occurring on the

channels. These operations can be executed either synchronously or asynchronously

according to the component synchrony policy. Basically, there are four events defined

on the channels monitored by the server, i.e. connect, accept, read, and write; hence, for

each event we can define a separate Runnable, i.e. ConnectorHandler‘s runnable,

AcceptorHandler‘s runnable, ReaderHandler‘s runnable, and WriterHandler‘s runnable.

- Executors (Completion Handlers); these are the processing units that act as event

handlers for the communication events and they are responsible for executing the logic

defined by the user, i.e. they execute the operations defined in the runnables of the

event handlers mentioned in the previous element.

- Executors’ Pool(s); each one of these elements manages a reusable set of

executors. Where each Pool corresponds to the executors of a single event, i.e. a Pool

for ReadHandlers, another for WriteHandlers, etc. Each one of these pools can

optionally have a fixed pre-configurable size in order to limit the concurrency of the

component, where this size can be detrmined by analyzing the system in which this

component is to be used, in order to find the maximum number of concurrent executors

used within the system, this is explained in more details for both the server side and the

client side in Chapter 7, pages 277, 283 respectively.

Chapter 6

-207-

6.4.2 Design and Configuration of the Component

In our design of the communication model, the communicator, we assume that

it can be designed either as a sub component within our framework model, or it can be

a separate component that is implemented using our proposed framework, which was

presented in the last chapter. In the first case, i.e. the design as a sub-component, the

communicator can be implemented as an object that can be optionally created within

the container; so that, it offers its services to the inner components within this

container, see Figure 6-11.

Comp

C

Communicator

Component

Comp

B

Comp

A

Container

Figure 6-11 The Communicator as a sub-component

In the other case, i.e. the case of designing it as a separate component, the

communicator component has to be designed using the framework model developed in

the last chapter, where it is linked to the other component within the same container

just as any component in the framework, i.e. By making the other components to

implement the IBindController to access and use its interface, see Figure 6-12.

Communicator

Component

Comp

B

Comp

A

Container

Figure 6-12 The Communicator as a separate Component

The functionality of the communicator component requires the running of a set

of concurrent handlers/executors at the same time within its structure, where these

handlers are used for the duration of handling the communication events and have to be

recycled again. This functionality is a direct mapping to our component model, where

the executors/handlers are the concurrent tasks that are running within the component

Chapter 6

-208-

boundaries, and each task has its own scoped memory stack, where all the

executors/handlers are sharing the same CMA of that component, and they can use it

for the inner communication. Also, these components area created in the container

memory area by using the reusable schedulable object subcomponent, in order to be

recycled for reuse after finishing the handling of the events, to limit the concurrency

within the component. In addition to that the events handler/executor may need to run

operations that create objects during their lifetime; so, in order to bound the memory

usage within the component, these handlers have to create these temporary objects

either:

- As a reusable objects, i.e. using the allocator. In this case the handler/executor can

allocate the handlers/executors in the CMA/ContMA, depending on the operation, i.e.

CMA is used when these objects are to be used only within this component, whereas

ContMA is used for allocating objects that can be used either inside the component or

outside the component with other components within the same container.

- As temporary objects in scoped memory areas with short-lifetime, so that they

can be reclaimed after finishing the execution. In this case the SMA stack assigned for

each executor/handler can be used to run these operations, or it may need to use

separate scoped memory areas for sending messages to other objects or among

themselves; in this case, these handlers/executors can use the scoped mmory life-

managers to manage the life time of these scoped memory areas.

 In both cases, the handlers can share the objects, either with themselves or with

other threads from other object that share with this component its forked memory area.

In this case, to enable the communication, the handlers use the multi-named object to

save the shared object in the portal of the CMA or ContMA as required.

As it uses the forked memory model, these handlers can execute their logic for handling

the communication events, using the executable runnable stack pattern defined for use

with the forked memory patterm.

 We can see from the above functionality that the communicator component is a

direct example of using the memory model, which we presented in the previous

chapter. This execution model can be defined as a dynamic forked execution pattern

over the forked memory model. The dynamicity of this pattern is due to the dynamicity

of the inner tasks/executors running within it, as they have a lifetime shorter than than

component and they are reused frequently. This makes this forked execution pattern

different from the staic pattern that results from using a fixed set of tasks, that are used

for the lifetime of the component and they are never reused.

Chapter 6

-209-

So, in the following section, where we develop the design of the component

using the component model defined in our framework, where we show the design of the

communicator as a sub-component; then, we show how the design can be adapted to

build it as a separate component.

To be reconfigurable, the software component should provide assignable

properties through its external interfaces that can be used by the developer, in order to

configure it before initializing it. Internally, these configurable properties can either be

used for initializing the member-variables of the inner objects constituting the

component, or it selects certain behaviour of one of the inner elements within it. Also,

the values assigned to these properties can be either from a predefined small set of

predefined values, as in the case of the synchrony policy property, or it can be assigned

arbitrarily from a wide range of values, as in the case of assigning a network address

for the component. In this section, we present our design of the real-time

communication component, where we will present the design of each class representing

one of its inner elements within it. As we mentioned earlier, we will show the design

of each element in two views; the first view for a sub-component design, and the other

view for designing a separate component.

A- The Communicator as a Sub-Component (Proactor Dispatcher)

The Proactor dispatcher is the main central element of the component; hence,

instead of modelling it as a separate entity, other than the entity representing the

component itself, we will consider the Proactor Dispatcher as the main entity of the

communicator component.

ICommunicator

IServerCommunicatorIClientCommunicator

Figure 6-13 Interfaces of the Communicator Component

The communicator component can be used either at the server side, or at the

client side. As there is a slight difference of the operations that can be made by the

communicator at both sides; in our design of a class of the component we assume that

the common properties and operations of the communicator are represented in an

abstract class, the Communicator class, that implements the ICommunicator interface,

which defines the common operations offered by this component; wheather it is

configured as a client or as server. Two subclasses are extending this abstract class, one

Chapter 6

-210-

to represent the Proactor dispatcher as a client, the ClientCommunicator class and

another one to represent it as a server, the ServerCommunicator class. These two

classes implement the ICommunicatorClient and ICommunicatorServer which

extends the ICommunicator interface to define the specific operations offered by these

two components, see Figure 6-13. These classes and their properties and operations are

shown in the class diagram in Figure 6-14.

This diagram shows the class diagram which is used to create the

communicator as an object that works as a subcomponent within the container. The

main elements of this class diagram are explained next:

Communicator Class

This is an abstract class, which represents the skeleton of the component,

wheather it is employed to work as client component, or as a server component. In our

model, the logic of the component is running within a real-time thread defined within

this class by the driverThread reference, this thread is responsible for running the

events monitoring task; e.g. event pooling loop, within the component. Moreover, the

component can run either at the server side for accepting and managing requests or, at

the client side, to make connections with servers and managing requests on them. The

type of the component is identified internally using the commType, which is assigned

the type of the component at the time of creation. In order to provide the component‘s

functionalities in our model, this class defines the three groups of operations: (1)

creation operations, (2) internal operations, and services operations, these are explained

next:

 The first group of the operations includes the static creational operational, and

it is responsible for creating the object instance of the component, and it includes two

main methods:

1- createClientCommunicator(…); this is a static method for creating instance(s) of

the communicator component, to work at the client side, and it is used to initialize the

component with the following properties:

inetAddress; this is used to specify certain I/P address (network address, port number)

which represent the endpoint to which the component will connect, and make the

requests for communication; if it is a client-side component, or, in the case of the

server-side component, it will represent the endpoint on which the component will

receive the requests.

Chapter 6

-211-

Communicator

-commType:CommSideEnum

-address:InetAddress

-memArea:MemoryParameters

-selector:Selector

-hostName:String

-driverThread:RealtimeThread

-nReadHandlers:int

-nWriteHandlers:int

-readHandlersPool:HandlersPool

-writeHandlersPoo:HandlersPool

-synchronyPolicy:SynchronyPolicyEnum

-Communicator()

+createClientCommunicator (inetaddress:InetAddress, memoryContext:MemoryArea, memParams:MemoryParameters,schParams:SchedulingParameters,releaseParams:ReleaseParameters, pgParams:ProcessingGroupParameters, noHeap:boolean,

 synchPolicy:synchronyPolicyEnum, readHandlersPool:HandlersPool, writeHandlersPool:HandlersPool,connectHandlersPool:HandlersPool, nReadHandlers, nWriteHandlers, nConnectHandlers, readLogic: Runnable, writeLogic:Runnable,

 connectLogic:Runnable): ClientCommunicator

+createClientCommunicator (inetaddress:InetAddress, memoryContext:MemoryArea, noHeap:boolean, synchPolicy:synchronyPolicyEnum,readLogic: Runnable, writeLogic:Runnable, connectLogic:Runnable): ClientCommunicator

+createServerCommunicator (inetaddress:InetAddress, memoryContext:MemoryArea, memParams:MemoryParameters,schParams:SchedulingParameters,releaseParams:ReleaseParameters, pgParams:ProcessingGroupParameters, noHeap:boolean,

 synchPolicy:synchronyPolicyEnum, readHandlersPool:HandlersPool, writeHandlersPool:HandlersPool,connectHandlersPool:HandlersPool, nReadHandlers, nWriteHandlers, nAcceptHandlers, readLogic: Runnable, writeLogic:Runnable,

 connectLogic:Runnable): ClientCommunicator

+createServerCommunicator (inetaddress:InetAddress, memoryContext:MemoryArea, noHeap:boolean, synchPolicy:synchronyPolicyEnum,readLogic: Runnable, writeLogic:Runnable, connectLogic:Runnable): ClientCommunicator

+fireNextFreeReadHandler(selKeyToken:SelectionKey, schParams:SchedulingParameters, relParams:ReleaseParams,MemParams:MemoryParameters):void

+fireNextFreeWriteHandler(selKeyToken:SelectionKey, schParams:SchedulingParameters, relParams:ReleaseParams,MemParams:MemoryParameters):void

-monitorEvents():void

+runCommunicator():void

+setSelectorType(type:SelectorTypeEnum):void

+setSelectorPolicy(policy:SelectorPolicyEnum):void

ClientCommunicator

-channelsQueue:Queue

-maxClientChannels:int

-nConnectHandlers:int

-connectHandlersPool:HandlersPool

-ClientCommunicator(....)

+makeConnection(remoteAddress:InetAddress, portNumber:int)void

+createClientChannel(inetAddres:InetAddress, isBlocking:bollean):socketChannel

+setCommunicationHandlers(readerHandler:Runnable, writerHandler:Runnable, connectHandler:Runnable):void

+fireNextFreeConnectHandler(selKeyToken:SelectionKey, schParams:SchedulingParameters, relParams:ReleaseParams,MemParams:MemoryParameters):void

ServerCommunicator

-ServerChannelsQueue:Queue

-ClientChannelsQueue:Queue

-maxClientChannels:int

-maxServerChannels:int

-nAccepttHandlers:int

-acceptHandlersPool:HandlersPool

-ServerCommunicator(....)

+createClientChannel(inetAddres:InetAddress, isBlocking:bollean):SocketChannel

+createServerChannel(inetAddres:InetAddress, isBlocking:bollean):ServerSocketChannel

+setCommunicationHandlers(readerHandler:Runnable, writerHandler:Runnable, acceptHandler:Runnable):void

+fireNextFreeAcceptHandler(selKeyToken:SelectionKey, schParams:SchedulingParameters, relParams:ReleaseParams,MemParams:MemoryParameters):void

+getServerChannel(address:InetAddress):SocketServerChannel

Figure 6-14 Communicator Class Diagram

Chapter 6

-212-

- memoryContext; this defines one of the memory areas defined by the RTSJ memory

areas in which this component object is to be created. The choice of the correct

memory area type, to be assigned to this property, is dependent on the nature of the

server and its lifetime. For servers with no real-time requirement, the heap memory

would be the best choice. However, for real-time component with predictable memory

management, the choice can be either immortal memory, for servers with life time

duration equal to that of the system otherwise; hoever, the assignment of a scoped

memory area (LTMemoryArea, or VTMemoryArea) would be the best choice for servers

with shorter lifetime duration.

- memParams, schParamss, relParams, pgParams; these parameters are used for

creating and running the driverThread.

- noHeap; this parameter is used to indicate if the driverThread is specialized to be of

the type NoHeapRealtimeThread or not.

- synchronyPolicy; this member of the class defines the synchrony policy of the

server, i.e. it defines the behavior of the reacting to the communication events. It should

have one of three values (1) Procative, (2) Reactive, (3) Synchronous, the details

scenarios of execution of these policies will be presented later in this chapter in part B-

of section 6.4.3.

- readHandlersPool, writeHandlersPool, connectHandlersPool; to specify the

pools for all the read handlers, the write handlers and the connect handlers associated

with this component.

- nReadHandlers, nWriteHandlers, nConnectHandlers; to specify the maximum

number of the read, write and connect handlers used within this component

respectively.

- connectLogic, readLogic, writeLogic; these parameters specify the runnable

logic defined by the developer using this component for handling connect, read, and

write events respectively.

createServerCommunicator(…); this is another static method that is used for creating

instances of the communicator component to work at the server side. This method

initializes the component with properties similar to those defined above for the client

side, with the exception that the inetAddress in this method, defines the local network

address that the component is required to monitor the events occurring on it. Moreover,

instead of the connectHandlersPool, connectLogic and nConnectHandlers, the

server communicator uses the acceptHandlersPool, accepttLogic and

nAcceptHandlers respectively.

Chapter 6

-213-

 The second group of operations include the internal operations that are used

internally by the component, these operations include:

- fireNextFreeReadHandler(…),fireNextFreeWriteHandler(…); these two

methods are responsible for retrieving one of the available free handlers from the read

handlers pool and write handlers pool respectively, to handle the corresponding events

on the channel. The scheduling, release, and memory parameters of these two methods

are assigned to the retrieved handler before its execution is activated, by calling the

handle() method, while the selKeyToken parameter holds the selection key associated

with the event, this selection key holds information of the channel that received the

event by holding an attachment object that is used as a token that holds the state

information of this channel along the successive invocations of the handler.

- monitorEvents(); this methods runs the monitoring loop within the component;

e.g. polling for events, and it is called during the execution phase by the

runCommunicator() method, this method internally calls the approporiate method for

the defined mode, e.g. it calls poll() method for blocking mode, and NBpoll() for

non-blocking.mode.

 The third group of the operations is the group of the operations that are offered

externaly to the user as defined in the ICommunicator interface, these operations

include:

- runCommunicator(); this method is called to start the execution phase of the

component.

- Initialize(); this method is called to start the initialization phase of the

component.

- setSelectorType(); is used to specify the type of the selector, as will be explained

later.

- setSelectorPolicy(); used to specify the selector policy, as will be explained

later.

ClientCommunicator Class

This is a subclass of the communicator class that represents the client-side

component. This class has no ability to accept requests from other clients; hence, it

does not have Server Socket Channel, nor acceptHandler Pool; however, it can

support one or more socket channels to make connections with remote servers, where

these references of channels are held in the chanelsQueue that can be assigned a

maximum number of channels that it can hold, through the nMaxChannels property,

also, the actual number of channels in use is specified by the nChannels variable.

Moreover, this class has a definition of a connectHandlerPool that holds the pool of

Chapter 6

-214-

handlers for handling the connect completion event, where the size of this pool is

specified by the nConnectHanlers property.

This class also defines an internal method fireNextConnectHandler(), which can be

used to fire a connection event handler, once the complete connection event occurs,

using one of the free handlers in the connectHandlersPool.

Also, this class implements the following three methods of the

IClientCommunicator interface to be offered to the user of the component:

- createClientChannel(InetAddress remoteAddress, boolean isBlocking);

this method can be used to create a socket channel through which a new connection

can be made to a remote server at the address remoteAddress, where this channel can

be created to work either on blocking sockets or non blocking sockets according to the

value specified by the isBlocking parameter.

- makeConnection(InetAddress remoteAddress, boolean isBlocking); this

method internally creates a socket channel, using the createClientChannel() method,

then it establishes the connection with the remote server whose, address is specified by

remoteAddress property.

- setCommunicationHandlers(); this method is used by the user of the component to

specify the logic of the three communication events handlers, readHandlers,

writeHandlers, connectHandlers.

ServerCommunicator Class

- This is a subclass of the Communicator class, and it represents the server-side

component; hence, it should have the ability to accept requests from the clients.

Therefore, unlike the ClientCommunicator this class has a ServerSocketChannel and

acceptorHandlerPool that can have a maximum size of nMaxAcceptHandlers, whereas

the actual number of the acceptHandlers is saved in the nAcceptHandlers variable.

On the other hand, this class has no connectHandlerPool, as its socket channels are not

used for initiating connections with other clients. This class has the following basic

operations:

- fireNextFreeAcceptHandler(); to start handling the acceptance of a new

connection event, using one of the free handlers in the accepttHandlersPool.

- getServerchannel(); this method returns the SocketServerChannel associated

with this component.

Chapter 6

-215-

B- The Communicator as a Separate Component

 In order to build the Communicator component as a separate component, no

big changes is needed to be made to the logic of the operations; the main changes are:

- The Communicator class has to extend the ComponentCls defined in the previous

chapter in order to support all its facilities.

- The Communicator has to implement the IBindController if the component has to

access other components.

- The class of the Communicator has to have a reference of the type IMemoryModel

that can hold a reference to an object instance of the Forked Memory Model, and this in

turn requires the creational operations to be changed to accept an instance of the

IMemortModel, e.g. ForkedMemoryModel instance, instead of the memory context

and its parameters. For example, to be able to create an instance of the client

communicator, we can use the following creational operation:

- createClientCommunicator(inetaddress:InetAddress, memoryModel:

IMemoryModel, noHeap:boolean, synchPolicy:synchronyPolicyEnum, readLogic:

Runnable, writeLogic:Runnable, connectLogic:Runnable): ClientCommunicator

- If required, the Runnable objects: connectLogic, readLogic, etc. may be provided

as instances of the IStackLogic defined in the framework, this requires no change to

the interface definition because the IStackLogic definition already extends the

Runnable interface.

- Instead of creating executors/handlers pools, the component can use the schedulable

object pools(s) provided by the container, where it has to be configured during the

initialization phase to have instances of the communication events‘ executors.

C- The Selector

This element is directly dependent on the JVM of the underlying operating

system asynchrony support; hence, to enhance the portability of the component, the

following properties are important to be reconfigurable by the developer using the

component:

- SelectorType; different operating systems have different asynchrony mechanisms,

and even within the same operating system there could be more than one of such

mechanisms, e.g. in Linux, there is asynchrony support using poll, epoll, etc. Hence, it

is necessary for the JVM to have different implementations of the selector using these

mechanisms. Hence, the developer can select one of these implementations, by

selecting a Java class that extends the java.nio.channels.Selector to offer a Java

interface of this implementation.

Chapter 6

-216-

- SelectorPolicy; by default, the selector in our design is working in a blocking mode,

waiting for notifications of readiness of the communication events. However, it is

possible to configure the Selector to work in non-blocking mode, i.e., the selector does

not wait for the events, but it checks if there are any events have happened, and it

returns immediately, even if there were no communication events to handle. Another

possible configuration is to assign a Timeout T for it, so it can block waiting for

communication events for maximum time length Tblock,, i.e. it returns if any event

occurs before the elapse of the time Tblock,; otherwise, it returns once the time Tblock

elapses.

D- Executors (Communication Handlers)

 The executors are the execution units within the component that are

responsible for executing the code that handles the events occurring on the channels. In

our model, we assume that these executors can be either normal Java threads, in case of

using the component in non-realtime applications, or they can be schedulable objects as

defined in the RTSJ, in case of using the component within a real-time application.

Also, according to the component framework proposed in the previous chapter, these

executors running in a real-time communicator component, whether the component is

designed as a sub-component or a separate component, have to be reusable executors

that can be provided by the schedulable/thread pools available in the container of the

communicator component, in order to enhance the predictability of the execution and

limit the concurrency.

 Hence, according to these assumptions and based on the reusable schedulable

object model presented in the previous chapter, we developed a class hierarchy for the

executors; the class diagram of this hierarchy is shown in Figure 6-15.

 As shown in the class diagram, we assume that the Handler class is an abstract

class that implements the IHandler interface; the classes of the communication

handlers are sub-classed from this class; whether it is real-time or non-real-time. The

Handler class has the following set of basic attributes and accessible operations

required for any handler:

- initialize(); this operation is used to specify a server component object and a

certain channel within this component, which this handler will be responsible for

handling the communication events occurring on them.

Chapter 6

-217-

- getHandler(); this is an abstract method that has to be implemented by all

subclasses representing a certain type of handlers, where each one of these subclasses

is required to return the object reference of the executing element associated with it.

- setHandlerLogic(); this operation can be used to assign a certain user-defined

Runnable object to be the logic member of this class, where the logic member defines

the logic to be executed by this handler.

- handle(); in our model, we assume that the handler is created and ready for

execution; however, it does not start to execute the logic associated with it, until an

event occurs and this handler is chosen to handle it. So, the class provides the handle()

method to be responsible for starting the execution. In this class this method is an

abstract method, as each type of the handlers can have its own method to start handling

the events.

- Server; this is a reference to the server component object itself that contains this

handler, this reference enables the handler to access other elements of the component.

- Channel; this is a reference to the selectable channel that the handler is responsible

for handling the events occurring on it.

- theBuffer; this is a reference to the user space buffer that holds the raw bytes

associated with the I/O operation, i.e. it holds the incoming and outgoing bytes going

through the channel which this handler is handling its events.

According to the above, our component model can be used in different

applications whether they are real-time or non-real-time; hence, a set of different

classes are assumed to be sub-classes of the abstract class Handler. These two

subclasses are:

The Thread_Handler Class

 The class Thread_Handler represents the non-real-time handler, i.e. it

encapsulates a normal Java Thread that is used to handle the events occurring on a

channel of this component; if the real-time guarantees are not required for this handler.

Hence, in this type the communication, event handler can be an instance of the class

java.lang.Thread. This class has to override the run() method in a way similar to the

pattern provided in the last chapter for the reusable schedulable objects, but with

omitting all the real-time functions. This class provides the method getHandler() to

get a reference to its internal thread. Also, the inherited abstract method handle() is

implemented within this subclass, in order to call the start() method of the thread to

start the execution of the event-handling code assigned to it.

Chapter 6

-218-

The rtHandler Class

As we assumed in the last chapter, in order to provide more predictable

execution of the handlers, the RTSJ schedulable objects should be used as the

executing elements for handling the I/O on the channels; hence, to represent the

handlers that use schedulable objects, the rtHandler class is provided as an abstract

class that extends the Handler class and implements the interface

IReusableSchedulableObject, which was presented in the previous chapter, in order

to provide a wrapper class for the real-time handlers. In addition to implementing the

methods of the IReusableSchedulableObject interface, this class has the following

methods:

createHandler(Class handlerType); this is a factory method that is used to create

the schedulable object of the real-time communication handler within the memory area,

in which the currently executing thread is running.

createHandler(Class handlerType, MemoryArea memArea); this is another factory

method that is used to create and initiate the schedulable object in the memory area,

where the parameters of this memory area are specified in memArea.

- getMemoryContext(); gets the currently assigned memory area of the handler .

The abstract wrapper rtHandler Class has a set of subclasses, which are

inherited from it to support different type of handlers, these classes are:

 The rt_RT_Handler Class; this class is used when an instance of the

javax.realtime.RealtimeThread is used as the schedulable object of the rtHandler

class. This class implements the abstract getHandler() method that is defined in the

abstract Handler class, and it returns a reference to the real-time thread instance used

by this handler. This class provides as well the handle() method, to enable the start the

execution of the logic assigned to it.

The rt_NHRT_Handler Class; this class is a specialization of the rt_RT_Thread that it

extends, as it uses an instance of the javax.realtime.NoHeapRealtimeThread as the

executing element of the handler, instead of using a RealtimeThread, this is to

guarantee the highest predictable real-time execution of the handler, as the handler will

be able to interrupt the garbage collector at any time, without any wait for the garbage

collector to finish its execution cycle. As a requirement of the NoHeapRealTimeThread,

the memory context of this type has to be from a non-heap memory, i.e. the scoped

memory or the Immortal memory, to not interface with the garbage collection.

Chapter 6

-219-

Handler

assignedLogic: Runnable

#server: Communicator

#channel: SocketChannel

#theBuffer: ByteBuffer

+initialize(server:Communicator, channel Socketchannel):void

+getHandler():Object

+setHandlerLogic(logic:Runnable):void

+handle():void

rtHandler

#memArea: Memoryarea
Thread_Handler

-theThread:Thread

rt_RT_Handler

-theRTThread:RealtimeThread

rt_NHRT_Handler

+getHandler():NHRealtimeThread

+handle(noheap:boolean):void

rt_AEH_Handler

-theAEH:AEHandler

-theEvent:AsyncEvent

rt_BAEH_Handler

+getHandler():BAEHandler

+handle(noheap:boolean):void

Interface

IReusableSchedulableObject

+run()

+setSchedulngParameters(…...)

……………...
……………...

+run()

-theBAEH:BoundAsyncEventHandler

Figure 6-15 Handlers Class Hierarchy

Chapter 6

-220-

 The rt_AEH_Handler Class; in this class, an instance of

javax.realtime.AsyncEventHandler is used as the schedulable object executing the

logic of the communication handler. The Asynchronous Event Handler runs when a

certain event to which this handler is attached is fired. Hence, this class has a reference

theEvent to an event object of the type AsyncEvent. The AEH starts execution by the

dispatcher when the selector notifies the readiness of any of the I/O operations on the

selectable channel associated with this handler. The dispatcher can fire the event and

hence the handler by calling the handle() method defined in this class. Like other

classes, this class provides the getHandler() method that returns a reference to the

Asynchronous Event Handler used by this handler.

 The rt_BAEH_Handler Class; this class has the same structure as that of its super

class rt_AEH_Handler, except that it uses an instance of the class

BoundAsyncEventHandler instead of the class AsyncEventHandler. This is to ensure

that the use of a dedicated thread to handle the event. This class can have a different

form of the method handle() that accepts a boolean variable, to specify wheather the

internal thread of this Bound Asynchronous Event Handler is a

NonHeapRealtimeThread, or not. Note: In order to implement some of the patterns and

examples presented in this thesis, e.g. in section 6.5 and appendix A.3, we used the

class EncapsulatedHandler, as a class that extends the functionality of this class by

supporting the reusability requirements mentioned in the previous chapter.

E- Event Handler Logic Runnable

This should be a class that holds the logic of services provided by the

component; this logic is executed by executors, which in our model can be any

schedulable objects. However, as proposed in (Pizlo, Fox et al. 2004), an executable

logic running by schedulable objects can be represented in RTSJ as an encapsulated

method. Hence, to be externally assignable by the developer, the developer writes his

own encapsulated method and assigns it to this property of the component. In case of

using the design for a separate component, the user can assign the logic either as any

class that implements the Runnable interface, or as a class that implements the

IStackLogic which itself extends the Runnable interface.

6.4.3 Component Lifetime

 The main purpose of building the Communicator component is to provide a

reusable component that integrates the RTSJ with the networking Java packages, in

order to support several communication strategies that are commonly required by many

Chapter 6

-221-

real-time middleware. We have provided in the previous sections the internal structure

of the component and the design of its internal classes. In this section, we define two

different phases of the lifetime of the component and specify the operations that can be

executed during these phases; these phases are the Initialization phases, and the

Execution phase. The scenarios of operations occurring during each one of these two

phases are presented next, where we discuss how the framework presented in the

previous chapter can support the implementation of these phases.

A- Component Initialization Phase

In this phase, objects that have to be available for the lifetime of the component

are created and initialized according to the assigned configurable properties, in order to

make the component ready for the processing in the next phase; the execution phase.

Separating the initialization phase from the execution phase is a common

technique in many real-time systems, as the process of object creation and initialization

is a heavy process (due to the need of loading Java classes); hence, this process is

required to be done only once. On contrary, the operations executed during the

execution are always timely constrained, and they may be executed repeatedly. So, the

execution phase operations should not interface with any setting-up operation, in order

to have a more predictable execution phase of the component. In the following, we

present a list of the objects created and initialized during the initialization phase:

The proactor dispatcher; this is the basic element of the component, it is created in

this phase, where, in case of the server-side component, it uses the component‘s

configured I/P address to create internally an instance of the ServerSocketChannel

class that monitors the incoming requests to the server. Then, the proactor dispatcher is

set to run either in one of two modes; the blocking mode (in case of multi-threaded

server), or the non-blocking mode (in case of proactive, or reactive server). Also, in this

phase, the proactor dispatcher registers with the selector the appropriate events, which

are required to be handled by the component, i.e. it registers the required read, write,

and connect events, in case of the client mode, while it registers the required read,

write, and accept events, in case of the server mode.

Also, in this stage, the Selector is created, where its creation is made by using

one of the sub-classes of the Java NIO Selector class, which represent the configured

selector type that this component is configured to use it. For example, in Linux, we can

use the sub class EpollSelector class as an assigned value of the SelectorType

Chapter 6

-222-

property. Hence, this class can be used to create the Selector, by calling the method

Selector.open().

Also, if the component is configured to have thread pools, then the executors‘

pool are first created; then, these pools are filled with the specified number of objects

of the configured Communication Handlers‘ type. Where all these communication

handlers are created in this phase as passive objects, i.e. they are not actively running or

scheduled for execution.

During the initialization phase, the byte buffers, which are used to hold the

bytes sent/received during the I/O operations, are created. These byte buffers can be

created either as direct or as indirect, as mentioned before in section 6.2.3-A-. This

raises a question that requires an answer; are the direct and indirect buffers compatible

with the RTSJ memory model? and do we need both types with RTSJ?

To answer this question, we first consider the direct buffers; like any normal

Java objects, the direct buffers are created in the heap; i.e. they are collectable by the

garbage collector. So, as any Java objects, the allocation of any of these object in any of

the non-heap memory areas defined by the RTSJ results in a better predictability of the

non-direct byte buffer object, as it will not be interfered with, or moved by, the garbage

collector. However, there will be no chance of avoiding the copying process from the

operating system buffers to the inner buffer of the byte buffer, as the inner buffer of the

non-direct byte buffer is allocated within the address space of the memory area that

contains it.

Now to answer the other part of the question, we consider the direct byte

buffers. In normal Java, the direct buffer is created in the heap as a normal Java object,

with a reference to a buffer that holds the bytes of the I/O operation out of the heap.

The same object can be created in one of the memory areas defined by the RTSJ, but

the question now is about the inner buffer that is created out of the object‘s memory

area and will be referenced from it. The RTSJ memory assignment rules are a set of

rules that defines the possibilities of referencing an object within one memory area

from another memory area. In the case of direct byte buffers, the external memory

allocated for the byte buffer contains only raw bytes; hence, there are no way to access

any object within it, and the actual access is to the byte buffer object itself, which in

turn accesses the bytes of the external memory. However, the RTSJ provides the class

javax.realtime.RawMemoryAccess, to model a range of memory as a sequence of

bytes; hence, in our model we assume that the creation of the native inner buffer can be

Chapter 6

-223-

made in a physical memory, which can be accessed using an instance of the

javax.realtime.RawMemoryAccess.

So far, we discussed the basic objects to be allocated in this phase. But, to

create these objects, in case of using real-time Java, we need to specify where to

allocate these objects. To specify where these objects should have to be created, we

have to consider our component model that we provided in the previous chapter. In this

model, we assumed the existence of a memory area for each component that keeps

objects created within it alive along the lifetime of the component; we called this

memory area as the Component Memory Area, and considered it to be the base memory

area within the component containing it. Hence, we consider that the creation of all

objects that are created during the initialization phase of the communicator are to be in

the component memory area of the communicator component. So, the component‘s

memory area should be assigned as the memArea parameter of all the methods and

constructors used to create these objects.

B- Component Execution Phase

The execution phase of the component is assumed to provide the basic

functionality that this component provides. So, in our communicator component, once

the communicator starts its execution phase, it enters an infinite loop to handle the

events occurring on the component‘s channels. In this section, we discuss the execution

phase of the Communicator Component, when it is used as a server side component;

this does not mean that the client-side Communication component has a complete

different execution phase, as the execution phase for both is identical except for the

kind of events and operations that is required for each of them.

In the execution phase, when any of the registered events occurs, the proactor

dispatcher retrieves a reusable free executor from the executors‘ pool. This reusable

executor is initiated in a scoped memory area, so that this is the memory allocation

context of objects created during the executor‘s execution, and this memory is

reclaimed back after finishing the executor‘s execution. The executor is responsible for

executing the Handler Logic Runnable corresponding to the completion handlers of

events occurring at the channels. Before starting the execution, the executor parameters

have to be retrieved and initialized; these parameters are retrieved either from the

parameters tables, if the component is configured to use server centric approach, or it is

retrieved from the client and assigned to the executor dynamically.

Chapter 6

-224-

The processing within the execution phase of the Communicator Component

that works at the server side starts once a client requests a connection to this server, at

this moment, the operating system notifies the selector to react to this event. The

selector in turn, sends a server key, an object holding event data, to the proactor

dispatcher to process the request. If the proactor dispatcher can accept the request, a

socket channel is created to communicate with the client. After accepting the

connection, the server component behaves differently for each type of the supported

server types, as each type involves different operations for receiving, and handling the

client requests. In the following, we discuss the different operations for each of the

three defined server-communicator models.

I- NonBlocking Proactive Model Execution Phase

In this non-blocking proactive model, see the sequence diagram in Figure 6-16,

when a connection request arrives to the server; the operating system notifies the

selector of this event; the selector in turn notifies the proactor dispatcher, and forwards

to it the event information, including the created socket channel object (client channel)

responsible for future communication with this client. The proactor dispatcher

configures the client‘s assigned socket channel to run in non-blocking mode, and then it

registers the read event with the selector, in order to be notified when any read

operation is made through this channel. Then, the proactor dispatcher retrieves a free

executor from the executors‘ pool, i.e. an acceptor handler, in order to be a handler for

the accept event. As the acceptor handler executor runs before receiving any data from

the client; then, the scheduling and release parameters of this executor cannot be

propagated from the client to the server. Therefore, the scheduling and the release

parameters of the acceptor executor can have either default values, or they can be

loaded from static tables, i.e. only the server centric approach is supported for the

acceptor handlers. One possible task that can be processed by the acceptor handler is to

retrieve the execution paramters from the client, in order to assign them to the handlers

of the next client requests, i.e. support the client propagated parameters approach in

this model.

After that, when a request arrives from the same client, a read event is fired on

its corresponding client‘s socket channel at the server side; this event is delivered

through the selector to the proactor dispatcher, as long as the read operation is

registered with the selector; to handle this event, the proactor dispatcher retrieves

another free executor from the executors‘ pool; however, this time the executor can be

assigned either server centric parameters, as the acceptor executor, or use the client

Chapter 6

-225-

propagated parameters, if they have been retrieved by the acceptor handler. Then, the

executor starts executing the configured Reader Handler of the component.

In this non-blocking model, every time a read event arrives, an executor is

retrieved from the executors‘ pool; hence, there is no guarantee that the same executor

is used to handle all the read events on a certain channel. This requires a mechanism to

ensure that the activated handler is assigned the required logic, where this logic has to

be the same one used by all the read executors of a certain channel; in other words, all

the read executors of one channel during one session needs to be assigned the same

Runnable class, where each executor runs only its assigned part of the logic defined in

this class. One possible way to provide this functionality is to define the logic class as a

state machine, and assign for each read handler a certain state within this state machine

to execute, this is dicussed in more details in the example presented in section 6.5.

On the other hand, as the write event is fired any time the channel is ready to

write to; hence, if the write handler has to be executed, the write operation is registered

with the selector only just before starting to write to the channel. So that, once the

server starts to write bytes to the registered client socket channel, an event is fired by

the operating system and propagates to the proactor dispatcher; then, the proactor

dispatcher retrieves another executor from the executors‘ pool and assigns its

parameters in the same manner as in the read event. However, in this case the executor

executes the logic defined in the Writer handler runnable.

A prototype implementation of the pollNB() method, which provides the

above operations in the non-blocking mode for observing and handling of the network

events in the communicator component, is presented in appendix A.9.

II- Non-Blocking Synch Reactive Model Execution Phase

 The execution phase of this model, see Figure 6-17, behaves initially the same as

the proactive model, i.e. the dispatcher is notified of the incoming events on the

registered server channel, where this channel is running in a non blocking mode. The

major difference between the reactive and proactive model comes in the way of

executing the handlers. The reactive model is assumed to be single threaded; this means

that when a registered event occurs on the client channel, instead of retrieving another

executor from the executors‘ pool to execute the logic assigned to the required event

handler, the proactor dispatcher itself acts as the executor of all the handlers‘ logics, i.e.

the logic to handle the registsred events can be internal methods of the communicator

class, or it can be defined as Runnable objects, where the proactor dispatcher has to

Chapter 6

-226-

enter the scoped memory assigned for this handler, and runs the required logic inside it.

The scheduling and the release parameters used in this model can be retrieved in the

same way, as described above in the proactor pattern. However, as only one executor is

running in this model, the scheduling and release parameters of this executor may have

to be changed frequently and dynamically each time a new event arrives into the

system.

III- Synch Multithreaded Model Execution Phase

 This model can be implemented either directly, using blocking socket channels,

or indirectly, by using the non-blocking proactor dispatcher model to emulate it. To

implement it directly, see the sequence diagram in

, the socket channel created to handle client connection request is configured to be in

blocking mode. So, the selector object is not required to be notified of the events

occurring on this channel, as these events have to be directly monitored and handled by

the executors. Therefore, in this mode, the proactor dispatcher works as a connection

listener; once a connection is requested, the dispatcher retrieves a reusable executor for

this client connection from the executors‘ pool. Once this executor starts to run, all the

events on the channel are directly executed by it; hence, the executor has to be

responsible for invoking and running all the communication logic runnables, i.e.

acceptor handler, reader handler, write handler.

 On contrary, to emulate the work of this reactive multithreaded synchronous

model, the server channel, see the sequence diagram in Figure 6-19, is configured as

non-blocking, but the responding to the events is handled differently. The main

difference is that instead of creating/retrieveing a new executor to handle each new

event occurs on the client channel, only the acceptor handler, which is the executor

created when the accept event occurs, blocks waiting for notifications to continue

processing the next event(s). This can be implemented by attaching this acceptor

executor, as a token when registering any event(s), during the execution of the logic

attached to this acceptor executor. Then, when any of these registsred events occurrs on

this client channel, a notification is made by the operating system to the selector to

activate the event handling operation; to handle this event, the selector retrieves the

data associated with the received event, and extracts the token attached with it, i.e. the

acceptor executor; then, the this executor, which is blocked waiting, is notified to wake

up to continue the execution of the logic attached to it. Hence, in this mode, only one

executor with one Runnable is used during the session of communication between the

client and the server.

Chapter 6

-227-

A prototype implementation of the poll() method, which provides the above

operations in the Emulated-blocking mode for observing and handling of the network

events in the communicator component, is presented in appendixA.10.

Chapter 6

-228-

asyncReadOperation

wait

Is
A

s
y
n

c
h

ro
n

o
u

s

P
ro

a
c
ti
v
e

notify

notify

notify

wait

write
notify

notify

notify

asyncWriteOperation

Client

alt

loop

getExecutor(accTyp)

fireNextFreeAcceptorHandler()

AcceptorExecutor.setRTParameters(ServerCentricParameters)

return (AcceptorExecutor)

AcceptorExecutor.handle()

sendData

fireNextFreeReadExecutor()
getExecutor(readT

)return (ReaderExecutor)

makeConnection()

ServerCommunicator
Coomunication

RunnableLogic
EXECUTORSEXECUTORS

createExecutorPools()

createServerChannel()

createExecutors()

createAsyncEvnt()

open()

register(OP_ACCEPT)

EXECUTORS

POOLS
EXECUTORS

POOLS

notify

notify

notify

SERVER

CHANNEL
JVM/OS AsyncEventsAsyncEventsSELECTOR ClientKey

register(OP_READ)

setBlocking(false)

writeData()

sendToClient()

createServerChannel()

ClientChannelClientChannel

ReaderExecutor.setRTParametersAndLogic(serverCentricParameters/ClientPropagatedParameters)

ReaderExecutor.handle()

ReaderExecutor.attachLogic() .

fireNextFreeWriteExecutor()
getExecutor

(writeT)return (WriterExecutor)

WriterExecutor.setRTParameters(serverCentricParameters/ClientPropagatedParameters)

attachLogic()

WriterExecutor.handle()

getAttachedLogic()

register(OP_READ)

WriterExecutor.attachLogic() .

getAttachedLogic()

Figure 6-16 The Non-blocking Proactive server model

Chapter 6

-229-

CoomunicationRunnableLogic ClientServerCommunicator EXECUTORS POOLSClientKeyClientChannelJVM/OS SELECTOR
SERVER

CHANNEL

loop

wait()

wait()

is
S

y
n

c
h

ro
n

o
u

s
R

e
a

c
ti
v
e

SynchronousReply

EXECUTORSEXECUTORS

createServerChannel()

createExecutorPools()

createExecutors()

open()

regeister(SELECTOR,OP_A

CCEPT)

monitorEvents()

return ServerKey

notify

gteExecutor(

accType)

createKey()

return clientChannel

setBlocking(false)

writeData()

regeister(SELECTOR,OP_OP_READ)

return Key

notify

return and exit

fireNextFreeAcceptorExecutor()

makeConnection()

return (AcceptorExecutor)

createClientChannel()

AcceptorExecutor.setRTParam

eters()

AcceptorExecutor.handle()

notify

makeRequest()

replyToRequest(requestID,cli

entCh)

Figure 6-17 Synchronous Reactive Mode

Chapter 6

-230-

Figure 6-18 Multi-threaded-Direct Implementation Mode

CoomunicationRunnableLogic ClientServerCommunicator EXECUTORS POOLSClientKeyClientChannelJVM/OS SELECTOR
SERVER

CHANNEL

alt

loop
wait()

is
M

u
lt
iT

h
ra

e
e

d
(D

ir
e
c
tl
y
 I

m
p

le
m

e
n

te
d

)

SynchronousReply

EXECUTORS
EXECUTORS

createServerChannel()

createExecutorPools()

createExecutors()

open()

regeister(SELECTOR,OP_ACCEPT)

monitorEvents()

return ServerKey

notify

gteExecutor(accType)

createKey()

return clientChannel

establishConnection()

ReaderExecutor)

Wait for Request

Return and Exit

gteExecutor(raedType)

replyToRequest(requestID,clientCh)

fireNextFreeAcceptorExecutor()

makeConnection()

return (AcceptorExecutor)

createClientChannel()

AcceptorExecutor.setRTParameters()

AcceptorExecutor.handle()

notify

setBlocking(false)

makeRequest()

fireNextFreeReadExecutor()

return (ReadExecutor)

ReadExecutor.setRTParameters()

ReadExecutor.handle()

read()

return

Chapter 6

-231-

CoomunicationRunnableLogic ClientServerCommunicator EXECUTORS POOLSClientKeyClientChannelJVM/OS SELECTOR
SERVER

CHANNEL

loop

replyToRequest(requestID,clientCh)

(AcceptorExecutor)

waitForRequest

wait()

wait()

SynchronousReply

EXECUTORS
EXECUTORS

createServerChannel()

createExecutorPools()

createExecutors()

open()

regeister(SELECTOR,OP_ACCEPT)

monitorEvents()

return ServerKey

notify

gteExecutor(accType)

createKey()

return clientChannel

writeData()

Executor=key.attachment()

return key

ClientCh.register(SELECTOR,OP_READ)

return

fireNextFreeAcceptorExecutor()

makeConnection()

return (AcceptorExecutor)

createClientChannel()

AcceptorExecutor.setRTParameters()

AcceptorExecutor.handle()

attach(AcceptorHandler)

makeRequest()

Executor.setRTParameters()

Executor.handle()

notify

notify

notify

setBlocking(false)

Figure 6-19 Synch-Multithreaded – Emulated Design Mode

Chapter 6

-232-

6.5 Using the Framework in a Client-Server Application

In Chapter 5, we presented the set of RTSJ-based models and design patterns.

These models and patterns, in addition to the communicator component presented in

this chapter, form the basic elements of our proposed component framework. In this

section, we present an example that shows how these elements can be integerated

together to build a simple client-server application, which supports the low-level

remote communication, i.e. sending and receiving bytes.

In our example, we use a very simple scenario of a client that sends

periodically a set of bytes to the remote server, which replies to the client by sending

these bytes back to the client. The diagram shown in Figure 6-20 shows our proposed

structure for this simple application. The diagram has the following elements:

1- ClientSide Container. This container has two main elemnts; the caller component

that makes the call, and the communicator component which exchange the bytes with

the server.

2- ServerSide Container. This container has two main elemnts; the communicator

component which exchange the bytes with the client, and a server component.

ClientSide Container

Communicator
Component

Caller
Component

ServerSide Container

Server
Component

Communicator
Component

Figure 6-20 Example Structure

 In the following, we present an overview of how our framework is used to build

these elements.

6.5.1 The Client Side

 In the implementation of our example, the container at the client side was

implemented in the RTSJ class ClientSide, which extends the ContainerCls that

represents the container model in our framework. In the ClientSide, the

BuildComponent() method was oveerideen to define the inner components of this

container. This overridden method, starts with a definition of a scoped memory area to

be a common component memory area of all the components in this container using

the statement:

LTMemory theCMA = new LTMemory(2000000, 3000000);

Then, the caller component is created in four main steps:

Chapter 6

-233-

Caller client = (Caller)new Caller();//instance of the comp

client.init(theCMA, 100000, LTMemory.class, isizesServer,

msizesServer, DualFork.class);//initialithe the comp

client.setComName("Client");//assign a name

addComponent(client);//add to the container

 In these steps, an instance of the component is created from the component

class Caller. Then, the component is initialized to use the common memory area, and

aqwwigned the DualFork class to manage the life time of any internal SMAs within

this component. Then the component was given a name, and finally the component is

added to the container‘s components.

 As we proposed in the scenario of our example that the component has to be

periodic, then, in the next step, a periodic task is created to run within the component.

ReusableRunnableStack task = client.addPeriodicSMATask("ClientExecutor",

RealtimeThread.class, null,

 new PeriodicParameters(null, new RelativeTime(1000, 0)), 10000,

10000, LTMemory.class, null,

 ClientLogic.class);//Create a a periodic SMA task

task.setParameters(LTMemory.class, 3, new LTMemory[] {theContMA, theCMA},

initM, maxM, client);//assign the paremeters of the task

 This task was added as periodic SMA task, which is a realtime periodic thread

with a period of one second and has its scoped memory as LTMemory and runs the

logic defined in the ClientLogic class. The creation of this task returns an instance of

a class that represntes the Reusable Runnable Stack pattern, this instance represents

the runnable stack created by the framework to this added SMA task. In our example,

this reusable runnable stack is configured to have three levels of scoped memory

areas; the container memory area, the common memory area, and the third level is a

new temporary scoped memory area of the LTMemory area type; the initial and

maximum memory sizes of this memory area is assigned, and the reusable runnable

stack is assigned the client component as its parent component.

 The creation of the other component, i.e. the communicator component, starts

with similer steps, shown next, with the parameters of this component. For example,

the logic of the communicator component is specified to be taken from the

CommunicatorAsClientLogic class.

Chapter 6

-234-

 CommunicatorCls communicator = new CommunicatorCls();//create the Communicator

Component

 communicator.init(CMA, 10000000, LTMemory.class, isizesComm, msizesComm,

DualFork.class); //initialize the communicator

 communicator.setComName("Communicator");//Give the name

 addComponent(communicator);//add to this container

 ReusableRunnableStack clientLogic =

 communicator.addSMATask("ClientCommunicator", RealtimeThread.class, null,

null, 10000, 10000, LTMemory.class,

 null, CommunicatorAsClientLogic.class);//add a new SMA task to the

Communicator

 clientLogic.setParameters(LTMemory.class, 3, new LTMemory[] {theContMA,

theCMA}, initc, maxc, communicator);//set task parameters

 However, as the communicator component has its own properties that define its

behaviour, so, another set of statements are added, shown next, to define these

properties. The first statement defines the sizes of the handlers pools, then, the next

thress statements specifies the logic of each of the Connect, Read, and Write event

handlers to be the classes ConnectLogic, ReadLogic, and WriteLogic repsectively.

Finally, the last statement specifies the mode of operation of this component to be the

client-side mode of operation.

communicator.createHandlersPool(20, 120, 120, 20);

communicator.setConnectLogic(ConnectLogic.class);

communicator.setReadLogic(ReadLogic.class);

communicator.setWriteLogic(WriteLogic.class);

communicator.createObserver(1);

 The BuildComponents() method ends with a call to the start() method to start the

execution of the components within the client side container.

 As we saw above, the creation of the client side involves the usage of a set of

classes other than the container, these classes are:

- CommunicatorCls class, and Caller class: The classes of the components

- CommunicatorAsClientLogic class and ClientLogic class. The classes of the logic

of the SMA tasks running within the client and the communicator components

- ReadLogic, WriteLogic, ConnectLogic classes. Define the logic of the events

handlers within the communicator component.

In the following, we present an overview of the logic defined in those classes.

Chapter 6

-235-

A- CommunicatorCls

 This is the class that represents the Communicator component; as presented in this

chapter, this class extends the framework‘s Component class with the functionality

required to support low level remote communication.

B- CommunicatorAsClientLogic

 This class in our example is responsible for defining the logic of an inner task within

the communicator component; this inner task initiates the execution of the component,

by calling the runAsClient() method of the communicator component. In our

example, this class implements the IStackLogic interface, in order to make this class

the stack logic component that runs within the created SMA task. The call of the

runAsClient() method is made from within the runUpward() method once the task

enters the memory level (0) of the scope, i.e from within the container memory area,

where the access to the communicator is made through the parentComponent

argumengt of this method.

C- Caller class

 In our example, the caller component has a very simple architecture, as it acts as a

holder to a single periodic calling task, so the Caller class just extends the

ComponentCls that represent the component model, and it has no extra functionality.

D- ClientLogic

 The ClientLogic class in this example holds the logic of a periodic task which runs

within the client component, this logic is responsible for creating a packet and sending

it over the network to a remote server; then, it waits to receive a reply packet from the

server side, and this process repeats periodically. As this class is doing this process

remotely over the network, then it uses the Communicator component to process the

remote communication operations. So, there are integeration of the work of this class

with the CommunicatorCls, which has the implementation of the Communicator

component; the Communicator component, as presented in this chapter, supports more

than one mode of operations, e.g. blocking, and non-blocking. Therefore, in order to

see the differences in the programming models of these modes, we present next the

implementation of the ClientLogic class in our example in two different modes: the

emulated blocking, and the non-blocking mode.

1- The Emulated-Blocking Mode

 In this configuration, the ClientLogic class extends the NWHandlerStackLogic

class, shown in Figure 6-21; the NWHandlerStackLogic class implements the

Chapter 6

-236-

runUpWard() and runDownWard() methods of the IStackLogic interface in order to

build a Reusable Runnable Stack pattern component, i.e. to support the execution of

the logic on a stack of scoped memory areas as presented in chapter 5. In addition to

that, the NWHandlerStackLogic class defines a set of methods and parametrs specific

to the network event handling required for the communicator component. It defines

the handler as a reference to an instance of the the event handler provided by the

communicator component, also, this class defines a reference to a network channel,

which is the channel whom the events occurred on it are handled by the defined

handler. Associatred with these two references, the NWHandlerStackLogic provides

set and get accessor methods to access these references. In the following, we present

the implementation of the ClientLogic, and the AcceptLogic classes.

public abstract class NWHandlerStackLogic implements IStackLogic
{

protected IEncapsulatedHandler handler;
proteced SocketChannel channel;
public getChannel()
{

return channel;
}
public setChannel(SockeChannel selectedChannel)
{

channel =selectedChannel;
}
public IEncapsulatedHandler getHandler()
{
 return handler;
}
public void setHandler(IEncapsulatedHandler hndlr)
{
 handler=hndlr;
}
public void setParameters(IEncapsulatedHandler hdlr, SocketChannel sch)
{

handler=hdlr;
channel=sch;

}
public void runUpWard(int curLevel, IComponent parentComponent){}
public void runDownWard(int curLevel, IComponent parentComponent){}

}

Logic Class For
NWHandlerStackLogic

Figure 6-21 The NWHandlerStackLogic class

The ClientLogic class itself has references for two buffers, inbuffer, to hold the

incoming packet, and outbuf to hold the output buffer, in addition to that it defines

references to the Communicator, the the localhost, the remote address of the server, and

its port number.

As the ClientLogic class represents a reusable runnable stack logic component, in

which the handler executes the logic defined in the runUpWard() method for each

memory area it enters in the stack, i.e. in the UpWard propagation, and then it executes

the runDownWard() method before exiting each of these same memory areas, i.e. in the

Chapter 6

-237-

DownWard propagation. In this section, we present the logic of these two methods

when the communicator component is configured to run in both the Emulated-Blocking

mode, and the nonBlocking mode.

The logic provided by this class, shown in Figure 6-22, is executed on the three

scoped memory levels defined for the client component, i.e. the ContainerMA of the

container holding it in level [0], the CMA of the component itself in level [1], and the

temporary scoped memory area in level [2]. In the following, we present the how we

implemented our example within this these different memory areas in a way that

enables the integeration with a communicator component which is configured to run in

the Emulated-blocking mode.

- IF [UpWard], i.e. propagating upwards

 If [curLevel==0], i.e. entering the ContainerMA:

In this level, a check on the communicator component reference is made to

see if it has been assigned or no, if it has not been assigned, then the reference is

retrieved from the set of the internal components references of the current container.

Then, a connection is made with the target remote server. Using the

makeConnection() method of the communicator component.

The check is important because this code is rexecuted for each period; so, the

operations of retrieving the communicator reference and making the comnnection

will be made only in the first period, and would not be repeated for each period.

 If [curLevel==1], i.e. entering the CMA:

The CMA is the main memory level of the component, i.e. it is the memory

in which the main functionality of the component is processed. In our example, the

the main functionality of the client component consists of two parts; sending the

packet to the server, and then receiving the reply. The first part is done in this step,

i.e., once the CMA is entered, whereas the other step is done in the downward

propagation, i.e. before exiting the CMA memory area. The code of the first part

involves the clear of the output buffer, filling it, where in this example we fill it with

random values; then, flipping the buffer to move the cursor to the beginning, and

finally writing the contents of this buffer to the channel.

 If [curLevel==2], i.e. entering the temporary scoped MA:

The code executed in this level contains a set of printing statements of

logging some data of the processing, such as the number of sent packets so far. As

the String class in Java is immutable class, then joining two or more strings in the

Java language results in the creation of hidden objects. So, it is important to run this

code here to ensure that these created hidden objects are reclaimed once this

Chapter 6

-238-

memory area is exited; otherwise, if this code was written in the level (0), or level

(1), this would result in accumulating these objects in these memory areas, which

may result in memory leak of them, as the code in this example is executed

periodically.

- IF [DownWard], i.e. propagating downwards

 If [curLevel==2], i.e. leaving the temporary scoped MA:

No code is provided here, as this part is just executed before leaving the

temporary memory area, i.e. in the same memory area of the last step, so the same

code can exists in one of them or divided between both of them.

 If [curLevel==1], i.e. leaving the CMA:

Here, in the CMA, we execute the second part of the component functionality

described earlier, i.e. receiving the reply packet from the server. This involoves the

following operations:

- Add the communication channel used by this component to the

registeration queue, where it is saved with the required operation OP_READ,

and the input buffer, as an attachement.

- Send activation signal to the selector to activate it; this enable the

selectorto do the registeration of all the saved channels in the registeration

queue, including the one just added in the last step; so that, the selector can be

able to observe the registered events of these channels.

- The current handler is enforced to block waiting for notofications

from the component, in order to start the processing the receiving of the

incoming packet.

- Once, the handler is notified by the selector of the arrival of bytes on

the channel, the handler is activated and starts to read the data; this step with

the last step are enclosed in a single loop that continues as long as the number

of received bytes are less than the expected number of bytes defined for the

input packet.

- After the packet is completely received, the packet contents can be

parsed and decoded, e.g. by calling a method like decodePacket().

 If [curLevel==0], i.e. leaving the ContainerMA:

The handler arrives to this step after exiting the component memory area;

hence, before finishing its execution cycle, the logic has to be prepared for the next

execution cycle in the next period. So, all reusable values/object can be reset, and

the files/channels that need to be closed can be closed in this step, e.g. in our

example, we reset the value of the numer of bytes in this step.

