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A model of tennis balls impacting obliquely on tennis courts was developed in this study.
Balls were impacted normally on a force plate to read impact force data, and filmed at high
speed during oblique impacts. A normal model was created and then extended to cover
oblique impacts. The experimental data was used to verify the model in each case.

A study of surface testing methods found that tennis courts are significantly stiffer than

tennis balls; so much so that they can be considered rigid. A coefficient of friction between
ball and surface was all that was necessary to define a surface.

Normal impacts were performed on a force plate for four different ball constructions at
speeds between 3 and 20 ms’'. Impact speed had a significant effect on coefficient of
restitution (ratio of rebound speed to inbound speed) — for example for a pressurised ball,
from about 0.8 at an impact speed of 3 ms™ to about 0.6 at 20 ms™. Pressureless balls
bounce at a similar speed to pressurised balls at low impact speeds, but slower at high
impact speeds. Punctured balls bounce slower throughout the range of impact speeds. All
balls showed a rapid increase in force during the initial part of the impact.

An iterative model was created to simulate normal impact. A numerical method was used
to find the effect of deformation shape on the relationship between centre of mass
movement and ball deformation. A total force during impact was created by combining
structural stiffness, material damping and impulsive reaction forces. This model worked
well for all ball types and used quasi-static compression data and a low speed drop test to
find the parameters. The impulsive force simulated the initial increase in force well.

A thorough experimental study of oblique impacts was performed by isolating in turn each
of the key incoming properties of impact. The incoming speed, spin and angle, together
with the ball and surface construction were individually varied in turn and the effect on
outgoing characteristics measured using high speed video footage. In most cases there was
a distinct change in rebound properties when rolling happened. Footage at up to 7000
frames per second was used to qualitatively explain the effect of deformation shapes on
energy losses. It was found that impacts with backspin caused more deformation and an

inf:reased energy loss compared to normal impacts with the same vertical velocity. Impacts
with topspin had a reduced vertical energy loss.

The normal model was extended to include the horizontal and rotational forces necessary

to simulate an oblique impact. A damping compensation factor was included to adjust the

vertical energy losses at different spin rates. The oblique test data was used to verify the
model, and there was a very good correlation.

Keywords: tennis ball, impacts, tennis court, high-speed cinematography, visco-elastic
modelling
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Chapter 1 Introduction

1 Introduction
1.1 Background of the study

The following chapters describe a three year study examining the features of tennis ball
impacts on court surfaces, and creating a model to predict these impacts which could be

verified by experimental data. This experimental data also provided good insights into the
behaviour of a ball during impact.

The origins of the game of tennis can be traced back many hundreds of years. There is
evidence in Egyptian carvings (dating from as far back as 1500 BC) for a precursor to
tennis. Most historians however credit the origins of the modern game to 12" century
France, where monks used their hands to hit balls against the monastery walls or over a
rope strung across a courtyard, giving the game its name jeu de paume, or “game of the
palm”. Gloves were developed to protect the hand and rackets were gradually introduced
from the 16™ century. The game developed into what is now known as Real Tennis, and
was played indoors. The development of vulcanised rubber in the 19" century led to much
softer and more elastic balls, and people began to play the game outside on lawn courts.
The rules of the game were developed during the 1870s and the first tournament took place

in 1877 at the All England Croquet and Lawn Tennis Club in the London borough of
Wimbledon.

The motivation for the research will be investigated more fully in Chapter 2, examining the

evidence for recent changes in the way the game is played, and the pressure to control the
sport.

This study was part-funded by the ITF (International Tennis Federation), who have also
been closely involved in the work. One major reason for the project was to develop a tool
which could be used by the ITF in their ongoing attempt to monitor and potentially control
the effect of technology within the sport.
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1.2 Aims and objectives

The overall aim of the project was to create an analytical model of a tennis ball bouncing

on a court surface, and to verify the accuracy of the model.

Specific objectives are as follows,
1. To gain a solid understanding of the basic physics behind ball impacts.

2. To measure the static (or quasi-static) properties of tennis balls under compression,
and to measure the dynamic properties of tennis balls impacting normally on a rigid
surface by measuring forces and speeds.

3. To develop a model predicting normal impact, and verify with experimental data.

4. To perform a review and study of existing surface test methods, identify those
important to an oblique model.

5. To measure the dynamic properties of tennis balls impacting obliquely on a rigid

surface by measuring speeds, spins and angles, and improve understanding of the
features of oblique impact.

6. To create a model predicting oblique impact on a tennis court surface, and verify
against experimental data

7. To link the model to existing models of racket impact and flight. This would
facilitate an assessment of the final model. To thus evaluate its effect on the game
of tennis, and suggest future research.

Throughout this study, a major secondary aim was to create models which are as easy to
understand and use as is practically possible, so that they can have a real usefulness. One
implication of this is that model parameters should be simple to measure so that if a new

ball or surface was introduced, as few measurements as possible must be taken in order to
confidently predict its behaviour.

1.3 The structure of the study

The final model was constructed in a number of steps, broadly following the sequence of

the objectives above. This thesis is divided into a series of chapters which follow a logical
chronological order of how the work was performed.
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2 Literature Review
2.1 Introduction

Over the years there has been a considerable amount of research published in the area of
tennis. However, until fairly recently the work has been performed from outside the sport,
often by academics with a personal interest in tennis. In 1997 the International Tennis
Federation (ITF), who are based in London and are the governing body of the sport,
created a Technical Centre whose aim was “to carry out testing and research into all
aspects of the game, and to provide support to the ITF Technical Commission and other
ITF Committees on decisions relating to technical issues” (ITF, 2004).

This chapter will discuss the need and motivation for research into tennis, particularly in
the present day. It is divided into sections describing the various areas which must be
understood in order to create a model of ball impacts. These range from the properties of
the ball (and test methods for finding these properties), the aerodynamics and player data
which define the scope and boundary conditions for a model, through the properties of the
surface on which the ball bounces, previous work on the dynamics of ball impacts and
previous attempts to model a ball (both from tennis and other sports).

2.2 The motivation for tennis research

Recent years have seen significant changes in the sport of tennis. In comparison with some
other sports (for example golf) the level of both understanding and control of the physics
of the game was relatively low. As the global market for sports has increased dramatically,
so has the size of the game of tennis in both amateur and professional terms. The industry
worldwide supplies hundreds of millions of balls annually, and many millions of rackets,
shoes and other clothing equipment. In today’s commercial marketplace, this industry
provides a huge potential force for change. The International Tennis Federation as world
governing body of the sport recognised their responsibility to understand and control the
effects of technology in the game. In the introduction to the first international conference
hosted by the ITF on tennis science and technology, Coe (2000) described a strategy for
establishing a balance between technology and tradition. He listed a number of quotes from
both current (at the time) and past players describing actual and potential problems with
the speed of the game. After every Wimbledon tournament there are calls for changes to
the game, most commonly in rule changes limiting the specifications of the racket. Coe
used the percentage of sets which ended in a tie-break as an index to the changing speed of
the game over 31 years. He showed that on all surfaces, the men’s game has exhibited a
steady increase in tie-breaks. There is also a clear difference between surfaces, so that the

faster surfaces produce a significantly higher number of tie-breaks. This is clearly shown

3
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by the Australian Open, where the change from grass to Rebound Ace caused a drop in tie-
breaks. The women’s game has a somewhat different trend, where three of the four

surfaces seem to have a drop in the number of tie-breaks (although this downwards trend is
arguable given the scatter).

Fisher (1977) described the introduction of a new style of racket designed by Howard Head
of Prince, which was the first racket to have the now-common oversize head (Head, 1976).
The increased moment of inertia about the axis of the handle was designed to reduce
twisting of the racket when hit by a ball, but also increased the size of the centre of

percussion (or “sweet spot””) and moved it to an easier part of the racket head to use.

400

R
L o |
« 'Spaghetti’ LR i o’go 300
= Natural 40lbs 3 l Regqund
. - PN
o Natural 70lbs L s ‘: ¢ A‘AH 200 (radls)

4 Synthetic 40ibs

a Synthetic 70lbs |,
r 100

-500 -400 -300 -200 -100 0
Impact Spin (rad/s)

Figure 2.1 Spin generated by the "Spaghetti" strung racket compared to natural and synthetic
strings (Goodwill and Haake, 2002).

Another racket innovation which had the potential to significantly change the game was
the “spaghetti” stringing system (Fischer, 1977). This allowed a player to apply
significantly more spin to the ball than conventional stringing, as shown in data from
Goodwill and Haake (2002) in Figure 2.1. Balls were fired at a clamped racket at a speed
of 23 ms™ with effective backspin. The “spaghetti” strung rackets had a clear increase in
rebound topspin, and this stringing system was banned by the ITF in 1978.

Average forward def. (inches) Average return def. (inches)
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Figure 2.2 The trend in ball deformations from 1998 to 2003 (Miller, 2003).

Miller (2003) looked at the various aspects of the game to see which had the most
influence on the game. He found that by splitting the tie-break information presented by
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Coe (2000) into two data sets for the times when players predominately used wood and
then composite rackets, the change in racket technology does not seem to be the
predominant factor. Miller gave hardness information for balls based on the testing
performed by the ITF since 1998, where balls were collected from tournaments and the
marketplace (shown in Figure 2.2). He noted that in this admittedly small timescale, there
seems to have been a trend for the balls to become harder. This means that deformation

energy is stored in the strings rather than the ball, and the strings are more efficient -
meaning the ball rebounds faster.

Arthur (1992) examined the effect of technology on the game, and concluded that rackets
had a huge effect on the speed of the ball. He commented that simply banning certain kinds
of rackets was extremely unlikely both practically and legally. Changes in the court size
and shape or general rule changes (such as reverting to a single serve) would be extremely
unpopular, leaving the ball as a possible source of change. Arthur suggested that making

the ball softer, lighter or larger would have the desired effect of slowing it down, although
he identified problems with each approach.

Haake et al. (2000) tested the reactions of “good” tennis players by firing simulated serves
at speeds of up to 160 mph (71.5 ms™'). The speeds were measured using a radar gun. It
was found that the proportion of serves returned into court decreased gradually with speed.
There was also a critical speed of around 126 mph (56 ms™) where the number of aces
increased dramatically. Haake et al. also presented data showing that as the serve speed
increased for a sample of male players at Grand Slam events, the percentage of sets ending
in tie breaks also increased. A break-down of serve speed by player indicated that male
players who serve significantly faster than others on a fast surface (grass at Wimbledon) do
not necessarily serve faster on slower surfaces (Roland Garros and US Open). This
suggests that players modify their game to play on different courts.

Magnus and Klaassen (1999) performed a statistical analysis using Wimbledon data from
1992 to 1995 of the points won on first serve to see if new balls had a benefit to the server.
Magnus and Klaassen found the new balls did not have a benefit, and also found that the
softer balls introduced in 1995 did not have a significant effect of reducing the serve-

dominance of the game (and hence the speed) as had been intended, and suggested that
more drastic measures were needed.

Brody (1986) considered one of the suggestions which had been made to slow the game,
which was to reduce the size of the service box by moving the service line back towards
the net. He found that a reduction of about one foot would have a reasonable effect (for
example, a serve hit at 90 mph on a normal court would then have to be hit at 84 mph to

have the same “window of opportunity”), but concluded that the idea was unfair as it
would penalise shorter players more than taller ones.
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Brody and Cross (2000) also addressed the problem of the speed of the game and discussed

seven possible solutions aimed at reducing the dominance of the serve:
¢ Change the surface
e Limit the racket
¢ Eliminate the second serve
e Change the foot fault rule
¢ Change the ball
e Shorten the service court
¢ Raise the net

Although each of these would have the desired effect, Brody and Cross recognised
problems with each suggestion and suggested further trials.

In an attempt to control the speed of the game, the ITF introduced the Type 3 ball in 2000,
which is typically 6% larger in diameter than a conventional (or Type 2) ball. Its exact
properties are described in more detail in Appendix A. Haake et al. (2000) provided an
analysis of the effect of this ball type on the various mechanisms of a shot. They found that
it rebounded off the racket faster, had the same drag coefficient and the same impact
characteristics as a conventional ball. The larger diameter will lead to an increased drag
force, and it was shown that this would slow the ball down approximately 10 ms on a first

serve, and 16 ms on a second serve — which is about half the difference between comparing
an acrylic court to a slower clay court.

Summary

There has been an obvious concern on the part of the ITF as to the speed of the game. This
has provoked research both within their organisation and elsewhere into the reasons behind
this and possible solutions. Evidence for increases in serve speed was demonstrated using
tie-break data, and a sharp threshold in speed where players would be unable to return
serves faster than a certain level. A common proposal to slow the ball has been to increase

its size. This and similar measures clearly illustrate the need for understanding of the
behaviour of all forms of equipment in the game.

2.3 Properties of the ball

Manufacturers and ruling bodies have been testing tennis balls for some considerable time.
As far back as 1960 (Dunlop Ltd., 1960), balls were tested for compression and bounce
height as part of the production process — in this case using an automated machine with
photoelectric cells to sort the balls by bounce height. Stevens machines used for
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compression testing by the LTA (Lawn Tennis Association, the ruling body before the
ITF) date back to at least 1924 — shortly after this, the deformation test was introduced into

the rules. The use of the Stevens machine is described in notes of the Wimbledon Lawn
Tennis Museum by Robinson (1977).

2.3.a Specifications of the Rules of Tennis

For a game or tournament to conform to the Rules of Tennis, the ball must be named on
the official ITF list of approved balls issued by the ITF. Balls named have been tested to
meet a certain set of specified criteria. Extracts from the Rules of Tennis (ITF, 2000a)
giving the ball specifications are quoted in Appendix A, including the introduction of two
new ball types. These are the harder (and therefore faster) Type 1 ball intended for use on
slow courts, and the larger (and therefore aerodynamically slower) Type 3 ball intended for

use on fast courts. Also quoted from the Rules is a list of regulations describing how each
of the approval tests should be performed.

2.3.b Experimental testing of balls

Very little work had been performed on the properties of tennis balls before the start of this
project, although there has been a large amount of recent research. The fact that the core of
the ball is made from a rubber compound suggests the shell is likely to have non linear and

viscoelastic properties. The ball undergoes gross deformation and the shell is too thick to
be approximated by any thin shell theory.

Quasi-static testing

8 &

W
“

&

Ball rebound height (in)-
3

2

Salidlinc - Pressurcless balls
Dotted ling - Pressurised balls

[9%]
wh

T T

0 10 30 40

20
Temperature (°C)

Figure 2.3 The variation of ball rebound height with temperature for a drop test from 100
inches (reproduced from Rose et al., 2000)

Rose et al. (2000) measured the properties of pressurised and pressureless tennis balls
between 0 and 40°C. The tests performed were ball rebound height, ball deformation under
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quasi-static loading and higher speed coefficient of restitution (up to impact speeds of 45
ms"). It was found that pressurised balls show a large variation in rebound height over the
temperature range as shown in Figure 2.3, much larger than for pressureless balls. The
compression test showed little change in forward or return deformation with temperature.

In dynamic rebound tests at 25, 35 and 45 ms', the COR increased slightly with
temperature, in a similar manner for both ball types.

Hendee et al. (1998) performed quasi-static compression tests on traditional and modified
baseballs (the latter designed to reduce injuries in young players), measuring average
stiffness and energy loss. The balls were then fired normally onto a force plate using an air
cannon at speeds between 13.4 and 40.2 ms™. For all balls tested, coefficient of restitution
decreased with increasing velocity. They found no way to correlate this with quasi-static

test data. Peak force of impact and impulse of impact increased with static ball stiffness
and mass respectively.

(a) (b)

Figure 2.4 X-ray images during compression showing buckling of (a) a pressurised core and

(b) a pressurised ball, from Ashcroft and Stronge (2003).
Ashcroft and Stronge (2003) looked at energy losses in tennis balls. They compressed
rubber cores of pressurised and pressureless balls which had been punctured to release any
pressure. Whole balls (i.e. including cloth) were also tested both with and without the
respective internal pressure. For the punctured cores they found that the force-deflection
obeyed a linear relationship until a point of critical deflection where the stiffness
decreased. This critical deflection was about 26 mm for the core of a pressurised ball. They
used X-ray images to show inversions or buckling in the balls (reproduced in Figure 2.4),
although the deflection for these images is not stated. When comparing ball types, Ashcroft
and Stronge noted that the pressurised ball was stiffer than the pressureless ball at all
deflections, but the opposite was true when both balls were punctured. They conclude that
the material hysteresis does not account for the significant energy losses during impact.

Dynamic impacts

Bernstein (1977) used a microphone to measure the time of a series of impacts of a
bouncing ball and to calculate the coefficient of restitution as a function of impact number.

This system was converted to a more sophisticated computer-based device by Smith et al.

8
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(1981). In a similar experiment Brody (1990) used a microphone and an oscilloscope
triggering a timing system to measure the time in between the first and second bounces of a

tennis ball dropped from 100 inches (2.54 m) in order to produce an inexpensive bound
height test.

Cross (1999a) bounced a series of balls off a piezo element mounted on a heavy brass rod.
Force waveforms were measured and also compared with the results of static force-
deflection compression tests. He also found that all the balls remained compressed at the
end of the contact period, as the deflection value was finite. This was confirmed by
aligning a laser beam to graze the top of an uncompressed ball at rest on the piezo. The

beam remained blocked for about 0.5 ms after the impact, approximately 10% of the
contact time.

Finally Cross glued a small piezo element to the ball in order to estimate the vibrations. He
found that with the element located near the bottom of the ball the force waveform was
similar to the large piezo element, with a time delay of about 0.4 ms. The pulse decreased
in amplitude and changed in shape as the element moved towards the top of the ball. At the
top there was only a small visible effect of the compression and expansion, but a small

amplitude oscillation occurred at about 700 Hz and persisted for approximately 2 ms.

Cross (1999b, 2000b) repeated his earlier force plate tests using a ball projection machine
to achieve higher impact speeds, and concentrating on tennis balls. He projected the balls
using a pair of rotating wheels, and a laser and photodiode together with the force plate
data to measure the impact speed. A second force plate positioned so that the ball would
impact upon it unless fired in absolutely perfect alignment was used to measure the
rebound speed. He found that the force increased rapidly during the first 0.2 ms of the
impact, and attributed this to compression of the cloth and rubber around the impact point.
An aluminium ball was then covered in cloth, rubber or both in order to investigate the
effects of each material. He found that both materials obeyed an exponential force-
deflection relationship, and the two stiffnesses could be combined to reproduce the effect
of having both on the ball. Evidence was also presented of the ball shell buckling inwards,
providing a lower stiffness after the initial peak. By using a small piezoelectric element set
into a layer of circuit board, the force was measured centrally and 20 mm away from the
initial point of contact. The centre force was found to have two peaks with a time period
between them where the force is low. Cross also compared a pressurised and a pressureless
ball impacting on the force plate at various speeds up to 15 ms™'. He found the rebound
speeds were very similar, but that the pressurised ball was softer, leading to a lower peak
force and a longer contact time. He calculated a dynamic stiffness for the pressurised ball

of 35 kN/m, which is much higher than the static stiffness of 12.6 kN/m required for the
approval tests of the rules of tennis.
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Brown and Cooke (2000) divided the subject into four regimes: the impact of ball and
racket, the initial unsteady motion, the quasi-steady motion and the impact of ball on court.
South (1996) estimated that significant large-scale deformation ends about 5 ms after

impact. At a serve speed of 60 ms™ (135 mph), the ball would travel 0.3 m in this time and
so this vibration will have little effect.

Capel-Davies and Miller (2003) performed wear tests with three types of balls: pressurised
balls with either melton or needle cloth, and pressureless balls using melton cloth. They
calculated that on average balls are used in 45 shots during a game, and chose to subject
the balls to 50, 100 and 150 impacts to see if the wear had an effect on the approval tests. It
was found that bounce height was not affected. Mass was reduced, and this was reflected
in the debris of fibres left in the impact rig. Forward and return deformations were initially
increased by wear (indicating a reduction in stiffness) after the first 50 tests, but it varied
by ball as to whether any further changes (all increasing) were statistically significant.
Capel-Davies and Miller commented that the magnitude of any changes is about 10% of
the range allowed by the Rules of Tennis.

Summary

Tennis ball testing can be divided into two main categories: static (or quasi-static) and
dynamic. Static testing does not provide a huge amount of useful information, as the
majority of balls intended for retail are engineered to pass the standard ITF approval tests,
and thus tend to have similar properties. The same is true for low speed dynamic tests (in
terms of velocities at least), as the approval specifications include a drop test. The use of a
force plate has provided some useful information and suggests that there may be a buckling
element to the impact, lowering the stiffness after an initial period. There is however an
opportunity for much higher speed impacts, which will be considered later in this chapter.

2.4 The aerodynamics of tennis balls

In order to relate any modelling or experimentation of the impact of tennis balls on
relevant surfaces to the game, it is important to know how the ball reaches the court. There
is a distance of over 18 metres between the baseline and the service line in the opposing

half of the court which is a significant distance for aerodynamic effects to alter a ball’s
behaviour.

Lindemuth (1971) used a series of photocells to capture the position relative to time of a
series of different balls falling under gravity, and proved that the effect of air resistance

was significant. He verified the accuracy of a force proportional to the square of the
velocity.

10
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Figure 2.5 Drag and lift coefficients as a function of the w/v ratio, reproduced from Stepanek
(1988).
Stepanek (1988) performed the first study of the forces produced by a spinning tennis ball.
He constructed a device to drop spinning balls into the air flow of a wind tunnel and
measured the variation of drag and lift coefficient with ball spin rate. The experimental
data — shown in Figure 2.5 - was fitted by the following regression equations:

2
Ss

C, =0.508 +| 22.503 + 4.196(9) i
\4

c, =|2.022+2%8

9

A Davis Cup player was asked to hit topspin lobs with as much spin as possible, and the

shots filmed using a STALEX high-speed camera. The highest rotation achieved was
around 3500 rpm (367 rads™).

Cooke (2000) gives an overview of the dynamics of a tennis ball flow through air. The
physical mechanisms of the fluid flow are not relevant to this project, but Cooke concludes
that the initial transient state due to ball deformations can be considered negligible. This

11
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means that for the scope of aerodynamics necessary to predict impact speeds, the only

important data are the drag and lift coefficients, as the equations of motion are well
understood.
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Figure 2.6 Drag coefficients measured by Chadwick and Haake (2000) for normal balls and

with shaved and fluffed nap.
Chadwick and Haake (2000) measured the drag coefficient of pressurised balls with a
normal napped, a raised “fluffed” nap and a shaved nap. As seen in Figure 2.6, the range of
drag coefficient from the shaved to fluffed nap was around 10%. For a normal ball, the
value was around 0.55. They also dropped spinning balls through a wind tunnel and filmed
the trajectory at 240 frames per second. Manipulating the equations of motion and fitting
them to the captured trajectory data enabled lift coefficients to be measured as well as drag
coefficients but it was found that care was needed to reduce potential errors. Drag and lift

coefficients of about 0.8 and 0.2 respectively were found for a ball dropped with 1600 rpm
(168 rads™) through an air stream moving at 11.6 ms™'.

(a) (b)

Figure 2.7 Flow visualisations for a tennis ball with (a) topspin and (b) backspin, from Pallis
and Mehta (2000). The air flow is from left to right in each case.
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Pallis and Mehta (2000) used an 11 inch (28 cm) novelty tennis ball to perform flow
visualisation studies. With spin applied they produced clear evidence of non-symmetrical
boundary layer separation leading to a Magnus force, which can be clearly seen by the
offset wakes in Figure 2.7. Pallis and Mehta also measured the forces on a non-spinning
ball. They found a value of around 0.6 for all wind speeds between 50 and 150 mph.

Mehta and Pallis (2001) found drag coefficients between 0.6 and 0.7 for new balls. The Cp
value dropped at high Reynolds number, and this was attributed to the high wind speed
“laying down” the nap on the ball. They tested used balls, and found that after 6 games Cp
was about 6% higher than for a new ball, but after 9 games it was about 6% lower than for
a new ball. This suggested that the cloth “fluffs up” on initial use, before becoming worn.

