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Abstract

The main purpose of this thesis focuses on the investigation of major financial
volatility models including the relevant mean model used in the context of volatility
estimation, and the development of a systematic nonlinear identification
methodology for these problems. Financial volatility is one of the key aspects in
financial economics and volatility modelling involves both the mean process
modelling, and the volatility process modelling. Although many volatility models
have been derived to approximate the volatility process, linear mean models are
almost always used and to the best of our knowledge there is no application of fitting

the mean process using a nonlinear model with selected structure.

Based on the fact that nonlinearity has been observed in many financial market
return data sets, the Nonlinear AutoRegression Moving Average with eXogenous
input (NARMAX) modelling methodology with the term selection algorithm
Orthogonal Forward Regression (OFR) is proposed to approximate the nonlinear
mean process during volatility modelling. However, the assumption of a constant
variance is usually violated in financial market return data. A new Weighted OFR
algorithm is therefore proposed to correct for the impact of heteroskedastic noise on
the term selection of the nonlinear mean model based on the assumption that the
variance process is modelled by a Generalized AutoRegressive Conditional
Heteroskedastic (GARCH) model. Because the weights to use are unknown, an
iterative refined procedure is developed to learn the weights and to simultaneously

improve the parameter estimates of both the mean and the volatility models.

New validation methods are proposed to validate the nonlinear selected mean model
and the volatility model. During the validation, the assumptions associated with the
mean model are tested using a correlation method and the assumptions of the
volatility model are tested using a Brock-Dechert-Scheinkman (BDS) independent
and identically distributed (i.i.d.) testing method. The prediction performance of the

mean and volatility models is evaluated using a hold out Cross Validation (CV)



method. A departure in the prediction of the volatility for the linear mean model,
when using nonlinear simulated data, is successfully identified by the new validation

methods and the nonlinear selected mean model passes the test.

Another application of the NARAMX model, in the very new field of modelling
mortality rate, is introduced. A quadratic polynomial mortality rate model selected
by the OFR algorithm is developed based on the LifeMetrics male deaths and
exposures data for England & Wales from the Office of National Statistics.
Comparing the long term prediction of the new model with the Cairns-Blake-Dowd
(CBD) statistical mortality rate model indicates the better prediction performance of
the quadratic polynomial models. A back-testing method is applied to indicate the

robustness of the selected NARMAX type mortality rate models.

The term selection, parameter estimation, validation methods and new identification
procedures proposed in this thesis open a new gateway to apply the NARMAX
modelling technique in the financial area, and for mortality rate modelling to provide

a new empirical practice of the NARMAX modelling method.
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Chapter 1: Introduction

1.1 Background and Motivation

The concept of volatility was firstly introduced by Louis Bachelier a century ago in
1900 when he created the term ‘coefficient of nervousness’ to the price. The term
‘financial volatility’ is then usually used to refer to the standard deviation or,
alternatively, but in practice, equivalently, to the variance of the underlying return
data associated with a time series; loosely speaking, it refers to the intensity of the
fluctuation which affects the return prices. For example, the volatility of the stock
market will obviously increase during the periods of financial turmoil such as the
market crash in Oct, 1987, the Asian Financial Crisis starting from July, 1997 and
the terrorist attack on 11", Sep, 2001.

Financial volatility is one of the key aspects in financial economics especially for the
pricing of derivative securities for example in the Black-Scholes model (Black and
Scholes, 1973), where the volatility of underlying asset is used to price the option.
Derivatives with clearly specified measurements of volatility in the contracts are
often traded nowadays and investors trend to maximize the expect return subject to a
risk constraint of the portfolio. Therefore, the forecast of the volatility of the
underlying assets are essential over the defined period and any improvement in the
volatility prediction by even one percent can be significant for the investment
decision. Volatility is also commonly used to calculate the Value-at-Risk (VaR)
estimation for the purpose of risk management. The VaR is one of the commonly
used modern risk measure techniques and it measures the probability of the worst

expected loss under normal market conditions over a specific time interval at a given

confidence level.

Based on the observed features of volatility, ‘large changes tend to be followed by
large changes, of either sign, and small changes tend to be followed by small

changes’ (Mandelbrot, 1963) and ‘volatility response to a large negative return is
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often far greater than it is to a large positive return of the same magnitude’ (Black,
1976), many different volatility models have been developed. The Exponential
Weighted Moving Average (EWMA) model is one of the commonly used volatility
models and is used in the famous application of the JP Morgan RiskMetrics®. More
sophisticated groups of volatility models have been developed since the
AutoRegressive Conditional Heteroskedastic (ARCH) model (Engle, 1982) was
introduced. The Nobel Prize for Economics has been awarded to Robert Engle in
2003 for the innovation of analyzing economic time series with time-varying
volatility using the ARCH model. Bollerslev (1986) then extended the ARCH model
to the more general case as known as the Generalized ARCH (GARCH) model. The
feature of volatility described by Black (1976) is now commonly referred to as the
leverage effect which means that the equity returns are strongly asymmetric.
However, both ARCH and GARCH models are not capable of charaterising
asymmetry. The extension of GARCH has been developed in econometric ways to
describe the asymmetry. Models such as the Exponential GARCH (EGARCH)
introduced by Nelson (1990), Quadratic GARCH (QGARCH) of Engle (1990), GJR-
GARCH of Gloasten, Jaganathan and Runkle (1993) and Threshold GARCH of
Zakoian (1994) are popular asymmetric GARCH class models. Based on the fact
that the effect of shocks in the foreign exchange market may endure for a long
period, the Integrated GARCH (IGARCH) of Engle and Bollerslev (1986) was
innovated with assumptions of unit roots for the GARCH parameters. The volatility
of the next period is usually calculated by squaring the shock of the current period in
a standard GARCH model. However, for large shocks, the square operation will
produce dramatic increases in the variance. Taylor (1986) and Schwert (1989)
argued about this problem and suggested employing absolute residuals which can
provide a less drastic approach. The nonlinear ARCH (NARCH) of Higgins and
Bera(1992) adopted the suggestion of absolute residuals and parameterized the
conditional standard deviation with unknown power as a function of lagged
conditional standard deviation and lagged absolute residuals with the same power.
Baillie, Bollerslev and Mikkelsen (1996) extended the AutoRegressive Fractional
Integrated Moving Average (ARFIMA) model type to a GARCH representation as

2
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the Fractional Integrated GARCH (FIGARCH) model which is designed to capture
the long-run dynamic dependencies in the volatilities. Other modelling techniques
have also been developed such as the Stochastic Volatility modelling framework and
they will not be introduced here as the GARCH class models are still among the

most popular volatility models nowadays.

Since volatility is usually unknown in realized data, the only way to validate the
volatility model is to test the model assumptions. There are usually two assumptions
in GARCH modelling. One is the distribution assumption (i.e., the assumption that
noise is Gaussian) and the other is the assumption that noise is i.i.d. As a matter of
fact, the distribution assumption is usually rejected in empirical practice. The Quasi
Maximum Likelihood Estimation (QMLE) method has been commonly investigated
as in Bollerslev and Wooldridge (1988) to compensate the impact on MLE
estimators when the assumption of normality is violated. However, the distribution
assumption is still a major issue for parameter estimation of the GARCH class of

models.

From the papers on the GARCH class of models, volatility is usually derived from
the residuals of the mean model which is commonly referred to as the model fitted
from the underlying time series data. Although the nonlinear modelling techniques
have been widely developed and applied, in ARCH literatures most of the mean
models are still selected as linear. For example, in the pioneering work on ARCH by
Engle (1982), the UK consumer price index data was fitted by an AutoRegressive
with eXogenous input (ARX) type model. In a later application of the ARCH model,
Engle (1983) used an AR type model with multiple inputs and a time trend to model
the US deflation indicator. When Bollerslev (1986) proposed the GARCH model, an
AR model with 4 lagged terms was used to approach the US implicit GNP deflator.
Nelson (1991) introduced the EGARCH model and applied it to estimate the
volatility of value weighted CRSP market index which was fitted by an
AutoRegressive Moving Average (ARMA) model. Engle (1989) commented on the
article of Schwert (1989) and proposed a QGARCH model to estimate the volatility

3
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of the stock market round the crash of 1987 with the mean fitted by a variance in
mean Moving Average (MA) model. Higgins and Bera (1992) applied a NARCH
model to the US/FF weekly exchange rate and the mean model was fitted using an
AR (1) model. Gray (1992) used an AR (1) model to model the short-term interests
and proposed the RS-GARCH model to calculate the volatility. Ding et al. (1993)
investigated the long memory properties of the volatility that existed in the S&P 500
stock market index data and employed a MA (1) model during the application. Tse
(1991) fitted models to the Tokyo Stock Exchange using an AR (1) mean model
while Akgiray (1989) also used an AR (1) model to approach the mean process of
New York Stock Exchange index data. Hamilton and Susmel(1994) proposed a class
of Markov-switching ARCH models and modelled the New York Stock Exchange
weekly index data using an AR (1) model during simulation. The UK market
volatility properties were then studied by McMillan et al. (2000) and the FTA all
share index and FTSE 100 index were fitted using an AR type mean model. Linear
mean models were also commonly adopted in the application of Multivariate
GARCH as in Bollerslev et al. (1988), Engle and Kroner (1995). Some literatures
even treated the mean process as a constant model as in Baillie et al. (1996) and

Kawakatsu (2006).

Many nonlinear dynamics have been observed in real time market returns as in
Abhyankar et al. (1995) and therefore the use of a nonlinear model can improve the
mean model forecast ability and provide more accurate residual estimation for the
volatility process. Some types of nonlinear models have already been used to fit the
mean process in GARCH literature such as in Bollerslev et al. (1993), an
exponential AR mean model was used to fit the US stock market volatility and Cao
and Tsay (1992) used a threshold AR model. However, the application of a
nonlinear mean model is limited and the structure of the nonlinear model is usually
specified during estimation. Therefore, this motives the use of nonlinear models with
structure determination methods to fit the mean process in order to improve the

accuracy of the residuals for the volatility estimation.
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Among the nonlinear modelling techniques, the Nonlinear Auto Regressive Moving
Average with eXogenous inputs (NARMAX) model proposed by Leontaritis and
Billings (1985) can provide a unified formation for a wide class of nonlinear system
processes and comparied with the series expansion approaches such as Volterra and
Wiener nonlinear models, NARMAX can approach the underlying process with a
more concise representation. NARMAX can also provide a more transparent model
format than the Radial Basis Function (RBF) neural network and wavelet network
approaches. The NARMAX model has successfully modelled many real world
nonlinear systems including chaotic electronic circuits, water management systems,
turbocharged diesel engines, etc (Billings and Coca, 2001). The pitfall of linear
models and the advantage of NARMAX above inspire the application of NARMAX

methodology in financial mean process modelling.

The models of many real world systems are usually unknown and determining the
structure of the model is the most difficult part during identification. Especially in
the nonlinear case, the number of terms may increase dramatically when the
redundant variables are falsely selected. Based on the NARMAX model
specification, the Orthogonal Forward Regression (OFR) algorithm and Error
Reduction Ration (ERR) definition were introduced by Billings et al.(1988, 1989),
Korenberg et al.(1988), Chen et al.(1989), Billings and Zhu (1994) to provide an
efficient way to determine the most significant terms among the candidate model
term set. The structure of the model can be formatted by selecting the terms with

ERR above a chosen cutoff value.

The OFR term selection algorithm assumes that the variance of the noise is
homoskedastic. However, during financial volatility estimation, the noise of the
mean process is usually heteroskedastic. The breach of the assumption may induce
bias in the ERR values and therefore, impact the term selections. The falsely
selected model terms will cause inaccurate estimation of the modelling noise and the
parameters of the volatility model will be affected. The inaccurate parameters of the

volatility model will then produce more forecast errors during prediction.

5
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Accordingly, it is essential to find a method to eliminate the impact of

heteroskedastic noise on ERR and term selection.

Weighted Least Squares (WLS) can be used to eliminate the impact of
heteroskedastic noise. This motives the application of WLS in the OFR algorithm
when determining the unknown structure of the financial mean process. However,
WLS is applied based on the known weights and according to our knowledge
currently there is no solution available to estimate the weights when the unknown
system is nonlinear. Although the GARCH model can produce estimation of
volatilities and the square roots of the volatility can be treated as weights, the
accuracy of the weights will be highly dependent on the mean model structures and
the GARCH model is estimated after the mean model. It is impossible to get an
accurate parameter estimation of GARCH model before a mean model has been
selected. Once the structure of the mean model has been determined, an iterative
reweight calculation can be used to give a numerical refinement of the parameters of

both mean the model and volatility model.

In system identification, model validation is one of the most important steps.
Because the models are driven by assumptions and finite data inputs, it is essential
that the assumption and the fitness of the model are tested. In statistics, the Cross
Validation (CV) method is commonly used to analyse the prediction performance of
a fitted model and during CV the model can be tested using independent data sets.
There are several CV methods available in practice (Devijver and Kittler, 1982)
including the holdout method, K-fold CV method and Leave-one-out CV method.
The holdout method splits the data into two data sets and one set is used to fit the
mode! while the other set is used to test the prediction performance. Due to the

simplicity and the serial dependence of financial time series, the holdout method will

be applied in our case.

During CV, the assumptions of the models need to be tested after the mean model

and volatility model have been fitted. As the LS estimator can only provide unbiased
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estimation when the noise is white, the mean model assumptions can be tested by
taking autocorrelation of the modelling residuals. For the GARCH class of volatility
model, the distribution assumption can be tested using the Jarque and Bera (JB) test
(Jarque and Bera, 1980), QQ plot etc. and the i.i.d. assumption can be tested using
the Brock, Dechert and Scheinkman (BDS) test (Brock et al., 1987). The BDS test
uses a nonparametric technique to test against a wide class of data departing from
the i.i.d. requirement and it has been proved to be successful in detecting
nonlinearity in economics as in Brock et al. (1991). The first example of using the
BDS to test against the GARCH assumption was in Brock et al (1991) where the
distribution of the BDS test from the standard residuals was obtained by Monte
Carlo simulations. Bollerslev et al. (1993) concluded that the BDS test has the power
to test the i.i.d. assumption for ARCH when the volatility model or mean model is
miss-specified. The BDS test has been applied in most recent empirical practice as
Caporale et al. (2004) tested the adequacy of GARCH specifications using the BDS
test and Mangani (2009) used the BDS test to verify the significance of the GARCH
model when fitting market data from South Africa. Therefore, either an inaccurate
mean model or inaccurate volatility model will lead to failure of the BDS test on
standard mean model residuals. This raises the motivation to validate both the mean
and the volatility models simultaneously using a CV method. If both models are
accurate, the BDS test on standard one-step-ahead prediction errors calculated using

the second data set during CV should not be rejected.

Longevity risk now plays a key role for the institutes that provide pensions. The
mortality rate which is measured as the death rate in a population is the prime
element in longevity risk. If the mortality rate in pricing annuities is overestimated,
the profit margin of pension providers will shrink significantly. Many techniques
have been developed to model the mortality rate such as the nonparametric Lee-
Carter model (Lee and Cater, 1992), Age-Period-Cohort (APC) model of Tabeau et
al. (2001), and the Cairns-Blake-Dowd (CBD) model of Cairns et al. (2006).
However, currently there is no existing model which is entirely satisfactory. The

NARMAX modelling method can be used to fit the mortality rate surface and give a
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reasonable prediction. In mortality rate literature, the back testing method is
employed to test the forecast performance of existed mortality rate models as in
Dowd et al. (2008) and it is necessary to compare our new models with popular

mortality models using this method.

1.2 Objectives

The main objectives of this thesis are to investigate financial volatility models and to
develop a systematic nonlinear mean model identification method using financial
return data. This includes developing mean model term selection algorithms under
heteroskedastic noise conditions, validating simultaneously the mean and volatility
models and comparing the volatility prediction performance of the nonlinear mean

model with commonly used linear mean model in the GARCH literature.

The GARCH class of volatility models has developed very fast since the innovation
of the ARCH model by Engle (1982) and there are a hundred or more GARCH class
of volatility models which exist currently (Bollerslev, 2008). However, since the
volatility model is developed to mimic the observed volatility features, the
fundamental of the volatility model concept are very similar. The GARCH class of
models basically are an extension of the ARCH and GARCH models. Therefore, the

objective is to summarize a review of the major GARCH class of models.

However, most ARCH literature treats the mean process as linear and the MLE
method is used during model parameter estimation. As a matter of fact, nonlinearity
has been observed in most financial return processes and this suggests that a
nonlinear model is more appropriate for forecasting and accurate descriptions of the
financial returns and volatility. The MLE method is highly dependent on the
assumption of the distribution and numerical search methods are usually non-trivial.
There are several nonlinear modelling methods available and the NARMAX
polynomial model can be a very good candidate as the NARMAX model can
approximate a very wide class of nonlinearities. The NARMAX term selection and
parameter estimation algorithm which is known as OFR algorithm is independent of

8
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the distribution assumption. However, the OFR algorithm is based on the
assumption of constant variance and the question addressed in this thesis is to
investigate the impact on term selection when the noise is heteroskedastic and the

objective is to derive a new method to compensate this impact.

As far as we know, the GARCH literature barely investigates the accuracy of the
mean model and validates both the mean model and volatility model simultaneously.
As the GARCH class of models are proposed based on the assumption of i.i.d.
distributed standard mean model residuals and the accuracy of the mean model
residuals are directly impacted by the accuracy of the mean model, the i.id.
assumption will not be rejected only if both mean and variance models are accurate
enough to approximate the process. It is essential to develop such validation
procedures to ensure the prediction performance of the selected nonlinear mean

model. This is another key achievement in this thesis.

The morality rate is a key factor in hedging longevity risk among the pension issuers.
Without considering external impacts, it has been observed that the mortality rate is
mainly related with the age and the birth year of the underlying population.
Therefore, the mortality rate surface can be treated as a projection of the age and
birth years. Since there is no existing model which is entirely satisfactory, in this
thesis a new NARMAX modelling method is developed to fit the mortality rate and
to predict the future mortality rate. The fitness of the selected model is then checked
using back-testing methods. In order to demonstrate the prediction performance of

the new models, comparisons with existing mortality predictions are given.

1.3 Layout of this thesis

This thesis is organized into seven chapters. Chapter 2 reviews the major models in
GARCH class of volatility models. Chapter 3 briefly reviews the mean models of the
major ARCH literature and the NARMAX modelling method. Chapter 4 investigates
the impact of heteroskedastic noise on the OFR algorithm. A new algorithm is
derived as a solution to correct for the impact and to refine the parameter estimation

9
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of both the mean model and the volatility model. Chapter S deals with the validation
of both mean model and the variance model validations. Chapter 6 is a new
development of the NARMAX modelling method to the mortality rate. Chapter 7

gives the conclusions of this thesis.

Chapter 2 begins with a fundamental introduction to the volatility concept. Different
volatility forecast models are investigated and several major GARCH class of
models are reviewed. An alternative GARCH class model is proposed to give
smooth parameter estimation during MLE. The details of parameter estimation
methods for the GARCH class of models are also given. The commonly used

forecast evaluation methods in the GARCH literature are also reviewed.

Chapter 3 investigates the mean models used in the major GARCH class of models
and gives an introduction to the NARMAX modelling methodology. Examples are
given to demonstrate the volatility forecast performance comparison between a
linear mean model and selected nonlinear mean models when the mean process is

nonlinear.

In Chapter 4, firstly the OFR algorithm is introduced based on the NARMAX
polynomial model. Next, the impact of heteroskedastic noise on term selection using
the OFR algorithm is investigated and a new weighted OFR algorithm is proposed to
correct for this impact. An iterative reweighted procedure is then introduced to
refine the parameter estimation of both the mean and volatility models. Examples
are given to demonstrate the new term selection problem of the OFR algorithm

under heteroskedastic noise and to illustrate the application of the new algorithm.

In Chapter 5, the CV method is introduced and commonly used distribution
assumption testing methods are given. Next, the impact of the mean model term
selection on the ML estimation of the volatility model is analyzed theoretically. A
new method to validate simultaneously the mean and volatility models is proposed

and examples are given to illustrate the application of the new validation methods.
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In Chapter 6, firstly the definition of the mortality rate is given and commonly used
mortality rate models are reviewed. The NARMAX modelling technique is then
applied to derive a polynomial mortality rate model using realized death and
exposures data of England & Wales. A long term forecast comparison is given
between the derived mortality model and the CBD mortality rate model. A back-

testing analysis is then carried to assess the models’ ex post forecasting performance.

The main contributions of this thesis and some suggestions for further research are

given in Chapter 8.
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Chapter 2: Introduction to financial volatility modelling

2.1 Introduction

In financial systems, volatility is a measure of the dispersion in a probability density
function and often refers to the variance or standard deviation of a return series.
Volatility is one of the most important variables for evaluating the financial
uncertainty and it is often a key input to many investment decisions and the creations
of portfolio. Significant features of volatility have been found in financial time series
including persistence ‘large changes tend to be followed by large changes, of either
sign, and small changes tend to be followed by small changes’ (Mandelbrot, 1963),
leverage effects ‘volatility response to a large negative return is often far greater
than it is to a large positive return of the same magnitude’ (Black, 1976) and
reversion to mean ’prices and returns eventually move back towards the mean or
average’. Apart from all the features above, volatility cannot be observed directly
from the data. Hence, volatility models were proposed to capture these features and
models based on historical volatilities were commonly investigated. Among
historical volatility models, the Exponential Weighted Moving Average (EWMA)
model was commonly used to give volatility predictions. More sophisticated groups
of volatility models are the AutoRegressive Conditional Heteroscedasticity (ARCH)
family models. The first example of the GARCH class of models was the
AutoRegressive Conditional Heteroscedasticity (ARCH) model introduced by Engle
(1982) where conditional variance was a function of q past squared residuals. The
ARCH process was extended to the more general case of the GARCH process with
past conditional volatilities by Bollerslev (1986). Motivated by experimental results
in foreign exchange markets that the sum of GARCH parameters were close to one,
GARCH was extended to the Intergrated GARCH (IGARCH) (Engle and Bollerslev,
1986). As a matter of fact both ARCH and GARCH models were symmetric in the
form of the squared residuals and leverage effects could not be included in these
models. Nelson (1991) argued for an asymmetric form according to the finding of

Black (1976) and modified the conditional volatility to the Exponential GARCH
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(EGARCH) model. The conditional volatility which was specified in logarithmic
form in the EGARCH model guaranteed that there was no need to impose estimation
constraints which ensured the non-negativity of the conditional variance. Following
Engle (1982) it was suggested that conditional variance model could be written in
the form of absolute residuals, Taylor (1986) and Schwert (1989) employed the
absolute residuals in the conditional standard deviation model. Based on the
discussion of Schwert (1990), Engle (1989) suggested using square absolute
residuals and derived the Quadratic GARCH (QGARCH) model in order to capture
the leverage effect. The Nonlinear ARCH (NARCH) proposed by Higgins and Bera
(1992) nested the ARCH model into a nonlinear form as setting the order of every
ARCH model term to be a fraction. The GIR-GARCH model proposed by Glosten,
Jaganathan and Runkle (1993) added an indicator variable to the GARCH model in
order to capture the leverage effect. Based on the fact that squared and absolute
returns of financial assets usually have serial correlations that are slow to decay, the
Fractionally Integrated GARCH (FIGARCH) model was proposed by Baillie,
Bollerslev and Mikkelsen (1996) to reduce the impact of a shock on future volatility
over an infinite horizon. More models were proposed recently and many of them
have flexible specifications which can include several other models as special cases

and hence will not be introduced here.

Since the pioneering work of Engle (1982), the assumption of conditional normality
has been commonly used in theoretical and empirical research. Based on this
assumption, the Maximum Likelihood Estimation (MLE) method was the standard
method used to estimate parameters. Weiss (1986) gave the first study of the
asymptotic properties of the ARCH MLE and indicated that MLE is consistent and
asymptotically normal with the condition of the finite fourth order moments of the
unnormalized data. However, evidence of heavy tails-leptokurtosis suggests that the
common assumption of conditional normality is often rejected empirically. The
Quasi Maximum Likelihood Estimation (QMLE) method which was then commonly
investigated and Bollerslev and Wooldridge (1988) showed that QMLE can still give

consistent estimation under assumptions of asymptotic normality of score matrix and
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uniform weak convergence of likelihood and its second derivative. However, Engle
and Gonzalez-Rivera (1991) investigated the loss of efficiency of QMLE when the
distribution is falsely assumed to be normal and proposed a nonparametric method to
estimate the conditional distribution. Hence, the distribution assumption is still a

major issue for parameter estimation of the GARCH class of models.

