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Abstract

The mam purpose of this thesis focuses on the investigation of major financial

volatility models including the relevant mean model used in the context of volatility

estimation, and the development of a systematic nonlinear identification

methodology for these problems. Financial volatility is one of the key aspects in

financial economics and volatility modelling involves both the mean process

modelling, and the volatility process modelling. Although many volatility models

have been derived to approximate the volatility process, linear mean models are

almost always used and to the best of our knowledge there is no application of fitting

the mean process using a nonlinear model with selected structure.

Based on the fact that nonlinearity has been observed in many financial market

return data sets, the Non linear AutoRegression Moving Average with eXogenous

input (NARMAX) modelling methodology with the term selection algorithm

Orthogonal Forward Regression (OFR) is proposed to approximate the nonlinear

mean process during volatility modelling. However, the assumption of a constant

variance is usually violated in financial market return data. A new Weighted OFR

algorithm is therefore proposed to correct for the impact of heteroskedastic noise on

the term selection of the nonlinear mean model based on the assumption that the

variance process is modelled by a Generalized AutoRegressive Conditional

Heteroskedastic (GARCH) model. Because the weights to use are unknown, an

iterative refined procedure is developed to learn the weights and to simultaneously

improve the parameter estimates of both the mean and the volatility models.

New validation methods are proposed to validate the nonlinear selected mean model

and the volatility model. During the validation, the assumptions associated with the

mean model are tested using a correlation method and the assumptions of the

volatility model are tested using a Brock-Dechert-Scheinkrnan (80S) independent

and identically distributed (i.i.d.) testing method. The prediction performance of the

mean and volatility models is evaluated using a hold out Cross Validation (CV)
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method. A departure in the prediction of the volatility for the linear mean model,

when using nonlinear simulated data, is successfully identified by the new validation

methods and the nonlinear selected mean model passes the test.

Another application of the NARAMX model, in the very new field of modelling

mortality rate, is introduced. A quadratic polynomial mortality rate model selected

by the OFR algorithm is developed based on the LifeMetrics male deaths and

exposures data for England & Wales from the Office of National Statistics.

Comparing the long term prediction of the new model with the Cairns-Blake-Dowd

(CSO) statistical mortality rate model indicates the better prediction performance of

the quadratic polynomial models. A back-testing method is applied to indicate the

robustness of the selected NARMAX type mortality rate models.

The term selection, parameter estimation, validation methods and new identification

procedures proposed in this thesis open a new gateway to apply the NARMAX

modelling technique in the financial area, and for mortality rate modelling to provide

a new empirical practice of the NARMAX modelling method.
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Chapter 1: Introduction

1.1 Background and Motivation

The concept of volatility was firstly introduced by Louis Bachelier a century ago in

1900 when he created the term 'coefficient of nervousness' to the price. The term

'financial volatility' is then usually used to refer to the standard deviation or,

alternatively, but in practice, equivalently, to the variance of the underlying return

data associated with a time series; loosely speaking, it refers to the intensity of the

fluctuation which affects the return prices. For example, the volatility of the stock

market will obviously increase during the periods of financial turmoil such as the

market crash in Oct, 1987, the Asian Financial Crisis starting from July, 1997 and

the terrorist attack on 11th, Sep, 200 I.

Financial volatility is one of the key aspects in financial economics especially for the

pricing of derivative securities for example in the Black-Scholes model (Black and

Scholes, 1973), where the volatility of underlying asset is used to price the option.

Derivatives with clearly specified measurements of volatility in the contracts are

often traded nowadays and investors trend to maximize the expect return subject to a

risk constraint of the portfolio. Therefore, the forecast of the volatility of the

underlying assets are essential over the defined period and any improvement in the

volatility prediction by even one percent can be significant for the investment

decision. Volatility is also commonly used to calculate the Value-at-Risk (VaR)

estimation for the purpose of risk management. The VaR is one of the commonly

used modern risk measure techniques and it measures the probability of the worst

expected loss under normal market conditions over a specific time interval at a given

confidence level.

Based on the observed features of volatility, 'large changes tend to be followed by

large changes, of either sign, and small changes tend to be followed by small

changes' (Mandelbrot, 1963) and 'volatility response to a large negative return is
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often far greater than it is to a large positive return of the same magnitude' (Black,

1976), many different volatility models have been developed. The Exponential

Weighted Moving Average (EWMA) model is one of the commonly used volatility

models and is used in the famous application of the JP Morgan RiskMetrics®. More

sophisticated groups of volatility models have been developed since the

AutoRegressive Conditional Heteroskedastic (ARCH) model (Engle, 1982) was

introduced. The Nobel Prize for Economics has been awarded to Robert Engle in

2003 for the innovation of analyzing economic time series with time-varying

volatility using the ARCH model. Bollerslev (1986) then extended the ARCH model

to the more general case as known as the Generalized ARCH (GARCH) model. The

feature of volatility described by Black (1976) is now commonly referred to as the

leverage effect which means that the equity returns are strongly asymmetric.

However, both ARCH and GARCH models are not capable of charaterising

asymmetry. The extension of GARCH has been developed in econometric ways to

describe the asymmetry. Models such as the Exponential GARCH (EGARCH)

introduced by Nelson (1990), Quadratic GARCH (QGARCH) of Engle (1990), GJR-

GARCH of Gloasten, Jaganathan and Runkle (1993) and Threshold GARCH of

Zakoian (1994) are popular asymmetric GARCH class models. Based on the fact

that the effect of shocks in the foreign exchange market may endure for a long

period, the Integrated GARCH (IGARCH) of Engle and Bollerslev (1986) was

innovated with assumptions of unit roots for the GARCH parameters. The volatility

of the next period is usually calculated by squaring the shock of the current period in

a standard GARCH model. However, for large shocks, the square operation will

produce dramatic increases in the variance. Taylor (1986) and Schwert (1989)

argued about this problem and suggested employing absolute residuals which can

provide a less drastic approach. The nonlinear ARCH (NARCH) of Higgins and

Bera( 1992) adopted the suggestion of absolute residuals and parameterized the

conditional standard deviation with unknown power as a function of lagged

conditional standard deviation and lagged absolute residuals with the same power.

Baillie, Bollerslev and Mikkelsen (1996) extended the AutoRegressive Fractional

Integrated Moving Average (ARFIMA) model type to a GARCH representation as

2



Chapter 1 Introduction

the Fractional Integrated GARCH (FIGARCH) model which is designed to capture

the long-run dynamic dependencies in the volatilities. Other modelling techniques

have also been developed such as the Stochastic Volatility modelling framework and

they will not be introduced here as the GARCH class models are still among the

most popular volatility models nowadays.

Since volatility is usually unknown in realized data, the only way to validate the

volatility model is to test the model assumptions. There are usually two assumptions

in GARCH modelling. One is the distribution assumption (i.e., the assumption that

noise is Gaussian) and the other is the assumption that noise is i.i.d. As a matter of

fact, the distribution assumption is usually rejected in empirical practice. The Quasi

Maximum Likelihood Estimation (QMLE) method has been commonly investigated

as in Bollerslev and Wooldridge (1988) to compensate the impact on MLE

estimators when the assumption of normality is violated. However, the distribution

assumption is still a major issue for parameter estimation of the GARCH class of

models.

From the papers on the GARCH class of models, volatility is usually derived from

the residuals of the mean model which is commonly referred to as the model fitted

from the underlying time series data. Although the nonlinear modelling techniques

have been widely developed and applied, in ARCH literatures most of the mean

models are still selected as linear. For example, in the pioneering work on ARCH by

Engle (1982), the UK consumer price index data was fitted by an AutoRegressive

with eXogenous input (ARX) type model. In a later application of the ARCH model,

Engle (1983) used an AR type model with multiple inputs and a time trend to model

the US deflation indicator. When Bollerslev (1986) proposed the GARCH model, an

AR model with 4 lagged terms was used to approach the US implicit GNP deflator.

Nelson (1991) introduced the EGARCH model and appl ied it to estimate the

volatility of value weighted CRSP market index which was fitted by an

AutoRegressive Moving Average (ARMA) model. Engle (1989) commented on the

article of Schwert (1989) and proposed a QGARCH model to estimate the volatility

3
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of the stock market round the crash of 1987 with the mean fitted by a variance in

mean Moving Average (MA) model. Higgins and Bera (1992) applied aNARCH

model to the US/FF weekly exchange rate and the mean model was fitted using an

AR (l) model. Gray (1992) used an AR (I) model to model the short-term interests

and proposed the RS-GARCH model to calculate the volatility. Ding et al. (1993)

investigated the long memory properties of the volatility that existed in the S&P 500

stock market index data and employed a MA (I) model during the application. Tse

(1991) fitted models to the Tokyo Stock Exchange using an AR (I) mean model

whi Ie Akgiray (1989) also used an AR (1) model to approach the mean process of

New York Stock Exchange index data. Hamilton and Susmel(l994) proposed a class

of Markov-switching ARCH models and modelled the New York Stock Exchange

weekly index data using an AR (1) model during simulation. The UK market

volatility properties were then studied by McMillan et al. (2000) and the FTA all

share index and FTSE 100 index were fitted using an AR type mean model. Linear

mean models were also commonly adopted in the application of Multivariate

GARCH as in Bollerslev et al. (1988), Engle and Kroner (1995). Some literatures

even treated the mean process as a constant model as in Baillie et al. (1996) and

Kawakatsu (2006).

Many nonlinear dynamics have been observed in real time market returns as in

Abhyankar et at. (1995) and therefore the use of a nonlinear model can improve the

mean model forecast ability and provide more accurate residual estimation for the

volatility process. Some types of nonlinear models have already been used to fit the

mean process in GARCH literature such as in Bollerslev et al. (1993), an

exponential AR mean model was used to fit the US stock market volatility and Cao

and Tsay (1992) used a threshold AR model. However, the application of a

nonlinear mean model is limited and the structure of the nonlinear model is usually

specified during estimation. Therefore, this motives the use of nonlinear models with

structure determination methods to fit the mean process in order to improve the

accuracy of the residuals for the volatility estimation.

4



Chapter I Introduction

Among the nonlinear modelling techniques, the Nonlinear Auto Regressive Moving

Average with eXogenous inputs (NARMAX) model proposed by Leontaritis and

Billings (1985) can provide a unified formation for a wide class of nonlinear system

processes and comparied with the series expansion approaches such as Volterra and

Wiener nonlinear models, NARMAX can approach the underlying process with a

more concise representation. NARMAX can also provide a more transparent model

format than the Radial Basis Function (RBF) neural network and wavelet network

approaches. The NARMAX model has successfully modelled many real world

nonlinear systems including chaotic electronic circuits, water management systems,

turbocharged diesel engines, etc (Billings and Coca, 200 I). The pitfall of linear

models and the advantage ofNARMAX above inspire the application ofNARMAX

methodology in financial mean process modelling.

The models of many real world systems are usually unknown and determining the

structure of the model is the most difficult part during identification. Especially in

the nonlinear case, the number of terms may increase dramatically when the

redundant variables are falsely selected. Based on the NARMAX model

specification, the Orthogonal Forward Regression (OFR) algorithm and Error

Reduction Ration (ERR) definition were introduced by Billings et al.( 1988, 1989),

Korenberg et al.( 1988), Chen et al.( 1989), Billings and Zhu (1994) to provide an

efficient way to determine the most significant terms among the candidate model

term set. The structure of the model can be formatted by selecting the terms with

ERR above a chosen cutoff value.

The OFR term selection algorithm assumes that the variance of the noise IS

homoskedastic. However, during financial volatility estimation, the noise of the

mean process is usually heteroskedastic. The breach of the assumption may induce

bias in the ERR values and therefore, impact the term selections. The falsely

selected model terms will cause inaccurate estimation of the modelling noise and the

parameters of the volatility model will be affected. The inaccurate parameters of the

volatility model will then produce more forecast errors during prediction.

5
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Accordingly, it is essential to find a method to eliminate the impact of

heteroskedastic noise on ERR and term selection.

Weighted Least Squares (WLS) can be used to eliminate the impact of

heteroskedastic noise. This motives the application of WLS in the OFR algorithm

when determining the unknown structure of the financial mean process. However,

WLS is applied based on the known weights and according to our knowledge

currently there is no solution available to estimate the weights when the unknown

system is nonlinear. Although the GARCH model can produce estimation of

volatilities and the square roots of the volatility can be treated as weights, the

accuracy of the weights will be highly dependent on the mean model structures and

the GARCH model is estimated after the mean model. It is impossible to get an

accurate parameter estimation of GARCH model before a mean model has been

selected. Once the structure of the mean model has been determined, an iterative

reweight calculation can be used to give a numerical refinement of the parameters of

both mean the model and volatility model.

In system identification, model validation is one of the most important steps.

Because the models are driven by assumptions and finite data inputs, it is essential

that the assumption and the fitness of the model are tested. In statistics, the Cross

Validation (CV) method is commonly used to analyse the prediction performance of

a fitted model and during CV the model can be tested using independent data sets.

There are several CV methods available in practice (Devijver and Kittler, 1982)

including the holdout method, K-fold CV method and Leave-one-out CV method.

The holdout method splits the data into two data sets and one set is used to fit the

model while the other set is used to test the prediction performance. Due to the

simplicity and the serial dependence of financial time series, the holdout method will

be applied in our case.

During CV, the assumptions of the models need to be tested after the mean model

and volatility model have been fitted. As the LS estimator can only provide unbiased

6
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estimation when the noise is white, the mean model assumptions can be tested by

taking autocorrelation of the modelling residuals. For the GARCH class of volatility

model, the distribution assumption can be tested using the Jarque and Bera (JB) test

(Jarque and Bera, 1980), QQ plot etc. and the i.i.d. assumption can be tested using

the Brock, Dechert and Scheinkman (BOS) test (Brock et aI., 1987). The BOS test

uses a nonparametric technique to test against a wide class of data departing from

the i.i.d. requirement and it has been proved to be successful in detecting

nonlinearity in economics as in Brock et al. (1991). The first example of using the

BOS to test against the GARCH assumption was in Brock et al (1991) where the

distribution of the BOS test from the standard residuals was obtained by Monte

Carlo simulations. Bollerslev et al. (1993) concluded that the BOS test has the power

to test the LLd. assumption for ARCH when the volatility model or mean model is

miss-specified. The BOS test has been applied in most recent empirical practice as

Caporale et al. (2004) tested the adequacy of GARCH specifications using the BOS

test and Mangani (2009) used the BOS test to verify the significance of the GARCH

model when fitting market data from South Africa. Therefore, either an inaccurate

mean model or inaccurate volatility model will lead to failure of the BOS test on

standard mean model residuals. This raises the motivation to validate both the mean

and the volatility models simultaneously using a CV method. If both models are

accurate, the BOS test on standard one-step-ahead prediction errors calculated using

the second data set during CV should not be rejected.

Longevity risk now plays a key role for the institutes that provide pensions. The

mortality rate which is measured as the death rate in a population is the prime

element in longevity risk. If the mortality rate in pricing annuities is overestimated,

the profit margin of pension providers will shrink significantly. Many techniques

have been developed to model the mortality rate such as the non parametric Lee-

Carter model (Lee and Cater, 1992), Age-Period-Cohort (APC) model of Tabeau et

al. (200 I), and the Cairns-Blake-Oowd (CBO) model of Cairns et al. (2006).

However, currently there is no existing model which is entirely satisfactory. The

NARMAX modelling method can be used to fit the mortality rate surface and give a

7
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reasonable prediction. In mortality rate literature, the back testing method is

employed to test the forecast performance of existed mortality rate models as in

Dowd et at. (2008) and it is necessary to compare our new models with popular

mortality models using this method.

1.2 Objectives

The main objectives of this thesis are to investigate financial volatility models and to

develop a systematic nonlinear mean model identification method using financial

return data. This includes developing mean model term selection algorithms under

heteroskedastic noise conditions, validating simultaneously the mean and volatility

models and comparing the volatility prediction performance of the nonlinear mean

model with commonly used linear mean model in the GARCH literature.

The GARCH class of volatility models has developed very fast since the innovation

of the ARCH model by Engle (1982) and there are a hundred or more GARCH class

of volatility models which exist currently (Bollerslev, 2008). However, since the

volatility model is developed to mimic the observed volatility features, the

fundamental of the volatility model concept are very similar. The GARCH class of

models basically are an extension of the ARCH and GARCH models. Therefore, the

objective is to summarize a review of the major GARCH class of models.

However, most ARCH literature treats the mean process as linear and the MLE

method is used during model parameter estimation. As a matter of fact, nonlinearity

has been observed in most financial return processes and this suggests that a

nonlinear model is more appropriate for forecasting and accurate descriptions of the

financial returns and volatility. The MLE method is highly dependent on the

assumption of the distribution and numerical search methods are usually non-trivial.

There are several nonlinear modelling methods available and the NARMAX

polynomial model can be a very good candidate as the NARMAX model can

approximate a very wide class of nonlinearities. The NARMAX term selection and

parameter estimation algorithm which is known as OFR algorithm is independent of

8
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the distribution assumption. However, the OFR algorithm is based on the

assumption of constant variance and the question addressed in this thesis is to

investigate the impact on term selection when the noise is heteroskedastic and the

objective is to derive a new method to compensate this impact.

As far as we know, the GARCH literature barely investigates the accuracy of the

mean model and validates both the mean model and volatility model simultaneously.

As the GARCH class of models are proposed based on the assumption of i.i.d.

distributed standard mean model residuals and the accuracy of the mean model

residuals are directly impacted by the accuracy of the mean model, the i.i.d.

assumption will not be rejected only if both mean and variance models are accurate

enough to approximate the process. It is essential to develop such validation

procedures to ensure the prediction performance of the selected nonlinear mean

model. This is another key achievement in this thesis.

The morality rate is a key factor in hedging longevity risk among the pension issuers.

Without considering external impacts, it has been observed that the mortal ity rate is

mainly related with the age and the birth year of the underlying population.

Therefore, the mortality rate surface can be treated as a projection of the age and

birth years. Since there is no existing model which is entirely satisfactory, in this

thesis a new NARMAX modelling method is developed to fit the mortality rate and

to predict the future mortality rate. The fitness of the selected model is then checked

using back-testing methods. In order to demonstrate the prediction performance of

the new models, comparisons with existing mortality predictions are given.

1.3 Layout of this thesis

This thesis is organized into seven chapters. Chapter 2 reviews the major models in

GARCH class ofvolatility models. Chapter 3 briefly reviews the mean models of the

major ARCH literature and the NARMAX modelling method. Chapter 4 investigates

the impact of heteroskedastic noise on the OFR algorithm. A new algorithm is

derived as a solution to correct for the impact and to refine the parameter estimation

9
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of both the mean model and the volatility model. Chapter 5 deals with the validation

of both mean model and the variance model validations. Chapter 6 is a new

development of the NARMAX modelling method to the mortality rate. Chapter 7

gives the conclusions of this thesis.

Chapter 2 begins with a fundamental introduction to the volatility concept. Different

volatility forecast models are investigated and several major GARCH class of

models are reviewed. An alternative GARCH class model is proposed to give

smooth parameter estimation during MLE. The details of parameter estimation

methods for the GARCH class of models are also given. The commonly used

forecast evaluation methods in the GARCH literature are also reviewed.

Chapter 3 investigates the mean models used in the major GARCH class of models

and gives an introduction to the NARMAX modelling methodology. Examples are

given to demonstrate the volatility forecast performance comparison between a

linear mean model and selected nonlinear mean models when the mean process is

nonlinear.

In Chapter 4, firstly the OFR algorithm is introduced based on the NARMAX

polynomial model. Next, the impact of heteroskedastic noise on term selection using

the OFR algorithm is investigated and a new weighted OFR algorithm is proposed to

correct for this impact. An iterative reweighted procedure is then introduced to

refine the parameter estimation of both the mean and volatility models. Examples

are given to demonstrate the new term selection problem of the OFR algorithm

under heteroskedastic noise and to illustrate the application of the new algorithm.

In Chapter 5, the CV method is introduced and commonly used distribution

assumption testing methods are given. Next, the impact of the mean model term

selection on the ML estimation of the volatility model is analyzed theoretically. A

new method to validate simultaneously the mean and volatility models is proposed

and examples are given to illustrate the application of the new validation methods.

10
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In Chapter 6, firstly the definition of the mortality rate is given and commonly used

mortality rate models are reviewed. The NARMAX modelling technique is then

applied to derive a polynomial mortality rate model using realized death and

exposures data of England & Wales. A long term forecast comparison is given

between the derived mortality model and the CBO mortality rate model. A back-

testing analysis is then carried to assess the models' ex post forecasting performance.

The main contributions of this thesis and some suggestions for further research are

given in Chapter 8.

11



Chapter 2: Introduction to financial volatility modelling

2.1 Introduction

In financial systems, volatility is a measure of the dispersion in a probability density

function and often refers to the variance or standard deviation of a return series.

Volatility is one of the most important variables for evaluating the financial

uncertainty and it is often a key input to many investment decisions and the creations

of portfolio. Significant features of volatility have been found in financial time series

including persistence' large changes tend to be followed by large changes, of either

sign, and small changes tend to be followed by small changes' (Mandelbrot, 1963),

leverage effects 'volatility response to a large negative return is often far greater

than it is to a large positive return of the same magnitude' (Black, 1976) and

reversion to mean 'prices and returns eventually move back towards the mean or

average'. Apart from all the features above, volatility cannot be observed directly

from the data. Hence, volatility models were proposed to capture these features and

models based on historical volatilities were commonly investigated. Among

historical volatility models, the Exponential Weighted Moving Average (EWMA)

model was commonly used to give volatility predictions. More sophisticated groups

of volatility models are the AutoRegressive Conditional Heteroscedasticity (ARCH)

family models. The first example of the GARCH class of models was the

AutoRegressive Conditional Heteroscedasticity (ARCH) model introduced by Engle

(1982) where conditional variance was a function of q past squared residuals. The

ARCH process was extended to the more general case of the GARCH process with

past conditional volatilities by Bollerslev (1986). Motivated by experimental results

in foreign exchange markets that the sum of GARCH parameters were close to one,

GARCH was extended to the Intergrated GARCH (IGARCH) (Engle and Bollerslev,

1986). As a matter of fact both ARCH and GARCH models were symmetric in the

form of the squared residuals and leverage effects could not be included in these

models. Nelson (1991) argued for an asymmetric form according to the finding of

Black (1976) and modified the conditional volatility to the Exponential GARCH
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(EGARCH) model. The conditional volatility which was specified in logarithmic

form in the EGARCH model guaranteed that there was no need to impose estimation

constraints which ensured the non-negativity of the conditional variance. Following

Engle (1982) it was suggested that conditional variance model could be written in

the form of absolute residuals, Taylor (1986) and Schwert (1989) employed the

absolute residuals in the conditional standard deviation model. Based on the

discussion of Schwert (1990), Engle (1989) suggested using square absolute

residuals and derived the Quadratic GARCH (QGARCH) model in order to capture

the leverage effect. The Nonlinear ARCH (NARCH) proposed by Higgins and Bera

(1992) nested the ARCH model into a nonlinear form as setting the order of every

ARCH model term to be a fraction. The GJR-GARCH model proposed by Glosten,

Jaganathan and Runkle (1993) added an indicator variable to the GARCH model in

order to capture the leverage effect. Based on the fact that squared and absolute

returns of financial assets usually have serial correlations that are slow to decay, the

Fractionally Integrated GARCH (FIGARCH) model was proposed by Baillie,

Bollerslev and Mikkelsen (1996) to reduce the impact of a shock on future volatility

over an infinite horizon. More models were proposed recently and many of them

have flexible specifications which can include several other models as special cases

and hence will not be introduced here.

Since the pioneering work of Engle (1982), the assumption of conditional normality

has been commonly used in theoretical and empirical research. Based on this

assumption, the Maximum Likelihood Estimation (MLE) method was the standard

method used to estimate parameters. Weiss (1986) gave the first study of the

asymptotic properties of the ARCH MLE and indicated that MLE is consistent and

asymptotically normal with the condition of the finite fourth order moments of the

unnormalized data. However, evidence of heavy tails-Ieptokurtosis suggests that the

common assumption of conditional normality is often rejected empirically. The

Quasi Maximum Likelihood Estimation (QMLE) method which was then commonly

investigated and Bollerslev and Wooldridge (1988) showed that QMLE can still give

consistent estimation under assumptions of asymptotic normality of score matrix and

13
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uniform weak convergence of likelihood and its second derivative. However, Engle

and Gonzalez-Rivera (1991) investigated the loss of efficiency of QMLE when the

distribution is falsely assumed to be normal and proposed a nonparametric method to

estimate the conditional distribution. Hence, the distribution assumption is still a

major issue for parameter estimation of the GARCH class of models.