They also tested a ball which had been used in the US Open and found drag coefficients
about 0.1 lower than those seen elsewhere.
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Figure 2.8 Drag coefficient versus spin ratio 2, from Chadwick (2003).
v

Chadwick (2003) used two different wind tunnels and measured lift and drag coefficients.
Figure 2.8 shows aggregated data for a variety of spins from zero (the static value of
0.5365) to 7300 rpm (760 rads™). An equation fitting this data was found to be

~2.1887
C, =0.5365 4{1.9980(2) + 2.8619)

~-0.7069

v

with limiting values of C;, =0.5365 and C,, =1.012 at zero and infinite spin respectively.
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Lift data measured at the same time produced the data shown above in Figure 2.9. The fit
for this data was given by

-0.529
0

-1.877
C, = 2.591( ] +4.809

v

It should be noted that for both the lift and drag data, Chadwick used a spin ratio (2)
v

where @ was defined as the equatorial velocity (i.e. the spin rate multiplied by the radius)
rather than the conventional notation of spin rate used throughout this thesis.
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Figure 2.10 Drag coefficients for eight different non-spinning bails (Goodwill et al., 2004).
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Goodwill et al. (2004) mounted both stationary and spinning balls in a wind tunnel for
speeds between 20 and 60 ms™. Drag coefficients are shown for eight different brands of
ball in Figure 2.10. Most of the balls had very similar drag coefficients, except for the balls
“Woven B” and “Needle B”. It was not possible to show any significant difference

between brands however. The drop in drag coefficient as the speed increased was
attributed to the nap “laying down”.

Figure 2.11 below shows drag and lift coefficients from Goodwill et al. for spinning balls at
two different wind speeds. Data is shown for new balls and for balls which had been worn
for varying numbers of impacts on a surface. They found that the drag coefficient
increased with spin (or spin coefficient S, defined by dividing the circumferential speed by
the wind tunnel speed) at the two Reynolds numbers tested. The balls subjected to 0 and 60
impacts showed a steady rise in Cp, from 0.65 to 0.69 at the lower wind speed. The more
heavily worn balls actually show a decreased drag as spin is increased, although the
amount is within the repeatability of the experiment. It is clear however that Cp for new
balls is around 0.04 higher than for heavily worn balls for most spin rates. At the higher

wind speed there is a general increasing trend for all balls, and again new balls exhibit a
higher Cp than worn balls.

As would be expected, the lift coefficient is strongly dependent on spin, although again
there was no difference with ball construction. There was little difference between new and

worn balls except for a range 0.05 <S < 0.15 — where increased number of impacts led to a
lower lift coefficient - and this trend only showed at the lower wind speed.
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Figure 2.11 Aerodynamic coefficients found by Goodwill et al. (2004) for spinning balls; (a)
and (b) show drag and lift coefficients respectively at a wind speed of 25 ms™ (c) and (d) show

drag and lift coefficients respectively at a wind speed of 50 ms™'. The same notation showing the
number of impacts is used on each graph.

Summary

Tennis ball aerodynamics is an area in which there has been a large amount of recent work.
A number of studies have produced drag coefficients, although lift coefficients are much
harder to measure. There is a lack of data at high spin rates, which need a combination of a
fast spinning ball and a wind tunnel which is accurate at low speeds. The data available
does however make it possible to obtain realistic approximations of the court impact
conditions, assuming some knowledge of the starting boundary conditions.

2.5 Player data

A major aim of this project was to be able to model impacts at a realistic range of speeds
and spins. There is not a huge amount of data on speeds throughout trajectories and

particularly on impact - often the only figures that are quoted are “serve speeds” which are
maximum values measured with a radar gun.
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Groppel et al. (1983) created an analytical model to predict the effect of angle of swing
and orientation of the racket head on the spin imparted on a tennis ball. As an experimental
validation of the model two male varsity players were filmed at 500 frames per second
hitting balls with topspin and backspin. The six topspin shots had spin ranging from 36 to
195 rads™', and the two backspin shots were hit with 192 and 236 rads™' of spin.

Elliott (1983) used two film cameras running at 200 and 300 frames per second to film
twelve State ranked tournament players ages 12 years, 15 years and adult. He found that all
the adult players hit the ball with a considerable amount of spin when asked to give a “hard
first serve” - values of 11 to 19 rotations per second (70 to 120 rads™).

Elliott ef al. (1986) filmed eight elite tennis players serving. For the male players, the ratio
of the height of the ball at impact on the racket to the player’s standing height was an

average of 1.53. The balls dropped an average of 0.51 m from the top of the toss to the
point of impact.

A collaborative project between NASA and Cislunar Aerospace, Inc. (Cislunar Aerospace,
Inc. 2001) analysed a range of video footage from the 1997 and 1998 US Open
tournaments, and provides an excellent source of data for professional tennis. Twenty nine
first serves by Pete Sampras were analysed. The average speed of these serves was 120
mph. By the time the ball reached the court it had slowed to 87 mph. The impact on the
court surface slowed the ball to 62 mph, and the drag while travelling from the service line
to the baseline reduced the speed further to 54 mph. The spin generated by 11 professional

men was also measured. The range of average spins for each player is shown in Table 2.1
for a variety of shots.

Table 2.1 Range of average spins measured by Cislunar (2001).

Type of shot Min and max average spins measured
rpm (rads")
Forehand topspin 1333 10 3331 (140 to 349)
Backhand topspin 1250 to 2332 (131 to 244)
Backhand backspin 2127103124 (223 to 327)
First serve 1548 to 3167 (162 to 332)
Second serve 3370 to 4650 (353 to 487)

The technology of radar guns is mentioned by Dunlop (2000), who states that the accuracy
of the guns tested was 1 km/hr (0.28 m/s), with 0.1 km/hr available using averaging
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algorithms. He suggested the use of radar guns as a simple way to measure the “pace”

(change in horizontal velocity component) and “bounce” (change in vertical velocity
component) of a surface.

Summary

Somewhat surprisingly, more information is available on the spin a player gives to the ball
than the speed with which it is hit. This spin is however important, as the values imparted
by professional tennis players is extremely high — typically between 100 and 400 rads™ for
groundstrokes. Second serves can exceed these values, and even first serves (when the
players were asked to hit the ball fast and flat) are of comparable spin rates. This suggests
that any experimental impacts must include considerable spins to be realistic. Initial speeds

off the racket are available, and so it is hoped aerodynamic modelling will make it possible
to find court impact conditions.

2.6 Surface testing

Bell et al. (1985) presented a summary of various sports surface test methods. Values are
quoted for “ball bounce resilience” on turf for different sports, where the vertical height a
ball bounces to is recorded as a percentage of the drop height. Friction was measured by
finding the distance a ball rolls along a surface before coming to rest. A rotating drum
which drops a spinning ball was described as an alternative friction measurement (the
distance between the first and subsequent bounce point defines the friction). The traction
(described as applying to footwear “having studs, cleats or spikes to provide extra grip”)

was also discussed along with a variety of test methods using plates with attached studs to
measure the turf shear resistance.

2.6.a ITF performance standards

The three properties chosen as key characteristics of tennis court surfaces by the ITF (ITF,
1997) and their definitions are listed below:

¢ Surface pace - The speed of the court, which includes both speed and angle of
the ball rebounding off the surface.

 Friction - As determined by measuring both Slip resistance and Traction.

* Energy Absorption — The ability of a surface to absorb energy (or shock).
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Five more characteristics of a constructional nature are also described:
e Vertical ball bounce — The measure of the vertical ball bounce off a given
surface.

e Permeability — The ability of a surface to allow water to pass through it.

e Slope — The gradient of a court which is designed to assist drainage of a
surface.

e Evenness — The geometrical regularity of a surface.

e Consistency — The uniformity of the surface over the entire playing area.

Test methods are given for each of these characteristics. Of the eight, the following are
most relevant to this project: surface pace, friction, energy absorption and vertical ball
bounce.

2.6.b Surface pace rating

The surface pace rating is intended to define both the speed and angle of the ball after
rebounding off the surface. A ball is projected at 30 + 2 ms™ at 16 + 2° to the horizontal.
The velocity components before and after impact as defined in Figure 2.12 below are
measured.

Figure 2.12 Definition of the velocity components used to calculate Surface Pace Rating (ITF,
1997).

'y+ Nl

; ’ V.-V
The pace rating P is defined as P = 100[1 - V”‘*”‘} = 100[1 _4v, }
av

y
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Figure 2.13 Typical Surface Pace Ratings for new courts (ITF, 1997).

As can be seen in the guideline chart reproduced in Figure 2.13, the pace rating is split into
three broad categories, which overlap. These are:

e Category 1 (slow) 0 —35
e Category 2 (medium/medium fast) 30-45
e Category 3 (fast) 40 +

Although the surface types given as examples are not particularly comprehensive, the

acrylic and clay court categories include a large proportion of surfaces in use around the
world.
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Figure 2.14 (a-d) Velocity and angle ratios plotted against (a-b) incoming speed, and (c-d)

incoming angle, from Dunlop et al. (1992).
Before the ITF Pace test was established, Dunlop et al. (1992) stated that player
perceptions of “pace” were a combination of horizontal and vertical velocity changes. In
order to recreate a controlled simulation of a ball landing on an oblique surface, they
filmed a ball landing on an inclined moving plane — by dropping balls off-centre onto a
spinning wheel. Photo-diodes were used to ensure that the operator could tell if the ball
landed in the required area. The landing position determined the angle of impact due to the

tangent of the wheel circumference. Velocity and angle ratios are shown plotted against
incoming speed and angle in Figure 2.14.
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Figure 2.15 The variation of Surface Pace Rating with test position, for a variety of court types

(Carré et al., 2002). Also shown is the variation with court position.
Carré et al. (2002) performed Surface Pace Rating tests on fifteen different tennis courts
around the UK, ranging from values of about 18 to 48. They measured the Pace at three
different locations on the court: by the net (assumed to have little or no wear), in the
service box (where wear is due to ball-surface interaction) and near the baseline (where
player-surface interaction causes wear). Macadam and grass surfaces had an increase in
pace both in the service box and at the baseline compared to by the net. An indoor carpet
had very little change, and two clay courts had opposing behaviour - one was faster at
either position away from the net, and one was slower. The various acrylic surfaces show

differing amounts of change, but in almost all cases are between 0 and 10% faster away
from the net.

Cox (2003) gave a summary of the Surface Pace Rating test including examples of some
test values. During extremes of (English) weather in a grass court season, Pace Ratings
from 34 in cool, damp conditions to 49 in hot, dry conditions were measured. Similarly,
clay courts had typical Pace Ratings from high teens to around 25, and acrylic surfaces
from 27 up to high forties — although the range 38-45 was most common. Cox also noted

that acrylic courts have a noticeable change in pace during their early life, typically by 5 or
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6 on a slow court, or 2 to 3 on a faster court. This was attributed to wear of the pronounced
peaks formed during the application process of the surface, and agrees with the data of
Carré et al. above, since the court near the net will be close to its original state. Acrylic
courts were also noted for their consistency; Cox stated that a contractor can produce
courts with a variability in Pace Rating of £3.

Miller and Capel-Davies (2003) used a variety of surfaces to test the repeatability of SPR
tests (in a study aimed at validating the performance of the Sestée apparatus). They used
MDF wood, two thicknesses of writing paper and six grades of emery paper. Mean Pace
Ratings ranged from 23.9 for the coarsest emery paper to 68.3 for the MDF. The impact
point was not changed during the tests (10 impacts on each), and in general the pace
increased with impact number. The two surfaces which showed no change in pace during
the test were recommended as validation surfaces. There was also a variation in coefficient

of restitution between surfaces although it is not clear whether this is due to the ball or the
surface.

2.6.c  Surface friction testing

Dixon et al. (1999) state that the most important factor associated with “accidental
injuries” (as opposed to “overuse injuries” caused by surface hardness) on sports surfaces
is the level of friction, suggesting that for tennis a suitable surface should provide a

controlled amount of sliding. This limits the maximum value of friction likely to be seen
on a court.

Van Gheluwe and Deporte (1992) measured frictional forces and torques produced by
good quality players hitting an open stance forehand. The players were asked to hit the ball
while moving on a force plate covered with various playing surfaces. They found the
friction was more affected by the surface than the choice of shoe.

As already mentioned, Brody (1984) dragged a weighted ball using a sprung force
measurement. Hamilton (2000) used similar principles to measure the tension needed to
pull along a sled whose bottom was covered in tennis ball cloth. These provide simple
ways to measure dynamic coefficient of friction, but are rather user-dependent.

The ITF describe two tests designed to measure the friction of a surface (ITF, 1997). The
first of these evaluates the rotational traction by measuring the torque needed to turn a
rubber disc which has a substantial mass on it. The second uses a pendulum with a rubber
foot which is released and allowed to impact along the surface. A sprung mechanism

allows a specific contact length, and the height the pendulum reaches after sliding is
recorded. These two tests are described in more detail in Chapter 5.

Haines (2002) developed a pendulum to measure friction between a tennis ball and court

surface, which was commissioned by the ITF as a possible inexpensive alternative to the
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Sestee Surface Pace Rating equipment. The theory given by Haines relates the loss of
energy due to a ball sliding a distance d against a frictional force F. For a weight ¥ (of the
pendulum arm plus the ball) and the distance from the pivot to the centre of gravity is a,
then the energy loss in relation to the angle € the arm swings to is given by Wacos@ . This
energy loss is also equal to the work done by friction, or Fd. Equating these two energy
losses and relating them to the vertical reaction force R by F = uR leads to

e Wacos0
Rd

If as Haines states, the variables w, @, R and d are all constants, this is of the form

1= Kcosé, allowing a simple calculation to work out the coefficient of friction from the

angle the pendulum swings to. Again, this test method is examined in more detail in
Chapter 5.

Laptop computer Strain indicator

Picoscope

> R

Drive system
housing unit

Pulley belt Sled

Figure 2.16 The friction rig tested by Teasdale (2003).

Teasdale (2003) performed testing using a bespoke friction rig which was designed to
measure a dynamic coefficient of friction. This is shown in Figure 2.16 and contained a
constant-speed motor which could be used to accurately pull a friction sled at specified
speeds. A fibre-reinforced toothed belt pulled the sled along the surface. Three balls were
secured in the sled and a weight applied to give a normal force. A load cell between the
sled and rubber belt was used to measure the reaction force on a laptop, via a strain
indicator box. Teasdale found that the ball mounting arrangement generally allowed six
possible contact positions on each ball (opposite faces on three mutually perpendicular
axes), although with hard balls such as hockey balls the contact area was reduced, allowing
for more positions. In tests across four surfaces, Teasdale found that there was no
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significant difference between friction coefficients for cushioned and uncushioned
surfaces. There was a significant difference between coefficients of friction for “smooth”
and “rough” surfaces - made with acrylic paint and with paint which was mixed with sand.
He also found that the speed at which the sled was pulled had no consistent effect on
friction on tennis surfaces for tennis, cricket or hockey balls. On an indoor wooden sports
hall surface a hockey ball showed an increased friction with increased speed, although
cricket and tennis balls did not.

Teasdale also tested friction with different normal loads on the sled. With loads between
50 and 250 N, he found that tennis and hockey balls did not show any change in frictional
coefficient. Cricket balls seemed to show a trend of decreasing friction with increasing
normal load, although the errors are significant.

2.6.d Surface Impact testing (energy absorption)

Nigg (1990) performed a critical review of the test procedures commonly used to assess
the cushioning and frictional properties of sports surfaces. He described six categories of
cushioning tests: where a dropping mass falls onto a test foot containing sensors (such as
the Berlin or Stuttgart Artificial Athlete), a dropping mass which itself contains impact
sensors, drop tests where the sensors are underneath the surface (e.g. with the surface
placed on a force platform), a drop test using an accelerometer to find stress-strain
characteristics, and tests where subjects perform typical movements on a surface and either
forces or surface deformations are measured. The dropping mass tests are of particular

interest as it is possible they could give surface stiffness information useful in a ball impact
model.

The ITF performance standards (ITF, 1997) specify only one test, the Berlin Artificial
Athlete. This well-established test will be looked at more closely in Chapter 5, but in brief
consists of a large mass (20 kg) which is dropped 55 mm onto a stiff spring. An
instrumented shoe between the spring and the surface measures the peak force value seen,

which is then compared to a control test value measured on a theoretically rigid surface
such as concrete.

McMahon and Greene (1979) constructed a model of a runner where the leg was
represented by a rack-and-pinion spring and damper, which was then assembled in series
with a spring representing the surface. The stiffness values of various surfaces are quoted
in Table 2.2. The model was used to predict contact time and step length. Although
McMahon and Greene do not specify how the stiffness values were obtained, it is useful to

consider the order of magnitude — the value for concrete or asphalt is around 100 times
higher than typical values for ball stiffness.
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Table 2.2 Stiffness values of running surfaces (reproduced from McMahon and Greene, 1979)

Material Stiffness (kN/m)
Concrete / asphalt 4376
Packed cinders 2918
Board tracks 875
Experimental wooden track 195
Experimental wooden track 100

One standardised piece of equipment often used to assess the soil hardness is the Clegg
Soil Impact Test (Clegg, 1976). This test drops an instrumented mass (0.5 kg or 4.5 kg,
depending on the hardness of the surface being tested) down a guide tube and gives the
peak deceleration. This equipment is easy to use but provides only a single measurement -
the maximum value of (upwards) acceleration during impact. Rogers and Waddington
(1990) listed nine specific measurements which were thought to fully define the impact
absorption properties of a surface, and included such parameters as times, accelerations,
peak forces and deformations.. They then went on to design apparatus using the Clegg
tester and a vibration data analyser for obtaining a full acceleration-time profile. With the
data downloaded onto computer, any number of useful properties can be calculated. Values
are given for such features as impact time and rate of change of acceleration but no curves

are shown. Conclusions drawn were that peak deceleration decreases with an increase in
soil moisture or compaction.

A similar system was developed by Bregar and Moyer (1990). After experimenting with a
computer-based data acquisition input card, they used a Briiel & Kjar standalone vibration
analysis unit to record up to 50 acceleration profiles into non-volatile memory to analyse
on computer later. A sampling rate of 20 kHz over a maximum time of 62.5 ms was found
to be sufficient. Masses of 0.5 kg, 2.25 kg and 4.5 kg were tested, all from a drop height of

45.7 cm (18 inches). They found the system worked well but no experimental data is given.

Martin (1990) presented a theoretical analysis of impacts based on the Gadd severity index
;

where G = L a**dt for acceleration a measured for time t varying from 0 to T. The study

was based on human safety, where values of G in excess of 1000 are considered to be

unsafe. Martin found that as the drop height increased, the thickness of the surface became
a more important factor in the magnitude of G.
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Walker (1996) also mentioned the integrative severity index but suggests that a more
useful figure is the tangent modulus of the load-deflection curve. This was measured at the
point of peak force. He found that the standard weights used commonly in impact testing
are too low and give results which are too similar across widely different surfaces and
suggested using loads and areas which match human interaction as closely as possible
(although the work is aimed at tests to reduce player injuries rather than ball performance).
Tests on a standard hockey surface showed the effect of underlays of 12 mm and 20 mm
thickness - as the thickness is increases, so does deflection while the force does not change
much. Thus the stiffness and therefore perceived hardness reduces.

Davies and Karim (1995) developed an analytical model to predict the post-impact
conditions of three kinds of impact test. These three tests were the Clegg impact tester
using a vertically dropped mass, the Odin hammer which is essentially similar but which
uses a hinged arm for the mass, and the Falling Weight Deflectometer which is a more
complicated system, dropping a mass onto a sprung platform. The model was comprised of
a spring of stiffness k£ and a dashpot with damping constant ¢. These two parameters were
calculated for a contact area of radius r, using the soil properties of shear modulus G,

Poisson’s ratio vand mass density p:

y = 36
1-v
2
c=3u
1-v

They found that the model worked well for the Odin hammer and FWD, but not as well for
the Clegg tester. This was attributed to the higher stresses generated during impact which
would affect the accuracy of some of the basic assumptions of the analysis.

Henderson et al. (1990) used soil samples in boxes to establish a laboratory method for
testing soil and turfgrass surfaces. A 9.1 kg missile was dropped from a height of 61 cm. It
was found that the depth of soil in the box was important as the box and anvil appeared to
affect the results for most samples; with less than 15 c¢m of soil, the peak deceleration and
penetration depth varied with depth of the sample. However, the soils used would seem

much softer than any tennis surface, as the peak deceleration was in the order of 20 to 50
gravities.
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Figure 2.17 Tennis ball rebound resilience against Clegg Impact Value, for all surfaces and

just for artificial turf (reproduced from Holmes and Bell, 1986).
Holmes and Bell (1986) dropped a 0.5 kg Clegg Impact Soil Tester on nine natural and one
artificial turf playing courts (it is not clear whether these were actual courts or prepared
sample areas). They also performed a 100 inch drop test using tennis balls on each surface.
They found a strong relationship between Clegg Impact Value and rebound resilience
(reproduced in Figure 2.17) which appeared to be linear for the natural turf. The artificial
turf had only a slightly higher bounce despite a much higher Clegg Impact Value,
suggesting that some asymptotic value had been reached where the surface was essentially
rigid. The large range of ball bounce resilience seen suggests that some extremely soft
surfaces were used. They conclude that small differences in hardness on a “hard” court will
have little effect on rebound resilience. However, on a “soft” court, similar small
differences in hardness will produce greater variations, contributing to the variability and
inconsistency often seen on grass courts. Some of the courts tested produced ball bounce
heights between 20% and 50% of the drop height, suggesting they were extremely soft.

Brody (1992) described a simple method of performing a comparative test of surface
hardness. He attached two inexpensive resettable accelerometers to a baseball bat and
dropped the bat from gradually increasing heights until the accelerometers tripped,
showing that a specific value had been reached (in this case 138 g). The height varied by
quite a large amount, from 0.08 m on the hardest surface (concrete) to 0.91 m on the softest
(artificial grass). Without any data such as ball bounce height or impact force
measurements, these numbers are somewhat difficult to interpret.
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Dodd (2003) adapted a Clegg Impact Soil Tester in order to understand the influence of
various parameters of surface stiffness properties. The key variables he chose were contact
velocity, impact hammer mass, and hammer shape and surface area. Dodd found that the
original Clegg device had errors of up to 20% in the impact velocity, and so a linear rail
was used in an attempt to improve the accuracy. He concluded that the kinetic energy of
impact was the dominant parameter in the loading part of the impact, but that the mass was
more important during the unloading stage (and hence the hysteresis or energy loss). Dodd
commented that it was not possible to match both the energy and mass to that of a sports
ball impact. Dodd also created spring-damper models of athletic and cushioned tennis
surfaces. The tennis surface was created using two springs, as it exhibited two behaviours -
the stiffness increased due to a bottoming-out effect. The two springs in the model were of
stiffness 180 N/mm and 2500 N/mm, with the softer spring switching off after the critical
displacement of 1.6 mm. He suggested that the shape of the impact hammer should match
that of the real situation in order to recreate the stresses and deformations.

Summary

The two surface properties which seem most likely to affect ball impacts are friction and
stiffness. A form of friction is already commonly measured in terms of SPR, and a
reasonable amount of data is available on values for various courts and their repeatability.
A number of tests also attempt to measure the friction directly, although no attempt has
been made to compare and correlate these to SPR values. Surface stiffness is also often
measured in the sporting world, and several common test methods exist to find the shock
absorption (often in terms of a peak force or deceleration). Most of these tests are designed
to simulate the interaction of a human athlete on a surface, and it is therefore unclear how

well the results can be applied to ball impacts where both the force and energy is much
lower.

2.7 High speed ball impact testing

Haake (1994) used a modified baseball machine to project golf balls onto greens using
rotating rubber wheels. The impacts were recorded using stroboscopic photography. He
created a two-layer model to predict the impacts, where the top layer represented the grass,
thatch and root layer while the second layer represented the soil underneath. He found that

the greens could be split into two categories — the first where the ball slips throughout and
retains backspin, and a second where the ball rolls matching a v = wr relationship.

Dowell et al. (1987) projected balls at a wide range of angles (12.6° to 72.1°) at a mean

velocity of 87 feet per second (26.5 ms™). They found the rebound angle was higher than
the incident angle in all cases. The deviation between the two angles was lowest at either
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extreme of angle, and increased in between, peaking at an incident angle of about 35°. The

court used was a Laykol court, and no measure of friction is given.
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Figure 2.18 Change in velocity against incident angle for three different ball speeds (from

Hope et al., 1988).
Hope et al. (1988) performed a similar but extended study, projecting balls at about 50, 70
and 100 feet per second (15, 21 and 30 ms™). Impact angles ranged from 5 to 90 degrees.
The change in velocity due to the impact is shown in Figure 2.18. An interesting bimodal
distribution is shown for each speed, although the situation is rather complicated —
different angles will produce completely different impacts because of the range of vertical
velocity components seen (and their effects on COR), the slipping/rolling boundary and
perhaps mechanisms of deformation. No attempt was made to explain the results.

