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Summary 

The knowledge of crack path mechanism could improve the safety issues, design and 

finally reduce the cost of the maintenance or production of structures in aerospace and 

energy industries. However, the physical mechanism behind the crack path development 

is not still completely understood although many criteria have been developed to predict 

the crack path. It is even more challenging to predict the crack trajectory in areas such as 

multi site damage zones where there are interactions between cracks. 

A study has been undertaken on sets of cracks with different interaction properties, both 

numerically, using a finite element (FE) method, and experimentally, using Thermoelastic 

Stress Analysis (TSA) where the effectiveness of three of the most common criteria was 

assessed. It was shown that the crack paths are not always repeatable as expected by FE 

models. It was found that the crack path criteria are capable of an acceptable prediction 

only in the early stages of the crack growth. Furthermore, the Stress Intensity Factors 

(SIF) only partially control the crack path and it has been recognised that the T -stress is 

one the influential parameters of the crack trajectory. Despite the vital role of T-stress, 

not only in directional stability problems but also in crack growth rate and the shape and 

size of the plastic zone ahead of the crack tip, little attention has been paid to 

experimentally determine the T-stress. 

Therefore, based on both Muskhelishvili's and Williams' approaches, methodologies 

were developed to determine the SIF and the T -stress from both stress field and 

displacement data generated artificially and using a finite element method. These 

methodologies were successfully employed to experimentally determine the SIF and the 

T -stress for different types of notched and fatigue cracked specimens manufactured from 

Al 7010 T765 I using TSA and Digital Image Correlation (DIC) technique. 

It was shown that the Muskhelishvili's approach is equivalent to the Williams' 2 terms 

stress solution for SIF determination. However, the 2 terms solution is not sufficient to 

determine the T -stress and, three or more terms are needed both from the stress and 

displacement fields. Results obtained from the stress field are numerically unstable if 

more than four terms are used. However, results obtained from the displacement field 

show more robustness with an increased number of terms. 
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1.1 Motivation of the research 

Since the first attempts to mathematically model fracture early in the twentieth 

century, there has been impressive progress in this field of science. However, 

despite the extensive amount of research undertaken in this area, there are many 

problems which are not well understood. For example, the physical mechanism 

behind the crack path development is still somewhat mysterious [1]. 

Crack turning as a mechanism to improve the failure safety and damage tolerance 

of aerospace structures has been recognised as a potentially important crack arrest 

mechanism. Therefore, better understanding of this phenomenon could lower the 

cost and increase the freedom and confidence in aerospace programs [1]. 

Crack trajectory is also an important issue in aging aircraft structures where the 

multi-site damage could be developed. In assessment of multi-site damage and 

damage tolerant structures it is important to predict the way the crack is growing 

at each instant of the process. It should be known if the crack is growing in a self 

similar manner or is going to kink or bifurcate [2]. 

1 
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The complete solution of the problems above is the answer of a more general 

question of why a crack grows in a direction that it does. Many engineers and 

scientists have tried to answer this question and therefore many criteria have been 

developed so far. 

It may be assumed theoretically that the crack path is predictable, but even if the 

loading is such that straight mode I crack growth could be expected for symmetry 

reasons, the path might be directionally unstable [3J. Generally speaking, it is not 

easy to predict the crack path and there are discussions about criteria that can 

control the direction in which a crack goes. 

Traditionally in linear elastic fracture mechanics it is assumed that the state of the 

strain and stress field ahead of the crack tip can be characterized by a single 

parameter, called the stress intensity factor. However, it has been observed that 

there many circumstances in which this single parameter is not sufficient to 

characterize the strain field ahead of the crack tip. Directional stability of the 

cracks is one of these circumstances. The so-called T -stress, which is defined as a 

constant stress acting parallel to crack extension direction, has been used by many 

authors to interpret the directional stability problems. 

Such a potential effect of the T -stress in crack path stability problems can be used 

in turning the crack in desired directions. For example from a damage tolerance 

point of view it is desirable for the crack to be as parallel as possible to the 

stiffeners. Since the more T-stress, the sharper the crack is likely to tum [1], 

higher T -stress around the stiffeners could help in turning the crack in those 

regions. 

Despite the vital role of T -stress not only in directional stability problems but also 

in the initiation angle of fracture and consequently the apparent fracture 

toughness, crack growth rate, crack tip constraints, crack closure, and the shape 

and size of the plastic zone ahead of the crack tip, little attention has been paid to 

experimentally determining the T -stress. 

This motivated the author to pursue this research with the following objective. 
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1.2 Objective of the research 

Understanding the behaviour of mixed mode cracks in general, and the path of 

such cracks in particular, requires a combination of high quality experimental data 

and observations as well as robust physically based models. 

Therefore, the objectives of the research were: 

Investigating the ability of some of the existing criteria to predict the crack 

path numerically, using a finite element method, and experimentally, using 

Thermoelastic Stress Analysis (TSA). 

Determining methodologies to determine the T-stress and stress intensity 

factor using experimental techniques of thermoelastic stress analysis and 

Digital Image Correlation (D1C). 

1.3 Thesis layout 

Therefore, this thesis is concerned with experimental investigation of crack paths 

and determining the T -stress and stress intensity factor using advanced 

experimental methods particularly thermoelastic stress analysis and digital image 

correlation techniques. 

Chapter two is a literature review of the previously mentioned topics in this 

chapter, i.e. crack direction prediction, directional stability, importance of the T­

stress and experimental techniques used in fracture mechanics studies. 

In Chapter three, first the basic concepts of the thermoelastic stress analysis 

technique are discussed, since it has been used as the main experimental method 

to explore the crack path in this research. Then, the interaction of cracks and 

corresponding paths of the cracks in five sets of double edge cracked specimens 

with different vertical offsets are investigated experimentally and numerically. 

Mixed mode stress intensity factors as well as moving crack tip positions are 

determined using the thermoelastic stress analysis technique and a finite element 

method. At the end of this chapter a comparison has been made between the 

experimental results and the finite element data and the reasons for the observed 

differences are explored. 
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In Chapter four, first two major mathematical models to describe the crack tip 

stress field are compared. Then a methodology is proposed to extract the T-stress 

from the sum of the principal stress field, i.e. the output of the thermoelastic stress 

analysis technique. This methodology first is assessed using artificial data, finite 

element data and finally experimental data. 

In Chapter five, a similar approach as in Chapter four is used. However, in this 

chapter the T -stress and stress intensity factors are extracted from displacement 

data obtained from digital image correlation technique. 

Finally, in Chapter six a conclusion is made based on the results gained in 

previous chapters and some guidelines are presented for future work. 



Literature ~ew 

The crack path problem has been studied extensively within the last half century. 

Various theories based on different concepts have been developed to rationalize 

the crack path behaviour. These theories will be reviewed in this chapter with the 

focus on the criteria which have had a major impact on the matter. The crack path 

is not always directionally stable. This problem has also been addressed by many 

authors that have led to different definitions and consequently different solutions 

to the problem. These points of view will also be covered in this chapter. It will be 

shown that the T -stress is an influential parameter in crack path and directional 

stability problems. However, this parameter is traditionally ignored in fracture 

mechanics studies. It will be shown that the T -stress not only affects the crack 

paths but also can change the size of the plastic zone, fatigue crack growth rate 

and many other parameters. Several numerical techniques have been developed to 

determine the T -stress. However, less attention has been paid to the experimental 

determination of the T-stress. Both numerical and experimental techniques 

available to determine the T-stress and stress intensity factors will also be 

reviewed briefly in this chapter. 

5 
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2.1 Crack turning criteria: A historical review 

2.1.1 Crack path direction 

In 1920, Griffith, in his classic paper on rupture, demonstrated that potential 

energy must be released when a crack propagates [4]. In 1961, Barenblatt and 

Cherepanov [5-7] introduced the local symmetry criterion which says that the 

crack moves smoothly and selects the trajectory in such a manner that only 

normal separation takes place at its end. Almost at the same time, in 1963, 

Erdogan and Sih [8] based on Barenblatt's finiteness of stress on the crack tip 

assumption, showed that the crack grows in a direction normal to the maximum 

tension at the tip of the crack and this growth releases the maximum of energy. 

Referring to their experiments they concluded that in ideal brittle materials, the so 

called "sliding" and "tearing" modes of crack extension do not take place. The 

mode of fracture seems to be always a crack opening mode [8]. The latter 

conclusion is almost equivalent to the local symmetry criterion. These are the 

basis of two of the most popular crack path criteria, i.e. maximum tangential stress 

criterion as a crack kinking criterion and pure mode I crack growth as a general 

crack path criterion. 

In 1974 Sih [9], developed the Minimum Strain Energy Density criterion (S­

criterion). It is based on the local density of the elastic energy field in the crack tip 

region. According to this criterion the crack grows in a direction along which the 

strain energy density factor is a minimum. The instability occurs when the 

minimum strain energy factor reaches a critical value. 

In a non uniform stress field the cracks generally follow a curved path. In a brittle 

homogeneous isotropic material the path where the cracks propagate is the one in 

which in the local stress field ahead of crack tip is of a mode I type. It means that 

the crack prefers to grow in a direction that there is no mode II stress intensity 

factor. Since the other mixed mode crack propagation criteria (such as the 

maximum tangential stress and the Sih's minimum strain energy density factor, all 

predict that under mixed mode loading conditions, KI/ =1= 0, the crack will kink 

from the original crack direction. It seems that the local symmetry criterion is in 
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contradiction with these criteria. However, where the crack extends in a 

continuous curved path, all these criteria yield the same results, which is the crack 

propagation is along the vanishing mode II stress intensity factor direction [10]. 

It is true that mode II crack propagation is very rare on a laboratory scale because 

mode I growth usually takes over. However, such a mode II growth is often 

observable at earth-quake slipping [11]. Melin [11] investigated the conditions for 

mode II instead of mode I growth with respect both to confining pressure and 

relevant material characteristics. She assumed that mode II growth, if it appears, 

proceeds in a direction that maximizes the mode II stress intensity factor. She 

found that a high confining pressure promotes mode II growth. Furthermore, she 

described the role of the material by the ratio, Kc = KIf< / K". If K" is around 

0.38-0.81 or smaller, mode II seems to be preferred whenever there is a confining 

pressure. If K, = Klic/ K" is around unity or larger, mode I is preferred if the 

pressure is smaller than the shear stress. 

All the previously mentioned criteria are based on the continuum mechanics 

concept which disregards the molecular or micro structure of the material and 

presumes that there is no gap or empty space in the material. However, the local 

conditions ahead of the crack tip have a vital role in the crack growth mechanism. 

Micro-separation directly depends on these local conditions. The direction and 

intensity of the local fields are the parameters which determine the formation and 

growth of the cracks. Hence, the crack grows in a direction where an increase in 

mode I or mode II stress intensity factor is dictated not along a path in which a 

combination of mode I and mode II stress intensity factors reaches an extreme 

value [3]. However, it does not appear that the crack a/ways grows in the pure 

mode I. As is shown by Shirmohammadi [12] and later in this current work, a 

crack does not necessarily grow in the vanishing mode II or pure mode I direction. 

These early continuum mechanics based criteria were for perfectly elastic stresses 

in homogenous continua under static loadings and were validated against brittle 

fracture tests. Since stress intensity factor is a good characterizing parameter it is 

common [13] to base the fatigue crack paths studies on brittle fracture models. 

However, plasticity and microstructure could modify crack behaviour in both 
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fracture and fatigue. Therefore, the continuum mechanics based criteria should be 

modified to consider the effects of plastic zone size and microstructure. This has 

been done by introducing the concept of the process zone in the calculation. 

For example, the maximum tangential stress criterion can be modified by 

calculating the maximum tangential stress at a critical or characteristic distance 

from the crack tip. However, finding a characteristic length applicable for both 

brittle and ductile failure is the most difficult part of the problem. The 

characteristic distance of twice the grain size was introduce by Ritchie et al. [14]. 

As an alternative the size of plastic zone was used as the critical distance by Streit 

and Finnie [15]. The latter case will be discussed further in the next section where 

the directional stability is reviewed. Such a treatment, especially the Ritchie et al. 

work, which is known as RKR model for brittle materials, is basis of the newly 

introduced local approach to fracture and damage mechanics which can be applied 

for brittle, ductile and creep fracture. This research area, particularly developing 

appropriate constitutive models is very active and open at the moment [16]. 

As another interesting work regarding the crack propagation, the research of Pook 

[13] can be mentioned. He used the concept of chaos theory to explain the 

behaviour of crack propagation. He drew to our attention that since the conditions 

for mode I branch crack are not completely understood, any metallurgical 

discontinuities or pre-crack front curvature may influence the crack tip surface 

deformation. In chaos theory terms the mode I branch crack formation has a 

chaotic behaviour which strongly depends on the initial conditions. 

The focus of previous review was mostly on the criteria which have had the major 

influence on the matter. The author refers the reader for supporting research and 

some contradictory observations for these criteria to reference [17]. 

In crack path prediction, intuitively, one may anticipate that at least under pure 

mode I loading in a symmetric specimen the crack grows in a self similar manner 

and continues the initial direction of the original crack. However, even under such 

a condition the crack does not necessarily follow such a straight line. This is 

because of the fact that the crack may not be directionally stable [13]. This led to 

the development of second order criteria by considering other influential 

I 
. ! 
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parameters than the stress intensity factors such as T -stress. The matter of 

directional stability and the parameters affecting the directional stability are 

discussed in the following section. 

2.1.2 Directional stability 

In 1965, Cotterell [4], based on the observations in fractured paths of centrally 

cracked specimen and double cantilever specimens, divided the fractured paths 

into two classes of fracture. Firstly, in class I in which the crack path tends to 

return to its original path after initial deviation from the ideal path. For example in 

a symmetrically loaded, centrally cracked specimen (Figure 2-10) the symmetric 

line of the specimen is the ideal path of the crack propagation. Even if the crack is 

inclined in the plate the crack will kink towards the line of symmetry of the 

specimen. On the other hand, in class II fractures no tendency exists for the crack 

to return to the ideal path, see Figure 2-1 (b). He drew the conclusion that rather 

than the global symmetry line of the specimen, the line of local symmetry of 

maximum principal stress is a highly probable path for macroscopic growth. This 

coincides with the maximum tangential stress criterion, because in the absence of 

higher order terms of the Williams' solution, the maximum tangential stress 

occurs in the same direction of zero shear stress and the tangential stress is the 

maximum principal stress as well. 

Later, in 1966, Cotterell tried [18] to justify the behaviour observed in class II 

fractures. He stated that in a perfect isotropic elastic solid a crack will grow in the 

direction where the maximum energy is released or the principal stress is 

maximum. However, flaws or microscopic anisotropy in real materials may 

influence the crack path deviation from ideal path. Particularly, if these 

irregularities are cumulative, the crack may grow in a class II type of fracture. To 

consider these irregularities, he used the expanded form of the stress distribution 

at the crack tip as a power series. He used the two term solution, in which the first 

term (aJ), determines the initiation of fracture in a brittle material and is 

proportional to the stress intensity factor, and the second term (a2) a transverse 

stress parallel to the crack face. He concluded that this transverse stress controls 

the stability of the crack direction. 
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LOAOD ULOAO 

a) Class I 
Kinked crack 

______ L'/ 
-- ---~~-----~-- -

b) Class IT 

~ ______ c:r~ _______ __ ______ _ 

i 
Line of symmetry. Line of symmetry. 

Figure 2-1 Examples of a) Class I and b) Class II fractures 

Cotterell assumed that the ideal direction for crack growth, when the stress 

distribution is symmetrical, is along the symmetric line. By defining de and d¢ as 

the first and second stages of kinking (see Figure 2-2), using the singular term of 

Williams' solution for shear stress and considering the shear stress as zero to find 

the maximum principal axis, the relationship between de and d¢ was found as 

follows, 

2-1 

where' is the original length of the crack and s is the length of the kinked crack. It 

is evident that at any stage of crack growth, if the sign of the second term (a2) is 

negative, d¢ > de and the crack path has tendency to return to its original path 

and it will propagate in a zig-zag manner. But if the second term is positive the 

path does not return to the original path and behaves as a class II fracture type. 
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(a) 
(b) 

Figure 2-2 Definition of first and second stages of kinking in a) Class I and b) Class II 1181 

IDEAL ~TH .. 

The previous derivations were for the case of straight or kinked crack. In another 

attempt in 1980, Cotterell and Rice [10] found an approximate analytical solution 

for both mode I and mode II stress intensity factors for the tips of semi-infinite 

and slightly curved or kinked cracks. In contrast to the previous work which was 

based on the maximum principal stress criterion, this time they introduced a 

perturbation in the solution found for the mode II stress intensity factor. They 

used the pure mode I crack growth criterion and made the perturbed solution 

equal to zero. They showed that for a mode I uniform slow crack growth, the 

straight crack path is stable when the stress acting parallel to the crack tip in the 

second term of the stress distribution expansion (T -stress), T, is negative and is 

unstable when T > O. Their results were in agreement with their previous work 

[18] and the work of Radon et al. [19] as shown in Figure 2-3 . 

It may be observed in Figure 2-3 that for R<J (I'<O) the crack path is a straight 

I ine, however, for the rest of the cases the crack paths deviate from the straight 

line. These are so called directionally unstable cracks. 

In 1983, Melin [20] criticised the definition presented by Cotterell and Rice [10] , 

i.e. that the crack path is directionally unstable if the vertical distance of the crack 

tip from the ideal path is increasing as the crack grows. She stated that the crack 

instability should be defined as unstable if the vertical distance of the crack tip 

from the ideal path divided by the length of the crack is increasing as the crack 

grows. In other words if the angle formed by the straight line between the crack 

tip and the original crack direction eventually decreases, then the crack growth the 

crack is directionally stable. This prevails if cr; < cr;, [21]. However, the only 

difference between this definition and the Cotterell ' s definition is in the case 



Chapter Two: Literature review 12 
--~--------------------------------------------------------

where the crack grows parallel to the ideal path. A counter example for the 

proposed criterion is the case of a double cantilever beam (DCB) where a: = 0 

but the crack path is directionally unstable in both her definition and Cotterell ' s 

definition. She also questioned the range of applicability of the Cotterell and Rice 

approach and stated that their solution is valid only up to a crack growth for which 

the tangent angle is still of the same order as the one originally imposed by the 

disturbance. She also went further and questioned the reliability of using T-stress 

as a criterion for the prediction of directional stability [22]. She stated that the T­

stress criterion can not be applied for all situations. For example, in the case of an 

array of collinear cracks under remote mode I loading, directional stability always 

prevails and does not depend on the T-stress. In her belief it is more reliable to use 

the maximum principal stress criterion than the T-stress as a criterion for 

directional stability. 

T R-l 
: 

kI (.". L/2)'It 

~---'- RCT 

Figure 2-3 Crack paths observed by Radon et 01. in experiments on biaxially stressed 
PMMA sheets 1101 

The author also believes that it is not possible to use the T -stress nor any other 

local parameter to predict the directional stability of the whole path of the crack. 

Because, for example the T -stress in a centrally cracked specimen is negative for 

short cracks (here a short crack means one with a crack length to width ratio of 

less than 0.25) which means that the crack path should be directionally stable for 
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the whole range of crack growth. However, as the crack grows the T -stress 

becomes positive which means that the crack path is becoming unstable, 

according to the T-stress criterion. This shows that by knowing the T-stress only 

at the beginning of the crack growth it is not possible to say that the crack path 

will be stable or unstable. The crack path might change due to geometrical 

changes in the specimen or getting close to the boundaries of the specimen which 

in turn may change the sign or magnitude of the T-stress. However, it does not 

mean that the crack path is not affected by the T-stress. Erdogan and Sih [8] 

neglect the T-stress in their solution and Cotterell and Rice [10] used the pure 

mode I crack growth criterion. However, by using the Erdogan and Sih criterion 

and considering the higher order terms, the effect ofT-stress in crack path will be 

revealed. 

The stress distribution near the crack tip is written in the polar coordinate system 

as follows, 

a oo = ~cos(}(K,COS2 () -iKllsinO)+Tsin2(}+o~1/2) 
V 21fT 2 2 2 

a,o = 5;; cos () [K, sinO + KII (3 cos () -1)]- TsinOcos(} + 0{r I/2 ) 
2 21fT 2 

2-2 

Ignoring the T-stress results in equality of the maximum principal stress criterion 

( a ,0 = 0 ), and the maximum tangential stress criterion (8a 00/ 8() = 0). However, 

these are not equal if the T-stress is considered [15]. For a pure mode I case 

considering 8a 00 /8(} = 0 leads to, 

-};;; sin () cos ~ + 2T sin () cos () = 0 
4 21fT 2 

2-3 

Obviously, one of the solutions of this equation is (}=o. As the sufficient 

condition, to make sure that (}=o corresponds to the maximum of tangential stress, 

the second derivative of the tangential stress should be negative at (}=O, 

2 / 2 h· d· . . 2T 3K, S· K· .. 8 a 00 80 < o. T IS con Ihon gives < ~ . mce I IS a positive 
4v21fT 

parameter, this condition always prevails if T<O. For a non-negative value of T, 

this condition only holds if, 
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2-4 

which means for the radii r less than ro (defined by 2-4) or a negative T-stress, the 

crack grows in a straight line no matter what the magnitude of the T-stress is. 

However, for the radii greater than ro and non-negative T-stress the crack will 

deviate from the plane of symmetry based on the following equation, 

() = + cos -I I + I + _ [ 
3K (3K)2 1] 

- 32T~2nr 32T~2nr 2 
2-5 

It means that for a pure mode I case, the Cotterell and Rice treatment is partially 

valid. The stability (crack growth in a straight line) can be achieved even with 

positive T-stress values. It should be noted that the above derivations were for a 

pure mode I; in mixed mode conditions the relationship of T-stress and other 

parameters becomes more complicated and the therefore the Cotterell and Rice 

treatment may not be easily applicable. 

Using the above concept Streit and Finnie [15] introduced another stability 

criterion. In this criterion the crack path is stable if the critical radius rc ahead of 

the crack is less than rD. After exploring the microstructural parameter such as 

grain size they could not correlate the critical radius with microstructural 

dimensions. However, a close relationship was found between critical radius and 

size of plastic zone especially with the Larsson and Carlsson [23] plastic zone 

estimation. 

What attract one's attention is that there are many different definitions for 

directional stability. It is not possible to talk about the directional stability without 

considering a criterion for crack path direction. It seems what has been used in 

literature is the mode I crack growth or the equivalent vanishing mode II stress 

intensity factor and the maximum tangential stress. It means that in all the 

previously discussed criteria, the stress intensity factor which is an elastic 

parameter is considered as the governing parameter in crack growth problems. 

Regarding the T -stress as a controlling parameter in crack directional stability it 

should be mentioned that it might be used as a necessary condition for crack 

stability/instability but it can not be used as the only parameter to predict 
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instability. As was shown earlier, the T-stress could highly influence the crack 

path. However, in this treatment the size of plastic zone is also influential. So, it 

seems that the effects of crack tip plasticity as well as plastic strains ahead of the 

crack tip should also be considered. 
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Figure 2-4 The normalized plastic zone sizes and shapes obtained for different T values 1241 

Figure 2-4 shows the normalized plastic zone size and the shape of the plastic 

zone obtained under different T-stress values applied. As it is observed in Figure 

2-4 and discussed further in the next section the T-stress can significantly affect 

the size of plastic zone. Therefore, to investigate the crack path, in addition to the 

stress intensity factors, the T -stress and size of plastic zone should be considered. 

2.2 Other important aspect of T -stress 

As previously mentioned, apart from the role of T-stress in directional stability 

problems a considerable amount of research has been undertaken to investigate 

the effect of both magnitude and sign of the T-stress in rationalizing various 

phenomena observed in fracture mechanics applications. These include the effect 

of T -stress on crack tip constraint and the size of plastic zone, the role of T -stress 

in fatigue crack growth, crack tunnelling, fracture toughness and even in failure 

assessment diagrams. These are briefly reviewed in this section. 