Chapter 6

-239-

 public void runUpWard(int curLevel, final IComponent parentComponent) {

 if (curLevel == 0) { //---=>>>runs in the container memory area

 if (communicator == 0) {

 rc = Clock.getRealtimeClock(); //get the rt clock

 Random aRandom = new Random(); //create a random number generator

 vvv = (int)(aRandom.nextInt(10) + ((rc.getTime().getNanoseconds() / 1000) % 10))

* 1000; //Get a random value

 }

 communicator =

((CommunicatorCls)(parentComponent.getContainer().getComponents().get(

 "Communicator"))); //Get a refrence to the communicator

 channel = communicator.makeConnection(remoteAdress, 2190, 25); //connect }

 if (curLevel == 1) { //runs in the component memory area

 bufout.clear(); //clear the buffer

 for (int i = 0; i < 10; i++) {

 bufout.putInt(i + vvv); //fill the buffer with random numbers

 }

 bufout.flip();//flip the buffer to be ready for the write operation

 channel.write(bufout); //write the bytes from the buffer

 } //the component memory area

 if (curLevel == 2) {//the temporary scoped memory area

 //The following code displays messages to the user

 System.out.println("The Packet Number " + packetNumber++ + "Has been written");

 System.out.println("The client started to wait At" + tstart);

 } //end of curlevel==2

 } //end of runUpward

 public void runDownWard(int curLevel, IComponent parentComponent) {

 if (curLevel == 2) { }

 if (curLevel == 1) { //runs in the component memory area

 bufin.clear(); //clear the output buffer

 try {

 do {

 try {

 communicator.registerationQueue.add(channel, SelectionKey.OP_READ,

 bufin); //add the channel to the registeration queue

 communicator.theControllerChannel.sigQueueToSignalFD(12,

 10); //send the interrupt control signal to enable the registeration

 } catch (Exception e) {

 System.out.println("Exception....." + e);

 }

 bufin.clear(); //clear the output buffer

 try {

 synchronized (getHandler()) {

 getHandler().wait();//wait for the notification of packet arrival

 }

 nn += channel.read(bufin); //read from the channel into the output buffer

 } catch (Exception ex) {

 System.out.println("*----exeption-----*" + ex);

 } //end catch

 } while (nn < 1000); //read upto 1000 bytes from the output buffer

 } catch (Exception m) {

 System.out.println("---exeption---" + m);

 }

 bufin.flip(); //flip the output buffer

 for (int i = 0; i < 250; i++) {

 try {

 int m = bufin.getInt(); //read the next integer value from the buffer

 } catch (Exception nb) {

 System.out.println("-Exception-" + nb);

 }

 }

 //Code for Processing the reply packet

 }

 if (curLevel == 0) { //runs in the container memory area

 //RESETTING THE VALUES and CLOSING any opened files, etc. if noyt needed any more

 nn = 0; //reset to initial values to be recyled clean

 }

 }

Figure 6-22 ClientLogic [Emulated-Blocking]

Chapter 6

-240-

2- Non-Blocking Mode

In the configuration of the non-blocking mode, the ClientLogic and the

AcceptLogic classes are required to work on the principle of using a state machine to

enable the execution of the same logic by several handlers, where each handler

executes the logic in one of its states. Hence, to satisfy this requirement, these two

classes extend the NWHAndlerStackLogicStateMachine class that extends the

NWHandlerStackLogic class to support a very simple state machine. This class, shown

in Figure 6-23, defines a state variable that defines the current state of the logic, and

defines methods to manage this state, e.g. gotoNextState() is used to forward to the

next state.

public abstract class NWHandlerStackLogicStateMachine extends NWHandlerStackLogic
{

protected int state=0;
public int getState()
{

return state;
}
public void setState(int x)
{

 state=x;
}
public void gotoNextState()
{

state++;if(state==(MaxStates+1))state=0;
}
public NWHandlerStackLogicStateMachine ()
{
}
public void setParameters(IEncapsulatedHandler hdlr, SocketChannel sch)
{

state=0;
super.setParameters(hdlr,sch);

}
}

Logic Class For
NWHandlerStackLogicStateMachine

Figure 6-23 The NWHandlerStackLogicStateMachine

The logic defined in this class, in the non-blocking mode, is the same logic that

we mentioned to in the blocking mode. The main execption is with the assignment of

the logic segements to different states within the scoped memory areas, this is essential

in this mode, as these code segments are executed by different handlers as explained

next. The code in Figure 6-24, shows the non-blocking version of the ClientLogic

class; in the following, we present the main differences in this code, from the one

defined for the blocking mode.

The first noticeable difference is the assignment of the maximum number of

states in this logic; this value is related to the number of changes of the handlers

executing this code. In this class, the ClientLogic class, this logic starts execution by

the client calling thread, which has id responsible for the preparation and the sending of

Chapter 6

-241-

the packet to the server; once this packet is sent, the control over this logic is

transferred to the communicator component, which receives this logic as an attachment

with the registsered communication channel, which is registered for the READ

readiness operation with the Selector. Once bytes received on this channel, the

enclosing communiocator of this selector fires a free handler to continue the execution

of the next segement of this attached logic, i.e. the ClientLogic class; this next

segment is responsible of receiving the reply packet from the server, and processes it.

Then, the process is repeated in the next periods.

Chapter 6

-242-

public void runUpWard(int curLevel, final IComponent parentComponent) {

 synchronized (this) {

 if (curLevel == 0) {

 if (communicator == null) {

 communicator =

((CommunicatorCls)(parentComponent.getContainer().getComponents().get(

 "Communicator"))); //get the communicator

 channel= communicator.makeConnection(remoteAdress, 2190, 25);//connect

 }

 if (currentState() == 0) { }

 if (currentState() == 1) { }

 }

 if (curLevel == 1) {

 if (currentState() == 0) {

 writeOutputPacket();

 try {

 communicator.registerationQueue.add(getChannel(),

SelectionKey.OP_READ,this); //add this channel to the registseration queue

 communicator.theControllerChannel.openSignalFD(10); //wake up

 } catch (Exception e) {

 System.out.println("Exception....." + e);

 }

 } //end state 0

 if (currentState() == 1) { }

 } //end level 1

 if (curLevel == 2) {

 if (currentState() == 0) { }

 if (currentState() == 1) {

 System.out.println("The Packet Number " + packetNumber++ + "Has been

written"); //The code displays messages to the user

 System.out.println("The client started to wait At" + tstart);

 //any other intermediate operation can be done here

 } //end state 1

 } //end level 2

 } //end runUpward

 }

 public void runDownWard(int curLevel, IComponent parentComponent) {

 synchronized (this) {

 if (curLevel == 2) { }

 if (curLevel == 1) {

 if (currentState() == 0) { }

 if (currentState() == 1) {

 readInputPacket(); //read the input packet

 }

 }

 if (curLevel == 0) {

 //we may close channel, reset values, ...etc,

 n = 0; nn = 0;

 if (currentState() == 0) { }

 if (currentState() == 1) {

 SetState(0); //we reset the state machine

 }

 }

 }

 }

Figure 6-24 ClientLogic [Non-Blocking]

 From this scenario, we can see that the logic has to be divided into two different

segments. To implement this scenario, we assign a single state for each handler to

execute its code within it. Hence, there are two states in this class; state (0) in which

the calling thread starts to prepare and send the packet and printin logging statements,

and step (1) in which the read-handler, which is released by the communicator, receives

the incoming packet, and may process and decode it. One important additional step

Chapter 6

-243-

required in this mode, is the resetting of the state machine, when the handler finishes

the depropagation from the stack and leaves level (0), this step is required to enable the

state machine to start from the zero state in the next periodic cycle.

E- Read Logic, Write Logic and Connect Logic Classes

 Each one of these classes define the logic of a corresponding network

communication event handler, where at the client side, only the read, write, and

connect are the only possible events. In this simple example, as we assume that the

client uses the communicator component directly; then, we assume that the logic of any

of these event handlers can be just used to monitor the occurenece of any of the

network events. According to this, we have two possibilities; the first one is that each

one of these classes can be simply a class that implements the Runnable interface,

where the run() method of this class should define required the logic, an example of

such a class is shown next.

Public void ReadLogic implements Runnable

public void run() {

//write a message, log the event, or record the time, ….

 System.out.println(“reading data ”);

 }

}

 The other possibility is to define a class extending the ISTackLogic, this can be

particularly important in the case that the required logic needs to create temporary

objects; in this case, these objects have to be to be created in a memory with short

lifetime, i.e. not in the level (0), the container memory area, nor in level (1), the

component memory area, but in the level (2) or above of theSMA. The following code

shows an example of such possibility.

public class ReadLogic implements IStackLogic

{ public void runUpWard(int curLevel, IComponent parentComponent) {

 if (curLevel == 0) { } if (curLevel == 1) { }

 if (curLevel == 2) {

System.out.println("Reading event on"+parentComponent);

 } } }

 In the above example, the printing systemant involves the creation of a temporary

object, which is created implicitly to hold the string resulting from joining the literal

sring and the object interface reference. So, to ensure that it does not cause any memory

leak, this statement is executed in level (2) of the memory.

Chapter 6

-244-

6.5.2 The Server Side

 The structure of the server side has a lot of similarities with the structure of the

client side. Hence, the classes and logic used at the server side are close to those used

at the client side.

 The server side container contains a server component and a communicator

component. So, the definition of these components and their properties is made in the

ServerSide class, which is the container class at the server side; this is made in the

overridden BuildComponents() method in that class. The basic operations of the

BuildComponents() method are shown next.

 Callee server = new Callee();

 server.init(theCMA, 100000, LTMemory.class, isizesServer, msizesServer,

 generalFork.class); //initiate the server component

 server.setComName("Server"); //give the server component its name

 addComponent(server); //add the server component to this container

 ReusableRunnableStack task =

 server.addSMATask("ServerExecutor", RealtimeThread.class, null,

null, 10000, 10000, LTMemory.class, null,

 ServerLogic.class); //create a new SMA task

 task.setParameters(LTMemory.class, 3, new LTMemory[] {theContMA,

theCMA}, initM, maxM,

 server); //assign the parametrs of the RRS of the SMA task

 CommunicatorCls communicator = new CommunicatorCls();

 communicator.init(CMA, 10000000, LTMemory.class, isizesComm,

msizesComm,

DualFork.class); //initialize the communicator

 communicator.setComName("Communicator"); //Give the name

 addComponent(communicator); //add to the container

 ReusableRunnableStack serverLogic =

 communicator.addSMATask("ServerCommunicator", RealtimeThread.class,

null, null, 10000, 10000, LTMemory.class,null,

 CommunicatorAsServerLogic.class); //create a new SMA task

 serverLogic.setParameters(LTMemory.class, 3, new LTMemory[] {theContMA,

theCMA}, initc, maxc,

 communicator); //assign parameters for the RRS of the added SMA

task in the communicatoe

 communicator.createHandlersPool(20, 120, 120,20); //creates pools

 communicator.setReadLogic(ReadLogic.class);

 communicator.setWriteLogic(WriteLogic.class);

 communicator.setAceptLogic(AcceptLogic.class);

 communicator.createObserver(0); // the server side mode

 Due to the similarity in the architecture, the BuildMethod() of the ServerSide

class is very similar to the same method in the ClientSide class, with few exceptions.

The BuildMethod() method has the following operations:

Chapter 6

-245-

- Creating a server component, initializing it, setting a name for it, and finally adding

it to the container.

- Creating a task to run within the server component, where this task is a real-time

thread with a reusable runnable stack of three levels of scoped memories, the container

memory level, the component memory level, a temporary scoped memory above them.

This reusable runnable stack runs the logic defined in the ServerLogic class.

- Creating a communicator, initializing it, giving a name to it, and adding it to the

container.

- Creating another task of a real-time thread, initialize it, and add it to the

Communicator component, where the logic executed by this reusable runnable stack is

defined in the CommunicatorAsServerLogic class.

- Configuring the sizes of handlers‘ pools of the communicator component, and

assigning the classes AcceptLogic, ReadLogic, WriteLogic classes, which define

the logic to be executed by the handlers of the networking communication events.

- Setting the communicator component to run in the server mode.

 In the following, we will discuss the structure of the classes used to build the

structure and the logic at the server side.

A- CommunicatorCls

The same class used at the client side, but configured to run in the server mode.

B- CommunicatorAsServerLogic

 This class is identical to the one used at the client side, with a simple change;

this change is the calling of runAsServer() method of the parent component, the

communicator, instead of calling the runAsClient() method.

C- Read Logic, Write Logic and Classes

 In our example, the ReadLogic and WriteLogic classes are the same ones that

are used at the client side, as in this example each one of them prints a message when

its corresponding event occurs.

D- The Accept Logic

The AcceptLogic class, in both the blocking and the non-blocking modes in

our example, defines the logic of the processing of the accept event when a new

connection is received. In the following, we present the structure of this classs in both

of these two modes.

- The Blocking Mode

Chapter 6

-246-

The AcceptLogic, in this example, is responsible of sending a reply packet to

the client. The implementation of this class has many similarities with the ClientLogic

class, as both, in the emlated blocking mode, are extending the NWHandlerStackLogic

class. As it was the case in the ClientLogic, this class defines two buffers; one for the

input buffer, and the other for the output buffer, in addition to a reference to the

communicator component, in which it is running.

The logic of this class is executed by the acceptor handler, which is is released from

within the communicator component, once the connection to this component is made.

The acceptor handler runs, as the client logic, in a memory stack of three memory

levels, the container memory area, the communicator component memory area, and

finally in the handler‘s own temporary scoped memory area. In the following, we

present the execution sequence of the logic, shown in Figure 6-25, within these three

memory areas.

- IF[UpWard], i.e. propagating upwards

 If [curLevel==0], i.e. entering the ContainerMA:

In this level, a reference of the Communicator component is retrieved, only in

the first cycle, as it was the case in the ClientLogic class.

 If [curLevel==1], i.e. entering the CMA:

Again, like the ClientLogic class, the first part of the functionality of the

acceptor handler is executed here, where it involves the following steps:

- Get the channel assigned for the communication with the connecting client.

- Add this channel, with the current handler as an attachemnt, to the

registeration queue, to be observed for the read-readiness event, i.e. arrival

for the input packet bytes.

- Activates, the selector to register all the saved elements in the registeration

queue.

- Waits For the arrival, of the incoming packet bytes; then start to read these

bytes, once they arrive to the communicator component, which notifies the

acceptor handler to process this operation. This is repeated as long as there

are remaining bytes of the incoming packet.

 If [curLevel==2], i.e. entering the temporary scoped MA:

As this memory, as explained before for the ClientLogic class, is more

approporiate for the operations that involve creation of hidden and short time

objects; then, the operations of printing logging statements, and/or decode the

incoming packet, and do further processing on it can be done here.

Chapter 6

-247-

public void runUpWard(int curLevel, IComponent parentComponent) {

 if (curLevel == 0) { //runs in ContMA

 if (communicator == null) {

 communicator =

((CommunicatorCls)(parentComponent.getContainer().getComponents().get(

 "Communicator"))); //get ref to the communicator }

 }//end level 0

 if (curLevel == 1) { //runs in CMA

 try {

 SelectionKey key = ((EncapsulatedHandler)getHandler()).getSelectionKey();

final SocketChannel channel = (SocketChannel)key.channel(); //get the channel

 communicator.registerationQueue.add(channel, SelectionKey.OP_READ,

 getHandler()); //register the channel

communicator.theControllerChannel.sigQueueToSignalFD(12, 10);//wake up selector

inbuf.clear();

 do {

 synchronized (getHandler()) {

 getHandler().wait();

 } //end synchronized

 try {

 nn += channel.read(inbuf); //read into the buffer

 } catch (Exception w) { }

 } while (nn < 40);

 inbuf.flip();

 } catch (Exception r) {

 Syustem.out.println("Exception--> " + r);

 }

 } //end level 1

 if (curLevel == 2) { //runs in temporary scoped memory area

 System.out.println("The Packet [" + ++PacketCount + "] has been received");

 //decode and process the received packet [may create objects]

 //.................

 }

 } //end level 2

 } //end runUpWard

 public void runDownWard(int curLevel, IComponent parentComponent) {

 if (curLevel == 2) { } //in temporary scoped memory area

 if (curLevel == 1) { //in CMA

 outBuf.clear();

 for (int i = 0; i < 250; i++) {

 outBuf.putInt(mm.nextInt(250)); //write to the buffer

 }

 //send the packet

 outBuf.flip();

 try {

 channel.write(outBuf); //write to the channel

 } catch (Exception e) {

 System.out.println("*-----Exception----*" + e);

 }

 }

 if (curLevel == 0) { //in ContMA

 //reset the values, recycle any unrequired object ..etc.

 n = 0; nn = 0;

 }

 }

Figure 6-25 AcceptLogic [Emulated-Blocking]

- IF[DownWard], i.e. propagating downwards

 If [curLevel==2], i.e. leaving the temporary scoped MA:

Again, this step is executed in the same memory area with the last step, so the

code can be divided between them.

 If [curLevel==1], i.e. leaving the CMA:

Chapter 6

-248-

Here, as this is the CMA, the second part of the componwnt functionality is

executed, i.e. the reply packet is prepared and sent back to the caller client over the

assigned channel.

 If [curLevel==0], i.e. leaving the ContainerMA:

Here, all the resetting operations, and preparation for the next cycle are made.

 public void runUpWard(int curLevel, IComponent parentComponent) {

 synchronized (this) {

 if (curLevel == 0) { //runs in ContTMA

 if (communicator == null) {

 communicator =

((CommunicatorCls)(parentComponent.getContainer().getComponents().get("Communicator"

)));//get the communicator from the container

 }//end if null

 } //end if level=0

 if (curLevel == 1) { //runs in CMA

 if (state == 1) { //executed by accept handler

 readInputPacket();//read incoming packet

 }

 if (state == 2) { //do nothing

 }

 }

 if (curLevel == 2) { //runs in the temporary memory

 if (state == 1) //executed by read handler

 {

 System.out.println("The packet number" + PacketCount++ + "has been received");

 DecodePacket(); //do some processing on the packet

 } //end state 1

 if (state == 2) {//do nothing

 } //end state=2

 } ////level 2

 } //synchronized

 } //runUpward

 public void runDownWard(int curLevel, IComponent parentComponent) {

 synchronized (this) {

 if (curLevel == 2) { //do nothing

 }

 if (curLevel == 1) { //runs in CMA

 if (state == 1) {//do nothing

 }

 if (state == 2) {

 writeOutputPacket(); //Write and send a reply Packet

 communicator.registerationQueue.add(getChannel(), SelectionKey.OP_READ, this);

 communicator.theControllerChannel.sigQueueToSignalFD(12, 10);

 } //end state 2

 } //end level 1

 if (curLevel == 0) { //runs in ContTMA

 if (state == 1) {//do nothing

 }

 if (state == 2) {

 setState(0); // reset the state machine

 }

 }

 } //end synchronized

 }

Figure 6-26 AcceptLogic [Non-Blocking]

- The Non-Blocking Mode

In the same way described above, the main difference in the implementation of

this class in the non-blocking mode, from its implementation in the blocking mode, is

Chapter 6

-249-

in the division of the logic into different segments, where each segment is executed by

one of the threads/handlers in exactly one state. In the logic defined in this class, see

Figure 6-26, two states are defined, state (0), the idle state, state (1), the receive-and-

reply state.

 In the idle state, the logic component is in the pool, waiting to be released when

a new connection is made, and no running handler is executing it. When the

communicator receives a connection from the server, the acceptor releases an acceptor

handler and assigns this logic to it, then it forwards the state machine to the next state,

i.e. the receive-and-reply state.In this new state, the acceptor handler reads the

incoming packet, decode and process it; then write a reply packet to the server; then

finally it resets the state machine. As there is only one handler processing this logic,

there is only one non-idle state.

It is important to note that in the implementation of the Stack Logic pattern in the

non-blocing mode, e.g. in both the ClientLogic class, and AcceptLogic class, requires

that the logic within the runUpward(), and runDownWard() methods have to be

enclosed within a synchronized(this) statement, to avoid the race conditions, in order

to ensutre that the handlers collaborating in the execution of the different segements of

the logic in the different states of these functions do not overlap their execution.

6.6 Summary

Although RTSJ provides a lot of features to enhance the predictability of the

programms built using the Java language, it has not provided communication

mechanisms suitable for distributed real-time applications. So, the aim of the chapter

was toward providing a concrete design model of a component using our proposed

framework that integrates the new features added by the RTSJ with the most efficient

communication mechanisms currently provided with the Java Language in order to

have a real-time reconfigurable component that can be a base for building many real-

time middleware solutions.

In order to design the required component, we analyzed first the basic

strategies and models for I/O over networks. After that, we discussed how the current

Java packages support these models. Then, in order to choose the best flexible model,

we discussed the existing server design patterns, where, found that the non-blocking

communication pattern, is the most efficient and flexible pattern for communication,

and it can even be used to emulate several communication strategies, and it can be

applied to both the server side and the client side, So we presented our design of the

Chapter 6

-250-

proposed remote communication component, which integrates the predictable RTSJ

bsed component model provided in Chapter 5, with the non-blocking mechanisms

provided by Java and discussed in this chapter, to build a real-time reconfigurable

Communicator component, which can be used to build real-time middleware solutions,

as the remote middleware modelpresented in the next chapter.

Finally, to illustrate how the communicator component can be integerated with

the other parts of the framework, i.e. the memory model and its assocuiated patterns

presented in Chapter 5, we provided at the end of this chapter a simple client-server

example that enables the exchange of byte packets between the client and the server. In

the next chapter, we extend this example to see how we can support remote method

invocatio

-251-

 Chapter 7

Reconfigurable Real-time

 Middleware Model

Java‘s Remote Method Invocation; RMI, is the basic communication

middleware model provided in the Java language, to take the error-prone low level

communication with sockets and streams out of the programmer‘s hand, in order to

enable accessing remote objects residing in another JVM, in a similar way to accessing

local objects within the same JVM. Moreover, these two JVMs that hold the caller and

the called objects may reside on the same machine, or they may reside in two different

machines, which are linked together by a network.

In this chapter, we build our own real-time middleware model using

component framework presented in Chapter 4, and the remote communication

component presented in Chapter 5. Before presenting our proposed model, we discuss

the fundamentals of the remote communication process, to clarify the basic general

patterns of it; then, we present an overview of the RMI-HRT package, which we

modified support the non-blocking pattern required for our model, where this package

is an open source package of a real-time architecture model provided in (Tejera, Alonso

et al. 2007). Also, we give an overview of the serialization/deserialization process used

for transferring Java objects over the network between the JVMs holding the

communicating objects.

Then, we show how we integrate the remote communication component within

the architecture of the RMI-HRT, to build our new proposed middleware model, to

provide a new enhanced real-time middleware model of the RMI. We present the

modified architecture of the model at both the server side and the client side, to show

how we can use the components at both the client side and the server side, and how

they integrate with the communicator sub-component within the forked memory model

of the component model, to provide the basic elements of the RMI architecture. Then

we discuss how the RMI protocol should be changed at both the server and the client

Chapter 7

-252-

side in our model, to support the different execution modes offered by the

communicator component. Also, we analyze the difficulties and constraints of

implementing the proposed model in the RTSJ that result from the constraints and the

properties of its memory and scheduling models, and we evaluate how the memory

management patterns presented in the component model both at the server and the

client side can be integrated with the other patterns of the middleware, to enhance its

functionality and to support the future call pattern of executing calls.

7.1 Basic Patterns of Remote Communication

Remote communication is the operation in which an object on a certain

machine can invoke a method of another object from within another machine. The

Broker software pattern, first described in (Voelter, Kircher et al. 2004) is the principal

pattern for building remote communication. The Broker pattern aims to hide the

complexities of using the networking communications and the integration of the

heterogeneous component into coherent application, so that the developer can keep

focus on solving the application problems.

The Broker pattern is applied on both sides of the remote communication

operation; the client side and the server side, so that the client can exchange the

requests and responses with the remote object. The Broker is a compound pattern

which itself consists mainly, as shown in Figure 7-1, of the following basic sub-patterns

(Voelter, Kircher et al. 2004):

- Requestor; this is at the client-side to construct and make remote invocations to the

server over the network on behalf of the client.

- Invoker; this is at the server-side and it is responsible for invoking locally on the

server the requested operations of the remote object on behalf of the client.

- Marshaller; this is responsible for transformation of requests‘ parameters and

responses from programming language defined data types into raw bytes that can be

sent over the network stream and vice versa, i.e. it performs the demarshalling

operation by rebuilding the original parameters and/or return parameters out of the

received bytes from the network. In the Remote communication middlware model, two

Marshallers have to exist, one at the client side to convert the request parameters into

raw bytes and send them over the network to the server, and it reconstructs the request

parameters from the received bytes representing the return value when they arrive to

the client from the server side. On the server side, another marshaller exists to do the

opposite operations, i.e. receive the raw bytes and use them to reconstruct the request

parameters, and convert the return parameter into raw bytes to be sent to the client.

Chapter 7

-253-

Calling Process Server Process

M

a
c

h
in

e
 B

o
u

n
d

a
ry

Invoker

Client

Requestor

(1) Submit Request

(3) forward

Remote

Object
(5) Invoke Operation

Marshaller

(2) Marshal Request

Marshaller

(4) Unmarshal

Figure 7-1 Broker Pattern Architecture

In addition to the above basic patterns, the following patterns integrate with

them to provide the basic remote communication patterns, see Figure 7-2.

- A Client Proxy; this is a local pattern within the client process that offers the same

interface as that of the remote object in order to make the remote operation invocations

look like local invocations.

- An Interface Description; this is used to make the interface of the remote object

known to the clients, and it is used to build the Client Proxy of that remote object

within the client.

- The Client Request Handler and the Server Request Handler; these patterns

form a layer beneath the Requestor and the Invoker to handle sending, receiving, and

dispatching of requests.

- Remote Communication Errors; this pattern is responsible for forwarding the

distribution errors, e.g. network failure, invalidity of the server, etc. to the client.

- Look Up Pattern; clients within the application need to get a reference to the

remote object in order to call its methods, where the reference to the remote object

must identify both the address of the machine on which it exists, and the Object ID of

the remote object within the remote server application. The Look Up pattern is

responsible of getting the actual address of a remote reference, where this remote

reference can be statically hold within the client machine or dynamically retrieved from

a central repository before making the remote calls, where in case of the dynamic

model, the server object has to register itself within the central repository. Accessing

the RMI Registry is an example of this pattern, where the registry represents a central

repository of the remote references, that registered within by the remote object and

clients have to look up within it for the required remote reference.

Chapter 7

-254-

D
escribes

 instance of

Desc
rib

es

 in
st

ance
 o

f

U
se

s
fo

r

m
a
rs

h
a
lli

n
g

re
q
u
e
st

s

U
s
e
s
 to

S
e
n
d
 re

q
u
e
s
ts

U
ses for

D
e-m

arshalling

 requests

D
is

p
a

tc
h

e
s

 in
v
o

c
a

tio
n

 to

D
is

p
a
tc

h
e
s

re
q
u
e
s
ts

 t
o

U
s
e

s
 t
o

B
u

ild
 u

p
 R

e
q

u
e

s
ts

Communicates with

Raises Raises

R
a
ise

sR
a
is

e
s

INVOKERRequester

MARSHALLER

INTERFACE

DESCRIPTION

REMOTING

ERROR

SERVER REQUEST

HANDLER

CLIENT REQUEST

HANDLER

REMOTE

OBJECT

CLIENT PROXY

LOOK UP PATTERN

R
e
g
iste

r th
e
 R

e
m

o
te

 R
e
fe

re
n
ce

G
e
t
th

e
 R

e
m

o
te

 R
e
fe

re
n
ce

Figure 7-2 Basic patterns of the remote communication

7.2 Extension Patterns of Remote Communication

 In addition to the basic patterns mentioned above, some extension patterns can

be integrated with the basic patterns in order to provide some specific functionality.

Examples of these patterns include (Markus Völter, Kircher et al. 2004):

- Invocation Interceptors Patterns; These patterns can be used in case of the

requirement of adding security credentials to the remote invocation where the

invocation interceptors can intercept the invoked call at the client side before sending it

to the server to add the security credentials, and they are added as well at the server

side to check for these credentials before invoking the method.

- QoS Observer Patterns; this pattern is used in distributed real-time systems that

need to monitor or measure the performance of various parts of the remote

communication model, e.g. the Server Request Handlers, the remote object, etc.

Chapter 7

-255-

- Location Forwarders (Markus Völter, Kircher et al. 2004); One example of the

use of this pattern is in Load balancing, where it can be used to forward invocations

between several server applications transparently.

- Life Cycle Management Patterns; from the life cycle point of view, there are three

basic models of the server object:

1- Static Instances; the life time of the server object is the same as the life time of the

server application.

2- Per-Request Instances; the life time of the server object is for the length of the

request processing, i.e. the server application creates the server object when the request

is received, and destroys it once the request is finished. This model is used in highly

concurrent environments to save the resources as in many of distributed real-time

systems. Both the Lazy Acquisition Pattern (Kircher 2001) and the Pooling Pattern

(Kircher and Jain 2002) can be used for managing the life cycle of this model. In the

case of the Pooling pattern, the pattern manages a pool of reusable remote object

instances where the object is retrieved from the pool when the request is received and it

returns back to the pool when the execution of the request ends. On the other hand, the

Lazy acquisition pattern loads and executes the server object only when it is needed

otherwise it never loads it.

3- Client-Dependent Instances; the client remotely creates these instances on the

server. The Leasing pattern (Markus Völter, Kircher et al. 2004) can manage the

lifecycle of this model, as this pattern deactivates the remote object after a pre-defined

period of time, if the client has not renewed the leasing period assigned to it.

7.2.1 Invocations Patterns

Invocation patterns are a set of patterns that can be used in the Remote

middleware to specify the way in which the client makes the invocations; in other

words it defines how the client will behave to start the invocation and how it will

behave during the execution of the remote method at the server, and finally how it

would get the result of the execution from the server, if there is an expected result to

come back from the server. In the following we define the basic invocation patterns

commonly used in the Remote middleware:

- Synchronous Blocking Invocation; in patterns of this category, as shown in

Figure 7-3, the client sends the request through the Requestor to the server process; in

the server process, the invoker receives the call-request and invokes the required call

from the remote object and waits for the result; once the method finishes its execution,

the result is sent back to the client side through the invoker. During these operations the

Chapter 7

-256-

calling thread at the client side is blocked waiting for the result of the call execution.

Hence, it cannot be reused for any other processing while waiting for I/O to complete.

This causes a waste of the client resources when multiple calls are to be executed on

remote object(s) concurrently, especially for long duration method calls, as this will

cause multiple threads to be blocked without ability for reuse. Hence, the use of this

mechanism is highly constrained for many real time systems, especially those with

limited physical resources.

Client

Calling Process Server Process

M
a

c
h

in
e

 B
o

u
n

d
a
ry

InvokerRequestor

(1) Invoke

(2) Send

()

Remote

Object
(3) Invoke

(5) Return Result

Return Result(4)6 Return Result

Figure 7-3 Synchronous Invocation Pattern

- Asynchronous Fire and Forget I/O; this is the simplest form of communication,

where, as shown in Figure 7-4, the caller thread sends a request to the server and

returns immediately to continue its execution without waiting for any return result or

acknowledgement from the remote server thread. Hence, it has no reliable or

predictable behavior, as the caller will not know if the call has been executed or not, as

it may be lost before arriving to the server. The requestor objects, a proxy object

responsible of managing the call execution on behalf of the client, can handle the client

request in various ways as follows;

1- It can execute within the client thread context hence, an operating system

asynchronous support is necessary to avoid blocking the client thread.

2- The requestor cans spawn a new dedicated thread to invoke the remote operation.

This is suitable when the number of concurrent calls imitated by the client is few;

otherwise, there will be a noticeable concurrency overhead due to the lock contention

and race conditions, etc.

3- As the pattern itself is not reliable, the requestor can execute the call using one of

the unreliable protocols (e.g. UDP) which is faster and has less resource requirements.

This pattern can be helpful in implementing a limited set of event driven

systems as a mechanism for creating remote operations that need not to be reliable (e.g.

nonsensetive logging systems). However, due to its unreliability, this pattern cannot be

Chapter 7

-257-

used in implementing sensitive operations especially in real-time systems, e.g. updating

sensors measurements in patients monitoring systems.

Calling Process Server Process

M

a
c
h

in
e
 B

o
u

n
d

a
ry

Invoker

Client

Requestor

(1) Invoke

(2-b) Return (2-a) Send

Remote

Object
(3) Invoke

Figure 7-4 Asynchronous Fire and Forget Pattern

- Sync with Server Pattern: This pattern is an extension of the fire and forget pattern

to try to enhance its reliability. In this pattern, shown in Figure 7-5, as in the fire and

forget pattern, the client sends the call to the server through the requestor. However,

instead of continuing execution immediately after delivering it to the requestor, the

client thread waits to get an arrival acknowledgement from the server side that the call

has been received and it is going to be processed. Once the client has received this

acknowledgement, it continues its execution asynchronously.

Client

Calling Process Server Process

M
a
c
h
in

e
 B

o
u

n
d

a
ry

InvokerRequestor

(1) Invoke

(2) Send

(4) Return

Remote

Object
(5) Invoke

(3) Return Acknowledge

Figure 7-5 Synch with Server Pattern

The implementation of this pattern requires the invoker object, the object that

receives the request and executes it on the remote object at server side to be able to

send the reply asynchronously either truly using operating system facilities, or by

emulation by spawning a new thread to process the request while retraining the

acknowledgement to the client.

Due to its enhanced features, this pattern can be seen more efficiently in event-

triggered applications where the client side generates events to be delivered to remote

servers to take corresponding reactions to them while the client needs only to ensure

the delivery of the event remotely without a need to wait to be informed by the server

of any reaction or reply. Due its reliability in delivering the request to the server, this

pattern is more reliable to be used in real-time systems (e.g. sensors send to monitor

unit instant readings).

Chapter 7

-258-

- Poll Object Pattern; in contrary to the fire and forget pattern and sync with server

pattern, in which the client needs no result of the remote request to return from the

server, the poll object pattern is to be used when the client depends on the result of the

invocation for further computation, while these results are not needed immediately.

Hence, the client can continue execution or do some useful computation instead of

blocking idle, and check for the results availability later when needed.

Client

Calling Process Server Process

M

a
c
h

in
e
 B

o
u

n
d

a
ry

InvokerRequestor
(1) Invoke

(2-a) Send

Remote

Object
(3) Invoke

(6) Return Result

Poll Object

(2-b) Create
(7

)
S

to
re

T
h
e
 R

e
s
u
lt

(4,8) Query for result

(9) Return <Result>

(2-c) Return reference of

 the created poll object

(5) Return

<Result not Available>

Figure 7-6 Poll Object Pattern

The scenario of operation of this pattern is shown in Figure 7-6, where the

client sends the request to the requestor object, which in turn creates poll object to store

the returned result of the remote execution, and controls returns immediately to the

client thread with a reference to this poll object hence, the client can continue execution

asynchronously. At the same time, the requestor spawns a new internal slave thread to

make a synchronous call of the method on behalf of the client; this slave thread is

responsible for waiting for the returning result of the call and storing it when it arrives

in the corresponding poll object. When result is needed, the client calls on the pool

object to check the availability of the result, so it can retrieve it from the poll object.

Otherwise, in case of non-availability, it can choose either to continue asynchronous

execution to do useful processing or to block waiting for the result to arrive.

- Result Callback Pattern; as the poll object pattern is using a synchronous

execution model internaly on behalf of the client, it is more useful when the time until

the result become available can be estimated and it is short, but enough to do useful

work at the client side. Otherwise, to avoid waiting for longer operations, the client

needs to be informed immediately when the results are available to the requestor. In the

result callback pattern, an event driven approach is adopted for the internal design to

immediately inform the client.

In this pattern, as shown in Figure 7-7, the client instantiates a callback object

and passes it with the invoked operation to the requestor and returns immediately to

continue execution. The requestor in turn, sends the invocation to the server. Once the

Chapter 7

-259-

server finishes the execution, a predefined callback method is called on the callback

object passing it the result of the remote invocation.

Client

Calling Process Server Process

 M

a
c
h
in

e
 B

o
u

n
d
a
ry

InvokerRequestor
(1) Invoke

(2-a) Send

Remote

Object
(3) Invoke

Remote Callback

Object

(2-b) Create(5) Call

 Callback Method
(4) Return Result

(2-c) Return

Figure 7-7 Result Callback Pattern

This callback method can interrupt the operation of the client thread to notify it

to react to the completion of the invoked operation. According to the implementation of

the calling systems, the calling of the callback method that notifies the client can be

done in one of two ways:

1- Locally at the client side, when the client synchronously invoke the remote method

using a separate thread, and once the result is returned back to this local thread, it

notifies the client using the provided callback object.

Remotely from the server side, when the callback object is implemented as a remote

object, in order to allow the callback method to be called remotely from the server.

7.3 RMI-HRT Overview

In order to develop our proposed real-time remote communication pattern, we

based our model on the classes provided by the open-source modules, that implement

the HRT-RMI model presented in (Tejera, Alonso et al. 2007). The HRT-RMI was

built as part of the High Integrity Java project in order to provide a real-time model of

the Java RMI using the new features presented by the RTSJ earlier in this thesis. The

design of the HRT-RMI model was built as a modification to the basic RMI model

(Sun Microsystems Inc 2004), where it shares many of the basic patterns used in the

Java RMI, while its implementation has been included some modifications to the RMI

Patterns by modifying the classes that implement the Java RMI in the Jamaica JVM by

using some of the RTSJ features in order to support the requirements assumed in the

HRT-RMI model.

In this section we present the general hierarchy of this open-source model, in

order to clarify the changes that we made to it to build our own model, which is

presented later in this chapter, where in our presentation of the HRT-RMI middleware

Model, we will show our view of the basic parts of the model by mapping these parts it

Chapter 7

-260-

to their corresponding general remote communication patterns presented earlier in this

chapter, with an explanation of the algorithms done in each individual pattern and the

Java classes defined by the authors of the model in order to build each pattern.

7.3.1 The Broker Pattern

The central pattern in the remote communication middleware is the Broker

pattern, which itself is composed of a set of patterns that exist on both the server side

and the client side. In the following we will show the classes and the operations of each

of these patterns, see Figure 7-8.

A- Client Side

The broker pattern of the client side in the RMI-HRT has only a few changes

from the original model of the Java RMI as explained in the following:

- The Client Proxy; at the client side the calling thread has to have a proxy that has

an interface that offers the same methods offered by the remote server, in order to hide

the details of the remote calling over the network. At the client-side of the HRT-RMI

model, this proxy is called the HrtStub and it is created as an instance of the class that

has a name of the pattern [RemoteObjectName]Imp_HrtStub, where the

RemoteObjectName is the class name of the remote object. The

[RemoteObjectName]Impl class is created using a modified version of the Java‘s rmic

tool that is used by the Java RMI, where the modifications done on this tool are

basically responsible of creating both the [RemoteObjectName]Imp_HrtStub class, and

the [RemoteObjectName]Imp_HrtSkel class, in order to add the set of the features

required to have the a real-time predictability as specified in the HRT_RMI model as

explained in (Tejera, Alonso et al. 2007).

- The Client Requester Handler; in the HRT-RMI model, this pattern is represented

partially by the UnicastHrtRef which is responsible for building the client session with

the server through the method createClientReservation(), see Figure 7-9, which

includes the following handshaking operations:

1. Send the Client Identifying name.

2. Send request header.

3. Waits to receive request-arrival acknowledge from the server-side.

The invocation of the method itself has been moved in the HRT-RMI model, to

be directly made from the Requestor.

Chapter 7

-261-

NETWORK

R
e
trie

ve

S
e
rve

r’sE
xe
cu
tio
n

 P
a
ra

m
e
te

rs F
ro

m

S
e

n
d

 B
y
te

s

In
c
o

m
in

g

 R
e

q
u

e
s
t

R
e

tu
rn

 M
e

th
o

d

re
s
u

lt

Remote Object

UnicastHrtRemoteObject

Dispatches

Invocations To

Server

Parameters

RMIServerCfg

U
s
e
 T

o
 L

o
a
d
 A

ll
re

q
u
ir
e
d
 c

la
s
s
e
s

SKELTON

 SERVER SIDE

UnicastHrtRef
(CLIENT REQUEST HANDLER)

 CLIENT SIDE

U
n

ic
a

s
tH

rt
S

e
rv

e
rR

e
f

(S
E

R
V

E
R

 R
E

Q
U

E
S

T
 H

A
N

D
L

E
R

)

Handlers

C
re

a
te

s

RemoteObjectImp_HrtStub
(CLIENT PROXY)

rmic Tool

C
re

at
es

Client

Parameters

RMIClientCfg

Use To statically

 Load All re
quire

d classes

R
etrieve

C
lient’sN

etw
ork

P
aram

eters From

Calling Thread

M
a

k
e

 a
 c

a
ll

STUB

MARSHALLER

Listener

MARSHALLER

In
te

rf
a

c
e

D
e

s
c

ri
p

ti
o

n

rmic Tool

C
reates

Triggers

SKELTON.

dispatch()
(INVOKER)

c
re

a
te

s

S
e

n
d

 M
e

th
o

d

 P
a
ra
m
e
te
rs
’
O
b
je
c
ts

R
e

c
e

iv
e

B
y
te

s

tr
ig

g
e

rs

 invoke

R
e

c
e

iv
e

B
y
te

s

S
e

n
d

B
y
te

s

Operating System

m
a

k
e

C
o

n
n

e
c
ti
o

n

S
e

n
d

 M
e

th
o

d

P
a

ra
m

e
te

rs

R
e

tu
rn

 R
e

s
u

lt

S
e

n
d

R
e

q
u

e
s
t
H

e
a

d
e

r

R
e

c
e

iv
e

A
c
k
 H

e
a

d
e

r

c
re

a
te

s

In
c
o

m
in

g
 M

e
th

o
d

 R
e

q
u

e
s
t

RMIHrtObjectInputStream &

RMIHrtObjectOutputStream

Operating System

Blocking DataInputStream & DataOutputStream

loads

 i
n

.m
.

re
a

d
O

b
je

c
t(

)

--
--

--
--

--
--

--
--

--

o
u

t.
m

.

w
ri

te
O

b
je

c
t(

)

o
u

t.
m

.

w
ri

te
O

b
je

c
t(

)

--
--

--
--

--
--

--
--

--

 i
n

.m
.

re
a

d
O

b
je

c
t(

)

Blocking DataInputStream & DataOutputStream

RMIHrtObjectInputStream &

RMIHrtObjectOutputStream

(REQUESTOR)

Figure 7-8 Hierarchy of the Broker Pattern of the HRT-RMI open source model

- The Requester; the requestor pattern is the internal pattern within the proxy pattern,

and it provides the implementation of the remote methods at the client side, where this

implementation receives locally the call of the remote method and performs it remotely

over the network using the marshaller pattern, and it waits to receive the results of the

call in order to return it back to the calling thread.

Chapter 7

-262-

Create Client Reservation

· Create client socket

· CreateConnectionwiththeremoteobject’smachine

· Send Client Name

· Create RMI Object I/Ostreamsoverconnection’sI/O streams

UnicastHrtRef

RMI Object I/O

S
e

n
d

 B
y
te

s

R
e

c
e

iv
e

 B
y
te

s

NETWORK

Figure 7-9 Operations of the createClientReservation() Method

- The Invoker; as it was in the Java RMI, The skeleton is representing the Invocation

Pattern in the HRT-RMI model, where the skeleton receives the call request in the form

of a message forwarded to it by the Call Handler Thread through the call of the

incomingMessageCall() method of the skeleton object, then it invokes the required

method through the method dispatch().

B- Server Side

 Most of the changes provided in the RMI-HRT were in the server model in

order to enhance its predictability, as will be explained in the following:

- The Server Requester Handler Pattern; the main functionality of this pattern is

encapsulated in the UnicastHrtServerRef class that extends the

UnicasHrtServerObject class and it defines two main methods as follows, see

Figure 7-10.

exportObject(); this method called from the RemoteObject either implicitly when it is

created if the Remote Object is extending the UnicastHrtRemoteObject, or explicitly if

the RemoteObject is created by extending the HrtRemote interface. This method is

responsible for doing all the initialization required for making the server-side ready to

handle all the incoming requests to the remote Object. These initialization operations

include:

Chapter 7

-263-

In
v

o
k

e
r

P
a

tt
e

rn

C
a

ll
F

lo
w

 Restart()

HrtRemoteSkeltonImpl

Listener

 Trigger Handler

(Client [i])

Handler AEH

Remote Object

Initialization

· Load Skelton

· Retrieve Remote Object parameters

· Get a Server Listening Socket from ServerSocketFactory

· Creates (n) Trigger Handlers

· Creates A Listener

e

x
p

o
rt

O
b

je
c
t(

)

Create Server reservation

· Accept the call

· Create Connection

· Retrieve Client parameters

· Creates (n) a bounded Handler and bounded miss Handler

· Start Trigger Handler of caller client[i]

a
c
c
e

p
t(

)

Server Call Handler

· Wait For the incoming request

· Once a request arrives, Fire the corresponding BAEH

· Stop the Trigger

· Fire the deadline missHandler AEH, if deadline missed

tr
ig

g
e

r(
)

Invokation

· invoke the appropriate method on the remote object

· Restart the Trigger to wait for next call

in
v
o

k
e
()

S
e

rv
e

rR
e

q
u

e
s

tH
a

n
d

le
r

P
a

tt
e

rn

Figure 7-10 Call Handling at the Server Side

1- Loading the Skeleton object; the skeleton object in the HRT-RMI model is created

statically by a modified version of the rmic tool; i.e. same as in Java 1.1, and not

dynamically by reflection as in Java 1.4+. Hence, this method loads this remote

object‘s skeleton from the disk to be ready for handling the requests.

2- Creating a Listener; the Listener is created as an instance of the

NoHeapRealtimeThread class and it is responsible for calling the

createServerReservation() method which is explained next.

3- Retrieving the local remote object parameters; the internal structure of the server

request handler includes a set of real-time threads and Asynchronous Event Handlers

which has to be assigned sporadic parameters in order to configure them, as will be

explained later in this chapter. So, this method loads those parameters.

- createServerReservation(); this method is called from within the Listener‘s

realtime thread, in order to initialize a session between the server and the client. The

server can have a maximum of n=maximum number of Clients registered with it and

Chapter 7

-264-

the createServerReservation() method is responsible of building sessions with all

these registered clients, so it is called as many times as the number of the clients

registered with the server, where it is responsible of doing the following for each client,

4- Creates a connection object of the class UnicastHrtRMIConnection; the

connection object is using the Java data stream model, i.e. the Blocking I/O model with

an associated DataInputStream object for reading from the network stream and another

object of the DataOutputStream type to write to the output stream.

5- Retrieve the Client Parameters from the server machine; it retrieves all the

clients‘ network parameters and real-time parameters that are statically registered

within the class file ServerCfgCls.

6- Creates a Runnable Object for the Call Handler; the logic defined by this

Runnable will be used as the logic for all the call handlers. The basic operation of this

logic is to check the type of the incoming message from the client, and either reply to it

directly with an acknowledgement if it was just a pinging message; or in the case of a

message call, the handler forwards the call to the Invoker through the

incomingMessageCall() method to react to this event.

7- Creates set of n Trigger Handlers Objects; where each trigger is created as a real-

time thread assigned parameters loaded with the client parameters. The trigger handler

is responsible for waiting for the incoming messages from a certain client in order to

fire the event controlling the caller handler associated with the invocation coming from

this client, and then return back to wait for other messages coming from the client.

8- Creates a set of n Bounded Asynchronous Event Handlers as Call Handlers;

where this call handler is assigned server centric sporadic parameters which are

assigned statically within Java classes that are loaded during initialization of the remote

object as stated before.

9- Creates a set of n Bounded Asynchronous Event Handlers as MissDeadLine

Handlers; these handlers are created to be executed if the call handler of the request

coming from this client misses its deadline. Again, these handlers are created with

sporadic real-time parameters loaded as part of the clients‘ parameters.

7.3.2 Configuration and Parameter Assignment Pattern

A- Client-Side

In the RMI-HRT model the clients are assumed to be connecting to the remote

server using sockets that are created by a socket factory class, where this socket factory

must be configured during the initialization phase with the network address and the port

number at the local machine, also as the client needs to connect to the server to make

Chapter 7

-265-

the call, then another pair of the network address and the port number of the remote

server has to be assigned to the client. The configuration pattern that works as an

extension configuration pattern of the remote communication model is required at the

client side. In the HRT-RMI, this configuration pattern is provided by the

RMIHrtClientCfg class, which defines a basic set of methods to set and retrieve these

parameters as follows:

- ClientRMIHrtNetworkParameters getClientRMINetworkCfg(String refName)

This is a static method responsible for loading the network parameters of the

remote object named refName from the class file that specify these configuration

parameters. The function has first to check the if the file is loaded, if not; it loads it first

using the loadCfgCls() method.

- void loadCfgClass()

This is a static method that loads the class file that defines the networking

parameters of the client side in order to make the connection with the server.

- void loadRMIHRTClasses()

This is a static method that loads and initiates all the classes used by the

middleware at the client side. The method is called in the initialization phase to

minimize any external interference to the remote method execution by avoiding the

dynamic class loading of the basic classes of the middleware in order to have better

predictability.

- void loadSerClass(String stubName) throws RemoteException

This is a static method that is used to load the classes used for the predictable

serialization model proposed in the HRT-RMI at the client side.

B- Server Side

As the remote object has to have a predictable behavior at the server in order to

work in real-time distributed systems, then this remote object has to be assigned both

scheduling parameters and network parameters during the initialization phase and

before the mission phase. As the Java RMI, on which the RMI-HRT has been based,

has no ability to support the configuration of the RMI to use such parameters the design

of the HRT-RMI needed an extension pattern to support this feature either using a

server centric approach, or a client propagated approach. In the server centric approach

the parameters are saved at the server side and loaded at run time, where in the case of

Chapter 7

-266-

the propagated parameters approach, the parameters propagates from the calling client

to the server side before executing the call.

In order to configure the server-side of the RMI-HRT middleware an extension

pattern for configuration which uses the server centric approach has been used, where

two types of parameters have been defined:

- Network Parameters; to specify the networking identification of the remote

object within the network, This include the following:

1. The name of the remote object.

2. The server socket factory class used to create server socket classes.

3. The configuration parameters used by the server socket factory, including the

network address and port number on which the server will be listening for

the incoming calls.

- Real-time Parameters; these parameters control the behaviour of the remote

object, these parameters include:

1. Sporadic parameters for the realtime thread responsible of service handling

at the server, these parameters include:

- The name of the remote object.

- The listener priority

- The maximum number of clients

- The Memory Size of the scoped memory allocated for this real-time

thread.

- A list that holds the parameters of each client registered with this server.

2. Sporadic parameters of the real-time thread of the call handler that executes

the call on behalf of the client, where each client has its own parameters

registered with the server. For each client, these parameters include:

- The reference name of the client.

- The priority parameters to be assigned to the real-time thread executing

the method on the server.

- The minimum inter-arrival periods between each two successive calls to

the same method.

- The deadline of the execution of the remote method on the server.

Chapter 7

-267-

The server-side configuration pattern of the HRT-RMI middleware is modeled

in the RMIHrtServerCfg class that provides generally a set of methods that can be used

to assign and retrieve the set of parameters that have been mentioned above.

The class RMIHrtCfgClass plays a major rule in loading these parameters

during the initialization phase. Where this class defines the following methods:

- ServerRMIHrtNetworkParameters getServerRMIHrtNetworkParameters (String

remObjName)

This is a static method responsible for loading the network parameters of the

remote object named remObjName from the class file that specify these configuration

parameters. The function has first to check if the file is loaded, if not, it loads it first

using the loadCfgCls() method.

- ServerRMIHrtParameters getServerRMIHrtParameters (String remObjName)

This is a static method that does a similar job to that of the

ServerRMIHrtNetworkParameters method except that it loads the real-time parameters

from the class file holding them instead of the network parameters.

- ClientRMIHrtParameters getClientRMIHrtParameters

(ServerRMIHrtParameters remObjName, String client_ref)

This is a static method that loads the real-time parameters of the client that is

registered with this object by the reference name client_ref.

- void loadCfgClass()

This is a static method that loads the class files that define both the networking

parameters and the real-time parameters of the server side.

- void loadAllRMIHRTClasses()

This is a static method that loads and initializes all the classes used by the

middleware at the server side. This method is called in the initialization phase to

minimize any external interference to the remote method execution by avoiding the

dynamic class loading of the basic classes of the middleware in order to have better

predictability.

- void loadSerClass(HrtRemote obj) throws RemoteException

This is a static method that is used to load the classes used for the predictable

serialization model proposed in the HRT-RMI at the server side.

Chapter 7

-268-

7.3.3 Marshaller

As presented in earlier in this chapter, the Marshaller pattern is responsible for

transferring the request parameters and results between the client and the server by

converting them into raw bytes to be transformed over the network, and then

reconstructing them back into their original form.

In the RMI-HRT, the marshaller pattern is a modification of the Java RMI

marshaller pattern. So, in the following section, we present an overview of the

marshalling pattern model in the Java language, and then we provide the modified

pattern used by the RMI-HRT.

A- Marshalling in Java

In Java language the general marshalling pattern is provided in the Java object

serialization process. Where the pbject serialization and deserialization was defined in

the Java Object Serialization Specification (Sun Microsystems Inc.) as follows:

"Object Serialization in the Java Systems is the process of

creating a serialized representation of objects or a graph of objects.

Object Values and types are serialized with sufficient information to

ensure that the equivalent typed object can be recreated.

Deserialization is the symmetric process of recreating the object or

graph of objects from the serialized representation"

Java RMI wire protocol relies on the Java Object Serialization as a marshaller

pattern in order to pass objects between Java virtual machines, where the object

serialization produces a stream with information about the Java classes and objects that

are being serialized over the network.

There are a set of requirements in order to make the serialization process. In the

following we will identify the basic requirements:

1- The serializable class has to have a no-argument constructor to be used for

recreation of the object in the deserialization process, where the a new Object is created

with a null value of all its fields then the state of the field is restored by reading the

values of the fields from the stream.

An object that implements the OutputStream is required for serializing the bytes to the

stream, and an object that implements the InputStream is needed to deserialize the

bytes from stream.

Chapter 7

-269-

An object of the ObjectOutputStream class is required for serializing the bytes to the

stream, where it provides the writeObject() to write the a Java object to the stream.

Also, this class implements the methods defined by the DataOutput interface in order

to write the primitive data types to the stream.

An object that implements the ObjectInputStream is needed to deserialize the bytes

from the stream, this class provides the readObject() method to read a serialized Java

object from the stream. Also, this class provides the methods of the DataInput

interface in order to read the primitive data types from the stream.

In order to identify the classes that implement the serialization protocol, these classes

have to declare either:

The java.io.Serializable Interface. This interface provides two methods:

writeObject(java.io.ObjectOutputStream out) to serialize the fields of the object

to the stream, and readObject(java.io.ObjectInputStream in) to deserialize the

same fields back from the stream into a newly created object. Using this interface, the

object serialization/deserialization is done automatically when reading or writing the

serializable object using a default defined mechanism. This mechanism can be

customized by overriding the implementation of the readObject() and writeObject()

methods. Moreover, fields to be serialized can be optionally identified explicitly by

adding them to the static member serialPersistentFields as objects of the type

ObjectStreamField that define pairs of a name and a value for each of the added

fields, or they can be discarded of the automatic process by declaring them as transient

fields.

- The java.io.Externalizable interface. This interface defines two

methods: writeExternal(ObjectOutput out) to save the state of the object

and readExternal(ObjectInput in) to restore the state of a serialized object. By

implementing this interface, the developer has complete control of the format and the

contents of the serialized stream.

B- Serializing Class Descriptors

The class descriptor provides information about the serializable class including

its fully qualified name, a unique serialization version of it, and its fields and their

types. The class descriptor is represented in the class ObjectStreamClass which

defines method to get this information.

In object serialization, when an object is serialized to a stream, information

about all its super classes is saved with it, in order to re-instantiate it during the

Chapter 7

-270-

deserialization process. As defined in the serialization protocol in (Sun Microsystems

Inc.), before writing the contents of each object into the stream, the class descriptor for

the class of this object is written to the stream, where this class descriptor is written

only the first time it is referenced, then a handle of it will be used. The writing to the

stream is done by recursively calling the writeObject() in order to write the full

object graph of the class where the sequence of writing of the information of the class

will be as follows (Sun Microsystems Inc.):

1- The class name

2- The class modifiers

3- The names of interfaces (sorted alphabetically)

4- For each Serializable field (sorted alphabetically):

a. The name

b. The field modifiers

c. The descriptor of the field

5- if class initializer exists

a. The name < cInit >

b. The method modifier java.lang.reflect.Modifier.STATIC

c. The descriptor, () V

6- For each non-private Constructor (sorted by name and signature)

a. The name

b. The method modifiers

c. The constructor descriptor, () V

7- For each non-private Method (sorted by name and signature)

a. The name

b. The method modifiers

c. The method descriptor

C- Marshalling in RMI-HRT

The RMI-HRT model design aims to obtain a predictable memory management

model as many real-time systems have limited resources. Hence, reducing the required

memory is a primary goal for this middleware. However, as stated before, the

marshalling in Java RMI is implemented by using object serialization and

deserialization mechanism which is a heavy memory consuming activity as it uses

complex recursive algorithms to handle references, and it uses reflection and

polymorphism to discover information about classes of objects to be serialized. Hence,

in addition to its being not compliant with the RTSJ memory model, this complexity

makes it difficult to determine the worst case execution times and memory usage of the

Chapter 7

-271-

serialization process. As a consequence, and according to the requirements of the

application making the remote call, the RMI-HRT model proposed two models of

serialization (Tejera, Alonso et al. 2007):

1- Real-time Serialization; This model does not consider optimizing the

serialization timing as it is proposed for the interaction with clients that have no

critical constraints within the system. So, the RMI-HRT adapted the Classpath

implementation in order to make it compliant with the memory model of the HRTJ

profile, by enforcing the creation of all the temporary objects to be done in scoped

memories, so that they are removed once the remote invocation is finished.

2- Predictable Serialization; This model aims to optimize the execution time and

the memory usage of the serialization process in addition to making it compliant with

the HRTJ profile.