Beside parameter estimation, the forecasting power of the GARCH class of models

has also been studied and forecasting performance comparison of the competing

models becomes to one of the major direction of any forecasting research. The

squared return is usually used as the proxy to the volatility forecast evaluation and

popular evaluation measures include Mean Error (ME), Mean Squared Error (MSE),

Root Mean Squared Error (RMSE), Mean Absolute Error (MAE) and Mean

Absolute Percent Error (MAPE). However, Andersen and Bollerslev (1997)

discussed that squared returns can be a noisy estimator of the actual variance

dynamics and Lopze (2001) proved this by the theoretical evidence. Andersen,

Bollerslev, Diebold and Labys (2001) proposed the alternative proxy which is the

realized volatility calculated by high frequency data. Another issue arises as the

distribution of the return is usually skewed because the negative news commonly

causes bigger impact than positive news. Accordingly, heteroskedasticity-adjusted

MSE (HMSE) was proposed to penalize the asymmetrical volatility forecasts by

Bollerslev and Ghysels (1996). With these measurement methods, the GARCH class

of models forecast contests exploded in the past twenty years. Most recent

developments of volatility forecasting trends to use long memory volatility models

which are included in the literatures of Andersen et al. (2002), Vilasuso (2002) and

Zumbach (2002) and forecast evaluation based on those models all used intra-day

high frequency data to calculate the proxy.

The purpose of this chapter is to review the definition of financial volatility,

volatility models, parameter estimation methods and forecast evaluation of these

models. Commonly used models and evaluation methods will be given and the

remaining sections of this chapter are organized as follows. Section 2.2 provides

14
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some definitions. Section 2.3 gives the historical reviews of the volatility models.

Section 2.4 focuses on the commonly used GARCH class volatility models and

Section 2.5 gives the parameter estimation methods for the GARCH class models.

Section 2.6 lists most of the forecast evaluation methods and describes different

volatility proxies. Section 2.7 gives the conclusion.

2.2 Definition of financial volatility

Financial volatility is interpreted as uncertainty and usually refers to the degree of

unpredictable change over time of a certain variable. Volatility is not observable and

it can be measured as standard deviation 0- or variance 0-2 of the continuously returns

of a financial market with specific time horizon. The return data series are usually

converted from a price series using

P(t+l)
R(t)=log P(t) =logP(t+I)-logP(t) (2.1 )

where the price observation made at sample time t and t+ 1 are denoted as P(t) and

p(t + 1) and R(t) is the return.

There are several kinds of financial volatilities which exist in the current literature:

(I) unconditional volatility, (2) implied volatility, (3) realized volatility and (4)

conditional volatility. Unconditional volatility refers to the constant finite variance

0- throughout the whole data generation process and is defined by the assumption of

stationary stochastic process. The statistic equation of the unconditional volatility is

T

0-= I(R(t)-Rf I(T-I)
1=1

(2.2)

where T is the sample return length and R is the sample average return as

The implied volatility is a value calculated from an option price and it is usually

associated with the Black and Scholes option model. The realized volatility which is

also called historical volatility is the standard deviation of a set of previous returns.

15



Chapter 2 Introduction to financial volatility modelling

The statistical equation of the realized volatility is similar as (2.2) the length of the

set can be varied as 15 days, 30 days etc. The conditional volatility is the standard

deviation of a future return that is conditional on known information set such as the

history of previous returns. Unlike realized volatility, the conditional volatility is

calculated by a proper selected and estimated time series model using appropriate

data and it is usually time-varying. According to the fact that most market volatility

changes have the characters as mentioned in the introduction, the variance of the

return process is usually time-varying. Hence, the volatility mentioned in this thesis

is referred to as conditional volatility. If the return is rewritten as y(t), the

conditional variance will be

(J"2 (I) = Va~_1 (y(t)) (2.3)

where Va~_1 denotes the variance conditioned on past observations. Since volatility

is time varying and not observable, many discrete-time models have been proposed

to model the volatility by inferring volatility from either absolute or squared returns.

2.3 Time series volatility forecasting models

Volatility modelling has attracted much attention in recent years, largely motivated

by its importance in financial markets. Reliable volatility estimates and forecasts are

essential due to the increasing needs in hedging against risk and portfolio

management. Different types of volatility models have been developed as moving

average models and GARCH class of models to account for different market facts.

2.3.1 Moving average model

Moving average models has been commonly used in financial data modelling

because the models are the easiest to manipulate and construct. These kind of

models are usually directly built up on historical volatilities and shown good

forecasting performance in some literature like Figlewski (1997), Andersen,

Bollerslev, Diebold and Labys (2003).
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2.3.1.1 Historical average model

Among moving average models, the simplest is the historical volatility model or

equally weighted moving average model. The historical average model is calculated

on a fixed size data window which is rolling through time samples and oldest return

will be substituted by new return at every new sample point. The equally weighted

average of squared daily returns are usually used by the historical model and the n-

day historical volatility is calculated by

n

a-2 (t) = Ii (t-i)/ n
1=1

(2.4)

where n is a user chosen length and a-2 (t) is the volatility estimation for the time t .

The reason for using a squared return rather than the square mean deviation as

(Y (t) - Jif is because during empirical research on the accuracy of volatility

forecasts, the use of the squared return has demonstrated little disadvantage

(Alexander, 2001) and also the mean of the return is usually assumed to be zero. The

n-day historical volatility is commonly used to measure the portfolio risk in practice.

However, the major problem of the historical average model is that the model only

includes the extreme events as important to current estimation without considering

when they occurred. Hence, even just one unusual return will cause affection to the

n-day historical volatility the same as the extent of n following days after that event.

Short-term historical model are supposed to solve the problem above and capture

more 'clustering' volatilities, but equal weighting cannot account the dynamic of

return properly. Accordingly, the exponentially smoothing average model was

proposed.

2.3.1.2 Exponentially smoothing average volatility model

In contrast to equal weighting, the exponentially weighting method is another

popular approach to volatility forecasting. It is more robust and accurate in

forecasting volatility in the short term (Gardner, 1985) and can pass the shock from

an extreme event as an exponential decay to the current volatility.
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The exponentially smoothing model usually puts more weights on the most recent

observations and hence it is also called Exponential Weighted Moving Average

(EWMA) model. The EWMA can capture some dynamic ordering of returns and the

EWMA volatility estimation of market events reacts over time with a strength that is

determined by smoothing constant A which is a number between 0 and I. The larger

the value of A, the more weight is put on past observations and the volatility series

becomes smoother. The general EWMA volatility formula can be written as
a:

82 (I) = (1- A) I AI-Ii (I - i)
1=1

(2.5)

and the formula can also be written as a recursion format as

(2.6)

The term of(I-A)r2(/-I)determines the degree of reaction of volatility to market

events and the smaller the value of A is, the more yesterday's return will react to

market information in volatilities. The other term of AcY2 (I -1) determines the

persistence in volatility. Since A is between 0 and 1, the effect of a single event will

be reduced after some time horizon. A higher A will give more persistence in

volatility to actual market events and a lower A gives higher reaction on volatility

but which will fade away quickly. The main restriction of EWMA model is that the

summation of persistence parameter and the reaction parameter are one which means

the model should either have volatility persistence or have high reactions. Based on

this limitation, EWMA model is usually used in the foreign exchange market.

(Alexander, 2001)

2.3.2 ARCH model

In the moving average model, the returns process has been assumed to be

independent and identically distributed as the returns are used directly to calculate

the volatility and there is no time-varying volatility assumption. Meanwhile, only the

current volatility is taken as the prediction. All those features of moving average

greatly limit the volatility prediction and the assumptions are hard to satisfy in real

market data. The returns in many financial markets are usually not well modelled by
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an independent and identically distribution process and they may show

autocorrelation in some high frequency data. Especially, the squared returns often

show autocorrelation which is an indication of volatility clustering (Mandelbrot,

1963). Engle (1982) first described a framework to model the time varying volatility

and introduced the ARCH model. The ARCH process is a zero mean, serially

uncorrelated process with time varying volatilities conditional on the past and it

assumes that conditional volatility of today is a weighted average of past squared

unexpected innovations. The ARCH model assumes that the innovation £(/) can be

formatted by a multiplication of an independent and identically distributed random

variable Z(/) and a time varying standard deviation as

£(t) = Z(/)O'(t) (2.7)

The variable Z (I) has zero mean and identical variance of one. Engle also assumed

that the innovation process follows a normal distribution as

(2.8)

where If'Hdenotes all the variable information of past returns (Y(/-l), ... ,Y(/-n))

up through time t-1. If the conditional variance 0'2 (I) is rewritten as h (I), the

ARCH model can be expressed as

(2.9)

where ao, ap a., ... , ap are unknown parameters which satisfy the conditions as

p

ao>O,al, ... ,ap~O and La,<l , and £2(I-l),£2(1-2), ...,£2(t-p) are past
;;1

innovations derived from the return data. Ifan innovation variable v(t) is defined as

v (t ) = £2 (t ) - h (t) (2.10)

, then the ARCH model in equation (2.9) can be rewritten as

(2.11)
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As E1_1(v(t)) = Et-! (&2 (I) - h(t)) = E1_1(&2 (t)) - E1_1(h (I)) and E1_1(&2 (t)) = h(/) ,

E1_1(v(t)}=0. Hence, the ARCH model corresponds directly to an AR (q) model

with squared innovations. From the stationary condition requirement of the AR

model, the sum of the parameters should be less than one and this coincides with the

ARCH parameter conditions above.

Before using the ARCH model, it is needed to test the ARCH effect first. The

Lagrange multiplier test for ARCH was originally proposed by Engle (1982) and it

is simply a regression on the innovation &(t) by

(2.12)

where L is the Lagrange multiplier statistic, T is the sample length, fa is a column

vector of (':\') - IJ
z(t) = (1,&2 (t-l), ....e' (t- p)) and Z =[ z(I), ...,z(T)J. Under the null hypothesis,

the hypothesis of

the statistic will be asymptotically distributed as chi square with p degree of

freedom. The intuition behind the test is that if the data are homoskedastic, the

variance cannot be predicted and variations in c2 (t) will be purely random.

Alternatively, if ARCH exists, large values ofc2 (I) will be predicted by large values

of the past squared innovations.

In empirical applications of the ARCH model, a long lag length p and a large

number of parameters was often used. Accordingly, it becomes more difficult to

estimate the parameters because the likelihood function often becomes very flat and

non-negative conditionals are usually violated. For example, Lilien and Robins

(1987) used a linearly declining structure on the parameters to prevent some of them

from being negative. Consequently, a more general case of ARCH model which is

called GARCH has been proposed and a bibliography of research papers was

published to introduce new models based on GARCH.
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2.4 The ARCH Class of volatility models

2.4.1 GARCH model

The GARCH model introduced by Bollerslev (1986) is a more general case of the

ARCH model. In order to take account of the typical long memory effect of the

volatility shock, the parameter estimations of the linear declining lag structure of

ARCH usually violate the conditions. The GARCH model uses a more parsimonious

representation to allow the more flexible lag structure than that of ARCH and the

GARCH specification provides that the best volatility prediction in the next period is

a weighted average of the long-run volatility, the volatility prediction of this period

and the newest information in this period which is captured by the most recent

squared residuals. The general GARCH (p, q) model is written as

(2.13)
,=1 ,=1

p e t), q>O

ao > 0, a, ~ 0, i = 1,... ,q

f3, ~O, i=l, ...,p

where h(t) is conditional variance at sample t, c(t) is the innovation from return

process at sample t , a" i = 0, ... , q and f3" i= 0, ... , p are unknown parameters.

Therefore, the short-run dynamics of the volatility process are determined by the

sizes of the parameters a and f3. Large f3 shows that the shocks to conditional

volatility take a long time to die out and large a indicates that the volatility reacts

intensely to market movements.

The extension from ARCH to GARCH is similar to the extension of a time series

AutoRegressive (AR) process to the AutoRegressive Moving Average CARMA)

process. It can be shown that an ARCH (00) model can be represented as a GARCH (I,

1), viz.
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h (I) = ao + a, e 2 (I - 1)+ f3.. h (I - 1)
= ao + a,c2 (I -1) + f3.. (ao + a,c2 (I - 2) + f3..h(I - 2))

= ao + f3..ao+ a.e' (I -1) + a,f3..c2 (I - 2) + f3..2 h (I - 2)

= ao + f3..ao+ ... + Pt-Iao +a,c2 (I -1) +a,f3..c2 (/- 2) + ... +a,f3..n-'cl~n
= A + B,c2 (I -1)+ B2c2 (I -2)+ ... + Bnc2 (/-n)

(2.14)

an innovation variable is assumed to be V(I)=C2(/)-h(/), the GARCH (p, q)

model can become to an ARMA model consisting only with c2 (I) and v(t) as

/=, /=,

c2 (/)-V(/) = ao + Ia/c2 (/-i)+ fJ3,[c2 (t-i)-v(t -i)]
1=' /=,

1=' 1=' /=1

Although the GARCH model is directly set up for one-step-ahead forecast, the long

term prediction of GARCH (1, 1) can be also constructed according to the

assumption in equation (2.7) by

h(/) =ao +a,c2 (/-1)+ {3,h(t-I)
= ao + a,z2 (I -1) h(t -1) + {3,h(/-I)

= ao +(a,z2 (I -1) +{3,)(ao +a,z2 (I - 2)h(1 -2) +Ah(1 -2))

= ao +( a,z2 (1-1) +A)[ ao+(a,z2 (I -2)+ A)h(/-2) ]

= ao +.. '+ao (a,z2 (I -1) +A)" .(a,z2 (t-n)+ A) +(a,z2 (I -1) +A)"'( a,z2 (I -n) +{3,)ho
(2.16)

Because E (Z2 (I)) = 1 , after taking expectation on both side equation (2.15)

becomes

According to the condition of a, + f3.. < 1, equation (2.16) can be rewritten as

(2.18)
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With a similar extension method, the long term prediction of GARCH (p, q) can be

written as

q p

1- La, - L,B,
,=, ,=,

(2.19)

Most financial markets have GARCH volatility forecasts that 'mean-revert' as the

volatility forecast converges to the long term prediction as in equation (2.19) and the

forecast of the GARCH model is stationary. However, in currencies and

commodities market, the shock to the volatility trends to have an infinite persistence

during forecasting (Engle and Bollerslev, 1986). Hence, the stationary GARCH

model can not apply in this case.

2.4.2 IGARCH model

Engle and Bollerslev (1986) introduced a model which captures non-mean-revert

effect and the volatility is integrated by the definition of ta, + IJ3, = 1 in the
,=, ,=,

GARCH model. Relative to the simple GARCH model, the new model is called the

Integrated GARCH model and the simple IGARCH (1, I) can be written as

(2.20)

As the long term prediction of the GARCH model is listed in equation (2.19), when
q pLa, +L,B, = 1is applied the long term prediction of IGARCH model is infinity.
,=1 ,=1

Therefore, the unconditional volatility does not exist. For illustration, based on

model (2.20) the expectation of the one-step-ahead unconditional variance is

E (h(t)) = ao + E (a1c2 (I -1)) + E ((1- a,) h(t -1))

= ao + E (a,z2 (1 -I) h( t -I)) + (1- a,) E (h (I - I))

= ao +a,E(h(1 -I)) +(1- a,) E( h(t -I))
= ao +E ( h (t - I))

(2.21 )

Iteratively substituting the E (h (I)) by its previous estimation for n steps, equation

(2.21) becomes to
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E (h (t ) ) = nao + E (h (t - n) ) (2.22)

It is obvious that the unconditional volatility is integrated in equation (2.22) and

when n trends to infinity, the unconditional volatility trends to be infinity. The

IGARCH model can become to EWMA model when the constant parameter ao is

zero. Apart from the volatility clustering, the leverage effect is also found to exist in

most of the market data. However, the GARCH and IGARCH model are symmetric

models which mean that the impact to the volatility of positive and negative returns

is the same.

2.4.3 EGARCH model

Although, GARCH models have been applied with much success to modelling of

financial returns, the simple structure imposes important limitations. The symmetric

assumption has been questioned empirically and therefore, Nelson (1991) argues for

a model in which the conditional variance responds asymmetrically to positive and

negative innovations. Black (1976) found evidence that volatility trends to rise in

response to bad news and to fall in response to good news, the conditional

distribution of the innovations is therefore usually left skewed. Nelson also argued

that the nonnegative constraints of parameters can create difficulties in estimating

GARCH models. Accordingly, Nelson adopt a similar process for ensuring the

conditional volatility remains nonnegative by making In (h(t)) linear in some

function of time and lagged z(t) in some suitable function g as

<Xl
In(h(t))=a(t)+ LPkg(Z(t-k))

k=1

f? -)PI - (2.23)

where {at },=-oo.<Xl and {Pk L=I.<Xl are real, non-stochastic, scalar sequences and

g( z(t)) = Bz(t) + Y[lz(t)l- Elz(t)IJ Because E(z(t)}=O and

E(lz(t)I-Elz(t)I)=Elz(t)I-Elz(t)I=O, g(z(t))is a zero mean and i.i.d. random

sequence. Over the range O<z(t)<oo,g(z(t))is linear in z(t)with slope B+yand

over the range -oo<z(t)~O, g(z(t))is linear with slope B-y. Therefore, the
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structure of g (z (I)) allows the conditional variance process to respond

asymmetrically to rises and falls in the stock price. Nelson then introduced an

ARMA process to approach the infinite parameters of flk as

1+'If L+ .. ·+'If Lq
In (h (1) ) = at + 1 q g ( z (I - 1))

I-~ L- .. ·-~ Lf'
1 f'

(2.24)

where Lis lag operator, 'If,11are parameters and the terms [I - t 11,I: ] and

[I + t.'If,t ] are assumed to have no common roots. Therefore, the general

EGARCH model is written as

f' I+ 'If L +...+ 'If Lq (
In(h(/)) = ao+ fr,8, In(hl-/)+ l-~IIL_..'-~:LP BZ(/-I) + r[lz(t -1)1- Elz(t -I)IJ)

(2.25)

where ao,f3,,'If,~,O,r are unknown parameters. In practical the terms

1+ 'If L +...+ 'If Lq
1 if are usually cut to finite terms and the practical EGARCH model

l-~ L- .. ·-~ LP1 P

can be written as

E{ 16(1 - J)I }]+ tc/( Ic(t - J)I J
~h(t -1) ;=1 ~h(t -1)

(2.26)

Beside the ability of modelling the leverage effect, the other advantage of EGARCH

from an implementation perspective is that the estimation of the parameters does not

require that the parameters satisfy any inequality constraints. The log operator

ensures that the conditional volatility is positive all the time. However, lack of

analytic form for the volatility term structure limits the application in forecasting

volatility of EGARCH model.
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2.4.4 QGARCH model

Schwert (1990) studied the stock market crash of October 19, 1987 and tried to use

22 lagged terms to model the mean and the absolute standard deviation. Based on

Schwert's discussion, Engle (1989) introduced the historical absolute innovation

term with unknown power and a negative innovation term to the GARCH model as

h(t) = ao + a116(1 -1)lh - A6(t -1)+ fJ,h(t -I) (2.27)

where a., ai' A, f3t are unknown parameters and b is unknown power. According to

the simulation results, Engle found that the parameter b is close to 2. By extending

the Binomial theorem (Poul, 1955) to equation (2.27), Engle finally proposed a

Quadratic GARCH (I, I) with leverage ratio to compensate the impact of the

negative returns as

(2.28)

where r is the leverage ratio and aD, ap f3t are parameters. The squared term in

equation (2.28) ensures the positivity of the conditional variance and the positive r
ensures the QGARCH model matches the leverage effect of negative returns.

Sentana (1995) discussed that the QGARCH is actually the Taylor series expansion

of the conditional volatility and gave a general QGARCH (p, q) model as

h (I) = aD + If' X,_I,q + X:_"qAX,_"q +f 13,h(I - i) (2.29)
,=1

where aD is constant parameter, If' is a vector of parameters of linear lagged

innovations, A is a matrix of parameters of quadratic terms, X,_1,q is a column vector

with lagged innovations from 6(/-l)to 6(t-q). QGARCH is proposed to contain

the leverage effect in modelling the volatilities; however, there was no theoretical

explanation to verify the use of a quadratic Taylor expansion as an approach.

2.4.5 NARCH model

Engle (1982) suggested two alternative volatility models-the exponential value

model and absolute value model:
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h (I) = exp (aD + a.e? (I -I) + + ap&2 (I - p))

h(/) = aD+all&(1 -1)1 + + ap 1&(/- p)1

(2.30)

(2.31)

Then in an empirical application, Engle and Bollerslev (1986) reported one of the

best models in modelling U.S.doliar/Swiss franc exchange rate among all competing

models was

(2.32)

Geweke (1986) and Pantula (1986) suggested a logarithm ARCH model to avoid the

non-negativity restrictions as

log (h (t -I)) = aD+ al log (&2 (t -I)) + ... + a" log (&2 (t - p)) (2.33)

Since each of the above models has individual limitations and depends upon the

particular empirical application, Higgins and Bera (1992) proposed the NARCH

model which is the first GARCH class model encompassing some other models as

where a2 is the unconditional variance of the innovation &(/), aO,al,"',ap are

unknown parameters and <5 is the unknown power parameter. When <5 = 1, NARCH

becomes the standard ARCH model. Otherwise, the equation can be rewritten as

h"(/)=ao(a2)" +al(&2(/_1)" + ... +ap(&2(t-p))" (2.35)

According to Box-Cox (1964) power transformation

{

Y<-I
A -,-,

Y - /l,

log(y),

ifA,:t:.O

ifA,=O
(2.36)

where y is a dependent variable, when A, ~ 0 the equation (2.35) can be transformed

to

which is equivalent to equation (32) with aD = ¢o log( a2 )and a, = ¢,for i=l ,... , p.

27



Chapter 2 Introduction to financial volatility modelling

2.4.6 GJR GARCH and Threshold GARCH model

Based on the empirical finding of Engle and Ng (1993) that negative shocks of

similar magnitude lead to larger revision on conditional volatility, Glosten et al.

(1993) proposed another popular GARCH class model - the GJR GARCH model.

GJR model nested a dummy variable in to the GARCH model and the dummy

variable is an indicator of the sign of the innovation. In order to compensate the

leverage effect, if the innovation is negative, the indicator variable is set to be 1 and

otherwise o. The GJR model can be written as

h(t) = ao + a,£2 (t -1) + ...a'l£2 (t - q) + /l,h(t -1) + ... /l"h (t - p) + yc2 (t -1) 11_,

(2.38)

where It is the indicator, aD,a,,.·· aq ,{3,,··· {Jp are unknown parameters and y is the

leverage parameter. The GJR model introduces an alternative asymmetric

component to the EGARCH model since a negative residual e (t -I) contributes

(a, +y)£2(t-l) to the conditional variance while a positive residual &+(/-1) only

contributes s' (I -I)to it. As the indicator term in GJR GARCH is only related with

the most recent innovation, Threshold GARCH is the general case of the GJR

GARCH and the indicator term has been extended to compensate the negative

impact of all past innovations as

q q "
h(t)=ao+ Lat£2(t-i)+ LY//-I£2(I-i)+ Lf3,h(t-i)

,;, ,;, ,;,
(2.39)

2.4.7 Logistic GARCH

In GJR GARCH and Threshold GARCH, the indicator function is introduced to

model the leverage effect. However, during the parameter estimation of those two

models, the non differentiability of the indicator function may cause problems. Here

we propose to use a logistic STAR function to approach the indicator function. The

logistic STAR function is usually written as

-IL = ---.,.------:-
l+exp(-A(Yt-c))

(2.40)

28



Chapter 2 Introduction to financial volatility modelling

where A is the smooth parameter and c is the threshold parameter. As in GJR and

Threshold GARCH the indicator is switched at 0, the parameter cthen should be set

to 0. Different logistic functions under different smooth parameters are listed in

Figure 1. It can be seen that when A trends to be large, the logistic function trends to

approach the indicator function I, . Accordingly, the logistic GARCH can be written

as

-r-l
- . - r-2.5
....... r-5
~ r-25

,_ ,

·0 1

·0.2

·0.3

·0.4

·0.5

·06

·07

·0.8

-09

,1
,2 ·1.5 ·1

" ..