Beside parameter estimation, the forecasting power of the GARCH class of models
has also been studied and forecasting performance comparison of the competing
models becomes to one of the major direction of any forecasting research. The
squared return is usually used as the proxy to the volatility forecast evaluation and
popular evaluation measures include Mean Error (ME), Mean Squared Error (MSE),
Root Mean Squared Error (RMSE), Mean Absolute Error (MAE) and Mean
Absolute Percent Error (MAPE). However, Andersen and Bollerslev (1997)
discussed that squared returns can be a noisy estimator of the actual variance
dynamics and Lopze (2001) proved this by the theoretical evidence. Andersen,
Bollerslev, Diebold and Labys (2001) proposed the alternative proxy which is the
realized volatility calculated by high frequency data. Another issue arises as the
distribution of the return is usually skewed because the negative news commonly
causes bigger impact than positive news. Accordingly, heteroskedasticity-adjusted
MSE (HMSE) was proposed to penalize the asymmetrical volatility forecasts by
Bollerslev and Ghysels (1996). With these measurement methods, the GARCH class
of models forecast contests exploded in the past twenty years. Most recent
developments of volatility forecasting trends to use long memory volatility models
which are included in the literatures of Andersen et al. (2002), Vilasuso (2002) and

Zumbach (2002) and forecast evaluation based on those models all used intra-day

high frequency data to calculate the proxy.

The purpose of this chapter is to review the definition of financial volatility,
volatility models, parameter estimation methods and forecast evaluation of these
models. Commonly used models and evaluation methods will be given and the

remaining sections of this chapter are organized as follows. Section 2.2 provides
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some definitions. Section 2.3 gives the historical reviews of the volatility models.
Section 2.4 focuses on the commonly used GARCH class volatility models and
Section 2.5 gives the parameter estimation methods for the GARCH class models.
Section 2.6 lists most of the forecast evaluation methods and describes different

volatility proxies. Section 2.7 gives the conclusion.
2.2 Definition of financial volatility

Financial volatility is interpreted as uncertainty and usually refers to the degree of

unpredictable change over time of a certain variable. Volatility is not observable and

it can be measured as standard deviation o or variance o’ of the continuously returns
of a financial market with specific time horizon. The return data series are usually

converted from a price series using

R(t)=logP(t+])=IogP(t+l)—logP(t) Q.1

P(¢)

where the price observation made at sample time t and t+1 are denoted as P(t) and

P(t+1) and R(r)is the return.

There are several kinds of financial volatilities which exist in the current literature:
(1) unconditional volatility, (2) implied volatility, (3) realized volatility and (4)
conditional volatility. Unconditional volatility refers to the constant finite variance
o throughout the whole data generation process and is defined by the assumption of

stationary stochastic process. The statistic equation of the unconditional volatility is

o= \/IZ( (t)-R) /(T-1) (2.2)

=1

where T is the sample return length and R is the sample average return as
R=YRIT.

The implied volatility is a value calculated from an option price and it is usually
associated with the Black and Scholes option model. The realized volatility which is

also called historical volatility is the standard deviation of a set of previous returns.
15
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The statistical equation of the realized volatility is similar as (2.2) the length of the
set can be varied as 15 days, 30 days etc. The conditional volatility is the standard
deviation of a future return that is conditional on known information set such as the
history of previous returns. Unlike realized volatility, the conditional volatility is
calculated by a proper selected and estimated time series model using appropriate
data and it is usually time-varying. According to the fact that most market volatility
changes have the characters as mentioned in the introduction, the variance of the

return process is usually time-varying. Hence, the volatility mentioned in this thesis

is referred to as conditional volatility. If the return is rewritten as y(r), the
conditional variance will be

o’ (1) =Var,_ (y(1)) (2.3)
where Var,_, denotes the variance conditioned on past observations. Since volatility

is time varying and not observable, many discrete-time models have been proposed

to model the volatility by inferring volatility from either absolute or squared returns.
2.3 Time series volatility forecasting models

Volatility modelling has attracted much attention in recent years, largely motivated
by its importance in financial markets. Reliable volatility estimates and forecasts are
essential due to the increasing needs in hedging against risk and portfolio
management. Different types of volatility models have been developed as moving

average models and GARCH class of models to account for different market facts.

2.3.1 Moving average model

Moving average models has been commonly used in financial data modelling
because the models are the easiest to manipulate and construct. These kind of
models are usually directly built up on historical volatilities and shown good
forecasting performance in some literature like Figlewski (1997), Andersen,

Bollerslev, Diebold and Labys (2003).
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2.3.1.1 Historical average model

Among moving average models, the simplest is the historical volatility model or
equally weighted moving average model. The historical average model is calculated
on a fixed size data window which is rolling through time samples and oldest return
will be substituted by new return at every new sample point. The equally weighted
average of squared daily returns are usually used by the historical model and the n-

day historical volatility is calculated by
G ()= ¥ (t=i)/n (2.4)
i=1

where nis a user chosen length and &2 (t) is the volatility estimation for the timer.

The reason for using a squared return rather than the square mean deviation as
—\2 . . . -

(y(t)—y) is because during empirical research on the accuracy of volatility

forecasts, the use of the squared return has demonstrated little disadvantage
(Alexander, 2001) and also the mean of the return is usually assumed to be zero. The
n-day historical volatility is commonly used to measure the portfolio risk in practice.
However, the major problem of the historical average model is that the model only
includes the extreme events as important to current estimation without considering
when they occurred. Hence, even just one unusual return will cause affection to the
n-day historical volatility the same as the extent of n following days after that event.
Short-term historical model are supposed to solve the problem above and capture
more ‘clustering’ volatilities, but equal weighting cannot account the dynamic of
return properly. Accordingly, the exponentially smoothing average model was

proposed.
2.3.1.2 Exponentially smoothing average volatility model

In contrast to equal weighting, the exponentially weighting method is another
popular approach to volatility forecasting. It is more robust and accurate in
forecasting volatility in the short term (Gardner, 1985) and can pass the shock from

an extreme event as an exponential decay to the current volatility.
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The exponentially smoothing model usually puts more weights on the most recent
observations and hence it is also called Exponential Weighted Moving Average
(EWMA) model. The EWMA can capture some dynamic ordering of returns and the
EWMA volatility estimation of market events reacts over time with a strength that is
determined by smoothing constant A which is a number between 0 and 1. The larger
the value of 4, the more weight is put on past observations and the volatility series

becomes smoother. The general EWMA volatility formula can be written as
(1) =(1-2)D A"y (1-i) (2.5)
i=]

and the formula can also be written as a recursion format as
& ()=(1-A)r* (1-1)+A6*(1-1) (2.6)
The term of (1—4)r? (1 —1) determines the degree of reaction of volatility to market

events and the smaller the value of Ais, the more yesterday’s return will react to

market information in volatilities. The other term of i&z(t—]) determines the

persistence in volatility. Since A is between 0 and 1, the effect of a single event will
be reduced after some time horizon. A higher A will give more persistence in
volatility to actual market events and a lower A gives higher reaction on volatility
but which will fade away quickly. The main restriction of EWMA model is that the
summation of persistence parameter and the reaction parameter are one which means
the model should either have volatility persistence or have high reactions. Based on
this limitation, EWMA model is usually used in the foreign exchange market.

(Alexander, 2001)
2.3.2 ARCH model

In the moving average model, the returns process has been assumed to be
independent and identically distributed as the returns are used directly to calculate
the volatility and there is no time-varying volatility assumption. Meanwhile, only the
current volatility is taken as the prediction. All those features of moving average
greatly limit the volatility prediction and the assumptions are hard to satisfy in real
market data. The returns in many financial markets are usually not well modelled by
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an independent and identically distribution process and they may show
autocorrelation in some high frequency data. Especially, the squared returns often
show autocorrelation which is an indication of volatility clustering (Mandelbrot,
1963). Engle (1982) first described a framework to model the time varying volatility
and introduced the ARCH model. The ARCH process is a zero mean, serially
uncorrelated process with time varying volatilities conditional on the past and it

assumes that conditional volatility of today is a weighted average of past squared

unexpected innovations. The ARCH model assumes that the innovation £(¢) can be

formatted by a multiplication of an independent and identically distributed random

variable z(t) and a time varying standard deviation as
e(t)=z(1)o (1) (2.7
The variable z(r)has zero mean and identical variance of one. Engle also assumed
that the innovation process follows a normal distribution as
()| ~ N (0,67 (1)) (2.8)
where y_, denotes all the variable information of past returns (y(t 1), (f —n))
up through time t-1. If the conditional variance o () is rewritten as h(f), the
ARCH model can be expressed as
h(t)=a,+ae’ (1-1)+ae’ (1-2)++a,e (1-p) (2.9)

where q,,4,,a,,...,a, are unknown parameters which satisfy the conditions as

a,>0,a,...a,20 and zp:a,<1, and £°(r-1),e*(1-2),....e* (1 p) are past

i=l

innovations derived from the return data. If an innovation variable v(t) is defined as

v(1)=¢€*(1)-h(r) (2.10)
, then the ARCH model in equation (2.9) can be rewritten as
p
e (t)=a,+ ) ag (1-i)+v(r) Q.11
1
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As E_(v(1))=E_ (" (1)-n(1))=E_(&* (1)) E_ (h(r)) and E_ (£’ (1)) = h (1) ,

E

11

(v(t))= 0. Hence, the ARCH model corresponds directly to an AR (q) model

with squared innovations. From the stationary condition requirement of the AR
model, the sum of the parameters should be less than one and this coincides with the

ARCH parameter conditions above.

Before using the ARCH model, it is needed to test the ARCH effect first. The
Lagrange multiplier test for ARCH was originally proposed by Engle (1982) and it

is simply a regression on the innovation &(¢) by

L=T"z(22)" 27° 1 fO f° Q2.12)

where L is the Lagrange multiplier statistic, T is the sample length, f°is a column
(¢

vector  of [—g—#—l] , h° is the  hypothesis of h’'=a, |,

z(t) = (l,g2 (t-1),...€° (t—p)) and z =[z(1),...,z(T):|. Under the null hypothesis,
the statistic will be asymptotically distributed as chi square with p degree of
freedom. The intuition behind the test is that if the data are homoskedastic, the

variance cannot be predicted and variations in £°(r) will be purely random.

Alternatively, if ARCH exists, large values of £? () will be predicted by large values

of the past squared innovations.

In empirical applications of the ARCH model, a long lag length p and a large
number of parameters was often used. Accordingly, it becomes more difficult to
estimate the parameters because the likelihood function often becomes very flat and
non-negative conditionals are usually violated. For example, Lilien and Robins
(1987) used a linearly declining structure on the parameters to prevent some of them
from being negative. Consequently, a more general case of ARCH model which is
called GARCH has been proposed and a bibliography of research papers was
published to introduce new models based on GARCH.
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2.4 The ARCH Class of volatility models

2.4.1 GARCH model

The GARCH model introduced by Bollerslev (1986) is a more general case of the
ARCH model. In order to take account of the typical long memory effect of the
volatility shock, the parameter estimations of the linear declining lag structure of
ARCH usually violate the conditions. The GARCH model uses a more parsimonious
representation to allow the more flexible lag structure than that of ARCH and the
GARCH specification provides that the best volatility prediction in the next period is
a weighted average of the long-run volatility, the volatility prediction of this period
and the newest information in this period which is captured by the most recent

squared residuals. The general GARCH (p, q) model is written as
q i
h()=a,+> ag’(t-i)+) Bh(r-i) (2.13)
i=1 =1

p20,g>0

a,>0,a 20, i=1,..q

B =20, i=lL.,p

a+) B <l

i
i=l i=l

where h(r)is conditional variance at sample ¢, ¢(r) is the innovation from return

process at sample 7, a,i=0,..,q and B,i=0,..,p are unknown parameters.
Therefore, the short-run dynamics of the volatility process are determined by the
sizes of the parameters aand #. Large [ shows that the shocks to conditional
volatility take a long time to die out and large aindicates that the volatility reacts

intensely to market movements.

The extension from ARCH to GARCH is similar to the extension of a time series
AutoRegressive (AR) process to the AutoRegressive Moving Average (ARMA)
process. It can be shown that an ARCH (o) model can be represented as a GARCH (1,

1), viz.
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h(t)=a, +ag (1-1)+Bh(1-1)
=a,+ag’(1-1)+p, (ao +ae’ (t—2)+ﬁ,h(t—2))
=a, +fa, +ae’ (t=1)+a,Be (1-2)+Bh(1-2) (2.14)

=a,+fa,++ B a,+ag (1-1)+aBe (t-2)+-+a B s,
=A+Beg*(t=1)+B,g* (1=2)+--+B & (1-n)

where A4 denotes a,+fBa, +---+ B "a, and B, denotes a,8""' for n=1,2,...,00 . If
an innovation variable is assumed to be v(r)=&*(¢)-4(s), the GARCH (p, q)

model can become to an ARMA model consisting only with & () and v(¢) as

h(t)=a0+Zq:a,£2(t—i)+gﬂ,h(t—i)

i=l

£ () -v(t)=a,+ Y ae’ (t—i)+gﬁ,[£2(t—i)—v(t—i)]

g (1) =a, +Zq:a,£2 (t—i)+i,8,s2 (t—i)+v(t)—i,8,v(1_,') (2.15)

Although the GARCH model is directly set up for one-step-ahead forecast, the long
term prediction of GARCH (1, 1) can be also constructed according to the
assumption in equation (2.7) by
h(1)=a, +a&* (1-1)+ Bh(r-1)
=a,+az" (1=1)h(r-1)+ Bh(1-1)
=a, Jr(a,z2 (t—])+,8,)(a0+alz2 (t—2)h(t~2)+ﬁ,h(t-—2))
=a, +(a,z2 (t—l)+,6,)[a0 +(a,z2 (t—2)+ﬁ,)h(t —2)}
=a0+'-'+a0(a,zz(t—1)+,B])~--(a,zz(t—n)+ﬂ|)+(alzz(l—l)+ﬂl)-~-(a,zz(l—rz)%—ﬁ,)h0
(2.16)
Because E(z2 (t)) =1, after taking expectation on both side equation (2.15)
becomes
E(h(t)):ao +a,(a+B)++a(q +,81)"_I +(a, +,B,)"'l E(h) (2.17)

According to the condition of a, + £ <1, equation (2.16) can be rewritten as

E(h(z))=(l—_:—°_ﬂ-J (2.18)
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With a similar extension method, the long term prediction of GARCH (p, q) can be

written as

il (2.19)

9 4

I—Za,—Z,B,

Most financial markets have GARCH volatility forecasts that ‘mean-revert’ as the

volatility forecast converges to the long term prediction as in equation (2.19) and the
forecast of the GARCH model is stationary. However, in currencies and
commodities market, the shock to the volatility trends to have an infinite persistence

during forecasting (Engle and Bollerslev, 1986). Hence, the stationary GARCH

model can not apply in this case.
2.4.2 IGARCH model

Engle and Boilerslev (1986) introduced a model which captures non-mean-revert

effect and the volatility is integrated by the definition of ia, +£,B, =1lin the

1=1 =l
GARCH model. Relative to the simple GARCH model, the new model is called the
Integrated GARCH model and the simple IGARCH (1, 1) can be written as
h(t)=a,+a&* (1-1)+(1-a,) h(t-1) (2.20)
As the long term prediction of the GARCH model is listed in equation (2.19), when
q ?
Za, +Zﬂ, =1is applied the long term prediction of IGARCH model is infinity.

=1 i=]
Therefore, the unconditional volatility does not exist. For illustration, based on

model (2.20) the expectation of the one-step-ahead unconditional variance is
E(h(t))=a, + E(a* (¢1=1)) + E((1- &, ) h(1 -1))
=a, +E(az2’ (1=1)h(1-1))+(1-a) E(h(1-1))
=a, +a,E(h(1-1))+(1-a) E(h(t-1))
=a, + E(h(1-1))

Q.21)

Iteratively substituting the E(h(t)) by its previous estimation for n steps, equation

(2.21) becomes to
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E(h(t))=na, + E(h(1-n)) (2.22)
It is obvious that the unconditional volatility is integrated in equation (2.22) and
when ntrends to infinity, the unconditional volatility trends to be infinity. The

IGARCH model can become to EWMA model when the constant parameter a,is

zero. Apart from the volatility clustering, the leverage effect is also found to exist in
most of the market data. However, the GARCH and IGARCH model are symmetric
models which mean that the impact to the volatility of positive and negative returns

is the same.
2.4.3 EGARCH model

Although, GARCH models have been applied with much success to modelling of
financial returns, the simple structure imposes important limitations. The symmetric
assumption has been questioned empirically and therefore, Nelson (1991) argues for
a model in which the conditional variance responds asymmetrically to positive and
negative innovations. Black (1976) found evidence that volatility trends to rise in
response to bad news and to fall in response to good news, the conditional
distribution of the innovations is therefore usually left skewed. Nelson also argued
that the nonnegative constraints of parameters can create difficulties in estimating

GARCH models. Accordingly, Nelson adopt a similar process for ensuring the

conditional volatility remains nonnegative by making ln(h(t)) linear in some

function of time and lagged z(¢) in some suitable function g as
In(h(t))=a(t)+gﬁ,,g(z(t—k)) B =1 (2.23)
where {a}___and {f,},,  are real, non-stochastic, scalar sequences and
g(z(t))=Hz(t)+y[|z(t)'—E|z(t)” : Because E(z(1))=0 and
E(|z(1)- E|z(1)|) = E|=(1)| - E]2(¢)| =0, g(2(r))is a zero mean and i.i.d. random
sequence. Over the range 0 <z(r) <%, g(z(¢))is linear in z(r) with slope 6+ y and

over the range —o <z(r)<0, g(z(t))is linear with slope 6y . Therefore, the
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structure  of g(z(r)) allows the conditional variance process to respond

asymmetrically to rises and falls in the stock price. Nelson then introduced an

ARMA process to approach the infinite parameters of g, as

l+y L+ L
ln(h(t))za,+1_A:L_W_A:Lpg(z(t—l)) (2.24)

where L is lag operator, y,A are parameters and the terms []—iA,L’} and

i=]

4
[H‘ZW,E] are assumed to have no common roots. Therefore, the general
=l

EGARCH model is written as

ln(h(t))=a0+Z::ﬁ In(h,_,)+ ::“ijjzf,ﬁ (ez(t—1)+y[|z(z-1)]-E)z(z—1)]])

(2.25)

where a,,8,y¥,A,0,y are unknown parameters. In practical the terms

l+y L+-+y, L’

are usually cut to finite terms and the practical EGARCH model
1-AL—=AL"

can be written as

s o e e e, (o))
In(h(1))=a, gﬂ,ln(h,_,) gaj N E{\/h(t—l)} ;c,( h(_t_])]

(2.26)

Beside the ability of modelling the leverage effect, the other advantage of EGARCH
from an implementation perspective is that the estimation of the parameters does not
require that the parameters satisfy any inequality constraints. The log operator
ensures that the conditional volatility is positive all the time. However, lack of
analytic form for the volatility term structure limits the application in forecasting

volatility of EGARCH model.
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2.4.4 QGARCH model

Schwert (1990) studied the stock market crash of October 19, 1987 and tried to use
22 lagged terms to model the mean and the absolute standard deviation. Based on
Schwert’s discussion, Engle (1989) introduced the historical absolute innovation
term with unknown power and a negative innovation term to the GARCH model as
h(t)=a,+a|e(1=1) - 2e(t=1)+ Bh(1-1) (2.27)
where a,,a,, A,  are unknown parameters and b is unknown power. According to
the simulation results, Engle found that the parameter b is close to 2. By extending
the Binomial theorem (Poul, 1955) to equation (2.27), Engle finally proposed a
Quadratic GARCH (1, 1) with leverage ratio to compensate the impact of the
negative returns as
h(t)=a,+a (e(t=1)=7) +Bh(r-1) (2.28)
where y is the leverage ratio and a,,q,, f are parameters. The squared term in
equation (2.28) ensures the positivity of the conditional variance and the positive y

ensures the QGARCH model matches the leverage effect of negative returns.
Sentana (1995) discussed that the QGARCH is actually the Taylor series expansion
of the conditional volatility and gave a general QGARCH (p, q) model as

h(t) =ay+y' X, +X 4%, +i ,B,h(t - i) (2.29)
i=1

where a, is constant parameter, ' is a vector of parameters of linear lagged
innovations, A is a matrix of parameters of quadratic terms, X, is a column vector

with lagged innovations from £(f—1)to £(f—g). QGARCH is proposed to contain

the leverage effect in modelling the volatilities; however, there was no theoretical

explanation to verify the use of a quadratic Taylor expansion as an approach.

2.4.5 NARCH model

Engle (1982) suggested two alternative volatility models-the exponential value
model and absolute value model:
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h(r)= exp(a0 +ag’ (t-1)+-+a ¢’ (t—p)) (2.30)
h(t):ao+a,|£(t—l)‘+---+a,,|s(t—p)‘ (2.31)

Then in an empirical application, Engle and Bollerslev (1986) reported one of the
best models in modelling U.S.dollar/Swiss franc exchange rate among all competing

models was
h(t)=a,+aq, Ie(t—l)'“+---+a,,’£(t—p)|" (2.32)
Geweke (1986) and Pantula (1986) suggested a logarithm ARCH model to avoid the

non-negativity restrictions as
log(h(r-1))=a,+q, log(e2 (1 —l))+-~+al, log(g2 (1 —p)) (2.33)
Since each of the above models has individual limitations and depends upon the

particular empirical application, Higgins and Bera (1992) proposed the NARCH

model which is the first GARCH class model encompassing some other models as
s 5 s
h(t):l:ao(az) +a (e (¢=1)) ++a, (2 (1~ p)) } (2.34)
where o7 is the unconditional variance of the innovation £(r), a,.a,,---,a, are

unknown parameters and ¢ is the unknown power parameter. When 6 =1, NARCH

becomes the standard ARCH model. Otherwise, the equation can be rewritten as
W (1) =a, (0'2 )5 +a, (32 (t- l))d +ota, (g2 (r- p))d (2.35)

According to Box-Cox (1964) power transformation

A
y' =1 .
, A#0
yi=y 2 4 (2.36)
log(y), ifA=0
where y is a dependent variable, when A — 0 the equation (2.35) can be transformed
to

log (A (r)) =4, log(O'2 ) +d, log(e2 (r- 1)) +-+ 4, log (sz (t- p)) (2.37)

which is equivalent to equation (32) with a, = ¢, log(az)and a=¢gfori=l,...,p.
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2.4.6 GJR GARCH and Threshold GARCH model

Based on the empirical finding of Engle and Ng (1993) that negative shocks of
similar magnitude lead to larger revision on conditional volatility, Glosten et al.
(1993) proposed another popular GARCH class model — the GJR GARCH model.
GJR model nested a dummy variable in to the GARCH model and the dummy
variable is an indicator of the sign of the innovation. In order to compensate the
leverage effect, if the innovation is negative, the indicator variable is set to be | and
otherwise 0. The GJR model can be written as
h()=a,+ae* (1=1)+-a.e (t—q)+Bh(t=1)+-- B h(1—-p)+ye’ (-1}
(2.38)

where [, is the indicator, ao,a,,---aq,ﬂl,-'-ﬂpare unknown parameters and yis the

leverage parameter. The GJR model introduces an alternative asymmetric

component to the EGARCH model since a negative residual £ (1 ~1) contributes
(@, +7) &’ (1-1) to the conditional variance while a positive residual £* (¢ -1) only
contributes e’ (1 —1)to it. As the indicator term in GJR GARCH is only related with

the most recent innovation, Threshold GARCH is the general case of the GJR
GARCH and the indicator term has been extended to compensate the negative

impact of all past innovations as

q

h(t)=a, +ialez (1 —,')+Zy,1,_,.e2 { —i)+i,8,h(t—i) (2.39)

i=1 i=1

2.4.7 Logistic GARCH

In GJR GARCH and Threshold GARCH, the indicator function is introduced to
model the leverage effect. However, during the parameter estimation of those two
models, the non differentiability of the indicator function may cause problems. Here
we propose to use a logistic STAR function to approach the indicator function. The

logistic STAR function is usually written as
-1

= 2.40
L 1+exp(—ﬂ(y,—c)) (240)
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where A is the smooth parameter and cis the threshold parameter. As in GJR and
Threshold GARCH the indicator is switched at 0, the parameter ¢ then should be set
to 0. Different logistic functions under different smooth parameters are listed in
Figure 1. It can be seen that when A trends to be large, the logistic function trends to

approach the indicator function /,. Accordingly, the logistic GARCH can be written

as
-b
h(t)=a, +ae* (t-1)+Lh(t=1)+ g (1-1 2.41)
O s v
Ty "y ‘i .