The design of the predictable serialization model assumes that all the objects

and classes being used in the realtime system are known in advance at the compilation

time. Hence, in order to reduce the complexity, the serialization process is split in this

model into two phases; compile time phase and runtime phase. Where the recursive

processing made by the marshaller during the object serialization, to get the

information about the classes of the serialized objects that executes dynamically during

run time, is moved to be done statically by the rmic compiler during the compilation

time; while, the writing of the object state is executed during the runtime. This split of

the serialization process results in enhancing its execution time, and makes it avoids the

allocation of many temporary objects during the run time, and makes it easier to

determine its worst execution time. The implementation of the predictable serialization

follows a class based strategy, where the classes used in each phase are as follows, see

Figure 7-11:

- Compilation Time; at the compile time, two classes are created by the rmic

compiler for each serializable class involved in the remote invocation in the system; a

serialization class and a deserialization class, where these classes are used during

runtime from within the stub and the skeleton, that are created as well at the

compilation time by the rmic. The rmic compiler extracts the serialization information

of the serializable class using the RMICObjectOutputStream, and it uses its method

writeClass() to generate the serialization class. On the other hand, the rmic compiler

uses the readClass() method of the RMICObjectInputStream to read the serialized

information of the serialized class from the stream.

Chapter 7

-272-

- Execution Time; at the execution time, the stub and the skeleton uses the

writeObject() and readObject() methods respectively from the serialization classes

that are generated during the compilation time, these methods internally access the byte

stream using the methods of the RMIHrtObjectOutputStream and

RMIHrtObjectInputStream where the methods of these two classes offer general

methods to write to/extract the basic data types into/from the stream.

rmic Compiler

Hrts.out.HrtsClassName

R
M

IC
O

b
je

ct
O

u
tp

u
tS

tr
e
a
m

.w
ri
te

C
la

ss
()

cr
ea

te

Stub

Hrts.out.HrtsClassName

R
M

IC
O

b
je

ctIn
p
u
tS

tre
a
m

.re
a
d
C

la
ss()

create

Skeleton

readObject()writeObject()

RMICHrtObjectOutputStream RMICHrtObjectInputStreamBytes

C
o

m
p

ila
ti
o

n
 t
im

e
E

x
e

c
u

ti
o

n
 t
im

e

Figure 7-11 Predictable Serialization Classes

7.4 The Proposed Architecture of the RT-Middleware

Model

The current architecture of the Java RMI inherits a lot of issues that inhibits

using it in many real-time applications; we have provided an overview of these issues

in chapter 3. In addition to these issues, the current RMI structure is based on the client

server middleware paradigm, where the clients on a certain JVM can execute remote

methods on the server objects residing on another JVM, the RMI specifications

assumed the implementation of the model is using blocking networking I/O operations

over the network stream. However, using the blocking networking I/O model, as

explained earlier in this chapter, has a lot of deficiencies that affect the performance

and predictability of invoking the remote methods that makes the Java RMI not suitable

for use in many real-time applications.

Chapter 7

-273-

To build our configurable real-time RMI server object, we designed our model

over some of the classes of the RTSJ based RMI-HRT model presented earlier in this

chapter. Our main change of the original model of the RMI-HRT is the addition of the

support of the non-blocking I/O operations, through the use of the reconfigurable

communicator component that we presented earlier in this thesis in chapter 5, where we

assume that the client and the server objects are built as components, and the

communicator component is a sub-component within the container of these

components, which provide the low-level communication services, that are used by our

RMI implementation within these, where the remote server object is encapsulated

within the server components, whereas the client components encapsulate stubs of

these server objects, see Figure 7-12.

Container Memory Area

Server

Component 1

Communicator

sub-component

Server

Component 2

Container Memory Area

Client

Component 1

Communicator

sub-component

Client

Component 2

Remote

Call

Server

Object

Server

Objectstubstub

Figure 7-12 Proposed Model for the RMI-HRT Implementation

As we propose that the hierarchy of the RMI implementation will be within the

component, and it uses the services of the communicator sub-component, then the

implementation of this model will be sharing the forked memory model of the

component and can use all the services provided in the container of these components

as will be explained in this chapter.

7.4.1 Server Side

In our design of the server object of this proposed model, we assumed that the

configurable communicator component that we presented in the previous chapter will

be responsible for handling the incoming concurrent method calls coming to the server

object/component. According to this assumption, the communicator component is

required to implement the server side real-time request handler pattern of this

middleware model. Hence, to achieve this requirement, our component has replaced the

elements within the grey dashed frame shown in Figure 7-13, which represents the

server request handler in the RMI-HRT model. The block diagram in Figure 7-14

shows our proposed model for the server object. In this new server object model, the

component functionality provides the implementation of the request handler pattern in

the RMI protocol.

Chapter 7

-274-

NETWORK

R
e
trie

v
e

S
e
rv
e
r’s
E
x
e
c
u
tio
n

 P
a
ra

m
e
te

rs
 F

ro
m

S
e

n
d

 B
y
te

s

In
c
o

m
in

g

 R
e

q
u

e
s
t

R
e

tu
rn

 M
e

th
o

d

re
s
u

lt

Remote Object

UnicastHrtRemoteObject

Dispatches

Invocations To

Server

Parameters

RMIServerCfg

U
s
e
 T

o
 L

o
a
d
 A

ll
re

q
u
ir
e
d
 c

la
s
s
e
s

SKELTON

 SERVER SIDE

U
n

ic
a

s
tH

rt
S

e
rv

e
rR

e
f

(S
E

E
R

V
E

R
 R

E
Q

U
E

S
T

 H
A

N
D

L
E

R
)

Handlers

MARSHALLER

Listener

In
te

rf
a

c
e

D
e

s
c

ri
p

ti
o

n

rmic Tool

CreatesTriggers

SKELTON.

dispatch()
(INVOKER)

c
re

a
te

s

S
e

n
d

 M
e

th
o

d

 P
a
ra
m
e
te
rs
’
O
b
je
c
ts

R
e

c
e

iv
e

B
y
te

s

tr
ig

g
e

rs

 invoke

Operating System

c
re

a
te

s

In
c
o

m
in

g
 M

e
th

o
d

 R
e

q
u

e
s
t

RMIHrtObjectInputStream &

RMIHrtObjectOutputStream

loads

 i
n

.m
.

re
a

d
O

b
je

c
t(

)

--
--

--
--

--
--

--
--

--

o
u

t.
m

.

w
ri

te
O

b
je

c
t(

)

Blocking DataInputStream & DataOutputStream

 Figure 7-13 Changed Patterns of the HRT-RMI

The attachment of the communicator component to the server object is done in

the ‗export‘ process of the remote server object, which is done by

UnicastHrtServerObject.exportObject() method, where a reference to the

communicator sub-component object is passed to the

UnicastHrtServerObject.exportObject() method; inside this method, the following

actions are taken:

1- The component‘s createServerChannel() is called so that a server socket channel

is created within the server in order to be responsible of listening to the incoming

requests on the specified port on the server. This approach replaces the old RMI

model‘s approach of creating a listening server socket.

The server socket channel is registered for the accept operation on the selector, this

operation ensures that no individual thread is created and bounded to listen to the

incoming requests, as the registration of the accept events of the server channels with

the selector guarantees that the arrival of a request to the server channel will cause the

operating system to notify the component‘s selector element which in turn directs one

of the component‘s acceptor-executors to handle the call, as will be discussed later in

this chapter.

The communicator sub-component can be used by several server objects/components,

which coexist in the same container, concurrently as a common networking I/O

Chapter 7

-275-

interface because the component structure provides multiplexed I/O operations as

discussed in the previous chapter. The diagram shown in Figure 7-15 shows our

proposed model of sharing the communicator component with multiple server objects.

The basic ideas of this model are that:

a. In order to be accessible by clients, the process of the exportation of each individual

server object is modified, so that the exportation process creates a single server

channel within the communicator component, where the network address and port

number corresponding to this server will be published to the clients, e.g. in our

model we assume that each individual server object/component is assigned port

number and network address at design time. So, the server channel that is assigned

to each server object/component will be responsible for receiving the connection

requests coming from clients component, that want to access any of the remote

methods in this server object.

b. The communicator sub-component assigns an executor element (one or more than

one executor element as will be discussed in detail later) for each incoming method

call from a client, where this executor(s) will be responsible for decoding the

received call and receiving its passed parameters, then executes it at the server, and

finally returns the result back to the calling client.

c. The component internally creates a new client channel for each single incoming

method call coming from a certain client component, so that all the data exchange

from the server object to/from this client is done through the client channel assigned

for this specific client component.

According to this server model, shown in Figure 7-15, during the run time,

each server object/component will be attached to the shared communicator sub-

component through the skeleton of this object, so that the server object has a server

thread within it, that is observing the events/requests coming from multiple clients

concurrently, and a set of client channels equal to the number of the concurrent

incoming/executing remote calls, in addition to a set of concurrent executors that are

responsible for the processing of the concurrent calls.

Chapter 7

-276-

NETWORK

R
e
trie

v
e

S
e
rv
e
r’s
E
x
e
c
u
tio
n

 P
a
ra

m
e
te

rs
 F

ro
m

S
e

n
d

 B
y
te

s
R

e
tu

rn
 M

e
th

o
d

re
s
u

lt

Remote Object

UnicastHrtRemoteObject
Server

Parameters

RMIServerCfg

U
s
e
 T

o
 L

o
a
d
 A

ll
re

q
u
ir
e
d
 c

la
s
s
e
s

SKELTON

 SERVER SIDE

UnicastHrtServerRef

(SEERVER REQUEST HANDLER)

MARSHALLER

In
te

rf
a

c
e

D
e

s
c

ri
p

ti
o

n

rmic Tool
Creates

SKELTON.

dispatch()
(INVOKER)

S
e

n
d

 M
e

th
o

d

 P
a
ra
m
e
te
rs
’
O
b
je
c
ts

R
e

c
e

iv
e

B
y
te

s

 invoke

Operating System
In

c
o

m
in

g
 M

e
th

o
d

 R
e

q
u

e
s
t

RMIHrtObjectInputStream &

RMIHrtObjectOutputStream

loads

 i
n

.m
.

re
a

d
O

b
je

c
t(

)

--
--

--
--

--
--

--
--

--

o
u

t.
m

.

w
ri

te
O

b
je

c
t(

)

Non-Blocking

DataInputStream & DataOutputStream

Runnable(s)

Of

 CH3 Events

Runnable(s)

of

CH2 Events

Runnable(s)

Of

 CH1 Events

ByteBuffer

3

ByteBuffer

1

ByteBuffer

2

Proactor-Dispatcher

Selector

CH2
CH3

Executors

 CH1

D
is

p
a
tc

h
e
s

In
v
o
c
a
ti
o
n
s
 T

o

Figure 7-14 Patterns in the new Server Object Model

Multi-Server Machine

Communicator Component

Server Object 1

Skeleton

Server Object 2

Skeleton

Server Object 3

Skeleton

S
e

rv
e

r

C
h

a
n

n
e

l

C
lie

n
t

C
h

a
n

n
e

l

NETWORK

Client

Component 1

Client

Component 2

Client

Component 3

Server Component 3Server Component 2Server Component 1

Figure 7-15 Sharing the Communicator Component among several Server Components

As discussed earlier in this thesis, the component‘s properties have to be

configured to specify the middleware requirements that are available on both the

machine and the operating system on which this middleware is running over (e.g.

Selector Type property). However, some other properties will be dependent on the

requirements of the middleware model itself in order to provide a predictable execution

Chapter 7

-277-

within the middleware model. So, the communicator sub-component has to be assigned

minimum values for a set of its properties in order to provide predictable execution of

its model. For the server side of our own middleware model, the communicator is

assigned to be working in a server mode, where the following set of the communicator

component‘s properties are important to be assigned minimum values defined by the

model:

- Number of Server Channels; this property defines the maximum number of server

channels that can be provided by the component, according to the above model, this

number should have a value that is at least equal to the maximum number of server

objects that are sharing this component.

- Number of Client Channels; this number is the maximum number of the client

channels that are created to handle the concurrent method calls. Hence, the value of this

property has to be set to the maximum expected concurrent remote calls received by all

the server objects sharing this component.

- Number of Executors in the Executors Pool; the assigned maximum number of

executors within the component is dependent on the model of handling the calls as will

be explained in details later in this chapter, i.e. is it a single executor for handling each

call or multiple executors for handling each call. Some possible assignments strategies

for this property are:

1- The value assigned to this property is to be equal to the number of the server objects

sharing this component, so that an executor can be servicing each one of the server

objects sharing this component.

Another strategy is to assign it to be equal to the maximum number of concurrent

remote calls serviced by the communicator in case of using a single executor for

handling each incoming remote call.

As our communicator component can be configured to work in various ways as

explained in this thesis; hence, different configuration of the communicator can provide

different modes of operations of the server object. In later sections of this chapter, we

will discuss these different modes and how they integrate with the client

objects/components to implement the remote communication protocols.

7.4.2 Client Side

The communicator sub-component is built to support multiplexed

communication over the network; hence, it can be shared by multiple client objects in

the same time to make calls to various remote server objects. The diagram in

Chapter 7

-278-

Figure 7-16 shows the basic model of sharing the communicator component among

several client components. In this model, a client channel is created to connect with

each remote object accessible by this client object/component, where each one of these

channels becomes the I/O interface used by stubs created within each client component

to connect remotely to one of the remote server objects accessible by this client. Hence,

the Communicator provides for each individual (or shared) stub of all the client

components the required executor(s) that handles the events occurring on this channel.

The collaboration of each client channel and its associated executor(s), that are

provided by the communicator sub-component, with its attached client component;

through the stub of this client object, will be explained in detail in the incoming

sections of this chapter.

According to the above model, the communicator component acts as a provider

of the networking I/O communication interface at the client side for all the client

objects running in the same container and as it was in the case of the server side, the

component can be configured to process the I/O networking operations through its

selectable channels over the network in multiple models (including the blocking and

the non-blocking models) in order to provide a configurable real-time middleware that

can be reconfigured to integrate with the target operating system to achieve the

requirements of the applications running over it.

In addition to using the communicator component as the networking I/O

interface at the client side of our model of the remote communication middleware, the

model of the client side is required to provide the support of different invocation

patterns as an additional functionality, that is not needed at the server side, but it is

required at the client side to offer more flexibility of our proposed real-time

middleware model. Hence, we assume that the client side in our real-time middleware

model is responsible of enabling different method call invocation patterns other than

the synchronous pattern. In this case we can consider the communicator sub-

component to be working as a local server at the client side, where it receives the calls

from the client objects/components, and send them to the target server on behalf of

them, then when the result of each one of these calls returns to it, the communicator

sub-component‘s executors will be responsible of delivering it to the client, either

immediately by sending call-back calls to the client component that initiated the call or,

indirectly by saving the result internally until the component client object requests it.

Chapter 7

-279-

Servers Machine 2

Multi-Client Machine

Communicator Component

Client

Component 1
Client Component 2

StubStub

C
lie

n
t

C
h

a
n

n
e

l
3

Servers Machine 1

NETWORK

Remote Object 3Remote Object 2Remote Object 1

Stub

Server ComponentServer ComponentServer Component

Figure 7-16

Sharing a single communicator sub-component by multiple clients

In order to support the above model, the communicator component is attached to

each stub of the calling objects/components on the same container, to work as a client

request handler for each of them at the client side. The diagram shown in Figure 7-17

shows the architecture of integrating the communicator sub-component with the stub

within the calling object/component. As shown in this diagram, the interaction and

collaboration between the communicator component and the stub occurs in several

steps and through multiple elements, in order to transfer the call to the remote server

object and then receive the result coming out of executing the remote method, to

deliver it to the calling object/component, these steps and the elements constituting in

their execution are summarized here as follows:

1- When a remote method is required to be called from a thread running in one of the

client objects/components, the stub class of the remote server object that holds this

remote method is loaded and an object of it is created where a reference to the

communicator component object is passed to it in order to be able to access the

component from within the stub.

2- If another component or thread in the same container wants to access the same

remote method, or another remote method that exist with it in the same remote server

object/ component, the same stub object is used to access it, so that the stub should be

shared among all client objects/components that access remote methods on the same

remote server object. This requirement means that the stub object should be created in a

memory that can be accessed from within all the client objects/components.

Chapter 7

-280-

NETWORK

 CLIENT SIDE

1
-

C
re

a
te

s

R
e

m
o

te
O

b
je

c
tI

m
p

_
H

rt
S

tu
b

(C
L

IE
N

T
 P

R
O

X
Y

/R
E

Q
U

E
S

T
O

R
)

rmic

Tool

Creates

Client

Parameters

RMIClientCfg

U
s
e
 T

o
 s

ta
ti
c
a
lly

 L
o
a
d
 A

ll
re

q
u
ir
e
d
 c

la
s
s
e
s

R
e
trie

ve

C
lie
n
t’sN

e
tw
o
rk

P
a
ra

m
e
te

rs F
ro

m

Calling Thread

3
-

M
a

k
e

 a
 c

a
ll

MARSHALLER

In
te

rf
a

c
e

D
e

s
c

ri
p

ti
o

n

9
-

R
e

c
e

iv
e

 B
y
te

s

6
-

S
e

n
d

B
y
te

s

4
-S

e
n

d

 M
e

th
o

d

P
a

ra
m

e
te

rs

1
0

-
R

e
tu

rn

 R
e

s
u

lt

Operating System

o
u

t.
m

.

w
ri

te
O

b
je

c
t(

)

--
--

--
--

--
--

--
--

--

 i
n

.m
.

re
a

d
O

b
je

c
t(

)

RMIHrtObjectInputStream &

RMIHrtObjectOutputStream

CLIENT-INVOKER

--

UnicastHrtRef
(CLIENT REQUEST HANDLER)

NB-DIS,NB-DOS

C
a

ll
D

ir
e

c
ti
o

n

Runnable(s)

Of

 CH3 Events

Runnable(s)

of

CH2 Events

Runnable(s)

Of

 CH1 Events

ByteBuffer

3

ByteBuffer

1

ByteBuffer

2

Selector

Proactor-Dispatcher

Executors

 C
H

3

8- Receive Result

 C
H

2

 C
H

1

7- Send the Call

Calling Thread

2
-

G
e

t
th

e

 s
tu

b
 t
o

 m
a

k
e

 a
 c

a
ll

5
-

G
e

t
N

e
x
t
C

a
ll

1
1

-
R

e
c
e

iv
e

 R
e

s
u

lt

Figure 7-17 Communicator Component at the Client Side

3- To map the above requirements to the component memory model defined in chapter

5, we can define the following scenarios for creating the stub:

 Creating the stub in the Heap; this option is not suitable for real-time applications,

especially when using the NHRT Threads.

 Creating the stub object in the Immortal memory; this option again is acceptable

if the stub object is guaranteed to stay alive as long as the program is running, this is

suitable for many distributed real-time systems as the remote methods is expected to be

used throughout the life time of the application. But it is not efficient in case of short-

life time components as the original stub object will not be deleted from the immortal

memory of the same JVM and a mechanism for recycling the stub object may be

required.

 Creating the stub object in the container memory area (ContMA); this is an

optimum solution for sharing the stub among several components sharing the same

container. This stub object would have a life time equal to that of the container itself. In

Chapter 7

-281-

this case the stub can be created in the ContMA and saved in its multi-name object

portal to be accessible by all the components within this container.

 Creating the stub object in the container memory area (CMA); this can be used

when a single component within the container is using this stub. This stub object would

have a life time equal to that of the component that holds it. In this case the stub can be

created in the CMA of the component and saved in its multi-name object portal to be

accessible by all the threads running within this component.

 Creating the stub object in the task’s scoped memory stack; where this scoped

memory can be the SMA memory of the task using this stub or any nested scoped

memory within it. This method is more suitable when the use of the remote methods is

not frequent, and it is not needed to keep the stub alive for the duration of the

component.

4- After getting a reference to the stub, the calling thread initiates the call to the remote

method by calling the corresponding method in the stub which is responsible for

executing it by delivering the call request to the Client-Invoker defined in the stub.

5- In our model, we adopt the Future call pattern. So, the Client-Invoker retrieves the

remote call‘s data and its parameters and it calls the marshaller to process them. The

Marshaller uses the predictable serialization mechanism provided in the RMI-HRT by

using its serialization classes to convert the call‘s data and parameters in an encoded

buffered form that is added to the queue that holds all the buffered calls that are ready

to be processed later, where this buffered form can be saved in one of the memory area

defined above so that it will be accessible by the stub.

6- The assigned executor for this client is retrieved from the communicator component,

where usually this executor is the handler executor that is created within the

communicator component during the connect operation.

7- The executor processes the calls queued in the queue, where it retrieves the buffered

data of the next method to be processed from the queue in order to send it, where the

call is already kept in the queue in a serialized form. The executor can be configured to

execute the calls of the queue according to a policy defined by the developer, i.e.

priority based, or FCFS, etc.

8- The bytes are sent to the remote server object through the methods of the

RMIHrtObjectOutputStream class.

9- After receiving the parameters of the call and executing it at the server side, the

return object/value is sent back to the client in a serialized form.

10- The component‘s executor assigned to the calling stub, receives the bytes through

the methods of the RMIHrtObjectInputStream, and delivers them to the marshaller.

Chapter 7

-282-

This executor can be the same one that used before for sending the call (in the case of

blocking mode); or it can be another one, i.e. that is created as an executor handler for

the read event that fires when the data arrives to the channel (in the case of non-

blocking mode).

11- The marshaller deserializes the result into a real object/value and either:

a- Saves it in an object known to the client, so that the client can retrieve the

result either:

i. Immediately; in the synchronous mode, if the calling thread is

blocked waiting for it, or,

ii. Later; in a future object pattern mode accessible by the client, when

it, the client, requires it.

b- The executor sends the result in a call-back method to the calling thread.

12- Finally, the calling client receives the result of the call.

As it was the case in the server side, the strategy of assigning and configuring

some of the component‘s properties at the client side must be subject to the

assumptions made in the designing the middleware model. Hence, at the client side, the

communicator component is assigned to be working in a client mode, where we assume

the following assignments for a set of its properties:

- The Number of Server Channels; this property is important even in the client-

mode as it defines the port on which the selector would observe the events occuring on

the registered client channels. But in the client-mode this value has to be set to value of

one as we assume only a single selector is required to observe the events on all the

client channels in the client-mode.

- The Number of Client Channels; the proposed model assumes the creation of a

single client channel for each remote call made by a client object; hence, assigning a

maximum value for this property is dependent on two main factors:

1. The number of client objects sharing this component.

2. The maximum number of concurrent calls made by each one of those client

objects

According to these two factors, assigning the maximum number of clients will

be dependent on both the invocation patterns used by the clients and the threading

model of each client object, e.g. using synchronous invocation pattern with a single

threaded model will enforce each client to use at most a single remote call at any

Chapter 7

-283-

moment; hence, the required number of client channels will be required to be at least

equal to the number of the clients sharing the communicator component.

- Size of Executors Pool; like the previous property, this property is affected by both

the mode of operation of the RMI model, and the invocation patterns used within it. For

example, using a synchronous invocation pattern with objects running as single

threaded, will require this value to be at least equal to the number of clients sharing the

component.

In the next sections we will show the above operations in more detail, in order to

show how this model integrates with the server object model to provide a predictable

RMI model.

7.5 The Modified RMI Protocol

In order to build our real-time configurable middleware, we presented a

modified version of the RMI protocol, this modified version uses our communicator

component at both the server side and the client side, where the main modifications in

this new protocol include:

1- Running the protocol in two phases, initialization phase and execution phase.

2- The use of selectable channels and selectors for networking communications instead

of using the blocking sockets.

3- The use of the communicator component‘s pool of Executors as the executing

elements of the call.

4- The addition of the ability to use either the server-centric approach or the client-

propagated approach for assigning the execution parameters for executing the remote

method at the server object.

5- The support of various invocation patterns other than the synchronous pattern

offered by the Java RMI.

Our modified RMI protocol is divided into four main stages; Handshaking,

Message Handling, Parameters Retrieval and Assignment, and finally Call Execution.

In the following sections we will discuss the basic operations executed by both the

client and the server in each stage in more details.

7.5.1 Handshaking

This is the first stage in the RMI protocol, where the client and the server

exchange messages to check the compatibility of the calling client and the called

Chapter 7

-284-

server, in order to make the call. This stage starts by the client side that sends the

following identifiers in sequence, see Figure 7-18:

CONFIGURABLE RMI CROSS FUNCTIONAL FLOWCHART

H
a

n
d

s
h

a
k
in

g

Client Server

Key=register(Selector,READ_OP)
encodeOutputPacket

(HEADER,VERSION,PROTOCOL)

Key.attach(this)sendOutputPacket()

receiveInputPacket()

DecodeInputPacketINTO

HEADER,VERSION,PROTOCOL

sendAckPacket()

receiveAckPacket()

isOK

true

false

raiseException

raiseException

isAckOK

true

receiveClientName()

false

sendClientName()

Wait for Client Name

Figure 7-18 Modified RMI Protocol [Handshaking]

- The PROTOCOL_HEADER; this constant is a signature that identifies that this is an

RMI call.

- The PROTOCOL_VERSION; this constant identifies the version of the used

protocol.

- The PROTOCOL_TYPE; this is a type of the RMI protocol in use.

On the arrival of these messages at the server side, the handler thread at the

server side reads them in the same sequence and checks the compatibility with the

corresponding values defined at the server object. If they are compatible, the RMI

protocol sends PROTOCOL_ACK acknowledge constant to the client and it continues

to the next stage, otherwise it raises an IOException.

The main change that we made in this stage is the use of the communicator

component‘s NBDataWriter and NBDataReader to write and read the exchanged

Chapter 7

-285-

constant message at both the client and the server instead of the blocking

DataInputStream.read(), and DataOutputStream.write(). In our protocol, we

assumed that the request handler at the client side writes the three message constants

into its own byte buffer, then it passes it to the NBDataWriter.write() method to write

them as one packet to the server. Hence, on the server side, the server handler will

receive the bytes into its associated byte buffer as a single packet using the

NBDtaReader.read() method, then it will encode the messages into the three original

constants, in order to check the compatibility by comparing them with the values

defined at the server.

7.5.2 Message Handling

The message handling stage is the third stage of our modified RMI protocol. In

this stage an identifying message is sent from the client to the server, to identify the

requested remote method. At the server side, see Figure 7-19, this stage starts with an

intermediate waiting state, in which the server‘s call executor waits for the message to

arrive from the client, that holds information about the required request, in order to

handle it in the next stage. In order to do this, the call executor registers its interest of

the read events that occurs on the channel with the selector, and attaches itself as a

token to the selection key, so that it is notified when the message arrives to the channel.

Once the message arrives from the client to the channel and it is ready to be read, the

call executor is notified to start reading it. Two types of messages are expected to arrive

from the client; otherwise an exception is thrown at the server side, the expected two

message types are:

- PING Message: This message can be sent by the client to check if the server is still

alive or not. The server replies to this message by sending a MSGPING_ACK message

back to the server, and the call executor goes back to its initial state, waiting for the

next client-request.

- MSGCALL Message: That indicates that the client is interested to make a remote

call to one of the methods exported at this server object. In this case the server expects

to receive another message packet that holds information of the required method.

In the case of the MSGCALL message type, once the message packet arrives

from the client to the server, the server decodes the packet into the following:

Chapter 7

-286-

- Method ID:

- Method Hash

- Protocol Magic

- Version

CONFIGURABLE RMI CROSS FUNCTIONAL FLOWCHART[CallHandling]

h
a

n
d

le
M

e
s
s
a

g
e

C
a

llE
x
e

c
u

ti
o

n

ServerClient

sendMessageType

ReceiveMessageType

Key.attach(this)

Key=register(Selector,READ_OP)

WaitForMessageType()

msgType else

Raise

UnmarshalException

PINGMessage

Write

MSGPING_ACK to

Byte Buffer

sendToTheClient
MSG_CALL

waitForMessage

sendMessage and wait

ReceiveMSGPacket

DecodePacketInto parameters

MethodID,MethodHash,ProtocolMagic,Version

ParamsOK

no

Set RCODE=RTURN_NACK

yes

Set RCODE=RETURN_ACK

sendTheMethod’s(Id,Hash) to the ServerRef

Call Exceutor Receives Method InputParameters

CallExecutor Executes The Method

Send Method Parameters

Receive The Result

Send RCODE To The Client

Call Exceutor is waiting

Receive RCODE

RCODE

RETURN_ACK

RETURN_NACK

raiseException

Receive MSGPING_ACK

Message CALL

msgtype

MSGPING

Call Executor returns the result of the Method

Executors and their

Execution Parameters are Assigned

Figure 7-19 Modified RMI Protocol [Message Handling]

These parameters are checked by the server‘s call executor for compatibility

and validity. If the check fails, the call executor sends back to the client a RETURN-

NACK message to inform it of the invalidity of making the call; hence an exception is

raised at the client side. Otherwise, if the decoded parameters are valid, the server sends

Chapter 7

-287-

a RETURN_ACK message to inform the client that it is able to execute the call, so that

the client can start to send the method parameters; if there are any, in the following

stage.

7.5.3 Parameters Retrieval and Assignment

In this stage, the execution parameters including the scheduling, release,

processing group, and memory parameters are loaded and assigned to the executor that

will process the execution of the remote method on the server object. There are three

possible scenarios of the execution in this stage as follows:

1. Fixed Server Centric Parameters; do not load anything and use statically fixed set

of default execution parameters defined for the elements of the server side.

2. Loadable Server Centric Parameters; load the execution parameters from a

configuration file on the server to be assigned later to the processing executor.

3. Client Propagated Parameters; load the execution parameters from the client by

extracting their configuration values from a packet sent by the server, and recreate

objects representing them at the server side.

In our model, we assume that, for scenario 2 and scenario 3 above, transferring

the construction values of the objects instead of serializing the objects themselves is

important, particularly for the client-propagated approach, as using serialization to

transfer them will increase the size of the packet with unnecessary data, as all the

construction parameters have numeric values, which are relatively much less in size

than the size of the objects of the execution parameters and their classes, that have to be

transmitted if serialization is to be used, especially that the classes of these objects

already exist at the server side as long as it supports the RTSJ, which is a principal

assumption in our model. Moreover, none of the classes of the execution parameters

(e.g. ReleaseParameters, etc.) is serializable which means either custom serialization is

to be used to serialize them or their definition has to be changed to make them

serializable. On the other hand, using the construction parameters of the objects

requires theses parameters to be fixed and arranged in a certain predefined order known

to the server, so that it will be able to extract their values when they arrived to it. In our

model we assume the following variable length structure of the packet/file-record that

holds the construction parameters, see an example in Figure 7-21.

Chapter 7

-288-

CONFIGURABLE RMI CROSS FUNCTIONAL FLOWCHART

H
a

n
d

s
h

a
k
in

g
P

a
ra

m
e

te
rs

 R
e

tr
ie

v
a

l
a

n
d

 A
s
s
ig

n
e

m
e

n
t

ServerClient

true

false

Client Propagated

Server-centric

static

isClientPropagated

WaitForPrametersPacket

Assign the Parameters to the Call Executor

LoadFromFile

Rebuilt the Parameters Objects

Parameters

Assignment

Write the following to the Byte Buffer

· SchedulingParameters

· ProcessingGroupParameters

· ReleaseParameters

· MemoryParameters

sendParametersPacket

Receive the ParametersPacket

Figure 7-20 Modified RMI Protocol [Parameters Retrieval and Assignment]

1- The packet starts with a single byte variable, Sequence, that is encoded to represent

a predefined constants that specify the parameters sequence in the packet, e.g. the

constant S-R-M specifies that the packet has scheduling, release, and memory

parameters in sequence and there is no processing group parameters in it.

2- The second element in the packet holds is a short value that specifies the remaining

length of the packet.

3- After that, each parameter included in the packet is represented in the packet by two

basic elements:

a- The Type of the parameter. It is one of a set of predefined constants that refer

to the type of this parameter.

b- The Values of the constructing values of the parameter. These are a sequence

of the numeric values that can be used to construct the parameter object, where

each value can have sub-values and each sub-value takes a size of the packet

equal to the size defined for it in the parameter class.

Chapter 7

-289-

For example, in the packet shown in Figure 7-21, the scheduling parameters are

represented by its type constant PRI which refers to Priority Parameter Type, then the

Priority value of the single numeric construction constant of this parameter follows its

type. Whereas, in the same packet, the release parameters type is APER, which refers

to aperiodic parameters and it is followed by its two numeric constructing values cost,

and deadline where each one of the values is represented by two sub-values, which

represent the milli-seconds and nano-seconds parts of respectively.

In order to build the above packet structure during the run-time at the client

side, the call executor has to know what the parameters that will be sent are, and what

their values are. Several scenarios can be used at the client side to get these parameters

objects, examples of these scenarios are:

- The parameters can be retrieved from the execution parameters of the calling

schedulable object itself by using the getParametersTypeParameters() family of

methods, e.g. retrieving the priority of the calling schedulable object to be the priority

of the call executor at the server thread, assuming similar priority levels at both sides of

the remote call.

- The parameters can be loaded from external static file at the client side, which

define parameters‘ values for each individual remote method.

- The parameters are passed with the method parameters to the stub‘s defined method

when the remote method is called, e.g. as the first 4 parameters of any call, in this case

the stub generation has to be able to retrieve the parameters assigned by the caller and

isolate them from the remote method parameters, then it will be responsible for build

the packet of this stage, then later it passes only the method parameters to the remote

method.

In any of the above scenarios, the following algorithm can be used to build the

parameters packet at the client-side:

- The RMI configuration is checked to see the configured sequence of parameters,

and its code is written as the first byte of a byte buffer

- The parameters defined in the sequence are retrieved in order by one of the above

approaches.

- The type of each parameter is detected, and its required length is calculated.

- The total length of the written values plus their types constants are calculated and

saved in the packet as the remaining length of the packet; LENGTH.

Chapter 7

-290-

Priority msecLEN InitialSize MaxSizemsec

Priority

 Parameter

Value

Aperiodic Parameter

Values

LTMemory

Parameter Values

PRI

Type of

Scheduling

Parameters

APER

Type of

Release

Parameters

nsec

Cost Deadline

LTM

Type of

Memory

Parameters

nsec

LENGTH

S-R-M

Sequence

Figure 7-21 Example of the Parameters Packet

Chapter 7

-291-

 Each type constant is followed by values (or sub-values) that are written to the byte

buffer.

- After building the packet, it is sent using the call executor through the channel over

the network to the server. At the server side, a reverse process is made to rebuild the

parameters and assigning them to the required call executor, which will execute the

method call. The following algorithm represents this process:

1. The first 3 bytes of the packet is read, to check the sequence and the length.

2. The sequence is decoded to discover the received parameters types and their

order.

3. The next LENGTH bytes are read, and then these bytes are decoded as follows.

a- A byte that represents the type of the parameter is decoded according to its

sequence order, hence, the length of its corresponding construction values

(and their sub-values), is retrieved.

b- The construction values (and their sub-values) are read.

c- An object is created of this parameter type and initialized with these

construction parameters.

d- The steps a-c above are repeated for all the next parameters in the sequence.

4. After finishing the reconstruction process, the created objects, are assigned to the

call executor that executes the call on the server.

7.5.4 Call Execution

The call execution stage is the most important stage in the protocol, in this

stage, as seen in Figure 7-22, the client stub sends the set of the parameters that it

receives from the client object/component to the remote machine in order to pass it to

the remote method of the server object which is required for execution. According to

our proposed model, an executor of the communicator component is used at the client

side to send these parameters. On the other side, the server side, a call executor is

responsible for receiving these parameters and passing them to the required method on

the server object/component; then, it runs this method and waits for its returned result

to return it back to the calling client object/component when it is ready. Once, the result

arrives to the client machine, the client object/component, which called the remote

method, in turn receives the result through an executor of the communicator

component‘s to which it is attached.

Chapter 7

-292-

From the above, we can see that in this stage the major elements contributing in

it at both the server side and the client side are the communicator component executors.

However, in our model of this component, we assumed different configuration of the

executors running within it that can lead to different patterns of executions. Hence, in

the following sections we need to study the effect of the different configuration of the

executors on both the server side and the client side of the proposed real-time

middleware model. Moreover, we will see how we can develop different invocation

patterns at the client side, and how these patterns can be integrated in different

scenarios with the RTSJ memory model.

CONFIGURABLE RMI CROSS FUNCTIONAL FLOWCHART[CallHandling]

P
a

ra
m

e
te

rs

R
e

tr
ie

v
a

l
a

n
d

 A
s
s
ig

n
e

m
n

t
C

a
llE

x
e

c
u

ti
o

n

ServerClient

Receive The Result

Send Method Parameters Call Exceutor Receives Method InputParameters

Call Executor returns the result of the Method

CallExecutor Executes The Method

Figure 7-22 Modified RMI Protocol [Call Execution]

7.6 Models and Patterns of Executions in the RT

Middleware

As mentioned in the previous section, the call execution at the client side and

the server side is done using the executors provided by the proposed communicator

components, and as this component can be configured to provide multiple execution

patterns during its execution phase; hence, different models of execution can be used at

both the server and the client side of our proposed real-time remote communication

middleware. In addition, as both the memory model and the scheduling model of the

RTSJ and the complexity managing them has led to a set of patterns that can be used to

overcome this complexity then, using and integrating these patterns within the

implementation of the real-time remote communication model provides a configurable

architectural model that can be built and run using these patterns and models.

Chapter 7

-293-

7.6.1 Models of Call Execution at the Client Side

The call execution at the client side cannot be discussed without considering

the different possible invocation patterns that can be used; this is because in our model

the actual invocation of the call is done by the executor(s) provided by the component

and they are affected by how the component is configured to run these executor(s).

Hence, according to the configuration of the number of executors running within the

component to serve the remote calls made client objects, we can classify the following

different models.

A- A Single Executor/Stub Model

In this model the single connect executor which is created in the communicator

component to process the handshaking protocol with the server object/component

continues its execution to handle all the calls that come from a single stub during the

execution stage. This executor will be responsible for the execution of all the remote

methods initiated from all clients to a certain remote server object/component which

this stub acts as a proxy to access its methods. This model limits the concurrent access

to the server object/component as only a single executor should process all the remote

calls targeting this server object/component; hence, this model can cause unpredictable

delay at the client side due to the blocking of the calls while they are waiting for the

executor to be free to process them. In this model the execution of the calls is done

sequentially, i.e. all the remote calls that have to be done through a single stub are

saved in a call-queue associated with this stub and the executor processes these calls

sequentially where it processes them according to a certain criteria, e.g. on the priority

of the caller, or its arrival time, etc. In order to process the remote calls they can be

represented as a byte array of objects that is processed by the executor

Due to it, the unpredictability that results for processing the remote calls

sequentially, we assume that this model best suits systems that do not need concurrent

access to remote objects.

B- Multiple Executors Model/Stub

In this model, in order to support parallel and concurrent processing of the

calls, the communicator component provides more than one executor to process the

calls along the lifetime of the call; two sub-models of this model can be built:

- Single Executor/Call; in this mode, the processing of each individual remote call

through a single stub, is executed by a separate executor from the moment the call is

ready to start untill its result is returned. This can be built into our communicator

Chapter 7

-294-

component by enforcing each instance of the write executor, that is activated within the

communicator component to handle the readiness of the channel to start writing a call

through it, to process all the operations sequence required to execute the call remotely.

Although this model assumes parallel execution of multiple concurrent calls, but, from

the single call point of view, it is still working in a blocking mode as the write

executors used in this model cannot do useful work, while waiting for some data from

the server object. Hence, it still has many of the cons of the previous model that can

limit its use.

- Multiple Executor/Call. In this model, the created instances of the read executors

and write executors, that are created over the channel on which the call is sent to the

server as a result of readiness of read and write events on this channel, these executors

collaborate together to process the requested remote call over the network. In this

model, the logic of the call processing is defined as a state machine where the state

machine of a single call is attached to the channel that is processing it, so that the

executors can do the following:

1. Retrieve the state machine associated with the channel.

2. Validate the next state in the state machine and progress the state machine to

be ready for next state.

3. The executor returns back to the pool of executors.

As seen from the above sequence, the executors do not block during the remote

call processing, and they can do some other useful work. So, this model looks to be

working as event-based system in a non-blocking mode. This model is considered to be

much more suitable for real-time systems as its design does not include any blocking

that can make the system unpredictable.

7.6.2 Call Execution at Server Side

According to the design of our communicator component model, the RMI

operations have to be executed from within the runnable logic(s) assigned to the

executors. However, in the RMI-HRT protocol the executor should forward these calls

to the UnicastServerRef object, which in turn forwards them to the skeleton that

executes the calls locally. To provide this RMI functionality to the executors, an

extended class of the required executor type has to be created to include the reference

to the server‘s UnicastHrtServerRef object, e.g. the rt_BAEH_RMIHandler class in

Figure 7-23 represents an extended class that is assigned to the communicator

component‘s executor type property.

Chapter 7

-295-

rt_BAEH_Handler

rt_BAEH_RMIHandler

#UnicastHrtServerRef serverRef

+setServerRef(UnicastHrtServerRef sref):void

+getServerRef():UnicastHrtServerRef

Figure 7-23 RMI Executor Class

According to our model, at the beginning of this stage, the call executor at the

server side will be still running using the same execution parameters that it has been

used since the request arrived to the server. So, we assume that according to the

configurations of the component, as it was the case in the client side, the following

scenarios can happen during this stage:

1. The same call executor will continue to handle the call.

2. A new call executor(s) will handle the call.

These scenarios can lead to different modes of operations of our real-time remote

communication model. In the following sections we are discussing these modes.

A- Synchronous RMI Server

To build RMI server object running this mode, our communicator component

uses a scenario in which one executor, the acceptor executor, will be responsible for

executing the logic of all the RMI operations from the time the call is accepted, untill it

returns the result to the client, i.e. the communicator component will be configured to

be running in blocking mode, while the read and write events do not initiate separate

executors, but when they occur, the acceptor executor is notified to continue executing

the logic assigned to it, where the logic running by this acceptor executor is assumed to

be divided into sections corresponding to the different stages of the call handling,

where each section is preceded by blocking waiting statements to control the execution

of these sections. The pseudo code of the acceptor executor‘s logic in the synchronous

RMI server model is shown in Figure 7-24, where all the stages (e.g. Handshaking

stage), and their sub-stages that are handling the call are encapsulated in sequence in a

single logic, where the transfer from a stage, or sub-stage, to a next one is controlled by

the arrival of bytes to the channel which results in a read readiness event that notifies

the executor, which in turn moves to execute the next stage.

Chapter 7

-296-

Start

+Do-Handshaking

- Read MSG1

- DecodeAndCheck MSG1

- Prepare Reply of MSG1

- Send Reply of MSG2

- Attach this executor to the

channel

- Register Read Event on the channel

- WaitForReadEvent

- Receive MSG2

- DecodeAndCheck MSG2

- Prepare Reply of MSG2

- Send Reply of MSG2

- Attach this executor to the

channel

- Register Read Event on the channel

- WaitForReadEvent

- Receive MSG3

……….

- Attach this executor to the

channel

- Register Read Event on the channel

- WaitForReadEvent

+Send_Execution_Parameters

- Send The Parameters Packet

- Attach this executor to the

channel

- Register Read Event on the channel

- WaitForReadEvent

+Send-Method-Parameters

- Send the Serialized Parameters

- Attach this executor to the

channel

- Register Read Event on the channel

- WaitForReadEvent

+Receive-The-Result

End

Figure 7-24 Pseudo code of the logic of Synchronous RMI Server

The communicator component can be configured to execute the logic defined

for the handshaking stage as defined in the above pseudo code easily by making it to

work in synchronous mode as shown in Figure 7-25, where in the synchronous mode a

reference to the RMIExecutor is passed at the end of both the non-blocking read and

write operations to the NBDataReader/NBDataWriter object as an attachment, while the

executor blocks waiting for the next registered read event, so that the next time, the

server component receives a new read event from the same channel, it notifies the

same executor to continue processing the RMI handshaking logic.

In the case of handling the call itself, the same technique is used; however, in

this case the RMI Protocol‘s logic of the RMIExecutor directs the execution to the

skeleton through the UnicastHertServerRef object. The deserialization and

serialization operations run by the skeleton are themselves running as a sequence of:

Chapter 7

-297-

ReadCallParameters=>WaitForCompletion=>

DecodetheCall=>ExecutetheCall()=>WriteReturnPacket

This sequence is similar to the handshaking sequences, with the difference that the

packet size for the handshaking sequence is very small, but it is repeated more than

once while, in the case of the serialization/deserialization sequence, the packet size is

relatively much larger as it is dependent on the size of both the objects and the classes

of the received remote method parameters and the returned result.

epoll()clientChannel RMIExecutor1NBReaderNBWRITERclientChannel

sendPacket()

readPacket(executor)

wait()

decodeandCheckPacket()

statrt()

return Buffer

decodeandCheckPacket()

writePacketFromBuffer()

readPacketIntoBuffer()

prepareReplyPacket()

writePacket(executor)

waitforPacket()

sendPacket()

ReadEvent

wait()

Client Side Server side

wait()

Figure 7-25 One Executor for all Requests Sequences

B- Non-Blocking RMI Server Model

The main difference in this mode, as shown in Figure 7-26, is the assumption

that each request sequence of the RMI‘s protocol operations is executed by a different

executor, this is to avoid keeping the same executor blocking between two consecutive

request sequences.

According to this assumption, the logic of the server should be split among

these executors, hence, the runnable logic of this server is best implemented as a state

machine as shown in Figure 7-26, where the operations of the server are represented as

states [STEP1, STEP2, ….] and the execution of these states are dependent on a control

variable nextState which determines the state to be executed. This state machine logic

is executed by all the executors that are used for handling the call at the server side;

Chapter 7

-298-

hence, each time the logic defined by this state machine is executed by one of the

executors it executes one state and before exiting, it registered the expected next event

for the next state and also it sets the value of the nextState variable to the next state

and attaches the runnable object that holds the code of the state machine to the channel

used by this call, so that when the registered event occurs on this channel, its

corresponding executor handler is started to handle the event by entering the attached

runnable logic that defines the state machine, where it will execute the next state as

defined by the nextState variable.

Start

If(nextStep=STEP1)

+Do-Handshaking

- if (nextStep=STEP1-1)

- Read MSG1

- DecodeAndCheck MSG1

- Prepare Reply of MSG1

- Send Reply of MSG2

- Set nextStep=STEP2-2

- Attach the logic of this executor to the

channel

- Register Read Event on the channel

- exit

- if (nextStep=STEP1-2)

- Read MSG2

- DecodeAndCheck MSG2

- Prepare Reply of MSG2

- Send Reply of MSG2

- Set nextStep=STEP1-3

- Attach the logic of this executor to the

channel

- Register Read Event on the channel

- exit

- if (nextStep=STEP1-3)

- Read MSG3

……….

- Set nextStep=STEP2

- Attach the logic of this executor to the

channel

- Register Write Event on the channel

- exit

If(nextStep=STEP2)

+Send_Execution_Parameters

- Send The Parameters Packet

- Set nextStep=STEP3

- Attach the logic of this executor to the

channel

- Register Write Event on the channel

- exit

If(nextStep=STEP3)

+Send-Method-Parameters

- Send the Serialized Parameters

- Set nextStep=STEP4

- Attach the logic of this executor to the

channel

- Register Write Event on the channel

- exit

If(nextStep=STEP4)

+Receive-The-Result

End

Figure 7-26 Pseudo Code of the Runnable logic (State Machine) of the Non-Blocking

RMI Server mode

Chapter 7

-299-

To run the RMI server object in this mode, see Figure 7-27, the communicator

component is configured to run in proactive mode. In this mode, as in the synchronous

mode, a reference to the RMIExecutor is passed to the NBDataReader object as an

attachment and the executor blocks waiting during the reading part of the operation.

However, in the writing part of the operation sequence, a reference to the Runnable

logic that is assigned to the RMIExecutor, is passed to the NBDataWriter object as an

attachment in order to be registered with the channel. In the same time the current

executor finishes its execution and returns back to the executors‘ pools. Hence, when

the read event of the next request sequence occurs at this channel, the communicator

checks the attachment, and as it is a Runnable object, it retrieves a new executor from

the executors‘ pools and assigns this runnable logic to it, and then it starts its execution.

In order to make the new executor continue the execution of the runnable logic after the

last point executed instead of restarting the execution. The logic of the assigned

runnable object must be defined as a state machine, where each request sequence is

preceded by a check of a request-flag that determines if this request has been executed

or not. All the requests-flags are initially unset, and after finishing the execution of

each request its associated request-flag is set.

Chapter 7

-300-

epoll()clientChannel RMIExecutor1NBReaderNBWRITERclientChannel

sendPacket()

readPacket(executor)

wait()

decodeandCheckPacket()

statrt()

return Buffer

decodeandCheckPacket()

writePacketFromBuffer()

readPacketIntoBuffer()

prepareReplyPacket()

writePacket(runnableLogic)

waitforPacket()

sendPacket()

sendPacket()

readPacket(executor)

RMIExecutor2

ReadEvent

ReadEvent

w
a

it
()

[W
a

it
in

g
 I
n

 t
h

e
 E

x
e

c
u

to
rP

o
o

l]

start()

Client

side
Server side

Figure 7-27 One Executor per Request Sequence

Chapter 7

-301-

7.7 Call Handling of the Remote Method in the Stub

In our proposed real-time middleware, the invocation of the remote method is

initiated on the client side of the model, and it is done through a modified stub that acts

as a proxy of the remote object/component, which exists on the server machine and

contains the actual remote method, where this modified stub is created using a modified

version of the rmic tool from the interface that describes the remote methods offered on

this remote server object as explained before. The modification of the stub was required

to support our proposed implementation of the Poll Object invocation pattern within the

stub. In the proposed modified model of the stub, we assume that to optimize the model

for real-time systems, a Half-Asynch/Half-Synch pattern is adopted where the calling

threads in the client objects that requires the execution of the remote methods on the

server object(s), do their calls to the remote objects asynchronously by delivering these

calls to the stub, which in turn assigns one or more of the executing threads to execute

the call synchronously to the remote method on behalf of the clients, so that the call is

made asynchronous by the client object‘s threads, but it is processed by the stub

synchronously. The original model of the execution as presented by Java RMI and

RMI-HRT was a synchronous model in which the calls are synchronously and directly

processed by the client object‘s thread, which considers the stub object as a passive

object that converts the local calls made by the client to remote calls over the network.

Whereas, in our model, we assume that the stub is an active element that acts as an

agent that processes the remote calls on behalf of the client. In the design of our

proposed model of the stub, we considered the following:

- Due to the nature of the remote method call that requires creating temporary local

objects locally on the client side to be used by the proxy to process the remote methods,

a predictable memory model that can manage the allocation and de-allocation of these

temporary objects is required. This memory model should not just manage the memory

efficiently, but also it has to be user friendly in order to ease the use of the remote

method calls within our model, especially with the use of the memory model of the

RTSJ, which has a lot of restrictions and rules that the developer has to consider when

he builds his application in this environment.

- The modified stub should support the use of our proposed communicator

component. As this component can be shared among several stubs on the same

container. So, the component should be attached externally to the stub object model and

not embedded within it, to maximize the benefit of using the communicator component.

Chapter 7

-302-

Temporary Memory

[Remote Call 1]

Temporary Memory

[Remote Call 2]

Temporary Memory

[Remote Call 3]

Client Component 1 Client Component 2

T
h

re
a

d
 1

T
h

re
a

d
 2

T
h

re
a

d
 3

Communicator Component

Remote Call

Running Queue

Remote Call

Ready Queue

Temporary Memory

[Remote Call 4]

Client Component 3

T
h

re
a

d
 4

Temporary Memory

[Remote Call 5]

T
h

re
a

d
 5

5 1 4 2 3

Executor

Thread

B

Executor

Thread

A

T
h

e
 S

tu
b

 o
f

A

R
e

m
o

te
 O

b
je

c
t

CH

A

CH

B

Remote Server Object

NETWORK

CH

X

Figure 7-28 Internal Stub structure

To achieve the above requirements, we have developed the design shown in

Figure 7-28, which describes the basic elements that is used for processing the method

invocation in the stub. These elements are:

- Call’s Temporary Memory Areas; we assume that each call is executed within a

certain memory area, where this memory area holds and manages the temporary objects

created for the call, along the lifetime of the call. In the following sections, we will

present the different models of this temporary memory area.

- A Ready Queue of the Temporary-Memories; this queue holds all the instances

of the temporary memory instances that are created by the client objects to hold the

remote methods‘ data but have not been processed yet by the executor(s).

- A Running Queue of the Temporary-Memories; this queue holds all the instances

of the Temporary Memory instances that the executor(s) have started executing them.

- A reference to the communicator sub-component; the communicator sub-

component has to be attached to the stub as it represents the interface through which the

stub can communicate remotely with the server objects, the communicator provides

both the selectable channels that act as the end points used for the networking

communication, and the executor(s) which are used for processing the calls saved in the

temporary objects over the network to be executed on the remote servers, and it is

responsible for receiving their results and for saving them in the temporary objects, so

that the calling objects can use/check them when required.

Evaluating the Internal stub structure

Chapter 7

-303-

 As mentioned before, the stub is created within the forked memory model of the

client component, so the stub can benefit from the services provided by the container to

build the above structure. For example, the stub can use a specialized instance of the

scoped memory life manager sub-components to create the ready queue that holds the

memory. This is because the function of the queue of the scoped memory life manager

is the same as the function of the ready queue, as both hold scoped memory areas that

have no thread running in them. This queue can define a certain policy for getting a

certain temporary memory from it, to process the call data saved within it by one of the

executors; for example, using a priority queue allows the highest-priority-first policy to

be used to get the call with the highest priority if the calls are defined with defined

priorities.

 On the other hand, the ready queue that holds the temporary scoped memory

areas which are being processed, i.e. there is one executor processing the call data

saved within them. So, this queue needs not to use the scoped memory life manager

component, as it is guaranteed that these temporary memory areas will stay alive as

there is one executor running within them, where this memory area is sent back to the

ready queue, if the executor left this temporary memory area without finishing the call

processing, e.g. the executor is waiting for the return value in a non-blocking mode.

So, this queue acts as a passive component attached within the forked memory model

of the client component, this passive component is created within the same memory

area in which the temporary memory areas are created, or in a lower memory area to

ensure that it can hold references to them. So, the container memory area is a

guaranteed place for allocating this passive component, i.e. its CMA is the same as it

ContMA, regardless of the place of allocating the stub itself.

 The allocation of the temporary memory areas themselves can be from within

the container memory area to ensure that they can be accessed by the executors that

originate themselves from the container memory area. Also, as these temporary

memory areas are used to hold the call‘s data through this stub then the maximum

number of these memory areas is equal to the total maximum number of concurrent

calls defined for the component. Hence, as the running queue and the ready queue hold

references to these memory areas only, and they hold these references exclusively,

then, the maximum size of both queues is bounded by the maximum number of the

concurrent calls allowed to be made through this stub, which is, in the case of a single

stub/component is bounded by the total number of executors within the container.

Where in the case of using multiple stubs/container the total size of all the queues of all

the stubs will be bounded by the total number of executors in the container that holds

all these stubs.

Chapter 7

-304-

 As the objects that hold the temporary scoped memory areas are created within

the container memory area, ContMA, or any memory area accessible by the stub object

and the executors, and as these objects are created dynamically with each new call

made through the executor, then in order to bound their size, these objects have to be

reused. So, allocating these scoped memory areas within the component has to be

made from the reusable object allocator. This requires the definition of a wrapper class

with no-args in order to wrap the scoped memory objects as the reusable object

allocator sub-component accepts only classes with no-args. For these reusable memory

objects, we have the following options for creating the reusable memory type/class to

be used by the reusable object sub-component:

- If all the calls require identical size for their data allocated in these memory areas,

then a single wrapper class is required for use by the reusable memory allocator

subcomponent to encapsulate a scoped memory instance of this size.

If different method calls can be made through this stub, i.e. the general case, then we

can either get the maximum memory required for these calls and use this size to create

the encapsulated scoped memory area instance within the wrapper class, or if there is a

limited number of calls, we can create a separate wrapper class for each with an

encapsulated scoped memory area with the corresponding maximum size/call.

 The above memory requirements can be used for off line analysis for calculating

and checking the predictability of the memory requirements in the zero state (without

logic) of the client component. But, this is not enough for calculating the worst case

memory size and the memory predictability for any component used in the middleware,

especially when using Java libraries within the components, because the Java libraries

are built without consideration of the RTSJ, and they are assuming the use of the

garbage collector for memory management. This is the case with the communicator

sub-component that is used both in the client components and the server components,

because this component is using the Java NIO packages. So, techniques such as code

analysis of the used libraries and calculating the worst case memory sizes of the

component dynamically at run time are important.

7.8 Representation of the Remote Call Data

In order to support the Poll Object pattern in our model, i.e. the non-blocking

calls, we assume that several calls can be imitated concurrently from the client object‘s

threads. Hence, to be executed by the communicator component, the parameters of

these calls and their signatures and their return result have to be transferred between the

caller thread and the executor thread to process them. However, it is not necessary that

the execution of the calls to takes place immediately, as their might be other remote

Chapter 7

-305-

calls are being processed. Therefore, processing these calls requires these calls to be

represented in a form that enable enqueuing and dequeuing them. In the same time, as

these calls will be transferred over the network, it will be more efficient if they are

buffered before sending them, in order to optimize the performance, Moreover, they

must have additional information associated with them that identify their processing

and identification requirements. Then, these requirements have to be taken in

consideration when designing the format that represents the remote call‘s data.

In this section we discuss a proposed model of representing the remote calls,

and how they can be processed. In our model, we assume that each remote method call

is encapsulated and decoded within a record/packet that may has the following

structure, see an example in Figure 7-29:

1- Method Identification Parameters. This is the essential part of the call decoded

record as it identifies the called method and its structure, and how the other parts of the

decoded call record are structured, and it defines how this method would be processed

by the stub. Hence, we assume the following elements constitute this part:

a. Method ID. This represents the id of the method within the object.

b. Method Hash. As defined in the RMI wire protocol.

c. Protocol Magic. As defined in the RMI wire protocol.

d. Version. The version of the protocol.

e. LEN. Total Length of the packet.

f. EPSM. serialization method of the Execution Parameters in the Call Record.