2.2.1 T -stress and crack tip constraint 

When a tensile load is applied to a specimen a transverse contraction is observed 

in the specimen. If the tensile stress is high enough to produce plasticity in the 
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specimen this transverse contraction becomes larger due the fact that the volume 

is constant during the plastic deformation. In a thick specimen, under plane strain 

conditions, the elastically loaded material away from the crack tip works as a 

constraint and prevents such a contraction ahead of crack tip. On the other hand in 

a thin specimen, under plane stress conditions, such a constraint does not exist and 

the material can contract freely and produce an out of plane deformation [25]. 

The concept of using out of plane deformation as a constraint or using the plane 

stress/strain transition idea has often been used to justify the phenomena observed 

in fracture mechanics. However, the out of plane constraint does not seem enough 

to rationalize a broad range of situations. So, a more general constraint parameter 

is needed to explain the intricate nature of crack tip constraint, which is a 

combination of in plane and out of plane constraints [26]. 

The T -stress as a measure of the in plane crack tip constraint was first used by 

Larsson and Carlsson [23] and later by Rice [27]. By performing elastic-plastic 

finite element simulations using the boundary layer formulation for different 

geometries, they found different plastic zone sizes and shapes for the same level 

of applied stress intensity factor. They managed to verify their results by using a 

modified boundary layer formulation (using two parameters of the asymptotic 

approach, namely stress intensity factor and T-stress). 

This two-parameter approach later was used by Betegon and Hancock [28] and 

the T -stress was used as measure of crack tip constraint in a mode I loading 

condition. They showed that the elastic field can be described by the stress 

intensity factor and a biaxiality parameter which is the T-stress nonnalized by the 

mode I stress intensity factor. Similarly, in large scale yielding J and T can be 

used to characterize the elastic-plastic field ahead of the crack tip. Later, the J-T 

concept has been extended to fully yielded conditions by proposing the J-Q two­

parameter approach by O'Dowd and Shih [29]. The crack tip constraint effect in 

mode II has also been investigated by Ayatollahi et al. [30]. 

As a summary, in a loose constraint cracked specimen the T-stress has a negative 

value and the normal stress field ahead of the crack tip is not fully characterized 

by the HRR field. On the other hand in a cracked specimen where the T -stress 



Chapter Two: Literature review 17 
--~------------------------------------------------

does not exist or it has a positive value the stress field can be estimated by HRR 

approach [30]. 

It should be noted that the T -stress or using a two-parameter approach should not 

be overextended as a universal constraint parameter. This parameter together with 

other known constraint parameters like the crack closure and triaxiality (which is 

defined as the hydrostatic mean stress to the Von Mises effective stress) can give 

an insight to a better explanation of the fracture mechanics problems. 

2.2.2 T -stress and fracture toughness 

Based on the linear elastic fracture mechanics approach a crack extends or 

fracture happens when the stress field ahead of the crack reaches a critical value. 

Since in the single parameter LEFM it is assumed that the stress field is totally 

defined by the stress intensity factor; the fracture occurs when the stress intensity 

factor reaches the critical value which is called fracture toughness. It is assumed 

in LEFM that the fracture toughness is independent of the geometry and only 

depends on the material [31]. This parameter is usually determined by using a 

three point bending or a compact tension standard specimen under plane strain 

conditions and the results are used for other configurations. This material 

independency is only limited to a range of geometries and loading conditions. 

Shih and German [32] explored the size requirement needed for characterizing the 

crack tip in an edge cracked bar subjected to bending and in a centre cracked 

panel and single cracked panel subjected to tensile loads. Their finite element 

study showed that the proposed size requirement by ASTM is adequate to ensure 

a valid toughness characterization of the crack tip region in the cracked bend bar 

and compact specimen or configurations where the uncracked ligament is 

subjected primarily to bending. However the specimen dimensions will have to be 

considerably larger to ensure a valid characterization in centre-cracked panels and 

similar configurations where the ligament is subjected primarily to tension. Later, 

in an experimental study done by Hancock et af. [33] on different specimens 

(centre cracked, single edge cracked and three point bending specimens) made 

from the same material it was revealed that the plane strain toughness in different 

geometries are considerably different, as was observed by Shih and German [32]. 
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To explore this problem they used the two-parameter approach and they managed 

to justify the obtained results based on the effect of T -stress. They found that the 

geometries which show a positive T-stress (like single edge crack or compact 

tension specimens) exhibit a geometry independent fracture toughness. On the 

other hand a negative T-stress, which occurs in centre cracked specimens, makes 

the fracture toughness dependent on the geometry of the specimen and as shown 

in Figure 2-5, a negative T-stress increases the fracture toughness compared to 

zero or positive T-stress levels. 

Low Constraint High Constraint 

ASTM Standard 
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Figure 2-5 Effect of T -stress on fracture toughness (after Shah 1341) 

2.2.3 T-stress and failure assessment diagram (FAD) 

There has been a substantial effort to develop a procedure to assess the structural 

integrity of the material not only based on fracture mechanics concepts but also 

considering the effect of plasticity in structures. The failure assessment diagram 

(FAD) was first introduced by Dowling and Townley [35] in 1975. Then the first 

procedure was published by the Central Electricity Generating Board in the UK 

and it became popular all over the world. Since then it has been published and 

revised many times under the name of the R6 procedure [36]. 

Figure 2-6 shows the R6 FAD diagram with no allowance for constraint. The 

vertical axis includes the fracture mechanics criteria of the diagram. It says that 
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the linear elastic stress intensity factor K should be less than the fracture 

toughness of the material Km% 

K 
K r =--$; 1 

KmQ' 
2-6 

The horizontal axis which contribute to the plastic collapse criterion is defined as, 

L =.!..-. < Lmax 
r P

D 
- r 

Kr 

'·01----__ _ 

005 

mol( 
Lr Lr 

2-7 

Figure 2-6 Tbe R6 FAD diagram before considering tbe constraint effects (after Ainswortb 
and O'Dowd 137J) 

in which, P is the applied load and PL is the plastic collapse load corresponding to 

the yield stress. L;ax is the average of the yield strength of the material and 

ultimate tensile strength of the material, divided by the yield strength, which is I 

for non-hardening material, and greater than 1 in general. 

The FAD diagram which accounts for the interaction of both the aforementioned 

criteria, predicts a safe region for point (Lr, Kr) if this point lies in the region 

where 

2-8 
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in which f(L, ) = ~Je / J and Je and J come from elastic and elastic plastic 

analysis respectively. Consideration of the effect of the T-stress in the FAD was 

introduced by Ainsworth and O' Dowd [37] and continued by Bilby et al. [38] and 

Ainsworth et al. [39]. This work lead to publication of the SINTAP (Structural 

Integrity Assessment Procedures for European Industry). To consider the 

constraint effect, equation 2-8 was modified to K, ~ .!..- K;,ol where, K:
aI 

is a 
Je Kmol 

constraint-dependent toughness. The constraint modified FAD is shown in Figure 

2-7. 
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Figure 2-7 The R6 FA D diagram after considering the constraint effects (after Shah 1341) 

As it is observed in the constraint based FAD, decreasing the constraint level 

increases the safe region or in other words makes it less conservative. 

2.2.4 T -stress and crack shape development and tunnelling 

A simple observation of the fracture surface of a specimen reveals that no matter 

what the crack propagation path is, usually the crack front grows faster in the 

centre than the edge surface of the specimen. Therefore, the crack front takes the 
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shape of a curve rather than a straight line normal to the edge of the specimen as 

shown in Figure 2-8 . This phenomenon is called tunnelling [31]. 

Fatigue surface Tunnelling Fracture 

Figure 2-8 Tunnelling definition 

In a study conducted by Zhao et at. [40] on corner cracked specimens (eN) it was 

observed that the crack grows faster in the mid plane than the surface leading to a 

tunnelling effect. To investigate the reason behind this phenomenon they used a 

3D finite element model to simulate the crack front condition. The stress intensity 

factor was found both on the surface and in the mid plane of the specimen. 

However, the calculated stress intensity factors in the mid plane were lower than 

the ones in the surface which obviously shows that the stress intensity factor 

solely can not be used to explain this phenomenon because the region with lower 

stress intensity factors seem to have grown faster! Therefore, they determined the 

T -stress as well and they found that the T -stress in the mid plane is higher than the 

T -stress on the surface which shows the crack front is more constrained in the mid 

plane and this increases the growth rate in the mid plane. 

2.2.5 T -stress and fatigue crack growth rate 

As reported by Tong [26] , a remarkable difference was observed in the fatigue 

crack growth rate measured in CN and CT specimens made from Waspa\oy and 

tested at 650°C, Figure 2-9. These were consistent with the results from a previous 

study [41] on nickel-based alloys at 200°C. 
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To see if such a behaviour was due to high temperature or specimen geometry, 

Tong [26] conducted a similar experiment on PM alloy, U720Li, at room 

temperature. A similar trend was observed for the fatigue crack growth at room 

temperature and led to the conclusion that the specimen geometry is responsible 

for such a trend. 
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Figure 2-9 Fatigue crack growth rates obtained from CT and CN specimens in Waspaloy at 
650°C 1261 

To examine the effect of specimen geometry on fatigue crack growth, she used 

CT, single-edge tension (SENT) and CCT specimens made from mild steel with 

the same thickness and similar initial crack lengths and loaded in such a way that 

similar LlK was applied to all the specimens. The lowest fatigue crack growth rate 

was found in CCT specimens which was almost consistent with SENT specimens 

particularly in higher LlK. However, it was observed that the rate was much higher 

in CT specimens. 

Crack closure phenomena could not be used to explain these discrepancies. Crack 

closure is more likely to happen in the threshold region but the differences in the 

CN and CT crack growth rate was negligible in that region and became higher as 

the LlK increased. Therefore, the T -stress based crack tip constraint concept was 
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used to rationalize the discrepancies. It was seen that as the crack grows the net 

difference in the T-stress in different specimen geometries increases which is in 

harmony with the difference found in fatigue crack growth rates measured from 

different type of specimens. Comparable negative values of T-stress in CCT and 

SENT specimens can also explain the comparable results obtained for these cases. 

The positive T -stress, which confines the plastic zone size of the crack tip, in CT 

specimens explains the faster crack growth compared to CCT and SENT 

specimens. 

2.3 Numerical T -stress determination 

Many different methods have been proposed to evaluate the T-stress specimens 

and structures. The purpose of this section is to briefly review the numerical 

methods available for T-stress determination because these ideas might be 

applicable in experimental studies as well. The only method which will be 

discussed in more detail is that currently used in ABAQUS. Results from this 

method will be used later for comparison with the experimental results in chapters 

4 and 5. 

The first studies regarding the numerical calculation of the T -stress goes back to 

the work of Larson and Carlson [23] in 1973. Based on the difference of normal 

stress acting parallel to the crack face and the traditional boundary layer 

formulation (which does not account for the T-stress) they managed to determine 

the T-stress numerically. This method was later called the stress substitution 

method [42]. Since then many other methods have been proposed. Among these 

are the Leevers and Radon [43] variational formulation of William's solution, 

Kfouri [44] T-stress determination based on J integral, the weight function method 

[45], the interaction integral method [46], the line spring method [47], Green's 

function method [48], the nodal displacement method [49] and the stress 

difference method [SO]. Among these numerical methods, the integral techniques 

seem to be more reliable because they avoid the stress singularity near crack tip. 

ABAQUS employs an interaction integral [46,51]. In this technique an auxiliary 

load is applied to the crack front and the J integral is calculated for the total field, 
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J,o,a/, (total field means field due to application of the actual load plus the auxiliary 

load), actual field Jacfua/ and auxiliary field Jauxiliary. The interaction integral is 

defined as 1= J,v,al - JaclUul - Jaux,lwry. It can be shown that T-stress can be 

determined as [46], 

E 
T = 1(1 _ v 2 ) (J + VB :J 2-9 

where, J, is the magnitude of the auxiliary load, E and v are modulus of elasticity 

and Poisson's ratio. 

All the previously mentioned techniques were numerical techniques. In the next 

section experimental methods used in crack analysis in general and SIF and T­

stress in particular are reviewed. 

2.4 Full field experimental techniques for crack analysis 

There are many full field experimental techniques which provide the displacement 

and strain/stress fields. These include photoelasticity and thermoelastic stress 

analysis which provide stress fields and geometric moire, moire interferometry, 

electronic speckle pattern interferometry and digital image correlation which 

provide displacement fields. By knowing the displacement or stress field ahead of 

a crack, the characterizing parameters of the crack tip can be derived. Due to the 

improvements made in digital technology these techniques can be used in almost 

real time applications. Each of these techniques has its own benefits and 

drawbacks [52]. 

Photoelasticity is one the oldest full field experimental techniques. This technique 

provides a full field map of difference of principal stresses on the surface of the 

specimen. Using transmission photoelasticity to determine the fracture parameters 

goes back to the work of Post [53] in 1954, and Post and Wells [54] in 1958, 

where the static and dynamic stress field ahead an edge crack were investigated. 

At the same time Irwin [55] in a discussion made on the work of Post and Wells 

extended the work to mode I stress intensity factor determination in the presence 

of the constant term of Williams' solution. In this method only a single fringe was 

used in calculation and a slight error in measuring the corresponding radial and 
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angular distance of the fringe introduced considerable errors in calculated mode I 

stress intensity factor. 

This approach was modified later by Bradley and Kobayashi (56] for two fringes 

and up to 20 points for mixed mode cracks by Sanford and Dally (57]. In the latter 

work, in contrast to the previous works, all three fracture parameters namely, 

mode I and mode II stress intensity factor and the constant non-singular stress (T­

stress), were determined using an overdeterministic method and Williams two 

term solution. 

As an alternative, the work of Nurse and Patterson (58] can be mentioned, in 

which the Muskhelishvili complex stress function and the Fourier series were 

utilized to determined the stress intensity factors in mixed mode conditions using 

an overdeterministic method. Recently, in 2008, in the spirit of this work and 

ignoring the conformal mapping approach used in that work, Christopher e/ al. 

(59,60] developed a method to determine the stress intensity factor as well as the 

T -stress but only under mode I loading conditions. The feasibility of 

photoelasticity has also been examined in crack closure studies [61] and fatigue 

crack growth problems [62]. 

Photoelasticity is a fantastic full field experimental technique. However, the 

transmission form of photoelasticity needs a transparent specimen which means it 

can not be used for non transparent components (eg. metals) unless an epoxy 

model is used instead, which of course in this case the microstructural effects are 

ignored. On the other hand if reflection photoelasticity is used a birefringent 

coating is needed and therefore in case of growing cracks it can not be used unless 

the crack path is known in advance. It needs to be mentioned that data cannot be 

recorded at the edge of the coating due to Poisson's ratio mismatch. This also 

limits its usefulness [63]. Another drawback of photoelasticity in fatigue crack 

studies is the fact that most of the photoelastic resins (except polycarbonate) are 

too brittle to be able to grow fatigue cracks on them. 

Moire is another full field technique which provides contour maps of in plane 

displacements based on interference of two gratings. Similar studies have been 

carried out using moire technique to determine pure mode I stress intensity factors 
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[64, 65], mixed mode stress intensity factors [66], dynamic fracture studies [67] 

and crack closure measurements [68, 69]. The same approaches have been used to 

extract the stress intensity factors from displacement data obtained from 

Electronic Speckle Pattern Interferometry (ESPI) for pure mode I [65, 70] and 

mixed mode loading [71]. 

The Moire technique is a very accurate method for displacement measurement. 

However, it needs a reference grating and a specimen grating which should be 

bonded to the specimen. This makes this technique cumbersome to use and also 

vulnerable in situations where debonding is probable between the grating and 

specimen surface such as at the high strain gradient at a crack tip. ESPI on the 

other hand does not need a time consuming surface preparation. However, it 

requires expensive equipment. The main disadvantage of ESPI is high sensitivity 

of the technique to environmental vibrations. This makes it very hard to be used in 

the vicinity of a test machine and it limits the application ESPI to the laboratories. 

For further comparison between these experimental techniques author refers the 

reader to Olden's work [72]. 

In the last few years, thermoelastic stress analysis and digital image correlation 

have been used to measure crack tip strains and displacements. Minimal surface 

preparation is required in these techniques. Unlike reflection photoelasticity and 

moire technique where a coating or grating has to be bonded to the surface, only 

using a painted or an abraded surface of the component is sufficient in these 

techniques. They also can be used on real specimens and are not sensitive to 

environmental vibration which makes these techniques suitable to be used in real 

industrial situations. Application of these two techniques in fracture mechanics 

studies is reviewed in more detail in the following sections. 

2.4.1 Thermoelastic stress analysis 

Thermoelastic stress analysis is an experimental technique which works on 

measuring the minute temperature changes induced on the surface of a specimen 

due to the applied load. As the output this technique yields a signal which under 

certain conditions which will be discussed in the following chapter is proportional 

to the sum of principal stresses on the surface of the specimen. 
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The high sensitivity and resolution of thennoelastic stress analysis (TSA) 

equipment and, in particular, the non-contacting nature of the TSA technique 

come together to offer a very attractive novel approach in fracture mechanics 

studies [73]. The first attempts to use this technique in fracture mechanics 

problems was recognized by Stanley and Chan [74] in 1985. After that many 

studies were done to characterize the stress field ahead of the crack quantitatively 

by detennining the stress intensity factors from the thennoelastic images. For 

example, Stanley and Chan [75], used the mixed mode Williams' solution and 

considered only the first tenn of the expansion for a point with radial distance, r, 

and angular distance, 8, from the crack tip. They managed to establish a 

relationship between the thennoelastic signal (S) and the sum of principal stresses 

and consequently between thennoelastic signal and variation of stress intensity 

factors (M/ and MIJ) as follows, 

2M/ () 2MI/ . () 
AS =----cos----sm-

.J27tr 2 .J27tr 2 
2-10 

in which A is the calibration factor. 

In a pure mode I case, Mil = 0, by replacing r with y/sin8 and differentiating 

with respect to 8, they observed that the maximum signal, Smax, occurs in 8=600. 

Therefore, the vertical distance from the crack plane, y, can be related to the mode 

I stress intensity factor and Smax as follows, 

2-11 

This means if the vertical distance from the crack tip is plotted versus the inverse 

square of the maximum thennoelastic signal, the range of the stress intensity 

factor can be found from the slope of the curve as follows, 

M _ 4M2 slope 
I - 3.[3 2-12 

This graphical method was used to investigate the pure mode I stress intensity 

factor in a centrally cracked specimen subjected to a uniaxial load. The results 

were found to be within less than 5% different of the theoretical values. This 

difference was mainly explained by the presence of plastic strains ahead of crack 
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tip. This method was extended by them [76] to pure mode II conditions and 

similar formula was found, 

2-13 

However, in the pure mode II case the experimental results were found to have a 

30% difference from the theoretical values. In spite of the reported difference 

between experimental and theoretical results, this methodology has the advantage 

that the results are independent of the crack tip position. 

The Stanley approach is mainly based on the assumption that the relationship 

between y and the inverse square of the maximum thermoelastic signal is linear as 

can be seen in equations 2-11 and 2-13. However, this assumption is only valid 

when the pure stress intensity factors are applied or in other words, the T -stress is 

absent. If in equation 2-10 the T -stress, T, is considered and the same procedure is 

repeated it readily can be shown that for pure mode I with presence ofT-stress, 

2-14 

and for pure mode II with presence of T -stress, 

2-15 

Obviously, these equations are not linear any more. Therefore, in the presence of 

the T-stress the linearity assumption is invalid and the methodology is confined to 

the application where no T -stress exists. 

Later, in 1996, and based on Stanley's graphical treatment, Stanley and Dulieu­

Smith [77] proposed another graphical technique to measure mixed mode stress 

intensity factors and the non-singular term of Williams' solution (T-stress). They 

rewrote equation 2-10 in the form of 

) 
2M, () 2KII . () 

A(S+S =--cos----SIn-
o ,J21D' 2 ,J21D' 2 

2-16 

in which So = CTox / A represents the effect of the non-singular term or T-stress. 

By defining 
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2-17 

where f)max is either f)maxl or f)maxl as shown In Figure 2-10 and ~ is the area 

surrounded by the cardioid. They found 

Me =C J C2 

I I I +C
2 

tlK - J C, 
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2 

2-18 
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Figure 2-10 Nomenclature of the cardioid curve 1781 

In this method for a certain value of S, the cardioid is constructed graphically and 

then C1 and C1 are determined and finally stress intensity factors can be 

calculated. It should be noted that So in equation 2-17 is determined from 

thermoelastic data gained from a horizontal scan line from the crack tip and using 

equation 2-16. 
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This technique, like the previous techniques, is a graphical technique but unlike 

the previously mentioned techniques requires the position of the crack tip. 

Unfortunately no experimental results were presented in this paper to support the 

methodology. However, later in 2000, inspired by the graphical cardioid method, 

Dulieu-Barton et al. [78] developed a computer code (FACTUS) to determine 

stress intensity factors from thermoelastic data. They rearrange the equation 2-16, 

as follows, 

M2+M2 
(rm + c) = ( ;; [I + cos(O + 2q»] 

A2 S + So 
2-19 

in which tan q> = M /I / M I and rm is the measured value of rand c and accounts 

for the uncertainties in measuring r. They chose three values of S at equal 

intervals along the crack scanning line, as shown in Figure 2-11. Thus, 

(rm2 +c)-(rml +c)= (rm3 +c)-(rm2 +c) 2-20 

By putting equation 2-19 in equation 2-20, 

1 I I 

(SI +So)2 + (S3 +So)2 = (S2 +SoY 
2-21 

This equation can be solved to find So. Three values for So were found using this 

equation. It was reported that two of them were more than the applied nominal 

stress and were neglected. The other one was chosen as the right value for the So. 

By knowing So, &</ and &<11 can be determined using equations 2-17 and 2-18. 

To validate the code they used artificial data and they found that for So values less 

than 25% of the nominal signal this method gives poor results for So. They used a 

centrally cracked specimen for different mode mixity (different p angles) and they 

found both stress intensity factor and the non-singular term. Up to 13% error for 

pure mode I cases and up 30% error was reported for the calculated stress 

intensity factors using this methodology. Such a difference might be due to the 

fact that they ignored the effect of So. For a mode I case it is well known [31] that 

for a centre cracked specimen the magnitude of the non-singular term is of the 

order of magnitude of the applied stress (it also depends on the dimensions of the 

plate and the crack but it only makes a few percent difference). So, the expected 

non-singular term is much bigger than 25% of nominal stress and it is expected 

that this methodology be able to predict the non-singular term accurately. 
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However, the value found for So for such a case was about 10% of the applied 

nominal stress which is not consistent with analytical studies [31) . Therefore in 

the rest of their experiments So was ignored and the stress intensity factors were 

determined. As mentioned before such an omission might be the source of errors 

observed in stress intensity factor results using this methodology. 

Figure 2-11 Derivation of So 1781 
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Using the same idea Dulieu-Barton and Worden [79) upgraded the FACTUS 

program and tried to fit the experimental data to the cardioid model. However, 

later Worden et al. [SO) questioned the applicability of the cardioid model. 

Based on the fact that the cardioid approach (single term Williams' approach) is 

not always dominant, Lesniak and Boyce [SI] used up to 4 terms of the Williams' 

solution. A set of data points were selected from a window surrounding the crack 

tip and the area affected by crack tip plasticity or non-adiabatic conditions were 

removed from the data set. Then a least square method was used to determine the 

stress intensity factors. It was shown that for pure mode I cases increasing the 

number of terms reduces the difference observed with the theoretical values from 

20% (for the single term approach) to 3% (for the 4 terms approach). 

To investigate the accuracy of the least squares method Ju et al. [S2] simulated 

pure mode I and mixed I and II modes numerically using a finite element method 
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for linear elastic and plane stress conditions. In their approach the sum of 

principal stresses was determined using up to 6 terms of the Williams' expansion. 

The J integral was calculated numerically by averaging the J values found for four 

different contours surrounding the crack tip. The sum of principal stress data was 

used in the least squares method and the stress intensity factors were determined. 

Finally the J integral results were compared with (,~J(; + Mil)/ E using the 

stress intensity factors gained from the least squares method. It was observed that 

using too many terms of Williams' solution introduced numerical truncation 

errors and finally decreased the accuracy of the calculated stress intensity factors. 

