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OPTIMISATION AND MODELLING TECHNIQUES
IN DYNAMIC CONTROL OF
WATER DISTRIBUTION SYSTEMS,

by
BRYAN COULBECK

SUMMARY

The thesis develops optimisation and modelling techniques with the
ultimate aim of control of water distribution systems to produce overall
optimised operation. Typical system operating conditions are analysed to
determine cost factors and control requirements and hence enable development
of system performance criteria. The most significant costs are those for
distribution pumping and a range of original optimisation techniques are
investigated which will lead to operational improvéments for a restricted
class of systems. Application of these technfques to more complex systems
- is shown to be dependent on deVeIopment of simplified dyhamic models.
Suitable models are formulated and computer programs are developed to
evaluate matching coefficients for very general systems. Combining the
optimisation technfques and sin\Flifieci models enables a cqmputer algorithm
to be devised which can be applied to give optimal control of complex systems
taking account of all cost factors and operational constraints. The scheme
incorporates a simulation of the overall dynamics of a water system, by means
of a tailored computer program, which is initially used with historical
operating data for validation purposes. The results confirm the theoretical
predictiohs and show that benefits can be obtained from on-line computer

controlled operations.

-i-



ACKNOWLEDGEMENTS

This project has been a collaborative venture, involving University
of Sheffield, Sheffield City Polytechnic and the South Eastern Divisiop
- of the Yorkshire Water Authority, and could not have been completed without
active co-operation and assistance from all parties. I would, therefore,
like to express my sincere appreciation to those concerned~which includes,
but is not limited to:

University of Sheffield, for accepting my registration as an affiliated

Ph.D Student.  Staff and colleagues of the Department of Control Engineering
and, in particular, my supervisor, Dr}M J H Sterling for interesting me in
the research topic and for his suggestions and overall gridénce during the
project. Also Computing Services, for assistance with operational aspects
of the ICL 1907 and 1906S installations.,

Sheffield City Polytechnic, for providing the essential funding and time allowance.

 Also staff and colleagues of: Department of Electrical and Ele;tronic Engineering,

for accepting some share of my normal duties, Library Services, particular1y

the inter-library loan service and the Computer Unit, for assistance with 7

“operational aspects of the IBM 3707135 installation, ~ ~~ 7

South Eastern Division of the Yorkshire Water Authority, for extending to me

the privilege of visiting their engineering establishments and the provision ofv
operational information. I am also grateful for discussions with Mr F S Johnstcn,
Deputy Engineer and Manager, Mr J M Wadsworth, Planning Engineer and Mr R Wiiliams,
Planning Engineer.

The US Department of Interior, Office of Water ResOurces Research, have
| kindly authorised me to receive a copy of their computér program WATSIM and
I would 1ike to thank Mr D W Bree, Senior Methods Analyst of Systems Control

Inc, for forwarding this in magnetic tape form.

“{j-



I would also like to compliment Mrs Renee Hayes and Mrs Christine
Barker on the excellent typing of the thesis and finally thank my wife
and family for tolerating me during the four year period of hectic

activity.

-iii-



2-1
, 3-1

3-3
3-4
3-5
3-6

3-8
3-9
3-10
4-1

4-2
4-3
4-4
4-5

4-7
4-8
4-9
4-10
4-1
4-12
4-13
4-14

FIGURES
Doncaster and District Joint Water Board Distribution System.
Typical Pump Head-flow Characteristics.
Fixed Speed Pump Characteristics.
Response Curves for Discrete Speed Variation.
Response Curves for Discrete Parallel Pump Combinations.
Discrete Power Function.
Piecewise-Linear Power Function.
Linear-quadratic Power Function.
Quadratic Pump Efficiency Cost Function.
Linear Power Function.
Optimised Pump and Network Response Curves.

Forward Dynamic Programming Computational Procedure for a
One Dimensional Case.

Cost Model of a Pumping Station.
Demand Tariff. |
Incremental Demand Charge.

Unit Tariff.

Night Unit Tariff.

Schematic Diagram of Supply System.
Flow Chart for Conventional Dynamic Programming Solution.
Actual Pumping Profile.

First Predicted Pumping Profile.
Second Predicted Pumping Profile.
Simplified System Diagram.

Actual and Predicted Pumping Profiles.

Typical Dual Function and Gradients for Discrete Controls.

-jy=-



4-15 Cost Function for Electricity Unit Charges.

4-16 Cost Function for Electricity Maximum Demand Charges.
5-1 Simplified Flow Chart for Network Analysis and Simulation Program.
6-1 Linear Model Representation for a Simple System.
6-2 Network for Doncaster Eastern Zone.

6-3 Actual and Predicted Reservoir Levels.

6-4 System Demands.

6-5 Pump Controls.

6-6 Valve Controls.

6-7 Reservoir Levels.

6-8 Pumping Station Heads.

7-1 System Demands

7-2 Pump Controls.

7-3 Valve Controls.

7-4 Reservoir Levels.

7-5 Pumping Station Heads.

7-6 Sequence of Computing Operations.

7-7 Proposed Dynamic Control System.

7-8 Discrete-continuous Solution.

A3-1 Network for Doncaster Eastern and Thorne Zones.



TABLES

4-1 Data for Hatfield Water Supply System.

6-1 Average Operating Values for Doncastern Eastern Zone.

6-2 Linearised Coefficients for Doncaster Eastern Zone.

6-3 Average Operating Values for Doncaster Eastern and Thorne Zonés.
6-4 Linear Model Parameters for Doncastern Eastern and Thorne Zones.
7-1 Average Operating Values for Doncaster Eastern and Thorne Zones.
7-2 Linear Model Parameters for Doncaster Eastern and Thorne Zones.
7-3 Optimisation Parameters for Doncaster Eastern and Thorne Zones.
7-4 System Optimisation Results.

-A2-1 DDJWB Pumping Stations.

A2-2 DDJWB Reservoirs.

A2-3 DDJWB Centralised Supervisory System Facilities.

A2-4 DDJWB System Control Operations.

A2-5 DDJWB Electricity Pumping Costs.

A3-1 Network Parameters.

A3-2 Pumping Station Parameters.

-Vi-



CHAPTER 1
INTRODUCTION

1.  Water distribution systems play an important part in modern-

life by providing the vast quantities of purified water required

for both domestic and industrial purposes. Over the years small
Tocalised water undertakings haVe been amalgamated to form larger
netwdrks; this éffect has been accelerated by the recent local
authority reorganisation s;heme Fesu]ting in water distribution systems
catering for each major city or town and surrounding areé. Whilst the
smaller networks could be controlled manua]]y, effective operation of
these much larger inter-related systems relies on some degree of
automatic monitoring and control. The rising standard of living also
implies that labour costs will continue increasing and this will give
constant encouragement to release of manpowér from routine operating
tasks to make available for more productive activities. Additionally
there has recently been national concefn for the reduction of energy
consumption, and the electricity cost for distributgon pumping has risen
dramatically.

It is considered inevitable that management of water supply systems
will eventually yield to fully automated cohtro1 in order to échieve
efficient opération of these systems of ever increasing complexities and
costs. Existing technology has long been capable of providing computerised
equipment hardware for measurement and control, however computer software
(in the form of program algorithms) is not in such an advanced state that
effective on-line control can be 1mmediate1y achieved and additional
research is required in this latter area.

0f major importance in control is the concept of optimisation of

operation which attempts to achieve lowest oberating costs consistent
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with providing a satisfactory service to customers. Such integrated
optimisation schemes for these large systems must rely on simplified
mathematical models which adequately represent the sjstem dynamics.

Application of sophisticated control techniques ideally requires
an existing system with modern control equipment and operating experience.
The Doncaster and District Joint Water Board (now the South Eastern
Division of the Yorkshire Watek Authority), have recently implemented
an on-line system of computerised monitoring with limited control
features. The current work forms part of a collaborative project to
devise new algorithms suitable for overall operational cohtro]. In
particular, the major part of this thesis ié concerned with development
of optimisation models and simplified network models which are finally
combined to allow presentation of a computer control algorithm suitable
for on-1ine optimal control of complete water distribution systems.

For each stage of development the results are validated by use of
actual data in conjunction with simulated system operation.

It will be shown that the project is, indeed, a complex one
involving optimised control of large scale non-linear dynamic systems
subjecf to unknown disturbances. The optimisation methods must cater
for high state and control dimensionality, with further Comp]ications
of highly non-linear performance indices, and must incorporéte both
continuous and discrete controls. The following sections outline the
detailed complexities and show how they have been approached and
resolved in this study.

1.1 Control of Water Distribution Systems

In the region studied boreholes are a typical source of water supply

with pumping to the network using parallel combinations of fixed speed
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pumps. Fixed or variable speed booster pumps together with control
valves are normally used for transfer of water between reservoirs of
differing pressure zones. In both cases the pumping flows are dependent
upon the reservoir levels, and the costs upon electricity unit and demand
charges.

Distribution networks consist of large numbers of interconnecting
pipes with occasional control valves, both of which have a'non-linear
relationship between flow and head loss. Approximately constant head
reservoirs are connected at various points of the network to provide
storage capability and maintain required pressure levels. Individual
consumer demands occur at distributed points throughout the network
- and,since there is usually minimal monitoring, the total demand must
be calculated from pump flows and reservoir levels.

Optimisation over a future time period (dynamic optimisation)
can only be performed for known consumer demands and a prediction
scheme is required which will estimate demand throughout the optimisation
period. The data available on which to base such an estimate is essentially
past consumption records together with an allowance for known future
industrial‘and residential demands. An automated demand prediction
scheme has already been developed as part of this projec%]and consequently
has not been covered in this thesis. |

Since water networks contain storage the optimisation problem reduces
to minimisation of electricity charges and associated costs for the
complete network over the entire optimisation period. This can be achieved
by control of pumping and storage whilst catering for consumer demands and
maintaining desired reservoir levels. The successful application of
optimisation methods depends significantly upon the formulation of a

dynamic network model for rapid and repeated evaluation of the effect
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of control strategies upon the network reservoir levels.

It is essential to ensure that theoretical developments are
applicable to actual systems and meet all operational constraints.
However, there are no truly typical water distribution systems, all
are somewhat unique with differing characteristics. In addition it is
difficult, if not impossible, to confirm theoretical proposals by
manipulation of actual operational systems, this is particularly true
for water systems with their extremely limited mdnitoring capability.
As a consequence of these aspects validation of results must rely upon
methods for accurate systems simulation using actual operational data
where possible and generating additional data as required.

1.2 Presentation of Thesis.

This section shows the layout adopted in the thesis to produce a
coherent and unifying theme result in overall optimised control of water
distribution systems.

Chapter 2 describes typical features of water}distribution systems
and gives specific details for the DDJWB system with coverage of system
elements, normal system operation and operating costs.

Chapter 3 analyses pumping elements in order to derive models suitable
for incorporation in network and\optimisatidn schemes. This includes
derivation of an independent control variable to give simulated pump
operation on a continuous or discrete basis (allowing for head dependent
flows) and derivation of the necessary condftions for operation at maximum
pumping efficiency. Also typical pumping operations are analysed to
develop and justify cost models, for various optimisation techniques, in
terms of electricity charges.

Chapter 4 investigates the application of various optimisation

techniques in order to optimise pumping costs in realistic networks. Detailed
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consideration is given to development of costs in a suitable form for
treatment by forward dynamic programming; this technique is applied to
a single reservoir system with multiple borehole pumping using
combinations of constant flow pumps. It is shown that useful results
are achieved but dimensionality can be a severe problem. The method
is extended to cover a restricted multi-reservoir system, by means of
successiye approximations, but the re;u]ts reveal difficulties in
implementation and extensive use of computing time. The conclusions are
that the method is feasible but further extensions, to cater for more
sophisticated systems, must rely on development of simpiified network
models.

The general theory of decentralised hierarchical techniques is
reviewed and an application is made to a single reservoir zone with
pumping from assumed continuously variable capability. The method is
develdped to include realistic cost factors and covers development of suitable
operational performance indices. A comparison of the results, with other
similar methods, show that a superior formulation has been achieved giving
desirable operating characteristics. Whilst the technique. theoretically
permits optimisation of very general high dimensional systems, in practice
the formulation requires linear system equations and it is shown that
modification to cover discrete control variables is difficult to achieve.
It is concluded that extension, to allow optimisation of complex multi-
reservoir systems, now requires development of simplified linear dynamic
models in terms of continuous control variables.

Computer programs are developed by the author for both the above
optimisation techniques and written in FORTRAN IV for general purpose

applications.



Linear programming techniques are also investigated and the
optimisation problem is developed into a mixed variable linear-integer
programming formulation. Further analysis shows that solutions could
only be obtained with some restrictions on typically sized multi-
reservoir systems, but that additional research, using the suggested
solution methods, is warranted.

Chapter 5 reviews non-linear water distribution system analysis
for both static and dynamic solutions, which form the basis of an

existing simulation program,S]

and provides theoretical supplements
and program modifications to create a more useful simulation program.
An improved version results from incorporation of independent pump and
valve control parameters to yield a network simulation capable of
responding to either continuous or discrete optimised controls. The
program is further enhanced by inclusion of routines, developed by the
author, for calculating sensitivity coefficients by direct evaluation
of the static solution Jacobian matrix. These coefficients are those
required for the .. = Tlinear dyhamic models derived in Chapter 6.
A description is given of the modified program to show the full
implication of the changes and to allow explanation of the particular
program features employed in this study.

- simplified

Chapter 6 examines the possibility of obtaining A - dynamic model
representations of entire, non-linear, distribution networks to cater
for overall optimisation of complex systems.

An existing met:hod]6

is reviewed which gives a simplified non-linear
model using measurements of commonly available network variables and

derived dperating constraints. This is proposed as one means for
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extending the dynamic programming technique of Chapter 4 to cover
optimisation of multi-reservoir networks with variable head pumping.

An alternative method, developed by the author! 3%

gives the

derivation of linearised models for networks containing any number,

or configuration, of reservoirs, pumps, valves, and consumer demands.

The theory gives a simplified model in state-space form which defines dynamic
reservoir levels in terms of control and disturbance parameters;

refinements are made to cater for effects of continuous variation of reservoir
levels and allow variable head pumping by inclusion of the pump model

derived in Chapter 3. The model is then extended to enable calculation

of head variation for selected pressure nodes with further refinements
permitting evaluation of average pump flows over each time interval.

Two methods of evaluating the model coefficients are examined, one by
perturbation of static solutions for each variable in turn, and one by

use of the programming modifications developed in Chapter 5. The

validity of the theoretical results are confirmed by application to

actual networks and comparisons made between different versions of the

model. These linear models are concluded to be suitable for extending

the decentralised hierarchical techniques of Chapter 4 to cover on-line
optimisation of overall system operation.

Chapter 7 combines the pumping station models (of Chapter 3), the
decentralised optimisation technique (of Chapter 4) and the 1inear
dynamic model (of Chapter 6) to provide a method leading to on-line
optimisation of complex water distribution systems with assessment

-using the modified simulation program (of Chapter 5).
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An existing multi-reservoir network containing head dependent
borehole and booster pumping statiohs and control valves is implemented
to allow controllable simulated operation. For this network an
vequiva]entvlfneam—dynamic model is developed with coefficients
automatically generated by the modified simulation program. Performance
indices are derived to suit the 0ptim{§tion method which, in addition
to electricity charges, now take into account system requirements of
pump operation at maximum efficiéncy by optimising potential energy
imparted to the water. The optimisation program of Chapter 4 is
modified and used to cdmpute optimal pump and valve controls which are
applied to the simulated network. The results are shown to be con§istent
with normal operational experience giving minimised overall costs.
Based upon these results a preliminary proposa113 is made for application
of the control algorithm to actual networks by means of an on-line
computer. |

Chapter 8 discusses and draws conclusions on overall results achieved,
shortcomings of the treatment, and requirements for additional complementary
research. The conclusions are that an original method has been presented
for overall system control which includes all relevant cost factors and
uses all avéi1ab1e control features. The method results in optimised
contro]'va]ues which can be accurately implemented for valves, and any
pumps with continuously variable controls, but less accurately implemented
for discrete pumps. Additional research is required in this latter area
and the Chapter concludes with a review of research possibilities for

extensions and improvements.



1.3 Summary of Main Achievements

These contributions all represent significant and original
advances over existing work and have resulted in formulation of the
computer programs and publication of the referenced papefs.

(1) Development of versatile pumping station model for use in

optimisation énd overall system operation (Chapter 3). This

extends existing models to allow both cdéts and flows to be
dependent on the pumping station variable head and an independent
control paraéier representing proportion of pumps in use;

(ii) Development of theory and computer program (WATDP)

for optimisation of pumping costs by dynamic programming93

(Chapter 4). This is an oriéina] application and has resulted

in optimised pumping policies for discrete pumps; the method is

suitable for immediate application to similar types of systems

to those analysed.

(i) Development of theory and computer program (MULTI 1)
for optimisation of pquing costs by hierarchical methods92
(Chapter 4). This extends existing work by derivation of
superior performance indices, directly related to electricity
charges, and include§ original modifications to optimise maximum
demand charges. A comparison of results,with other similar methods,
shows that an improved formulation has been obtained giving desirable
operational characteristics.
(iv) Modification of theory and computer program (WATSIM)
to give more versétile dynamic network simulation (Chapter 5).
This extends existing work resulting in a program suitable for

interactive use with optimisation and modelling schemes.
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(v) Development of theory and computer program (COEF) for

obtaining linear dynamic network mode'ls]3’94

» (Chapters
5 and 6). This is a new approach which, for the first time, gives
a linear dynamic model for a wide range of multi-reservoir systems,
incorporating all the features required for use in powerful
optimisation techniques.

(vi) Development of theory and computer program (MULTI 2) for
optimal control of overall system oper‘ation]3 (Chapter 7). This
extends the previous contributions and then combines them to
demonstrate, also for the first time, integrated optimisation,

with head dependent pumping and valve controls, using realistic

cost factors.



CHAPTER 2
DESCRIPTION OF WATER DISTRIBUTION SYSTEMS

2.1 Introduction

For a study of control techniques in water distribution systems it
is necessary to have a detailed knowledge of typical systems and their
operation33. In addition realistic operating data are required for
validation of research results, use in simulation of network operation,
and evaluation of cost and network models.

This chapter presents an outline of typical systems and gives specific
information on the system controlled by the Doncaster and District Joint
Water Board (DDJWB). The information has been obtained by discussion
with operating and administrative personnel of the DDJWB and by reference

to documents and drawings provided by them21’26’27.

The values quoted
below are as exact as could be determined using standard monitoring
facilities. In some instances the data are incomplete by virtue of
operating constraints and lack of on-line mea§uring equipment. The
constantly changing nature of the system makes it impossible to keep up
to date on a long term résearch project of this kind, and the system

is described as it existed for 1973 with the commencement of centralised
supervisory monitoring and control.

The area covered by DDJWB is approximately 300 square miles with a
population of 300,000 and a consumption in the region of 60 gallons per
head per day for all purposes.

Since the Imperial system of units is still very much in use through-

out the water industry this system has been adopted in the thesis. However

the following list of factors will suffice for any desired conversion
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into SI units:

Imperial SI
1 gal 0.0045m°
1 ft 0.3048m

2.2 System Description

Figure 2-1 is a simplified drawing of the DDJWB distribution system
showing all major features. An attempt has been made to present the
information in a meaningful fashion by adopting a layout in descending
order of pressure zones with source flow from left to right. Further
details are given in the tables of appendix 2 and the sections below.

2.2.1 Pumping Stations and Boreholes

The pumping stations contain borehole pumps for delivery of
water from underground boreholes into the network and/or booster
pumps for increasing the head of water. Appendix 2, table A2-1, gives
a breakdown of the DDJWB pumping stations, on a zone by zone basis,
together with pumping parameters.

For boreholes the pumps are fixed speed, submersible or vertical
spindle type, driven by electrically operated motors. In operation
the pumps deliver to a common main and hence are effectively in
parallel. A typical arrangement is to have three equal size pumps
of which two are used for normal operation with one as standby.
Alternatively two equal size pumps may be provided, with one in use
and one as standby. However, this arrangement requires greater
standby capacity and is generally less desirable. Pump control equip-
ment includes sequencing for starting and stopping against shut-off

control valves with facilities for local or remote activation.
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The boreholes consist of steel lined wells, sunk into the
Bunter Sandstone which lies to the East of Doncaster, and these
provide over 90% of the area water requirements. Whilst the base
water level remains reasonably constant the pumping level of any
borehole dépends heavily upon operation of its own pump and, to a
lesser extent, upon operation of pumps in adjacent boreholes. Where
possible the boreholes of individual pumping stations have been
widely dispersed to reduce pumping interaction. Following changes
of pumping combinations the levels usually stabilise within a few
minutes and, for normal network simu]ation’purposes, such transient
gffects can be neglected.

2.2.2 Distribution Network

The network is sub-divided into zones, which cater for each major
pressure area, dictated by topography of the kegion. Each zone con-
tains one or more elevated storage reservoirs to maintain required
consumer pressures and there are usually facilities for two-way inter-
zonal transfef, via booster pumps and valves, for use during normal
operations or in emergencies.

Large sources of supply are fed in by trunk mains of up to 24
inches diameter but the distribution network pipes are usually smaller
than this and gradually decrease in size, depending on flow require-
ments, down to 2 inches diameter at individual consumer levels.

* Manually operated variable é]osure valves are incorporated for flow
restriction or to valve off areas of the network or trunk mains in the
case of leaks. Pressure reducing valves are employed for small

localised consumer areas requiring lower pressure levels. For simula-
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tion and analysis purposes, pipes having diameters of less than 6 inch
are usually ignored and pipe flow delays are neglected.

2.2.3 Reservoir and Service Storage

Appendix 2, table A2-2, gives the locations and parameters 6f the
impounding and service storage reservoirs in the DDJWB area. The
purpose of the impounding reservoirs is to provide a source of supply
whilst the other reservoirs and water tanks provide service storage
capability for the network. The main functions of service storage
are to cater for fluctuations in normal demand and to provide reserves
of water in case of abnormal demands(e.g. fire fighting purposes) or
temporary failure of water sources (i.e. breakage of mains or pumping
failures).

The service storage is located adjacent to the trunk mains from
the water sources and as near as possible to the point of water
usage. At times of peak demand, during the day, water flows from
service storage and augments the supply; at times of low demand,
during the night, the service storage is replenished. If there is
suitable high ground near the point of water usage service storage
is provided in the form of a concrete tank at ground level and is
known as a service reservoir. In flat areas service storage is built
above ground in the form of water towers. It is obviously more
expensive to construct storage tanks above the ground so thét water
towers usually have smaller capacifies than sefvice reservoirs. A
large water tower may have a capacity of 0.5 million gallons, but a
reservoir with a capacity of 1.0 million gallons would be considered

to be small.
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Most types of reservoirs are fitted with ball-valves to cut off
the supply and prevent overflaving when full, also control valves may
be used to restrict the flow and prevent the reservoirs emptying
or filling too fast.

2.2.4 Centralised Supervisory System

An important feature of modern water distribution systems is the
application of centralised instrumentation and control equipment.

This can lead to greater operator efficiency and allow more accurate
balancing of the network by providing measurement and control facili-
ties for remote stations.

The DDJWB area includes a centralised supervisory system 21 which
has just been commissioned. This consists of a main station with
telemetry links between eleven out-stations and twenty-five field
stations.

The main station, located at the Rossington Bridge borehole pump-
ing station, includes both a master (computer controlled) and a standby
(hard-wired program) data logging and control system. The out-stations
are located at the other borehole pumping stations with the field
stations at reservoirs, water towers, and booster pumping stations.
Typical control and measurement facilities for the system are shown
in appendix 2, table A2-3. Whilst this system provides an enhanced
quick access measurement capability it is still not feasible to monitor
individual consumptions. Zonal consumptions can, however, be easily

calculated from inflows and reservoir level changes. |



2.3 System Operation

Overall system operation essentially consists of management of service
storage under both normal and abnormal conditions. To cater for these two
differing requirements the total capacity of each reservoir is divided
and classified as active storage (which is available for use during
normal operation) and passive storage (which is required as standby reserve
Capacity for emergency purposes). The ratio of active to passive storage
is dependent upon several conflicting requirements and empirically
determined values can be from 1:1 to 2:1.

Efficient operation is also an important aspect which requires balancing
of supplies and relevant storage against consumption under least cost condi-
tions. Operation is simplified if each zone is controlled independently,
however, this may not lead to the most efficient or effective method and
a compromise is usually desirable, in which some interzonal transfer takes
place,

Appendix 2, tableA2-4 describes typical operations for the DDJWB system
achieved by control of pumps and valves. ‘Traditional methods of manual
control are used, based largely on operator experience of consumption
Patterns, with use of base Toad pumps to maintain average reservoir levels
and additional pumps to cater for peak demand periods and prevent reservoir
Tevels falling below pre-determined values. Whenever possible additional
topping up of reservoirs is scheduled to take advantage of night rebate
tariffs, During all pumping operations consideration is given to preferen-
tial use of most efficient pumps and the desirability of not increasing the
electricity maximum demands over those already achieved. With base load
Pumping, the service reservoirs must have sufficient capacity to operate
Within Timits on a weekly cycle and pumping is scheduled to give full

reservoirs each Monday morning at 0800 hours, in preparation for the
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typically heavy wash-day demand. The smaller capacity water towers are

operated on a daily cycle starting off full every morning at 0800 hours.

2.4 Operating Costs

This section defines the controllable costs for direct operation of
the DDJWB system which, in this case, reduce to the costs for operation
of pumps and valves.

The major operating costs will be those of'electricity charges for
pumping and appendix 2, table A2-5, gives a breakdown of typical costs

for the DDJWB system where the tarif 5S> 104

are as follows:

STADHV - special tariff 1 based on the Yorkshire Electricity Board
(YEB) industrial two part tariff for annual maximum demand
charges using high voltage supplies. The difference between
this and the standard I2ADHV tariff is that excess annual maxi-
mum demand outside peak hours and peak months is charged at a
special low rate of £2.625 per kVA. Where peak hours are defined
as being from 0730 hours to 1300 hours and 1600 hours to 1900
hours each week-day and peak months as November through March.

S2ADHV - special tariff 2 based on the YEB industrial two part tariff
for annual maximum demand charges using high voltage supplies.
The difference between this and the standard I2ADHV tariff is
that excess annual maximum demand outside peak hours is charged
at a special low rate of £1.25 per kVA. Where peak hours are
defined as being from 0800 hours to 2000 hours each week-day.

ITQD - YEB industria] block tariff for quarterly maximum demand

charges



I2ADLV - YEB industrial two part tariff for annual maximum demand

charges using low voltage supplies

I2MDLV -~ YEB industrial two part tariff for monthly maximum demand

charges using low voltage supplies

AMDHV - East Midlands Electricity Board (EMEB) industrial tariff A

for monthly maximum demand charges using high voltage supplies

Analysis of these results shows that the annual cost for 1973 was of
the order of £100,000 of which £20,000 was incurred as maximum demand
charges and £2,500 was a rebate for.use of overnight units. The demand
charges in this case are not necessarily typical of other systems and
would be significantly higher were it not for the special tariffs which have
been negotiated. Since the stations are remotely situated the electricity
supplies are metered separately for all borehole pumping stations but
include any adjacent booster pumps.

An additional cost factor, which is influenced by the operating
control strategies will be the maintenance costs for pumps because of
wear and tear during pumping and switching,

The ffnal factor is the cost for operating valves which must be con-
sidered in relationship to the potential pumping benefits obtained by
judicious use of valve controls. The valve operating costs in this instance
will be the Tabour costs for manual adjustmeht of valves situated several
miles apart.