This can have one of the following values:

i. [0] => No Execution Parameters.

ii. [1] => Simplified-representation.

iii. [2] => Normal Java Serialization.

iv. [3] => Predictable Serialization.

g. MPSM. Method used used to serialize the Passed Parameters to the Remote

method in the Call Record. This can have one of the following values:

i. [0] => Predictable Serialization.

ii. [1] => Normal Java Serialization.

The diagram in Figure 7-29 shows that these parameters come at the head of the call

decoded record, to specify that the call is using client-propagated model, and it is using

the predictable serialization method for representing the parameters.

2- Execution Parameters of the Calling Thread. The execution parameters are an

optional feature within this record, and it is required only when the real-time

Chapter 7

-306-

middleware is configured to use a client-propagated execution parameters model. These

parameters are represented in the record using the simplified approach that we have

presented earlier in this chapter. The diagram in Figure 7-29 shows how the example

previously given in this chapter for the execution parameters are located in the call

decoded record.

3- Method Parameters. These are corresponding to the parameters that are passed to the

remote method from the calling object. In our model, these parameters are decoded in

the record structure in a serialized form, e.g. using the predictable serialization

algorithm presented in (Tejera, Alonso et al. 2007) and discussed earlier in this chapter.

The length of this portion is variable and, and it is even required only if the definition

of the remote method assumes the existence of passed arguments. The diagram in

Figure 7-29, shows how these parameters can be attached within the call decoded

record.

Serialized

Passed Parameters to

The Remote Method

Method Identification

Parameters

Serialized

 Execution Parameters of

The Calling Thread

Priority msecLEN InitialSize MaxSizemsec

Priority

 Parameter

Value

Aperiodic Parameter

Values

LTMemory

Parameter Values

PRI

Type of

Scheduling

Parameters

APER

Type of

Release

Parameters

nsec

Cost DeadLine

LTM

Type of

Memory

Parameters

nsec

LENGTH

S-R-M

Sequence

LEN EPSM

Execution

Parameters

Serialization

Method

LENGTH

MID

MethodID

...

-a-

MHash

Method

Hash

PM

Protocol

Magic

Ver

Version

MPSM

Method

Parameters

Serialization

 Type

Figure 7-29 Decoded Format of the Remote Call

Chapter 7

-307-

7.9 Example: The Future Remote Call Pattern

In order to build a stub that supports the invocation of the remote methods as

future methods, it is required to extend the method invoker pattern presented in Chapter

5, to support the Future Method pattern for the remote calls. So, in this example, we

present how our framework can be used to build the FutureCallBridge class that

extends the MethodBridge class developed in Chapter 5, to support the operations

required for this pattern. In the following, we present this class, the operations it offers,

the inner elements that support these operations, and how it can be used and integerated

with the client-server model developed in section 6.5.

FutureCallBridge class: This class represents the Future Call pattern; as mentioned

above, this pattern has some similarities with the Method Invoker pattern, presented in

section 5.8; then, to implement this pattern using our framework, we extended the

MethodBridge class to support the specific requirements of this pattern. To provide an

implementation of this pattern, we present in the following the main features that we

proposed in this pattern.

1- The method call is not executed directly, but its parameters are saved in a passive

component created by the caller.

2- The actual execution of the method is made by a specific handler; this handler is

dedicated to execute any future call made by any component in the container enclosing

this component.

3- The future passive components holding the future calls are kept alive using the Dual

Fork thread memory lifetime controller running the container memory area.

4- The dual fork hold any future component until its returned object, which results

from executing it by the dedicated executing handler, is no longer needed by the calling

component.

From the above, we can see that there are aome modifications required in the

implementation of the remote future call pattern from the method invoker pattern, these

modifications are.

1- A class is required to build the passive Future component. In our example, we use

the FutureObjectComp class for this purpose.

2- Invocation methods to suppor the internal creation of the future component, and to

support the processing of the call lifetime, where this lifetime is divided into the four

different operations that has to be supported by this class, these operations are:

Chapter 7

-308-

a. Saving the call data in the future component, the saved data includes the target

component name/reference, the target object, the method parameters, the

memory index, and the target memory level in which it will be executed in the

target component.

b. Process the call by the dedicated handler; this can be either by executing the

actual required method on the target component, in case of the local call; or, in

case of the remote call, by the serialization of the objects holding the saved call

data, then sending them over the network connection to the target remote

component.

c. Writing the Result of the call to the Future component once it is available. In the

case of local methods, we assume the result object is held in the container; hence,

the reference reserved in the multi named-object portal of the future component

for the return object, is updated to refer to the result object. On the other case, i.e.

if the call is remote; then the handler receives the returned object In a serialized

form; hence, it has to deserialize these bytes first in order to get the parameters of

the returned object and use it to reinitialize a reusable instance of the result

object retrieved from the container‘s object pools.

d. The calling component can access the result object, as it is saved in the container

memory area, by retrieving its reference from the future component pattern.

In the following sections, we discuss these required modifications in details; then, we

present how this pattern is used in the example presented in the last chapter.

7.9.1 The FutureObjectComp class

The FutureObjectComp class extends the ComponentCls class, and it acts, as stated

above, as a passive component in which the future call object and data are saved. This

class has a definition of the following:

_level: This is used to identify the scoped memory level in which the future object is

saved.

_isResultAvailable: This indicates if the result of the call is available or not yet.

_caller: This is used to specify the calling component.

futureCompCMA: This is a static member that identifies component memory area of this

future component.

isResultAvailable(): An accessor method to check if the result is available or not.

Chapter 7

-309-

setResultAvailable(): This method is called when the result is saved within the

object, to specify that the result is ready; once the result is set ready, a notification is

made to activate any thread waiting for this result.

getResult(): This method is used to retrieve the saved call result if it is ready;

otherwise, the calling thread waits for the result to be ready, the implementation of this

method is presented later in this example.

setParameters(): This method, shown next, is responsible of initializing the future

object component, then, it adds it to the assigned container.

public void setParameters(final IContainer container, final String FCompName, final IComponent

caller, int level,

 final Class MemType, final int nlevels, final LTMemory initMem, final long [] InitSzs, final

long [] MaxSzs,

 final IComponent ParentComponent) {

 _level = level; //assign the required level

 _caller = caller; //assign the caller

 init(FOBJCMA, 10000, MemType, InitSzs, MaxSzs,

 DualFork.class); //initializes the component

 setComName(FCompName);//Assign a name for the component

 container.addComponent(this); //Add the component to the container

// FutureObjectComp.this.addTasksConfigurationClass(new ProcessCallRequest()); //

 _isResultAvailable = false; //Reset the result flag

 }

attach(): This method is responsible for attaching this future component to the given

container, This requires the execution of the encapsulated method provided by the

PinFComponent class, described next. To create a reusable instance of this class, a

reference to the reusable object allocator is retrieved from the memory area of the

container, then, an instance of the PinFComponent class is retrieved using this

allocator; this instance is assigned the current future component as its parameter, and

the method is executed by calling the executeInArea() method in the memory area of

the container. After that, the stack handoff of the current future object is initialized with

the memory parameters of this future objects and assigned its logic to be the one

defines in this future object.

 public void attach(IContainer container) {

 LTMemory ContMA=(LTMemory)(container.getContainerMA());//Get the container memory area

of the caller

 IObjectAllocator allocator =

 container.getContainerObjectAllocator(); //Get the object allocator of the caller

 PinFComponent PinnerMethod=(PinFComponent)allocator.getInstance(PinFComponent.class);//

get reusable instance of the pinner method

 PinnerMethod.setParameters(this);//initialize the pinner method

 ContMA.executeInArea(PinnerMethod);//execute the pinner method in the container MA

 _stackHandOff.setParameters(LTMemory.class, 3, new LTMemory[]{ContMA, futureCompCMA}, new

int[]{5000}, new int[]{5000}, this);//Assign parameters of the associated Stack handoff

 }

In addition to the above methods, the FutureObjectComp class includes the

inner class PinFComponent; this class acts as an encapsulated method, where the logic

Chapter 7

-310-

of this method, which is defined in the run() method of this class, accesses the multi-

named portal of the container of the specified future component, then it retrieves, using

the reserved name "READYFUTURECALLS", a reference to the scoped memory lifetime

controller of the ready future components from this portal, to use it as a memory pinner.

Finally, this memory pinner is used to pin the component memory area of the assigned

future component.

static public class PinFComponent implements Runnable

{

 FutureObjectComp fComp;

 public void setParameters(FutureObjectComp futureComp){

 fComp=futureComp;

 }

 public PinFComponent(){}

 public void run(){

 final IMemoryModelControler

pinner=fComp.getCaller().getContainer().getMemoryController("READYFUTURECALLS");//Get the memory

controller of the Future Calls

 pinner.pin(fComp.futureCompCMA);//pin the memory

 }

}

7.9.2 The Invocation/Access Operations

To implement the four types of invocation/access operations made during the

lifetime of the future component, a set of methods and classes have been defined,

required for initiating the call, where in general each one of these operations involves at

least the following:

1. A static front-end method within the FutureCallBridge class, to be used by the

caller for building the future call bridge.

2. An internal method in the FutureCallBridge class, to initialize the parameters and

the logic of the corresponding hand-off method defined for this operation in the

FutureStackHandOff class, which extends the inner StackHandOff class to support the

added new hand-off operations.

3. A method that executes the hand-off operation within the scoped memory stack of

the future component. This method is defined in the inner class FutureStackHandOff

class.

4. A class that implements the IStackLogic class to define logic of this operation,

where this class is defined as an inner class of the FutureStackHandOff class. The

assignment of a logic class to a certain operation is made using the overloaded method

FutureCall.useLogic() defined here:

Chapter 7

-311-

public void useLogic(Class LogicCls) {

 IObjectAllocator allocator =

 FutureCallBridge.this.caller.

getMemModel().getContainerObjectAllocator(); //

 if (slogic != null)

 allocator.recycle(slogic);

 if (LogicCls.isAssignableFrom(GetResultLogic.class)) {

 slogic = this.new GetResultLogic();//we may use the allocator to create

the stack logic object to avoid memory leaks

 } else if (LogicCls.isAssignableFrom(SetResultLogic.class)) {

 slogic = this.new SetResultLogic(); //create the stack logic object

 } else if (LogicCls.isAssignableFrom(PrepareCallBytesLogic.class)) {

 slogic = this.new PrepareCallBytesLogic();//create the stack logic obj

 } else if (LogicCls.isAssignableFrom(HandOffParamsLogic.class)) {

 slogic = this.new HandOffParamsLogic(); //create the stack logic object

 } else {

 super.useLogic(LogicCls);

 }

 setStackLogic(slogic); //set the ref of stack logic in this class

 }

In the following, we define the methods and classes defined for each one of the

four types of invocation/access operations of this pattern.

A- Initating the Future Call

The call is initiated by the caller to start the call. It involves the following

elements:

1- FutureCallBridge.makeFutureCall(): This is a static front-end method, similar to

the MethodBridge.makeCall() method in the method invoker pattern, this method is

called by the calling component to make the call, this method starts by using the

reusable objects allocator to create an instance of the FutureMethodBridge class, then

the parameters of this instance are initialized, then the call is forwarded to the internal

_makeFutureCall()method to start the actual call. The main difference in this method

form the makeCall() method is that the called component is assigned as null, as the

future component is created internally in the _makeFutureCall() method explained

next. Also, as the target component is located on a remote machine, only the name of

the called component is passed to this method.

static Object makeFutureCall(IComponent caller, String targetComponent, final Object[] callparams,

final int targetLevel,

 String FCompNAme, String tObjName) {

 IObjectAllocator allocator =

 caller.getMemModel().getContainerObjectAllocator(); //Get the object allocator of the caller

 FutureMethodBridge bridge = (FutureMethodBridge)allocator.getInstance(FutureMethodBridge.class);

 bridge.setParameters(caller, null); //create an object for the future

call

 Object result = bridge._makeFutureCall(callparams,targetComponent, targetLevel,FCompName,

tObjName); //calls the call internally

 return result;

 }

2- FutureCallBridge._makeFutureCall(): This method initiates the future call; it

starts by getting a reference of the reusable object allocator and then uses this allocator

Chapter 7

-312-

to create an instance of the FutureObjectComp class, which is class for a passive

component that should hold the future call data and provides operations to access it as

described earlier. After it is created, the parameters of this future component are

initialized, including the name of the component, the name of the target object, and the

name level in which this object is saved, the calling component, and the memory

parameters of this component. Then, this created component is attached to the current

container, and finally, the FutureStackHandOff assigned to this class is assigned the

HandOffParamsLogic to be able to process the handoff operation of the call data to the

target component, then the call is delivered, using the handoff() method, to the future

component in order to be processed.

Object _makeFutureCall(final Object callparams,int methodIndex, String targetCompName, final int

targetLevel,String FCompName,String tObjName) {

 final LTMemory commonMA = (LTMemory)getCaller().getMemModel().getContainerMA();//Get The container

of the caller component

 IObjectAllocator allocator = caller.getMemModel().getContainerObjectAllocator();//Get the object

allocator of the caller

 FutureObjectComponent futureComp =

 (FutureObjectComponent)allocator.getInstance(FutureObjectComponent.class); //creates an

instance of the future call Reusable Runnable Stack

 this.attach(getCaller().getContainer());//attach this future component to the container

 //so we can use a pool of precreated future objects

 futureComp.setParameters(getCaller().getContainer(), FCompName, getCaller(), level,

LTMemory.class, 3,

 commonMA, initSz, maxSz, null); //this defines exactly the target task's runnable stack

 this.targetName = tObjName;//assigns the target

 this.level = level;//assign the execution level

 getStackHandOff().useLogic(HandOffPAramsLogic);//reset the parameters

 getStackHandOff().handoff(callparams,methodIndex, targetCompName,tObjName, level);//deliver

parameters

 return futureComp;

 }

3- The FutureStackHandOff.handoff() method. This method is responsible for

initializing the parameters of the class that encapsulates the logic of the handoff

operation; then it starts the execution of this defined logic in the scoped memory stack

of the future component starting from the container memory area by calling the

executeInArea() method of the container memory area.

public Object handoff(Object args [], int mIndex, String targetName, int

memLevel) {

 _targetName = targetName;//set the target name

_memLevel = memLevel;//set the memory targetLevel of the obj

backward = false;//set the handoff direction

_methodArgs = args;//set the source

_methodIndex = mIndex;

_targetComp.getMemModel().getContainerMA().executeInArea(

MethodBridge.this); //executes the call

 }

4- The HandOffParamsLogic class: This class provides the logic required to handoff

the call data to the passive future component. By default, we assume that the objects of

the call data are saved in the level (1) of the future component; hence, in the

Chapter 7

-313-

runUpward() method of this class, when the caller thread enters into the level(1), the

multi named-object portal is retrieved; then the call data, including method arguments,

the count of them, the index of the required method, the name of the target object, and

the name of the target component are all saved as named objects within this portal,

where their assigned names are reserved names to be used by the handler when they are

to be retrieved for the actual execution.

public class HandOffParamsLogic

 implements IStackLogic {

 public HandOffParamsLogic() { }

 public void runUpWard(int curLevel, IComponent parentComponent) {

 if (curLevel == 1) { //in the specified memory targetLevel

 LTMemory curMem = (LTMemory)RealtimeThread.getCurrentMemoryArea(); //Get current memory area

 INamedObjectCollection namedPortal = (INamedObjectCollection)curMem.getPortal(); //Get the MNOP

portal

 if (namedPortal == null) { //if there is no MNOP portal

 curMem.setPortal(new NamedObjectFastMap()); //create n MNOP portal

 namedPortal = (INamedObjectCollection)curMem.getPortal(); //Get the named portal

 } //endif

 for (int i = 0; i < FutureMethodBridge.this.getStackHandOff()._methodArgs.length; i++) {

 namedPortal.inertObject("param_" + i,

FutureMethodBridge.this.getStackHandOff()._MethodArgs[i]);

 }

 namedPortal.insertObject("param_count",

FutureMethodBridge.this.getStackHandOff()._MethodArgs.length + "");

 namedPortal.insertObject("MethodID", FutureMethodBridge.this.getStackHandOff()._methodIndex +

"");

 namedPortal.insertObject("TargetName", FutureMethodBridge.this.getStackHandOff().targetName);

 namedPortal.insertObject("TComponent", FutureMethodBridge.this.getStackHandOff()._tComp);

 } //end curLevel

 } //end runUpward

 public void runDownWard(int curLevel, IComponent parentComponent) { }

} //end logic class

B- The Operation of Retrieving the Result

This operation is invoked by the caller to access the result of the call, as in the

Future call pattern the caller may not wait for the result, and may need to access it after

doing other tasls. . The following elements are responsible for this.

1- FutureCallBridge.GetFCallResult(): This static method is the front end method

used by the caller component; it is responsible of creating the bridge from the caller to

the passive future component, and it uses this bridge to forward the call to the

_GetFCallResult() for processing the call.

2- FutureCallBridge._GetFCallResult(): This method is responsible for processing

the call, it specifies the GetResuktLogic class as the class that defines the stack logic

to be executed in the future component to process the call; then, it executes the

handoffResult() method to handoff the result from the future component to the future

bridge, finally it retrieves this Result object from the inner FutureStackHandOff

object of the bridge and returns it to the caller.

Chapter 7

-314-

Object _GetFCallResult() {

 final LTMemory commonMA = (LTMemory)getCaller().getMemModel().getContainerMA();//Get The container

of the caller component

 IObjectAllocator allocator = caller.getMemModel().getContainerObjectAllocator();//Get the object

allocator of the caller

 this.backward=true;//assigns the direction

 getStackHandOff().useLogic(GetResultLogic.class);//reset the parameters

 getStackHandOff().handoffResult();//deliver parameters

 Object r= getStackHandOff().Result;

 return r;

 }

3- FutureStackHandler.handOffResult(): This method is used to process the hand

off operation of for retrieveing the Result from the future component, where this logic

is defined in the GetResultLogic class.

public Object handoffResult() {

backward = false;//set the handoff direction

_targetComp.getMemModel().getContainerMA().executeInArea(

FutureCallBridge.this); //executes the call

 }

4- The GetResultLogic class: This class provides the logic executed by the caller

component to retrieve the result from the stack of the future component. As we assume

that level(1) holds the reference of the returned result object of the executed call; then,

in the runUpward() method, once the memory level(1) is entered, the reference of the

saved returned value is retrieved using the reserved name “RESULT”; if this object is

valid, then , its reference is copied to FutureStackHandOff.Result member in order to

be usable by the calling component.

public class GetResultLogic

 implements IStackLogic {

 public GetResultLogic() { }

 public void runUpWard(int curLevel, IComponent parentComponent) {

 if (curLevel == 1) { //in the specified memory targetLevel

 LTMemory curMem = (LTMemory)RealtimeThread.getCurrentMemoryArea(); //Get current memory area

 INamedObjectCollection namedPortal = (INamedObjectCollection)curMem.getPortal(); //Get the

MNOP portal

 FutureMethodBridge.this.getStackHandOff().Result = namedPortal.getObject("RESULT"); //has to be

in the container

 }//end if

 }//end runUpward

 public void runDownWard(int curLevel, IComponent parentComponent) { }

} //end logic class

C- Serializing the Call Parameeters

The data saved by the caller in the future component as objects; if the call is to

be executed on a local method, i.e. in a component in the same container; then these

objects can be retrieved by the handler and passed to the required method directly;

however, in the case of a remote method, these objects have to be sent to the server for

executing the remote method; therefore, these data has to be serialized first into bytes.

The following elements are responsible for this.

Chapter 7

-315-

1- FutureCallBridge.processCalldata(). This static method is the front end used

by the handler to serialize the method data. It creates the bridge between the handler‘s

component and the future component then forwards the processing to the _

_processCallData() method for the execution.

static Object processCalldata(IComponent caller, IComponent calledComp) {

 IObjectAllocator allocator =

 caller.getMemModel().getContainerObjectAllocator(); //Get the object allocator

of the caller

 FutureCallBridge bridge =

(FutureCall)allocator.getInstance(FutureCallBridge.class);

 bridge.setParameters(caller, calledComp); //create an object for the future call

 Object result = bridge._processCallData(); //calls the call internally

 return result; //this object has to be recycled by the caller once it finishes

using it

 }

2- FutureCallBridge._processCallData(): This method assigns the

PrepareCallBytes class as the stack logic that defines the logic for the serialization

operation, then it executes the process()method defined in the inner

FutureStacKHandOff object of the bridge to process this logic.

 void _processCalldata() {

this.getStackHandOff().useLogic(StackHandOff.PrepareCallBytes.class);

 //reset the parameters

 this.getStackHandOff().process(); //deliver parameters

 }

}

3- FutureStackHandler.process(): this method executes the logic of the bridge to

execute in the container memory area, in order to execute the stack logic defined in the

PrepareCallBytes class.

public Object process() {

_targetComp.getMemModel().getContainerMA().executeInArea(

FutureCallBridge.this); //executes the call

 }

4- The PrepareCallBytesLogic class: The logic defined in this class is used by the

dedicated handler in order to retrieve the saved call data from the future component and

use them to execute the required method. In the case of the remote method, these data

has to be serialized first into bytes and then it is sent over the network to the remote

machine to process it. So, in the runUpward() method, when the dedicated handler

enters the level(1) off the scoped memory stack, all the saved data are retrieved using

their reserved names from the multi-named object portal of this level. After that, and

when the dedicated handler enters level(2) the serialization process is applied to all the

call data, where the bytes are saved into a byte buffer, which is passed to the operation

Chapter 7

-316-

that started this operation. The serialization needs to be made in level(2) to ensure that

any created temporary object during the serialization is reclaimed after exiting this

memory area.

public class PrepareCallBytesLogic

 implements IStackLogic {

 public PrepareCallBytesLogic() { }/////////////////////

 int nParams;

 String targetName;

 int methodID;

 Object [] params;

 String tCompName;

 public void runUpWard(int curLevel, IComponent parentComponent) {

 if (curLevel == 1) {

 LTMemory curMem = (LTMemory)RealtimeThread.getCurrentMemoryArea(); //

Get current memory area

 INamedObjectCollection namedPortal =

(INamedObjectCollection)curMem.getPortal(); //Get the MNOP portal

 nParams = Integer.parseIntger(namedPortal.getObject("param_count"));

 target = namedPortal.getObject("TargetName");

 methodID = Integer.parseInt(namedPortal.getObject("methodID"));

 ByteBuffer buf =

(ByteBuffer)FutureMethodBridge.this.getStackHandOff()._methodArgs[

 0]; //we can pass the buffer name in the containerMA

 tCompName = (String)namedPortal.getObject("TComponent");

 for (int i = 0; i < nParams; i++)

 params = namedPortal.getObject("param_" + i);

 }

 if (curLevel == 2) { //in the specified memory targetLevel

 Serializer.serilaize(buf, tCompName, target, params, methodID);

 } //end if

 } //end runUpward

 public void runDownWard(int curLevel, IComponent parentComponent) {

 if (curLevel == 1) { //in the specified memory targetLevel

 { } //end if

 }

 } //end logic class

D- Setting the Call Result into the Future Component

After executing the call, the executor needs to write the returned object of the

call into the future component. The following elements are responsible for this.

1- FutureCallBridge.SaveFCallResult(): This static method is the static front end

method used by the dedicated handler that executes the call on behalf of the caller. This

method creates a reusable instance of the future method bridge between the component

executed the call and the future component; then it calls the _SaveFCallResult() of

this bridge, and passes to it an object that holds the object resulted from executing the

call. In the case of the remote call, this object can be a byte buffer that holds the

Chapter 7

-317-

received serialized bytes of the received object, where it is deserialized within the

future component.

static Object saveFCallResult(IComponent caller, IComponent calledComp,

Object Result) {

 IObjectAllocator allocator =

 caller.getMemModel().getContainerObjectAllocator(); //Get the object

allocator of the caller

 FutureCallBridge bridge =

(FutureCallBridge)allocator.getInstance(FutureCallBridge.class);

 bridge.setParameters(caller, calledComp); //create an object for the

future call

 Object result = bridge._saveCallResult(Result); //calls the call

internally

 return result; //this object has to be recycled by the caller once it

finishes using it

 }

2- FutureCallBridge._SaveFCallResult: This method assigns the required class that

holds the stack logic required by this operation, i.e. the SetResultLogic class. Then, it

does the handoff operation of the Result object to the future call object, and specifies

the target memory level in which it is saved in the future component (e.g. we used

memory level (1) in our example shown next).

 void _saveFCallResult(Object Result) {

this.getStackHandOff().useLogic(StackHandOff.SetResultLogic.class);

 //reset the parameters

 this.getStackHandOff().handoff(Result, 1); //deliver parameters

 }

}

3- FutureStackHandler.handOffResult(): This method processes the hand off

operation required in this case, it starts by assigning the result object and the target

memory level, then it executes the logic defined in the bridge, which is assigned to be

an instance of the SetResultLogic class.

public Object handoffResult(Object obj, int memlevel) {

_targetObj=obj;//set the handoff direction

level-memlevel;

_targetComp.getMemModel().getContainerMA().executeInArea(

FutureCallBridge.this); //executes the call

 }

4- The SetResultLogic class: This class is called by the dedicated handler to store

the returned value after executing the required method; if the call was a local call; then,

this returned object has to be allocated from the object pool of in container memory

area. A named-reference to this returned object is stored in the multi-named object of

the future component, where it uses the reserved name ―Result”. If the call was a

remote call, then the result is received as bytes from the server, and these bytes have to

Chapter 7

-318-

be desrialized first. So, in the case of the remote call, the deserialization is made when

level(2), i.e. the temporary memory is entered, where the byte buffer holding these data

is passed as a method parameter number(0) of the method that initiate this operation

logic. Then, during the execution of the rundownWard()method while exiting of the

scoped memory areas of the scoped memory stack, and at level (1) the reserved

reference of the result is updated to refer to the returned object of the executed call.

 public class SetResultLogic

 implements IStackLogic {

 public SetResultLogic() { }

 public void runUpWard(int curLevel, IComponent parentComponent) {

 if (curLevel == 2) { //in the specified memory targetLevel

 FutureMethodBridge.this.getStackHandOff().Result = Serializer.deserialize(

 FutureMethodBridge.this.getStackHandOff()._methodArgs[0]); //has to be in

the container } //end if

} //end runUpward

 public void runDownWard(int curLevel, IComponent parentComponent) {

 if (curLevel == 1) { //in the specified memory targetLevel

 LTMemory curMem = (LTMemory)RealtimeThread.getCurrentMemoryArea(); //Get current

memory area

 INamedObjectCollection namedPortal =

(INamedObjectCollection)curMem.getPortal(); //Get the MNOP portal

 namedPortal.insertObject("RESULT",

FutureMethodBridge.this.getStackHandOff().Result); //has to be in the container

} //end if

 }

 }

7.9.3 The Usage of the Future Call Pattern

In the example presented in the previous chapter, we developed a simple client-

server application that exchange bytes packets between a client and a server

component. Also, in the blocking mode of this example, the client calls were

synchronous, i.e. the client has to wait for the received bytes from the client and it can

not do any other processing. We can change this example using the Future Call pattern

presented in this example, to enable the invocation of remote methods. To make this

change, instead of sending and receiving random bytes, the output buffer of the caller

has to be filled with the call data, including the serialized paramtyers, the remote

method ID, the name of the target component and object. On the other hand on the

server side, the Method invoker patter, presented in cghapter 5, can be used to forward

the received bytes of the call to the server component to deserialize and decode the call

data in order to execute the target method. In the following, we will show the key code

for these operations without going in details of the serialization process itself, as it is

not the aim of this example, so, we will assume the existence of a

Serializer/Deserializer class that support the operations required using the methods

presented in this chapter. Also, for simplicity, we avoid any synchronization

Chapter 7

-319-

requirements by assigning the same period for the communicating preriodic tasks;

while instead, we set a time shift in the release of these tasks. Finally, to simplify the

example, we ignore the requirements of defining the remote object and its methods, as

they are not necessary for this example, as the aim of this example is to demonstrate the

internal invocations made made in both the stub at the client side, and in the skeleton at

the server side.

A- Using the Future Call Pattern at the Client Side

We assume that in our example, there is a component named”Invoker”, and we

want to call the remote method updateStatus()of the object sensor1 that resides in

the memory level 1 of the remote component named ―Callee”. Then, according to our

model, then a new component object with the name ―Invoker” has to be added to the

ClientSide container, the logic of this component may contain the following code.

public static class InvokerLogic implements IStackLogic{

FutureObjectComp fcomp;

public void runUpWard(int curLevel, IComponent parentComponent){

if(curLevel==2){

 ICloneable d1=readSensorData1();

ICloneable d2=readSensorData1();

fcomp= FutureCallBridge.makeFutureCall(parentComponent,

”Calee”, new Object[]{d1,d2}, 0, 1, “fUpdateComp”,“sensor1”);

}

}

public void runDownWard(int curLevel, IComponent parentComponent){

if(curLevel==2){

//Do not wait for the result, Do other tasks

ControlInfo cinfo=GetControlInfo();

processControlInformation(cinfo);

 }

if(curLevel==1){

//come back to get the result of the future call

Object result=fcomp.GetResult();

 }

}

}

In the above code, when the invoker enters the level (2), it initiates the future call,

to deliver the data object as parameters, and specify the other data of the call as

required by the method, the call returns a reference, fcomp, of the future component that

can be used to get the result later. Then, beofre exiting the same memory level, the

Chapter 7

-320-

invoker can do other tasks, instead of waiting for the result. Finally, before exiting

memory level(1), the invoker gets the results of the call using the GetResult() method

of the fcomp, i.e. the future component reference.

On the handler side, the caller component, which is responsible for the execution of

the call, the logic of the caller can serializ the call data into the input buffer of the

caller, using a code similar to this:

public static class InvokerLogic implements IStackLogic{

FutureObjectComp fcomp;

public void runUpWard(int curLevel, IComponent parentComponent){

…..

………..

 FutureCallBridge.processFCallData(parentComponent,FUpdateComp,

outbuffer);

sendPacket(outbuffer);//the call bytes are sent here

…….

}

}

public void runDownWard(int curLevel, IComponent parentComponent){

……

…..

receivePacket(inbuffer);//the returned result is received as bytes

here

FutureCallBridge.saveFCallResult(parentComponent,FUpdateComp,

inbuffer);

 }

……..

}

}

In the above code, the outbuffer is passed to the processCallMethod to be filled

with the serialized call data. On the other hand, the outbuffer that is filled with the

bytes of the received serialized return object is passed to the saveFCallResult in order

to deserialize it and save it in the future component.

B- Using the Method Invoker Pattern at the Server Side

The idea is that the data received and decoded by the acceptor handler, can be

deserialized, i.e. packed into objects, in the temporary scoped memory area, i.e.

level(2), of the scoped memory stack of the acceptor handler; then, the method invoker

pattern developed in chapter 5 can be used to invoke a method of an object residing in

the server component, this method clones these objects directly to one of the scoped

Chapter 7

-321-

memory area stack of the server component, in order to be processed by the task(s)

running within the server component. The modifications of the example presented in

Chapter 6 to enable this change are shown next.

The server has now a single periodic task that starts half second later than the

client, assuming synchronized cocks at the server and the client sides.

ReusableRunnableStack servertask =

client.addPeriodicSMATask("ServerExecutor", RealtimeThread.class, null,

 new PeriodicParameters(new RelativeTime(500,0), new

RelativeTime(1000, 0)), 10000, 10000, LTMemory.class, null,

 ServerLogic.class);//Create a a periodic SMA task

task.setParameters(LTMemory.class, 3, new LTMemory[] {theContMA, theCMA},

serverinitM, maxM, server);//assign the paremeters of the task

In our example, we need the received objects to the server side to be passed as

input parameters to the updateStatus()method of the sensor1 object, where this

object is allocated in the level(2) of the scoped memory stack of the server component,

and the logic of the updateStatus()method is used to update the state of this object by

the received data, and after that, it notifies the waiting thread, i.e. the handler of the

server task, to process these received data.

public class Sensor{

 Object _data1;

 Object _data2;

 public void updateStatus(Object a, Object b){

 _data1=a;_data2=b;

 synchronized(this){

 try{

 notifyAll();

 }catch(Exception e){}

 }

 }

}

Hence, to implement this scenario, the logic of the Accept handler has to be

changed to include this required method invocation to; this is made by first decoding

the received bytes into the two objects data1, data2, then these two objects are packed

in an object array, then this object array is passed to the makeCall()method with the

other arguments that identify the required method including the names of the

source(Communicator) and the target(Server) components, the target object(sensor1),

and the memory level(2) in which the target object exist.

Chapter 7

-322-

public void runUpWard(int curLevel, IComponent parentComponent) {

 if (curLevel == 0) { //runs in ContMA

 if (communicator == null) {

 communicator =

((CommunicatorCls)(parentComponent.getContainer().getComponents().get(

 "Communicator"))); //get ref to the communicator }

 }//end level 0

 if (curLevel == 1) { //runs in CMA

 try {

 SelectionKey key = ((EncapsulatedHandler)getHandler()).getSelectionKey();

final SocketChannel channel = (SocketChannel)key.channel(); //get the channel

 communicator.registerationQueue.add(channel, SelectionKey.OP_READ,

 getHandler()); //register the channel

communicator.theControllerChannel.sigQueueToSignalFD(12, 10);//wake up selector

inbuf.clear();

 do {

 synchronized (getHandler()) {

 getHandler().wait();

 } //end synchronized

 try {

 nn += channel.read(inbuf); //read into the buffer

 } catch (Exception w) { }

 } while (nn < 40);

 inbuf.flip();

 } catch (Exception r) {

 Syustem.out.println("Exception--> " + r);

 }

 } //end level 1

 if (curLevel == 2) { //runs in temporary scoped memory area

 System.out.println("The Packet [" + ++PacketCount + "] has been received");

 //decode(i.e. desrialize) and process the received packet [may create

objects]

 ICloneable data1=decode1(inbuf);

 ICloneable data2=decode2(inbuf);

 Object[]params=new Object[2];

 params[0]=data1;

 params[1]=data2;

 Icomponent callee=parentComponent.getContainer().getComponents().get(

 "server");

 Icomponent caller=parentComponent.getContainer().getComponents().get(

 "Communicator");

 MethodBridge.makeCall(caller, callee, params,0, 2,"sensor1");

//.................

 }

 } //end level 2

 } //end runUpWard

 public void runDownWard(int curLevel, IComponent parentComponent) {

 if (curLevel == 2) { } //in temporary scoped memory area

 if (curLevel == 1) { //in CMA

 outBuf.clear();

 for (int i = 0; i < 250; i++) {

 outBuf.putInt(mm.nextInt(250)); //write to the buffer

 }

 //send the packet

 outBuf.flip();

 try {

 channel.write(outBuf); //write to the channel

 } catch (Exception e) {

 System.out.println("*-----Exception----*" + e);

 }

 }

 if (curLevel == 0) { //in ContMA

 //reset the values, recycle any unrequired object ..etc.

 n = 0; nn = 0;

 }

 }

Chapter 7

-323-

On the other side of the call, the server component side, the periodic task running

within this server component runs with the same period of the client, but delayed by

half a second. This task retrieves in each new period the state of the sensor1 object and

processes it, e.g. by display it on a monitor, or analyse the state to take a control

decision. The logic for processing this scenario is shown next in the ServerLogic class

which is the stack logic component of the server‘s periodic task.

 SensorData datasensor1, datasensor2;

 public void runUpWard(int curLevel, final IComponent parentComponent) {

 if (curLevel == 0) { //---=>>>runs in the container memory area

 } //the component memory area

 if (curLevel == 1) { //---=>>>runs in the container memory area

 } //the component memory area

 if (curLevel == 2) {//the temporary scoped memory area

ScopedMemory mem=(ScopedMemory)RealtimeThread.getCurrentMemoryArea();

 INamedObjectCollection MNOP =

 (INamedObjectCollection)mem.getPortal(); //retrieve the portal of

 datasensor1= (SensorData)MNOP.getObject(“Sensor1”);

//Processing of datasensor1is done here to ensure the deletion of any created

temporary objects when this memory level is exited

 datasensor1.makeDecision();

 datasensor1.Display();

 synchronized(this)

{

try(

wait();}catch(Exception e){}}//wait for notification from the method

call made by the updateStatus() method

}

 } //end of curlevel==2

 } //end of runUpward

 public void runDownWard(int curLevel, IComponent parentComponent) {

 if (curLevel == 2) { }

 if (curLevel == 1) { //runs in the component memory area

 }

 if (curLevel == 0) { //runs in the container memory area

 }

 }

7.10 Summary

In this chapter, we aimed to prove the validity of designing and implementing

the real-time middleware using the RTSJ. In order to develop this design, we developed

the design through three main steps; (1) analyzing the general patterns of developing

middleware solutions, (2) selecting and analyzing an open-source middleware solution

as an initial model, (3) modifying this open-source model, using the patterns and

component model presented in Chapter 4, and Chapter 5.

Hence, in the first part of the chapter, we presented the commonly used

patterns in building the remote communication middleware software, and we discussed

the collaboration among them, also we presented the different invocation patterns and

how they can be integrated with the patterns of the middleware.

Chapter 7

-324-

Then, in the second part, we described the architecture of the HRT-RMI as an

open source that was built using RTSJ as a real-time middleware solution. We analyzed

the structure of this architecture to identify the implementation of the different design

patterns within it in order to identify the required changes that has to be made on it, in

order to make enhance it.

Finally, in the third part of this chapter, we presented our own modifications

and enhancements to the internal patterns within the HRT-RMI model, in order to

implement our own proposed model of the RTSJ-Based real-time middleware. In these

modifications, we used both the communicator component and the component

framework presented earlier in this thesis, in Chapter 4, and Chapter 5 respectively. In

our proposed model, we provided our own proposed structure for both the client and

the server side of the middleware, associated with a description of the basic operations

of the model; in addition to a description of the changes to the RMI protocol that uses

the communicator component model. We then presented two models, blocking and

non-blocking, that can be generated as a working model of the RMI.

A the end of this chapter, we presented an example, that shows how the method

invoker pattern provided in 5.8 can be extended to enable building of Future Remote

Call pattern, where this pattern integerates the communicator component developed in

Chapter 6, with the memory model and its associated patterns developed in Chapter 5,

to develop a method invoker and Future call invoker patterns, which can use the

predictable serialization/deserialization mechanisms presented in this chapter, in order

to be used for developing both the stub and the skeleton of the remote call middleware

model presented in this chapter.

To evaluate the developed real-time middleware model, we provide in the next

chapter an analytical evaluation for the component memory patterns and sub-

components; this analytical evaluation includes first an evaluation of the characteristics

and limitations of using the individual kpatterns. Also, we evaluate the effect of using

the Java NIO libraries on the memory model of the communicator component, and how

the Java NIO causes memory leakage within the component model, which can cause

failure of the component, due to the unbounded memory consumption, then we provide

our solution to this problem based on the services provided in the memory component

model. Also, we evaluate the model of the stub that supports making the future calls, by

analyzing the requirements of integrating the future call model with the RTSJ memory

model and how our component model supports these different models to reach an

optimum model for use within our real-time remote communication middleware model.

Chapter 7

-325-

In addition, to the analytical evalutation, we provide in the next chapter, a set

of expermints to measure the effieciency and predictability of the patterns and

componnets that form our real-time middleware.

-327-

 Chapter 8

Evaluation

There are many applications of using the middleware solutions, this made building a

single middleware solution to satisfy the requirements of all these applications is an

impossible task, so, as presented in, the middleware solutions can be classified into many

categories according to their application and/or their structure, and there are already several

well-known structural paradigms for building general middleware solutions; however, many

of these technologies and paradigms can not be used directly in building real-time middleware

solutions, as the original structures of most of the existing middleware technologies do not

provide the basic requirement of any real-time system, which is the predictabile execution and

memory management. So, as presented in Chapter 2, most of the research made for building

real-mtime middleware solutions targets this issue, i.e. by modifying the structures of the

existing middleware solutions, in such ways that guarantee the provision of the required

predictability levels for the applications using these solutions. In addition to that, in the

particular case of the Java-based middleware solution, e.g. RMI, we found that many of the

unpredictability issues of these middleware solutions are inherited from the Java language

itself, especially due to its inaproporiate memory management and scheduling models, as

discussed in Chapter 3.

Consequently, we proposed that to build our Java-based real-time middleware, there is

a need to integerate four different software technologies, these technologies are overviewed in

Chapter 4, and they are:

- The RTSJ; to over come the limitions of the Java language, through using its new features

that support real-time behavior, such as the new memory model and the scheduling models.

- The Strategies of Networking Communication; to support efficient communication

mechanisms within our model.

- Software Components; to provide the reusable architectural units that are commonly used

in the architectures of the common middleware solutions, where these components have to

guarantee the required real-time behavior and predictability.

Chapter 8

-328-

- Software Design Patterns; this technology represents the link between the previous three

technologies, as we assume in our hypothesis that the structure of the Java-based real time

middleware can be made using components, which are built using software patterns that use

and respect the new features of the RTSJ, and in the ame time, these patterns are used to to

build components that support the most efficient networking communication mechanisms for

our middleware model.

Hence, we built a component framework, provided in Chapter 5 and Chapter 6, which

integerated the above four technologies; then, and we used this technology to build our

middleware in Chapter 7.

From the above, we see that the RSJ_based design patterns, the component model, and

the communication mechanisms constitute the main parts of our middleware design; hence,

these elements must be carefully selected to get a predictable behaviour of the middleware.

So, in this chapter, present different levels of evaluation of our work as follows:

1- Analytical evaluation of the RTSJ-based design patterns used for developing the

component model in chapter 5; this evaluation is done by comparing the structure of each

pattern to the structure of similar existing RTSJ-based patterns, and by identifying the levels

of memory and execution time predictability provided by these structures, as well as the level

of abstraction it provides to the developer. In addition to that, we show the possible situations

in which each pattern can be used, to show the level of generality it provides.

Analytical evaluation of the effects of using the Java NIO on the memory predictability of the

RTSJ-based communicator component, which was presented in chapter 6, where we use

code analysis technique of the basic Java NIO methods used in our model, in order to studey

the effect of using the Java NIO on the memory footprint of the communicator component

model, and we show how the component model provide mechanisms to overcome the

problems that arise when using the Java NIO packages.

Analyitical and comparative evaluation of different possible memory models of the Future

calls pattern, which was presented in chapter 7, in order to proof the optimization of the

selected memory model of our proposed pattern.

Emprical Evaluation of some of the basic patterns used in developing the middleware, in

order to measure their execution percformance and predictability.

8.1 Evaluation of the patterns of the component framework

In chapter 5, we have developed our component framework and model based on the

RTSJ, this component model was built using a set of design patterns. So, in order to evaluate

Chapter 8

-329-

the component model, it is important to evaluate the design patterns used in building it. In this

section we analyse the design patterns that we used from the following points:

1- The structure and functionality.

2- The required memory footprint.

3- The timing characteristics and/or predictable execution.

4- The level of abstraction.

5- The generality of use.

8.1.1 Evaluation of the Forked Thread, Dual Forked thread and

Memory Pinner Patterns

1- The Structure and functionality

The structure of the Fork Thread pattern is using a single thread that propagates in the

scoped memories that have to be held. The Dual Fork Thread on the other hand has two inner

fork threads, which swap there operations to enable the addition and deletion of any of the

held scoped memory areas. The memory Pinner pattern on the other hand assumes the

increment of the reference count variable that controls the life time of the held scoped

memory areas.

2- The required memory footprint

The footprint of both the dual fork pattern and the forkThread pattern is dependent on

its implementation, for an implementation that does not reuse the runnable objects and status

objects the memory footprint cost is high; whereas the memory footprint reduces

significantly, when these objects are used as reusable objects. In the case of the memory

pinner pattern, the memory footprint is negligible as in this pattern does not use extra objects,

as it just increases the reference count.

3- The timing characteristics and/or predictable execution

For a set of scoped memories of a maximum depth of 1 level, the timing behaviour of

the fork thread patterns is proportional to the number of the number of the scoped memory

areas that they hold, i.e. it is of O(n); whereas, for dual fork thread, which has two fork

threads, the timing behavior is of O(n) as the two fork threads are working in parallel. For the

memory pinner pattern, the timing characteristics is of O(1), as the pinning operation is done

by accessing the reference count variable of the required scoped memory area only.

In case of accessing a memory area of a depth m levels, the timing characteristics of

the memory pinner does not change, whereas for the fork threads and dual fork thread the

Chapter 8

-330-

timing characteristics becomes of O(nxm), which makes them more appropriate for use in

with scoped memories of a depth of one.

4- The level of abstraction

All the three patterns have high level of abstractions, as the developer only needs to

specify the required scoped memory area to be held.

5- The generality of use

These patterns are specific patterns that are used to hold the scoped memory areas,

which have objects that are required to be kept alive, even without keeping any of the tasks‘

threads running inside it.

8.1.2 Evaluation of the Executable Logic Stack Pattern

In our component model, we have presented the stack logic pattern that enables the

execution of multiple runnable objects within the forked memory model. In order to evaluate

this pattern, we compare it to an older version of the pattern that we presented earlier in

(Alrahmawy and Wellings 2009), and we compare both patterns as well to the normal

runnable object pattern commonly used in the RTSJ. The structures of the two patterns are

shown in Figure 8-1, Figure 8-2.

1- The Structure and functionality

The structure of both patterns are very close, as they both present the same function,

they both consist of a set of nested scoped memory areas, where each memory area is created

from its lower memory area within the stack. Also, both of them are implemented using a

class that extends the runnable object; so that, they can be assigned as a single logic to be run

by any schedulable object. On the other hand, the structure of the runnable object is much

simpler, as it is created from a class that extends the runnable pattern, and it is normally used

to execute within a single memory area.

2- The required memory footprint

The memory footprint of the two stack patterns represents one of the main differences

between the two patterns. In the old version of the pattern, we assumed that the user supplies

the code that executes in each memory area, either when the schedulable object enters it, or

exits it as a separate runnable object. This means that for a stack runnable object that has n

memory areas, the memory footprint of the pattern is of order O(n), so this pattern needs 2n-1

runnable objects to be associated with the stack. On the other hand, with using the new

version of the pattern, the memory footprint will be of O(1), as there is only one runnable

object assigned to be executed within this pattern. This makes the new version have more

efficient memory usage.

Chapter 8

-331-

On the other hand, as the runnable object pattern is used to run a single operation;

then, the memory footprint will be of O(1) for this memory area only, but when used to run

operations within n scoped memory areas, the memory footprint will be of O(n).

SMAN

SMA1

SMA0

Task[0].enterRunnable.run()

Task[1].enterRunnable.run()

Task[2].enterRunnable.run()

Task[n].enterRunnable.run()

Task[0].exitRunnable.run()

Task[1].exitRunnable.run()

Task[2].exitRunnable.run()

Task[n].exitRunnable.run()

refB

refC

refD

refA.enter(RunnableStackObj).

B
o

tt
o

m
-T

o
-T

o
p

 A
p

p
ro

a
c
h

T
o

p
-T

o
-B

o
tt

o
m

 A
p

p
ro

a
c
h

SMA2

Figure 8-1 The Executable Runnable Stack

Pattern (V1)

SMAn

SMA2

SMA1

SMA0

U

P

W

A

R

D

D

O

W

N

W

A

R

D OP0-UP

OP1-UP

OP2-UP

OP0-DN

OP1-DN

OP2-DN

OPn-UP

OPn-DN

PreExisting

Dynamically

Created

 Figure 8-2 The Runnable Stack Pattern (V2)

3- The timing characteristics and/or predictable execution.

In both runnable stack patterns, we assumed that all the operations running

within the runnable logic stack are running using a single thread or AEH; hence, these

patterns are more suitable for running sequential operations. This in turn, makes the

execution time of any task using any of these two patterns to be at least the summation

of the execution times of the individual sequential operations that run within the

pattern.

In the case of the runnable object pattern, this pattern is normally executed

using a single executor as well to run a single operation, so its execution time depends

on this single operation.

4- The level of abstraction

In the old version of the runnable stack pattern, we assumed that the developer

has to present the required logic in separate runnable objects; this means that for a stack

of size n, the developer has to present up to 2n-1 different classes within either a single

file, or in separate files. In the new version of the pattern, the user has only to provide a

single class that provides the logic of all the functions that represent the entry and exit

operations, which simplifies the software development process and reduces the number

of source code files required.

Also, in the old pattern, it was the developer‘s responsibility to assign each

runnable object to its corresponding memory area, and he was responsible as well for

Chapter 8

-332-

linking his runnable object to the other parts of the component; however, in the new

pattern, the passing of parameters that hold both the current level of memory, and the

reference to the component that contains this pattern, helps the developer to manage his

code in a better and more abstract way.

On the other hand, as the runnable object runs a single operation; then, it offers

a low level of abstraction, as the user has to write a separate runnable object for every

operation, which increases the number of required class files, and makes the code

difficult to read and debug.

5- The generality of use

Due to its very basic structure, the runnable object pattern can be used in any

application with the cost of the reduction of the level of abstraction. On the other hand,

both runnable stack patterns provide a way for executing a sequence of nested

operations within different memory areas, where the execution can run eithr from

bottom to top, or from top to bottom. In our work, the two patterns in their current form

are enough for our simple component model, as we have seen both patterns can be used

to execute the required task‘s logic within the memory stack, which consists of the

ContMA, the CMA, and the SMA within the component. However, both patterns in

their current form do not give enough flexibility to support a wide range of

applications, as they both allow the execution of a sequence of nested operations only

within the stack. This means that, these stack-based patterns can be very efficient in

any application requires this feature, such as the thread propagation operation to the

scoped memory areas of the SMA assumed in our model. However, their flexibility is

not enough to support the execution of other memory hierarchy models, in which the

developer needs to use a sequence of the enter() and executeInArea() methods, e.g.

the RTSJ‘s cactus/tree pattern. So, additional enhancements are required for these

patterns to generalize their use in RTSJ applications. In our future work, we suggest a

modification that can generalize the use of the new version of the pattern. In this

modification we assume that, in addition to the runUpward() and runDownward()

functions, the class that implements the pattern should add the executeInLevel()

method with the following signature:

public void executeInLevel(int targetLevel, int operationNumber)

The implementation of this method should have the following pattern:

If (targetLevel<currentLevel)

{

The_Target_Level = targetLevel

NEXT_OPERATION= operationNumber;

MA = The memory area of the level targetLevel

Chapter 8

-333-

nextCommand=Commands.executeInAreaCommand

MA.executeInArea(this)

}

In the above pattern, The_Target_Level and NEXT_OPERATION are two

fields in the class, where The_Target_Level defines the required scoped memory

area level, in which the operation with the index operationNumber has to be

executed.

In the same time, the overridden run() method of the same class, has to be

changed to add the necessary code to execute the required operation as follows:

public void run()

{

If(nextCommand==Commands.executeInAreaCommand)

{

runExecuteInAreaOperation(The_Target_Level,

NEXT_OPERATION);

return();

 }

// code of the runnable stack pattern comes next

…………….

………………..

}

Finally, in addition to the runUpward() and runDownward(), the class

which is specified by the developer to run the logic, has to define the method

runExecuteInAreaOperation with the following pattern;

 public void runExecuteInAreaOperation(The_Target_Level,

 NEXT_OPERATION)

if(The_Target_Level==0)//

{

if(NEXT_OPERATION==0)

{

// the logic for a certain operation to be done

// using the executeInarea in the Level 0.

}

else if(NEXT_OPERATION==1)

{

// the logic for a certain operation to be done

// using the executeInarea in the Level 1.

}

 ……………………..

}

}

8.1.3 Evaluation of the Reusable Objects Allocator Pattern

1- The structure and functionality

The structure of the object allocator pattern uses a list of linked lists, where each

one of the inner member linked lists holds carriers of a certain type of reusable objects.

This structure enables the management of many reusable objects by the same allocator

at the same time.

Chapter 8

-334-

2- The timing characteristics and/or predictable execution.

The use of the linked lists is not the best way for obtaining predictable timing

execution. In the model, there are two levels of linked lists;

- The main linked list which holds all the types of the manageable objects. To get any

reusable object, the first step is to search this types list for the required object; where,

the timing of this search process is dependent on the length of the list, i.e. the number

of available types, and the location of the required type within this list. In the current

design, these two parameters are not well defined for the list, as there is no limit on the

total number of types that can be managed by the allocator. Also, the insertion of the

types in the types list has FCFS policy; this policy makes the order of the object types

within the list is application-dependent. So, a better design can use a hash map to hold

the types of the objects, instead of the linked list structure to get better predictable type-

search process.

- The set of linked lists that hold the carriers of the objects. These lists are the second

level of linked lists in this pattern. These lists do not suffer the same predictability

problems of the main linked list, as they are accessed by using the last-in first-out

policy, i.e. always the object on the top is retrieved or added.

3- The required memory footprint

The use of the pattern, by allowing reuse of the objects, enhances the predictability

of the memory footprint of the scoped memory areas, especially in the cases where

these objects are repeately created, e.g. in a loop. However, the current design of the

object allocator has no restriction on the number of the objects that can coexist of any

of the types. Also, it puts no restriction of the total number of the types that can be used

in this allocator. So, it is the responsibility of the developer to develop his code in a

way that ensures predictable maximum number of both the types and the concurrent

coexisting objects of each type, in order bound the size required for this pattern to the

total allocated size of the memory area from which the allocator allocates the reusable

objects.

4- The level of abstraction

The level of abstraction in this pattern is high as the developer using this pattern is

required to specify only either the type of the required object, or an existing object; so

that, a free object similar to it is retrived from its type list by this allocator pattern.

5- The generality of use

The proposed allocator, as mentioned before, allocates objects that have a no-args

constructor. This means that it cannot be used for allocating immutable objects, e.g.

Chapter 8

-335-

Integer objects. Also, it cannot be used for allocating memory objects, e.g. LTMemory

objects. So, when using this pattern, creating temporary immutable objects should be

avoided and particularly in the recurrent code, and mutable ones should be used

instead. In the case of memory objects, the problem is different because the memory

space allocated for the LTMemory objects cannot be changed during the life time of the

object. So, the best solution to reuse these memory area objects in the allocator is to

encapsulate the memory objects into a wrapper class that has, in addition to a no-args

constructor, an accessory method(s) that can be checked by the allocator, to check if the

size of the encapsulated memory area object has a memory space equal to or greater

than the required memory area space. For example, the allocator should have a method

with the following signature:

Allocator.getMemoryObject(Class memType, long requiredSize)

This method should get a reusable area object from the types list, but instead of

getting the first available memory area within the list associated with this type, a search

for a memory area that has an allocated size equal or greater than the required size is

made first within the linked list. This search process can be done using different

policies like first-fit used, best-fit or worst-fit, with consideration of the possible delays

and fragmentation problems that can arise from using these policies.

8.1.4 Evaluation of the Multi Named-Object Pattern

In order to evaluate the Multi Named-Object Portal Pattern, we will compare it with

an older version which was presented in (Alrahmawy and Wellings 2009), and

compare both to the the normal portal object supported in the RTSJ.

1- The structure and functionality

In the RTSJ specification, any scoped memory area can hold only a single object,

the portal, which can be shared among all threads using this scoped memory area. So,

to enable sharing multiple objects among threads running within a single scoped

memory area, there is a need to make the portal of this memory area able to save

multiple objects.

In both multi-named portal patterns, an object can be saved associated with its

name within a structure that enables the retrieval of a reference of the object by its

name. Then, this structure can be used as a portal of a scoped memory, to enable

sharing multiple objects among the schedulable objects accessing this scoped memory

area. In the older version, we assumed this structure to be a linked list; however, for the

new model, we have used a hash map instead.

Chapter 8

-336-

2- The required memory footprint

The memory footprint of any pattern is dependent on both the number of objects

used within it and their sizes. In the multi-named object patterns, in both the old and the

new version, the saved objects and their names are responsible for the memory

footprint of this pattern. So, the memory footprint of this pattern is proportional to both

the number of the saved objects that are managed by this pattern, and the size of their

names, i.e. it is of order O(n), whereas in the case of the RTSJ portal, the memory

footprint if of O(1), as there is only one object that can be saved as a portal object.

 Another factor that affects the predictability of the footprint of the multi-named

object portal pattern, and does not exist in the RTSJ portal pattern, is the size of the

names of the shared objects. Although accessing the objects using their names is very

flexible in many situations, this process affects the memory footprint, as the strings

takes much larger size than the numerical variables, where this size is not fixed, but it

increases with the increase of the length of the name; hence, a maximum length of the

names have to be defined for the names. There is a trade-off between the flexibility and

the memory size in the proposed component model, as we considered that the

developer has to manage the size of his created objects names. However, if we need to

have less memory footprint, we can change the patterns to use indexed objects instead

of named objects, i.e. by identifying the objects in the hash map using numerical ids

instead of names. This ensures better predictable memory structure.

3- The timing characteristics and/or predictable execution

The access to the RTSJ portal of a certain scoped memory area is of order O(1), as

there is only one object assigned as a portal object. In the case of the multi-named

object portal pattern, the use of linked lists in the old version makes the access to the

portal‘s objects have no well predictable execution time, as it depends on the length of

the list, this makes the worst access acces time is of order O(n); while, in the newer

version, the use of the hash map enhances the performance, as the average access time

of using the hash maps structure is of order O(1). However, it keeps the worst case to

be of order O(n), as the use of hash functions may result in collision, even with very

low probability; which, if occured, requires a serach within associated linked list.