- N --- =25

02} ~ s

03f . _"

04} :

05}

06F

07}k

08}

09t

12 KN 3 05 0

Figure 2.1 Logistic function simulation under different smooth parameters

2.4.8 FIGARCH

The shock in volatility series has been found to be capable to impact the future
volatility over very long horizon (Taylor, 1986). According to this stylized fact and
based on the time series long memory fractionally integrated process, Baillie et al.
(1986) proposed the FIGARCH to approach the long memory effect to the volatility
process with a more flexible model structure. Because the fractionally differencing
operator term can be expanded in terms of the hypergeometric function as

(1-1)' =3 T (k=d)T (k+1)"'T(-d)™ I
- (2.42)

=iﬂkL"

k=0
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where I'(x)is Gamma function, 7, is the parameter of every lagged term and L is

lag operator. The FIGARCH is then given by
L r
[“Z/ﬂ']h(’F a +{1—Zﬁ,L‘ —ia,L’(l—L)d]gz () (43
i=] 1= 1=1

where a, B are parameters and d is the fractional differencing parameter which
satisfiess 0 <d <1. One advantage of the FIGARCH model is that the impact of
lagged squared innovations on conditional volatilities can have a slow hyperbolic
rate of decay rather than an infinite propagation as in IGARCH model. However,
Granger (2001) pointed out that the integrated process which has a time trend in
volatility level is not observable in practice. Therefore, it is difficult to test against

the FIGARCH model in empirical application.
2.4.9 Summary of GARCH class models

In the recent twenty years, different types of GARCH class model have been applied
to a wide range of time series analyses and the applications in finance have been
particularly successful. Nearly all of the GARCH class of models have one major

assumption that the innovation of the return process consists of the multiplication of
an i.id. variable and the conditional standard deviation as £(¢)=z(1)o (1) .
Although there are some other GARCH class models existed in literature, however
the models referred above are widely used and have been commonly tested in the
empirical applications. Therefore, further discussion on other GARCH class models

will not be introduced here.

2.5 Parameter Estimation of GARCH class models
2.5.1 Maximum likelihood Estimation (MLE) method

Since the ARCH model was proposed by Engle (1982), the parameter estimation
method for GARCH class of models has barely changed. Standard practice is to
estimate the parameters using the MLE method. There is a pre-assumption before

using MLE which requires a certain form of the joint probability density function.
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The most commonly used probability function is the conditional Gaussian

distribution function

g(l)‘(//,_l ~ f(s (’)|‘//,_1) = —Tm:mexp{_ 2‘;”(2’))} (2.44)

where f(s(()lu/,_,) denotes the conditional density function fore (/). If the average

log likelihood is denoted by /and the log likelihood of 1" observation is denoted by

.
[.then [ = lZl, where T is the sample size. Since

- log| ———ex a0l
oo e )

=%log(27r0'2(l)) [— gz(t)J (2.45)

207 (1)
&' (1)

= —%log(%)-%'og(”z ()35 ()

and the term log(27t) can be ignored because it is a constant, the log likelihood

function at single observation then becomes to

/= —%log(h(!))—%%l (2.46)

. Then the first derivative of equation (2.46) with respect to the parameter vector 8

(the parameters of the GARCH model) is

1
gl_lz_la(log(h(t)))_fia(mj
26 2 06 2 9
_ 11 ah(t)+_1_ez(t)ah(t)
T 2a(1) 80 24 (1) 96 247
! ah(z)(a(z) ‘J

“2n(r) 86 \ h(t)

Therefore, according to Bolloslev (1986) a Newton-Raphson searching method can

be implemented to give the parameter updating procedure as
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T ! 1A
ol
0,,, =0, -4, ' 2.48
et (;aaaa) Z, ED) (2.48)

where 6, is a vector of parameters estimated at the k" iteration, A, is the step Iength,

and V denotes the first derivative of function f(6,). According to Berndt et al.

rogy Y al, al,
(BHHH, 1974) the term | > —— can be approximated by
36,00, <30, 00,

Then the parameters can be calculated from

-1
= ol 3l L ol
6,.=6,-4 —— : 2.49
k+1 k k(zae’( ag}:] Zag" ( )

=) k=t

Since the parameters of GARCH model have constraints, the Lagrangian function

can be used during optimization to include the constraints in the object function as
L(x,4,p)=f(x)+ Zzg, )+ p.h,(x) (2.50)
1=1

If the GARCH (1, 1) model with constraints a, >0,a,, 5, 20,a, + 3, <lis taken as

an example, the Lagrangian function for the estimation procedure is

1{ 1 I
L(6,4,p)= f(6)-Aa,~- [ +;(a—o+m] (2.51D
For the GJR (1, 1) and QGARCH (1, 1) models there is an additional constraint
because the leverage effect coefficient should be greater than zero. In empirical
applications, the numerical derivative is usually used to approach the first derivative

. / .
function as 9 ~ —-— where Vis taken to be a very small value such as 10e-10.
k k

Although during parameter estimation h(t) is an unknown variable, it can be

calculated recursively by the GARCH class model equation with initial settings.

During numerical searching, different GARCH class models may give different

recursive calculations of h(f)but the procedure of parameter updating is the same as

in equation (2.49).
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As the normal distribution assumption is usually rejected by practical data, a
plausible alternative to the normal is the student’s t distribution which allows for
heavier tails than the normal distribution. Bollerslev (1987) allowed the conditional

distribution of GARCH model to be the t distribution function as

-1 . (,‘2 ~(v+1)72
fe()w.)= %;r(%”)r(%) ((v=2)h())" [1 +71(’)(f—’22)J (2.52)

where " is Gamma function, vis the number of Degree of Freedom (Do) and
should be bigger than 4 as kurtosis and skewness statistics of the t distribution are

defined under the condition of DoF>4. The corresponding log likelihood function is

" '°g[‘f;r(%ﬁ(§)" (v=2)h())" [n +%J—(‘*')2J

=%Iog(7z‘)+Iog(r(%ﬂj]—log[l“(%)j—%log(v—2)—%Iog(h(t))

2 "”[' ) (v-2) .

Then during MLE the normal likelihood function (2.46) can be substituted by

equation (2.53) and the DoF can also be treated as an unknown parameter.

The implementation of the GARCH MLE procedure can be summarised as follows:
(1) Initialize the parameters. As a rule of thumb, the persistence coefficients J
of the GARCH (1, 1) model are usually in excess of 0.8 and reaction

coefficients a, is usually no more than 0.2 (Alexander, 2001). The initial

parameters of GARCH (p, q) can then be set as

0.05 0.85
h =Var(8(’));a1 =aq,=rq, :——q_—;ﬂl =B=B, =—;—;ao =0.1h

For the GJR and QGARCH models, along with the above initial parameters,

the initial value of the leverage effect coefficienty should be set to zero.

For the EGARCH model, the parameters should be set initially as
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hl :Var(g([));al =a,=a :_*ﬂl =ﬁ2 :...l[j’/y :_'._:CI =c, :...=(,"I =0
q P

The step length 4, in equation (2.49) should be set to be less than one and

could vary depending on the different models. The penalty parameters A in
equation (2.51) should be set to extremely small values as 10E-30 because
the likelihood should not be affected much by penalty terms. pin equation

(2.51) should be set to extremely big values as 10E30for the same reason.

(2) The conditional variances h(t) (t=1,..,Tare constructed recursively using
appropriate GARCH class models under initial parameters and the likelihood
I' of the each sample is calculated by the logarithm likelihood function (2.46).
In order to calculate V/ , initial parameters @ are saved and multiplied by

V+1 as (V+1)0 and the likelihood /? is calculated by the updated

parameters. VI is then calculated as VI =/'-/'. The term V@ can be

calculated as the multiplication of the initial parameters dand V. Therefore,

Vi . - ol al, . .
L can be determined and E —>~-—" in equation (2.49) can be calculated.
A o 06, 06,

(3) Treat the new updated parameters by equation (2.49) as the initial parameters

and repeat procedure (2) until some stop condition is achieved.
2.5.2 The Quasi-Maximum Likelihood Estimation (QMLE) method

During practical application of the MLE on estimating parameters of GARCH class
of models, the assumption of the conditional normality is always breached and the
tails of the conditional distribution has always been found to be fatter than that of the
normal distribution. Bollerslev and Wooldridge (1988) discussed those facts and
proposed the QMLE method to give a consistent estimation under weak regularity

conditions. In particular, Bollerslev and Wooldridge showed that
- a d
(4B 12 JT (6, ~8,)~N(0,1) (2.54)
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where 6, is the estimated parameters under assumption of normal distribution and

1 &L al
B =— 2.55
TZ (aao aag] (253)

1 2
A= lz (2.56)
T4 aaoae'

However, they did not give any efficiency analysis of QMLE when the distribution

was falsely assumed to be normal. Addressing this issue Engle and Gonzalez-Rivera
(1991) discussed that QMLE will lose efficiency when the conditional distribution is
not normal and they defined the notion of Relative Efficiency (RE) of QMLE in
order to describe this efficiency loss. By definition, the RE is the ratio of asymptotic
variance of the parameters when the true density function is known to its asymptotic

variance when normality has been assumed. RE can be written as

var (éAII.I:' )

REH ) Var(g)l\lll )

(2.57)

where the var(HM, P ) is the asymptotic variance of parameters from the MLE method

when the conditional distribution is correctly specified and it is calculated as ,/Bf. .

If the true conditional distribution is normal then A4; = BY (Weiss, 1982) and the RE

will be equal to one. However if the true conditional distribution is non-normal, then

the RE will be less than 1.

In order to show the efficiency losses, the RE is derived theoretically in the cases

where the true conditional distribution is a symmetric fat-tailed Student’s t
distribution. Here, only GARCH (1, 1)h, =(1—a—f)+as, + Bh,_, is used during
calculation of RE for simplicity. In QMLE, the first derivative of the likelihood

function with respect to the GARCH parameters is calculated as

2
A, __11onf, () (2.58)
2a 2hdal  h()
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a __1ian(, () 259)
o6 2k 3B\ h(1)

By the law of iterated expectation proposed by Patrick (1995, theorem 34.4), the

matrices 4, and B, are given by
L o’ 6,) a (6,
A =-13E (%) lz E )
f v o606 T = 6059'

[61,(00)01,(90)]=izg[55" (6,) ,(6,)

06 oo T4 o8 0o

) ) (2.60)

WH] (2.61)

Therefore, substituting equation (2.58) and equation (2.59) into B; yields
U/r—l]

& L1 on(), (1)) 1 1 en(), ()
B”=7ZE g " 2h(1) da [l_ h(r) ]._511(1) da (I_ h(r) D

w=%ZE

1

2

=—T—ZE £ 41 (1) h(r) Wi

1 (11 (en(r)Y e (1) ’
—r2E 7O\ e ) FU Ry ) |

L& 11 (an@)) £(1) (£ ()Y
=FZE 41 (1) da Bli=2 h(1) ’{ h(t)) ]‘”"‘]

(2.62)
where k is the coefficient of conditional kurtosis as E(s,"lw,_,)/h,z. Similarly, the
other parts of the matrix B can be given by
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1wl 1 (am(0)Y
2 =7 : th(t)(_aﬂ J (k——l) (2.63)
Il 1 [an(r)) on(r)
D S 101 0] P

The elements of the matrix 4, can be calculated by substituting equations (2.58)

and (2.59) into equation (2.60) using the following equation

11 on(n), &)
L a( 27(1) a (‘ 10 ]]

T 1= oa

21(r) a2/ (1) oa
T3 oa

A e )
gL () ety oy
et ol
724 857 ()(agg) g'(z)[agg)]]

s eI V]

a(_l L ah(r) z(,)ah(,)]

!///—I ]
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=—l\£jz~: 1 (ah(t)z(l_lj

TS | (1) da

:% %hzl(t)[ig%jz

The other elements of the matrix A, are given by

v, J (2.65)

RESINCIO)

Azz_T;th(t)( Y, J (2.66)

A=A =1 -1 2‘ (5”(’)J(5h(f)J 267
TS 2h (t) o op

It can be seen that B, = A,,%(k—l),B22 = An%(k—l),B12 =A|2%(k—l). Hence the

asymptotic variances of the parameters of QMLE- var(HQM,l,;) are given by
-1 -1
A;)v—lB;)-A;)v_l Z{All AI2:| [Bll BIZ][AH Al2]
AI2 AZZ BIZ BZZ AIZ A22
-1 -1
=[All AI2:| l(k._]){:A“ AIZ][AII AIZ:|
AIZ A22 2 AIZ AZZ A!Z A22
-1
=-1—(k—|)|:A” AIZ:'
2 A12 A22

] 4, -4
=5(k_])|:_: Alz]/(AnAzz_Anzz)

12 11

(2.68)

The diagonal elements of the above matrix are the asymptotic variances of the

parameters as in the following

~
Var(a):-z—(k—])Azz/(A”Azz'—'A]ZZ) (2 69)

=By, /(AIIAZZ - szz)
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var( )=__(k—l)A”/(A”A2, A) (2.70)
=B]|/(A11A22_A122)

If the true conditional distribution of the residuals is a Student t distribution, the

likelihood function and the first order derivative are given by

f(e,|¢//,_,)=%F(1;—1JF(%)_I((v-—Z)h(t))_m[1 (5)2((’) )]_(MW Q2.71)

where vis the number of degrees of freedom and should be bigger than 2 and T'( )

is the Gamma function. The corresponding log likelihood function is

l_log[%r(v” (3 2 [os h(zg)(g)z)jwz]

;D—é—log(v - 2)—%—Iog(h(,)) 2.72)

i
I
=]
[14°]
—
3
N’
+
=)
[1)°]
TN
=
TN
<
B+
N~—
N—
|
=}
TN
=
TN
|

The first derivative with respect to the GARCH parameter 6 is then given by

A, 1 1 k(1) v+ 1 (_ (1) ah(z))

260 2h(1) a6 2 1+——g—2(t) h*(r)(v-2) o6

h(t)(v-2)

L1 ok vel_ h()(r=2) e2(r)  oh (1)
T2h() 06 2 h(1)(v-2)+e () K (1)(v=-2) @8
11 an() LL ] (v+1)e*(r)  on(r)

2h(1) 36 2h()h(D)(v-2)+& (1) a6

11 5h(1)(1_ (v+1)e’ (1) J

“2h(r) 86 m(1)(v-2)+&2(r)

The elements of matrix B)*"* are then given by

(2.73)
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~

(v a )E ) 11w, e
728 300 o (l_h(t)(v——2)+82(t)] 21) oa (' h(t)(v—2)+82(t)])

(2.74)

we 1L (1 1 (an@)Y (v+1)ei(r) Y
& ‘725[277(7‘(7) [“h(txv—zw(r)]] =7

vt S et e

Hence, the asymptotic variances of the parameters estimated by MLE under t

distribution are the diagonal elements of the inverse B,""" matrix:

i b5 e ens

(2.77)

] { ah(’) 2 (V+l)82 (t) 2 MLE MLE 2 ML
(,BM/I) 7; [4h2 p [ dat ) (]_h(t)(v—2)+£2(t)] ]/(Bu B, - B, )
(2.78)

According to the definition of RE, the RE of parameters a, # can be calculated as

C 1 ah(t)2 _ (rrn)e( : e
; [4’12 (aﬂ](' h(’)(v—2)+sz(t)]]/(& BB
Bzz/(AnAzz"Alzz)

(2.79)
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T

il 11 ()Y (e ’ Wy b pahi
r&* 4h2(f)[ Oa )[] h(z)(v_z)+52(,)] (BB B
B, /(AnAzz "A122)

we()-

(2.80)
If the parameters of GARCH and conditional distribution are known, then the RE
can be used to evaluate the efficiency losses of QMLE. Therefore, although MLE
and QMLE is widely applied in parameter estimation of the GARCH class of models,
but when the conditional distribution is falsely assumed, both MLE and QMLE
cannot give consistent and efficienct estimation results. This is one of the major

issues among the GARCH class of models.
2.6 Forecast Evaluation of GARCH class models

Since so many different types of GARCH class models have been proposed to model
the conditional volatility, it is essential to have an evaluation statistic to compare the
forecast performance of those models. Because the volatility is not observable and
the only observation of the market data is the returns, one common statistical
measure of accuracy for a volatility forecast is the likelihood of the return. However,
the effectiveness of this method does rely on the correct specification of the
conditional distributions. This means that the distribution assumption needs to be

tested first; otherwise the test statistical based on likelihood will be unreliable.

Another popular evaluation measure used in literature is to use the squared
innovations from the return process as the proxy of the actual volatility and different
error statistics are used as the criterion. Popular evaluation measures include Mean
Error (ME), Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean
Absolute Error (MAE), and Mean Absolute Percent Error (MAPE). As most
investors treat gains and losses differently, the error statistics which treat positive
errors differently from negative ones have also been proposed to use during practical

analysis. For example, Granger (1999) described a LinEx loss function as
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LinEx = 71\'/—’z]:‘[exp(——a(};(t)—g2 (t)))+a(};(l)—g2 (1))— ]:I (2.81)

where #(¢) is the predicted conditional variance, a is parameter whose sign

determines whether positive errors have more or less weight than negative ones. If

a>0, over predictions fz(t)>h(t) will have less weight because the term

exp(—a(fz(t)—h(t))) is less than 1 and the total sum of

exp(—a(l;(t)—h(t)))+a(fz(t)—h(t))—1 is less thana(};(t)—h(t)). If a<0, over

predictions will have more weight.

Before high frequency data becomes widely available, most of the researchers use
the squared innovation from daily return process which is calculated from the daily

closing price as the proxy to the daily volatility. However, Lopez (2001) discussed

that although squared innovation £°(r)is an unbiased estimator of A(r), the error

statistic is very imprecise due to its asymmetric distribution because
e(1)=1z(1) /A () and E(g*()|w,0)=h()E(Z (t)|w,)=h{t)  where
z(t) ~iid.(0,1)and 2’ (r)~ x*(1). However, the median of y*(1) distribution is
less than 0.5 which means that £* (1) < h(t) is more than 50% of the time. Therefore,

the high frequency intraday return data is proposed by Andersen et al. (2001) to use
as the proxy rather than daily return. Further suggestion by Bollerslve and Ghysels

(1996) included a proposal to use a Heteroskedasticity adjusted version of MSE
(HMSE) as

HMSE = — ﬁ[h(’ } (2.82)

Because there are several volatility features which already have been observed in
different market data, GARCH class models are introduced to match one or more of
those features. Accordingly, the evaluation of forecasting accuracy will depend on
what criterion is used and it is unlikely to choose a best forecasting model with all

possible statistics and evaluation criterions.
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2.7 Conclusion

In this chapter, the commonly used volatility models including EWMA, ARCH,
GARCH and GARCH class of models have been introduced and reviewed and these
models are proposed to model the different volatility features. Much research has
been contributed into the properties, estimation and analysis of these models.
However, one obvious omission is the adoption of a linear mean model to fit the
return process. This will be reviewed in the next chapter and the motivation of using

a nonlinear mean model is therefore raised to encounter the problem.

43



Chapter 3: Introduction to the financial mean model

3.1 Introduction

Following the introduction of ARCH model, many papers have been published
which attempt to model the time varying variance in financial time series. Although
nonlinear modelling has been widely applied in time series analysis, there has been
little theoretical work to investigate the use of nonlinear models to represent the
mean model as part of ARCH and GARCH model! estimation. Linear models can
provide good first order approximations and because linear statistical theory is now
well developed, the linear mean model is commonly used in many publications
which study aspect of volatility estimation. In the pioneering work by Engle (1982)
who introduced the ARCH model, an example of an ARCH model was given
together with an ARX like mean model to model inflation in the UK. In a later
ARCH application paper by Engle (1983), a linear AR type mean model with
multiple inputs and a time trend was used to model inflation in the U.S. Bollerslev
(1986) used an AR (4) model to model the rate of growth in the implicit GNP
deflator in the U.S. together with a GARCH variance model. When EGARCH was
introduced by Nelson (1991), a variance in the mean AR (1) model was used to
mode! the return series and Engle (1989) used a variance in the mean MA (1) model
to model the return series while the variance was modelled using QGARCH.
Higgins and Bera (1992) applied a linear AR model with a NARCH to model the
variance of foreign exchange rates of five countries while Baillie et al. (1996) just
employed a constant term to represent the mean model term in the FIGARCH model.
Gray (1992) introduced the RS-GARCH to model the volatility of short-term interest
rates and an AR (1) model was used to model the mean process. Ding et al. (1993)
argued for a long memory property of the volatility and used a MA (1) model as the
mean model. Lee (1991) investigated the out-of-sample forecast accuracy of a
GARCH class of models without using any mean model. Instead, he just used the
return data as the mean residuals. Tse (1991) favoured an AR (1) model to model the

mean associated with the Tokyo stock return while Akgiray (1989) suggested the use
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of an AR (1) model to fit the New York market returns. Hamilton and Susmel (1994)
introduced a class of Markov-switching ARCH models and modelled the mean using
an AR (1) model. McMillan et al. (2000) analysed the forecast performance of a
variety of statistical variance models using UK stock market data and the mean
process was fitted using an AR model. Clearly therefore the linear mean model is
very commonly used in univariate GARCH model analysis In later multivariate
GARCH model research, a linear mean model is still massively employed in many
publications which include Vec-GARCH introduced by Bollerslev et al. (1988), the
Multivariate GARCH in mean model of Engle and Kroner (1995), and the constant

mean model by Kawakatsu (2006).

The use of a nonlinear mean model example can be found in Lebaron (1992) where
an exponential AR mean model was used to model the relation between the
autocorrelation and the conditional variance. Bollerslev et al. (1993) also used an
exponential AR mean model in fitting the U.S. stock market volatility. In Cao and
Tsay (1992), the threshold AR (2) which is a group of two linear AR (2) models
switched according to a threshold value was used to model the return process.
Although a linear model is easy to estimate, there has been overwhelming evidence
of non-linear structures across many financial data sets (Willey, 1992). Hinich and
Patterson (1985) tested the different stock market returns with nonlinearity tests and
all of the testing results indicated a nonlinear dependence and non Gaussian
processes. Therefore, the use of a nonlinear model instead of a linear model to model
the return process should improve the forecast accuracy and provide more accurate

residual estimation for the conditional variance process.

There are several nonlinear modelling techniques which are commonly used in
system identification including the Volterra series (Volterra, 1930)/the Wiener series
(Wiener, 1958) expansion approach, the Radial Basis Function (RBF) neural
network method (Moody and Darken, 1989) and wavelet networks (Antoniadis and
Oppenheim, 1995). However, the Volterrra and the Wiener series require excessive

parameters to give an adequate approximation to the underlying nonlinear system
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process (Ogunfunmi, 2007) and the RBF and wavelet networks approach are not
very transparent models. The Nonlinear Auto Regressive Moving Average with
eXogenous inputs (NARMAX) model which is a generalization of the ARMAX
model proposed by Leontaritis and Billings (1985) can provide a unified formation
for a wide class of nonlinear system processes with a more concise representation
than the Volterra and the Wiener nonlinear models. The NARMAX model has been
proved to be successful in modelling numerous real world nonlinear systems
including chaotic electronic circuits, water management systems, turbocharged
diesel engines, etc(Billings and Coca, 2001). Accordingly, this chapter proposes to

use NARMAX to model the nonlinear mean model of financial return data.