It was suggested that using three or four terms of Williams' solution for the sum 

of principal stresses can improve the calculated stress intensity factors. 

All the previously mentioned methods to find the crack tip field characterizing 

parameters were based on Williams' solution. Basically in Williams' solution a 

stress function (Airy stress function) which automatically satisfies both 

equilibrium and compatibility equation is estimated. This stress function must 

satisfy the boundary conditions as well. As a result the Williams' solution is 

formed for the stress and displacement fields. The Airy stress function is a non 

complex function. As an alternative, in a general elasticity problem it has been 

shown by Muskhelishvili [83] that the state of stress (and displacement) field is 

also definable by two complex analytical function. 

0" xx + 0" yy = 4 Re[<l>{z)] 

a yy - a xx + 2; T xy = 2 [z<l>'{z ) + \}I (z)] 
2-22 

If these two complex analytical functions are gIven, then the stress (and 

displacement) fields can be fully defined. Rather than guessing these functions 

and determining the stress (and displacement) field, Nurse and Patterson [58] used 

a general form of Fourier series with unknown coefficients (A, B, a and b) for 

these stress functions, 

<1>{() = i AN(2N + i a;m 
N=O m=l ( 

2-23 

\}I{s) = I BNS 2N + I b;m 
N=O m=lS 

in which' is a known function of z. 
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By satisfying the boundary conditions and fitting the experimental data gained 

from photoelasticity they managed to find the unknown coefficients. By knowing 

these coefficients, then the stress field and consequently the stress intensity factors 

may be determined. 

Based on this idea Tomlinson et al. [84] proposed an alternative method to 

determine the stress intensity factors in mixed mode I and II conditions. However, 

in this case the sum of principal stresses obtained from the thermoelastic signal 

was used as the experimental data. A Newton-Raphson iteration combined with 

the least squares approach was used to fit the Muskhelishvili's approach. The 

crack tip was found by inspection. The differences reported in mode I stress 

intensity factors were almost in the same range as the previous methods. 

However, improvements were observed in the mixed-mode results. Such a 

difference might be attributed to the uncertainties in crack tip position or the area 

where the data points are collected. Diaz [85] implemented the Tomlinson method 

in a computer code (FA TCA T). Moreover, he considered the position of the crack 

tip as an unknown in the equations and used the Downhill-Simplex method to 

solve the equations and fit the experimental data in Muskhelishvili's approach. He 

also used a Genetic Algorithm (GA) optimization to locate the crack tip. Although 

this method works in many situations, this method depends on the data point 

selection. Besides, the results found from the GA and the Downhill-Simplex 

methods did not always agree with each other. 

A similar approach to the Tomlinson approach was also used by Lin et al. [86] for 

orthotropic composites which of course can be used for isotropic materials as 

well. Compared to Tomlinson's approach, in this method a different general form 

of stress functions and a different conformal mapping were used. In this technique 

the J integral was used to determine the stress intensity factors. In artificially 

generated data with 10% noise in pure mode I conditions the determined stress 

intensity factors showed at least 3% difference. In real data, however, up to -15% 

difference from theoretical values was observed. The interesting point about this 

technique is that the data are not required to be collected from the region close to 

the crack tip. Therefore, the effect of local plasticity or non-adiabatic conditions 

ahead of the crack tip can be ignored. 
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The aim of the review was to identify the main approaches which have been used 

in fracture mechanics applications and quantifying the characteristic parameters in 

stress fields ahead of the crack using thermoelastic stress analysis. Many other 

works can be found in the literature, such as crack growth rate [87] and crack 

closure studies [88]. However, most of these studies are just applications of the 

aforementioned approaches. 

To summarise, it was shown that all previous methods using TSA for stress 

intensity factor calculations are based on either Williams' stress solution or the 

Muskhelishvili ' s complex formulation . However, lack of direct comparison of 

these two approaches in the same stress conditions is noted. It is also evident that 

despite a huge amount of work having been done regarding the SIF determination, 

little attention has been paid into the T-stress determination using thermoelastic 

stress analysis. In the following chapters both Williams' solution and 

Muskhelishvili ' s approach are directly compared and a methodology to determine 

the T -stress from the thermoelastic data is also presented. 

2.4.2 Digital image correlation 

One of the earliest works to determine fracture parameters from displacement data 

is the work of Evans and Luxmoore [89] in 1974, in which a graphical method 

(Figure 2-12) was proposed to determine mode I stress intensity factor. 
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Figure 2-12 Graphical method to determine mode I stress intensity factor from speckle 
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The displacement perpendicular to the crack face was plotted versus the root of 

radial distance from the crack tip along (}=90o
. Since the slope of the best fit line 

is proportional to the mode I stress intensity factor, by finding the slope, the mode 

I stress intensity factor was determined. However, in this work the displacement 

field was obtained from a laser speckle method. The first attempt to determine the 

stress intensity factor using image correlation was the work of McNeil et al. [90] 

in 1987. In this work they used C-shape specimens and 3-point bending 

specimens and only the pure mode I loading condition was examined. Digital 

image correlation was applied and the displacement field was obtained. To extract 

the stress intensity factor, the vertical displacement field (displacement normal to 

the crack face) was employed and the data in the horizontal direction were 

ignored. This means that this method is restricted to pure mode I conditions. An 

error function was defined based on the difference between the experimental 

displacement field and the Williams' solution. The minimum of the error function 

was found by taking the partial derivative of the function with respect to the 

unknown coefficients and equalling it to zero. The stress intensity factor was 

considered as an unknown coefficient in this equation and it was determined using 

a least squares method. The crack tip was found by calculating the defined error 

function by varying the crack tip position for a few pixels. The corresponding 

position to the minimum of this error function was considered as the crack tip. 

However, the calculated mode I stress intensity factors were relatively scattered 

compared to ASTM results they used as the reference. These errors might be due 

to ignoring the horizontal data and less accurate image correlation algorithms that 

were employed in that early stage of developing the technique. This can be 

observed in Figure 2-13 by comparing the vertical displacement field found using 

digital image correlation (b) and theoretical solution (a) where a noticeable 

amount of difference is observed particularly in cracked area. 
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(a) (b) 

Figure 2-13 Comparison of a) Theoretical and b) Experimental vertical displacement field 
1901 

This methodology was extended by Durig et al. [91] to mixed mode crack studies. 

However, they used up to 20 terms of the Williams' solution. Similar tests were 

also conducted using photoelasticity and the results compared with the image 

correlation technique. A good agreement was found for mode J stress intensity 

factors, however, mode II stress intensity factors were slightly different and not as 

good as mode I results. However, again in this work and the same as the previous 

work [90] the crack tip positions were calculated by trial and error and 

minimizing the defined error function . Using the idea of the error function but 

considering the position of the crack tip as unknowns in the equations, Hild and 

Roux [92] managed to find an optimized crack tip position and stress intensity 

factors. Although their method was developed for mixed mode conditions, their 

experiments were conducted under almost pure mode I conditions. Almost at the 

same time, based on the method of Durig et aJ. [91] , Yoneyama et al. [93] used 

the crack tip coordinates as two unknowns in the displacement field equations. 

They used up to 20 terms of the Williams' solution as the mathematical model and 

used an iterative Newton-Raphson technique to solve the nonlinear system of 

equations. Using the Cartesian coordinate system they could not find a converged 

value for stress intensity factors and they tried to use the polar coordinate system 

instead. However, the reason simply lies in the fact that they only used the vertical 

displacement field when they used the Cartesian form of the equations. Obviously 

ignoring the effect of horizontal displacements particularly in cases where the 

mode II stress intensity factor is strong can easily make the solution unstable. This 

was corrected in their next work [94]. Mixed mode stress intensity factors were 

determined by adopting the convergent value of the solution by increasing the 
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number of Williams' solution terms. It was shown that using higher-order terms 

of the Williams' solution helps the estimation of the stress intensity factors. 

It should be noted that there are some other methods that do not need the 

knowledge of the crack tip position. Among these techniques, the J integral 

method [95] and the interaction integral technique [96] can be mentioned. 

Basically in all the previously mentioned methods the stress intensity factors were 

directly inferred from the output of digital image correlation which is a 

displacement field. However, as it was discussed the determined stress intensity 

factors are affected by the uncertainties in crack tip position. Additionally, the 

effect of the rigid body translations should be compensated to get reasonable 

results for the stress intensity factors. On the other hand in the J integral and 

interaction integral techniques as long as the crack tip is included in the 

integration domain (Figure 2-14), these methods are not affected by the crack tip 

position. 

However, in both of these techniques the stress field (rather than displacement 

field) is needed to determine the integrals. Since the experimental displacement 

field always comes with some level of noise, the experimental displacement data 

do not completely satisfy the equilibrium equations and consequently this reduces 

the accuracy of the stress and strain analysis [97]. Therefore, it is almost 

impossible to get the stress and strain data from raw experimental displacement 

data [98]. Basically, determination of the stress/strain field from the displacement 

data requires numerical differentiation which is extensively sensitive to the noise 

in the data. Therefore, the data should be smoothed before doing the 

differentiation operation. Although this reduces the random errors in the data, it 

introduces systematic errors in the derivations [95]. Thus, it is true that these 

techniques do not need the crack tip position but in using them or generally in 

problems where the stress/strain are obtained from displacement field, filtering 

and smoothing or in general signal processing plays an important role and can 

reduce or increase the error in the determined parameters. 
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Figure 2-14 J integral domain (left) 1951 and Interaction integral domain (right) 1961 

All the previously reviewed methods were based on using the Williams' solution. 

For an alternative method the works of Shterenlikht et af. [71] and Lopez-Crespo 

[99] can be mentioned. In the former the strain fields were determined using the 

displacement data and the stress intensity factors were extracted using the 

Muskhelishvili 's approach which previously had been used for photoelastic 

studies [58]. However, in the latter the displacement fields were directly written in 

the form of a Fourier series and using Muskhelishvili 's approach the stress 

intensity factors were determined. This technique will be discussed further in 

chapter 5. 

Although there is considerable amount of work regarding the stress intensity 

factor calculations, less attention has been paid to the T-stress determination using 

image correlation. To the author' s knowledge only the works of Abanto-Bueno 

and Lambros [100, 101] and Carroll et al. [l02] can be mentioned in this regard . 

In the former work, unlike most of the previously mentioned work, only one term 

and two terms of Williams' solution and only vertical displacements were used to 

extract the stress intensity factors and T -stress in homogeneous and Functionally 

Graded Materials (FGM). Although they determined the T-stress, the focus of 

their work was mostly in determining the stress intensity factors and exploring the 

effects of the presence of T-stress on the determined stress intensity factors. 

Therefore, no comparison was made between the calculated T-stress with other 

resources and the accuracy of the determined T -stresses was not investigated. The 
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same approach was used by Carroll et al. [102]. The T-stress was found for a pure 

mode I loading condition in a single edge crack case. Value of -110 MPa was 

found for the T -stress and compared to the value of -60 MPa reported by 

Anderson [103] which shows almost 100% difference. However, since the value 

of the T -stress is only reported for one case, it is hard to criticize their technique. 

For completeness, the non full field and non-optical work of Maleski et al. [104] 

should also be mentioned. They used strain gauges to determine the T-stress under 

mode I loading conditions. They used the Williams' solution and investigate using 

two or three terms of the expansion. Data was collected from one and two strain 

gauges respectively bonded at 60 and 120 degree from the crack faces and away 

from the area where out of plane displacement exists. Their technique was only 

validated under mode I conditions. The position of the strain gauges will change 

with respect to the crack face as the crack grows or kinks and the sensitivity of 

this technique to the gauge position makes the results unrealistic in these 

situations. However, their technique, the normal stress difference technique, 

which was originally proposed by Yang and Ravi-Chandar [50] might be 

extendable to photoelasticity applications or techniques where the stress 

components or differences can be extracted experimentally. 

2.4.3 Summary 

Different experimental techniques and their application in fracture mechanics 

problems were reviewed. It was shown that in both full field stress techniques 

(such as photoelasticity and TSA) and displacement techniques (such as Moire, 

ESPI and DIC) two approaches based on Williams' solution or Muskhelishvili's 

stress function approach have been used. Although some techniques do not 

require the crack tip position, in most of the techniques the crack tip position can 

influence the determined crack tip characteristic parameters. It was shown that in 

most of the works only stress intensity factors have been determined and the T­

stress has been ignored or has not been determined. In cases where it has not been 

ignored only the effects of the presence of the T -stress on the calculated stress 

intensity factors have been investigated. There are few publications where the T­

stress has been determined, however, the determined T -stresses were not accurate 
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or their accuracy was not explored. Therefore in this current work both TSA and 

DIC techniques have been used as the experimental techniques and methodologies 

have been developed to determine the T-stress and stress intensity factors 

accurately. Moreover, both Muskhelishvili's and Williams' approaches have been 

implemented in the calculations and a comparative study has been undertaken to 

compare these two approaches. 

2.5 Conclusion 

The crack path problem and various theories to predict the crack paths in 

homogeneous materials were discussed. It was shown that even under pure mode I 

loading the crack path is not stable and it might be directionally unstable. 

Different criteria to justify this directional stability was reviewed and it was found 

that the T -stress and the plastic zone ahead of crack tip as well as other elastic 

parameters are highly influential in crack path problems. Thus in the next chapter 

the feasibility of three of the most popular crack path criteria are examined 

experimentally in interacting cracks field using thermoelastic stress analysis 

technique and numerically using finite element method. 

The importance of the T -stress as a crack tip constraint was discussed. It was 

observed that not only is the T -stress influential in crack path problems but also it 

affects the crack growth rate, fracture toughness and tunnelling phenomenon that 

occurs in fatigue and fracture applications. It was shown that many numerical 

methods have been developed to determine the T-stress numerically in the 

literature. However, less attention has been paid to experimental determination of 

the T-stress and most of the works are limited to merely stress intensity factor 

determinations. This motivates the author to develop methodologies to determine 

the T -stress as well. Based on potential of the TSA and DIC in fatigue and 

fracture applications, these two experimental techniques were selected and 

methodologies have been developed which will be discussed in the following 

chapters. 



Intera~tlnll ~ra~k paths 

The aim of this chapter is to investigate the ability of some of the most common 

existing criteria to predict the crack path in more realistic situations where more 

than one crack exists in the field of study. 

In real structures such as the dove tail part of a turbine blade or the multi site 

damage regions in aircraft structure the failure can happen due to growth of more 

than one crack. The interaction of these cracks may have an effect on crack 

growth rate as well as the path each of cracks may follow. Analytical work 

assumes symmetry or the cracks growing at the same time. However, real cracks 

do not do this and the results may diverge from the expected behaviour. This 

makes the experimental study of a great importance. However, there are relatively 

few experimental studies regarding the interaction of cracks. Therefore, a study 

has been undertaken on sets of cracks with different interaction properties, 

numerically, using a finite element method, and experimentally, using 

Thermoelastic Stress Analysis (TSA). 

The first part of this chapter is dedicated to the experimental study conducted. In 

this part, the specimens, test conditions and methodology to analyse the 

41 
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experimental data are explained. The second part of the chapter describes the 

procedure used and assumptions made in finite element modelling. Various 

aspects of the theoretical background applied in the simulations are also reviewed. 

At the end of the chapter, the experimental and numerical results are compared 

and the corresponding uncertainties are discussed. 

3.1 Fundamentals of Thermoelastic Stress Analysis 

Thermoelastic stress analysis is an experimental technique which has become 

more popular since the full field surface temperature measurement has become 

more practical due to development of infrared detectors. This technique is based 

on the thermoelastic effect and measurement of the surface temperature changes 

of the order of 0.001 °C experienced by a material subjected to changes in the 

volume. 

3.1.1 Thermoelastic effect 

The thermoelastic effect is the temperature change induced by the deformation of 

a continuum. It can be shown [105] that for elastically deformed continuum under 

a reversible process, 

t aaij 8q 
dt = ----de .. +-

pC at lj c 
& & 

3-1 

where, t is absolute temperature, dt is the change in temperature, C& is the specific 

heat at constant strain, 8q is the heat exchange with environment, p is the density 

of the body, aij is the tensor of stress change and Gij is the tensor of strain 

change. 

Now by usmg stress-strain-temperature relations for homogeneous isotropic 

materials and neglecting the effect of temperature on the Lame elastic constants, 

for an adiabatic process it can be shown that [105], 

a 
111 = -to --l1a kJc 

pCp 
3-2 

where, ex is the linear thermal expansion coefficient of the material, p is density 

and C is the specific heat at constant pressure. 
p 
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Equation 3-2 is the main relationship in thermoelastic stress analysis. It should be 

noted that this equation has been derived for isotropic homogenous materials for 

elastic deformation under an adiabatic process with the assumption that the Lame 

elastic constants do not vary in the range of temperature change. 

The magnitude of temperature change induced by stress is just a few hundreds of 

a degree Celcius depending on the material properties. To have better feeling 

about the temperature changes induced due to the stress let us consider the 

temperature change that occurs as the result of applying 1 MPa stress to a carbon 

steel with following material properties [73] with the ambient temperature of 25 

°C. 

a = 11.3x 10--6 K} 
P = 7850 kg/m 3 ~ tit = -8.937 x 10-4 K 

C p = 480 J/kg.K 

3-3 

This minute temperature change can be sensed by modem infrared detectors. 

Although equation 3-2 is the main thermoelastic equation, it is usually used in its 

working form shown below, 

3-4 

in which the range of first invariant of the stress tensor ( tia kk) has been correlated 

to the output signal of the camera (S) with a calibration factor (A). 

3.1.2 Calibration of the thermoelastic signal 

The captured thermoelastic images have their own units which are dependent on 

the apparatus used and temperature fluctuations. To convert these units to 

something more familiar like units of stress the corresponding calibration factor 

should be determined. Referring to the equations 3-2 and 3-3, this calibration 

factor is dependent on the reference temperature of the specimen, radiometric 

characteristics of the infrared sensors, material properties and surface emissivity 

of the specimen. 

To calibrate the thermoelastic signals, the signal is measured for a known 

quantity, stress for example, should be known. There are many different 

techniques to do the calibration [73, 106], but one of the most commonly used 
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methods is bonding a strain gauge rosette at the back of a plane specimen where 

the corresponding thermoelastic signal from the front of the specimen can be 

obtained. It should be noted that due to the nature of thermoelastic stress analysis 

the applied load is cyclic (see equations 3-2 and 3-4 where variations of the stress 

are related to variations of the temperature), so when the strain gauges are to be 

used only the values of strain/stress in two extremes of loading cycle is needed. 

According to equation 3-4 as the sum of principal stresses is an invariant 

parameter, the direction of the orthogonal rosette is not important, by substituting 

the strain using the Hooke's law in equation 3-4 we will have, 

E 
-- t:.B kk = AS 
I-v 

3-5 

where, E is the modulus of elasticity, v is poisson's ratio, A is calibration factor, S 

thermoelastic signal and t:.Skk is the difference of sum of principal strains at point 

of interest. By rearranging equation 3-5, calibration factor can be calculated as 

follows, 

I E 
A = ---t:.Bkk 

SI-v 

3.1.3 Thermoelasic signal processing 

3-6 

What an infrared detector senses is a combination of the photon flux emitted from 

surface of the body, background noise as well as reflection from other sources. So, 

to extract the meaningful data from the output signal, the output signal of the 

detector needs to be processed. 

In order to filter the background noise from the thermoelastic signals, the output 

signal of detectors is compared with a reference signal. The reference signal is a 

signal proportional to the load amplitude with the same frequency as the load in 

the case of constant amplitude loading. The reference signal can be obtained 

through a function generator that derives the loading machine, a strain gauge, load 

cell, a displacement transducer, an accelerometer or a position transducer. 

The IR signal and reference signal are acquired and fed simultaneously to an 

electronic signal-processing device, where a computer algorithm compares the 

thermal image to the corresponding reference signal, and mathematically refines 
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the image to yield a meaningful measure of temperature variation aris ing due to 

elastic strains induced in response to the cyclic applied load[107] . 

Signal Processor 
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Figure 3-1 TSA apparatus 

3.1.4 Acquired thermoelastic data 

Using a Deltatherm system (either 1400 or 1500 eries), the acquired data is either 

a DC image which is a static image showing only absolute temperature or an AC 

image which is a differential thermal image that shows temperature variations 

over time. AC images are used to measure thermoelastic effect, while DC images 

are used only when the absolute temperatures themselves are of primary interest. 

The information in AC images is presented as a vector through four different 

images. R-image, which is the magnitude of IR signal and express the variation of 

temperature in the target specimen. Phase-image, refers to the relative timing 

between the reference signal and the temperature variation in the target specimen. 

X-image (Figure 3-2(a)), and Y -image (F igure 3-2(b)) are the projection of R­

image (Figure 3-2(c)) in X and Y axes ofa given coordinate system. 
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a) X image 

b) Y image 

c) R image 

Figure 3-2 a) X, b) Y and c) R image in a tensile specimen 

3.2 Experimental study 

3.2.1 Specimens 

1731 

1594 

AID 

Offset double edge slit fatigue specimens were manufactured to explore the 

trajectory and crack tip stress states of a pair of interacting fatigue cracks. 

Dimensions of the specimen are shown in Figure 3-3. 
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The specimens 6mm thick, 40mm wide and 250mm long were machined from a 

plate of 7010 T7651 aluminium alloy. Material properties and composition are 

listed in Table 3-1 and Table 3-2. 

Table 3-1 Material Properties of AI 7010 T7651 

E Proof Stress (0.2) Tensile Strength K1c [MParm] 
v 

[GPa] [MPa] [MPa] L-T T-L 

73 0.33 450 522 25 24 

The specimens were cut along the rolling direction of the plates. The rolling 

direction was found out by cutting 15mm x 10mm samples from different plates 

of material. They were polished to I Ilm using diamond paste and then anodized 

[108] using Baker's reagent (4ml HBF4 48%, 200m I ionized water) to reveal the 

grains and find the rolling direction. The result for one of the samples is shown in 

Figure 3-4. 

Two slits, each 8mm long, were electric discharge machined using 0.3mm 

diameter wire on opposite sides of the specimens (see Figure 3-1). 

Before machining the slits different models were created using ANSYS 5.4 [109] . 

As it is common in FE crack modelling, quarter point singular elements were used 

in elastic conditions (this will be more discussed in Section 3.4). It was found that 

for 2b values more than 48mm the two slits have no interaction with each other 

(Figure 3-5). 

Table 3-2 AI 7010 T7651 Chemical Composition% 

Others 
Element Si Fe Cu Mn Mg Cr Ni Zn Ti Zr AI 

each total 

Min - - \.5 - 2.1 - - 5.7 - 0.1 - -
Rem 

Max 0.12 0.15 2.0 0.10 2.60 0.05 0.05 6.70 0.06 0.16 0.05 0.15 
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Figure 3-3 Specimen dimensions 
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Figure 3-4 The shape of the grains of the AI 7010 T7651 obtained by Anodizing Method 

Therefore, the vertical offset between the two cracks (namely, 2b in Figure 3-3) 

was set at 0, 8, 16, 32 and 48mm for the series of tests conducted. 

One face of each specimen was painted with a thin coat of matt black paint (RS 

type 496-782) to provide a surface of uniform and known emissivity. 

2b=O 2b=8 2b=16 2b=32 2b=48 

Figure 3-5 Stress fie ld around the crack tips for different vertical offset between the two slits 
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3.2.2 Loading 

The specimens were loaded through the pins located 210 mm apart (Figure 3-3). 

Fatigue tests were conducted under load control at a frequency of 20 Hz, a range 

of 3.6 kN and a mean load of 14.4 kN for the 0 and 8 mm offset specimens (No. 4 

and No.5 specimens, respectively) and a range of 3.5 kN and a mean load of 

8.5 kN for the remaining three specimens (i.e. specimen No.6, 7 and 8). The load 

range was reduced since considerable crack growth rate was observed in the first 

two tests. These loads have been summarised in Table 3-3 . 