4- The level of abstraction

Both the old and the new versions of the multi named-object pattern offer a high

level of abstraction, as they allow the user to use only the object name to get a

reference to the saved object. This enables saving multiple shared objects in the portal

instead of one, which is the case in the portal pattern in the RTSJ model.

Chapter 8

-337-

5- The generality of use

The model is built for use in the scoped memory area specifically, to enable saving

multiple objects into its single-object portal. However, the same model can be used in

any memory area, to save multiple named-objects at the same time.

8.1.5 Evaluation of the Reusable Executors Pattern

1- The structure and functionality

To make a thread/schedulable object reusable, the reusable executor pattern uses

wrapper class that encapsulates the schedulable object, and overrides its run()

method to enable explicitly the management of the lifetime of the thread/schedulable

object, and to add the support of changing the executed logic each time the reusable

executor is reused.

2- The required memory footprint

The memory footprint of the structure of the executor itself is dependent on the

assigned logic object, as it is the only mutable object within it. So, the memory

footprint of the executor pattern is dependent on the footprint of the logic executing in

it, which is assigned by the developer. So, it is the responsibility of the developer to

manage the memory footprint, e.g. by using the reusable objects to implement the

required logic. The developer has to analyze dynamically the required logic, in order to

specify the memory footprint in the different memory areas ContMA, CMA, SMA,

IMA; also, the developer has to specify the memory footprint with this logic, i.e. by

implementing the IForkedMemoryContract interface as specified in the memory model.

3- The timing characteristics and/or predictable execution.

The executor pattern supports both Java threads for non-real time execution, and

schedulable objects for real-time execution. By definition, the executors that use the

RTSJ schedulable objects provide predictable schedulable execution, particularly when

they are executing within scoped memory areas, to avoid the garbage collection

interference; on contrary, the executors that use the Java threads are not predictable.

4- The level of abstraction

This pattern offers a high level of abstraction, as the developer needs only to

assign the type/class that represent the required executor, i.e. either a schedulable object

such as RealtimeThread, or a normal Java thread.

5- The generality of use

Chapter 8

-338-

The reusable executor pattern supports all the schedulable objects defined in the

RTSJ in addition to the Java thread, this makes this pattern applicable for any real-time

application, or non-real-time application, that requires the reuse of the execution units.

8.1.6 Evaluation of the Executors Pool Pattern

1- The structure and functionality

The structure is using a single linked list for each pool, where this linked list holds

all the executors managed by this pool.

2- The required memory footprint

As the pool pattern holds references to the executors, not the executors themselves,

then the total size of the pool object itself is dependent only on the number of the

executors it holds. Hence, as we assume in our component model that each pool has a

maximum size of the executors, then the memory footprint of each pool is bounded by

the size of a single executor reference multiplied by the number of maximum number

of executors in it.

3- The timing characteristics and/or predictable execution.

The main operations done on the pool are the retrieval of an executor, or recycling

an executor that finished its execution. The retrieval operation always takes the top

element within the inner executor list, as all the free executors are identical, which

makes this operation to be of order O(1). Also, the recycling operation adds the

recycled executor to the top of the list, which makes this operation to be of order O(1)

as well. This makes the pool access operations are timely predicted.

4- The level of abstraction

The creation of the pool requires the user to specify the pool size, the required

executor type to be in it, and the maximum required number of these executors. Then,

during the initialization phase, the pool creates all these executors for the developer. On

the other hand, during execution phase, the user either retrieves a free object from the

pool, or recycles an executor that finished its execution. So, this pattern has high level

of abstraction.

5- The generality of use

The design of this pattern makes it able to manage a list of references to the

executing elements. During the initialization phase, it accepts the type of the required

executor as a class, which means that it can manage either the reusable executor types

defined earlier, or the non-reusable executors, e.g. Java Threads and RTSJ‘s

schedulable objects.

Chapter 8

-339-

8.2 Communicator Component Memory Predictability

In order to evaluate the memory predictability of the communicator

component, we present here a code analysis of an implementation of the component in

the jRate open source. The aim of this analysis is to identify the points that can cause

memory leakage in the component memory model, and the solution that can eliminate

this leakage.

JRate was built as a front-end of the GCJ, to support the RTSJ, where GCJ is a

GNU VM for the Java. However, jRate has not made any changes to most of the

underlying Java libraries and packages provided by the GCJ, e.g. the Java NIO

package. In our model, the implementation of the communicator component is made

using the epoll selector type provided by the GCJ implementation, the classes

supporting this type are part of the Java NIO library. As this package is built without

consideration of the RTSJ; then, the implementation of the epoll mechanism is not

compatible with the RTSJ, particularly its memory model. Hence, implementing our

proposed communicator component on top of this package faces a lot of problems due

to this incompatibility. In this section, we cover these problems, and we present our

solutions that solve these problems. In our presentation, we divide the problems into

two main groups as follows:

1. Creation Context Problems; these problems are the problems that face the

creation of the communicator component, and the difficulties of mapping it to the

forked memory model.

2. Execution Context Problems; these problems are the problems that results from

the running of the selector model and affects the memory predictability of the

forked memory model.

In the following, we present the above problems and the solutions, which we

proposed in our component model to solve these problems.

8.2.1 Creation Context Problems

These problems are mainly due to the fact that many of the Java NIO classes

used by the selector model are using static fields. As defined in the RTSJ, the use of the

static fields requires their allocation to be done in the immortal memory. This means

that the developer is enforced to do the allocation in the immortal memory, and he is

inhibited from mapping these objects to any of the different memory areas of the forked

memory model. This is not recommended in our proposed component model, as at the

termination time of the component, it should not leave any memory behind it, to not

Chapter 8

-340-

affect the other parts of the application. Moreover, objects created in the immortal

memory are not allowed to access any other objects in any scoped memory area, which

may enforce the developer to allocate many of the objects, if not all, in the immortal

memory area. This problem affect the predictability memory model of the application

significantly, especially if the creation of these objects is repeated frequently, as this

will lead to memory leakage in the immortal memory area, and even may lead to

system failure, as the immortal memory may reach a point when it becomes completely

filled and cannot accept any more objects, unless a reusable object mechanism, such as

the one provided in our component model, is used to keep the required memory size

bounded.

To avoid these problems, it was necessary to analyze the creation process of

the objects constituting the model, to ensure that the main objects are allocated either in

the current memory area, or in the user specified memory area, instead of allocating

them in the immortal memory area.

We have found that the selector object itself has to be created itself in the

immortal memory area, if the normal creation procedure is followed. The creation

procedure is done in the CommunicatorCls class, and it includes the following

steps:

1. The reference of the selector is defined as a field in the class

Selector selector;

2. The selector object is created in the container‘s ContMA

selector=EpollSelectorImpl.open();

The above steps show the creation of the selector, which is the main element of

the communicator component model that is responsible for monitoring the events

occurring on the registered channels. The creation is done using the static method

EpollSelectorImpl.open(), this method is inherited internally from the parent

class Selector, where the Selector.open() method executes the following

statement:

SelectorProvider.provider().openSelector();

The above statement runs the openSelector() method on the provider

retrieved by the provider() method, where the call of the

openSelector()creates the selector in the current memory area when it runs the

statement:

Chapter 8

-341-

return new EpollSelectorImpl(this);

The purpose of the provider() method is to return the object that represent

the system default provider, which is used to create the selector object. This provider

object is used as well each time a new channel is created within the component,

whether it is a server channel or a client channel, as the provider is responsible for

creating the channels, where the normal creation of the channels is done for a client

channel using the statement:

SocketChannel theClientChannel=SocketChannel.open();

or, for a server channel that uses the statement:

 ServerSocketChannel theServerchannel=ServerSocketChannel.open();

The main purpose of the provider() method is to return the system default

provider, which is defined as a static field systemDefaultProvider. This

provider is either created as an instance from the SelectroProviderImpl class,

or it is dynamically loaded at design time from the value of the property

―java.nio.channels.spi.SelectorProvider‖. In both cases, when the

provider() method is called for the first time, a new instance of the

SelectroProviderImpl is created in the current memory area or the user

specified area, and this created object has to be assigned to the static field

systemDefaultProvider; however, this assignment, if the created object‘s

memory area is a scoped memory area, is not allowed in the RTSJ, and it will raise an

exception as objects in scoped memory areas have shorter lifetimes than objects in the

immortal memory area. Hence, in this case, the developer is enforced to create the

selector object either in the immortal memory area, or the heap memory area, which is

not recommended, as it will enforce most of the other objects in the communicator

component to be allocated in the immortal or heap memory area, and it may make the

forked memory model useless, unless we defined the container itself to be created in

the immortal memory area as well.

To solve the above problem, we have assumed that the creation process of the

selector is done in non-abstracted form, i.e. the creation process is detailed in well-

defined multi-steps that avoid the use of hidden static objects.

So, in our implementation we use the following steps:

1- A private field is defined as follows in the CommunicatorCls:

Selector ProviderImpl provider;

Chapter 8

-342-

2- The provider is created in the current memory area during the initialization

phase using:

Provider=new SelectorProviderImpl();

3- The selector is created as well in the current memory area using

selector=new SelectorProviderImpl(provider);

4- The selector is opened using

Provider.openSelector();

At the same time, we can change the creation of the server channels and the

client channels to use the following forms:

SocketChannel theClientchannel=

 provider.openSocketchannel(), and

ServerSocketChannel theClientchannel=

 provider.openServerSocketchannel();

The above statements create all the required objects in the same memory area,

to ensure that the developer has the full control of choosing the allocation memory area

that suits his model. For example, in our proposed model for real-time middleware, we

can choose the container memory area, ContMA as the memory area in which these

objects are created, to ensure that they are all available to all components and sub-

components within this container.

8.2.2 Execution Context Problems

The execution context problems are those problems that may arise, due to

improper use of the memory model during the execution phase of the component. In

addition to the illegal memory assignments, these problems include the unbound use of

memory areas of the forked memory model. These problems can occur easily in the

implementation of the component; if the original Java NIO libraries are used. This is

because the original Java NIO libraries are built assuming the automatic memory

management, i.e. by using the Java‘s garbage collector, which is not the case when we

use the immortal or scoped memory areas to build all the parts of the forked memory

model of the communicator component. So, it is very important to analyze the code of

the Java NIO libraries used for building the communication component, to identify the

problems that can arise when it is used within the forked memory model of the

communicator component. Most of the problems are related to the selection keys life

cycle memory model. In the following, we present these operations and the main

problems that we have spotted in them; then, we present our solutions to these

problems based on our component model.

Chapter 8

-343-

In the open-source files of jRate, most of the selection key management

operations are associated with the epoll selector‘s implementation within the

EpollselectorImpl.java file. In the following, we summarize these operations, and

introduce the memory management problems that arise when using this implementation

to build our communicator component. Then, we present our solutions to these

problems.

A- Selection key registration operation

Selectable channels, whether they are server or client channels, register themselves

with the selector with a set of registered events, to observe when these events occur on

them. The registration of a selection key is made using the method

AbstractSelectableChannel.register(Selector, events,

attachment). This registration process starts by searching if the channel already

has a key registered with the selector or not, where the search is done in a hash map

associated with this channel, which holds the keys defined for this channel with all the

selectors available in the system, as the Java NIO assumes that the channel may be

registered with more than one selector. The result of the search is as follows:

keys Values

Registered Keys

HashMap

re
g
iste

r(ch
, o

p
s, a

tt)

Result
new

Integer(fd)

Figure 8-3 registering a selection key

1. If the key is found, the found key is updated with the new events and attached

object, and the registration process finishes.

2. If the key is not found, i.e. the channel was not registered; then, the registration

process is forwarded to the selector object itself, i.e. by calling

 selector.register(this, events, attachment),

which is defined in the EpollselectorImpl.java file.

3. In the selector.register() method, a check is made, before the registration

process, on a hash map that holds all the keys associated with this selector, see

Figure 8-3, to check if the key is already registered or no. This is done using the

statement:

keys.containsKey(new Integer(native_fd))

4. If the key is found, i.e. the channel is registered; then, an exception is thrown,

Chapter 8

-344-

5. otherwise, the key is not found, the registration is made of a new result object that

holds the information of the registered key,

EpollSelectionKeyImpl result= new

 EpollSelectionKeyImpl(this, channel, native_fd);

keys.put(new Integer(native_fd), result);

where, result is the object that holds the registered information, including the

events, attached object, etc.

Memory Analysis and Problems

The channel‘s associated linked list holds the selectors with which this channel is

registered, so its size is bounded by the number of the selectors that we can attach this

channel to. In our component, we use a single selector; this ensures that size of the

linked list is bounded to a maximum size of one, as long as the channel is not used by

any other selector.

During the execution of the selector.register() method, two

immutable Integer objects are created, to be used as keys within the hash map, the first

one is used for searching within the hash map, while the other one is used for adding a

new entry to the hash map. Also, the result object is created and inserted in the hash

map. From RTSJ perspective, these objects are created in the current memory area

each time the registration is made for a new channel. This makes the memory allocated

by the register() method is unbounded, which result in memory leakage.

B- Selection Operation

The selection operation Selector.select() is the main operation in our

component, as this operation makes the selector to start/continue observing the events

occurring on the channels registered with it, and save the information of these events in

the selectedKeys hash set, see Figure 8-4.

keys Values

Registered Keys

HashMap

Selected Keys

HashSet

doSelect()

Result

Result
new

Integer(fd)

Figure 8-4 Selection-Operation

Chapter 8

-345-

 This operation executes the Selecor.doSelect(-1) method, which

causes the executing thread to wait indefinitely until one of the registered events occur.

The Selector.doSelect() operation involves three main tasks as follows:

1. Cancelled keys handling.

Before waiting for the registered events, the selector first needs to check if any

of the registered keys have been cancelled, to avoid monitoring the events belonging to

it. In the Java NIO‘s Selector model, the Selector has a hash set that holds all the

cancelled keys, any key cancelled, i.e. using key.cancel(), is added to this hash

set, see Figure 8-5. In the Selector.doSelect() method, the elements of this

hash set are retrieved, and the following operations are done on every cancelled key in

this hash set:

a- Its file descriptor is deleted from the epoll‘s associated file descriptors.

b- The cancelled key is removed from the hash map of the registered keys using:

 keys.remove(new Integer(key.fd))

c- It is removed from the cancelledkeys hash set and deregistered.

keys Values

Registered Keys

HashMap

Selected Keys

HashSet

Result

CanceledKeys

HashSet

Key.cancel()

Result
new

Integer(fd)

Result

Figure 8-5 Cancelling a key

2. Clear out the closed channels

Before waiting for the registered events, the selector needs to check if any of

the registered channels have been closed, in order to remove it from the hash map of

the registered keys. So, a check is made on all the keys entries of the registered keys

hash map, to check if any of the channels associated with these keys are closed, if

found, the key associated with this closed channel is removed from the registered keys

hash map.

3. Generated events handling

After receiving events on the channels registered with the selector, the selector

generates a hash set that hold keys for all the observed events, see Figure 8-6. This

process is made in the Selector.doSelect() method, by first creating a new

Chapter 8

-346-

hash set of the size ret, which represents the count of the observed events, where this

hash set is used to hold the selected keys. This operation is done using the statement:

HashSet S=new HashSet(ret)

keys Values

Registered Keys

HashMap

Selected Keys

HashSet

doSelect()

CanceledKeys

HashSet

Result

TEMP

HashSet

Result
new

Integer(fd)

Figure 8-6 Creating a s new selected keys hash set

Then, the following sequence of operations is repeated ret times, for each one

of the observed events monitored by the selector:

1. Get the position of the next epoll_event in the events byte buffer that is filled by

the epoll.

2. Generate a new byte buffer to hold the information of this event using

ByteBuffer b= events.slice()

3. Get the file descriptor associated with this event using:

fd=selected_fd(b)

4. Get the key corresponding file descriptor fd, and update the information of this

event using:

EpollSelectionKeyImpl key =

 (EpollSelectionKeyImpl) keys.get(new Integer(fd))

5. Update the key values by the events data.

6. Add the key to the hash set S.

7. Reallocate the events buffer by using the method reallocateBuffer(),

which uses the method ByteBuffer.allocateDirect() to regenerate the

events buffer.

8. Assign S to Selector.SelectedKeys.

Memory Analysis and Problems

The creation of the hash set S temporarily is acceptable when the allocation is

in the heap, as the garbage collector can deallocate it, when it is not in use; however,

Chapter 8

-347-

the allocation of it in a scoped memory or immortal memory would make memory leak,

because this hash set is created frequently during the lifecycle of the component.

Similarly, the generation of the byte buffer b in the scoped memory area

generates objects at run time, where these objects cannot be deallocated.

 Also, getting the key from the hash map involves the creation of the

immutable Integer object, and this process is repeated in all iterations, and at each time

a new event(s) occurs, and is observed by the selector.

Moreover, the reallocation of the events buffer using the method

reallocateBuffer(), is one more method that makes memory allocation

unbounded.

Finally, assigning a new created instance of S to

Selector.SelectedKeys means that the current object assigned to

Selector.SelectedKeys will be not in use, and as this object is created out of

the heap, so, there is no dynamic memory management to reclaim this object; hence,

this object would causes a memory leak.

8.2.3 Solutions to the Memory Problems

All the above memory problems are due to the fact that the Java NIO packages

were built using the standard Java that supports dynamic memory management, so if

we used the heap memory area for the allocation of the selector object, all these

problems would be eliminated, but with the cost of the need to an efficient and

predictable real-time garbage collector. However when using the scoped memory area,

or the immortal memory area, the above problems occur. Most of these problems are

due to the creation of temporary or hidden objects within the Java NIO packages in a

scoped/immortal memory area. In our component model, we proposed two solutions to

these problems:

1- The use of reusable objects using the reusable object allocator sub-

component/pattern.

2- The creation of the these temporary objects in nested scoped memory area, then exit

from it directly once the temporary object(s) are not in use any more.

The use of the second solution to solve the above problems is not useful with

the above problems, as all the operations that involve the creation of the

hidden/temporary objects are based on the selector object, basically its

selector.select() operations, where this selector object has to be alive for the

Chapter 8

-348-

lifetime of the component, as the selector.select() method has to be executing,

as long as the component is alive, to monitor the network I/O events. For example, the

creation of new Integer(fd) in a nested scoped memory area, and using it to be a

key for the selection keys hash map would not be possible, as the hash map, which is a

field of the selector, would be created in the scoped or immortal memory area in which

the selector object is created, i.e. using the temporary Integer object, however, this

creation process is not acceptable in the RTSJ, as the hash map has a shorter life time

than the selector object, and accessing it from the selector object violates the single

parent rule.

On the other hand, the first solution is more general, and applicable within any

memory area; however, it has the restriction that it requires the reusable objects to be

created from classes that have no_args constructor only, i.e. it cannot be used for

immutable objects like Integer object.

Hence, as the first solution is not feasible, we adopted the use of the second

solution, i.e. using the reusable object pattern. In order to use the reusable object

pattern, we have to avoid the restriction of using the immutable objects; so, we have to

use mutable object instead of the Integer immutable object. The following code shows

a simple, class which replaces the immutable Integer class.

public class MutableInteger

{

public int val;

public MutableInteger()

{//no args constructor

}

public void setValue(int v)

{

 val=v;

}

public void getValue()

{

return val;

}

public int hashCode()

{

return val;

}

public boolean equals(Object other)

{

 if (this == other) return true;

 if (!(other instanceof MutableInteger))

 return false;

 MutableInteger otherMutableInteger =

 (MutableInteger) other;

 return

MutableInteger.val==otherMutableInteger.val;

}

}

Chapter 8

-349-

The above class has only an integer field to hold the file descriptor as a key

within the selection keys‘ hash map. The class has to override the hashCode() and

equals() methods, as they are used by the hash map internally. The hashCode()

method is overridden; so that, it returns the value of the integer field as the hash code.

This ensures that all objects assigned the same integer will be considered the same

object, so that they can be used to access the same entry in the hash map. The

equals() method ensures that the equality of two objects of the same class is

dependent on their state not behaviour, i.e. as long as they hold the same integer value,

they are considered the same.

In order to use the reusable object allocator, the following sequence of steps has to

be made:

1. Get a reference objAllocator to the object allocator sub-component, this is

done using the MNPORTAL of the current memory area, where we assume that every

scoped memory area within the forked memory model has a reference to the reusable

memory object allocator; either local to this scoped memory area, or global in the

container that holds the current component.

2. Get an instance of the mutableInteger class.

3. Assign the required file descriptor to this mutableInteger.

4. Use this object in place of the new Intger(fd).

5. Once it is not in use, recycle it.

The following code snippet shows the changes within the register() method:

int native_fd=channel.getState().getNativeFD();

synchronized (keys)

{

MNPORTAL mp=(MNPORTAL)

 MemoryArea.getCurrentMemoryArea().getPortal();

IObjectAllocator allocator=(IObjectAllocator)

mp.getObject(“ObjectAllocator”);

MutableInteger mutInt=

allocator.getInstance(MutableInteger.class);

mutInt.setValue(native_fd);

if(keys.containsKey(mutInt))

throw ……

EpollSelectionKeyImpl result= (EpollSelectionKeyImpl)

allocator.getInstance(EpollSelectionKeyImpl.class);

result.setParameters(this, channel, native_fd);

……………

…………….

result.selectedOps=0

………………

keys.put(mutInt, result);

………..

………

allocator.recycle(mutInt);

}

Chapter 8

-350-

In the above code, we must note that we have used the same object mutInt for

checking the hash map; then, for adding the key, we need to create another instance,

because it holds the same file descriptor. Also, we have to note that we have recycled

the object at the end of the function, as the hash map does not keep an instance of the

object, because it uses its hash code only as an index within the bucket of the hash map.

In addition to that, we see that we have used the allocator to get an instance of

the EpollSelectionKeyImpl class, but we have not recycled it. This is because

this instance will reside in the hash map, untill it is cancelled by the user, or the channel

is closed; so, it cannot be recycled here. Also, we have to note that, we used the

setParameters() method, this method is an addition to the

EpollSelectionKeyImpl class to enable reusing it.

In the doSelect() method, another set of changes have to be made, as it

contains a set of problems other than the temporary objects, in the following we present

the changes made to the main parts of this method.

1. Cancelled keys handling.

The problems in this part are regarding the temporary/hidden object, the

changed code of this part is as following:

for(Iterator it=cancelledKeys.iterator();it.hasNext();)

{

MNPORTAL mp=(MNPORTAL)

 MemoryArea.getCurrentMemoryArea().getPortal();

IObjectAllocator allocator=mp.getObject(“ObjectAllocator”);

EpollSelectionKeyImp key = (EpollSelectionKeyImp) it.next();

epoll_delete(epoll_fd, key.fd);

key.valid=false;

MutableInteger mutInt=

allocator.getInstance(MutableInteger.class);

mutInt.setValue(key.fd);

EpollSelectionKeyImp oldObject=keys.remove(mutInt);

It.remove();deregister(key);

allocator.recycle(mutInt);

allocator.recycle(oldObject);

}

The first main change in this part is the use of the reusable object mutInt; then,

recycling it at the end as explained before. The other change is the addition of the

allocator.recycle(oldObject), to recycle the cancelled selection key as it

has no more use, this key was generated during the register() operation.

2. Clear out the closed channels

The problem in this part is that the keys of any closed channels are removed

from the keys hash map, and once they are removed, they are not used any more;

Chapter 8

-351-

hence, the solution for this part is to recycle these keys. The changes to this part is

shown in the next code snippet.

for(Iterator it=keys.values();it.hasNext();)

{

MNPORTAL mp=(MNPORTAL)

 MemoryArea.getCurrentMemoryArea().getPortal();

 IObjectAllocator allocator=(IObjectAllocator)

mp.getObject(“ObjectAllocator”);

EpollSelectionKeyImp key =

 (EpollSelectionKeyImp) it.next();

 Selectablechannel ch=key.channel();

if(!((VMChannelOwner)ch).getVMChannel().

getState().isValid())

{

it.remove();

allocator.recycle(key);

}

}

3. Generated events handling

The problems in this part are different from the previous parts, and each one of

these problem needs a different solution. We present the solutions of these problems

next.

a. The temporary hash set S

In the original code of the doSelect() method, a new selectedKeys hash

set instance S, is created after each selection process, where the size of this hash set

size is assigned to be of a size equal to the number of the events observed by the epoll

selector. Then, this new instance replaces the old selectedKeys hash set. Our

solution assumes that we can avoid using this hash set completely, by directly reusing

the original selectedKeys hash set, as the aim of using the temporary hash set S is

to fill the selectedKeys hash set. This helps as well to avoid the need for cleaning

or reusing the discarded old selectedKeys hash set. But to do this, we have to

ensure that we discarded all the old elements of the selectedKeys hash set first,

before refilling it with the new events entries. The remove process should recycle the

removed objects. In the same time, as the selectedKeys hash set is not recyclable;

then, the selectedKeys’s size should be set to have a fixed size, which has to be at

least equals to the meaximum number of conocurrent registered network I/O events

observed by the associated selector object. Hence, care must be taken to avoid the use

of the selectedKeys.size() method in any other method, as it would get the

maximum possible number, instead of the actual number, of the observed events. So, a

separate integer field in the selector class can be provided to hold the current actual

number of elements within the selectedKeys hash set.

Chapter 8

-352-

In our component model, the size of the selectedKeys hash can be bounded, as

we proposed in the model that we limit the concurrency to a certain limit; so, by

analyzing the total number of concurrent schedulable objects, and by analyzing their

code, we can determine the total number of channels registered concurrently in the

selector, and the maximum number of events for each channel; hence, we can know the

worst case of the memory size required for the selectedKeys hash set.

b. Generates a new byte buffer for the event and get the file descriptor from it

The events byte buffer holds the bytes of all the events observed by the selector, in

order to decode the data of each event such as the file descriptor, fd, associated with

this event.The operation ByteBuffer b=events.slice() generates a new

direct byte buffer, b, in each iteration, this byte buffer holds the data bytes of the

events that have not been decoded yet. The ByteBuffer.slice() method is called

to generates a new direct byte buffer from the original events buffer, where the bytes of

this buffer are read from within the events buffer, events, starting from the current

position, where this position is updated in each iteration, to start form the bytes of the

next event(s) in it that have not been read yet. Then, the generated byte buffer b is

passed to the method. selected_fd(), which decodes the bytes of this buffer, and

works on the bytes of the first event in it only, to get the file descriptor associated with

it, and ignores the bytes of other events. So, this means that for n of observed events, a

number n of non-reusable byte buffers objects are created, and this process is repeated

in each selection operation, which would cuse memo leakage. We can avoid this

problem by avoiding the use of events.slice() completely, as it is the source of

the problem, and change the logic of the selected(fd) method in a way that makes

it work on the original events byte buffer instead of the generated one, but this requires

that the order of the required event to passed to it each time it is called, in order to be

able to identify and decode the next event in sequence.

c. Using new Integer(fd)

The solution of the creation of a temporary Integer object using new

Integer(fd) is the same as mentioned before.

d. The reallocation of the events buffer using reallocateBuffer()

In the original code of the doSelect() method, the execution of the

reallocateBuffer() is done, to dynamically allocate a new direct byte buffer

that has a size equal to the number of the currently occurred events. This behaviour is

acceptable when we allocate it in the heap memory area, as the garbage collector can

Chapter 8

-353-

free the memory of the discarded events byte buffer each time a new one is generated,

but in case of the allocation of the events byte buffer in a scoped memory area, this is

not acceptable, exactly as it was the case with the temporary hash set S mentioned

before. So, to solve this problem, we create the hash set only once with its worst case

maximum size, to avoid the reallocation of the buffer completely, where the size of this

byte buffer has to be bounded. So, again, as it was a requirement for the

selectedKeys hash set, we need to limit the level of concurrency in the component,

in order to be able to analyze the system in order to identify and limit the worst case of

the maximum number of the concurrent occurring events in the component. So that,

the size of the events byte buffer can bebounded.

According to the above solutions, we can change the code of the handling of the

generated events to the following:

MNPORTAL mp=(MNPORTAL)

MemoryArea.getCurrentMemoryArea().getPortal();

IObjectAllocator allocator=mp.getObject(“ObjectAllocator”);

for(Iterator it=SelectedKeys.iterator();it.hasNext();)

{//this part to recycle the old selected keys

EpollSelectionKetImpl oldkey=

(EpollSelectionKetImpl) it.next();

it.remove();

allocateor.recycle(oldkey);

}

for(int i=0;i<ret;i++)//ret is the number of observed events

{//this part is to encode the events to generate the new

// selected keys and add them to the selectedKeys hash set

events.position(i*sizeof_struct_epoll_event);

MutableInteger mutInt=

allocator.getInstance(MutableInteger.class);

//get the fd of the event [i] in the events bytebuffer

int fd=selected_fd(events,i);

mutInt.setValue(fd);

EpollSelectionKetImpl key =

(EpollSelectionKetImpl) keys.get(mutInt);

………

…………

 selectedKeys.add(key);

}

8.3 Evaluating the memory model of the future calls

In our real-time middleware model, we assume that any invocation of a remote

method made by one of the client component‘s threads is delivered to an executor of

the sub-communicator component, where this executor has to process the call on behalf

of the client component‘s thread; so that, the client object/component‘s thread becomes

able to continue doing other work, instead of waiting idle during the execution of the

remote method. Hence, the data associated with the call, such as the method name and

the parameters to be passed to the remote method for execution, has to be shared

between the calling thread and the component‘s executors, where these data are

Chapter 8

-354-

temporary data that have to be either reclaimed, or reused after the end of the call

execution. According to this, a shared memory model that is compatible with the RTSJ

memory model has to be provided in any RTSJ-based real-time middleware model, to

support the proposed invocation patterns.

To our knowledge, this model has not been used in any RTSJ based model, and

only the synchronous model was used. For example, in the RMI-QoS (Tejera, Tolosa et

al. 2005), as presented in chapter 3, the authors assumed the clients are able to make

only synchronous calls, and there was no support for the future calls, so they assumed a

simple memory model for the client side, where the default allocation context of the

invoking thread is used to allocate the object that returns as a result of the remote

invocation.

So, in this section, we evaluate a set of proposed different memory models that

can be developed for sharing these data within any RTSJ-based middleware models by

analyzing these models and comparing them according to:

1. The scenarios of use of each pattern, to proof the validity of the model.

2. The level of btsraction, by identifying the required steps to access the future

object.

3. The validity of supporting different invocation pattern(s).

4. The restrictions of use.

5. The validity and support of the model in the forked memory model.

In our analysis, we present the scenarios of each model first, independent of the

forked memory model; then, we show how this model can be supported in the forked

memory model.

A- Immediate Nesting in the Stack of the Calling Thread

Scenarios: In this model, the calling object/component‘s thread creates a new scoped

memory area, which is nested just on top of this thread‘s current memory area, to hold

the data of the remote call. The block diagram, shown in Figure 8-7, shows two

scenarios of this model; where there are two different real-time threads are executing

these two scenarios to process the remote calls. In the first scenario, we assume that the

first thread is initially running in the top memory area C, when it intends to make the

call. In this scenario, in order to make the remote call, the first thread creates a nested

scoped memory area D and enters it to make the call from within it; this memory area is

created in order to hold the temporary parameters of the calls during making the call,

and must be reclaimed once the call finishes execution. The executor of the

Chapter 8

-355-

communicator component must be able to do the memory entries A=>B=>C=>D to

process the call.

In the second scenario, the other thread is supposed to be running in memory

area F in the middle of the scope stack, i.e. using the executeInArea() call, at the time

that it wants to initiate the remote call. Then, according to this model, the thread enters

the temporary scoped memory area, I, in order to run the call, and the executor,

similarly to the first case, has to be able to enter the scoped memory areas E=>F=>I in

order to access the call‘s data.

B

D I

A

S
ta

c
k
 o

f

C
lie

n
t
T

h
re

a
d

 1

S
ta

c
k
 o

f

C
lie

n
t
T

h
re

a
d

 2

C
F

Call

Origin

E

Memory Area

Communicator

Component Executor

G

H

-a- -b-

Scoped

Memory

CallData’s

Memory

Figure 8-7. Nested Model

Level of abstraction: In both the above scenarios, each one of the the temporary

scoped memories D, and I, is acting as an email box, which holds the shared call data

between the caller thread and the call-executor thread. According to the RTSJ rules,

these two scope stacks have to have at least one active thread running within them to

keep them alive; otherwise, they will be reclaimed and data inside them will be deleted.

So, in both scenarios, the calling thread has to keep the temporary scoped memory area

within its scope stack during the call processing untill the result is delivered back to

them. This behaviour is more suitable for the synchronous pattern of method calls;

where by default, the calling thread blocks waiting for the result of the method call.

However; for the Future pattern of method calls, the calling thread delivers the call to

another thread to process, and it continues execution instead of blocking to receive the

result. Then the call-processing thread can deliver the result to a certain future object

that is accessible by the calling thread. In this manner, the calling thread can continue

execution, and later, it can get/check the result from this future object.

Supporting this behaviour in the above two scenarios requires careful consideration

and restriction, where, the calling thread can use either the executeInArea() method to

Chapter 8

-356-

execute within one of the inner memory areas in its memory scope stack, or it can enter

another nested memory area above the temporary scope. In the first scenario the calling

thread cannot leave the scoped memory D before getting the result of the remote

method call, but it can use the executeInArea() method to run in either A, B, or C

scoped memory areas. According to this programming model, the calling thread

becomes tightly coupled with the temporary scoped memory area, which adds more

complexity to the programming model, and makes it difficult for the programmer to

organize his code. Also, in the second scenario above, if the calling thread, after

initiating the Future remote method call RM, it wants to move to the H scoped memory

area to execute some local method LM there, then, it has to call F.executeInArea()

that executes a runnable, which has to call the method F.enter(), which itself has

another runnable that has to execute H.enter(). If the logic of the method LM wants

to check the result of the method call RM, then, the calling thread has to re-enter the

memory area I again by using the sequence of calls F.executeInArea(), which, in

turn, executes a logic that include the call I.enter(), then, the calling thread checks

the result in the I memory area. If the future object has to be copied to the H memory

area, things becomes more complicated. Hence, although using this model can be

applied, it is more suitable for synchronous calls, while for future calls, although it can

be used, it adds a lot of complications to the programmatic model, and makes it

difficult to calculate the worst case execution time of the calls; in addfition to that, it

complicates the analysis of the system.

Restrictions: In our proposed stub model, there is a critical restriction on using this

model, this restriction is that the use of a queue that holds the call‘s temporary memory

areas, D, and I, in the above scenarios, means that the references of D and I have to be

accessible from the memory area in which the queue object is allocated, where this

memory area has to be shared among all the threads‘ stacks, e.g. the container memory

area. This means that the objects of D and I have to be created from the queue‘s

memory area as well, or a lower scoped memory area in its scope, and they cannot be

created from within any inner scoped memory area.

The support of the model in the forked memory model: In the above scenario, as we

assume that the executors are configured to be initiated in the container‘s memory area,

ContMA; then, in order that the executor be able to access the call‘s data, it has to enter

the D memory area, and according to the RTSJ‘s single parent memory rule, the only

way to do this it to build a scope stack that is identical to the portion of the calling

thread‘s stack, from the outmost scoped memory area up to the temporary memory

Chapter 8

-357-

area, and attach this scoped memory stack to its own stack, i.e. the executor has to enter

the memory areas A => B => C => D for the first scenario and E=>F=>I for the second

scenario in sequence in order to process the call. This means that there is a need for a

sequence of a variable number of nested operations to make this execution; this is

supported in the forked memory model by the runnable stack pattern. The restriction

on allocating the temporary memory within the ready queue of the stub limits the use of

the reusable stack pattern, which assumes that the dynamically created temporary

memory areas are created within their parent scoped memory areas.

B- Nesting within the Outmost Scoped Memory Area of the Calling

Thread’s Stack

In the previous model, the level of abstraction of the programming model is

dependent on, and proportional to, the structure of the calling thread scoped memory

stack. This is because the temporary scoped memory area can be nested within any

memory area in the scoped memory stack, so the executor has to enter all the scoped

memory areas below it in order to enter it. To overcome this problem, the temporary

scoped memory area has to be created within a fixed place in the scoped memory area

stack, which can be easily accessed from anywhere in the stack.

Scenario: In this model, we assume that the creation of the temporary scoped memory

area is always to be nested within the outermost memory area of the scoped stack of the

calling thread.

Level of abstraction: The choice of the outermost scoped memory area as the parent

has better level of abstraction because:

 1- The calling real-time thread has at least one memory area and at most one

outermost memory area.

 2- The creation of the temporary scoped memory area on top of the outermost

memory area in the stack is done in one step exactly from within the current

memory area, by creating it from within a runnable logic that is executed by calling

outermostMA.executeInArea()

 3- Entering the temporary memory area from the current memory area of the calling

thread is done, at the most, in two operation in sequence; first by calling

outermostMA.executeInArea(), in case the calling thread is currently running in a

memory area in the stack other than the outermost memory area, then followed by a

call to tempMA.enter().

Chapter 8

-358-

For example, in Figure 8-8-a, the calling thread, which is running in the C memory

area, enters the temporary memory area (I) by calling A.executeInArea(), which

executes the method I.enter() in its runnable logic, to enter the temporary

memory area.

Similarly, in Figure 8-8-b, the calling thread running in E enters the temporary

memory area H, by running H.enter() from the runnable logic which is first

executed by D.executeInArea().

 4- Entering the temporary memory area by the executor; requires the executor to be able

to do the two memory entries A=>I in the first case, or D=>H in the second case.

H

A

E

Call

Origin

D

Memory Area

Communicator

Component Executor

F

G

-a- -b-

Scoped

Memory

CallData’s

Memory

S
ta

c
k
 o

f

C
lie

n
t
T

h
re

a
d
1

S
ta

c
k
 o

f

C
lie

n
t
T

h
re

a
d

 2

I

C

B

Figure 8-8 Fixed Nesting

As seen above, using this model makes the programming model more

systematic and convenient, as it is independent of the structure of the calling thread

scoped memory stack, because it fixes the scope stack depth below the temporary

memory to be equal to only a single outer scoped memory area, where this single outer

scoped memory area is fixed and does not change for the same calling thread.

Restrictions: Using this model for making future calls requires the calling thread to

have a reference in the D/H memory area after putting the call data in it. This means

that the calling thread has to run executeInArea() call from within the D/H memory

area, in order to return back to the original memory stack, then, one or more enter()

calls has to be mad to continue execution in the previous memory area, this adds a lot

of difficulties on the developer to manage his code.

The support of the model in the forked memory model: The use of the container

memory area as an initial memory area for both the calling thread and the executor, i.e.

the outer most memory area, makes the length of any reusable stack pattern, which is

used to access the temporary memory, is always of size two, e.g. ContMA=>TempMA,

which gives better predictability in memory access time of O(1). Also, the allocation of

TempMA in this model has to be in the container memory area by default, which

Chapter 8

-359-

makes referencing of it from the ready queue in the stub, is allowed without any

restriction.

C- Independent Temporary Scoped Memory Model(s)

Although the above model has overcome a lot of the difficulties that exist in the

first model, it still has some problems regarding the sharing of the temporary memory

with the executor and/or other threads. In addition to the difficulty in managing the

code to continue execution in the previous memory area, another problem occurs within

a scenario in which the calling thread can make a future remote call that will be

executed remotely, and its return value will be saved in the temporary memory, in order

to be accessed by another thread other than the calling object/component. In this case,

the lifetime of the temporary scoped memory area will depend on the thread that is

waiting the result, not the thread that initiated the call. In the above two models, the

calling thread was working implicitly as a wedge thread for the temporary scoped

memory area, but in this scenario, the lifetime of this thread can be shorter than the

lifetime of the temporary scoped memory area. So, it becomes possible that the calling

thread finishes its execution, and the temporary scoped memory area is claimed before

the other thread that will access it to get the result enters it. In order to overcome this

problem, the previous model of the temporary scoped memory area can be enhanced by

providing a mechanism for controlling the life-time of the temporary scoped memory

area explicitly, by one of the subcomponent(s) that use the lifetime control patterns

discussed earlier in this dissertation in chapter 5, i.e. either by using wedge thread, fork

thread, dual-fork thread, or memory pinner sub-component.

I- Using the Fork/dual-Forked pattern

The diagram in Figure 8-9, shows an example of this model as a modification

of the previous model, by using the forked memory pattern, where in this model there

are two thread scoped memory area stacks, where we assume that the first thread enters

the forked scoped memory D, and the second thread enters the temporary scoped

memory area G; these two memory areas are created on top of the current memory area

C, F of the two threads respectively as follows:

Scenario: In this model, once the calling thread exits D/G after imitating the future

call, these two memory areas should not be reclaimed, as the life times of these

memory areas are assumed to be independent of this calling thread, as their life-times

are controlled explicitly by the programmer, and any other thread including the

communicator component‘s executor can access them, as long as the RTSJ memory

access rules are satisfied.

Chapter 8

-360-

G

B

A

S
ta

c
k
 o

f

C
lie

n
t
T

h
re

a
d

 1

S
ta

c
k
 o

f

C
lie

n
t
T

h
re

a
d

 2

C
F

Call

Origin

E

Memory Area

Communicator

Component Executor

H

I

Scoped

Memory

CallData’s

Memory

COM_MEM

D G

Virtual

MemoryArea

-a- -b-
Forked

Scoped

Memory

AreasD

Figure 8-9 Independent Forked Temporary Scoped Memory Model

Level of abstraction and Restrictions: An important restriction of this model is

coming up due to the need for COM_MEM to run this pattern. This is because if

COM_MEM is chosen to be a scoped memory area, then, it has to be in the scoped

memory stack for both the calling the thread and the executor thread and any thread

that would access this memory area, and in the same time the section of the scope stack

above it, up to the forked memory area, should be the same, in all the threads that needs

to access this memory area, or the other option, is to let the COM_MEM to be one of

the primordial memory areas, i.e. immortal/heap memory area. In addition to that, as

the D, G can be of any depth within the scoped memory area stack, then the complexity

of using the fork/dual-fork pattern will be O(m), to hold a single temporary memory

area, and increases to O(nxm), in case of holding n memory areas. So, as it was the case

in model B, to reduce the complexity and access time, we can assume the allocation of

the temporary memory areas to be nested within the outermost memory area of all the

threads concurrently accessing it, this will reduce the access time to be of O(n) for n

different temporary memory areas.

The support of the model in the forked memory model: The forked memory model

offers a good support for this model, as it assumes that all the schedulable objects are

originated from the same memory area, the container memory area, ContMA. Also, the

allocation of the temporary areas in the same container memory area ensures that that

the depth of the forked memory to be one, which limit makes the access time to O(1).

In addition to that, the support of the forked-thread and dual-fork thread as sub-

components within the container provides the pattern as a ready service to save the time

of the implementation. Moreover, the fork/dual-fork subcomponent can itself be used

as the ready queue that is used by the stub to save the calls that are to be executed by

the call-executor provided by the communicator component.

Chapter 8

-361-

II- Using Pinnable Memory

A similar but more simplified model of the above model can be built using the

pinned memory areas instead of the forked model; see Figure 8-10, as there will be no

need to have a COM_MEM as a common parent for all the temporary memory areas.

G

B

A

S
ta

c
k
 o

f

C
lie

n
t
O

b
je

c
t

1

S
ta

c
k
 o

f

C
lie

n
t
O

b
je

c
t
2

C
F

Call

Origin

E

Memory Area

Communicator

Component Executor

H

I

Scoped

Memory

CallData’s

Memory

D G

Virtual

MemoryArea

-a- -b-
Pinned

Scoped

Memory

AreasD

Figure 8-10 Independent Pinned Temporary Scoped Memory Model

Scenarios: In the first scenario, as shown in Figure 8-10, D and G are the temporary

memory areas created for the future call, decrementing, they can be pinned once the

calling thread leaves them.

Restrictions: The access to the pinned memory area in this scenario still have the

restriction that the threads that access this memory area concurrently have to be subject

to the memory access rules, i.e. they have the same scope stack, or at most one of them

has a scope stack, while the others are running immortal/heap memory area, and they

do not run in any scoped memory area. We can reduce these restrictions, by nesting the

temporary scoped memory areas within the outermost memory area of all threads that

concurrently access it. Another restriction is that this model is restricted to the RTSJ

release 1.2 and not available in RTSJ 1.1.

The support of the model in the forked memory model: Our model provides a

support similar to the support of the forked/dual-forked model discussed above, with an

access time of O(1), which is more predictable than the fork-thread, dual-fork model.

III- Using Wedged Memory

This model is identical to the pinnable memory pattern, but with the use of a new

thread for each temporary scoped memory created inside it, which represents the major

drawback of this pattern, because of the heavy cost of using the wedge threads on the

system on the resources, scheduling and concurrency models, which is of order O(n).

IV- Using Reusable Objects in Immortal Memory

In all of the above approaches, we assumed the use of scoped memory area as a

temporary storage to store the remote call‘s data objects, so that it can be freed once the

Chapter 8

-362-

call execution is completely finished. Another approach that aims to use the Immortal

memory area as the memory context in which these data are saved is a model that uses

the reusable objects. The use of the reusable objects require that the data, which is

required to be saved, has to have a common format that can be filled each time it is to

be reused, i.e. the call data has to be represented as parameters that are saved within

these objects, where these parameters are changed for each future call. So, the validity

of building this model is dependent on the representation of the call‘s data within it.

A set of disadvantages that are facing this model, in addition to the restrictions

defined on it in our reusable objects allocator sub-component, includes:

- The high consumption the memory area resources. To be able to process

multiple concurrent future calls, there should be several reusable objects created and

ready for use in the memory, where the number of these reusable objects is determined

by the degree of concurrency required. As all these objects are not necessarily used the

at the same time, as long as the degree of the concurrency is less than the maximum;

hence, a considerable amount of the size of the allocation memory area will be reserved

for use, but without actual need for it.

- The internal fragmentation of objects. If we assumed that the call parameters and

any other remote call‘s data are serialized into reusable byte buffer objects in the

immortal memory area, and they have to be ready for processing them by the

communicator component‘s executor, then the sizes of these byte buffer objects have to

be big enough to accept the worst size of the passed parameters‘ objects. However,

these bytes objects are not always filled, so, each time a remote call is processed, the

required size of the serialized parameters can be less than the assigned byte buffer‘s

size. There causes a memory fragmentation equal to the remaining unused bytes within

the byte buffer.

8.4 Empirical Evaluation

In this section, we present the results of some experiments that have been done

using the new patterns and models presented in this thesis. In these experiments, we

measure the performance and the predictability provided by these patterns and models

and how using the RTSJ features have helped to improve these features.

All the experiments have been done using our modified implementation of the

RMI-HRT open-source, which was built on a modified version of the jRate

implementation. This implementation is running over the open-SUSE 11.2 Linux

distribution, which runs Linux kernel version 2.6.18. The experiments have been done

Chapter 8

-363-

using a Dell laptop system, which has an Intel® Core™ 2 Duo Processor T6400 (2.0

GHz, 800 MHz FSB, 2 MB L2 Cache), with 4GB of 800MHz Dual Channel DDR2

SDRAM, and 500GB Hard disk.

8.4.1 Comparing DualFork and WedgeThread Patterns

In this thesis, in chapter 5, we presented a set of new patterns for managing the

lifetimes of any defined set of scoped memory areas. Among those patterns, we

considered that the DualFork pattern can be the best replacement of the commonly used

wedge pattern, for the reasons presented in section 8.1, where this pattern itself is

composed of other patterns presented in the same chapter e.g. the Reusable Objects

Pool pattern. Hence, the main aim of this experiment was to compare the predictability

and performance of these two patterns, when they are used to keep a set of scoped

memory areas alive, considering that they are both using the RTSJ. In the same time,

we need to compare the efficiency of the two patterns, when they run both on single

processor and multi-processor systems, as both patterns are multithreaded patterns.

So, we ran this experiment twice; the first time was on the dual core system

defined earlier; then the same experiment was repeated on the same system, but with

setting the CPU affinity of the system to run the experiment on a single processor of the

system, by using the Linux command taskset.

The idea of the experiment is to measure and compare the time required for

both patterns to propagate into a set of scoped memory areas, where the experiment is

repeated with different sizes of this scoped memory areas set.

The diagrams in Figure 8-11 and Figure 8-12 show the results of our

experiment the time taken by both patterns to hold the required memory areas, where

the horizontal axis represents the number of held scoped memory areas, while the

vertical axis shows the time taken to hold these number of memory areas measured in

micro seconds. In the case of the wedge thread pattern, as there are one wedge thread is

used to hold each scoped memory area, the time is measured from the moment the first

wedge thread is created, until the moment at which the final wedge thread stops waiting

in the required scoped memory area. On contrary, in the case of the Dual-ForkThread,

the time is measured between two moments; the first moment is when the Dual Fork

thread is notified for the first time to update the held scoped memory areas list, i.e. the

moment after adding the first scoped memory area, which causes one of the inner

ForkThread starts to propagate, while the second moment is the moment when the Dual

Fork Thread stops propagation and waits at the final scoped memory area.

Chapter 8

-364-

The results in Figure 8-11 shows the measurements taken in case of the single

processor system, in this figure it is clearly seen that the average time of using the

Dual-Fork thread pattern is less than the average time of using the wedge thread, this is

because the usage of the wedge thread pattern involves the creation of new threads,

which is a heavy process and takes relatively longer time, while the use of the Dual

Fork thread pattern assumes the usage of only two pre-created threads, which avoids

completely the creation of any new thread. For the same reason, as shown in the

diagram, the predictability of the required time for the Dual Fork pattern is much better

than that of the wedge thread pattern.

The results in Figure 8-12 shows the results of the same experiment, but with

the measurements taken when the experiment was run on the normal system, i.e. using

two processors. Comparing the diagram in this case with the diagram of the single

processor case, we find that the behavior of the two patterns is the same for the same

reasons, but with a better predictability for the Dual Fork thread, as the usage of a

single processor can affect the pattern, as there will be a need to do context switching

from the currently running thread to one of the two inner threads of the Dual-fork

thread, which may be not required in case of using multiple threads if there is a free

processor to run the required thread.

8.4.2 Response Time of the Communicator Component

In chapter 6, we developed the design of our proposed real-time Communicator

component, which is a component that can be used to support different levels of remote

communication in real-time middleware. In the design of this component, we used the

Components framework provided in chapter 5, which include a set of patterns that are

built to achieve two main requirements;

- Providing a new and/or modified set of RTSJ-based design patterns to be used in

building components compatible with the RTSJ memory model, and at the same time it

benefits from using its efficient integrated scheduling memory to enhance the

predictability.

- Hiding the difficulties of developing and using the RTSJ components, which arises

when the new RTSJ memory model is used, as this memory model requires a certain

set of rules to be respected to manage it, as discussed in 4.2.2 .

 In addition to that, this component framework is integrated at the same time with

the non-blocking strategy of non-blocking communication, as presented in 6.4, in order

to provide a real-time behaviour, as well as to support several efficient communications

mechanisms.

Chapter 8

-365-

Hence, in this experiment, we aim to see how the usage of the RTSJ scheduling

model, and the RTSJ-based patterns, which were assumed in the component

framework, on the performance and predictability of the communicator component,

when it is used for making calls, as it is the main element in our real-time middleware

model, in both its sides; the client side and the server side. Also, at the same time, we

need to compare the efficiency of the component when it is configured to use two

different communication mechanisms, i.e. the non-blocking and the blocking modes,

and see again how the new features of the RTSJ enhance the predictability of these two

models.

So, we built a simple client-server test program that uses the communicator

component at the both sides; the client side and the server side. This simple test

program sends a packet from the client side to the server side, once the packet is

received at the server side, it is sent back again to the client. This process was repeated

many times, and the response time was measured each time, where the response time is

measured as the time between two moments; the moment at which the program starts to

send the packet from the client side to the sever, and the moment at which the same

packet is received at the client side after receiving it back from the server.

The same experiment was repeated with two different configurations of the

communicator component, the first configuration is the use of the emulated blocking

mode, and the second configuration was using a non-blocking mode. Also, to see the

effect and enhancement that result from using the RSJ scheduling model on the

predictability of the response time, we have taken the response time measurements, for

each of these configurations, with and without activating the RTSJ scheduler.

The results coming out of the emulated blocking and non-blocking

configurations, in both cases of activating and not activating the RTSJ scheduler, were

collected and drawn in the diagrams shown in Figure 8-13, and Figure 8-14

respectively, while in both these diagrams the vertical axis represents the measured

response time, while the horizontal axis shows the iteration number of sending and

receiving the packet.

 In the blocking mode configuration, as seen in Figure 8-13, the jitter in the

response time was bounded in both cases of using and not using the RTSJ scheduler.

However, in case of using the RTSJ scheduler, the response time of the communicator

component was bounded within a smaller range than the jitter measured in case of not

activating the RTSJ scheduler. In addition to that, the average response time in case of

using the RTSJ scheduler was much better, than the case of not activating the RTSJ

Chapter 8

-366-

scheduler, this is because activating the RTSJ scheduler ensures that the execution of

all the test program threads will be scheduled in according to their real-time priority,

which was set higher than any background task, this ensures in turn that the execution

of the sending and replying the packet at the client and the server sides will not be

preempted by any background task; hence, the response time will be faster. This means

that, as assumed in our hypothesis, the patterns provided in the component framework

can be integrated with the RTSJ new features such as the memory and scheduling

models, to enable the creation of components with predictable behaviour, e.g. the

bounded jitter in the response time as proposed here.

In the case of the non-blocking mode, see Figure 8-14, we can see the

following:

- By comparing the average response times in both cases of activating and not

activating the RTSJ scheduler, we find that in this mode, i.e. the non-blocking mode,

the average response times are very close, while there was a clearer enhancement in the

average response times in the case of the blocking mode. This is due to the efficiency

provided by the non-blocking mode of communication, for the reasons discussed in

section 6.3.2.

- As seen in the blocking mode, using the RTSJ scheduler provided a predictable

execution and bounded jitter in the response time of the component that adopts the

proactive model of execution, i.e. uses the non-blocking mode of communication, as it

guarantees that the execution of the real-time threads constituting the component that

execute the non-blocking methods to be according to their defined priority. This is a

great enhancement of the usage of the non-blocking mode, which the lack of order of

execution was one of its main disadvantages, as discussed in section 6.3.3.

8.4.3 The Priority Assignment of the of the Communicator

 The thread that runs the polling loop within the Communicator component is

the main thread of this component, and as this component is built using the RTSJ, then

the assignment of a certain priority of this thread is an important issue as RTSJ

scheduler uses this value to determine the order of the execution of this thread relative

to the other three in the system; hence, the jitter of the response time can be affected

by the priority value assigned to this thread. Hence, the aim of this experiment is to

see the effect of assigning a priority value to the polling thread of the Communicator

component on the jitter; and hence the predictability, of the response time of this

component.

Chapter 8

-367-

 In order to see an effect of the assigned priority value, we built a simple test

program that consists of a single client and a single server, and we measured in this

experiment the response time of sending a packet from the client to the server, and

then receiving it back, exactly in the same way used in the experiment presented in

section 8.4.2. The response time measurements have been taken using two different

values of the priority value of the polling thread; the first time the value was assigned

to be greater than the value assigned to the client thread, while in the second time, the

priority value was assigned a value smaller than the priority of the client thread. The

choice of the client thread priority as a reference is because the client thread is the

thread that initiates the calls over the Communicator component, and its scheduling

for execution is affected directly by the execution of the polling thread in the

Communicator component, especially if the program runs on a system with single

processor, as both of these threads, with all other threads in the test program, are

scheduled by the preemptive priority scheduler provided by the RTSJ.

 As seen in the diagram in Figure 8-15, in the case of assigning a priority of the

communicator component less than the priority of the client thread, the average and

the jitter of the response time are lower than when this priority was assigned to be

more than the client thread priority. This is because that with each iteration to send the

packet to the server, the scheduler executes the real-time threads that runs in the

program according to their priority, and as the client thread has higher priority than

the polling thread of the communicator; then, in the single processor case, any

currently running thread with lower priority has to be preempted, and as the polling

thread has lower priority, then it has to be preempted, and this polling thread, which

has the lower priority, would be interrupted by the client thread in each iteration, in

order to

8.4.4 The Predictability of the Communicator in the Case of

Multiple Clients

In the previous experiments, the test program was built as a single-

client/single-server model, in this experiment; we need to see the effect of using

multiple clients on the predictability of the component, by making two concurrent calls

to the same server, by two different clients to the same server.

Hence, we used a model that uses our Communicator component, where the

component was configured to run in the emulated blocking mode, the model consists of

two instances of the client side of the same test program presented earlier, these two

clients use periodic threads that send two packets simultaneously to the server side; one

Chapter 8

-368-

packet from each client. These packets are received and replied back to the two calling

clients using a single server, where the release parameters of the real-time threads of

the two clients were assigned to start simultaneously, and they are assigned the same

period of execution. As this model is a multithreaded model, we tested this model on

our two-processor system using two different configurations;

- No external setting of the CPU affinity is made, i.e. the clients and the server are

scheduled by the system scheduler.

- The CPU affinity of the clients is assigned externally, where each client is assigned

to one of the e processors using the taskset command.

 At the same time, we need to see the effect of using the RTSJ on the component

predictability, on both of the above two configurations, and we need to see how the

RTSJ enhances the predictability of the Communicator component and at the same time

it guarantees the clients to execute according to their priorities, i.e. clients with higher

priority execute before clients with lower priority. Hence, the experiment was tested for

each configuration two times; the first time while the RTSJ scheduler was activated at

all the system instances, i.e. the client sides and the server side instances, and the

second time while the RTSJ scheduler is not activated.