As briefly mentioned earlier, Haake et al. (2000) performed a comparison test between
normal pressurised and 6% oversized balls on both acrylic and clay surfaces. They found
that in every case there was no difference between the rebound speeds of the two ball
types. There was a suggestion that the oversized ball bounced with a steeper angle, but no
indication of uncertainty is given and so the significance of the data is unclear.

Goodwill (2002) projected balls normally at a rigid surface between 4 and 30 ms™'. He used
four ball types (pressurised, pressureless, punctured and oversized) and found that they all
had a similar coefficient of restitution of 0.8 at the lowest speed. As the impact speed
increased, the COR dropped and differences between the balls became apparent. He found
that the oversized ball rebounded slightly faster than the pressurised ball, and the
pressureless ball slightly slower. The punctured ball rebounded significantly slower at all
speeds. Goodwill then repeated these tests, impacting the balls on a force plate. At low
impact speeds, the three non-punctured balls exhibited similar force-time characteristics,
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with the punctured ball having a lower peak force and longer contact time. As the speed
increased, all balls showed a very similar initial peak in the force. The pressurised and
oversized balls remained similar throughout. The pressureless and punctured balls behaved
in a more similar manner, both having a longer contact time and showing a late increase in

force. Goodwill attributed this to these two non-pressurised balls “flipping back” to their
original shape after compression.

Miller and Messner (2003) tested the normal impact performance of balls at speeds from
20 to 40 ms™, using an air cannon to fire the balls at a concrete block. Averaged over all
balls, the coefficient of restitution dropped from about 0.75 at 7 ms™' (to be expected, since
the balls passed approval testing before use) to 0.40 at 40 ms™'. Pressureless balls bounce
slower than pressurised balls at 20 ms™, but the difference is negligible at 40 ms™. Data is
shown for two manufacturers’ balls which have the same rebound speed at 20 and 40 ms™',
but have a different rebound speed in between. Miller and Messner comment that this

difference is not statistically significant, but highlights how the differences between balls
may depend on the speed.

Kirk (2003) performed a series of impact tests on four different acrylic surfaces in an
attempt to understand the physical processes. He used acrylic paint to create surfaces on a
rigid sheet of Perspex and on a cushioned substrate made from two sheets of thin plywood
with a 6 mm rubber cushioning layer in between, giving what he termed “Smooth Hard”
and “Smooth Cushioned” surfaces. Another two samples (using the same base materials)
were made using the same paint mixed with 450 microns sized sand, giving “Rough Hard”
and “Rough Cushioned” surfaces. He fired a ball using an air cannon — therefore without
spin — at speeds between 12 and 50 ms™', and nominal angles of 12°, 20°, 32° and 40° to
the horizontal. High speed video was used to film the impacts at 1500 frames per second.
The main finding was that there were no differences between the hard and cushioned
surfaces, for a given paint (and therefore friction). The friction did have a significant effect

however. He also found that there was a critical angle where the impact changed between
two phases, what he termed “under slipping” and “rolling”.

Kirk also attempted to find a way to estimate how the moment of inertia of a tennis ball
changes as it deforms. By combining the MOI of a truncated sphere with that of a circular
disc (assumed to be the shape the portion in contact with the ground assumes), he
calculated a reduction of about 8% compared to the undeformed ball. One major flaw in
these calculations is that Kirk assumed the ball was a spherical shell made from a single
homogenous material. Because the outer layer of cloth has a much lower mass density than
the rubber layer inside it, the actual moment of inertia will be significantly lower.

Johnson (1983) used elastic theory to explain the counter-intuitive behaviour of a
superball. These balls, made from a solid rubber material with high coefficients of
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restitution and friction, can be projected onto a surface with backspin so that they rebound
both in the opposite direction and with a reversal of spin direction. The reason for this
behaviour is based in the way the contact area is divided into two areas, a central circular
area with no slip (where the tangential force is below a limiting value), and a surrounding
annular area containing “micro-slip”. Cross (2002, 2003) developed this idea and
attempted to measure the horizontal friction force (shown in Figure 2.19), which the micro-
slip theory states will reverse in some cases. He bounced various balls on a piezoelectric
force plate (measuring the vertical force) mounted on a wooden block, which was allowed
to move in the horizontal direction on rollers. He also attached a piezo disc on the front of
the wooden block to measure the horizontal force.
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Figure 2.19 Vertical reaction force (N) and horizontal friction force (F) measured by Cross
(2002) at two different impact angles for a tennis ball on a rough surface.
On a smooth surface the frictional force always acted against the direction of motion,
suggesting a sliding motion throughout. When sandpaper was used to create a high friction

surface, a reversal of the friction force was observed. Cross described this as a horizontal
vibration of the ball, and remarked that the ball “bites” rather than rolling,

Summary

A relatively small amount of useful data is available on dynamic impacts, particularly of an
oblique nature. Several studies are described which measured rebound speeds and angles,
but did not attempt to explain the behaviour or physical processes of impacts. Kirk (2003)
performed tests which suggested that a rubber underlay intended to reduce impact forces to
players does not affect the way a ball bounces. He also found that whether a ball slipped or
rolled throughout impact affects its behaviour, which meant that the range of incoming
conditions chosen for this study should encompass both forms of impact.

2.8 Models of ball impacts

2.8.a Newtonian models

Two classic and commonly referenced studies of Newtonian studies of ball impacts are
discussed, which have both been used by many authors as the starting point for their work.
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The model equations have not been reproduced in any detail as they form the basis of
Chapter 3 and will be discussed there.

Daish (1972) provides a comprehensive study of the mechanics behind the bounce of a
ball, although one of his basic assumptions is that the ball is a rigid sphere. He suggests
two main cases, where in the first the ball slides throughout impact and the second involves
rolling. This second case will occur if the friction is sufficiently great. Equations are
developed which give the limiting value of friction for rolling, but these are based on the
assumption that the ball is a solid sphere and therefore will not necessarily apply to tennis.

Brody (1984) gave a theoretical analysis of generic ball impacts, including the effect of
coefficients of restitution and friction. Although particular examples used were based on
tennis shots, the analysis is quite comprehensive. Brody divided the impacts into two cases,
where the ball slips throughout and where the ball begins to roll before the end of the
impact. He observed that for a fairly slow court with friction of 0.6, the impact angle
would have to be above 21 degrees for rolling to occur. He stated that this is unlikely as the
vertical velocity component needed for this would suggest a shot hit 3.2 m high, although
he does not take into account the effect of spin on either the trajectory (increasing the angle
of impact) or the starting conditions for the impact (if the ball lands with topspin, less must
be applied to reach the point of rolling). Brody also gave a range of values of coefficient of
friction for tennis balls on various surfaces (ranging from wood at 0.25 to a synthetic

carpet at 0.61) using half a ball containing a weight, dragged along the ground by a force
meter.

2.8.b  Analytical models

Ch Fit)

Jrale

K K a

(M=45.1g, Ki=4.9x10°N/m, K2=4.7x10*N/m, C:=250 N/(m/s))

Figure 2.20 The spring-damper model used by Ujihashi (1994), including the spring and
damper parameters.
A number of authors have constructed mechanical models of sports balls, particularly in
the field of golf. These are reproduced as examples, although the exact nature of golf
models is not reproduced in any detail. Ujihashi (2004) constructed a normal impact model
consisting of two springs and a dashpot damper, as shown in Figure 2.20. This model

matched the peak force well as well as the loading part of the force-time curve, but was not
so accurate for the unloading portion.
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Figure 2.21 Spring damper models from Lieberman and Johnson (1994) for (a) solid and two-

piece golf balls, and (b) wound balls.
Johnson and Lieberman (1994) gave a similar model to that of Ujihashi which they found
matched experimental force-time data well for normal impacts of solid and two-piece golf
balls, but was not adequate for wound balls. A more complicated arrangement was
constructed which matched published results well. Lieberman and Johnson (1994) added a
torsional component in order to model oblique impacts. Previously determined normal
parameters were combined with “guessed values” for torsional parameters. Graphs of

forces and accelerations of the various masses are given, but are not compared to any
experimental data.

Johnson et al. (1973) studied the impact and flight of a football. They assumed the shape
under deformation was a truncated sphere of the same radius as the original shape. The
first approximation model assumed a constant internal pressure, but they later allowed the
pressure (expressed as a gauge pressure P above atmospheric pressure P,) to vary

adiabatically such that (P + P,)V'* = const . This increased pressure over a contact area of

radius 7 led to a pressure reaction force of zr’P . Percival (1976) continued the work of
Johnson et al. and introduced an impulsive force. This impulse is produced by the
momentum change as material is brought to rest by striking the ground, and distributed
around the edge of the contact area where the momentum change takes place. Percival
found that this model gave a much better value of maximum contact area than that of
Johnson ef al. The values of rebound velocity and contact predicted are rather poor, but

there is no other energy loss in the model such as material hysteresis or damping.
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Figure 2.22 Spring-damper model of the ball, strings and racket by Leigh and Lu (1992).

Leigh and Lu (1992) created a model simulating the impact of a tennis ball on a racket
which contained discrete components for the ball, the strings and the racket. The strings

were represented by a spring, and the ball and racket each by a spring and damper in
parallel. The three components were then assembled in series as shown in Figure 2.22. The

spring and damper forces (Fp, and Fj4 respectively) were defined in terms of the ball
deformation 6 by

F,, =k, +n,6,
and F, =c,5,

The constants defining the ball stiffness were given as k, =18.44 kN/m and n, = 23860
kN/m?, and those defining the ball damping as ¢, = 6.66 Ns/m. Model results were given

for ball-racket impacts, but are not relevant to this study.

In some work using flexible beam theory to analyse the racket during impact, Cross
(2000a) modelled a tennis ball as a spring element. He assumed the spring had a constant

stiffness on loading and an unloading stiffness which varies with deflection. The force F at
a deflection Y is given by

F=kY (loading)
and F=kY’ (unloading)

and the parameter p can be defined to give an energy loss to match experimental values.

Later in this work Cross gave values of k; =3x10°Nm™ and p=2.55.
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Figure 2.23 The variation of (a) tennis ball stiffness (including static stiffness) and (b) tennis
ball damping coefficient against incoming speed, from Dignall and Haake (2000).
Dignall and Haake (2000) used a linear spring and dashpot damper in parallel to model a
ball impact. By using contact times and rebound velocities for normal tests, they found
linear relationships between impact speed and both stiffness and damping coefficients, as

shown in Figure 2.23. This data was used to create an oblique model by adding a friction
force, and this model matched one set of experimental data given.

Hubbard and Stronge (2001) used thin-wall shell theory to analyse the impact of a table-
tennis ball. They divided the impact into three possible periods; where the shell flattened
against the surface, where there was a buckling of the cap inside the shell, and at large
deflections where there was an inverted buckling into a set of three or four lobes. High
speed video showed signs of the first two of these stages. Strain energy equations were
used which, because of the thin wall nature, cannot be applied accurately to tennis balls.
Hubbard and Stronge also included the changing pressure in their equations, observing that
the volume of the ball reduces by twice the volume of the cap which inverts during the
buckling stage. This pressure has a small effect at low speeds, but becomes more important
as the speed is increased. Model predictions have reasonably accurate contact times, but
show far too low an energy loss, indicating the need for an alternative dissipative term.
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Figure 2.24 The "momentum-flux viscoelastic model" of Goodwill (2002).

Goodwill (2002) described a model which was used to predict impacts of balls on rackets.
It consisted of a spring, and two sources of energy dissipation, a damper and a momentum
flux component. The spring stiffness was adjusted to a higher value ksyz.., of 80 kN/m for
the first 0.2 ms to simulate the large initial rise in force. After that a power law was used to

find the stiffness k5 as a function of deflection, in the form k, = kj,, + 4, xj; . The damping

coefficient Cz was also non-constant and was a function of contact diameter dcoyr. The
ratio of the mass of ball still above the surface compared to the total mass was used to
estimate the velocity of the ball shell as opposed to the centre of mass, leading to the

, m . . . :
equation Cj = 7”/1(_, o )2 X, . The momentum flux term described the impulsive force
1

caused by material being brought to rest on the surface. This was calculated using the
change in contact area over previous timesteps in the iteration, giving the mass of material
change between the part of the spherical shell moving downwards and the part at rest on
the surface. The four parameters of the model were found by an iterative process matching

contact time and coefficient of restitution as closely as possible. These parameters are
reproduced in Table 2.3.

Table 2.3 Model parameters reproduced from Goodwill (2002).

Ball type ks (KN/m) | Ag (kN/m?) a Ac
Pressurised 21 16000 1.65 39
Pressureless 23 12500 1.70 4.0
Oversized 21 3600 1.30 3.2
Punctured 16 60000 2.00 5.8
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Haake er al. (2003) extended the normal spring-damper model of Goodwill in order to
apply it to oblique impacts. A non-linear spring and damper were used to represent the
stiffness and energy loss in the ball. The spin on the ball (either applied or generated by
frictional moments) caused non-symmetrical impulsive forces at the front and rear of the
truncated sphere. This impulsive force was simply applied as single forces at the extreme
front and back of the contact area. A comparison is given of horizontal and vertical
displacements during impact compared to those measured experimentally and the model

matches well, but no mention is given of rebound speeds, spins or angles.
Summary

Work in other sports suggests that some form of spring-damper modelling would give a
reasonable solution for tennis ball impacts, and indeed there have been models created of
varying complexity for tennis. All the existing tennis models have limitations however,
most noticeably in the empirical nature of the coefficients used to define them. There
would seem to be an opportunity to create a model more closely related to the physical

nature of the impact, which would perhaps lend itself more accurately to an oblique
extension of the model.

2.9 Overall literature summary

This literature review has shown that there is a definite need for research and

understanding in the sport of tennis. A number of references have been quoted describing
fears for the future of the game; a huge number more could have been reproduced.

Although many ball impact models have been created, none have successfully predicted
the oblique impact of tennis balls. The Newtonian physics approach provides some good

insights, but cannot match some of the quirks of normal tennis ball impacts, let alone
oblique ones.

Not much data has been published on oblique impacts in general. It will be necessary to
perform a series of oblique impact tests to find how the ball behaves under different
circumstances (and of course providing valuable validation data for any model). Before

this however, normal tests are necessary to provide a basic understanding of the dynamic
behaviour of a ball.

Although there is not a vast array of data giving player performance statistics, there is
enough information to determine how players typically hit the ball for various shots. An

example of this is that the ball is rarely (if ever) hit completely flat, even on the fastest of
first serves.

Aerodynamic knowledge has advanced greatly in recent years, providing good drag and lift
coefficient data which enables trajectory simulations to be used. These can not only
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provide information about how the ball reaches the surface (i.e. boundary conditions for a
model), but also practical data about how to interpret the model predictions. For example,
if ball B rebounds 10% faster than ball A but with 5% less topspin, how do the balls
compare in the way they reach the opposing player?

There are a substantial number of accepted test methods for determining surface properties,
not all of which will be relevant to the impact model created here. Surface friction and

impact absorption tests must be evaluated to find their importance.
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3 Fundamentals of Newtonian impact and modelling

3.1 Introduction

Before creating any sort of model, it is important to look at the basic physics behind what
is happening. Consideration of the nature of the forces, deformations and so on are
important to gain the understanding which is essential for a realistic model. This chapter
discusses the mechanisms of impact and also looks at some of the mathematics behind
impact. This leads to a rigid surface model which is based on some simple assumptions but
can be used to provide some useful insights. Mechanisms of energy loss are discussed,

together with deformations and their effect on the structural properties.

3.2 Normal impact on a rigid surface

Consider first a compressible hollow ball landing normally on a rigid surface. At the start
of the impact it will have a maximum speed V,,. The impact will create a contact force
opposing the motion - applied at the bottom of the ball - which will cause the structure to
deform. Energy is stored in the material of the ball in the form of strain energy as a result
of the deformation, which will be a combination of compression, bending and shear. In
general the contained volume of the ball will decrease and thus the pressure of the air or
other gas inside will increase (even if the ball is of the permanent pressure type, there is
still a contained volume, initially at atmospheric pressure), although the actual deformed
shape varies depending on a number of factors. This increase in gas pressure also stores
energy.

The downwards speed of the ball centre of mass decreases due to the contact force, until it
becomes zero. The bottom portion of the ball “spreads out” while momentum causes the
rest to continue moving down. There will still be a restoring force upwards and so the ball
continues to accelerate upwards until it leaves contact. At the end of the contact period the
ball may still be in a compressed state. Regardless of this, the momentum of the rubber
shell due to the expansion phase of the impact is likely to result in vibrational effects.
Although Brown et al. (2000) found that this oscillation died out within 5 ms, it is another

transfer of energy into a dissipated form.

If - as in the real world is always the case - the energy returned does not equal the energy
stored, then the outgoing velocity will not be as high as the incoming velocity. In
considering a general compressible ball, it is possible for permanent plastic deformation to
occur as a mechanism for energy loss, but this obviously is not an important factor for the
particular example of a tennis ball. What is important is the rubber used to construct the
ball. When a material is tested for force-deflection properties, it can be described by two
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stages, loading and unloading. If on unloading the force is less for a particular deflection
than on loading, there will be an energy loss.

Force Force

loading 7 loading

“ I~ unloadin ]
’ 4 unloading

Wz -

deflection deflection

Figure 3.1 Force-deflection curves showing low and high energy losses, represented by the
shaded areas.

Example force-deflection curves for small and large energy losses are shown in Figure 3.1,
where the shaded area represents the difference between energy stored and returned. The
area under the loading part of the curve is the energy stored, and the area under the
unloading part the energy returned. The energy loss will come from a number of sources.
The most intuitive is in the properties of the materials making up the ball, i.e. the rubber
and the cloth. The cloth is a much softer material than the rubber and will not store much
energy, but it is also poor at returning this energy. The rubber wall will undergo some
compression and expansion but because of the nature of the relatively thin-walled spherical
shell the majority of the ball deformation is from a different mechanism, as shown below.

Figure 3.2 A cross-sectional view of the bottom of a ball during impact, showing the nature of
the bending deflections.
Consider the cross-section shown in Figure 3.2. The dominant factor in the deformation is
bending of the rubber wall around the edge of the contact area. Bending and return gives
an energy absorption and loss in the same way as linear compression and expansion. There
will be some dissipation of energy in the form of heat within both the rubber and the air.

It is theoretically possible for the stored energy to be totally returned to the ball, but even
so for there to be a loss in speed. This could happen if significant vibrations are set up by
the impact, so kinetic energy is transferred to oscillation. The vibration will be damped
down fairly quickly without affecting the velocity of the centre of mass of the ball, by a

41



Chapter 3 Fundamentals of Newtonian impact and modelling

combination of the air compression-expansion and rubber bending-return as discussed
above. This means that this damping then becomes a form of energy loss, dissipating the

stored energy rather than converting it back to kinetic energy and increased speed.

3.2.a Deformation shapes

Figure 3.3 Possible ball deformation shapes, showing a sliced ball in each case;
uncompressed, with a flattened bottom and buckled.

As the ball compresses during the impact, its shape must change from spherical. One
simple possible shape would be an ellipsoid with a circular cross-section through any
horizontal slice. This has the advantage (for analysis purposes) of being symmetrical but
provides a point load at all times, which is unrealistic. The next most simple case is a
truncated sphere where the portion below ground level is cut off, giving a flat contact area.
This is shown in the central part of Figure 3.3. The problem here is that the volume of
material in the shell is not conserved unless the spherical part changes radius (if the area is
not in compression). Another possible case is the buckled third shape in Figure 3.3, where
the portion below ground level is mirrored. This will give an annular contact area and a
central circular area not in contact. Evidence for this shape can be seen by pressing half a

ball by hand on to a rigid surface — the bottom section clearly “flips up” if the deformation
is large enough.

Any deformation of the ball from its original spherical shell will alter both its centre of
mass position relative to the undeformed top section, and its moment of inertia. This is
important for two reasons. Firstly, nearly all analytical models use the centre of mass

position to define displacements and apply loads. Any measurements relating to the
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physical shape (whether they are measurements such as ball stiffness relative to
displacement, or in the opposite direction comparing shapes predicted by the model with
reality) need to be translated from centre of mass displacement variables. Secondly, the
deformed shape is likely to have a significant effect on oblique impacts, where the position
of the forces is important in terms of rotational moments.

3.3 Oblique impact on a rigid surface

Figure 3.4 Forces acting on a cross-sectioned ball during an oblique impact.

The normal impact described above can be extended to oblique impact cases with the
addition of a horizontal co-ordinate axis, and also spin. Consider the ball shown in Figure
3.4. One assumption commonly made is that the vertical properties of the ball are the same
as for a normal impact having the same component of velocity perpendicular to the
surface. This means that the vertical components of force, displacement etc can be
considered independent of the horizontal ones (apart from obvious links such as normal
and frictional force). In fact, under this assumption the vertical velocity, displacement and
force components will be identical to those of a normal impact with the same incoming
speed.

The vertical deformation produces a restoring reaction force R acting vertically upwards.
For any non-normal impact, unless the contact time is instantaneously short, the bottom of
the ball will slide along the surface, producing a retarding frictional force F. This frictional

force will reduce the horizontal velocity component, and also provide a positive moment
which will increase the topspin on the ball.
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Low friction, higher horizontal speed

High friction, lower horizontal speed

Figure 3.5 Higher friction leading to lower speed, for the same vertical velocity.

The main difference between slow and fast courts has been hypothesised to be the
coefficient of friction. If the friction increases, there will be a greater horizontal impulse,
and therefore a greater reduction in the horizontal velocity component as shown in Figure
3.5. This will mean a lower speed and a steeper outgoing angle, assuming there is no
change in the vertical velocity component. It is thought that the horizontal speed is the
most important factor in the perceived pace of a court, as it directly affects the time taken
for the ball to reach the player. The higher friction will of course lead to a higher moment

and therefore more spin after the impact, altering the trajectory.
3.4 Slipping and rolling

First, consider the case of a snooker ball (a highly rigid sphere) struck at the bottom of the
ball to give it backspin. As it travels along the table, the ball is initially sliding rather than
the typical rolling motion which might be expected. This sliding means that there is
relative motion between the bottom of the ball and the cloth on the table, which provides a
frictional force opposing the motion. This frictional force slows the ball’s horizontal speed
and also gives a rotational moment, reducing the backspin. At some point the backspin will
be completely taken off the ball, and so the ball will start to gather topspin. Low values of
topspin still give relative motion of the ball and the cloth, and it will still be in the slipping
state. The horizontal speed will continue to reduce and the topspin increase because of the
friction, until they *“match™ in the relationship ¥ = @r. Depending on the amount of

backspin applied and the friction between ball and surface, this whole process can take
place extremely quickly.

Now consider a tennis ball landing obliquely with no spin. The frictional sliding force will
gradually slow the ball and also add topspin. Depending on a number of factors such as
angle of impact and coefficient of friction, the ball may start to roll along the surface
before it leaves contact — it is of course perfectly possible for it to end the contact still in
the slipping state. This rolling is characterised by the tangential velocity of the bottom of
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the ball being zero. Because of the frictional force experienced whilst sliding, the

horizontal speed V¥, decreases with time and spin @ increases until the condition V, = wr

is reached. After rolling occurs, the frictional force reduces to very close to zero. This can
have a significant effect on the outgoing speed. Consider two impacts having the same
profile of vertical force over time. If one slides throughout, the horizontal force will be
proportional to this throughout the contact period. If the other begins to roll say halfway
through, it will only have a horizontal force for the first half of the time, as the force drops
to zero when rolling occurs. This will have a significant reduction on the horizontal
impulse and thus the change in horizontal velocity, suggesting that the more time a ball
spends rolling, the steeper it will bounce.

The examples above consider the cases where topspin is added until rolling occurs. It is
theoretically possible for a ball to land with greater topspin than is needed for rolling. If
this happens, the peripheral velocity of a point on the bottom of the ball will be in a
direction opposing the horizontal velocity component, and the friction will be in an
opposite direction to that previously discussed. However, it is seems very unlikely that this
situation will occur, as the spins needed are large. For example, an impact at 30 ms™ at 16°
to the horizontal has a horizontal speed of 28.8 ms™. For a radius of 33 mm this gives an
incoming rolling spin of over 870 rads™. Topspin slipping would require the player to
impart a spin rate higher than this very high value.