The frequency was chosen to be sufficiently high for adiabatic conditions to be 

attained in the material ahead of the crack tip. By doing so, we ensure that the 

thermoelastic signal contains information about the sum of the elastic principal 

stresses from which the mode I and mode II stress intensity factor ranges can be 

evaluated. 

Table 3-3 Values of vertical offset (2b) and loading conditions for different specimens 

Specimen No. 4 5 6 7 8 

2b [mm] 0 8 16 32 48 

Mean load [kN] 14.4 14.4 8.5 8.5 8.5 

Load Range [kN] 3.6 3.6 3.5 3.5 3.5 

3.2.3 TSA equipment 

The TSA equipment loading machine and the specimen are shown in Figure 3-6. 

A Deltatherm 1550 instrument manufactured by Stress Photonics Inc. was used to 

gather thermoelastic data from the matt black surface. As it can be seen in Figure 

3-7 the quality of the images, particularly ahead of the crack tips, are good at the 

beginning but as the cracks grow some saturation is observed. So, to have a better 

image quality, different iris values for the IR camera which give different 

calibration factors were used throughout the subsequent tests. 

A single rosette strain gauge (Tokyo Sokki Kenkyujo Co., 1 mm, 120 ± 0.50) was 

bonded to a similar specimen in a region of uniform and known elastic stress to 

provide a calibration for the thermoelastic data. Figure 3-8 shows the position of 
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the strain gauge on the specimen and Figure 3-9 shows a typical TSA signal 

obtained for calibration. 

Table 3-4 shows different calibration factors used for calibrating the TSA signals 

under different iris values, integration time and temperature. As it can be seen in 

Table 3-4, the change of ambient temperature of the order of one or two degrees, 

does not considerably affect the calibration factor. However, the calibration factor 

changes almost linearly with the changes in electronic iris value. 

Table 3-4 Calibration factors under different conditions 

Electronic Integration Temperature Calibration Applicable 

iris % Time [Sec.] [C] Factor (A) specimen No. 

47 20 21 0.005 5, 6, 7, 8 

37 40 21 0.006 4 

37 20 22 .lt024.1 0.005 3, 9 to 21 

27 20 22.1 to 24.1 0.007 3, 10, 12 

20 20 22.1 to 24.1 0.010 3, 9 to 21 

15 20 22 .1 to 24.1 0.013 3, 12 

10 20 22.1 to 24.1 0.020 9 to 21 

Figure 3-6 TSA equipments 
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a) No 4 (2b = Omm) 

b) No 5 (2b = 8mm) 

c) No 6 (2b = 16mm) 

d) '07 (2 b = 32mm) 

e) No 8 (2b= 48mm) 

Figure 3-7 Thermoelastic images for the 5 different crack offsets, showing the begining (left) 
and end (right) of crack growth 
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Figure 3-8 Position of strain gauge on the specimen 

Horizontal 
position 
of strain 
gauges 

Figure 3-9 A typical TSA signal used for calibration 



_C_h~ap~t_e_r _Th_r_e_e._·J._n_te_r_ac_t_in~g~c_r_ac_k~p_a_th_s _______________________________ 54 

3.3 Methodology for extracting SIF from TSA data 
(FATCAT) 

The crack tip position and the mode I and mode II stress intensity factor ranges 

occurring in the specimen were evaluated using the FATCAT software [85] . This 

software was developed at The University of Sheffield by Diaz [85] and was 

further modified and improved during the current research as described in chapter 

4. 

After choosing a position to the thermoelastic image the software collects 

experimental data points in the thermoelastic image from the region dominated by 

the crack tip stress field . Then it uses the collected data points (see Figure 3-10) to 

fit a mathematical model to the experimental data in order to describe the stress 

field ahead of the crack tip and finally uses the resultant fitting equation to 

determine the stress intensity factor range. The procedure, mathematical model 

used in fitting algorithm and the data collected are explained in the following 

section. 

Figure 3-] 0 Data collection in FA TeA T 
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3.3.1 Mathematical model 

Muskhelishvili's approach [83] is used in FATCAT as the mathematical model of 

the crack tip stress field. Based on this approach for the general problem of 

elasticity the state of stress can be found using two analytic complex functions <l> 

andQ 

a yy = Re[<1>{z)] + 2y Im[<1>'{z)] + Re[n(z)] 

a xx = 3 Re[<1>{z)] - 2y Im[<1>'(z )]- Re[n{z)] 

'xy = -2yRe[<I>'{z)]+ Im[n{z)]- Im[<1>{z)] 
3-7 

in which, z = x + iy , and bar sign is the conjugation operator. Therefore, range of 

the principal stress sum or in TSA terms, AS, can be found as 

Stress intensity factor can be determined as [110], 

M, -iMII = Iim2.J2JlZ<I>{z) 
:->0 

3-8 

3-9 

So, the problem is reduced to finding <I>(z}. This was done by Nurse and Patterson 

[58J using a general form of Fourier series for <I> and Q. By satisfying the 

boundary conditions using the assumed stress functions they found 

<1>{I')= J +Ao+Ao+lio+~[(2N)(;2+I)A _ AN _liN +A ;2N] 3-10 
':> n.o ,2 -1 ~ ,2N ,2 -1 N ,2N ,2N N 

where A and B are generally constant complex numbers and are unknown. 

Relation between z and (is defined as, 

3-11 

where a represents the crack length. Now, by solving equation 3-8 to find A and B 

unknowns in equation 3-10 and finally using equation 3-9 stress intensity factor 

ranges (M, and IiKII) can be determined. To solve this equation the Newton­

Raphson method in FA TCA T was used. This method is explained in the following 

section. 

3.3.2 Newton-Raphson method 

With no doubt, the Newton-Raphson or Newton-Fourier iterative method is one of 

the most popular techniques used to solve the initial value problems. In stress 
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intensity factor calculations it was first used by Sanford and Dally [57] to 

determine SIF from photoelastic fringes. Then it was used to extract SIF based on 

Muskhelishvili's approach both from photoelastic data [58] and thermoelastic data 

[84]. 

The Newton-Raphson method extrapolates the local derivatives to find an 

estimate for a root based on the Taylor expansion as follows, 

( ) = ( ) + 8(g, ), M + 8(g, ), M3 
g, ,+, g" 8A N 8B N 

N N 

3-12 

in which, I is the iteration number and MN and M3N modify the previous values 

of AN and BN. By defining g, = AS, - 4 Re[<l>(z,)] and comparing with equation 

3-8, it is evident that gi = 0 and equation 3-12 can be written as 

() 8(g,}, A A 8(g,}, AD. • • 
- g, , = ----U/'tN +--tiDN or 10 matrix notation 

8AN 8BN 3-13 

[g]= -[JI~] 
in which, 

~ Re(AN) 

[ ]=n [d]= dlm(AN ) 
g , ~Re(BN) 

g, ~Im(BN) 

8g, 8g, 8g, 8g, 3-14 

[J]= 
8 Re{AN ) 8 Im(AN ) 8 Re(BN ) 8 Im(BN ) 

: 
8g, 8g, 8g, 8g, 

8 Re(AN) 8 Im(AN ) 8 Re(BN ) 8Im(BN) 

So, [~] can be determined using a least squares method. The procedure is repeated 

for a fixed tolerance or number of iterations. In FA TCA T code, 10 iterations have 

been used for the calculations. 

3.3.3 Crack tip position 

To find the crack tip from TSA data two methods have been implemented in 

FA TCA T, to reduce the operator dependency on the results. The first method is 

considers the crack tip coordinates as two unknowns in the equations and solves 

the equations to determine both Fourier series coefficients and crack tip positions 
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using a Downhill Simplex method [85, 111]. This method was not used here 

because it is sometimes required to be run many times to get close to an 

acceptable result [85, 112]. 

The other method based on Genetic Algorithm (GA) optimization was used to 

find the crack tip. To do so, a point in the image was used as an initial value for 

GA. Then the crack tip position found using GA was used in the Newton-Raphson 

algorithm to find the stress intensity factors. 

3.3.4 Data point selection 

Data points are selected from the region dominated by the crack tip stress field 

where the linear elastic region surrounding the crack tip and the effect of the 

through thickness stress is negligible. This method is based on the method 

described by Diaz et al. [88]. In this method the linear region is identified by 

using Stanley'S plot [113]. In pure mode I loading conditions, Stanley et al., 

observed that the maximum thermoelastic signal, Smax, occurred at the 60° angle 

with respect to the crack. Taking into account this condition in Williams' stress 

solution and considering only the singular term of the solution they found the 

vertical distance from the crack tip, y, is linearly proportional to the inverse square 

of the maximum thermoelastic signal in a line parallel to the crack in the distance 

of y from the crack. 

= [313M; )_1_ 
y 4Jt4 2 S2 

max 

3-15 

By plotting equation 3-15 for a real thermoelastic image, three different regions 

are observed, as in Figure 3-11. 

In region A, no linearity is observed. It is due to lack of adiabatic conditions 

because of plastic deformation due to the high stress gradient at the crack tip. 

Region C is the region where the proposed mathematical model is not valid 

because the mathematical model assumes that the singular term is dominant. 

Region B is the region of linear behaviour and the mathematical model prevails. 

Consequently, data points were selected from region B. As it was mentioned in 

the literature review (section 2.4.1), such a linear behaviour is not always 
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observed. In such a condition the same range of data points were used in the 

calculations. 

I : 
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o 
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Figure 3·11 Different regions observed in Stanley ' s plot 

3.4 FEM study 

The FRANC2D/L finite element package [114] was used to predict the likely path 

of the cracks for each of the offset conditions. FRANC2D/L uses eight or six node 

elements with a quadratic shape function . These elements work well in elastic 

simulations and are capable of being used in fracture mechanics modelling where 

the stress singularity ahead of the crack tip can be modelled by moving the side 

nodes to the quarter point positions in elastic solutions. 

The crack growth modelling was performed as follows. First, the stress intensity 

factors were determined from the FE results before the start of crack growth. The 

Displacement Correlation (DC) technique, Modified Crack Closure Integral 

(MCCI) technique and the J-integral technique were used to determine the stress 

intensity factors. These techniques will be reviewed briefly in the next section. 

Then the crack kink angle was determined using three of the most common crack 

path prediction criteria available which will be discussed later on in section 3.4.1. 
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These criteria have been developed for brittle fracture crack paths. However, they 

can be used in fatigue crack path prediction as well [13]. 

After determining the kink angle the mesh around the crack tip was deleted, 

Figure 3-12(a), and the geometry was modified by extending the crack geometry 

to move the crack tip in the direction of the predicted kink, Figure 3-12(b). The 

area was re-meshed, Figure 3-12(c), and above procedure was repeated until the 

crack(s) reach close to the boundary of the specimen. To explore the effect of the 

crack extension size in each increment, the increment was changed from 5mm to 

I mm, in I mm steps, and the crack paths were compared. No difference was 

observed between 2mm and 1 mm cases and therefore 2mm crack extension were 

used in the simulations. 

In elastic modelling of the crack region using singular elements a very fine mesh 

is not needed. However, it is recommended [109] that to get a reasonable result, 

the singular element size should be at least than lISth of the crack length in radial 

direction. This size is Yz of the crack length in each crack increment recommended 

by Swenson and James [114]. To determine the uncertainty introduced due to the 

size of the singular elements, the mode I stress intensity factor was determined 

using 2 singular elements per crack extension length and then the element was 

modified to have 4 and 8 singular elements per crack extension length. No 

difference was observed between the 2 and 4 element cases and there was only 

0.05% difference with the 8 element case. So two elements were used along the 

crack extension which is also in agreement with Sutton el al. [115]. 

In circumferential direction an element is needed at least every 40° [109] or 45° 

[114]. The results are not so sensitive to this number and using more elements 

(smaller angles) does not introduce a noticeable difference in the results. For 

example the difference in the mode I stress intensity factor using one element in 

every 45° and 22.5° is only 0.2%. Therefore, one element in every 45° was used in 

the simulations. 

It is noteworthy to mention that the quarter point singular elements are only valid 

for elastic simulation where the singularity is in the order of 1/.[; for the stress 

field. In cases where the stress field singularity is in the order of 1/r the element 
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mid nodes should be moved to half point positions. Besides, only 8 node elements 

without collapsed nodes in the crack tip are recommended. However, in large 

- I 

strain analysis or in cases where the stress singularity has a general form of r 11+1 , 

none of the above singularities are applicable and only a very fine mesh is the 

feasible solution [103]. 

b) 

f--_ _ Tt. 1 

c) d) 

1--_..../ .• 1 

Figure 3-12 Crack growing procedure a) original crack and mesh b)deleting elements c) 
creating new crack geometry d) re-meshing the deleted region 
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3.4.1 Numerical SIF calculation 

As mentioned before, to extract the stress intensity factors from the finite element 

local field information, three numerical techniques were used which are briefly 

explained here. 

3.4.1.1 Displacement correlation technique 

The Displacement Correlation technique is based on correlation of the FE 

determined displacement field with the theoretical values. 

Using the Williams' asymptotic solution and ignoring all the non-singular terms, 

the theoretical plane strain displacement field can be written as equation 3-16. 

where, K is the SIF, rand () are radial and angular distance from crack tip, and v 

and fJ are material constants for plane strain conditions. In plane stress conditions, 

v=v/(1+v). 

K, ~ B( . 2 B) K" ~. B( 2 B) u =- -cos- 1-2v+s1O - +- -s1o- 2-2v+cos -
J.l 2lr 2 2 J.l 2lr 2 2 

3-16 
K/ ~ . B( 2 B) KI/ ~ B( . 2 B) V=- -s1o- 2-2v-cos - -- -cos- 1-2v+sm -
J.l 2lr 2 2 J.l 2lr 2 2 

Thus, for a quarter point singular element, as shown in Figure 3-13, the theoretical 

difference between the upper and lower faces of the crack can be determined 

using equation 3-16 and using () = 1800 for the upper face and () = -1800 for the 

lower face, 

The FEM solution for this type of element can be derived [116] as, 

vupper - v'ower = [4(v2 - v4 + Vs - v3)1 ~ + [4(v2 - v4 )- 2(vs - V3 )]~ 
~-;:; r3 

3-17 

3-18 

where the indices represent the node numbers as shown in Figure 3-13. By 

correlating equation 3-18 and equation 3-17 for vertical displacement, K/ can be 

determined as follows, 
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K - /1& 
I - 4(1 - v').F; 3-19 

An analogous procedure can be used to determine KII. 

Figure 3-13 Singular elements ahead of a crack 

3.4.1.2 Modified crack closure integral technique (MCCI) 

The Crack Closure Integral technique (CCI) was first proposed by Rybicki and 

Kanninen [117). This technique is based on Irwin 's contention which says in a LIe 
extension process of a crack the absorbed energy in the process is equal to the 

work needed to close the crack to its original length . Writing this statement for a 

linear element yields [117] , 

G, =_I_F; (v c _vd )= K; a 
2M E 

G =_I_Fc(u c _u d )= K~ a 
/I 2M x E 

3-20 

where G, and Gil are the energy release rates, F is the nodal force to close the 

crack tip, and u and v are the horizontal and vertical displacements for nodes c and 

d, respectively (as shown in Figure 3-14). a=J for plane stress and (I-v2
) for plane 

strain conditions. 

Based on CCI, the potential energy is calculated from two analyses before and 

after crack growth. In the modified version (MCCI), it is assumed that the & is 
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sufficiently small and in this case, V
C = va , 

Therefore, SIF can be determined as 

K, = E F C ( a b) -- V-V 
2aM y 

K if = E F C ( a b) -- U - U 
2aM x 

c a 
U = U , 

3-21 

which means only by one analys is, the SIF and energy release rate can be 

determined. 

t y 

r · · · · · ········ · ·t"·;··~···· · ·r···············l 

1 a i y 1 1 x 
- i c 1 1 .... . .~ 
...... I b I ... 

(a) I- M ~I- M ~I- M ~I 

y 

r················ ·················]"··;··;·······l 

1 a c i · i 
Ie 
I ... 

Figure 3-14 Mesh configuration used for eel and Meet a) before crack growth b) after 
crack growth 11161 

3.4.1.3 J-integra/ technique 

J is a path independent line integral which is defined as J = r( wdy - T; au, dS) in II ax 
which w is the strain energy density, Tj are components of the traction vector, Uj 

are displacement vector components, and ds is a length increment along the 

contour r. 

J is definable in both linear and non-linear materials. In elastic conditions it is 

equivalent to the energy release rate. So, by determining the integral in elastic 

conditions the SIF and energy release rate can be calculated. The only problem is 

that how mixed mode stress intensity factors can be extracted from J. To do so 

both strain field and displacement field can be decomposed to symmetric and anti­

symmetric parts and the corresponding SIF and energy release rate can be 

determined as follows. 

x 



_C_h~ap~t_e_r_T,_hr_e_e_:_m_te_r_a_ct_in~g~c_r_ac_k~p_a_~_s ________________________________ 64 

a + (i a - a 
a = a,ym + a anll-,ym = -2- + -2-

I {u + ii} I {u -ii} 
U = U,ym + U anll-sym ="2 v _ V +"2 v + V 

3-22 

where, the bar sign shows transpose operation. Then the energy release rate and 

stress intensity factors can be determined. Thus: 

K2 
G, = J, = J(U,ym'aSyJ = ~ a 

( ) 
K~ 

G" = J" = J Uanll-,ym,aanll-.,ym = Ta 
3-23 

3.4.2 Crack path prediction criteria 

An extensive amount of work has been done related to the crack path prediction 

[17]. However, most of the studies are focused on the crack initiation criteria. 

These types of criteria are applicable in FE simulations provided that they are 

applied incrementally with the extension of the crack. 

Among the available first order criteria to predict the initial kink angle of the 

cracks, three of the most popular ones, which are implemented in FRANC2DIL, 

are briefly explained here. 

3.4.2.1 Maximum tangential stress (MTS) 

The maximum tangential stress criterion which has been proposed by Erdogan 

and Sih [8], states that the crack grows in the radial direction where the tangential 

stress, G()(), is maximum. The corresponding B is defined as Be. In mathematical 

terms, 

1 ()( 2(} 3 .) a oo = ~cos- K, cos ---K" smB 
...;27r 2 2 2 

3-24 

By considering, 8aoo = 0, and 82a~o < 0, 
8(} 8B 

_ _1[1-~1+8(K"/K'Y] 
Be - 2 tan (/) 4 K" K, 

3-25 
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3.4.2.2 Minimum strain energy density factor (S-min) 

The minimum strain energy density factor criterion has been proposed by Sih [9]. 

He showed that the strain energy (W) stored in an element with the area of (A) can 

be expressed as, 

dW 1 ( 2 2) 1 --- = - a11k l + 2a l2 k1k2 + a22 k2 = -SE 
dA r r 

3-26 

in which aij (i, j = 1, 2) are functions of 0 and elastic constants. ki is proportional 

to stress intensity factors, k, = K,/..r; (i = I,lI,lII), and SE is defined as the 

strain energy density factor. 

The criterion states that the initial crack growth occurs in the direction along 

which the strain energy density factor is minimum, i.e. 

as a2s 
- = 0, and ---2 > 0 . ao ao 

3.4.2.3 Maximum energy release rate (G-max) 

The maximum energy relaease rate criterion was first proposed by Hussain et al. 

[118]. They showed that the energy release rate G under plane stress condition can 

be expressed as, 

G=(i)( 1 2 )2[K~(1+3COS20)+4KIKI/Sin2o+K~(9-5COS2e)] 3-27 
E 3+cos e 

The criterion states that the initial crack growth occurs in the direction along 

which the energy release rate is a maximum, i.e. aGjaO = 0, and a2G/ae 2 < O. 

Figure 3-15 shows is a comparison of crack initiation angle predicted with the 

three different criteria for the whole range of mode mixity. 

These criteria show the most difference in pure mode I conditions, whereas by 

increasing the mode mixity this difference decreases. 
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-90 .-------------------------------~ 

-70 

-50 

-30 

-1 0 

(Mode I) (Mode II) 

Figure 3-15 Comparison of different criteria to calculate the crack initiation angle (a.) for 

2 -I( K , ) range of mode mixity Me<> where M e = - tan - (after 11161) 
7r K II 

3.4.3 Initial analysis 

In this regard and for the 8mm vertical offset cracked specimen, the DC, MCCI 

and J integral methods were used to determine the stress intensity factors. 

Additionally, the aforementioned common crack path prediction criteria, i.e. 

MTS, S-min and G-max criteria were used as the crack turning criteria. 

Figure 3-16 shows the comparison of the predicted crack paths using the 

aforementioned methods and criteria. The predicted trajectory varies slightly 

according to the different techniques used in the calculation of stress intensity 

factors and the crack turning criterion chosen. Although there are no major 

discrepancies, which are in agreement with Bittencourt el al. [119], there are small 

differences in the crack paths predicted, especially in the case where the cracks 

are initially only slightly offset. 
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Therefore, the paths found by using the MTS turning criterion were used for 

experimental comparison and the J integral method was used to evaluate the stress 

intensity factors fo r the rest of cases. 

Turning Criterion 

MTS 

a) 

b) 

c) 

Figure 3-\6 Predicted crack path for 8mm vertical offset cracked specimen using a) 
Displacement Correlation b) MCCI c) J-integral 
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3.5 Results and discussion 

A qualitative comparison between the thermoelastic and the finite element data for 

the 5 different crack offsets is made in Figure 3-17. The experimental crack paths 

are very similar to those predicted by the finite element method. This is relatively 

surprising since the numerical simulations assume that both the left and right hand 

cracks start growing at the same time. In practice, the creation of a growing 

fatigue crack from the tip of the spark machine slit takes a different number of 

cycles in every case, and the cracks do not grow symmetrically as can be observed 

in the thermoelastic data from the 0 mm offset in Figure 3-17(a) where the right 

hand crack grew faster than the left hand one. 

Quantitative comparisons are made in Figure 3-18 and Figure 3-19. The crack tip 

positions throughout the tests were located from the thermoelastic data using the 

GA implemented in FA TCA T and compared with the positions predicted by the 

FRANC2D/L finite element package for offsets of 0, 8, 16, 32 and 48 mm 

respectively in Figure 3-18. Results are more consistent in early stages of the 

crack growth, however, as the crack grows the differences between experimental 

and numerical results are accumulated. 

The values of ilK/ derived from the FRANC2DIL analysis, Figure 3-19, are quite 

consistent with the experimental results. The stress intensity factor ranges found 

using the thermoelastic data have been established [87] to be from the true, or 

effective, conditions at the crack tip, and therefore incorporate the effects of crack 

closure and crack face friction. That is why the experimental values of 11K/ are 

found to be slightly smaller that those predicted by the finite element technique in 

cases where almost a symmetrical crack growth is observed from left and right 

cracks (see Figure 3-19(b) to Figure 3-19(e). However, the asymmetry of the 

crack growth completely swamps any subtle closure effects that may occur. In the 

zero offset case, for example, in Figure 3-19 the 11K/ of the right hand crack is 

much larger than that of the left hand crack since it started growing sooner and 

grew much longer than the left hand crack. It should be noted, as an aside, that 

mostly, the mode II stress intensity factor ranges are approximately zero, as 

expected and as predicted by the numerical simulations. But is it always like this? 
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Figure 3-17 Comparison between thermoelastic data, finite element model and the broken 
specimens 
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Figure 3-18 Left and right fatigue crack path comparison using Thermoelastic Stress 
Analysis (TSA) and finite element analysis (FRANC2D/L). (a) 0 mm offset, (b) 8 mm offset, 
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Figure 3-19 Left and right stress intensity factors (&K, and &Ku) using Thermoelastic Stress 
Analysis (TSA) and finite element analysis (FRANC2D/L). (a) 0 mm offset, (b) 8 mm offset, 
(c) 16 mm offset, (d) 32 mm offset, (b) 48 mm offset. The initial slit length is not included in 

the scale. 
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Omm offset 8mm offset 16mm offset 

Figure 3-20 Comparison of the crack paths and TSA data obtained by repeating the test for 
each offset 

To answer this question the tests were repeated for Omm offset, 8mm offset and 

16mm offset cases. Three specimens were tested for each case. Besides, to 

increase the fatigue crack length in the specimens, the load was reduced to a range 

of 3kN and mean of 4kN. The results are qualitatively compared in Figure 3-20. 