The diagram shown in Figure 8-16 shows the results obtained by running the

test program with the CPU affinity of each client thread is set to use a different

processor of the system, and without the activation of the RTSJ scheduler. It is clear in

this figure that there are relatively large boundaries of the jitter in the response times of

both threads, whereas the average times of the response time of the two clients are

close to each other. This is expected with these configurations as the missing of a real-

time scheduler makes the two clients preemptible by the Linux scheduler by any other

thread running in the system without respect to their higher real-time priority.

To see the effect of using the RTSJ on the component model, the RTSJ

scheduler was activated and the results were obtained and drawn in the diagram in

Figure 8-17. In this diagram, we see that the values of average and jitter in the response

time were reduced significantly for both threads than the values shown in shown in

Figure 8-16, which were obtained when the RTSJ was not activated. This shows clearly

that using the RTSJ scheduler enhanced the predictability, even with multiple

concurrent executing clients. In addition to that, we note that the jitter and average time

of the client thread with higher priority is much lower than the corresponding measured

values of the client thread with lower priorities. This means that the priority of the

caller is respected when the calls are made in our model.

Chapter 8

-369-

The above two tests were repeated without setting the CPU affinity, i.e. the

system scheduler can allocate the client thread to any available processor. The diagrams

in Figure 8-18, Figure 8-19 show the measured response times of running these two

tests. It is clear from the figures that the observations are similar to the observations

that were obtained when using the CPU affinity still exist, i.e. activating the RTSJ

scheduler enhances the predictability of the model.

In addition to the above, in Figure 8-19, when no CPU affinity setting was set

and the RTSJ scheduler was active, we observe that the jitter in the response times was

nearly bounded within the same boundaries for both clients threads, which was a result

of using the RTSJ scheduler as explained earlier; in the same time, the average

response time for both threads were nearly equal, although one of the two clients has a

priority greater than the second one, this equality is because the configuration in this

case enables the system scheduler to use all the available processors in the system;

hence, the thread with lower priority needs not to wait for a thread with a higher

priority as long as there is available processor in the system to which it can be

allocated. However, when both clients‘ threads were restricted to use the same

processor in the second configuration, as seen in Figure 8-17, we found that the thread

with higher priority has a lower average response time than the thread with the lower

priority; also, the jitter in the response time was much less, which means that the

communicator component respect the priorities of the clients‘ threads; hence, using the

Communicator component in our middleware guarantees that the clients calls are

guaranteed to be executed according to the priorities of the calling clients.

Chapter 8

-370-

Figure 8-11 Comparing Dual Fork and Wedge Thread updating Times [SP]

1 26 51 76 101 126 151 176 201 226 251 276 301 326 351 376 401 426 451 476 501 526 551 576

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

0

50000

100000

150000

200000

using SP+RTSJ+WedgeThread

using SP+RTSJ+DualForkThread

Chapter 8

-371-

Figure 8-12 Comparing the updating Times Predictability of both the Dual Fork and Wedge Thread [MP].

1 26 51 76 101 126 151 176 201 226 251 276 301 326 351 376 401 426 451 476 501 526 551 576

0

50000

100000

150000

200000

250000

0

50000

100000

150000

200000

250000

using MP+WedgeThread+ RTSJ

using MP+DualFork+RTSJ

Chapter 8

-372-

Figure 8-13 Emulated Predictability of the Response Time [Blocking Mode]

1 26 51 76 101 126 151 176 201 226 251 276 301 326 351 376 401 426 451 476 501 526 551 576

0

5000000

10000000

15000000

20000000

25000000

0

5000000

10000000

15000000

20000000

25000000

without RTSJ

with RTSJ

Chapter 8

-373-

Figure 8-14 Emulated Predictability of the Response Time [Non-Blocking Mode].

0

500000

1000000

1500000

2000000

2500000

3000000

1 26 51 76 101 126 151 176 201 226 251 276 301 326 351 376 401 426 451 476 501 526 551 576 601

0

1000000

2000000

3000000

NO RTSJ

RTSJ

Chapter 8

-374-

Figure 8-15 Predictability of the Response Time [Non-Blocking Model].

0

100000

200000

300000

400000

500000

600000

700000

800000

1 26 51 76 101 126 151 176 201 226 251 276 301 326 351 376 401 426 451 476 501 526 551 576 601 626

0

200000

400000

600000

800000

0

200000

400000

600000

800000

Client Pri < Communicator Priority

Client Pri > Communicator Priority

Chapter 8

-375-

Figure 8-16 Response time [NO RTSJ+SP+Blocking Mode] of two concurrent executing clients where client1

priority (P1)> client2 priority (P2).

0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

client1 Priority P1 client2 Priority P2<P1

0

2000000

4000000

6000000

8000000

10000000

12000000

Chapter 8

-376-

Figure 8-17 Response time [RTSJ+SP+Blocking Mode] of two concurrent executing clients where client1

priority (P1)< client2 priority (P2).

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

0

2000000

4000000

6000000

8000000

10000000

12000000

Client1 Priority=P1 Client2 Priority=P2>P1

0

2000000

4000000

6000000

8000000

10000000

12000000

Chapter 8

-377-

Figure 8-18 Response time [No RTSJ+MP+Blocking Mode] of two concurrent executing clients where client1

priority (P1)< client2 priority (P2)

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

0

5000000

10000000

15000000

20000000

25000000

30000000

35000000

client1 Priority P1 client2 Priority P2>P1

0

5000000

10000000

15000000

20000000

0

5000000

10000000

15000000

20000000

25000000

30000000

35000000

Chapter 8

-378-

Figure 8-19 Response time [RTSJ+MP+Blocking Mode] of two concurrent executing clients where client1

priority (P1)< client2 priority (P2)

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

Client1 Priority P1 Client1 PriorityP2> P1

0

5000000

10000000

15000000

0

2000000

4000000

6000000

8000000

10000000

12000000

Chapter 8

-379-

8.5 Summary

In this chapter, we evaluated the design patterns used in building the

component model. We provided two kinds of implementation; (1) analytical evaluation

of the pattern including their structures, timeliness, memory footprints, levels of

abstraction and the generality of use, (2) Experimental evaluation of the main patterns

and components of the real-time middleware, by measuring some individual metric

values, e.g. response time(s) of requests, where a comparison of the predictability of

these measurements which have been made on single processor and multiprocessor,

and when RTSJ is used and when not used. Then, we studied the effect of using the

Java NIO implementation in the JRate/gcj on the memory predictability of the system,

and provided our solutions that have overcome these problems. Also, we evaluated the

memory models for supporting the stub internal architecture, for making the remote

calls.

-381-

 Chapter 9

Conclusions

Distributed real-time systems are nowadays playing an important role in many

industrial and commercial fields, and are expected to play a greater role in the future. In

addition to the complexity of their structures, due to their inherited distribution nature,

developing such systems faces many challenges to support their real-time requirements.

Research in this field is widely increasing in many directions including; developing

reliable communication networks, building predictable communication protocols,

enhancing resource scheduling algorithms, and developing efficient programming

languages and architectures that support mechanisms for building these systems, etc.

Most of the current middleware technologies are implemented with no

consideration to any real-time requirements, as most of them are directed to non-real-

time business environments. Hence, using the middleware technologies, in their current

structures is not suitable for developing distributed real-time systems, which is required

to be predictable and has to be able to satisfy the system‘s end-to-end timeliness.

One of the most active fields of research in this area is providing real-time

middleware solutions that help build distributed real-time systems. Middleware has

proved to be an efficient solution for building traditional distributed system in general,

as it abstracts many of the underneath details of these systems, and hides their

complexity; which in turn, speeds up the development process and provides more

reliable and efficient systems. Many of such middleware solutions are implemented in

Java, which has been proved to be one of the most efficient programming languages for

building the distributed systems, due to its modern architecture that adopts the object

oriented mechanisms to provide networking, communication, and distribution facilities

with high levels of abstraction, which hides the complexity of building the distributed

systems.

Middleware solutions that adopt in their structure the distributed object

paradigm are widely used for developing distributed systems. CORBA and Java‘s RMI

are the most common implementation of such paradigm. Most of the research toward

developing real-time middleware targeted the language independent OMG‘s CORBA,

Chapter 9

-382-

as one of the main middleware solutions available. This research has led to the Real-

Time CORBA specification for both static and dynamic systems. However, neither the

Java RMI, nor the implementation of RT-CORBA in the original Java language, does

offer the required predictability that enables using them in developing distributed real-

time systems.

Other Java middleware solutions that use distribution paradigm, other than the

distributed object paradigm, are available. Some of these middleware targeted real-time

systems, such as JXTA and DDS. However, all current Java implementation of those

middleware are based on the original Java. Hence, these middleware are expected to be

subject to the inherent problems of the Java language. Implementation of such

middleware solutions in RTSJ is supposed to be more predictable and reliable for real-

time systems.

A recent direction of research in the field of real-time middleware is toward

developing real time implementations, based on the RTSJ, that support building

distributed real-time systems. This direction of research is based on the success of the

release of the newly emerging real-time Java specification, the RTSJ. The RTSJ is

developed to solve many problems inherited in the Java language that made it un-

predictable and unreliable to be used in real time systems. Many challenges are facing

the researchers to push the RTSJ to be used for the distributed systems, as it requires

changes to both the underlying structure of the current Java distribution technologies,

i.e. RMI, and to the Java virtual machine itself. Some research has already been done in

this direction. Most of this research targets the RMI architecture, trying to analyse it to

detect the non-real-time features of it and hence, modifying the structure to support the

real-time features, but it is still far away from producing a full specification.

There is a trend in Software Engineering and industry toward building complex

software systems by using reusable software technologies, such as components and

design patterns, in order to ease and enhance the development process of these systems.

So, many of the current middleware solutions adopt these technologies in their internal

designs. However, applying these techniques to real-time systems, particularly the

distributed real-time systems, is not a straightforward process, as the restricted timing

and predictability constraints that are required for building real-time systems make it

difficult or even impossible to reuse the existing conventional components and design

patterns for building real-time systems. Hence, it is currently a big challenge, which

faces the researchers and the developers of the real-time systems, to develop real-time

reusable real-time components and design patterns.

Chapter 9

-383-

The Java language has been used in developing many component technologies,

e.g. Java Beans. However, due to the unpredictability of Java, the Java components

cannot be used in building real-time systems.

The RTSJ presents to the Java language a set of features, e.g. new memory and

scheduling models, to ensure the predictability of the execution, which is essential for

building real-time systems. However, converting existing Java components and

middleware to use the RTSJ is not straightforward. As the RTSJ models have a set of

constraints, e.g. the single parent rule, that have to be considered and managed in order

to be able to use it. Hence, this results in a need for presenting new models for

components, where these component models should use a set of novel design patterns

that act as controlling and managing patterns, e.g. Fork pattern, that hide the

complexity of the RTSJ memory model, as well as they provide built-in real-time

structural sub-components which provide real-time architectures for the real-time

components including a reusable objects allocators, and reusable schedulable objects

allocators.

It is also necessary to limit the blocking time of the low level communication

layer used in building the real-time middleware communication solutions. This is a

basic requirement for real-time systems to limit the priority inversion. So, adopting the

non-blocking mechanisms within the communication layers is important to enhance the

predictability.

There is a wide range of distributed real-time systems with different

requirements and different levels of criticalness and timing requirements; hence, a

single model of middleware is not enough to satisfy the requirements of all these

systems. So, it is important to add high levels of flexibility and reconfigurablity within

the real-time middleware solutions to ease using it in multiple distributed system types.

In order to conclude this thesis, we summarize in the following sections the key

contributions of this research. Then, we identify a number of limitations of this work.

After that, we discuss the future research directions in relation to using the design

patterns and components in real-time middleware, as well as the support of more

flexibility and reliability in their designs. Finally, we provide a brief note that

concludes the key message that this thesis tries to convey.

9.1 Summary of the Key Thesis Contributions

The basic motivation for the work in this thesis is that the conventional

middleware solutions are not useful for building distributed real-time systems, as the

Chapter 9

-384-

components and/or the design patterns used to build them are not supporting the

required predictability, and they do not guarantee the end-to-end timeliness. A set of

design patterns and components that offer these features can replace the existing ones

in the current middleware solutions, to make them suitable for use in the distributed

real-time systems. The RTSJ offers a set of new features that enhance building such

real-time design patterns and components. So using the RTSJ to build design patterns

and components for the existing Java middleware solutions, e.g. Java RMI, can make

these Java middleware predictable and usable for building distributed real-time

systems.

A key contribution for support building framework component-based real-time

systems based on the RTSJ in this thesis is the provision of a component framework. In

this framework, we proposed that a new memory component model and provided with

it a set of sub-components for memory management, memory allocation and

reusability, as well as sub-components for reusable schedulable objects, which are

saved in thread pools within the component hierarchy and integrates with its memory

model, and in the same time, it supports using the logic as a reusable sub-component to

enable a high degree of flexibility.

For the real-time Java application developers, this thesis provides the Forked

Memory Model as a key contribution for support building software components. The

Forked Memory Model is a configurable model that is compatible with the RTSJ, and

can be integrated with some of the following patterns, to build RTSJ-based sub-

components/services for memory management services:

1- The Multi Named-Objects Portals: This is a pattern that enables the sharing of

multiple objects among several threads running in the same scoped memory area

through the portal object of this scoped memory area.

2- The Fork Thread, the Dual Fork Thread, the Pinnable Memory: These are a set

of memory management patterns that can be used for managing and controlling the

lifetime of the internal scoped memory area stacks of the forked memory model.

3- The Executable Runnable Stack: This is a pattern that can be used for the internal

design of a task that runs within a single stack scope in the forked memory model.

4- Reusable Objects Allocator: To manage the allocation/recycling of objects within

the component memory model.

Another major contribution of this thesis is the model of the configurable real-

time communication component, which is presented in chapter 6. This component

represents a low level networking communication layer that adopts the non-blocking

Chapter 9

-385-

mechanisms of communication as its basic model of networking communication. The

non-blocking support ensures minimization of blocking time to avoid the priority

inversion. The component can be reconfigured to support other forms of

communications as well, to ensure the generality of use. The building of the component

using the RTSJ ensures the avoidance of the unpredictability inherited in the Java

language, due to the use of unpredictable garbage collector, where the internal design

uses scoped memory areas and pools of real-time threads, or asynchronous event

handlers, to handle the communication events occurring on the channels of the

component. In addition to that, the component supports two modes, client mode and

server mode, to ensure the flexibility and wide use of the component. The component

itself is used as a sub-component within the container of the proposed component

model, to support different forms of low level communication services to the

components.

Finally, the last major contribution of this thesis is the presentation of our

model of the real-time remote middleware in chapter 7, this model joined together the

design patterns, the component models, and the communicator component presented in

the earlier chapters in addition to some other design patterns, to build a new model for

remote communication that offers high-level communications services within the

component model with the following features:

1- Reconfigurable models of invocations at the client side: Where it supports the

Poll Object pattern as a basic pattern for the invocation, and this pattern can emulate

other invocation patterns.

2- Reconfigurable models of call handling at the server side: Using the

communicator component enables the server object/component to handle the call, using

the different models of communications supported by the component.

3- Shared communication component layer: Isolating the communication layer as a

component ensures the ability to share this component among several clients.

4- The support of different models of call execution parameters: The model shows

how the RMI protocol can use different models; i.e. client propagated, server centric.

5- The predictable serialization: The middleware adopted a predictable serialization

protocol to ensure the predictability of the call transfer.

6- Different models of stub execution: We showed how the different lifetime

management patterns of scoped memory areas, which can be integrated with the

proposed remote middleware to make the calls, and we presented the different

constraints of using them.

Chapter 9

-386-

7- Support for the Future Call invocation pattern: We showed how the stub of the

RMI model can use the services provided in the client component including it, to

enable making future calls in the RMI model.

A final contribution was the presentation of a solution of the unbounded memory

consumption in the communicator component due to the use of the Java NIO‘s selector

and selection keys objects, using the patterns and sub-component services provided in

our component model.

9.2 Limitations of this work

The design patterns, the communication component, the real-time remote

communication middleware are all developed in prototype versions in order to prove

the hypothesis. Therefore, despite the contributions described above, there structures

require extensive research in order to optimize their behaviour for reusability and

building distributed real-time systems. Consequently, the RTSJ‘s No Heap schedulable

objects supported in the RTSJ requires a special consideration to ensure the avoidance

of the using of the Heap memory. In our designs we have not deeply considered

providing the exceptions and checking mechanisms required for handling these

restrictions.

One major limitation of use in this work is the assumption of using the TCP/IP

as the underlying networking protocol. This protocol offers a lot of unpredictability and

can be used for many of the distributed real-time systems, especially the ones with high

constraints on the networking communications. But, this does not mean the invalidity

of using our work on the real-time networking protocols, if the required communication

protocols are implemented on them.

Our model for the real-time remote communication is based on the RMI-HRT

that uses static addressing of the remote server objects. This is important for a certain

set of real-time systems that have a limited number of remote server objects. However,

some distributed systems with real-time systems constraints can involve a dynamic

number of remote servers; hence, there is a need for doing research on the mechanisms

required to enable the use of the real-time dynamic locating and naming strategies for

the remote servers. Initially this needed real time support can be provided by

implementing these mechanisms in remote servers, which are implemented using the

real-time middleware presented here.

Chapter 9

-387-

9.3 Future Work

There are a set of directions for the future work uncovered in this thesis. The

first of these directions is the provision of pattern language, which has to define design

patterns compatible with the RTSJ memory and scheduling models, for supporting the

build of real-time Java middleware. This is for two reasons; the first is that we have

provided only a small number of design patterns that can prove the thesis hypothesis,

but there are many patterns that are applied in developing conventional middleware

solutions that need to be reconstructed, to be used in distributed real-time Java

applications. The second reason is that there are other new features provided in the real-

time Java, e.g. the Asynchronously Interruptible Events, requires special consideration

to handle them, and it is important to see how the design patterns can support these new

features.

The second direction is to complete the framework for the real-time Java

components; where, in addition to enhancing the internal model presented in this thesis;

this framework has to consider other new features of the RTSJ e.g. multiprocessor

support. Also, the proposed components should have the ability to offer different levels

of predictability and real-time support through their standardized external interfaces, by

using contract-based techniques. Also, the management of the lifecycle of the

components and the support of fault tolerance and dynamicity in them are to be

considered, as well as extending the component model to support the mobility over the

network.

The third direction of our future work is toward enhancing our model for the

real-time Java RMI middleware. This includes the following:

1- The support for mechanisms that enable the safe use of No Heap schedulable

objects.

2- Providing implementation of the model over real-time networking protocols.

3- Study in depth the distributed garbage collection in order to evaluate its

predictability and see how it can be enhanced.

4- In addition to the support of the Poll Object invocation pattern in our real-time

remote communication model presented in this thesis, we aim to study how an RTSJ

compatible Call-Back invocation pattern can be supported as well.

As we focused in this thesis only on the Level-1 of integrating the Java RMI

and the RTSJ real-time RMI middleware; hence, our fourth direction of the future work

is toward extending the work to:

Chapter 9

-388-

1- Support the Level-2 of the integration; by modifying the proposed architecture to

enable the inclusion of the distributed thread model within it.

2- Supporting new architectures; there are many middleware solutions that are built

over the RMI; e.g. Java‘s Jini, hence, we can investigate the architecture of these

middleware to see what additional support that can be added to our model to build these

middleware solutions. For example, in (Alrahmawy and Wellings 2007), we presented

an initial middleware model for mobility based on the RTSJ. We provided in this model

a set of algorithms and models for scheduling and migration, so we can integrate these

models with the model presented in this thesis to build this real-time middleware.

3- Multiprocessor support; there is a trend in the moment for building RTSJ

applications on multiprocessor systems, a possible extension of our work is to

investigate how our model can integrate with the multiprocessor architecture, both for

supporting internal communication among the processors that have no shared memory,

and for the possibility of extending the design patterns used in this thesis, to be mapped

to the memory architecture and the multi-processors of these systems.

Due to the diverse nature of the real-time systems types, including the

distributed systems, it is not possible to have a single specification that covers all of

these systems. There is a trend among the researchers working in the RTSJ to develop

profiles of the RTSJ specifications for individual types of the real-time systems; e.g.

Safety Critical Java. Hence, one of possible directions of the research is to investigate

the compatibility of our real-time middleware model presented here to these profiles, to

see how we can define individual specifications of our model for each one of these

profiles.

9.4 Final Word

The distributed real-time systems are widely used in many industries. The

technologies for building these systems should have high levels of predictability, and

have to guarantee the end-to-end timeliness. Conventional middleware are basic for

building distributed systems, but they cannot be used to build the distributed real-time

systems.

The real-time Java community still has a lot of work to do toward developing

full specification for distributed real time systems in Java, but we believe that building

middleware solutions by integrating the RTSJ with the Java RMI is the basic step

toward building distributed real-time systems in Java.

Chapter 9

-389-

In the thesis hypothesis, we proposed that using the new features added to the

Java language by the RTSJ with efficient networking communication mechanisms can

help support building new design patterns and components, or changing existing ones,

which can be integrated together for developing real-time versions of the existing

middleware solutions.

 From our work presented in this thesis, we found that it was very difficult and

inefficient to directly use the RTSJ rules for building a real-time middleware solution.

This is because the internal structure of such middleware solutions consists of many

parts, and a lot of integration is required among these different parts. Adding to that,

the restrictions of the RTSJ scheduling and memory access rules, makes it very difficult

for the developer to manage the code and to gain the required predictability, especially

that it is difficult for him to use the general design pattern to build these solutions, as

these patterns do not respect the memory and scheduling models of the RTSJ.

On the other hand, when developing the component framework and using it for

building the middleware parts made the development much easier, as building a set of

patterns and component that are commonly needed in middleware solutions, and at the

same time respect the RTSJ memory access rules in building them, makes it easier for

any developer to use these patterns. In addition to that, using patterns such as the

Forked memory model, and the Reusable Runnable Stack class, provides a simpler

method for the developer to run his code in a stack of scoped memory areas, by hiding

many of the memory access details, this in turn can help in reducing the code size and

makes it easier to read and maintain. Also, the development of RTSJ specific patterns

such as the Dual-Fork pattern helps to overcome the problems of managing the lifetime

of the scoped memory areas in many RTSJ applications, not just the middleware. In

addition to that, the development of the Communicator component as a general RTSJ

component that supports the low level communication helps the developers to develop

various real-time middleware solutions with different communication mechanisms, as

shown in this thesis in the different design models presented for the RMI middleware.

So, the development of RTSJ based component framework, catalog of patterns,

and component libraries, is a very important step for pushing the RTSJ to produce

efficient and predictable real-time distributed and middleware solutions.

One of the main difficulties which faced this research is the missing of a

reliable open-source implementation of the RTSJ. The RTSJ is relatively new and there

are only few open-source implementations available. OVM(Grothoff) and JRate are

examples of those open source VM implementations. These VM implementations are

Chapter 9

-390-

incomplete, i.e. they do not support all the new features of the RTSJ, or even they have

incorrect implementation of those features. For example, we found that the early

versions of JRate, which was used for the experiments presented in this thesis, do not

implement the memory assignment rules correctly, which affected the initial

implementations of the algorithms and patterns and made them have some bugs. Also,

we found that the OVM does not support the JNI.

One more difficulty is that the implementations of the jRate and OVM are

made on specific Linux distributions, and unfortunately, the implementations of some

RTSJ features, e.g. periodic/aperiodic threads in jRate, are using some functions of

these distributions, which were found to be incorrectly implemented and they have

bugs and they are corrected in later versions of these distributions. Hence, to run jRate

for example on other distribution, or even on a later version of the same distribution,

we had either to reimplement those features using other methods, or avoid using them

completely. Another major difficulty in our research was the migration of the RMI-

HRT to the jRate, as RMI-HRT was built using an evaluation version of the Jamaica

VM, this required us to make a lot of changes to the internal classes of the GCJ which

is the backend of the jRate, to implement many of the missing features, particularly for

the Java NIO packages. This has taken a very long time of our research, as we had to

make a lot of tests and debugging just to find out the required missing features, and

even we had to change among different jRate implementations, one of these main

problems was in a jRate VM implementation, which uses MARTE-OS library, as we

found that the threading model of this VM is a single threaded model, i.e. all the

threads running in the VM are mapped to a single thread in the operating system, while

our research is mostly based on using multithreaded model, e.g. a single blocking call

to monitor the events result in hanging all the program, we spent a lot of time trying to

avoid this problem by using external kernel threads for monitoring the events instead of

using VM threads, but in the end we found that this is a nonreliable solution, and we

decided to move our work to another JRate implementation, which is guaranteed to

support the multi-threaded VM model, which was not an easy decision after spending

many months developing and testing code on the single-threaded JRate VM.

From the above, we can see that there were many challenges and difficulties

that faced us during the research that led to this thesis. These challenges and difficulties

enforced us to change our plans and research directions many times during the PhD

journey, in order to reach our final target. We learned a lot from these challenges and

difficulties, not just in the scientific level, but also in the personal level in our life. The

main lesson that we learned in our personal life is that the dreams are not always easy

Chapter 9

-391-

to be realized, and many obstacles may face the person during his work, and this

requires him to never lose the hope and the trust in himself, as long as he works hard to

achieve his objectives, and believes that Allah not to waste the wage of whoever does a

good work.

-393-

Appendix A

The Implementation Classes

In this appendix, we present our implementations of the proposed RTSJ classes

of the patterns, components and some examples presented in the thesis. These classes

are a prototype implementation that have been tested only on a certain cases, scenarios,

and examples, and some details of error-handling may be ignored or removed at some

places to ease the reading of the classs. Also, these classes were tested only on the

JRate implementation of the RTSJ, but it is not tested on any other implementations.

A.1 The Component Model

package RTCOM;

import javax.realtime.*;

import java.io.*;

import java.util.*;

/*////////////////Component Class///////////////////

Function:Represents the Component Model

*//

public class ComponentCls

 implements IComponent {

 IMemoryModelControler theMemoryControler; //The memory contoller sub

comp.

 IObjectAllocator allocator; //The reusable objects

allocator sub comp

 public IContainer theContainer = null; //The container

 public IMemoryModel theMemModel; //The memory model

 IMemoryAllocator theMemoryAllocator; //The memory allocator

 java.util.HashMap theHandlersPools; //Poll of handlers

 java.util.HashMap theTasksPool; //Pool of inner tasks

 /*////////////////getMemModel() Method////////////////

 Function:Retrieve the memory model of the Componeent

 Parameters->None

 */

 //

 public IMemoryModel getMemModel() {

 if (theMemModel == null) {

 System.out.println("No Memory Model");

 return null;

 }

 return theMemModel;

 }

 /*///////////////start() Method///////////////////////

 Function:starts the execution of the driver thread of

 this component

 Parameters->None

 *//

 public void start() {

 Iterator iterator = theTasksPool.keySet().iterator();

 while (iterator.hasNext()) {

 String sname = (String)iterator.next(); //get the

name of next task

 Schedulable so = (Schedulable)theTasksPool.get(sname); //get the

Appendix

-394-

next task

 if (so instanceof RealtimeThread) {

 RealtimeThread r = (RealtimeThread)so;

 r.start(); //start the execution of the task

 }

 }

 }

 /*///////////setContainer() Method////////////////////

 Function:Assign the container of this component

 Parameters-> container:A reference to the container

 *///

 public void setContainer(IContainer container) {

 theContainer = container;

 }

 /*////////////getContainer() Method///////////////////

 Function:Retrieve the container of this component

 Parameters->None

 */

 //

 public IContainer getContainer() {

 return theContainer;

 }

 /*/////////////setBinder() Method/////////////////////

 Function:Assign the binder object of this component

 Parameters-> binbder:The ninding object

 *///

 public void setBinder(IBinding binder) { }

 /*/////////////setMemoryModel() Method////////////////

 Function:Assigne the memory model component

 Parameters->memModel:The memory model

*///

 public void setMemoryModel(IMemoryModel memModel) { }

 /*//////////getComName() Method///////////////////////

 Function:Retrieve the name of this componenyt

 Parameters->None

 *///

 public String getComName() {

 return comName;

 }

 /*//////////////setComName() Method///////////////////

 Function:Assgn a name for this component

 Parameters-> name:The new name of the component

 *///

 public void setComName(String name) {

 comName = name;

 }

 /*/////////////addSMATask() Method////////////////////

 Function:Adds a new SMA's task to the memory model

 of the component

 Parameters-> taskName:The name of the task

 SchedulableExecutor:The executor class

 schedulingP:Task's scheduling parameters

 releaseP:Task's release parameters

 scopeSize:The size of the scoped memory

 immortalSize:The size of immortal memory

 mareaType:The type of scoped memory

 group:processib=ng groyp paramters

 StackLogicCls:The stack logic component

 assigned to this task

 *///

 public ReusableRunnableStack addSMATask(String taskName, Class

SchedulableExecutor, SchedulingParameters schedulingP,

 ReleaseParameters releaseP, long scopeSize, long immortalSize,

Class mareaType, ProcessingGroupParameters group,

 Class StackLogicCls) {

 ReusableRunnableStack rs;

 MemoryParameters memP = new MemoryParameters(scopeSize,

Appendix

-395-

immortalSize); //Create the memory parameters

 if (!IStackLogic.class.isAssignableFrom(StackLogicCls)) {

 System.out.println("error creating the task: the logic does not

extend the ISTackLogic interface");

 return null;

 }

 IStackLogic stacklogic = null;

 try {

 stacklogic = (IStackLogic)StackLogicCls.newInstance(); //creTe

the logic sub-comp

 } catch (Exception ie) {

 System.out.println("Problem creating the Logic Object");

 }

 if (SchedulableExecutor.isAssignableFrom(RealtimeThread.class)) {

 ForkedMemoryModel memModel = (ForkedMemoryModel)getMemModel();

//get the memory model

 ScopedMemory marea = memModel.attachNewSMA(mareaType, scopeSize,

scopeSize); //should be in the same memory area

 rs = new ReusableRunnableStack(); //create the RRS

 rs.setStackLogic(stacklogic); //assign the stack logic to be

executed by the RSS

 RealtimeThread rtThread = new RealtimeThread(schedulingP,

releaseP, memP, (MemoryArea)getContainerMA(), group,

 rs); //The driving thread of the task

 addTask(taskName, rtThread);

//add the task to the component

 }

 else if

(SchedulableExecutor.isAssignableFrom(NoHeapRealtimeThread.class)) {

//not implemented

 }

 return rs;

 }

 /*///////////addPeriodicSMATask() Method//////////////

 Function:Adds a periodic SMA's task to this omponent

 Parameters-> taskName:The name of the task

 SchedulableExecutor:The executor class

 schedulingP:Task's scheduling parameters

 releaseP:Task's release parameters

 scopeSize:The size of the scoped memory

 immortalSize:The size of immortal memory

 mareaType:The type of scoped memory

 group:processib=ng groyp paramters

 StackLogicCls:The stack logic component

 assigned to this task

 *//

 public PeriodicReusableRunnableStack addPeriodicSMATask(String

taskName, Class SchedulableExecutor,

 SchedulingParameters schedulingP, PeriodicParameters releaseP,

long scopeSize, long immortalSize, Class mareaType,

 ProcessingGroupParameters group, Class StackLogicCls) {

 PeriodicReusableRunnableStack rs;

// RRS pattern

 MemoryParameters memP = new MemoryParameters(scopeSize,

immortalSize); //create the thread memory aparameters

 if (!IStackLogic.class.isAssignableFrom(StackLogicCls))

//We assume only stack logic component

 {

 System.out.println("error creating the task: the logic does not

extend the ISTackLogic interface");

 return null;

 }

 IStackLogic stacklogic = null;

Appendix

-396-

 try {

 stacklogic = (IStackLogic)StackLogicCls.newInstance(); //create

an instance of the stack logic sub-component

 } catch (Exception ie) {

 System.out.println("Problem creating the Logic Object");

 }

 if (SchedulableExecutor.isAssignableFrom(RealtimeThread.class)) {

 ForkedMemoryModel memModel =

(ForkedMemoryModel)getMemModel();//Get the assigned memory model

 ScopedMemory marea = memModel.attachNewSMA(mareaType, scopeSize,

scopeSize); //should be in the same memory area//CMA

 rs = new PeriodicReusableRunnableStack();

//create the periodic RRS instance

 rs.setStackLogic(stacklogic); //assign the stack logic to be

executed by the the periodic RRS

 PeriodicRealtimeThread rtThread =

 new PeriodicRealtimeThread(schedulingP, null, memP,

(MemoryArea)getContainerMA(), group,

 rs); //create the periodic executing thread

 rtThread.setReleaseParameters(Times.sender_start_pm,

Times.sender_start_pn, Times.sender_start_h,

 Times.sender_start_m, Times.sender_start_mi,

Times.sender_start_ns); //we use fixed values here for testing

 addTask(taskName, rtThread);

//add the task to the component

 }

 else if

(SchedulableExecutor.isAssignableFrom(NoHeapRealtimeThread.class)) {

}

 return rs;

 }

 /*///////////////addSMATask() Method//////////////////

 Function:Adds a periodic SMA's task to this omponent

 Parameters-> taskName:The name of the task

 SchedulableExecutor:The executor class

 schedulingP:Task's scheduling parameters

 releaseP:Task's release parameters

 memArea:The scoped memory of the task

 group:processib=ng groyp paramters

 logic:The stack logic component

 assigned to this task

 */

 //

 public ReusableRunnableStack addSMATask(String taskName, Class

SchedulableExecutor, SchedulingParameters schedulingP,

 ReleaseParameters releaseP, ScopedMemory memArea,

ProcessingGroupParameters group, IStackLogic logic) {

 ReusableRunnableStack rs = null;

 MemoryParameters memP =

 new MemoryParameters(memArea.getMaximumSize(),

memArea.getMaximumSize()); //not sure about maxSize

 if (SchedulableExecutor.isAssignableFrom(RealtimeThread.class)) {

 //addtoTasks

 IMemoryModel memModel = getMemModel(); //get the memory model

 rs = new ReusableRunnableStack(); //create the RRS

 rs.setStackLogic(logic); //assign the stack logic

of the RRS

 RealtimeThread rtThread = new RealtimeThread(schedulingP,

releaseP, memP, (MemoryArea)getContainerMA(), group,

 rs); //create the driving thread of the component

 //satart should be called from initilizeComponents()

 }

 else if

(SchedulableExecutor.isAssignableFrom(NoHeapRealtimeThread.class)) {

}

Appendix

-397-

 return rs;

 }

 /*///////////////getMemoryController() Method/////////

 Function:Retrieve the memory life time controller

 of this component

 Parameters->None

 *///

 public IMemoryModelControler getMemoryController() {

 return null;

 }

 /*//////////////setMemoryAllocator() Method///////////

 Function:Assigns the memory life time controller

 Parameters->memControllerCls:The class name of the

 memory life time controller

 *///

 public void setMemoryController(final Class memControllerCls) {

 if

(memControllerCls.isAssignableFrom(IMemoryModelControler.class)) {

//creates the memory controller in the CMA

 ((ScopedMemory)getCMA()).enter(new Runnable() {

 public void run() {

 getMemModel().setMemoryController(memControllerCls);

 }

 });

 }

 }

 /*////////////setMemoryAllocator() Method/////////////

 Function:Assigna a memory allocator

 Parameters->memoryAllocator:Memory allocator component

 *///

 public void setMemoryAllocator(IMemoryAllocator memoryAllocator) {

 theMemoryAllocator = memoryAllocator;

 }

 /*////////////getMemoryAllocator() Method/////////////

 Function:Retrieve th memory allocator component

 Parameters->None

 *///

 public IMemoryAllocator getMemoryAllocator() {

 return theMemoryAllocator;

 }

 /*////////////////getTask() Method////////////////////

 Function:Retrieves a running task from the componnet

 Parameters->TaskNAme:The name of the required task

 *///

 public Schedulable getTask(String TaskName) {

 return theTasksPool.get(TaskName);

 }

 /*//////////////addTask() Method//////////////////////

 Function:Adds a task to the component

 Parameters-> TaskNAme:The name of the task

 task:The new task

 *///

 public void addTask(String TaskName, Schedulable task) {

 theTasksPool.put(TaskName, task);

 }

 /*/////////getHandlerPool() Method////////////////////

 Function:Retrieves the handlers pool

 Parameters->The name of the target pool

 *///

 public IHPool getHandlerPool(String poolName) {

 return theHandlersPools.get(poolName);

 }

 /*////////////addHandlerPool() Method/////////////////

 Function:Adds a handler pool sub-component to this comp.

 Parameters-> poolName:The name of the added pool

 pool:The pool component

 *///

Appendix

-398-

 public void addHandlerPool(String poolName, IHPool pool) {

 theHandlersPools.put(poolName, pool);

 }

 /*/////////setMemoryControler() Method////////////////

 Function:Sets the memory lifetime sub-comp of

 this component

 Parameters->memoryController:The added memory sub-component

 *///

 public void setMemoryControler(IMemoryModelControler

memoryControler) {

 theMemoryControler = memoryControler;

 }

 /*////////////getMemoryControler() Method/////////////

 Function:Gets the MemoryController of this component

 Parameters->None

 *///

 public IMemoryModelControler getMemoryControler() {

 return theMemoryControler;

 }

 /*//////////////Constructor///////////////////////////

 Function:Constructor

 Parameters->None

 *///

 public ComponentCls() {

 theHandlersPools = new java.util.HashMap();

 theTasksPool = new java.util.HashMap();

 }

 /*///////////////setMemoryControler() Method//////////

 Function:Assigne the memory life time controller

 sub-comp of this component

 Parameters-> memoryControlerCls: The class name of

 the added sub-comp

 *//

 public void setMemoryControler(Class memoryControlerCls) {

 if (memoryControlerCls.isAssignableFrom

(IMemoryModelControler.class)) {

 try {

 theMemoryControler =

(IMemoryModelControler)((ScopedMemory)theMemModel.getCMA()).newInsta

nce(memoryControlerCls);

 } catch (Exception ex) { }

 }

 }

 /*//////////////setObjectAllocator() Method///////////

 Function:Assigna an objecgt allocator sub-como of

 this component

 Parameters-> memoryControlerCls:The added subcomponent

 *//

 public void setObjectAllocator(Class memoryControlerCls) {

 if (memoryControlerCls.isAssignableFrom

(IMemoryModelControler.class)) {

 try {

 theMemoryControler =

(IMemoryModelControler)((ScopedMemory)theMemModel.getCMA()).newInsta

nce(memoryControlerCls);

 } catch (Exception ex) { }

 }

 }

 String comName = "";

 /*///////////////Constructor//////////////////////////

 Function:Initializes the component name

 Parameters-> compName:The given name to the component

 *///

 public ComponentCls(String compName) {

 theHandlersPools = new java.util.HashMap();

 theTasksPool = new java.util.HashMap();

 comName = compName;

Appendix

-399-

 }

 /*///////////////Constructor//////////////////////////

 Function:Initializes the component

 Parameters->container:The enclosing container

 compName:The name of the component

 *//

 public ComponentCls(IContainer container, String compName) {

 theHandlersPools = new java.util.HashMap();

 theTasksPool = new java.util.HashMap();

 theContainer = container;

 theContainer.addComponent(this);

 comName = compName;

 }

 /*///////////////init() Method////////////////////////

 Function:initialize the component

 Parameters->memModel:The memory model of the component

 *///

 public void init(IMemoryModel memModel) {

 theMemModel = memModel;

 }

 /*///////////////getCMA() Method////////////////////////

 Function:Get the CMA of this component

 Parameters->None

 *///

 public MemoryArea getCMA() {

 return theMemModel.getCMA();

 }

 /*/////////////getContainerMA() Method////////////////

 Function:Get the container memory area of

 this component

 Parameters->None

 *///

 public MemoryArea getContainerMA() {

 return theMemModel.getContainerMA();

 }

 /*//////////////init() Method////////////////////////

 Function: Initialiize the component

 Parameters->

 *///

 public void init(Class memCls, long initSize, long MaxSize, int

LIMIT, Class SMAClass, long [] initialSizes,

 long [] maxSizes, Class memCtrlCls) {

 final ForkedMemoryModel fmm = new ForkedMemoryModel(); //create

thememory model

 if (memCls.isAssignableFrom(LTMemory.class)) { //build the

structure of the memory model

 fmm.buildForkedMemory(memCls, initSize, MaxSize, LIMIT, SMAClass,

initialSizes, maxSizes, NamedObjectFastMap.class,

 Queue.class, GeneralObjectAllocatorCls.class, memCtrlCls);

 }

 theMemModel = (IMemoryModel)fmm;

 //the allocator

 ((LTMemory)fmm.getCMA()).enter(new Runnable() {

 public void run() //this runnable should be by the container

allocator

 {//create the objects allocator in the CMA

fmm.setObjectAllocator(GeneralObjectAllocatorCls.instance());

 }

 });

 }

 /*//////////////init() Method/////////////////////////

 Function: Initialiize the component

 Parameters-># theCMA:The comoon memory area

 LIMIT: The limit

 SMAClass:The clsas of memory area

 initialSizes:The initial sizes of SMAs

Appendix

-400-

 maxSizes:The max sizes of SMAs

 memCtrlCls :memory lifetime controller Class

 *///

 public void init(LTMemory theCMA, int LIMIT, Class SMAClass, long

[] initialSizes, long [] maxSizes, Class memCtrlCls)

 {

 final ForkedMemoryModel fmm = new ForkedMemoryModel(); //create

the memory model //build thes

structure of the memory model

 fmm.buildForkedMemory(theCMA, LIMIT, SMAClass, initialSizes,

maxSizes, NamedObjectFastMap.class, Queue.class,

 GeneralObjectAllocatorCls.class, memCtrlCls);

 theMemModel = (IMemoryModel)fmm; //assign the memory model

 GeneralObjectAllocatorCls gallocator;

 try {

 gallocator = new GeneralObjectAllocatorCls(); //create the

allocator

 } catch (Exception e) { }

 fmm.setObjectAllocator(gallocator); ////assign the allocator

 }

}

Appendix

-401-

A.2 The Container Model

package RTCOM;

import javax.realtime.*;

import java.util.*;

/*//

Function: The class of the Container Component

*///

public abstract class ContainerCls

 implements IContainer {

 HashMap theComponents; //The components

 ScopedMemory containerMA; //Container memory area

 /*//

 Function:Retrieves the memory area of the container

 ParametersNone:None

 *//

 public ScopedMemory getMemArea() {

 return containerMA;

 }

 /*//

 Function:creates the container memory area

 Parameters:None

 *//

 public ContainerCls() {

 containerMA = (ScopedMemory)RealtimeThread.getCurrentMemoryArea();

 }

 /*//

 Function:Initialiize the sontainer

 Parameters: ma:Memory area

 *//

 public ContainerCls(MemoryArea ma) {

 containerMA = (ScopedMemory)ma;

 theComponents = new HashMap();

 }

 /*//

 Function:Initialiize the container object

 Parameters: MemType:Memory area

 initSize:initial size of memory

 maxSize:Max size of memory

 *//

 public ContainerCls(Class MemType, long initSize, long maxSize) {

 if (MemType == LTMemory.class) {

 containerMA = new LTMemory(initSize, maxSize);

 } else {

 System.out.println("Not Implemented");

 }

 theComponents = new HashMap();

 }

 /*//

 Function:Retrieve the components enclosed in this container

 Parameters:None

 *//

 public HashMap getComponents() {

 return theComponents;

 }

 /*//

 Function:adds a component to the container

 Parameters-> com:The added component

 *//

 public void addComponent(IComponent com) {

 com.setContainer(this); //set this comp as a container for the added

component

 if (theComponents == null)

Appendix

-402-

 theComponents = new java.util.HashMap();

 theComponents.put(com.getComName(), com); //add the component to the

component list within this container

 }

 /*//

 Function:Get a component by its name from the container

 Parameters: ComName:The name of the required component

 *//

 public IComponent getComponent(String ComName) {

 return (IComponent)theComponents.get(ComName);

 }

 /*//

 Function:initializes the container

 Parameters-> initSize:initial size of the container memory

 maxSize: max size of the container memory

 *//

 public void initialize(long initSize, long maxSize) {

 LTMemory Initial = new LTMemory(initSize, maxSize);

 //create the driving thread of the container

 final RealtimeThread T = new RealtimeThread(null, null, null,

Initial, null, new Runnable() {

 public void run() {

 BuildComponents(); //build the inner components of this container

 synchronized (ContainerCls.class) {

 try {

 ContainerCls.class.wait();

 } catch (Exception zz) { }

 }

 ;

 }

 });

 T.start(); //start the container execution

 synchronized (ContainerCls.class) {

 try {

 ContainerCls.class.wait();

 } catch (Exception zz) { }

 }

 ;

 }

}

Appendix

-403-

A.3 The Forked Memory Model Pattern

package RTCOM;

import javax.realtime.*;

 /*////////////////ForkedMemoryModel Class//////////////////////

 Function: A class to represent the Forked Memory Pattern,

 in which there is a contMa,CMA, and a set of SMSs

 *///

public class ForkedMemoryModel

 implements IMemoryModel {

 IMemoryModelControler theMemoryControler;//memory Lifetime controller

of the SMSs

 IObjectAllocator ContainerObjAllocator = null; //reusable object

allocator

 ScopedMemory CMA;//The common memory area

 MemoryArea ContMA;//The Container Memory Area

 int maxSMAs;//The max number of SMAs

 int curSMAs = 0;//The Total current SMAs

 BuildSMAsMethod buildSMAsMeth = new BuildSMAsMethod();//create an

instance of the builder class to use it as an encapsulated method

 BuildSMAsMethod.AttachNewSMAMethodCls newAttachedSMA = new

BuildSMAsMethod.AttachNewSMAMethodCls();//create an instance of a class

that is used as an encapsulated method for Attaching SMA

 IComponent ICOM = null;

 IQueue smaq; //to be accessible within the runnable

 /*//////createContainerObjectAllocator() Method///////////

Function:Create Reusable objects allocator within the container, this

method has to be called from the containerMA

Paramters->None

 *///

 public void createContainerObjectAllocator() {

 ContainerObjAllocator = GeneralObjectAllocatorCls.instance();//create

an instance of the allocator

 }

 /*////////getContainerObjectAllocator() Method////////////

Function:retrieve the object allocator from the allocator

Paramters->None

 *///

 public IObjectAllocator getContainerObjectAllocator() {

 return ContainerObjAllocator;

 }

 /*/////////////getMemoryController() Method///////////////

Function:Retrieve the memory life time controller associated with thuis

pattern

Paramters->None

 *///

 public IMemoryModelControler getMemoryController() {

 return theMemoryControler;

 }

 /*///////////////setSMAsQueue() Method////////////////////

Function:Assign a Queue component of the SMAs of the model

Paramters-> que:The Queue of SMSa

 *///

 public void setSMAsQueue(IQueue que) {

 getNamedPortal().insertObject("SMAsQueue", que);//save a reference of

the Queue in the MNPortal of the common memory area

 }

 /*///////////////getSMAsQueue() Method////////////////////

Function:Retrieve the Queue that holds all the SMAs

Paramters->None

 *///

 public IQueue getSMAsQueue() {

Appendix

-404-

 return getNamedPortal().getObject("SMAsQueue");

 }

 /*///////////////getContainerMA() Method//////////////////

Function:Retrieve the Container Memory area

Paramters-> None

 *///

 public ScopedMemory getContainerMA() {

 return ContMA;

 }

 /*/////////////getObjectAllocator() Method////////////////

Function:Retrieve the object allocataor

Paramters->None

 *///

 public IObjectAllocator getObjectAllocator() {

 //Retrieve the allocator from the MNOPortal of the CMA

 return

((INamedObjectCollection)(((LTMemory)getCMA()).getPortal())).getObject(

"allocator");

 }

 /*//////////////////getCMA() Method///////////////////////

Function:Retrieves the common memory area

Paramters->None

 *///

 public Object getCMA() //this can be heap,immortal,or scoped

 {

 return CMA;

 }

 /*///////////////getPortalOfCMA() Method//////////////////

Function:Retrieve the Portal of the CMA

Paramters->None

 *///

 public Object

 getPortalOfCMA() //returns the MNOP portal, it can be the portal

of the CMA if it is scoped or user created portal

 {

 return CMA.getPortal();

 }

 /*//////////////getSMAsScopes() Method////////////////////

Function:Retrieve the Qqueue that holds the SMAs

Paramters->None

 *///

 public IQueue getSMAsScopes() {

 return getNamedPortal().getObject("SMAsQueue");

 }

 /*//////////////setNamedPortal() Method///////////////////

Function:Assign a named collection obj as a MNOPortal of the CMA

Paramters-> namedCollectionPortal:The Multi Named-Object collection to

hold the shared objects in the portal

 *///

 public void setNamedPortal(INamedObjectCollection

namedCollectionPortal) {

 if (CMA instanceof ScopedMemory) {

 CMA.setPortal(namedCollectionPortal);//assign the MNOP portal

 }

 }

 /*////////////getNamedPortal() Method/////////////////////

Function:Retrieve the named MNOPortal of the CMA

Paramters->None

 *///

 public INamedObjectCollection getNamedPortal() {

 //u have to be in the cma or upper to access it

Appendix

-405-

 return (INamedObjectCollection)CMA.getPortal();//return the MNOP

portal

 }

 /*////////setMemoryController() Method////////////////////

Function:Assign a memory lifetime controller for the FFM

Paramters-> MemoryCtrlCls:The class of the required liftime controller

type, e.g. DualFork

 *///

 public void setMemoryController(final Class MemoryCtrlCls) {

 try {

 IMemoryModelControler memCtrlr;//reference to the memory ife time

controller

 if (MemoryCtrlCls.isAssignableFrom(DualFork.class)) {//the case of

using the default dual fork as memory life time controller

 IQueue SMAsQueue =

((IQueue)getNamedPortal().getObject("SMAsQueue"));//Get the SMAs Queue

from the portal

 memCtrlr = new DualFork(CMA, SMAsQueue);//Generate an instance of

the lifetime controller

 } else {

 memCtrlr =

(IMemoryModelControler)MemoryCtrlCls.newInstance();//Create an instance

of the given type of the life time controller

 }

ForkedMemoryModel.this.getNamedPortal().insertObject("memController",

memCtrlr);//add the life time cointroller to the MNOP portal

 theMemoryControler = memCtrlr;//update the class by the lifetime

controller

 } catch (Exception e) {

 System.out.println("Error......");

 }

 }

 /*////////////////attachNewSMA() Method///////////////////

Function:Attaches a new SMA to the FMM

Paramters->

 *///

 public ScopedMemory attachNewSMA(final Class reqMemType, final long

initSize, final long maxSize)

 { //we may set name for it to save it and reaccess it later

 //should be the containerMEMAREA

 long [] x = { 0 };//create a single element array

 long [] y = { 0 };//create a single element array

 x[0] = initSize;//prepare the initial sizes array with a single value

for all SMA

 y[0] = maxSize;//prepare the max sizes array with a single value for

all SMA

 //assign the arguments of the buildSMAsMeth encapsulated method

 ForkedMemoryModel.this.buildSMAsMeth.setArguments(new Object[]

 {x, y, "SMAsQueue", reqMemType, null});//Assign the arguments of

the encapsulated method in buildSMAsMeth

 //assign the arguments of the newAttachedSMA encapsulated method

 ForkedMemoryModel.this.newAttachedSMA.setArguments(new Object[]

 {x, y, "SMAsQueue", reqMemType, null, this});//Assign the

arguments of the encapsulated method in newAttachedSMA

 ((MemoryArea)getCMA()).enter(buildSMAsMeth);//execute the method

encapsulated in buildSMAsMeth

 ++curSMAs;//increment the current SMAs count

 return ForkedMemoryModel.this.newAttachedSMA.createdMemory;

 }

 static RealtimeThread tlocker;

 final String x = "Locker";

 DualFork.WedgeThread wedge;///????

Appendix

-406-

 /*//

Function:Build The Fork Memory

Paramters-> typeOfCMA:

 CMA_InitialSize:initial Size of the CMA

 CMA_ MaxSize:max size of the CMA

maxSubStacks:maxi number of sun Stacks

typeOfSMA:the required scoped memory class

 SMA_ InitialSizes[]:the initial sizes of the SMAs

 SMAs_MaxSizes[]:the max sizes of SMAs

 MPortalType: the required class type of the MNOP

 theSMAQueue:The class of the Queue to hold the SMAs

 ObjAllocator:The class of the reusable obj allocator

 memCtrlCls:the scoped memory class type of the SMA

 *///

 public void buildForkedMemory(final Class typeOfCMA, final long

CMA_InitialSize, final long CMA_MaxSize,

 final int maxSubStacks, final Class typeOfSMA, final long []

SMAs_InitialSizes, final long [] SMAs_MaxSizes,

 final Class MPortalType, final Class theSMAQueue, final Class

ObjAllocator, final Class memCtrlCls) { //working

//we can use it in an example of n parallel static[i.e. has no reusable

threads] tasks, e.g. periodic realtime threads, are executing on this

model and they can use the shared memory for communication, and in the

same example we can use the fork thread for keeping some mem areas

alive to do do communication

 maxSMAs = maxSubStacks;//assign the maximum allowed number of SMAs

 if (typeOfCMA == LTMemory.class) {

 CMA = new LTMemory(CMA_InitialSize, CMA_MaxSize);//create the common

memory

 } else if (typeOfCMA == VTMemory.class) {

 CMA = new VTMemory(CMA_InitialSize, CMA_MaxSize);//create the common

memory

 }

 else if (typeOfCMA == HeapMemory.class) { //Not implemented}

 final ScopedMemory fCMA = CMA;

 RealtimeThread currentRTThread =

RealtimeThread.currentRealtimeThread();//Get the current thread

 ContMA = currentRTThread.getCurrentMemoryArea();//Get the current

Memory area

 tlocker = new RealtimeThread(null, null, null, ContMA, null, new

Runnable() {

 public void run() {

 try {

ForkedMemoryModel.this.setNamedPortal((INamedObjectCollection)MPortalTy

pe.newInstance());//create an MNOP portal instance and save it as the

portal of this FMM

 IQueue smaq = (IQueue)theSMAQueue.newInstance();//create the SMAs

Queue

 setSMAsQueue(smaq);//Save the SMAs Queue in the portal

 } catch (Exception e) {

 System.out.println("Exception......"+e);

 }

 if (typeOfSMA != null) {

 curSMAs = SMAs_InitialSizes.length;//Initialize the count of

current SMAs

 if (typeOfSMA == LTMemory.class) {

 for (int i = 0; i < SMAs_InitialSizes.length; i++) {//create the

required number of the SMAs and save them in the SMAs Queue

((IQueue)getNamedPortal().getObject("SMAsQueue")).insert(new

LTMemory(SMAs_InitialSizes[i], SMAs_MaxSizes[i]),

 i);

 }

 } else if (typeOfCMA == VTMemory.class) {

 for (int i = 0; i < SMAs_InitialSizes.length; i++) {//create the

required number of the SMAs and save them in the SMAs Queue

((IQueue)getNamedPortal().getObject("SMAsQueue")).insert(new

Appendix

-407-

VTMemory(SMAs_InitialSizes[i], SMAs_MaxSizes[i]),

 i);

 }

 }

 }

 x.notifyAll();

 synchronized (this) { //has to be here to keep the mem structure

 try {

 wait();//?/

 } catch (Exception e) { }

 }

 }

 });

 tlocker.start();//run the thread that creates the pattern

 synchronized (x) { //has to be here to keep the mem structure

 try {

 x.wait();//??