Based on the above cost factors, desirable features of operating
strategies are: |

(a) Control of system operation which should -

(i) reduce electricity costs by selection of cheapest tariff

(b) Control of pumps, to ensure minimal electricity charges, which

should -
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' (i) reduce unit charges by pumping under most efficient
conditions,
(ii) reduce demand charges by Timitation on maximum number
of pumps used,
(iii) 1increase night rebate By pump%ng overnight whenever possible
(c) Control of pumps, to ensure minimal maintenance costs, which
should - |
(i) reduce starting and stopping stresses by avoiding excessive
pump cycling
(i1) reduce temperature stresses by use at maximum efficiency
(d) Cohtro] of valves, to ensure minimal overall costs, which should -
(i) reduce labour costs by 1imiting changes of valve settings
(i1) reduce pumping costs by allowing frequent changes of valve

settings

2.5 Conclusions

This chapter has provided the groundwork for a study of the application
of control techniques to water distribution systems with specific reference
to the DDJWB requirements. In anticipation of follow up work this coverage
of the DDJWB area will also form a useful starting point for other
researchers. The lack of fully detailed information currently prevents
any attempt to match sfmu]ation results with actual network results. For
this latter purpose a comprehensive on-line pressure and flow survey
would be required which could be Eonsiderably aided by use of the newly
commissioned data logging system.

The main aim has been to give an appreciation of:
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(i) Distribution system major components and features so that
mathematical models can be developed which fit the practical
characteristics. iThese can then be used to form complete
network models and allow accurate system analysis and simulation).

(ii) System operation, present operating methods and instrumentation
capabilities so that requirements of practical automatic controls
can be determined. (These will be ultimately required for applica-
tion of efficient computer control methods to distribution
systems)

(iii) Operating costs so that-useful cost models can be evaluated
which give agreement with actual costs. (These can then be
used in development of.optimisation methods for subsequent opti-
mised system control)

Detailed consideration of all these aspects is covered in later chapters.
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CHAPTER 3.
ANALYSIS OF PUMPS AND PUMPING COSTS

3.1 Introduction.

From an operational viewpoint the most important items on the
system are the pumps which are directly controllable and have operating
costs dependent on electricity charges ana pump usage. For supply purposes
these fall into two categories: borehole pumps, which deliver the water
from underground boreholes to give a direct supply to the network, and
booster pumps, which serve to deliver water from low to high pressure
zones within the network. Both sets may be either fixed or variable speed
and the control action takes place by means of selection of fixed speed
pump combinations or speed control (as appropriate).

Use of the pumps to achieve efficient system operation is a prime
consideration and this task can be considerably aided by employment of
simulation and optimisation techniques. These methods rely on deve]ophent
of models which which can be used to predict pump flow and allow evaluation
of corresponding operating costs. Pump head-flow characteristicé are
typically non-linear and the flow and costs are both dependent upon pump
operation and instantaneous operating conditions within the network. Whilst 87
pump characteristics have been successfully fitted by polynomial functions7’66’70'8]'
in their present form these are not generally suitable for simulated control
purposes and also no effective method has been devised for evaluating fully
representative operating costs. Most previous optimised control sghg$é§8’44'56’92’93
have used very simple models which assume controllable inflows (independent

of network heads) to represent pumping flows and have also assumed that

simple direct relationships exist between flows and costs.
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This Chapter reviews existing work and seeks to establish
controllable head-flow models which can be used to allow a rapid
eya]uation of pump flow and accurate operating costs in response to
dynamic control strategies.

3.2 Pumping Station Head-Flow Characteristics.

Individual pump characteristics are of three main types as shown
in figure 3-1, with most centrifugal pumps having characteristics of (i)
or (ii).‘ It is assumed that all pumps are fitted with non-return valves and
thus the curves only exist in the first quadrant. An actual characteristic
for a single fixed speed pump is given in figure 3-2 with superimposed
analytical head-flow curves corresponding to the derived models.

For practical applications, individual fixed speed pumps may be combined
in parallel combinations, or pump speed may be variable, and it is necessary
to consider these features which contribute to the overall pumping station
characteristics. It will be noted that these all represent non-linear
head-flow relationships and that actual pump flow will be determined by
intersection of pump characteristics with the network head-flow response
(at the point of inflow).

For mathematical modelling purposes it is necessary to evaluate suitable
analytical expressions relating heads and flows for specified operating
conditions. A range of models which satisfy these requirements is given

below:
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3.2.1 Discrete Head-flow Model.

The simplest model uses empirically determined fixed flows for
discrete speed control of individual pumps, or for combinations of
fixed speed pumps, to give the following discrete flow model:
qQ = gq(4) (3.1)
where q = pump flow
q(2)= fixed flow for each pump speed or combination, under average
head conditions, where the values can be obtained from
manufacturers pump curves or, more accurately, by on-site
lmeasurements,
2= (0,1,...L), is the discrete control variable for each pump

speed or combination.
This will give reasonably accurate results for pumps supplying fixed

head reservoirs, or for intersection of pump and network characteristics
at steep portions of the pump curves, and prov%gzgjso1ievere interaction
from adjacent pumping stations. This model can thus cater for pumps

with non-linear speed effects or for combinations of pumps with

completely different characteristics but only under average external
conditions. Typical curves, showing combined pump and network interaction,
are given in figure 3-3, for speed variation, énd in figure 3-4, for
identical parallel pumps. The effects of changes in network operation

are also indicated.

3.2.2 Variable Power Law Head-flow Model.

For the case where the dependence of flow upon head is important

the following model has been pr0posed66’87

which caters for symmetrical
pump curves corresponding to type (ii) of figure 3-1. This is of the

form:
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h = a-bg® (3.2)
where h = pump head increase
q = pump flow
a,b,c= coefficients derived from the manufacturers supplied
characteristics or from on-site measurements for highest

accuracy.

Flow at any head (015 h ¢ a) will then be given by:
a-hy=
q = (—B—)C : (3.3)

For the present study a more meaningful relationship can be obtained

by rationalising the variables to give:

h o= 1-rqy (3.4)
N ()
where ho = head increase for zero flow (cut-off head)
qQ = flow for zero head (cut-off flow)
and the flow for (0 ¢ h g ho) can be expressed as:
1
q =(1- h)—- (3.5)
& TR

The coefficients of equations (3.4) and (3.5) have been evaluated from
the head-flow characteristics of figure 3-2 using the least squares
(E04FAF76) computer sub-routine. This gave the values ho = 284.33 ft,
qy = 97.112 x 10° gal/h and ¢ = 2.558 and the resulting function is
shown superimposed on the actual characteristics.

This latter model can be easily extended to cover combinations of

identical pumps by defining a parameter r, as the number of pumps in use.



For series pump combinations, where % remains constant but the
combined cut-off head varies proportional to number of pumps, this

will give:

h = r.hy {1 -(g;)c} (3.6)

and for parallel pump combinations, where ho remains constant but
the combined cut-off flow varies proportional to number of pumps,
will give: 1
= _ h\¢
qQ = r q (1 h_o) | (3.7)
Typical curves for parallel pump combinations will be as shown in figure
3-4 with the general control parameter, r, replacing the discrete

parameter, L.

3.2.3 Variable Quadratic Law Head-flow Model.

For more general types of pump curves (i), (ii) or (iii) of

figure 3-1, the pump characteristics can usually be approximated by

quadratic expressions7’70'8] relating head increase to flow as:
h = a.q2 +b.q +¢ (3.8)
where a,b,c = empirically determined coefficients with ¢ equal to

cut-off head.

Solving for q for 0 < h < ¢ gives:

q = -b#+ /b% - 4a(c-h)
(3.9)
2a
The coefficients of equations (3.8) and (3.9) have been evaluated for
the head-flow characteristics of figure 3-2 using the least squares
9

(ICL F4CFBRPL) computer sub-routine. This gave the values a = -38.315x10 ft/
(gal/h)z. b = ],1131x10'3ft/(ga1/h).and ¢ =.271.97 ft and the.rgsuiting

function is shown superimposed on the actual characteristics.
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Extending equation (3.9) for the case of r identical pumps in

parallel will now result in:

q = r{-b; A% - ta(c-h) } (3.10)

2a

while r has been defined as the number of pumps in parallel it does
not have to be restricted to integer values but can take on fractional
values, to cater for parallel combinations of large and small pumps
(of similar characteristics), and can also take on real values to
represent continuously variable pumping capability. It will also be
noted that the flow is linear in r and that r is independent of head
and flow values. Hence r is an independent control parameter which will
allow evaluation of head dependent flow, using equation (3.10), for either:
(1) discrete parallel pumping,
(i) continuously variable parallel pumping.
Similar expressions could be derived for series pumping capability by
comparison with equation (3.6), and also for variable speed pumps where
the independent control parameter, r, would now represent speed. The ’
present derivation is based on a quadratic representation, which is
usually sufficiently accurate, but the same principle applies to higher
order expressions and can thus be used for any type of pump curve.
In later use equation (3.10) is inserted directly in the full network computer
simulation program (see Chapter 5). The corresponding linear network
model pump coefficients then automatically reflect the current value of

pump head to generate correct head dependent flows (see Chapter 6).
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3.3 Pumping Station Cost Characteristics.

Typical cost factor characteristics, as supplied by the manufacturer,

are shown on figure 3-2 to which has been added the curve for efficiency

versus head which is required.to support the following work.

(a) Direct Costs

These correspond to

the total electricity charges for energy consumed

and the maximum electrical power demanded over the tariff period. The

instantaneous electrical

de
dt

where de =

dt

C =

=
[}

n(h)

For tariff purposes

power demanded will be:

Ch.q
n(h)

instantaneous power corresponding to energy rate
(eg.kW) Y,

conversion constant (eg. 3.777 x IO'E/(gaI/h)/ft).
pump flow as a function of head and pump control
parameter and, from equations (3.7) or (3.10) can
be expressed as kq(h).r (eg.(gal/h)).

pump head increase (eg. ft).

efficiency of pump as a function of head. Since th
curve is asymmetrical andn =0 for h =0 and h = h
an appropriate expression will be of the form
h(ah?* +b h + c), where a, b and ¢ are empirically
determined constants.

the unit rate is the average value of electrical

power over each time interval, At, and the maximum electrical demand is

defined as the maximum value of electrical power for any half hour average

over the complete tariff period (assuming unity power factor electrical

equipment).

L

e

0]
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For average heads and flows over any time interval, At, use of

equation (3.11) will give these values as:

p = k(h). g (3.12)
P
and Prax -~ Max {kp(h)-Q} (3.13)
where p = average power demanded over interval,At, corresponding to
average energy rate, Ae (eg. kw).
At
Prax = maximum power demanded over tariff period (eg. kW)
kp(h) = power conversion constant which can be obtained from

manufacturers pump curves or, more accurately, from on-site
measurements and corresponds to Ch (eg. kW/(gal/h)).
n(h)

The actual direct costs can then be calculated by application of the

appropriate electrical unit and demand tariffs.zs’w4

and this aspect is
discussed fully in section 4.2.12.

For optimisation with variable heads and flows, whe?e the emphasis is on
minimisation of direct pumping costs, a desirable cost function should allow
for operation at minimum power input regardless of efficiency. Also, for
high accuracy, it is necessary to incorporate diréct power input values which
then have to be related to the output variables by use of the efficiency curve.
From the manufacturers pump characteristics (eg. figure 3-2), it will be noted
that minimisation of power input does not necessakily coincide with maximum
efficiency and that there is no very convenient correlation between the two
curves. However in the next section it is shown that operation at maximum
efficiency is important and should lead to an overall optimal solution taking

jnto account additional cost factors.
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(b) Indirect Costs.

Whilst the major costs are those of electricity charges,other
contributing cost factors are those for pump maintenance because of
wear and tear during pumping and switching. These can be minimised by
~ reduction of: |

(1) starting and stopping stresses,
and (i1) temperature stresses.

The former requirement implies avoidance of excessive pump cycling
which is particularly relevant for on-off control of fixed speed pumps.

The latter requirement can be catered for by operating pumps under
maximum efficiency conditions since thefe will then be the smallest cnergy
Toss within the pump which results in heating of water and pump (with possible
degradation in performance and increased maintenance costs). This requirement
also agrees with efficient system operation since it implies that, for a given
quantity of electrical energy, most energy will be imparted to the water;
hence the maximum quantity of water will be raised to the highest level within
the system under the most favourable conditions. For parallel pump operation
it will be shown that the maximum efficiency 1is a constant and occurs at a
constant optimum pump head increase.

3.3.1 Discrete Cost Model.

The simplest model will cater for the direct cost factors only and will
use empirically determined fixed heads and flows, corresponding to those
>of the discrete head-flow model of section 3.2.1, over any time interval,
At, for the purpose of calculating electricity costs. Under these
conditions equations (3.12) and (3.13) will take on the following discrete

values and have the form shown in figure 3-5.

-29-



©
n

ky(2). a(2) | (3.14)

Prax max{kp(z). q(z)} (3.15)

where kp(z) = conversion constant for each pump speed or combination,
under average head conditions, where the values can be
obtained from manufacturers pump curves or, more accurately,
by on-site measurements.

An example of a portion of a network meeting these requirements is the

Don Valley zone of DDJWB and the above model has been used to give

optimised pumping strategies using the dynamic programming techniques

of section 4.2, '

3.3.2 Piecewise-linear Cost Model.

This model is basically the same as the discrete cost model but now
the flow is assumed to be Tinearly variable between each discrete value.
The exact form of the piecewise-linear function, shown in figure 3-6, is
dependent on whether the pump flow is from continuously variable speed
pumps or from discrete parallel pumps. Continuous flow variation from
discrete pumps can be justified by assuming that pumping takes place at
the next highest feasible pump combination for a proportion of the time
interval, &t; energy costs are then.éccurate1y represented for proportional
pumping over reduced time intervals. The maximum demands, being discrete,
will take on the next highest value corresponding to the maximum flow used

over the complete time period. The model is used in the linear and

- . integer programming optimisation formulation of section 4.4.

3.3.3 Linear-quadratic Cost Model.

This is an extension of the discrete and piecewise-linear models which

now assumes that the flow is continuously variable and passes through all



the discrete values. Experimental measurements show that the
resultant curve is of a linear-quadratic form, as shown in figure

3-7, which gives the following relationships for continuous controls:

‘p = ag® +bg | (3.16)
= 2
Pmax Chax ¥ quax
where a,b = quadratic and Tinear coefficients evaluated from
manufacturers pump curves or on-site measurements
for average head conditions.
Gax = maximum pump flow achieved over complete time period.

Continuous flow variation from discrete pumps can be justified as for the
piecewise-linear model, and a stepped demand function included in
figure 3-7. The model is used in the decentralised hierarchical
optimisation application of section 4.3.

3.3.4 Linear Plus Quadratic Cost Model.

The previous models have treated the costs as direct functions of the
pump flows, which are assumed to be independently controllable, instead
of allowing for head dependent functions of variable network operation
and independent pump controls. In addition the models have only included
direct cost factors and are unable to cope with pump operation under
maximum efficiency conditions as required for indirect costs.

A versatile and accurate model, meeting the above requirements, can be
developed if the average pump head can always be maintained at an optimal

design value corresponding to maximum efficiency for any specified pumping

(3.17)
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operation. For the case of parallel pumps with similar characteristics
the values of both the optimal head and the pumping efficiency, will be
constants for all pump combinations. This occurs because operation of
parallel pumps at any fixed head will ensure that each pump operates
independently as far as electricity input and water output energies

are concerned, resulting in a common efficiency versus head curve for
all pump combinations. For convenience the effective reciprocal of this
type of curve is shown in figure 3-8 to indicate the relative cost of
departing from the maximum efficiency condition. Figure'3-8 also shows

an approximating cost function of the form:

d 2
Jh = Qh(h - h7) (3.18)
where Jh = penalty cost for departing from maximum efficiency condition.
‘Qh = empirical cost coefficient determined by comparison with

efficiency variation costs or upon desirability of

maintaining h closely equal to hd.

h = pump head increase.

hd = deéign pump head increase for maximum efficiency
(”max) evaluated from manufacturers pump curves Or on-site
measurements.

For the condition of average pump head equal to hd. equations

(3.7) or (3.10) can be written as:

q
d
where kq(h )

d
kq(h™). v (3.19)

flow per unit pump at optimal head value and,

using equations (3.12) and (3.13), the direct cost factors can then be
expressed as:
p = ké. r : (3'20)

Prax = Xp* "max (3.21)



where k5 = Tlinear power coefficient given by kp(hlkq(h) evaluated at

d

h=hdandr =1 to give Ch . kq(hd) .

nmax

This corresponds to power per unit pump at maximum
efficiency and can be evaluated from manufacturers pump Curves
or oniéite ~« measurements for highest accuracy.

The corresponding function will now be linear in r and q and is
~ shown in figure 3-9.

This model provides an approximate theoretical justification for the
previous empirical linear-quadratic cost relationship (of section 3.3.3)
by resolving the effects into direct costs, linearly dependent upon flow
control, and indirect costs, quadratically dependent upon pumping efficiency.
The direct costs are expressed directly and simply in terms of the
independent pump control parameter (which can take on continuous or discrete
values dependent on pumps and optimisation requirements) and the indirect
costs in terms of the pump head. The requirements for operating the
puﬁps at optimal head values can be effected by incorporating equation
(3.18) as part of the overall performance index in suitable optimisation
techniques.

The application of this model only requires values for power per
unit pump and pump head, at maximum efficiency, together with an empirical
head deviation penalty weighting factor. The cost model, in conjunction
with the variable head-flow model of equation (3.10), is used to allow
optimisation of overall system operation in Chapter 7, where the indirect
cost factor modifies the system response to maintain average pump heads

at their optimal values. The combined pump and network response curves
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should be as shown in figure 3-10 where it is assumed that the

network response can be controlled by means of reservoir levels,

control valves and adjacent pumps.
3.4 Conclusions.

This chapter has covered the detailed analysis of pump operation
to cater for the theoretical requireménts of the simulation, modelling
and optimisation methods which follow. The options of combinations of
fixed speed pumps or continuous flow variation (by means of speed control,
etc.) have been covered by employment of discrete or continuous control .
parameters and a formulation has been achieved which effectively embeds
both types in the same model. Several model versions have béen derived
which employ these parameters to give controllable head dependent pump
flows and operating costs directly related to electricity unit and maximum
demand charges.

The head-flow characteristics are suitable for representation of host
general types of pumps and are compatible with both full and reduced network
models. The pump and network models are combined in Chapters 5 and 6 to give
correct inflows for all network operating conditions.

Each of the models has been developed with a particular optimisation
technique in mind and the intermediate models are suitable for use with the
variety of methods for optimisation of pumping costs in Chapter 4. For the
final, most sophisticated version, it has been shown that if the pump head
can be controlled at an optimal design value this will result jn the most
. efficient pump operation; under these conditions the performaﬁy:iEKZn reduces

to a particularly simple form which can take into account not only electricity



charges but also the effects of varying pumping efficiency. This
model is used in Chapter 7, to permit the development of an optimised
control algorithm for overall system operation.
The importance of this latter model can be attributed to the fact that:
(i) the direct cost coefficients can be determined accurately from
on-site measurements,
(ii) the model includes a factqr, suited to efficient optimisation
schemes, to enable maximum efficiency operation,
(iii) accurate electricity costs are represented under maximum

efficiency conditions.



CHAPTER 4.
OPTIMISATION OF PUMPING' COSTS.

4.1 INTRODUCTION.

Optimisation of water distribution systems presents a very complex
problem, when all operating‘factors have to be taken into account, and no
entirely satisfactory solution methods are currently available. In order to
determine possible solution techniques which will cater for some of the
requirements it is necessary to simplify the problem by adopt{ng a compromise
between accuracy and feasibility.

Major costs of operation are due to electricity charges for pumping and,
as a first step, this Chapter considers optimisation based on these costs only.
This provides a feasible method for the further assumptions of directly
controllable pump flows which are independent of other network variables.
Whilst catering for mu]tip]e‘pumping stations the treatment is limited to
4systems having independently controllable reservoirs. This latter case is
not too restrictive since many networks can be treated as consisting of inter-
connected pressure zones (each having one reservoir) where the interzonal
transfer is known or controllable.

Additional considerations relate to the length of the optimisation period
and division into time increments. Ideally these would be infinity and zero
respectively but for computational reasons the optimisatioh period should be
as short as possible and the time increment as long as possible; this is
particularly relevant when faced with the problem of prediction of fluctuating
demands.

Based on operating constraints the minimum optimisation period is determined
by future requirements for an optimal quantity of stored water and the maximum

time increment is limited by short-term level fluctuations of small reservoirs.
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Cost factors also influence these decisions since electricity maximum
deﬁand charges are levied at monthly or yearly intervals and night rebates
are given for specified overnight units. To satisfy the abbve conflicting
requirements further strategies must be employed, to allow feasible near-
optimal cost so]qtions, which can include: wuse of non-optimal existing
system maximum electricity demands, infrequent long-term and frequent
“short-term solutions, and short-term solutions under worst-case and normal
conditions.

The optimisation prob]em now reduces to both continuous and discrete
control of pumps sc as to minimise pumping costs whilst providing predicted
demands and operating within system constraints. Classical optimisatibn

67,100,105 involve definition of system equations, performance

~techniques
indices, constraints,and initial and final states, with a solutien yielding
an optimal control sequence. The foregoing restrictions permit a simp]ified
formulation of the problem as follows:-
(i) Systems equations. v
| Thé slowly varying‘natuféAbf féééf?oir'leveléwin’réiétfoﬁ’to>-
':ioberating times é]]ow the syétem to be désﬁribed'by discrete
.'A:time dynamic equations. These can be written in terms of storage
quantity and pump énd demand flows only and will be linzar and
,iﬁdependent for each zone by virtue of mass balance for single
reservoif zones.
(i) Performance Index.
The costs now reduce to electricity unit and maximum demand charges
with night rebates. The assumption of controllable pump flows
allows these costs to be formulated and evaluated directly as
incremental values,directly related to pump flews, for each time

interval over the optimisation period.
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(iii) Constraints.
These reduce to preset restrictions on reservoir quantities
and pumping flows.

(iv) Initial and final states.
These are the initial and final reservoir quantities. Allowing
the terminal state to be free would cause the reservoir to be
emptied at the end of the optimisation period, any previously
stored water would already have been paid for and the optimisation
policy would dictate use of this water rather than incur additional
pumping costs. Because of the necessarily limited optimisation
period it is essential to provide a sufficient reserve of stored
water in order to meet future anticipated demands without incurring
heavy electricity maximum demand charges. For short-term
optimisation periods a realisable, but non-optimal, solution is
to specify a desirable terminal quantity and impose a cost penalty
for any deviation from this value.

The control sequence will now be a pump flow profile which should
intuitively meet certain requirements for demonstration of an optimal solution.
In essence these are: use of most efficient pumping stations to reduce unit
charges, maximum pumping levels to be maintained as Tow as possible to reduce
maximum demand charges (allowing reservoirs to take up short-term water demand
fluctuations), and topping up of reservoir to take advantage of night rebates.

Various techniques for providing solutions to the optimisation problem

have been investigated by the authorgz’93

and are detailed below. Wherever
possible these have been applied to realistic networks in order to assess their

effectiveness and possibilities of extension to more complex systems.



4,2 DYNAMIC PROGRAMMING TECHNIQUES.

The pumping costs optimisation problem has been shown to be of a
discrete-time multivariable dynamic type with a non-linear performance
index and constraints on states and controls, where the controls can also
take discrete values. This type of problem is ideally suited for solution
by dynamic programming which, in principle, can handle all of the above
requirements and obtain a global optimal solution by evaluation and
comparison of the cost of all feasible controls. In practice the conventional
dynamic programming procedure is only suitable for low dimensional problems
and modifications to the basic procedure must be sought to allow solution of
more complex systems.

There are two basic types of dynamic programming, backward, in which
optimal trajectories are calculated from all initial and intermediate states
leading to a single terminal state, and forward, in which the trajectories are
calculated from a single initial state leading to all intermediate and final
states. For a practical application the optimisation method must cater for
disturbance effects which cause the system to deviate from its optimal trajectory.
The use of backward dynamic programming is most suitable in this app]ication
but forward dynamic programming can still be applied by re-calculation using
the disturbed state as‘a new initial value.

Whilst there are several examples of the use of dynamic programming in

2’]9’20’38’44’56'5l as far as is known there are none which

water systems
deal with optimisation of water distribution systems including all relevant
pumping costs.

4.2.1 Forward Dynamic Programming Solytion.

The objective of this section is to show how the conventional forward

- -dynamic programming method can be applied to a simple water supply system
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to give operational policies which will supply varying water demands
at minimum electricity pumping costs.

The Don Valley zone of the Doncaster and District Joint Water Board
(DDJWB) was chosen as a suitable water system for analysis. It consists
of two independent borehole pumping stations feeding a single service
reservoir. The reservoir is operated on a weekly cycle, an attempt being
made to start off each week with a full reservoir. Each of the pumping
stations use different combinations of electrically powered constant
speed pumps. The supply authority is the Yorkshire Electricity Board
and the charge tariffs are based on the industrial two part tariff.

A mathematical model of the system has been developed in order to
specify the system operation and determine the actual incremental pumping
- costs in the correct formulation for a dynamic programming solution.

The extensive calculations required for the dynamic programming
solution have been implemented on an ICL 1907 digital computer for off-line
solution. The results produced indicate the optimum pumping policy for a
given terminal level in the reservoir and demand profile. Consequently
the technique relies on prediction of the consumer demand over the period
of optimisation or the recomputation of the pumping policy following
departure of the consumption from the expected pattern.

4.2.1.1 The Dynamic Programming Method.

Several different dynamic programming techniques have been

54,56,64

developed » the most appropriate for a particular application being

dependent on many factors including the number of state variables and
initial and final state constraints and cost functions. A detailed

development of the theory of dynamic programming can be found elsewhere.3*2*12:74:



In particular, forward dynamic programming is most suitable for
problems in which all the initial states are known and the majority
of final stateslare unknown. This section considers the suitability of
forward dynamic programming for the optimisation of pumping in a water
network.

The technique can be formulated as follows:
Given:

(1) System difference equation

X(k) = gX(k-1), U(k-1)j (4.1)

with X - state vector
U - control vector
k - index for stage variable having values
of k=0,1,....K.
$ - vector functional
The state of the system at stage k is thus a function of the previous’state

and the previous control that was applied.

(i) Performance criterion
K-1
J = I HIX(k), U(k)] (4.2)
k=0 ”

with J - total cost as a result of applying a series of
controls over all values of k.

H - cost for a single stage.

(iid) Constraints
X e X (k) | | (4.3)
Ue ,l_lz(k) - : (4.4)
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with.z'(k) - set of admissible states at stage k
'gz(k) - set of admissible controls at stage k where 2
is control variable with 2 = 0,1,....L.
(iv) Initial state

X(0) = C, (4.5)
with gﬁ - set of initial constants

(v) Final state
May be free or defined by
E(K) =_C_f ) (4.6)

with gf - set of final constants

Find:
The control sequence U(0),....U(K-1) such that J in
equation (4.2) is minimised subject to the system equations (4.1),
the constraint equations (4.3),(4.4), and the initial and final state
€quations (4.5),(4.6).
Solution:
k-1
(i) Define I[X(k),k] = min { T HIX(3),U(3)1}.... (4.7)
- U(o),...U(k-1) j=o
where I[X(k),k] is the minimum cost to reach state X(k) at
Stage k by selection of an optimal control sequence.
(1) Use principle of optimality® to derive an iterative relationship
for 1[X(k),k] as:
T[X(k),k] =Urz1'1;n])'{H[l(k-l),y_(k-l)hl [X(k-1),k=1]} ....  (4.8)

The minimum cost in arriving at the present state can consequently
be obtained by selection of the previous control so as to minimise
the sum of the minimum cost in arriving at the previous state plus

the cost of moving from the previous state to the present state.
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The cost before any control action is applied is zero which will

give the boundary condition:

I[X(0), 0] = 0 (4.9)

(iii) Compute the set of optimal controlsig(k-l) for all X and all k
by iterative solution of equation (4.8) using equation (4.9) as the
boundary condition.