It is observed that the crack paths are not highly repeatable. It becomes worse in 

cases where the interaction field is stronger. For example, as it is observed from 

Figure 3-21 , in the early stages of crack growth the TSA crack paths agree with 

the predicted paths by FEM (FRANC2D/L). This is because of the fact that in the 

early stage of crack growth the cracks followed the path where the mode II stress 

intensity factor is practically zero. However, there are some regions, shown in 
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Figure 3-21 , where a significant mode [[ stress intensity factor is noticeable. [t is 

exactly in these regions where the deviation of the predicted crack paths from the 

experimental crack path is observed. 

As can be observed in the TSA image in Figure 3-22(a) there are regions on the 

crack flanks where non-uniform stresses appear, which could be due to contact 

between the crack faces . Therefore the possibility of crack face contact and the 

extent of plasticity at the crack tip were explored using non-linear finite element 

analysis. An elastic plastic finite element model was developed in ANSYS which 

reproduced the crack path observed experimentally. 
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Figure 3-21 Fatigue crack path determined by FRANC2D/L and TSA, as well as the mode II 
stress intensity factor determined by FATCAT for a specimen with 8 mm offset cracks. The 

slit length is not included in the crack length scale. 

A fine mesh using 8 node elements was used to model the region ahead of the 

crack tip and a bihardening model was used for material behaviour modelling. In 

Figure 3-22(b) are presented the sum of principal strains in the specimen obtained 

from FE analysis. As is well known, the sum of principal strains is proportional to 

the thermoelastic signal. By comparing the two Figure 3-22(a) and Figure 3-22(b) 

it can be seen that the results from the finite element analysis show a very similar 
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pattern of dilatational strain, particularly in areas along the crack flanks. Since the 

numerical model showed that there was no contact between the crack faces, it is 

concluded that the strains, and hence stresses, observed on the crack flanks were 

due to bending of the ligament of the material between the two cracks. 

Examination of the fracture surface, Figure 3-23, does not show any evidence of 

crack face contact or rubbing and confirms this conclusion. 

(a) (b) 

Figure 3-22 (a) TSA image and (b) ANSYS non-linear FE results for a specimen with 8 mm 
offset cracks 

Although the sum of the principal strains in both images in Figure 3-22 are similar 

in the crack tip region, it seems that the contours in the TSA image around the 

crack tip have twisted from the crack plane more than is observed in the FE 

analysis. This was investigated by observing the fracture surfaces as it was 

suspected to be due to crack tunnelling. 

When the fracture surface was examined, shear lips were observed at the end of 

crack growth (Figure 3-23) which indicated a transition from tensile to shear 

fracture in the region where the plastic strains increase significantly. These 

coincide exactly with the point where the crack path deviated from the modelling 

predictions and where the high values of L1KII were observed. It is recognised that 

three-dimensional modelling would provide further insight into the crack 

propagation. The fact that only surface data may be recorded is a limitation of the 

thermoelastic technique, but no non-destructive techniques can monitor the 

internal crack front as it propagates. Modern thermoelastic apparatus used here 

allows data collection in near real time, which offers the potential of using 
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experimental and numerical techniques together from which valuable information 

can be obtained. From these experiments it appears that the single parameter 

elastic stress field , as characterized by the stress intensity factor, may be only 

partially controlling the crack path. 

Figure 3-23 Fractured surface of the specimen with 8 mm offset cracks 

3.6 Conclusion 

The interaction of cracks with different offsets was investigated experimentally 

and numerically. It was shown that the crack paths are not always repeatable as 

expected in FE models. It was found that the crack path criteria are only capable 

of an acceptable prediction only in early stage of the crack growth and generally 

the stress intensity factors only partially control the crack path. It is highly 

expected that some other parameters should be considered as well. If Broberg' s 

[3] assertion is correct, and it is the directionality of the plastic strain field that 

governs the crack path, then we should be seeking ways of measuring plastic 

strains directly. If Cotterell and Rice [10] assertion is correct, then the T-stress 

needs to be determined experimentally. Moreover, as it was mentioned in section 

2.2, the T -stress directly affects the plastic strain ahead the crack tip and there is 

an interaction between the T-stress and plastic strain . Therefore, it is believed that 

determining both of these parameters experimentally could offer some further 

insight into the trajectory of fatigue cracks. 
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Recent developments in experimental mechanics offer an opportunity to explore 

the hypothesis that the direction of fatigue crack paths may be governed more 

strongly by a combination of T-stress, stress intensity factor as well as 

directionality of crack tip plasticity rather than solely by the magnitude of the 

elastic stress field. 

It is suggested that the latest developments in image correlation techniques and 

differential thermography may provide a route to quantitative evaluation of T­

stress and the non-linear strains fields around a crack tip. 

Digital image correlation is capable of capturing both elastic and inelastic 

displacement field. On the other hand thermorlastic stress analysis, as the name 

suggests, is an elastic technique. Therefore, the difference between the parameters 

determined using TSA and DIC can potentially provide the opportunity to 

separate the elastic and inelastic field ahead of the crack. Thus, the following 

chapters are dedicated to developing methodologies and tools to experimentally 

determine the T-stress and stress intensity factors from both TSA and DIC. 
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The aim of this chapter is to develop a methodology to determine the T-stress 

from the experimental data obtained from TSA images. In process of determining 

the T -stress, stress intensity factors will also be determined. 

This chapter starts with a brief review of analytical solutions available for the 

description of the crack dominant stress field and will be followed by a 

comparative study between these methodologies. 

Then the methodology chosen for this work is explained and it is assessed using 

artificial and finite element data. It will also be employed in T -stress and SIF 

determination using thermoelastic stress analysis experimental data. 
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4.1 Methodologies for T -stress and SIF calculation 

One of the most important issues in experimentally determining crack parameters 

is choosing an appropriate mathematical description of the stress field to which 

the experimental data are fitted. 

As mentioned in the literature review (chapter 2), there two general approaches in 

characterizing the stress field using TSA. The first one is Muskhelishvili's 

complex stress functions [83] and the second one is Williams' solution for the 

crack tip stress field [120]. It can be shown analytically that for a certain stress 

function Muskhelishvili's approach and Williams' solution yield the same stress 

distribution for the same boundary conditions [121]. However, it is believed by 

some authors [58] that Muskhelishvili's approach can consider the effect of actual 

boundary conditions in experimental studies. Williams' solution, on the other 

hand, is an asymptotic expansion and the optimum number of terms that should be 

used to get a reasonable result from experimental data is still not fully understood. 

In this chapter both Muskhelishvili's and Williams' approach will be used in the 

same experimental situation. The study will focus on developing a methodology 

to determine the T -stress. 

4.1.1 Muskhelishvili's and Williams' approaches: a comparative 
study 

To compare these two approaches a TSA image was chosen and the data were 

collected from two different data points (data points A and B as shown in Figure 

4-1). These points were chosen randomly. The stress intensity factors were 

calculated from Muskhelishvili's approach, using a Newton-Raphson solver [85]. 

Williams' single parameter solution and Williams' two parameter solution were 

also used and the comparison was made between the results of these solutions. 

The Williams' approach will be discussed in details in section 4.1.2. 

Obviously the stress intensity factors calculated here do not represent the stress 

intensity for the crack tip because the data have been chosen from random 

regions. However, the stress intensity factors can be used as matter of comparison 

between Muskhelishvili's and Williams' approaches. In the proposed 



Chapter Four: T-slress determination using TSA 81 
--~--------------------~------------------------

Muskhelishvili ' approach a mapping function is used to map the crack to a circle. 

This mapping function is a function of a length parameter or a geometry factor. 

The Fourier analysis in Muskhelishvili ' s approach is more accurate for large value 

of this geometry factor [58] . By increasing the va lue of geometry factor the results 

converge to a value which should be considered as the output of the algorithm. 

The results ofthe comparison are shown in Figure 4-2 and Figure 4-3 . 
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Figure 4-2 Mode I (top) and mode II (bottom) stress intensity factors for point A 
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Figure 4-3 Mode I (top) and mode II (bottom) stress intensity factors for data points Bin 
Figure 4-1 

It is observed from Figure 4-2 and Figure 4-3 that the output of Muskhelishvili ' s 

algorithm is completely different from the single term Williams' solution. 

However, both mode I and II stress intensity factors obtained from 

Muskhelishvili ' s approach converge to the values obtained from Williams' 2 term 

solution when the geometry factor is increased. In other words no matter where 

the data points are collected both Muskhelishvili and Williams ' 2 term solution 

yield the same result if a large value of the geometry factor is used. Therefore, it 

can be concluded that the stress function proposed by Nurse and Patterson [58] 

which was extended for TSA [84] and implemented in F A TeAT [85] yield 

equivalent results to the 2 terms solution of Williams. Additionally it should be 

noted that the T-stress can not be extracted from Nurse and Patterson [58] stress 

function. 
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The definition of the T-stress is based on Williams' solution. However, is this two 

terms approach sufficient for T -stress and stress intensity factor determination? 

The answer to this question will be explored in the next section using higher order 

terms of the Williams' solution. 

4.1.2 Mathematical description of the model 

Based on Williams' approach the stress field ahead of a crack can be expressed as 

an infinite series. In a plane mixed mode I and II condition this stress field is 

expressed as equations 4-1 and 4-2 [116, 120]. 

Mode I: 

Un = t. ~rI-'a"{[ 2 +~+(-I)" }O{(~-I )O]-(~-I )co{(~-3 )o]} 

uyy = ~ ~r~-'an{[ 2 - ~- (-It ]co{ (~-I)O] + (~-1 )co{ (~- 3 )O]} 

r" = t. ~ri'a"{(~-I )sin[(~-3 )O]-[~+(-I)" }in[(~-I)O]} 
and, 

Mode II: 

Un = -t. ~rI-\{[ 2 +~-(-l)" }in[(~-I)O ]-(~-I)sin[(~ -3)0]} 

u" = - t. ~ri-\{[ 2-~+{-i)" }in[(~-I)o H~-I)sin[(~-3)0]} 
r ~ = t. ~ri-'b" {( ~ -I )co{ (~- 3)/1] -[~- (-I)" ]co{ (~-I)/I]} 

4-1 

where, (j xx and (j y.y are the stresses in the x and y directions, respectively. .. xy is 

the shear stress in xy plane. rand 0 are distance and angle from crack tip to the 

point of interest as shown in Figure 4-4. a and h are constants which are 

proportional to the stress intensity factors and the T-stress using equation 4-3. 

K[ =a,J2i 
K 1/ = -h, ,J2; 4-3 

4-2 
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As was shown in previous chapters, the TSA signal is proportional to sum of 

principal stresses. Therefore, using equations 4-1 and 4-2 the thermoelastic signal 

(S) for a single point can be related to the sum of principal stresses as follows, 

where, A is the thermoelastic calibration factor. 

By defining f :" (r , f)) and g;' (r , f)) as in equation 4-5 and writing equation 4-4 in 

matrix form for m data points, S will be related to an and bn as in equation 4-6. 

I'm{ f)) _ 2n ~-I (n - 2)8 
J n r, - rm cos 

A 2 

m{ 8) - 2n ~- I • {2 - n)8 
gn r, - A rm Sin 2 

4-5 

{ 

~I } = [ 1;1.;. /,,1 

S I' m • .• I'm 
m JI J n 

or simply [S ]mxl = fJ Lx2n [a LXI 4-6 

btl 

If equation 4-6 is solved the T-stress and the SIF can be determined using 

equation 4-3. 

Figure 4-4 Notation of stress field around the crack tip 

Since the number of data points obtained from a TSA image is always more than 

twice the number of terms usually used in the expansion, equation 4-6 is an over­

determined system of equations. Mathematically, many different methods are 

available to solve a linear over-determined system of equations. The method used 
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in this work is a least squares technique based on determining the Moore-Penrose 

pseudo inverse (122) of [1]. This method is less sensitive to the rank deficiencies 

that may happen in solving the over-determined system of equations (122). 

4.2 Interface 

To analyse the TSA images the algorithm and the graphical interface which was 

developed originally by Diaz [85) was modified to determine the T-stress as well. 

It only works based on Muskhilishvili's approach and only determines the stress 

intensity factors. In the new version, the code is capable of determining the T­

stress as well. Furthermore, it can determine the stress intensity factor using up to 

n terms of Williams' expansion. The previous version had been designed only for 

DT 1000 and DT 1500 Deltatherm camera series. The new version is able to read 

the output file of the DT 1410 Deltatherm camera as well. 

Figure 4-5 shows the graphical interface and its sections. In block A by pressing 

the Filename button a .dtl file can be opened. It should be noted that the file 

should be in an ASCII format. This preference can be set when the images are 

captured. Alternatively, the images can be saved as ASCII format in the 

Deltavision software. 

In block B both the image scale and the TSA calibration factor are set. The crack 

length (geometry factor) should be set to a large number, like I x 1 06
, if the 

Muskhelishvili's approach is being used (as discussed in section 4.1.1) but the 

WiIliams' solution does not depend on this parameter. Pixels/mm is the 

geometrical calibration factor of the image and the calibration constant is the 

calibration factor (A) for the thermoelastic image. The rest of the boxes in this 

block are for information only, and are not used in the subsequent calculations. 

To be able to avoid the regions affected by non-adiabatic conditions ahead of the 

crack tip the properties of data points collecting mask can be set in block C and D. 

In block D, crack tip position which is used as the datum of the coordinate system 

can also be set. 
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Sometimes it might be necessary to correct the phase shift in the TSA images. 

This can be done in the DeltaVision software that comes with the Deltatherm 

camera or in block E in FA TCA T. 

Since finding the crack tip position from TSA images involves some difficulties, 

in block F the manually set crack position in block D can be optimized using 

Genetic Algorithm (GA). 

In block G the methodology to determine the stress intensity factor can be set. 

Among the methods available in the pop-up menu in this block, only Williams' 

method is capable of determining both the T-stress and the SIF. Nterms in this 

block represents the number of terms used in each method. 

By pressing the Calculate SIF in all algorithms, except Williams, the calculated 

SIF are shown in the boxes provided. The results using Williams algorithm appear 

as separate figures as a convergence curve for both T-stress and SIF as well as a 

table filled with the corresponding numerical values as shown in Figure 4-6. 

Blocks H and I show the intensity of the TSA signal of the selected image along 

horizontal and vertical lines passing through the point where the mouse pointer is. 

Block J shows the image. Block K shows the Stanley's plot (as explained in 

section 2.4.1) and in block L the type of image and camera can be set. 

4.3 Methodology assessment using artificial data 

To explore the reliability of the methodology and the code another subroutine was 

developed to produce artificial data in TSA file format legible for the modified 

FA TCA T code. In this subroutine the artificial sum of principal stress field is 

created using equation 4-7 which means the higher terms of Williams' equation 

have been omitted. 

2 () 2 . () 
S = (0"11 + 0"22)= r;::- K/ cos- - r;::- KI/ sm - + T 

v2trr 2 v2trr 2 
4-7 

in which, S is equivalent to thermoelastic signal, 0"11 and 0"22 are the principal 

stresses at the point of interest with distance, r, and angle, 8, from the crack tip. 

Obviously, in equation 4-7 the calibration factor has been considered as unity. 
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Figure 4-6 Typical output of the interface for Williams algorithm 
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To consider different situations three different conditions were investigated using 

the artificial data. First, a case in pure mode I was examined then a mixed mode 

condition was created by introducing mode II effects in artificial data. At the end 

T-stress was also entered in the data. Table 4-1 shows the SJF and T-stress used in 

each case. 

Table 4-1 The SI F and the T -stress used in each case 

Case No. Description KJ [MPa m u.~] Ku [MPa T [MPa] 
mO.~ 

I Pure mode I 6 0 0 
2 Mixed mode I & II 6 2 0 
3 General plane 6 2 10 

stress 

The following figures (Figure 4-7 to Figure 4- 12) show the sum of principal stress 

distribution and the convergence curve gained for up to 10 terms of Williams' 

solution for each of the 3 cases. 
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Figure 4-7 Sum of principal stress distribution (in Pa) in case 1 
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Figure 4-8 Convergence curve for case 1 
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Figure 4-10 Convergence curve for case 2 
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Figure 4-11 Sum of principal stress distribution (in Pa) in case 3 
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Figure 4-12 Convergence curve for case 3 

In all the above cases it is observed that K/ is not so sensitive to the number of 

terms up to 9 terms. In other words the K/ solution is numerically stable up to 9 
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terms. However, numerical instability starts after the 9th term. It is also observed 

that using more than one term of Williams' solution does not introduce any 

advantage in K/ determination in cases 1 and 2 where there is no T-stress in the 

stress field ahead of the crack. However, in case 3 where the T-stress exists, more 

than one term must be used for K/ determination otherwise significant error is 

introduced (see Figure 4-12). 

Compared to K/, Kif and T are more affected by the number of terms. KI/ is quite 

stable using up to 4 terms of the expansion and starts fluctuating when more than 

5 terms are used. The behaviour of the T convergence curve is quite similar to KI/ 

convergence curve. However, the T convergence curve shows a decreasing 

behaviour after the second term, however, this is not significant up to the 4th term . 

Normally in real thermoelastic images it is difficult to locate the crack tip position 

and it may consist of a few pixels error in locating the crack tip. To study the 

effect of crack tip position on T-stress and SIF results, case 3 was used as a basis. 

The crack tip was moved ± 2 pixels in the x direction and the T-stress and SIF 

were calculated for 2, 3 and 4 terms of the expansion. Results are shown in Table 

4-2. 

It is observed from Table 4-2 that underestimating the crack length increases the 

SIF and decreases the T-stress by a few percentage. However it is the other way 

round if the crack length is overestimated. It is also revealed that using a higher 

number of terms makes the equations more sensitive to the crack position. 

Therefore, it can be concluded that the lower the number of terms is used the more 

robust the solution will be. Now the question is that how many terms is adequate 

to accurately determine the T-stress and SIF? To be able to answer this question it 

is useful to study the effect of noise. 

Table 4-2 Change in T-stress and SIF due to change in crack tip position 

.dx 
2 terms 3 terms 4 terms 

%L1KI %L1KII %.dT %L1KI %L1KII %L1T %L1KI %L1KII %.dT 
-2 4.3 3.3 -6.5 6.3 6.6 -18.7 12.3 -232.0 -49.0 
-1 2.2 1.6 -3.3 3.1 3.2 -9.3 6.0 51.7 -24.0 
1 -2.2 -1.6 3.5 -3.1 -3.2 9.2 -5 .8 98.9 22.9 
2 -4.5 -3.2 7.1 -6.2 -6.3 18.3 -11.3 -25.1 44.7 
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It should be noted that the studied examples are all ideal cases and there is no 

noise in the data. To explore the effect of noise in the data different levels of 

Gaussian noise were introduced in the artificial data. This is explored in the next 

section. 

4.3.1 Williams' field with noise 

To explore the effect of noise on the determined T-stress and SIF, different levels 

(10% and 30%) of noise were uniformly introduced into the artificial data. 

Different cases have been outlined in Table 4-3. 

Table 4-3 Description of different cases 

Case No. Description KI [MPa mU
•
5

] KII [MPa 
mO.s] 

T[MPa] 

Ib 
Pure mode I 

6 0 0 
10% noise 

Ic 
Pure mode I 

6 0 0 
30% noise 

2b 
Mixed mode I & II 

6 2 0 
10% noise 

2c 
Mixed mode I & II 

6 2 0 
30% noise 

General plane 
3b stress 6 2 10 

10% noise 
General plane 

3c stress 6 2 10 
30% noise 

Figure 4-13 to Figure 4-24 show the sum of the principal stress distribution and 

the convergence curves gained for up to 5 terms of Williams' solution. 
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Figure 4-14 Convergence curve for case 1 b 
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Figure 4-16 Convergence curve for case Ic 
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L 

", 

· -KI 

..... KII 
. ·1 

-... ----

~ 
" ... , .... " ... , ..... ............ 

[MPa mO·i 
[MPa mO'i 
[MPa] 

2 

" .. ,", 

3 
Number of Terms 

.. ...... 

4 

Figure 4-20 Convergence curve for case 2c 

. ... .... 
'. 

". .... 
'. ". ". 

'. '. ' . '. 
' . .... 

5 



Chapter Four: T-s tress determination using TSA 98 
--~------------------------~----------------------------

50 

100 

150 

200 

250 
50 100 150 200 250 300 
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Figure 4-22 Convergence curve for case 3b 
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Figure 4-23 Sum of principal stress distribution (in Pa) in case 3c 
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As it can be seen, in all the figures, results have been shown from one up to only 5 

terms of Williams ' solution. This is because of the fact that in most of the cases 
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the results became so unstable that showing more terms of the solution prevents 

an appropriate scaling of the figures and it makes the fluctuations of the curves 

not visible. Therefore, only 5 terms of the expansion were shown in the graphs. 

Similar to the noise free data, K j values in the noisy artificial data are more stable 

than KIl and T and only a slight variation is observed by increasing the number of 

terms. On the other hand, Kif and T show more sensitivity to the number of terms 

in noisy artificial data. Increasing the level of noise in the data increases the 

chance of numerical instability in lower number of terms. For example see Figure 

4-14 in which only 10% noise is introduced and both stress intensity factors and 

the T -stress are quite stable up to 5 terms. However, increasing the level of noise 

to 30% (Figure 4-16) make the mode II stress intensity factor and the T -stress 

unstable after using more than 3 terms. 

In majority of cases numerical instability happens if more than 4 terms of the 

solution are used. Besides, using the 4th term can introduce a slight error in the 

calculations. Therefore, from the above results it can be pointed out that for 

determining the T-stress the minimum number of terms that can be used by this 

methodology is 2 terms and the maximum is 3 or 4 terms. 

In the case of T-stress, specifically, it is observed the second term gives more 

accurate results compare to the 3rd term. However, this might be only because of 

creating the stress field based on only two terms of the Williams' solution. So, to 

investigate this matter a more realistic model for producing the artificial data is 

needed. This is explored in the next section using a finite element model. 

4.3.2 Finite element stress field 

To create more realistic artificial data, a DeB model was created in ABAQUS as 

shown in Figure 4-25. The values of K j , Kif and T gained from the simulation in 

ABAQUS are shown in Table 4-4. ABAQUS uses the J integral method for stress 

intensity factor determinations and an interaction integral method to determine the 

T -stress as discussed in sections 3.4.1.3 and 2.3, respectively. A code was 

developed to transfer the nodal data as well as the principal stresses from 

ABAQUS to the Williams' solver. Kj , KIl and T were determined as in the 



Chapter Four: T-stress determination using TSA 101 
--~--------------------~------------------------

previous 3 case studies and the output of the Williams solver is shown in Figure 

4-26. 

Table 4-4 Values ofT-stress and SIF in FE model 

I K, [MPa m 0.5] I K, [MPa m 0.5] I T [MPa] I 
. 6.85 . 0 . 27.77 . 

Figure 4-25 FE model created in ABAQUS 
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Figure 4-26 Convergence curve for FE data 

As it was expected, since the FE data are noise free, like the noise free cases (case 

I to case 3) increasing the number oftenns does not significantly affect the results 

obtained for K, and KII. However, the T -stress trend with respect to number of 

terms has a different story. In all the previous artificial case studies, T -stress 
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values obtained from 2, 3 and 4 terms were almost at same level, and even 2 terms 

showed less error than the other terms. As was stated earlier, this was due using 

only 2 terms of the expansion in producing the artificial data, whereas the FE 

results for T -stress shows that in a more realistic model using only 2 terms of the 

expansion introduces significant error in the calculated T -stress. However, this 

error is negligible in SIF calculations. 

In summary, from previous discussions it can be concluded that using only one 

term of the expansion is not capable of determining the T-stress. Also, in SIF 

calculations the number of terms used needs careful consideration because in the 

cases where T-stress is not negligible errors may be introduced in the calculated 

SIF. Using 2 terms of the expansion looked promising in the artificial data. 

However, when the FE data were used it was found that the 2 terms methodology 

is not adequate to give accurate results for T-stress. Solutions based on more than 

4 terms of solution are numerically unstable, especially where more noise exists. 