3.5 Simple rigid body impact model

Consider a ball impacting obliquely on a rigid surface. It is possible to gain insights into its
behaviour using rigid body theory. This relies on the assumption that the deformation of
the ball is negligible, and so will not be valid if the vertical velocity component is large.
The model is based on standard impulse equations in the horizontal, vertical and rotational
directions:

x direction:  [Fdt = mAV, [3.1]
y direction:  [Rdr = mAV, [3.2]
Rotation:  [Mdt = [ Frdt = Inw [3.3]

3.5.a Pacerating
The ITF Pace Rating is defined as (ITF, 1997):

AV

y

Pace rating = 100{1 - AV"J [3.4]
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Using [3.1] and [3.2], and assuming F = uR throughout the impact (thus jFa’t = U IRdt ),

this simplifies to

Pace rating = 100(1 - ,u)

3.5.b  Slipping/rolling limiting angle for non-spinning impacts

Your

. 14
Defining e = -
Vyl"

and using the relationship ¥, =-V, sin@ (where 6 is defined as the
angle of velocity to the horizontal as shown in Figure 3.4), equation [3.2] gives
[Rdt=mly, -V, )=mV,sin6(1+e) [3.5]
Equating [3.1] and [3.2] by the expression F' =—uR gives jF dt=-pu J' Rdt . Thus
AV, = —u (Rt [3.6]

Substituting in from [3.5] gives

V. —V,cos8=-V, usinf(l1+e) [3.7]

For rolling spin, V, =ar. Consider the case where the rolling condition is reached just at

the end of the impact — it cannot happen earlier because of the assumption F = —uR . This

gives V, =w,,r and therefore

oul

®,,r =V, [cos8 - usin@(1+e)] [3.8]
Equating [3.3] and [3.5] by the expression F =-uR thus J'Mdt = pur IRdt ,

IAw = ymrV,, sin 0(1 +e) [3.9]
assuming @, =0 (an impact with no incoming spin) and using the moment of inertia

2

approximation for a thin-walled sphere I = %mrz
2 :
3 mrw,, =umV, sin 0(1 + e) 3.10]

Substituting [3.8] into [3.10] gives,

2
3" V,,[cos8 - usin@(l+e)]= umV, sinO(1+e)
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0050—usin6(1+e)=%,usin0(l+e)

5 .
cosH—E,usmH(l +e)=0
Which rearranges to,

tané =

5u(l+e) (3-11]

Equation [3.11] gives the limiting angle for impacts where the ball will slide throughout
compared to those where there will be an element of rolling. This is important as the
absence of friction in the rolling phase will have an effect on the outgoing velocity.

3.5.c Limiting angle for impacts with incoming spin
The equations above can be adapted for the more general case where the incoming spin is

non-zero. Following on from [3.9], if w, # 0,

% mr(w,,, -, )= umV, sinO(1+e)
3 .
r@,, —re, = E#I/'" sin@(1+ e)
sub [3.8]in: ¥, [cos@ - usind(1+e)]-rw, = %,uVm sin O(1 +¢)

V,cosl-rw, = % uV, sinf(1+e)

If the speed and the angle are known, it is possible to rearrange to find the incoming spin
which would promote rolling:

Vin S .
o, =T[cosl9—5ysm9(l+e):| (3.12)

3.5.d Examples

Typical quoted values for the pace rating of a common acrylic surface are between 30 and
40 (ITF, 1997). The middle of this range corresponds to a frictional value of u = 0.65. The
assumption was made that an extreme velocity was not used, so that a typical drop test
COR could be used, i.e. e=0.75. With these numbers, equation [3.11] gives a boundary

angle of 19.4° to the horizontal. Any angle higher (i.e. steeper) than this will result in an
impact containing some rolling.
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Another condition worth investigating is that specified for the ITF pace rating tests, which
is supposedly representative of a real shot. Firing a ball at 30 ms™ at 16° to the horizontal
is fairly close to the angle of 19.4° calculated above. Using these values together with
1 =0.65 and e=0.75 as before (a realistic COR, as this geometry gives a vertical

incoming velocity of 8.3 ms™, not much higher than a 100 inch drop test), equation [3.12]
gives the minimum topspin needed for rolling to occur as 160 rads™. This is certainly a
figure which can be achieved by professional players.

Looking at equation [3.11], it is clear that increasing the value of ux will lower the

2 . "
). For the pace rating conditions and

boundary angle. Rearranging gives = ———
yane sihe £ # 5tand(1+e

e =0.75, this gives a limiting friction of 0.80, suggesting that any surface with a pace

rating of 20 or less will result in rolling.
3.6 Deformable surfaces

The descriptions above are based on an assumption that the surface is completely rigid. For
many cases this many be an accurate assumption, but consideration must be given to the
possibility of a surface which deforms.

In its simplest form surface deformation may affect the COR of a normal impact. The
interaction between ball and ground is likely to affect the forces acting. Intuition may
suggest that a softer surface leads to more energy loss, but this is not necessarily the case.
The energy losses within the ball are due to its deformation; therefore a less stiff surface
will reduce these losses by producing smaller ball deformations. This will of course store
energy in the surface by deforming it rather than the ball — if it is an elastic enough
material and returns a high enough proportion of the energy, the ball could rebound faster
than on a rigid surface. It is important however that the time constant of the surface is not
too dissimilar to that of the ball, or the recovery phase will take place after the ball has left.

Oblique impacts add a further complication. Previous work on impacts involving stiffer
balls such as golf (Haake, 1994) and cricket (Carré ef al., 1999) balls has found that the
ground is deformed and pushed ahead of the ball. This forms a “ramp” up which the ball
rolls, changing the angle of the velocity and also the forces acting. The ball will then
rebound steeper than expected.

The important factor when the surface is deformable is the relative stiffness of the ball and
surface. In the sport of golf, the ball is significantly stiffer than the surface — particularly
when the weather is less than perfect and the turf is wet. Cricket research has found that the
stiffness of the ball and surface are of the same order of magnitude. Compressing a tennis
ball by hand and walking on a court (which is of course imposing a much larger force)
suggests that for the majority of courts, the surface is significantly stiffer than the ball,
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Whether this allows a rigid surface assumption in a model requires a more scientific
approach to data collection, which will be investigated in a later chapter.

3.7 Developing the rigid body model

3.7.a Finding velocities from the model

Previous steps have concentrated on using the relationships between the forces to work out
slipping and rolling boundaries. The equations developed can be used to immediately find
the outgoing conditions if an initial case of sliding throughout impact is considered. The

V
COR e is defined by e = -—Vy— , giving ¥, if e is known. During sliding the relationship
Yin

between friction and reaction force is F = —uR.

[Far=mav,
but [Fat = - [Rat
=-muAV,
=muv, (1 + e)

therefore vV, =V, +uV, (1+e)

‘xlll

Similarly, M = Fr =—-urR.
.fMdt =JAw =-murAV,

3wy, (1+e)
out = wm IR —
2r

(assuming [ = %mrz)

To progress any further it is necessary to make an hypothesis about the force profile. A
sensible assumption is that the reaction force R is a half sine wave given by the equation

R = asin(bt). The coefficient a will thus be the peak force exerted on the ball. The other

main feature of the waveform is the contact time T¢, giving b = =z,
C

From the impulse equation,
=Te
[“Rat=mly, -v,)
=-mV, (1 + e)
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But IRdt = —icos(bt)
®
thus 2a_ -mV, (1+¢)
a) m

-mbV (1 V.ol
giving gtV lre) mat, (re) [3.13]
2 2T,

At a general time ¢, integrating the impulse equation allows the calculation of the vertical
velocity V,,

- —a—[cos(bt)— 1] = m(Vy - Vym )
0]
Vi=V, ———q-—[cos(bt)— 1] (3.14]
n mb

Because F = —uR, a similar integration in the horizontal direction gives

V.=V, +ﬂ[cos(bt)—l] [3.15]
" mb
Rotationally:
M =-Fr=urR
IMdt =Aw
ur IRdt =Aw

-2 feos(pr)-1]= 180 = 2 mr (0 - o)
()]

3ua
= - .16
w=w, s [cos(pr) 1] [3.16]

2

At the time ¢, where rolling starts, the condition V, = rw is satisfied. Therefore

Y,y + 2o leos(bt,)=1]= 0,7 - 222 [os(pr, ) 1]

w,-V,) (3.17)

The expressions derived here can be used to define a rigid body model which allows both
sliding and rolling. If the equation for ¢, is solvable and thus rolling occurs, the horizontal
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speed and spin rate will remain the same for the range ¢, <t <T,.. This is defined by the
range

2mb
Sua

-2<

(ro, -¥, )<0 3.18]

The upper boundary of the expression above (i.e. r@, ~V, =0) defines an impact where
the incoming spin matches that required for rolling. The lower boundary (rw, -V, =2)

describes an impact which just starts to roll at the end of contact, and by substituting in an
expression for b/a from [3.1], equation [3.18] can be used to give limiting conditions in

terms of incoming conditions as in the more general example earlier in the chapter.

Substituting the expression for cos(bt,) back into the equations for ¥; and  leads to the

values below which are valid for any impact which ends in rolling.

¥V, +2ro,
= [3.19]
5
V., +2rmw,
a) = m
5r

This model allows the investigation of the effect of incoming conditions. It is not on its
own a solution to the modelling problem, as there are too many assumptions involved. The
expressions developed here give outgoing conditions for velocity and spin both for impacts

which slide throughout and for those which end in rolling. They are summarised in Table
3.1 below.

Table 3.1 Rigid body model equations for velocity and spin of impacts which are wholly
sliding, or which contain some rolling.

Variable General value at time ¢ Final value if Final value if
(assuming sliding) sliding throughout rolling occurs

Vy V, +ﬂ[cos(bt)—l] V. +uV (1 +e) W, t2ro,

" mb in Yin ————5

a
Vy v, - b [cos(bt ) - 1] —eV,

@ in 3lua [COS(bt)—l] w, —M 3VX". +2rwm
2mrb in 2 —-—————Sr
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3.7.b  Applying model predictions to Surface Pace Rating

The definition of Surface Pace Rating is given in [3.4]. Looking at the equations in Table
3.1, if rolling occurs then the final value of the rebound velocities in both the horizontal
and vertical directions will not depend on the coefficient of friction. In other words,
increasing the friction will decrease the Pace Rating until rolling occurs, then any further
increases in friction will not change the Pace. This limiting Pace value can be estimated
using the equations above.

VX - VX
SPR=100| 1~ e ar

Vy“.,, - Vy,,,
( 3V, +2ro, ]
Voo | =
=100|1-
—-e Vy,,. - Vy,,,

—i (me -2ro, )

=100{ 1-
-V, (1+e)

For the specific case (as in the Surface Pace tests) where the incoming spin is zero:

2V,
SPR=100{1 - —2»
{ -5Vym (1+e)]

and as the incoming angle is defined by tan@ =—"= and applying the specific geometry

defined by the test specifications,

SPR=100|1~ 2
( 5(1+e)tan16°]

For a typical COR of 0.75, this gives SPR =20.3, suggesting that a Surface Pace value

lower than this should never be measured.

3.7.c  Speed, spin and angle throughout impact

The equations in Table 3.1 can be used to see how changing the incoming conditions
affects an impact. This gives an indication as to the importance of whether a ball slides or
rolls. A range of conditions were used based on the pace rating test of a 30 ms™! impact at

16° to the horizontal, without spin. A coefficient of friction of H=10.55 was assumed.
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Figure 3.6 Force, speed and spin plotted during impact for a rigid body model.

Figure 3.6 shows force, speed and spin graphs through the impact. In order to plot these
variables during contact, a contact time must be used. The value chosen was 4.5 ms,
leading to a peak force of 288 N.

3.8 Rigid body model predictions - outgoing speeds, spins and angles

The equations in Table 3.1 were also used to investigate the importance of the different
parameters of the model. The speed, spin and angle were varied in turn while keeping the

other variables constant, based on an impact at 30 ms™' at 16° to the horizontal on a surface
with coefficient of friction x =0.55.

3.8.a The effect of speed

The first case considered is an impact with constant incoming angle and spin, looking at
the effect of a variation in speed. If there is no incoming spin the initial speed will have no
effect on whether the ball slides or rolls at the end of the impact. In this case, the outgoing
speed and spin are both simple increasing functions of incoming speed, and the angle
remains constant. In a real-life situation, increasing ball speed will change the COR and

therefore have an effect on all the outgoing variables, but it is useful to remove this factor
when assessing the effect of speed.
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A more interesting situation is when the ball possesses a fixed value of incoming topspin.
This will lead to a certain incoming speed which defines a boundary between wholly
slipping impacts and those containing rolling, and this speed will depend on the value of
spin.
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Figure 3.7 Rigid body model predictions showing the effect of changing the speed on an
impact at 16° to the horizontal with 12 =0.55 .

These two cases are shown in Figure 3.7 for speeds between 12 and 42 ms™ at an angle of
16°. Results were calculated for zero spin and also with 200 and 300 rads™ of incoming
topspin. With these amounts of topspin there is a “boundary speed” of about 22 and 33
ms™' respectively; above this speed the ball will always slide but below it the incoming
topspin is enough to give rolling. The outgoing speed increases almost linearly, and there is
very little difference between those impacts with spin and those without. As the speed

increases, it will dominate the term 3V, +2rw, if the incoming spin remains constant.

Figure 3.7 (b) shows the slight difference between sliding and rolling. For both situations

the outgoing spin is a linear function of incoming speed and spin as can be seen from the
equations in Table 3.1, but the gradients are different.

A graph of angle against speed is shown in Figure 3.7 (c). This shows a much clearer
division between sliding and rolling. If the ball slides throughout, the angle must be the

same whatever the incoming spin, as @, does not feature in the equations. This angle is
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constant because all terms are functions of ¥, and V, , and hence proportional to the

incoming speed — in a more physical sense, the forces remain the same throughout. When
rolling occurs, the outgoing horizontal speed is a function of @, — as the speed decreases
the spin becomes more dominant and more time is spent rolling, therefore the angle

decreases (as more time rolling means less horizontal impulse and therefore a larger

horizontal velocity component).

3.8.b  The effect of spin
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Figure 3.8 The effect of applied spin on outgoing (a) speed, (b) spin and (c) angle for a rigid

body model of a ball impacting at 30 ms™ at 16°.
The speed and angle will not change as long as the incoming spin remains within the range
which gives sliding throughout. Equation [3.19] shows that the horizontal speed increases
as a linear function of spin as the spin increases past the minimum value needed for rolling,
therefore the absolute speed will also increase. The angle will decrease as the horizontal
speed remains constant in all cases. Outgoing spin will increase linearly, but only 2/5 of
cach extra incoming unit of spin will be retained, whereas for wholly slipping impacts

every unit of incoming spin adds to outgoing spin.
The result of these trends is shown schematically in Figure 3.8. This shows the model
predictions for impacts at 30 ms™ at 16° to the horizontal, with spin up to 600 rads™ of

topspin. Here the spin boundary for rolling to start is about 250 rads” of topspin. As
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expected, spins below this give a constant speed and angle, and each extra unit of incoming
spin is converted to outgoing spin. Above 250 rads™, the horizontal speed increases, and
therefore the absolute speed. The vertical speed remains constant and so the angle
decreases. The outgoing spin is still a linear function of incoming spin, but the decreased

“conversion” of spin can be seen in the lower gradient in Figure 3.8 (b).

3.8.c The effect of angle
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Figure 3.9 The effect of applied angle on outgoing (a) speed, (b) spin, (c) angle and (d) angle
ratio, for a rigid body model of a ball impacting at 30 ms™.

Figure 3.9 shows how the impact is affected by a range of angles between 10 and 40

degrees. The equation tan @ = ) derived earlier gives a minimum angle for rolling

2
5,u(1+e
to occur as 22.6°, and this can be clearly seen as discontinuities in the outgoing speed and
spin graphs. The outgoing angle is affected less. This set of data is more difficult to predict
from an intuitive viewpoint, because changing the incoming angle alters the ratio of
horizontal and vertical speeds. A constant vertical COR will have a varying effect on the
outcome depending on the size of ¥, relative to ¥, . The outgoing angle is barely
affected by the slipping or rolling condition, but the speed and spin trends change

dramatically. As the incoming angle increases from its minimum value, the outgoing speed
decreases until rolling occurs. The trend then reverses, and for further increases in angle
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the speed increases. Similarly the outgoing spin increases with the angle until rolling, then
decreases with higher angles.

3.8.d The effect of friction

A range of coefficients of friction between 0 and 1 were applied, although the other
incoming conditions were changed slightly to have an incoming spin of 300 rads™ — chosen
so that the slip/roll boundary would be approximately in the middle of the range of
frictions used.
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Figure 3.10 The effect of coefficient of friction on (a) outgoing speed, (b) outgoing spin and (c)
outgoing angle, on a rigid body model of an impact at 16° with 300 rads™ of topspin.
The effect of friction on outgoing conditions is shown in Figure 3.10. There are clear
differences between slipping and rolling, but this is possibly the most intuitive parameter.
In the slipping phase, as the friction is increased the speed drops, the spin increases as does
the angle — the vertical velocity component stays constant and the horizontal velocity
component reduces therefore the angle increases. Once rolling occurs, increasing the

frictional coefficient further has no impact other than affect the time during the impact at
which rolling happens.
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3.9 Summary and conclusions

Consideration of a fairly crude rigid body model gives useful insight into the limits of
surface and shot parameters which give an impact sliding throughout its duration. For
example, the minimum topspin required for rolling for a 30 ms™ at 16°to the horizontal on
a surface with coefficient of friction of 0.65 is only 160 rads™'. This suggests that rolling is
likely to occur in a game, especially on slower surfaces, although this incoming velocity is
not necessarily representative of a real shot. It is necessary to look more closely into the
speeds and angles at which the ball lands on the court, which is the subject of the next
chapter.

A refinement of the rigid body model was presented, based on the primary assumption of a
sinusoidal shape to the force-time profile. This allows a prediction of how speeds and spins
change during the impact period. From this model it appears that the slipping/rolling
condition is extremely important, as trends in outgoing variables can change when the ball

starts to roll.
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4 The aerodynamics of a tennis shot
4.1 Introduction

The overall aim of this project is to model the impact of a tennis ball on a court surface. In
order to know correct boundary conditions it is essential to know how the ball arrives on
the surface. It would be extremely difficult to experimentally measure the shot of a top
professional player in a tournament environment as it lands on the court, and so a trajectory
model was used to predict the impact conditions given known initial speeds and spins.
There is a reasonable amount of available data on ball speeds (particularly for services
which have been regularly measured in recent years using radar guns), including average
and maximum values. Although there is limited data as to the conditions at the point of
impact on the court, a trajectory model based on initial speeds as the ball leaves the racket

will give us a good approximation.

4.2 Aerodynamic forces

Figure 4.1 The forces acting on a spinning tennis ball during flight.

The equations of motion for an object travelling through a viscous fluid such as air are

well-known. Consider the ball shown in Figure 4.1 travelling at speed ¥ and backspin @ at

an angle @ above the horizontal (using these directions as positive backspin causes a lift

force upwards). Air resistance will provide a retarding drag force F, on a ball governed by
] ; : : ;

Fy= . pV?C,A where pis the density of the air, v the ball speed, 4 its cross-sectional

area and Cp the non-dimensional drag coefficient. A similar expression gives the lift force

: b . 1
F} as a function of lift coefficient C;: F, = 5 pV?C, A. The challenge is to find values for

the lift and drag coefficients, as both may vary with such factors as the speed and spin rate
of the ball.

In order to find the trajectories, the forces are resolved to give components in terms of x
and y co-ordinates.
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Thus V. =VcosO
and V,=Vsind
dv

m—==-F, cosf - F, sin@
dt ‘

dv

y

dat

m =-mg—F,sinf +F, cosd [4.1]

The equations of motion above cannot be solved analytically, but a good solution can be

found by advancing by a small time step 4¢.

v, =V, —g(FDcosﬁ+F, sin0) [4.2]
n+l n m .
At .

Yy =V, +—(-mg~F,sin6 + F, cos0) [4.3]

4.3 Measurements of lift and drag coefficients

Published data for the measurements of lift and drag coefficients of a tennis ball are
discussed in detail in Chapter 2. In summary, the two coefficients depend on the speed
through the air to a fairly small degree and much more significantly, the rate of spin of the
ball. Due to the high spin rates needed, the data produced by Chadwick (2003) was used
for most of the simulations in this section, which was found by mounting balls on a shaft
spinning at an extremely high speed in a wind tunnel. He found empirical expressions for
both coefficients which were independent of Reynolds number and thus purely a function
of peripheral velocity @ and wind speed v, given by

—2.1887 -0.7069
C, =0.5365+ (1.9980(2) + 2.8619}

v

-0.529

-1.887
and C, = {2.591(% + 4.809J [4.4]

1%

4.4 The effect of air resistance on a drop test

If an object drops under the influence of gravity and there are no other forces acting on it,
the coefficient of restitution e (defined as the ratio of the rebound speed to the impact

speed) is simply related to the drop height 4; and the rebound height 4, by the following
expression:
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2

e= [+
hl

e

This would give the following acceptable range according to the ITF 100 inch drop test
(which states the bound must lie between 53 and 58 inches):

€y = ,/2 ~0.73
100

and e = ,/5—8 ~0.76
100

However, the ball will be slowed both before and after bouncing by air resistance, and so
for a given bounce height, the actual COR will be higher than calculated by the simple
relationship above. A simple way to look at this is that for the ball to bounce to a certain
height, if energy is lost to air resistance then less energy must be lost in the impact on the
ground, hence a higher COR.

If the ball has cross-sectional area 4 and drag coefficient Cy, and the density of air is p, the
equation of motion of the ball is shown below for conditions before and after impact (with
the sign convention of positive being vertically upwards):

L . .
my=5pCdAy2—mg (y<0) [4.5)

1 . .
my=—5pCdAy2~mg (y>0) [4.6]

Equations [4.5] and [4.6] were solved using a timestep iteration. For a ball with mass 57

grams, diameter 67 mm and constant drag coefficient C, =0.53 as found by Chadwick

and Haake (2000), this gives an impact velocity of 6.88 ms’ compared to 7.06 ms™
neglecting drag. For a given rebound height, the COR can be varied and the iteration run
until the height is achieved. The minimum and maximum COR values for the 53 and 58
inch limits using this method are 0.76 and 0.79, 4% higher than without considering drag
(rebound speeds of 5.12 ms"' and 5.46 ms™). This is not a huge error in itself but is
significant — put into perspective, it is a similar figure to the difference between the
minimum and maximum allowable COR values stipulated in the rules of tennis.
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4.5 Applying aerodynamic theory to real shots

4.5.a The effect of spin on trajectories
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Figure 4.2 The effect of spin; the trajectory of a 70 mph groundstroke is shown for the shot hit
flat and with 100 rads™' of both backspin and topspin.

Trajectories were calculated for a ball struck from the baseline at 30 ms" (70 mph), S
degrees above horizontal. The initial height was 1.2 m. Figure 4.2 shows the trajectories
for the shot hit without any spin, and with 100 rads™ of both backspin (denoted as -100)
and topspin (100). These are not necessarily realistic cases as a player will adjust the speed
or angle to keep the ball reasonably close to the net, but they do show the effect spin can
have on a shot. The value of spin used here is not actually a particularly large one; Cislunar
(1997) measured average values for each of a range of professional men as 140 to 340
rads” of topspin and 223 to 327 rads™ of backspin. Applying 100 rads™ of topspin makes
the ball land a little over two metres shorter than the shot without spin, and the same
amount of backspin produces a shot which lands right on the baseline (just over 2.5 m
further than the ball without spin). Of course, in game situations, a player is likely to use
backspin when hitting the ball with considerably less power. The spin creates a lift force
opposing gravity which allows the ball to travel further than it would without spin. This
means the player can clear the net with a shot of lower speed which, combined with the
shallower impact angle from the backspin trajectory, produces a lower bounce (making it
hard for the opponent to return the ball with much pace).
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4.5.b  Using the trajectory model to find impact conditions

20 300
200
100

=14 -100

h
Net
Baseline

0 5 10 15 20 25
Position along court (m)

Figure 4.3 Trajectories for balls hit with the same speed but different spins, landing in the
same position on the court. Each trajectory is labelled with the relevant topspin value for spin.
This set of calculations investigated the initial angles needed for a range of shots with a
given speed to land in the same position on the court. Cislunar (2000) quote a typical speed
for a professional groundstroke as being 70 mph. The impact position chosen was midway
between the service line and the baseline, giving a reasonably deep shot. This gives the

boundary condition y =0 m when x =21.03 m. The trajectory model was used to find the

angle at which various 70 mph shots must be hit to land in the same place as the spin
imparted on the ball varies. These shots are shown in Figure 4.3 which clearly
demonstrates the effect that spin can have. Table 4.1 shows the initial angle as well as the
impacting speed and angle for each spin. The data shows that the impact speed does not
change greatly, but the spin has a big difference on the angle at which the ball reaches the
court surface. Shots with 100 rads™ of backspin are hit almost flat and land at 12.2° to the

horizontal, whereas shots with 300 rads™ of topspin are about 7° steeper both after being
hit and landing.
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Table 4.1 Impact speeds and angles for 70 mph shots with various spins landing at the same
spot, midway between the service line and baseline.