(iv) Derive an iterative relationship for the optimal state X(k-l)
by inversion of equation (4.1) to give:

X(k-1) = g X(K),0(k-1) ] (4.10)
with g - vector functional. |
(v) Compute the optimal control sequence'g(K-l), ..... ,g(o) by
jterative solution 6f' equation (4.10) using equation (4.6) as the
boundary condition.

Computation Procedure:

If X is a continuous variable it must be quantised into discrete
states of };(k) for j = 0, 1...J. At each previous quantised state
Zq(k-l) where I[}?(k-l),k-l] has just been computed, each admissible
control gl(k-l) is applied; for each corresponding present state of
X(k) (from equation (4.1))a check is made to see if it has been the
presént state for any control app]ied at previous values of X(k-1).

If it has not previously been a present state then the value of I[X(k),k]
(from equation (4.8))and control U(k-1) are stored as tentative minimum
coét and optimal control at that point. If it has, then the new value

of I [X(k),k] is compared with the tentative minimum cost already stored
at that point, and, if it is less, the new values of minimum cost and
optimal control replace the values stored there. The above procedure

is repeated until all the controls have been applied at every quantised

1
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state of X(k-1). The tentative minimum costs I[X(k),k]and
optimal controls U(k-1) at each 5§(k) are then the true minimum
costs and optimal controls stored at these points as I[{j(k),k]
and UL (k) k1.

Repeated application for all values of k will give the
set of optimal controls for all optimal state trajectories. The
particular optimal control sequence can be obtained by repeated
application of equation (4.10) using the boundary condition X(K)
(from equaﬁon (4.6)) and associated optimal control EJ_[:)S(K),K] to
yield the optimal control sequence ﬂ(K-]),...ﬂ(O). Figure 4.1

shows the application of the above procedures to a simple case.

4.2.1.2 Representation of a Pumping Station.

A fundamental pre-requisite to optimisation is the development
of a cost model for a pumping station. Figure 4-2 shows a cost model
of a pumping station with the parameters to be used in the analysis

defined on the diagram. The following simplifying assumptions will

be made:
(i) Water flow q is constant, for any particular
combination of pumps, over a period of time
corresponding to each increment of k.
(ii) Electrical power factor is unity for all pump
combinations.
(iii) Electrical power p is proportional to water flow for

any pump combination, where kp is the constant of

proportionality.
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Based on these assumptions we can replace time t by the stage
variable k (which corresponds to a time increment of At) and replace
integration with respect to t by summation with respect to k. Using
the pump models of sections 3.2.1 and 3.3.1 will give the following
expressions where it is assuméd that consistent units are used:

Electrical power:

p(k) = k,.q (k-1) (4.11)
Electrical uniEs rate:
k
u(k) = zp(k) = Ik_.q(k-1 : 4.12
Electrical demand:
w(k)=max{va(k)} =max{p(k)} =max{ kp .q(k-1)} ' (4,13)

The electricity charges for pumping can now be derived. These have

been based on the Yorkshire Electricity Board Industrial two part tariff.]04

‘(a) Demand Charge

This is a charge based upon a demand tariff ¢ and the maximum
demand over the tariff period (see figure 4-3).
Total demand charge:
w(K)
we(K) = £ c(w)dw ' (4.14)
(o]
However for use in dynamic programming this must be written
in a form suitable for evaluation over any increment of k. By reference to
figs.4-3 and 4-4  a suitable form, which allows for increases in w,
is as follows:

Demand charge:

; w(k=1) K (k)
KoL+ B g o0 c(w)dw
W

k

we(k) = &
= k=0

(4.15)

k=0
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- (b)

Where the first term can be seen to be a standing charge

for each increment of k and the second term a penalty charge
for any increase in w. Since the demand tariff consists of
steps of constant levels the integrals can be evaluated for

any particular value of w as follows:-

w(k-1)
6c(w)dw = Cl.w(k=1) for 0 < w(k-1) g LT]
= CI.WLT] +C2{w$k-1) - wLTl} for W < w(k-1)g W 12
= 1My gy 02 (W pp = W py)
+C3{w(k-1)-wLT2} for wLT2< w(k-1) < wLT3
= CLW gy #C2(W rp = Wy 1y)
H3(W 13 = Wip2)
+C4{w(k- 1)-W, 14} for W 44 < w(k-1)g =

Unit Charge

This is a charge based upon a unit tariff r, which is also
a function of the maximum demand, and the units used over the
tariff period (see figure 4-5).

In addition units used over specified night hours are
allowed a rebate in accordance with a night unit tariff ' (see
figure 4-6);

Total unit charge:

u
uc(K) = [
0

"
~x =
v

k
W(K)Idu - o n(K) ko .a(k-1) (4.16)



(c)

to be

Again this must be written in a form suitable for evaluation

over any increment of k. By reference to figures 4-5 and 4-6
8 suitable form, which allows for increases in u and w, is as
follows:

Unit charge:

k u(k k _
uc(k) = I J rlusw(k-1)]du - & rn(k).k .q(k-1)
k=0 u(k-1) k=0 P
k  u(k)
+k20 6{ riu,w(k)] - r[u,w(k=1)1}du (4.17)

Where the first term is the charge for each increase in u, the
second term allows for the night unit rebate and the third term
is a penalty charge for any increase in w.

Again the integrals can be easily evaluated by consideration of
the unit tariff.

Fuel Adjustment.

This is a cost adjustment based upon the fuel cost to the
electricity authorities. It can be allowed for by a fuel tariff f,

which is constant for the tariff period, applied to each unit
consumed.

Fuel adjustment:

k
fa(k) = £ f.k_.q(k-1) : (4.18)
k=0 P ,

4,2.1.3 Representation of a Water Supply System.

Figure 4-7 shows a schematic diagram of the section of the DDJWB
analysed. |

The following simplifying assumptions will be made:

(i) Water demand d is independent of reservoir quantity g.

(ii) Water demand is constant for each increment of k and can be
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predicted for k = 0,1,2,...K-1,
(iii) Water flows qys G, are constant for each increment of k
and there is no interaction between 4 and qy-
This leads to the following relationship:

Reservoir quantity:
k

g(k) = = {aq(k-1)4q(k-1)+d(k-1)} . At (4.19)

4.2.1.4 Problem Formulation.

The equations developed in the previbus sections can be
incorporated into a forward dynamic programming formulation as follows:
(i) System difference equations

These are derived from equations (4.19), (4.12) and (4.13)

respectively where the subscripts 1, 2 refer to pumping stations

1 and 2.
g(K) = g(k=1)+{a;(k=1) + qp(k-1) = d(k-1)} at. (4.20)
u](k) = u](k-])+kp].q](k-1) (4.21)
u2(k) = uz(k-l)+kp2.q2(k-1) (4.22)
w](k) = w](k-l) for kp].q](k-l) < w](k-l) }

= kp].q](k-l) for kp].q](k-1)> w](k-l) (4.23)
wz(k) = wz(k-l) for kp2'q2(k']) P wz(k-l) }

= kpz.qz(k-l) for kpz.qz(k-]) > wz(k-1) (4.24)

(ii) Performance criterion
This is the sum of the single stage values from equations (4.15),
(4.17) and (4.18) respectively.
H = wc]+wc2+uc]+uc2+fa]+fa2 (4.25)

where, with appropriate subscripts :
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(ii1)

(iv)

w(k=1) w(k)

1 k
= / dw + < / d
We = ¢ ! c(w)dw + R w(§£¥; W
u(k)
uc = S rfu,w(k=1)]du ~ rn(k).k .q(k-1)
u(k-1) P

L

u(k)
I {rfu,w(k)]-rlu,w(k-1)1} du
0

fa

f.kp.q(k-1)

Constraints
Opin < 9(K) € 9oy,
0 < uplk)s up(k)
qp(k) = Q;(s)
qp(k) = Qy(m)
wi(k) = Kjp(0).Q4(2)

wplk) = Kop(m).Qy(m)

Where ¢ = (410 [P Landm=  0,]p0cecres

(4.26)

(4.27)

(4.28)

(4.29)
(4.30)
(4.31)
(4.32)
(4.33)

(4.34)

M are the control variables

which define the constant flows Q],Q2 and conversion constants

for each pump combination.

Kp'I’KpZ
Initial states
g(0) = g;
u](o) = 0
uz(O) = 0
w](O) = 0
w2(0) = 0
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(4.37)
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(v) Final states
g(K) = g (4.40)
u](K). u2(K), w](K),wz(K) = free (4.41)

4.2.1.5 Computer Solution.

~The program requires input data as follows:
Initial, maximum and minimum values of reservoir quantity,
9i* Smax® Smin-
Final values of stage, state and control variables,
KyJ,L,M.
Pumping station flows and conversion constants,
Qy(2)s Qplm)s Koq(2), K p(m)

Water demands for each stage interval, D(k).

Initial values of electrical unit rates and demands, Ups Ups Wys W

Tariff values for unit, demand and fuel charges, r,c,f.

The forward dynamic programming method will give the optimal
trajectories leading to all possible end states and a useful feature
of this particular method is that terminal cost functions can be
easily added to give an optimal end state.

The optimal solutions cover weekly blocks of predicted water
demands which can be repeated over several weeks to cover the monthly
tariff periods.

A program (WATDP) to implement the above techniques has been
developed in Fortran IV (see flow diagram of figure 4-8) and run on
an ICL 1907 computer. A processing time of several minutes together
with about 20k words of core storage are required to obtain a solution
for one week operation. These requirements are not compatible with
on-line implementation in a small process computer especially when

more complex networks are considered.
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4.2.1.6 Analysis of Results.

Operational test data for the DDJWB system shown in
figure 4-7 has been analysed in order to define the various system
parameters and to give a typical water demand profile for a period
of one week. The actual pumping costs and pumping profile for
supplying this demand have been used for comparison purposes with the
various dynamic programming predictions of costs and pumping profiles.
Pumping station 1 consists of three identical pumps each
with a flow of 62,000 gallon/hour. The parameters for each pump

combination can be summarised as shown below:

Pump combination No pumps Any one Any two All three
on pump on pumps On pumps on

Control variable, & 0 1 2 3

Flow, Q](z),gaIIOn/hour 0 62,000 124,000 186,000

Conversion constant,

Kp](z),kwlgallon/hour) 0 0.00391 0.00391 0.00391

Demand, wy, kVA ” 0 242,42  484.84  727.26

The tariff for this station is a standard industrial two
part tariff, as previously described where the unit charge is partially
based on the monthly maximum demand and the demand charge is based
on the annual maximum demand. The night rebate hours are taken to be
0000 hours to 0800 hours.

Pumping station 2 consists of one small pump with a flow of
75,000 gallon/hour and one large pump with a flow of 93,000 gallon/hour.
Practical problems limit the combined output to 133,000 gallon/hour.

The parameters for each pump combination can be summarised as follows:



No Small Large Both

Pump combination pumps @n pump on pump on  pumps oOn
Control variable, m. 0 1 2 3
Flow, Qz(m),ga11on/hour 0 75,000 93,000 133,000
Conversion constant, '

sz(m),thga1lon/hour) 0 0.00384 0.00387 0.00421

Demand, W, kVA -0 288.00 359.91 559.93

© The tariff for this station is the same as station 1
during peak hours, where peak hours are defined as being from 0800
hours to 2000 hours each weekday. The unit charge being partly based
on the monthly maximum demand in peak hours and the normal demand
charge based on the annual maximum demand in peak hours, however,
excess annual maximum demand outside peak hours is charged at a special
Tow rate.

The reservoir can hold a maximum of 5 million gallons and
the quantity is not normally allowed to fall below 2.5 million gallons.
Current operating policy consists of attempting to start on Monday,
0800 hburs of each week with a full reservoir. The allowable reservoir
operating quantity is quantised into 100 levels corresponding to
increments of 25,000 gallons. Thus j = 0 corresponds to 2.5 millions
gallons and j = 100 corresponds to 5 million gallons. For comparison
purposes the initial and final reservoir quantities used are those of
the tesf data at 4.649 million gallons.

Each increment of the stage variable is set to be 4 hours
and thus values of k from O to 42 correspond to a period of one week
starting from Monday, 0800 hours. Night rebate hours correspond to
k = 4,5; 10, 11; etc. and peak hours correspond to k = 0,1,2; 6,7,8;
etc fo 24,25,26. Since these special tariff hours require 4 hourly
increments the water demand must also be specified for every 4 hour

period.'
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Figure 4-9 shows the logged network data and the actual
pumping profile. The annual maximum demands which had previously
been set up are 484 .84kVA for station 1 and 359.91kVA (peak hours),
559.93kVA (outside peak hours) for station 2. The total electricity
cost was £1144 for the first week and £4000 for four weeks of the
monthly tariff period.

The DDJWB operating policy for the system can be seen to be
constant use of two pumps at station 1, with constant use of the large
pumb at station 2 supplemented by use of the additional small pump
outside peak hours, preference being given to night rebate hours.
Extensive operating experience has shown that this gives the most
economical results. It will also be seen that if the average water
demand increases by approximately 1% the maximum output from the
present policy will be reached énd a new optimal operational policy
will need to be determined.

Figure 4-10 shows the dynamic programming solution for the same
conditions as for figure 4-9. This indicates an identical pumping
policy with a slightly modified pumping profile and the cost for the
first week was again £1144, The solution was then run for four weeks
with identical results at a cost of £4000.

This result shows that, under the test conditions, representative
cost functions have been derived giving correct overall costs and that
the dynamic programming method is capable of predicting optimal pumping
policies taking into account all the relevant factors.

Figure 4-11 shows the dynamic programming solution assuming
that no previous annual demands had been set up. The modified pumping

policy now consists of use of all three pumps at station 1 together
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(a)

with use of both pumps at station 2 outside peak hours and no
pumps during peak hours. The cost for the first week was then
£1034 and for four weeks £3868. |

This result shows that significant savings could be achieved
under ideal conditions. However the solution makes no allowance
for any léngthy pump maintenance and, in addition, a re-negotiation
of the excess demand tariff would probably be required for operation
with zero peak demand.

4,2.2 Dynamic Programming Extensions.

One disadvantage of dynamic programming is that it requires a high-
speed memory that is beyond the capacity of pres%% computers when
the dimensionality is higher than four or five. Another difficulty
usually encountered in the application of dynamic programming is the

large amount of computer time required. The methods of successive
10,52,53,54,55,58

4

approximations 44,45

and incremental dynamic programming
have been suggested as means for overcoming the above problems. In
the present study both of these techniques have been analysed to

determine their suitability for extending the basic dynamic programming

" methods to cover the higher dimensional cases encountered for multi-

zone networks.

Successive Approximations

The principles of this method are based upon the optimisation of one
state at a time (the others remaining fixed) so that a sequence of
simpler one-dimensional problems are solved with resultant savings in
memory and time.

38,44,56,57,99

Previously quoted applications have relied upon the fact
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that the system is invertible, this implies that the control
dimensionality equals the state dimensionality and the controls

can be.evaluated uniquely in terms of the state values to allow

only one control to be active in conjunction with one free state.

For the present case this is not so since the number of controls
greatly exceed the number of states. This is shown on the simplified
diagram of figure 4-12 where the system has been reduced, to allow
application of the successive approximation technique, by forming

a series of single reservoir zones with controllable inter-zonal.
flow. Starting with an initial feasible policy for states and controls
the modified method now consists of selecting each reservoir in turn
and allowing its level to vary whilst all other reservoir levels remain
fixed. Optimisation of the free reservoir being obtained by applying
all possible pumping combinations from all zones and selecting the
optimal profile (as in the conventional dynamic programming case).
The sequence continues until all reservoirs have been optimized at
least once and no further improvement in the'performance index can be
obtained.

In essence this method chooses the cheapest source of water for a
reservoir by examining the cost of supply from its own zone and from
other zones via inter-zonal transfer. This is precisely what is
required but the achievement of this via successive approximations
causes some additional problems. Since all other zone reservoirs are
held fixéd, this implies that their pumping combinations are fixed
unless means are available for transfer of any sufp]us water. This
necessary interchange of surplus water can only be achieved if the

inter-zonal controls are continuously variable within normal limits.
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(b)

In addition, whilst the successive approximations method generates

an optimum solution this may only be a local optimum. To guarantee

a global optimum it may be necessary to perform repeat solutions
starting from different initial feasible solutions.

A computer program, based on the previously descfibed forward dynamic
programming algorithm, has been written for implementation of the
successive approximations method using the equations given on

figure 4-12. This program whilst giving promising results was found
to require extensive computer time, since it must cover all pumping
combinations, and consequently this technique was not pursued further.

Incremental Dynamic Programming

The operation of this method is based upon the establishment of a

corridor around an initial feasible state trajectory38’44’gg

. Inits
simplest application the corridor is formed by defining fixed state
increments, at plus and minus the present state values, and optimisation
is performed by choosing control values to give trajectories leading

to the defined states in the corridor. This optimisation is repeated
with the corridor around the improved state trajectory until convergence
is obtained to yield either a local or an absolute optimal solution.

A direct application of the method depends upon having an invertible
system with continuous controls and clearly is not feasible for the
non-invertible water system with discrete controls.

4.2.3 Discussion,

It has been shown that a conventional dynamic programming method
can be applied to simple water systems and will take account of factors
such as reservoir constraints, pumping efficiency, maximﬁm demand
tariffs, etc. to give optimal pumping policies and evaluate accurate

overall pumping costs.
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The computer solution is sufficiently general for it to be
applied to similar systems, with minor tariff modifications which
could prove of immediate benefit for confirmation of present or
proposed_pumping policies. The present resu]ts‘have only confirmed
that an optimum pumping policy is already being used for the system
under consideration. However the results are significant since the
development of a rigorous computational method of optimisation is a pre-
- requisite to economic computer control of water systems.

The conventional dynamic programming method has been extended
by means of successive approximations to give a computer program
formulation (DPSA) for a network consisting of four inter-connected
zones. In this case the solution loses some of its attractiveness
because of the requirement for continuous inter-zonal controls and the
extensive computation times.

Research is continuing on adaptation of these and other dynamic
programming techniques more suitable for application to complex water
systems consisting of multiple borehole and booster pumping stations
interconnected with reservoirs and water towers. These techniques usually
require approximate optimal solutions which could be provided by the
approach used in section 4.2.1. Implementation of on-line optimal pump
control could also necessitate an accurate prediction of the water
demand up to one month ahead. The performance of several on-line
prediction techniques is currently under investigationg] together
with the development of updating algorithms to account for forecastingv

errors.



4.3 DE-CENTRALISED HIERARCHICAL TECHNIQUES.

Methods using gradient bechniques can be applied to give efficienct
optimal solutions but necessitate sufficiently differentiable system
equations and performance indices, cannot handle bounded state and control
variables without difficulty and require continuous controls. In addition
differentiation between local and global optima can present problems and
computation time can become excessive for fully integrated optimisation of
large scale dynamic systems.

De-centralised methods of solutionso’m’62'95’96’]02

can combine the
computational advantages of the gradient techniques whilst at the same

time removing the associated difficulties. The method essentially consists of
creating dual variables which interact with the primal variables to allow
de-composition of large scale problems into smaller sub-problems. The
independent optimising solutions obtained for each sub-problem can then be
co-ordinated by means of the dual variables to give an overall optimal
solution.

At the optimum (under specified conditions) the primal and dual functions
are equal and form a saddle point. One method of solution consists of
searching for this saddle point which, if it exists, solves the problem.

The search takes place on a two level hierarchy (using an iterative process)
which involves a minimisation of a modified primal function on the first
level and a maximisation of the dual function on the second level. The

dual function will be continuous and concave and can be maximised using
gradient techniques to give a global optimum.

For the present application the most important feature of the

de-centralised method lies in the potential for de-composition of high

dimensional problems which occur in practice. Ie particular, use of
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Lagrange multipliers as dual variables allow decomposition in time for
discrete time problems, and hence converts dynamic optimisation problems

61,102

into static problems. This aspect is reviewed briefly for a general

dynamic system described by the state variable vector difference equation:

x(k+1) = g(x(k), u(k)) , (4.42)
where g is a vector functional and x(k) and u(k) are state and control
variables respectively at stage k.

The constraints on the states and controls are denoted by:

(x(k)s u(k)) € s, | (4.43)
where S] represents the set, of any form, of allowed values. '

The optimisation problem consists of choosing a sequence of control variables,
u(k), for k = 0,1...K-1 such\that the performance index corresponding to the
primal function:

K
L

J = f (x(k)s u(k)) o (4.49)

k=0
is minimised, and the given initial and final states x(o) and x(K) are
satisfied. fk is the individual stage performance index. |

To convert equation (4.44) to a static optimisation problem the Lagrangian

can be expressed as:

K K-1 I
Lo ®) = T R(00uK) ¢ T a7 [-a(ke) + gxtluti) | (4.45)
- k=0 k=0 : _

where p(k) is a set of time varying Lagrange multipliers.
Fixing the Lagrange multipliers yields the first level problem

‘min L (x,u, P) (4.46)
subject to (x(k),u(k)) € S; for k=0,1...K-1, and x(0),x(K) fixed.
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This decomposes into K independent sub-problems each of the form:

min {fk(gg(k). u(k)) - p(k=-1)T. x(k) + p(k)". g(z(k).g(k))} (4.47)

for k = 0,1...K-1, with minimising values of x*(k) and u*(k).

Defining the dual function as:

g(p) = min{L(}_’g, .B)} (4.48)
gives the second level problem:

max @(p) : (4.49)
subject to p € Sz; where 52 is the set of Lagrange multipliers such that
#(p) exists.
For the case where a saddle point exists the dual function is concave ‘and
continuous in the region and solution to the second level probTem can be

obtained using a gradient method with gradients obtained from:

VIR = R = - x(kd) + g(x(k)au(K) | (4.50)
ap(k)

evaluated at the minimising values of x*(k) and u*(k).
The formulation of the problem is seen to be very géneral and offers the
following advantages and features provided a saddle point exists:
(i) High order systems can be decomposed in both time and space to
yield simpler sub-problems These are mostly identical in form
And can be treated using standardised computer programming techniques.
(i1) Saddle points are defined in terms of maximisation and minimisation
rather than stationary poiﬁts and thus the functions can be non-
linear and do not have to be differentiable (however, for differentiable
functions, minimisation of the sub-problems can often be efficiently

achieved, in closed form, by evaluating the stationary points).
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In addition this al]bws treatment (in principle) of discrete

control variables. |

(iii) Varying constraints on both states and controls are permitted.
Other possible optimisation methods can handle simple constraints
on controls but not on states, in this method the treatment of both
states and controls becomes identical under decomposition.

(iv) The dual function is always continuous and concave with the result
that it can be efficient1y maximised using gradient methods to
determine a global optimum. Most large computer software packages76

include gradient optimisation sub-rautines which are suitable for
this purpose.

Apart from the requirements for a saddle point other disadvantages of
the method are:

(i) Primal feasibility (state continuity within constraints) is only

| achieved when convergence has occurred to give an optimal solution
This means that calculations cannot be terminated prematurely to
give a near-optimal solution with savings in computing time.

(ii) First level problems have to be solved many times during the iterative
calculations and require efficient methods of minimisation. This
generally requires quadratic type performance indices for all primal
variables.

Whilst the formulation permits use of non-linear functions and discrete
variables a saddle point can only be guaranteed to exist for wholly convex
programs.102 The case of linear system equations, quadratic performance index,
constraints of upper and lower bounds, together with continuous controls meet
the convexity requirements and allow a direct and efficient solution by de-
centralised techniques. This type of problem is cdnsidered in the next section
in order to assess the computational aspects of the method and form a basis for

investigating its application to practical systems.
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4.3.1 Optimisation of Pumping Costs by Hierarchical Methods.

A hierarchical method of optimisation has previously been developed
and shown to be uSeful for app]ication to certain classes of water
supply systems in order to optimise pumping cost534. However this
formulation is not entirely suitable and may fail to give true optimum
policies. | |

This section describes modifications to the basic method which make
it more applicable for evaluatiné optimal control decisions taking into
account all relevant factbrs;. In particu]ar; methods have been devised
for optimisation of electricity maximum demands and to enable accurate
comparison of electricity unit and demand charges.

The method developed in this section has been app]fed to a simple
water supply system and the results show desirable operational features
which would result in a reduction of operating cost for continuously
variable pumping capability.

4.3.1.1 Review of Hierarchical Optimisation of Linear Quadratic
Problems.

The special case of linear equations and quadratic performance
indices has been shown to be particularly applicable to water systems when
the equatidns describing the system operation can be linearised, the
consumer water demands can be predicted, and the pumps can be controlled
to.give continuously variable flow outputs34. The problem formulation
can be developed in terms of the following given conditions:

(i) A systém described by the linear difference equation:
x(k#1) = A.x(k) + B.u(k) +C(k) (4.51)

N dimensional state vector, corresponding

where x(k)

to reservoir quantity

u(k) M dimensional control vector, corresponding

to pump flow,

| >
"

NxN dimensional state identity matrix,
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B = NxM dimensional control identity matrix,
C(k) = N dimensional disturbance vector, corresponding

to consumer water demand,

k = 0,1...K, stage variable, corresponding to time
increments,
m = 1,2,...M, control vector dimension, corresponding

to number of pumping stations,
n = 1,2,...N, state vector dimension, corresponding

to number of reservoirs.

(ii) A variational quadratic performance index

(ii1)

T K-1 T T
(K), Q(K), x(K) +_'|2 kZ [ x(k), Q(k)x(k)+u(k), R(k)u(k)]
=0

(4.52)

J(x,u) =1 x
(X,u) LR

where J(x,u) = scalar performance index,

Q(k) = NxN dimensional positive definite diagonal
matrix of state weighting factors,
R(k) = MxM dimensional positive definite diagonal

matrix of control weighting factors.

A set of constraints on the states and controls of upper and

lower bounds form

Xnin € 2(6) € Xpay (4.53)
Unin € U(K) € Upay | (4.54)
where Xmax*Xmin = N dimensional vectors of state constraints,
corresponding to maximum and minimum values
of reservoir quantities.
Yagolmin =M dimensional vectors of control constraints,

corresponding to maximum and minimum values

of pump flows.
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(iv) An initial state:

x(0) = X, (4.55)
where X = N dimensional initial state vector, corresponding

to reservoir initial quantity.

The primal problem may thén be defined as:

J(x,u) + min "~ (4.56)
XU

subject to equations (4.51), (4.53), (4.54) and (4.55).

Solution of the primal problem would yield the optimal state and
control sequences x* = (x(1)sx(2)s...X(K))s u* = (u(o)su(1)s...u(k-1)).
in this case the solution can be obtained more efficiently by
formulation and solution of the dual problem as follows:

Introducing the Lagrangian function:

\ K-1 .
L(Xsusp) = J(x,u) + I IXk)T [-x(k+1)+A,x(k)+ B.u(k)+C(k)1(4.57)
k=0 - -
where L(x,u,p) = scalar Lagrangian
p(k) = N dimensional vector of Lagrange multipliers

enables the dual function to be defined as:

9(p » max (4.58)

P
where @(p) = min L(x,u,p) (4.59)
XsU

subject to equations (4.53), (4.54) and (4.55).