 } catch (Exception e) { }

 }

 }

 /*//

Function:This method is used to build the structure of the Forked

Memory Model pattern

Paramters-> typeOfCMA:the required scoped memory class

 CMA_InitialSize:the initial size of the CMA

 CMA_MaxSize//The max size of the CMA

 maxSubStacks:The MAx number of the sub stacks

 MPortalType:The class type of the portal

 theSMAQueue:The SMAs Queue that will hold the SMAs

 ObjAllocator:The class of the required reusable

 object allocator

 memCtrlCls:The required class of the memory life

 time controller

 *///

 public void buildForkedMemory(final Class typeOfCMA, final long

CMA_InitialSize, final long CMA_MaxSize,

 final int maxSubStacks, final Class MPortalType, final Class

theSMAQueue, final Class ObjAllocator,

 final Class memCtrlCls) {

//we can use it in an example of n parallel dynamic case, where the

SMAsQueue will be filled dynamically, or by the reusable runnablee

stack

 RealtimeThread currentRTThread =

RealtimeThread.currentRealtimeThread();//get the current thread

 ContMA = currentRTThread.getCurrentMemoryArea();//get the container

memory area

 maxSMAs = maxSubStacks;//assign the max n umber of the SMAs

 if (typeOfCMA == LTMemory.class) {

 CMA = new LTMemory(CMA_InitialSize, CMA_MaxSize);//Create the CMA

 } else if (typeOfCMA == VTMemory.class) {

 CMA = new VTMemory(CMA_InitialSize, CMA_MaxSize);//Create the CMA

 }

 else if (typeOfCMA == HeapMemory.class) { //Not implemented}

 //////////////////SMA-BUILDING/////////////////

 CMA.enter(new Runnable() {

 /*//

#Function:This function has the logic of the encapsulated method of

this class

Paramters->None

 *///

 public void run() {

 try {

ForkedMemoryModel.this.setNamedPortal((INamedObjectCollection)MPortalTy

pe.newInstance());//assign the required MNOP portal

Appendix

-408-

 setMemoryController(memCtrlCls);//Assign the given memory liftime

controller

 IQueue smaq = (IQueue)theSMAQueue.newInstance();//create an

instance of the SMAs Queue to hold the SMAs

 setSMAsQueue(smaq);//assign the created queue

 } catch (Exception e) {

 System.out.println("Error......"+e);

 }

 }

 });

 }

 /*///////////////buildForkedMemory() Method///////////////

Function:Build the forked memory model

Paramters-> theCMA:The Common memory area

 maxSubStacks:The count of the SubStacks

 typeOfSMA:The required scoped memory area type

 SMAs_InitialSizes:The initial sizes of the SMAs

 SMAs_MaxSizes:The max sizes of the SMAs

 MPortalType:The type of the portal

 theSMAsQueue:The SMAs Queu that hold the SMAs

 ObjAllocator:The class to be used to

 create the Reusable object allocator

 memCtrlCls:the class to be used to create the

 memory life time controller

 *///

 public void buildForkedMemory(MemoryArea theCMA, final int

maxSubStacks, Class typeOfSMA,

 final long [] SMAs_InitialSizes, final long [] SMAs_MaxSizes,

Class MPortalType, Class theSMAsQueue,

 Class ObjAllocator, final Class memCtrlCls) {

 if (theCMA instanceof LTMemory) {

 CMA = (LTMemory)theCMA;//assign the common memory area of FMM

 typeOfSMA = LTMemory.class;//Set the type's class

 } else if (theCMA instanceof VTMemory){

 CMA = (VTMemory)theCMA;//assign the common memory area of FMM

 typeOfSMA = VTMemory.class;//set the type's class

 }

 maxSMAs = maxSubStacks;//assign the Max number of SMAs

 try {

 smaq = (IQueue)theSMAsQueue.newInstance();//create the Queue of the

SMAs

 final INamedObjectCollection portal = null;

 RealtimeThread rtThread =

RealtimeThread.currentRealtimeThread();//Retreive the current Thread

 ContMA = (ScopedMemory)rtThread.getCurrentMemoryArea();//assign the

container memory area of FMM

 WedgeThread wedge = WedgeThread.startNewInstance(10,

ContMA);//create a wedge thread

 wedge.lockMA(tCMA);//Hold the CMA memory area

 }

 } catch (Exception ex) {

 System.out.println("Exception..,." + ex);

 }

//The following code executes the encapsulate method that builds the

SMAs of the FMM

 buildSMAsMeth.setArguments(new Object[]

 {SMAs_InitialSizes, SMAs_MaxSizes, smaq, typeOfSMA,

MPortalType});//assign the arguments of the encapsulated method

 CMA.enter(buildSMAsMeth);//execute the encapsulated method within the

CMA scoped memory area

 curSMAs = ((Integer)buildSMAsMeth.returnResult()).intValue();//Get

the count of the created SMAs as the return value of the encapsulated

method

 //The following code runs in the CMA to do some initializations

 CMA.enter(new Runnable() {

 public void run() {

Appendix

-409-

ForkedMemoryModel.this.setNamedPortal((INamedObjectCollection)CMA.getPo

rtal());//get the portal

 ForkedMemoryModel.this.setSMAsQueue(

 ForkedMemoryModel.this.smaq); //assign the SMAS Queue

 ForkedMemoryModel.this.getNamedPortal().insertObject("wedgeThread",

wedge);//save the wedge thread reference in the MNOP portal

 }

 });

 }

 /*//////////BuildSMAsMethod Class////////////////////////

Function:An inner class that acts as an encapsulation method

for building the SMAs

 *///

public class BuildSMAsMethod

 implements IEncapsulatedMethod {

 /*//////////CreateInitialSMAMethodCls Clsss///////////////

Function:An inner class that works as an encapsulated method

for building the initial SMAs

 *///

 public class CreateInitialSMAMethodCls

 implements IEncapsulatedMethod {

 Class reqTypeOfMemory;

 boolean executed = false;

 /*////////////setArguments() Method///////////////////////

Function: Assign the value of the reqTypeOfMemory argument

Paramters-> arguments: an array that has the required value

 *///

 public void setArguments(Object [] arguments) {

 reqTypeOfMemory = (Class)arguments[0];

 }

 /*//////////////returnResult() Method/////////////////////

Function:As the method returns nothing, this method is

 a dummy

Paramters->None

 *///

 public Object returnResult() {

 //not required so returns null

 return null;

 }

 /*//////////////////run() Logic///////////////////////////

Function:The method has the logic to initiate the SMAs

Paramters->None

 *///

 public void run() {

 executed = true;//set the execution flag

 if (reqTypeOfMemory == LTMemory.class) {

 for (int i = 0; i < BuildSMAsMethod.this.SMAs_InitialSizes.length;

i++) {

//here SMAsQueue is in the container, the other option is to create it

in the CMA itself but this require passing its class instead of its

object, so it can be created within the CMA

 ScopedMemory MEM = new

LTMemory(BuildSMAsMethod.this.SMAs_InitialSizes[i],

BuildSMAsMethod.this.SMAs_MaxSizes[i]);//create the SMA

((Queue)(getNamedPortal().getObject(BuildSMAsMethod.this.SMAsQueue_Name

))).insert(MEM, i);//Save a ref to the SMA in the SMAs Queue

ForkedMemoryModel.this.getNamedPortal().insertObject(RealtimeThread.cur

rentRealtimeThread() + "." + i,

Appendix

-410-

 RealtimeThread.currentRealtimeThread() + "." + i);//The a

reference of the current thread in the MNOP portal

 }

 }

 if (reqTypeOfMemory == VTMemory.class) {

 for (int i = 0; i < BuildSMAsMethod.this.SMAs_InitialSizes.length;

i++) {

 //not implemneted but Similar to LTMemory

 }

 }

 }

 } //end of Class CreateMethod

 /*//////////////AttachNewSMAMethodCls class///////////////

Function:An inner class used as an encapsulated method for

 attaching a new SMA to the Forked Memory

Paramters->None

 *///

 public class AttachNewSMAMethodCls

 implements IEncapsulatedMethod {

//The parameters of the method's arguments

 Class reqTypeOfMemory;//memory type of the new SMA

 long SMAInitSize;//initial size of the new memory area

 public int type = -1;

 long SMAMaxSize;//max size of the new memory area

 public Queue SMAsQueue;//Queue to hold the SMAs

 String SMAsQueue_Name;//A name for the new SMA

 boolean executed = false;// flag (executed or not)

 public ScopedMemory createdMemory = null;

 ForkedMemoryModel FMM;//reference to the containing forked memory

model

 /*///////////////setArguments() Method////////////////////

Function:Assigne the values to the encapsulated

 method arguments

Paramters->arguments:An array that has the required values

 *///

 public void setArguments(Object [] arguments) {

 if (arguments.length == 6) {

 FMM = (ForkedMemoryModel)arguments[5];//assign the parent FMM

argument

 }

 if (arguments[2]instanceof String) {

 type = 1;

 SMAsQueue_Name = (String)arguments[2];//assign the SMAs'Queue

argument

 } else {

 type = 2;

 SMAsQueue = (Queue)arguments[2];//assign the SMAsQueue ref.

 }

 reqTypeOfMemory = (Class)arguments[3];//assign the required memory

type of SMA

 SMAInitSize = ((long [])arguments[0])[0];//assign the initial sizes

of all SMAs

 SMAMaxSize = ((long [])arguments[1])[0];//assign the max sizes of

all SMAs

 }

 /*//////////////returnResult() Method/////////////////////

Function:Return the Return value of the encapsulated method

Paramters->None

 *///

 public Object returnResult() {

 //Return the current SMAs

 return new Integer(BuildSMAsMethod.this.curSMAs);

 }

Appendix

-411-

 /*/////////////////run() Method///////////////////////////

Function:Has the logic of the encapsulated method

Paramters->None

 *///

 public void run() {

 RealtimeThread.getCurrentMemoryArea();//get the current thread

 executed = true;//set execution flag

 if (reqTypeOfMemory == LTMemory.class) {//in case of LTMemory

//here SMAsQueue is in the container, the other option is to create it

in the CMA itself but this require passing its class instead of its

object, so it can be created within the CMA

 createdMemory = new LTMemory(SMAInitSize, SMAMaxSize);//create

the scoped memory area

 RealtimeThread currentRTThread =

RealtimeThread.currentRealtimeThread();//get the current thread

 ScopedMemory MA =

(ScopedMemory)currentRTThread.getCurrentMemoryArea();//get the memory

area of the current thread

 long curSMAS = BuildSMAsMethod.this.curSMAs;//get the number of

the SMAs

//the next statement

 AttachNewSMAMethodCls.this.FMM.CMA.enter(new Runnable() {

 public void run() {

 if (type == 1) {

 RealtimeThread currentRTThread =

RealtimeThread.currentRealtimeThread();//get the current thread

 ScopedMemory ma =

(ScopedMemory)currentRTThread.getCurrentMemoryArea();//get the memory

area of the current thraed

 INamedObjectCollection gg =

 (INamedObjectCollection)(ma.getPortal());//get the

MNOPportal

 AttachNewSMAMethodCls.this.SMAsQueue

 = (Queue)FMM.getSMAsQueue(); //assign the SMAsQueuu

parameter

 }//end of if(type==1)

 }//end of run()

 });//end of enter(....

 SMAsQueue.insert(createdMemory, (int)curSMAS++);

 }//end of if (reqTypeOfMemory == LTMemory.class)

 }//end of run()

 } //end of Class Attach a new SMA

 boolean executed = false;//a flag of execution

 Queue SMAsQueue;//Queue of the SMAs

 String SMAsQueue_Name;//Name of the SMAs Queue

 long [] SMAs_InitialSizes;//initiall sizes of all SMAs

 long [] SMAs_MaxSizes;//max sizes of all SMAs

 Class thetypeOfMemory;//the type of the SMA

 int curSMAs;//total number of SMAs

 CreateInitialSMAMethodCls createInitSMAMethod = new

CreateInitialSMAMethodCls();//an instance of the encaqpsulated method

class

 Class portalType;//type of portal

 int type = -1;//type of method

 /*/////////////////setArguments() Method///////////////////

Function:Assign the arguments of this class that acts as an

 encapsulated method

Paramters-> arguments:An array of objects that holds

 the arguments

 *///

 public void setArguments(Object [] arguments) {

 SMAs_InitialSizes = (long [])arguments[0];//initial size value of

all SMAs

Appendix

-412-

 SMAs_MaxSizes = (long [])arguments[1];//Max Size value of all SMAs

 if (arguments[2]instanceof String) {

 SMAsQueue_Name = (String)arguments[2];//Assignt the name of the

queue

 type = 1;

 } else {

 SMAsQueue = (Queue)arguments[2];//assign the given SMAs Queue

object

 type = 2;

 }

 thetypeOfMemory = (Class)arguments[3];//The required scoped memory

type

 if (arguments.length > 4)

 portalType = (Class)arguments[4];//the required portal type

 else

 portalType = null;

 }

/*/////////////////returnResult() Method/////////////////

Function:return the result of the encapsulated method, which id

 the total current number of SMAs

Paramters-> None

 *///

 public Object returnResult() {

 if (executed)//if already executed

 return new Integer(curSMAs);//return the calculated result

 else

 return null;//otherwise, return nothing

 }

 /*///////////////////////run() Method/////////////////////

Function:runs the logic of the encapsulated method, to

 build the SMAs

Paramters->None

 *///

 public void run() {

 INamedObjectCollection portal = null;//create a portal reference

 NamedObjectFastMap p = new NamedObjectFastMap();//create a

collection as MNOP

 RealtimeThread currentRTThread =

RealtimeThread.currentRealtimeThread();//get the current real time

thread

 ScopedMemory theCMA =

(ScopedMemory)currentRTThread.getCurrentMemoryArea();//retrieve the

memory area of the current thread

 try {

 if (portalType != null)

 portal =

(INamedObjectCollection)theCMA.newInstance(portalType);//create a new

portal of the given type, if no one exists

 else

 portal = new NamedObjectFastMap();//create a new portal of the

default type(NamedObjectFastMap), if no one exists

 theCMA.setPortal(portal);//assign the MNOP portal of the CMA

 } catch (Exception ex) {

 }

 executed = true;//set the executed flag

 curSMAs = SMAs_InitialSizes.length;//update the total number of the

current SMAs

 ScopedMemory sm=null;//create a scoped memory ref.

 if (type == 1) {

 sm = ForkedMemoryModel.this.getContainerMA();//use the container MA

 } else if (type == 2) {

Appendix

-413-

 sm = (ScopedMemory)MemoryArea.getMemoryArea(SMAsQueue);//use the

Memory area of the SMAsQueue

 }

 createInitSMAMethod.setArguments(new Object[] { thetypeOfMemory

});//assign the arguments of the createInitSMAMethod, which has the

encapsulated method

 if (SMAs_InitialSizes.length > 1) { //initialize a set of SMAs

 sm.executeInArea(createInitSMAMethod);//execute the encapsulated

method to create Initial SMA

 } else if (SMAs_InitialSizes.length == 1) {

 //assign the parameters of the encapsulated method's class

 newAttachedSMA.SMAsQueue = SMAsQueue;//assign the queue

 newAttachedSMA.type = 2;//assign the type

 sm.executeInArea(newAttachedSMA);//execute the encapsulated method

to create new Attached SMA

 }

 }

 }

 /*///////////////createTask() Method//////////////////////

Function:A method to create a task within the ForkedMemoryModel

Paramters-> tasktype:The type of the task, i.e. RTThread, AEH

 schParams:scheduling parameters of the task

 memParams:memory parameters of the task

 relParams:release parameters of the task

 logic:logic of the task

 taskMemoryType:the scoped memory type for the task

 initMemSz:the initial memory size of the task

 maxMemSz:the maximum memory size of the task

 *///

 public Schedulable createTask(Schedulable tasktype,

SchedulingParameters schParams, MemoryParameters memParams,

 ReleaseParameters relParams, Runnable logic, Class taskMemoryType,

long initMemSz, long maxMemSz) {

 //this is uded for the schedulable objects

 //ask the objectallocator to reuse or to create the

 //memArea,

 ScopedMemory initMem = null;

 Schedulable task = null;

 IQueue SMAsQueue = ((IQueue)getNamedPortal().getObject("SMAsQueue"));

 if (taskMemoryType == LTMemory.class) {

 initMem = new LTMemory(initMemSz, maxMemSz);//create the SMA memory

of the task

 SMAsQueue.insert(initMem, 0);//add the SMA to the SMAs Queue

 }

 if (taskMemoryType == VTMemory.class) {

 initMem = new VTMemory(initMemSz, maxMemSz);//create the SMA memory

of the task

 SMAsQueue.insert(initMem, 0);//add the SMA to the SMAs Queue

 }

 if (tasktype instanceof RealtimeThread) { //must be in the CMA

 task = new RealtimeThread(schParams, relParams, memParams, initMem,

null, logic);//create the task itself

 }

 return task;

 }

 //should be createResuableSMA

 /*////////////createReusableStackTask() Method////////////

Function:A method to create a REUSABLE task within the

ForkedMemoryModel

Paramters-> poolName:The name of the pool from which the task is

 retrieved

Appendix

-414-

 schParams:scheduling parameters of the task

 memParams:memory parameters of the task

 relParams:release parameters of the task

 stackLogic:component that has the logic of the task

 divided into levels

 nLevels: The number of the stack levels of the

 task's logic

 taskMemoryType: The scoped memory type of the task

 initSz[]:the initial memory size of the task

 maxSz[]:the maximum memory size of the task

 *///

 public IHandler createReusableStackTask(String poolName,

SchedulingParameters schParams, ReleaseParameters relParams,

 MemoryParameters memParams, IStackLogic stackLogic, int nLevels,

Class taskMemoryType, Class handlerType,

 int [] initSz, int [] maxSz) {

 IHandler task = null;

 //the reusable task is created inside the encaps-handler

note:we use Encapsulated Handler here that

 if (handlerType == EncapsulatedHandler.class) {

//from HPool not from the allocator

//the question here, what if we have multiple handler types, we need to

have multiple pools and this has to be reflected here????

 IHPool theHandlersPool =

(IHPool)ICOM.getHandlerPool(poolName);//Retrieve the pool of handlers

 IEncapsulatedHandler hdlr =

(IEncapsulatedHandler)theHandlersPool.getFreeHandler();//get a free

handler from the pool

 ReusableRunnableStack hlogic =

(ReusableRunnableStack)getObjectAllocator().getInstance(ReusableRunnabl

eStack.class);//get an instance of the Reusable Runnable Stack

 hlogic.setStackLogic(stackLogic);//Assign the stack logic to be

executed by the retrieved handler

 hlogic.setParameters(taskMemoryType, nLevels, new LTMemory[]

{(LTMemory)getContainerMA(), (LTMemory)getCMA()},

 initSz, maxSz, ICOM);//initialize the parameters of the stack

Logic

 hdlr.setParameters(schParams, relParams, memParams, hlogic, CMA,

taskMemoryType, initSz[0],

 maxSz[0]); //initialize the parameters of the retrieved reusable

handler

 IQueue SMAsQueue =

((IQueue)getNamedPortal().getObject("SMAsQueue"));//retrieve the Queue

of the SMAs

 SMAsQueue.insert(hlogic.getMem(2), 0/*id[can be time]*/);//???

 return hdlr;

 }

 return null;

 }

}

Appendix

-415-

A.4 The Reusable Objects Allocator Pattern

package RTCOM;

import javax.realtime.*;

/*///////////Object Allocator Pattern//////////////////

Function:This class represents an allocator for reusable objects

*///

public class GeneralObjectAllocatorCls

 implements IObjectAllocator {

 ObjectInventoryCls HeadOfTheObjectInventory; //Object

 ObjectCarrier freeCarriers = null; //The free object carriers

 GetClass getClass = new GetClass();

 LTMemory getClassScope = new LTMemory(104, 1024);

 static final Class ObjectCarrier_class = ObjectCarrier.class;

 static final Class ObjectInventoryCls_class =

ObjectInventoryCls.class;

/*///////////////////ObjectCarrier class////////////////////

Function:This is an inner class of a carrier for an object

*//

 public static class ObjectCarrier {

 Object theObject = null; //the object itself

 ObjectCarrier next = null; //the following object in the list

 }

 /*///////////////////ObjectInventoryCls class/////////////////

Function:This class an inventory for the objects

 *///

 public static class ObjectInventoryCls {

 Class ObjectType = null;//The type of the object

 ObjectCarrier theObjectCarrier = null; //The carrier

 ObjectInventoryCls next = null; //The next object inventory

 }

 /*///////////////////instance() Method/////////////////////////

Function:Get an instance of the allocator

Parameters: None

 *///

 public static GeneralObjectAllocatorCls instance() { //create

allocator in the current memory area

 GeneralObjectAllocatorCls allocator = null;

 try { //can not be used from within a normal thread

 RealtimeThread rtThread = RealtimeThread.currentRealtimeThread();

//retrieve the current thread

 MemoryArea ma = rtThread.getCurrentMemoryArea(); //retrieve the

current memory area

 allocator =

(GeneralObjectAllocatorCls)ma.newInstance(GeneralObjectAllocatorCls.cla

ss); //create the instance

 } catch (IllegalAccessException ie) {

 System.out.println("Illegal Access..............");

 } catch (InstantiationException ie) {

 System.out.println("Illegal Access..............");

 }

 return allocator;

 }

 /*///////////////////instance() Method/////////////////////////

 Function: Get an instance of the allocator

 Parameters-> ma: The scoped memory area

 *//

 public static GeneralObjectAllocatorCls instance(MemoryArea ma)

 { //create allocator in ma whichcan only be the current memory

area or an outer[lower in the stack] memory area???

 GeneralObjectAllocatorCls allocator = null;

 try { //can not be used from within a normal thread

 allocator =

(GeneralObjectAllocatorCls)ma.newInstance(GeneralObjectAllocatorCls.cla

ss); //instance creation

Appendix

-416-

 } catch (IllegalAccessException ie) {

 System.out.println("Illegal Access..............");

 } catch (InstantiationException ie) {

 System.out.println("Illegal Access..............");

 }

 return allocator;

 }

/*///////////////////findTypeInventory() Method//////////////

Function:searches for the object inventory of the given class

Parmters-> Objtype: The Object class type

 */ // private

ObjectInventoryCls findTypeInventory(Class Objtype) {

 if (HeadOfTheObjectInventory == null)

 return null; //list is empty

 for (ObjectInventoryCls currentInv = HeadOfTheObjectInventory;

 currentInv != null; currentInv = currentInv.next) //loop within

the list to find the required inventory

 {

 if (currentInv.ObjectType == Objtype)

 return currentInv;

 }

 return null; //not in the list

 }

/*///////////////////getTypeInventory() Method////////////

Function: get an object inventory of the given class

Parameters-> ObjClass: The class type

*///

 private ObjectInventoryCls getTypeInventory(Class ObjClass) {

 ObjectInventoryCls reqInventory = findTypeInventory(ObjClass); //get

an existing inventory if found

 if (reqInventory == null) {

 try {

//create a new inventory if no one exists

 reqInventory =

(ObjectInventoryCls)createObject(ObjectInventoryCls_class,

 "Exception while creating a new Type Inventory");

 } catch (RuntimeException re) { }

 reqInventory.ObjectType = ObjClass;

 reqInventory.theObjectCarrier = null;

 reqInventory.next = HeadOfTheObjectInventory;

 HeadOfTheObjectInventory = reqInventory;

 }

 return reqInventory;

 }

 /*///////////////////getTypeInventory() Method//////////////

Function:get an object inventory of the given class

Paramters-> typeCls: The class type

MSG:???

*///

 private Object createObject(Class typeCls, String MSG) throws

RuntimeException {

 Object obj = null;

 try {

 LTMemory ma = (LTMemory)MemoryArea.getMemoryArea(this); //get the

memory area of this object

 obj = ma.newInstance(typeCls); //create

instance of the given class in the ma memory area

 } catch (IllegalAccessException iae) {

 throw new RuntimeException(iae);

 } catch (InstantiationException ie) {

 throw new RuntimeException(ie);

 }

 return obj;

 }

Appendix

-417-

 /*///////////////////listFreeObjects() Method//////////////

Function: write a list of the free available objects

Paramter-> cls: The class name

 *///

 public void listFreeObjects(Class cls) {

 ObjectInventoryCls TypeInventory = getTypeInventory(cls); //get the

inventoryof the given class

 if (TypeInventory.theObjectCarrier == null)

 System.out.println("||>>NO FREE Object");

 for (ObjectCarrier c = TypeInventory.theObjectCarrier; c != null; c =

c.next) {

 System.out.println("||>>" + c.theObject);

 }

 }

 /*///////////////////recycleCarrier() Method//////////

Function:write back the freed object carrier to the allocator

Paramters-> theFreedCarrier: The freed carrier of the object

 *//

 public void recycleCarrier(ObjectCarrier theFreedCarrier) {

 theFreedCarrier.next = freeCarriers; //attach the freed carrier

 freeCarriers = theFreedCarrier; //update

 }

/*/////////////////getFreeObjectCarrier() Method//////////////

Function:retrieve the freed object carrier from the allocator

*// public

ObjectCarrier getFreeObjectCarrier() {

 ObjectCarrier FreeObjCarrier = freeCarriers;

 if (FreeObjCarrier == null) {

 FreeObjCarrier = (ObjectCarrier)createObject(ObjectCarrier_class,

"Exception during creating a carrier");

 }

 freeCarriers = FreeObjCarrier.next;

 return FreeObjCarrier;

 }

 /*///////////////////getInstance() Method////////////////////

Function: retrieve a free object of the given type

Parameters-> ObjType:The teype of the required object

*//

 public Object getInstance(Class ObjType) {

 ObjectInventoryCls TypeInventory = getTypeInventory(ObjType);

//Get the inventory of the given type

 if (TypeInventory.theObjectCarrier == null) {

 return createObject(ObjType, "Exception while creating a new Object

"); //create the required object type

 }

 ObjectCarrier theCarrier = TypeInventory.theObjectCarrier;

//get the current first object carrier

 TypeInventory.theObjectCarrier = theCarrier.next;

//update the inventory's first element

 Object reqObj = theCarrier.theObject;

//get the object from the carrier

 recycleCarrier(theCarrier);

//recycle the freed carrier to the allocator

 return reqObj;

 }

 /*///////////////////GetClass class/////////////////////////

 Function: retrieve a class from a given object

 *//

 public static class GetClass

 implements Runnable {

 Object obj; //The object

 Class ret; //Its type

 public void run() {

 ret = obj.getClass(); //The class of the given object

Appendix

-418-

 }

 }

 /*///////////////////getInstanceLike() Method///////////////

Function:retrieve object inst. of the type of another obj

Paramters-> Object: an existing object of the required type

//

 public Object getInstanceLike(Object Obj) {

 getClass.obj = Obj;

 getClassScope.enter(getClass); //execute the call in a scoped mrmory

to automatically reclaim the run-time created memory

 return getInstance(getClass.ret); //return the instance

 }

 /*///////////////////recycle() Method/////////////////////////

Function:write back the freed object to the inventory

Parameters-> recycledObject:The freed object - to be recycled

 *//

 public void recycle(Object recycledObject) throws RuntimeException {

 getClass.obj = recycledObject; //prepare the getClass

 getClassScope.enter(getClass); //execute the call in a scoped mrmory

to automatically reclaim the run-time created memory

 ObjectInventoryCls typeInv = findTypeInventory(getClass.ret);

//search for the inventory of the required type

 if (typeInv == null) {

 throw new RuntimeException("Recycling an Object which was not

created by the allocatpr");

 }

 ObjectCarrier carrier = getFreeObjectCarrier(); //retrieve a free

carrier

 carrier.theObject = recycledObject;//att. the obj to the carr.

 carrier.next = typeInv.theObjectCarrier;//update the carrier

 typeInv.theObjectCarrier = carrier;//update the inventory

 }

Appendix

-419-

A.5 The Wedge Thread Pattern

/*//////////////WEDGE THREAD Pattern//////////////////*/

//This pattern for pinning a single scoped memory area

/*//*/

public static class WedgeThread

 extends RealtimeThread {

 boolean terminate = false; //condition to terminate

 int priority; // priority of the wedge thread

 MemoryArea commem; // the common memory area

 MemoryArea wedgedMem; //the pinned memory area

 /*/////////Constructor//////////////

 Function: This method is used initialize the wedeg thread

 parameters-> pri:priority of the wedge thread

 CommonMemory:the common memory area

 *//

 WedgeThread(final int pri, final MemoryArea CommonMemory) {

 super(new PriorityParameters(pri), null, null, CommonMemory, null,

new Runnable() {

 public void run() {//initiate the params of the wedge thread

 WedgeThread.this.terminate = false;

 WedgeThread.this.priority = pri;

 WedgeThread.this.commem = CommonMemory;

 WedgeThread.this.run(); //excecute the wedge thread’s logic

 }

 });

 }

 /*/////////lockMA() Method//////////////

Function: This method is used to pin a certain memory area

 parameters-> ma:the memory area to be pinned

 */ /////////////////////////////////////

 public void lockMA(MemoryArea ma) {

 wedgedMem = ma; //initialize the memory area

 synchronized (this) {

 try {

 notifyAll(); //notify the wedge thread to propagate

 } catch (Exception ex) {

 System.out.println("MA" + ma + "is Free Now");

 }

 }

 }

 /*////////unLockMA() Method/////////////

 Function: This method is used to unpin a certain memory area

 parameters: no assigned parameters

 */////////////////////////////////////

 public void unLockMA() {

 synchronized (wedgedMem) {

 try {

 wedgedMem.notifyAll(); //notify the wedget thread

 } catch (Exception ex) {

 System.out.println("MA" + wedgedMem + "is Free Now");

 }

 }

 }

 /*////////run() Method/////////////

Function:This method defines the logic of the wedge thread

parameters: no assigned parameters

 *////////////////////////////////////

 public void run() {

 while (!terminate) // the thread until terminated by the user

 {

 synchronized (this) {

 try {

Appendix

-420-

 wait(); //wait in the common memory area until notified to execute

 } catch (Exception ex) {

 System.out.println("MA" + wedgedMem + "is Free Now");

 }

 }

//here the wedge thread is activated to lock a memory area

//the wedge thread runs the following logic

 wedgedMem.enter(new Runnable() { //the Runnable should be made

reusable

 public void run() {

 synchronized (wedgedMem) {

 try {

 //The thread waits in the memory area to pin it

 wedgedMem.wait();

 //The thread here is activated to exit the meory area

 } catch (Exception ex) {

 System.out.println("MA" + wedgedMem + "is Free Now");

 }

 }

 }

 });

 }

 }

 /*////////startNewInstance() Method/////////////

Function:This method starts the execution of the wedge thread

parameters-> pri:priority of the wedge thread

 ma:the memory to be pinned

 *///////////////////////

 public static WedgeThread startNewInstance(int pri, MemoryArea ma) {

 WedgeThread w = new WedgeThread(pri, ma); //create the wedeg thread-

could be reusable

 w.start(); //start the wedge thread

 return w; //return wedeg thread reference

 }

 /*////////kill() Method/////////////

Function:This method terminates the wedge thread

parameters->no assigned parameters

 */ //////////////////////

 public void kill() {

 terminate = true; //set the termination condition

 synchronized (wedgedMem) {

 try {//activate the wedeg thread to exit the pinned mem. area

 wedgedMem.notifyAll();

 } catch (Exception ex) {

 System.out.println("MA" + wedgedMem + "is Free Now");

 }

 }

 synchronized (this) {

 try {//activate the wedeg thread to exit the common mem. area

 notifyAll();

 //the wedeg thread should terminate now

 } catch (Exception ex) {

 System.out.println("MA" + wedgedMem + "is Free Now");

 }

 }

 }

}

/////////////END OF WEDGE THREAD////////////

Appendix

-421-

A.6 The Dual Fork Thread Pattern

package RTCOM;

import javax.realtime.*;

/*//////////////////DualFork Class////////////////////////

Function: Has the logic of the Dual Fork Pattern

///*/

public class DualFork

 implements IMemoryModelControler {//A class implements dualFork

Pattern

 IObjectAllocator allocator; // a reference to the allocator object

 int innerForks = 0;

 public ForkThread head1;

 public ForkThread head2;

 public int turn = 2;

 ScopedMemory com_mem;

 public Object updateLock;

 int UpdateRequests = 0;

/*////////getMNPortal() Method/////////////

Function: Retrieves the multi-named portal of a certain memory area

parameters-> mem:the accessed memory area

*///

 public INamedObjectCollection getMNPortal(ScopedMemory mem) {

INamedObjectCollection memPortal =

(INamedObjectCollection)mem.getPortal();

 if (memPortal == null) { //create

the multinamed portal if does not exist

 memPortal = new NamedObjectFastMap();

 mem.setPortal(memPortal);//set the created object as a portal

 }

 return memPortal;

 }

 /*////////Constructor////////////////////

 Function:This method starts the execution of the wedge thread

parameters-> baseMemmem:the common memory area

 ForkedMemories:list of inner scoped memory areas; i.e. it

 is the memHeldQueue defined in the thesis
 */ //////////////////////////////////

 public DualFork(ScopedMemory baseMem, IQueue ForkedMemories) {

 Queue forkedMemories = (Queue)ForkedMemories; //we use here the class

Queue as a specific linked list implementation

 int pri = PriorityScheduler.instance().getMaxPriority(); //retrieve

the maximum priority

 head1 = new ForkThread(new PriorityParameters(pri / 2), baseMem,

forkedMemories, this,"FirstHead");//create the first forked thread

 head2 = new ForkThread(new PriorityParameters(pri / 2), baseMem,

forkedMemories, this,"SecondHead"); //create the second forked thread

 updateLock = forkedMemories; //set the updatelock as the commom

scoped memory

 com_mem = baseMem; //assign the common memory

common memory

 allocator = GeneralObjectAllocatorCls.instance();//create an instance

of the reusable objects allocator

 LTMemory tmpMem = new LTMemory(1500000, 1500000); //create a scoped

memory???

 INamedObjectCollection memPortal = getMNPortal(com_mem); //retrieve

the portal of the common memory

 memPortal.insertObject("tmpMem", tmpMem); //insert the tmp memory to

the portal

 memPortal.insertObject("HEAD1", head1); //safe a reference to the

first fork thread

 memPortal.insertObject("HEAD2", head2); //safe a reference to the

esecond fork thread

 memPortal.insertObject("allocator", allocator); //save a reference to

the allocator

Appendix

-422-

 memPortal.insertObject("updateLock", updateLock); //save a reference

to the update lock

 head1.start();//start running the first fork thread

 head2.start();//start running the second fork thread

 }

 /*////////updateFork() Method/////////////

Function:This method updates the status of the DualFork

parameters-> no parametera

 *///

 public synchronized void updateFork() {

 try {

 synchronized (this) {

 while (innerForks < 2) //loop as long as the 2 fork threads are

ready

 {

 try {

 wait(); //wait untill be ready

 } catch (Exception nm) {

 System.out.println("!Exception!" + nm);

 }

 }

 }

 } catch (InterruptedException ie) {

 System.out.println("!Exception!"+ie);

 }

 INamedObjectCollection memPortal = getMNPortal(com_mem); //retrieve

the multi-named portal of the common memory

 Object updateLock = memPortal.getObject("updateLock"); //retrieve

the saved updatelock

 synchronized (updateLock) {

 try {

 while (head1.state == 2 || head2.state == 2 || head1.state == 4 ||

head2.state == 4) {

 synchronized (this) {

 UpdateRequests++; //increment the number of unprocessed requests

 }

 updateLock.wait(); // The External Thread Blocked Waiting to be

able to update the fork

 UpdateRequests--; //reduce the number of unprocessed requests

 }

 } catch (InterruptedException ie) {

 System.out.println("--Ex--"+ie);

 }

 }

 turn = (turn % 2) + 1; //toggle the turn value, to decide which fork

 if (turn == 1) //the turn of the first fork thread

 {

 head1.state = 2;//set 1
st
 fork thread to the forward propagate state

 head1.startTime = rtclock.getTime(); //retrieve the current time

 synchronized (head1) {

 try {

 head1.notifyAll(); //start the propagation of the 1
st
 fork thread

 } catch (Exception w) { }

 }

 }

 if (turn == 2) //the turn of the second fork thread

 {

 head2.state = 2; //set 2
nd
 fork thread to forward propagation state

synchronized (head2) {

 try {

 head2.notifyAll(); //forward propagate the second fork thread

 } catch (Exception w) {

 System.out.println("—Ex-"+w);

 }

 }

 }

Appendix

-423-

 }

/*////////ForkThread Class/////////////////////

Function: It is an implementation of the ForkThread Pattern

It is used to represent the two head of the fork,

so it is defined as an inner class

*///

 public static class ForkThread

 extends RealtimeThread {

 public int state; //identifier of the exec. state of the ForkThread

 Queue forkedMemories;// nested SMAs i.e. it is the memHeldQueue
 ScopedMemory commonMemory; //the common memory of the fork

 boolean terminateAll; //cond. of terminating exec. of the dual thread

 boolean running = false;//a flag of the running state

 Object runningLock = new Object();

 public String headName; //Name of the Fork Thread

 public String headNameParams;

 public INamedObjectCollection baseMemPortal; //The MNOP

 public DualFork parentFork;//a ref. to the enclosing dual fork

/*////////////////Constructor///////////////////

Function: This constructor initiates the ForkThread

 Parameters-> pp:The priority parameters of the Fork Thread

 CommonMemory: The common memory

 ForkedMemories:a List of all the inner scoped

 memory areas

 parent:The Dual Fork containing this ForkThread

 hName:Name of this ForkThread

*//

 public ForkThread(PriorityParameters pp, final ScopedMemory

CommonMemory, final Queue ForkedMemories,

 final DualFork parent, final String hName) {

 //initialize the realtime threads inherited within this class

 super(pp, null, null, CommonMemory, null, new Runnable() {

 public void run() {

 //Initialization is done within the logic of the ForkThread

 parentFork = parent; //assign the parent DualFork

 terminateAll = false; //reset the termination condition

 headName = hName; //assign the ForkthreadName

 headNameParams = (hName == "FirstHead") ? "FirstHead-params" :

"SecondHead-params"; //Assign the Parameters NAme???

 commonMemory = CommonMemory; //assign common mem of the pattern

 baseMemPortal = parentFork.getMNPortal(commonMemory); //retrieve

the MNOP portal of the common memory

 forkedMemories = ForkedMemories; //assign the list of the scoped

memory areas

 state = 0; //set the state flag of the ForkThread to the ready

state

 ForkThread.this.runIT();

//execute the runIT(), which holds the logic of this ForkThread

 }

 });

 }

 /*////////notifyForkLocK() Method/////////////

 Function: This notifyForkLocK() notifies the parent DualFork

 parameters-> No Parameters

 *///

 public synchronized void notifyForkLocK() {

 try {

 if (!running) {

 synchronized (runningLock) { //....waiting for runninglock

 runningLock.wait();

 }

 }

 } catch (InterruptedException ie) { }

 try {

Appendix

-424-

 parentFork.notifyAll();//activates the parent DualForkThread

 } catch (Exception x) {

 System.out.println(">>>>>>> " + x);

 }

 }

/*////////update() Method/////////////////////

Function:This updates the status of the ForkThread to the required

state

parameters-> No Parameters

*///

 public void update() {

 INamedObjectCollection memPortal =

 parentFork.getMNPortal(commonMemory); //retrieve the portal of

the common memory area

 final QueueItem qhead = (QueueItem)forkedMemories.getHead(); //Get

the Item holding the First Scoped Memory area

 final ScopedMemory firstbranch = (ScopedMemory)(qhead.item());

//Get the first scoped memory area

 IObjectAllocator allocator =

 (IObjectAllocator)baseMemPortal.getObject("allocator");//Get the

reusable objects allocator

 propagate(qhead); //Start the propagation of this fork thread

 ForkThread currHead =

(ForkThread)(RealtimeThread.currentRealtimeThread()); //Get the current

ForkThread reference

 ForkThread otherHead;

 //The if statement >> assigns the other fork thread reference

 if (parentFork.head1 == currHead)

 otherHead = parentFork.head2;

 else

 otherHead = parentFork.head1;

 otherHead.state = 3; //change the state of the other thread

 currHead.state = 1; //change the state of the current thread to the

propagating state

 }

/*////////propagate() Method/////////////////////

Function: This is a recursive function that propagates the Fork Thread

in the required list of scoped memory areas

parameters-> startingItem: The first item in the list holding the

scoped memory areas that needs to be pinned

 *///

 private void propagate(QueueItem startingItem) {

 QueueItem item = startingItem; //Get the first item

 ForkThread forkHead =

(ForkThread)RealtimeThread.currentRealtimeThread();//Get the current

fork thread

 INamedObjectCollection memPortal =

parentFork.getMNPortal(commonMemory);//Get the MNOP portal of common

memory of the dualfork

 IObjectAllocator allocator =

 (IObjectAllocator)memPortal.getObject("allocator"); //Get the

reusable object allocator

 if (item.next() == null) {

 Runnable r =

(TailRunnable)allocator.getInstance(TailRunnable.class); //Get Free

Object of the TailRunnable class

 r.run();//execute the logic of the TailRunnable

 //the fork thread here propagated in the last scoped memory area

and have to stop propagation

 return; //exit the recursive function to stop the recusrion

 }//end of if statement

 ScopedMemory branch = (ScopedMemory)(item.item()); //Get the item

holding the required scoped memory area

 TMPBranchRunnable rbranch =

(TMPBranchRunnable)allocator.getInstance(

 TMPBranchRunnable.class); //Get a free instance of the Runnable

to propagate within a scoped memory area

Appendix

-425-

 rbranch.ITEM = item; //assign the next item that holds the next SMS

to be pinned

 branch.enter(rbranch); //the function calls itself to propagate

recuresively in the next scoped memory areas

 }

/*////////runIT() Method/////////////////////

Function: This function holds the logic to be executed by the

ForkThread

parameters-> No Parameters

*///

 public void runIT() {

 running = true; //raise the running Flag

 try {

 synchronized (runningLock) {

 runningLock.notifyAll(); //activate any waiting Thread

 }

 } catch (InterruptedException ie) { }

 IObjectAllocator allocator =

 (IObjectAllocator)this.baseMemPortal.getObject("allocator");

//Get the resuable objects allocator

 Runnable r = (ForkRunnable)allocator.getInstance(

 ForkRunnable.class); //Create an instance of the ForkRunnable,

which holds the logic

 r.run();

//execute the Fork logic//?????

 }

/*//////////////////TailRunnable Class///////////////////////

Function:Executes the logic to be executed in the last scoped memory

area to pin it

///*/

 static public class TailRunnable

 implements Runnable {

 public void run() {

 ForkThread forkHead =

(ForkThread)RealtimeThread.currentRealtimeThread();//Get the current

real-time thread

 ScopedMemory com_mem = (ScopedMemory)forkHead.commonMemory; //Get

the common memory of the pattern

 ForkThread otherHead;

 INamedObjectCollection memPortal =

forkHead.parentFork.getMNPortal(com_mem); //Get the portal of the

common memory

 {

 try {//distinguish between the current and the other fork

 if (forkHead.parentFork.head1 == forkHead)

 otherHead = forkHead.parentFork.head2; //set the other fork

 else if (forkHead.parentFork.head2 == forkHead)

 otherHead = forkHead.parentFork.head1;

 forkHead.state = 3; //assign the state of the current fork

 Object forkLock = forkHead;

 while (forkHead.state == 3) {

 synchronized (forkLock) {

 try {

 Object updateLock = memPortal.getObject("updateLock");//Get

 the update lock

 if (otherHead.state == 3) {

 otherHead.state = 4; //forward to the next state

 synchronized (otherHead) {

 otherHead.notifyAll();//activate the other fork

 }

 }

 if (forkHead.parentFork.UpdateRequests != 0) {

 synchronized (this) {

 synchronized (updateLock) {

 try {

 updateLock.notifyAll();

 } catch (InterruptedException i) { }

 }

Appendix

-426-

 }

 }

 forkLock.wait();

 forkHead =

(ForkThread)RealtimeThread.currentRealtimeThread();//Get the current

thread

 } catch (Exception ex) {

 System.out.println("_____ERROR_____" + ex);

 }

 }

 }

 } catch (InterruptedException ie) {

 System.out.println(ie);

 }

 }

 }

 }

 /*/////////////////////////TMPBranchRunnable///////////////////

 Function: This class Encapsulates the logic for pinning the scoped

 memory areas, except the last one

 ///*/

 static public class TMPBranchRunnable

 implements Runnable {

 public QueueItem ITEM; //Item holding a scoped memory area

 public TMPBranchRunnable() { }

 public void run() {

 ScopedMemory branch = (ScopedMemory)(ITEM.item());

//Get the scoped memory area from the item

 ForkThread forkHead =

(ForkThread)RealtimeThread.currentRealtimeThread(); //Get the current

ForkThread

 ScopedMemory com_mem = forkHead.commonMemory;//set the common

memory

 INamedObjectCollection memPortal = forkHead.baseMemPortal;//set the

MNOP portal

 final QueueItem NEXTITEM = ITEM.next(); //Retrieve the item that

holds the next memory area

 IObjectAllocator allocator =

(IObjectAllocator)forkHead.baseMemPortal.getObject(

 "allocator"); //retrieve a referencxe to the reusable objects

allocator

 BranchRunnable branch2 =

(BranchRunnable)allocator.getInstance(BranchRunnable.class);

 branch2.NEXTITEM = NEXTITEM;

 if (branch != com_mem) {

 INamedObjectCollection nestedmemPortal =

(INamedObjectCollection)branch.getPortal();

 if (nestedmemPortal == null) {

 com_mem.executeInArea(branch2);

 } else {

 Queue nestedMemories =

(Queue)nestedmemPortal.getObject("nestedMemories");

 final QueueItem qhead = (QueueItem)nestedMemories.getHead();

 final ScopedMemory firstbranch = (ScopedMemory)(qhead.item());

 propagate(qhead);

 }

 } else {

 //not implemented

 }

 }

 }

public static class BranchRunnable

 implements Runnable {

 public QueueItem NEXTITEM;

 public void run() {

 ForkThread fth =

(ForkThread)RealtimeThread.currentRealtimeThread();

Appendix

-427-

 ScopedMemory com_mem = fth.commonMemory;

 fth.propagate(NEXTITEM);

 }

 }

 /*////////////////ForkRunnable Class///////////////////////

 Function: This class ???

 //*/

 static public class ForkRunnable

 implements Runnable {

 public ForkRunnable() { }

 public void run() {

 ForkThread forkHead =

(ForkThread)RealtimeThread.currentRealtimeThread(); //Get the current

ForkThread

 ScopedMemory com_mem = forkHead.commonMemory;//assign the common

memory

 boolean terminateAll = forkHead.terminateAll; //???

 INamedObjectCollection memPortal =

 forkHead.parentFork.getMNPortal(com_mem); //Get the MNOP portal

of the common memory

 Object updateLock = memPortal.getObject("updateLock"); //Get the

<updateLock> form tne MNOP portal

 try {

 synchronized (forkHead.parentFork) {

 if (forkHead.parentFork.innerForks == 0) {

 //This is the first ForkThread

 forkHead.parentFork.innerForks++; //increment the number of

running inner Forked Thread

 try {

 forkHead.parentFork.wait();//wait for notification of the

existence of the two running ForkThreads in the Dualfork

 } catch (InterruptedException ss) { }

 }

 if (forkHead.parentFork.innerForks == 1) {

 //This is the second ForkThread

 forkHead.parentFork.innerForks++; //increment the number of

running inner Forked Thread

 try {

 forkHead.parentFork.notifyAll(); //notification that the two

ForkThread required for this Dualfork ara now avaialable

 } catch (InterruptedException ss) {

 System.out.println("......errr......." + ss);

 }

 }

 }

 } catch (InterruptedException ie) {

 System.out.println("xxxxxxxExceptionxxxxxxxxx\n" + ie);

 } catch (Exception ie) {

 System.out.println("xxxxxxxExceptionxxxxxxxxx\n" + ie);

 }

 while (!terminateAll) {

 //Now the logic DualForkPattern works as long as the user has not

terminated it

 synchronized (forkHead) {

 try {

 forkHead.state = 1; //set the propagation state of the

currently executing forkThread

 while (forkHead.state == 1 && forkHead.parentFork.UpdateRequests

== 0) {

 forkHead.wait();//wait for requests for update

 }

 synchronized (updateLock) { //only one Fork Thread can propagate

on a time

 try {

 updateLock.notifyAll(); //notify any object waiting for the

update command

 } catch (InterruptedException i) {

Appendix

-428-

 System.out.println(">>>Exception>>>" + i);

 }

 }

 } catch (Exception ex) {

 System.out.println(">>>>Exception:>>>" + ex);

 }

 }

 forkHead.update(); //Now execute the propagation within th inner

scoped memory areas

 } //end of while loop

 }

 }

/*///////////////NotifyForkLockRunnable//////////////////////

Function:notify the lock

///*/

 static class NotifyForkLockRunnable

 implements Runnable {

 public void run() {//called by any external thread using this

pattern

 ForkThread forkHead =

(ForkThread)RealtimeThread.currentRealtimeThread(); //Get the current

ForkThread

 ScopedMemory com_mem = (ScopedMemory)forkHead.commonMemory;

//Get the common memory

 INamedObjectCollection memPortal =

 forkHead.parentFork.getMNPortal(com_mem); //Get the MNOP portal

of the common emory

 synchronized (forkHead.parentFork) {

 try {

 forkHead.parentFork.notifyAll(); //notify the parent Dual Fork

 } catch (InterruptedException ie) {

 System.out.println(ie);

 }

 }

 }

 }

 }

 }

Appendix

-429-

A.7 The Handlers Pool Pattern

package RTCOM;

import javax.realtime.*;

import java.rtnio.channels.*;

/*//////////////////////HandlersPool Class////////////

Function: This class is used to represent a pool of

 Executors/handlers

//*/

public class HandlersPool

 implements IHPool {

 public int maxHandlers;//The maximum number of handler within the pool

 public int freeHandlers = maxHandlers; //the number of free handlers

initially is the size of the pool

 IQueue HPool; //

 /*/////////////////getSize() Method//////////////

Function:retrieve the size of the pool

 Parameters:No parameters

 *///

 public int getSize() {

 return maxHandlers;

 }

 /*/////////////////HandlersPool() Method//////////////

Function: retrieve the size of the pool

Parameters:

 HandlerType: the type of the handlers to be used

 Size: the total size of the pool

 PoolMA:The memory area in which the pool would be

 created

 HMemType: The memory type of the handlers

 initHMemSize:initial Size of the memory

 maxHMemSize: maximum Size of the memory

 *///

 public HandlersPool(Class HandlerType, int Size, MemoryArea PoolMA,

Class HMemType, long initHMemSize,

 long maxHMemSize) {

 //the Pool should be in the cma

 try {

 HPool = (IQueue)PoolMA.newInstance(Queue.class); //creation of the

handlers pool

 } catch (Exception ex) {

 System.out.println("Error in hnadler pool");

 }

 maxHandlers = Size; //initialize the size

 //The creation of all the required handlers

 //assuming fixed size memory

 for (int i = 0; i < Size; i++) {

 IEncapsulatedHandler hdlr;

 try {

 hdlr = (IEncapsulatedHandler)PoolMA.newInstance(HandlerType); //The

creation of a handler

 } catch (Exception ex) {

 System.out.println("Error in hnadler pool");

 }

//parameters should be set by the user, but these are default

parameters that can

//we should set here the non changable parameters, and outside thuser

set the changable ones

 hdlr.setParameters(null, null, null, null, PoolMA, HMemType,

initHMemSize,

 maxHMemSize); //assign the parameters of the handler

 HPool.append(hdlr); //add the handler to the pool

 }

Appendix

-430-

 }

 /*//////////getFreeHandler() Method/////////////

Function:retrieve a free handler from the pool

Parameters: No Parameters

 *//

 public IHandler getFreeHandler() {

 QueueItem qHead = (QueueItem)HPool.getHead(); //get

the head of the pool

 IEncapsulatedHandler hdlr = (IEncapsulatedHandler)qHead.item(); //get

the handler from this element

 HPool.remove(qHead);

//remove this element form the pool

 freeHandlers--;

//decrement the count

 return hdlr;

 }

 /*/////////////getFreeHandler() Method//////////

Function: retrieve a free handler from the pool

Parameters:reqMemSize: The required memory size ofthe

 Handler

 *///

 public IHandler getFreeHandler(long reqMemSize) {

 IEncapsulatedHandler hdlr = null;

 synchronized (HPool) {

 QueueItem Tail = (QueueItem)HPool.getTail();//get the last item

 while (true) {

 QueueItem qi = (QueueItem)HPool.getHead();//get the first item

 try {

 while (qi == null)

 HPool.wait(); //wait if no free handlers are available

 } catch (Exception ex) {

 System.out.println("Exception occured");

 }

 hdlr = (IEncapsulatedHandler)qi.item(); //get the handler

 if (hdlr.getMaxSz() >= reqMemSize) //check if the memory size is

acceptable

 {

 HPool.remove(qi); //remove the item form the pool

 break;//we found the handler, so finish the loop

 }

 if (qi == Tail)

 break;

 HPool.remove(qi); //

 HPool.append(qi);

 }

 }

 freeHandlers--; //decrement the free handlers count

 return hdlr;

 }

 /*///////////appendHandler() Method//////////////

Function: add a handler to the pool

Parameters-> ehdlr: a handler to be appended

 *//

 public void appendHandler(IHandler ehdlr) {

 synchronized (HPool) {

 HPool.append(ehdlr); //add the handler

 freeHandlers++; //increment the free handlers count

 try {

 HPool.notifyAll(); //notify that a free handler is added

Appendix

-431-

 } catch (Exception ex) {

 System.out.println("Exception occured");

 }

 }

 return;

 }

}

Appendix

-432-

A.8 The Reusable Runnable Stack Pattern

package RTCOM;

import javax.realtime.*;

/*///////////RunnableStack Pattern//////////////////////

Function:Represents pattern for a memory stack

/////////////////////////////////*/

public class ReusableRunnableStack

 implements Runnable

 { //[useful for nesting]it is reusable if we do keep the creation

of the SMA[1-depth] un the initialization as the memory areas are not

deleted, but it can be reusable if we moved the initialization in the

run method see enhanced version runnableStackVersion 2

 //needs to be created in the container to be able to be started from

it???notsure

 LTMemory [] SMA; //Array holds the SMAs currently created

 int curLevel = 0;//current level in which the thread is running

 int nInitLevels = 0; //Number of inital levels in the stack

 boolean initialized = false; //A flag to indicate if it is initialized

or no

 int nLevels; //Number of levels in the stack

 IStackLogic theStackLogic; //A reference to the Satck Logic running

within this memory stack

 ForkedMemoryModel theForkedMemModel; //A refernece to the Memory model

containing this Memory Stack

 int [] initSzs; //Array of the initial sizes of the inital scoped

memory areas

 int [] maxSzs; //Array of the MAX sizes of the inital scoped memory

areas

 IComponent theParentComponent; //a reference to the component holding

this memory stack

 /*//////////////getMem() Method////////////////

Function: This method is used to get one of the initial memory models

Parametrs-> memLevel:The index of the required initial level

 //*/

 public LTMemory getMem(int memLevel) {

 return SMA[memLevel];

 }

 /*//////////////Constructor///////////////

Function: This method called when instance is created

Parametrs-> No Paramnters

 //*/

 public ReusableRunnableStack() { }

 /*//////////////setStackLogic() Method////////////////

Function:This method is used assign the Stack Logic, which

is to be executed within this stack scoped memory

Parametrs-> stackLogic:ref. to the required Stack Logic comp.

 //*/

 public void setStackLogic(IStackLogic stackLogic) {

 theStackLogic = stackLogic;

 }

 /*//////////////setParameters() Method////////////////

Function: This method is used to assign the Parameters of this Memory

Stack

Parametrs-> MemType: The Memory type of the scoped memories within this

memry stack

 nlevels: Total number of initial levels

 initMems[]: An array for inital scoped mem areas

 InitSzs[] : Initial Sizes of the Initial Memories

 MaxSzs[] : Max Sizes of the Initial Memories

 ParentComponent: A reference to the Component

 containing this memory stack

 //*/

 public void setParameters(Class MemType, int nlevels, LTMemory

Appendix

-433-

initMems [], final int [] InitSzs, final int [] MaxSzs,

 IComponent ParentComponent) {

 theParentComponent = ParentComponent; // the parent component

 initialized = false; //flag for initialization

 curLevel = 0; //initialize the curLevel flag to the first level???

 initSzs = InitSzs; //initialize the initSzs of the class

 maxSzs = MaxSzs; //initialize the maxSzs of the class

 //Here we consider the LTMemory class only, other scoped memory area

types can be implemnted the same way

 if (MemType == LTMemory.class) {

 nLevels = nlevels; //Initialize the total numbers of the initial

levels

 SMA = new LTMemory[nLevels]; //create the initialMemories array of

the assigned size

 if (initMems != null) {

 initialized = true; //set the initialization flag

 nInitLevels = initMems.length; //initialize the total number of

initial levels???

 for (int i = 0; i < nInitLevels; i++) //set all the assigned

initial scoped memory areas

 SMA[i] = initMems[i];

 }

 }

 }

/*//////////////run() Method////////////////

Function:This method runs the Runnable logic of this class

Parametrs: No Parameters

 //*/

 public void run() {

 logic.run();

 }

 //The following logic Parameters is a Runnable that holds the

execution logic of this component

 protected Runnable logic = new Runnable() {

 public void run() {

 synchronized (this) {

 repeatable = false; //reset the repeataion flag(e.g. used for

periodic case) of this component

 runUpward(curLevel/*-1*/, theParentComponent); //runs the upward

logic of the current level

 if (!isbackward) //This code runs

only in the forward phase????

 {

 if (!initialized) {

 SMA[0]

 = (LTMemory)

 RealtimeThread.getCurrentMemoryArea(); //initialize the

lowest memory area to be the current scoped memory area

 initialized = true; //set the initialization flag

 }

 LTMemory nextMem;

 if (++curLevel < nLevels) //check if there are more initial scoped

memories

 {

 if (curLevel >= nInitLevels) {

 if (curLevel == 2)

 nextMem = new LTMemory(initSzs[curLevel - nInitLevels] / 40,

maxSzs[curLevel - nInitLevels]

 / 400);

 }

 if (curLevel == nInitLevels) { //the SMA's mem above the cma is

created so, no it to be added to the list

 INamedObjectCollection namedPortal =

 (INamedObjectCollection)((ScopedMemory)

RealtimeThread.getCurrentMemoryArea()).getPortal(); //retrieve the

portal of the current memory area

 if (namedPortal == null) {

Appendix

-434-

((ScopedMemory)RealtimeThread.getCurrentMemoryArea()).setPortal(namedPo

rtal); //assign the new named portal

 }

 }

 }

 if (curLevel < nInitLevels) //runs the CMA only as it already

starts in the contma

 {

 SMA[curLevel].enter(logic); //runs the logic of the attached

logic component

 } else {

 isbackward = true;//here, we finished the forward path, so set

the back ward flag???