Topspin Launch angle | Impact angle Impact speed
(rads") (degrees) (degrees) (ms'l)
-100 3.4 12.2 20.8
0 49 13.8 T 21.2
100 6.7 15.9 20.8
200 8.4 18.2 20.1
300 10.0 20.3 19.3

The impact conditions were used to calculate minimum spins needed for the ball to roll.
The rigid body model developed in Chapter 3 gave the spin boundary which for a constant
speed of 21 ms™ is a function of angle and coefficient of friction. This spin boundary is
shown in Table 4.2 below for three different frictional values #=0.5, ¢ =0.6 and

4 =0.7. This corresponds to “pace ratings” of 50, 40 and 30 respectively, covering a wide
range of courts. The shaded cells are those conditions where the spin is greater than that
calculated as the slip/roll boundary. Even on the fastest of these surfaces, which is the most
likely to retain slipping throughout, around 200 rads™ or above of topspin will produce an
impact which is rolling when it leaves the surface. When g =0.7(by no means an
excessively high frictional value, clay courts commonly measure up to u =0.8), less than

100 rads™ is needed, meaning in practical terms that any topspin shot worthy of the name
will cause the ball to roll.

Combining an aerodynamic model such as this with impact models discussed in a previous
chapter makes this calculation much more realistic. The different trajectories can be

incorporated, rather than ignoring the way that spin provided to the ball changes the way it
lands.
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Table 4.2 Rigid body model predictions for minimum spins needed for rolling to occur, using
the impact angles found from trajectory modelling. Shaded cells are those for which the impact
spin is greater than the minimum for rolling.

fpect 1 Calculated minimum spin needed for rolling

topspin mpact angle (rads™ topspin)

(rads™) (degrees) bl e iy
-100 122 327 268 210

0 13.8 286 219 153

100 15.9 230 154 77
200 18.2 170 84 -3
300 20.3 113 17 -80

4.5.c Maximum impact speed on the court

The extreme case of a “normal” shot is the serve. It is possible for such shots as a smash to
happen with similarly high speeds, but these are much less common — every point starts
with a serve! At the time of writing the fastest serve recorded was 149 mph (66.2 ms™) by
Greg Rusedski at Indian Wells in 1998. There is no record of spins achieved by Rusedski
but NASA and Cislunar Aerospace, Inc. (Cislunar Aerospace, Inc. 1997-2000) give
estimates of first serve spin rates ranging between 162 and 332 rads™. This is the range of
average values for 11 professional men, and therefore a mid-range value of 250 rads™ was
chosen as a typical value. Rusedski is 1.93 m tall, which using the ratio of 1.53 for impact

height to standing height suggested by Elliott et al. (1986), gives an initial starting height
for the ball of 2.95 m.

The window of a legal serve is formed by the boundaries of the net (giving the lowest
angle) and the service line (giving the highest angle possible). Using the centre net height
of three feet, this gives y=0.91 at x=11.885 for the first condition, and y=0 at
x =18.285 for the second (in metres).

The initial conditions of speed and height were used to find the two angles giving
trajectories passing through these points. For the ball to land on the service line it must be
hit at 8.8 degrees below horizontal. A shot with the same speed and spin just clearing the
net would need to be hit at an angle of 7.7 degrees below the horizontal. The ball would
land 4.64 m into the service box, which is 72% of the way along its length. The second of
these shots can be considered an extreme case of the vertical component of velocity. It
lands with a speed normal to the court of -9.84 ms'.
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This model also shows the value of spin. Even for a player of this above-average height, a
flat serve would have to be hit incredibly accurately to reach 149 mph whilst still landing
in the service box. In fact the serve landing on the service line has a height of 1.16 m when
it passes the net. This means that the range of starting angles which will provide a legal

serve form a “window” for the player to hit which is only 25 ¢m high.
4.6 Summary

There has not been a particularly large amount of work in the area of tennis ball
aerodynamics, but recent research has provided good consistent measurements of the drag
coefficient. A constant value of C,, =0.53 was found by Chadwick and Haake (2000) for
non-spinning balls. There has been much less work with spinning balls, as this is much
more experimentally difficult. Stepanek (1988) gave an empirical formula for C, as a
function of the ball peripheral velocity. Chadwick (2003) found similar functions for both
Cp and Cy, which give a value of C, =0.54 when there is no spin. Goodwill et al. (2004)

measured both Cp and C; for different spin rates and obtained similar results, although
they found the values depended on Reynolds number.

Air resistance is often ignored when calculating the impact speed of a ball dropped under
the influence of gravity. The square root of the ratio of the bound height to the drop height

is commonly used to calculate a COR, but for the range of an approval drop test, this gives
a COR value about 4% lower than if drag is applied.

A trajectory model was used to illustrate the large effect which spin has on the flight of a
ball. For the same speed and angle of a 70 mph shot, a moderate spin rate of 100 rads™

affects the landing position by several metres (in either direction, if topspin or backspin is
used).

The model was also used to investigate the impact conditions for good length
groundstrokes. With a constant incoming speed, the outgoing speed did not change
significantly, but a range of spins from 100 rads” of backspin to 300 rads™ of topspin
produced an impact angle of between 12 and 20 degrees to the horizontal. Using these
angles to improve the realism of previous calculations for the spins needed to cause the
ball the roll provides interesting results. Even on fairly fast (i.e. low friction) surfaces, it is
easily feasible for a professional player to hit a shot with enough spin to roll off the court.
On slow surfaces such as clay, any shot with topspin will cause the ball to roll.

The current record for the fastest serve recorded (149 mph) gives a good limit to the

absolute limit of vertical velocity component likely to be experienced in normal play. This
was calculated to be 9.8 ms™ for flat serves (i.e. without spin).
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5 Surface testing
5.1 Introduction

The game of tennis is unusual for the variety of surfaces on which it can be played. It is
commonly known and accepted that the surface properties play an important part in the
game, and affect the behaviour of both players and equipment, as well as the tactics needed
for success. This is demonstrated by the fact that many professional players are well
known for their ability on one particular surface, and this defines their style of play.
Indeed, the differences can be so extreme that there will be a huge difference between
results in those times of the year traditionally associated with, for example, grass (or other
fast surfaces) and clay court tournaments.

The challenge therefore is to identify and measure in an objective way those properties
which can seem so self-evident to the spectator or player. It was also important to
distinguish between the properties which affect the player and those which affect the ball,
as their relative importance may well change dramatically.

5.2 Summary of existing ITF performance characteristics

The three performance characteristics which were identified by the ITF (1997) as being
key factors in a tennis court surfaces are listed below with their quoted definitions:

o Surface Pace - The “speed” of the court, which includes both speed and angle of
the ball rebounding off the surface.

e Friction - As determined by measuring both Slip resistance and Traction.

e Energy Absorption - The ability of a surface to absorb energy (or shock).

The first of these, surface pace, seems to sum up the intuitive perception of a court. As a
first definition, players are most likely to describe a court as “fast” (e.g. grass) or “slow”
(e.g. clay). The ITF came up with a mathematical formula for pace called Surface Pace
Rating, based on the velocity changes which happen when a standard ball bounces on the
court, which will be discussed later in the chapter. It has also been suggested that the
change in horizontal velocity - effectively how soon the ball reaches the racket - is how a
player measures the pace of a surface. The player is most likely to intuitively measure pace
by the time he or she has to play a shot, but it is found that they also associate the pace
with the angle at which the ball reaches them — for example, a “fast, skiddy, low-bouncing”
surface as opposed to a “slow, high-bouncing” one. Some of this is due to the friction — a
court with a high coefficient of friction will reduce the horizontal velocity much more than
a low friction surface, but may produce the same vertical rebound velocity, increasing the
angle of the trajectory. It must also be recognised however that the angle and height is
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affected in other ways. For example, on a slow surface such as clay, players will hit the
ball differently — slower and with more spin. Brody (1988) suggests that the difference
between fast and slow surfaces should in theory only make 0.05 seconds difference to the
time the receiver has, but that this is not representative of reality. In practise, the whole
game is slowed down because if the ball reaches a player at a slower speed, it also leaves
his racket at a slower speed for the same racket swing speed.

The friction measurements defined above as performance characteristics must be used
carefully when the impact of ball on surface is considered, as the two methods are both
aimed at measuring the friction between a shoe and the court. Slip resistance uses a
swinging pendulum to slide a rubber foot along a court surface specimen for a certain
distance, and finds the energy lost to friction by measuring the maximum height obtained
after contact. The traction test measures the minimum force to cause rotational movement
of a weighted circular disc, by gradually increasing the applied torque. This measurement
is somewhat user-dependent.

Energy (or shock) absorption is primarily concerned with the effect of the surface on the
biomechanics of the player. Although tennis courts need to be relatively “hard” in order to
produce a bounce of a ball which enables the game to be played successfully, the shock
transmitted to the player is particularly important in terms of comfort and injuries
produced. The difference in forces produced by a running human and a bouncing tennis
ball suggest that test methods aimed at measuring impact properties relevant to the player
may not be useful when considering the ball.

Five other characteristics are also listed as important measurements: vertical ball bounce,
permeability, slope, evenness and consistency. Of these five, the only one relevant to the

problem of modelling ball impacts is the vertical ball bounce. It is however of potentially
crucial importance, and will be discussed later in this chapter.

5.3 Surface Pace Rating

5.3.a Test method

At the time of writing, the concept of surface pace was of great interest in the world of
tennis. A proposal was under development to bring into place a court surface classification
scheme (ITF, 2000b). Under this scheme accredited laboratories would test a court and
measure its pace, with the separate test equipment compared regularly. The test
specification details how the surface sample should be fixed, and also the properties of the
balls to be used. For the vast majority of tests, including surface classification, three
special test balls should be used which satisfy a more stringent set of criteria than listed
under the Rules of Tennis. These are reproduced from ITF (1997) and detailed in Table
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5.1. If for some reason other balls (e.g. as played in a tournament) are to be used, four balls
are used and the three most consistent values taken.

Table 5.1 Test ball specifications.

Nomital valis - Range for approval |  Range for test \
tests balls
Ball mass 57.6¢ | +09¢g ‘ +03¢g
Ball diameter | 67.5 mm + 1.6 mm ? + 0.40 mm \
Forward ‘ ‘
deformation 6.48 + (.89 mm +0.32 mm
100 inch rebound |
height \ 1.41 m \ +0.064 m +0.010 m

Figure 5.1 The equipment used to measure surface pace rating.

The standard piece of equipment used is shown in Figure 5.1. A ball is fired in from the
left at 30 +2 ms™, at 16 £ 2° to the horizontal. Although the method of projection is not
specified in the test, the most common way of projecting the ball is using a compressed air
cannon. This gives good positional accuracy and meets the requirement of imparting less
than three revolutions per second of spin — in fact the spin is extremely close to zero. The
ball passes through the smaller unit, impacts on the surface and then passes through the

second unit. Each of the two sections contains an array of infra-red beams at both the entry
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and exit. These beams are spaced closely enough together so that the timings of their being
broken can be used together with the assumption of a spherical target object to give
positional data with very good accuracy. The manufacturers of the system claim that the
Sestée test apparatus measures the velocities to an accuracy of + 0.01m/s and the angle
within £ 0.1° (Wassing, 2004). Any speed measurements assume that the ball is travelling
in a plane perpendicular to the array of infra-red beams. In practise the ball trajectory must
be very close to this in order to pass through the four openings in the apparatus.

The three categories of SPR are defined as listed below. These categories overlap, allowing

some leeway in the description of a court. Repeatability of the measurement is claimed to
be £ 1.

e Category 1 (slow) 0-35
e Category 2 (medium/medium fast) 30-45
e Category 3 (fast) 40 +

One of the aims of the categorisation was to enable the “targeting” of balls to surfaces —
initially on a professional basis only. A stiffer, faster-bouncing ball is intended for use on
courts classified as slow and a larger, aerodynamically slower ball is intended for use on
courts described as fast. The traditional ball will be used on medium/medium fast surfaces.
It should be stressed that the law change allowing the two new ball types was on a two year
experimental basis. It was not originally aimed at recreation players, as these do not need
to concern themselves as to whether their game corresponds to official regulations.
However, the larger ball would also be a useful tool to those learning the sport, as it gives
more time to play shots due to the slower speed through the air.

5.3.b Surface Pace results

In order to evaluate the various testing methods described in this chapter, a variety of
surfaces were used to compare friction readings from each apparatus in a series of
laboratory tests. The method used was to attempt to correlate each one with the Surface
Pace Rating, which is an established test and widely used. The surfaces used ranged in
Pace from 9 to 66 and included a variety of court surface samples as well as some
extremes that would never be played on (for example a glazed ceramic tile was used to try
and create an extremely fast surface). A good proportion of the surfaces were acrylic
based, and this is reflected in the many values of pace between 30 and 50 - although the
typical range for acrylic surfaces has been quoted as 30-40 (ITF, 1997). This predominance
of medium speed surfaces can be seen in Figure 5.2 which shows the Pace values. The
surface types are detailed in Table 5.2 below together with the Pace values.
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The rigid body model developed in Chapter 3 suggested that the lowest possible Surface
Pace is around 20, but three values are seen lower than this. One reason for this seeming
discrepancy comes from surface deformation. The three surfaces with extremely low SPR
values were all relatively soft rubber. The ball impact is likely to cause significant
deformation, and the ball will effectively roll up the far side of a dip, increasing the
rebound angle and thus decreasing the SPR. A similar effect happens on a clay court,
where the ball “ploughs” the material in front of it and leaves a permanent deformation.
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Figure 5.2 Surface Pace Ratings for a range of surface samples used to evaluate various
friction tests, ranging from 9 to 65.
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Table 5.2 Surface Pace Ratings for a range of surface samples used to evaluate various
friction tests, together with the generic surface type in each case.

Ref no. Surface reference SPR
1 Rubber shockpad 9.1
2 Reformed rubber 12.4
3 Textured rubber 17.5
4 Acrylic 35.1
5 Acrylic 36.3
6 Acrylic 37.5
7 Acrylic 37.7
8 Concrete sample 1 402 |
9 Acrylic 40.3
10 Acrylic 43.3
11 Concrete sample I1 44.0
12 Acrylic 45.7
13 Rubber surface 47.9
14 Acrylic 48.6
15 Rubber surface 49.1
16 Textile carpet tile 51.4
17 Rubber surface 52.1
18 Rubber surface 533
19 Acrylic 56.0 ]
20 Thin plastic sheet 62.5
21 Polished wood 65.0
22 Glazed ceramic tile 65.5

5.4 Surface friction testing

It has already been suggested that friction is an alternative measure of pace, and initial
oblique testing indicated that it is of crucial importance. A number of different
experimental methods for determining friction are discussed below. It is worth noting that
all of these tests take place at a much lower speed than is experienced during an impact —
typically in the order of one or two metres per second compared to a dynamic impact
which could produce horizontal velocity components of twenty or thirty metres per second.
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5.4.a Friction sled

Figure 5.3 A sled used to measure friction between tennis ball cloth and a surface.

The simplest way to measure the friction between a ball and a court surface is to drag a
friction sled — an example type used in a surface testing project by Hamilton (2000) is
shown in Figure 5.3. A small sled is pulled horizontally by a wire which is taken round
several pulleys so that masses can be hung to provide tension. The bottom of the sled can
be covered with tennis ball cloth as in this case, or fastened to intact balls — for example
used with a simple sled with a sprung force measurement by Brody (1984). The force
applied to the sled is gradually increased until movement is seen. This can be done by
using a linear force measurement, or by gradually increasing a suspended mass. Dividing
the measured pulling force by the weight on the sled gives the static friction coefficient.

It is possible with this apparatus to attempt to measure the dynamic friction. Before the
force is enough to overcome static friction, if the sled is given a small initial movement it
will slide slowly but continually. This is however a rather user-dependent method, and

gives no idea of how the friction varies with speed, so is not a practical method to gain an
accurate measure of friction.

5.4.b Pendulum tests

Slip resistance

An alternative way to measure friction is by using a swinging pendulum, which are
available in a variety of forms. A foot is released and allowed to rotate under gravity.
Energy is dissipated when the foot contacts the surface, and the energy loss is usually
measured by finding the angle the arm swings to post-impact. There must be some
compliance in the foot to allow contact to occur over a long enough sliding length to give
meaningful results, but this makes it difficult to try and analyse the force equations and
extract a proper coefficient of friction.
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Figure 5.4 The TRRL pendulum used to measure friction.

The ITF Slip Resistance test uses a pendulum shown in Figure 5.4, which was originally
designed for testing frictional properties of road surfaces by the Road Research
[Laboratory, part of the UK Government (it is also a standard test method of the UK Health
& Safety Executive for measuring floor slipperiness). With this device, the height of the
foot is adjusted to give a specific required sliding length of 125 mm by ensuring that it
contacts the ground at either end of a calibration plate. This test is primarily aimed at
measuring the linear friction between a player’s shoe and the court, and so uses a rubber
sample. There are therefore doubts as to how relevant the results would be to the impact of
tennis balls.
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Haines pendulum

Figure 5.5 The Haines pendulum for measuring friction, which uses a clamped ball.

An obvious improvement of the previous pendulum is to use either a sample of ball cloth
or a ball itself. Haines (2002) developed a pendulum (Figure 5.5), commissioned by the
[TF. which contains a captive ball and was designed to be an inexpensive alternative to the
rather expensive surface pace rating equipment. The mounting for the ball is sprung in
order to try to reproduce similar compressional forces to those seen when a ball lands on a
court — otherwise there would be no way to allow a reasonable slide length without causing
large ball deformations and high forces. Before use the clearance is adjusted so that the
maximum compression produces a realistic level for normal force. The equipment avoids

excessive cloth wear by allowing the ball to be rotated or replaced fairly easily.

The pendulum is calibrated by allowing it to swing freely without a ball present. The angle
to which it moves a captive pointer gives a measure of the energy loss in the system. Then
when a ball is used, the relative angle can be used to calculate the energy loss.
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5.4.c Rotating friction

A

Figure 5.6 Apparatus used to measure rotational friction.

Figure 5.6 shows the equipment specified by the ITF to measure the rotational frictional
properties of a surface. Again, this test is concerned with the behaviour of players, and so a
rubber layer is mounted on the test surface. A torque wrench is used to gradually increase
the applied load on a weighted plate until rotational movement occurs. Using this apparatus
is extremely user-dependent and repeatability is poor. Because of the rubber test surface,
this test was thought to have no advantages over a linear test when considering the
interaction of tennis balls and a court, and so it was not considered any further.

5.4.d Tortus

Figure 5.7 The Tortus friction tester.

Figure 5.7 shows the Tortus automated friction tester. It is primarily designed for
measuring the friction of floors for safety purposes (Mastrad Ltd, 2004), and as such
attempts to replicate the interaction between a shoe and a surface. A constant vertical load
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is applied and the machine moves along via a motor, measuring the horizontal frictional
force. An average frictional value is given at the end of the motion.

Figure 5.8 The underside of a Tortus, showing the rubber slider.

The main drawback of this machine as it is sold is that a rubber tip is fitted. This can be
seen in Figure 5.8 — the photograph shows the underneath of the machine, with the foot and
rubber tip sticking out. A small piece of cloth off a tennis ball was glued onto an alternate
foot to see what effect this had, and a number of surfaces tested with both materials.

1.2

| Rubber slider
0 Cloth slider

gaeT

A4

Measured Tortus friction

it o

e

1o

S

1 3 4 5 6 7 8 9 10 12 14 15 16 i 18 20
Sample label

Figure 5.9 Tortus frictional values for both rubber and tennis ball cloth sliders.

Figure 5.9 shows the friction values for both slider material types. On three of the surfaces
tested, the two materials gave similar coefficients of friction, but on the others there were
large differences between 30% and 60%. Generally the rubber and polymeric surfaces gave

the largest discrepancy, suggesting some sort of material interaction with the rubber slider.
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5.4.e

The surface samples used for the Surface Pace tests in section 5.3 were also used in an

Surface testing results

evaluation of the various friction tests described above. The surfaces came in a variety of

forms, as not all were designed for playing tennis on. Some of the test methods need larger

samples than others, and so it was not possible to perform all tests on all samples. The real

tennis surfaces were however all large enough for each test.
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Figure 5.10. Correlations between various test methods and Surface Pace: (a) rotational
traction, (b) slip resistance pendulum, (c) Tortus with rubber slider, (d) Tortus with tennis ball

cloth slider and (e) Haines pendulum. (f) shows the Haines friction against SPR friction. The
surface marked with an arrow in (c) and (d) is a textile carpet.

The first graph in Figure 5.10 shows the rotational traction device. It is immediately
obvious that if there is any slight trend, it is in the opposite direction to that which might be

expected — as surface pace goes up, friction goes down and therefore the torque needed to
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turn the disc should reduce also. The slip resistance pendulum also produces no useful
results — it is impossible to predict a meaningful trend.

The two tests which show more useful friction measurements are the Tortus and Haines
pendulum. Both exhibit definite trends of decreasing friction with increasing surface pace.
Replacing the rubber slider on the Tortus with a piece tennis ball cloth has a definite
improvement on the results, which is reflected in the R? values of 0.22 and 0.63 with the
rubber and cloth respectively. The largest error can be attributed to a physical cause. The
data points marked with an arrow on both graphs is for a carpet surface. It seems likely that

the relatively small tip digs into the carpet, producing a tractional component to the
reaction force.

The Haines pendulum shows an even better linear correlation (with R* =0.89). The value

produced does not relate directly to the coefficient of friction obtained by rearranging the
SPR N .
SPR formula (yzl—m), as can be seen in Figure 5.10 (f). The dashed line on the

figure represents a 1:1 relationship. This suggests that the theory used in obtaining friction
from the Haines values is incorrect, which is not a particular concern as this test is
primarily designed as a comparative value as a rough guide to the playing performance. It

is for example popular with court manufacturers who want to check the speed of a newly
installed surface.

5.5 Surface stiffness testing

The third of the ITF’s “key” properties is shock absorption. This is effectively a
measurement of the surface stiffness. The higher the stiffness of the surface, the higher the
shock, or force, transmitted. Of course, in practical terms a surface will not have a constant
stiffness. This is particularly true of any surface which consists of one layer whose
deflection reaches a significant proportion of the original thickness — the stiffness will
increase dramatically as that layer is compressed. It is important to note that shock
absorption as such is not a measure of energy return or efficiency, as a surface could be

soft and therefore provide a softer reaction force, yet elastic enough to return a large
amount of the stored energy.

There are a number of existing techniques for measuring the properties of material
samples. However, one of the aims of the project was to gain the ability to characterise and
model existing courts. This meant that there would be many cases where laboratory-based

testing of samples would not be possible. The most practical way to gain data about the
stiffness of an installed surface is using impact testing.
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5.5.a Berlin Athlete

Figure 5.11 The Berlin Artificial Athlete, used to test shock absorption properties of a surface.

The Berlin Artificial Athlete (shown in Figure 5.11) is an established and internationally
accepted test method for shock absorption commonly used on athletic running tracks as
well as a number of other sports surfaces. It is a biomechanical test which attempts to
simulate the impact loading of a player running on a surface. It does this by dropping a 20
kg mass from a height of 55 mm onto a strong spring (stiffness 2000 kN/m). The spring
transmits the load to the surface, where the peak force is measured by a force transducer.
This peak force Fis compared to the reference peak force seen dropping on a concrete

sample F, (which is used at the start of each test session as a calibration value), and
expressed as a reduction percentage:

Energy absorption (%) = 100 [1 —%) [5.2]

4
This test is of limited use when considering the interaction of tennis ball and surface
because of the size of the mass used. Neglecting resistances, a mass allowed to drop from a
height of 55 mm will achieve a speed of 1.04 ms™, providing an impact energy of 10.8 J. A
typical tennis ball landing at 7 ms" will have an energy of only 1.4 J, an order of
magnitude lower. The peak forces seen have an even larger discrepancy. A ball dropped
from 100 inches onto a force plate provides a peak impact force of around 250 N, whereas
an acrylic surface with little or no cushioning will usually generate a force measured by the
Berlin Athlete of at least 5000 N. Although it is possible to use the Berlin Athlete data to
find the relative hardness of surfaces, it would be dangerous to draw too many conclusions
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about the stiffness given the differences. The test method seems to reduce the differences
between surfaces which are quantitatively thought to be very dissimilar.

m = 20 kg
X
kg = 2000 kN/m
Ks
7777777 7

Figure 5.12 Two-spring model of the Berlin Artificial Athlete

If the rather large assumption is made that the surface acts as a linear spring with constant
stiffness, it is possible to make an estimation of this surface stiffness. Consider two springs
in series with a rigid ground as shown in Figure 5.12. The upper spring represents the
Artificial Athlete and has a stiffness of A = 2000 kN/m, while the lower spring represents
the surface, of stiffness k. The resultant stiffness of an equivalent spring k. is given by

1 1 1
+ — 3
k. 2x10° & 1531

res §

For an impact of a 20 kg mass on an undamped spring of stiffness k. the equation of

motion is given by mi¥+kx=0. This has a solution of the form x = asin(br), where

b=,-—=. The equations for velocity and displacement are 5c=abcos(bt) and
m

i = —ab? cos(bt) respectively. Using the incoming boundary condition that x =V, when

m

t = 0 leads to an expression for the maximum force F,,,,:

Fmax ooy Viﬂ mk"L‘.\' [5'4]

The maximum force is returned directly from the Artificial Athlete. If [5.4] is rearranged to

give ks then substituted into [5.3], the surface stiffness can be found if the drop height of
55 mm is used to calculate an impact speed V.