The dual function gradient vector will then be
VBG(B) = - x(k+1) + A.x(k) + B.u(k) + C(k) (4.60)

and the dual problem can be solved at two levels as follows:



(a) Subordinate (first level) problem.

For fixed p solve the following independent minimisation
problems to determine initial estimates of x*,u*. For the
given case where the quadratic weighting matrices are positive
definite the minimisation can be efficiently performed by
differentiating to find the stationary point. Further,

for the special case of diagonal weighting matrices, there is
decomposition of the sub-problem state and control dimensions
and the minimising elements are all defined independently.

If the stationary point occurs outside the bounds the minimising
value will be that of the nearest bound.
(i) u*(k) for k = 0,1,...K-1

1 u(k)! R(K).u(k) +p(K)! Bou(k) + min . (4.6)
Z u(k)
subject to equation (4.54), to give:

w(k) = - Rk B, p(k) (4.62)

(1) x*(k) for k =1,2,...K-1
12007 200, x00) = DT x(k) + oK) Ax(K) » min

x(k)
(4.63)
subject to equation (4.53), to give ,
#(K) = 07! (p(k-1) - Alp(K)) (4.64)
(1§1) x*(K)
1‘,500? Q(K). x(K) - B""”Ti""gk min (4.65)
subject to equation (4.53) to give
X(K) = QK7 p(k-1) (4.66)
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(b) Co-ordination (second level) problem.

(1) For fixed p, x* and u* compute J(p) from equation
(4.59) and
YRQQE) from equation (4.60).

(i1) For fixed X* and u* use a gradient method®’ to find

new value of p = p* which maximises @(p) and makesxva(g) = 0.
The complete solution to the dual problem consists of ité;ation
between first and second level problems until convergence is
obtained with §(p*) = J(x*,u*); x* and u* are then the required
solutions to the primal problem. |

4.3.1.2 Adaptation of Hierarchical Optimisation Technique.

(a) Pumping Costs in a Water Network.

Various pumping station models have been derived in Chapter 3
and the relationship between the various unit and demand charges
have been analysed in section 4.2.1.

The unit charge is based upon a unit tariff which is a function
of the electricity maximum demand and the units used over the tariff
period. A reasonably accurate representation of these effects cah be
obtained by allowing variation of the unit tariff for each optimisation
period. A composite time varying unit tariff (Tu(k)) can then be
formed, for each optimisation period, which will include fuel adjustment
and night rebates. The most appropriate pumping station cost model
for this topic is the linear-quadratic model of section 3.3.3 which
shows the relationship between the unit rate and the water flow output
to be of the form:

= 2
Unit rate = stJm(k) + rmm.um(k) (4.67)
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where s linear relationship between pumpiné station

m output and input.

-
[

m quadratic relationship between pumping station

m output and input.
uﬁ(k) = pump flow for pumping station m.
The total unit charge for all stations will then be:
K-1

Unit Charge = £ _T_u(k)[_gT. u(k) + k)t Rutk)]  (4.68)
k=0

where Tu(k)

MxM dimensional diagonal matrix whose elements
correspond to pumping station electricity unit
tariff values and include effects of time interval,

At,(corresponding to each increment of k).

7]

= M dimensional vector with elements of s .

R = MM dimensional diagonal matrix with elements of r_ .
The demand charge is based upon a stepped demand tariff and the
electricity maximum demand attained over the whole of the tariff period.
The present implementation assumes a demand tariff (Tw) constant
for all demands. The relationship between the demands and any station
maximum flow output are of the form:

2

| Demand = s W+ ro W . (4.69)

where Wm = maximum pump flow achieved over optimisation period
for pumping station m.
The total demand charge for all stations will then be:

Demand charge =  Tw (_§_T.Vj_ sul RW) (4.70)

where Tw MxM dimensional diagonal matrix whose elements

correspond to pumping station electricity demand

tariff values.

W = Mdimensional maximum control vector with elements

of Mh.
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(b) Performance Index Requirements.

A suitable performance index should allow for accurate
time varying comparison of all combinations of unit and demand
charges over the complete tariff period and should include a
penalty charge dependent on the terminal state only. To avoid the -
requirement for optimisation over the whole tariff period two

complementary indices cen be derived and iﬁp]emented}

A Long'Term Performance Index can be used to determine

maximum flow requirements for each station based upon optimisation
of unit and demand charges. The optimisation would be performed
using predicted maximum water demand over any reservoir cycle
period and would only be required at the beginning of every tariff
period or for any significant change in maximum water demand.

A Short Term Performance Index can be used to determine

flow requirements (with previously calculated maximum flow requirements
as upper bounds) based upon optimisation of unit charges only. The
optimisation would be performed using predicted normal water demand
and would be required for each reservoir cycle period.

In practice the short term is a special case of the ]ohg f
term and only the latter performance index need be derived as given
below:

(c) Derivation of Performance Index.

On the basis of the above requirements the standard
quadratic performance index is not entirely suitable as it takes no
account of demand charges and will, in fact, encourage high flows

to prevent state deviations during the optimisation period.
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Optimisation of demand charges can be incorporated by

introduction of an additional linear constraint equation:

wo= ou(k) o+ t(k) (4.7)
subject to
0 ¢ u(k) (4.72)
0 ¢ t(k) (4.73)
O €W W, (4.74)
where.g(k) = M dimensional control deviation vector.
Woax = M dimensional upper bound on maximum control vector

Comparison of unit and demand charges can be incorporated by use of
equations (4.68) and (4.70).
The complete performance index will now be as given below

where gﬂk) and Rt can be given low values in order to minimise unwanted

penalties:
- T T T
J(XsUstsw) =1 x(K), Q(K),x(K) +1 Tw (S.w + W, R.W)
2 - s - -
LN T T T
£1 T [x007a00a00 + Tatk)sTul 002k 200 TR0
=0
(4.75)
where Rt = MxM dimensional diagonal matrix of control deviation

weighting factors.

(d) Formulation of Dual Problem.

} (i) Lagrangian ‘1
L(X,u,L,Wsp,sp, ) = I(X,U,L,W) + kz gx(k)T [-x(k+1) +A.x(k) +B.u(k) + C(k)
=0 ]

K-1 T
IR k) K] (4.76)
=0

where Ew(k) = M dimensional vector of Lagrange multipliers.
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and

(ii) Dual function
0 (pop,) > max (4.77)
where 8 (p,sp,) = L (xsustsw,p sp )} (4.78)

subject to equations (4.53), (4.72). (4.73) and (4.74).

and where 'VRX (pysp,,)

- x(k+1) + A.x(k) +B.u(k) + C(k) (4.79)

p, (B sB,) = - W +u(k) + t(k) (4.80)

(e) Solution of Dual Problem.

The solution follows directly from the procedure given
previously. For fixed p and p_ the analytical solutions to the

independent minimisation problem for x*, u*, t* and w* will be:

x¥(k) = ()] (p,(k-1) - AL p (K)) for k = 1,2,...K-1 (4.81)
x*(K) = Q(K)7} p, (K1) | (4.82)
(k) =R lu(k)'.'(ET.gx(k) +p (k) - ng'.‘§ for k = 0,1,...K-1,
(4.83)
together with t%(k) = = R¢™) p (K) for k C 0.1, kel (4.88)
weo= R T K;Zlﬂw(k) -1 Rils (4.85)
- -‘ k=0 2 -

for values between upper and lower bounds. Outside these bounds the
solutions will take on the nearest boundary value.

4.3.1.3 Application to a Water Supply System.

The hierarchical optimisation technique is suitable for
application to any complex water supply system in which the system

equations can be linearised and the pump flows can be regarded as being

continuously variable.



For this application a simple system is requiréd, for
which operational data is available, thereby allowing easy evaluation
of the results and a check on optimality. '

The method described in section 4.3.1.2-has been implemented
as a general purpose optimisation program written in Fortran Iv, for
use on an ICL 1907 computer, and using the F]etéher and Reeves37’76
method of conjugate gradients for maximising the dual function. This
. program was used to predict optimal pumping profiles based on the
following data:

(a) System Description and Data. -

The Hatfield section of the Doncaster and District Joint

Water Board has been chosen as a suitable test case. This system
consists of a water tower supplied directly from a borehole by
use of four constant speed pumps. A closed loop control system
is employed which gives on-off pump controls dependent on tower
level. The operation is based on a 24 hour cycle period and operating
data are logged every 2 hours.

 The operational data and electricity tariffs (for 1973)
have been evaluated to arrive at the set of nominal values in
Table 4-1 where the stage increment is 2 hours starting from 0800
hours, and reservoir quantities are given as deviations from zero
(corresponding to 105 gallons). .

(b) Analysis of Results.

Figure 4-13 shows the resulting variations of reservoir
quantity together with each of the actual and predicted pumping
profiles for the cases considered below. The data has been taken

from Table 4-1 and a cost comparison is made for each case on the
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Table 4-1

Data for Hatfield water supply system

A=1
B=2
C(k) see Figure 1

Tw = 0.0338 (£/kVA for 24h)

k = 0,1,...11.

K=12

M=1

N=1

Q(k) = 0.1 (£/(10%gan)?)
Q(K) = 10.0 (£/(10°gan)?)

R

S

143 kVA/(10°ga1/h)% or ki/(10%gal/h)?

98 kVA/(10°gal/h) or kW/(10°gal/h)

Tu(k) = 0.0128 (k = 0,1,...7); 0.0117 (k = 8,9,10,11)

max

max

Ymin

(£/kWh) for 2h.

0.5 (10%gal)
-0.25 (10°gal)
0.8 (10°gal/h)
0.0

5 2
1 (£/(10°ga1/h)?)
0.8 (10°gal/h)

0.0
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same basis of electricity unit and demand charges only.

(i)

(1)

(ii1)

(iv)

Long Term Performance Index (minimising demand and unit charges)

~ This hés been applied to determine the optimum value of

maximum flow to cater for maximum water demand over any
cycle period. The results show the expected pumping profile
of constant flow at the optimised value where permitted by
reservoir constraints. The cost was £16.77 and the program
required 50 units of computer time.

Short Term Performance Index (minimising unit charges).
These results, obtained by using the previous optimised
value of maximum flow as an upper bound on the pump flow.
are identical to the long term solution but now require

only half the computer time.

Standard Performance Index (minimising tower quantity deviations
and unit charges).

The results, obtained with Q(k) set to 1.0, show excessive
maximum flow requirements. The computer time requirement
is smaller at 15 units but the cost is now non-optimal at
£17.89 which is about the same as required by the simple
level control below.

Actual Pumping Control (minimising tower level deviations).
The results, obtained using the logged data, are close to
optimal for the allowed discrete pump flows at a cost of
£17.97, thus showing that this method of control is

effective for simple systems.
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4.3.2 Extensions to Hierarchical Methods.

The results of the previous section have shown that optimisation
of pumping costs is amenable to treatment by de-centralised hierarchical
techniques under the restrictions of linear system equations, quadrafic
performahce indices and continuously variable pumping. Of these
restribtions the requirement of continuous control variables is likely
to present the biggest problem for realistic applications involving
discrete pumping. In order to extend the usefulness of the hierarchical
approach a theoretical and practical investigation has been made of the
implications of use of discrete controls.

(a) Discrete Control Formulation.

The modifications necessary to extend the baéic method to allow
only discrete control variables can be catered for by defining a
control constraint of the form:

| u(k) € S ' (4.86)
where 53'15 now a set of discrete values and hence conforms to a
non-convex set of finite points.

For this type of constraint there is no guarantee that a saddle
point exists, but if it does exist, and can be found, it will solve
the prob]em{ Assuming a saddle point does exist, to find it, it is
necessary to solve the independent sub-problem minimisations for the
allowed discrete control values. For the typically small number of -
discrete values a direct search could be made to determine which
results in a minimum but a more elegant and efficient method, due to

Everett32, involves defining a continuous differéntiab]e performance



function passing through each of the discrete values. This function
can then be incorporated into the formulation of the sub-problems
and differentiated to determine a continuous value stationary point.
Trials of the two adjacent discrete points will then yield the
minimising value. For the present‘study the performance index
characteristic has already been arranged to pass through each of the
discrete points, thus, modification to the existing computer program
merely involves selection of the adjacent discrete value giving the
lowest value of the sub-problem.

(b) Results of Investigation.

For the above modifications the dual function will still be
continuous and concave but will exhibit discontinuous gradients for
changes between the discrete values. During initial testing the use
of a gradient method for maximisation of the dual function was noted
to cause excessive cycling around gradient discontinuities in the
region of the maximum. This necessitated a change to an optimisation
algorithm based on improvements in the function value (i.e. EO4CAF76).
whilst this change enabled the maximisation of the dual function the
method failed to provide overall optimal feasible solutions.

The reason for the failure is that the method results in an overall
primal feasible solution (system equations in balance for all stages)
only when all the e]eménts of the dual function gradient are zero (i.e.
a saddle point exists since J(x*,u*) = @(p*) only for VE?(R) = - x(k+1)
+ g(x(k),u(k)) = 0). Because the dual function gradient can exhibit

discontinuities (corresponding to changes between discrete u(k) values)




it is quite likely, in a multi-stage system, that some of these
will occur in the neighbourhood of the optimum. If‘any gradient
element changes discontinously from a positive value to a negative
value it can never attain the required zero value to satisfy the
system equations. Failure at any stage will give rise to an
infeasible solution because of the dynamic nature of the system
equations. Figure 4-14 shows a simple geometrical interpretation‘of
these effects in terms of the dual variables.

It could be argued that an overall near optimal solution
would result if the solution was to be accepted up to the first
stage at which infeasibility occurred, a choice befween discrete
control values at this stage could then be made to maintain
feasibility rather than optimality. Continued computations for
optimality could then take place using the forced feasible state
values as new initial conditions and could be repeated as often as
necessary to the end of the optimisation period. Tests showed that
such a scheme was unlikely to be a very promising modification since
the frequency of infeasibility was quite high, necessitating extensive
re-calculations. Consequently there is currently no easy method for
making the choice between discrete values for each infeasible stage,
and furthermore there is no indication of the likely departure from
the optimum.

4.3.3 Discussion.
Previous work has shown that hierarchical methods are very efficient
for on-1ine control of multi-reservoir water supply systems with continuously

variable pumping capability.
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Section 4.3.1 has given the development of an improved formulation,
together with performance indices directly related to eleCtricity charges,
which make the method more applicable to optimisaiion of costs in water
supply systems.

A method has also been suggested for handling the optimisation problems
of the long terms effects of the electricity maximum demand charges and the
short term effects of the electricity unit charges. This is effected by
means of two complementary performance indices which can both be applied
over short term periods.

The methods have been applied to a practical system and the results
show that an optimal pumping policy has been predicted. However, there is
little possibility of improvement in the simple system used. More
significant savings should be possible for complex systems where the operation
depends on many inter-dependent charges and operational constraints.

In general water systems have combinations of fixed and variable
pump flow and optimisation methods should cater for these. To this end
an investigation into the possibilities for extending the basic method by
direct inclusion of discrete controls has been presented. However the
results show that, for multi-stage dynamic systems, the likelihood of
achieving an optimal feasible solution under fhese conditions is extremely
remote. This is also confirmed by related research32’61’75.

If use of this powerful optimisation technique is dictated by virtue
of its other advantages then other modifications must be found to allow
incorporation of discrete controls. One possibility is to use the method
to calculate continuous solution values and use an additional algorithm to

select close discrete values on an optimal basis whilst maintaining a feasible



trajectory. This latter could well prove to be a formidable or even
impossible task for fully optimal solutions but it is anticipated

that algorithms will be found for close optimal solutions.



4.4  LINEAR AND INTEGER PROGRAMMING TECHNIQUES.

Linear programming theory is well documented and standard computer

48’76. Thus it is well worthwhile attempting

programs are readily available

to express the water system optimisation problem in a lineaf programming

format. To achieve this the requirements are for linear system equations,

constraints of upper and lower bounds, together with & linear performance

index. . For the simplified type of system currently studied the system equations

are linear but the control variables can be discrete valued and the perfbrmance

%ndex is non-linear and discontinuous. These difficulties can be resolved

(in principle) by use of integer programming techniques which can cater for

both discrete values and discontinuities by transfocrmations using 0-1 integer

variables. The integréted optimisation problem riow becones a mixed variable

type for which solution techniques are available under limited conditions4’6’]1’5].
This section shows how the control of water systems can be cast as a mixed

linear-integer problem and discusses possible solutions and difficulties. The

formulation is not necessarily the most compact but  is designed to illustrate

the principles involved in a straightforward manner and give an insight inte

solution feagibi1ity.

| 4.4.1 Problem Formulation.

(a) Linear Program.

The standard linear programming problem may be dafined in abbreviated
. form as:
Find X > 0 to minimise J = E]T._g(_ subject to Ay.X ?B, where A is a
coefficient matrix of linear equations in continuous unknowns X, EJ is
vector of equation constants, C; s vector of cost factors and J is

the total cost.
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As a first approkimation an entirely linear programming format
can be devised using cost functions, for electricity unit and maximum
demand charges, which are piece-wise linear over the range of pump
~combination flows for eéch pumping station. These cost functions have
been justified in the piece-wise linear cost model of section 3.3.1 and
“are shown in figures 4-15 and 4-16.
| The water system equations and constraints, equations (4.51), (4.71)

ahd (4.53) can be re-written as:

- x(k+1)-A.x(k) - B.u(k) = C(k) (4.87)
w-ouk)20 o 5 (4.88)
x(k) > X (4.89)
x(K) & Xy ~ ‘ | | (4.90)

for k = 0,1,...K and retaining the previous notation.

Notlng that figures 4- 15 and 4- 16 represent con«ex separable func‘aons]4

— allows spec1f1cat1on 1n terms of the break po1nt co- ord1nates as follows

L
u (k) = eT - :
m mtK)e By (K) i e (K)o (k) (4.91)
L .
where % plm(k) =1 (4.92)
£=1 , .
o T L
“and Woy = fm"gm. = zzl fon® % | (4.93)
L
where 221 G = | o (4.9)
form=1,2,...Mand k =0 1,...K.
Where & (k), gmn(k) f = break points defined on Figures 4-15 and 4-16

for each pumping station.
plm(k). 9m - = sets of continuous variables for each pumping .
combination of each pumping station.
£ =(1,2,...L) is set of pumping combination indices.

m = (1,2,...M) is set of pumping stations.
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The corresponding performance index will be given by:

K-1 MoK-T L L
- gm(klgm(k) +h gm] =L kzo 2{} Iym(K)Pen( K + = hz qm]

(4.95)

The solution efficiency depends on the number of constraint equations
and the number of variables. Taking typical realistic values of L = 4,

M=28, N =4and K = 12 will allow calculation of these from:

NK + MK + M + LMK + LM = 568
3NK + 3MK + 2M = 448

Equations

Variables
This will represent an extensive computer programming problem
in terms of data and format but a solution is feasible and will
determine optiﬁum values of u(k) and w. These represent pumping flows
at each stage and maximum pumping flow achieved over all stages assuming
continuous variation of flow is achievable. In practice only discrete
values may be possible and the next section attempts to modify the solution
and remove the continuity requirement.

(b) Mixed Linear-Integer Program.

One formulation of the mixed linear-integer problem4 is as follows:

T

Find X, ¥ > 0 to minimise J = C1.X + C).Y subject to A X + A,.Y 3 B,

where ﬁ] is coefficient matrix for continuous unknowns X, 52 is coefficient
matrix for 0-1 integer unknowns Y, §4 is vector of equation constants,
C, and C, are vectors of cost factors for X and ¥ respectively and J is

total cost.
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The Tinear program can be formulated as a mixed variables
program simply by re-defining the continuous variables plh(k) and
P to be 0-1 integer valued. 'The con§traints of equations (4.92)
and (4.94) ensure that, for a given value of m over the range of
values of &, only one of each of the variables can have a value of 1.
Equations (4.91) and (4.93) now constrain um(k) and W to take on
discrete values corresponding to allowed pumping combinations and
similarly equation (4.95) ensures that costs are only evaluated for
these conditions.

This formulation has the same number of equations but the variables

are split as follows:

NK + K + M = 152

Continuous variables

Integer variables LMK + LM = 416

Conversion to allow discrete values for both u(k) and w leads to a

1 has noted that sqution

large number of integer variables. Benders
of mixed integer problems is only feasible for up to 30 - 40 integer
variables and thus the formulation must be restricted to this number if a
solution is to be possible. One way to achieve this is to allow u(k)

to be continuous but fo restrict w to take on discrete values by making
only Qom 3 0-1 integer variable. This will change the variables to the
following feasible values:

NK + K + M + LMK = 536
LM = 32,

Continuous variables

Integer variables
This modification can be justified in terms of pumping operations, with
continuous pump flows, by assuming that pumping takes place at the next

highest feasible pump combination for a proportion of the time interval



(k); costs are thus accurately represented for proportional pumping
over reduced time intervals. The maximum demand flow, being discrete,
will take on the next highest value corresponding to the maximum flow
used over the optimisation period.

Possible solution procedures are due to Beales, Benders”’39 a

nd

Land and Doi95] and, of these, Benders partitioning algorithm would appear
to be particularly suitable since it is a primal-feasible method in which
the solution can be stopped at any timé before convergence to yield an
improved control trajectory.

4.4.2 Discussion.

Section 4.4.1 has demonstrated that.it is possible to formulate the
optimisation problem reasonably accurately by a mixed integer format
which corresponds to a piecewise 1inear cost function for electricity
unit chargesand a demand tariff stepped at each pump combination.

The analysis shows that for a realistic network, with the specified
restrictions, current solution techniques are just feasible; extensions
to cover additional operating costs, more complex networks or more
accurate network models could well prove impossible. The major problem
in this respect is in the application to dynamic systems where the
multiplication effect of k for each stage varying parameter results in
several hundred constraint equations and variables. Linear programming
can handle large numbers of constraints and variables by decomposition to
form smaller sub-problems but, in this case, the format of the system
equations prevents easy partitioning of the 51 matrix. Additionally

Ba]inski4 has noted that solution procedures involving integer variables

produce erratic computational performance with a possibility of excessive

-82-



solution times. On these counts the method has not been pursued to
give a full solution but could well prove a topic for further research.

4.5 OVERALL CONCLUSIONS.

This chapter has covered investigation of various techniques for
optimisation of pumping costs and has shown that the optimisation problem,
involving both continuous and discrete confrols. is extremely difficult to
solve for complex systems. Numerical results have been given to show that
both the dynamic programming and the decentralised hierarchical methods can
give optimised solutions for the restricted systems considered. An assessment
has been made of the possibilities of extension to more realistic cases, however,
the complexities of the problem have indicated that there is no .overall ideal
method, each has its own individual areas of usefulness as summarised below:

(a) Dynamic Programming.

System equations can be linear or non-linear.

Controls can be discrete for low dimensional problems but may need
to be continuous for higher state dimensionality.

State dimensionality only handled with great difficulty.
Performance indices can be non-linear and discontinuous and thus
can accurately represent costs.

Constraints can be handled on both states and controls.
Decomposition of large scale problems difficult to achieve.
Computing requirements of extensive high speed memory with lengthy
calculations and non-standard programming format.

Closed Toop control can be obtained directly with backward dynamic

programming or with re-calculation for forward dynamic programming.



(b) Decentralised Hierarchical

System equations must be linear.

Controls theoretica]fjr;e discrete but in practice must be
continuous.

State dimensionality causes only slight problems.
Performance indices must be quadratic which may give less
accurate representation of costs.

Constraints of upper and lower bounds can be handled on both
states and contrbls.

Decomposition of large-scale problems in both time and space.
Computing requirements of moderate memory and solution time
with standardised programming format.

Closed loop control can be obtained by re-calculation.

The presently studied optimisation techniques have, so far, only been
applied to simple networks. Practical systems require methods capable of
hand1ing the following additional features:

(i) distributed multi-reservoir zones with head dependent inter-
zonal flows,

(ii) borehole and booster pumping stations with head dependent
flows and pump controls which can be discrete for parallel
pumps or continuous for variable speed pumps,

(iii) valve flow dependent on heads and continuous valve controls,

(iv) performance indices allowing for costs of variable pumﬁing
efficiency and valve controls.

Further studies make it necessary to evaluate models of these more complex

networks which are compatible with the above optimisation methods. This topic



is continued in Chapters 5 and 6. The final decision on the best optimisation
technique to adopt will depend on the successful evaluation of suitable system

models and the extension of the optimisation formulation to meet the system

operational requirements.
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CHAPTER 5

NETWORK ANALYSIS AND SIMULATION

5.1 Introduction

In an advanced study of water distribution systems an essential pre-
requisite in the availability of computer programs for evaluation of
network responses under both static and dynamic conditions. Many programs
have been developed which can give solutions for static values of network

parameter55’7’22’24?25’30’40’47’49’50’65’66’69’70’72’81’82’84’86’87’101’]03’106.

81 is also capable of performing extended period dynamic

0f these WATSIM
simulation for a variety of operating conditions. This particular program
has been chosen for use because it goes some way towards meeting the require-
ments of the present study and also because of the possibility of conversion
to cover additional requirements in simulation and coefficient evaluation.
The formulation of the program is based upon the following conceptsS].

Water distribution networks consist of nodes connected in pairs by
network elements such as pipes, pumps, valves, etc. Although the network
of any city generally consists of several thousand nodes, the schematic
representatioh can usually be reduced to only a few hundred of the most
important or dominant nodes. Each element in the network can be specified
by a relationship (usually non-linear) which expresses the flow through the
element as a function of the head drop between the nodes at each end of the
element. Most networks contain storage elements in the form of elevated

reservoirs; these integrate the net inflow to give reservoir levels varying

over time periods.
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The network is considered to be solved (static solution) when all
heads and flows are known at one instant in time, and a typical initial
case is when either the head or the flow is known at each node in the
network. A set of non-linear equations can be written in terms of known
and unknown heads and flows which then have to be solved for the unknown
values. The Newton-Raphson method is commonly used for solving the non-
Tinear equations; this involves the iterative calculation of correction
values to the unknowns, where the correction values are obtained by
solution of a set of linearised simultaneous equations with coefficients
contained in a Jacobian matrix of partial differentials.

It is possible to write the defining equations for water networks in
terms of either mass balance at nodes or head balance around loops. The
nodal equations are closely related to the network diagram and the incidence
matrix is sparse since any given node is connected to only a few other
nodes. This sparsity characteristic carries over to the Jacobian coeffi-
cient matrix of the linearised set of equations which contains as many
equations as there are nodes. The nodal approach is also simpler to imple-
ment because the initial unknown flows may be specified arbitrarily and
loops do not have to be considered. Consequently the nodal approach appears
to be easier to use provided that the computer memory and solution times |
are not excessive as a result of the larger number of nodal equations than
loop equations. Fortunately the Tinearised nodal equations of water distri-
bution systems are amenable to efficient solution schemes employing the

sparse matrix method of ordered triangular factorisation97’98,



The network dynamic solution involves calculation of all heads and
flows for each time increment over an extended period and can thys be
adapted to allow dynamic simulation of a network under known operating
'conditions. For this purpose a solution to the reservoir dynamics is
obtained using a predictor-corrector integration scheme and used to
update the inputs to the static solution in each successive time interval.
In the extended period simulation it is necessary to input forecasts of the
node demands over the interval of interest. System demand forecasts may

be made using time series analysis of historical data 16,36,91

(these are
assumed to be available in the present study) and allocated to individual
nodes using the concept of proportional loading.

Based on the topography of a region, the service area corresponding
to a distribution system is divided into several pressure zones and, con-
sequently, each node is further characterised by its pressure zone identi-
fication. Over every interval in the extended period simulation the total
‘outf]ow at the demand nodes must be equal to the net supply for all the
source nodes. This mass balance, when extended to each pressure zone,
permits the simulation to be performed in each pressure zone independently
of the others.