(2.4) )

2

Figure 2.1 Logistic function simulation under different smooth parameters

2.4.8 FIG ARCH

The shock in volatility series has been found to be capable to impact the future

volatility over very long horizon (Taylor, 1986). According to this stylized fact and

based on the time series long memory fractionally integrated process, Baillie et al.

(1986) proposed the FIGARCH to approach the long memory effect to the volatility

process with a more flexible model structure. Because the fractionally differencing

operator term can be expanded in terms of the hypergeometric function as

k=O (2.42)
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where l(x) is Gamma function, trk is the parameter of every lagged term and Lis

lag operator. The FIGARCH is then given by

(2.43)

where a, f3 are parameters and d is the fractional differencing parameter which

satisfies 0 < d ::;1. One advantage of the FIGARCH model is that the impact of

lagged squared innovations on conditional volatilities can have a slow hyperbolic

rate of decay rather than an infinite propagation as in IGARCH model. However,

Granger (200 I) pointed out that the integrated process which has a time trend in

volatility level is not observable in practice. Therefore, it is difficult to test against

the FIGARCH model in empirical application.

2.4.9 Summary of GARCH class models

In the recent twenty years, different types ofGARCH class model have been applied

to a wide range of time series analyses and the applications in finance have been

particularly successful. Nearly all of the GARCH class of models have one major

assumption that the innovation of the return process consists of the multiplication of

an i.i.d. variable and the conditional standard deviation as &(t) = z(t)O"(t) .

Although there are some other GARCH class models existed in literature, however

the models referred above are widely used and have been commonly tested in the

empirical applications. Therefore, further discussion on other GARCH class models

will not be introduced here.

2.S Parameter Estimation of GARCH class models

2.5.1 Maximum likelihood Estimation (MLE) method

Since the ARCH model was proposed by Engle (1982), the parameter estimation

method for GARCH class of models has barely changed. Standard practice is to

estimate the parameters using the MLE method. There is a pre-assumption before

using MLE which requires a certain form of the joint probability density function.
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The most commonly used probability function is the conditional Gaussian

distribution function

(2.44 )

where f(~(/)I'I'r-') denotes the conditional density function fort:(/). If the average

log likelihood is denoted by I and the log likelihood of 1''' observation is denoted by

t.. then 1= _!_ fir where T is the sample size. Since
T r~1

(2.45)

and the term log (21l') can be ignored because it is a constant, the log likelihood

function at single observation then becomes to

I 1~2(/)
I =--Iog(h(t))---
r 2 2 h(t) (2.46)

. Then the first derivative of equation (2.46) with respect to the parameter vector B

(the parameters of the GARCH model) is

01, I a(log(h(/))) &,' a( ~)
-=- -eo 2 eo 2 eo

I I ah(t) I ~2 (I) ah(/)
=-----+-----2 h(t) eo 2 h2 (I) eo
=_I_ah(t)(~2(t) -I)
2h(t) eo h(t)

(2.47)

Therefore, according to Bolloslev (1986) a Newton-Raphson searching method can

be implemented to give the parameter updating procedure as
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(
r ' )-1 r0-0 A 0"/, 0/,

hi - k - k L 00 00' L an
k ~I • k k =1 u"

(2.48)

where Ok is a vector of parameters estimated at the k,II iteration, A. is the step length,

and V denotes the first derivative of function f (B. ). According to Berndt et al.

(BHHH, 1974) the term (t 0
2
/, )-1 can be approximated by (t ai, ai, )-1

k=1 00.00; '~I 00" 00;

Then the parameters can be calculated from

(
r )-1 ro =() -A L~~ L~

.+1 • "'=1 00. 00; '~I00"
(2.49)

Since the parameters of GARCH model have constraints, the Lagrangian function

can be used during optimization to include the constraints in the object function as
m II

L(x,A,p) = f(x)+ LA,g, (x)+ LP,h, (x) (2.50)
,=1 ,~I

If the GARCH (1, 1) model with constraints ao > 0, a!, fJl ~ 0, al + Pt < I is taken as

an example, the Lagrangian function for the estimation procedure is

L(O,A,p) = f(O)-Aal -APt +_!_(_I + I J
p ao I- al - Pt

For the GJR (1, 1) and QGARCH (1, 1) models there is an additional constraint

(2.51 )

because the leverage effect coefficient should be greater than zero. In empirical

applications, the numerical derivative is usually used to approach the first derivative

function as ai, ~ V I, where V is taken to be a very small value such as 1Oe-I 0.
00. VO"

Although during parameter estimation h (t) is an unknown variable, it can be

calculated recursively by the GARCH class model equation with initial settings.

During numerical searching, different GARCH class models may give different

recursive calculations of h(t) but the procedure of parameter updating is the same as

in equation (2.49).
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As the normal distribution assumption is usually rejected by practical data, a

plausible alternative to the normal is the student's t distribution which allows for

heavier tails than the normal distribution. Bollerslev (1987) allowed the conditional

distribution of GARCH model to be the t distribution function as

-I (' ]_(1,+1)'2I v + I V -1/2 C· 1
f(c(/)IY't-1)= cr(-)r(-) ((1'-2)h(/)) 1+ () () ) (2.52)

,,7r 2 2 I1I(v-2

where r is Gamma function, v is the number of Degree of Freedom (DoF) and

should be bigger than 4 as kurtosis and skewness statistics of the t distribution arc

defined under the condition of DoF>4. The corresponding log likelihood function is

(

-I (2 ]-(1+1)/2 JI v + I V -li2 C 1
I, = log J;r(-2-)r(Z) ((v-2)11(/)) 1+ 11(/)(~'~2)

= ~ log(7r)+ IOg( r( v; I)) -IOg( r(~))-~ log( v- 2)-~ 10g(h(/))

v + II (1 c
2
(I) ]

--2- og + h(/)(v-2)
(2.53)

Then during MLE the normal likelihood function (2.46) can be substituted by

equation (2.53) and the DoF can also be treated as an unknown parameter.

The implementation of the GARCH MLE procedure can be summarised as follows:

(I) Initialize the parameters. As a rule of thumb, the persistence coefficients f3t

of the GARCH (I, I) model are usually in excess of 0.8 and reaction

coefficients al is usually no more than 0.2 (Alexander, 200 I). The initial

parameters of GARCH (p, q) can then be set as

h, =var(c(t));al =a2 = .. ·aq = 0.05;f3t =/32 ="'/3p = 0.85;00 =O.lhl
q P

For the GJR and QGARCH models, along with the above initial parameters,

the initial value of the leverage effect coefficienty should be set to zero.

For the EGARCH model, the parameters should be set initially as
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The step length ,1* in equation (2.49) should be set to be less than one and

could vary depending on the different models. The penalty parameters A in

equation (2.51) should be set to extremely small values as IOE-30 because

the likelihood should not be affected much by penalty terms. p in equation

(2.51) should be set to extremely big values as IOE30for the same reason.

(2) The conditional variances h(t) (t=I, ..,T)are constructed recursively usmg

appropriate GARCH class models under initial parameters and the likelihood

I{Iof the each sample is calculated by the logarithm likelihood function (2.46).

In order to calculate VI{, initial parameters 0 are saved and multiplied by

V + 1 as (V + 1)0 and the likelihood (2 is calculated by the updated

parameters. V I{ is then calculated as V I{ = 1{2 -I{I . The term V 0 can be

calculated as the multiplication of the initial parameters 0and V. Therefore,

V I b d . d d ~ al{ all . .
__ I can e etermme an ~-- m equation (2.49) can be calculated.
V Ok (=I aOk ao;

(3) Treat the new updated parameters by equation (2.49) as the initial parameters

and repeat procedure (2) until some stop condition is achieved.

2.5.2 The Quasi-Maximum Likelihood Estimation (QMLE) method

During practical application of the MLE on estimating parameters of GARCH class

of models, the assumption of the conditional normality is always breached and the

tails of the conditional distribution has always been found to be fatter than that of the

normal distribution. Bollerslev and Wooldridge (1988) discussed those facts and

proposed the QMLE method to give a consistent estimation under weak regularity

conditions. In particular, Bollerslev and Wooldridge showed that

(
o-t 0 O-t )-t/2 r;;;( ~ ) J ( )Ar BrAr "T Or-00 - N 0, I (2.54)
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where Br is the estimated parameters under assumption of normal distribution and

(2.55)

(2.56)

However, they did not give any efficiency analysis of QMLE when the distribution

was falsely assumed to be normal. Addressing this issue Engle and Gonzalez-Rivera

(1991) discussed that QMLE will lose efficiency when the conditional distribution is

not normal and they defined the notion of Relative Efficiency (RE) of QMLE in

order to describe this efficiency loss. By definition, the RE is the ratio of asymptotic

variance of the parameters when the true density function is known to its asymptotic

variance when normality has been assumed. RE can be written as

var( BMU)

REo = ----:'---':-
var( BUM!,!!)

(2.57)

where the var( BM!L ) is the asymptotic variance of parameters from the MLE method

when the conditional distribution is correctly specified and it is calculated as Jlif .
If the true conditional distribution is normal then A~ = B~ (Weiss, 1982) and the RE

will be equal to one. However if the true conditional distribution is non-normal, then

the RE will be less than I.

In order to show the efficiency losses, the RE is derived theoretically in the cases

where the true conditional distribution is a symmetric fat-tailed Student's t

distribution. Here, only GARCH (I, I)h, =(I-a-p)+a£'~l +Ph,_l is used during

calculation of RE for simplicity. In QMLE, the first derivative of the likelihood

function with respect to the GARCH parameters is calculated as

~=_J__!_Ch'(I_ £2(/))
ca 2 hi ca h(/)

(2.58)
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3_=_}__}_ ahl (1_ ~.2(/)J
ap 2 hi ap h(/)

(2.59)

By the law of iterated expectation proposed by Patrick (1995. theorem 34.4). the

matrices A~and B~are given by

BO = J_ " E ( a/I ( (0) a/I ( (0) J = _!_ " E [ E a/I ( (0) a/I (00) 'I J (2.61 )
I T ~ 00 00' T ~ 00 00' V 1-1

Therefore, substituting equation (2.58) and equation (2.59) into B;l yields

(2.62)

where k is the coefficient of conditional kurtosis as E( G/
4

1 '1'1-1 )/ h/. Similarly, the

other parts of the matrix B~can be given by

36



Chapter 2 Introduction to financial volatility modelling

(2.63)

(2.64)

The elements of the matrix A~ can be calculated by substituting equations (2.58)

and (2.59) into equation (2.60) using the following equation

C( _ _!__l ch(t) (1-~lJ
I T 2 h(t) ca h(t)

A
J

J = -- LE --'---------'--___:__:_
T I=J oa
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(2.65)

The other elements of the matrix A~ are given by

(2.66)

(2.67)

asymptotic variances of the parameters of QMLE- var (BIJM1.F) are given by

AO-IBoAo-1 = [All
T r r

AI2

(2.68)

The diagonal elements of the above matrix are the asymptotic variances of the

parameters as in the following

var (a)= i(k - I) A22 / ( All A22 - AI22)
(2.69)
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var ( jJ) = ~ ( k - I) A]] / ( A]] An - A]~ )

= B]] / ( A]] A22 - A]22 )

If the true conditional distribution of the residuals is a Student t distribution, the

(2.70)

likelihood function and the first order derivative are given by

-t (2 )_(,,+1)/2I v + 1 V -]/2 G (I)
f(G,IIfI'_I)= £r(-2 )r("2) (v-2)h(t)) 1+h(t)(v-2) (2.71)

where v is the number of degrees of freedom and should be bigger than 2 and r( )

is the Gamma function. The corresponding log likelihood function is

The first derivative with respect to the GARCH parameter () is then given by

alII ah(f} v+ l 1 ( &2(f) Dh(/)l
a~=-2h(/}aB--2-1+_&~fl_ -h2(t)(v-2} eo

h (1)( v - 2}
1 1 ah(t) v-t l h(/}(v-2) &2(/} oh (1)

=-2h(t}ae+-2-h(t)(v-2}+c2(t}h2(t)(v-2) se (2.73)

1 1 oh(t} 1 1 (v+l}c2(t) oh(t)
------+- --- 2h(/) 00 2h(t)h(t)(v-2}+&2(t) cO

1 1 Ch(/)( (v+l)c2(/) 1
=-2 h(/)aB 1- h(t)(v-2)+c2(t)

The elements of matrix B~MI.F are then given by
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(2.74)

822"'" ~ ~ t,E(L,~I)( a~t)J(1-h(I~(:~~)~(:~(I)n (2.75)

8,,"" ~~t.E( ~ h' ~I)(a:~l)(a:t) )(1- h(I~(:~~)~(;'(I)n (2.76)

Hence, the asymptotic variances of the parameters estimated by MLE under t

distribution are the diagonal elements of the inverse B~MIE matrix:

( ( J2 ( J2JA 1 r 1 1 8h(r) (v+l)e2(r) MU:' M/E 2MI.!:

var(aMIJ:)= T~E 4h2(/) 8p 1- h(/)(v-2)+e2(/) I(BII B22 -B12 )

(2.77)

var] n .) =_!_ f E(.!__I_(8h(/)J2(1_ (v+l)e
2

(I) J2J/{B MU:'B At/./:' _B2MUi)
fJMIJ: T~ 4h2(t) 8a h(r)(v-2)+e2(t) II 22 12

(2.78)

According to the definition ofRE, the RE of parameters a,p can be calculated as

(2.79)
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(2.80)

If the parameters of GARCH and conditional distribution are known, then the RE

can be used to evaluate the efficiency losses of QMLE. Therefore, although MLE

and QMLE is widely applied in parameter estimation of the GARCH class of models,

but when the conditional distribution is falsely assumed, both MLE and QMLE

cannot give consistent and efficienct estimation results. This is one of the major

issues among the GARCH class of models.

2.6 Forecast Evaluation of GARCH class models

Since so many different types of GARCH class models have been proposed to model

the conditional volatility, it is essential to have an evaluation statistic to compare the

forecast performance of those models. Because the volatility is not observable and

the only observation of the market data is the returns, one common statistical

measure of accuracy for a volatility forecast is the likelihood of the return. However,

the effectiveness of this method does rely on the correct specification of the

conditional distributions. This means that the distribution assumption needs to be

tested first; otherwise the test statistical based on likelihood will be unreliable.

Another popular evaluation measure used in literature is to use the squared

innovations from the return process as the proxy of the actual volatility and different

error statistics are used as the criterion. Popular evaluation measures include Mean

Error (ME), Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean

Absolute Error (MAE), and Mean Absolute Percent Error (MAPE). As most

investors treat gains and losses differently, the error statistics which treat positive

errors differently from negative ones have also been proposed to use during practical

analysis. For example, Granger (1999) described a LinEx loss function as

41
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(2.81 )

where h (I) is the predicted conditional variance, a is parameter whose sign

determines whether positive errors have more or less weight than negative ones. If

a>O, over predictions h(/»h(t) will have less weight because the term

exp(-a(h(/)-h(/))) is

exp(-a(h(/)-h(/)))+a(h(/)-h(t))-1 is less thana(h(t)-h(t)). If a<O, over

less than and the total sum of

predictions will have more weight.

Before high frequency data becomes widely available, most of the researchers use

the squared innovation from daily return process which is calculated from the daily

closing price as the proxy to the daily volatility. However, Lopez (2001) discussed

that although squared innovation &2 (I) is an unbiased estimator of h(t), the error

statistic IS very imprecise due to its asymmetric distribution because

&(/) = Z(/)~h(f) and where

z(t)-i.i.d.(O,I)and z2(t)-X2(1). However, the median of X2(1) distribution is

less than 0.5 which means that &2 (1) < h(t) is more than 50% of the time. Therefore,

the high frequency intraday return data is proposed by Andersen et al. (2001) to use

as the proxy rather than daily return. Further suggestion by Bollerslve and Ghysels

(1996) included a proposal to use a Heteroskedasticity adjusted version of MSE

(HMSE) as

HMSE = _!_ f[~(t) -I]
N 1=1 h(t)

(2.82)

Because there are several volatility features which already have been observed in

different market data, GARCH class models are introduced to match one or more of

those features. Accordingly, the evaluation of forecasting accuracy will depend on

what criterion is used and it is unlikely to choose a best forecasting model with all

possible statistics and evaluation criterions.
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2.7 Conclusion

In this chapter, the commonly used volatility models including EWMA, ARCH,

GARCH and GARCH class of models have been introduced and reviewed and these

models are proposed to model the different volatility features. Much research has

been contributed into the properties, estimation and analysis of these models.

However, one obvious omission is the adoption of a linear mean model to fit the

return process. This will be reviewed in the next chapter and the motivation of using

a nonlinear mean model is therefore raised to encounter the problem.
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3.1 Introduction

Following the introduction of ARCH model, many papers have been published

which attempt to model the time varying variance in financial time series. Although

nonlinear modelling has been widely applied in time series analysis, there has been

little theoretical work to investigate the use of nonlinear models to represent the

mean model as part of ARCH and GARCH model estimation. Linear models can

provide good first order approximations and because linear statistical theory is now

well developed, the linear mean model is commonly used in many publications

which study aspect of volatility estimation. In the pioneering work by Engle (1982)

who introduced the ARCH model, an example of an ARCH model was given

together with an ARX like mean model to model inflation in the U.K. In a later

ARCH application paper by Engle (1983), a linear AR type mean model with

multiple inputs and a time trend was used to model inflation in the U.S. Bollerslev

(1986) used an AR (4) model to model the rate of growth in the implicit GNP

deflator in the U.S. together with a GARCH variance model. When EGARCH was

introduced by Nelson (1991), a variance in the mean AR (I) model was used to

model the return series and Engle (1989) used a variance in the mean MA (I) model

to model the return series while the variance was modelled using QGARCH.

Higgins and Bera (1992) applied a linear AR model with a NARCH to model the

variance of foreign exchange rates of five countries whi Ie Baillie et al. (1996) just

employed a constant term to represent the mean model term in the FIGARCH model.

Gray (1992) introduced the RS-GARCH to model the volatility of short-term interest

rates and an AR (I) model was used to model the mean process. Ding et al. (1993)

argued for a long memory property of the volatility and used a MA (1) model as the

mean model. Lee (1991) investigated the out-of-sample forecast accuracy of a

GARCH class of models without using any mean model. Instead, he just used the

return data as the mean residuals. Tse (1991) favoured an AR (1) model to model the

mean associated with the Tokyo stock return while Akgiray (1989) suggested the use
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of an AR (I) model to fit the New York market returns. Hamilton and Susmel (1994)

introduced a class of Markov-switching ARCH models and modelled the mean using

an AR (1) model. McM illan et al. (2000) analysed the forecast performance of a

variety of statistical variance models using UK stock market data and the mean

process was fitted using an AR model. Clearly therefore the linear mean model is

very commonly used in univariate GARCH model analysis In later multivariate

GARCH model research, a linear mean model is still massively employed in many

publications which include Vec-GARCH introduced by Bollerslev et al. (1988), the

Multivariate GARCH in mean model of Engle and Kroner (1995), and the constant

mean model by Kawakatsu (2006).

The use of a nonlinear mean model example can be found in Lebaron (1992) where

an exponential AR mean model was used to model the relation between the

autocorrelation and the conditional variance. Bollerslev et al. (1993) also used an

exponential AR mean model in fitting the U.S. stock market volatility. In Cao and

Tsay (1992), the threshold AR (2) which is a group of two linear AR (2) models

switched according to a threshold value was used to model the return process.

Although a linear model is easy to estimate, there has been overwhelming evidence

of non-linear structures across many financial data sets (Willey, 1992). Hinich and

Patterson (1985) tested the different stock market returns with nonlinearity tests and

all of the testing results indicated a nonlinear dependence and non Gaussian

processes. Therefore, the use of a nonlinear model instead of a linear model to model

the return process should improve the forecast accuracy and provide more accurate

residual estimation for the conditional variance process.

There are several nonlinear modelling techniques which are commonly used in

system identification including the Volterra series (Volterra, 1930)/the Wiener series

(Wiener, 1958) expansion approach, the Radial Basis Function (RBF) neural

network method (Moody and Darken, 1989) and wavelet networks (Antoniadis and

Oppenheim, 1995). However, the Voiterrra and the Wiener series require excessive

parameters to give an adequate approximation to the underlying nonlinear system
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process (Ogunfunmi, 2007) and the RBF and wavelet networks approach are not

very transparent models. The Nonlinear Auto Regressive Moving Average with

eXogenous inputs (NARMAX) model which is a generalization of the ARMAX

model proposed by Leontaritis and Billings (1985) can provide a unified formation

for a wide class of nonlinear system processes with a more concise representation

than the Volterra and the Wiener nonlinear models. The NARMAX model has been

proved to be successful in modelling numerous real world nonlinear systems

including chaotic electronic circuits, water management systems, turbocharged

diesel engines, etc(Billings and Coca, 2001). Accordingly, this chapter proposes to

use NARMAX to model the nonlinear mean model of financial return data.

The purpose of this chapter is to review the mean model used in the literature related

to GARCH model research and the commonly used mean models will be

investigated. The NARMAX model method will be introduced and examples will be

given to illustrate the differences of variance estimation when the nonlinear mean

process is falsely fitted using a linear model. Section 3.2 provides a review of the

mean model. Section 3.3 gives an introduction to the NARMAX modelling method.

Section 3.4 gives an example showing the impact on the variance estimation when

the nonlinear mean process is falsely estimated using linear model. Section 3.5 is the

conclusions.

3.2 Commonly used return models

3.2.1 The linear mean model

In the financial application area, modelling methods based on time varying variance

have developed very quickly since the ARCH model was introduced by Engle

(1982). ARCH and the generalised form of the model GARCH can very well

represent the observed effect of financial time varying variance. However, most of

the financial literature was concentrated on modelling the variance and ignores the

importance of the mean model and therefore, due to simplicity a linear mean is very
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frequently quoted in most GARCH research papers. In Engle (1982), a linear mean

model was used during the simulations as defined by

~p(t) = Pt~(t -1)+ P2~(t -4) +P3~p(/-5) +P4 (p(t -I) - W(I -1))+ P5 (3.1)

where ~P (I) is the first difference of the log of the quarterly consumer price index,

W is the log of the quarterly index of manual wage rates and P are parameters. As

~(t) = p(t)- p(t-I)and wis like an external input to the models, the model (3.1)

can be expressed as

i¥J(t) = ~i¥J(t-I)+ ~i¥J(/-4) +Ai¥J(t-5) +~ (p(t -I) -w(t -I)) +Ps
p(t) - p(t -I) = ~ (p(t-l) - p(t -2)) +~ (p(t -4) - p(t -5)) +A (p(t -5) - p(t -6))

+~p(t -1)-~w(t-I) +P5
p(t) = (Pt + I+~) p(t -I) - Ptp(t - 2)+P2P(t -4)

+(A - A) p(t-5)- Ap(t-6) +Ps - ~ w(t-l)
(3.2)

It is clear that the model (3.2) is a linear ARX model with one lagged input term and

five AR terms. In a later ARCH model application paper by Engle (1983), a linear

model with a time trend was used to fit the consumer price index data as

~p(/) = A~p(t -1)+ f32~P(t - 2)+ f33MM (t -I) + f34~W(t -I) +P5~m(1 -1)+ f361+Po
(3.3)

where ~p(t)is the deflator, ~w(t)is the rate of change of money supply, ~(t)is

the rate of change of wages, MM (t) is the rate of change of the import deflator and

I is the time trend. Therefore, the model (3.3) can be expressed as

!Jp = A!Jp-1 +A!Jp-2 +AMM_I +~~W_I +f3s~-1 +AI +Po
P, - P,-I =A (PH - P,-2)+A (P,-2 - P,-3)+A (PM,-I -PM,-2) +~ (W,-I -w,-z)+ AI +Po

P, =(A +1)P,-I+(A - A) P,-2- A_P,-3+A (PM,-I - PM,-2) +Pt (W,-I -W,-2) +Ai +flo
(3.4)

The model (3.4) is a linear model with multiple inputs and a time trend. Bollerslev

(1986) extended the ARCH model to a more general case-GA RCH model and he

used a mean model in an example as

:r(t) = PI + f32iC(t -I) +P3iC(1 - 2)+ f34iC(1 -3) + f3s:r(t -4) +£(t) (3.5)
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where 7l"(t)=IOOxln(GD(t)/GD(t-l)), GD(t)is the implicit price deflator for

GNP and /3 are parameters. The model (3.5) is a typical AR (4) model. Nelson

(1991) proposed a new GARCH class model-EGARCH and fittd the return with

model as

R (t) = Po + f3.,R (t - I)+ /32 (Y 2 (t ) + G (t ) (3.6)

where R (t) is the excess return, (Y2 (t) is the cond itional variance and f3 are

parameters. The model (3.6) is an AR (1) with variance in the mean and Lo and

Mackinlay (1988) noted that such a simple model cannot adequately explain the

short term autocorrelation behaviour of the market indices. Nelson adopted the

variance in mean terms because there is evidence of a positive correlation between

the return series and the conditional variance series as in French et al. (1987) and

Chou (1987). Engle (1989) modelled the daily return of a stock index by using

Nonlinear ARCH model and the mean model used was

y ( t ) = /30 + /31a2 (t) + /32 G (t - 1)+ G ( t ) (3.7)

where y, is stock index return. The model (3.7) is a MA (I) model with variance in

the mean. Apart from the mean model listed above, most of the researchers

frequently use the simplest mean model which takes the form

y(t)=c+&(t) (3.8)

where c is a constant term. The application of model (3.8) can be found in Baillie et

al. (1996) and Kawakatsu (2006).