Ot B
T ] 6
F 2x10

max

Peak forces and force reductions relative to a measured force on concrete of 6110 N were
measured (averaged over two tests of five drops each) by Hamilton (2000) and are
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reproduced in Table 5.3 below. Also shown is a constant surface stiffness calculated using
the equation above. This is not necessarily representative of the stiffness “seen” by a
bouncing tennis ball because of the linear assumption, but it does give an indication of the
very high stiffnesses of many of these surfaces. Even the artificial grass surface, which was
deeper pile than usually used on tennis courts, produced a peak force of over 5000 N,
which is an order of magnitude higher than the forces generated by a ball impact. This

indicates that the results from this test cannot be used with any confidence in predicting
ball behaviour.

Interesting data from this testing concerns the natural grass surfaces. The new grass area
has a noticeably lower peak force than the area which had been played on and worn. This
is thought to be mainly due to the compression of the ground by continual player impacts,
as the mere presence of grass is unlikely to have such a softening effect.

A further issue with this test is that it provides only a peak force, giving no measure of the
efficiency of a surface — whether it will return the energy supplied. This is a crucial factor
when looking at the bounce of a ball, unless of course the surface is so hard it cannot store
any energy!
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Table 5.3 Berlin Artificial Athlete results for a range of surfaces, shown as peak forces,
percentage force reduction and calculated surface stiffness.

. Calculated surface
Surface Peak force (N) | Force Reduction (%) .
stiffness k; (kN/m)
Artificial grass 4186 31.5 1362
New grass
4464 26.9 1708
(natural)
Shock pad 4922 19.4 2545
Textile carpet 5035 17.6 2830
Wood 5090 16.7 2986
Worn grass
5219 14.6 3398
(natural)
Sand-filled
artificial grass 5561 9.0 S0t
Polymeric 5844 4.4 7492
Acrylic 6030 1.3 10537

The values given here are around twice as high as those given by McMahon and Greene
(1979). They quote values of 4376 kN/m for concrete and asphalt and 2918 for packed

cinders, and although there some discrepancy with the results presented here, both methods
give stiffnesses of the same order of magnitude.

5.5.b Brody baseball bat test

An example of more basic impact testing was performed by Brody (1992), who described
two simple tests to determine the surface hardness with a view to its cushioning. Both
involved the acceleration of a dropped object. The first did so by measuring the
acceleration or some function of acceleration of a body dropped from a fixed height. The
second involved finding the maximum height from which a body can be dropped so as not
to exceed a nominal fixed value of deceleration (for example 100g). Brody did this by
attaching two inexpensive resettable accelerometers to a baseball bat and increased the

drop height until the accelerometers indicated the nominal deceleration value had been
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reached (in this case 138g). The heights ranged from 0.08 m on concrete, through several

readings around 0.2 m for tennis court surfaces to 0.8 m for natural turf.

5.5.c Clegg Impact tester

Figure 5.13 The Clegg Soil Impact Tester, showing the 0.5 kg mass and handset as well as
the guide tube

The Clegg Soil Impact Tester is a commercially available instrument which consists of an
accelerometer firmly attached to a 0.5 kg mass (a 4.5 kg mass is also available and is
normally used for testing road surfaces). This mass is dropped down a guide tube which
ensures an impact at a constant speed and provides a consistent normal impact with the
ground. Under normal operation a handset is used which provides the peak value of the
acceleration (measured in arbitrary units called Impact Values) produced by the impact on
the ground. Both the mass and handset can be seen in Figure 5.13. The peak acceleration is

generally used as a comparative value for the hardness of the ground (and as such is a

similar method to Brody’s baseball bat test described above), but by itself is of limited
value to the modelling of impacts.

5.5.d Adapting the Clegg - data acquisition hardware

The Clegg can be used to provide much more information by the addition of data sampling
equipment. The drop hammer consists simply of an accelerometer attached to the mass,

and so the signal can be used to capture the whole acceleration-time trace rather than using
the handset to give just the maximum acceleration.

The analogue to digital converter used was the ADC-100 manufactured by Pico
Technology. It allows sampling of two channels at 12-bit resolution with a variable input
range between +50 mV and 420 V. It connects to a parallel printer port, thus enabling use

with a laptop computer for field testing. Maximum sampling rate is about 100 kHz.
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Because the ADC-100 does not have a suitably high input impedance (quoted as 1 MQ), it
was necessary to use a charge amplifier to preserve the signal. A commercial charge
amplifier was considered, but because the accelerometer signal was already high enough
and it was not necessary to use the amplifier with different accelerometers, a simple charge
amplifier was constructed. This was configured to give a unity gain, effectively passing
through the charge generated by the accelerometer to preserve the voltage, whilst having
an input impedance in the order of 10" ohms.

5.5.e Adapting the Clegg - data acquisition software

Rather than use the oscilloscope style software provided with the ADC-100 which is
functional but rather cumbersome, a specific application was developed in Microsoft
Visual Basic. The aim was to speed up the experimental process and allow as many
samples as possible to be gathered in a short space of time. This is important as it is often
necessary to test different areas of a tennis court, and it is vital to make a number of
measurements in each position. Consideration was also given to the fact that at some point
in the future testing might be required after or even during games, so the procedure should
be as quick and non-intrusive as possible. At the time of writing, the equipment had been
used on several different projects, including testing on a number of professional cricket
pitches immediately after the end of first-class matches. Here speed is essential, as the
groundsman wishes to start work on the pitch as soon as possible. This testing was used as
an example of what might be required on tennis courts in the future.
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Figure 5.14 Fiowchart of software requirements for sampling the signal from the Clegg Soil

Impact Tester
A flowchart is shown in Figure 5.14 of the main software requirements. In order to start the
sample, a manual trigger was needed. Because of the interface driver the program was
based on, the sampling was limited to a data set of 32768 points. At a sampling frequency
of 30 kHz this means a sample length of just over one second, or one and a half seconds for
a frequency of 20 kHz. After testing, this was found to be more than long enough to
capture the trace. After completing the data acquisition, the voltage trace is displayed on
screen, allowing the operator to visually check the quality of the data. If no obvious
problems can be seen, the voltage data is converted to an acceleration. This is done by
knowing the sensitivity (i.e. calibration) of the accelerometer, which was provided by the
manufacturer. The acceleration data is then integrated to give the velocity over time,
knowing the impact speed, and integrated again to find displacement. Any or all of this

data is then exported either to a text file on the computer, or directly into a spreadsheet.
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Figure 5.15 Schematic form of complete apparatus used to sample the accelerometer signal.

Portable computer

5.5.f Calibration

Based on the capacitance of the accelerometer as provided by the manufacturer, the
calibration factor from signal in mV to acceleration in gravities was 0.047. As this would

be crucial in the signal processing (any errors would magnify as the data was integrated
into velocity and displacement), it was verified experimentally.

The guide tube was raised on wooden blocks as shown in Figure 5.16 below, so that the
hammer could be seen as it landed on the surface. High speed video was used to film the
impact at 600 frames per second. The positions of markers drawn on the impact hammer
were manually digitised to find displacement co-ordinates, and their rate of change used to
give velocity values. These could then be compared to the captured and processed
acceleration data to verify the calibration.

Examples of the displacement and velocity from a height of 0.3 m are shown in Figure
5.17 (a) and (b) below respectively. Also on the graphs are the same variables found using
the sampled accelerometer signal for the same impact. It can be seen that the agreement is
excellent, and therefore the sampled accelerometer signal is reliable. This procedure was
repeated for heights of 0.4 and 0.5 m to ensure the calibration was consistent.
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Figure 5.16 Filming the impact of the Clegg drop hammer to find the incoming velocity. The
guide tube was raised on wooden blocks to allow the impact to be fimed.

500 (a)

(©)

14 16

Vertical velocity (m/s)

Height above ground (mm)

Time (ms) Time (ms)

Figure 5.17 (a-c) (a) Force-time, (b) displacement-time , and (c) velocity-time for a drop of

the Clegg hammer. Data from both high speed video footage (discrete data points) and from
accelerometer signals (lines) is plotted.

Another important part of the data analysis procedure is knowing the incoming velocity.
Any error in this value will not only offset the entire velocity-time profile, it will also
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significantly affect the displacement data. Approximating the impact speed Vi, from the
drop height A is possible (although it is impossible to predict the effects of air resistance),
but it was decided to check the speeds experimentally from various drop heights. The
guide tube was again raised on wooden blocks as shown in Figure 5.16, and high speed
video used to film five drops at each of three heights. The reference positions for dropping
the hammer conventionally from 0.3 m, 0.4 m and 0.5 m were used, but the blocks added
69 mm to the heights (larger blocks were used than for the impact filmed and shown in
Figure 5.17, which had an impact speed of 2.3 ms™). The resulting measured speeds are
shown in Table 5.4. At all heights the standard deviation is under 0.1 ms™.

Table 5.4 Measured impact speeds for the Clegg impact hammer dropped at various heights
(values in ms™')

0369 m 0469m | 0.569m

Drop 1 256 | 298 325
Drop2 | 254 200 | 313
CDrop3 | 243 ] 205 | 3.08
Dropd | 257 | 29 l 327
T owes | an | 2% | x|
Average Vi 256 | 294 320 |
Sundwddevation | 009 | 003 | o008

2
(a 2.21 m/s
15 | (a) o
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Vertical velocity (m/s)
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o
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2.39 m/s 239 m/s
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Figure 5.18 (a-b) The effect of a one standard deviation error in the velocity has on the
integrated (a) velocity and (b) displacement curves for a Clegg drop at 0.3 m (nominal impact

speed 2.3 ms’).
Figure 5.18 shows the difference by adding and subtracting 0.09 ms from the impact
velocity for the drop in Figure 5.17. The change in speed simply acts as an offset to the
velocity curve, but as the data is integrated through the impact, the “error” makes a larger
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and larger difference to the displacement graph. This one standard deviation error would
probably not be acceptable if accurate displacement values were needed (for example for a
surface stiffness measurement for a model). The most likely cause for the differences in
impact speed is a combination of error in the analysis stage (both human error and the
fairly small number of data points available) and the clearance between the mass and the
guide tube. This clearance must be large enough to stop air resistance being too great as the
mass gets close to the ground, but this allows irregularities in its motion. The mass is
released by holding the data cable and lining up various markers, which obviously will not

give exactly the same release position and angle every time.

5.5.g Clegg testresults
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Figure 5.19 (a-d) Data from a Clegg impact on a textile carpet surface. Force, velocity and
displacement against time, with force against displacement.
An example set of results is shown in Figure 5.19. This drop was from a height of 0.1 m on
a textile carpet surface. The peak force is around 500 N, and the impact lasts around 3.75
ms. The incoming velocity is 1.2 ms™, and the outgoing velocity 0.6 ms'. A maximum
surface deformation of 1.75 mm can be seen. The deformation stays below zero after the
end of the impact, which means that the bottom of the hammer is still below the original
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ground level. This could mean that either the surface undergoes permanent deformation, or
more likely simply recovers slower than the hammer is rebounding.

The extremely small deflection and peak force of 500 N seen here (bearing in mind the

very low drop height of just ten centimetres) again suggests that stiffnesses measured by
this test method will be so high as to be able to be considered as rigid.
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Figure 5.20 A comparison of force-deflection curves found by dropping the Clegg hammer
from varying heights on a textile carpet.
Figure 5.20 shows force-deflection curves for drops on the same textile carpet surface from
a range of heights from 0.1 to 0.25 m. It is an interesting result that the four curves follow
the same loading path. This suggests that the stiffness (the gradient of the force-deflection
curve) is a function of deflection, and does not directly change with impact speed — itself a
function of drop height. A larger impact speed will of course lead to a larger deflection and

increase the average stiffness throughout the impact, effectively progressing further up the
loading curve.
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Figure 5.21 Force-deflection curves for drops from 0.1 m on rubber and artificial grass,
surfaces with low and high energy losses.
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Two obviously different surfaces are compared in Figure 5.21. This shows drops from
heights of 0.1 m on rubber and artificial grass. Neither surface is representative of tennis
courts but both provide reasonable deflection. The rubber (considerably softer than any
shockpad used under a court) was a 25 mm thick sample and provided quite an elastic
impact, as seen by the relatively small enclosed area in the force-deflection curve. A
contrasting example is the artificial grass sample also shown. There is almost no force
provided at all after the point of maximum deflection when the hammer returns upwards.

One problem with the Clegg test is that it is not designed for particularly hard surfaces, and
on any realistic surface it must be dropped from a low height to avoid clipping the signal.
There is a version available designed for harder surfaces with a 4.5 kg mass, but this will
of course produce forces and deformations even further away from those produced by a
ball impact.

5.6 Vertical ball bounce

The vertical bounce is another important test. It is widely used to ensure that the properties
of a ball fall within a specified range, but can also be used to find the bounce properties of
a court surface. Although in many situations the coefficient of restitution is the variable of
interest, in practical terms it is usually easier to measure the rebound height a ball bounces
to. This can be done using a standard video camera, whereas finding ball speeds requires
high speed cameras (with the time consuming data processing this involves) or
alternatively some sort of timing gates, which are expensive. Another method suggested is

measuring the time between the first and second bounces, which can be achieved with a
microphone (Brody, 1990).

Hamilton (2000) used a set of test balls to test the bounce properties of various surfaces.
The bounce heights were measured using a video camera, with care taken to eliminate
parallax errors. The results are shown in Table 5.5 as Relative Percentage Rebound values,
expressed as a comparison to the measured heights on the concrete surface. COR values
are also given, taking into account the effect of drag on the ball velocities before and after
impact.

All the surfaces tested which might realistically be used as a tennis playing surface have
RPR values within 1% of concrete. In each case, COR values were within one standard
deviation of that for concrete, showing they could not be distinguished.
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Table 5.5 Relative Percentage Rebound and COR values for a variety of surfaces
(reproduced from Hamilton, 2000).

Surface Mean RPR (%) Mean COR |
Artificial grass (no sand) 71.3 0.651
Textile carpet 90.9 0.736
Carpet tile 96.6 0.758
Ceramic tile 97.1 0.760
Concrete 100 0.772
Polymeric 100.3 0.773
Sand-filled artificial grass 100.7 0.775
Acrylic 100.7 0.775
Shock pad 102.2 0.780
Wood 103.3 0.784

5.7 Discussion

There are a number of established test methods which are used within tennis, and some of
these are more relevant than others to this project. Many of them are more suited to player
comfort and safety than ball bounce performance. All the data presented which measures
surface stiffness properties suggests that even the most cushioned surface amongst those
designed for playing tennis on is at least an order of magnitude stiffer than the ball, as they
are designed to deform and give cushioning under the weight of a player. Further evidence
for this is given by the ball bounce tests, where there is no significant difference between
any of the tennis surfaces and the bounce on concrete (and indeed the very large slab of
marble used by the ITF as a “rigid surface™).

One consideration which should be noted is the effect of environmental conditions. The
majority of the tests in this chapter were conducted in a controlled laboratory, where
temperature and humidity were fixed. It is possible that both of these factors will have
some influence on ball impact behaviour. Temperature is unlikely to affect the surface
significantly, but will have more of an effect on the ball by altering the rubber material
properties. Changing humidity may change the interaction of ball and surface by altering
the coefficient of friction (since nylon can absorb significant quantities of water),
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5.8 Summary

Work in previous chapters has identified the most important features of the bounce of a
ball to be the coefficient of friction between the surface and the ball, and the coefficient of
restitution (which depends on the properties of both the ball and the surface). The
remaining surface properties are concerned more with either the interaction of the player
and the surface or the constructional nature of the court.

There are a number of ways to measure the friction. Statically a weighted sled is quick and
easy to use. The dynamic friction is harder to measure. Currently used tests utilising a
pendulum or rotating disk concentrate on the friction between the ground and a test
sample, usually rubber. This can of course be replaced by tennis ball cloth but this is not
ideal because of effects of wear and cloth compression. A better method is to use a captive
ball as in the Haines pendulum. Here the ball can quickly be replaced, or rotated to use an
unworn part of the nap.

Coefficient of restitution depends on the ratio of energy returned to energy stored. For the
speeds encountered, the kinetic energy of a ball is insufficient to generate enough
deflection to store much energy in the surface. This suggests that for a tennis ball-surface
impact, the surface is so much stiffer than the ball that it can be considered as rigid; both
the Berlin Artificial Athlete and Clegg Impact Tester suggested the surface was at least one
order of magnitude stiffer than the ball. This is born out by the rebound drop tests on
various surfaces, where the tennis surfaces all had a bound height within 1% of the
reference concrete value.
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6 Quasi-static ball testing
6.1 Introduction

The overall aim of this study is to model the interaction of a tennis ball and a court surface.
The previous chapter showed that for the vast majority of surfaces, the relative stiffnesses
of ball and court mean that the court can be considered to be a rigid surface, contributing
only a coefficient of friction. It is therefore important to get good measures of the stiffness
and damping properties of the ball.

A feature of the modelling approach used was the way the ball properties were measured,
and it is important to differentiate between material and structural properties. When using
an approach such as Finite Element Analysis, properties must be defined for all the
materials involved, and the problem definition converts these into a structure. An analytical
model takes a more macroscopic view, and defines the stiffness and other properties of the
structure itself. More simplistically, a whole tennis ball is tested rather than the component

parts.

The aim of this chapter is to determine how the ball properties can be measured using
quasi-static compression tests, so that these properties can be used in future chapters to
develop a model of how the ball interacts with the court surface. Balls were measured at
different compression speeds, to see how strain rate affected stiffness, and different types
of balls tested to see the effect of construction. Holes were drilled in the balls to release the
internal pressure, and the tests repeated to see the contribution of structural and pressure

forces.
6.2 The effect of strain rate on ball compression

The most important property of the ball structure is the stiffness. Since the main
component of a tennis ball is rubber, it would be reasonable to expect the stiffness to vary
with both deformation and strain rate (i.c. impact speed). An investigation was therefore
carried out to see how strain rate affected stiffness.

The ITF perform deformation tests as part of their ball approval process. In these tests, a
ball is compressed on each of three mutually perpendicular axes in turn. The test (shown as
a schematic in Figure 6.1) involves applying a load of 80 N, and holding this load for five
seconds before reading the deflection (known as the “forward deformation™). The ball is
then compressed to a deflection of an inch (25.4 mm), before being unloaded. A second
deflection value is taken at a load of 80 N on the unloading cycle (known as the “return
deformation™) but before this reading the load is held for ten seconds. These time delays
are included in an attempt to remove any strain-rate dependant properties, and give as close
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as possible to a truly static stiffness measurement. There is also a requirement for both the

forward and return deformations to be within 0.030 inches of each other across the three

perpendicular axes, to ensure the ball is sufficiently homogeneous.

Force (N)

4

A

Deformation (mm)

[

>

254
forward return
deformation deformation

Figure 6.1 A schematic of the ITF compression test, required as part of the ball approval

process.

In order to assess the visco-elastic effects, an Instron 5500 testing machine was used to

compress a standard pressurised tennis ball to a maximum deflection of just over an inch,

at various strain

rates from 10 to 1000 mm/minute. This range included 200 mm/min, the

rate used by the ITF for their deformation tests.
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Figure 6.2 Force versus deflection for a tennis ball compressed at vanous strain rates from 10

to 1000 mm/min. Only the loading part of each curve is shown.
Figure 6.2 shows the force-deflection curves for the different strain rates. It can clearly be
seen that for all rates above 10 mm/min - which is an extremely slow compression, taking
several minutes to complete the test - the force (and thus the stiffness) is exactly the same
at all deflections; so much so that it is impossible to separate and label the individual traces
on the graph. The fastest rate of 1000 mm/min is equivalent to 16.7 mm/s and so is
obviously far below that of a dynamic impact, but the fact that the stiffness barely changes
over two orders of magnitude is encouraging for the use of quasi-static data in an impact. It
is worth noting that a large deformation rate does not necessarily mean a large strain rate,
since the speeds quoted are for the ball structure rather than a simple material sample.

6.3 The effect of ball construction and pressure

Knowing that strain rate was not important for the range available to the test machine, a
rate of 200 mm/min was chosen to test several ball types. Pressurised and pressureless
balls were compressed, and for the pressurised balls, both new and used balls were tested
to see the effect of a few impacts on static compression. The new balls were given a full
pre-compression cycle (three compressions to an inch on each of three perpendicular axes),
and the used balls had been used for a set of oblique impact tests (described later in
Chapter 9). These impact tests were recent enough that the pressure in the balls would not
have dropped significantly from when the can was first opened, but would not have
provided the same number of impacts as a full match. Figure 6.3 shows the new and old
balls, and it is possible to see worn areas on the older ball, where the cloth has been
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disturbed and the inked markings affected. All the balls had passed the ITF approval tests
(the new balls the same day as the compression testing, and the used balls before their
impact tests), ensuring they were representative samples.

Figure 6.3 Photograph showing a comparison of new and used balls, as used in the
compression tests.

Figure 6.4 Photograph showing the hole drilled in a tennis ball to test structural stiffness
without internal pressure.
A reasonably large hole (about 10 mm) was then drilled in all the balls as shown in Figure
6.4, and the compression tests repeated. Ashcroft (2003) used a small tube to keep the hole
open during compression (to ensure the ball did not become airtight and artificially
increase stiffness due to pressure), but careful examination of the ball during compression

showed that the hole remained open. This hole meant that only one compression axis could
be used.
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Figure 6.5 Force-deformation compression data for (a) new and (b) used pressurised balls.

Three balls were tested in each case.
Figure 6.5 shows a comparison of the force-deformation data for the new and used
pressurised balls. In each case three balls are shown on the graph, and it is clear there is no
difference between the new and used balls. This data should not be used to infer too much
about the effect of real gameplay on ball properties, as the typical lifespan of a ball in a
professional match is likely to be of the order of 45 shots (Capel-Davies and Miller, 2003).
However it is useful to have evidence that balls can be tested for stiffness after being used

for a series of impact tests, without worrying about the effect of the impacts on the ball
properties.
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Figure 6.6 Comparison of force-deformation curves for (new) pressurised and pressureless
balls; three of each type were tested.
Figure 6.6 shows deformation curves for pressurised and pressureless balls (new balls in
each case). It can be seen that for most of the loading phase, the curves are very similar. At
a deflection above about 20 mm, the pressurised ball seems to become slightly stiffer. This
fits empirical experience that pressureless balls behave in a similar manner to pressurised
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ones for low impact speeds (such as drop tests) but may bounce differently at higher
speeds (to be discussed in a later chapter). There is also a difference on the unloading part
of the cycle - the pressureless balls seem to have a lower force, suggesting a slightly
increased energy loss.
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Figure 6.7 Force-deformation graphs for three each of (a) new pressurised, (b) drilled
pressurised, (c) new pressureless and (d) drilled pressureless balls.
Figure 6.7 shows the effect of releasing the pressure on the ball stiffness. As would be
expected, both balls are noticeably softer when there is no contained volume and the
stiffness is provided purely by the structure of the ball. The softening effect is much less

pronounced for the pressureless ball, which relies on a thicker wall and stiffer rubber for its
strength rather than the internal air pressure.

There was no evidence of a sharp change in the stiffness due to buckling of the shell at any

point, although the gradient of the pressureless graphs decreases slightly above about 10-
15mm deformation.
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Figure 6.8 Energy stored and returned during compression, for new balls and those drilled to

remove the effects of internal pressure.
In order to investigate the energies stored within the balls, the force-deflection curves were
integrated using the trapezium rule. This data is shown in Figure 6.8. It is clear that
pressurised and pressureless balls store similar amounts of energy on compression,
although more is lost in the pressureless balls in hysteresis on restoration. Both balls store
less energy without internal pressure, but the difference is much less for the pressureless
balls.