A useful additional feature of a network program is the ability to
analyse responses to changes in operating conditions without necessarily

re-solving the whole network84

. The inclusion of a coefficient solution
permits calculation of derivative coefficients related to all important
network variables. In chapter 6 these coefficients are shown to be the

ones. required to evaluate simplified dynamic models of networks.



5.2 Network Models

This section describes the mathematical models usually employed for

81,84

relevant network elements and emphasises any modified formulations

required for later developments. Alternative models and models for
additional types of e]éments, may be found in Rao et a18].
(a) Pipes
The head loss characteristics of a pipe between nodes i and j
depends upon the resistance between the nodes and can be modelled

using the Hazen-Williams coefficient as follows:

2.63 0.54
q.. = 6.27401 C,, . Dy: h, - h, (5.1)
W o My TN (4
1]
where 93 = flow from node j to node i (cfs)
CHw = Hazen-Williams coefficient for pipe,

iJ

diameter of pipe (ins)

Lij = length of pipe (ft)
hj = head at node j (ft)
hi = head at node i (ft)

This is usually used in the following form to give a consistent
sign for flow as:

-0.54

-0.46
Q5 * Fij .(hj - hi).lhj - hil (5.2)
where ri; is the resistance between nodes i and j given by:
_ -1.85 =4.87
rig = 892083 Ly G - B (5.3)
This expression can be generalised to:
qij = f-ij (h'i’hj’rij) (5.4)



P

(b)

(c)

Parabolic pumps

_ 2
hi-hj = a(ﬁj_) +b(m)+ c (5.5)

Y‘1J r'IJ

where a, b and c are empirically determined constants and rss is an
independent pump control parameter defining the proportion of total
output in use.

Thus:

i 2 | 0.5
a5 = Tij -b + {b° - da(c - |h, - hjl)} - (5.6)

2a

taking positive root for constant, a, positive, and vice versa, and

setting q;; to zero for lhi - hjl >¢ or for'{b2-4é(c-lhi - hjl)} < 0.
This expression also has the general form of equation (5.4).

Pressure Reducing Valves

These may be modelled by assuming that between‘nodes iand j

there is a valve with a setting equal to HPRV'
If hj 3 Hopy 2 hi the valve reduces the head to Hppy to give a head

drop of (HPRv - hi) and flow takes place from j to i given by:

058y, hi|0.54

qij = r'iJ (5.7)

PRV

If hi > Hopy the valve shuts off, no reverse flow takes place and
hence ai5 = 0.

If hj < Hppy and hy < HPRV the valve acts as a pipe with a head
drop of (hj - hi)'



(d) Non-return Valves

In a pipe fitted with a non-return valve, the loss in head due
to the valve itself is usually small and may be either neglected or

included in the pipe resistance, thus:

qij = f'ij (h'i’hj’r'ij) (5.8)
for hj > hi
Reverse flow is not possible and qij is set to zero for
2
hi hj.

(e) Control Valves

These may be manué]]y or automatically controlled and are
currently modelled for both non-return and two-way valves by
assuming that control varies the resistance of the equivalent

pipe to give:

0.8, | -0.46
Gy = T (h, hi)lhj n | (5.9)

and the generalised expression of equation (5.4).

Where ri; is now the independent valve control parameter which can

vary from r..

i for valve fully open to e for valve fully closed.
MIN

(f) Fixed Head Reservoirs

These may be boundary reservoirs or boreholes (feeding head
dependent pumps, valves,etc.) with fixed or with known head variation,

which are modelled as fixed head nodes at the specified levels.
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(g) Variable Head Reservoirs

These are treated as fixed head nodes in each static solution
(section 5.3) but for dynamic solutions (section 5.4) the heads are

updated using the following head-flow relationship for each reservoirﬁ
q;0t = ahi +b h% t+ch, +d (5.10)

where a,b,c & d are empirical constants, determined from the geometry

of the reservoir, h,

; 1s reservoir head, q; is the flow out of the

reservoir and At is the time period.

(h) Demand Models

The consumption of water at each node in the schematic network
representation is dependent upon the types of individual load servicCed
by the nodes (e.g. industrial, residentialyetc). In addition to thé
spatial variation of the load patterns, each of the load types has its

own temporal variation over a 24 hour period. This gives the following

model:
J .
¥ (t) = _§] zij sj(t) 5.11
J_
where
Ci(t) = total consumption at node i for time t,
lij = average demand at node i for load type j,
sj(t) = characteristic curve for load type j at time t, and
J = total number of load types.

5.3 Static Solution

For this the pump and valve controls will be fixed and either the heads
or the flows at all the nodes will be known. The Static solution then

consists of solving for the unknown heads or flows at all the nodes.
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The nodal equations may be written:

H+Q
I o Q3*te3te =9 (5.12)
J=1 \
J#i
for (i =1, .... H¥Q)
where
4% = flow from node j to node i given by fij(hi’hj’rij) in
general. The summation is taken to mean only if nodes
i and j are connected by a network element,
4 = reservoir flow entering node 1,
c; = consumption flow entering node 1,
9; = residual flow leaving node i,
H = total number of fixed head nodes,
Q = total number of fixed flow nodes.

A solution is obtained when all the equations are in balance with gi=0.
For unknown variables of g (qys.....q,) and h-(hH+]""'hH+Q) the
Newton-Raphson method can be used to give successively improving correction

values Ag(Aq],.... AqH) and 4h (AhH+1""'AhH+Q) to the unknowns at each

iteration s as:

-
+ S S
ay” ) Agy
s+1 ‘ q.S A;;S
L = LW 4 A (5.13)
s+1 s s
M1 Mt By
S+] S S
M+ Mg Ahpig
b - by -l | J



Where the correction values can be calculated from:

SN R B ’
9q 53; : 5ﬁﬁ+1 sﬁﬁ;Q
| ' - :
l ' - Aqy 9
D _ .| --aHo S P (5.14)
| . * Ah
| Hl 41
l .
. : l . . . .
39H+Q.. e a9H+Q .'89H+Q AhH+Q IH+Q
Laq] oqy LTIC LT _ 3 i B i

with the left hand side matrix, |og : og | .» defined as the Jacobian, J.
3 |7

By substituting for 3g from appendix 1 it will be noted that the
9q

Jacobian now has the form:

1 _0 . 0 | 99y 39,
0 : alij-{+1 aliH+Q

. 0 : a9y 39‘H
0 01 Ay g
_________ e R
9'» O Yy 9941
: | 3y Myeq
: L )
: L 99,9
e LT

which allows a solution for the head correction using only the last Q
equations and a reduced Jacobian. The unknown flows can be obtained from

equation (5.12) once all heads are calculated to the required accuracy.



Since the set of simultaneous equations are sparse and have to be
solved many times ordered triangular factorisation and sparse matrix
techniques have been found to be very efficient for this purpose8]’97’98.

In the numerical procedure a check is performed for convergence
after each iteration. The criterion for convergence is the amount by
which any of the g; may be different from zero which represents the
maximum permissible unbalanced flow at any node. The magnitude of the
error criterion is given as:

max | g? | € € : (5.15)

i

where € is a pre-specified tolerance factor.

5.4 Dynamic Solution

The extended period simu]ationg]

consists of a sequence of static
solutions which are performed at pre-specified intervals. The dynamics
of reservoir operation are now included and the schedule of pump and
valve settings and load values are used to update the inputs to the
static solutions in every time interval. Each variable head reservoir is
modelled by a differential equation for the reservoir head as a function
of time. These differential equations are integrated in time using a
predictor-corrector scheme in the form of a modified Euler procedure.

The dynamic solution consists of cycling through stepsl(a) to (f) for
each of the time stages, k, until the period of simulation is complete
starting with the following initial conditions:

(i) reservoir heads and volumes at time stage k; h.(k)av (k),

respectively, where reR and R is the set of reservoirs

(ii) boundary heads hs(k) where s€S and S is the set of boundary

inflows
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(iii) reservoir differential equations in the form:
f.(h,v) =0 (5.16)
(iv) pump and valve control settings at k,
(v) demands at the network nodes cj(k) where jeJ and J is the set of load
nodes.
(a) A static solution is performed at stage k to determine heads and flows
with given pump and valve settings and load demands. This will give

reservoir flows, qr(k), and boundary flows, qs(k)'

(b) Initial calculations are made with flows qr(k), qs(k) and Cj(k) assumed
to be constant in the interval (k, k+1). The individual reservoir
depletion is computed as qr(k).At and the total reservoir depletion as

L qr(k).At, where At is the time interval between k and (k+1).
reR

The total boundary inflow is computed as E gg(k)at and the total demand
, SES

outflow as = ¢, (k)At.
jeg

(¢) Prediction calculations are made using results from (b) where subscript p
denotes predictions. The predicted volumetric balance error, for the

network, over the interval (k,k+1) is:

E = I q.(k)At + I q_(k)JAt + I c.(k)At 5.17
p reR " ses S jed d (5-17)

This error is allocated to the rth reservoir in proportion to the flow as:

ey = (k) (5.18)

rgRqr(k)

With this information a predicted volume is calculated for each of the

reservoirs at stage (k+1)‘from:

Vrp(k+]) = Vr(k) + q.(k)ot + €rp (5.19)

-96-



(d)

(e)

(f)

and used to compute the predicted reservoir head hrp (k+1) by solving

the reservoir equation fr(h,v) =0,

4

A static solution is again performed to determine q,.(k+1) and g (k+1)

for given values of hrp(k+1), hs(k+1), vrp(k+]) and cj(k+1).

Correction calculations are made using results from (d) where subscript
¢ denotes correction. '

The corrected volume balance error over the interval (k, k+1) is:

I c;(k)at.  (5.20)

E = I {q.(k)+q.(k+1)}at + I {q.(k)+q_(k+1)}At +
- , CLANRE s(k)+a  ( ),2_ 569

¢ reR

This error is re-allocated to the rth reservoir in proportion to the

flow as:
€ = qr(k) + qr(k+1) EC (5.21)
z q.(k)+ L q.(ktl)
reR reR

With this information a corrected volume is calculated for each of the

reservoirs at stage (k+1) from:

vrc(k+1) = v (k) + {qr(k)+qr(k+1)1%£ te. (5.22)

and used to compute the corrected reservoir head hrc(k+1) by solving

the reservoir equation fr(h,V) = 0.

A check is made for convergence dependent on the reservoir error
criteriomkr,and the difference between the predicted and corrected

heads.

If |hrp(k+])-hrc(k+1)|>xr, hrp(k+1),vrp(k+1) are set to h . (k+1),
vrc(k+1) respectively and another iteration performed from step (d).
If |hrp(k+1)-hrc(k+1)|<kr, h.(k+1), Vv _(k+1) are set to hrc(k+1),vrc(k+1)

respectively, k is incremented by 1 and a solution repeated from step

(a).



The simulation 81

allows for control switching during stage intervals
but this is not relevant here where the pump and valve controls are assumed
to be changed only at each stage k. In addition, other load functions are
available where the simulation does not depend upon using the average value

of load flow throughout each interval.

5.5 Coefficient Solution

The study of water distribution systems includes investigation of the
effects of changes in heads and flows due to changes in operating condi-
tions. In general this necessitates repeat static solutions of the network
equations under the new conditions. However it is possible to calculate
sensitivity coefficients, defining the changes in heads and flows for small
changes in operating conditions, using results from an existing network
so]ution84’86.

This section describes the calculation of sensitivity coefficients
using the simulation program (WATSIM) and incorporating the subroutine (COEF)
developed by the author. The coefficients are those for selected dependent
variables of heads and flows, due to changes in operating conditions, within
the network, caused by variations in selected independent variables of
reservoir heads, pump and valve controls, and load values.

Since ‘the coefficients, for all possible independent variables, may not
be of interest it is convenient to designate selected independent variables
in consecutive order, for each type, by defining:

(i) A vector of reservoir heads 5.(x], oo xN) and designating these

to N fixed head nodes contained in h (h], ..;, hH),
(ii) A vector of pump controls g.(u], cees uM) and designating these to

M pump controls contained in network elements rije
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(ii1) A vector of demand disturbances z_(y], .-+« ¥|) and designating

these to L consumption nodes contained in E.(C]’ ceee cQ+H)'

(iv) A vector of valve controls v (v], .++. Vp) and designating these

to R valve controls contained in network elements rij‘

The generalised network equations can now be written as:

f(x,hyu V)+ag+y =g (5.23)
Q+H
where  f = vector (fi, .... fy ) and f. = ji] fi3(hyshyarys)
oL J#i
h = vector of dependent heads (hH+]’ ceen hH+Q)
q = vector of dependent flows (q], ceee Qy)
g = vector (g], ceee gH+Q)

Expressions for the coefficients can be obtained by differentiating
equation (5.23) under balanced conditions, using each of the independent

variable vectors in turn. Typically, for x, this will give:

- -

3
dg % [% ;% X |
= * - J=--] =08 5.24
x © % [Ts.' i > 2 (5.24)
X
- - -
which can be re-arranged as:
" aq
X .
og : dg . 39g
3q S eniadl Bl 5.25
= ,




Expanding in order to investigate the implications of solving this for the

unknown coefficients:

ag] 39] |3g] 39] Bq] 3q1
| 2, o
' ’ch—H "&ﬂ
| 1 N
l @ J e s em wma e
| ahH+1 ahH+1
: 3*1 BXN
T e T I T T
W Wy e g | [P0 Py

It will be noted that:

391 Bg]
91 39H4q
oX ttOX

L 1 N

(5.26)

(i) The unknown coefficients in the second matrix can be obtained by

solving the above sets of simultaneous equations

(1)

The RHS matrix can be formed directly and evaluated for the

static solution values of q and h (see appendix 1 for

derivatives)

(i)

evaluated during the static solution

(iv)

on a column by column basis of unknowns

The LHS matrix is the full Jacobian which can be formed and

As a consequence of this the static solution can be extended to

The static solution is already mechanised to solve such equations

evaluate the coefficient column vectors for each element of x in turn and

then form the matrix of coefficients:

118
9
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By differentiating equation (5.23) with respect to U, y and v and

using the same procedure the matrices:

-Bq-} 4-39-1

= U

. — . ‘ (5.28)
%h

Bh

el u

|~ =
y

-—- ] - (5.29)
3h

Ch —

= | ]

p— T Paﬂq

Dq W

--l = -—-- | - (5.30)
%h

= |5 |

can be evaluated.

Whilst the above‘procedure evaluates elements of the coefficfent matrices
for all the dependent variable elements of g and h, not all of these may be
required. To facjlitate selection of coefficients corresponding to desired
variables it is convenient to designate these in consecutive order, for
each type, by defining:

(i) a vector of reservoir flows q' (qi ceen q&) and designate these

to N variable flow nodes contained in g (q; .... q).
(ii) a vector of variable heads h' (hi cene hé) and designate these to

P variable head nodes contained in h (hH+] e hH+Q)'
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Then finally form reduced matrices of coefficients by selection of:

(a) NxN matrix Aq‘( 3q' )fr‘om HxN matrix Aq /3q \

3x
(b) NxM matrix.gq'('g_ from HxM matrix Bq /3q
W e
(c) NxL matrix Cq' /9gq'\ from HxL matrix Cq /3q
%y ("52
(d) NxR matrix Dq' _gg_' from HxR matrix _[lq(aﬂ

> |<

2 ]

(f) PxM matrix Bh' /3

01090;
> il IxlIs I<

Q)|
> |

(g) PxL matrix Ch' /9 from QxL matrix Ch /3

)

)

)
(=)

from QxM matrix Bh ( 9 )
(%)

Sl

S <

(h) PxR matrix Dh' /3

)
(%)
(&)

(é) PxN matrix Ah' (3 ' )from QxN matrix Ah
(=)
()
(%)

SR

from QxR matrix Dh(

)

5.6 Computer Program for Network Analysis and Simulation

Qi
I<|l

A computer program (wATSIM)8] has already been developed for the steady
state and extended period simulation of water distribution systems. This
is based upon the theory for static and dynamic solutions reviéwed in
sections 5.3 and 5.4.

Extensive modifications have been made to the program to make it more
suitable for the present study in optimisation and modelling of water
systems. The simulation changes consist of making reservoir nodes eligible
as demand nodes,and additions of pump and valve control parameters together
with facilities’for input of pre-;pecified values for these over the simula-
tion period. In addition sensitivity analysis has been added according to

theory developed in section 5.5. This enables coefficients to be calculated
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‘for specified parameters for each time increment of the extended period

simulation.

5.6.1 Program Input Parameters

The following is a brief 1ist of possible input data but the

actual input is

Program control

Nodes

Lines

Switches

Reservoirs

Load and Control

curves

Load and Control

éllocation

Detail Output

dependent on the type of solution required.

units, static/dynamic/coefficient solutions, output
requirements, load and solution timing, system limits
node ideﬁtification, fixed flow values, fixed head
values, coefficient identification for reservoir
nodes, demand nodes, and variable head nodes

element type, node to'node identification, element
characteristics, coefficient identffication for pump
and valve elements

node or time control parameters, node to node identi-
fication of switched elements

node identification, reservoir characteristics

curve type identification for load curves, head shape
curves and pump/valve control curves, curve number
identification, curve levels for each simulation time

period

curve number, node identification for load and head
nodes, node to node jdentification for pump and valve
elements

output format, node identification, element node to

node identification, snapshot time listing
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5.6.2 Program Description

Fig 5.1 shows a simplified flow chart for the network analysis and
simulation program (WATSIM)8] incorporating the modifications.

The branching logic is driven by T, DT and TNEXT which are simulated
time values in hours. T represents the interval currently in use and
TNEXT the time at the end of the current standard integration interval, DT.
T is initialised at the input value TIN, and the simulation is terminated
when it reaches TOUT.

Pump and valve control curves modify the appropriate element valﬁes
and,for a discontinuous change at T,a static solution is requested, to
generate new heads and flows, by setting DT = 6.

The reservoir flow calculations for prediction use the head at time
T, except for those boundary reservoirs modelled by head‘shape curves,
which extrapolate on a straight line segment for the current load curve
“interval.

Load curves are integrated over the load curve interval and, for
each load curve, the individual loads are allocated to their respective
node by the load allocation vectors. For discontinuous load flow
changes at T a static solution is again required and DT will be set to 0
unless previously set.

At this point a check is made for instantaneous solutions (DT = 0)
which do not require integration of reservoir volume. If, However,
integration is required the head for each reservoir is predicted by
caicu]ation of current reservoir volume from curfent head and modifying
it by current outflow projected over time DT suitably adjusted by a
factor allocating predicted volumetric balance error proportionally to
outflow. This predicted volume is then used in a single variable Newton's
method to calculate reservoir head at T + DT from the reservoir head-

volume relationship.
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With the reservoir heads established, either from a previous
soluticri or from prediction, the heads at consumption nodes at T + DT
are then solved for by a modified Newton-Raphson method which uses
the optimally ordered triangular factorisation of the Jacobian in the
solution of the linear equations.

After the heads at consumption nodes have been obtained, the
flow out of reservoirs at T + DT is re-calculated. A corrected volume
based upon this, the outflow at T,and system volumetric balance is
calculated. This again produces a head for each reservoir at T + DT
by Newton's method. Dependent on the greatest head correction the
network may be re-solved for consumption node heads incorporating
correction of the reservoir volumes. Switching checks are performed
in order to enable the simulation to reflect the effects of the switching
actions. If any switch changes occur DT is again set to O to generate
a static solution. If the reservoir heads are sufficiently accurate
the simulation times are updated. Otherwise the reservoir heads are
corrected by performing yet another network solution. |

Upon completion of the calculations at each time T a coefficient
solution can be generated. This uses the subroutine (COEF) and other
routines in common with the static solution to calculate derivatives
of reservoir flows and load node heads.

At the end of each step the reservoir flows are updated, T is
reset and the heads and flows are saved on peripheral storage until

required for output at the end of the simulation.
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5.6.3 Program Applications

Whilst the possible applications of the program are very wide the
following uses are of direct interest in the present study.

(a) Distribution system simulation

In general, distribution systems are not available for experimental
type research work and in addition the level of monitoring would probably
vbe inadequate. A convenient substitute is the use of a computer simu-
lation program, matched to the actual network, which will provide realistic
responses to any stimuii.

In this case'the program input will consist of the network node,
line and reservoir parameters with load consumption based on predicted
or measured values. Application of pump and valve controls will result
in dynamic variation of element and reservoir heads and flows over the
simulation period. The pump and valve controls can be from a sequence
of known manual operations or in accordance with predicted optimised
values.

(b) Evaluation of missing or inadequate data

In order to accurately simulate a water distribution network it
is essential to have a detailed knowledge of the individual load
values and nodes of application. This is usually impbssib]e to achieve
and the next best requirement is for information on the lumped consump-
~ tion values at representative nodes. Typical monitoring in distrfbution
networks provides hourly records of reservoir levels and control variables;
with this data the program can be used to evaluate equivalent lumped

consumption flows at all reserveoir nodes.
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In this case the program input will consist of the network node
and line parameters but reservoirs will be treated as fixed head nodes
with allowed head variations. Application of known pump and valve
controls and reservoir head variations will result in dynamic variation
of reservoir flows over the simulation period. The actual reservoir
flows can be ca]culated from the reservoir geometry and the head change,
and then subtracted from the simulated reservoir flows to give the
equivalent consumption flows.

(c) Evaluation of linear dynamic models

Whilst the program is capable of giving an accurate simulation of
a network the computations are quite lengthy and the method is not
suitable for calculating optimised controls. For this purpose simpli-
fied modé]s must be derived which still adequately represent the system
dynamic operation. It will be shown, in chapter 6, that the deriva-
tives obtained from the coefficient solution can be used to define a

dynamic model linearised around avefage operating conditions.

If both dynamiﬁ and coefficient solutions are selected, with given
input data, time varying coefficients will be evaluated for each time
period in the simulation.

Alternatively if both static and coefficient solutions are selected
and the input data are average values, over the whole of the simulation

period, then average coefficients will be evaluated.

(d) Evaluation of coefficients by perté@ation

Evaluation of coefficients, for a |inear model, by use of the
coefficient solution gives va]ues as point derivatives. Average values
for larger changes in variables can be obtained by use of the simula-
tion program, without permitting any updating of the reservoir heads,

'so that the dynamic solution reverts to a sequence of static solutions.
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The input data consists of average values for the first static

solution and for each successive solution one of each of the independent

control parameters is perturbed and then returned to its original value.

The

required coefficients can be evaluated by calculating the change in

reservoir flow and variable node heads for the given change in pump or

valve control, reservoir head, or consumption flow.

5.7 Conclusions

- An efficient, general purpose, computer program is required for investi-

gation into methods for advanced control of water distribution systems. The

features

(1)

(1)

(i)

(iv)

essential for the present study are an ability to:

model all common types of network elements, control variables
and head and flow patterns

analyse head and flow distribution as a result of either steady
state or dynamic inputs

perform extended period simulations which reﬁlicate water system
operation

determine the sensitivity of the heads and flows to changes in

operating conditions

whilst other desirable features include a means to:

(v)

(vi)

(vii)

automatically correct network static parameters to force agreement
between network and model for steady state conditions
automatically correct network dynamic parameters to force agreement

between network and extended period simulations

calculate operating costs based on continuousfy variable network

conditions.
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Many programs are available which meet some of the requirements, but,
as far as is known, there are none which meet all of them. A program
which covers items (i), (ii) and (iii) above and hence goes some way towards
meeting the essential requirements has been devé]oped by Rao et a181 for
the US Department of Interior, Office of Water Resources Research. This was
written in Fortran IV and has been adapted, by the author, to suit the two
presently available computing systems (i.e. IBM 370/135 and ICL 1906S) by
means of normal programming modifications.

Further adaptations have also been made to make the program more suitable
for the current investigation. In particular the simulation facilities
have been enhanced to allow full control of pumps and valves over the complete
simulation period. The modifications give both continuous and discrete
control by means of parameters independent of network conditions and the
program is now capable of simu]ating water systems for evaluation of either
manual or trial optimisation strategies. This feature will allow the simula-
tioﬁ program to be used in conjunction with interactive optimised control
algorithms which will form a basis for ultimate on-Tine computer control of
water systems. In chapter 7 the program is used to validate proposed schemes
for overall system operation,

A further requirement for on-line control is the evaluation of linear
dynamic models which are required for efficient calculation of optimal con-
trols. To this end extensive modifications have been made to the program
to cover item (iv) and provide facilities for evaluating sensifivity coeffi-
cients which can be Qsed to define simplified simulation models. This feature
. is used in chapter 6 to yield numerical values for the derived model coeffi-

cients.
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The program can be further extended to cover item (v) by using the
same principle of coefficient evaluation in an automatic scheme for
alteration of network element resistance values to ensure a match between

24,25,84

an actual network and static solution results It is also

suggested that a similar method could be developed giving dynamic matching
as required for item (vi). Pump operating costs for item (vii) can be
evaluated from known pump head increase and flow together with pump effi-

15,16

ciency characteristics These latter items are suggested as topics

for further research in chapter 8.
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CHAPTER 6
SIMPLIFIED DYNAMIC MODELS

6.1  INTRODUCTION

Most previous work on optimised control of water distripution systems
has been concerned with single reservoir systems, or systems which are related

to these by virtue of known flow relationships. This covers multi-zone networks
2,31,38,44,56
57,63,92,93,99.

having individual reservoirs or by selection of dominant reservoirs
A typical instance is the single reservoir system used under the further restrictive
assumption that input pumping flows are independent of heads and can be controlled
at given values. Under these conditions the concept of total volumetric balance
applies and the linear one dimensional equations describing the system dynamic
operation become:
M L

x(k+1) = x(k) + mzl um(k) + 221 yz(k) (6.1)
where X is the stored quantity of water, um(mGM) is the inflow from each of the
pumping stations (1,...M), yz(RGL) is the consumption from each demand node (1,...L)
and k is the stage of the operation.

This equation applies even for non-linear head-flow relationships within
the network but excludes consideration of head dependent pumps and valves. The
same principle can be extended to cover the case of multiple zones consisting of

one reservoir for each zone, under the same assumptions but allowing for

controllable inter-zonal flow, to give the following linear multi-variable formulation:

x(k#1) = A.x(k) + B.uUk) + C.y(k) (6.2)
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where x is the N vector of reservoir stored quantities, u is the M vector

of pumping station and inter-zonal flows, and y is the L vector of consumption
flows. In this case A will be a unit diagonal matrix and B and C will have
unity or zero elements dependént upon system configuration.

More general'systems consist of several reservoirs interconnected by
non-linear head dependent elements such as pipes, pumps and control valves.
Network inflbws are typically from multiple pumping stations where the number,
or speed, of the pumps on-line can be controlled and the actual pump flows are
also dependent on the network head values. Consumption flows are distributed
throughout the network and are assumed to be independent of heads and available as
known functions of time. Whilst total volumetric balance still applies this
will now determine the total volume of water in all reservoirs and will not
indicate the relative volumes in individual reservoirs. A simple linear
formulation as for equation (6.2) is therefore not feasible. Individual reservoir
levels, defining dynamic operation, can only be determined accurately and under
any conditions by evaluating all heads and flows. This requires iterative
solution of the complete set of non-linear network equations to determine the
inter-related values. Such a solution procedure is lengthy, time consuming, and
cumbersome, and is totally unsuitable for practical coﬁtro] applications. This
conclusion is strengthened when considering optimal control with the requirements
of repeated dynamic solutions for each trial change of control variable.

The inefficiency of the solution procedure derives from the accurate
calculation of many intermediate values when only the influence of control and
disturbance parameters upon the reservoir levels is of interest. By sacrificing

extreme accuracy it is possible to derive equivalent reduced sets of equations
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which relate only the important variables. Solution of such reduced sets
can be very fast and this approach paves the wéy for on-line optimal control of
water distribution systems.