3.2.2 Nonlinear mean model

Cao and Tsay (1992) proposed the use of a Threshold AR (TAR) model to model the

mean process as

if y(t)<T
if y(t)~T

(3.9)

where a,P are parameters, y(t) is return series and T is a threshold value. The TAR

model is simply two AR models switch by threshold values. As noted in Chapter 2
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Section 2.4.7, the threshold process can be described by the logistic STAR function

as

L= -_I __
I+exp(-A(y(t)-c))

(3.10)

and the model (3.9) then takes the form

Y(I)="+'\Y(I-I)+a,Y(I-2)+a,y(1-3)+ 14-") )+ 1'1,-0,) )Y(I-I)
l+exp -A(y(t}-T) l+exp -A(y(/)-T)

-(~ -G:!) y(t-2}+ -(A -~) y(t-3)+&(/)
I+exp( -A(y(t)-T)) I+exp( -A(y(/)-T))

(3.11)

Lebaron (1992) proposed the use of the exponential AR model to model the mean

process as

(3.12)

where p and a are parameters. The term ( u. +a,exp ( - <T:~I) )) is time vary ing as

the conditional variance is time varying. Bollerslev et al. (1993) adopted a similar

mean model in the simulation of the US stock market index as

where y(t) is the return, fJ are parameters and (J'2 (I) is conditional variance.

Compared with model (3.12), model (3.13) has an extra term f34(J'2 (I). According to

the Taylor series expansion, the term exp( - <T~~')) can be expanded to

exp(- (J'2(t))=I_ (J'2(t)+_!_(_ (J"2(t))2 +_!_(_ (J"2(t))3 +... (3.14)
fJ3 fJ3 2 ! fJ3 3! Pl

After substituting (3.14) into (3.13), equation (3.13) becomes
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y(t) = flo +y(t -I)(A +A [1- 0-

2
(I) +~(- 0-

2
(I )J2 +~(_ 0-

2
(I )J3JJ +Pt0-2 (I) +C(/)

A 2. A 3. A
(3.15)

According to GARCH, 0-2(/) consists of lagged C
2
(/) , and C

2
(/) can be

substituted using y(t) and y(t -1), therefore model (3.15) can contain higher order

lagged y(t) and shows nonlinearity.

Apart from the linear mean model, most publications use a specified nonlinear

model format which may not fully reflect the nonlinearity that exists in the process.

The use of NARMAX can give a more general choice of nonlinear model term

selection and provide a universal approach to the nonlinear mean process.

3.3 NARMAX model and its polynomial representation

Most real life problems involve nonlinear systems. For most of the practical

applications the nonlinear model usually has advantage to describe the nonlinear

relationships rather than a linear model and nonlinear models are designed to

provide a better mathematical instrument to characterize the nonlinearity in real

dynamic systems. Nonlinear model representations can be generally classified into

three types: (I) System Input-Output representation, (2) State-space representation

and (3) Model-free representation (Chow et al., 200 I). The discrete time Input-

Output representation approach can usually be written as

y(t) = J(x)+e(t) (3.16)

where x represents the system input, t is the time sample,e(t)is noise and y(t)is

the system output and f( )denotes a mathematical relationship. When the system is

linear, J ( ) represents a linear mapping between the input and the output and a

linear differential equation is commonly used to approximate the process. The

ARMAX model is usually employed to provide a unified input-output representation.

When the system is nonlinear, there are several methods which exist to give an
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approximation to the nonlinear function f ( ).The Volterra/Wiener representation is

one technique to model the input-output nonlinearity based on a Volterra series

mathematical function. Although Volterra system models can be used to represented

a large range of nonlinear systems, in order to give an adequate approximation the

number of the parameters usually exceeds many hundreds and the Volterra kernels

which are nth-order impulse responses have to be estimated. Therefore, the Volterra

nonlinear representation procedure can be computationally complex. The NARMAX

model proposed by Leontaritis and Billings (1985) extends the ARMAX model to

the nonlinear input/output case and NARMAX usually takes the form of a set of

nonlinear equations as

Y(/) = f(Y(1 -I ),...,Y(I - ny), U (I - d), ... .u (t - nu ),e (I -I),...,e (I - ne)) +e (I)

(3.17)

where u (I) is the input vector, nyand nu are maximum output and input lag, ne is the

maximum noise lag, y(t)is output vector, and f( )is unknown nonlinear mapping.

The noise variable e (t) which accommodates the effects of measurement noise,

modelling errors and unmeasured disturbances are assumed to be bounded and

uncorrelated with the input.

Since f( ) is unknown, the identification of the NARMAX model involves not only

determining the parameters of the models but also the structure a model terms from

the input/output data. The polynomial representation of f ( )is one of the common

implementations and it has received great attention because of the good

approximation properties and the simple model structure what this choice yields.

Therefore, the nonlinear mapping f ( )here is considered to be approximated by a

polynomial representation with a finite degree in all variables and the structure is

assumed to be linear-in-parameters. Accordingly, the general form of the polynomial

NARMAX representation can be written as
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M

Y (t ) =LB,P, ( X (t ) ) + e (t )
1:1

(3.18)

where x (I) represents Y(I -I), ...,y(t -ny), U(I -d), ...,U(I -nu)' &(t -1), ...,&(1 -ne) ,

P, ( ) are model terms which are a linear or a nonlinear combination of the

variables, &(/) is the modelling error, M is the number of all the distinct terms and

OJ are unknown parameters related. The matrix format of model (4.3) can be written

as

Y=P0+B (3.19)

where Y =[Y(I),Y(2), ...,Y(N)J, P=[A,P2,···,PM]' p, =[p, (x(I)),p, (x(2)), ...-P. (x(N))J '

NARMAX model could be used to fit the nonlinear finance return process.

3.4 Simulations

Since most of the GARCH publications use a linear model to fit the return series, it

is intriguing to illustrate the impact on variance estimation when a nonlinear return

series is falsely fitted by a linear mean model. Consider the nonlinear mean model

are formatted as

(3.20)

where ao, ap a2 are parameters, &(t) is residual and where it is assumed that the time

varying variance is generated by a GARCH model as

(3.21 )

where Aa, AI' BI are GARCH parameters. The parameters of the model (3.20) and

(3.21) are listed in Table 3.1.
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Table 3.1 Parameters of the simulated models

Parameter of mean model (3.20) Value
ao 0.001

al 12

a2 -0.1

Parameter of variance model (3.20) Value

Ao 3e-6

AI 0.075

El 0.920

The residual t:(t) is assumed as t:(t) = Z(t)CT(t) where z(t) is an i.i.d. (0, 1) random

variable. Therefore, the simulated variance and mean process are drawn in Figure

3.1. In order to illustrate the impact of the mean model on the variance estimation, a

linear mean model is used to fit the simulated mean data and the variance is then

estimated from the modelling residuals using a GARCH model. Assume that the

linear mean model is chosen as the commonly used AR (1) model as

y(t) = Po +Ply(t -1) +&(t) (3.22)

X 10-3
1~----r-----'-----~----'-----'-----'-----~----~

Simulated variance process

Q)
'0
::J

=K 0.5
E«

500 1000
Time sample

Simulated mean process
0.3

Q)
0.2

'0
2 0.1'B.
E« 0

-0.10 500 1000 1500 2000 2500 3000 3500 4000
Time sample

Figure 3.1 Simulated variance and mean process
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The estimation of parameters Po, Pt are Po = 0.0033 and Pt = 0.1758. Then a

GARCH (1, 1) model was used to fit the mean model residuals based on equation

(3.21) and the estimated results wereAo=4.9134e-6,AI =0.1016, BI =0.8720.

The estimated variances are then drawn in Figure 3.2. It is obvious that around

sample point 1500 the estimated variance shows a significant difference away from

the simulated variance as in Figure 3.1. If the mean model is now correctly selected,

parameter estimates for the model (3.20) and model (3.21) are listed in Table 3.2.

The estimated variance is drawn in Figure 3.3. In order to give a comparison of the

estimated variance, the absolute differences between the variance estimated from the

linear mean model residuals and the simulated variance is drawn together with the

differences between the variance estimated from the nonlinear mean model residuals

and the simulated variance in Figure 3.4.

X 10.3 Estimated wriance from residuals of linear mean model
2.5,---.,.-----.-----,-,--,---.,.---,----r---,

2

1.5

500 1000 1500
1ime sample

Figure 3.2 Variance from residuals of linear mean model

Table 3.2 Estimate parameters of the model (3.20) and (3.21)

Parameter of mean model (3.20) Value

ao 0.0016

al 11.4709

a2 -0.1049

Parameter of variance model (3.20) Value

Ao 3.348ge-6

AI 0.0870

BI 0.8966
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x 10" Estimated IBriance from the residuals of nonlinear mean model
1r---'---~--~,---~--~--~----~--,