6.4 Modelling the deformation

6.4.a Original balls

Polynomials were fitted to the loading curves of the various ball types, to find the stiffness
at various loading levels. Of particular interest was the initial stiffness at zero compression.
It can be seen from Figure 6.6 that the effect of the cloth makes it difficult to find the
stiffness at zero deflection. The low stiffness for the very first part of the compression
could give a misleading gradient to any fitted curve, as it was really the deflection due to
the cloth, which is compressed before the rubber shell. The method used was to
differentiate the trendline fitted, and use its gradient at a deflection value of two
millimetres. This also minimised errors due to uncertainty in the starting deformation, as
the gradient changed rapidly at low deflections if a high order polynomial was used. The
measured stiffnesses are shown in Table 6.1.
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Table 6.1 Measured stiffness at low deflection for four ball types.

Stiffness at 3 mm deflection
Ball Type
(kN/m)
Pressurised 211
Pressureless 22.5
Oversized 18.7
Punctured 13.6

These results suggest that the pressurised and pressureless balls have a similar initial
stiffness, although the pressureless ball is slightly stiffer. This is to be expected, as it is
made to be harder to compensate for the lack of air pressure. The balls behave in a similar
way at a drop test, which is a low speed dynamic test. Even at the speeds seen here the
pressureless ball will lose effective stiffness from the lack of pressure, and so it must be
structurally stronger. As expected, the punctured ball is much softer that the other three. A
surprised is that the oversized ball has a much lower stiffness than the pressurised and
pressureless balls., suggesting that the pressure compensates strongly during dynamic
impacts for any weakness introduced by the thinner walls used to make it larger.

6.4.b Drilled balls - loading

The force-deformation curves for the drilled balls lend themselves well to simple
approximations, which are ideal for use in an impact model. In anticipation of a model
based on using a point mass as a centre of mass deflection, the ball deformations were
halved. Whatever shape the ball deforms to during compression, if the deformation is
symmetrical then the centre of mass remains on the axis of symmetry and thus its
deflection is always half the value of the ball deformation.
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Figure 6.9 (a-d) Fitting (a) linear, and (b) quadratic curves to the loading part of the force-
deformation data for a drilled pressurised ball; fitting (c) linear and (d) quadratic curves to the
data for a drilled pressureless ball. In each case the solid line is experimental data and the
dashed line is the fitted trendline.

Figure 6.9 (a-b) shows just the loading part of the curve for a pressurised ball, with both
linear and quadratic fits. The linear fit is a reasonably good first approximation, and shows
that the stiffness is fairly constant over a wide range of deflection, at 16.5 N/mm. A
quadratic fit is even more accurate, giving a stiffness (found from differentiating the
trendline equation) which decreases from 20.3 N/mm at zero deflection to 13.5 N/mm at a

deflection of 12.7 mm (equivalent to a ball deformation of an inch). The equation relating
force F to centre of mass deflection x is given (for deflections in metres) by

F =-26511x% +20266x — 5.696 [6.1]

Figure 6.9 (c-d) shows the same fits to the loading curve for a pressureless ball. In this case
the linear fit is even more accurate, giving a stiffness of 24.6 N/mm. The equation for the
quadratic fit is given in equation [6.2]. Differentiated, it gives a stiffness of 27.7 N/mm at
zero deformation and a lowered stiffness of 22.5 N/mm at a deformation of an inch — 37%
and 66% higher stiffness than for the pressurised ball at the respective deformations.

F ==203309x +27685x —18.129 [6.2]
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6.4.c Drilled balls - unloading

To be useful in an impact model, the hysteresis energy loss due to unloading must be
simulated as well as the loading force. The method chosen was to choose a “shape factor”
function which could be multiplied to the loading curve to give a reduced unloading curve.
This must have a value of 1 at maximum deflection (and must never be greater than unity
or this would lead to the unloading force being greater than the loading force). The first
function tried used an exponential of the displacement unloaded as a proportion of the

xmax

xm ax

—k[l— ud J
xmux

This did not lead to the correct shape (although the numerical energy loss could be

) . . X )
maximum displacement, i.e. , leading to

F=F,

loading €

[6.3]

. : fx -x .
reproduced) and therefore the relationship was altered to use  [—2=—— | leading to
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Figure 6.10 Modelling the unloading curve of a pressurised ball, showing shape factors from
the two unloading equations defined in equations [6.3] and [6.4].
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Figure 6.11 Modelling the unloading curve of a pressureless ball, showing shape factors from
the two unloading equations defined in equations [6.3] and [6.4].

Figure 6.10 shows the loading curves produced by the two shape factor equations defined
in [6.4] and [6.5]. It can clearly be seen that the second definition gives a much better fit.
The same is shown in Figure 6.11 for a pressureless ball.

Unloading curves for different maximum deflections
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Figure 6.12 (a) The effect of shape factor on modelled unloading curves from various

maximum loads, and (b) similar data reproduced from Ashcroft and Stronge (2003).
Figure 6.12 (a) shows unloading curves given the shape factor defined above when the ball
is loaded to various values before being unloaded (using the linear loading approximation
for simplicity). The unloading curves follow the trend of tending to the unloading curve of
that for the highest load. This compares well to the experimental data reproduced from
Ashcroft and Stronge (2003) in Figure 6.12 (b). The values of load against deflection do
not match up for two reasons. The first of these is that the data of Ashcroft and Stronge
uses actual ball deformation rather than centre of mass. The second is that the data plotted
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in Figure 6.12 (a) assumes no cloth effects, whereas the data of Ashcroft and Stronge
would need to be offset by 1 to 2 mm for a proper comparison.

6.5 Discussion

The definition of the ITF compression test calls for the machine to be zeroed when a
preload of 80 N is measured. Such a preload is necessary to account for the variation in
size between balls, and a relatively high load as this is needed because of the large initial
deflections that occur due to the cloth deformation. This was reflected in the force-
deflection curves seen here. A true zero is not only hard to define experimentally when
setting up the apparatus, but gives initial deflections such as those shown by Ashcroft and
Stronge in Figure 6.12 (b). This is why a deflection of 2 mm was used to define the “zero
compression stiffness” in section 6.4.a.

The stiffnesses measured were in the order of 20 kN/m. The surface stiffness quoted by
McMahon and Greene (1979) for asphalt or concrete was over 4000 kN/m. Values from
3000 kN/m and upwards were found using Berlin Artificial Athlete data in Chapter 5. All
of this data suggests that a tennis ball has a stiffness two orders of magnitude lower than
the court surface.

As in the previous chapter dealing with the experimental measurement of surface
properties, the testing here was all performed in a controlled environment — actually in the
same temperature and humidity controlled laboratory used by the ITF for ball approval
testing. As mentioned in Chapter 2, Rose ef al. (2000) found that static ball properties were

not affected by temperature, and so this does not seem an important factor for the
deformation testing discussed here.

6.6 Summary

In this chapter, the (quasi-) static properties of a tennis ball were examined. As would be
expected given that all balls are manufactured to satisfy a standard set of tests, pressurised
and pressureless balls behave the same in terms of stiffness and energy loss. When the
internal pressure of these two types of balls is released however (to enable the pressure in
the ball to be included in the model), they have very different stiffnesses — about 50%
higher for the pressureless ball for a linear fit, which is a good first approximation in both
cases. Quadratic approximations were found for the relationship between centre of mass
deflection and force for both ball types, which could be useful modelling information if the

volume and pressure were to be taken into account. A shape factor function was found
which modelled the unloading shapes well.

Balls still containing pressure (since “punctured” balls still increase in pressure under
compression, unlike the drilled balls), were also modelled by fitting polynomials to the
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force-deflection curves. This allowed a “zero-compression” stiffness to be found by taking
a tangent to the curve, although to take into account effects of cloth compression this was
calculated at a nominal small deflection of 2 mm.

Compression tests were also performed at a variety of strain rates in an attempt to see how
much difference this made to the stiffness. Somewhat surprisingly, all the deformation
rates above 10 mm/min gave identical force-deflection curves (and even that very slow rate
was very close to the others). This suggested that data taken at a relatively modest
deformation rate can be useful in modelling, although dynamic experimentation is
necessary to test this hypothesis.
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7 Normal impact tests
7.1 Introduction

The rules of tennis give specific limits as to the bounce height of a ball when dropped onto
a rigid surface from 100 inches. Normal impacts can also be used to investigate the
interaction of ball and surface, finding the energy loss by measuring the coefficient of
restitution (the ratio of rebound speed to impact speed). Because the ball is made of rubber,
which is a non-linear viscoelastic material, it is to be expected that the energy loss will
vary with strain rate (i.e. speed of impact). One of the main aims of this particular set of
experiments was therefore to investigate how the properties of a ball change with speed.
Several different ball types were bounced on a force plate at speeds from 3 to 20 ms' and
the sampled force used to improve understanding of various dynamic properties of the ball,

particularly stiffness.
7.2 Experimental apparatus

7.2.a Balls used

Four ball types were chosen to illustrate a range of properties and provide an insight into
the important parameters of construction. The first ball used was a standard pressurised
ball, by far the most widely used type. The next was a pressureless ball. These contain air
at atmospheric pressure but are made with a thicker rubber shell to compensate for the loss
in stiffness which would provided by the air pressure. A modified pressurised ball with the
pressure released by puncturing the rubber with a fine needle was thought to be a useful
combination of the two. The final choice was a prototype oversize ball. The balls were 6%
larger in diameter than standard balls, but contained the same internal pressure. The rubber
walls were slightly reduced in thickness to keep the mass the same. The pressure of the two

pressurised balls was measured after the tests. Ball properties are summarised in Table 7.1.

Although the tests described in this chapter (and the oblique impacts discussed later) were
not performed in a controlled environment like the surface tests and quasi-station
deformations, all the tests took place at a time of year that meant the temperature was
between 20 and 25 degrees Centigrade. The data presented by Rose ef al. (2000) suggested
that for high speed dynamic impacts, a much wider temperature range than this had no
significant effect on ball rebounds.

108



Chapter 7 Normal impact tests

Table 7.1 An overview of the four different types of balls used.

|

Balltype |  O0VEC Shell thickness |
| | pressure | |
— | ! o
| | 0.069MPa |
" Pressurised | i | 3 mm

(10 p.s.t.) |
Pressureless | " | 4 '
| | (Atmosphere) SR J‘
| e
. Oversize | 0.069 MPa - |
pressurised \‘ (10 p.s.i.) }
| - - A
' Punctured | 0 |
3 mm |

. pressurised | (Atmosphere) |

7.2.b  Ball release and projection

\

Figure 7.1 The equipment used to accurately release balls without spin

Balls were projected normally onto a piezoelectric force plate at speeds between 4 and 20
ms™'. At the lower speeds — up to about 7 ms™" - the balls were dropped using a sprung
trapdoor (shown in Figure 7.1). This gave good accuracy of the impact position and
consistent speeds. It was designed to avoid imparting spin by using a spring to accelerate
the trapdoor away from the ball faster than gravity. At the higher speeds they were fired
horizontally from a modified Bola machine (Figure 7.2), which projects balls between two
spinning solid rubber wheels and is sold as a cricket bowling machine. By setting both
wheels at the same rotational speed, it was possible to ensure the balls were projected with
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a low spin rate (which could be verified from the video footage). There was a range
between 7 and 13 ms" where it was not practical to drop the ball using the trapdoor
because of the extreme height which would be needed (not to mention the problem of
achieving accuracy of impact), but was too slow to use the Bola effectively mounted

horizontally because of problems achieving an accurate trajectory.

Figure 7.2 The Bola machine used to project the balls.

7.2.c Ball speed measurement

At all speeds the impacts were filmed using a Kodak MotionCorder high speed video
system, at 400 frames per second. As well as providing data which could be analysed for
position and thus velocity (discussed in more detail later), this gave visual feedback as to
the position of impact, and verified that there was little or no spin. At the higher speeds of
13 ms' and above, the incoming and outgoing ball speeds were measured using light beam
timing gates. Because these gates were designed for high velocity use, they could not be
used at the lower speeds (when the ball was dropped) and so the video data was manually
analysed to find positional co-ordinates. Video data from several of the high speed impacts
was used to ensure that values from this method agreed with those from the timing gates.
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7.2.d Piezoelectric force plate

(@) | (b)

Figure 7.3 The piezoelectric force plate shown (a) as constructed and (b) in a protective

aluminium mounting for high speed impacts.
The force plate was a bespoke piece of hardware manufactured by Cross and used in a
number of experiments (Cross, 1999b, 2000b). It is shown in Figure 7.3 (a) and consists of
an array of four square ceramic piezoelectric elements, on a steel base plate. This system
was then fitted into the aluminium mounting seen in Figure 7.3 (b), which protected the
wires from high speed impacts. It also improved the accuracy by reducing the target area
and making it obvious when a ball impacted off-centre, as the ball would rebound
sideways after striking an edge. This was useful as a badly off-centre impact would result
in a significantly different calibration of the piezoelectric elements.

Circuit board —__

Signal wires

Insulating plastic

Piezoelectric
element

Steel base \ '

Figure 7.4 Exploded schematic of the force plate construction.

The four piezoelectric elements were aligned in the correct polarity, and attached to the
steel base using conductive silver paste as shown diagrammatically in Figure 7.4. The first
of the two connection wires was simply screwed to the base. The top surfaces were then
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connected in parallel to the second signal wire using a carefully applied low temperature
soldering iron. A square piece of circuit board was then attached on top. This evened out
the impact force so that it was spread equally between the four elements, and also shielded
the piezoelectric elements from any electrostatic charge generated by the ball (which was
found to be a problem initially).

A 10x oscilloscope probe was used to connect the signal wires to a Picotech ADC-100
analogue-to-digital converter which sampled the force at a frequency of 60 kHz (giving
typically 250 to 300 data points per impact). Because the four piezoelectric elements would
never be perfectly matched, the impact and rebound speeds were used to calibrate the
combined signal for each impact. This was done by integrating the force signal S over the

duration of the impact (multiplied by the calibration ¢ to give the force F =c¢S), and

equating this total impulse to the momentum change of the ball as Ith = Jcht =mAV .

The maximum deviation seen was under 10% of the typical calibration.

7.2.e Analysis of video data

This section describes an example of the process used to extract velocity information from
the video footage. On triggering, the camera stores a number of frames in memory but
these cannot be then saved directly in a digital format. The frames of interest are instead
played back at a low speed (typically two frames per second) and either captured directly
to computer, or more likely with experimental fieldwork are recorded onto an analogue
video tape. This enables remote recording of a large amount of data but with an inevitable
loss in quality involved with converting the information from digital to analogue, and back
to digital when the video is acquired by a computer back in the lab.

Individual frames were acquired by a desktop computer and saved using a standard video
capture card. After experimenting with automated tracking, manual digitisation was
decided on as the best method of finding the ball position. A custom program was written
to plot the position of the ball by overlaying a resizable circle. This effectively uses the
whole circumference, which improves the accuracy compared to other methods (e.g.
involving mathematically finding the centre from three points on the circumference). It
was also found to be a more efficient tracking method in terms of time.
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Figure 7.5 (a) possible errors in velocity using a linear fit to displacement data, and (b) using

quadratic fits with contact time data to minimise these errors
There was a concern that for the slower impacting balls, gravity would have a significant
effect on the speeds even during the short filming period. If a linear trendline is fitted to the
displacement-time data but there is actually an acceleration downwards, this will
underestimate both the speed before and after impact, as shown in exaggerated form in
Figure 7.5 (a). The true tangent to the displacement curve will be steeper at the start and
end of impact than a linear trendline fitted to all the data. To compensate for this error a
quadratic trendline was used. If the vertical position of the ground was known, this would
be a trivial task, but it was difficult to pick this out accurately from the video footage.
Because the impact position was off-centre, any out of plane movement of the ball’s
trajectory moved the contact as seen by the camera. The oblique viewing angle also meant
that it was not particularly accurate to simply use the frame with the highest deformation to
ensure the ball was in contact since as the contact area widens, the lowest part of the ball
seen by the camera moves.

The method adopted was to use the measured force data. This allows a reasonably accurate
contact time to be determined. Consider Figure 7.5 (b). Let the quadratics (matched to the
displacement-time data by a least-squares regression) for velocity before and after impact

have equations y, = a,t2 +ht+c and y, = a,t’ +b,t + ¢, respectively. If T| is the time of
the start of contact and T¢ the length of contact, the value of T, can be found such that y; at
1=T, isequal toyz at =T, +T. - ie. the ground level at the start of the impact matches

that at the end of the impact. If these equations are equated, we find
al! +bT +¢ =ay(+T,) +5,(T, + T, )+ c,
=a,(17 + 20T 4 T2 ) b1, 4T, )4,
thus (al "az)T|2 +(b1 -b, —2a2TC)T, +(C| ) ‘azT('z "b2T<-)=0 [7.1]

Since Tc and the coefficients a, b and ¢ are known, [7.1] is simply a quadratic in 7.
Solving this and substituting 7, and T, +T;. back into the initial equations giving y before

and after impact gives the required speeds.
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7.3 Sample force data
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Figure 7.6 (a-c) (a) Force-time, (b) COM displacement-time and (c) force-displacement data,
for a standard pressurised ball dropped from 100 inches.

Figure 7.6 (a) shows a typical force-time curve for a pressurised ball dropped from 2.54 m
(100 inches). As the sampling was manually triggered at a random time between the ball
being released and it impacting, a time offset was applied to the data to ensure the impact
data started at time ¢ = 0. There is a distinct shoulder about 0.25 ms after the start of the
contact, but apart from this the curve is similar to a half sine wave.

If the force is divided by the mass to give acceleration and integrated, velocity can be
calculated. Because the data was sampled at a reasonably high frequency and is fairly
smooth, a simple trapezoidal integration rule was considered sufficiently accurate. The
offset used here was the boundary condition of measured velocity V;, at time t=0. A
further integration gives displacement. Figure 7.6 (b) shows this displacement against time,
which was given the boundary condition of zero displacement at r=0. It should be
remembered that this is displacement of the ball centre of mass, not the absolute
deformation relative to the original sphere. This graph suggests that the ball is still slightly
deformed after 4.5 ms, when it leaves contact with the surface of the force plate. There is a
maximum centre of mass displacement of about 8.6 mm.
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Figure 7.6 (c) plots the force-displacement curve for the structure. The negative
displacement is shown here as a positive compression. The effective initial stiffness can be
clearly seen to be higher than that later in the compression cycle. The secondary stiffness is
almost constant as shown by the nearly linear force-compression relationship, suggesting
that it does not change significantly throughout the loading. On unloading there is an
enclosed area representing the hysteresis energy loss. This area is not particularly large,
indicating qualitatively that the ball bounces fairly well, with a large proportion of its

initial energy.
7.4 Comparison of force plate and video data

In order to verify the data from the force plate, an impact was filmed using a different high
speed video system, at a higher frame rate. The frame rate of 400 Hz used previously was
adequate for finding speeds before and after impact, but would only give two or three
frames during contact. A Kodak 4540 system gave a frame rate of 9000 per second,
providing typically 40 frames during a 4.5 ms contact period.
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Figure 7.7 Comparison of high speed video measurements and integrated force plate data for
ball COM deflection during normal impact.
Figure 7.7 shows the comparison between the ball centre of mass deflection calculated
from the force signal and measured using high speed video. The video positional data was
adjusted to take into account the effect of assumed deformations as discussed later in
Chapter 8. It can be seen that there is very good agreement, suggesting that the assumption
of deformation shape is a reasonable one and that the force plate data is accurate.

115



Chapter 7

Normal impact tests

7.5 Results - velocities
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Figure 7.8 Rebound speed against incoming speed and COR against incoming speed, for
four different ball types impacting normally at speeds between 4 and 20 ms™.

Figure 7.8 shows how rebound speed varies with impact speeds, for the four ball types —
shown as both absolute speeds and COR values. At low impact speeds, the balls all behave
in a similar manner, and even the punctured ball is fairly close to the other types in terms

of rebound speed, although the difference is accentuated by looking at COR. This is
because the small difference in absolute speed makes the graph points difficult to
distinguish until they are normalised using COR.
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[t is to be expected that “off the shelf” balls will have very similar rebounds at low speeds.
This is of course because balls are manufactured to achieve the specified bounce height
range of the approval tests, which happens at a speed of just below 7 ms”. The
construction of the normal and oversized pressurised balls does not seem to be different
enough to cause significantly different rebounds even at the higher speeds. It is worth
noting that the COR values at the 100 inch height lie in the 0.76-0.79 range found by
taking aerodynamic drag into account, rather than the 0.73-0.76 range as would be
expected using a simple energy conservation relationship.

As the speed is increased, the two pressurised balls maintain similar rebounds, but the
pressureless ball has a lower COR. Pressureless balls compensate for the lack of internal
pressure by having a thicker (and therefore stiffer) rubber shell, typically 4 mm compared
to 3 mm for a conventional pressurised ball. As a ball is compressed, there are force
components due to both the resistance of the structure to deformation and the internal
pressure. Both of these are non-linear functions of deflection and so two balls with
different wall thicknesses and internal pressures cannot have the same overall stiffness
over a wide range of deflection. The permanent pressure balls undergo more deformation
at higher speeds, and it is the deformation which provides most of the energy loss.

The deflated ball shares characteristics of the previous two balls. The pressure was released
using a fine needle to puncture the rubber shell in various places around its circumference.
The holes were small enough that unless a particularly large force was applied, the ball
would retain the air and therefore there would be an increase in pressure as the volume was
decreased. In this way the ball was similar to a permanent pressure ball. However, there
was no extra structural stiffness from a thicker shell and so the deformations (and thus
energy losses) will be larger than all other ball types at every impact speed. The difference

in the COR compared to the pressurised balls does however increase with higher speeds,
where the low stiffness allows extreme deformations.
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7.6 Results - forces
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Figure 7.9 (a-h) Force-time and force-displacement graphs for the various ball types at
different speeds: (a,b) 5.8 ms™, (c,d) 13.5 ms™, (e,f) 16.5 ms™ and (g,h) 20 ms™".
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The force profiles of impacts at various speeds are shown in Figure 7.9. At low speeds, the
pressurised and pressureless balls cannot be distinguished, suggesting that the increased
wall stiffness balances the lower pressure. The punctured ball has a lower maximum force

and longer contact time, both of which suggest a lower stiffness as would be expected.

As the speed is increased to 13 ms™', there is an immediate difference in the shapes of the
curves. All three balls still have the same initial “shoulder” or peak in force. The maximum
force is not too dissimilar for the different ball constructions, although the pressureless and
punctured balls have a maximum force 7% and 12% lower respectively than the
pressurised ball. The significant difference is at the tail end of the unloading part of the
curve. The punctured ball shows a large and sudden extra peak. This can be seen on high
speed video as the bottom of the ball “slapping back down” on the surface. The same
feature can be seen on the pressureless force curve, although it is much less pronounced
and occurs earlier. The pressureless ball retains a similar overall contact time to the

pressurised ball.

At 16 ms’', the pressureless ball has a noticeably lower maximum force than the
pressurised ball. Again all three balls have a similar initial rise in force. The punctured ball
has a similar late increase in force. Again the pressureless ball has a smaller peak, but the
time is later, as though it is behaving more like the punctured ball.

At the highest speed of 20 ms™, the force curves are beginning to be dominated by the
large initial rise in the force. At this speed this peak is around two thirds of the maximum
force seen. Yet again it is similar for all the balls, suggesting it is not a function of the
pressure. The late secondary peak in the force now happens at a similar time and has a
similar magnitude for the pressureless and punctured balls, suggesting the pressure is
becoming more important than the wall thickness and stiffness. As the speed increases, the

force curves also become much less smooth, implying vibration and irregular deformation.

Figure 7.9 also shows that the COM displacement is not affected as much as might be
expected by ball construction. There is only around 1 mm difference in maximum
displacement between pressurised and punctured balls at three of the four speeds.

Somewhat surprisingly, the oversized ball has similar or greater displacement than the
punctured ball at all speeds.