Thi§‘quptgrddescribes two independent methals for derivation of equations
defim‘ngsm ,\M'edynamic models together with subsequent evaluation of equation
coefficients. Whilst the two methods have been developed independently they are
somewhat complementary and in certain instances the coefficients are closely
related. Taken together the methods present a balanced view of current modelling
techniques, each'with a specialised area of application relating to previously
described optimisation methods. The first of these methods has been deveioped
by De Mger et a1]6, and results in non-linear equations with discrete control
variables which can be used for optimisation by means of dynamic programming
techniques. The second method has been developed by the authorw’94 and results
in linear equations which can be used with any of the optimisation techniqﬁes

described in Chapter 4.
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6.2 NON-LINEAR DYNAMIC MODEL.

It has been noted that alternative models, allowing fast network
simulations, are required for optimal control of water distribution systems.
One result of this search has been the development of a macroscopic

15,16,17,18,19,20,7 which calculates only major heads and flows, as

model
opposed to a microscopic model which calculates all heads and flows. The

evolution of this macroscopic model, with a vastly reduced number of yariables,
allows a rapid system balance to be performed. Given pumps on-line at each
§tation, reservoir levels, and total demand, the model enables calculation of
pumping station heads and flows, reservoir flows, and selected internal network
heads. The static model now consists of a reduced set of non-linear equations
derived from conventional network equations and additional empirical relationships.
Extension to a dynamic model is catered for by inclusion of the time varying
integral re1atiohship between reservoir flow and level. In order to provide
optimised operation a measure of the operating cost is required, with the
electrical energy used in pumping being ca]cuf;ted using values of heads and

flows already determined for the simulation.

6.2.1 Macroscopic Model.

(a) Pumping Station Relationships.

Each pumping station typically consists of sets of pumps which
can be put on-line in various preferred combinations. The head increase
across the station can be related to the individual pump equation (3.2)
by defining general coefficients dependent upon pump combination in use.
Taking the power index to be 1.85, for consistency with other equations,

gives:
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1.85

Ahg = 3ns1 * qps2Vp : (6.3)
j € J(m)
where Ahm = head increase across station m for jth operating condition.

m = station index number chosen from (1,2,...M).

M = total number of stations.
w, = station flow for jth operating condition.
am‘].i = array of station constants.
J(m) = set of operating combinations.’

The station suction head, Sp? for all pump combinations can be expressed as:

_ 1.85 1.85 '
Sm = Odm * P2 ¥ + by Up (6.4)
where y = total demand
bmi = station supply constants.

Adding these values will give the station discharge head, hm s 452
hm = s, ¢t Ahm (6.5)
The electrical energy used in pumping water can be obtained by integrating

equation (3.11) to give:

e, = C u,. &h ~ dt _ (6.6)
t
o mj |
where e~ = electrical energy for station m over simulation period t,

to tf.
C = constant relating electrical energy to water energy.
= station efficiency for pump combination j.
By use of results from section 3.3 the pumping station efficiency can be
expressed as:
mi % et T Gg2 ot Cngst U (6.7)

where cmji = station efficiency constants for each pump combination.
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(b)  Network Relationships.

Detailed equations relating individual pipes and nodes are not
required provided that the overall head drops from pumping stations to
reservoirs can be found. An empirical relationship giving head drop, Ahmn'

from the mth station to the nth reservoir has been shown to be:

M
_ 1.85 - . . 1.85
Ahmn = dm] + dm2 y + iil dm(1+2) U (6.8)
where n = reservoir index number chosen from (1,2,...N)
N = total number of reservoirs.
dmi = network head drop constants.

It is possible to evaluate coefficients whjch will form equations
ke]ating each pumping station to each reservoir. However, in practice,
one reservoir will be designated as a reference for each §tation, the
particular reservoir being determined by the equation exhibiting the
greatest correlation with the data.

Satisfactory service to customers is part{ally based on a maintenance
~ of water pressure within specified limits. Pressures at internal points

in the network can be found from:

1.85 M N
hp = e + €2 y + m§1 ep(m+2).hm + n}i]ep(n+M+2). Xp (6.9)
where hp = pressure at head node p
p = head node index chosen from (1,2,...P)
P = total number of head nodes.
ebi = network head node constants.
X = level of reservoir n,

The empirical relationships are based on the assumption that the actual
distributed demands throughout the network are proportional to the total
demand. This means that only the total demand need be monitored instead

of all the individual consumptions. As an aid in assessingthe total demand
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the following relationship must hold:

M N :
yor mzl L n§1 on (6.10)
where 9, = reservoir inflow.

(c) Reservoir Relationships.

The flow into the nth reservoir, q,» can be expressed as:

N

M
(4 0054
q, = fnl + fnz.y + 121 fn(1+2).xn

+ I fn(m+N+2).um - (6.11)
m=1 ,

where fni = reservoir flow constants.
Because of the storage capabilities the reservoir level will vary with

time according to:

| xn = anqn (6.]2)
where ;n = time derivative of nth reservoir level.
o, = relationship between flow and level based on reservoir geometry.

If o, is assumed to be independent of level then the time varying level of

the reservoir will be given by:

t+At »
xn(t+At) = a, { qn(t)dt + xh(t) (6.13)
where At = time interval over which the reservoir level is to be
calculated.

6.2.2 Dynamic Simulation by Non-Linear Model.

For this model a closed form solution cannot be found and the simulation
consists of a sequence of static balances interconnected by updated reservoir
levels. Use of the simplified empirical equations now allows a rapid static

solution and, overall, a rapid simulation can be obtained.
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The simulation period will be from times to to tf and all variables
will now be denoted in terms of time t.
Equating head drops from each pumping station to their respective

reference reservoirs will give the following set of equations:

s,(t) + ah (t) = x(t) + ah_ (t) T (6.14)
(m=1,2,...M)
which can be expanded using the previously derived equations (6.3), (6.4),
and (6.8).

For any given pump combinations all pumping station flows, um(t), can be
calculated in terms of known values of total demand, y(t), and reservofr
1évels, Xh(t). Substitution of calculated values of qn(t) in equation (6.11)
will then allow evaluation of reservoir flows qn(t) for all reservoirs.

Using these values of qn(t), updated reservoir levels, Xh(t+At), are
determined by numerical integration of equation (6.13). The above sequence
is repeated, for appropriate pump combinations, starting fromvto until the
simulation is comp]éte at t..

During the course of the simulation the pressures, hp(t), at
selected head nodes can be determined by use of equations (6.5) and (6.9)
for known values of y(t), um(t) and xn(t).

The total electrical energy, E, used in pumping over the simulation

period can b; obtained from:

E o= Ley < (6.15)

with energy for each pumping station, e’ evaluated using equations

(6.3), (6.6) and (6.7).
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6.2.3 Evaluation of Coefficients.

The accuracy of the model depends largely upon the accuracy of
the equation coefficients (assuming correct formulation of the equations)
and one method of evaluation is by a statistical analysis of actual

operating datals’]6

. For this task the following data are required on
a periodic basis: |
Pumping stations - suction head, Sy discharge head, hm;
flow, Uns electrical energy, ene
Networks - total water demand. Y heads of selected nodes, hp.
Reservoirs - Tlevel, xn; flow, qp-
An alternative to use of actual data is to generate the required values
by means of an accurate extended period simulation matched to the network.
For the given data a regression analysis is performed to determine
the best fit coefficients for the derived equations. An examination of
the correlation coefficients facilitates removal of any statistically
insignificant terms.
6.2.4 Discussion. s{mflifiﬁol

]5’]6. have developed a useful . A network model

De Mger et al
based on a set of non-linear relationships between pump and reservoir flows
and total system demand. In this case the coefficients are evaluated by
regression analysis of operational data. The model caters for control by
on-off fixed speed pumps and is not suitable for use with continuous
type controls such as valves, variable speed pumps, or in-line booster pumps.

Extensive validation tests have been performed which show that the

models are very accurate under strictly proportional demand loading.
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For disproportionate loading the accuracy is reduced but may still be
acceptable. As part of these tests the model has been applied to
give on-line control by use of a simplified single state dynamic

programming algorithm'>*1°,
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6.3 LINEAR DYNAMIC MODEL.

Linear theory is now well established and most suitable for analysis
of large scale systems, consequently it is worthwhilé searching for a
linear model to represent the system under study. This section gives the
development, by the author, of a linear dynamic model which describes the
basic system operation in terms of control and demand action on reservoir
levels. The final version meets the requirements of a wide range of realistic
distribution systems by catering for multiple reservoirs which may be inter-
connected, or supplied,by means of head dependent pipes, pumps and control
valves.

The model linear static equations are obtained by linearisation about
instantaneous operating points. Conversion to dynamic equations is then
obtained by classical solution of reservoir time varying integral relationships
for constant coefficients. Several proposals are made for evaluation of the
equation coefficient;. of which the most efficient uses the coefficient solution
feature of the computer program described in Chapter 5.

6.3.1 Review of Network Analysis.

The development of a linear model is based upon the principles of
network analysis which are treated in detail in Chapter 5. This section
gives a brief overall review of the analysis with emphasis now placed on a
format suitable for evaluation of model equations in standard control
systems terminology.

A complete network analysis involves calculation of future reservoir
levels, over an extended time period, for known pump and valve controls
and consumer demands. This can be achieved by formulation and repeated

forward solution of static and dynamic network equations as outlined below:
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(a) Network Equations.

These can be formulated by considering the flow balance
requirements at each node which will give:
fi+tay+yy = 0 (6.16)
(i=1,...N+P)

where fi = total element flow at node i.
q; = reservoir outflow at node i.
y; = consumer demand at node i.
N = total number of reservoir nodes.
P = total number of variable head nodes.

Summation of element flows at a node can be expressed as:

N+P £
f, = L . (h;,h.,r
j=1 ijgyity

J#

is) | - (6.17)

generalised expression for individual element flow which

£
=
1]
3
m
.h
-de
<.
n

only has a value for elements connecting nodes i and j.

pressure head at local node 1.

>
—to
n

h. = pressure head at adjacent node j.

rij = independent element control parameter corresponding to fixed
resistance for pipes, variable resistance for valves, and
variable flow control for pumps.

It is convenient to introduce control system terminology here to standardise

further developments and this is achieved by expressing equation (6.16)

as a set of generalised network equations in the following form:

f (x;h,u,v) +q+y=0 (6.18)

where f = (fl""fN+P) vector functional, corresponding to network link

flow relationship.
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x = (x],...xN) storage node state vector, corresponding to
reservoir level.

h = (h],...hp) non-siorage node state vector, corresponding to
node pressure head.

u = (u]....uﬂo pump control vector, with um corresponding to
rij for pump elements.

v = (v],...vR) valve control vector, with Ve corresponding to
rij for valve elements.

q = (q]....qN) storage flow vector, corresponding to reservoir

outflow.

y = (y],...yL) disturbance vector.‘corresponding to distributed
consumer demands defined as network inflows.

L = disturbance vector dimension, corresponding to total number of
distributed consumer demands.

M = pump control vector dimension, corresponding to total number
of pumping stations.

N = storage node state vector dimension, corresponding to total
number of reservoirs.

P = non-storage node state vector dimension, corresponding to
total number of variable head nodes in network.

R = valve control vector dimension, corresponding to total number
of valves in network.

(b) Static Solution.

The unknown variables will be taken to be q and h and the static
solutions will determine instantaneous value for these with x, u, y and

v held constant.
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Defining the residual unbalance, g, in equation (6.18) to be:
g=1f(xhuy) +q+y (6.19)
requires fhat‘g = 0 for an exact solution.
The Newton-Raphson method is commonly used for solving equations (6.19)
which involves iterative calculation of correction values, 5q and ah, to

the unknown variable from:

A
J ['%'] = -9 (6.20)
&h _

where J is the Jacobian of partial derivatives given by:

= = | = (6.21)
3 ! 8h

The set of simultaneous equations (6.20) can be solved efficiently for
Aq and Ah by use of the Gauss-Jordan e]iminétion procedure where all
evaluations use the current iteration values. The unknown variables are

then updated at each iteration, s, according to:

[_%ﬂ] - [.gé] + [.L.\gﬁ] (6.22)
hs+] hs Aﬂs

iterations ceasing when g is sufficiently close to 0.

(c) Dynamic Solution.

Introducing the time variable, t, in order to obtain a solution to
the continuous reservoir dynamics, the unknown variable will now be
x(t+at) and the dynamic solution will determine values for these using known

values of x(t) and g(t).
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The reservoir dynamic relationship can be expressed'as:
X(t)
where x(t)

F

F.q(t) (6.23)

time derivative of reservoir level.

N x N dimensional diagonal reservoir coefficient matrix

of elements (a].....aN).

nth reservoir coefficient relating water level to quantity.

Q
]

Assumed to be independent of level, which is reasonable for
typical reservoirs.

The solution of this yields:

t+At
x(t+At) = F [ q(t)dt + x(t) (6.24)
- t
where At = increment of time corresponding'to required dynamic

solution values.

Since gq(t) depends upon x(t) equation (6.24) cannot be so]ved in closed
form and numerical integration methods must be used. The procedure given
in Chapter 5 solves equations (6.19) and (6.24) iteratively and uses a
predictor-corrector integration scheme to update reservoir levels and
flows over each time interval. |

For typical average operating values of E?(t), x?(t) and x?(t),
which are constant over each solution interval, the time varying
trajectories of 5é(t). g?(t) and h?(t) will be evaluated at each interval,
At, over the complete simulation period.’

6.3.2 Development of Linear Dynamic Model.

This model will be expressed as a set of linear dynamic equations
which can be solved explicitly for the dependent variables in terms of

known operating conditions.
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Now for differential changes in 5?(t), E?(t), z?(t) and !?(t) the
resultant changes in g?(t) and g?(t) will be given by expanding equation

(6.18) about the expected operating values to give:

Taq(t) ] [3g(t) ] (3q(t) ] [3g(t)]
[dmt)] | TG oy (5] T |
e N RS Tl « dx(t) + |-==-- + du(t) + |----- e dy(t) #----- «dv(t)
dh(t) ah(t) ah(t) ah(t) sh(ty} —
. LB_X[t] o Lay—( j o Lal( E) 4 LBJ tl_
(6.25)

where dx(t) = (x(t) - 5?(t))is differential change from expected value
to actua® value, with similar definitions for du(t), dy(t),
dv(t), dq(t) and dn(t).

- In terms of matrix Coefficients, which remain to be determined, equation

(6.25) can be written as:
dq(t) = Aq(t). dx(t) +Bq(t).du(t) + Ca(t).dy(t) + Dq(t).dv(t) (6.26)

dh(t) = Ah(t).dx(t) +_§h(t).dg(§? + Ch(t).dy(t) + Dh(t).dv(t) (6.27)

2

A simplified diagram to illustrate these results is shown in Figure €-1.

(a) Storage node equatiens.

Combining equations (6.23) and (6.26) will give:

d__i(t) = _F_{Aq(t)- dx(t) +Bq(t).du(t) + Cq(t).dy(t) +_9_Q(t).d_\1(t)} (6.28)

which has a_solution over each increment, A, of:
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t+At t+At
E-E.Aq(t).t dx(t) - JE-E.AQ(t).t E{[_g_q(t).dg(t)+£q(t).dx(t)+gq(t).d1(t2} d
t t ‘
(6.29)
Now for Aq(t), Bq(t),Cq(t), Dq(t), du{t), dy(t) and dv(t) constant
over each interval at, but allowed to vary from interval to interval, the
solution of equation (6.29) can be exbressed as follows (see E]gerd29 for

classical solution details):

ax(tHat) - dx(t) = A'o {ﬁX(t) (dx(t) + Bx(t).du(t)+Cx(t) .dy(t) +Dx(t) -dx(t)}

(6.30)
where éfexp = (eéx(t) - I)ﬁ?l(t)
Ax(t) = F.Aq(t). at
Bx(t) = F.Bq(t). at
ot = F-La(t). at
Dx(t) = E.Dq(t). at
1 = unit diagonal matrix.

The average value of reservoir level during each interval is required,

for evaluating pressure node average values, and can be calculated from:

At

: A.exp.i.r{ﬂq(t).di(t)+§_q(t).dy_(t)+_C_q(t).dx(t)

dx2(t) = dx(t) +1_
- At 0

+ Dq(t), q!(t)} dt
(6.31)

which has a solution of:
déa(t) = dx(t) + A"exp {_I_\_X(t).d_)g(t) + Bx(t).du(t) + Cx(t).dy(t)+ _Q_X(t).dy_(t)}

(6.32)
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where qéé(t) = average value of reservoir level during interval At.
" - Ax(t) _ =1 - =1
Woo = - pEYy 1} Al

Equation (6.30) can be re-arranged in standard form as a set of discrete

time linear dynamic equations thus:

qgum)=ﬂ%ﬁ%q@)+§WUL@“)+£W“LQ“)+EWHLQH) (6.33)

where A'x(t) = 1 +-’-\-.exp' Ax(t)
B'x(t) = A'exp' Bx(t)
C'x(t) = ﬁ'exp.gx(t)
D'x(t) = A'yyp5. Dx(t)

Equation (6.30) can also be expressed in terms of reservoir flow, by

use of equation (6.26), to give:

dx(t+at) - dx(t) = A'exp. F. dq(t). At (6.34)

As a special case, for reservoirs whose levels change by only a small
amount over each time interval, then Ax(t) << 1 andA'exp = 1.
Equation (6.34) now reduces to dx(t+At) = dx(t) + F.dg(t).At, which is the
solution of equation (6.24) for constant reservoir flows, at the initial
values, over the interval At.

(b) Pressure node equations.

Whilst the time varying heads of pressure nodes are given at each
interval by equation (6.27), there is also a requirement (for subsequent
optimisation purposes) for calculating average head increase across pumps
during each interval. The linear model facilitates this and, as an

illustration, consider the case of pump elements connected between two
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variable head nodes each of which will have head changes given by an
expansion of equation (6.27) as follows:

N M L

dh,(t) = nil a;n(t).dx (t) + E] byp(t).du (t) + 2E]ciz(t).dyz(t) +

R

rE] dir(t)' dvr(t) (6.35)
where ain(t) = element of matrix Ah(t) corresponding to variable head

node i and reservoir node n, with similar definitions for
bim(t)’ ciz(t) and dir(t)'
The generalised expression for head changes across all pumping stations can
then be written as:

dz(t) = Az(t).dx(t) +Bz(t).du(t) + Cz(t).dy(t) + Dz(t).dv(t) (6.36)

where dz(t) (dz](t)....dzm(t),...dzM(t)), which is the vector of

pumping station head changes.

dzm(t) = (dhi(t) - dhj(t)), which is the head change across station m
connected between nodes i and j.
Az(t) = matrix with elements formed from (a, (t) - ajn(t))’ with

similar definitions for Bz(t), Cz(t) and Dz(t).

The average values of pumping station head changes during each interval
can now be obtained by‘substituting for average reservoir levels from
equation (6.32) to give:
qfﬁ)= Edﬂ.%ﬁ)+§QUL@U3+£%HLQH)+QQHLQR) (6.37)
where qgé(t) = average value of head change across pumping station during

interval At,

Az(t) = Az(t) +Az(t). A . AX(t)
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B'z(t) = Bz(t) + Az(t). Arexp' Bx(t)
c'z(t) = Cz(t) + Az(t). A?exp' Cx(t)
D'z(t) = Dz(t) + Az(t). A"exp' Dx(t).

(¢) Discrete Time Formulation.

Introducing the stage variable, k, will allow formulation of discrete
time equations which are suitable for efficienf optimisation methods. In
addition, dynamic simulations are usually evaluated in steps of time
intervals, At, from t = to to t=t. The transformation can be obtained

by putting t = k.At in selected equations to give the following important

results:
qi(k+l)aA'x(k).qi(k)ﬂg‘x(k).qg(k)fg'x(k).ql(k)fg'x(k).ql(k) (6.38)
qgé(k) = A'z(k).dx(k)+B'z(k).du(k)+C'z(k).dy(k)+D"'z(k).dv(k) (6.59)

This set of generalised linear dynamic equations with stage varying
coefficients give the deviations from the expected state trajectories for
differential changes in the operating values. These equations should also
be applicable for small, non-differential, changes in consumer demands under
optimal control conditions. |

The next section discusses methods of evaluating the coefficients
and also shows that a simpler model can be constructed by use of overall
average operating values to form stage invariant coefficients. The
deviations from these average operating values will be much larger and the
results less accurate, but some overall cancellation of errors should occur
and it will be shown that, for a typical water network, acceptable results

have been achieved.

-130-



(d) Model extensions.

Whilst the above modelling procedure can cater for any number
of distributed demands it may be desirable to aggregate the effects
of these at the N reservoir nodes. This requirement arises because of
the‘difficulty in monitoring.and predicting numerous minor demands.

It will usually be easier to monitor the reservoir inflows and outflows
together with.any major metered demands and transform these into non-
interacting lumped disturbances with predicted variations based on knowledge
of the type of distributed demand (e.g. industrial, domestic, etc.). Since
the elements of Cx(k) determine the proportion of distributed demand
taken from each reservoir this can be accomplished by use of the
transformation:

dy'(k) = Cx(k).dy(k) (6.40)
where dy'(k) = (dyi(k)........dy&(k)) is the vector of lumped reservoir
disturbances.
A reduction in dimensionality of the model may be possible under 1imited
circumstances (e.g. adjacent reservoirs of similar heights and dimensions).
If analysis shows that dxi(k) = dxj(k) contracted coefficient matrices can
be formed by adding rows 1 and j for Ax(k), Bx(k), Cx(k) and Dx(k) and
columns i and j for Ax(k) and Az(k).

An additional factor which can affect system operation is change of
level of boundary reservoirs. This effect can be easily incorporated in
the model by defining an additional independent variable, corresponding to
these level changes, with coefficients related to the resultant changes in

flow of the internal reservoirs,

-131-



6.3.3 Evaluation of Model Coefficients.

The model coefficients cannot be calculated directly since no
equations may exist for g(k) or h(k) in terms of x(k), u(k), y(k) and v(k).
Such relationships will usually be in terms of statés. h(k), of intermediate
nodes which are themselves dependent on x(k), u(k), y(k) and v(k). In
spite of these problems methods have been devised,by the author, for
obtaining coefficient values. The methods described below initially
generate instantaneous network coefficients which are subsequently
manipu]ated to provide the reduired coefficients for the standardised
equations (6.38) and (6.39).

For numerical convenience the required exponential factors can be

expressed as:
2

Ap = 1+ +’12T Ax - - (6.41)
2
Roxp = Ll Bxol Bxt .o (6.42)
2
A" = 1 I +1 Ax+1 Ax + ... (6.43)

—exp T 3IrT I
and evaluated by including sufficient terms to give the required accuracy.

(a) Evaluation by Coefficient Solution.

One method of evaluating these stage varying coefficients, based on
sensitivity analysisg4. is given by differentiation of equation (6.19)
‘under balanced conditions. For determination of

Aq(k) Ba(k) Ca(k) Da(k)

cmmm] s =] cme—]| oOr |Sa---

Ah(k) Bh(k) Ch(k) Dh(k)

differentiation will be with x(k), u(k), y(k) or v(k), respectively and,
typically, for| Aq(k)| this will give:

Ah(k)
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[ aq(k)

dg(k) ag(k) ag(k) 1 og(k) ax(k)
— = + ' o« | ===~ = _0_ (6.44)

dx(k) ax(k) 3q(k) 1 3h(k) dh(k)

| ax(k)

and, by use of results from equations (6.21), (6.25), (6.26) and (6.27),

s, | B al (6.45)
An(k) 3x(k)

where J(k) is a by-product of the static solution obtained for each
“increment of the dynamic solution and expressions for the right hand side
can be obtained from equations (6.16) and (6.18).

Solution of the sets of simultaneous equations (6.45), etc, at

x2(k)» uP(k), y2(k) and ¥3(k) will then yield:

| Aa(k) Ba(k) Ca(k) ] Da(k)
- ’ ——— ’ ———— an -
Ah(k) Bh(k) Ch(k) Dh(k)

For stage varying values this method requires that the coefficients be
evaluated for each value of k during a dynamic simulation. This will
necessitate extensive computer time and storage of resulting values.

Under the conditions of zero reservoir flow all reservoir levels will
be constant and independent of k, hence simplified results follow if close

average operating values are defined, over all k, as x2

, g?, 2? and 1? which
make gé(k) zero and g?(k) constant. Use of these constant average values

in a single static solution will allow evaluation of stage invariant
coefficients Aq Bq Cq Dq

: ceml oy |- s |- and am=
; Ah Bh Ch Dh
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A computer progrem is described in Chapter 5 which will automatically
generate the above coeffibients upon selection of the coefficient solution
option. During a dynamic simulation stage varying coefficients will be
calculated and for a static solutjon stage invariant values will be

produced.

'(b) Evaluation by Off-line Perturbation

EJ

Evaluation of the coefficients by sensitivity analysis gives point
dérivatives which may be inaccurate in non-linear regions or for large
deviations. Addifionally a computer analysis program is required which
uses the nodal equations and in which J can be accessed. A further method
invo1vés perturbing individua] elements of 5?, g?, XF or 1?, in order to
obtain static solutionswith all q and h 2llowed to take on new values, and

evaluation of the coefficient elements individually as average gradients.

Typically for |Aq Bg Cq Dq
-=-| (with similar results for {<--{ , |=--}and |- )
Ah ' 1 Bh Ch Dh
an element 350 normally given by Eﬂi or Eii, can be approximated by
X s OX 5
J J
Aq A“h'i : .
ij or ij where Aq. (1 =1,....N) and Ahi (i =1,....P) can be

obtained from a single static solution for a perturbation of ij.
The coefficients will now be more representative if the perturbations are
chosen to‘représent values encountered in practice.

Evaluation of all coefficients in this manner will reduire more bcmputer
time since the static sclution must be obtained N + M + L + R times, however

each solution will be from a close starting point and the method will be
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feasible for simple systems. An integrated method for evaluating
coefficients in this manner, using a dynamic solution as a sequence of
static solutions, is described in section 5.6.3.

(c) Evaluation by On-line Perturbation.

The previous two methods give coefficients which are related to the
simulated network and hence they will only give accurate results if the
simulated network can be matched to the actual system under all operating
conditions. A desirable way of evaluating the coefficients would be
by means of an on-line method akin to that described in section 6.2 for
evaluation of the non-linear model coefficients. The technique would
parallel that of the immediately above off-1ine method of part (b)
in which the independént variables x, u, y and v are perturbed one at a
time, and the resultant changes in reservoir flows, g, and pressure node
heads, h, are monitored. Determination of pump control perturbation
effects would present no problem since individual pumps could be switched
on and off to yield Aq, (n €N, m €M) and Ah_(p € Py, m € M).

T o
m Aug

Assuming all demand flows lumped at relevant reservoirs then all

coefficients fﬂﬂ (n €N, 2€L) will h;ve values of unity and éEE (p EP,2 €L)
Ay, iy,

will have values of zero.

Valve controls could be varied by specified amounts to give

fﬂﬂ (n €N, r €R) and fﬁg (p €P, r €R).
v, v,

The coefficients most difficult to evaluate would be those for state
perturbations involving the effect of reservoir level variations upon

adjacent reservoir flows, Aq; (i € N, n € N), and upon adjacent pressure
X
n
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nodes, EEE (p € P, n €N). Because of the storage capability it
AX
n

would be impossible to achieve a rapid change in level. Only slow
changes would be possible and then it is likely that other uncontrollable
disturbances would have occurred.

This techniqué has not been investigated in practice but it would
appear that, in spite of the associated problems, it is worthy of

further investigation.