These results are consistent with the findings of Lesniak and Boyce [79] and Ju el 

af. [80] where an instability was observed using more than 4 terms of the 

Williams' solution in artificial data (see section 2.4.1 for more details). 

Although a 4 terms solution, like a 3 terms solution, gives acceptable results in 

most of the artificially generated cases (and even better results for the T-stress 

using finite element data), as shown in Figure 4-27 using real experimental data 

showed a highly unstable results for mode II stress intensity factors and the T­

stress when more than 3 terms ofthe Williams' solution is used. 

The 3 terms solution is less sensitive to potential uncertainties regarding the crack 

tip positioning and other possible uncertainties happen in the experimental results. 

Besides, the 3 terms solution is faster as it uses less computing resources. 

Therefore, a 3 terms solution is more likely to be the optimum number of terms 

that can be used to determine the T -stress from experimental TSA data. 

In the next section a series of experiments have been conducted to assess the 

feasibility of this methodology to determine the T-stress and stress intensity factor 

from experimental thermoelastic data. 
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Figure 4-27 Typical instability using experimental data and more than 3 terms in Williams' 
solution 

4.4 Experiments 

Different loading conditions were used in order to determine the T-stress and SIF 

using the proposed methodology. These loading conditions include: pure mode I 

in a double cantilever beam (DCB) specimen where the T-stress is expected to be 

positive; mixed mode I and II in cruciform specimens under biaxial loading where 

the T-stress is expected to be zero; and interacting crack tip fields (double edge 

cracked specimens) where the T-stress is expected to have a negative value for the 

configuration used. The dimensions of the specimens are shown in Figure 4-28 

and Table 4-5 details the specimens, crack lengths, and loading conditions. 

A tOO kN MAND hydraulic test machine was used to load the specimens in all 

cases except cases 3 and 4 where a 100 kN Denison Mayes Biaxial Testing 

Machine was used to apply the load. It should also be noted that the cruciform 

specimens were tested before by Tomlinson and Marsavina [123] and their data 

were reprocessed using this current methodology. 
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Table 4-5 Experimental details (or the specimens used in the T-stress and SIF determination 

Notch 
Case 

Type Material length 
No. 

Imml 

I DCB AI7010 4 
2 DCB A17010 4 

3 Cruciform 
150M36 

9 
steel 

4 Cruciform 
150M36 

9 
steel 

DECO 
5 offset Left A17010 8 

crack 
DECO 

6 offset Right AI7010 8 
crack 

(a) 
--eo;--'-"--r---

32 
120 

Fatigue 
crack Freq. 
length 1Hz) 
[mm) 

0 25 
2.42 25 

0 8 

0 8 

0 20 

0 20 

JL 

Loadinf! [kN] 

M . 

0 
0 

0.3to 10.3 

0.lt05 .0 

0 

0 

DETAIL A 
SCALE 5: 1 

M y 

0.5to 1.5 
0.5to 1.5 

O.1toIO.1 

0. ltoI4.7 

I to 7 

I to 7 
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(b) 

(c) 

, 

~ 

Sl 0 ~ 
N N 

'--
SECTION A-A 

+ + 

40 

All dimensions are in mm 

DETAIL B 
SCALE 2 : 1 

Figure 4-28 Specimen dimensions: (a) DCB (b) Cruciform (c) Double edge cracked (DEC) 
specimen 
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Figure 4-29 shows the qualitative results gained from thermoelastic stress analysis 

for the different cases given in Table 4-5. 

Case I 

Case 2 

Case 3 

Case 4 

Cases 5 and 6 

Figure 4-29 Thermoelastic images for the different cases used to validate the T-stress 
determination method (see Table 4-5) 
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In parallel with the experiments, the finite element method, ABAQUS/CAE, was 

used to find the stress intensity factors and T -stress. In order to check the accuracy 

of the numerical analysis, a uniaxial tensile model was generated for a centre­

cracked large plate with alw=0.08 and wlh=l, in which a is the crack length, w is 

width of specimen and h is height of specimen. The T -stress was determined for a 

range of loads and compared to an analysis published by Fett [124]. The results 

showed only 0.6% difference when compared to the published data. A double­

edge-cracked rectangular plate (alw=O.4 and h/W> 1.5) was also modelled using 

FE. In this case T -stress results were about 2% different from those in reference 

[124]. Therefore it was considered that the FE method could be used as a datum 

for the experiments. 

4.4.1 Crack tip position 

It has been shown in the work of Diaz et al. [88] in determining the SIF from 

TSA data that locating the crack tip within the field of data has a significant 

influence on the calculated value. This is because the coordinate systems for full 

field data collection and processing are generally relative to the crack tip (see 

equation 4-1). As mentioned before, it is of interest to note, however, that early 

publications [75, 76] on this topic presented a method for SIF determination 

which does not require an accurate knowledge of the crack-tip position. However, 

since the effect of T-stress has been ignored in these publications (see equations 

2-10 to 2-(5), it is not possible to use that method in the presence ofT-stress. To 

have a better illustration of this, Stanley's plot has been drawn in Figure 4-30 in a 

pure mode I (with K, = 6 MParm ) case with T = 10 MPa and without presence 

ofT-stress. 

Obviously, the presence of the T-stress does not affect the generated TSA 

contours; however, the T-stress causes the Stanley'S plot to be curved (see Figure 

4-30). Thus, the linearity assumption which is the base of the Stanley's method 

will not be valid in presence ofT-stresses. In other words equations 2-11 and 2-12 

are no longer valid and a full field method must be used instead of the linear fit 

method to obtain stress intensity factor. Therefore a good method is needed to find 
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the crack tip. In addition it should be noted that the T-stress can not be found 

using Stanley' s method. 

o 
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Figure 4-30 Pure mode I (KI= 6 MPa.mo,5) (a) without T-stress and (b) with T = -10 MPa 

Several different methods have been proposed so far to find the crack tip position 

from thermoelastic images [78, 88, 125), The TSA image can be presented as a 

vector with magnitude (R-image) and phase (which is the phase shift between the 
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TSA signal and the reference signal); or as the projection of the vector in X (X­

image) and Y (Y-image) directions in the Cartesian coordinate system, where the 

X image is the in-phase image and the Y -image is the out-of-phase image. Most 

of the proposed methods use the magnitude of the thermoelastic signal (the X or R 

image) to estimate the position of the crack tip. Recently Diaz et al. [88J 

attempted to overcome the problem of locating the crack tip by including the 

crack tip coordinates as two additional variables in the optimization process to 

calculate the Fourier series coefficients in the Muskhelishvili approach using a 

downhill simplex (DS) method. As an alternative, a genetic algorithm (GA) was 

also used to find an initial value for the downhill simplex method to solve the 

same problem. However, both of these methods are based on numerical 

techniques rather than any physical basis and are very slow and depend on the 

data points selected. Therefore an alternative method is proposed in here to locate 

the position of the fatigue crack tip from thermoelastic images using the out of 

phase signal. 

The concept of using the thermoelastic phase image to find the approximate 

location of the crack tip was first proposed by Diaz et aJ. [88J. Figure 4-31 shows 

the phase signal along a line taken through a crack tip and co-linear with the crack 

and is typical for all fracture problems observed. They divided the phase image 

into three different regions. Region A is the region where the adiabatic condition 

prevails and the thermoelastic signal and the load signal are in phase. They 

defined region B as a region where there is a higher gradient of stress and the out 

of phase signal indicates that the adiabatic condition is lost. They assigned region 

C as an indication of heat generation due to plasticity ahead of the crack tip. So, 

point 0 was adopted as an estimation for the crack tip and used as an initial value 

for their GAIDS method to solve for the SIFs and the optimised crack tip position. 

It is reasonable that the phase shift around the crack tip is due to a high stress 

gradient and plasticity ahead of the crack tip. However, since the size of plastic 

zone ahead of the crack tip, especially at the early stages of crack growth, is the 

order of the resolution of the camera and the highest stress gradient still exists in 

the crack tip, it is postulated that the phase image should have an extreme value at 

the crack tip rather than zero. As Euler says "Nothing at all happens in the 
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universe in which there does not shine out some principle of maximum and 

minimum, wherefore there is absolutely no doubt but that all happenings in the 

universe may be determined from final effects by a method of maxima or minima 

quite as successfully as from actual causes themselves" [116]. So, it is more likely 

for the actual crack tip to be at point P and therefore experiments were performed 

to investigate this hypothesis. It shou ld be noted that the location of Point P can be 

determined equally well using either the thermoelastic Y image or the phase 

image since both show the same out of phase characteristics. 
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Figure 4-31 Typical phase signal along a line taken through a crack tip and co-linear with 
the crack 1881 

4.4.1.1 Experiments to find the crack tip position 

To investigate the applicability of using point P as the crack tip position in the 

TSA images, TSA data were recorded from notch tips from five different 

specimens since locating a notch tip from a TSA image by visual inspection is 
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straightforward (compared to a fatigue crack tip). The specimens used were a 

DeB specimen and four cruciform specimens with different notch lengths (see 

Figure 4-28 and Table 4-5 for geometry). The coordinates of the notch tips in each 

of the TSA images were found using the Y /Phase image technique, and again the 

GNDS method, and these were compared with the notch location found by visual 

inspection. 

Table 4-6 Comparison between the Y!Phase image and the GA/OS techniques to find the 
location of the notch tip (in pixels) 

Specimen Type Notch location Y /Phase image Technique GAJDS 
usin2 Visual method 

Tip co- x y X Y x Y 
ordinates: 
DCB 80 119 81 118 75.3 118.2 

Cruciform 154 101 155 101 157.1 97.2 
Cruciform 128 102 129 103 132.2 102.5 
Cruciform 136 102 136 101 139.1 99.8 
Cruciform 137 102 135 101 135.1 99.1 

Figure 4-32 and Figure 4-33 show the Y -image for a DeB and a cruciform 

specimen respectively. In these figures a plot of the V-image signal versus both 

horizontal and vertical directions have been plotted. These plots show a similar 

pattern to that observed in Figure 4-31 . However, it can be seen that in the DeB 

specimen point 0 is totally out of the notch tip area. This a bit better for the 

cruciform specimen in which point 0 is closer estimate of the notch tip in the 

horizontal direction but not in the vertical direction. However, point P is a closer 

estimate of the notch tip. These values are shown quantitatively in Table 4-6 and 

compared with the values found by GNDS technique. The Y -phase image results 

are in good agreement with the notch tip locations found visually. 

The GNDS technique is highly affected by the point selected as the initial guess 

for the algorithm, the data collection procedure, the number of iterations for the 

algorithm and some other issues such as, the number of generations, tolerance and 

many other parameters which always exist in optimization algorithms. 

Sometimes, this randomly makes the results obtained from the algorithm highly 
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accurate and sometimes poor. Thus this reduces the repeatability of the whole 

procedure. 
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Figure 4-32 Y -image and signal profile for a DCB specimen with a notch 
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Figure 4-33 V-image and signal profile for a Cruciform specimen with a notch 
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Further TSA data were collected by growing a fatigue crack in DCB specimens. 

Figure 4-34 shows the phase image for a typical case with a fatigue crack. By 

looking at the image, the horizontal position of the crack tip based on the 

proposed technique is found as x=85 pixels. To measure the crack length the 

notch tip should al so be found which is x=51 pixels. The difference of these two 

values, which is 34 pixels, is the fatigue crack length . To geometrically calibrate 

the phase image an image was taken from a steel rule in the same plane as the 

specimen as shown in Figure 4-35. This gives a geometrical calibration factor of 

14.22 pixels per mm. By using this calibration factor the crack length was 

34/ 14.22=2.391 mm. 

The crack lengths were also measured using a travelling microscope. Just for the 

matter of better illustration a CCD camera was used to take an image of the crack 

as shown in Figure 4-36. In this case the crack length was found as 2.42mm. The 

same procedure was repeated for other lengths of cracks. The obtained results are 

compared with the crack tip found using Y IPhase technique and GA/DS in Table 

4-7. 

Table 4-7 Comparison between the YfPhase image and the GAIDS techniques to measure the 
fatigue crack length (in mm) 

Y!Phase image GAIDS 
Crack length %difference %difference 

measured 
crack length 

with 
crack length with 

using microscope microscope microscope 
measurements measurements 

0.65 0.703±0.15 -15% to 31% 0.82±0.15 3% to 49% 
1.39 1.47±0.15 -5% to 16% 0.562±0.15 -70% to -49% 
2.42 2.391±0.15 -7.5% to 5% 2.069±0.15 -21 % to -8% 

The measured crack lengths using Y IPhase image method are in range 5% to 31 % 

difference with the measured crack lengths using travelling microscope. This 

shows a good improvement compared to 3% to 70% difference range using the 

GAIDS technique. 

It is worthy to note that the concept of the crack tip is only valid in linear elastic 

fracture mechanics. In reality there is not such a definite definition for the crack 

tip particularly for ductile materials where the mechanism of crack growth is more 
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based on the nucleation of voids ahead of crack tip. In these cases the concept of 

process zone is more likely to be used instead of the crack tip [126]. 
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256 pixels = 18mm 
ution = 14.~2 pixe 

Figure 4-35 Image of a steel rule used for geometrical calibration of the image 

Figure 4-36 Image captured using a CCO camera to measure the crack length 
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4.4.2 T -stress and SIF determination 

The crack tip positions were found using the Y!Phase image technique as 

described in previous section. Data points were taken from the linear elastic 

region surrounding the crack tip, where the effect of the through thickness stress is 

negligible, using a data collection method described by Tomlinson and Marsavina 

[123] with some modifications in the distribution of data points around the crack 

tip. The distribution is defined as d=d2Id, =d;ld4=dn. / dn_2 (Figure 4-37). 

d, d2 d3 .. ..--. ..----;.------~ ... _. _. -. -. _. - . _ .. 
1 2 3 4 n 

Figure 4-37 Definition of distribution 

Imagine n data points along a line as shown in Figure 4-37.Thus uniform, equally 

spaced, distribution is equivalent to d=l. First for a DeB specimen (case no.l in 

Table 4-5) the T -stress and SIF were determined using a uniform distribution of 

data points along the radial direction (Figure 4-38). To explore the effect of 

distribution, the distribution was increased until no significant change in the 

values of the T-stress was observed. This is shown in Figure 4-39. 

The results were compared to the finite element simulation results. It was found 

that increasing the distribution number does not significantly change the SIF. 

However, looking at the T-stress results, it is evident that by increasing the 

distribution number the results converge to the FEM results. It is true that the SIF 

values are slightly different from FEM results but in comparison to the significant 

improvement in T-stress results this difference is negligible. 

To explore the influence of the number of points in each radial line on the results, 

a range of 10 to 70 data points were used in each line. Results are shown in Figure 

4-40. 
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(c) d=]O 

Figure 4-38 Data points distribution for different d values (a) d=1 (b) d=2 (c) d=/O 
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It is observed that the number of points does not noticeably affect the SIF. It is 

almost the same for the T -stress in which for more than 40 points the results 

converge. 

Therefore for the rest of the cases, a distribution of d= 1 00 and 70 data points per 

line were used to determine the T-stress and SIF. 

A comparison between the numerical simulation and experimental results is 

shown in Figure 4-41. This shows the effect of using two terms of Williams' 

solution, and three terms of Williams' solution, on MI, Mil and L1T-stress. The 

stress intensity factor results are also compared with those determined using the 

Muskhelishvili approach. The effect of crack tip location found by means of the 

Y!Phase image technique and the GAIDS technique on the determined stress 

intensity factors and T -stress is shown in Figure 4-42. A comparison is made 

between those results and the finite element results. Results for the GAiDS 

technique shown in the Figure 4-42 were obtained by finding point 0 as the initial 

estimation for the crack tip location. Then this crack tip was optimized using a 

GA. Then the optimized crack tip location was used as the initial value for the DS 

algorithm to find the crack tip. Using this crack tip, the T-stress and SIF were 

calculated using the Williams' three terms solution. 
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4.5 Discussion 

The main area of investigation during this research was to establish how many 

terms of the Williams' equations (equations 4-1 and 4-2) were needed to 

determine the T -stress accurately using TSA data. This was done first by using 

noise free artificial data, artificial data with different noise levels and finite 

element stress data. It was shown that using two terms of the expansion looked 

promising in the artificial data. However, when the FE data were used it was 

found that two terms were not adequate to give accurate results for T -stress. 

Solutions based on more than 4 terms of the solution were numerically unstable, 

especially where more noise exists. Although a four terms solution, like a three 

terms solution gives acceptable results in most of the numerically generated cases 

and even better results for the T -stress using finite element data, the 4 terms 

solution were highly unstable in real experimental TSA data. Therefore, it was 

postulated that the three terms solution might be the optimum number of terms 

that can be used to determine the T -stress from experimental TSA data. This was 

experimentally investigated by comparing the experimentally determined T-stress 

for a range of 6 different test conditions to corresponding values determined from 

Finite Element analysis. The FEA was used as a datum since the FEA 

methodology was found to give results comparable for T-stress to previously 

published data for standard specimens [124]. It can be seen in Figure 4-41 (a) that 

the FEA compares well with the experimentally determined T-stress using three 

terms of Williams' equations but using only two terms introduces considerable 

differences, in terms of magnitude. 

One of the reasons that the non-singular (Le. T-stress) term found by Dulieu­

Barton et al. [78, 125] did not agree with the analytical solution may be that their 

method is based on using only two terms of Williams' solution which is shown in 

Figure 4-41 (a) to be insufficient. However, using the third term as well to 

determine the T -stress significantly improves the results when compared with the 

numerical solution in majority of the majority of the cases considered. 

In addition to using William's solution to determine the stress intensity factors, 

the Muskhelishvili solution [84, 88] was also used and it was found that the 
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results determined using this formulation coincide exactly with the results using 

two terms of the Williams's solution as shown in Figure 4-2, Figure 4-3 and 

Figure 4-41(b and c). It can be observed from Figure 4-41(b) that the mode I 

stress intensity factor determination using up to three terms of Williams's solution 

shows comparable results to those obtained using two terms in all cases. It was 

considered, however, that for the mode II stress intensity factor determination 

(Figure 4-41(c» using three terms in Williams's equations gives a marginally 

better comparison to the FEA results than using only two terms. 

Thus using the Muskhelishvili or two terms of Williams's solution does not 

introduce a significant error when compared to a three terms solution in SIF 

determination, but the use of these terms affects the T-stress results noticeably in 

terms of magnitude and sign. Therefore it is recommended that three terms of 

Williams's solution should be used for T-stress determination from thermoelastic 

data. 

It can be seen in Figure 4-32, Table 4-6 and Table 4-7 that the Y /Phase image 

technique is more reliable than the GAIDS technique in finding the crack tip from 

thermoelastic images when compared to a manual/visual method. It is considered 

that the GAIDS method may be improved by using a more sophisticated objective 

function in the optimization method or increasing the number of iterations. The 

effect of using these different methods on SIF and T-stress determination was 

explored. The Y /Phase image technique as well as GAIDS technique was used 

with three terms of Williams' solution to determine the SIF and T-stress and the 

results are shown in Figure 4-42. It can be observed that for the SIF 

determination, Figure 4-42(b) and (c), the proposed YlPhase image technique 

does give results which are closer to the FEA values than the GAIDS technique. 

It also seems that the T-stress results, Figure 4-42(a) are sensitive to the crack tip 

position. The crack tips found using the GAIDS introduce significant errors both 

in sign, (e.g. cases I and 2), and magnitude, (e.g. case 3), of the determined T­

stresses. As discussed in the Literature Review (chapter 2), in addition to the 

magnitude [33], the sign of T -stress is also crucial in crack directional stability 
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problems [10]. It is therefore important that the experimental technique should be 

able to determine the sign and magnitude of the T-stress properly. 

The proposed Y /Phase technique can be implemented in such a way that 

eliminates the need for an operator to locate the crack tip. Also this technique is 

fast and does not need a large amount of memory and CPU resources. 

Consequently it has the potential to be used in a fully automated system to 

monitor fatigue crack paths during tests and to determine the corresponding 

parameters, SIF and T-stress, in almost real time conditions. 

4.6 Conclusion 

T -stress and stress intensity factors have been determined from the thermoelastic 

data using up to three terms of Williams' formulation with a least squares 

technique. The Muskhelishvili technique has also been used to determine the 

stress intensity factors only. The results have been compared to finite element 

simulations. It has been shown that Muskhelishvili and the two term Williams' 

solutions both give the same results and are sufficient to determine stress intensity 

factors accurately. However, the two term Williams' solution is not sufficient to 

determine the T-stress accurately and the results for T-stress using this model are 

dissimilar to those predicted by the finite element method. It has been shown that 

using up to three terms of the Williams' solution makes it possible to determine T­

stress but more terms than 3 gives unstable solution. 

A new technique was proposed to find the crack tip from thermoelastic images 

based on the Y or Phase image. It has been shown that this technique is much 

more reliable than the other technique attempted, especially in T-stress 

determination and it has a great potential to be used in fully automatic and real 

time fatigue crack tip monitoring applications. 

The data used in this chapter were based on the TSA technique which yields the 

sum of the principal stress field. As it was discussed, the sum of the principal 

stress field shows numerical instability with an increase in the number of terms of 

WiIliams' solution fitted to the experimental or even numerically generated data. 

This numerical instability occurs especially when more than 3 terms of the 
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expansion are used. Although the T-stress can be determined using the 3 terms 

Williams' solution, such a numerical instability questions the robustness and 

reliability of the results obtained from the sum of the principal stress field using 

thermoelastic stress analysis. Therefore in the next chapter the robustness of 

another popular technique in fracture mechanics applications is explored. The T­

stress and stress intensity factors are determined using the displacement field 

obtained by digital image correlation. 
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The aim of this chapter is to develop a methodology to determine the T-stress 

from the experimental data obtained from digital image correlation. In process of 

determining the T-stress, stress intensity factors will also be determined. 

First, the fundamentals of Digital Image Correlation (DIC) are explained. An 

interface is designed to process the image correlation output. This was done using 

both Muskhelishvili's and Williams' approaches based on displacement fields. 

These methodologies were assessed using artificial data, noisy artificial data and 

finite element data and the T-stress and stress intensity factors determined. 

Experiments were also conducted on both notches and fatigue cracks. In the pure 

mode I case a notched DCB specimens were used. T -stress and stress intensity 

factors were determined and a fatigue crack was grown from the tip of the notch 

and the above procedure repeated after different stages of fatigue crack growth. 

The experiments were extended to mixed mode loading conditions and the results 

are compared with numerically simulated results using the finite element method. 

128 
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5.1 ole fundamentals 

Like geometric moire, moire interferometry, holographic interferometry, and 

electronic speckle pattern interferometry (ESPf), digital image correlation (DIC) 

is also a full filed technique which is used to measure the crack tip in-plane and 

out of plane displacement fields. However, in terms of the equipments required 

DIC is much simpler than the other techniques. This technique only needs a 

digital camera or a CCO camera and a computer to process the captured images. 

Normally the natural white light provides sufficient illumination. However 

depending on the application some artificial illumination may be needed. Figure 

5-1 shows the equipment used typically in DIC technique to measure the 

displacement field . 

Computer CCDCamera 

Light ~ 

~ 
Specimen 

Figure 5-1 Schematic view of the DIe equipment 

DIC is based on the mathematical correlation of the change in intensity 

characteristics of sequential digital images captured from the surface of the 

specimen whi le it undergoes deformation. In this technique the grey scale pattern 

of the surface is compared before (reference image) and after (deformed image) 

applying the deformation to the specimen. 

To be able to compare two images a random pattern of speckles is needed on the 

surface of the specimen. To recognize this pattern mathematically, the intensity of 

light of each pixel in the reference and deformed images can be traced and the 

displacement vector can be determined. However, practically it is not possible to 

recognize every single pixel on the image. At least 3x3 pixels are needed for one 
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recognizable feature [127). Therefore, the images are divided into sub images and 

the correlation is performed for each of these sub images. These sub images are 

usually called a subset or interrogation window. 