0.9

O.B
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~'a 0.5

~ 0.4

0.3
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O~--~--~~--~~~~ __ ~~~L- __ -L __ __Jo 500 1000 1500 2000 2500 3000 3500 4000
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Figure 3.3 Estimated variance from residuals of nonlinear mean model

~~~te differences between estimated variance from linear mean model and simulated variance
1,------,------,------n,-----,------,------,------,------,
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4000
Time sample

Abr;p~ differences between estimated variance from nonlinear mean model and simulated variance
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2500 3000
,"""'- .r-:
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Figure 3.4 Absolute differences between the estimated variance and the simulated variance of

linear and nonlinear mean model

It is obvious from Figure 3.4 that the nonlinear model can lead to much more

accurate variance estimation especially at the extreme event. The comparison results

indicate that if a nonlinear return process has been incorrectly fitted by a linear mean
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model, the accuracy of the estimation of variance will be affected. Therefore, it is

essential to have an accurate mean model before the estimating the variance from the

residuals.

3.5 Conclusions

Although fixed terms nonlinear models have already been applied to model the mean

process, most of the literature still uses linear models to model the mean process as

explained in the introduction. As far as we are aware, there is no existing paper

which concentrates on term selection for the non linear mean model. However, it is

widely accepted that most real world data is nonlinear. The use of linear models may

therefore induce forecast accuracy problems as shown in the example in Section 3.4.

However, when the model is nonlinear, higher orders may cause the number of

terms in the models to increase significantly. This therefore raises the motivation of

modelling the financial return process using nonlinear models but with selected

model terms.
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Chapter 4: Weighted Orthogonal Forward Regression in

the presence of heteroskedastic (GARCH) noise

4.1 Introduction

System identification is commonly used approach to derive mathematical models of

unknown dynamical process. Mathematical models are essential for analysis,

controller design and forecasting. The identification of linear systems is based on the

popular Auto Regressive Moving Average with eXogenous (ARMAX) inputs model

(Box and Jenkins, 1970). However, in practice most systems in the real world are

nonlinear. The most comprehensive methodology for nonlinear systems

identification is based on the Nonlinear Auto Regressive Moving Average with

eXogenous inputs (NARMAX) (Billings and Leontaritis, 1981) model. The

NARMAX model can describe a wide range of nonlinear systems and includes other

popular classes of models such as Volterra, Wiener etc. as special cases.

During NARMAX model estimation, the most difficult part is to decide the structure

of the model i.e. which variables and model terms should be included in the model.

If redundant variables are falsely selected, the number of terms of the nonlinear

model may increase dramatically and the model may turn out to be overestimation of

the underlying process and sensitive to the training data set. Model structure

selection which is an essential part of the NARMAX system identification

methodology ensures that only the relevant model terms are selected in the model.

This results in a parsimonious model which describes the underlying dynamical

process rather than the estimation data set.

The NARMAX model structure selection is based on the Orthogonal Forward

Regression (OFR) algorithm (Billings et al., 1988, 1989, Korenberg et al., 1988,

Chen et al., 1989, Billings and Zhu, 1994). The OFR algorithm is also used to

estimate the unknown parameter simultaneously with the term selection. The
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NARMAX system identification methodology is arguably the most powerful

nonlinear modelling methodologies available at the moment.

One of the major assumptions made in the formulation of the NARMAX model and

the associated model structure selection and parameter estimation algorithms is that

the noise is homoskedastic. However, there are many situations in which the

assumption of homoskedastic noise is not valid such as when dealing with the

econometrics data, where the variance of the noise is not constant and in many cases

can be described by a GARCH process. If the noise is heteroskedastic, this will have

a negative impact on the performance of the model term selection and parameter

estimation algorithms, which have been derived under the homoskedastic

assumption. Specifically, this chapter demonstrates that the ranking of the candidate

model terms using the Error Reduction Ratio criteria (Billings et al. I988, 1989) will

be affected leading to an incorrect model structure being selected.

The effects of heteroskedastic noise when performing ordinary least squares (OLS)

are well known (Bjorck, 1996) and can be addressed by using weighted least squares

(WLS). However, up to now the problem of model structure selection in the

presence of heteroskedastic noise has not be investigated or addressed.

The aim of this chapter is to investigate how heteroskedasticity affects the model

structure selection and parameter estimation algorithms used to identify NARMAX

models and to introduce a new Weighted Orthogonal Forward Regression (WOFR)

for NARMAX system identification in the presence of heteroskedastic noise. The

main assumption in this work is that the variance of the noise can be modelled by a

GARCH process. However, the proposed algorithm can also be used for other types

of variance models. The chapter is organised as follows. Section 4.2 introduces the

classical OFR algorithm. Section 4.3 investigates analytically the effect of

heteroskedastic noise on classical OFR model term selection algorithm and

introduces the new WOFR solution to this problem. Section 4.4 describes in detail

the iterative implementation of the WOFR algorithm. Section 4.5 presents numerical
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simulation studies demonstrating the applicability of the proposed algorithm and the

conclusion is given in Section 4.6.

4.2 Model structure selection and parameter estimation for

NAMRAX models

4.2.1 The Orthogonal Least Squares algorithm

According to Chapter 3, the polynomial NARMAX representation can be written as
M

Y (t) =L (JIPI ( X (t ) ) + C (t )
1=1

(4.1 )

where x(t) represents y(t -I), ...,y(t -nr ),U(I -d), ...,U(1 -nJ,c(t -I), ...,c(t -ne) ,

PI ( ) are model terms which are a linear or a nonlinear combination of the

variables, e (I) is the modelling error, M is the number of all the distinct terms and

(Jj are unknown parameters related. And the matrix format of model (4.1) can be

written as

Y = P0+3 (4.2)

where Y=[y(I),y(2), ...,y(N)T, P=[PPP2,···,PM]' ~{~(x(I)),~(x(2))' ...'R(x(A))J,

e = [(Jp (J2' •.. , BM rand 3 = [ s (I), e (2),...,e (N) r .
Model (4.1) includes all possible polynomial terms for a given polynomial order. In

practice, only a small subset of terms is relevant for describing a particular nonlinear

dynamical system. Fitting a more complex model than required usually results in

overfitting and even instability. It is therefore essential to have in place a method for

selecting from the initial set of candidate terms and only the relevant model terms

are needed to construct a faithful representation of the underlying dynamical process.

One of the first model selection procedures for NARMAX models is based on the

Orthogonal Least Squares (OLS) algorithm (Koren berg et al., 1988). Assuming that

the matrix P in equation (4.2) is full rank it can be orthogonally decomposed as

P= WA (4.3)
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where A is an M xM unit upper triangular matrix and W is an N x M matrix with

orthogonal columns WI' w2' ... , wM such as WTW = D = diag [dp d2, ... , dM] with

N

d, = (W" W,) =L W, (I)W, (I). Equation (4.2) then becomes
1;1

y = p( A-IA)8+ 3 = (PA-I )(Ae) = WG+3 (4.4)

where G = [g" gw'" gMr is an auxiliary parameter vector given by

G = D-1WTy -D-IW13 (4.5)

. The estimated G is therefore given by

G=D-IWTy (4.6)

which gives

A (Y, Wi)
g =
I (W"W,)

(4.7)

as the original estimates according to Korenberg et al. (1988). The OLS procedure

can be summarized as follows:

I-I

W,(I)=pl(I)-La"w,(I), i=I, ... ,M (4.8)
,;0

N

LP;(I)W,(I)
1;1a" = -"-'--:N-:-----

LW; (I)
1;1

O::;r::;i-l

and

(4.9)

N

LY(/)W, (I)
A ...!:,;:.!_I -:-:-- _g, = N

LW} (I)
1;1

(4.10)

The estimated parameters 0, , i = 0,1, ... ,M can be calculated as

(4.11 )
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where

C, = I
m-I

Cm=-LarmCr, i c m s M
r=1

(4.12)

Multiplying equation (4.4) by itself of both sides the equation becomes

yly = G'W'WG + =:1=: + G1W'=: +=:lWG (4.13)

After taking expectation of both side, the expectation of two terms GTWi=: and
1=: WG are zero and equation (4.13) becomes

(4.14)

The contribution to the variance of the output of regressor W, is given by

I ~ 2 2()- L,.g, W, ,
N 1=1

(4.15)

Therefore, the Error Reduction Ratio (ERR) due to the term i can be defined as

I N
- LgI2w,2(t)

ERR,(%)~ NifY'(t) xlOO, i~I,2, ...,M

N 1=1

(4.16)

The significance of the model terms can then be determined by the value of ERR of

each term. The structure of the models can be decided by choosing the terms with

ERR bigger than threshold value.

The OLS algorithm has one major drawback which is the algorithm depends on the

entire orthogonalization path which means that the ERR for a regressor p( k)

depends on its position in the orthononalization sequence. As a result, the ERR does

not capture accurately the true significance of a particular model term. Therefore, the

Orthogonal Forward Regression (OFR) is proposed to remove the drawback of OLS

by Billings et al. (1988).
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4.2.2 The Orthogonal Forward Regression algorithm

The OFR is a modified version of the OLS. In the initial stage of OFR, all terms

P, (t) i= 1,2, ... ,M are considered as potential candidates for WI (t). Then at first

iteration of the algorithm, w; (I) is assumed to equal to P, (I) for all i= 1,2, ... ,M.

The initial g; and ERR; are calculated as

N N

LY(I)w; (I) (g; r LW; (t)2
g; = ...:../=...:.~ ~ , ERR; (%) = N 1=1

L( w; (I)) LY(I)2
1=1 1=1

(4.17)

The term with maximum ERR is then selected as the most significant term of the

model. The term is then removed from the candidate terms and in the second

iteration, the ERR of all remaining candidate terms are re-evaluated. Assuming that

p(J)was selected in the first iteration, the second iteration involves computing the

following quantities
N N

LW;(/)Y(/) g~LW;(t)2
w; (t) = P, (t)-a;2wl (I), g; = 1=1N ' ERR; = _=1=,-1 --

Lw~ (t)2 fY(/)2
1=1 1=1

(4.18)

where i = I, ...,M, i:l:- jand

(4.19)

The second most significant term will be chosen as the term with the largest ERR

from the remaining candidate terms. Subsequently this term will be removed from

the candidate terms and the selection process will be continued in a similar manner
m

until the unexplainable variance of the system 1-L ERR, is less than pre-set desired
1=1

tolerance. In practice, usually m <M . The selected orthogonalized model is given

by
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m

y (t ) =LW, (t ) i + e (t )
1=1

(4.20)

which is equivalent to
m A

y(t) =L f)IP, (x(t)) + e (t)
1=1

(4.21 )

The parameters 8,can be calculated by equation e = AG with G = [gl' g2' ... , gm rand

I al2 aim
0 a2m

A= (4.22)
0 am-I,m

0

The structure of the model can be obtained once the selected model has passed the

validation tests such as higher order correlation test introduced by Billings and Voon

( 1986).

4.3 Weighted Orthogonal Forward Regression

The NARMAX model together with OFR algorithm has been used in practical

applications proving to be one of most effective nonlinear system identification

methodology. However, there are many situations, particularly when dealing with

econometrics data, when the constant noise variance assumption is violated.

4.3.1 OFR performance in the presence of heteroskedastic noise

Let's assume that the variance of the noise is time varying. Specifically the noise

e (I) is assumed to be given by

e(t) = z(t)lT(t) (4.23)

where z(t) is i.i.d. random variables with zero mean and unit variance and IT (I) is

the time varying standard deviation. Since z(/)is not correlated with O"(t), the

mean of residuals is
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1 N
- I(z(I)a-(I))=O
N 1='

(4.24)

Let's assume the following regression model terms is
m

Y (I) =L 8,P, (I) + e (t )
1=1

(4.25)

where P, (I),i = 1,... ,m are known model terms and 8" ... ,8m is unknown parameter

vectors. The model (4.25) can be orthogonalized as
m

Y (I) = L g,W, (t) + c (I )
1='

(4.26)

where S, and w, are defined as in section 4.2. The heteroskedastic noise is assumed

to be described by a GARCH (I, I) model (Bollerslev, 1986) as

0'2(/)= Av +A,e(t-I)2 +B,O'2(t-l) (4.27)

where Av, AI' BI are unknown parameters and the time varying standard deviation can

be derived from model (4.27) as

0'(/) = JAv + A,e(1 _1)2 + B,a-2 (I-I)

By substituting (4.28) into (4.26), it follows that

Y (I) =ig, W, (I) + Z (I) JAv + A,e (I _1)2 + BlO'2 (I -I)
1='

(4.28)

(4.29)

The unexplained variance ratio according to the definition of ERR is given by
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(4.30)

where non-regressor-related terms are

Ao AI ~ ( 1)2 BI ~ ( )2-+-L..Jy 1- +-L..Ju 1-1
N N 1;1 N 1;1 (4.31 )

N 2
The term I U(I -I) is assumed to be known because we assumed that the model

1;1

terms are known. Therefore, according to the definition, the ERR of each regressor

when the noise is heteroskedastic is given by
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N 2 N 2 N

_ L(g,w, (I)) +L(g,w, (I -I)) -2Ly(t -I)g,w, (I -I)
ERR = 1=1 1=1 I-I (4.32), 1 N

- L{y(t)2)
N 1=1

Equation (4.32) is derived based on the assumption of known model terms. If the

model term is unknown, a simple example is used to demonstrate the impact on ERR

of heteroskedastic noise. Considering a simple model with two regressors as

(4.33)

where PI (/),P2 (I) are regressors related with lagged y(/) and C(/) is

heteroskedastic noise and the time varying variance is assumed to be formulated by

GARCH (I, I) model. According to the OFR algorithm, in the first step the ERR for

first term is calculated as

(r,PI)2
(r,1)(PI,PI)

(~(I) PI (I)J
N N

U(/)2VI (1)2
1=1 1=1

(pa,l1 (I) +a,p, (I) +&(1)) p, (I)J
N 2 N

I(~PI (I) +~p2(/) +C(I)) VI (/)2
1=1 1=1

-ti(GiPI(I) r +(~P2 (/)r +(C(/) r +2Gj~PI (t) pz (t) +2GjPI (/)C(/) +2azP2(/)C(t) )DI(/)2
~ ~

(pap) (I) PI (/)+~2(t) PI (I)) J
ti(GiPI(/))2 +(GzP2(t))2 +(C(t))2 +2Gj~PI (I) P2(I) )DI(t)2
~ ~

(4.34)
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After substituting (&(/))2 by z(I)2(Ao+A,&(t-l)2+B,0"(t-l)2) , the (4.34)

becomes

aut:' (~'IA(I) 11(I)+a,p, (I)11(I))J
~(~~(t))2 -t{~(t))2 +z(t)l1+-1&(t-l)2 +~a\t-l)2)+~ClzR(/)A(I))t(/)2
~ ~

(~'IA (1)11(I)+a,p, (I)11(I))J
(~~~(1))2 +~~(1))2 +tZ(I)l1+-1&(1-1f +~a\t-l)2)+~~~(I)A(I))~(I)2

(~~11 (I) 11(1)+a,p, (I) 11(1))J

(4.35)

In the case that the variance of the noise is constant, the amplitude of the noise is

different with that of the heteroskedastic noise. Therefore, the value of the regressor

PI (I), P2 (I) under constant variance noise is different with the value of

PI (t), P2 (t) as the lagged y(t) are assumed to be contained in these regressors. The

ERR of the first term in the first step of OFR under constant variance noise is given

by
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_(t (a,p, (I) + a,p, (I) +£(1)) p, (I))'
- N N

I(aIPI (t)+a2P2 (t)+~(t)rIp, (t)2

(4.36)

1=1 1=1

Comparing with (4.35), both the numerator and denominator of the ERR are
N

different and the term I(Ao+A,c(t-I)2 +B,0"(t-I)2) in equation (4.35) is not
1=1

equal to (~(/))2 in equation (4.36). This indicates that the fact that the noise

variance is not constant and will affect the value of the ERR associated with the term

PI (I) in the first step. The ERR of term P2 (t) will also be affected in a similar way.

The changes of the ERR values may change the order in which the candidate

regressors are ranked according to their ERR value and will impact on the term

selection procedure. Ultimately, this will lead to an incorrect model structure being

identified. This will be demonstrated later in this chapter using numerical

simulations.

In order to obtain the correct ERR values in the presence of heteroskedastic noise, it

is essential to implement a Weighted Least Squares (8jorck, 1996) approach where

the weighting sequence is selected as the inverse of the time varying standard

deviation of the noise. Multiplying O"~t) on both side of equation (4.26) gives
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m

y(t) = ~O,p,(t) +z t
IT(l) IT(t) ( ) (4.37)

Denoting ;i:jby y' (I) and ~t?as p;, equation (4.3) can be written as

m

y' (I) =I 0,p; (t ) + Z (t )
,=1

(4.38)

The relative unexplainable variance 0 f the system is given by E(( Z (I)
2

)) • Of course,
E Y'(/)2

In practice the time-varying standard deviation is unknown. To deal with this

problem, a weighted orthogonal forward regression algorithm is introduced in the

next section. Under the assumption that the structure of the variance model is known,

the WOLS algorithm allows the identification of the correct NARMAX mean model

structure and the estimation of the weighting sequence and of the parameters of both

the variance and mean models.

4.3.2 Weighted Orthogonal Forward Regression

The model (4.37) can be rewritten in matrix form as follows

Q-Iy = Q-1PE>+Z (4.39)

where Q-I is a diagonal matrix whose elements are the inverse of the standard

deviation IT (t) at each sample point and Z is the z (t) vector in (4.37). The part

Q-1p0 can be rewritten as Q-1PE>=Q-1p(A-1A)E> and where Q-1pA-1 can be

represented by Wand AE>by G and (4.39) can be rewritten as

(4.40)

The auxiliary parameter vector G can be approximated as

G =(WTwf WTQ-Iy (4.41 )

The estimation of G is unbiased and sufficient because
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E( C) = E( (WTWt WTQ-Iy)

= E((WTWt WI' (WG+Z))

= E((WTWr' WTWG+(WTWt WTZ)

= E(G)+E((WTWr' WTZ)
=G

(4.42)

and

var (C) = E ( (G - Gr )
= E(((WTwt WTQ-Iy -Gf)
= E(((WTWr' WI' (WG+Z)-Gf)

= E(( G+(WTWr' WTZ -Gf)
= E((WTWr' WTZTZW(WTWr')
=(WTWr'

(4.43)

where E( ) operation is the expectation and E( ZTZ) is equal to I. According to the

procedure of OFR, the first most important term is selected by letting g, = Q-I P, and

the g, for each term in the first iteration is

IQ-'Y Q-I )
-1."1 _ \ ' P,
g, - IQ-I , Q-I .)

\ P" P,
(4.44)

. Therefore, the weighted ERR for each term in the first iteration is

(4.45)

Then, in later nth iteration the OFR will be applied by using
n-Ir: = Q-Ip, - LGk,gk
k=1

(4.46)
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where if" = (~'..: Q~ )') and g, is the selected term from step I to n-I. The weighted
s..«,

ERR in step n becomes

(4.47)

Assuming the amin is the minimal value among all the diagonal elements of the

matrix Q and Qmin = amin I where I is an identity matrix with the same rank as Q,

there is

(4.48)

where II IIdenotes the norm of the matrix. Similarly, there is

(4.49)

Therefore, the term (Q-1Y,Q-lp,) in equation (4.47) has the property of

/Q-I Y Q-I .) < (Q-1y Q-I .) < /Q-I Y Q-I )
\ max ' maxP, - ,P, - \ min ' minI},. (4.50)

As Q-I =_1_ I and Q-I =_1_ I ,the equation (4.50) can be written as
max mm

amax alOin

-!-(y,p,) s (Q-1Y,Q-lp,) ~-!-(Y'PI)
amax amin

(4.51)

Accordingly,

-!-(Y,Y) ~ (Q-1Y,Q-1y)s -!-(Y, Y)
amax amin

-!-(P"P,) s (Q-lpl,Q-lp,) ~-!-(PI'PI)
amax (fmin

(4.52)

Therefore, in the first step of the weighted OFR the weighted ERR can have a bound

as

1 1 1 1 / )-2-(Y,P')-2-(Y' P,) -2-(Y,PI)-2-'Y'P,a a I a . a
max max <WERR" < mm mm (4.53)
I 1 - 1-1 I

-2 (Y'Y)-2 (P"P,) -2 (Y'Y)-2-(P"P,)
(fmin amin amax amax
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As ERR,' = ( (\ (' )' )' the we igh ted ER R in the first step can change with in the
Y,Y r.:».

bounds as
4 4

amin ERR'" < WERR'" < amax ERR'" (4.54)4 ,- ,- 4 ,amax amin

Therefore, the ERR,'" can be written as ERRi.I' = WERR'" + eis' where e, is the, "

fluctuation caused by the heteroskedastic noise. Considering the extreme case in

previous example model (4.33), if the ERR,i.I' > ERR~" however

4 4

WERRi" = a~",n ERRi" and WERR~" = al~ax ERR~" , there is very likely that the rank
amax ami"

4 4

of the significance will change because a~ax may be far larger than a~nin . Even the
amin amax

shift e,L" may not cause term selection changes in the first step we think it may shift

the ERR value in later steps the term selection in later step may be impacted.

Simulations will be given to indicate this situation. Therefore, the introducing of

weights allows the OFR algorithm evaluate the real contribution of each candidate

terms in the presence of heteroskedsatic noise and produce efficient and unbiased

parameter estimation.

However, the time varymg variance is usually unknown. If the structure of the

variance model is know, (a GARCH model in our case) the variance can be

estimated iteratively. The iterative WOFR procedure can be summarized as follows:

(1) Estimate parameters for a candidate model using LS method and derived the

modelling residuals.

(2) Estimate the time varying variances from the modelling error of step (1).

(3) Apply WOFR to the reference mean model and select the most important

terms.
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(4) Re-estimate the time varying variance and re-calculate the parameter of the

selected mean model with WOFR.

(5) Repeat step (4) until the parameters of the mean model converge.

4.4 Simulations

In this section, several examples are provided to illustrate the efficiency of the new

WOFR algorithm for model term detection under heteroskedastic noise. In all

examples, only one step ahead prediction is considered.

4.4.1 Example 1: linear AR model

The first example considers a simple linear mean model which is given by

y(t) = ao + aly(t -1) + a2y(t - 2)+a3y(t - 3)+&(t) (4.55)

It is assumed that the time-varying variance of the noise is described by a

GARCH( 1,1) model. The variances and the residuals are simulated iteratively as

&(t) = z(t)O'(t)and can be given by the variance O'(I)and a normally distributed

variable z(t) with unit variance. Parameters of linear mean model and GARCH

model are listed in the Table 4.1.

Table 4.1 Parameters of simulated mean model (4.55) and GARCH(I,I) model

Parameters of linear mean model (4.55)

ao al a2 a3

Je-2 0.6 -0.55 0.25

Parameters of GARCH( J, 1) model

Av AI BI

3e-6 0.075 0.92

The number of data points that were generated was 4000. The generated residuals

and the time varying variances are shown in Figure 4.1.
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3.5

2.5

TIme -.arying ",fiance of mean model

(a)

O.ISr-~-~~---'-'--~-----'

-0.15

-0.20:---::5=00--:-1 00=0:--:'-=SOO:::---'C2::::'00=-0~250=0--:::30=-00:--::-350=O:--::!4000'

Residual simulation

Figure 4.1 (a) Time varying variances simulation figure and (b) residuals simulation figure

(b)

Firstly, the simulated data was used to identify the model using the WOFR algorithm.

The set of the candidate model terms was generated based on a second order

nonlinear NAR(S) model. The candidate model term set are given by

P = [Constant, y(t-l), y(t_l)2, y(t-2), y(t-2/ ' y(t-3), y(t_3)2 , y(t-4),

y(t-4/ ' y(t-S), y(t_S)2 , y(t-l)y(t-2), y(t-l)y(t-3), y(t-l)y(t-4) ,

y(t-l)y(t-S) y(t-2)y(t-3) y(t-2)y(t-4) y(t-2)y(t-S)

y(t - 3)y(t - 4), y(t - 3)y(t - 5), y(t -4) y(t - 4)]
(4.56)

Table 4.2 shows ranking of the terms according to the standard and weighted OFR

algorithm.
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Table 4.2 Term ranking generated by OFR and WOFR based on the candidate terms equation

(4.56) using data in Figure 4.1

Rank StandardOFR WeightedOFR

Term ERR(%) Term ERR(%)

1 y(t-l) 20.665 Constant 25.76]

2 y(t-4) 9.4014 y(t-l) 6.9721

3 y(t-2) S.2491 y(t-2) 10.440

4 Constant 6.4203 y(t-3) 3.2534

5 y(t-3) 2.3972 y(t-4) 0.10805

6 y(t-l)y(t-4) 0.20181 y(t-1)y(t-4) 0.42S68e-l

7 y(t-4)y(t-5) 0.10697 y(t-5) 0.32366e-l

8 y(t-l)y(t-1) 0.943] 6e-l y(t-1)y(t -1) 0.14393e-1

9 y(t-l)y(t-5) 0.878] Oe-1 y(t-l)y(t-S) 0.27351e-l

10 y(t-4)y(t-4) 0.46674e-l y(t-1)y(t-2) 0.26762e-1

11 y(t-1)y(t-2) 0.4I264e-I y(t-I)y(t-3) 0.2277Se-l

12 y(t-I)y(t-3) 0.13911 y(t-2)y(t-3) 0.29313e-1

13 y(t- 2)y(t - 2) 0.14985e-1 y(t-2)y(t-2) 0.2002ge-l

14 y(t-5) O.164ge-l y(t-2)y(t-S) 0.10955e-l

IS y(t-5)y(t-5) 0.68806e-2 y(t-5)y(t-5) 0.72217e-2

16 y(t-3)y(t-5) O.l4162e-l y(t-4)y(t-5) O.l1567e-]

17 y(t-3)y(t-4) 0.41362e-2 y(t -4)y(t -4) 0.20384e-2

18 y(t-2)y(t-5) 0.37594e-2 y(t-3)y(t-5) 0.16895e-2

19 y(t-2)y(t-4) 0.5357ge-2 y(t-3)y(t -4) 0.10955e-l

20 y(t-2)y(t-3) 0.49603e-2 y(t-3)y(t-3) 0.722] 8e-2

21 y(t-3)y(t-3) 0.46408e-2 y(t-2)y(t-4) 0.245]Oe-2

It is very clear that OFR algorithm ranks incorrectly the term y(t - 4) which is not

part of the model (4.55). When WOFR is used, the value of WERR associated with

the term y(t-4) is very small and the term is ranked after all four correct terms in

the model given in (4.55). Based on the WOFR initial ranking, the first 4 terms are
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obviously more significant than the rest of the terms in term of ERR values.

Therefore, the cutoff value can be selected as 1 (Wei and Billings, 2004) and the

first four terms are treated as selected as mean model terms. The parameters are then

re-estimated iteratively until these converge. The estimated parameters for mean

model and variance model after 10 iterations are listed in Table 4.4.

Table 4.3 Estimates of the parameters of the mean and variance models after ]0 iterations of

the WOFR algorithm

Mean Model

Term Parameter estimates Standard Deviation Real parameter

Constant 0.010245 2.l783e-7 le-2

y(t-l) 0.55698 2.656ge-4 0.6

y(t-2) -0.52717 2.7283e-4 -0.55

y(t-3) 0.25355 2.6253e-4 0.25

GARCH (1,1) model

Parameter Parameter estimates Standard Deviation Real parameter

Ao 6.0592ge-6 2.7744e-12 3e-6

Al 0.078558 7.8478e-5 0.075

El 0.91229 8.9073e-5 0.92

The parameters of mean model and variance model at each iteration are plotted in

Figure 4.2 and Figure 4.3. It can be seen clearly from Figure 4.2 and 4.3 that the

parameters estimation converged very quickly for both the mean model and GARCH

model. The autocorrelation of squared residuals £(t) and squared standard error

Z(t)2 = ~(t): where a-(t)is the estimated standard deviation from the last iteration
0-(/)

of WORF are plotted in Figure 4.4 with blue Iine are the 95% confidence interval.
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Figure 4.3 Evolution of the parameter estimates at each iteration for GARCH (1,1) model
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Sample Autocorrelation Function (ACF) of squared residual Sample Autocorrelation Function (ACF) of squared standard residuals
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Figure 4.4 (a) Autocorrelation of the squared residuals &(t)2 and (b) squared standard residuals

The autocorrelation results of the standard residuals indicate that both the mean and

variance model have been sufficiently modelled and the information related with

time varying variance are removed after modelling. This example clearly

demonstrates the need to use the WOFR algorithm in the presence of heteroskedastic

noise and the performance of the proposed algorithm in identifying a linear model

structure based on a nonlinear candidate model structure.

4.4.2 Example 2: second order nonlinear AR model

This example considers the following nonlinear model

(4.57)

The variance model is assumed to be the same GARCH (1, 1) model used in

Example 1. The parameters of the model (4.57) are listed in Table 4.4

Table 4.4 Parameters of nonlinear mean model

Parameters of nonlinear mean model

ao a, a2

0.01 2.5 -0.5
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The sample length is 4000 and the simulated time varying variance and residuals are

drawn in Figure 4.5.

X 10.3

4.-----~----~----~------,