The purpose of this chapter is to review the mean model used in the literature related
to GARCH model research and the commonly used mean models will be
investigated. The NARMAX model method will be introduced and examples will be
given to illustrate the differences of variance estimation when the nonlinear mean
process is falsely fitted using a linear model. Section 3.2 provides a review of the
mean model. Section 3.3 gives an introduction to the NARMAX modelling method.
Section 3.4 gives an example showing the impact on the variance estimation when

the nonlinear mean process is falsely estimated using linear model. Section 3.5 is the

conclusions.
3.2 Commonly used return models

3.2.1 The linear mean model

In the financial application area, modelling methods based on time varying variance
have developed very quickly since the ARCH model was introduced by Engle
(1982). ARCH and the generalised form of the model GARCH can very well
represent the observed effect of financial time varying variance. However, most of
the financial literature was concentrated on modelling the variance and ignores the

importance of the mean model and therefore, due to simplicity a linear mean is very
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frequently quoted in most GARCH research papers. In Engle (1982), a linear mean

model was used during the simulations as defined by

Ap(1)=BAp(t-1)+Bop(1-4)+ Bap(1=5)+ B, (p(t-1)-w(t-1))+ A (B.D
where Ap(r)is the first difference of the log of the quarterly consumer price index,
wis the log of the quarterly index of manual wage rates and fare parameters. As
Ap(1) = p(t)— p(r—1)and wis like an external input to the models, the model (3.1)

can be expressed as
Ap(1)= Bap(1-1)+ BAp(1=4)+ Bap(t=5)+ B, (p(1 = 1) —w(1=1)) + B,

p(0)=p(t=1)=A(p(1-1)-p(t=2))+ B (p(1=4)- p(1-5))+ B (p(t-5) - p(t-6))

+B,p(1-1) = Bw(t=1)+ 5,

p(1)=(B+1+8) pli=1)=Ap(1=2)+ Bp(1-4)
+(B=R) p(1=5)-Bp(1-6)+ 5 - Bw(r-1)
(3.2)

It is clear that the model (3.2) is a linear ARX model with one lagged input term and
five AR terms. In a later ARCH model application paper by Engle (1983), a linear
model with a time trend was used to fit the consumer price index data as

ap(t)= BAp(t=1)+ BAp(1=2)+ BAPM (1 =1)+ B, Aw(t = 1)+ BAm (1 = 1)+ Byt + 5,
3.3)

where Ap(t)is the deflator, Aw(¢)is the rate of change of money supply, Am(t)is
the rate of change of wages, APM (t) is the rate of change of the import deflator and

t is the time trend. Therefore, the model (3.3) can be expressed as
Ap =Bl + LN, +BAPM  + B Aw_ +BAm  + i+ [,
2= Pt = B(Per = Pa) ¥ B (P2 = Ps) + B (PMy = PM,,) + B, (W, — w0 )+ Bt + 4
p=(B+) Py (B =B) Pa = AP + B(PM = PM_,) + B (o —wo)+ Bi + 3
(3.4)
The model (3.4) is a linear model with multiple inputs and a time trend. Bollerslev
(1986) extended the ARCH model to a more general case-GARCH model and he
used a mean model in an example as
z(t)= B+ B (t-1)+ Br (1=2)+ Bx (1 -3)+ Bym (1-4) +£(r) (3.5)
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where 7(#)=100x1In(GD(¢)/GD(t-1)}, GD(r)is the implicit price deflator for
GNP and pare parameters. The model (3.5) is a typical AR (4) model. Nelson
(1991) proposed a new GARCH class model-EGARCH and fittd the return with

model as
R(1)=F,+BR(1-1)+ B0’ (1) +&(1) (3.6)
where R(r) is the excess return, o(r) is the conditional variance and f are

parameters. The model (3.6) is an AR (1) with variance in the mean and Lo and
Mackinlay (1988) noted that such a simple model cannot adequately explain the
short term autocorrelation behaviour of the market indices. Nelson adopted the
variance in mean terms because there is evidence of a positive correlation between
the return series and the conditional variance series as in French et al. (1987) and
Chou (1987). Engle (1989) modelled the daily return of a stock index by using

Nonlinear ARCH model and the mean model used was
y()=B+ B’ (1) +Pe(t-1)+e(1) 3.7
where y, is stock index return. The model (3.7) is a MA (1) model with variance in

the mean. Apart from the mean model listed above, most of the researchers

frequently use the simplest mean model which takes the form
y(t)=c+e(r) (3.8)
where cis a constant term. The application of model (3.8) can be found in Baillie et

al. (1996) and Kawakatsu (2006).

3.2.2 Nonlinear mean model

Cao and Tsay (1992) proposed the use of a Threshold AR (TAR) model to model the

mean process as

()= ,Bo+,8|y(t—1)+,32y(t—2)+ﬂ3y(t—3)+8(')(t) if y(t)<T (3.9)
M s ap (=D ra (-2 +ay(t=3)+s2()  if »(1)2T

where a, 3 are parameters, y(f)is return series and 7 is a threshold value. The TAR

model is simply two AR models switch by threshold values. As noted in Chapter 2
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Section 2.4.7, the threshold process can be described by the logistic STAR function

as

L= 1+exp(—/1(y(t)-c))

and the model (3.9) then takes the form

(3.10)

“fA-a)  HA-a) _
l+exp(~A(y(1)-T)) 1+exp(—/1(y(:)—T))y =)

. AB-a) . AB-a) ee
'1+exp(—/1(y(t)—T))yt 2 Tl+exp(—l(y(t)—T))y(t 3+ell)

1) =a,+ay(t-1)+ay(1-2)+ay(t-3)+

(3.11)
Lebaron (1992) proposed the use of the exponential AR model to model the mean

process as
y(t)=,80+[a0+a, exp(—aa—(t)ny(t—l)+£(t) (3.12)

()

)] is time varying as
ay

where fanda are parameters. The term (ao +a, exp(—

the conditional variance is time varying. Bollerslev et al. (1993) adopted a similar

mean model in the simulation of the US stock market index as

y(1)=B+y(t —1)[ﬂl +5, exp(—g—;ﬁn+ﬁ402 (1)+e(r) (3.13)

3
where y(r) is the return, S are parameters and o’(r) is conditional variance.

Compared with model (3.12), model (3.13) has an extra term 8,6 (1) . According to

2
!
the Taylor series expansion, the term exp(——(—)) can be expanded to
3

exp(— 7 (’)]= o) +l(-ﬂ)-)2 +l[- o (’))3 Fee (3.14)

B, B 20 B 3 A

After substituting (3.14) into (3.13), equation (3.13) becomes

49



Chapter 3 Introduction to financial mean model

y(0)=F+y(-1)| A ﬂz[l 3 2!( ﬂ}] 3!( 2 ]] Ao (1) +e(1)

(3.15)
According to GARCH, o°(r) consists of lagged £?(r), and £(¢) can be

substituted using y(¢)and y(s—1), therefore model (3.15) can contain higher order

lagged y(t)and shows nonlinearity.

Apart from the linear mean model, most publications use a specified nonlinear
model format which may not fully reflect the nonlinearity that exists in the process.
The use of NARMAX can give a more general choice of nonlinear model term

selection and provide a universal approach to the nonlinear mean process.
3.3 NARMAX model and its polynomial representation

Most real life problems involve nonlinear systems. For most of the practical
applications the nonlinear model usually has advantage to describe the nonlinear
relationships rather than a linear model and nonlinear models are designed to
provide a better mathematical instrument to characterize the nonlinearity in real
dynamic systems. Nonlinear model representations can be generally classified into
three types: (1) System Input-Output representation, (2) State-space representation
and (3) Model-free representation (Chow et al., 2001). The discrete time Input-

Output representation approach can usually be written as

y(1)=f(x)+e(t) (3.16)
where x represents the system input, ¢ is the time sample,e(r)is noise and y(r)is
the system output and f'( )denotes a mathematical relationship. When the system is
linear, f ( )represents a linear mapping between the input and the output and a

linear differential equation is commonly used to approximate the process. The
ARMAX model is usually employed to provide a unified input-output representation.

When the system is nonlinear, there are several methods which exist to give an
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approximation to the nonlinear function /(). The Volterra/Wiener representation is

one technique to model the input-output nonlinearity based on a Volterra series
mathematical function. Although Volterra system models can be used to represented
a large range of nonlinear systems, in order to give an adequate approximation the
number of the parameters usually exceeds many hundreds and the Volterra kernels
which are nth-order impulse responses have to be estimated. Therefore, the Volterra
nonlinear representation procedure can be computationally complex. The NARMAX
model proposed by Leontaritis and Billings (1985) extends the ARMAX model to
the nonlinear input/output case and NARMAX usually takes the form of a set of

nonlinear equations as
y()= f(y(t =1),... (¢ —n, ) u(t=d),..u(t=n,),e(t=1),...e(t —nc))+e(t)
(3.17)

where () is the input vector, n,and n,are maximum output and input lag, n, is the
maximum noise lag, y(¢)is output vector, and f( )is unknown nonlinear mapping.

The noise variable e(¢) which accommodates the effects of measurement noise,

modelling errors and unmeasured disturbances are assumed to be bounded and

uncorrelated with the input.

Since f( )is unknown, the identification of the NARMAX model involves not only

determining the parameters of the models but also the structure a model terms from

the input/output data. The polynomial representation of f ( )is one of the common

implementations and it has received great attention because of the good
approximation properties and the simple model structure what this choice yields.
Therefore, the nonlinear mapping f( )here is considered to be approximated by a
polynomial representation with a finite degree in all variables and the structure is
assumed to be linear-in-parameters. Accordingly, the general form of the polynomial

NARMAX representation can be written as

51



Chapter 3 Introduction to financial mean model

y(l)=§lﬁlp, (x())+e(r) (3.18)

where x(t) represents y(t—l),...,y(t—ny),u(t-—d),...,u(t—nu),a(t—l),...,e(t—ng) ,
p,( ) are model terms which are a linear or a nonlinear combination of the
variables , £(r) is the modelling error, M is the number of all the distinct terms and

6, are unknown parameters related. The matrix format of model (4.3) can be written

as
Y=PO+E (3.19)

where ¥ =[y(1),1(2),. ¥(N)] . P=[poProia] - 2 (x(0)- 2 (D)o (x(M) ]

®=[6,6,,...6,] and E=[£(l),g(2),...,s(N)]T. In this thesis proposes to use

NARMAX model could be used to fit the nonlinear finance return process.

3.4 Simulations

Since most of the GARCH publications use a linear model to fit the return series, it
is intriguing to illustrate the impact on variance estimation when a nonlinear return

series is falsely fitted by a linear mean model. Consider the nonlinear mean model
are formatted as

y()=a,+ay(t-1) +a,y(1-2)+£(1) (3.20)
where a,,q,,a,are parameters, £(1) is residual and where it is assumed that the time
varying variance is generated by a GARCH model as

o (t)=4,+4&* (t-1)+Bo’(1-1) (3.21)

where 4, 4, B,are GARCH parameters. The parameters of the model (3.20) and
(3.21) are listed in Table 3.1.
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Table 3.1 Parameters of the simulated models

Parameter of mean model (3.20) Value
a, 0.001
a, 12
a, -0.1
Parameter of variance model (3.20) Value
4, 3e-6
A4 0.075
B, 0.920

The residual £(7) is assumed as £() = z(r) o (r) where z(¢)is an i.i.d. (0, 1) random

variable. Therefore, the simulated variance and mean process are drawn in Figure
3.1. In order to illustrate the impact of the mean model on the variance estimation, a
linear mean model is used to fit the simulated mean data and the variance is then
estimated from the modelling residuals using a GARCH model. Assume that the

linear mean model is chosen as the commonly used AR (1) model as

y(1)= B+ By(t-1)+&(r) (3.22)
x 107 Simulated variance process
1 T T
E‘. ) Mm |
W 4 J
0 500 1 000 1 500 20 2500 3000 3500 4000
Time sample
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0.3 T T T T T T r

0 560 1000 1500 2000 2500 3000 3500 4000
Time sample

Figure 3.1 Simulated variance and mean process
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The estimation of parameters 3, 4 are £, =0.0033 and S =0.1758 . Then a
GARCH (1, 1) model was used to fit the mean model residuals based on equation

(3.21) and the estimated results were 4)=4.9134e-6, 4, =0.1016, B, =0.8720.

The estimated variances are then drawn in Figure 3.2. It is obvious that around
sample point 1500 the estimated variance shows a significant difference away from
the simulated variance as in Figure 3.1. If the mean model is now correctly selected,
parameter estimates for the model (3.20) and model (3.21) are listed in Table 3.2.
The estimated variance is drawn in Figure 3.3. In order to give a comparison of the
estimated variance, the absolute differences between the variance estimated from the
linear mean model residuals and the simulated variance is drawn together with the

differences between the variance estimated from the nonlinear mean model residuals

and the simulated variance in Figure 3.4.

x 107 Estimated variance from residuals of linear mean model
25 - T T

Amplitude

-

U‘J | WM%M

500 2500 3000 3500 4000
Tnme sample

Figure 3.2 Variance from residuals of linear mean model

Table 3.2 Estimate parameters of the model (3.20) and (3.21)

Parameter of mean model (3.20) Value
a, 0.0016
aq 11.4709
a, -0.1049
Parameter of variance model (3.20) Value
A4, 3.3489%¢-6
4 0.0870
B, 0.8966
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x 10° Estimated \ariance from the residuals of nonlinear mean model

0.7 _

0.6} J
é 0.5¢ 4
g 0.4 J

0.3 ]

0.2

0.1} J Mj

0 .
0 500 3000 3500 4000
Tme sample

i

Figure 3.3 Estimated variance from residuals of nonlinear mean model
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Figure 3.4 Absolute differences between the estimated variance and the simulated variance of

linear and nonlinear mean model

It is obvious from Figure 3.4 that the nonlinear model can lead to much more
accurate variance estimation especially at the extreme event. The comparison results

indicate that if a nonlinear return process has been incorrectly fitted by a linear mean

55



Chapter 3 Introduction to financial mean model

model, the accuracy of the estimation of variance will be affected. Therefore, it is
essential to have an accurate mean model before the estimating the variance from the

residuals.
3.5 Conclusions

Although fixed terms nonlinear models have already been applied to model the mean
process, most of the literature still uses linear models to model the mean process as
explained in the introduction. As far as we are aware, there is no existing paper
which concentrates on term selection for the non linear mean model. However, it is
widely accepted that most real world data is nonlinear. The use of linear models may
therefore induce forecast accuracy problems as shown in the example in Section 3.4.
However, when the model is nonlinear, higher orders may cause the number of
terms in the models to increase significantly. This therefore raises the motivation of
modelling the financial return process using nonlinear models but with selected

model terms.
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Chapter 4: Weighted Orthogonal Forward Regression in
the presence of heteroskedastic (GARCH) noise

4.1 Introduction

System identification is commonly used approach to derive mathematical models of
unknown dynamical process. Mathematical models are essential for analysis,
controller design and forecasting. The identification of linear systems is based on the
popular Auto Regressive Moving Average with eXogenous (ARMAX) inputs model
(Box and Jenkins, 1970). However, in practice most systems in the real world are
nonlinear. The most comprehensive methodology for nonlinear systems
identification is based on the Nonlinear Auto Regressive Moving Average with
eXogenous inputs (NARMAX) (Billings and Leontaritis, 1981) model. The
NARMAX model can describe a wide range of nonlinear systems and includes other

popular classes of models such as Volterra, Wiener etc. as special cases.

During NARMA X model estimation, the most difficult part is to decide the structure
of the model i.e. which variables and model terms should be included in the model.
If redundant variables are falsely selected, the number of terms of the nonlinear
model may increase dramatically and the model may turn out to be overestimation of
the underlying process and sensitive to the training data set. Model structure
selection which is an essential part of the NARMAX system identification
methodology ensures that only the relevant model terms are selected in the model.
This results in a parsimonious model which describes the underlying dynamical

process rather than the estimation data set.

The NARMAX model structure selection is based on the Orthogonal Forward
Regression (OFR) algorithm (Billings et al., 1988, 1989, Korenberg et al., 1988,
Chen et al., 1989, Billings and Zhu, 1994). The OFR algorithm is also used to

estimate the unknown parameter simultaneously with the term selection. The
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NARMAX system identification methodology is arguably the most powerful

nonlinear modelling methodologies available at the moment.

One of the major assumptions made in the formulation of the NARMAX model and
the associated model structure selection and parameter estimation algorithms is that
the noise is homoskedastic. However, there are many situations in which the
assumption of homoskedastic noise is not valid such as when dealing with the
econometrics data, where the variance of the noise is not constant and in many cases
can be described by a GARCH process. If the noise is heteroskedastic, this will have
a negative impact on the performance of the model term selection and parameter
estimation algorithms, which have been derived under the homoskedastic
assumption. Specifically, this chapter demonstrates that the ranking of the candidate
model terms using the Error Reduction Ratio criteria (Billings et al. 1988, 1989) will

be affected leading to an incorrect model structure being selected.

The effects of heteroskedastic noise when performing ordinary least squares (OLS)
are well known (Bjorck, 1996) and can be addressed by using weighted least squares
(WLS). However, up to now the problem of model structure selection in the

presence of heteroskedastic noise has not be investigated or addressed.

The aim of this chapter is to investigate how heteroskedasticity affects the model
structure selection and parameter estimation algorithms used to identify NARMAX
models and to introduce a new Weighted Orthogonal Forward Regression (WOFR)
for NARMAX system identification in the presence of heteroskedastic noise. The
main assumption in this work is that the variance of the noise can be modelled by a
GARCH process. However, the proposed algorithm can also be used for other types
of variance models. The chapter is organised as follows. Section 4.2 introduces the
classical OFR algorithm. Section 4.3 investigates analytically the effect of
heteroskedastic noise on classical OFR model term selection algorithm and
introduces the new WOFR solution to this problem. Section 4.4 describes in detail

the iterative implementation of the WOFR algorithm. Section 4.5 presents numerical
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simulation studies demonstrating the applicability of the proposed algorithm and the

conclusion is given in Section 4.6.

4.2 Model structure selection and parameter estimation for

NAMRAX models

4.2.1 The Orthogonal Least Squares algorithm

According to Chapter 3, the polynomial NARMAX representation can be written as
M

y(1)= 30, (x(0) +£(1) @
i=]

where x(1) represents y(t—l),...,y(t—n),),u(t—d),...,u(t—n“),g(t—l),...,s(t—nc),
p,( ) are model terms which are a linear or a nonlinear combination of the
variables , £(1) is the modelling error, M is the number of all the distinct terms and
6, are unknown parameters related. And the matrix format of model (4.1) can be

written as
Y=PO+Z= 4.2)

where ¥=[y(1),7(2)a¥(N)] s P=[ProPrsvs P » B R(HY). (332 (5(N)]

©=[6,6,....6, ] and E=[£(1),£(2),...e(N)] -

Model (4.1) includes all possible polynomial terms for a given polynomial order. In
practice, only a small subset of terms is relevant for describing a particular nonlinear
dynamical system. Fitting a more complex model than required usually results in
overfitting and even instability. It is therefore essential to have in place a method for
selecting from the initial set of candidate terms and only the relevant model terms
are needed to construct a faithful representation of the underlying dynamical process.
One of the first model selection procedures for NARMAX models is based on the
Orthogonal Least Squares (OLS) algorithm (Korenberg et al.,1988). Assuming that
the matrix P in equation (4.2) is full rank it can be orthogonally decomposed as
P=WA 4.3)
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where Ais an M x M unit upper triangular matrix and W is an N x M matrix with

orthogonal columns w,,w,,...,w,, such as W'W =D =diag|d,,d,,...d, ] with
N
w,)=> w,(f)w,(r). Equation (4.2) then becomes
1=
Y=P(4'4)0+E=(P4")(40)=WG+E (4.4)

where G = [gl,gz,...,gM ]T is an auxiliary parameter vector given by
G=D"'W'Y-D'W'=E 4.5)

. The estimated G is therefore given by

G=D"W'y (4.6)
which gives
g = {Fow) (4.7)
(w,ow,)

as the original estimates according to Korenberg et al. (1988). The OLS procedure

can be summarized as follows:

wy (1) = py (1) =

w,(1)=p,(¢) Za,, w (1), i=l.,M (4.8)
N
Zp,(t)w

a, =Hg—, 0<r<i-1

and
B 1 &
8, = NZ (4.9)
1=1
N
2.y (1w, (1)
g, = (4.10)
2w (1)
=1
The estimated parameters 0, , i=0,1,..., M can be calculated as
M
,=Z§,c, (4.11)

1]
<
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where
¢ =1
il 4.12
cm=—2amcr, i<ms<M 12
Multiplying equation (4.4) by itself of both sides the equation becomes
YV'Y=G'WWG+E'E+G'W'E+E"WG (4.13)

After taking expectation of both side, the expectation of two terms G'W'ZE and
E'WG are zero and equation (4.13) becomes

1 N ) ] N M - l N s

W;y (t)=—]\7;(;g, W (’)J+'J\7;£ (r) (4.14)

The contribution to the variance of the output of regressor w;, is given by

Y gl (0) (4.15)

Therefore, the Error Reduction Ratio (ERR) due to the termican be defined as

N
> g (1)
1=] ;
ERR (%)=—"———x100, i=1,2,...M (4.16)

l N

ﬁ;yz(’)

The significance of the model terms can then be determined by the value of ERR of

each term. The structure of the models can be decided by choosing the terms with

ERR bigger than threshold value.

The OLS algorithm has one major drawback which is the algorithm depends on the
entirc orthogonalization path which means that the ERR for a regressor p(k)
depends on its position in the orthononalization sequence. As a result, the ERR does

not capture accurately the true significance of a particular model term. Therefore, the

Orthogonal Forward Regression (OFR) is proposed to remove the drawback of OLS
by Billings et al. (1988).
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4.2.2 The Orthogonal Forward Regression algorithm

The OFR is a modified version of the OLS. In the initial stage of OFR, all terms

p,(1) i=1,2,..,M are considered as potential candidates for w,(¢). Then at first
iteration of the algorithm, w| () is assumed to equal to p, (¢)for all i=1,2,.., M.
The initial g, and ERR/ are calculated as

DXGETD (&) 2wy

= » ERR{ (%)= = (4.17)

> (w(0)) 2000

=]

The term with maximum ERR is then selected as the most significant term of the
model. The term is then removed from the candidate terms and in the second

iteration, the ERR of all remaining candidate terms are re-evaluated. Assuming that

p(j)was selected in the first iteration, the second iteration involves computing the

following quantities

oy = (4.19)

The second most significant term will be chosen as the term with the largest ERR
from the remaining candidate terms. Subsequently this term will be removed from

the candidate terms and the selection process will be continued in a similar manner

until the unexplainable variance of the system I—ZERR, is less than pre-set desired

i=1
tolerance. In practice, usually m <M . The selected orthogonalized model is given

by
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y(1)=2 w (1) +e(r) (4.20)
i=1
which is equivalent to

y(1)=>.0p (x(1))+£(r) 4.21)

i=l

The parameters é, can be calculated by equation® = AG with G = [g,,gz,...,gm]"' and

I a, aq,,
0 1 a,,
A=|: i : 4.22)
o - 1 a,,,
0 - 1]

The structure of the model can be obtained once the selected model has passed the
validation tests such as higher order correlation test introduced by Billings and Voon

(1986).
4.3 Weighted Orthogonal Forward Regression

The NARMAX model together with OFR algorithm has been used in practical
applications proving to be one of most effective nonlinear system identification
methodology. However, there are many situations, particularly when dealing with

econometrics data, when the constant noise variance assumption is violated.
4.3.1 OFR performance in the presence of heteroskedastic noise

Let’s assume that the variance of the noise is time varying. Specifically the noise

£(t) is assumed to be given by

e(t)=z(1)o (1) (4.23)
where z(r)is i.i.d. random variables with zero mean and unit variance and o (r)is
the time varying standard deviation. Since z(r)is not correlated with a(r), the

mean of residuals is
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%{-lz::(z(t)a(t))=0 (424)

Let’s assume the following regression mode! terms is
y(1)=2.6,p,(1)+() (4.25)
i=1

where p, (t),i=1,...,m are known model terms and §,,...,6, is unknown parameter

vectors. The model (4.25) can be orthogonalized as
y(1)=> gw (1)+£(r) (4.26)
i=]

where g and w, are defined as in section 4.2. The heteroskedastic noise is assumed

to be described by a GARCH (1, 1) model (Bollerslev, 1986) as
o?(t)= 4+ Ae(t=1)’ +Bo* (1-1) (4.27)

where A, 4,, B,are unknown parameters and the time varying standard deviation can

be derived from model (4.27) as

=4+ 4z(1-1) + B (1-1) (4.28)

By substituting (4.28) into (4.26), it follows that

Zg,w,(t )+ z(1)y 4 + Az (1-1) + B (1-1) (4.29)

The unexplained variance ratio according to the definition of ERR is given by
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)
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N

(4.30)
where non-regressor-related terms are
A N N
A"+7ley(t—l)2 Za(!—l
= = (4.31)

T2l

N
The term Za(t—l)2 is assumed to be known because we assumed that the model

1=]
terms are known. Therefore, according to the definition, the ERR of each regressor

when the noise is heteroskedastic is given by
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> (e (0 + 3 (e (=) =22 (1) (-)

ERR, == -l (4.32)

| y;(y «y)

Equation (4.32) is derived based on the assumption of known model terms. If the

model term is unknown, a simple example is used to demonstrate the impact on ERR

of heteroskedastic noise. Considering a simple model with two regressors as
y(t)=ap (t)+a,p,(1)+e(1) (4.33)
where p (1), p,(t) are regressors related with lagged y(¢) and &(r) is

heteroskedastic noise and the time varying variance is assumed to be formulated by
GARCH (1, 1) model. According to the OFR algorithm, in the first step the ERR for

first term is calculated as

. (vp)
g ~(t.N{p.p)

$0n0)

_ \r=l

Sy

1=t 1=l

(i(am () +ap,(1)+e(1) P, (f))2

_ \r=l

ﬁ]a]m(t)+azpz(t)+€(’))zﬁ:p.(’)z

=1 t=1

(San(0n(0-anl0 a0 +:0n0)|

1=]

ﬂ(qp.(f))z +ap, (1)) () +2aa,() po(1) +2ap, (1) (1) + 22,1 (1) )Zp,

(g(alpn (t) b (t) tap, (’) b (t)))z
(am (1)) +(ap. () +(=()) +2aan (f)pz(t))ipl (t)

=1 =1

=z

(4.34)
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After substituting (£(r)) by z(t)z(A0+Al£(t—])2+B,a(t—l)2), the (4.34)

becomes

(ﬁlmtm(r)m(rm(o))
mﬂ= 1=} N .
S(an (o) Hap (0 +<(o] (4 +4ci-1} +Bofe-1)+2aan() ) Sn()

=l =1

(” anlltsan(inl) |
(NI cm(t))z+ﬁazpz )+Zz *(4-+4elr-1) +Bote-) )+24a22ﬂ

1=l =1 =1

(N qa(!)a(ﬂ*‘%(ﬁn(ﬁ)}
( a0 +31e (0] <314 +dcti=4 4501t} +240 3 30 ]zﬂ h

O

(4.35)

In the case that the variance of the noise is constant, the amplitude of the noise is

different with that of the heteroskedastic noise. Therefore, the value of the regressor

7,(1).P,(1) under constant variance noise is different with the value of

p.(1), p, (1) as the lagged y(r)are assumed to be contained in these regressors. The

ERR of the first term in the first step of OFR under constant variance noise is given

by
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mR - DAl

(4.36)

(San0)ran 0 re0)70)|
(@, () + a5, (1) +2 () 37 0

=] !