It should be noted that in such a division the average of intensity of light 

throughout the subset is used in the correlation process. In other words it is 

assumed that all the features in each subset have the same displacement. This 

assumption requires the subset to be as small as possible for accurate 

displacement measurement. On the other hand more features in a subset increase 

the accuracy of the correlation process, because the average intensity is obtained 

from a higher number of pixels. Thus, a too small a subset includes fewer features 

and consequently may decrease the accuracy of the correlated results. Therefore, 

finding the optimum size of subset depends on the image properties (such as 

feature/speckle size and resolution) and sometimes a trial and error process is 

needed to get the proper interrogation window size. 

To produce a speckle pattern on the specimen different methods can be used. 

Sometimes the surface roughness of the material is enough to produce a suitable 

pattern. Glass or emery paper can be used to scratch the surface of the specimen 

and make a random pattern [99]. Alternatively, the speckles can be produced by 

spraying paint which makes a contrast to the specimen colour on the surface of the 

specimen, or even using copy machine toner to produce the speckles. Such a 

pattern is enough in macro digital image correlation applications, however, in 

micro scale applications more attention should be paid to producing the patterns 

and the speckle size. 

5.1.1 Displacement mapping 

Assume that a point P in the reference image with an x and y coordinate system is 

mapped into point p' in deformed image with an x' and y' coordinate system 

(Figure 5-2). The mapping can be performed as 

x' =x+u(x,y) 

y' = y+v(x,y) 
5-1 

To find the displacement fields, the vertical, v, and horizontal, u, displacements 

can be approximated using the Taylor series around a point P(xo,Yo) as 
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• au au I a2u 2 I a2u 2 a2u 
x =xo + uo +--~+-~Y+--2 ~ +--~y +--~~y ax ay 2 ax 2 ay2 axiJy 

• 8v 8v 1 a2
v 2 I a2v 2 a2v 

Y =y + v +-~+-~y+--~ +--~y +--~~y 
o 0 ax iJy 2 ax 2 2 ay2 axiJy 

5-2 

in which ~ = x-xo and ~y = y- Yo' 

Defonned state 

y 
Mapping 

y 

...... .. .............................. ~ ' 

G(x,y) x u 

Original state 

x 

Figure 5-2 Concept of digital image correlation 

Depending on the use of a first or second order approximation, six or twelve 

unknowns are available and can be found by correlation between the two images. 

This can be done by minimizing the so called correlation factor, C, defined as 

[128J , 

L [G(x,y)- H{x',y" )j 
C = --'s"-----==----:--:---:-__ 

LG 2 (x,y) 
5-3 

S 

where G and H are the grey scale light intensities corresponding to all the points 

in the subset, S. Since the intensity of light obtained from a digital image is a 

digital quantity, it needs to be smoothed first and then be used in the cross 

correlation algorithm. This can be done using B-Splines [129] , Bi-cubic splines 

[128J or any other interpolation technique. As an alternative, a Fast Fourier 

Transform (FFT) cross correlation can be used to compare the subsets [127J. The 
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latter technique has been implemented in the DaVis software [130) which was 

used in this current work. 

5.2 Methodology 

There are two different approaches to tackle any elasticity problem using 

experimental data. The first approach is to guess an analytical stress function (it 

can be complex or not) satisfying the boundary conditions and determining the 

displacement and stress field analytically. Then these analytical fields can be 

fitted to the experimental data and the required parameters (for example, T-stress 

and SIF) can be determined. One such analytical solution is Williams' solution 

[120]. 

The second approach is to guess a general form of analytical function and fit this 

general form to the experimental data and then determine the displacement field 

and stress field. Muskhelishvili's [83] approach belongs to the second group in 

which two complex analytical functions need to be used. 

Both these approaches were used with respect to the sum of principal stresses in 

previous chapters on TSA. Here both these approaches are used to explore their 

performance in a displacement field. 

5.2.1 Williams' approach 

Based on Williams' approach the stress field ahead of a crack can be expressed as 

an infinite series. In a plane mixed mode I and II condition this stress field is 

expressed as equations 5-4 and 5-5. 

n 

Model 

U = ~_r_2 a {[K + ~+ (_IY]COS_no _~cos-,-(n_-_4-"-)o_} 
I ;:. 211 n 2 2 2 2 

5-4 
n 

~ r2 {[ n ( )n]. nO n. (n-4)o} v = £..J-a K--- -1 sm-+-sm-'-----~ 
I n=l 211 n 2 2 2 2 

and, 
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n 

Mode II 

U" = - f _r2 bn{[K +~-(- IY ]sin-n() _~cos-,--(n_----,4)B,--} 
n=1 211 2 2 2 2 

5-5 
n 

V = ~ r2 b {[K _ ~+(_ I)n] COSn() +!:cos (n - 4)B } 
" ~ 211 "2 2 2 2 

where, u and v are horizontal (x direction) and vertical (y direction) displacements 

in mode I and II. jJ is the shear modulus and K = {3 - v)/(1 + v) for plane stress 

and K = 3 - 4v for plane strain conditions, where v is the Poisson 's ratio. a and b 

are constants and rand 8 are defined as in Figure 5-3 . 

y 

~~--~------x-' 
Figure 5-3 Stress state ahead of a crack tip 

So, the mixed mode displacement fields (u and v) which are obtained from DIe, 

can be derived by superimposing the mode I and II displacement field . By 

defining f n,m (r , 8), g".m(r,8) , h",m(r,8) and 1",m(r,B) as follows (5-6); the 

displacement field (equations 5-4 and 5-5) can be written in a matrix form 

(equation 5-7). 

n 

r 2 {[ n ( )n] nfJ n (n - 4fJ )} f. = 2!.- K + - + -I cos --'-" - - cos III 

n,m 211 2 2 2 2 

n 

- r I {[ n ( )n] . n 8111 n. (n - 48 J} g =-- K+-- - 1 sJn-----sm -'---~ 
n,m 211 2 2 2 2 

5-6 
n 

h r,J {[ n (})n] . nfJm n. (n - 4fJJ} =- K --- - sm ---+-sm--'------"'-'-
n,m 211 2 2 2 2 

n 

= - K - - + - 1 cos ---+ - cos --'----..=-:.. I r I {[ n ( )" ] n B m n (n - 4fJ J} 
n,m 211 2 2 2 2 
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U, f l. , ... /" " gu · ··g"" a, 

5-7 
Um ~,m •• • fn .m g"m · ··gn,m a" = 
v, hl.\ ··· h"" 'I., ... ' ",1 b, 

vm hI, ·· ·h", 

where m is the data point index, 

By expanding equations 5-4 and 5-5, keeping the terms up to order r 3
/
2 and 

comparing with the more common notation, i.e . using stress intensity factors and 

T -stress, it can be shown that 

K, =a,fu 

Kif =-b,fu 
T = 4a2 

5-8 

in which K, is the mode J stress intensity factor, Kif is mode II stress intensity 

factor and T is the T -stress. 

5.2.2 Muskhelishvili's approach 

In a general two dimensional elasticity problem the displacement field can be 

expressed by two analytical complex functions tp(z) and lfI(z )as [131] . 

5-9 

where z is a complex variable, u and v are horizontal (x direction) and vertical (y 

direction) displacements; J.1 is the shear modulus and K = (3 - v)/(1 + v) for plane 

stress and K = 3 - 4v for plane strain conditions, where v is the Poisson 's ratio. 

+0:> +«> 

By considering, tp(~ ) = 2>k~ k , 1fI(~) = ~:>k~k , z = a;(~) , and 
k=--co 

o(c;) = a;(O = fc, c;' in which co(c;) is a function which maps the z-plane to 
co' (0 ,=-«> 

(-plane, and satisfying the boundary conditions, it can be shown that for a plate 

containing a crack the displacement field can be written as [99J, 
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N 1'1 

LCl.kak + LDI.JJk = 2f..JUJ 
k=-N k=-N 

N N 5-10 

LEI.kat + LFJ.kflk =2f.1Vj 
k=-N k=-N 

a and p are the real part and Imagmary part of a, the complex unknown, 

respectively. In equations 5-10, C, D, E and F are defined as follows, 

AI 

Cl .k = K Re,; - k ReORe,;-1 - k ImOlm,;-1 + Re,;k + k LC'+k-1 Re,;1 5-11 
I=-k 

AI 

D l .k = -K 1m'; + k ReOlm,:-1 - k ImORe,;k + Im'l-k - k LC1+k-1 Im'l-I 5-12 
I=-k 

AI 

E
J

•k =Klm,: +kReOlm,:-I-klmORe,;k -Im,;k -kLc1+k- 1 Im,;' 5-13 
I=-k 

AI 

F
J

•k = KRe,: + k ReORe,:-1 + k ImOlm,:-1 + Re'l-k - k LC1+k- 1 Re,;' 5-14 
I=-k 

In matrix format equation 5-10 can be written as, 

Ax=b 5-15 

where 

CI _N CIN DIN DI,N a_x UI 

A= 
Cp,_N Cp.N Dp._N Dp,N ax 

and b = 2/1 
up 

5-16 x-, -
EI._N EIN FI._N F;N fl-.\ VI 

E p._N Ep.N Fp._N Fp.N fl.", vp 

By solving equation 5-10 and finding a and p, stress intensity factors can be 

determined as follows [99], 

5-17 

It is worth noting that the T -stress can not be determined using the 

Muskhelishvili's approach explained in section 5.2.2. 
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5.3 Methodology assessment using artificial data 

To explore the reliability of both methodologies, another subroutine was 

developed to produce an artificial displacement field based on equation 5-18 in a 

DIC file format legible for Digital Image Correlation Intensity factor and T-stress 

Analyser Code (DICIT AC). 

K , /r 8 ( . 2 8) 
u = 2,u '{"2; cos "2 K - 1 + 2sm "2 

KII H; . 8( 2
8) +- -sm - K+I+2cos - , 

2,u 2,. 2 2 

T 
+-r(K+ l)cos8 

8,u 

5-18 

where, u and v are horizontal (x direction) and vertical (y direction) 

displacements. f..l is the shear modulus and K = (3 - v)/(\ + v) for plane stress and 

K = 3 - 4v for plane strain conditions, where v is the Poisson's ratio. a and bare 

constants and rand 8 are defined as in Figure 5-3 . 

To consider different situations three different conditions were investigated using 

the artificial data. First, a pure mode I case was examined then a mixed mode 

condition was created by introducing mode II contributions to the artificial data. 

At the end T-stress was also included in the data. Table 5-1 shows the SIF and T-

stress used in each case. 

In contrast to the stress field generated in the TSA chapter, the displacement field 

depends on material properties. To generate the fields, elastic modulus and 

Poisson ' s ratio are considered as 70GPa and 0.3, respectively. Moreover, 20 data 

points per mm have been used in the field generation procedure. 

Table 5-1 The SIF and the T-stress used in each case 

Case No. Description KIIMPa mU.!'} KIIIMPa m u"l TIMPaj 
1 Pure mode I 6 0 0 
2 Mixed mode I & II 6 2 0 

3 
General plane 

6 2 10 
stress 
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Figure 5-4 shows the displacement distribution using equation 5-18 for the three 

cases in Table 5-1. Based on the generated displacement fields, stress intensity 

factors were determined using Muskheli shvili ' s approach as described in section 

5.2.2. The results are shown in Table 5-2. It can be observed that Muskhelishvili ' s 

approach underestimates the SIF values by more than 30% for the mode I stress 

intensity factor in all the cases. This error is less (15% approximately) for mode II 

values. 

Table 5-2 SIF using Muskhelishvili's approach 

Case No. Description KJ [MPa m o.s] KJ/ [MPa m o.s] 
1 Pure mode I 4.088 -0 .109 
2 Mixed mode I & " 4.111 1.709 

3 
General plane 

4.043 1.710 stress 

The same case studies were used to determine stress intensity factors using 

Williams' approach. To explore the effect of the number of terms used on the 

calculated T-stress and SIF, up to 25 terms of Williams' expansion were 

considered in the calculations. The convergence curves are shown in Figure 5-5 . 

As it is observed from Figure 5-5, unlike the stress solution found in the previous 

chapter for the sum of the principal stresses data, the displacement solution is less 

sensitive to the number of terms. It was observed in the previous chapter that the 

stress solution was numerically unstable even for mode I stress intensity factor for 

more than 9 terms of the Williams' expansion. However, for noise free artificial 

displacement data the results are stable for more than 25 terms. 

In real experiments noise infects the data. Therefore, before starting experiments 

the feasibility of this approach was assessed using artificially generated 

displacement fields which were disturbed by different levels of noise. 
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Figure 5-4 Displacement field u (left) and v (right) for (a) case 1, (b) case 2 and (c) case 3 
defined in Table 5-1 (all in mm) 
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Figure 5-5 Convergence curves for a) case 1, b) case 2 and c) case 3 (see also Table 5-1 and 
Figure 5-3) 
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5.3.1 Williams' field with noise 

To explore the effect of noise on the determined T-stress and SIF, different levels 

(10% and 30%) of Gaussian noise were uniformly introduced into the artificial 

data. Different cases have been outlined in Table 5-3. 

Table 5-3 Description of tbe noise introduced into tbe different cases 

Case No. Description KI [MPa m U.5] XU [MPa m U.5] T[MPal 

Ib 
Pure mode I 

6 0 0 
10% noise 

Ic 
Pure mode I 

6 0 0 
30% noise 

2b 
Mixed mode I & n 

6 2 0 10% noise 

2c 
Mixed mode I & II 

6 2 0 
30% noise 

General plane 
3b stress 6 2 10 

10% noise 
General plane 

3c stress 6 2 10 
30% noise 

Figure 5-6 shows the displacement distribution for these cases, and Figure 5-7 

shows the stress intensity factors and T -stress determined using an increasing 

number of terms. 

From Figure 5-7 both stress intensity factors are not neither sensitive to the 

number of terms nor to the level of noise introduced. The difference due to the 

noise introduced is about 1 % for the 10% noise case and about 2% for the 30% 

noise case for mode I stress intensity factors. However, this is different for the T­

stress. In the pure mode I case (Figure 5-7 a) and b)), where there is neither a 

mode II stress intensity factor nor a T-stress, the noise in the data introduces a 

significant difference in T-stress when the number of terms is increased. 

However, when a mode II stress intensity factor exists (Figure 5-7 c) and d)) the 

effect of noise on T-stress is reduced. This might be because of the fact that the 

parameters close to zero are more sensitive to the noise when they are determined. 

As it is observed in cases where the T -stress has non-zero value (Figure 5-7 e) and 
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f)) , the calcu lated T-stress first diverges from the expected value but by increasing 

the number of terms they almost converge to the expected results (the difference 

is 3.9% for 10% noise case and 4.5% for 30% noise case). 

10% 

b 

30% 

c 

10% 

b 

30% 

c 

Case 1 Case 2 Case 3 

Figure 5-6 Different levels of noise introduced in vertical displacement field (v) and 
borizontal displacement field (v) for different cases as mentioned in Table 5-3 
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Figure 5-7 Convergence curve for a) case I b, b) case Ic, c) case 2b, d) case 2c, e) case 3b and 
f) case 3c (see Table 5-3 and Figure 5-6 for the data) 

By looking at all the artificial cases with or without noise it is revealed that using 

only two terms of the Williams' solution is the most accurate and quickest way to 

determine the T-stress and the SIF. However, this might be only because of the 

fact that the artificial fi eld is based on only two terms of the Williams' solution. 

So, to investigate th is matter, a more realistic model for producing the artific ial 

data is needed. This is explored in the next section using a finite e lement model. 
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5.3.2 Finite element displacement field 

To create more realistic artificial data a DeB model was created in ABAQUS as 

shown in Figure 5-8. The values of K" KI/ and T gained from the simulation in 

ABAQUS are shown in Table 5-4. ABAQUS uses the J integral method for stress 

intensity factor determinations and an interaction integral method to determine the 

T-stress as discussed in sections 3.4.1.3 and 2.3, respectively. A code was 

developed to transfer the nodal displacement data from ABAQUS to the 

Williams ' solver. K" K" and T were determined as in the previous 3 case studies 

and the output of the Williams ' solver is shown in Figure 5-9. 

Table 5-4 Values ofT-stress and SIF in FE model 

I K, [MPa m°.5] I KI/ [MPa m
O
.
S
] I T [MPa] I 

6.85 0 27.77 

As it is observed from the convergence curve (Figure 5-9) the results are far away 

from expected results gained from ABAQUS. The K" KI/ and T-stress are about 

12.65, 1.392 MPa.mo.s and 33.87 MPa, respectively. This is about 85% difference 

for K/ and 21 % difference for T-stress. Why? 

Figure 5-8 FE model created in ABAQUS 

Since the stress intensity factor determination was accurate for the artificial data, 

there must be something that happens in ABAQUS but when generating the 

artificial data generation. The artificial data do not contain any rigid body motion. 
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However, rigid body motion occurs in FE models as well as in experiments. 

Looking at equation 5-7 it is evident that no rigid body motion term has been 

considered in that equation. 
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Figure 5-9 Convergence curve from FE data 

This can be compensated for by adding constant terms in equation 5-7 to 

compensate for the rigid body translations and another term to compensate for the 

rigid body rotation as follows, 

0 0 

ul I /..., ... In., o gl., "'g",1 -rl sin 01 a l 

um 1 f. ,m , .. /'"m Og l.m "'g",m -r", sin Om a" 
= bo 5-19 

v, o hl,l ···hn" 11,1,,,1,,,1 r l sinO, 
bl 

Vm o hl,l ···hn,1 III ,,·In I rm cos Om bn 
R 

where 0 0 and bo are used to compensate for the rigid body motion and R 

compensates for the rigid body rotation. Solving the modified equation (equation 

5-19) for ABAQUS data yields Figure 5-10 for the solution of the stress intensity 

factors and T-stress using Williams' approach. 

Compensating for the rigid body motion improves the results significantly. K" Kif 

and T-stress were found as 6.72, 0,09 MPa.m°.5 and 27.49 MPa, respectively, 
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which is less than 2% difference for K, and 1% difference for the determined T­

stress. It is worth mentioning that rigid body rotation does not significantly affect 

the results specifically for the T -stress and the mode I stress intensity factor. Since 

in some pure mode I cases, the mode II resu lts became more sensitive when the 

rigid body rotation was used, it is recommended that in pure mode I cases the 

rigid body rotation term is ignored. 

Another point which is evident from Figure 5-10 is that using only two terms of 

the Williams expansion can make 21 % difference in the determined K, and 67% 

difference in the determined T-stress. Therefore, it is concluded that although the 

two terms approach works in artificial data but it is not sufficient for more 

realistic artificial data (FE data) and perhaps experimental data. So, using more 

terms of the Williams' expansion is recommended. Like the TSA data, another 

alternative is using three terms of the Williams' solution. By looking at all the 

previous analyses, the values of both T-stress and stress intensity factors obtained 

based on a 3 terms solution look promising. Although they are less accurate for T­

stress in FEM data (Figure 5-10), they are less sensitive to the noise (see Figure 

5-7) and more economical in processing time. 
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Figure 5-10 Convergence curves for FE data; compensated for rigid body motion 
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So far the location of the crack tip was given. However, in experiments there 

might be some differences between the real crack tip position and the crack tip 

that we assume in the algorithm. This matter is explored in the next section. 

5.3.3 Sensitivity to the crack tip position 

When locating the crack tip position in the experiments, a few pixels error may 

occur. To study the effect of crack tip position on T-stress and SIF results, the FE 

model used in section 5.3.2 (a DeB model with the stress intensity factors and the 

T-stress as mentioned in Table 5-4) was used as the case study. The crack tip was 

moved ± 1 mm in both vertical and horizontal directions and the T -stress and the 

stress intensity factors were calculated using the 3 terms of Williams' solution 

described previously (W3 as in Figure 5-11 and Figure 5-12) and the converged 

value (Wconv as in Figure 5-11 and Figure 5-12). Results are shown in Figure 

5-11 and Figure 5-12. 

It is observed that underestimation of the crack tip slightly increases the mode I 

stress intensity factor but decreases the T-stress. However, overestimation has an 

inverse effect. It is also observed that the mode I stress intensity factor and T­

stress are more sensitive to horizontal uncertainties but mode II stress intensity 

factor is more affected by vertical uncertainties. ± 1 mm can introduce 

approximately 18% and 16% difference in K/ values and 30% and 11 % difference 

in T-stress using converged values and 3 terms solution, respectively. However, it 

should be mention that the minimum resolution of images used in the experiments 

is 18.75 microns per pixel. Therefore, ± 1 mm is at least ± 50 pixel. Such an error 

in locating the crack tip in this resolution is unlikely to happen and can be 

considered as an extreme case. 

Although the error in the stress intensity factors will be small if the crack tip 

location is mis-estimated by a few pixels, it is obviously best practise to determine 

the location as accurately as possible. 
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Figure 5-11 Effect of uncertainty in the horizontal crack tip position 
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There are a few techniques to estimate the crack tip position. Edge finding 

algorithms such as those of Sobel, Prewitt & Robert [122] which are usually used 

in photography and image processing applications, are an option which have also 

been used in image correlation and crack finding problems [99, 130]. Since on the 

edges of an object the gradient of change in light intensity (or displacement in 

image correlation applications) is high, these techniques are based on finding the 

maximum gradient of intensity of the studied field. Due to the fact that finding the 

gradient of a field process is always affected by the noise available in the field, 

these techniques need filtering and smoothing which in return affects the accuracy 

of the results. Figure 5-13 is an example of using the Sobel algorithm. As it is 

observed from Figure 5-13 when a filter (for example median filter) is used the 

output of the algorithm is totally different from the image where no filtering has 

been applied. It is evident from Figure 5-13(a) that the crack is not distinct from 

the other part of the image. This makes using the filtering essential in this 

algorithm. The threshold value is another parameter in the Sobel technique that 

can affect the length of the crack found. As it is observed in Figure 5-13( c) and 

(d) different threshold values can result in different crack lengths (as surrounded 

by an oval in the figures). 

It has also been reported that the edge finding algorithms can yield different 

results if horizontal or vertical displacement fields are used to find the edge [99]. 

Moreover, these techniques are not applicable to stress intensity factor ranges of 

less than 3 MPa~m [99]. 