3

Simulated time varying variance of nonlinear mean model

(a)

-0.1

-0.15

·0.2 ~----~------'-------~-----
o 1000 2000 3000 4000

Simulated Residuals for nonlinear mean model

(b)

Figure 4.5 (a) Simulated time varying variance and (b) simulated residuals for nonlinear mean

model

The candidate model terms generated based on a NAR (2, 5) model are the same as

the ones used in the previous example in equation (4.56). The results of applying the

OFR and WOFR term selection algorithms are listed in Table 4.5 with all the terms

ranked in order of significance as measured by the ERR and WERR respectively.
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Table 4.5 Term ranking generated by the OFR and WOFR term selection algorithms based on

the candidates in equation (4.56)

Rank Standard OFR Weighted OFR

Term ERR(%) Term ERR(%)

1 y(t-4) 10.618 Constant 12.987

2 y(t-2) 5.1401 y(t-2) 19.560

3 Constant 12.925 y(t-l)y(t-l) 1.3224

4 y(t-l)y(t-l) 3.4736 y(t-l) 0.86001e-1

5 y(t-l) 0.181]8 y(t-3)y(t-5) 0.47232e-l

6 y(t-3)y(t-5) 0.11344 y(t-5) 0.3122ge-1

7 y(t-2)y(t-2) 0.45682e-l y(t-2)y(t-2) 0.29616e-l

8 y(t-4)y(t-5) 0.29381e-l y(t-l)y(t-4) 0.26163e-l

9 y(t-l)y(t-5) O.l8653e-l y(t -2)y(t-4) 0.1626Ie-l

10 y(t-l)y(t-3) O.267l6e-l y(t-3)y(t-4) 0.10894e-l

II y(t -3) 0.25510e-1 y(t-4) 0.20663e-l

12 y(t-3)y(t-3) 0.37283e-l y(t-5)y(t-5) 0.39993e-2

13 y(t-5)y(t-5) 0.38987e-1 y(t-l)y(t-3) 0.40746e-2

14 y(t-3)y(t-4) 0.2741ge-1 y(t-2)y(t-3) 0.38241e-2

15 y(t-2)y(t-3) 0.19808e-l y(t-l)y(t-5) 0.42474e-2

16 y(t-2)y(t-5) 0.2741ge-1 y(t-4)y(t-5) 0.2650ge-2

]7 y(t -4)y(t -4) 0.17887e-2 y(t - 2)y(t -5) 0.33273e-2

]8 y(t-l)y(t-2) 0.11393e-2 y(t-3) 0.16864e-2

19 y(t -5) 0.85652e-3 y(t -l)y(t- 2) 0.15553e-3

20 y(t-2)y(t-4) 0.35365e-3 y(t-3)y(t-3) 0.23747e-4

21 y(t-l)y(t-4) 0.29914e-4 y(t-4)y(t-4) 0.19142e-5

It can be seen from Table 4.5 that the heteroskedastic noise can impact the OFR term

selection. The term y(t-4) is wrongly selected as the most important term by the

OFR algorithm. The weighted OPR algorithm however, correctly identified the

correct set of terms and the terms having grey background in Table 4.5 are selected

as the mean model terms. Subsequently, the iterative reweighted procedure is used to
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refine the parameter estimates for both the mean model and the variance model. The

parameters of selected mean model and variance model at each iteration are drawn

in Figure 4.6 and Figure 4.7. It can be seen from Figure 6 that the estimated

parameters converge very quickly as in the linear mean model example. The

parameters in the last iteration are listed in Table 4.6 and the autocorrelation test of

squared residuals and squared standard errors are drawn in Figure 4.7. The

autocorrelation tests of the standard squared residuals indicate that both the mean

and variance model have been sufficiently modelled and the information related with

time varying variance are removed after modelling. The simulation results of

nonlinear AR models can verify the efficiency of the iterative WOFR algorithm in

model term selection when the noise is heteroskedastic.

Constant
0,0101

0,0101

0,0101

0,0101

0,0101

0,0101

0,0101
0 2 4 6 8

Iteration

·0,501

·0,5012

·0,5014

·05016

,{),5018

-0.502
0

y(t-l )y(t-l)
2,95

2,948

2,946

2,944

2.942

2,94

2,938

10
2,936

0

y(t-2)

4 6
Iteration

8 10

4 6
Iteration

8 10

Figure 4.6 Evolution of the parameter estimates at each iteration for the selected nonlinear

mean model as in Table 4.5
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Figure 4.7 Evolution of the parameter estimates at each iteration for GAReH (1, 1) model

Table 4.6 Estimated parameters of nonlinear mean model and GAReH (1, 1) model after 10

iterations of the WOFR algorithm

Mean Model

Term Parameter estimates Standard Deviation Real parameter

Constant 0.010127 1.0144e-7 0.01

y(t-l)y(t-l) 2.9369 2.656ge-4 2.5

y(t-2) -0.50182 2.7283e-4 -0.5

GARCH (1,1) model

Parameter Parameter estimates Standard Deviation Real parameter

Ao 2.4449Ie-6 6.1360e-13 3e-6

A
J

0.060068 4.5975e-5 0.075

BJ
0.93476 5.0408e-5 0.92
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Sample Autocorrelation Function (ACF) of squared residuals Sample Autocorrelation Function (ACF) of squared standard residuals
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Figure 4.8 (a) Autocorrelation of the squared residuals e (tr and (b) squared standard

residuals z (t)2

4.5 Conclusions

This chapter has introduced an iterative Weighted Orthogonal Forward Regression

(WOFR) algorithm which addresses the problem of model term selection in the

presence of heteroskedastic noise. The main assumption here is that the variance

model structure is known. Specifically, we have investigated the case in which the

variance is described by a GARCH (1, 1) mode. This is often the case when dealing

with econometric data sets. Theoretical results demonstrating the effects of

heteroskedasticity on conventional OFR which assumed that the noise has constant

variance has been derived. Once the model terms have been selected, the parameters

and variance are re-estimated iteratively to achieve convergence. Correlation tests

are used to indicate the sufficiency of both the variance model and mean model.

Two numerical simulation examples were used to illustrate the negative impact of

the heteroskedastic noise on conventional OFR and to demonstrate the effectiveness

of the WOFR algorithm for model structure selection and parameter estimation in

the presence of such noise.
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Chapter 5: Cross validation between NARMAX and

GARCH model

5.1 Introduction

Chapter 4 has shown the impact of heteroskedastic noise on the mean model term

selection. When a significant term in the mean model is not selected or a linear mean

model is falsely used to fit a nonlinear mean process, the resulting residuals will also

cause inaccurate estimation using Maximum Likelihood (ML). Therefore, the

variance model estimated using ML will be affected simultaneously. Since there

appears to be no relevant publication to explain this problem, this chapter derives

theoretical results to show the impact on the ML estimator when the mean model is

not well selected and where some information is still contained in the residuals. In a

practical application, it is natural to try and develop a statistical method to verify this

impact and to simultaneously validate the mean model and the variance model.

Cross Validation (CV) (Devijver and Kittler, 1982) is a statistical technique which is

used to analyse the prediction performance of a fitted model and is suitable for both

large data and small data sets. CV can give an indication of how accurately a model

can forecast over independent test data and there are several CV methods which are

commonly used in practice. Those methods include the holdout method, K-fold CV

method and Leave-one-out CV method. The holdout method is the simplest and the

data set is split into two parts. One part is used to fit the model while the other part is

used to test the forecast performance. The K-fold CV method is an improved method

based on the holdout method as the data set is divided into k subsets and the holdout

method is repeated k times. The leave-one-out CV is an extreme case of the K-fold

CV method with K equal to the data length. Since the purpose of this chapter is to

validate time series models, leave-one-out CV is not appropriate here as

autocorrelation will always exist in the time series data and removing one time

sample in the middle of the data may lead to discontinuity of the data. Therefore, the

holdout CV method will be used in this chapter.
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Once the mean model and the variance model are fitted, the i.i.d. assumption of the

standard residuals will be tested to validate the fitted models. The Brock, Dechert

and Scheinkman (BOS) test which was firstly introduced by Brock, Dechert, and

Scheinkman (1987) uses a non parametric technique and has good testing power

against a wide class of data departing from i.i.d. as nonstationarity, nonlinearity, and

deterministic chaos. Many researchers have analyzed this method for example

Abhyankar et al. (1995), Barnett et al. (1993), Chavas and Holt (1991), etc. and the

BOS test has also been proved to have the ability to detect nonlinearity in

econometric models (Brock et al., 1991). Brock, Hsieh and LeBaron (1991) used

Monte Carlo simulations to obtain the distribution of the BOS test from the

standardised residuals of a specified GARCH model and Bollerslev et al. (1993)

concluded that the BOS test has the power to test the ARCH effect and the i.i.d.

assumption of standardised residuals when the variance model or mean model is

miss-specified. Hsieh (1993) applied the BOS test to the logarithm of currency

prices and concluded that none of the currency prices exhibited i.i.d. Barnett et al.

(1997) showed that BOS test has power against a wide range of nonlinearity and i.i.d.

Brock et al. (1996) applied the BOS test to the standardized residuals of GARCH

models and Brooks and Heravi (1999) suggested using the BOS test jointly with

other tests to detect the mis-specifications of the model. Ahlstedt (1998) tested

standardized residuals of a GARCH (I, I) model to currency data and Caporale et al.

(2004) applied the BOS test to test the adequacy of the GARCH specifications by

using Monte Carlo analysis. Mangani (2009) used the 80S test to verify the

significant of the GARCH (l, 1) model when fitting to data from the JSE Securities

Exchange of South Africa. Therefore, the 80S test has been commonly adopted by

many publications to test the i.i.d. assumption of the GARCH class of models.

However, when the test fails it is usually difficult to distinguish whether the mean

model is not sufficient or the GARCH model is not sufficient. If the most significant

terms of the mean model are accurately selected, the autocorrelation of the residuals

should be below the 95% significance line and the one step ahead prediction errors

should be close to random. When the variance sequence is well approximated by a

GARCH model, the LLd. assumption of the standard residuals and standard
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prediction errors should not be rejected. When the mean model is not correctly

selected, the autocorrelation of the prediction error will have outliers and the i.i.d.

assumption will be rejected when the variance is not well predicted. Accordingly,

this chapter proposes to combine cross validation with the 80S test to validate both

the mean model and the GARCH model. It was shown in Chapter 4 that the WOFR

algorithm can improve the term selection of the mean model when heteroskedastic

noise exists and therefore, during the simulations in this study, the WOFR algorithm

will be employed.

The purpose of this chapter is to determine the impact of the term selection of the

mean model on the ML estimator, extend the application of the WOFR algorithm,

and propose a new method to validate both the mean model and the variance model.

Simulations will be given to indicate the effectiveness of this new approach. Section

5.2 introduces the normal distribution testing methods. Section 5.3 derives

theoretically the impact of the mean model term selection on the ML estimator.

Section 5.4 provides a description of the 8DS test and Section 5.5 gives the general

procedure of CV to validate both the fitted mean model and the variance model.

Section 5.6 illustrates the effectiveness of the above methods by simulation

examples and Section 5.7 is the conclusions.

5.2 Testing the distribution assumption

Since the pioneering work of Engle (1982), a time varying variance is commonly

fitted using a GARCH class of models and the ML estimation method. The ML

method is a popular statistical method but the distribution function of the residuals

has to be known apriori to formulate the likelihood function. Violation of the

distribution assumption may lead to an inaccurate statistical inference. Therefore,

before applying the ML method, the distribution assumption needs to be tested. The

normal distribution is one of the most commonly used distributions and the

distribution function is
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(5.1 )

where (J' is the standard deviation and f.-L is the mean. The density function is

symmetric with the shape of a bell curve which is drawn in Figure 5.1 with

f.-L = O,(J' = 1. However, in the real world, the normal distribution assumption will not

be satisfied. Chapter 2 has introduced the QMLE method which can compensate the

estimation errors for a fat tail distribution. Therefore, if the fat tail has been detected,

the QMLE method will be adopted to compensate the estimation error.

0.4

0.35

0.3

0.25

~ 0.2

0.15

0.1

0.05

0
-4 ·3 ·2 ·1 0

x
2 3 4

Figure 5.1 Normal distribution density function plot

5.2.1 The JB test

There are many methods which have been developed to test for normality. The JB

test which was first proposed by Jarque and Bera (1980) uses Lagrange multiplier

procedure to derive the test statistic. The JB test statistic can be expressed as

JB = ~ ( S2 + ± K2 ) (5.2)

where S is the skewness statistic and K is kurtosis statistic. Sand K can be

calculated from
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(5.3)

(5.4)

where x, is the sample value at time i, x is the mean of the data and N is data length.

The J8 statistic has a Chi-squares distribution with two degrees of freedom and the

null hypothesis is that the data is normally distributed. If the data is normal, the

sample skewness statistic is 0 and the kurtosis statistic is 0 and any departure of

those two statistics will increase the JB test statistic. However, when the sample

length is small, the chi-square distribution becomes right skewed and the test

statistic is over sensitive. Therefore, the J8 test is usually used to test large data sets.

The Table 5.1 lists the JB testing results on matlab simulated normally distributed

data and Student t distributed data. Table 5.1 shown that the J8 statistics rejected the

Student t distribution as the value of J8 test is bigger than 3.

Table 5.1 Tests on simulated normal data and Student t distributed data

Data distribution normal Student t

Data length 4000 4000

Skewness 0.0226 0.0449

Kurtosis 2.8911 4.5008

18 statistic 2.3173 376.7372

5.2.2 The QQ plot

The QQ plot is a graphical method to compare the probability distributions of two

groups of data based on quantiles. The quantile means the percentage of points

below a given value. A reference line which is the line y = x is drawn before the test

and if the distributions of the two data sets are similar, the quantiles should
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approximately overlap the reference line. Otherwise, the greater the departure is, the

more different the two testing distributions will have. There are several advantages

of the QQ plot. As the QQ plot is non parametric, the tested data lengths are not

necessarily equal. The QQ plot can test many distributions and it can also test the

distribution aspect simultaneously as the symmetry, and the presence of the outliers.

Figure 5.2 demonstrates the QQ plot of a normal distributed data with the normal

reference line and Figure 5.3 shows that the normality has been rejected by a group

of data generated from a Student t distribution. Since the probability density of the

Student t distribution has fatter tails, the quantiles of the sample data departs from

the reference line on both sides. Therefore, the QQ plot can indicate directly about

the tail behaviour of the tested distribution.
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Figure 5.2 QQ plot of data generated from normal distribution versus normal
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Figure 5.3 QQ plot of data generated from Student t distribution versus normal

5.3 Impact of the mean model term selection on the ML estimator

as

Consider an orthogonalized true process model defined in Chapter 4 equation (4.13)

M

y(t) = Lg;w; (t)+e(t)
;=1

(5.5)

If part of the significant terms have not been selected and contained in the terms

~ m
L g;w;(t) and the selected terms are assumed to be Lg;w; (I) where the m
;=",+1 ;=1

represents the selected term number, Mp represents the number of unselected terms

and M = m +Mp, then equation (5.5) can be written as

In Mp

Y (t ) =L e.W; (t ) + L e,W; (I) + e (t )
;=1 ;=m+l

(5.6)

If the terms used to model the mean do not contain all the significant terms,

especially as a linear model is commonly used to model nonlinear process, therefore

90



Chapter 5 Cross validation between NARMAX and GARCII model

information of related to unselected significant terms may be contained in the

residuals. Accordingly, the modelling error e(t) becomes

Mp

e(t) = L g,W, (/)+&(/)
,;m+'

(5.7)

Then this modelling error will be used to estimate the parameters of the GARCH

model using the ML method. According to the ML estimation routine, the likelihood

of the logarithm of the probability density function will be maximized and the

parameter updating algorithm-Berndt, Hall, Hall and Hausman (1974) (BHHH)

algorithm is commonly used. The first step of when using the ML estimator is to

specify the initial parameters to calculate the likelihood values at the first iteration.

In order to give a comparison, consider that the variance process is generated by a

GARCH (1, I) model and assume that the initial speci fied parameters are a~,all, pi.
Then the calculated variance in the first iteration of BHHH algorithm is

hi (I) = a~+ a~e(I _1)2 +Pi hi (I-I) (5.8)

where hi represents the calculated time varying variance in the first iteration with the

modelling error e(t). The true time varying variance calculated in the first iteration

is

h' (t ) = a~+ a~e (I - I)2 + pi h' (t - I) (5.9)

where h' represents the volatility calculated from the correct model residuals e(t).
I

According to the BHHH algorithm, the initial specified variance is ~o I
I-a - a, PI

Therefore, the initial variances hi (I) of model (5.8) and h' (1)of model (5.9) are

equal. As the variance is iteratively generated by the GARCH model during the

estimation, the estimated variance hi (2) from the modell ing error e (t ) at the second

sample point is

h' (2) = a~+a ,Ie ( I) 2 + pi h I (1) (5.10)

Assume that the sample length is N , then after N -1 iterations the estimated

variance at sample point N is
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The true variance estimated in the first iteration of the BHHH algorithm at sample

point N is

hi (N) =a~ + f3ia~+· .. +(Ptlt-2 a~+all&(N _1)2 + Ptlall&(N _2)2

+···+(Ptlt-2 all&(1)2+(Ptlt-
I hl(l)

Therefore, the differences between hi (N) and hi (N) is

(5.12)

According to equation (5.7),

Therefore,

After substituting equation (5.15) in, equation (5.13) becomes

(5.14)

(5.15)

(5.16)
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where ~'( N) represents the difference between the real estimated variance and the

inaccurate variance estimation in the first iteration of the BHHH algorithm. The

parameters of the GARCH model will then be updated by the equation

(i+') = e(/) + A (± aI, ~)-' ± aI,
1 ,=, ae ae' ,=, ae

(5.17)

where e(/) represents the parameter estimates of the GARCH model parameters

a~,a;,Pi at iteration i of the BHHH routine and aI, is the first order differentiation
ae

of the log likelihood function. The logarithm likelihood function is given by

l,(e)=-_!_Iogh(t)-.!. [;((t))2and the first partial differential equation of likelihood
2 2 h t

( )

(

( )2 ). . 01 I I oh t e t
subject to the parameter IS -' = ----- ---I . In the case of aneo 2 h(/) eo h(/)

inaccurate mean model, the first differentiation at the first iteration of the BHHH

routine becomes

I I ah'(t)
= 2h'(/)+~'(t) ae

(5.18)

I 1= 2h'(/)+L\'(t)

(I g,w, (/)+&(/) J
h' (/)+L\' (t)

oh' (I)
ae

where
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ah'(/)=e'(t)+ ,ah'(t-I)
oo A eo

[
ah' (I - 2))=e'(/)+A' e'(t-I)+A' aB (5.19)

( )
N-2 ( N-' ah(t - N + I)=e'(t)+A'e'(t-I)+ ...+ A' e'(/-N+2)+ pi)

aB

[ J
1' ah'(t-N+I)

,vectore'(t)= l,e(t)2,h'(t-l) and aB is the initial differentiation.

As the initial differentiation is usually a set value, the value can be the same as in the

true mean model case. Therefore, the differences of the first differential of the

variance between the inaccurate mean model and the real mean model is

a~~I) - a~!I) =H,~,g,w, (I-I) J+21 g, w, (I-I)E(I-I),d' (I)J +
/3,' [o{~,g,W,(I-I))' +21 g, w, (1-2)E(I-2),d' (H)J

( )
N-' o{~,g,w, (I-I))'

+...+ A'
Mp

+2L s, w, (I - N + I) e (I - N + I), /),,'(I - N + 2)

t

,=m+'
(5.20)

Equation (5.IS) and (5.20) indicate that the slope of the GARCH parameter

convergence is different at the beginning of the BHHH algorithm between the

inaccurate mean model and the real mean model. The calculation of the likelihood of

the inaccurate mean model therefore becomes

(f giw, (t)+C(t))2
i'(B)=-.!.log(h'(t)+/),,'(t))-.!. ,=m+' (5.21)
'2 2 h'(t)+/),,'(t)

Comparing equation (5.21) with 1,'(B)=-.!.logh'(t)-.!. C,((I))2, the likelihood
2 2 h t

calculation in equation (5.21) at the first iteration is different. Therefore, the slope of

the parameter updating of the GARCH model will be different from the first
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iteration between the real mean model and the inaccurate mean model. According to

the sensitivity of the ML algorithm, the convergence of the parameters will be

affected by the trend and initial conditions. The final estimation of the GARCH

parameters will be different accordingly. For the correct mean model, the time

varying variance h (I) is the conditional expectation of the squared residuals

E(£(/)2) because h(/)=E((&(/)-E(&(t))f) and E(£(t))=O. However, when

the mean model is inaccurate the information of any missing significant terms will

be contained in the modelling errors, and the conditional expectation of the

modelling error will no longer be zero as

Therefore, the conditional variance becomes

h(/) = E((e(/)-E(e(/))f)

= E (e (I) 2 - 2e ( 1) E ( e ( I) ) +(E (e ( t ) ) ) 2
)

e(t)' +2e(t) ,~, g,w, (t)+(l g,w, (t) J' -
=E

2(e(t)+,~, g,w,(t)N e(t)+1 g,w,(t)HE( E(t)+l g,w, (t)JJ
= E( E(t)' )+0+ E( (,~, g,w, (t) )']-2E( (E(t)+1 g,w,(t)H1g,w, (t)) J

+E( {~, g,w, (t))J'

= E( e(t)')+ E( (1g,w, (t) )')-2E( e(t)E(1 g,w, (r) J)
-2{~,s,w, (t)E (,~, g,w, (t) JH{~,s,w, (t) JJ'
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=E( &(1)')+ E( (,%, g,w, (I))}( E(,%, g,w, (I)))'

= h(I)+E( (1g,w, (I))'J-( {~, g,w, (I))J

(5.23)

According to Jensen's inequality,

(5.24)

. ~
Therefore, h(t) ~ h(t). If there IS no significant term contained in L g,w, (I) ,

i=m+l

E ( (,~, s,w, (I) )J wi II be insign ificant compared with the variance of Y (I) and

h(t) ~ h(t), otherwise the estimated variance will be inaccurate.

It is clearly shown by the above theoretical derivation that the variance estimation

and parameters of the GARCH model will be seriously affected when the mean

model is not accurate because some significant terms are not selected. Accordingly,

it is essential to develop a statistic method to test for this scenario.

5.4 DDS test for i.i.d. assumption

The BOS test which was initially proposed by Brock, Dechert and Scheinkman

(1987) is one of the commonly used methods to test the i.i.d. assumption of the

underlying data series. It is also well known that the BOS test can be used to test the

modelling residuals to check the goodness of fit (Brock et al., 1991). Since one

assumption of the GARCH model is that the standardized residuals are distributed as

i.i.d., the BOS test appears to be the right tool to test this assumption. The general

BOS procedure is

96



Chapter 5 Cross validation between NARMAX and CiARCH model

(I) Assume that the standardized residual z(t) is calculated from Z (I) = ~,
\,jh(/)

where h(t) represents the estimated variance from the mean model residual

£(t), the data length is Nand n is the embedding dimension. Then the

residual series are embedded into n -dimensional vectors by taking each n

successive points in the series. The residual series is then converted into a

series of vectors as

z~ =[ZPZ2""'Z,,]
z; =[Z2,Z3, ... ,Zn+l]

(5.25)

Z~_" =[ZN_",ZN_"+I,,,,,ZN]

(2) The correlation integral which measures the spatial correlation is then

calculated by adding a number of points (i, j) where 1:$ i s; Nand 1:$ j :$N

in the n -dirnensional space within a radius r of each other as

c = 1 "I
y .n N(N -I) 4.J ',);y

'''' }
(5.26)

where

I",;y = I (5.27)
= 0 otherwise

(3) If C ~ [C 1]'" then the underlying data series is distributed as i.i.d. Asrn r .

pointed out by Lin (1997), if the ratio of N is greater than 200, the value of
n

Lwhere a is the standard deviation ranges from 0.5 to 2 and the value of
a

dimension n is between 2 and 5, the quantity [Cy,,, - (Cr,1 rJ will be

distributed as asymptotic normal with zero mean and variance Vy,n defined as
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(5.28)

where

6K=K= s:»
r N(N - t)(N -2).~ l,j.N;r

icjc N
(5.29)

[I ..I. . + I . I ., + I .. I ]h. = I,j,r j,N.r I,N.r N./,r /,q I,N;y
I,/,N;r 3

(4) The BOS test statistic will be defined as

(5.30)

The hypothesis of i.i.d. will be rejected when BOS test statistic is greater

than 1.96 or less than -1.96.

Therefore, if the BOS statistic of the standardized residuals is greater than 1.96 or

less than -1.96, the i.i.d. assumption will be rejected and this indicates that the

GARCH model may not be accurately fitted.

5.5 Cross validation between the mean model and the variance

model

CV is a statistical method to estimate how well the model is fitted to the underlying

data. Commonly used CV methods include the holdout method, K-fold CV method

and Leave-one-out CV method. Holdout method is the simplest kind of CV and in

the holdout method the data is usually split into two parts. One part of the data is

used to fit the model and the other part is used to test the prediction ability of the

fitted model. Since the standardized residuals are derived by the mean model

residuals and the standard deviation, either an inaccurate mean model or variance

model will induce rejection of the i.i.d. testing statistic. Therefore, there are three

situations which will result in the rejection of the i.i.d. assumption as

(I) Biased mean model approach but unbiased GARCH model fitting.

(2) Unbiased mean model approach but biased GARCH model fitting.
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(3) Biased mean model approach and biased GARCH model fitting.

Note that the biased mean model means that the significant terms of the mean model

are not fully selected and the information related by unselected significant terms is

contained in the modelling errors. The biased GARCH model means that the

variance estimation from GARCH is inaccurate. Inaccurate variance estimation may

be caused by selecting the wrong structure of the GARCH model or using the wrong

distribution density function during ML estimation.

In this chapter, the data will be split into two and the first half data will be used to

estimate the mean model and the variance model. Then the estimated mean model

and variance model parameters from the first half data are used to predict and the

one-step-ahead prediction errors will be calculated. If the mean model and the

variance model is accurate enough, the standardized prediction error will not reject

the i.i.d. assumption. Therefore, the general procedure of cross validation between

the mean model and the variance model is:

For the first half data

(1) Fit the data using the WOFR algorithm and select the significant terms the

mean model.

(2) Test the autocorrelation of the residuals and validate the fitted mean model.

(3) Test the assumption of i.i.d. using standardized residuals.

For the second half data

(I) Use the parameters of the mean model and the variance model which are

estimated from the first half data to calculate the one-step-ahead prediction

errors.

(2) Estimate the variance from the prediction errors and test the i.i.d. assumption

using standardized prediction errors.

(3) Recursively calculate the conditional variance with the prediction errors and

the GARCH parameters estimated from the first half and test the i.i.d. of the

standardized prediction errors.

When all the tests are satisfied, the mean model and the variance model should be