[ZN:(a.ﬁ, (1) () + 4P, (1) P, ([))]z

=]

M=

N

Z((G,ﬁ. (’))2 +(a,p, (’))2 +(§(’))2 +2a,a,p, (1) P, (’))g (1)

=]

Comparing with (4.35), both the numerator and denominator of the ERR are

N
different and the term Z(AO+A,g(t—l)2+B|a(t—l)2) in equation (4.35) is not
1=

equal to (E(t))2 in equation (4.36). This indicates that the fact that the noise
variance is not constant and will affect the value of the ERR associated with the term
p, (1) in the first step. The ERR of term p, (¢) will also be affected in a similar way.

The changes of the ERR values may change the order in which the candidate
regressors are ranked according to their ERR value and will impact on the term
selection procedure. Ultimately, this will lead to an incorrect model structure being
identified. This will be demonstrated later in this chapter using numerical

simulations.

In order to obtain the correct ERR values in the presence of heteroskedastic noise, it
is essential to implement a Weighted Least Squares (Bjorck, 1996) approach where

the weighting sequence is selected as the inverse of the time varying standard

deviation of the noise. Multiplying z’) on both side of equation (4.26) gives
o
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»(1) _,Z::H’p' )
o) o)

+2(1) (4.37)
Denoting '}%by '()and P ((t)) as p!, equation (4.3) can be written as
y(1)= i&p,’(t)+ z(1) (4.38)
=1

The relative unexplainable variance of the system is given by >y - Of course,

in practice the time-varying standard deviation is unknown. To deal with this
problem, a weighted orthogonal forward regression algorithm is introduced in the
next section. Under the assumption that the structure of the variance model is known,
the WOLS algorithm allows the identification of the correct NARMAX mean model
structure and the estimation of the weighting sequence and of the parameters of both

the variance and mean models.
4.3.2 Weighted Orthogonal Forward Regression
The model (4.37) can be rewritten in matrix form as follows
O'Y=0"'PO+2Z (4.39)
where Q' is a diagonal matrix whose elements are the inverse of the standard

deviation o () at each sample point and Z is the z(r) vector in (4.37). The part
Q7' PO can be rewritten as Q7'PO = Q"P( 'A)G) and where Q7'PA™' can be

represented by W and 4® by G and (4.39) can be rewritten as
Q'Y=WG+2Z (4.40)

The auxiliary parameter vector G can be approximated as
G=(w'w) WY 4.41)

The estimation of G is unbiased and sufficient because
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W”'z) (4.42)

and

(4.43)

where E( ) operation is the expectation and E (Z 'z ) is equal to 1. According to the

procedure of OFR, the first most important term is selected by letting g = Q™' p, and

the g for each term in the first iteration is

_IY, -1
g = _{_QTQ—_IP’> (4.44)
(07p.07p,)
. Therefore, the weighted ERR for each term in the first iteration is
—IY’ -1y 2
WERR' = (0"7.0"p) «100% (4.45)

(07r,07r)(0"p,.07p,)

Then, in later nth iteration the OFR will be applied by using

n-l
E,Mh = Q_IP, _Zaklgk (4.46)
k=l
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<_ — > and g, is the selected term from step 1 to n-1. The weighted
8k 8k

ERR in step n becomes

WERR" = (o, g’"> x 100% (4.47)
' <Q"Y, Q_1Y><§In’§’n>

Assuming the o

i, is the minimal value among all the diagonal elements of the
matrix Qand Q, ..

=0,/ where Iis an identity matrix with the same rank as Q,
there is

o™ <le-.

(4.48)
where " || denotes the norm of the matrix. Similarly, there is
lo7'|2]on (4.49)
Therefore, the term <Q"Y, Q"p,> in equation (4.47) has the property of
<Qr:1:1xY’ Q;x:xpl> S <Q_IY’ Q_lp:> S < ;ﬁlnY’ Qx;iln[)l> (450)
As O = ! 7and ~! =, the equation (4.50) can be written as
o-nax min
1 - - |
= (r.p)<(Q'r.0 'p,>5(,z, (¥,p,) (4.51)
Accordingly,
1 _ N 1
= (r.Y)<(Q'r,07r)< — (r,Y)
';"‘" min | (4.52)
——(p.p)<(0"P.0"P) < = (P P)

min

Therefore, in the first step of the weighted OFR the weighted ERR can have a bound
as

1 i i |
Y9 i Y, i Y, , Y’ D,
o-jfax < ’ > o;'f“‘" < i > <WERR"' < leiin < i >0'1.fnn < > 4.53)
ol (r.¥) ol (PP} ol (r,Y) = {(p..p,)

max
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v.p) .
As ERR' = ———<——p’—>——, the weighted ERR in the first step can change within the

(r.Y)(p..p.)
bounds as
ot o’
—a ERR,""' < WERR,""’ <o ERR,""’ 4.54)
o-max o-min

Therefore, the ERR' can be written as ERR™ =WERR' +¢!" where e, is the

fluctuation caused by the heteroskedastic noise. Considering the extreme case in

4
previous example model (4.33), if the ERR™ > ERR)" however —qj‘i

max

4

4
WERR" = —Z‘:"—"ERRI"" and WERR," = g-%‘iERRz"” , there is very likely that the rank

max min
o o!
of the significance will change because —3* may be far larger than —*% . Even the
min max

shift e/ may not cause term selection changes in the first step we think it may shift

the ERR value in later steps the term selection in later step may be impacted.
Simulations will be given to indicate this situation. Therefore, the introducing of
weights allows the OFR algorithm evaluate the real contribution of each candidate

terms in the presence of heteroskedsatic noise and produce efficient and unbiased

parameter estimation.

However, the time varying variance is usually unknown. If the structure of the
variance model is know, (@ GARCH model in our case) the variance can be

estimated iteratively. The iterative WOFR procedure can be summarized as follows:

(1) Estimate parameters for a candidate model using LS method and derived the

modelling residuals.
(2) Estimate the time varying variances from the modelling error of step (1).

(3) Apply WOFR to the reference mean model and select the most important

terms.
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(4) Re-estimate the time varying variance and re-calculate the parameter of the

selected mean model with WOFR.

(5) Repeat step (4) until the parameters of the mean model converge.

4.4 Simulations

In this section, several examples are provided to illustrate the efficiency of the new
WOFR algorithm for model term detection under heteroskedastic noise. In all

examples, only one step ahead prediction is considered.
4.4.1 Example 1: linear AR model

The first example considers a simple linear mean model which is given by
y()=ay+ay(t-1)+a,y(t=2)+a,y(1-3)+&() (4.55)
It is assumed that the time-varying variance of the noise is described by a

GARCH(1,1) model. The variances and the residuals are simulated iteratively as

g(t)=z(t)o(r)and can be given by the variance o(1)and a normally distributed
variable z(r) with unit variance. Parameters of linear mean model and GARCH

model are listed in the Table 4.1.

Table 4.1 Parameters of simulated mean model (4.55) and GARCH(1,1) model

Parameters of linear mean model (4.55)

da, q, a, a,
le-2 0.6 -0.55 0.25
Parameters of GARCH(1,1) model
4, 4, B,
3e-6 0.075 0.92

The number of data points that were generated was 4000. The generated residuals

and the time varying variances are shown in Figure 4.1.
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Figure 4.1 (a) Time varying variances simulation figure and (b) residuals simulation figure

Firstly, the simulated data was used to identify the model using the WOFR algorithm.
The set of the candidate model terms was generated based on a second order

nonlinear NAR(5) model. The candidate model term set are given by

P = [Constant , y(t—]),y(t—-l)z,y(t—2) ,y(t—2)2 ,y(t—?)),y(t—?:)2 ; y(t—4) ;
y(t-4)", y(t-5), y(t—S)2 L y(E=D)y(t=2), y(t=1)y(r=3), y(t-1)y(t-4),
y(e-)y(=5) . y(e-2)y(e=3) , y(t=2)y(t-4) , y(-2)y(¢-5) |

y(t=3)y(r-4),y(t-3)y(t=5),y(t=4) y(1-4)]
(4.56)
Table 4.2 shows ranking of the terms according to the standard and weighted OFR

algorithm.
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Table 4.2 Term ranking generated by OFR and WOFR based on the candidate terms equation

(4.56) using data in Figure 4.1

Rank Standard OFR Weighted OFR

Term ERR (%) Term ERR (%)
1 y(t—l) 20.665 Constant 25.761
¢ y(t—4) 9.4014 y(t—l) 6.9721
3 y(t—2) 5.2491 y(t—2) 10.440
4 Constant 6.4203 y(; bt 3) 3.2534
2 y(t—3) 2.3972 y(t—4) 0.10805
6 ( . ) (,-4) 0.20181 y(t—l)y(t—4) 0.42568e-1
7 y( ) (, 5) 0.10697 y(t—S) 0.32366e-1
8 y(, 1) (, 1) 0.94316e-1 y(t—l)y(t—l) 0.14393e-1
9 (t—l)y(t 5) 0.87810e-1 y(t—l)y(t—S) 0.27351e-1
10 (, 4)y( 4) 0.46674¢-1 y(t—l)y(t—2) 0.26762¢-1
11 y(t—l) ( 2) 0.41264¢-1 y(t—l)y(t—3) 0.22775e-1
12 (,_1) (, 3) 0.13911 y(t-—2)y(t—-3) 0.29313e¢-1
13 y(t 2)y(t 2) 0.14985¢-1 y(t—2)y(t—2) 0.20029¢-1
14 y(t—5) 0.1649¢-1 y(1—2)y(t—5) 0.10955e-1
15 y(t—S)y(t 5) 0.68806e-2 y(t—S)y(t—S) 0.72217¢-2
16 y(, 3)y(t 5) 0.14162e-1 y(t—4)y(t—5) 0.11567e-1
17 (, 3)y(,_4) 0.41362e¢-2 y(; —4)y(t—4) 0.20384¢-2
18 y(t 2)y(1 5) 0.37594e-2 y(t—3)y(t—5) 0.16895¢e-2
19 (, 2)y(l—4) 0.53579e-2 y(t—3)y(t—4) 0.10955¢-1
20 (f 2)y(t—3) 0.49603e-2 y(1_3)y(1_3) 0.72218e-2
21 y(t=3)y(t 3) 0.46408e-2 | y(1-2)y(1-4) 0.24510e-2

It is very clear that OFR algorithm ranks incorrectly the term y(¢—4)which is not
part of the model (4.55). When WOFR is used, the value of WERR associated with
the term y(r—4)is very small and the term is ranked after all four correct terms in

the model given in (4.55). Based on the WOFR initial ranking, the first 4 terms are
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obviously more significant than the rest of the terms in term of ERR values.
Therefore, the cutoff value can be selected as 1 (Wei and Billings, 2004) and the
first four terms are treated as selected as mean model terms. The parameters are then
re-estimated iteratively until these converge. The estimated parameters for mean

model and variance model after 10 iterations are listed in Table 4.4.

Table 4.3 Estimates of the parameters of the mean and variance models after 10 iterations of

the WOFR algorithm

Mean Model

Term Parameter estimates | Standard Deviation Real parameter

Constant 0.010245 2.1783e-7 le-2
y(, - 1) 0.55698 2.6569¢-4 0.6
y(, _ 2) -0.52717 2.7283e-4 -0.55
y(,_3) 0.25355 2.6253e-4 0.25
GARCH (1,1) model

Parameter Parameter estimates | Standard Deviation Real parameter
A, 6.05929¢-6 2.7744e-12 3e-6
A 0.078558 7.8478e-5 0.075
B, 0.91229 8.9073e-5 0.92

The parameters of mean model and variance model at each iteration are plotted in
Figure 4.2 and Figure 4.3. It can be seen clearly from Figure 4.2 and 4.3 that the

parameters estimation converged very quickly for both the mean model and GARCH

model. The autocorrelation of squared residuals &(¢) and squared standard error

2
et A . . .. . A
z(t)2 = A( )2 where & (¢)is the estimated standard deviation from the last iteration
olt

of WOREF are plotted in Figure 4.4 with blue line are the 95% confidence interval.
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Figure 4.2 Evolution of the parameter estimates at each iteration for the selected linear mean

model
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Sample Autocorrelation Function (ACF) of squared residual Sample Autocorrelation Function (ACF) of squared standard residuals

1 T
1 \
08" 1 08
06f { 0.6¢
od -
0 24-\” 0.2 |
2% . ] P ]
L SRR AR
T T TS o o N e |
0 [LLLITIT S 'T“’I.H*I‘T‘. ”ﬂ'\"w
02 ; . . . . ; ; ; i
0 20 40 60 80 100 0 20 40 60 80 100
Lag Lag

(a) (b)

Figure 4.4 (a) Autocorrelation of the squared residuals dt)zand (b) squared standard residuals
2(t)

The autocorrelation results of the standard residuals indicate that both the mean and
variance model have been sufficiently modelled and the information related with
time varying variance are removed after modelling. This example clearly
demonstrates the need to use the WOFR algorithm in the presence of heteroskedastic
noise and the performance of the proposed algorithm in identifying a linear model

structure based on a nonlinear candidate model structure.
4.4.2 Example 2: second order nonlinear AR model

This example considers the following nonlinear model
y()=a,+ay(t=1) +a,y(t-2)+&(1) (4.57)
The variance model is assumed to be the same GARCH (1, 1) model used in

Example 1. The parameters of the model (4.57) are listed in Table 4.4

Table 4.4 Parameters of nonlinear mean model

Parameters of nonlinear mean model

a, a, a,

0.01 2.5 -0.5
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The sample length is 4000 and the simulated time varying variance and residuals are

drawn in Figure 4.5.

-3

x 10
4
3
2
1
o 1 1 L 0.2 L L L

0 1000 2000 3000 4000 0 1000 2000 3000 4000
Simulated time varying variance of nonlinear mean model Simulated Residuals for nonlinear mean model

(a) (b)

Figure 4.5 (a) Simulated time varying variance and (b) simulated residuals for nonlinear mean

model

The candidate model terms generated based on a NAR (2, 5) model are the same as
the ones used in the previous example in equation (4.56). The results of applying the
OFR and WOFR term selection algorithms are listed in Table 4.5 with all the terms
ranked in order of significance as measured by the ERR and WERR respectively.
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Table 4.5 Term ranking generated by the OFR and WOFR term selection algorithms based on

the candidates in equation (4.56)

Rank Standard OFR Weighted OFR

Term ERR (%) Term ERR (%)
1 y(t - 4) 10.618 Constant 12.987
2 y(t—2) 5.1401 y(1-2) 19.560
3 Constant 12.925 y(t-l)y(t—l) 1.3224
4 y(t—l)y(t—l) 3.4736 y(r-1) 0.86001e-1
3 y(t—l) 0.18118 y(,_3)y(,_5) 0.47232e¢-1
6 y(t=3)y(t-5) 0.11344 y(1=5) 0.31229¢-1
7 y(t—2)y(t—2) 0.45682¢-1 y(, z)y(, 2) 0.29616e-1
8 y(t—4)y(t—5) 0.29381e-1 y(r- )y(t—4) 0.26163e-1
9 y(t=1)y(r=5) | 0.18653¢-1 y(t=2)y(t- —4) | 0.1626le-1
10 y(1=1)y(t-3) 0.26716e-1 y(1=3)y(t=4) | 0.10894e-1
11 y(1-3) 0.25510e-1 y(r-4) 0.20663e-1
12 y(t=3)y(r=3) | 0.37283e-1 y(t=5)y(¢=5) | 0.39993¢-2
13 y(1=5)y(r=5) | 0.38987e-1 y(t=1)y(¢1=3) | 0.40746e-2
14 y(1=3)y(r-4) | 0.27419-1 y(t—2)y(t—3) 0.38241e-2
15 y(t=2)y(r=3) | 0.19808e-1 y(t-1)y(t-5) | 0.42474e-2
16 y(t—2)y(t—5) 0.27419¢-1 y(r- ) (r-5) | 0.26509e-2
17 y(,_4)y(,_4) 0.17887e-2 y(t 2)y(,..5) 0.33273e-2
18 y(t—l)y(t—Z) 0.11393e-2 y(1-3) 0.16864¢-2
19 y(1-5) 0.85652¢-3 y(t=1)y(r-2) 0.15553e-3
20 (r=2)y(r-4) | 0.35365¢-3 y(1=3)y(1-3) 0.23747¢-4
21 y(t-1)y(r-4) | 0.29914e-4 y(r-4)y(r-4) | 0.19142e-5

It can be seen from Table 4.5 that the heteroskedastic noise can impact the OFR term

selection. The term y(7—4)is wrongly selected as the most important term by the

OFR algorithm. The weighted OFR algorithm however, correctly identified the
correct set of terms and the terms having grey background in Table 4.5 are selected

as the mean model terms. Subsequently, the iterative reweighted procedure is used to
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refine the parameter estimates for both the mean model and the variance model. The
parameters of selected mean model and variance model at each iteration are drawn
in Figure 4.6 and Figure 4.7. It can be seen from Figure 6 that the estimated
parameters converge very quickly as in the linear mean model example. The
parameters in the last iteration are listed in Table 4.6 and the autocorrelation test of
squared residuals and squared standard errors are drawn in Figure 4.7. The
autocorrelation tests of the standard squared residuals indicate that both the mean
and variance model have been sufficiently modelled and the information related with
time varying variance are removed after modelling. The simulation results of
nonlinear AR models can verify the efficiency of the iterative WOFR algorithm in
model term selection when the noise is heteroskedastic.

00101 ' ' Cons}ant ' Vs , 'y(t- 1 )y'(t- 1)
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Figure 4.6 Evolution of the parameter estimates at each iteration for the selected nonlinear

mean model as in Table 4.5
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Figure 4.7 Evolution of the parameter estimates at each iteration for GARCH (1, 1) model

Table 4.6 Estimated parameters of nonlinear mean model and GARCH (1, 1) model after 10

iterations of the WOFR algorithm

Mean Model
Term Parameter estimates | Standard Deviation Real parameter
Constant 0.010127 1.0144e-7 0.01
y(, ol l)y(t _ 1) 2.9369 2.6569¢-4 2.5
y(t _2) -0.50182 2.7283e-4 -0.5
GARCH (1,1) model
Parameter Parameter estimates | Standard Deviation Real parameter
4, 2.44491e-6 6.1360e-13 3e-6
A 0.060068 4.5975e-5 0.075
B, 0.93476 5.0408e-5 0.92
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Sample Autocorrelation Function (ACF) of squared residuals Sample Autocorrelation Function (ACF) of squared standard residuals
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Figure 4.8 (a) Autocorrelation of the squared residuals 8([)2 and (b) squared standard

residuals z(t)2

4.5 Conclusions

This chapter has introduced an iterative Weighted Orthogonal Forward Regression
(WOFR) algorithm which addresses the problem of model term selection in the
presence of heteroskedastic noise. The main assumption here is that the variance
model structure is known. Specifically, we have investigated the case in which the
variance is described by a GARCH (1, 1) mode. This is often the case when dealing
with econometric data sets. Theoretical results demonstrating the effects of
heteroskedasticity on conventional OFR which assumed that the noise has constant
variance has been derived. Once the model terms have been selected, the parameters
and variance are re-estimated iteratively to achieve convergence. Correlation tests
are used to indicate the sufficiency of both the variance model and mean model.
Two numerical simulation examples were used to illustrate the negative impact of
the heteroskedastic noise on conventional OFR and to demonstrate the effectiveness

of the WOFR algorithm for model structure selection and parameter estimation in

the presence of such noise.
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Chapter 5: Cross validation between NARMAX and
GARCH model

5.1 Introduction

Chapter 4 has shown the impact of heteroskedastic noise on the mean model term
selection. When a significant term in the mean model is not selected or a linear mean
model is falsely used to fit a nonlinear mean process, the resulting residuals will also
cause inaccurate estimation using Maximum Likelihood (ML). Therefore, the
variance model estimated using ML will be affected simultaneously. Since there
appears to be no relevant publication to explain this problem, this chapter derives
theoretical results to show the impact on the ML estimator when the mean model is
not well selected and where some information is still contained in the residuals. In a
practical application, it is natural to try and develop a statistical method to verify this
impact and to simultaneously validate the mean model and the variance model.
Cross Validation (CV) (Devijver and Kittler, 1982) is a statistical technique which is
used to analyse the prediction performance of a fitted model and is suitable for both
large data and small data sets. CV can give an indication of how accurately a model
can forecast over independent test data and there are several CV methods which are
commonly used in practice. Those methods include the holdout method, K-fold CV
method and Leave-one-out CV method. The holdout method is the simplest and the
data set is split into two parts. One part is used to fit the model while the other part is
used to test the forecast performance. The K-fold CV method is an improved method
based on the holdout method as the data set is divided into k subsets and the holdout
method is repeated k times. The leave-one-out CV is an extreme case of the K-fold
CV method with K equal to the data length. Since the purpose of this chapter is to
validate time series models, leave-one-out CV is not appropriate here as
autocorrelation will always exist in the time series data and removing one time

sample in the middle of the data may lead to discontinuity of the data. Therefore, the

holdout CV method will be used in this chapter.



Chapter 5 Cross validation between NARMAX and GARCH model

Once the mean model and the variance model are fitted, the i.i.d. assumption of the
standard residuals will be tested to validate the fitted models. The Brock, Dechert
and Scheinkman (BDS) test which was firstly introduced by Brock, Dechert, and
Scheinkman (1987) uses a nonparametric technique and has good testing power
against a wide class of data departing from i.i.d. as nonstationarity, nonlinearity, and
deterministic chaos. Many researchers have analyzed this method for example
Abhyankar et al. (1995), Barnett et al. (1993), Chavas and Holt (1991), etc. and the
BDS test has also been proved to have the ability to detect nonlinearity in
econometric models (Brock et al., 1991). Brock, Hsieh and LeBaron (1991) used
Monte Carlo simulations to obtain the distribution of the BDS test from the
standardised residuals of a specified GARCH model and Bollerslev et al. (1993)
concluded that the BDS test has the power to test the ARCH effect and the i.i.d.
assumption of standardised residuals when the variance model or mean model is
miss-specified. Hsieh (1993) applied the BDS test to the logarithm of currency
prices and concluded that none of the currency prices exhibited i.i.d. Barnett et al.
(1997) showed that BDS test has power against a wide range of nonlinearity and i.i.d.
Brock et al. (1996) applied the BDS test to the standardized residuals of GARCH
models and Brooks and Heravi (1999) suggested using the BDS test jointly with
other tests to detect the mis-specifications of the model. Ahlstedt (1998) tested
standardized residuals of a GARCH (1, 1) model to currency data and Caporale et al.
(2004) applied the BDS test to test the adequacy of the GARCH specifications by
using Monte Carlo analysis. Mangani (2009) used the BDS test to verify the
significant of the GARCH (1, 1) model when fitting to data from the JSE Securities
Exchange of South Africa. Therefore, the BDS test has been commonly adopted by
many publications to test the i.i.d. assumption of the GARCH class of models.
However, when the test fails it is usually difficult to distinguish whether the mean
model is not sufficient or the GARCH model is not sufficient. If the most significant
terms of the mean model are accurately selected, the autocorrelation of the residuals
should be below the 95% significance line and the one step ahead prediction errors
should be close to random. When the variance sequence is well approximated by a

GARCH model, the i.i.d. assumption of the standard residuals and standard
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prediction errors should not be rejected. When the mean model is not correctly
selected, the autocorrelation of the prediction error will have outliers and the i.i.d.
assumption will be rejected when the variance is not well predicted. Accordingly,
this chapter proposes to combine cross validation with the BDS test to validate both
the mean model and the GARCH model. It was shown in Chapter 4 that the WOFR
algorithm can improve the term selection of the mean model when heteroskedastic
noise exists and therefore, during the simulations in this study, the WOFR algorithm

will be employed.