6.3.4 Application to Practical Water Systems

The proposed method for deriving linear dynamic equations has
been applied to typical water networks and validated by comparison
of measured and predicted results. The first application uses a
two reservoir single zone network and, for a simple demonstration of
the principles, the pump flows were assumed to be independent of the
network pressure levels and also the reservoir levels were evaluated
under the initial assumption that the reservoir flows remained
constant over each time increment. The second example treats the
case of head dependent pumping for two interconnected zones allowing
for exponentially variable reservoir flows over each time increment.

(a) Doncaster Eastern Zone

‘The Doncaster Eastern Zone of the DDJWB has been chosen as a
suitable system for analysis for which network details and historical
operating data are available.

The network, shown in figure 6-2, consists of 36 pipe and valve

links interconnecting 24 pressure nodes and 2 nodes with storage
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capability provided by 2 water towefs with capacities of 0.3 and
0.25 million gallons. Water is supplied to the network by means
of 3 independent boreh61e pumping stations together with inter-
zone transfer via one booster pumping station, each_station using
parallel combinations of fixed speed pumps.

Apart from one large metered demand (read at weekly intervals),
individual values for the distributed consumer demands were not
available and suitable data for analysis were obtained by performing
static network solutions in conjunction with measured reservoir
levels. This procedure was carried out for 12x2 hour increments
to determine equivalent agéregated reservoir demands for known pump
and reservoir flows together with the mean flow value of the
metered demand. The pump and derived demand flows u(k) and y(k),
corresponding to the actual operating conditions, are shown in
figure 6-3. No information was available on effects of valve
operations, consequently all valves were treated as fixed resistance
pipe links and catered for in the model by setting the valve control
matrix Dq equal to zero.

For this network the simplified model, corresponding to
equation (6.38), can be written in terms of 2 reservoir states, 4
pump controls and 3 demands. To demonstrate the dependence on the
flow coefficients, and noting that A' .~ = 1 (for reservoir flow

p
constant over each interval), equation (6.38) can be re-written as:

dx(k#1) ={1 + F.Aq.at} dx(k) + F.Bq.at.du(k) + F.Cq.At.dy(k) (6.46)
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14 69

Fig. 6-3 Actual and Predicted Reservoir Levels
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or:

4
dx](k+1) ) 1 0 a].At 0 a1 2 dx](k)
= + .
i | duy (k)|
oAt 0 biy b2 B3 byg 1
+ . . [ duy(k)
0 GznAt b2] b22 b23 b24 du (k)
- 3
-du4(k)_
dy, (k)
07-4t 0 ‘n %2 G !
+ 0o wnt!” . e dy,(k) (6.47)
; [« P C
2
21 “22 23 dy(K)
where the deviations are given by:
dx(k) = x(k) - x° (6.48)
du(k) = u(k) - u (6.49)
dy(k) = y(k) - y° (6.50)

The Tinearised flow coefficients 3359 bij and ¢y Were obtained
using the perturbation method described in section 6.3.3(b), whilst the
reservoir coefficients, fiAt. are given by known values of level change
per unit flow for each reservoir. Static network solutions were used

to derive the average operating values 5?, E?

and xé and to ensure
that these gave a dynamically balanced network (zero reservoir flows).
The calculated values are summarised in tables 6-1 and 6-2.

Equations (6.47), (6.48), (6.49) and (6.50) can now be used to
calculate the time varying reservoir levels, x(k), for known operating

values of pump and demand flows together with initial levels for reservoirs.
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Table 6-1. Average Operating Values for Doncaster Eastern Zone.

a

Thornham borehole pumping station U = 1222 gpm
Nutwell borehole " " uy” = 333.3 gpm
Armthorpe borehole " " ug~ = 805.6 gpm
Hatfield booster " " up = 916.7 gpm
Cantley No.l Water Tower . Xy = 142.3 ft
Armthorpe " " Xo = 140.3 ft
Cantley No.1 demand Yy = 1060 gpm
Armthorpe'demand Yo = 1218 gpm
Bentley meter demand y3a = 1000 gpm

Table 6-2. Linearised Coefficients for Doncaster Eastern Zone.

[ .57.15  59.47
A = gpm/ft
| 57.15 -59.47
[ 0.4595 0.4552 0.3832 0.3715
Bq =
= | 0.5405 0.5448 0.6168 0.6285
21.0 0.0 -0.0887
L =
—010 -100 -0.9]]3
0.0068 0.0
F.ot = ft/gpm

0.0 0.00816



The actual and predicted reservoir levels are compared on
figure 6-3 and show that the overall errors are approximately
5% of allowed level variations. Consequently representation of
the network by the simplified model gives results sufficiently accurate
for normal operational requirements.

The validity of these results is supported by noting that, if
x is re-defined as reservoir quantity and the reduction technique of
section 6.3.2(d) applied to the coefficient matrices, to simulate a
single reservoir zone,the resulting expression is

4 3

x(k#1) = x(k) + m£1 u (k) -k yy(K) (6.51)

which corresponds to the classical one dimensional Tinear equation of
water networks.

In addition to the above results the network has also been
treated by allowing for exponential reservoir flow variation together
with derivation of pumping station pressure levels to give a model
corresponding to equations (6.38) and (6.39) with coefficients obtained
using the coefficient solution of section 6.3.3(a). In all cases close
agreement was observed between actual and predicted results. These are
not detailed here since the next section gives comprehensive results
for a more complex system.

(b) Doncaster Eastern and Thorne Zones

This two zone system is also used in Chapter 7 for validation
of the system optimisation technique and consequently all related
network details are given separately in appendix 3 to avoid dup1ication.'
In this system the Doncaster Eastern Zone has been extended by relevant
parts of the Thorne Zone and now includes variable head pumps supplied,

as appropriate, from boreholes (assumed of constant levels). The system
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diagram is shown in appendix 3, figure A3-1 and the parameters are
given in appendix 3, table A3-1.

In order to suit the monitored data the stage increment was
chésen as 2 hours starting from 0860 hours, to give a 24 hour dynamic
simulation period. The borehole pump head increases were taken to be
equal to the pump pressure heads minus the réspective borehole levels.
For Hatfield booster pump the suction head was taken to be the average
level of Hatfield water tower; this latter level also serves as the
pressure head for Hatfield borehole pumping station, reducing the
number of pressure node equations to 5.

The modified analysis program (WATSIM)was used extensively
for data analysis as described in section 5.6.3. The dynamic solution
option being used in conjunction with the measured reservoir levels
(see figure 6-7) and the known pump and valve controls (see figure 6-5
and figure 6-6) to evaluate the average values of distributed demands
(see figure 6-4) for each time interval. The static solution option
was then used to determine the overall average operating values (see
table 6-3) and finally the coefficient solution option (COEF) was used
to calculate the linear model average coefficients (see table 6-4).

A simplified diagram of the above sequence of computing operations is
shown in figure 7-6.

For this system the simplified model, corresponding to equations
(6.38) and (6.39), can now be written in terms of 3 reservoir states,
5 pressure node states, 6 pump controls, 1 valve control, and 5
distributed demands. This allows predijction of the reservoir level and

pumping station head trajectories. These predicted values, shown on
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figures 6-7 and 6-8 respectively, again compare favourably with
the actual measured values but with larger errors than the previous

two reservoir zone with fixed head pumping.
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Table 6-3. Average Operating Values for Doncaster Eastern and

Thorne Zones.

These values relate to actual operating conditions.

Pumping Station

Thornham borehole
Nutwell borehole
Armthorpe borehole
Hatfield booster

Hatfield Woodhouse
borehole

Hatfield borehole

Reservoirs & Demands

Pump Control

u] = 0.8627
a-—

u, = 0.2500
a _

U3 = 0.3233
a—

Uy = 0.3536
a—

ug = 0.4065
a—

u6 = 0.5932

Demand Flow(gpm)

Pump Head Increase(ft)

o

z] = 260.6
a -

z, = 300.6
a _

a _
z, = 54.7
a -

25 - ]6].3
zg = 225.6

Level(ft) Valve Control

Cantley No.l.Water
Tower

Armthorpe Water Tower
Hatfield Water Tower
Bentley Meter Demand

Thorne demand

1103.0

1282.0
829.1
1000.0
500.0

142.3 v? = 1.0

140.3
105.6



Tab]e'6-4. Linear Model Parameters for Doncaster Eastern and Thorne Zones

These values relate to actual

[0.7175
Ax = |0.2780
0.0402
[4.1734
5.2940

(v o]
>
n

0.8941
5.7181
1.0915
0.1373
[1.4219
1.3271
| 0.2481
[0.4295
0.4284

o
x
]

o
b3
n

Az = 0.3395
0.3212

| 0.0176
79.6535

9.6274
Bz = 7.5161
7.0855
| 0.3647

operating conditions.

0.2317 0.0228

0.6467  0.0361 ft/ft

0.0532 0.8138

3.8530 6.6588 5.1728 0.4197
4,9092 10.267  8.2450 0.7164
0.8292 14,3596 -22.630 33.169
1.0915 1.4988 0.1373 0.1193
6.5257 6.0413 0.2342 0.2036
0.2342 0.2309 10.840  9.4342
ft/unit valve control

0.4541  0.0521]

0.4550  0.0522

0.4363 0.1260 ft/ft

0.4286 0.1572

0.0250 0.7862]

8.9099 15.170 11.790  0.8966
8.9294 15.203 11.816  0.8985
6.9712 37.775 28.548  2.3087
6.5718 34.759 35.655  2.9043
0.3383  1.8936 -10.244 110.60

0.1836

0.3134 | ft/unit pump control
14.509

ft/103gpm

0.3922]
0.3930
1.0099
1.2704

6.5302

ft/unit pump contro]§



Table 6-4 continued

[1.4474
1.4434
1.1239
1.0586
0.0399

2.6886
2.1005
1.9806

[2.6958 ]

01094

1.9040
1.9083
1.8435
1.8125
0.0706

1.8756
1.8791
1.8133
1.7881
0.0704

0.2930
0.2936
0.7546
0.9492
4.8789

ft/unit valve control

0.2550 |
0.2556
0.6567
0.8261

30.857 |

££/10°gpm



The largest source of error was found to be due to the use of
overall average operating values which resulted in large control and
demand deviations. The model translates these deviations into
corresponding reservoir inflows and outflows based on coefficients
obtained as point derivatives of non-linear functions. Differencing
errors can thus occur as a result of combining approximately equal and
opposite reservoir flows.

Considering that additional non-linearities had been introduced
by incorporating head dependent pumps, and that the extreme control
and demand deviations approximate to + 100% (of the average operating
values) it was concluded that creditable results had been achieved.

These results are considered to be sufficiently accurate for the present
purpose and to justify use of the model for optimisation purposes.

Where improved accuracy is required the errors should be consideréb]y
reduced by evaluating stage varying model coefficients for known typical
control and demand profiles. This would, however, require additional
computing time and storage. ;
6.3.5 Discussion

This section has described the development and evaluation of
simplified linear dynamic models of complex water distribution systems.

In this case the model consists of a set of linear equations, in terms

of matrix coefficients and deviations from average operating values, which
relate reservoir levels and pumping station heads to control and disturbance
parameters. The model treats the case of head dependent pump and valve

flow by means of independent parameters which can be used as continuously
variable or discrgte controls. Refinements to the basic model allow for

true exponentially varying reservoir levels and for evaluation of average
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heads across pumping stations. A computer program has been developed.
for evaluation of the model coefficfents as either constant average
values or stage varying values constant over each time increment.

Because of the originality of the work, and hence lack of prior
results, the model has proceeded through a number of evolutionary
stages with refinements to give greater accuracy. The validation has
been by means of realistic netwbrks with results at each stage of the
development to verify the model relevance and accuracy.

It has been shown that, for the particular practical systems
analysed, the derived linear dynamic equations give results consistent
with measured values in spite of the large deviations in state, control
and disturbance variables and the relatively small storage cap&bi]ity.

The model has wide application since it does not impose restrictions
on the numbers of reservoirs, controls or distributed demands. Furthermore
the formulation is suited to the limited monitored system data usually
available. The method has the additional advantage of being suitable
for on-line use where the coefficients can be rapidly evaluated to meet
any change in network configuration as a result of emergency or
maintenance requirements. This essentially implies a model hierarchy
using a full network simulation at the upper level, catering for
network or major operational changes, and §L~\h£{i6dmode1 at the lower

level, catering for normal operation.
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6.4 OVERALL CONCLUSIONS

This chapter has demonstrated that it is possible to determine
siw;rli4izd mathematical models for complex non-linear water distribution
systems containing any number of reservoirs, controls and distributed
demands. The models are suitable for use with on-line computer control
and require a minimum of monitored data. These features are particularly
important in furthering the present study of computer controlled optimisation
me thods. |
Two independent methods of modelling have been presented, one of which
considers a non-linear discrete model and the other a linear continuous
model. A comparison of their main features is given below:

(a) Non-linear model

(i) Reduced set of non-linear equations
(ii) Controls must be discrete
(i1i1) Coefficients determined from actua} operating data or

from network simulation.

(iv) Requires prediction of total demand.

(V) Accuracy reduced if individual demands not proportional
to total demand. |

(b) Linear Model

(i) Reduced set of linear equations.
(ii) Controls can be continuous or discrete.
(iii) Coefficients determined from network simulation with pbssible
use of actual data.
(iv) Requires prediction of major individual reservoir demands.

(v) Accuracy reduced for large changes of variables.
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Whilst both models achiéve the same end result - prediction of
system operation, the differing features mean that they will each be
suitable for incorporation into different optimisation techniques.

The non-linear model is ideally suited for optimisation by dynamic
programming which works best with discrete controls and can be used for
non-linear system equations. Dynamié programming also requires evaluation
of operating costs over each time increment that can be included in the
non-linear model. In relation to the present study the forward dynamic
programming method developed in Chapter 4, which current]y’deals with
single reservoir networks, could be usefully extended to handle more
complex systems. This is suggested as a topic for further research.

The Tinear model operates well with most optimisation methods. In
particular the hierarchicél technique, described in Chapter 4, which
requires linear system equations and continuous controls, is capable of
giving an overall'optimised solution for a complete system. In this area
the linear model provides an essential link between optimisation of single
reservoir systems with fixed flow pumps and more realistic multi-reservoir
systems with head dependent pump and valve flows. ’Further consideration
is given to these aspects in Chapter 7, in order to obtain optimised system

operation.
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" CHAPTER 7

OPTIMISATION OF SYSTEM OPERATION

7.1 Introduction

The main components of theory have now been developed to make possible
an integrated overall dynamic optimisation and control algorithm for water
distribution systems. The systems considered will be those consisting of
interconnected multiple reservoir zones, catering for variable head pumping
with continuous and discrete pump controls, and having continuous valve
controls. This chapter extends selected optimisation techniques of chapter
4 by use of the linear dynamic models of chapter 6, which incorporate the
pump models of chapter 3, to give optimal control strategies in accordance
with the requirements of chapter 2. The algorithm is tested on an actual
network using the simulation procedures of chapter 5.

The control problem essentially reduces to dynamic optimisation of high
dimensional, constrained, non-linear systems containing interactive discrete
and continuous control variables. This type of problem is notoriously
difficult to solve but, in this instance, two main possibilities have
evolved:

(i) use of dynamic programming, which can handle constrained non-linear
systems with discrete and continuous control variables, with
extensions to cover high dimensional systems

(ii) use of decentralised hierarchical techniques, which can handle

high dimensional constrained systems, with extensions to cover
non-linear systems with discrete controls
Both of these methods were investigated in chapter 4 where the systems were

reduced to form single reservoir zones using volumetric balance relationships
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" and other gross simplifications. However the development of thglh1ﬁiff‘e;itwork

models of chapter 6 has removed these restrictions and allows for the
possibility of treatment of realistic systems by either method.

The selection of the optimisation method is of the utmost importance and,
based upon a comparison of the features and conclusions of chapter 4, the
most appropriate is considered to be the decentra]ised’hierarchical method.
This technique dictates use of the linear dynamic network model
which can be used in conjunction with the variable head-flow pump model to
produce an algorithm giving a continuous control solution (but which contajns
an inherent discrete solution).

A major computational advantage of the chosen method is a means by which
all operating costs and system constraints can be incorporated in an
integrated fashion.

7.2 Formulation of System Control Model

The optimised control problem requires calculation of pump and valve
control trajectories so as to minimise overall costs whilst providing pre-
dicted demands and operating within system constraints. This involves
definition of appropriate system equations and performance indices which
can be used in conjunction with the initial conditions to yield an optimal
control sequence solution.

7.2.1 System Equations

The network relationships correspond to the generalised storage
node and pressure node equations of the . linear dynamic model
in terms of stage invariant coefficients. From equations (6.38) and

(6.39) these are:
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dx (k+1) = A'x.dx(k) + B'x du(k) + C'x.dy(k) + Dx .dv(k) (7.1)

dz(k) = A'z,dx(k) + B'z.du(k) + C'z.dy(k) + D'z dv(k) (7.2)
The pumping station maximum pump control relationship corresponds

to equation (4.71) to give: -

dw = du(k) + dt(k) (7.3)
The equatioms giving the variables in terms of the deviations from

the average operating values are:

(k) = £% + dt(k) (7.4)
u(k) = u? + du(k) (7.5)
v(k) = ¥* + dv(k) | (7.6)
W= 4w (1.7)
x(k) = x* + dx(k) (7.8)
yk) =y* + di(k) | (7.9)
2(k) = 2% + dz(k) (7.10)

With the variables subject to the following set of generalised

constraints:

tnin S 2K <ty (7.11)
Unin € U0k € Uy (7.12)
Yin ‘-!(k) < Ymax | (7.13)
Woin €2 € ¥pax | (7.14)
Zmin < x(k) < Zmax (7.15)
Zoin €2 <2, (7.16)

The fixed initial and desirable final values are defined as:

x(0) = X, (7.17)
x(K) = X (7.18)
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with y(k) known for k = 0,1, .... K-1.

Where
t(k) = M dimensional pump control deviation vector
u(k) = M dimensional pump control vector corresponding to proportion

of total pumps in use

v(k) = R dimensional valve control vector corresponding to valve

resistance

W = M dimensional maximum pump control vector corresponding to total
pumps in use

x(k) =N dimensional storage node state vector corresponding to reservoir

level

y(k) = L dimensional disturbance vector corresponding to distributed

consumer water demand

z(k) = M dimensional pressure node state vector corresponding to pumping
station head increase
subscript min = lower bound on variable
max = upper bound on variable
superscript a = average operating value

d

*

desired or design value

optimal value

A'x s NxN dimensional storage node state coefficient matrix

B'x = HNxM dimensional storage node pump control coefficient matrix
C'x = NxL dimensional storage node distrubance coefficient matrix
D'x = NxR dimensional storage node valve control coefficient matrix

A'z = MxN dimensional pressure node state coefficient matrix
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B'z = MxM dimensional pressure node pump control coefficient matrix
C'z = MxL dimensional pressure node disturbance coefficient matrix
D'z = MxR dimensional pressure node valve control coefficient matrix

7.2.2 Performance Index

A requirement for efficient application of the optimisation method
is that quadratic cost factors be incorporated for all variables. Also
it is essential to allocate realistic costs (which should include any
constant uncontrollable costs) to all factors affecting the performance,
since only then can system operation be compared on the same basis and
allow optimal decisions to be made. To meet the above requirements the
individual performance indices have been derived in the correct format
and, wherever possible, the weighting factors are representative of true
financial operating costs. In cases where the actual costs are negligible
the weighting factors have been assigned low relative values to minimise
unwanted penalties. In this respect it is important to ensure that
variation of reservoir levels is freely permitted (within the constraints)
to cater for short period water demands and prevent high electricity
demand charges.

The individual performance indices, given below, are mainly based on
those previously derived in section 4.3.1 modified by use of the versa-
tile pumping station cost model of section 3.3.4. These are combined
to form the performance index for overall system operation as:

J = Jt 4+ Ju+Jv+dw+dx+J2 (7.19)
with individual indices defined below:

K=-1
TR (t(k) - tHT Re (t(k) - t9) (7.20)
=0 : .
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where Jt

Ju

where Ju

Tu(k)

Jv

where Jv

Bv

cost for deviation of pump control from maximum attained
value (see equation (4.75))

MxM dimensional diagonal matrix of pump control deviation
weighting factors assigned low relative values to minimise
unwanted penalties,

K-1
bz Tu(k) {stwe) - o) + (k) - o "hutuih) - w4}
k=0

(7.21)
pumping cost for electricity unit charges (see equations
(3.20) and (4.68)),

MxM dimensional diagonal matrix whose elements correspond
to pumping station electricity unit tariff values and
include effects of time increment, At, for each value of Kk,
M dimensional vector whose elements now correspond to
linear relationship of power per unit pump, under maximum
efficiency conditions, for each pumping station,

MxM dimensional diagonal matrix whose elements correspond
to quadratic relationship for power per unit pump for
each pumping station. Under maximum efficiency conditions
this term should be zero but it will be assigned a low
relative value to permit a solution by the optimisation

method.

) kt (v(k) = ¥) Rv(v(k) - v7) (7.22)
=0

cost for valve control deviation from the design value

RxR dimensional diagonal matrix of valve control deviation
weighting factors. In this instance it is assumed that
valve operating costs are negligible and the weighting

factors are assigned low relative values.
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Jw

i
3 Tw s (- wh) ¢ - ) B o - ) (7.23)

where Jw = pumping cost for electricity maximum demand charges (see
eqﬁations (3.21) and (4.70))

Tw = MxM dimensional diagonal matrix whose elements correspond
to pumping station electricity demand tariff values for
optimisation period

Sw = M dimensional vector as for Su. In this instance Sw = Su
but this can be used to take account of differences between
the two,because of electrical power factor, etc.

Rw = MxM dimensional diagonal matrix as for Ru. In this
fnstance also Rw = Ru,

K-1

T T
x e 3K WK (x(K)xd)+ 3 T (x(k)-x%) Qx(K)(x(k)-x%)

r
k=0
(7.24)

where Jx = cost for deviating from the desired storage node state

(see equation(4.75))

Qx(k) = NxN dimensional diagonal matrix whose elements correspond
to state weighting factors. For k = 0,1, ... K=1 the
factors will be assigned low relative vé]ues and for k = K
the factor will be empirically determined dependent upon
importance of terminal state value,

K-1 d)T

Jz =} kz (z(k) - z7) Qz(z(k) - gd) (7.25)
=0 .

where Jz = cost for deviating from the desired pressure node state.
Which, in this case, is used to maintain pumping station
head increase at the optimal design values and give maxi-

mum efficiency operation (see equation (3.18))
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Qz = MxM dimensional diagonal matrix whose elements correspond

to pumping station costs for deviation from maximum

efficiency.

7.2.3 Optimisation Equations

These are based on those derived in section 4.3.1 but now include
pressure node equations requiring additional Lagrange multipliers. The
overall Lagrangian can be expressed as the sum of the overall performance
jndex together with the constraint factors for the maximum pump control,

Lw, the storage node state, Lx, and the pressure node state, Lz, to give:

L = J+lw+lx+L2z (7.26)
In terms of the S{stem equations these are:
K-
I
Lw = I k) {-dw + du(k) + dt(k) (7.27
k=0 B“( { - - } )
K-1 1
tx = L p(k) {-di(k+])+_lyx.d5(k) +_!}_'x,du(k)+C'>gdy(k)+D'x,dv(k)}
k=0 - 0 T - T
(7.28)
K-1 T
Lz = T p,(k)'{-dz(k)+Azdx(K)B'2du(k)4C 2y (K)+D 23y (k) }
k=0
(7.29)

where gw(k). Bx(k) and Bz(k) = time varying Lagrange multipliers of
dimensions M, N and M respectively.
The overall Lagrangian can be minimised using the following equations
for values between upper and lower bounds, outside these bounds the
solutions will take on the nearest boundary value. A1l values are for

k = 0,1, ... K-1 unless otherwise stated.

k) = Y, p, (k) + 1 (7.30)

u()* = =Rl 1w B p (k) + B p,(K)ep, (1)1 Rl susd
(7.31)

-153-



syt = -8 {0l (0 4 27p () + (7.32)
weoo= R, W :’_3: p(K)-1RA. Sw + w (7.33)
x(k)* = @x(k){p (-1)-A%p () - AL p (0} + & (7.34)
X(K)* = 0x(K) p (K1) + x§ (7.35)
2(k)* = 02\ p, (k) + 2° (7.36)

The minimised Lagrangian is defined to be the dual function,

¢(Ew, Pys Bz)’ which can be maximised using the gradients:
Y, = - dw + du(k) + dt(k) (7.37)

V% = - dx(k+1) + A'xdx(k) + B'xdu(k) + C'xdy(k) + D'xdv(k)

(7.38)
vp, = - dz(k) + A'zdx(k) + B'zdu(k) + C'zdy(k) + D'zdv(k)(7.39)

The full decentralised hierarchical solution procédure follows that

described in section 4.3.1.

7.3 Application to a Water Distribution System
7.3.1 System Description and Data

The combined Doncaster Eastern and Thorne Zones contain a selection
of components typical of water distribution systems and is considered
to constitute a suitable validation system posing a complex optimisation
and modelling problem. The system diagram is shown in appendix 3,
figure A3-1 and the network parameters are given in appendix 3, table

A3-1. This system has been previously analysed in section 6.3.4(b) to
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determine the actual system demands (repeated in figure 7-1) and to
yield a linear dynamic model for the actual operating conditions.

For optimisation purposes, however, the operating conditions showed
significant changes and a modified model has been evaluated (using

the computing sequence described in section 6.3.4(b) and shown on
figure 7-6) to suit the typical optimisation conditions. The modified
average operating values and [inear model coefficients are shown in
tables 7-1 and 7-2 respectively.

The operational data from appendix 3 and the electricity tariffs
have been evaluated to arrive at the set of nominal values for operational
constraints and optimisation parameters in table 7-3, where the stage incre-
ment is 2 hours, starting from 0800 hours, to give a 24 hours optimisation
period.

The borehole pump head increases were taken to be equal to the pump
pressure heads minus the respective borehole levels (assumed constant).
For Hatfield booster pump the suction head was taken to be the average
level of Hatfield water tower; this latter level also serves as the
pressure head for Hatfield borehole pumping station, reducing the
number of pressure node equations to 5.

7.3.2 Analysis of Results

A computer program (MULTI 2) has been written in Fortran IV for
water distribution system optimisation. This is based on the decentralised
hierarchical techniques described in section 4.3 and incorporates the
generalised equations of section 7.3. This program was used to perform
the optimisation calculations but initial results gave slow convergence

with excessive computation times. This was assumed to be because of the
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large number of variables, and ill-conditioning caused by use of the
generalised system equations (now in terms of practical units having
different orders of magnitude). Satisfactory solution times were
obtained by ensuring that the gradients (corresponding to imbalance of
the sets of system equations (7.1),(7.2) and (7.3))were of approximately
equal magnitudes. This was accomplished by multiplying the sets of
equations throughout by appropriate factors and, for a convergence
criterion of 0.1%, the resulting accuracies were: u * 0.1%, v + 0.1%, N
x + 0.01ft and z + 0.10ft. The weighting factor values can also
considerably influence the solution efficiency and typical times for
the program on an ICL 1906S computer are as given in table 7-4. Whilst
these times are not insignificant it should be noted that the full
solution will be infrequently required. For instance, the maximum pump
controls (w), having once been established for worst case conditions,
will hold for the complete electricity tariff period (e.g. 1 month).
Also the times can all be drastically reduced by using close starting
values, for the dual variables (p), obtained from a previous typical
solution. As an overall comparison a single 24 hour dynamic simulation,
using WATSIM, takes 85 units of time whereas a complete optimisation
calculation involving hundreds of trial dynamic trajectories may only
take 96 units.