simultaneously valid. It is essential to test the second half data twice as only when
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the prediction from the variance model is consistent with the variance estimated

from the prediction error, that the mean model and the variance model are valid to

compute the predictions.

According to Chapter 3, most of the GARCH model related publications ignored the

significance of the mean model accuracy. As proved in Chapter 4 and this chapter,

an inaccurate mean model will induce inaccurate estimation of the GARCH

parameters and variance estimation. Therefore, the CV of the mean model and the

variance model has significant meaning for improving the forecast abilities of the

variance model.

5.6 Simulations

In order to demonstrate the effectiveness of the method described in Section 5.5, a

nonlinear mean model is used to generate the simulation data. The nonlinear model

is

(5.31)

where aO,a"a2are parameters, z(t) is random variable distributed as N(O,I)and

h(t) represents the time varying variance. The parameters for model (5.31) are listed

in Table 5.2.

Table 5.2 Parameters for model (5.31)

0.007 -0.11 12

A GARCH (I, I) model is also used to generate the time varying variance and the

model is

(5.32)

and the parameters of GARCH model are listed in Table 5.3.
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Table 5.3 Parameters for GARCH

3e-7 0.075 0.924

A series of data with length 5000 was then generated using the mean model 5.31

with y(I)=O and h(l) = Ao . In order to avoid any initial value effects, the
I-AI-BI

first half data used for CV was taken from sample point 1500 to 3500 and the second

half data was taken from sample point 350 I to 5000. In order to give a comparison,

a linear model will be used to model the nonlinear mean process to demonstrate that

an inaccurate mean model can cause inaccurate prediction of the variance. A linear

reference AR (4) model are firstly used to model the mean process and the

estimation results from the OFR algorithm are listed in Table 5.4.
Table 5.4 ERR of linear reference mean model

Term ERR

Constant 0.48960e-1

y(t-I) 0.71236e-2

y(t-4) 0.42205e-2

y(t-3) 0.11110e-4

y(t-2) 0.4782Ie-4

According to Table 5.4, the terms, Constant, y(t -1), y(t -4) should be selected as

the significant terms of the linear mean model and the linear mean model is given by

y(t) = Go+Gly(t -I) +G2y(t - 4)+ e(t) (5.33)

where E(t) are the residuals. As described in Section 5.5, the autocorrelation of the

residuals needs to be checked initially and therefore the autocorrelation of linear

mean model residuals are drawn in Figure 5.4.

101



Chapter 5 Cross validation between NARMAX and GARCII model

,
0.8 r-

e: 0.6 ~0
~
~
0s 0.4 -'S
<I:
Ql
Q.
E

0.2 ~Cl!
Cl)

I

0

Sample Autocorrelation Function (ACF)

• ••
-0.2 l__ _ _j_ _ ___l__ _j __ -'-- _ _j__-----'- __ .!___-L- _ ___l__----'

o 2 10
Lag

14 2016 188 124 6

Figure 5.4 Autocorrelation of the linear mean model residuals

0.08

0.06

j!
~ 0.04
(11
Cl)

g_ 0.02
.5
'0
(J)

j!
~s -0.02o

-0.04

QQ Plot of Sample Data IoersuS Standard Normal

t-t-

jIl~
+

o

+-H-

-0.06 L..._-'- _ __L __ -'------_-'- _ __L __ -'------_ _.L__----'

-4 -3 -2 -1 0 2 3 4
Standard Normal Quantiles

Figure 5.5 QQ plot of the linear mean model residuals
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Table S.SStatistics of residuals estimated from linear mean model

Skewness Kurtosis JB statistic

0.4079 5.1683 446.5998

There is no outlier outside the 95% significant line and the parameter estimation of

the mean model is therefore not biased. The QQ plot of the linear mean residuals is

drawn in Figure 5.5 and the statistics of the residuals are listed in Table 5.5. The JB

test and QQ plot reject the normality of the residuals. However, as the Quasi ML

method is employed in estimating the GARCH model, a normal distribution density

function may still be used. Then a GARCH (1, I) model was estimated from the

linear mean residuals and the estimated parameters are listed in Table 5.6.

Table S.6GAReH model parameters estimated from linear mean model residuals

Parameter Estimation Standard Error

Av 5.2302e-7 2.0441e-7

AI 0.0835 0.00105

El 0.9167 0.0097

Then a nonlinear reference model was used to give the mean model term selection

and the results of the WOFR algorithm are listed in Table 5.7. The estimation results

using the normal OFR algorithm based on the same nonlinear reference model are

also listed in Table 5.7 to give a comparison.
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Table 5.7 WOFR and ordinary OFR estimation results of the nonlinear reference mean

model

Term WERR Term ERR
y(t-l)y(t-l) O.68190e-l y(t-l)y(t-l) O. !3374

Constant O.789J8e-2 Constant O.52270e-2

y(t-I) O.20116e-2 y(t-4) O.25221e-2

y(t-4) O.89675e-3 y(t-! ) O.15988e-2

y(t-!) y(t-4) O.53990e-3 y(t-2) y(t-3) O.1220ge-2

y(t-3) y(t-4) O.36!71e-3 y(t-3) y(t-4) O.13312e-2

y(t-2) y(t-3) O.45212e-3 yet-I) y(t-3) O.44957e-3

y(t-3) y(t-3) O.42843e-3 yet-I) y(t-4) O.47574e-3

y(t-2) y(t-2) O.87281e-4 y(t-2) y(t-2) O.32065e-3

y(t-3) O.56!22e-4 y(t-4) y(t-4) O.40903e-3

y(t-4) y(t-4) O.53844e-4 y(t-3) y(t-3) O.22787e-3

y(t-I) y(t-2) O.44948e-4 y(t-2) y(t-4) O.14792e-3

y(t-!) y(t-3) 0.477!5e-4 y(t-3) O.!570Ie-3

y(t-2) 0.5450! e-5 y(t-!) y(t-2) O.30006e-5

y(t-2) y(t-4) O.3726ge-5 y(t-2) 0.4976ge-5

The results in Table 5.7 clearly demonstrate that the first three most significant terms

from WOFR estimation are the terms of the real mean model as in equation (5.31)

and the ordinary OFR estimation cannot give a correct selection. Therefore,

according to the ranking of the W RR, the first three terms with grey background in

Table 5.7 are selected as the mean model terms. After an iterative reweighted

calculation, the converged parameter estimation for the selected mean model terms

are listed in Table 5.8. The autocorrelation and the QQ plot of the residuals of

nonlinear selected model are drawn in Figure 5.6 and Figure 5.7. The statistics of the

residuals and the JB test results are listed in Table 5.9. Comparing these with the

values in Table 5.5, the statistics are improved significantly. According to the

autocorrelation, the parameter estimation of the nonlinear mean model is unbiased.
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Table 5.8 Parameters of selected nonlinear mean model terms after iterative reweigh ted

calculation

Terms Parameter estimation Standard Error

y(t-I )y(t-I) 11.0632 1.2643

Constant 8.825e-4 4.4406e-8

y(t-I) -4.8802e-2 6.0930e-4

Table 5.9 Statistics of residuals estimated from nonlinear mean model

Skewness Kurtosis JB statistic

-0.0355 4.5644 204.3555
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Figure 5.6 Autocorrelation of residuals estimated from nonlinear mean model
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Standard Normal Quantiles

As the GARCH model is simultaneously estimated during WOFR, the parameters of

the GARCH model in the last iteration of WOFR are listed in Table 5.10.

Table 5.10 GAReH model parameters estimated from nonlinear mean model residuals

Parameter Estimation Standard Error

~ 3.07S0e-7 2.0257e-7

AI 0.0751 0.0106

AI 0.9258 0.0097

In order to demonstrate the impact of an inaccurate mean model on the estimation of

the variance, the absolute differences between the real variance and the estimated

variance, estimated from the residuals of the linear and nonlinear selected mean

model, are drawn in Figure 5.8.

106



Chapter 5 Cross validation between NARMAX and GARCH model

l,,========================================~
__ Absolute \Blue ofthe di1ferences between the real conditional \firia.nces

and \Briances calculated from the linear mean m odel residuals

Absolute \Blue of the di1rerences between the real condiitional \firiances
and \Briances calculated from the nonlinear mean rnodet residuals

...o
t:
IIJ
il)

!l 0.5
(5
VI
.0«

Sample time

Figure 5.8 Absolute of volatilitie differences between the real variances and the variances

estimated from the linear (blue) and nonlinear (red) mean models

Figure 5.8 illustrates clearly that the variance calculated from nonlinear mean model

is more accurate than that from the linear mean model. Then the 80S tests are

applied to the standardized residuals of the linear and nonlinear mean model

residuals and the testing results are listed in Table 5.11

Table 5.11 BD test for tandardized linear and nonlinear residuals

rlu Embedding Linear Nonlinear rlu Embedding Linear Nonlinear

Dimension(m) residuals residuals Dimension(m) residuals residuals

2 2 3.0207 0.1769 I 2 2.1371 0.1594

2 3 2.5012 0.6431 I 3 2.0096 0.2265

2 4 2.0239 0.2486 I 4 1.5337 -0.0518

2 5 1.7139 0.2323 I 5 1.4829 0.0535

1.5 2 2.5739 0.2074 0.5 2 1.4849 -0.1068

1.5 3 2.2328 0.4100 0.5 3 1.6230 -0.0392

1.5 4 1.7455 0.0560 0.5 4 1.0172 -0.5665

1.5 5 1.5104 0.0459 0.5 5 0.9310 -0.2972
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The grey background of the test statistics in Table 5.11 indicates that the hypothesis

of i.i.d. has been rejected at a specified dimension and r /a ratio. Almost half of the

test statistics of the residuals estimated from the linear mean model rejects the i.i.d.

assumption and there is no rejection for the nonlinear mean model residuals.

Obviously the linear mean model did not even pass the test for the first half of data.

Then both the linear and nonlinear mean model parameters are used to calculate the

one-step-ahead prediction errors for the second half data which is sampled from

3001 to 5000. The parameters of the GARCH models in Table 5.6 and Table 5.10

are also employed to calculate the one-step-ahead prediction of the variance using

the prediction errors. According to the procedure of CV listed in Section 5.5, a

GARCH (1,1) model is also used to fit the prediction error. The estimated GARCH

parameters, from the prediction errors of the linear and nonlinear mean models, are

listed in Table 5.12.

Table 5.12 GAReH model parameters estimated from linear and nonlinear mean

prediction error

Parameter(l inear) Estimation Std. Error Parametermonlinear) Estimation Std. Error

An 5.7842e-7 2.9860e-7 An S.75060e-7 2.7735e-7

AI 0.0688 0.0[ [2 AI 0.0793 0.0131

BI 0.9281 0.0120 BI 0.9179 0.0131

Therefore, there will be two groups ofvanance prediction for each mean model. One

group is estimated from the prediction error and the other is recursively calculated

using GARCH parameters estimated from the first half data. The absolute

differences of the two group variances are then drawn in Figure 5.9 to demonstrate

the prediction ability of the GARCH model estimated from the first half data.
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Figure 5.9 Absolute errors between the variances predicted by the GARe" model from the

first half data and the variances calculated from the prediction errors. Blue represents that the

mean model is linear and red represents that the mean model is nonlinear.

It is clear in Figure 5.9 that the variance prediction of the nonlinear mean model

stays closer most ofthe time than that of linear mean model. Since the real variance

is known for the second half data, it is necessary to compare the predicted variance

with the real variance. Therefore, the absolute differences between the predicted

variance and the real variance are drawn in Figure 5.10. It is clear that the predicted

variance estimated from the nonlinear mean model is more accurate than that of

linear mean model. Then the 80S tests are applied to the standardized prediction

errors and the test results are listed in Table 5.13 and 5.14. The predicted variances

of linear and nonlinear mean models are drawn together with real variances in

Figure 5.11.
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Figure 5.10 Absolute differences between the real variance and the estimated variance

(a) Absolute differences between the real variance and the variance estimated from the
prediction errors of linear mean model

(b) Absolute differences between the real variance and the variance calculated using the
GARCH parameters estimated from first half data and the prediction errors of the linear mean
model

(c) Absolute differences between the real variance and the variance estimated from the
prediction errors of nonlinear mean model

(d) Absolute differences between the real variance and the variance calculated using the

GARCH parameters estimated from first half data and the prediction errors of the nonlinear

mean model
Table 5.13 BDS test statistics ofstandardized prediction errors using estimated variance

y l a Embedding Linear Nonlinear riO' Embedding Linear Nonlinear
Dimension(m) mean mean Dimension(m) mean mean

model model model model
2 2 3.5936 0.8567 1 2 3.0084 0.7994

2 3 2.8780 0.5191 1 3 2.3364 0.5261

2 4 2.8975 0.5761 1 4 2.5959 0.8768

2 5 3.0066 0.8114 1 5 2.9038 1.3447

1.5 2 3.4602 0.9352 0.5 2 2.7112 1.0152

1.5 3 2.6330 0.5628 0.5 3 2.1486 1.3828

1.5 4 2.6963 0.7231 0.5 4 2.5495 1.6788

1.5 5 2.8755 0.9984 0.5 5 3.2662 1.9357
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Table 5.14 BDS test statistics of standardized prediction errors using predicted variance

ria- Embedding Linear Nonlinear ria- Embedding Linear Nonlinear
Dimension(m) mean mean Dimension(m) mean mean

model model model model
2 2 3.1379 0.9816 1 2 2.6473 0.9025

2 3 2.2318 0.6719 1 3 1.8129 0.6390

2 4 2.1615 0.7410 1 4 1.9542 0.9991

2 5 2.2023 0.9946 1 5 2.1444 1.4922

1.5 2 3.0049 1.0348 0.5 2 2.3975 1.0546

1.5 3 2.0155 0.7073 0.5 3 1.7124 1.4781

1.5 4 1.9898 0.8909 0.5 4 1.9607 1.8136

1.5 5 2.1156 1.1884 0.5 5 2.8020 2.2461

According to the test results in Table 5.13 and 5.14, the BOS test statistics of

standardized prediction error from the linear mean model indicate that the i.i.d.

assumption is rejected as most of the statistics are over 1.96. However, for the

nonlinear mean model the i.i.d. assumption has not been rejected as there is only one

statistic which is over 1.96.

The simulation indicates that CV between mean model and variance model is very

effective and that an inaccurate mean model will affect the variance prediction.

Although the distribution assumption is rejected, the QMLE method can compensate

fat tails of the distribution and the variance estimation is barely affected. In Figure

5.11, the variance prediction of the nonlinear mean model is improved especially in

volatile periods. Since the variance is directly related to risk in the financial area,

even 1% improvement may have significant impact on risk evaluation. Therefore,

the work on improving variance prediction and CV between the mean model and the

variance model indicates that the accuracy of the mean model is essential in variance

forecasting.
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Figure 5.11 The Red line represents the real variances and blue line represents the estimated

variances.

(a) The variances are estimated from the prediction errors of linear mean model

(b) The variances are iteratively calculated from the prediction errors of linear mean model

using the parameters of GARCH model estimated from the first half data.

(c) The variances are estimated from the prediction errors of nonlinear mean model.

(d) The variances are iteratively calculated from the prediction errors of nonlinear mean model

using the parameters of GARCH model estimated from the first half data.
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5.7 Conclusions

In this chapter, the impact of the accuracy of the mean model on variance

forecasting has been derived theoretically and a CV method between the mean

model and variance model has been proposed. The WOFR algorithm proposed in

Chapter 4 was used to refine the term selection of the mean model during CV.

According to the simulations results, the CV method is very effective in detecting an

inaccurate mean model and variance model. As far as we known, there is no work

which is related to validate the mean model and variance model simultaneously

especially when the mean model is nonlinear. Since variance forecasts are widely

applied in the finance area, the work in this chapter has very good application

potential. Therefore, the method proposed in this chapter provides a statistical

technique to apply a nonlinear mean model with selected terms in predicting the

variances when the variance is fitted by the GARCH class of models.
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Chapter 6: Mortality rate modelling and forecasting using

the NARMAX model

6.1 Introduction

The mortality rate is defined as a measure of the death rate in a population and

mortality risk is the key risk factor driving the values of mortality and longevity

Iinked securities. If the mortal ity in pricing the annuities is overestimated, the profit

margin of pension providers will shrink significantly. Insurance products sold by

private companies are also influenced by the mortality rate (Brouhns, Denuit and

Vermunt, 2002). Therefore, in order to value mortality-related positions and to

reduce their exposure to mortality improvements, actuaries employ mortality models

to predict the future mortality.

There are many techniques that have been developed to model mortality since

Cramer and Wold (1935) firstly modelled mortality rate curves using extrapolation

methods. Benjamin and Soliman (1993) fitted the mortality rate using technique

based on the projection of parameters while Lee and Cater (1992) proposed a simple

model (Lee-Carter model) which can describe mortality changes using both age-

dependent and time-dependent terms. Renshaw and Haberman (1996) successfully

used Poisson distributed random variables as the additive error term in Lee-Carter

model and Brouhns, Denuit and Vermunt (2002) improved the Lee-Cater model

using a generalised linear model with Poisson errors. A more complex Age-Period-

Cohort (APC) model which adds the cohort factor to the common age structure was

then introduced by Tabeau et at. (200 I). Some time-series approaches were used by

McNown and Rogers (1989), Rogers and Gard (1991). Most recently, there was the

CBO model proposed by Cairn, Black and Dowd (2006) and its various

generalisations to encompass a cohort effect. However, it is widely accepted in

mortality modelling circles that no existing model is entirely satisfactory.



Chapter 6 Mortality rate modelling and forecasting using the NARMAX model

This chapter investigates the use of a NARMAX polynomial representation to model

the mortality rate. According to Chapter 3, NARMAX polynomial representation

can be used to approach the nonlinear system effectively and precisely with selected

terms using the OFR algorithm.

Once the mortality model is estimated, its prediction ability needs to be assessed.

Dowd et al. (2008) used the back testing method to evaluate the forecast

performance of a number of existing stochastic mortality models. Back testing

method can indicate whether the underlying model can give a good out-of-sample

prediction. Therefore, in this chapter the back testing method will be employed to

check the ex post forecast performance of the fitted mortality models. The models

considered are the eBD model and the fitted NARMAX model.

This chapter is organized as follows. Section 6.2 gives the mortality rate related

definition and notation. Section 6.3 introduces the most recently mortality models

and Section 6.4 applies the NARMAX modelling method to the realised mortality

rate data and derives the nonlinear mortality model, where the smoking rate is also

involved in the term selection. Section 6.5 evaluates the forecast performance of the

NARMAX type models using back testing method and gives prediction comparison

with the CBD mortality model. Section 6.6 concludes.

6.2 Definition and notification

In this chapter, the mortality rate is treated as discrete and the calendar year is

represented by I and running from Ito 1+1.

Therefore, the death rate m(l,x)for age x is defined as

deaths during calendar year t aged x (last birthday)
m (t, x) = average population during calendar year t aged x (last birthday)

(6.1)

The mortal ity rate q (t, x) is defined as the probabi lity that an individual aged exactly

x at exact year 1wi II die between 1 and 1+ 1.
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Another measure of the death rate is the force of mortality rate ,u(t,x) which is

defined as the death rate at exact time t for people at exact age x. For small time dt,

the probability of death between t and t+dtisf.1(t,x)xdl. If the force of mortality

remains the same over each calendar year and over each year of integer age which is

for all O~s,u~l, ,u(/+S,X+U)=,u(/,x) and the population remains stationary,

the relationships between death ratem(/,x), the force of mortality rate,ll(t,x) and

the mortality rate q (I, x) are

m(t,x) = ,u(t,x)

q(/,x) = l= exp] -m(t,x)) = l-exp( -.tL(t,x))

(6.2)

(6.3)

Some mortality models also use cohort effect. The cohort effect is usually used to

describe some shared life experience among the individuals over some certain times.

It is already observed that cohorts born around 1930 have obvious improvement

between age 40 and 70 and cohorts born around 1950 have worst mortality in

England & Wales (Cairns et aI., 2007).

6.3 Introduction to the commonly used mortality models

6.3.1 Lee-Carter mortality model

One of the mostly commonly used mortality model is the Lee-Carter mortality

model which was proposed by Lee and Carter (1992). The Lee-Carter model

combines a demographic model with statistical time series approach and the model

is specified for the logarithmic transformation of the death rate at age xand year I

using three parameters: a period related effect, an age-specific parameter that

represents the general shape across age of the mortality schedule and a second age

specific parameter that is related to the changes in mortality level. The Lee-Carter

model can be written as

(6.4)
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where {i;1) ,/3';/) are the age-specific parameters and K, reflects the period effect. The

constraints for estimating the parameters are

(6.5)

6.3.2 Extend Lee-Carter model

The Lee-Carter model was extended to a generalised case by Renshaw and

Haberman (1996) who usc Poisson distributed random variation as the error term. In

later work, Renshaw and Haberman (2006) added a cohort effect term to the Lee-

Carter model:

(6.6)

where r.; is the cohort effect term with the birth year /- x and p!3) is an additional

age related term. The constraints of the parameters are

'K = 0 ,0(3) = I 'y = Oand ' 0(3)= I£...J I ' L..J p; , £.." I-x L..J I-'x (6.7)
',I

Although the additional cohort effect term can provide better modelling accuracy,

comparing with Lee-Carter model the parameter estimation converges much more

slowly during ML estimation.

6.3.3 Age-Period-Cohort model

The APC model was firstly introduced by Tabeau et al. (200 I) and the parameters of

APC model described the trajectories of time and cohort effect given the age pattern.

A linear APC model can be written as

(6.8)
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and the APC model is a special case of the extended Lee-Carter model with

f3~2) = ~, f3~3) = ~ where N is the number of ages used in the sample on which the

model is calibrated. The constraints of the parameters are

(6.9)
X,I

However, APe model still has identification problem as the three parameters are

linearly dependent. The solution to this problem is to impose identifiability

constraints which lead to the following:

In (m(l,x)) = .0:1) + KI + 11-x (6.10)

where KI = KI -£5(1- 1) ,rl-X = YI-X + £5((1- 1) -(x- i)), p;l) = ,8;1) +£5(x -i).

6.3.4 COD model

The CBO model is firstly introduced by Cairns et al. (2006) to fit the mortality rate

at higher ages. The CBO model is a two-factor model and can be written as

(6.11)

where fixl), fix2) are age related parameters and KI(I), KI(2) are period effects. It is

usually assumed that the parameters fJ~i)= 1 and ~2) = (x - x) . Therefore, CBO

model in equation (6.1) can be written in a simpler form as

10gil(q(l,x)) = K?) +K
I
(2) (x-x) (6.12)

If the cohort effect is considered, an extra term will be added to equation (6.13) to

give us one of the generalisations of the model:

log it (q (I, x)) = ti;1) KI(I) + ~2) KI(2) + ~3) YI-X (6.13)

where YI-X is the cohort effect term and f3~3) is usually equal to 1. One advantage of

the CBD model is that there is no identification problem because there is no

constraint on parameters.

118



Chapter 6 Mortality rate modelling and forecasting using the NARMAX model

6.3.5 Quadratic regression model

Heathcote and Higgins (200 1) used a quadratic regression model to fit the Dutch

mortality rates. The model year variable t and age variable x and can be written as

(6.14)

where f3o,A,f32,f33,/34 are parameters and &(x,t) is the modelling error which is

assumed to be normally distributed.

6.4 Modelling the mortality rate using the NARMAX method

6.4.1 Data

The data set used to model the mortality is the LifeMetrics deaths and exposures

data for England & Wales males that originally comes from the Office of National

Statistics.The mortality rates for England & Wales males between 1961 and 2006

are drawn in Figure 6. I.
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Figure 6.] Mortality rates for England & Wales Male between age 60 and 89 from year 1961 to

2006
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It is clear that the mortality rate in Figure 6.1 rises with age but falls over time. The

corresponding q rates for ages 65, 75 and 85 are shown in Figure 6.2.
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Figure 6.2 Logit tran formation of male mortality rate of England & Wales between age 60 and

89 from year 1960 to 2006
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Figure 6.3 logit tran formation of mortality rates at Age 65, 75, 85 from year 1961 to 2006
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6.4.2 Model specification

Given the linear relationship in both age and year directions observed in Figure 6.2

and Figure 6.3, the following quadratic model is proposed

(6.15)

where ao, a", ..,aj are parameters, xis the age factor, lis the year factor and &(t,x)

is modelling residual. If the cohort effect is considered which is the factor of (I - x),

the model (6.17) can then be transferred to

(6.16)

(bi2 + ajt) is year factor related term and - a3 (x - t)2 is the cohort factor related
2

term.

The model (6.15) is a pure quadratic polynomial model with all possible terms

included and when the model is used to fit the realised mortality data, some terms

may be insignificant and can be removed. Therefore, NARMAX modelling method

is adopted to determine the term selection of model (6.15).

6.4.3 Data pre-processing and parameter estimation

Since the mortality data of England & Wales start from year 1961 to 2006, the first

20 years' data is used to fit the model and select the terms. In order to apply the OFR

algorithm, the inputs need to be pre-processed to contain both year factor and age

factor. Assumed that the length of ages is represented by m and the length of years is

represented by n and the inputs of the model (6.15) are formatted by u1 (age factor)

and U2 (year factor) where Ut is a column vector with x repeated n times and U2 (year

factor) is a column vector and consisted witht(l) repeated mtimes, 1(2)repeatedm

times until I (n) repeated m times. Therefore, the inputs u, and U2 share the same
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length as m x n. The output y can be formatted as a column vector with logit

transformation of mortality rate as

[Iogit( q( 1,1)),logit( q( 2,1)),,,.,logit( q(m,1)),Iogit( q( 1,2)),,,.,Iogit( q(m,2) ),,,.,Iogit( q(l,n) ), ..., logit( q(m,n))J
Then the model (6.15) can be written as

y(T) = X(T)<l>+£(T) (6.17)

length m x n, T is nominal sample time with length m x nand <l> is the parameter
t

vector [uO,Ul'a2,(l3,(l4,a5] . The model (6.19) is then treated as a reference model

and after applying OFR algorithm, the parameter estimations results and the ERR of

each terms are listed in Table 6.1.

Table 6.1 Parameter estimation and ERR results after applying OFR algorithm to model (6.17)

with data set England and Wales male age 60 to 89 from year 1961 to 1980

Term ERR Estimated parameter value

u2 90.5014 (12 = - 5.6294 e-52

111 9.4537 a, = -0.3307

u2 21636 e-4 al = - 6.1644 -5I

Constant 3.5908e-5 a3 = -2.2656e2

». xU2 4953ge-4 as = -I. I635e-4

U2 4079ge-5 ao = 2.209ge-1