The purpose of this chapter is to determine the impact of the term selection of the
mean model on the ML estimator, extend the application of the WOFR algorithm,
and propose a new method to validate both the mean model and the variance model.
Simulations will be given to indicate the effectiveness of this new approach. Section
5.2 introduces the normal distribution testing methods. Section 5.3 derives
theoretically the impact of the mean model term selection on the ML estimator.
Section 5.4 provides a description of the BDS test and Section 5.5 gives the general
procedure of CV to validate both the fitted mean model and the variance model.
Section 5.6 illustrates the effectiveness of the above methods by simulation

examples and Section 5.7 is the conclusions.

5.2 Testing the distribution assumption

Since the pioneering work of Engle (1982), a time varying variance is commonly
fitted using a GARCH class of models and the ML estimation method. The ML
method is a popular statistical method but the distribution function of the residuals
has to be known apriori to formulate the likelihood function. Violation of the
distribution assumption may lead to an inaccurate statistical inference. Therefore,
before applying the ML method, the distribution assumption needs to be tested. The

normal distribution is one of the most commonly used distributions and the

distribution function is
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(x-n)’

f(x)= e 20 5.1

where o is the standard deviation and x is the mean. The density function is
symmetric with the shape of a bell curve which is drawn in Figure 5.1 with
4 =0,0 =1. However, in the real world, the normal distribution assumption will not
be satisfied. Chapter 2 has introduced the QMLE method which can compensate the
estimation errors for a fat tail distribution. Therefore, if the fat tail has been detected,

the QMLE method will be adopted to compensate the estimation error.
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Figure 5.1 Normal distribution density function plot

S.2.1 The JB test

There are many methods which have been developed to test for normality. The JB
test which was first proposed by Jarque and Bera (1980) uses Lagrange multiplier
procedure to derive the test statistic. The JB test statistic can be expressed as

JB=§(S2 +%K2J (5.2)

where S is the skewness statistic and K is kurtosis statistic. S and K can be

calculated from

87



Chapter 5 Cross validation between NARMAX and GARCH model

| & 3
~ 2 (x-%)
s=_N'a : (5.3)

(300

. %g(x, -%)° ]
(7Ze-o7)

where x, is the sample value at time i, X is the mean of the data and N is data length.

3 5.4

The JB statistic has a Chi-squares distribution with two degrees of freedom and the
null hypothesis is that the data is normally distributed. If the data is normal, the
sample skewness statistic is 0 and the kurtosis statistic is 0 and any departure of
those two statistics will increase the JB test statistic. However, when the sample
length is small, the chi-square distribution becomes right skewed and the test
statistic is over sensitive. Therefore, the JB test is usually used to test large data sets.
The Table 5.1 lists the JB testing results on matlab simulated normally distributed
data and Student t distributed data. Table 5.1 shown that the JB statistics rejected the

Student t distribution as the value of JB test is bigger than 3.

Table 5.1 Tests on simulated normal data and Student t distributed data

Data distribution normal Student t
Data length 4000 4000
Skewness 0.0226 0.0449
Kurtosis 2.8911 4.5008
JB statistic 23173 376.7372
5.2.2 The QQ plot

The QQ plot is a graphical method to compare the probability distributions of two
groups of data based on quantiles. The quantile means the percentage of points
below a given value. A reference line which is the line y = x is drawn before the test

and if the distributions of the two data sets are similar, the quantiles should
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approximately overlap the reference line. Otherwise, the greater the departure is, the
more different the two testing distributions will have. There are several advantages
of the QQ plot. As the QQ plot is non parametric, the tested data lengths are not
necessarily equal. The QQ plot can test many distributions and it can also test the
distribution aspect simultaneously as the symmetry, and the presence of the outliers.
Figure 5.2 demonstrates the QQ plot of a normal distributed data with the normal
reference line and Figure 5.3 shows that the normality has been rejected by a group
of data generated from a Student t distribution. Since the probability density of the
Student t distribution has fatter tails, the quantiles of the sample data departs from
the reference line on both sides. Therefore, the QQ plot can indicate directly about
the tail behaviour of the tested distribution.

QQ Plot of Sample Data versus Normal

Quantiles of Input Sample
o

-4 -3 -2 -1 0 1 2 3 4
Theoretical Quantiles

Figure 5.2 QQ plot of data generated from normal distribution versus normal
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QQ Plot of Sample Data versus Normal
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Figure 5.3 QQ plot of data generated from Student t distribution versus normal
5.3 Impact of the mean model term selection on the ML estimator

Consider an orthogonalized true process model defined in Chapter 4 equation (4.13)

y(1)= 2g,w, (1)+e(r) (5.5)

If part of the significant terms have not been selected and contained in the terms

M m
Zp gw,(7) and the selected terms are assumed to be ) gw, (1) where the m

i=m+1 i=1

represents the selected term number, Mp represents the number of unselected terms

and M = m+ Mp , then equation (5.5) can be written as

y(t)=§g,w, (z)+§l g (D) +2(1) (5.6)

If the terms used to model the mean do not contain all the significant terms,

especially as a linear model is commonly used to model nonlinear process, therefore
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information of related to unselected significant terms may be contained in the

residuals. Accordingly, the modelling error e(f) becomes

e()=3 g (1)+e(0) 5.7)

1=m+l

Then this modelling error will be used to estimate the parameters of the GARCH
model using the ML method. According to the ML estimation routine, the likelihood
of the logarithm of the probability density function will be maximized and the
parameter updating algorithm-Berndt, Hall, Hall and Hausman (1974) (BHHH)
algorithm is commonly used. The first step of when using the ML estimator is to
specify the initial parameters to calculate the likelihood values at the first iteration.
In order to give a comparison, consider that the variance process is generated by a
GARCH (1, 1) model and assume that the initial specified parameters are a,,a/, 3, .
Then the calculated variance in the first iteration of BHHH algorithm is

W (1)=al+ale(r=1)" + B (1-1) (5.8)
where A represents the calculated time varying variance in the first iteration with the
modelling error e(¢). The true time varying variance calculated in the first iteration
is

W (t)=ay+ale(t=1)" + g (1-1) (5.9)
where h'represents the volatility calculated from the correct model residuals (1)

1
. a
According to the BHHH algorithm, the initial specified variance is 1——,2—5]—
—4 =P

Therefore, the initial variances fz'(])of model (5.8) and A'(1)of model (5.9) are
equal. As the variance is iteratively generated by the GARCH model during the
estimation, the estimated variance A (2) from the modelling error e(t)at the second
sample point is

A (2)=a(',+a,'e(l)2 + AR (1) (5.10)
Assume that the sample length is N, then after N -1 iterations the estimated

variance at sample point N is
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N-

A (N)=a, +,B,'a(',+---+(ﬁl') ’ ay+ale(N=1)"+ Blale(N -2)°
+ot () T ale () +(8) T A (1)

The true variance estimated in the first iteration of the BHHH algorithm at sample

(5.11)

point N is
B (N)=a,+Bal++(B) " a+ae(N-1) +Blale(N-2)
ot (B) T ey +(8) B ()

Therefore, the differences between /' (N)andA'(N)is

(5.12)

B (N)=h (N)=a)(e(N=1)=2(N=1)'}+ Ba) (e(N -2) £ (N -2)’)

o 2 2 (5.13)
v+ (B) 7 a(e() -2(1))
According to equation (5.7),
() =0+ 3 2]
! (5.14)

=& (1)+2¢(¢) f‘, gw, (t)+( kztp: g, (’))2

i=m+] i=m+l

Therefore,

i=m+l i=m+l

e(t) —&(1)’ =2¢(/) % gw, (z)+( f’f g, (z)j (5.15)

After substituting equation (5.15) in, equation (5.13) becomes

i (N)—hl(N)=all(2g(N_l) % g,w,(N—l)+[ % g,w,(N—l)j J

i=m+] i=m+1

i=m+l i=m+1

+,B,‘al'(2£(N—2) g‘, g,w,(N—2)+( % g,W.(N‘z)] J (5.16)

wn () a,‘[2£(1) 3 g,w,(l)+( 5 g,w,(l)J ]

i=m+] i=m+1

-a' (V)

92



Chapter § Cross validation between NARMAX and GARCH model

where A'(N)represents the difference between the real estimated variance and the

inaccurate variance estimation in the first iteration of the BHHH algorithm. The

parameters of the GARCH model will then be updated by the equation

N -t
o' =" 4 5, (Zﬁa—l',] A (5.17)
3000 ) 506

where 6" represents the parameter estimates of the GARCH model parameters

1 i i . . . 61 . . . .
a,,a;, B at iteration iof the BHHH routine and a—éls the first order differentiation

of the log likelihood function. The logarithm likelihood function is given by

1) o
l (0)=—%log h(t)—%i(land the first partial differential equation of likelihood

h(1)

2
subject to the parameter is —(?i:l 1_oh(1)] £(7) —~1{. In the case of an
00 2 h(r) 86 | h(r)

inaccurate mean model, the first differentiation at the first iteration of the BHHH

routine becomes

ol

!

!
00 27 (1) 30

1 o' (1) e(t)z_l
a0

ol [ Zemore0) .

I i=m+]

1
T2H ()4 (1) 80 R (1)+A' (1) G189

(£ em0e0) |

i=m+]

1 1
TR (A ()| A )+ (1) 30

where
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o (1) VO (1-1)
TRV Er

=®'(t)+ﬂ'[@‘<t— e 22) 519

=0 (t)+ﬂl‘®'(t—1)+...+(ﬂl')N_2G)'(t-N+2)+(,BI‘)N—l ___ah(t;;\/H)

oh (t-=N+1
—(———) is the initial differentiation.

 vector® (1) =[Le(t) i (1=1) ] and

As the initial differentiation is usually a set value, the value can be the same as in the
true mean model case. Therefore, the differences of the first differential of the

variance between the inaccurate mean model and the real mean model is

i=m+l| i=m+1

5 [o(zgw (1-1))2 +2’=M;ilg, w(1-2)e(1-2),a' (¢ —I)I
(i g (f-l))2

i=m+l

+...+(ﬂ,)
+2Z gw (t=N+1)e(t-N+1),A'(1-N+2)

i=m+1

(5.20)
Equation (5.18) and (5.20) indicate that the slope of the GARCH parameter
convergence is different at the beginning of the BHHH algorithm between the
inaccurate mean model and the real mean model. The calculation of the likelihood of

the inaccurate mean model therefore becomes

ng, v, +8(IJ

i,| (6)_—__—|0g(h' (1)+A' (t)) (’ m;ll (1)+A'(7)

(5.21)

Comparing equation (5.21) with /| (0):—-;—logh' ()- 13() the likelihood

H(r)
calculation in equation (5.21) at the first iteration is different. Therefore, the slope of

the parameter updating of the GARCH model will be different from the first
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iteration between the real mean model and the inaccurate mean model. According to
the sensitivity of the ML algorithm, the convergence of the parameters will be
affected by the trend and initial conditions. The final estimation of the GARCH

parameters will be different accordingly. For the correct mean model, the time

varying variance h(r) is the conditional expectation of the squared residuals
E(a(l)z) because h(t)=E((s(t)—E(s(t)))2) and E(e(t)):O. However, when

the mean model is inaccurate the information of any missing significant terms will
be contained in the modelling errors, and the conditional expectation of the

modelling error will no longer be zero as

E(e(r))= ( t)+§g J E(e (t))+E(§g,w,(t))¢0 (5.22)

i=m+l i=m+]

Therefore, the conditional variance becomes
()= E((e()- E(())))
= E{e(t) ~2¢ (1) E(e(1)) +(E(e()))')

q0

£(1) + 25 (1 jg ( > ¢ ,(,)JZ_
2(8(1)+:2lg,w,(t))E(s(t)+l§lg‘w,(t))+(E(g(t)+:Z: g,w,(t)Dz
=E(g(t)2)+0+E(( 3 g (z)}zj-zg((g(m 3 g (t))E( 5° g (1)

+E(E(§: gw,(t ))Jz
el o[ 0] -2 t05{ £ 00
2E(§gw ) 5 s 0 ))(E(jgwo)]
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=E(g(,y)+g[[§lg,w, (z)f]-(z(_“;’:g,w, 0|
h(r)+ E{(% g (’)jz]‘(E(,ﬁlg’w' (’))Jz

According to Jensen’s inequality,

[ E(MZ - (t))]z < E((i - (z)jz] (5.24)

A A}
Therefore, h(z)>h(r). If there is no significant term contained in i gw (1),

i=m+1

(5.23)

2
M
E(( i gw, (t)D will be insignificant compared with the variance of y(r) and

1=m+1

h(1) = h(r), otherwise the estimated variance will be inaccurate.

It is clearly shown by the above theoretical derivation that the variance estimation
and parameters of the GARCH model will be seriously affected when the mean
model is not accurate because some significant terms are not selected. Accordingly,

it is essential to develop a statistic method to test for this scenario.

5.4 BDS test for i.i.d. assumption

The BDS test which was initially proposed by Brock, Dechert and Scheinkman
(1987) is one of the commonly used methods to test the i.i.d. assumption of the
underlying data series. It is also well known that the BDS test can be used to test the
modelling residuals to check the goodness of fit (Brock et al., 1991). Since one
assumption of the GARCH model is that the standardized residuals are distributed as

i.i.d., the BDS test appears to be the right tool to test this assumption. The general

BDS procedure is
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(1) Assume that the standardized residual z(¢) is calculated from z(r) = ,

where /(1)represents the estimated variance from the mean model residual

g(t), the data length is N and nis the embedding dimension. Then the

residual series are embedded into »n-dimensional vectors by taking each n
successive points in the series. The residual series is then converted into a
series of vectors as

n

z =[z,,zz,...,z"]

Z; :[22923""’2n+l] (525)

zy_, =[zN_,,,zN_”+,,...,zN]
(2) The correlation integral which measures the spatial correlation is then

calculated by adding a number of points (i, j) where 1I</i<Nand 1< <N

in the n-dimensional space within a radius y of each other as

C,,= Z oy (5.26)
. _ I) Py
where
f,,=1 if”z'n —2-7“ =7 5.27)
=0 otherwise

(e, z[CN:I", then the underlying data series is distributed as i.i.d. As

pointed out by Lin (1997), if the ratio of N is greater than 200, the value of
n

2 where o is the standard deviation ranges from 0.5 to 2 and the value of
o

dimension # is between 2 and 5, the quantity [CM—(CN)":I will be

distributed as asymptotic normal with zero mean and variance V, , defined as
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n-| .,
ey e] o
/=1

where

K=K, =
’ N(N—l)(N 2),<,Z<:N nN

(5.29)
[ 34 /Nr IN:rIN../;r+1/.I;YII,N:Y]
iJ.N. )’ 3
(4) The BDS test statistic will be defined as
(¢, -(C.) ]
(5.30)

BDS,, = -

The hypothesis of i.i.d. will be rejected when BDS test statistic is greater
than 1.96 or less than -1.96.

Therefore, if the BDS statistic of the standardized residuals is greater than 1.96 or

less than -1.96, the i.i.d. assumption will be rejected and this indicates that the

GARCH model may not be accurately fitted.

5.5 Cross validation between the mean model and the variance

model

CV is a statistical method to estimate how well the model is fitted to the underlying
data. Commonly used CV methods include the holdout method, K-fold CV method
and Leave-one-out CV method. Holdout method is the simplest kind of CV and in
the holdout method the data is usually split into two parts. One part of the data is
used to fit the model and the other part is used to test the prediction ability of the
fitted model. Since the standardized residuals are derived by the mean model
residuals and the standard deviation, either an inaccurate mean model or variance
model will induce rejection of the i.i.d. testing statistic. Therefore, there are three

situations which will result in the rejection of the i.i.d. assumption as

(1) Biased mean model approach but unbiased GARCH model fitting.

(2) Unbiased mean model approach but biased GARCH model fitting.
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(3) Biased mean model approach and biased GARCH model fitting.

Note that the biased mean model means that the significant terms of the mean model
are not fully selected and the information related by unselected significant terms is
contained in the modelling errors. The biased GARCH model means that the
variance estimation from GARCH is inaccurate. Inaccurate variance estimation may
be caused by selecting the wrong structure of the GARCH model or using the wrong

distribution density function during ML estimation.

In this chapter, the data will be split into two and the first half data will be used to
estimate the mean model and the variance model. Then the estimated mean model
and variance model parameters from the first half data are used to predict and the
one-step-ahead prediction errors will be calculated. If the mean model and the
variance model is accurate enough, the standardized prediction error will not reject
the i.i.d. assumption. Therefore, the general procedure of cross validation between
the mean model and the variance model is:
For the first half data

(1) Fit the data using the WOFR algorithm and select the significant terms the

mean model.
(2) Test the autocorrelation of the residuals and validate the fitted mean model.

(3) Test the assumption of i.i.d. using standardized residuals.
For the second half data

(1) Use the parameters of the mean model and the variance model which are
estimated from the first half data to calculate the one-step-ahead prediction
errors.

(2) Estimate the variance from the prediction errors and test the i.i.d. assumption
using standardized prediction errors.

(3) Recursively calculate the conditional variance with the prediction errors and
the GARCH parameters estimated from the first half and test the i.i.d. of the
standardized prediction errors.

When all the tests are satisfied, the mean model and the variance model should be

simultaneously valid. It is essential to test the second half data twice as only when
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the prediction from the variance model is consistent with the variance estimated
from the prediction error, that the mean model and the variance model are valid to

compute the predictions.

According to Chapter 3, most of the GARCH model related publications ignored the
significance of the mean model accuracy. As proved in Chapter 4 and this chapter,
an inaccurate mean model will induce inaccurate estimation of the GARCH
parameters and variance estimation. Therefore, the CV of the mean model and the
variance model has significant meaning for improving the forecast abilities of the

variance model.
5.6 Simulations

In order to demonstrate the effectiveness of the method described in Section 5.5, a
nonlinear mean model is used to generate the simulation data. The nonlinear model
is

y(1)=a,+ay(t-1)+ay(r=1)" +z(t) Jh(r) (5.31)
where a,,a,,a, are parameters, z(f) is random variable distributed as N (0,1)and

h(t)represents the time varying variance. The parameters for model (5.31) are listed

in Table 5.2.
Table 5.2 Parameters for model (5.31)
a, 2 a,
0.007 -0.11 12

A GARCH (1, 1) model is also used to generate the time varying variance and the

model is

h(t)=A0+Al(z(t—l)./h(t—1))2+B,h(t—l) (532)

and the parameters of GARCH model are listed in Table 5.3.
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Table 5.3 Parameters for GARCH

A, 4 B,

3e-7 0.075 0.924

A series of data with length 5000 was then generated using the mean model 5.31

with y(1)=0 and h(l):ﬁ‘i‘l—;-. In order to avoid any initial value effects, the
—A4 T8

first half data used for CV was taken from sample point 1500 to 3500 and the second
half data was taken from sample point 3501 to 5000. In order to give a comparison,
a linear model will be used to model the nonlinear mean process to demonstrate that
an inaccurate mean model can cause inaccurate prediction of the variance. A linear
reference AR (4) model are firstly used to model the mean process and the

estimation results from the OFR algorithm are listed in Table 5.4.

Table 5.4 ERR of linear reference mean model

Term ERR
Constant 0.48960e-1
y(t-1) 0.71236e-2
y(t-4) 0.42205e-2
y(t-3) 0.11110e-4
y(t-2) 0.47821e-4

According to Table 5.4, the terms, Constant,y(t—l),y(t—4) should be selected as
the significant terms of the linear mean model and the linear mean model is given by

y()=a,+ay(t-1)+ay(t-4)+e(¢) (5.33)
where 8([) are the residuals. As described in Section 5.5, the autocorrelation of the

residuals needs to be checked initially and therefore the autocorrelation of linear

mean model residuals are drawn in Figure 5.4.

101




Chapter 5 Cross validation between NARMAX and GARCH model
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Figure 5.4 Autocorrelation of the linear mean model residuals
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Figure 5.5 QQ plot of the linear mean model residuals
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Table 5.5 Statistics of residuals estimated from linear mean model

Skewness Kurtosis JB statistic

0.4079 5.1683 446.5998

There is no outlier outside the 95% significant line and the parameter estimation of
the mean model is therefore not biased. The QQ plot of the linear mean residuals is
drawn in Figure 5.5 and the statistics of the residuals are listed in Table 5.5. The JB
test and QQ plot reject the normality of the residuals. However, as the Quasi ML
method is employed in estimating the GARCH model, a normal distribution density
function may still be used. Then a GARCH (1, 1) model was estimated from the

linear mean residuals and the estimated parameters are listed in Table 5.6.

Table 5.6 GARCH model parameters estimated from linear mean model residuals

Parameter Estimation Standard Error
A, 5.2302e-7 2.0441e-7
4 0.0835 0.00105
B 0.9167 0.0097

Then a nonlinear reference model was used to give the mean model term selection
and the results of the WOFR algorithm are listed in Table 5.7. The estimation results
using the normal OFR algorithm based on the same nonlinear reference model are

also listed in Table 5.7 to give a comparison.
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Table 5.7 WOFR and ordinary OFR estimation results of the nonlinear reference mean

model
Term WERR Term ERR
y(t-1)y(t-1) 0.68190e-1 y(t-1)y(t-1) 0. 13374
Constant 0.78918e-2 Constant 0. 52270e-2
y(t-1) 0.20116e-2 y(t-4) 0.25221e-2
y(t-4) 0.89675e-3 y(t-1) 0.15988¢-2
y(t-1) y(t-4) 0.53990e-3 y(t-2) y(t-3) 0.12209e-2
y(t-3) y(t-4) 0.36171e-3 y(t-3) y(t-4) 0.13312e-2
y(t-2) y(t-3) 0.45212e¢-3 y(t-1) y(t-3) 0.44957e-3
y(t-3) y(t-3) 0.42843¢-3 y(t-1) y(t-4) 0.47574e-3
y(t-2) y(t-2) 0.87281¢-4 y(t-2) y(t-2) 0.32065e-3
y(t-3) 0.56122¢-4 y(t-4) y(t-4) 0.40903e-3
y(t-4) y(t-4) 0.53844¢-4 y(t-3) y(t-3) 0.22787e-3
y(t-1) y(t-2) 0.44948e-4 y(t-2) y(t-4) 0.14792¢-3
y(t-1) y(t-3) 0.47715e-4 y(t-3) 0.15701e-3
y(t-2) 0.54501e-5 y(t-1) y(t-2) 0.30006e-5
y(t-2) y(t-4) 0.37269e-5 y(t-2) 0.49769e-5

The results in Table 5.7 clearly demonstrate that the first three most significant terms
from WOFR estimation are the terms of the real mean model as in equation (5.31)
and the ordinary OFR estimation cannot give a correct selection. Therefore,
according to the ranking of the WERR, the first three terms with grey background in
Table 5.7 are selected as the mean model terms. After an iterative reweighted
calculation, the converged parameter estimation for the selected mean model terms
are listed in Table 5.8. The autocorrelation and the QQ plot of the residuals of
nonlinear selected model are drawn in Figure 5.6 and Figure 5.7. The statistics of the
residuals and the JB test results are listed in Table 5.9. Comparing these with the
values in Table 5.5, the statistics are improved significantly. According to the

autocorrelation, the parameter estimation of the nonlinear mean model is unbiased.
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Table 5.8 Parameters of selected nonlinear mean model terms after iterative reweighted

calculation
Terms Parameter estimation Standard Error
y(t-1)y(t-1) 11.0632 1.2643
Constant 8.825¢e-4 4.4406e-8
y(t-1) -4.8802¢-2 6.0930e-4

Table 5.9 Statistics of residuals estimated from nonlinear mean model

Skewness Kurtosis JB statistic
-0.0355 4.5644 204.3555
Sample Autocorrelation Function (ACF)
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Figure 5.6 Autocorrelation of residuals estimated from nonlinear mean model
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Figure 5.7 QQ plot of residuals estimated from nonlinear mean model

As the GARCH model is simultaneously estimated during WOFR, the parameters of

the GARCH model in the last iteration of WOFR are listed in Table 5.10.