An alternative to edge finding algorithms, is to consider the crack tip coordinates 

as two unknowns in the equations. However, using this approach makes the 

governing equations (equations 5-4 and 5-5) non-linear and a non-linear solution 

algorithm must be used to solve the equations. Therefore the non-linear iterative 

Newton-Raphson technique was implemented to solve the equations making the 

crack tip coordinates unknown as will be explained in the next section. 
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Figure 5-13 E.ffects of filtering and threshold value on crack length a) no filter b) Median 
filter c) Median filter and 0.003 as the threshold value d) Median filter and 0.15 as the 

threshold value 

5.4 Crack tip positioning and the Newton-Raphson method 

The objective of this section is to introducing the crack tip coordinates a two 

unknowns (xo and Yo) into the Williams' equations (equations 5-4 and 5-5) and 

find these coordinates as well as the T-stress and the stress intensity factors using 

the Ole displacement data. 
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Let us define px and py as the residual of detennined displacement field using rigid 

body motion compensated Williams' solution (Ud and Vd) and the experimental 

displacement field gained from Die (ue and ve) as, 

Px =ud -ue 
Py=vd-ve 

where the determined displacement fields are defined as follows. 

n 

u
d 

= t-r -_2 an{[K + ~ + (-lY]COS-n-o _ ~cos-,-(n---4--f..)o-} 
n=l 2p 2 2 2 2 

n 

_t r2 bn{[K+~-(-lY]sinnO _~cos(n-4)o} 
n=l 2p 2 2 2 2 

+ao - Ry 

n 

~ r 2 {[ n ( )n]. nOn . (n - 4)o} 
Vd = ~-an K--- -1 sm-+-sm->------'--

n=l 2p 2 2 2 2 
n 

+ t r2 bn{[K-~+(-ly]COSno +~cos(n-4)o} 
n=1 2p 2 2 2 2 

+bo + Rx 

in which 

5-20 

5-21 

5-22 

5-23 

where Xo and Yo are the crack tip positions. Therefore, px and pyare functions of a 

series of unknowns consisting of crack tip position, rigid body motion and 

Williams' coefficients. Applying the Taylor expansion to px and py yields, 

5-24 

(PyL = (py), 

+ ~[(:}a. +(::), M. H:: ),t.<o +(::J "Yo +(~;), ~ 5-25 
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where i represents the iteration number. Ideally we should have (p x )i+l = 0 and 

(p y tl = 0 . Therefore, we will have, 

-p=q~ 5-26 

where, 

OPXl OPx.l OPx.l OPXl OPxl OPx.l OPxl 

oao oan obo obn oR OXo (}yo 

OPx.m OPx.m oPx.m OPx.m oPx.m oPx.m OPx.m 

oao oan obo obn aR OXo (}yo 
q= 

OPY.l OPy.l apy.l OPy.l OPY.l OPy.l apY.l 
5-27 

aao oan obo obn oR OXo (}yo 
: : : : 

OPy.m OPy.m oPy.m OPy.m apy.m OPy.m OPy.m 

aao oan abo abn aR oXo (}yo 

and, 

~ ~ ~ ~ ~ ~ _x =1 _x =0 _x =-rsinO -y =0 -y =1 -y =rcosO 
oao 'obo 'oR 'oao ' obo 'oR 
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oPx = I ~n(xo - x(opx + OPx J 
oXo n=l 2r2 oan obn 

+ I_an /;4 n{y _ Yo \.C[K + ~ + {_1Y]sin_no +(_n-_4)sin~(n_----,4)o,--} 
n=l 4/1 '1. 2 2 2 2 

_ I_bn /;4 n{y- Yo J+[K+~_{_1Y]COS_no _(_n-_4)cos (n-4)o} 
n=l 4/1 '1. 2 2 2 2 

apx ~ an ( (OPx oPx J -=L..,.-nyo-y -+-
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5-29 
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n=l 4/1 2 2 2 2 
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apy = f ~n(xo _ xi apy + apy) 
axo n;1 2r2 \ aan abn 

+ :t ~ r n;4 n{y _ Yo J + [K _ ~ _ (_ I Y ] cos nO + ( n - 4) cos {n - 4)o} 
n;1 4.u 'l 2 2 2 2 

~ bn n;4 (y ~ [ n ( I)n] . nO (n-4). {n-4)o} + L,.--r n - Yo - K--+ - SIn--- --- SIn -R 
n;1 4.u 2 2 2 2 

apy =:t ~n(yo _ yi apy + apy) 
ayo n;1 2r2 \ 8an 8bn 

~ an n-24 {[ n {)n] nO (n-4) {n-4)o} + L,.--r n - K--- -I cos--- -- cos~----<-
n;14.u 2 2 2 2 

~ b n-24 {[ n { )n]. nO (n-4). {n-4)o} + L,.--n r n + K--+ -1 SIn--+ -- SIn~----<-
n;14.u 2 2 2 2 

where f g, h, and, I are defined in equation 5-6. 

In the next section a series of experiments have been conducted to assess the 

feasibility of these methodologies to determine the T-stress and stress intensity 

factor from experimental DIC data. 

5.5 Interface 

All the previously mentioned approaches were implemented in a MA TLAB based 

interface (DICIT AC) as shown in Figure 5-14. This interface consists of a 

graphical panel on the right hand side and a control panel on the left hand side to 

set various parameters needed to determine the stress intensity factors and the T­

stress. The control panel is shown in detail in Figure 5-15. 

The control panel consists of different sections which will briefly be explained 

here. By pressing the 'Browse .. .' button the output the DIC is imported to the 

interface. The recognisable format for this interface is the ASCII format. It should 

be noted that the output of DIC (using DaVis software) is in millimetres and this 

also has been considered in the interface and there is no need to convert the DIC 

files to metres. The Graphical Control Panel controls the imported file 

graphically. Both vertical and horizontal displacements can be zoomed, rotated 

and panned. The next step is selecting the data points. This can be done by 

selecting and removing the data using the 'Data point selection' panel. Material 

5-30 
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properties can be defined in the 'Material properties ' section and the crack tip 

position can be set in the 'Crack tip position ' section by entering the crack tip 

position manually or using the gradient of the displacement fields. As a 

complement the Newton-Raphson method (described in section 5.4) can also be 

used to determine the crack tip coordinates. 

In the ' Muskhelishvili Approach ' section, the mapping parameters and the 

solution parameters as explained in section 5.2.2 can be adjusted and by pressing 

the 'Solve ' button the corresponding stress intensity factors are determined. In the 

' Williams Approach ' section, by setting the number of terms, the stress intensity 

factors and the T-stress are determined and displayed in the listbox. A 

convergence curve and two other graphs are also shown to check the fitness 

quality of the data. It should be noted that the fitness quality graphs are only 

shown if both vertical and horizontal displacements are chosen. 
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Figure 5-14 Graphical interface (see Figure 5-15 for details) 
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Figure 5-15 Control panel of the graphical interface 



Chapter Five: T-stress determination using DIC 156 ~2-____________________ ~ ______________________ __ 

5.6 Experimental results and discussion 

Experiments were undertaken on both sharp notches and fatigue cracks emanating 

from notches. In the first stage, pure mode I loading conditions were created 

ahead of a 4mm notch in a 5mm thick DCB specimen with the dimensions shown 

in Figure 5-16. 
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Figure 5-16 DeB specimen dimensions in mm 

The specimen was machined from a plate of 70 I 0 T7651 aluminium alloy and 

spark eroded to introduce the notch into the specimen. The required speckles for 

DIC were produced on the surface of specimen using a fine spray of black paint. 

A 100kN MAND hydraulic test machine was used to load the specimen. Two load 

ranges of 0.5kN to 1.5kN and 0.5kN to 3kN were applied to the specimen. A 14 

bit, 1600x 1200 CCD camera and a Nikon lens with a resolution of 18.75 microns 

per pixel was used to record the images. DaVis software [130] was employed to 

correlate the images. The software was set up to use a 64x64 pixels interrogation 

window, followed by two iterations using a 32x32 pixels interrogation window 

with 50% overlap. Figure 5-17 shows a typical correlated displacement field 

obtained around a crack. 

The experiments were continued by growing a fatigue crack from the notch tip, 

using a O.5kN to 2kN load range with 15Hz loading frequency. The crack growth 

was paused when the fatigue crack length was approximately I mm, 4mm, 8mm 

and 15mm. For each increment of crack growth load ranges of O.SkN to I.SkN 
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and O.5k to 3k were applied, images were recorded at each load and processed 

to determine the stress intensi ty factors and T -stress. 

Vertical displacement 

, I 

I 

Horizontal displacement 

Figure 5-17 Typical correlated displacement fields obtained around a crack using Die 

The displacement field obtained from DIC was imported to the DICIT AC 

software to determ ine the stress intensity factors and the T -stress using equations 

5-19 and 5-8 under plane stress conditions. In the solution process of equation 

5-19, the number of terms was increased until the stress intensity factors and the 

T -stress converged as shown in Figure 5-18 to Figure 5-21. No change in the first 

decimal place of the results was usually used as the convergence criterion. These 

figures also show the quality of the fitted data to the experimental displacement 

fields. As it was mentioned before (section 5.2) to extract the stress intensity 
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factors, T -stress or any other parameter from experimental data a mathematical 

description of the field is needed. This mathematical description should be fitted 

to the experimental data and the required parameters are determined. The fitted 

data shown in Figure 5-18(a) and (b) to Figure 5-21(a) and (b) are based on the 

recreation of the displacement fields using the coefficients of IS terms of 

Williams' solution. 

Looking at Figure 5-18( c) to Figure 5-21 (c) it is observed that the stress intensity 

factors for both mode I and mode II (which is practically zero in this type of 

specimen) are almost converged at the 3rd term and using more terms of the 

Williams' solution does not significantly improve the results. However, the T­

stress does not always converge in the 3 rd term. When the fatigue crack length is 

shorter, as shown in Figure 5-18(c) and Figure 5-19(c), there is a considerable 

difference between the 3rd term and final converged T-stresses. However, as the 

fatigue crack grows (see Figure 5-20(c) and Figure 5-21(c» the difference 

between the T-stress at the 3rd term and the converged value decreases. For 

example in case of 8mm fatigue crack (Figure 5-20(c» and 15mm fatigue crack 

(Figure 5-21(c» the T-stress values are almost converged by the 3rd term. This is 

because of the fact that theoretically the displacement field ahead of a notch is 

slightly different from a crack and apparently three terms of Williams' solution 

are not capable of describing the correct form of the displacement field. However, 

a solution with more terms can better describe the displacement field. 

The Newton-Raphson method was also used to determine the crack tip position, 

T -stress and stress intensity factors. In such a way that the results of the Williams' 

solution were used as the initial values for the Newton-Raphson algorithm as 

described before in section 5.4 and the position of the crack tip, the stress intensity 

factors and the T -stress were considered as unknowns in the algorithm. Therefore 

the change in the crack tip position (as shown in Table 5-5) and the stress 

intensity factors and the T -stress were determined as the output of the Newton­

Raphson algorithm. Results are compared with other results gained from 

Williams' solution and ABAQUS simulations in Figure 5-22 and Figure 5-23. 
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As it is observed from Figure 5-22 and Figure 5-23, although the values found for 

the mode II stress intensity factors using the 3 terms solution are slightly better 

than the others, using any of the solutions yields practically zero values for mode 

II stress intensity factors in both the 0.5 to 1.5 kN and 0.5 to 3 kN load ranges. 

Table 5-5 Change in crack tip position using Newton-Raphson method 

Fatigue Crack 0.5 to 1.5 kN case 0.5 to 3 kN case 
Len2th (mm( Ax., Ayo Ax., Ayo 

0 0.3362 -0.0004 0.0511 0 
1 -0.6455 -0.0001 0.0852 -0.0001 
4 0.3996 0 - -
8 0.1162 0.0003 0.713 -0.001 
15 0.6988 0.0003 0.1894 0.0002 

In 0.5 to 1.5 kN load range, Figure 5-22(a), the mode I stress intensity factors 

detennined using any of the aforementioned solutions are in a reasonable 

agreement with the numerically simulated cases. The average differences found 

are 12.6% (with standard deviation of 8.8%) using the 3 tenns solution, 12.9% 

(with standard deviation of 11.5%) using the converged tenn solution (15 tenns 

solution) and 7.4% (with standard deviation of 4.4%) using Newton-Raphson 

method. This shows that a slight improvement may be obtained using the Newton­

Raphson method compared to the other two solutions. It should also be mentioned 

that the more the fatigue crack grows the better is the agreement, which shows 

that the mathematical model is more appropriate in the fatigue crack cases studied. 

Part of the difference in the experimental results compared to FE results is due to 

the errors introduced into the correlated displacement field because of a low signal 

to noise ratio. Looking at Figure 5-23(a) in which the load range has increased 

from 0.5 to 3 kN the average difference decreased to 12.1 % (with standard 

deviation of 6.2%) using the 3 tenns solution, 12.9% (with standard deviation of 

6.9%) using the converged tenn solution and 4.4% (with standard deviation of 

4.5%) using Newton-Raphson method. In all the above solutions both vertical and 

horizontal displacement fields were used simultaneously as mentioned in section 

5.2. 

Since some other authors [90, 93], as mentioned in the literature review, have only 

used the vertical displacement field in a pure mode I case, this matter was also 

investigated. For the 0.5 to 1.5 kN load range case, a comparison has been made 
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(Figure 5-24(a» between the results obtained using only vertical displacement 

field (v) and using both horizontal and vertical displacement fields (u and v). It 

was found that the determined mode I stress intensity factor are less accurate 

compared to the cases where both vertical and horizontal displacement fields are 

used especially when more terms in Williams' solution are used. 

Almost the same trend as the mode I stress intensity factors is observed for the 

determined T-stresses when compared to the FE results. The average differences 

percentage of 24.9% (with standard deviation of 2.2%), 35.4% (with standard 

deviation of 14.9%) and 24.6% (with standard deviation of 22.1 %) were found 

using 3 terms, converged term and Newton-Raphson solutions, respectively for 

0.5 to 1.5 kN load range. Both 3 terms solution and Newton-Raphson results show 

smaller differences than the 15 terms solution when compared with FE results. 

Although the 3 terms solutions average differences are slightly higher than the 

Newton-Raphson, it seems more consistent (lower standard deviation) in different 

cases. In 0.5 to 3 kN load range case, the average differences were found as to be 

14.4% (with standard deviation of 8.9%), 36.0% (with standard deviation of 

27.4%) and 24.9% (with standard deviation of 23.2%) using the 3 terms, 

converged term and Newton-Raphson solutions, respectively. In the same way as 

mode I stress intensity factors, increasing the load range to 0.5 to 3 kN (reducing 

the signal to noise ratio) improves the results for the 3 terms solution but it does 

not change the 15 terms and Newton-Raphson results significantly. That is true 

that the results obtained for the T -stress are not as accurate as the stress intensity 

factor results. This is basically due to the nature of the T -stress. Compared to the 

stress intensity factor the T -stress in one order higher and this makes the T -stress 

relatively a more difficult parameter to measure experimentally. However, the 

accuracy obtained from the aforementioned methodology seems very promising 

when it is compared with for example 100% errors reported by other authors 

[102]. 

It worth mentioning that unlike mode I stress intensity factors, using only the 

vertical displacement field as shown in Figure 5-24(b) introduces significant error 

(average difference of 75% with 121% standard deviation using the 3 terms 

solution for instance) in T-stress calculations for the 0.5 to 1.5 kN load range. 
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a) 0.5 to 1.5 kN load range 
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Figure 5-22 Comparison of a) stress intensity factors and b) T-stresses determined using 
ABAQUS, 3 terms Williams (W3), IS terms Williams (W15) and Newton-Raphson method 

for 0.5 to 1.5 kN load range 
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ABAQUS,3 terms Williams (W3), 15 terms Williams (WI5) and Newton-Raphson method 

for 0.5 to 3 kN load range 
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5.6.1 Mixed mode experiments 

In order to investigate the applicability of the DIC method to mixed mode cracks, 

a centrally notched specimen with the dimensions shown in Figure 5-25(a) was 

loaded under different loading angles ranging from 0° (pure mode I) to 90° (pure 

mode II) using the mixed mode grips shown in Figure 5-25(b). It was previously 

experienced by Pinna [132] that these grips make the specimen over constrained. 

To overcome this problem it was suggested that [132] the grips holes are modified 

from a circular shape to a slot shape as shown in Figure 5-26. Thus the modified 

grips were used for the experiments. First, only pins were used to connect the 

specimen to the grips. However, during the experiments it was observed that the 

load does not evenly distributed through the pins and even under loading 

conditions some of the pins were not under any load. So, rather than only using 

pins the specimen was bolted to the grips as shown in Figure 5-27. 

The same surface preparation and resolution as the previous DCB specimen were 

used. For each loading angle, first the camera was focused on the left hand side 

crack tip, a 0.5kN to 5kN load range was applied and the images were recorded 

during the loading. Then the camera was moved to the right hand side crack and 

the loading and recording steps were repeated. After doing the experiments for all 

the angles the same procedure as in the previous mode I experiments was 

performed to determine the stress intensity factors and the T -stress. 

In order to numerically simulate the problem, an elastic model as shown in Figure 

5-28 was used in ABAQUS. Quarter point singular elements used to model the 

elastic singularity ahead of the crack tip and the stress intensity factors were 

determined using the J integral method. The T -stress was also determined using 

an interaction integral technique. A comparison between the FE and experimental 

results is shown in Figure 5-29. 
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Figure 5-26 Modifications in the holes of the grips 

Figure 5-27 Bolted specimen 
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Figure 5-28 FEM model used in simulations 
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It is observed from Figure 5-29(b) that there is a good agreement between the 

determined mode II stress intensity factors and the numerically calculated ones for 

almost all the cases. All three solutions (3 terms, converged term and Newton­

Raphson) yield almost the same values. This is the same for both left and right 

hand side crack tips. A similar trend for the three different solutions is observed 

for the mode I stress intensity factors but the stress intensity factors are slightly 

different in left and right hand side cracks. Moreover, for mode I stress intensity 

factor, a higher discrepancy is observed between the numerical and 

experimentally determined results. Regarding the T-stress, it is observed that the 

T -stress in the left and right hand side cracks are different especially at small 

loading angles. It can also be seen that the 3 terms solution is slightly closer to the 

numerical results. Although the T -stresses found in higher loading angles (mode I 

dominant) are close to numerical results, in lower loading angles (mode II 

dominant) the difference is higher. 

These disagreements are mainly due to the following reasons. First of all the grips 

are not perfect. In other words the holes in the grips are not completely aligned 

and this caused misalignment and consequently non-symmetrical stress 

distribution in specimen thus causing differences between the left and right crack 

results. To see the effect of non-symmetrical loading conditions on the stress 

intensity factors and the T-stresses a new model (see Figure 5-30) was created 

using finite element analysis. In this model (Figure 5-30) one edge of the 

specimen was constrained in both the vertical and horizontal directions and load 

was applied at different angles. This model gives a symmetrical stress distribution 

when the loading angle is zero 

However, the stress distribution on the specimen becomes asymmetrical as the 

loading angle increases. Basically, since the actual misalignment in the grips is 

unknown it is not possible to accurately model the asymmetry in the loading. 

However, such a simple model can be helpful in studying how a little asymmetry 

in loading or specimen can affect the stress intensity factors and the T-stresses as 

shown in Figure 5-31. 
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Figure 5-30 Non-symmetric boundary condition 
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Figure 5-31 Effect of asymmetric boundary conditions on T-stress and SIF 

As it is observed from Figure 5-31 , such a simple asymmetric condition can 

significantly affect the stress distribution on the specimen. As it was mentioned 

before, the misalignment in the holes can make the specimen over constrained. 

This makes the stress distribution obtained by finite element an unreliable 

com parator in some cases. 

The quality of fitting and the region where the data points are selected can also 

affect the results. In case of pure mode I as shown in Figure 5-18(a) and (b) to 

Figure 5-21 (a) and (b), all data points obtained from the experiments were 

selected and only the area around the edges of the specimen and the 

notches/cracks were excluded. Such a data point selection resulted in a good 
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fitness quali ty as observed previously. The same procedure was used for the 

mixed mode case as well. 

Vertical displacement 
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Figure 5-32 Fitness quality for 30· loading angle 

As it is observed from Figure 5-32 compared to pure mode I case the determined 

displacement field is poorly fitted to the experimental results especially in the 

highlighted region. This region is around the crack flanks and close to the centre 

of the specimen. This might show that the load had been transmitted less to the 

specimen through the central pin. Such a distribution was more critical in the 

lower loading angles. Excluding these data points and re-performing the 

calculations slightly improves the results as shown in Figure 5-33. 

5.7 Conclusions 

Digital image correlation was used to determine the T-stress and stress intensity 

factors from displacement fields. Both Muskhelishvili ' s and Williams' approaches 

were examined. It was found that Muskhelishvili ' s approach underestimates the 

stress intensity factor in artificial data and obviously is not capable of determining 

the T-stress. Williams ' approach however showed excellent evaluation of both T­

stress and stress intensity factors in artificially produced data, either with or 
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without noise and also for finite element data. Good agreements were also found 

in the case of fatigue cracked specimens. It was shown that rigid body translations 

can significantly affect the results. However, rigid body rotations are more 

influential in mode \I stress intensity factors. 
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Figure 5-33 T -stress determined by excluding the poorly fitted regions surrounding the crack 
flanks 

As it was mentioned in the literature review chapter, it is common in the literature 

to use only the vertical displacement field to extract the stress intensity factors. It 

was shown that even in pure mode I cases, this might lead to significant errors in 

T -stress calculations and therefore it is recommended that both vertical and 

horizontal displacement fields are used in the calculations. 

Different numbers of terms of Williams' expansion were used and their effect was 

investigated on the results. It was shown that the 3 terms solution seems sufficient 

in T-stress and stress intensity factors determination and less affected by 

uncertainties involve in the experiments particularly in longer fatigue crack cases. 

The Newton-Raphson technique was also implemented in the calculations and it 
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was shown that by considering the crack tip coordinates as two more unknowns in 

the system of equations, the uncertainties regarding the crack tip position can be 

reduced and the results are slightly improved. 



t;()nt;lu§l()n§ and hlture 
W()r"k 

6.1 Overall conclusions 

The interaction of cracks with different offsets was investigated 

experimentally and numerically. It was shown that the crack paths are not 

always repeatable as expected in FE models. It was found that the crack 

path criteria are capable of an acceptable prediction only in the early 

stages of the crack growth. Furthermore, the stress intensity factors only 

partially control the crack path and it can be affected by the T -stress as 

well. 

Both Muskhelishvili's approach and Williams' approach were used to 

determine the stress intensity factors from the sum of principal stress field 

as the output of experimental data from thermoelastic stress analysis 

(TSA). It was shown that the Muskhelishvili's approach yields exactly the 

same results of the Williams' approach if only two terms of the Williams' 

solution is used. 

177 
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It is not possible to determine the T -stress usmg Muskhelishvili's 

approach. It was shown that using only two terms of Williams' solution is 

not enough to determine the T -stress and, three or more terms are needed. 

Using artificially generated data and finite element data, it was shown that 

the Williams' solution is not numerically stable when more than four 

terms of Williams' solution is being used. In real experimental data using 

more than three terms of the Williams' expansion make the solution 

unstable. However, results obtained using three terms solution looked 

promising. 

Due to instability observed in T -stress and stress intensity factor 

determination using the stress field, the usefulness of the displacement 

field was also examined using the data obtained from digital image 

correlation (DIC). Again both Muskhelishvili's and Williams' approach 

were used. It was shown that the Muskheilishvili's approach, 

underdetermines the stress intensity factors. 

The Williams' approach was used to determine the T-stress and stress 

intensity factors. In contrary to the results obtained from stress field, the 

results obtained from displacements were more robust and a convergent 

trend was observed for the T -stress and the stress intensity factors when 

the number of terms of Williams' solution was increased. 

Although the converged values obtained were within an acceptable range, 

results obtained from the three terms Williams' solution looked less 

sensitive to the uncertainties in the experiment and more economical in 

time and computer resources. 

6.2 Suggestions for future work 

The crack path simulations can be improved by developing subroutines in 

commercial software such ANSYS or ABAQUS to consider the effects of 

the T -stress in crack path finite element simulations. 

To improve the reliability of the TSA results it is recommended that rather 

than circular selection of data points, all the data points are used and the 

178 
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areas (such as crack tip and flanks) which are not representative of the sum 

of the principal stress are excluded. The fitted data can be compared to the 

experimental results and the quality of the fitting can be used to check the 

val idity of the model in the selected areas. 

During performing the experiments it was observed that if rather than 

fully painting the surface of the specimen a random pattern is produced, 

due to different emissivity on the surface, a random thermal pattern is 

observed. A thermal camera can be used to capture these thermal images 

and a similar correlation algorithms as the one which is normally used in 

digital image correlation applications can be used to determine the 

displacement field. This was done on a DeB specimen in two different 

resolutions. The qualitative results are shown in Figure 6-1 to Figure 6-6. 

Figure 6-1 Thermal speckles 
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Figure 6-2 Correlated vertical displacement field 

Figure 6-3 Correlated vertical strain field 
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Figure 6-4 Thermal speckles in a higher resolution 

Figure 6-5 Correlated vertical di placement in a higher re olution 
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Figure 6-6 Correlated vertical strain field in a higher resolution 

It is an interesting research area which can make it possible to measure 

both displacement field and the stress field at the same time. However, 

more research is required to develop a reliable method. 

A 2D image correlation system was u ed in this current work. Using a 3D 

system makes it possible to measure the out of plane displacement field as 

well as the in-plane displacement fields. This can potentially decrease 

inaccuracies involved in the experiments and leads to more reliable 

correlation and eventually more reliable results. 

In this work the crack tips were visually located from digital image 

correlation images. A ewton-Raphson algorithm was also used to find 

the crack tip coordinates as two unknowns from displacement data. To be 

able to achieve more accurately determined crack tip position and 

lowering the corresponding uncertainties in the experiments, the 

optimization algorithms such as Genetic Algorithm can used. 
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