Use of the above program with the linear. model and derived data
of tables 7-1, 7-2 and 7-3 gave optimised state and control trajectories
together with the operating costs (see table 7-4). A direct cost
comparison is difficult to make in view of the empirical nature of the
pump efficiency weighting factor. To allow for this Qz has been set to
1.0 and 10.0 and a comparison is made for each control case on the same

it
basis of electricy unit and demand and pump efficiency costs.
Fa

-156-



*foualoLse
wnwijdo 3e sdund ajeuado pue

.

¥5°L6 SL°91 9t Ll V€9 004 0°0l sabudeyd puewsp pue 3run A313143
891 -23|@ astwiutw 03 burdund snonuljuo)
*AxVN wmmmxucp
ACL-W) + peay dund pue yx(3)A €1043u0d
AW+ AN 3ALRA pasiwildg M ©|043U0D
dund wnwixew pasiwildo Jo sjLuwif
06°9L Ly 08°GlL €€°99 96 0°L uLyILM 4 (4)n ._ogu:ou dund pastwiidg
*sabuaeyd
puewap pue 3tun A3LIL4323|d
- fLUest v6°08 0L Sl 06°5§ S 0°0L asiwiutw o3 burdund snonuljuo)
v : “(1)Z ¢3seauadut peay dund 3344
| 801 *«(A)A €oaguod m>~m> pasiwiydo yiim
SH + SN 43433603 4 M €lo4ju0d dund wnuw
-Lxew vmmFEFaao 40 SjLWL] ULYILM
62°6L 60°8 0L° Sl 05759 4] 0"l ()N ¢1043u0d dund pasiuiidg
sabdeyd 3run A31014323]3
26°291 80°06 L6° L1 L8°¥S 92 0°0lL asiwiutw 03 burdund snonupjuo)
w g€ = Axvu <3seauoul peay dund
| N pue ‘M €|043u0d_dund wnwixew 3344
e € 1043U0D SALEA
- $8°18 10°6 L6°L1 18" 5 92 0l pue ¢ c_:_ *1043u0> dund pastwiidg
|
*saunpadoud butjeuado |enuew
18°0¢l 83" LE pL°€2 6L°69 V/N 0°ol paepuels Buisn buirdund 9324951
| V/N *(%)A 1043u0D 3A[RA 335
2L° 96 6L°€ bLo€2 6L°69 Y/N 0L -a4d y3m *(3)n ©(o43u0d dund fen3oy
| Yype 403 3 auLy
y Uve 403 3 3502 upZ 404 3 YypZ 404 3 40 sjtuf
3502 AJUdlIL44d 3SOD puewsp 3502 3Lun WL} Yy z 404 ﬁpmoo_vxw Sa|qRLJ4RA
le30) dung £3121439313 »p—upggum_u Hurindwoy rdi) Leng {043U0)

s3|nsay uoljesiuydo walsAs p-/ dLqel



Considering the results for optimised continuous pumping under
least favourable conditions (Qz set to 1.0), table 7-4 shows that a cost
improvement of approximately 3% is obtained for each additional control
feature included in the optimisation. This kesu]t justifies the addi-
tional complexity of the model and the optimisation method.

Table 7-4 also shows the costs incurred under actual operating
conditions. However, since this is for discrete pumps, the only conclu-
sion that can be drawn is that use of continuously variable pumps could
result in a substantial reduction of the indicated operating costs.

The optimised pump and valve controls are shown as figures 7-2 and
7-3, respectively, tOgether with a comparison of the actual operating
values. Similarly the resultant reservoir level and pumping station
head increase trajectories are shown on figures 7-4 and 7-5. The above
figures have all been obtained for the latter case of table 7-4 with the
weighting factor, Qz, set to 10.0 to emphasize the effect of increased
pump efficiency.

The significant features of the optimal controls which ensure
practical economic operation are:

(i) the electricity maximum demands have been minimised by 1imiting
the maximum proportion of pumps in use at each pumping station,
(ii) the stage variable pump controls operate at the maximum permitted
value whenever possible and required,
(iii) the pumping station head increases have been moved as close as
possible to the design values to give pump operation at maximum

efficiency,
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(iv) with one exception the optimised values agree, in general, with
the actual pumping policy, thus giving some confidence in the
results. The exception, of Hatfield borehole pumping station,
is explained by the practical consideration of the current method
of closed loop control for Hatfield water tower level,

(v) the control valve must be continuously adjusted to achieve an
optimal solution,

(vi) the reservoirs are topped uﬁ overnight to take advantage of the
electricy night rebate tariff,

In order to confirm that valid and feasible results had been
achieved the calculated optimised values were applied to control a
dynamic simulation of the actual network (using the modified simulation
program, WATSIM, in accordance with section 5.6.3(a)). The resulting
simulated trajectories for the reservoir levels and the pumping station
head increases are shown on figures 7-4 and 7-5. It will be noted
that the simulated results show close agreement with those predicted
by use of the linear dynamic model under optimised operation. The
improvement in model accuracy,compared to section 6.3.4(b), is explained
by the use of the smoothed optimal controls. This final method of
validation thus gives full confidence in both the modelling and optimi-
sation techniques.

A simplified diagram for the complete sequence of computing

operations used in the analysis is shown in figure 7-6.
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7.4 Extensions to Optimised System Control

7.4.1 On-line Control Scheme

The theoretical aspects of optimised system operation have now
been adequately treatad and the next phase of the project will require
practical realisation of these techniques. Figure 7-7 shows a proposed
method for optimised dynamic control of a water supply system using
an on-line computer which will employ the mathematical models and
program algorithms developed in this chapter and elsewhereSg.

The basic requirements are for control of pumps and valves in
order to supply demand at minimum cost. In addition reservoir levels
must be maintained within prescribed 1imits to meet emergencies and
cater for future demands. The cyclic nature of the demand sets a
minimum control period of 24 hours and, for typical keservoirs, control
actions need only be taken every 2 hours. Suitable controllers must
rely on the limited monitoring of reservoir levels and pump flows
(typically at 2 hourly intervals).

For the proposed system an optimal control strategy can be calculated
which will facilitate control actions over the future 24 hour period,
based on predicted consumer demands and network model reservoir levels.
To cater for errors the actual values of reservoir levels and derived
demands provide up-to-date corrections to the network model and demand
prediction respectively. If additional optimisation calculations are
pefformed whenever a significant error is detected, the resulting control

strategy should be optimal to the end of the control period.
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7.4.2 Additional Constraint Features

The results have shown that the optimisation method is extremely
versatile and can be used to cope with the varying operational con-
straints met in typical systems. Whilst many of these have been
demonstrated there are other useful variations depending on the
particular requirements.

The treatment has catered for valves controlled for each stage,
k, (e.g.every 2 hours) implying that the valves are all locally situa-
ted or capable of being remotely controlled at little cost. For the
case of remote valves requiring manual adjustment at significant opera-
ting costs it is possible to modify the treatment to allow less fre-
quent valve operation. As an example, for valve adjustment each opti-
misation period (e.g. every 24 hours) the modifications to model
equations would simply involve replacement of v(k) by v and dv(k)
by dv. v is now a stage invariant valve control which will have an
optimal average value for the complete optimisation period.

Satisfactory service to customers is sometimes determined by
adequate pressure levels at specified pressure nodes. The capability
for controlling pressure levels has been built into the model but
at present is used to maintain pump heads at desired values. However
the facility can be easily expanded by defining an additional z
element for each specified pressure node with corresponding upper and
lower bounds and penalty weighting factors for deviation from the

desired value.
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7.4.3 Discrete Solution

Whilst the optimal control algorithm caters for all variables,
to give continuous solutions for both continuous controls (e.g. control
valves, variable speed pumps, throttled pumps,etc) and discrete con-
trols (e.g. fixed speed pump combinations), there is usually a require-
ment for adjustment of variables where only discrete values are permitted.
Since the continuous values have been arranged to pass through the dis-
crete points it is feasible that a method could be devised to seek the
optimal discrete values and result in an overall discrete-continuous
solution. For this purpose the continuous solution will be a good
guide and the simplest method could involve selection of closest discrete
values with re-calculation of optimal values for remaining continuous
variables. The resulting solution will no longer be fully optimé] and
it is anticipated that a more rigorous approach could be used to achieve
fully optimised performance.

A three level hierarchical decision process is envisaged, for the
solution of the above problem, with two way interchange of information
occunring via cost sensitivities, passed to next upper level, and result-
ing upper level decisions passed to next lower level as fixed operating
constraints. An optimal search among selected discrete variables will
be performed at the upper levels (based on cost sensitivities) and for
each set of trial discrete values a complete continuous solution for all
remaining variables will then be required at the lower levels (since all
variables are interactive). Figure 7-8 shows the decision hierarchy

which could be used at each level as described below:
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7.5

Level 3 (upper level)- selection of optimal discrete maximum value of

pump control, w, based on electrical maximum demand cost variation,

3J . This will decide maximum permitted pumps on-line for base load
ow

plant and should only be required at the beginning of every electricy
tariff period (e.g. monthly) under worst case consumer water demand.

Level 2 (intermediate level) - selection of optimal discrete value of

pump control, u(k), based on electrical unit cost variation 3J )
- du(k

This will decide pump combinations on-line within limits of maximum
demand plant fixed by level 3.

Level 1 (lower level) - selection of optimal values of true continuous

variables for values of discrete pumps fixed by level 2.

The same control model can be used at-all levels since the basic
formulation embodies all the essential ingredients to allow both con-
tinuous and discrete interactive control variables. In operation this
method should cater for minor disturbances by fine control of continuous
variables at the lower level and for major disturbances by coarse

control of discrete variables at the upper levels.

Conclusions

A control scheme has been developed meeting the requirements of a

computer algorithm for on-line control of practical water distribution

systems where the operation depends on many inter-dependent charges and

operational constraints.
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The systems treated are those consisting of:

(i) multi-reservoir zones with head dependent inter-zonal flows and

distributed demands

(ii) borehole and booster pumping stations with head dependent flows

and pump controls which can be discrete for parallel pumps or
continuous for variable speed pumps
(iii) valves with flows dependent on heads and continuous valve controls,
with costs due to:
(i) direct pumping costs dependent on electricity charges
(ii) indirect pumping costs dependent on variable pumping efficiency
(iii) overall costs dependent on valve controls

As far as is known this scheme is the only one capable of evaluating
optimal strategies for such a wide range of system features and has been
used to obtain a solution for a realistic distribution network in terms of
all continuous control variables. Practical implementation still leaves
some problems with selection of any discrete pump combinations to suit the
continuous solution values. Nevertheless useful and practical results have
been achieved since the continuous solution gives a good indication of likely
efficient discrete control strategies and suggestions have been made to
cater for discrete selection on an optimal basis.,

The present application shows potential cost savings and indicates that
use of control valves and other continuous controls is important in overall
system optimisation. These results may influence future design of systems
for use with computer control where more efficient operation WOu1d be possible
and would benefit from additional remotely activated continuous controls

such as valves and variable speed pumps.
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CHAPTER 8
CONCLUSIONS

It has been shown that operation of water distribution systems is
extremely complex and that the successful application of automatic control
methods is dependent on development of suitable mathematical modelling
schemes.

So far all the work that has been done in this area has been limited,
by reasons of accuracy, relevancy, and problem complexity, to restricted
classes of simplified systems.

This thesis has attempted to redress the balance by developing addi-
tional methods for optimisation and modelling, with extended solution
capabilities, and in other areas has contributed by a more detailed examina-
tion resulting in original refinements to existing methods. Combining
these methods has provided an algorithm suitable for overall optimal control
of a wider range of water distribution systems than previously possible.

The results confirm the benefits of on-line control and may well influence
future design to lead to water systems which are more efficient and more
amenable to application of advanced control techniques.

The next section gives a critical appraisal of the current research
results and show these in context with preceding similar work in dynamic
control of water distribution systems. The dissertation concludes with an

outline of future research extensions.
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8.1 Advances in Dynamic Control of Water Distribution Systems

The advent of sophisticated instrumentation and control equipment has
provided the means for more efficient management of water distribution

systems. Several such systems]7'21'78

now employ on-line computers for
automated monitoring- (data logging) which also cater for some data reduc-
tion and provide facilities for remote activation of distributed controls.
Present operating methods still rely mainly on operator decisions based
on the more up to date and higher quality information provided.

The next phase will aim towards fully automatic on-line control with
larger process control computers. This application requires advanced
concepts in network reduction, optimisation, demand forecasting,etc.
Undoubtedly an intermediate step will involve human intervention where the
resident improved analysis and simulation facilities will be used to guide
the operator towards more efficient overall system operation. The potential

78,82,84 and include

benefits of computerised control are well documented
economy of operation, system security, reduction of manning levels, etc.
The general consensus of opinion amongst other research workers is that
direct cost savings of approximately 5% are feasible and that these represent
sufficient incentives for implementation, particularly when taken in conjunc-
tion with the other benefits.

Several schemes for on-line control have been proposed but the most
advanced are considered to be by the following authors:

(i) De Mayer, et al,1°:16,17,18,19,20,41

who derive a non-
linear dynamic network model. This is applied, together with a demand
forecasting model, to a system consisting of two pumping stations and

two reservoirs. System operation is based on control of discrete pumps
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only, using switching lines which are functions of reservoir levels

and demands. A simplified single state dynamic programming algorithm
is used to derive near - optimal operating policies with costs based

on long-term averaged values of overall electricity charges for average
pump heads.

The author recommendsadditional research aimed at extending the
capability of the network model, to include: in-line booster pumps,
control valves, and pressure reducing valves, and note that the model
accuracy is reduced for large disproportionate changes of industrial
demands. Additional desirable extensions would also cover derivation
of improved performance indices (to more accurately represent pumping
and other costs) and techniques to give fully optimised operation

including use of continuous control variables.

34,35,78

(ii) Fallside and Perry » Who propose a generalised hierarchy of

models for applications in control of a multi-reservoir distribution
system. The system is represented by a simplified volumetric balance

relationship between six dominant reservoirs and ten pump inflows with
non-linearities due to equivalent lumped pipe links (incorporated by
reference to De Moyer's non-linear model). The pipe flow is then
linearised to permit optimisation by means of alternative decentralised
hierarchical methods., Operating costs are long term averaged values of
overall electricity charges and system operation is based on continuous
flow control of, assumed fixed head, variable speed pumps.

As before for (i) the same restrictions apply for use of the non-
linear dynamic model and the authors suggest further research aimed at
producing a more systematic method of model reduction, together with

incorporation of true pumping costs in the optimisation algorithm.
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Additional desirable extensions would also cover: optimisation and
modelling with head dependent flow from both fixed and variable speed
pumps, optimised control of pumping efficiency and selected pressure

levels, and optimisation using valve controls.

Without wishing to detract from the importance of these schemes it can
be seen that both of them are deficient in certain aspects of optimisation
and modelling which prevent their application to general types of water
distribution systems. The proposed scheme of Chapter 7 overcomes these
deficiencies by providing an alternative method for on-line control, of
very general systems, which leads to overall system optimisation taking into
account all relevant cost factors and operating constraints. This proposal
is based upon original work in optimisation and modelling techniques which
now permit treatment of fixed speed pump combinations, variable speed pumps,
and control valves, all with head dependent characteristics. The control
strategy is determined by consideration of performance indices involving
time varying electricity unit and demand charges under conditions of maximum
pumping efficiency. The method has been applied to a realistic multi-
reservoir distribution network to achieve a solution in terms of all continuous
control variables. Practical implementation requires selection of any fixed
speed pump combinations to suit the continuous solution values. This can be
allowed for by a suggested control hierarchy which progressively fixes the
discrete variables at optimal values and then caters for major demand distur-
bances by means of discrete variables in the upper control levels and minor

disturbances by means of continuous variables at the lowest control level.

- 167 -



Whilst the overall scheme is complete in itself the constituent parts,
and other developments, can also stand on their own and are all suitable
for on or off-1ine computerised control applications. The techniques of:
pumping station modelling, dynamic programming optimisation, decentralised
hierarchical optimisation and linear dynamic models complement
existing methods and are considered to represent significant advances in
their own right. The computer programs developed in these areas can be used
independently, or in conjunction with established methods, to provide an

enhanced analysis and simulation capability.

8.2 Summary of Research Extensions

The research contained in this thesis is complete in itself and has
provided a scheme for theoretical optimisation of overall system operation.
However, additional research is always required which, in this case, can
cover: improvements or refinements to the studied topics, alternative
methods of achieving the same objectives, and practical implementation of
research results. This section outlines the research possibilities,
resulting from this study, which are given in main chapter order for corre-
lation with previous topics and discussions.

Chapter 3. Analysis of Pumps and Pumping Costs

An independent control parameter has been derived defining the
proportion of total output from parallel constant speed pumps to give
flows and costs in terms of varying pump heads. An extension of the
method to cover individual variable speed pumps should be fairly easy

to incorporate using speed as the independent control parameter,
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An indirect pumping cost is due to wear and tear for excessive
on-off operation of individual pumps. Some results are available3:19
but additional research is required to derive suitable performance
indices to account for this cost and limit pump cycling in an optimal
fashion.

Chapter 4. Optimisation of Pumping Costs

A computer program (DPSA) has been developed to give solutions to
optimisaiion of simple multi-reservoir systems by means of dynamic
programming modified by the successive approximations technique’(to
cater for higher dimensionality). Further research is required in
this area which could include use of either of the models of
Chapter 6 to provide a possible alternative method for overall system
operation allowing for discrete controls.

The optimisation problem has also been formulated as a mixed
variables integer-linear program. This format could be applied to
typical simple systems and may be suitable for extension to more
complex systems using the linear models of section 6.3.

An additional optimisation method, which would appear to be worthy
of further investigation, depends on a technique for constraint
separation83. This is a primal-feasible method, capable of handling
state and control constraints and thus meets some of the requirements

for optimisation in water distribution systems.

Chapter 5. Network Analysis and Simulation

It has been noted in Chapter 2 that borehole levels can vary

significantly for pumping from the respective and adjacent boreholes.
When sufficient data can be made available it should be possible to

devise a suitable model which would probably be a linear or power law
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head-drop versus flow relationship. Inc1usion4of the model in the
analysis program would automatically generate corrections in both
the simulation and the linear dynamic model results.

It has been noted in Chapter 5 that desirable extensions include
automatic correction of network parameters to force agreement between
network and simulation for both steady state and dynamic conditions.

24,25,84 for steady state corrections but additional

Techniques exist
research is required to develop methods for dynamic matching.

Another desirable feature would include calculation of operating
costs for simulated operation. Programs ex'ist].s’]6 for these calculations
based on a loop equation formulation and additional research is required .
to convert these to the current nodal equation formulation.

Chapter 6.Simplified Dynamic Models

Linear and non-linear models have been formulated, in this study,
and results have been obtained for linear dynamic models of
networks under typical operating conditions. It would be useful to
determine equivalent non-linear dynamic models of the same network
and compare the results for accuracy and compatibility. |

Evaluation of the Tinear dynamic model is presently based
on a simulation of the network. For a practica] implementation it
would be desirable to investigate the suggested method, of section 6.3.3,
for direct on-line evaluation of model coefficients. |

The present 1inear model uses average values of consumer demand
over each time increment and also assumes reservoir linear head-flow
re]ationships. Further research may give a relaxation of these
requirements to cater for any continuous time varying demand functions

and allow reservoir non-linear relationships.
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Chapter 7. Overall System Operation

The implementation of the proposed method would give open loop
control and would require re-calculation to cater for unexpected
disturbances. A more direct method of closed-loop control is
obviously desirable, current work by Singh, et a1,73’88’89’90
indicatesthe possibilityof using the same general solution techniques.

The present scheme results in continuous values for all control
variables and selection of adjacent discrete values will be required
for some of these. Further research is required on optimal selection
methods. Other disadvantages of the scheme are that the solution is
only feasible upon convergence and linear system eduations are
required. A suggested alternative scheme which may overcome these
problems is that of generalised reduced gradients (GRG). This has been
extensively used in the electricity industry for optimisation of power
system523’79. Whilst this latter application is a static one, Abadie.I
has shown the relevance of GRG to simple dynamic problems. Other
techniques involving direct non-linear optimisation are given in
references42’63.

Apart from optimal control of existing distribution systems, other
related optimisation areas include network design for least cost
components and/or least cost operation. It is reasonable to suppose

that future extensions will cater for these additiona] features;

typical work and computer programs on these topics is covered in the

following referencesd! »43,46,68,77,84,85
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8.3 Final Observations

It is not the intention to claim that this dissertation has provided
a final solution enabling fully automated control of all water systems.
However, the work has extended the class of systems for which solutions
can be obtained and it is hoped that the development of the alternative
technique will stimulate thought in these and other useful directions.
It 1is confidently anticipated that further research, which may, however,
depend on mathematical techniques yet to be developed, will eventually

yield a solution satisfying the requirements of very general systems.

-172 -



APPENDIX 1
SUMMARY OF NETWORK EQUATIONS AND PARTIAL DERIVATIVES

See Chapter 5 for notation and usage.
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(¢) Pressure reducing valves.
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APPENDIX 2

DDJWB DISTRIBUTION SYSTEM PARAMETERS

The tables in this appendix are all feferred to in Chapter 2.
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Table A2-2. DDJWB Reservoirs.

Location and I:5e¥akgg Depth Capacity
Type (fts (ft) (Mgal)
Thrybergh impounding 180 - 254
reservoir '
Langsett impounding
reservoir 810 i 1400
Adwick-le-Street
service reservoir 167 10 ' 1.00
utterbusk service
reservoir 213 18 3.00
Clifton (new) service
reservoir . 465 17 3.00
Clifton (o1d) service
reservoir 465 n 2.00
Conisbrough service ‘
reservolir 302 18 0.50
Denaby service reservoir 277 9 0.55
Scawthorpe service
reservoir 115 16 2.00
Warmsworth No.Z. service
reservoin 130 10 1.50
Armthorpe water tower 145 17 0.25
Askern water tower 160 16 0.2/
‘Bawtry water tower 160 1/ 0.10
Butterbusk water tower 305 21 0.15
Cantley No.l.water tower 147 1/ 0.30
Cantley No.Z.water tower 205 25 0.50
Crowle water tower 100 15 0.10
ast Lound water tower 115 1< 0.05
Epworth water tower 184 20 0.175
Garthorpe water tower /0 <0 0.02
Hattield water tower 109 15 0.1%
Haxey water tower 230 15 ~0.20
ickleton water tower 410 12 0.05
eadby water tower g1 160 0.10
Ttby water tower o1d 16 0.20
ossington No.l. water tower] 100 18 0.25
Rossington No.Z. water tower{ 135 12 0.03
andtoTt water tower 84 12 0.07
Scawthorpe water tower ~ 180 <0 0.07
Skellow water tower 132 12 0.02
ykehouse water tower 90 12 0.05
orne water tower /5 15 g.15
arren Farm water tower 132 12 0.05
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Table A2-3. DDJWB Centralised Supervisory System Facilities.

Alarms Indications Measurements Controls
Intruder Outstation local control |Electricity supply Pumps-start/
program. voltage. ' stop
Electricity kWh meter
Burst main Battery voltages -local/
remote

Operating limits
exceeded

Power supplies
DC supplies

Pump auto-change
over

Valve faults

Plant failure -
-mechanical
-electrical
-hydraulic
-supply voltage
-flood

Pump indications-fault

-control
instruction

~pump
state

-valve
position

Water pressures

Water flow rate

Water integrator

Rain gauge integrators

Tower & Reservoir leve

Valve positions

Resets

1
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APPENDIX 3
VALIDATION SYSTEM PARAMETERS

A11 the tables and figures contained in this appendix are for
the combined Doncaster Eastern and Thorne Zones, used under variable

head pumping, and are referred to in sections 6.3.4(h) and 7.3.

f]87'



Thernham pumping Cantley Noi

station U valve 03 Mgal | water tower Bantley
X meter y3
801 (@) —6 ) —G6) (3)

3 >
Armthorpe Q
Aggregated water tower {025 Mgal

demand Yo /_x\z
7

borehole

Nutwell pumping
station up

Armthorpe pumping Q
: station uj

\67/\
)
\s.x

| &) D<) @\
T Doncaster Eaéfern zone
KA b Hatfield Therne zone
Hatfield booster
water tower l U
3
015 Mgal
Hatfield pumping
station
Ug
Aggregated
2 2 demand
2 —_— P Y,
ng
Hatfield Woodhouse
pumping station
ug
2e Thorne
31 3 3 demand
’5

Fig.A3-1 Network for Doncaster Eastern and Thorne 2zones.



Table A3-1.

Network Parameters

(a) Pipe and Valve Links
Origin .| Destination| Length,L Diameter, D | Hazen-Williams Control ‘
node Node (ft) (ins) Coefficient, CHw Coefficient
80 98 1990 18 110 -
80 29 1490 18 110
29 73 9130 9 105
73 21 1000 15 135
29 71 11100 12 105
29 19 5800 18 110
73 19 3330 15 135
21 20 3600 15 135
98 35 6335 18 110 vq
35 25 10335 12 100
19 72 2500 18 110
20 67 3000 9 125
20 58 2700 12 140
58 581 1350 6 100

581 57 2300 9 110
58 5 3520 9 135

5 57 2835 6 90

57 93 2335 6 .90
67 93 2730 6 90
67 12 7660 6 100
67 72 - 6550 9 95
72 66 2550 9 90
66 71 1780 9 90
72 18 5250 18 - 110
71 18 820 12 105
25 65 3375 9 110
18 64 2440 9 90
18 64 2440 15 110
18 12 3055 9 125
93 12 8825 6 100
65 651 1070 6 100

651 63 2770 9 110
65 64 4180 6 100
64 63 3660 9 90
64 63 3660 15 110
63 12 4615 6 100
13 22 1400 10 100
13 22 11805 14 100
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Table A3-1.(continued)

(c) Reservoirs and Boreholes
Node :Linear Water State ,
coefficient,?, Level AOD coefficient
(ft/qal) (ft)
-6
35 56.66x10 Xq
18 67.98x10°° -
22 100.0x107% s
801 | 110
291 -150
21 -50
131 -40
221 =120
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Table A3-2

Pumping Station Parameters

Combined pump operations at design heads.

Pumping Pump Design | Nominal Design Pump
Station combination Flow Maximum Head Control
(Pump No.) | (gpm) Demand (ft) Parameter
(kVA)
Thornham 1 833.33 | 82.0 264 0.5882
Borehole u] 2 1416.67 138.0 264 1.0000
i
Nutwell 2 400.0 40.0 267 0.2500
Borehole Uy 1 1200.0 120.0 267 0.7500
1 &2 1600.0 160.0 267 1.0000
Armthorpe 1 or 2 or 3{1000.0 75.0 201 0.3333
Borehole us Any two [2000.0 150.0 201 0.6667
1,2 & 3 [3000.0 225.0 201 1.0000
Hatfield 1 or 2.0r 3| 666.67 15.0 50 0.2500
Booster Uy or 4
Any two {1333.33 30.0 50 0.5000
Any
three 2000.0 45.0 50 0.7500
"2'2 2666.67 | 60.0 50 1.000
Hatfield 1 or.2 or 311000.0 75.0 201 0.3333
Woodhouse Any two [2000.0 150.0 201 0.6667
Borehole Ug 1,2 & 3 }3000.0 225.0 201 1.0000
attield
1 375.0 43,0 225 0.2941
Borehole ug 2 525.0 60.2 225 0.4118
3ord 750.0 86.0 225 0.5882
144 1125.0 129.0 225 0.8824
}2 &4 1275.0 146.2 225 1.0000
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