Table 5.10 GARCH model parameters estimated from nonlinear mean model residuals

Parameter Estimation Standard Error
A, 3.0750e-7 2.0257e-7
4 0.0751 0.0106
A 0.9258 0.0097

In order to demonstrate the impact of an inaccurate mean model on the estimation of

the variance, the absolute differences between the real variance and the estimated

variance, estimated from the residuals of the linear and nonlinear selected mean

model, are drawn in Figure 5.8.
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Figure 5.8 Absolute of volatilities differences between the real variances and the variances

estimated from the linear (blue) and nonlinear (red) mean models

Figure 5.8 illustrates clearly that the variance calculated from nonlinear mean model
is more accurate than that from the linear mean model. Then the BDS tests are
applied to the standardized residuals of the linear and nonlinear mean model

residuals and the testing results are listed in Table 5.11

Table 5.11 BDS test for standardized linear and nonlinear residuals

ylo Embedding Linear | Nonlinear | » /o Embedding Linear | Nonlinear
Dimension(m) | residuals | residuals Dimension(m) | residuals | residuals
2 2 3.0207 0.1769 1 2 21371 0.1594
2 3 2.5012 0.6431 1 3 2.0096 0.2265
2 4 2.0239 0.2486 1 4 1.5337 | -0.0518
2 5 1.7139 0.2323 1 5 1.4829 0.0535
1.5 2 2.5739 0.2074 0.5 2 1.4849 | -0.1068
1.5 3 2.2328 0.4100 0.5 3 1.6230 | -0.0392
1.5 4 1.7455 0.0560 0.5 4 1.0172 | -0.5665
1.5 S 1.5104 0.0459 0.5 5 0.9310 | -0.2972

107




Chapter § Cross validation between NARMAX and GARCH model

The grey background of the test statistics in Table 5.11 indicates that the hypothesis

of i.i.d. has been rejected at a specified dimension and y / o ratio. Almost half of the

test statistics of the residuals estimated from the linear mean model rejects the i.i.d.
assumption and there is no rejection for the nonlinear mean model residuals.

Obviously the linear mean model did not even pass the test for the first half of data.

Then both the linear and nonlinear mean model parameters are used to calculate the
one-step-ahead prediction errors for the second half data which is sampled from
3001 to 5000. The parameters of the GARCH models in Table 5.6 and Table 5.10
are also employed to calculate the one-step-ahead prediction of the variance using
the prediction errors. According to the procedure of CV listed in Section 5.5, a
GARCH (1,1) model is also used to fit the prediction error. The estimated GARCH
parameters, from the prediction errors of the linear and nonlinear mean models, are

listed in Table 5.12.

Table 5.12 GARCH model parameters estimated from linear and nonlinear mean

prediction error

Parameter(linear) | Estimation | Std. Error | Parameter(nonlinear) | Estimation | Std. Error
A, 5.7842¢-7 | 2.9860e-7 4, 5.75060e-7 | 2.7735e-7
4 0.0688 0.0112 A 0.0793 0.0131
B 0.9281 0.0120 B 0.9179 0.0131

Therefore, there will be two groups of variance prediction for each mean model. One
group is estimated from the prediction error and the other is recursively calculated
using GARCH parameters estimated from the first half data. The absolute
differences of the two group variances are then drawn in Figure 5.9 to demonstrate

the prediction ability of the GARCH model estimated from the first half data.
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Figure 5.9 Absolute errors between the variances predicted by the GARCH model from the
first half data and the variances calculated from the prediction errors. Blue represents that the

mean model is linear and red represents that the mean model is nonlinear.

It is clear in Figure 5.9 that the variance prediction of the nonlinear mean model
stays closer most of the time than that of linear mean model. Since the real variance
is known for the second half data, it is necessary to compare the predicted variance
with the real variance. Therefore, the absolute differences between the predicted
variance and the real variance are drawn in Figure 5.10. It is clear that the predicted
variance estimated from the nonlinear mean model is more accurate than that of
linear mean model. Then the BDS tests are applied to the standardized prediction
errors and the test results are listed in Table 5.13 and 5.14. The predicted variances

of linear and nonlinear mean models are drawn together with real variances in

Figure 5.11.
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Figure 5.10 Absolute differences between the real variance and the estimated variance

(a) Absolute differences between the real variance and the variance estimated from the
prediction errors of linear mean model

(b) Absolute differences between the real variance and the variance calculated using the
GARCH parameters estimated from first half data and the prediction errors of the linear mean
model

(¢) Absolute differences between the real variance and the variance estimated from the
prediction errors of nonlinear mean model

(d) Absolute differences between the real variance and the variance calculated using the
GARCH parameters estimated from first half data and the prediction errors of the nonlinear

mean model
Table 5.13 BDS test statistics of standardized prediction errors using estimated variance

vlo Embedding Linear | Nonlinear | v /o Embedding Linear | Nonlinear

Dimension(m) | mean mean Dimension(m) | mean mean

model model model model

2 2 3.5936 0.8567 1 2 3.0084 0.7994
2 3 2.8780 0.5191 1 3 2.3364 0.5261
2 4 2.8975 0.5761 1 4 2.5959 0.8768
2 5 3.0066 0.8114 1 5 2.9038 1.3447
1.5 2 3.4602 0.9352 0.5 2 29112 1.0152
1.5 3 2.6330 0.5628 0.5 3 2.1486 1.3828
1.5 4 2.6963 0.7231 0.5 4 2.5495 1.6788
1.5 5 2.8755 0.9984 0.5 5 3.2662 1.9357
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Table 5.14 BDS test statistics of standardized prediction errors using predicted variance

ylo Embedding Linear | Nonlinear | /o Embedding Linear | Nonlinear

Dimension(m) mean mean Dimension(m) mean mean

model model model model

2 2 3.1379 0.9816 1 2 2.6473 0.9025
2 3 2.2318 0.6719 1 3 1.8129 0.6390
2 4 2.1615 0.7410 1 4 1.9542 0.9991
2 L 2.2023 0.9946 1 5 2.1444 1.4922
1.5 2 3.0049 1.0348 0.5 2 2.3975 1.0546
1.5 3 2.0155 0.7073 0.5 3 1.7124 1.4781
1.5 4 1.9898 0.8909 0.5 4 1.9607 1.8136
1.5 5 2.1156 1.1884 0.5 5 2.8020 2.2461

According to the test results in Table 5.13 and 5.14, the BDS test statistics of
standardized prediction error from the linear mean model indicate that the i.i.d.
assumption is rejected as most of the statistics are over 1.96. However, for the
nonlinear mean model the i.i.d. assumption has not been rejected as there is only one

statistic which is over 1.96.

The simulation indicates that CV between mean model and variance model is very
effective and that an inaccurate mean model will affect the variance prediction.
Although the distribution assumption is rejected, the QMLE method can compensate
fat tails of the distribution and the variance estimation is barely affected. In Figure
5.11, the variance prediction of the nonlinear mean model is improved especially in
volatile periods. Since the variance is directly related to risk in the financial area,
even 1% improvement may have significant impact on risk evaluation. Therefore,
the work on improving variance prediction and CV between the mean model and the

variance model indicates that the accuracy of the mean model is essential in variance

forecasting.
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Figure 5.11 The Red line represents the real variances and blue line represents the estimated
variances.

(a) The variances are estimated from the prediction errors of linear mean model

(b) The variances are iteratively calculated from the prediction errors of linear mean model
using the parameters of GARCH model estimated from the first half data.

(¢) The variances are estimated from the prediction errors of nonlinear mean model.

(d) The variances are iteratively calculated from the prediction errors of nonlinear mean model

using the parameters of GARCH model estimated from the first half data.

112



Chapter 5 Cross validation between NARMA X and GARCH model

5.7 Conclusions

In this chapter, the impact of the accuracy of the mean model on variance
forecasting has been derived theoretically and a CV method between the mean
model and variance model has been proposed. The WOFR algorithm proposed in
Chapter 4 was used to refine the term selection of the mean model during CV.
According to the simulations results, the CV method is very effective in detecting an
inaccurate mean model and variance model. As far as we known, there is no work
which is related to validate the mean model and variance model simultaneously
especially when the mean model is nonlinear. Since variance forecasts are widely
applied in the finance arca, the work in this chapter has very good application
potential. Therefore, the method proposed in this chapter provides a statistical
technique to apply a nonlinear mean model with selected terms in predicting the

variances when the variance is fitted by the GARCH class of models.
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Chapter 6: Mortality rate modelling and forecasting using
the NARMAX model

6.1 Introduction

The mortality rate is defined as a measure of the death rate in a population and
mortality risk is the key risk factor driving the values of mortality and longevity
linked securities. If the mortality in pricing the annuities is overestimated, the profit
margin of pension providers will shrink significantly. Insurance products sold by
private companies are also influenced by the mortality rate (Brouhns, Denuit and
Vermunt, 2002). Therefore, in order to value mortality-related positions and to
reduce their exposure to mortality improvements, actuaries employ mortality models

to predict the future mortality.

There are many techniques that have been developed to model mortality since
Cramer and Wold (1935) firstly modelled mortality rate curves using extrapolation
methods. Benjamin and Soliman (1993) fitted the mortality rate using technique
based on the projection of parameters while Lee and Cater (1992) proposed a simple
model (Lee-Carter model) which can describe mortality changes using both age-
dependent and time-dependent terms. Renshaw and Haberman (1996) successfully
used Poisson distributed random variables as the additive error term in Lee-Carter
model and Brouhns, Denuit and Vermunt (2002) improved the Lee-Cater model
using a generalised linear model with Poisson errors. A more complex Age-Period-
Cohort (APC) model which adds the cohort factor to the common age structure was
then introduced by Tabeau et al. (2001). Some time-series approaches were used by
McNown and Rogers (1989), Rogers and Gard (1991). Most recently, there was the
CBD model proposed by Cairn, Black and Dowd (2006) and its various
generalisations to encompass a cohort effect. However, it is widely accepted in

mortality modelling circles that no existing model is entirely satisfactory.
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This chapter investigates the use of a NARMAX polynomial representation to model
the mortality rate. According to Chapter 3, NARMAX polynomial representation
can be used to approach the nonlinear system effectively and precisely with selected

terms using the OFR algorithm.

Once the mortality model is estimated, its prediction ability needs to be assessed.
Dowd et al. (2008) used the back testing method to evaluate the forecast
performance of a number of existing stochastic mortality models. Back testing
method can indicate whether the underlying model can give a good out-of-sample
prediction. Therefore, in this chapter the back testing method will be employed to
check the ex post forecast performance of the fitted mortality models. The models

considered are the CBD model and the fitted NARMAX model.

This chapter is organized as follows. Section 6.2 gives the mortality rate related
definition and notation. Section 6.3 introduces the most recently mortality models
and Section 6.4 applies the NARMAX modelling method to the realised mortality
rate data and derives the nonlinear mortality model, where the smoking rate is also
involved in the term selection. Section 6.5 evaluates the forecast performance of the
NARMAX type models using back testing method and gives prediction comparison
with the CBD mortality model. Section 6.6 concludes.

6.2 Definition and notification

In this chapter, the mortality rate is treated as discrete and the calendar year is
represented by ¢ and running from rto 1 +1.

Therefore, the death rate m(t,x) for age x is defined as

deaths during calendar year t aged x (last birthday) 6.1)
average population during calendar year t aged x (last birthday) '

m(t,x)=

The mortality rate ¢(7,x)is defined as the probability that an individual aged exactly

x at exact year /will die between 7 and r+1.
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Another measure of the death rate is the force of mortality rate u(r,x) which is

defined as the death rate at exact time ¢ for people at exact age x. For small time dr,

the probability of death between ¢ and t+dtis,u(t,x)xdt. If the force of mortality

remains the same over each calendar year and over each year of integer age which is

for all 0<s,u<l, u(t+s,x+u)=u(t,x) and the population remains stationary,
the relationships between death ratem(t,x), the force of mortality rate z(7,x) and

the mortality rate ¢ (¢, x)are
m(t,x) = y(l,x) (6.2)

g(t,x)=1- exp(—m(t, x)) =1- exp(—,u(t,x)) (6.3)
Some mortality models also use cohort effect. The cohort effect is usually used to
describe some shared life experience among the individuals over some certain times.
It is already observed that cohorts born around 1930 have obvious improvement
between age 40 and 70 and cohorts born around 1950 have worst mortality in

England & Wales (Cairns et al., 2007).

6.3 Introduction to the commonly used mortality models

6.3.1 Lee-Carter mortality model

One of the mostly commonly used mortality model is the Lee-Carter mortality
model which was proposed by Lee and Carter (1992). The Lee-Carter model
combines a demographic model with statistical time series approach and the model
is specified for the logarithmic transformation of the death rate at age xand year ¢
using three parameters: a period related effect, an age-specific parameter that
represents the general shape across age of the mortality schedule and a second age

specific parameter that is related to the changes in mortality level. The Lee-Carter

model can be written as

In(m(t,x))= B + B« (6.4)
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where ﬁf'), ﬁfz) are the age-specific parameters and «, reflects the period effect. The

constraints for estimating the parameters are

>k =0and Y g% =1 (6.5)

6.3.2 Extend Lee-Carter model

The Lee-Carter model was extended to a generalised case by Renshaw and
Haberman (1996) who usc Poisson distributed random variation as the error term. In
later work, Renshaw and Haberman (2006) added a cohort effect term to the Lee-

Carter model:
In(m(1,x))= g+ 7, +p7y,_, (6.6)

where y,__is the cohort effect term with the birth year ¢ — x and ﬁf) is an additional

age related term. The constraints of the parameters are
Yk =0,28"=1,3y., =0and Y =1 (6.7)
] x X X

Although the additional cohort effect term can provide better modelling accuracy,
comparing with Lee-Carter model the parameter estimation converges much more

slowly during ML estimation.
6.3.3 Age-Period-Cohort model

The APC model was firstly introduced by Tabeau et al. (2001) and the parameters of

APC model described the trajectories of time and cohort effect given the age pattern.
A linear APC model can be written as

In(m(t,x))=B" +x, +7._. (6.8)

X
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and the APC model is a special case of the extended Lee-Carter model with
1 1 . . .
ﬂfz) = —,ﬂ:” = ﬁwhere N is the number of ages used in the sample on which the

model is calibrated. The constraints of the parameters are

Dk =0)y_=0 (6.9)

However, APC model still has identification problem as the three parameters are
linearly dependent. The solution to this problem is to impose identifiability

constraints which lead to the following:
In(m(1.x))= BV +&, +7,_, (6.10)

where K, =k, =6(1=1). 7, =1 +((1-T)~(x=%)), B = g +5(x-%).

6.3.4 CBD model

The CBD model is firstly introduced by Cairns et al. (2006) to fit the mortality rate

at higher ages. The CBD model is a two-factor model and can be written as

logit(q(r,x))=B"k" + BV (6.11)

where ,H”, ﬂ( are age related parameters and «, (” ,(2) are period effects. It is

usually assumed that the parameters S =1and %) =(x~-X). Therefore, CBD
model in equation (6.1) can be written in a simpler form as
logit(q(t,x))= x4+ x? (x-%) (6.12)

If the cohort effect is considered, an extra term will be added to equation (6.13) to

give us one of the generalisations of the model:
log it (q(t, x)) = ,8:')/(,(') + ,Biz)x,(z) + ﬂf)y,_x (6.13)
where y,__is the cohort effect term and ,bff}) is usually equal to 1. One advantage of

the CBD model is that there is no identification problem because there is no

constraint on parameters.
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6.3.5 Quadratic regression model

Heathcote and Higgins (2001) used a quadratic regression model to fit the Dutch

mortality rates. The model year variable 7 and age variable x and can be written as
logit(q(t,x)) = B, + Bx+ Byt + Bx* + Bytx+ (1. x) (6.14)
where f3,, B, .. P, B, are parameters and &(x,)is the modelling error which is

assumed to be normally distributed.

6.4 Modelling the mortality rate using the NARMAX method

6.4.1 Data

The data set used to model the mortality is the LifeMetrics deaths and exposures
data for England & Wales males that originally comes from the Office of National

Statistics. The mortality rates for England & Wales males between 1961 and 2006

are drawn in Figure 6.1.

‘ N 0‘
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Figure 6.1 Mortality rates for England & Wales Male between age 60 and 89 from year 1961 to

2006
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It is clear that the mortality rate in Figure 6.1 rises with age but falls over time. The

corresponding q rates for ages 65, 75 and 85 are shown in Figure 6.2.

logit transformation of Mortality rate

i 60 1961
00 Year

Figure 6.2 Logit transformation of male mortality rate of England & Wales between age 60 and

89 from year 1960 to 2006
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Figure 6.3 logit transformation of mortality rates at Age 65, 75, 85 from year 1961 to 2006
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6.4.2 Model specification

Given the linear relationship in both age and year directions observed in Figure 6.2
and Figure 6.3, the following quadratic model is proposed

logit(g(t,x))=a, +ax’ +a,’ +axt +ax+ag +e(1,x) (6.15)
where a,,q,,...,aare parameters, x is the age factor, ¢is the year factor and s(t,x)

is modelling residual. If the cohort effect is considered which is the factor of (1 -x),

the model (6.17) can then be transferred to
. a
logit(q(x,1))=a, +(blx2 +a4x)+(b212 +a5t)——2i(x—t)2 +&(x,1) (6.16)

a a .
where b =a +—2 , b2=02+?3 , (b,x2+a4x) is the age factor related term,

: a :
(b212 +a5t)1s year factor related term and —?-’(x—t)2 is the cohort factor related

term.

The model (6.15) is a pure quadratic polynomial model with all possible terms
included and when the model is used to fit the realised mortality data, some terms
may be insignificant and can be removed. Therefore, NARMAX modelling method

is adopted to determine the term selection of model (6.15).

6.4.3 Data pre-processing and parameter estimation

Since the mortality data of England & Wales start from year 1961 to 2006, the first
20 years’ data is used to fit the model and select the terms. In order to apply the OFR
algorithm, the inputs need to be pre-processed to contain both year factor and age
factor. Assumed that the length of ages is represented by m and the length of years is

represented by n and the inputs of the model (6.15) are formatted by u, (age factor)
and u, (year factor) wherew, is a column vector with x repeated ntimes and u, (year
factor) is a column vector and consisted witht(l)repeated m times, 1(2) repeated m

times until t(n) repeated m times. Therefore, the inputs u, and u, share the same
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length as mxn. The output y can be formatted as a column vector with logit
transformation of mortality rate as

[logit(q(l, ). logit(g(21)),... logit(q(m 1)) logit(g( 1,2)),...,logit(q(m,2)),...,logit(q(l,n)),..., logit(q(mn))]f
Then the model (6.15) can be written as

¥(T)=X(T)®+e(T) 6.17)
where X=[C,u,2(T),u:f (T),uu, (T),u, (T),uz(T)], Cis a column of 1 with
length mxn, T is nominal sample time with length mxn and ®is the parameter
vector [ay,a,,a,,a,,a,,a,] . The model (6.19) is then treated as a reference model

and after applying OFR algorithm, the parameter estimations results and the ERR of

each terms are listed in Table 6.1.
Table 6.1 Parameter estimation and ERR results after applying OFR algorithm to model (6.17)
with data set England and Wales male age 60 to 89 from year 1961 to 1980

Term ERR Estimated parameter value
u; 90.5014 a, =-5.6294 e-5
u, 9.4537 a, =-0.3307
ul 21636 e-4 a, =-6.1644 -5
Constant 3.5908e-5 a, =-2.2656e2
U xu, 49539¢-4 a, =-1.1635¢-4
u, 40799e-5 a, =2.2099-1

According to Table 6.1, the term u and u, are the most significant terms and since

these two terms represent the ¢* and x in model (6.17), the selected mortality model
is

logit(q(x.1)) =a, +ay* +ax+e(x,1) (6.18)
The parameters of model (6.18) are then re-estimated and listed in Table 6.2.

Estimated logit transformation of mortality rate surface is drawn in Figure 6.4 and

the estimated mortality rate at age 65, 75, 85 are drawn together with realized

mortality rate in Figure 6.5.
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Table 6.2 Parameters estimation for model (6.18)

Parameter a a, a,

0

Estimated Value 4.1938e-2 -2.4183e-6 9.2272e-2

2
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Figure 6.4 (a) Mortality rate surface between age 60 and 89 from year 1961 to 1980 calculated

from estimated model (6.18). (b) Realized mortality rate between of same age range and year

range.
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Mortality rate at age 85
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Figure 6.5 Estimated mortality rates in red and realized mortality rate at age 65, 75 and 85
Comparing with model (6.15) the model (6.18) is much simpler and the model (6.18)

can also transfer to a model contained cohort effect as
logit(q(x,1)) =a, +a,* +a,x+&(x,0)
=a,+a,t’ +apt—a,(t-x)+e(x1) (6.19)
=a, +(a2t2 +a4t)—a4 (r=x)+&(x,1)
The model (6.18) can be employed to predict the future mortality rate using just age
and year inputs. Therefore, comparing with statistical models like Lee-Carter, or

CBD model, the polynomial model (6.18) is very convenient to estimate and apply

to predict the future mortality.
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6.5 Forecasting and back testing

6.5.1 Long term forecast comparison

Since the mortality rate model is fitted for predicting the future mortality rate, it is
essential to compare the long term forecast performance of the simplified
polynomial model (6.19) and the statistical mortality model CBD model (6.13). The
polynomial model (6.15) is also used during prediction to indicate the differences
between selected and unselected models. As the data from year 1961 to 1980 is used
to fit the model, the data left from years 1981 to 2005 is used to check the long term
forecast ability of the fitted models. Accordingly, the 25 year-ahead forecast of
mortality rates of model (6.13), model (6.15) and model (6.19) at age 65, 75, 85 are

drawn in Figure 6.6.