According to Table 6.1, the term u; and ul are the most significant terms and since

these two terms represent the (2 and x in model (6.17), the selected mortality model

IS

(6.18)

The parameters of model (6.18) are then re-estimated and listed in Table 6.2.

Estimated logit transformation of mortality rate surface is drawn in Figure 6.4 and

the estimated mortality rate at age 65, 75, 85 are drawn together with realized

mortality rate in Figure 6.5.
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Table 6.2 Parameter e timation for model (6.18)

Parameter °0 °42

Estimated Value 4.l938e-2 -2.4183e-6 9.2272 -2
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Figure 6.5 Estimated mortality rates in red and realized mortality rate at age 65,75 and 85

Comparing with model (6.15) the model (6.18) is much simpler and the model (6.18)

can also transfer to a model contained cohort effect as

logit(q(x,t)) =ao +a/ +a4X+6(X,t)

=ao +a2t2 +ai-a4 (t-X)+6(X,t)

= ao+(a2/2+a4t )-a4 (t -x) +6(X,t)

The model (6.18) can be employed to predict the future mortality rate using just age

(6.19)

and year inputs. Therefore, comparing with statistical models like Lee-Carter, or

CBD model, the polynomial model (6.18) is very convenient to estimate and apply

to predict the future mortality.
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6.5 Forecasting and back testing

6.5.1 Long term forecast comparison

Since the mortality rate model is fitted for predicting the future mortality rate, it is

essential to compare the long term forecast performance of the simplified

polynomial model (6.19) and the statistical mortality model eBO model (6.13). The

polynomial model (6.15) is also used during prediction to indicate the differences

between selected and unselected models. As the data from year 1961 to 1980 is used

to fit the model, the data left from years 1981 to 2005 is used to check the long term

forecast ability of the fitted models. Accordingly, the 25 year-ahead forecast of

mortality rates of model (6.13), model (6.15) and model (6.19) at age 65, 75, 85 are

drawn in Figure 6.6.

It can be seen from Figure 6.6 that the prediction from model (6.15) represented by

magenta line is outstanding comparing with the prediction from selected model (6.18)

and eBO model. The prediction from model (6.18) represented by blue line is better

than that from eBO model in younger ages as in Figure 6.6 (a) and (b) but eBO

model beats the model (6.18) in predicting older ages as in Figure 6.6 (c). In order to

quantify the differences of prediction errors between model (6.18) and eBO model,
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Figure 6.6 Predicted mortality rates for age 65 (a), age 75 (b) and age 85 (c) from model (6.18)

in blue, eBn model in black and model (6.15) in magenta. The red line represents the realized

mortality rate.
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th d . . I Id' - (qpre - qrealized ) de pre iction error percentages are ea cu ate USIng x l 00% an
s.:

listed in Table 6.3

Table 6.3 Prediction error percentages of model (6.18) an d CBD model at age 65, 75, 85

Age65 Age 75 Age 85
Year Model CBD Year Model CBD Year Model CBD

(6.18) model (6.18) model 16.181 model
1981 -4.46 -5.89 1981 -0.12 0.24 1981 -0.31 1.56
1982 -3.73 -5.62 1982 0.52 0.91 ]982 -0.46 1.8]
1983 -3.43 -5.49 ]983 -0.02 0.67 1983 -0.57 1.97
1984 -5.78 -7.98 1984 -3.07 -2.42 1984 -4.31 -1.71
1985 -4.92 -6.88 1985 0.30 0.69 1985 1.23 3.00
1986 -7.19 -9.50 1986 -1.19 -1.22 1986 -1.62 0.22
1987 -8.20 -10.75 1987 -4.52 -4.31 1987 -5.98 -4.50
1988 -7.61 -10.03 1988 -4.76 -4.62 1988 -5.01 -3.06
1989 -9.57 -12.75 1989 -5.03 -5.56 1989 -1.70 0.69
1990 -11.41 -14.10 1990 -8.17 -8.62 1990 -5.35 -2.72
1991 -12.08 -15.14 1991 -8.07 -8.22 ]99] -4.23 -1.8 ]
1992 -15.55 -18.53 1992 -9.42 -9.26 1992 -6.55 -5.20
1993 -14.18 -17.40 ]993 -7.13 -7.44 1993 -2.09 -1.08
1994 -18.67 -22.00 1994 -11.2 ] -11.70 1994 -7.05 -5.93
1995 -19.23 -22.50 1995 -10.13 -10.70 1995 -4.] 5 -2.79
1996 -22.24 -25.52 1996 -12.30 -13.47 1996 -5.91 -4.69
1997 -25.39 -28.04 1997 -13.42 -14.72 1997 -6.60 -5.50
1998 -25.97 -29.19 1998 -14.20 -16.00 1998 -6.81 -5.37
1999 -27.67 -30.86 1999 -15.29 -16.86 1999 -6.5 ] -5.49
2000 -31.] 9 -34.07 2000 -18.07 -] 9.35 2000 -9.30 -8.84
2001 -33.93 -37.06 2001 -20.76 -22.21 2001 -10.00 -9.19
2002 -34.48 -38.04 2002 -21.80 -23.59 2002 -12.29 -11.37
2003 -34.94 -38.26 2003 -24.02 -25.18 2003 -12.39 -11.48
2004 -36.84 -40.19 2004 -28.42 -29.73 2004 -17.81 -16.62
2005 -38.15 -41.72 2005 -30.44 -3] .61 2005 -]9.33 -18.50

According to the Table 6.3, the selected model (6.18) has better prediction ability as

CBD model. It is clearly in Figure 6.6 that model (6.15) produces similar prediction

as model (6.18) which is still better than the prediction of CBD model. Therefore,

both the selected model (6.18) and unselected model (6.15) can be used as

alternative methods to model and predict the mortality rate.
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Since the model (6.15) produced similar predictions as model (6.18), the issue rises

that why the terms of the model need to be selected. Therefore, in order to test the

prediction ability of the model (6.15) and selected model (6.18), the back testing

techniques are used to distinguish the two models.

6.5.2 Back-testing for the forecast performance of the mortality models

We now selected the year 2006 is selected as the forecasts destination and the

forecast of model (6.15) and (6.19) are based sequentially on estimates using

observations up to 1980, estimates using observations up to 1981, and till up to 2005.

Firstly, the historical data set within a rolling 20-year window are used to fit model

(6.15) and (6.18) to give the prediction of year 2006. The corresponding prediction

of model (6. J 5) and model (6. J 8) for age 65, 75 and 85 are drawn in Figure 6.7.

41

~0.055

~ 0.05

jO.045

- 0.04 1'----___;;::,_---------4

0.03

~ 0.025

~ 0.02
ii
:!0.015 f--=:.._-.::::.._....c:....:::::::::::::=====-_=~

0.01_L:-:----!-:.,..-----.,.~-~~~~-_=='
1980 1985 1990 1995 2000 2005

Vur
1980 1985 1990 1995

Yur
2000 2005

(a) (b)

0.16
Predicted morulttv rare forv,,, 2006 at ne 85

0·~·~80:--~19;!-:8::-5--:1-;!:9!10;-;:-~1;-;:;9';;';9S=---::-:2ooo=--~2oo5
V.ar

(c)

Figure 6.7 20 year rolling window prediction of mortality rate for year 2006 at age 65 (a), age

75 (b) and age 85 (c). The red line represents the prediction of selected model (6.18) and blue

line repre ent the prediction of model (6.15). Black line represents the realized mortality rate

at year 2006.
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Then the rolling IS-year window and lO-year window are used to fit the model (6.15)

and selected model (6.18) and the predicted mortality rate for year 2006 are drawn in

Figure 6.8 and Figure 6.9. According to Figure 6.7, the prediction for year 2006 of

model (6.15) converges faster than model (6.18). However, when forecasting for

older ages like age 85, the model (6.15) begins to lose robustness. When the length

of rolling window reduces, the prediction of model (6.15) loses more robustness as

can be seen from Figure 6.8 and 6.9. Selected model (6.18) however gives more a

consistent prediction for year 2006 with different rolling window length and at

different ages always stay above the realized mortality rate of year 2006 and

converges to the realized value. The ERR ranking results of the model (6.15) using

different length of rolling window are listed in Table 6.4, Table 6.5 and Table 6.6.
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Figure 6.8 15 year rolling window prediction of mortality rate for year 2006 at age 65 (a), age

75 (b) and age 85 (c). The red line represents the prediction of selected model (6.18) and blue

line represents the prediction of model (6. J 5). Black line represents the realized mortality rate

at year 2006.
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Figure 6.9 10 year rolling window prediction of mortality rate for year 2006 at age 65 (a), age

75 (b) and age 85 (c). The red line represents the prediction of selected model (6.18) and blue

line represents the prediction of model (6.15). Black line represents the realized mortality rate

at year 2006.
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Table 6.4 ERR ranking results for model (6.15) using 20-year rolling window

Period\Rank I" iii<! 3'" 4"' 5"' 6"'

1961-1980 t2 x x2 Constant x't t

ERR 90.5013 9.4537 0.0002163 3.59E-05 4.95E-04 4.08E-05

1962-1981 t2 x x2 Constant t x't

ERR 90.5694 9.3862 0.0005794 9.83E-06 l.75E-04 1.75E-04

1963-1982 t2 x x2 x't t Constant

ERR 90.6407 9.3158 0.001135 1.58E-05 3.19E-07 4.09E-04

1964-1983 t2 x x2 x't T Constant

ERR 90.7230 9.2344 0.001348 1.31E-04 6.64E-OS 1.48E-03

1965-1984 t2 x x2 t Constant x't

ERR 90.8087 9.1508 0.003610 7.49E-05 1.58E-03 2.48E-04

1966-1985 t2 x x2 t x't Constant

ERR 90.8566 9.1046 0.005274 1.26E-04 7.39E-04 6.66E-04

1967-1986 t2 )( x2 t x"t Constant

ERR 90.9122 9.0489 0.006387 2.41E-03 9.99E-04 6.94E-04

1968-1987 t2 x x2 t x't Constant

ERR 90.9626 8.9975 0.009948 1.59E-03 9.38E-04 2.89E-04

1969-1988 t2 )( x2 t x't Constant

ERR 91.1108 8.8582 0.01251 0.001164 0.003048 0.001239

1970-1989 t2 x x2 t x't Constant

ERR 91.1420 8.8306 0.01291 0.0008831 0.003674 0.002399

1971-1990 t2 x x2 t x't Constant

ERR 91.1416 8.8288 0.01470 0.002809 0.002766 0.002443

1972-1991 t2 )( x2 t x't Constant

ERR 91.1366 8.8307 0.01695 0.005614 0.002871 0.001067

1973-1992 t2 x t x2 x"t Constant

ERR 91.1767 8.7882 0.01752 0.006977 0.003023 0.002069

1974-1993 t2 x t x2 x't Constant

ERR 91.1885 8.77440 0.01957 0.006593 0.003867 8.69E-04

1975-1994 t2 )( t x2 x't Constant

ERR 91.2108 8.7463 0.02501 0.006286 0.004511 0.000897

1976-1995 t2 x t x2 x't Constant

ERR 91.2253 8.7285 0.02724 0.006151 0.006019 0.000366

1977-1996 t2 x t x"t x2 Constant

ERR 91.2667 8.6848 0.02784 0.008168 0.005984 0.000786

1978-1997 t2 x t x't x2 Constant

ERR 91.2606 8.6846 0.03391 0.009333 0.005454 0.000516

1979-1998 t2 )( t x't x2 Constant

ERR 91.2719 8.6700 0.03692 0.01025 0.004953 0.000556

1980-1999 t2 x t x't x2 Constant

ERR 91.2876 8.6515 0.03855 0.01186 0.004606 0.000688

1981-2000 t2 II t x't x2 Constant

ERR 91.3035 8.6275 0.04557 0.01286 0.004232 0.001051

1982-2001 t2 x t X't x2 Constant

ERR 91.3219 8.5987 0.05389 0.01465 0.003859 0.001531

1983-2002 t2 x t x't x2 Constant

ERR 91.3494 8.5632 0.06030 0.01654 0.00334 0.001847

1984-2003 t2 x t x't x2 Constant

ERR 91.3726 8.5352 0.06479 0.01713 0.00269 0.001934

1985-2004 t2 x t x't x2 Constant

ERR 91.3844 8.5116 0.07833 0.01543 0.00212 0.001868

1986-2005 t2 )( t x't Constant x2

ERR 91.4356 8.4535 0.08454 0.015087 0.003088 0.001522
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Table 6.5 ERR ranking results for model (6.15) using 15-year rolling window

Period\Rank I- 2nd 3id 4th 5'" 6th

1966·1980 ~ x x2 x·t t Constant

ERR 90.7658 9.1891 0.003534 1.53E-04 1.01E-05 1.11E-04
1967-1981

t2 x x2 x·t t Constant

ERR 90.8150 9.1401 0.004574 6.71E-05 1.86E-04 3.14E-04

1968·1982 t2 x x2 Constant x·t T

ERR 90.8274 9.1302 0.007100 2.04E-04 5.44E-04 6.37E-05

1969-1983 t2 X x2 x·t T Constant

ERR 90.9979 8.9740 0.009495 9.03E-05 0.003263 1.34E-04

1970·1984 t2 x x2 x·t T Constant

ERR 91.0709 8.9055 0.01083 8.12E-05 0.002633 0.002413

1971-1985 t2 x x2 t x·t Constant

ERR 91.0372 8.9420 0.01032 4.76E-D5 0.001821 8.67E-04

1972·1986 t2 x x2 t x·t Constant

ERR 91.0387 8.9414 0.01133 8.11E-04 0.001242 4.05E-05

1973·1987 t2 x x2 T Constant x·t

ERR 91.1086 8.8712 0.01134 0.001315 9.01E-04 7.03E-04

1974·1988 t2 x x2 T Constant x·t

ERR 91.1566 8.8219 0.01175 0.002775 6.S1E-04 6.10E-04

1975·1989 t2 x x2 T x·t Constant

ERR 91.1731 8.8047 0.01130 0.003942 9.85E-04 1.78E-04

1976·1990 t2 x t x2 x·t Constant

ERR 91,2270 8.7469 0.01275 0.006001 0.001199 2.78E-04
1977·1991 t2 x t x2 x·t Constant

ERR 91.2886 8.6852 0.01213 0.005838 0.002341 7.41E-04

1978·1992 t2 x t x2 x"t Constant

ERR 91.3089 8.6609 0.01727 0.005382 0.002332 4.62E-04

1979·1993 (2 x t x2 x·t Constant

ERR 91.3179 8.6527 0.01612 0.004918 0.002934 6.18E·05

1980-1994 t2 x t x2 x·t Constant

ERR 91.3547 8.6126 0.01830 0.004895 0.003668 4.37E-04

1981·1995 t2 le t x2 x·t Constant

ERR 9U57S 8.6078 0.01893 0.005031 0.004962 8.62E-05

1982·1996 t2 le t x·t x2 Constant

I~RR 913755 8.5860 0.02124 0.006640 0.005159 4.44E-05

1983·1997 t2 x t x·t x2 Constant

l"RR 91.3956 8.5611 0.02370 0.009208 0.005118 1.26E·04

1984·1998 t2 x t x.·t x2 Constant

ERR 91.4091 8.5454 0.02495 0.01055 0.004999 2.24E-04

1985·1999 (2 x t x·t x2 Constant

ERR 91.3825 8.5685 0.02935 0.01071 0.004722 5.99E-07

1986·2000 t2 x t x·t x2 Constant

ERR 91.4177 8.5302 0.03140 0.01171 0.004327 4.87E-04

1987·2001 t2 x t x·t x2 Constant

ERR 91.4296 8.5131 0.03571 0.01201 0.003782 0.001637

1988·2002 t2 x t x·t x2 Constant

ERR 91.4158 8.5218 0.04276 0.01061 0.002981 0.001385

1989-2003 t2 x t x"t x2 Constant

ERR 91.4215 8.5140 0.04666 0.009147 0.002188 0.001022

1990-2004 t2 x t x't Constant x2

ERR 91.4783 8.4507 0.05300 0.008260 0.002130 0.001649

1991·2005 t2 x t x·1 Constant x2

ERR 91.5070 8.4137 0.06368 0.006337 0.001689 9.08E·04
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Table 6.6 ERR ranking results for model (6.t5) using to-year rolling window

Period \Rank I" 2nd 3'" 4t 5th 6'"
1971-1980 t2 X x2 x"t t Constant

ERR 90.0305 9.9008 0.01131 7.94E-04 7.32E·04 0.0007229
1972-1981 t2 x x2 x"t Constant t

ERR 90.2048 9.7247 1.20E-02 9.26E-05 7.04E-04 0.0008740
1973-1982 t2 x x2 x't t Constant

ERR 90.3395 9.5893 0.01031 3.39E-06 8.40E-04 8.51E-05
1974-1983 t2 x x2 t x't Constant

ERR 90.4781 9.4520 9.71E-03 1.89E-04 7.30E-04 0.001458
1975-1984 t2 x x2 t Constant x·!

ERR 90.5864 9.3509 9.82E-03 0.001688 3.57E-04 5.55E-04
1976-1985 t2 x x2 Constant x"t t

ERR 90.6600 9.2814 8.76E-03 0.001392 4.70E-04 7.60E-05
1977-1986 t2 x x2 t x't Constant

ERR 90.6796 9.2610 0.007610 5.34E-04 8.71E-04 8.76E-06
1978-1987 t2 x x2 t x"t Constant

ERR 90.7353 9.2087 0.007983 0.002773 2.44E-04 0.001237
1979-1988 t2 x x2 t Constant x"t

ERR 90.9866 8.9796 0.007222 0.003511 8.41E-05 1.45E-04
1980-1989 t2 x x2 t x't Constant

ERR 91.0251 8.9502 0.006213 0.002735 3.90E-04 5.51E-04
1981.1990 t2 x t x2 x"t Constant

ERR 90.9782 9.0001 0.007693 0.004291 4.27E-04 8.45E-04
1982·1991 t2 x t x2 x·t Constant

ERR 90.9429 9.0376 0.008947 0.004551 0.001206 2.49E-05
1983-1992 t2 x t x2 x't Constant

ERR 90.9597 9.0232 0.01115 0.004839 0.002223 5.11E-04
1984·1993 t2 x Constant x2 x"t t

ERR 90.9875 8.9965 0.008235 0.004967 3.66E·03 1.46E-04
1985-1994 t2 x Constant x2 x't t

ERR 91.0596 8.9228 0.01378 0.005216 0.003485 2.28E-04
1986-1995 t2 x Constant x2 x"t t

ERR 91.0872 8.8959 0.009565 0.005593 5.58E-03 1.40E-04
1987-1996 t2 x x2 t x"t Constant

ERR 91.1853 8.8004 0.008978 0.005349 6.41E-03 2.66E-05
1988-1997 t2 x t x"t x2 Constant

ERR 91.2391 8.7449 0.01181 0.005975 0.005341 4.56E-05
1989-1998 t2 x t x2 x"t Constant

ERR 91.2965 8.6883 0.01311 0.005146 0.005088 7.52E-05
1990-1999 t2 x t x"t x2 Constant

ERR 91.3255 8.6605 0.01193 0.006045 5.04E-03 1.09E-04
1991-2000 t2 x t x"t x2 Constant

ERR 91.3789 8.6038 0.01822 0.004762 0.004194 3.93E-04

1992-2001 t2 x t x"t x2 Constant

ERR 91.4132 8.5670 0.02372 0.004733 0.003284 1.07E-04

1993-2002 t2 x t x"t x2 Constant

ERR 91.4814 8.4955 0.03065 0.003640 0.002214 2.51E-04

1994-2003 t2 t x"t x2 Constantx
ERR 91.4872 8.4903 0.02778 0.003165 0.001215 8.87E-07

1995-2004 t2 x t x"t x2 Constant

ERR 91.4699 8.5027 0.03745 0.001755 4.89E-04 1.15E·04
1996-2005 t2 t x"t Constant Constantx

ERR 91.4865 8.4883 0.03908 0.001239 2.35E·04 7.63E-05

133



Chapter 6 Mortality rate modelling and forecasting using the NARMAX model

It is obvious that in Table 6.4, 6.5 and 6.6 the terms Year2 and Age in model (6.18)

remain the most significant terms during rolling-windows estimation while the rank

of other terms are changing. Therefore, the selected model (6.18) produces more

robust prediction than the model (6.15).

6.5.3 Mortality model with smoking rate contained

In order to investigate the impact on the mortality rate of other possible variables

apart from the year and age relationship, the smoking rate has also been involved

into the reference model and the model can be written as

logit( q( x,t)) = ao + a)x2 +ai2 +aJxl +a4x + ast +a(,82 +a7xS + axIS + (l'lS + c(x,t)
(6.20)

where S is the smoking rate of males of England and Wales at each year. The

smoking rate data is then pre-processed similarly as the year input variables and the

mortality rate data from year 1961 to 1980 between ages 60 to 89 is used to apply

the OFR algorithm. The term selection results are then listed in Table 6.7.

Table 6.7 The rank of terms in model (6.20) after applying the OFR algorithm

Rank Term ERR in %
I 12 90.5013

2 x 9.4537
3 x2 0.0002163

4 Constant 0.00003590
5 xl 0.0004953
6 S2 0.0001177

7 xS 0.0003751
8 I 0.0005739
9 IS 0.000002570
10 S 0.00009757

According to the results listed in Table 6.7, the smoking rate variable is not

obviously significant which means that the mortality rate of males of England and

Wales from year 1961 to 1980 between ages 60 and 89 is not directly decided by the

smoking rate according to OFR algorithm. Therefore, the selected model based on

Table 6.7 is still model (6.18).
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This exercise does however illustrate strength of the NARMAX model: it can easily

incorporate additional exogenous variables that most conventional models (such as

eBO) cannot.

6.6 Conclusions

In this chapter, some of the most recent mortality rate models have been reviewed

and a quadratic polynomial mortality model has been proposed to fit the mortality

rate surface. The NARMAX modelling method has been used to give a term

selection from the proposed polynomial model. Long term prediction comparisons

have been given between the proposed model, selected model and according to the

comparison results, the proposed quadratic model is the best model to produce

minimal prediction errors among the three models. A back testing technology was

employed to indicate the importance of term selection of the polynomial mortality

model and to compare the proposed model with the eBO model, one of the standard

models in the literature. The long term prediction results indicated that the proposed

quadratic models can give better long term prediction than the eBO model. But

backtesting results indicated that care must be taken with the term selection of the

quadratic model. The impact of the smoking rate was also considered, but results

suggested that this does not have a significant effect on the mortality rates in our

data set.

135



Chapter 7 Conclusions

Financial volatility forecasting is an important topic in financial risk management

and option pricing. Many volatility models have been invented such as the

Generalized AutoRegressive Conditional Heteroskedastic (GARCH) class of

volatility models and some of them have achieved great success in the financial field.

In the major GARCII literature, the mean process is usually fitted using the linear

model and the volatility is calculated based on the residuals of the linear mean model.

Some papers even treat mean process as a constant. However, much evidence

suggests that the mean process should be nonlinear.

The Nonlinear AutoRegressive Moving Average with eXogenous inputs (NARMAX)

(Leontaritis and Billings, 1985) modelling technique provides a powerful tool to

approximate the nonlinear process with a selected structure. We find that an

extension of a NARMAX methodology to fitting the nonlinear mean process can

improve the prediction performance of both the mean and volatility models.

This thesis investigated the development of the financial volatility modelling in

recent 20 years and the volatility models including major GARCH class of models

were introduced. A new volatility model based on the asymmetric GARCH model

was proposed. The parameter estimation methods for the GARCH class of models

and the popular forecast evaluation methods of volatility models were investigated.

Based on the NARMAX term selection algorithm, the impact of heteroskedastic

noise on term selection was theoretically derived and a Weighted Orthogonal

Forward Regression (WOFR) algorithm was proposed to correct this impact. As the

weights in WOFR algorithm are usually unknown, an iterative refined parameter

estimation procedure was proposed to improve simultaneously the parameter

estimation of both the selected nonlinear mean model and volatility model.

The fitted models need to be validated in order to verify the model assumptions and

check the model prediction performance. This thesis proposed to use the Cross
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Validation (CV) method to validate the prediction performance of both the mean and

volatility models. Since GARCH class of volatility models assume the standard

mean residuals are distributed as i.i.d., the 8rock-Oechert-Scheinkman (80S) test

was employed to test the standard one-step-ahead prediction during CV. The WOFR

algorithm combined with CV method provides a systematic identification method

for the nonlinear mean process in the context of financial volatility modelling.

A second application of NARMAX in mortality rate modelling was also provided

and a forecast performance comparison between the commonly used Cairns-8Iake-

Dowd (CBD) mortality model was given to indicate the forecasting superiority of

the selected polynomial mortality model.

7.1 Main Contributions of this thesis

This thesis proposed to lise NARMAX modelling methodology in the nonlinear

mean process during financial volatility modelling to give the term selection and

parameter estimation for the nonlinear mean model. NARMAX techniques have

been successfully proved to model many real world nonlinear systems. The

extension of NARMAX model to financial volatility modelling opened a door in the

financial area application of the NARMAX techniques and filled the gap between

financial volatility mean process modelling and the nonlinear model term selection.

The main contribution of this thesis can be summarised as follows.

(I) In this thesis, the commonly used volatility model such as GARCH class of

models and the parameter estimation process of volatility model have been

summarized. In some GARCH class of models, a regime switch like term is

commonly used to approximate the asymmetry observed in realized data. However.

during numerical estimation of the parameters in MLE, the partial differences

subject to parameters of regime switch term sometimes jump at the switching point.

The logistic STAR function provides a smooth transition for the process and

therefore, this thesis proposed a new logistic STAR GARCH model based on the

logistic STAR function to model the asymmetry of the volatilities.

137



Chapter 7 Conclusions

(2) In this thesis, the commonly used mean models were investigated in the major

GARCH class of models. The GARCH class of models have been developed very

fast over the recent twenty years and there are almost a hundred of volatility models

which are derived from the ARCH model. Meanwhile, mean process in the financial

volatility modelling is typically fitted by ARMA models and almost not treated as

nonlinear. Some literature even uses a constant mean model instead. However, this

contradicts the evidence of nonlinearity observed in many empirical practices.

Therefore, this thesis simulated a nonlinear mean process with time varying

volatility derived by a General ARCH (GARCH) model and fitted the mean process

with a linear model to estimate the volatility. The results successfully proved that

inaccurate mean model could impact heavily on the volatility forecast even with the

same volatility model structure.

(3) This thesis derived a new Weighted Orthogonal Forward Regression (WOFR)

algorithm to compensate for the impact of the heteroskedastic noise on the term

selection of the mean model in financial volatility modelling. NARMAX modelling

techniques are based on the assumption of homoskedastic noise. However,

heteroskedastic noise usually exists in financial return data and the homoskedasticity

assumption of the OFR algorithm is usually violated; this in turn affects the term

selection. To deal with this problem, a new WOFR algorithm and iterative refined

parameter estimation were successfully applied to improve the mean model term

selection and parameter estimation of both the mean and volatility models.

(4) Cross validation (CV) for the mean and volatility model was introduced to

validate the prediction performance of the selected nonlinear mean model and the

volatility model. In system identification, model validation is essential to verify the

model assumptions and the goodness of fit for the underlying process. In the

GARCH class of volatility models, the standard mean model residuals are assumed

to be distributed as i.i.d. However, an inaccurate mean model or volatility model

may cause the rejection of this assumption. This thesis proposed validation of both

the mean and the volatility simultaneously by testing the i.i.d. assumption of the
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standard mean model residuals and the one-step-ahead prediction errors. Simulations

showed that the volatility model estimated from the inaccurate mean model

produced larger forecast errors than that from the accurate mean model. Although

both the linear and the nonlinear mean model passed the autocorrelation test, the ev
method was very effective to reject the inaccurate linear mean model in testing the

standard prediction errors.

(5) This thesis applied the NARMAX methodology to model the mortality rate and

compared the selected model with eBO mortality model using a backtesting method.

Mortality rate forecasting plays a key role in hedging the longevity risk for the

pension providers and mortality rate modelling has therefore attracted much

attention in recent years. Due to the fact that none of the existing mortality rate

models is total satisfactory, the NARMAX modelling method was proposed in this

thesis to fit the mortality rate surface. The selected model was mainly a quadratic

polynomial model with both year and age factors. In order to compare the results

with the statistic mortality rate model, a backtesting method was used to access the

prediction performance of the selected nonlinear mortality model. The testing results

showed that compared to the eBO mortality rate model, the selected mortality rate

model produced better mortality rate predictions. The select quadratic model also

had better robustness comparing with unselected quadratic model.

7.2 Suggestion for Further Research

Although a systematic identification method for nonlinear mean modelling of

financial return data has been proposed and simulations has successfully proved the

effectiveness of this method, the research in the application of the nonlinear

modelling approaches to financial volatility is still at a very early stage. Further

research may be worth carrying on in the following topics.
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(1) In Chapter 4 and Chapter 5, the data used is simulated from a nonlinear mean

model and a GARCH model. It is possible to apply the WOFR and CV methods to

realized data in further research.

(2) Since different volatility models are based on the GARCH model, it is possible

to extend the structure determination of the NARMAX method to the volatility

process and so allow the volatility model structure to be determined using a

NARMAX model based on the data set instead of an assumed GARCH model.

(3) As mentioned in Chapter 2, according to the transformation of standard GARCH

model, the volatility is actually given by squared mean model residuals with some

noise. This arises the using of least squared method to estimate the parameter of

GARCH model. However, this noise is not distributed as a normal distribution and

forecasts of squared residuals cannot be negative. Therefore, a cost function may be

found to force the positivity of the forecasts and used to estimate the parameters of

the GARCH model.

(4) Fan charts are now very popular in projecting the forecast uncertainties because

it is more visually understandable than pure figures and numbers. Therefore, it

would be useful to extend the fan chart projections to the NARMAX modelling

method to indicate the prediction ability of selected models in a more visible manner.
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