 {

 nextMem.enter(logic); //runs the logic in ths nextMem

 }

 }

 } //if(!isbackward)

 runDownward(curLevel--/*-1*/, theParentComponent); //execute the

Downward logic of the logic component

 if (curLevel == -1)// condition for the periodic case only

 {

 repeatable = true; //set the flag

 curLevel = 0; //reset to the initial level

 }

 }

 }

 };//end Runnable

 protected boolean isbackward = false; //a flag for direction of

propagation

 protected boolean repeatable = true; //a flag for the periodic

execution

/*//////////////setRepeatable() Method////////////////

Function:This method enable/disable the periodic/repeatable

 execution of this class

Parametrs-> b: a boolean to specify the periodic/repeatable case

 //*/

 public void setRepeatable(boolean b) {

 repeatable = b;

 }

 /*//////////////runUpward() Method////////////////

Function:This method executes the corresponding logic defined in

 the stack logic component each time one of the scoped

 memories is entered

Parametrs-> curLevel: Specifies the index of the current scoped

 memory area

 theParentComponent: Specifies the parent component

 containing this stack memory

 //*/

 public void runUpward(int curLevel, IComponent theParentComponent)

 { //can we get the stack logic from the portal of the mem area

 theStackLogic.runUpWard(curLevel, theParentComponent); //calls the

corresponding method from the logic component

 }

 /*//////////////runDownward() Method////////////////

Function: This method executes the corresponding logic defined in the

stack logic component each time one of the scoped memories is exited

Parametrs-> curLevel: Specifies the index of the current scoped

 memory area

 theParentComponent: Specifies the parent component

 containing this stack memory

 //*/

 public void runDownward(int curLevel, IComponent theParentComponent) {

 theStackLogic.runDownWard(curLevel, theParentComponent); //calls the

corresponding method from the logic component

 }

}

Appendix

-435-

A.9 The Communicator’s Events Handling Loop [NB mode]

/*//////////////////////pollNB Class////////////

Function: This methid is used to process monitor and process the events

in the communicator component in the non-blocking mode

//*/

 public void pollNB() {
 try {

 for (;;) {

 SelectionKey clientkey;

 if (key == serverkey && key.isAcceptable()) {// case: accept event

 final SocketChannel clientCh = theServerChannel.accept(); //accept

the connection

 isCallActive = true; //set the flag

 clientCh.configureBlocking(false); //set the non blocking mode

 try {

 clientkey = clientCh.register(selector,

 SelectionKey.OP_READ); //the created client cahnnel is

registered to wait for requests here

 } catch (Exception ex) {

 System.out.println(" Can not register client channel");

 }

 IStackLogic logic = (IStackLogic)allocator.getInstance(

 AcceptLogic.class); //Get a free instance of the Accepror

logic using the allocator

 ((AcceptLogic)logic).setSelectionKey(clientkey); //pass the

selection key to the logic

 ((AcceptLogic)logic).setState(1/*state*/); //pass the accept

connection state to the logic

 clientkey.attach(logic); //*** in the non-blocking mode, we attach

the logic instead of a handler as it was in the blocking case

 IHandler acceptHdlr =

 fireNextFreeAcceptHandler(33, clientkey, this, logic); //fire

the handler to execute the logic

 } //end if isAcceptptable

 else

//client key

 {

 // here the event can be from timer, signal, or network channel

 if (key.channel()instanceof TimerChannel && ComType == 1) {

//in case of a timer channel event

 key.cancel();

//no further processing is made, the key has to be moved away from the

keys set to be removed

 continue;

//we have to jump back to process the next event

 }

//end if

 if (key == SignalKey & key.isReadable()) {

//in case of a read event coming from a signal key

 SignalFDInfo sigInfo = new SignalFDInfo(); //we have to create an

object to read the signal information into it

 theControllerChannel.readSignal(sigInfo); //we have to read the

signal info to remove the event from the channel

 continue;

//we have to jump back to process the next event

 }

//end if

 SocketChannel clientCh;

 if (key != SignalKey) {

//This is a network event[read,connect, or write]

 clientCh = (SocketChannel)key.channel();

//Get the channel of the event

 }

//end if

Appendix

-436-

 SelectionKey clientkey;

 if (key.isConnectable()) {

//in case of connect event

 clientCh.finishConnect();

//ensure that the ocnnection has been established

 key.interestOps(key.interestOps() | SelectionKey.OP_READ);

//add the read event to be observed on this channel

 key.interestOps(

 key.interestOps() & ~SelectionKey.OP_CONNECT); //do not

observe the connect event of this channel any more

 continue;

//we have to jump back to process the next event

 }

//end if

 if (key.isReadable())//case: a read event on the client channel

 {

 Object attlogic = key.attachment();//Get the attached logic

 SocketChannel ch = (SocketChannel)key.channel(); /get the channel

on which the event occurred

 key.cancel();//remove this key from the keys set to not be

processed any more

 if (ComType == 0) //in the case of the non-blocking server

 {

 AcceptLogic logic = (AcceptLogic)attlogic;

//we use here, for the server, the AcceptLogic

 logic.theChannel = ch;

//logic.setHandler((IEncapsulatedHandler)readHdlr);

 logic.gotoNextState();

//forward the state machine to the next state

 IHandler readHdlr = fireNextFreeReadHandler(33,

key/*clientkey*/, this,

 logic); //fire a free handler to execute the next state in

the logic

 } //end if

 if (ComType == 1) //in the case of the non-blocking client

 {

 ClientLogic logic = (ClientLogic)attlogic; //we use here the for

the client side, the client logic

 logic.gotoNextState(); ////forward the state machine to the

next state[next write]

 key.attach(logic); //***The as above, we pass her logic

instead of handler

 IHandler readHdlr = fireNextFreeReadHandler(33,

key/*clientkey*/, this,

 logic); //fire a free handler to execute the next state in

the logic

 } //end if

 } //end if (isReadable)

 if (key.isWritable()) { //in case of a write event on the client

channel

 Object attHandler = key.attachment(); //Get the attachment

 key.cancel(); //remove this key from the

keys set to not be processed any more

 synchronized (attHandler) {

 attHandler.notifyAll(); //we have to send the

notification, so that the handler can continue execting the next state

 } //end synhronized

 } //end if isWritable

 } //end of else //client key

 } //end of for

 } //end of try

 catch (Exception e) {

 System.out.println("exception" + e);

 } //end catch

 } //end of poll

Appendix

-437-

A.10 The Communicator’s Event Handling Loop [B mode]

/*/////////////////////////poll() Method///////////////

Function:Observe and process the registered events on the selector

in the blocking mode

*//

 public void poll() {

 try {

 for (;;) { //important to optimize the code here

 //using immortal is big mistake, unless reusable objects are

presented

 synchronized (CommunicatorCls.this.selector) {

 try {

 if (!CommunicatorCls.this.IsSelectorReady) {

 CommunicatorCls.this.IsSelectorReady = true;//set the ready

flag

 CommunicatorCls.this.selector.notifyAll();//notify any waiting

thread that wants to use the communicator

 }//end if

 } catch (Exception e) { }

 }//end synchronized

 try {//try 1

 int r = 0;

 try {//try 2

 if (CommunicatorCls.this.selector.isOpen())

 System.out.println(">>>>>SERVERWAITING>>>>>>>>>");

 else

 System.out.println(">>>>>>>");

 CommunicatorCls.this.serverkey =

CommunicatorCls.this.theServerChannel.register(CommunicatorCls.this.sel

ector,

 SelectionKey.OP_ACCEPT);//register the server channel for the

accept event

 r = CommunicatorCls.this.selector.select();//observe and wait for

events

registerationQueue.registerAllFCFS(CommunicatorCls.this.selector);//reg

ister all the enqueued channels saved within the registeration queue

 if (CommunicatorCls.this.theControllerChannel.keyFor(selector) ==

null) {//if the controller signal channel was dregistered

 SignalKey =

theControllerChannel.register(CommunicatorCls.this.selector,

SelectionKey.OP_READ);//then rergister it again with the selector fro

the read event

 }//end if

 } catch (IOException e) {

 System.out.println(">error in select");

 } catch (Exception e) {

 System.out.println(">other error in select");

 }//end try 2

 } catch (IOException ioe) {

 System.out.println("Exception..."+ioe);

 }//end try 1

 Set keys = selector.selectedKeys();//Get the updated set of

selected keys

 for (Iterator i = keys.iterator(); i.hasNext();) {

 SelectionKey key = (SelectionKey)i.next();//get the next key

 i.remove();//remove the key from the keys set

 /*if_1*/if (!STARTED && ComType == 1) //if it is at the client

side and has not started yet

 {

 if (startType == 1 && key.channel() == CommunicatorCls.this.tch)

//The case the commmunicator procecssing is controlled by a tmer

channel and the timing of this timer channel has come and caused the

Appendix

-438-

event

 {

 TimerChannel tch = (TimerChannel)key.channel();//Get the timer

channel

 tch.getTimerInfo(tinfo);//get the asociated infromation of the

timer channel and save it in the tinfo object, this has to be called to

clear the event from the channel

 key.cancel();//move the key to the cancelled keys set to be

removed

 //check tch.attachment for security before starting

 } else if (startType == 1 && key.channel()instanceof

SignalChannel) {//The case the channel is a signal channel which

control the start of the event and the signal is fired and caused this

event

 SignalChannel sch = (SignalChannel)key.channel();//Get the

signal channel

 SignalFDInfo sigInfo = new SignalFDInfo(); //create an object

that can gold the signal info

 sch.readSignal(sigInfo);//Read the signal information from the

channel, this has to be called to clear the event from the channel

 key.cancel();//move the key to the cancelled keys set to be

removed

 } else if (startType == 0 && key.channel()instanceof

SignalChannel) {//the case of immediate start and the event is due to

an internal signal channel that is fired now

 SignalChannel sch = (SignalChannel)key.channel();//Get the

signal channel of this key

 SignalFDInfo sigInfo = new SignalFDInfo(); //create an object

capable of holding the signal information

 sch.readSignal(sigInfo);//read the signal infromation and clear

the event

 //we can switch on the value of the attached data, and make the

handling according to the attached object

 if (key == startSignalkey) //in case of the received signal is

the startsignal

 {

 key.cancel();//move the key to the cancelled keys set to be

removed

 } else if (key == pauseSignalkey) //time is set

 {//we can call the pasue here-not impolemented

 key.cancel();

 } else if (key == stopSignalkey) //time is set

 {

 //we can call stop procedure hew -not impolemented

 key.cancel();

 } else if (key == resumeSignalkey) //time is set

 {

 //we can call resume procedure hew -not impolemented

 key.cancel();

 }

 } else if (theControllerChannel == key.channel()) {

 System.out.println("??????????????");

 } else { //all events occuring before [start time or start

signal] are canelled

 key.cancel(); //STARTED=true;

 continue;

 }

 }

 STARTED = true; //set the gflag to enable handling of all the

remaining keys

 if (!key.isValid()) {// if this is a hazard

 key.cancel();//then ignore it

 continue;//go back and wait for more events

 }

 if (key == serverkey && key.isAcceptable()) {//in case of accept

Appendix

-439-

event

 System.out.println("connection made");

 final SocketChannel clientCh = theServerChannel.accept();//accept

the connection and assign a client channel to handel the calling client

 isCallActive = true;//set the flag

 if (clientCh == null) {

 return;

 }

 clientCh.configureBlocking(false);//set the client channel to be

non blocking

 SelectionKey clientkey;

 try { //the created client cahnnel is registered to wait for

requests here

 clientkey = clientCh.register(selector, SelectionKey.OP_READ);

 } catch (Exception ex) {

 System.out.println(" Can not register client channel");

 }

 int defaulthandshakingPriority = PriorityScheduler.MIN_PRIORITY +

30;//specify avalue for the default priority

 IHandler acceptHdlr;

 IStackLogic accepthlogic;

 accepthlogic =

(IStackLogic)theMemModel.getContainerObjectAllocator().getInstance(

 AcceptLogicCls);//Get a free instance of the given acceptor

stack logic from the allocator

 acceptHdlr =

fireNextFreeAcceptHandler(defaulthandshakingPriority, clientkey, this,

accepthlogic);//fire a free acceptor handler with the default priority

accepthlogic.setHandler((IEncapsulatedHandler)acceptHdlr);//assign the

handler of the acceptor logic

((EncapsulatedHandler)acceptHdlr).setSelectionKey(clientkey);//pass the

clientKey to the accept handler to use it for the processing of the

event

 clientkey.attach(acceptHdlr);//attach the accept handler to the

client key

 } else {//in case of events other than the accept event

 if (key.channel()instanceof TimerChannel && ComType == 1) {

 key.cancel();//if this was a timing event(i.e. just timed-

starting signal) and it needs no processing

 continue;//so go back to process more events

 }

 if (key == SignalKey) { //in case of a signal key, i.e. the

Controller has become active

 SignalFDInfo sigInfo = new SignalFDInfo();//then Create an

object to hold the signal information

 theControllerChannel.readSignal(sigInfo);//then read the signal

information

 continue;//so go back to process more events

 }

 //The next code does the processing of the netwok events

 SocketChannel clientCh = (SocketChannel)key.channel();//get the

client channel on which the event occurred

 SelectionKey clientkey;

 if (key.isConnectable()) {//In case of the Connect EVENT

 if (clientCh.isConnectionPending())//if the connection has not

built completely

 clientCh.finishConnect();//then, complete the establishment of

the connection

 ByteBuffer serverBuf = null;

 key.cancel();//The connect event has been processed,

 continue;//So, go back to process more events

 }

 if (key.isReadable()) //from client channel

 {

Appendix

-440-

 Object attHandler = key.attachment();//Get the attached object

with the key

 if (attHandler == null) { //first time to receive bytes

 }

 synchronized (attHandler) {

 key.attachment().notifyAll();//notify the handler to do the

processing, if it is waiting

 key.cancel(); //move the key to the cancelled keys set to be

removed

 }

 }

 if (key.isWritable()) {//in case of write event

 Object attHandler = key.attachment();//Get the handler attached

with the key

 key.cancel();//move the key to the cancelled keys set to be

removed

 synchronized (attHandler) {

 attHandler.notifyAll();//notify the handler to do the

processing, if it is waiting

 }

 }

 }

 }

 } //end of poll loop

 } catch (Exception e) { }

 }

Appendix

-441-

A.11 The ClientLogic Class [Emulated Blocking Mode]

package RTCOM;

import java.net.*;

import javax.realtime.*;

import java.rtnio.*;

import java.rtnio.channels.*;

import java.rtnio.charset.*;

import java.util.*;

import java.io.*;

import mfr.java.nio.*;

import java.rtnet.InetAddress;

/*//////////////////////ClientLogic Class////////////

Function: This class is used to as the logic component for the Client

in the non-blocking mode

//*/

public class ClientLogic

 extends NWHandlerStackLogic {//not written yet

 SocketChannel channel; //the selectable channel

 ByteBuffer bufout = ByteBuffer.allocateDirect(40);//output buffer

 ByteBuffer bufin = ByteBuffer.allocateDirect(1000); //input buffer

 CommunicatorCls communicator; //the communicator component

 static int PortNo = 2190; //port number

 static java.rtnet.InetSocketAddress remoteAdress; //the server address

 static java.rtnet.InetAddress LocalHost; //the client address

 static {

 try {

 LocalHost = java.rtnet.InetAddress.getLocalHost();//get the client

host

 remoteAdress = new java.rtnet.InetSocketAddress(LocalHost, PortNo);

//create the server address

 } catch (java.rtnet.UnknownHostException ex) { }

 }

 int vvv = 0;//random number

 Clock rc;//realtime clock

 int nn = 0;//number of bytes

 int packetNumber = 0;//the packet order

 public void runUpWard(int curLevel, final IComponent parentComponent)

{

 if (curLevel == 0) { //---=>>>runs in the container memory area

 if (communicator == 0) {

 rc = Clock.getRealtimeClock(); //get the rt clock

 Random aRandom = new Random(); //create a random number generator

 vvv = (int)(aRandom.nextInt(10) + ((rc.getTime().getNanoseconds() /

1000) % 10)) * 1000; //Get a random value

 }

 communicator =

((CommunicatorCls)(parentComponent.getContainer().getComponents().get(

 "Communicator"))); //Get a refrence to the communicator

component from the container

 channel = communicator.makeConnection(remoteAdress, 2190, 25);

//make a connection to the remote machine

 }

//end of if curLevel==0

 if (curLevel == 1) { //runs in the component memory area

 ///////////////SEND PACKET///////////////

 bufout.clear(); //clear the buffer

 for (int i = 0; i < 10; i++) {

 bufout.putInt(i + vvv); //fill the buffer with random numbers

Appendix

-442-

 }

 bufout.flip();//flip the buffer to be ready for the write operation

 channel.write(bufout); //write the bytes from the buffer

 } //the component memory area

 if (curLevel == 2) {//the temporary scoped memory area

 //The following code displays messages to the user

 //These statements generates hidden obejcts

 System.out.println("The Packet Number " + packetNumber++ + "Has been

written");

 System.out.println("The client started to wait At" + tstart);

 //any other intermediate operation can be done here

 } //end of curlevel==2

 } //end of runUpward

 public void runDownWard(int curLevel, IComponent parentComponent) {

 if (curLevel == 2) { }

 if (curLevel == 1) { //runs in the component memory area

 //////////////////////////////

 // receiving the reply

 ///////////////////////////

 bufin.clear(); //clear the output buffer

 try {

 do {

 try {

 communicator.registerationQueue.add(channel,

SelectionKey.OP_READ,

 bufin); //add the channel to the registeration queue to be

registered for the read operation with the bufin as an attachment

 communicator.theControllerChannel.sigQueueToSignalFD(12,

 10); //send the interrupt control signal to enable the

registeration

 } catch (Exception e) {

 System.out.println("Exception....." + e);

 }

 bufin.clear(); //clear the output buffer

 try {

 synchronized (getHandler()) {

 getHandler().wait();//wait for the notification of packet

arrival

 }

 nn += channel.read(bufin); //read from the channel into the

output buffer

 } catch (Exception ex) {

 System.out.println("*----exeption-----*" + ex);

 } //end catch

 } while (nn < 1000); //read upto 1000 bytes from the output buffer

 } catch (Exception m) {

 System.out.println("---exeption---" + m);

 }

 //decode the values from the buffer

 bufin.flip(); //flip the output buffer

 for (int i = 0; i < 250; i++) {

 try {

 int m = bufin.getInt(); //read the next integer value from the

buffer

 } catch (Exception nb) {

 System.out.println("-Exception-" + nb);

 }

 }

 //Code for Processing the reply packet

Appendix

-443-

 //.............

 //............

 //

 }

 if (curLevel == 0) { //runs in the container memory area

 //RESETTING THE VALUES and CLOSING any opened files, etc. if noyt

needed any more

 nn = 0; //reset to initial values to be recyled clean

 }

 }

}

Appendix

-444-

A.12 The AcceptLogic Class [Blocking Mode]

package RTCOM;

import java.net.*;

import javax.realtime.*;

import java.rtnio.*;

import java.rtnio.channels.*;

import java.rtnio.charset.*;

import java.util.*;

import java.io.*;

import mfr.java.nio.*;

import java.rtnet.InetAddress;

public class AcceptLogic

 implements INWHandlerStackLogic {

 ByteBuffer inbuf = ByteBuffer.allocateDirect(40); //input buffer

 ByteBuffer outBuf = ByteBuffer.allocateDirect(1000); //output buffer

 int nn = 0; //bytes counter

 int n = 0; //bytes counter

 CommunicatorCls communicator;//the communicator component

 int PacketCount = 0; //counter of received packets

 public void runUpWard(int curLevel, IComponent parentComponent) {

 if (curLevel == 0) { //runs in ContMA

 if (communicator == null) {

 communicator =

((CommunicatorCls)(parentComponent.getContainer().getComponents().get(

 "Communicator"))); //get tref to the communicator from the

container

 }

 }//end level 0

 if (curLevel == 1) { //runs in CMA

 try {

 SelectionKey key =

((EncapsulatedHandler)getHandler()).getSelectionKey(); //get the

selection key

 final SocketChannel channel = (SocketChannel)key.channel(); //get

the channel

 communicator.registerationQueue.add(channel, SelectionKey.OP_READ,

 getHandler()); //regiter the channel for the read event (and

attached with the handler) withe the selector of the communicator

 communicator.theControllerChannel.sigQueueToSignalFD(12, 10);

//activates the eselector tp process the registeration

 inbuf.clear();

 do {

 synchronized (getHandler()) {

 getHandler().wait();

 } //end synchronized

 try {

 nn += channel.read(inbuf); //read into the buffer

 } catch (Exception w) { }

 } while (nn < 40);

 inbuf.flip();

 } catch (Exception r) {

 Syustem.out.println("Exception--> " + r);

 }

 } //end level 1

 if (curLevel == 2) { //runs in temporary scoped memory area

 //the following statement create hidden objects

Appendix

-445-

 System.out.println("The Packet [" + ++PacketCount + "] has been

received");

 Random mm = new Random(); //create randomization object

 //decode and process the received packet [may create objects]

 for (int i = 0; i < 10; i++) {

 int m = inbuf.getInt();

 //.............

 //.................

 }

 } //end level 2

 } //end runUpWard

 public void runDownWard(int curLevel, IComponent parentComponent) {

 if (curLevel == 2) { } //in temporary scoped memory area

 if (curLevel == 1) { //in CMA

 //Fill the reply packet

 outBuf.clear();

 for (int i = 0; i < 250; i++) {

 outBuf.putInt(mm.nextInt(250)); //write to the buffer

 }

 //send the packet

 outBuf.flip();

 try {

 channel.write(outBuf); //write to the channel

 } catch (Exception e) {

 System.out.println("*-----Exception----*" + e);

 }

 }

 if (curLevel == 0) { //in ContMA

 //reset the values, recycle any unrequired object, close unwanted

files, channels, ..etc.

 n = 0;

 nn = 0;

 }

 }

}

Appendix

-446-

A.13 The ClientLogic Class [Non-Blocking Mode]

package RTCOM;

import java.net.*;

import javax.realtime.*;

import java.rtnio.*;

import java.rtnio.channels.*;

import java.rtnio.charset.*;

import java.util.*;

import java.io.*;

import mfr.java.nio.*;

import java.rtnet.InetAddress;

/*//

Function: This class represents the Reusable

Runnable Logic component of the Client Component

*///

public class ClientLogic

 implements NWHandlerStackLogicStateMachine { //not written yet

 int MaxState =2; //The logic has two states only, where the first

state is executed by the calling thread, while the second state is

exeuted by the read handler, and this process kis repeated in each

period

 ByteBuffer outbuf = ByteBuffer.allocateDirect(80); //create output

buffer

 ByteBuffer inbuf = ByteBuffer.allocateDirect(200); //create input

buffer

 CommunicatorCls communicator; //ref to the communicator comp.

 SocketChannel channel; //the communication channel

 static java.rtnet.InetSocketAddress remoteAdress; //server address

 static int PortNo = 2190; //port number

 static java.rtnet.InetAddress LocalHost; //local host

 static { //initaites the

addresses objects

 try {

 LocalHost = java.rtnet.InetAddress.getLocalHost();

//getByName/*Address*/("localhos

 remoteAdress = new java.rtnet.InetSocketAddress(LocalHost, PortNo);

 } catch (java.rtnet.UnknownHostException ex) { }

 }

 /*//////////////runUpWard() Method//////////////////////

 Function:This method is called each time the client handler enters a

memory level of the client scoped memory stack

 Parameters: curLevel:The current memory level

 parentComponent:The enclosing business component of this

logic

 *//

 public void runUpWard(int curLevel, final IComponent parentComponent)

{

 synchronized (this) {//to avoid the concurrent execution of multiple

handlers

 if (curLevel == 0) {//In the container memory area

 if (communicator == null) { //the following code is not within any

state as it will be executed once only

 communicator =

((CommunicatorCls)(parentComponent.getContainer().getComponents().get("

Communicator"))); //get the communicator

 channel = communicator.makeConnection(remoteAdress, 2190, 25);

//make a connection

 }

 if (currentState() == 0) { }//no specific work for the state

 if (currentState() == 1) { }//no specific work for the state

 }

Appendix

-447-

 if (curLevel == 1) {//Entering the CMA memory level

 if (currentState() == 0) {//the first handler

 writeOutputPacket();//write the packet

 try {

 communicator.registerationQueue.add(getChannel(),

SelectionKey.OP_READ,

 this); //add this schannel with this logic as ana ttachment

to the registseration queue

 communicator.theControllerChannel.openSignalFD(10); //wake up the

selector to process the registeration

 } catch (Exception e) {

 System.out.println("Exception....." + e);

 }

 } //end state 0

 if (currentState() == 1) { }//the other handler

 } //end level 1

 if (curLevel == 2) {//entering the temporary scoped memory

 if (currentState() == 0) { }//the first handler

 if (currentState() == 1) {//the other handler

 //The following code displays messages to the user

 //These statements generates hidden obejcts

 System.out.println("The Packet Number " + packetNumber++ + "Has

been written");

 System.out.println("The client started to wait At" + tstart);

 //any other intermediate operation can be done here

 } //end state 1

 } //end level 2

 } //end runUpward

 }

 /*//////////////runDownWard() Method//////////////////////

 Function:This method is called each time the client handler esits a

memory level of the client scoped memory stack

 Parameters: curLevel:The current memory level

 parentComponent:The enclosing business component of this

logic

 */

 ///

 public void runDownWard(int curLevel, IComponent parentComponent) {

 synchronized (this) {

 if (curLevel == 2) { }

 if (curLevel == 1) {//in the container memory area

 if (currentState() == 0) { }//the 1st handler does no thing

 if (currentState() == 1) {//the second handler runs this

 readInputPacket(); //read the input packet

 }

 }

 if (curLevel == 0) {//in the CMA memory area

 //we may close channel, reset values, ...etc, if not reused in next

periods

 n = 0;

 nn = 0;

 if (currentState() == 0) { }//the first handler does nothing

 if (currentState() == 1) {//the second handler is the last,

 SetState(0); //we reset the state machine, so that it will start

from [state 0] in the next execution cycle

 }

 }

 }

 }

Appendix

-448-

 /*//////////////writeOutputPacket() Method///////////////////

 Function:write the output packet

 Parameters:None

 *//

 public void writeOutputPacket() {

 outbuf.clear();

 for (int i = 0; i < 20; i++) {

 outbuf.putInt(i);

 }

 outbuf.flip();

 try {

 channel.write(outbuf); //writing the packet over the channel

 } catch (Exception ex) {

 System.out.println("---Exception----" + ex);

 }

 }

 /*//////////////readInputPacket() Method//////////////////////

 Function:Read the input packet

 Parameters:None

 *///

 public void readInputPacket() {

 inbuf.clear();

 try {

 do {

 nn += channel.read(inbuf); //read the packet

 } while (nn < 1000);

 } catch (Exception ex) {

 System.out.println("*-----exeption-----*" + ex);

 }

 }

 /*//////////////DecodeInput Method//////////////////////

 Function:Decode the input packet

 Parameters:None

 *///

 public void DecodeInput() {

 //decode the input packet

 //we may ereceive a client propagated priority [p] value here

 //so, we can use it for the current handler, like this

//RealtimeThread.currentRealtimeThread().setSchedulingParameters(new

PriorityParameters(p));

 }

}

Appendix

-449-

A.14 The AcceptLogic Class [Non-Blocking Mode]

package RTCOM;

import java.net.*;

import javax.realtime.*;

import java.rtnio.*;

import java.rtnio.channels.*;

import java.rtnio.charset.*;

import java.util.*;

import java.io.*;

import mfr.java.nio.*;

import java.rtnet.InetAddress;

/*//////////////////////AcceptLogic Class////////////

Function: This class is used to as the logic component for the Acceptor

handler in the non-blocking mode

//*/

public class AcceptLogic

extends NWHandlerStateMachineStackLogic {

 CommunicatorCls communicator; //The communicator component

 ByteBuffer outBuf = ByteBuffer.allocateDirect(1000); //output buffer

 ByteBuffer inbuf = ByteBuffer.allocateDirect(80);//input buffer

 Random mm = new Random(); //Randomizer

object

 int nn = 0;

 int MaxState =2;//[state 0->idle but ready],

 [state 1->executed by accept handler], [state 2->executed by read

handler]

 int PacketCount = 0;//number of read packets

/*////////////////////runUWard() Method/////////////////

Function: This method is called each time the handler enters a

memory level of the scoped memory stack of the Acceptor handler

Paramters-> curLevel:The entered level

 parentComponent:The component enclosing this logic

//*/

 public void runUpWard(int curLevel, IComponent parentComponent) {

 synchronized (this) {

 if (curLevel == 0) { //runs in ContTMA

 if (communicator == null) {

 communicator =

((CommunicatorCls)(parentComponent.getContainer().getComponents().ge

t("Communicator")));//get the communicator from the container

 }//end if null

 } //end if level=0

 if (curLevel == 1) { //runs in CMA

 if (state == 1) { //executed by accept handler

 readInputPacket();//read incoming packet

 }

 if (state == 2) {

 //do nothing

 }

 }

 if (curLevel == 2) { //runs in the temporary memory

 if (state == 1) //executed by read handler

 {

 //The following statements may create hidden objects

 System.out.println("The packet number" + PacketCount++ + "has

been received");

 DecodePacket(); //do some processing on the packet

 } //end state 1

 if (state == 2) {

 //do nothing

Appendix

-450-

 } //end state=2

 } ////level 2

 } //synchronized

 } //runUpward

/*////////////////////runUWard() Method/////////////////

Function: This method is called each time the handler exits a memory

level of the scoped memory stack of the Acceptor handler

Paramters-> curLevel:The exited level

 parentComponent:The component enclosing this logic

//*/

 public void runDownWard(int curLevel, IComponent parentComponent) {

 synchronized (this) {

 if (curLevel == 2) { //runs in the temporary memory

 //do nothing

 }

 if (curLevel == 1) { //runs in CMA

 if (state == 1) {

 //do nothing

 }

 if (state == 2) {

 writeOutputPacket(); //Write and send a reply Packet

 communicator.registerationQueue.add(getChannel(),

SelectionKey.OP_READ, this);

 communicator.theControllerChannel.sigQueueToSignalFD(12, 10);

 } //end state 2

 } //end level 1

 if (curLevel == 0) { //runs in ContTMA

 if (state == 1) {

 //do nothing

 }

 if (state == 2) {

 setState(0); //As this is the last point of the execution of

this state, then reset the state machine

 }

 }

 } //end synchronized

 }

/*////////// readInputPacket () Method/////////////////

Function: This method is called to read the output packet

 Paramters: None

*//

 public void readInputPacket() {

 inbuf.clear();

 try {

 nn += getChannel().read(inbuf);

 } catch (Exception r) {

 System.out.println("--Exception>>>>>>>>>-" + r);

 }

 }

/*////////// writeOutputPacket () Method/////////////////

Function: This method is called to write the output packet

 Paramters: None

*//

 public void writeOutputPacket() {

 outBuf.clear();

 for (int i = 0; i < 250; i++) {

 outBuf.putInt(mm.nextInt(250));

Appendix

-451-

 }

 ///////////////reply packet

 outBuf.flip();

 try {

 getChannel().write(outBuf);

 } catch (Exception e) {

 System.out.println("--Exception-->>" + e);

 }

 }

 public void DecodePacket() {

 //<not implemented>

 //decode and process the packet

 //e.g. int p=getPriority(inbuf);

 //RealtimeThread.currentRealtimeThread().setSchedulingParameters(

 // new PriorityParameters(p));

 }

}

References
 A. Wellings, R. K. C., E. D. Jensen, and D. Wells (April 2002). A framework for

integrating the Real-Time Specification for Java and Java‘s remote method

invocation. 5th IEEE International Symposium on Object Oriented Real-Time

Distributed Computing.

Alexander, C. (1979). A Timeless Way of Building, Oxford University Press.

Alrahmawy, M. and A. Wellings (2007). A model for real time mobility based on the

RTSJ. Proceedings of the 5th international workshop on Java technologies for

real-time and embedded systems. Vienna, Austria, ACM: 155-164.

Alrahmawy, M. and A. Wellings (2009). Design patterns for supporting RTSJ

component models. Proceedings of the 7th International Workshop on Java

Technologies for Real-Time and Embedded Systems. Madrid, Spain, ACM:

11-20.

Alrahmawy, M. and A. Wellings (2009). An RTSJ-based reconfigurable server

component, ACM.

Anderson, J. and E. Jensen (2006). The distributed real-time specification for java:

Status report.

Appleton B. (2000). "Patterns and Software: Essential Concepts and Terminology."

Retrieved June, 2010, from

http://www.cmcrossroads.com/bradapp/docs/patterns-intro.html.

Basanta-Val, P., M. Garcia-Valls, et al. (2005). Towards the integration of scoped

memory in distributed real-time Java. ISORC 2005.

Basanta-Val, P., M. García-Valls, et al. (2004). "No heap remote objects: Leaving out

garbage collection at the server side." Lecture notes in computer science: 359-

370.

Benowitz, E. and A. Niessner (2003). "A Patterns Catalog for RTSJ Software Designs."

Lecture notes in Computer Science: 497-507.

Beugnard, A., J. Jézéquel, et al. (1999). "Making Components Contract Aware." IEEE

Computer 32(7): 38-45.

Boger, M. (2001). Java in distributed systems: concurrency, distribution, and

persistence, John Wiley & Sons, Inc. New York, NY, USA.

Borg, A. and A. Wellings (2003). "A real-time RMI framework for the RTSJ."

REPORT-UNIVERSITY OF YORK DEPARTMENT OF COMPUTER

SCIENCE YCS.

Broy, M., A. Deimel, et al. (1998). "What characterizes a (software) component?"

Software-Concepts & Tools 19(1): 49-56.

Bruneton, E., T. Coupaye, et al. (2006). "The Fractal Component Model and its Support

in Java." Software-Practice and Experience 36(11): 1257-1284.

Burns, A. and A. Wellings (2001). Real-time systems and programming languages:

Ada 95, real-time Java, and real-time POSIX, Addison Wesley.

Chen, F., T. Repantis, et al. (2005). Coordinated media streaming and transcoding in

peer-to-peer systems. 19th International Parallel and Distributed Processing

Symposium.

Clark, R., E. Jensen, et al. (1992). An architectural overview of the Alpha real-time

distributed kernel. USNIX Workshop on Micro Kernels ans other Kernel

Architectures.

Clark, R., E. Jensen, et al. (2002). The Distributed Real-Time Specification for Java: A

Status Report. Embedded Systems conference, San Francisco, USA

Cline, M. (1996). "The pros and cons of adopting and applying design patterns in the

real world." Communications of the ACM 39(10): 47-49.

http://www.cmcrossroads.com/bradapp/docs/patterns-intro.html

-454-

Colmenaresy, J., S. Gorappa, et al. (2006). "A Component Framework for Real-time

Java." 12th IEEE Real-Time and Embedded Technology and Application

Symposium RTAS'06.

Cooling, J. (1991). Software design for real-time systems, CRC Press.

Corsaro, A. and C. Santoro. (2004). Design Patterns for RTSJ Application

Development. 2nd JTRES 2004 Workshop, OTM'04 Federated Conferences:

394-405.

Corsaro, A. and C. Santoro. (2005). "The Analysis and Evaluation of Design Patterns

for Distributed Real-Time Java Software " 16th IEEE International Conference

on Emerging Technologies and Factory Automation

Coupaye, T. and J.-B. Stefani (2006). Fractal component-based software engineering.

The 2006 Conference on Object-oriented technology: ECOOP 2006. Nantes,

France.

Crnkovic, I. (2002). "Component-based software engineering-new challenges in

software development." Software Focus 2(4): 127-133.

D. C. Schmidt (1995). Reactor: An Object Behavioral Pattern for Concurrent Event

Demultiplexing and Event Handler Dispatching. Pattern Languages of Program

Design Reading, MA: Addison-Wesley: pp. 529–545.

D. C. Schmidt et al (Aug. 2000). Leader-Followers: A Design Pattern for Efficient

Multi-threaded Event Demultiplexing and Dispatching. Proceedings of the 6th

Pattern Languages of Programming Conference, Monticello.

de Miguel, M. (2001). Solutions to make Java-RMI time predictable. The 4th IEEE

International Symposium on Object Oriented Real-Time Distributed

Computing.

Dibble, P. C. (2008). Real-Time Java Platform Programming.

Douglass, B. (2003). Real-Time Design Patterns: Robust Scalable Architecture for

Real-Time Systems, Addison-Wesley.

Duran-Limon, H., G. Blair, et al. (2004). "Adaptive resource management in

middleware: A survey." IEEE Distributed Systems Online.

Ed Brinksma, G. C., Ivica Crnkovic, Andy Evans; e tal (2003). ROADMAP:

Component-based Design and Integration Platforms. Real-Time Operating

Systems and Middleware. A. Project IST-2001-34820.

Eric J. Bruno and G. Bollella (2009). Real-Time Java Programming with Java RTS,

Prentice Hall.

Etienne, J., J. Cordry, et al. (2006). Applying the CBSE paradigm in the real time

specification for Java. 4th international workshop on Java technologies for real-

time and embedded systems, Paris, France ACM.

FP6IPRUNES. (2005). "Survey of Middleware for Networked Embedded Systems,

RUNES PROJECT." from

http://www.istrunes.org/docs/deliverables/D5_01.pdf.

FOLDOC (1994). "Free On-line Dictionary of Computing (FOLDOC)." Retrieved

June, 2010, from http://foldoc.org/foldoc.cgi?query=distributed+system.

G. Bollella, B. Brosgol, et al. (2006). "The real-time specification for Java (version

1.0.2). Specification JSR-1, Java Community Process." Retrieved June, 2010,

from http://jcp.org/en/jsr/detail?id=1.

G. Sampemane et al (2006). "HP-RMI : High Performance Java RMI over FM.

University of Illinois at Urbana-Champaign." Retrieved June, 2010, from

<http://www-csag.ucsd.edu/individual/achien/cs491-f97/projects/hprmi.html>.

Gamma, E., R. Helm, et al. (1995). Design patterns: elements of reusable object-

oriented software, Addison-wesley Reading, MA.

García, C. (2004). Techniques to include QoS capabilities in Java RMI. EUNICE 10th

European summer school and IFIP WG 6.3 Workshop. Tampere (Finland).

Gartner Inc. (2001). "Middleware In Financial Services: an Overview." Gartner Inc.,

from

http://www.istrunes.org/docs/deliverables/D5_01.pdf
http://foldoc.org/foldoc.cgi?query=distributed+system
http://jcp.org/en/jsr/detail?id=1
http://www-csag.ucsd.edu/individual/achien/cs491-f97/projects/hprmi.html%3e

-455-

http://gartner.lib.depaul.edu/gartner_interWeb/research/98900/98904/98904.ht

ml.

Gong, L., C. Kulikowski, et al. (1997). An Intelligent Groupware Environment for

Real-Time Distributed Medical Collaboration. The 21st symposium on

Computer Applications in Medical Care, American Medical Informatics

Association.

Grothoff, C. "OVM VM." from http://linux.softpedia.com/get/Programming/Code-

Generators/Ovm-1145.shtml.

High Integrity Java Application Project. "HIJA Home Page." Retrieved June, 2010,

from http://www.hija.info/joomla/.

Hu, J., S. Gorappa, et al. (2007). Compadres: a lightweight component middleware

framework for composing distributed real-time embedded systems with real-

time Java. Middleware 2007, ACM/IFIP/USENIX 8th International

Middleware Conference, Newport Beach, CA, USA,, Springer-Verlag New

York, Inc.

Huston, S. and D. Schmidt (2001). Desiggn Challenges, Middleware Solutions, and

ACE. C++ Network Programming: Mastering complexity with ACE and

Patterns. 1.

Internet 2 Consortium (2010). "Overview of Middleware." Internet 2 Consortium

Retrieved June, 2010, from http://middleware.internet2.edu/overview.

Isovic, D., M. Lindgren, et al. (2000). System development with real-time components.

ECOOP Workshop - Pervasive Component-Based Systems.

Jammes, F. and H. Smit (2005). "Service-oriented paradigms in industrial automation."

IEEE Transactions on Industrial Informatics 1(1): 62-70.

Java SE API. "Class ByteBuffer." Retrieved June, 2010, from

http://java.sun.com/j2se/1.4.2/docs/api/java/nio/ByteBuffer.html.

Jose A. Ortega-Ruiz, T. Curdt1, et al. "Continuation-based Mobile Agent Migration."

Retrieved June, 2010, from http://hacks-galore.org/jao/spasm.pdf.

JSpasm Open Source. "JSpasm State Machine Package." Retrieved June, 2010, from

http://sourceforge.net/projects/jspasm/.

JSR-051. "The JSR 51: New I/O APIs for the JavaTM Platform." Retrieved June,

2010, from http://www.jcp.org/en/jsr/detail?id=51.

Kanevsky, A., A. Skjellum, et al. (1997). Standardization of a communication

middleware for high-performance real-time systems, RTSS97. Realtime

Systems Symposium.

Kegel D. (2006). "The c10k problem." from http://www.kegel.com/c10k.html.

Kircher, M. (2001). Lazy Acquisition Pattern. European Pattern Language of Programs

conference. Kloster Irsee, Germany.

Kircher, M. and P. Jain (2002). Pooling Pattern,. European Pattern Language of

Programs Conference. Kloster Irsee, Germany.

Krishna, A., D. Raman, et al. (2003). "Optimizing the ORB core to enhance Real-time

CORBA predictability and performance." Distributed Objects and Applications

(DOA).

Krishna, A., D. Schmidt, et al. (2004). Enhancing Real-time CORBA via Real-time

Java features. 24th International Conference on Distributed Computing

Systems, ICDCS 2004, Tokyo, Japan, Citeseer.

Krishna, A., D. Schmidt, et al. (2003). Real-time CORBA middleware. Middleware for

communications. M. Q. New York, Wiley and Sons.

Krishna, A., D. Schmidt, et al. (2003). Towards predictable real-time Java object

request brokers. 9th IEEE Real-Time and Embedded Technology and

Applications Symposium (RTAS 2003), Washington, DC, USA.

Krishna A.S. and Schmidt D. C. (2004). Strategies for providing End-to-End Quality of

Service in Real-time Java based Real-time CORBA Middleware.

Krishnaswamy, V., D. Walther, et al. (1998). Efficient implementations of Java remote

method invocation (RMI). 4th USENIX Conference on Object-Oriented

http://gartner.lib.depaul.edu/gartner_interWeb/research/98900/98904/98904.html
http://gartner.lib.depaul.edu/gartner_interWeb/research/98900/98904/98904.html
http://linux.softpedia.com/get/Programming/Code-Generators/Ovm-1145.shtml
http://linux.softpedia.com/get/Programming/Code-Generators/Ovm-1145.shtml
http://www.hija.info/joomla/
http://middleware.internet2.edu/overview
http://java.sun.com/j2se/1.4.2/docs/api/java/nio/ByteBuffer.html
http://hacks-galore.org/jao/spasm.pdf
http://sourceforge.net/projects/jspasm/
http://www.jcp.org/en/jsr/detail?id=51
http://www.kegel.com/c10k.html

-456-

Technologies and Systems (COOTS), Santa Fe, New Mexico,, USENIX

Association.

Kwon, J., A. Wellings, et al. (2002). Ravenscar-Java: A high integrity profile for real-

time Java. In Joint ACM Java Grande/ISCOPE, Seattle, Washington, ACM

New York, NY, USA.

Laplante, P. A. (2004). Real-Time Systems Design and Analysis, John Wiley&Sons,

IEEE Press.

Lavagno, L., G. Martin, et al. (2003). Fine Grained Patterns for Real-Time Systems.

UML for Real: Design of Embedded Real-Time Systems, Springer.

LimeWire Web Site. "LimeWire." Retrieved June, 2010, from

http://www.limewire.com/.

Liu, M.-L. L. (2001). On the Power of Abstraction - a Look at the Paradigms and

Technologies in Distributed Applications. International Conference of Parallel

and Distributed Processing Techniques and Applications (PDPTA'2001), Las

Vegas.

Loeser, C., P. Altenbernd, et al. (2002). Distributed video on demand services on peer

to peer basis. International workshop on Real-Time LANS in the in the

Internet Age, RTLIA.

M. Voelter, e. (2004). Remoting Patterns Foundations of Enterprise, Internet, and Real-

time Distributed Object Middlware Wiley and Sons.

Macmillan, I. (1995). "Training: Structuring Distributed Real-time Systems." from

http://www.ansa.co.uk/ANSATech/95/Primary/160201.pdf.

Mark A. Miller. (2005). "Understanding H.323—Part I: History and Architecture."

Retrieved June, 2010, from

http://www.voipplanet.com/backgrounders/article.php/3498736.

Markus Völter, M. Kircher, et al. (2004). Remoting Patterns-Foundations of Enterprise,

Internet, and Realtime Distributed Object Middlware Wiley and Sons.

Medvidovic, N. (2003). "The Role of Middleware in Architecture-Based Software

Development." International Jouranl of Software Engineering and Knowledege

Engineering (IJSEKE) 13(4): 367-393.

Message-Passing-Interface-Forum (1994). "A message-passing interface standard. ."

International Journal of Supercomputer Applications-special issue on MPI

8(3/4).

Microsoft.com (2002). "Glossary of Networking Terms for Visio IT Professionals."

from

http://microsoft.com/technet/prodtechnol/visio/visio2002/plan/glossary.mspx.

Möller, A., M. Åkerholm, et al. (2003). Software Component Technologies for Real-

Time Systems- An Industrial Prespective-. WiP Session of Real-Time Systems

Symposium (RTSS). Cancun, Mexico.

Morse, K., R. Brunton, et al. (2004). An Architecture for Web-Services Based Interest

Management in Real Time Distributed Simulation. the Eighth IEEE Distributed

Simulation – Real Time Applications Workshop.

MPI-RT (2002). "The Real-time Message Passing Interface (MPI/RT) Forum."

Retrieved June, 2010, from http://www.mpirt.org.

Neelamegam, J. (2002). Zero-sided Communication: Challenges in implementing time-

based channels using the MPI/RT specification, Mississipi State University.

Master.

Newcombe, A. and J. Seraj (2002). Prioritized agent-based hierarchy structure for

handling performance metrics data in a telecommunication management

system, Google Patents.

Object Management Group (OMG). (2005). "Real-time CORBA Specification."

Retrieved June, 2010, from http://www.ois.com/images/stories/ois/real-

time%20corba%20specification%2005-01-04%20jan%202005.pdf.

Opengroup, T. "DCE Home Page." Retrieved June, 2010, from

http://www.opengroup.org/tech/dce.

http://www.limewire.com/
http://www.ansa.co.uk/ANSATech/95/Primary/160201.pdf
http://www.voipplanet.com/backgrounders/article.php/3498736
http://microsoft.com/technet/prodtechnol/visio/visio2002/plan/glossary.mspx
http://www.mpirt.org/
http://www.ois.com/images/stories/ois/real-time%20corba%20specification%2005-01-04%20jan%202005.pdf
http://www.ois.com/images/stories/ois/real-time%20corba%20specification%2005-01-04%20jan%202005.pdf
http://www.opengroup.org/tech/dce

-457-

P. Wyckoff, S. McLaughry, et al. (1998). "T Spaces." IBM Systems Journal Vol

37,Num 3: pp. 454-474.

Palue, S. (2002). "Real-Time Specification of Java (RTSJ)." Retrieved June, 2010,

from http://www.developer.com/java/other/article.php/1367671/Real-time-

Specification-for-Java-RTSJ.htm.

Pardo-Castellote, G., R. Innovations, et al. (2005). "Omg data distribution service:

Real-time publish/subscribe becomes a standard." RTC Magazine 14.

Parker, D., S. Collins, et al. (2004). Building near real-time P-2-P applications with

JXTA. Fourth IEEE International Symposium on Cluster Computing and the

Grid (CCGrid'04), Chicago, IL, USA.

Pasetti A and P. W (1999). The Component Software Challenge for Real-Time Systems

Proceedings of the Real-Time Mission Critical Systems Workshop (held in

conjunction with 20th IEEE RTSS). Scottsdale, AZ (USA).

Pizlo, F., J. Fox, et al. (2004). Real-time Java scoped memory: design patterns and

semantics. Seventh IEEE International Symposium on Object-Oriented Real-

Time Distributed Computing (ISORC'04), Vienna, Austria

Plášil, F. and M. Stal (1998). "An architectural view of distributed objects and

components in CORBA, Java RMI and COM/DCOM." Software-Concepts &

Tools 19(1): 14-28.

Plšek, A., F. Loiret, et al. (2008). A Component framework for java-based real-time

embedded systems. 9th International Middleware Conference. Leuven,

Belgium: 124-143.

Plsek, A., P. Merle, et al. (2008). A Real-Time Java Component Model, HAL - CCSD.

Pyarali, I., et al (1999). Proactor – An Architectural Pattern for Demultiplexing and

Dispatching Handlers for Asynchronous Events. Pattern Languages of Program

Design (B. Foote, N. Harrison, and H. Rohnert, eds.), Reading, MA: Addison-

Wesley.

Ramamritham, K., S. Son, et al. (2004). "Real-time databases and data services." Real-

Time Systems 28(2): 179-215.

Raman, K., Y. Zhang, et al. (2005). Patterns and tools for achieving predictability and

performance with real time Java. 11th IEEE International Conference on

Embedded and Real-Time Computing Systems and Applications (RTCSA'05),

Hong Kong, China

Raman, K., Y. Zhang, et al. (2005). "RTZen: highly predictable, Real-Time Java

middleware for distributed and embedded systems." Lecture notes in computer

science 3790: 225.

RENAISSANCE Consortium. (1997). "Client/Server Migration Guidelines For

Migration From Centralised To Distributed Systems." Retrieved June, 2010,

from

http://www.comp.lancs.ac.uk/computing/research/cseg/projects/renaissance/pdf

/D31a.pdf.

Riehle, D. and H. Züllighoven. (1996). "Understanding and Using Patterns in Software

Development." Theory and Practice of Object Systems 2(1): 3-13.

Ruth Tolosa, J. P. M., Miguel A de Miguel M. Teresa Higuera-Toledano, Alejandro

Alonso (2003). Container Model Based on RTSJ Services. OTM Workshop

Schantz, R. and D. Schmidt (2001). "Middleware for distributed systems: Evolving the

common structure for network-centric applications." Encyclopedia of Software

Engineering: 801–813.

Schmidt, D. (2002). "Adaptive and reflective middleware for distributed real-time and

embedded systems." Lecture notes in computer science 2491: 282-293.

Schmidt, D. and F. Kuhns (2000). "An overview of the real-time CORBA

specification." Computer 33(6): 56-63.

Sharp, D. (1998). Reducing avionics software cost through component based product

line development. Software Technology.

http://www.developer.com/java/other/article.php/1367671/Real-time-Specification-for-Java-RTSJ.htm
http://www.developer.com/java/other/article.php/1367671/Real-time-Specification-for-Java-RTSJ.htm
http://www.comp.lancs.ac.uk/computing/research/cseg/projects/renaissance/pdf/D31a.pdf
http://www.comp.lancs.ac.uk/computing/research/cseg/projects/renaissance/pdf/D31a.pdf

-458-

Shaw, M. and G. D (1996). Patterns for Software Architectures. Pattern Languages of

Program Design, Addison-Wesley.

Siddiqui, F. (1996). "Component Based Software Engineering " Component-Based

Software Engineering, IEEE Computer Society Press: 7-15.

Skjellum, A., A. Kanevsky, et al. (2004). "The Real-Time Message Passing Interface

Standard (MPI/RT-1.1)." Concurrency and Computation: Practice and

Experience 16(S1): Si - S322.

Son, S. and K. Kang (2002). Qos management in web-based real-time data services. 4th

International Workshop on Advanced Issues of Electronic Commerce and

Web-based Information Systems (WECWIS'02), Newport Beach, CA.

Stankovic, J., S. Son, et al. (1997). Beehive:Global Multimedia Database Support for

Dependable, Real-Time Applications. Real-Time Databases and Information

Systems, Kluwer Academic Publishers: 409-422.

Sun.com (2005). "JXTA Technology Brings the Internet Back to Its Origin."

Retrieved June, 2010, from

http://java.sun.com/developer/technicalArticles/JXTA/.

Sun Micro Systems Inc. (2004). "JXTA v2.0 Protocols Specification." from https://jxta-

spec.dev.java.net/JXTAProtocols.pdf.

Sun Microsystems Inc (2003). JavaSpaces Principles, Patterns, and Practice.

JavaSpaces Principles, Patterns, and Practice, Eric Freeman, Susanne Hupfer,

and Ken Arnold,(1999),.

Sun Microsystems Inc. (2003). "jGuru: Remote Method Invocation (RMI)." from

<http://java.sun.com/developer/onlineTraining/rmi/RMI.html>.

Sun Microsystems Inc. (2004). "Java Remote Method Invocation Specification."

Revision 1.10, Java™ 2 SDK, Standard Edition, v1.5.0, Retrieved June, 2010,

from http://java.sun.com/j2se/1.5/pdf/rmi-spec-1.5.0.pdf.

Sun Microsystems Inc. (2004, June 2010). "A Jini-based Real-time Telemetry System

for F1 Racing Cars." from

http://www.jini.org/files/meetings/eighth/presentations/Cars/Cars.pdf.

Sun Microsystems Inc. (2004). "JXTA v2.0 Protocols Specification." from https://jxta-

spec.dev.java.net/JXTAProtocols.pdf.

Sun Microsystems Inc. (2005). "Sun Java Real-Time System, JavaOne Conference in

San Francisco." from

http://java.sun.com/javase/technologies/realtime/index.jsp.

Sun Microsystems Inc. "Java Object Serialization Specification." Retrieved June,

2010, from http://java.sun.com/j2se/1.5.0/docs/guide/serialization/spec/serial-

title.html.

T. richardso, A. J. W., J.A. Dianes, M.Diaz (2009). Providing Temporal Isolation in the

OSGi Framework. JTRES09. Madrid, Spain.

T. Richardson, a. J. W., J.A. dianes, Mi, Diaz (2010). Towards memory Management

for Service-Oriented Real-Time Systems. JTRES. Prague, Czech Reppubic.

TABUCHI M, NAKAJIMA K, et al. (2004). "Communication Door: Real-Time

Communication Middleware." NEC J Adv Technol 1(3): 176-183.

Tejera, D., A. Alonso, et al. (2007). Predictable serialization in Java. 5th international

workshop on Java technologies for real-time and embedded systems, JTRES

2007

Vienna, Austria

Tejera, D., A. Alonso, et al. (2007). RMI-HRT: Remote method invocation-hard real

time. the 5th International Workshop on Java Technologies for Real-time and

Embedded Systems, JTRES 2007, Vienna, Austria ACM.

Tejera, D., R. Tolosa, et al. (2005). Two alternative rmi models for real-time distributed

applications. The Eighth IEEE International Symposium on Object-Oriented

Real-Time Distributed Computing ISORC 2005.

http://java.sun.com/developer/technicalArticles/JXTA/
http://java.sun.com/developer/onlineTraining/rmi/RMI.html%3e
http://java.sun.com/j2se/1.5/pdf/rmi-spec-1.5.0.pdf
http://www.jini.org/files/meetings/eighth/presentations/Cars/Cars.pdf
http://java.sun.com/javase/technologies/realtime/index.jsp
http://java.sun.com/j2se/1.5.0/docs/guide/serialization/spec/serial-title.html
http://java.sun.com/j2se/1.5.0/docs/guide/serialization/spec/serial-title.html

-459-

The Computing Dictionary (2010). "The Computing dictionary " Retrieved June,

2010, from http://computing-dictionary.thefreedictionary.com.

The JSR-203. "JSR 203: More New I/O APIs for the JavaTM Platform ("NIO.2") "

Retrieved June, 2010, from http://www.jcp.org/en/jsr/detail?id=203

The object Management Group (OMG). (2007). "Data Distribution Service for Real-

time Systems, v1.2." Retrieved June, 2010, from

http://www.omg.org/technology/documents/formal/data_distribution.htm.

Thomas Richardson, A. W. (2010). An Admission Control Protocol for Real-Time

OSGi. 13th IEEE International Symposium on Object/Component/Service-

Oriented Real-Time Distributed Computing. Carmona, Spain.

Urbano, P. G. D. A. (2002). Agent Based Approach To Distributed Real-Time Systems

Development Third International Symposium on Multi-Agent Systems, Large

complex Systems and E-Business.

Voelter, M., M. Kircher, et al. (2004). Remoting Patterns - A Systematic Approach for

Design Reuse of Distributed Object Middleware Solutions. IEEE Computing

magazine.

W3C (2010). "The World Wide Web Consortium (W3C) Home Page." Retrieved

June, 2010, from http://www.w3.org.

Wang, N., K. Parameswaran, et al. (2001). "Towards a Reflective Middleware

Framework for QoS-enabled CORBA Component Model Applications."

Component Model Applications, IEEE Distributed Systems Online 2.

Wang, N., D. Schmidt, et al. (2003). "QoS-enabled middleware." Middleware for

communications.

Wang, S., S. Rho, et al. (2004). Toward Real-Time Component-based Systems. IEEE

International Real-time Systems Symposium (RTSS) Work-In-Progress

Session.

Wellings, A. (2004). Concurrent and real-time programming in Java, John Wiley &

Sons.

Wellings, A., R. Clark, et al. (2001). "A framework for integrating the Real-Time

Specification for Java and Java's remote method invocation." REPORT-

UNIVERSITY OF YORK DEPARTMENT OF COMPUTER SCIENCE YCS:

69-72.

Wells, D. (1994). A trusted, scalable, real-time operating system environment. Dual-

Use Technologies and Applications Conference Proceedings Utica, NY.

Wells, G., A. Chalmers, et al. (2000). "A comparison of Linda implementations in

Java." Communicating Process Architectures 58: 63–75.

http://computing-dictionary.thefreedictionary.com/
http://www.jcp.org/en/jsr/detail?id=203
http://www.omg.org/technology/documents/formal/data_distribution.htm
http://www.w3.org/

-460-

 الحمد لله رب العالمين

All the praises and thanks be to Allah, the Lord of the worlds, for His

favour to me in completing this thesis, praying to Him to accept this as a sincere

service for His sake, and for the benefit of mankind.