It can be seen from Figure 6.6 that the prediction from model (6.15) represented by
magenta line is outstanding comparing with the prediction from selected model (6.18)
and CBD model. The prediction from model (6.18) represented by blue line is better
than that from CBD model in younger ages as in Figure 6.6 (a) and (b) but CBD
model beats the model (6.18) in predicting older ages as in Figure 6.6 (c). In order to

quantify the differences of prediction errors between model (6.18) and CBD model,
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Predicted mortality rate for age 65
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Figure 6.6 Predicted mortality rates for age 65 (a), age 75 (b) and age 85 (c¢) from model (6.18)
in blue, CBD model in black and model (6.15) in magenta. The red line represents the realized

mortality rate.
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- (qpre - qreahzed )
qpre

x100% and

the prediction error percentages are calculated using

listed in Table 6.3
Table 6.3 Prediction error percentages of model (6.18) an d CBD model at age 65, 75, 85

Age 65 Age 75 Age 85
Year | Model | CBD Year | Model | CBD Year | Model | CBD
(6.18) | model (6.18) | model (6.18) | model

1981 | -4.46 -5.89 1981 | -0.12 0.24 1981 | -0.31 1.56

1982 | -3.73 -5.62 1982 | 0.52 0.91 1982 | -0.46 1.81

1983 | -3.43 -5.49 1983 | -0.02 0.67 1983 | -0.57 1.97

1984 | -5.78 -7.98 1984 | -3.07 -2.42 1984 | -4.31 -1.71

1985 | -4.92 -6.88 1985 0.30 0.69 1985 1.23 3.00

1986 | -7.19 -9.50 1986 | -1.19 -1.22 1986 | -1.62 0.22

1987 | -8.20 | -10.75 | 1987 | -4.52 -4.31 1987 | -5.98 -4.50

1988 | -7.61 -10.03 | 1988 | -4.76 -4.62 1988 | -5.01 -3.06

1989 | -9.57 | -12.75 | 1989 | -5.03 -5.56 1989 | -1.70 0.69

1990 | -11.41 | -14.10 | 1990 | -8.17 -8.62 1990 | -5.35 -2.72

1991 | -12.08 | -15.14 | 1991 | -8.07 -8.22 1991 | -4.23 -1.81

1992 | -15.55 | -18.53 | 1992 | -9.42 -9.26 1992 | -6.55 -5.20

1993 | -14.18 | -17.40 | 1993 | -7.13 -7.44 1993 | -2.09 -1.08

1994 | -18.67 | -22.00 | 1994 | -11.21 | -11.70 | 1994 | -7.05 -5.93

1995 | -19.23 | -22.50 | 1995 | -10.13 | -10.70 | 1995 | -4.15 -2.79

1996 | -22.24 | -25.52 | 1996 | -12.30 | -13.47 | 1996 | -5.91 -4.69

1997 | -25.39 | -28.04 | 1997 | -13.42 | -14.72 | 1997 | -6.60 -5.50

1998 | -25.97 | -29.19 | 1998 | -14.20 | -16.00 | 1998 | -6.81 -5.37

1999 | -27.67 | -30.86 | 1999 | -15.29 | -16.86 | 1999 | -6.51 -5.49

2000 | -31.19 | -34.07 | 2000 | -18.07 | -19.35 | 2000 | -9.30 -8.84

2001 | -33.93 | -37.06 | 2001 | -20.76 | -22.21 | 2001 [ -10.00 | -9.19

2002 | -34.48 | -38.04 | 2002 | -21.80 | -23.59 | 2002 | -12.29 | -11.37

2003 | -34.94 | -38.26 | 2003 | -24.02 | -25.18 | 2003 | -12.39 | -11.48

2004 | -36.84 | -40.19 | 2004 | -28.42 | -29.73 | 2004 | -17.81 | -16.62
2005 | -38.15 | -41.72 | 2005 | -30.44 | -31.61 | 2005 | -19.33 | -18.50

According to the Table 6.3, the selected model (6.18) has better prediction ability as
CBD model. It is clearly in Figure 6.6 that model (6.15) produces similar prediction
as model (6.18) which is still better than the prediction of CBD model. Therefore,
both the selected model (6.18) and unselected model (6.15) can be used as

alternative methods to model and predict the mortality rate.
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Since the model (6.15) produced similar predictions as model (6.18), the issue rises
that why the terms of the model need to be selected. Therefore, in order to test the
prediction ability of the model (6.15) and selected model (6.18), the back testing

techniques are used to distinguish the two models.
6.5.2 Back-testing for the forecast performance of the mortality models

We now selected the year 2006 is selected as the forecasts destination and the
forecast of model (6.15) and (6.19) are based sequentially on estimates using
observations up to 1980, estimates using observations up to 1981, and till up to 2005.
Firstly, the historical data set within a rolling 20-year window are used to fit model
(6.15) and (6.18) to give the prediction of year 2006. The corresponding prediction
of model (6.15) and model (6.18) for age 65, 75 and 85 are drawn in Figure 6.7.
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Figure 6.7 20 year rolling window prediction of mortality rate for year 2006 at age 65 (a), age
75 (b) and age 85 (c). The red line represents the prediction of selected model (6.18) and blue

line represents the prediction of model (6.15). Black line represents the realized mortality rate

at year 2006.
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Then the rolling 15-year window and 10-year window are used to fit the model (6.15)
and selected model (6.18) and the predicted mortality rate for year 2006 are drawn in
Figure 6.8 and Figure 6.9. According to Figure 6.7, the prediction for year 2006 of
model (6.15) converges faster than model (6.18). However, when forecasting for
older ages like age 85, the model (6.15) begins to lose robustness. When the length
of rolling window reduces, the prediction of model (6.15) loses more robustness as
can be seen from Figure 6.8 and 6.9. Selected model (6.18) however gives more a
consistent prediction for year 2006 with different rolling window length and at
different ages always stay above the realized mortality rate of year 2006 and
converges to the realized value. The ERR ranking results of the model (6.15) using

different length of rolling window are listed in Table 6.4, Table 6.5 and Table 6.6.
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Figure 6.8 15 year rolling window prediction of mortality rate for year 2006 at age 65 (a), age
75 (b) and age 85 (c). The red line represents the prediction of selected model (6.18) and blue

line represents the prediction of model (6.15). Black line represents the realized mortality rate

at year 2006.
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Figure 6.9 10 year rolling window prediction of mortality rate for year 2006 at age 65 (a), age
75 (b) and age 85 (c). The red line represents the prediction of selected model (6.18) and blue

line represents the prediction of model (6.15). Black line represents the realized mortality rate

at year 2006.
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Table 6.4 ERR ranking results for model (6.15) using 20-year rolling window

Period\Rank " F 3 4" i 6"
1961-1980 t2 X x2 Constant x*t t
ERR 90.5013 9.4537 0.0002163 3.59E-05 4.95E-04 4.08E-05
1962-1981 t2 X x? Constant t x*t
ERR 90.5694 9.3862 0.0005794 9.83E-06 1.75E-04 1.75€-04
1963-1982 t2 X x2 x*t t Constant
ERR 90.6407 9.3158 0.001135 1.58€-05 3.19€-07 4.09E-04
1964-1983 2 K x2 x*t T Constant
ERR 90.7230 9.2344 0.001348 1.31E-04 6.64E-05 1.486-03
19631964 t2 X x2 t Constant x*t
ERR 90.8087 9.1508 0.003610 7.49E-05 1.58€-03 2.48E-04
1966-1985 2 i i t x*t Constant
ERR 90.8566 9.1046 0.005274 1.26E-04 7.39E-04 6.66E-04
1967-1986 12 X x2 t x*t Constant
ERR 90.9122 9.0489 0.006387 2.41E-03 9.99E-04 6.94E-04
1968-1987 2 X x2 t x*t Constant
ERR 90.9626 8.9975 0.009948 1.59€-03 9.38€-04 2.89E-04
1969-1988 t2 % x2 t %%t Constant
ERR 91.1108 8.8582 0.01251 0.001164 0.003048 0.001239
1970-1989 2 % X2 t x*t Constant
ERR 91.1420 8.8306 0.01291 0.0008831 0.003674 0.002399
1971-1990 2 § x& t x*t Constant
ERR 91.1416 8.8288 0.01470 0.002809 0.002766 0.002443
1972-1991 ‘2 X xe t x*t Constant
ERR 91.1366 8.8307 0.01695 0.005614 0.002871 0.001067
1973-1992 2 i t x2 x*t Constant
ERR 91.1767 8.7882 0.01752 0.006977 0.003023 0.002069
1974-1993 2 § t x2 x*t Constant
ERR 91.1885 8.77440 0.01957 0.006593 0.003867 8.69E-04
1975-1994 2 i t x2 x*t Constant
ERR 91.2108 8.7463 0.02501 0.006286 0.004511 0.000897
1976-1995 2 % t X2 x*t Constant
ERR 91.2253 8.7285 0.02724 0.006151 0.006019 0.000366
1977-1996 tz X t x*t x? Constant
ERR 91.2667 86848 0.02784 0.008168 0.005984 0.000786
19781997 12 % t x*t x2 Constant
ERR 91.2606 8.6846 0.03391 0.009333 0.005454 0.000516
1979-1998 2 i t % x? Constant
ERR 91.2719 8.6700 0.03692 0.01025 0.004953 0.000556
1980-1999 N B i . ¢ 1 Constant
ERR 91.2876 8.6515 0.03855 0.01186 0.004606 0.000688
1981-2000 2 ] t X*t x2 Constant
ERR 913035 |  B.6275 0.04557 0.01286 0.004232 0.001051
1982-2001 2 i t X*t x2 Constant
ERR 513210 | 85087 0.05389 0.01465 0.003859 0.001531
1983-2002 2 i t X*t x2 Constant
ERR 913494 85632 0.06030 0.01654 0.00334 0.001847
1984-2003 2 X t x*t x2 Constant
ERR 91.37 8.5352 0.06479 0.01713 0.00269 0.001934
1985-2004 ] i t X*t x2 Constant
ERR 91.3844 85116 0.07833 0.01543 0.00212 0.001868
1986-2005 g X t x*t Constant x2
ERR 914356 |  Bas3s 0.08454 0.015087 0.003088 0.001522
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Table 6.5 ERR ranking results for model (6.15) using 15-year rolling window

Period\Rank 1" 2 3~ 4" 5™ 6"
1966-1980 tz X x2 x*t t Constant
ERR 90.7658 9.1891 0.003534 1.53E-04 1.01E-05 1.11E-04
1967-1981 ‘2 X & x*t t Constant
ERR 90.8150 9.1401 0.004574 6.71E-05 1.86E-04 3.14E-04
1968-1982 tz X x2 Constant x*t T
ERR 90.8274 9.1302 0.007100 2.04€-04 5.44E-04 6.37€-05
1969-1983 tz X . x*t T Constant
ERR 90.9979 8.9740 0.009495 9.03E-05 0.003263 1.34€-04
1970-1984 :1 x x2 x*t T Constant
ERR 91.0709 8.9055 0.01083 8.12E-05 0.002633 0.002413
1971-1985 tz X x2 t x*t Constant
ERR 91.0372 8.9420 0.01032 4.76E-05 0.001821 8.67E-04
1972-1986 :3 X X2 t x*t Constant
ERR 91.0387 8.9414 0.01133 8.11E-04 0.001242 4.05E-05
1973-1987 t) X x2 T Constant x*t
ERR 91.1086 8.8712 0.01134 0.001315 9.01E-04 7.03E-04
1974-1988 2 X 2 T Constant x*t
ERR 91.1566 8.8219 0.01175 0.002775 6.51E-04 6.10E-04
1975-1989 t2 X yd T x*t Constant
ERR 91,1731 8.8047 0.01130 0.003942 9.85E-04 1.78E-04
1976-1990 12 X t 2 X*t Constant
ERR 91,2270 8.7469 0.01275 0.006001 0.001199 2.78E-04
1977-1991 'z X t *® x*t Constant
ERR 91.2886 8.6852 0.01213 0.005838 0.002341 7.41E-04
1978-1992 tl X t ] x*t Constant
ERR 91.3089 8.6609 0.01727 0.005382 0.002332 4.62E-04
1979-1993 2 N t «2 x*t Constant
ERR 91.3179 8.6527 0.01612 0.004918 0.002934 6.18E-05
1980-1994 tz X t 2 X*t Constant
ERR 91.3547 8.6126 0.01830 0.004895 0.003668 4.37€-04
1981-1995 t’ X t x2 X*t Constant
ERR 91,3575 8.6078 0.01893 0.005031 0.004962 8.62E-05
1982-1996 t) X t x*t x2 Constant
ERR 91.3755 8.5860 0.02124 0.006640 0.005159 4.44E-05
1983-1997 c‘ X t x*t v | Constant
ERR 91.3956 8.5611 0.02370 0.009208 0.005118 1.26E-04
1984-1998 ‘2 X t x*t X2 Constant
ERR 91,4091 8.5454 0.02495 0.01055 0.004999 2.24E-04
1985-1999 é X t x*t % Constant
ERR 913825 | 85685 0.02935 0.01071 0.004722 5.99€-07
1986-2000 t’ X t x*t xe Constant
ERR 91.4177 8.5302 0.03140 0.01171 0.004327 4.87€-04
1987-2001 2 X t x*t 2 Constant
ERR 91429 __BS5131 0.03571 0.01201 0.003782 0.001637
1988-2002 g X t x*t 2 Constant
ERR 914158 85218 | 004276 0.01061 0.002981 0.001385
1989-2003 2 X t x*t 20 Constant
ERR 914215 8.5140 0.04666 0.009147 0.002188 0.001022
1990-2004 - X t X%t Constant 2
ERR ﬁ 84507 0.05300 0.008260 0002130 0.001649
1991-2005 !2 X t x*t Constant x&
ERR 91.5070 E‘v 0.06368 0.006337 0.001689 9.08E-04
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Table 6.6 ERR ranking results for model (6.15) using 10-year rolling window

Period\Rank 1* 2% 3% 4" 03 6"
1971-1980 t2 ) ) X*t t Constant
ERR 90.0305 9.9008 0.01131 7.94E-04 7.32E-04 0.0007229
1972-1981 2 i 2 x*t Constant !
ERR 90.2048 9.7247 1.20€E-02 9.26E-05 7.04E-04 0.0008740
1973-1982 t2 X > Xt t Constant
ERR 90.3395 9.5893 0.01031 3.39€E-06 8.40E-04 8.51E-05
1974-1983 t2 % x2 t X*t Constant
ERR 90.4781 9.4520 9.71E-03 1.89E-04 7.30E-04 0.001458
1975-1984 t X x2 t Constant Xt
ERR 90.5864 9.3509 9.82E-03 0.001688 3.57E-04 5.55E—04
1976-1985 t2 X x2 Constant x*t t
ERR 90.6600 9.2814 8.76E-03 0.001392 4.70E-04 7.60E-05
1977-1986 t2 X el t X*t Constant
ERR 90.6796 9.2610 0.007610 5.34E-04 8.71E-04 8.76E-06
1978-1987 t2 X x2 t X*t Constant
ERR 90.7353 9.2087 0.007983 0.002773 2.44E-04 0.001237
1979-1988 2 i X2 t Constant il
ERR 90.9866 8.9796 0.007222 0.003511 8.41E-05 1.45E-04
1980-1989 t2 i X2 t X*t Constant
ERR 91,0251 8.9502 0.006213 0.002735 3.90E-04 5.51E-04
1981-1990 t2 X t x2 X*t Constant
ERR 90.9782 9.0001 0.007693 0.004291 4.27€-04 8.45E-04
1982-1991 t2 X t o X*t Constant
ERR 90.9429 9.0376 0.008947 0.004551 0.001206 2.49E-05
1983-1992 12 X t %2 x*t Constant
ERR 90.9597 9.0232 0.01115 0.004839 0.002223 5.11E-04
1984-1993 12 X Constant x2 x*t t
ERR 90,9875 8.9965 0.008235 0.004967 3.66E-03 1.46E-04
1985-1994 t2 X Constant x2 x*t t
ERR 91.0596 8.9228 0.01378 0.005216 0.003485 2.28E-04
1986-1995 t2 X Constant x2 x*t t
ERR 91,0872 8.8959 0.009565 0.005593 5.58E-03 1.40E-04
1987-1996 t2 % v t x*t Constant
ERR 91,1853 8.8004 0.008978 0.005349 6.41E-03 2.66E-05
1988-1997 2 & t x*t x2 Constant
ERR 91.2391 8.7449 0.01181 0.005975 0.005341 4.56E-05
1989-1998 t2 X t x2 x*t Constant
ERR 91.2965 8.6883 0.01311 0.005146 0.005088 7.52E-05
1990-1999 t2 M t X*t X2 Constant
ERR 91.3255 8.6605 0.01193 0.006045 5.04E-03 1.09E-04
1991-2000 tz X t x*t x2 Constant
ERR 91.3789 8.6038 0.01822 0.004762 0.004194 3.936-04
1992-2001 tz X t x*t %2 Constant
ERR 91.4132 8.5670 0.02372 0.004733 0.003284 1.07€-04
1993-2002 2 X t x*t x& Constant
ERR 91.4814 8.4955 0.03065 0.003640 0.002214 2.51E-04
1994-2003 tz M t X*t %2 Constant
ERR 91.4872 8.4903 0.02778 0.003165 0.001215 8.87€-07
1995-2004 tZ X t x*t v Constant
ERR 91,4699 8.5027 0.03745 0.001755 4.89E-04 1.15€E-04
1996-2005 '2 X t x*t Constant Constant
ERR 91,4865 8.4883 0.03908 0.001239 2.35E-04 7.63E-05
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[t is obvious that in Table 6.4, 6.5 and 6.6 the terms Year’and Agein model (6.18)
remain the most significant terms during rolling-windows estimation while the rank
of other terms are changing. Therefore, the selected model (6.18) produces more

robust prediction than the model (6.15).
6.5.3 Mortality model with smoking rate contained

In order to investigate the impact on the mortality rate of other possible variables
apart from the year and age relationship, the smoking rate has also been involved
into the reference model and the model can be written as
logit (q (x,0))=a, +ax’ +ay’ +axi+ax+ai +a,S* +a,xS +ayS +a,S +&(x,1)
(6.20)
where S is the smoking rate of males of England and Wales at each year. The
smoking rate data is then pre-processed similarly as the year input variables and the
mortality rate data from year 1961 to 1980 between ages 60 to 89 is used to apply

the OFR algorithm. The term selection results are then listed in Table 6.7.

Table 6.7 The rank of terms in model (6.20) after applying the OFR algorithm

Rank Term ERR in %
1 1> 90.5013
2 X 9.4537
3 x? 0.0002163
4 Constant 0.00003590
5 xt 0.0004953
6 S? 0.0001177
7 xS 0.0003751
8 t 0.0005739
9 S 0.000002570
10 S 0.00009757

According to the results listed in Table 6.7, the smoking rate variable is not
obviously significant which means that the mortality rate of males of England and
Wales from year 1961 to 1980 between ages 60 and 89 is not directly decided by the
smoking rate according to OFR algorithm. Therefore, the selected model based on

Table 6.7 is still model (6.18).
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This exercise does however illustrate strength of the NARMAX model: it can easily
incorporate additional exogenous variables that most conventional models (such as

CBD) cannot.

6.6 Conclusions

In this chapter, some of the most recent mortality rate models have been reviewed
and a quadratic polynomial mortality model has been proposed to fit the mortality
rate surface. The NARMAX modelling method has been used to give a term
selection from the proposed polynomial model. Long term prediction comparisons
have been given between the proposed model, selected model and according to the
comparison results, the proposed quadratic model is the best model to produce
minimal prediction errors among the three models. A back testing technology was
employed to indicate the importance of term selection of the polynomial mortality
model and to compare the proposed model with the CBD model, one of the standard
models in the literature. The long term prediction results indicated that the proposed
quadratic models can give better long term prediction than the CBD model. But
backtesting results indicated that care must be taken with the term selection of the
quadratic model. The impact of the smoking rate was also considered, but results

suggested that this does not have a significant effect on the mortality rates in our

data set.
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Financial volatility forecasting is an important topic in financial risk management
and option pricing. Many volatility models have been invented such as the
Generalized AutoRegressive Conditional Heteroskedastic (GARCH) class of
volatility models and some of them have achieved great success in the financial field.
In the major GARCH literature, the mean process is usually fitted using the linear
model and the volatility is calculated based on the residuals of the linear mean model.
Some papers even trecat mean process as a constant. However, much evidence

suggests that the mean process should be nonlinear.

The Nonlinear AutoRegressive Moving Average with eXogenous inputs (NARMAX)
(Leontaritis and Billings, 1985) modelling technique provides a powerful tool to
approximate the nonlinear process with a selected structure. We find that an
extension of a NARMAX methodology to fitting the nonlinear mean process can

improve the prediction performance of both the mean and volatility models.

This thesis investigated the development of the financial volatility modelling in
recent 20 years and the volatility models including major GARCH class of models
were introduced. A new volatility model based on the asymmetric GARCH model
was proposed. The parameter estimation methods for the GARCH class of models
and the popular forecast cvaluation methods of volatility models were investigated.
Based on the NARMAX term selection algorithm, the impact of heteroskedastic
noisc on term sclection was theoretically derived and a Weighted Orthogonal
Forward Regression (WOFR) algorithm was proposed to correct this impact. As the
weights in WOFR algorithm are usually unknown, an iterative refined parameter
estimation procedurc was proposed to improve simultaneously the parameter

estimation of both the selected nonlinear mean model and volatility model.

The fitted models need to be validated in order to verify the model assumptions and

check the model prediction performance. This thesis proposed to use the Cross
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Validation (CV) method to validate the prediction performance of both the mean and
volatility models. Since GARCH class of volatility models assume the standard
mean residuals are distributed as i.i.d.. the Brock-Dechert-Scheinkman (BDS) test
was employed to test the standard one-step-ahead prediction during CV. The WOFR
algorithm combined with CV method provides a systematic identification method

for the nonlinear mean process in the context of financial volatility modelling.

A second application of NARMAX in mortality rate modelling was also provided
and a forecast performance comparison between the commonly used Cairns-Blake-
Dowd (CBD) mortality model was given to indicate the forecasting superiority of

the sclected polynomial mortality model.
7.1 Main Contributions of this thesis

This thesis proposed to use NARMAX modelling methodology in the nonlinear
mean process during financial volatility modelling to give the term selection and
parameter estimation for the nonlincar mean model. NARMAX techniques have
been successfully proved to model many real world nonlinear systems. The
extension of NARMAX model to financial volatility modelling opened a door in the
financial arca application of the NARMAX techniques and filled the gap between
financial volatility mean process modelling and the nonlinear model term selection.

The main contribution of this thesis can be summarised as follows.

(1) In this thesis, the commonly used volatility model such as GARCH class of
models and the parameter estimation process of volatility model have been
summarized. In some GARCH class of models, a regime switch like term is
commonly used to approximate the asymmetry observed in realized data. However,
during numerical estimation of the parameters in MLE, the partial differences
subject to parameters of regime switch term sometimes jump at the switching point.
The logistic STAR function provides a smooth transition for the process and
therefore, this thesis proposed a new logistic STAR GARCH model based on the

logistic STAR function to model the asymmetry of the volatilities.
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(2) In this thesis, the commonly used mean models were investigated in the major
GARCH class of models. The GARCH class of models have been developed very
fast over the recent twenty years and there are almost a hundred of volatility models
which are derived from the ARCH model. Meanwhile, mean process in the financial
volatility modelling is typically fitted by ARMA models and almost not treated as
nonlinear. Some literature even uses a constant mean model instead. However, this
contradicts the evidence of nonlinearity observed in many empirical practices.
Therefore, this thesis simulated a nonlinear mean process with time varying
volatility derived by a General ARCH (GARCH) model and fitted the mean process
with a linear model to estimate the volatility. The results successfully proved that

inaccurate mean model could impact heavily on the volatility forecast even with the

same volatility model structure.

(3) This thesis derived a new Weighted Orthogonal Forward Regression (WOFR)
algorithm to compensate for the impact of the heteroskedastic noise on the term
selection of the mean model in financial volatility modelling. NARMAX modelling
techniques are based on the assumption of homoskedastic noise. However,
heteroskedastic noise usually exists in financial return data and the homoskedasticity
assumption of the OFR algorithm is usually violated; this in turn affects the term
selection. To deal with this problem, a new WOFR algorithm and iterative refined
parameter estimation were successfully applied to improve the mean model term

selection and parameter estimation of both the mean and volatility models.

(4) Cross validation (CV) for the mean and volatility model was introduced to
validate the prediction performance of the selected nonlinear mean model and the
volatility model. In system identification, model validation is essential to verify the
model assumptions and the goodness of fit for the underlying process. In the
GARCH class of volatility models, the standard mean model residuals are assumed
to be distributed as i.i.d. However, an inaccurate mean model or volatility model
may cause the rejection of this assumption. This thesis proposed validation of both

the mean and the volatility simultaneously by testing the i.i.d. assumption of the
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standard mean model residuals and the one-step-ahead prediction errors. Simulations
showed that the volatility model estimated from the inaccurate mean model
produced larger forecast errors than that from the accurate mean model. Although
both the linear and the nonlinear mean model passed the autocorrelation test, the CV
method was very effective to reject the inaccurate linear mean model in testing the

standard prediction errors.

(5) This thesis applied the NARMAX methodology to model the mortality rate and
compared the selected model with CBD mortality model using a backtesting method.
Mortality rate forecasting plays a key role in hedging the longevity risk for the
pension providers and mortality rate modelling has therefore attracted much
attention in recent years. Due to the fact that none of the existing mortality rate
models is total satisfactory, the NARMAX modelling method was proposed in this
thesis to fit the mortality rate surface. The selected model was mainly a quadratic
polynomial model with both year and age factors. In order to compare the results
with the statistic mortality rate model, a backtesting method was used to access the
prediction performance of the selected nonlinear mortality model. The testing results
showed that compared to the CBD mortality rate model, the selected mortality rate
model produced better mortality rate predictions. The select quadratic model also

had better robustness comparing with unselected quadratic model.

7.2 Suggestion for Further Research

Although a systematic identification method for nonlinear mean modelling of
financial return data has been proposed and simulations has successfully proved the
effectiveness of this method, the research in the application of the nonlinear
modelling approaches to financial volatility is still at a very early stage. Further

research may be worth carrying on in the following topics.
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(1) In Chapter 4 and Chapter 5, the data used is simulated from a nonlinear mean
model and a GARCH model. It is possible to apply the WOFR and CV methods to

realized data in further research.

(2) Since different volatility models are based on the GARCH model, it is possible
to extend the structure determination of the NARMAX method to the volatility
process and so allow the volatility model structure to be determined using a

NARMAX model based on the data set instead of an assumed GARCH model.

(3) As mentioned in Chapter 2, according to the transformation of standard GARCH
model, the volatility is actually given by squared mean model residuals with some
noise. This arises the using of least squared method to estimate the parameter of
GARCH model. However, this noise is not distributed as a normal distribution and
forecasts of squared residuals cannot be negative. Therefore, a cost function may be
found to force the positivity of the forecasts and used to estimate the parameters of

the GARCH model.

(4) Fan charts are now very popular in projecting the forecast uncertainties because
it is more visually understandable than pure figures and numbers. Therefore, it
would be useful to extend the fan chart projections to the NARMAX modelling

method to indicate the prediction ability of selected models in a more visible manner.
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