The same data is also shown in Figure 7.10, plotted with all the speeds for a particular ball

on each graph. This emphasises the difference incoming speed makes to the shape of the
impact force curve.
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Figure 7.10 Force-time and force-displacement graphs per ball, plotting different speeds on
the same graphs. In each case the data is for about 2.9 ms”, 5.8ms”, 13.5ms”, 16.5ms" and
20 ms™' in order of increasing peak force.
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7.7 Discussion

It is clear from both the force-time and force-displacement graphs that there is an initial
peak in the reaction force, which depending on impact speed can be the most noticeable
feature of the impact. This effect does not seem to depend significantly on ball
construction, but its value as a proportion of the overall maximum force increases with
impact velocity. The force-displacement graphs show this peak as an initial peak stiffness.
Various explanations have been suggested as to the reason for this initial peak. Thomson
(1999) and Cross (1999b) both noted the dip after the initial peak in the force — which is
much more noticeable on the force-displacement curves than the force-time ones) and
suggested that it was due to a sudden change in stiffness of the ball. Cross (1999b)
constructed a force platform which contained a small (13 mm) central piezo element above
a much larger one, so that the contact force over a small area could be measured as well as
the total force. By bouncing a ball directly on the smaller piezo as well as at a central
impact point 20 mm away, he was able to produce centre and off-centre forces as shown in
Figure 7.11.

He attributed the drop in stiffness after an initial sharp rise to internal buckling of the ball
core (i.e. bending rather than compression) causing instability and reducing the effective
structural stiffness. Dignall (1999) created a finite element model of the ball which also
showed this same buckling.

(a) Total force

(b) centre

L/\ off-centre

] ] ] ]
0 2 4 6 8

t (ms)

Figure 7.11 Experimentally measured impact force showing the total force and centre and off-
centre measurements (reproduced from Cross, 1999).

An alternative mechanism for this initial peak in force is an impulsive force or “momentum

flux”, which has been used by several authors in ball impact models — described in more
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detail in Chapter 2. This assumes the ball is split into two sections, one of which is the
undeformed part of the ball above the surface, and the other which is either a flat area
which does not move and stays in contact, or which buckles upwards. As the ball
deformation increases, the material just above contact suddenly loses all its velocity,

generating an impulsive reaction force.

One point which is worth noting is that this impulsive force mechanism proposes an
alternative reason for the “inner and outer” forces noted by Cross. At the very start of the
impact, the impulsive force will be a point force. As the ball deforms more and more, the
sections of material coming to rest are gradually increasing circular slices until the
deformation reaches the shell thickness. After this, the contact area for new material
coming to rest and applying a force will be annular, at a gradually increasing radius, which
will cause the measurable force in the central portion to drop — although there will still of
course be a central force due to air pressure and other forces.

Another interesting feature of the initial peak in force is that there is a dip immediately
after it. This becomes more prominent with increasing force and is more noticeable on the
force-deflection curve than the force-time one. The most likely cause for this seems to be
some element of buckling in the shell, momentarily reducing the effective stiffness.

7.8 Summary

This work confirmed the belief that incoming speed strongly affects the properties of a
tennis ball; a significant change in COR can be seen by changing the impact speed (from
about 0.8 at an impact speed of 3 ms™ to about 0.6 at 20 ms™).

Ball construction also plays an important part in behaviour. All types of commercial balls
have similar properties at low speeds because of the quasi-static nature of the approval
tests (although the punctured ball is softer), but at higher speeds there are much more
noticeable differences. The permanent pressure ball has a significantly lower COR than
either of the two pressurised balls. The punctured ball bounces even slower, as would be
expected.

All balls exhibit a sharp early rise in force giving a “shoulder” in the force-time curve. The
value of this initial force becomes an increasing proportion of the overall maximum force
as the impact speed is increased. The punctured and (to a lesser extent) pressureless balls
also show an extra force in peak just before the end of the impact at higher speeds.
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8 Normal impact model

8.1 Introduction

The previous chapter shows that when different balls are considered, even a normal impact
is more complicated than might be expected. But although it was considered important to
gain a full understanding of the impact, it was not thought necessary to create a model
which simulated every last detail. The interest lay in predicting how a tennis ball would act

in a game situation.

An important consideration was to create a model whose input conditions could be easily
measured. The ideal situation given an unidentified tennis ball (perhaps a new design)
would be to perform as few tests as simply and quickly as possible. Therefore a vital
property of a model was the ease with which enough variables could be measured to allow
prediction of its behaviour through a full range of conditions.

This chapter progresses through three models of varying complexity, before presenting one
which satisfies the necessary criteria.

8.2 Calculating the centre of mass and moment of inertia for a deformed
ball

8.2a Overview

All the models presented here are based on simplifying the ball to a point mass, which
means that the defining variables (displacement, velocity and acceleration or force) are
calculated in terms of the centre of mass. It is useful — and in many cases vital — to be able
to calculate the physical shape of the ball, either to simply find the external deformation or
to derive more complex attributes such as circumferential contact area.

Several possible assumptions have already been mentioned for the deformed shape of the
ball. None of these make it easy to analytically calculate the altered moment of inertia or
centre of mass position of the new structure, and in all realistic cases it is impossible.
Solutions were therefore found in software using the Monte Carlo method (written in
Visual Basic). This involves discretising the ball into a large number » of point masses, by
randomly generating coordinates until » have been found within the assumed physical
volume of the deformed ball. The densities of the point masses in the rubber and cloth
sections respectively can be calculated using the number of points in each part and the
relative masses of the two materials (e.g. a 57g ball is typically 46g rubber and 1 1g cloth).

When a sufficient number of random points has been generated, the average centre of mass
position y.ox can be calculated using
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1 n
MW:ﬁme 8.1]

=1

Once the centre of mass position is known, the deformed moment of inertia / can also be

calculated:

I=% mr 8.2]

=1

where 7, is the radius about the spin axis.

Figure 8.1 Assumed shapes for deformed ball with deflection d for (a) truncated and (b)

buckled balls.
The centre of mass position and moment of inertia were calculated for two assumed ball
deflections, where the majority of the ball remained an undeformed sphere in both cases. In
the first shape, referred to as fruncated, the ball deflection & is created by simply flattening
the rubber and cloth. In the second case, referred to as buckled, the material of the rubber
and cloth is made to buckle inwards by reflecting it along an axis of symmetry. This will
move the centre of mass position more and reduce the moment of inertia further, as the
material which would be below the surface for an undeformed ball is displaced

approximately twice the distance as for a truncated ball. The two assumed shapes are
shown in Figure 8.1 relative to an undeformed ball.
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8.2.b Results

w. Monte Carlo simulation (deformed ball)
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Figure 8.2 Example software output showing how centre of mass displacement and moment
of inertia were calculated for deformed balls (with truncated and buckled shape assumptions).
The software was used to calculate values for centre of mass displacement and moment of
inertia for a tennis ball of mass 57 grams (made up of 46 grams of rubber and 11 grams of
cloth). The outside diameter of the ball was 66 mm, with the rubber and cloth layers each
being 3 mm thick. 99 999 random points were used to define the ball structure. An
example of the output is shown in Figure 8.2. Each coloured dot represents a randomly

chosen point sitting within a slice 1 mm either side of the central axis.
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Figure 8.3 Displacement of centre of mass position and changed moment of inertia of a
deformed pressurised tennis ball, plotted against ball deflection.
The effect of ball deflection on the centre of mass position and moment of inertia of the
ball are shown in Figure 8.3. As this method relies on randomly generated points, the
results will always be an approximation and thus a trendline was plotted (in all cases a
quadratic). As would be expected, both variables are changed more by the buckled
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assumption than the truncated one — about 1.5 times for the centre of mass and about twice
for the moment of inertia.

Most analytical models are based on applying forces and measuring deflections based on
the centre of mass position, so the data in Figure 8.3 must be changed slightly to reflect
that. A further alteration is that the centre of mass deflection as defined in a model is not
the same as the variable in Figure 8.3, which is the displacement of the COM relative to
the centre of an undeformed sphere. The useful distance is defined as the “COM
movement” and is the ball deflection minus the COM displacement. Of interest is the
ability to calculate the physical ball deformation knowing the COM movement — which is

useful for geometry-based measurements — and the moment of inertia. Both these are
shown in Figure 8.4.
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Figure 8.4 Ball deformation and moment of inertia as functions of centre of mass movement,
for two assumed ball deformation shapes.

Quadratic expressions were again fitted to the data in Figure 8.4. The equations for each fit
(in SI units) are shown in Table 8.1.

Table 8.1 Ball deformation and moment of inertia as functions of centre of mass movement,
for two ball deformation shapes for a pressurised ball.

Ball deformation & and moment of inertia / as functions

formation type
Ball deform P of COM movement x (all variables in meters)

S =27.203x* +0.9645x
Truncated

1=3.2428%107° - 0.030558x> —3.4082x 10" x

S5 =74.830x*+0.841x
Buckled

1=3.2295x107 -~ 0.093891x% +1.1426 x10™ x

126



Chapter 8 Normal impact model

The results above are of course only valid for a pressurised ball type. A pressureless ball
will have different properties due to the altered distribution of material — it has the same
cloth layer but a thicker rubber of lower density.
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Figure 8.5 Physical ball deformation and moment of inertia predictions as functions of centre
of mass displacement for a pressureless ball.

Figure 8.5 shows how the assumed deformation shapes affected the ball deformation and
moment of inertia for a pressureless ball. The thicker shell had very little effect on the
predicted ball deformation (especially for the truncated shape), but there was an effect on
the moment of inertia. This is not a factor on the normal model presented in this chapter,
but may be important for an oblique model in the way it changes rotational acceleration
and therefore spin. The equations for the trendlines shown are in Table 8.2.

Table 8.2 Ball deformation and moment of inertia as functions of centre of mass movement,
for two ball deformation shapes for a pressureless ball.

Ball deformation § and moment of inertia / as functions

Ball deformation type '
of COM movement x (all variables in meters)

S =28.031x2 +0.9634x
Truncated

1=3.1541x10"° -0.03264x% —=3.9665x10°x

6 =77847x*+0.878x
Buckled

1=3.15x107-0.0912x% +2.51x10° x
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8.2.c Discussion
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Figure 8.6 Comparing the deformation and centre of mass predictions for pressurised and
pressureless ball types.
A comparison between the two ball types for just the truncated assumption is show in
Figure 8.6. This demonstrates that the ball construction has no significant effect on the
relationship between centre of mass displacement and external deformation, and therefore
the same relationship could be used for all ball types — although this may not be the case if
a different ball was used with a significant change in size or wall thickness.
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Figure 8.7 (a-b) (a) Measured ball deformation and integrated COM displacement (Goodwill,
2002), compared to (b) the predicted values.
Goodwill (2002) filmed normal impacts using high speed video. He measured the
maximum ball deformation seen on the video, and used force plate data similar to Chapter
7 to calculate the maximum centre of mass displacement by integration. This data is shown
in Figure 8.7 (a). The two trendlines shown (found for all ball types combined) were
plotted against each other and shown with the data predicted here for centre of mass

displacements in Figure 8.7 (b). There is very good agreement for the truncated
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assumption, suggesting that this is a good relationship. It should be noted that the Goodwill
curve shown is a small selection data which was mostly collected at a much higher impact
velocity, and so the errors at the low velocities will be increased. More importantly, his
data deals only in maximum values of measured deformation and COM displacement and
are thus for a single instantaneous deformation shape — it will not necessarily be accurate
throughout the course of an impact. The discrepancy between the predictions and
Goodwill’s measured values are a possible indication that the actual deformation shape is
different from that assumed, although the fit is good. The frame rate used for the filming in
the previous chapter was not high enough to monitor deformation shapes, although this
issue is addressed while analysing the oblique impacts in Chapter 9.

8.3 One degree-of-freedom spring-damper model

8.3.a Model overview

The simplest model and that which is considered first is shown in Figure 8.8. The ball is
replaced by a point mass m, and has stiffness & and damping c. The deflection of the mass

IS x.

77777777
Figure 8.8 Schematic normal spring-damper model.
The equation of motion for this one degree-of-freedom system is
mi+cx+kx=0 (8.3]
Given the boundary condition of x =0 at time ¢ =0, the solution to this equation is
x=ae™" sinwt

Differentiating gives

x = ae™ [w cos ot —bsin ar] (8.3]

and 5= ae™|(b? - @? )sin ot - 2b e cosa)tJ
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The boundary condition x=0 at r=7,. where T, is the contact time gives w:TL.

.
Equating [8.3] to the incoming and outgoing velocities gives two more boundary
conditions:

and xl:l( = I/(m/ aa)e‘bT('
T.
thus a=—"=V, c
w V4
4 4
and b:—Lln _ﬂjz_Lln 7 out_
71(,' aon T(j Vm

Although the constants ¢ and k are not necessary for the mathematical modelling, they are
useful to give some physical understanding. As for an undamped model,

k=m=— [8.4]

Substituting both x and ¥ back into [8.3] leads to the expression

2m V
c=2mb=—-="—In| 2L
T, (V J [8.5]

n

Thus, the constants a, b and ¢ can be very quickly calculated if the incoming and outgoing
velocities and the contact time are known.

8.3.b Finding model constants from experimental data

The data described in the previous chapter was used to investigate the model constants &
and ¢, and how they vary with impact speed. The information needed to calculate k and ¢
for each impact is simply the contact time and the COR. It is possible to estimate the
contact time using high speed video but a filming rate of 10000 Hz would be necessary for
a maximum possible 0.1 ms accuracy, and this still leaves the problem of visually
interpreting the start and end of contact — it is extremely difficult to decide where contact
begins even to within several frames. A much easier method is to use normal impact force
data.

Normal impacts of a standard pressurised ball between 4 and 20 ms™ were filmed using
high-speed video. The contact times and speeds before and after impact were measured.
This provided enough information to calculate k and ¢ for each impact. The variation of
these coefficients is shown in Figure 8.9, which suggests that both closely follow a linear
relationship with impact speed. Also included is the statically measured stiffness. This was
considered to be the stiffness at zero speed, and was measured using a quasi-static force-
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deflection test. The initial loading tangent was used, and doubled since the ball centre of
mass deflection would be half that measured by the loading rig (as discussed in Chapter 6).
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Figure 8.9 The variation of k and ¢ for normal spring-damper model

The trendlines in Figure 8.9 can be used to give equations defining k and ¢ as functions of
impact speed, and are given below (in SI units so that damping is measured in N/m):

k=21028+922 V, 8.6]

c=0637V, +2.41 [8.7]

8.3.c Model results

The equations defining k and ¢ were used to give appropriate spring and damper
coefficients to model a drop test from 100 inches. With an assumed impact speed of 6.8
ms’', this gives k=27543N/m and c¢=6.75Ns/m. Force, velocity and displacement

graphs are shown in Figure 8.10. For this single degree of freedom model, the equations of
motion have an exact analytical solution.
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Figure 8.10 M_?del results for a single degree of freedom spring-damper model predicting an

impact at 6.8 ms
The model predictions are shown in Figure 8.10. It is immediately clear that there are two
features which are physically unrealistic. The first of these is the initial starting force. At
time ¢ =0, there is zero model compression and therefore no stiffness force, but there is
also maximum velocity, which leads to a damping force which is instantaneous as the
impact begins. The second is that the force becomes negative for the final 0.3 ms. This is
again due to the damper, which produces a downwards force due to the upwards velocity at
the end of contact. This is obviously unrealistic, as the ball cannot be subjected to a tensile
force from the ground.

8.3.d Comparison with experimental data

In order to check the model, data from a pressurised ball drop-test was used (see previous

chapter for experimental details). The model spring and damper coefficients were not taken
directly from the data, but from the trendline equations in [8.6] and [8.7].
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Figure 8.11 Comparison of model force-time predictions with experimental data at speeds
between 6.8 and 20 ms™".

8.3.e Comparison of stifiness and damping for different ball types

Data from the quasi-static data in Chapter 6 was used to find the “zero speed” stiffness for
each ball type, and a combination of contact times and rebound speeds used to find the
damping coefficients over a velocity range of 0 to 20 ms™'. Figure 8.12 shows how the
incoming speed affects the stiffness k and the damping ¢ for (a) a pressureless ball, (b) a
punctured ball, and (c) an oversize ball. Equations for the trendlines are shown in Table
8.3.

The data for all balls is shown in comparison in Figure 8.12 (d). It is interesting to consider
the stiffness of the pressureless ball, remembering that it is an equivalent stiffness of the
structure, taking into account both the rubber properties and the internal pressure. Statically
it is the stiffest of all the balls because of the thicker rubber wall, but at an impact speed of
20 ms™ its stiffness is only slightly higher than that of the punctured ball. This suggests
that at lower velocities when the deflections are small, the rubber shell is the most
important factor. When the velocity is increased, the much larger ball deformation (and
large reduction in volume) means that overall structural stiffness is dominated by the air
pressure, to such an extent that the pressureless ball has a stiffness closer to the punctured
ball than either of the pressurised ones. The punctured ball retains a surprisingly high
stiffness, but has significantly higher damping than the other balls.
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One feature worthy of note is that using the contact time gives a stiffness for the
pressureless ball at 20 ms™ which obviously does not follow the trend set by the other
speeds (and in fact this data point was not used to find the trendline shown in Figure 8.12.
This is caused by the late extra peak in the force, which extends the force-time curve later
than would otherwise be the case. The same peak does not seem to affect the punctured
ball stiffnesses, perhaps because it is evident at almost all impact speeds. Features of this
nature mean that it would be impossible to extrapolate the data and predict the behaviour
of the balls at higher velocities, as unknown irregularities in the force behaviour could
change the behaviour significantly.

Table 8.3 Spring-damper model parameter equations for the four ball types.

Ball type k (N/m) ¢ (Ns/m)
Pressurised k=21028+922 V, c=0637V,+2.41
Pressureless k=22289+542 vV, c=0.579V, +3.12

Oversized k=17459+886 V, c=0.543 1V, +2.71

B Punctured k=12483+988 V, c=0873V, +1.19
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Figure 8.12 Variation of stiffness and damping with incoming speed for (a) pressureless, (b)

punctured and (c) oversized balls, as well as (d) combined on a single graph together with
pressurised data.
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8.3.f Model discussion

The Kelvin-Voigt model presented consists of a single spring and damper, whose values
were constant for a particular impact but depended on the contact time of the impact and
coefficient of restitution. Linear relationships were found between the spring and damper
coefficients and the incoming velocity. It would seem dangerous however to extrapolate
this linear regime to higher speeds, where the nature of the impact becomes more
complicated — effects such as the initial shoulder in the force and the buckling of the shell

are more significant.

It was found that pressureless balls have a similar stiffness to pressurised ones at low
impact velocity, but significantly lower at high velocity. Punctured balls have the lowest
stiffness at all velocities tested, but this was similar to the pressureless balls at the highest
velocity tested. All the balls had similar damping coefficients at low velocity, but the
punctured ball had significantly higher damping at high velocity than the pressurised and
pressureless balls, which remained very similar at all speeds.

When forces and deformations during impact are considered, the model soon becomes
inadequate. It is able to produce a high initial force at the start of the impact, but this is no
more than a mathematical coincidence due to the peak incoming velocity producing a large
damping force. This damper also produces a negative force at the end of the impact, which
is another flaw in the model. A more significant problem is that all the model parameters
are derived from experimental data which requires substantial (and complex) testing
throughout the range of velocities at which the model could hope to be applied.

8.4 Impulsive force model

8.4.a Model overview

It is clear that the model previously presented gives results which are superficially similar
to actual ball impacts, but lacks the sophistication required to give accurate representations
of reality. A different model was therefore created in an attempt to include all the
important physical features.

The forces on the ball are listed below and each one will be discussed in detail. The
deformation shape chosen was that of a truncated ball as discussed in section 8.2.

e Structural stiffness force
e Damping force

e Impulsive reaction force
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8.4.b Structural stiffness force

Compression of the ball structure produces a structural force, whose properties depend on
the rubber composition, its thickness and the internal pressure of the ball. Goodwill (2002)
used a structural spring stiffness whose value k3 was a power law function of an initial
stiffness kg and ball COM deformation x raised to a power a:

kyy = ky) + Agx® [8.8]

The values Goodwill found for the constants are reproduced in Table 8.4 below for the four
ball types. These values were found using a rather complicated iterative process involving
contact times measured experimentally at a range of speeds up to 30 ms™.

Table 8.4 Spring stiffness parameters reproduced from Goodwill (2002).

Ball type ks (kN/m) | Ag (kN/m?) a
Pressurised 21 16000 1.65
Pressureless 23 12500 1.70
Oversized 21 3600 1.30
Punctured 16 60000 2.00

A slightly different method of calculating stiffness was adopted as one of the aims of this
project was to create a model using as few experimental measurements as possible. The
form of the equation used was chosen so that only one parameter needed to be found.
Static stiffnesses at close to zero deflection were found in Chapter 6, and so the model
stiffness should match these. The equation chosen was,

k =ke™ [8.9]

The value of kp was in each case the experimentally measured static stiffness at zero
deflection, leaving just 4 to be determined. Initially 4 was chosen to match the static force-
deflection curve as close as possible, but it was found that this gave a model which had too
long a contact time and too low a peak force at all velocities — suggesting it was not stiff
enough. Thus a higher value of 4 was found which matched the peak force and contact
time for a single impact — that at 6.8 ms™ for a 100 inch drop test.
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Table 8.5 Spring stiffness parameters.

Ball type ‘ ko (N/m) ‘\ A
Pressurised 21000 50 i
Pressureless | 22500 | 72; 1

) Ovérsized | 18700 7 ‘ : 4757 |
7 Punctured | 73600 77i B 56 |

Table 8.5 gives the values of k) and A that were found for the four ball types. The
pressurised and pressureless balls have static stiffness values very close to those found by
Goodwill, but both the oversized and punctured balls have a lower stiffness.

The model structural force given by the parameters in Table 8.5 are compared in Figure
8.13. It can be seen that at a low deflection, the pressurised and pressureless balls have a
very similar stiffness, with the oversized ball also quite close. All four balls increase
stiffness as the COM deflection increases — at values above 10 mm, the oversized ball
becomes stiffer than the pressureless one. The pressureless ball stiffness seems to be
approaching similar values to that of the punctured ball at high deflections.

50
Pressurised
- = = .Pressureless
40 | | == = Punctured

Oversized

Stiffness (kN/m)

0 2 4 6 8 10 12 14
COM deflection (mm)

Figure 8.13 Comparison of force-deflection data for model parameters of different ball types.

When used in the model, this structural stiffness was changed slightly to include the effect
of the cloth. When a ball is bounced on a force plate, there is an initial period where the
cloth compresses for very little force. This can be seen in the experimental data in Chapter
7, in the force-time plots as an initial very gentle rise in the force, and in the force-
deflection plots as an initial compression before the force suddenly peaks. This was
modelled by allowing an initial period of 0.2 ms where the stiffness was set to zero.
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8.4.c Impulsive force

The experimental data presented in Chapter 7 suggested that ball impacts produce a sharp
initial rise in force which is strongly dependent on impact speed, but not on ball
construction. The idea of an impulsive reaction force or “momentum flux” has been used
by various authors. Percival (1976) used the idea of elements impacting on the surface to
add an impulsive force to a model of a football. Hubbard and Stronge (2001) included a
similar force in a model of a table-tennis ball impact. Goodwill (2002) used the idea of an
impulsive force to create a model of a normal impact between a ball and a rigid surface
which was then applied to the interaction with a racket stringbed, but the data used was
rather empirical and difficult to relate to the physical situation.

Figure 8.14 The geometry and forces caused by impulsive reaction on a truncated ball.

Consider a ball during a normal impact. Figure 8.14 (a) shows an undeformed ball, and
Figure 8.14 (b) the assumed shape with a deformation y. At this point the ball can be
considered as two parts — the flat disc or cap which is in contact with the surface, and the
remaining spherical part above the surface, which is all moving down (all at the same
speed). At this particular instant in time there will be a ring or annulus of cloth and of
rubber that comes to rest on the surface. This instantaneous velocity change provides an
impulsive reaction force. Calculation of this force is simplified by the assumption that the
small elements of mass change from a downwards velocity to being at rest.
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Figure 8.15 The geometry of the contact area cross-section, showing an integration element.

Figure 8.15 shows a horizontal cross-section of the rubber and cloth in the ball at a position
just above the flattened contact cap. Note the rubber annulus is wider than the cloth, due to

the geometry.
The area of the small shaded element 4 shown in Figure 8.15 is given by:

O0A = rorof

The force is equal to the rate of change of momentum, or change in momentum per unit
time. Because the mass element comes to an instantaneous rest, this rate change of
momentum is equal to the mass of the element hitting the surface per unit time multiplied

by the speed. The mass rate is given by the area multiplied by the density, multiplied by
the speed.

OF = SMV'*
= poAV*?

F = HpV 2rdrd0

This integral applies in turn for both the cloth and the rubber. If the inner and outer limits
of radius are r; and r,, this gives:

r2x

F= pI J‘rVyzdadr
r 0

= puv2(r, - r?) [8.10]
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Figure 8.16 Calculating inner and outer radii for the contact areas during impact.

In order to calculate the integral limits r; and r,, consider the geometry shown in Figure
8.16, where the rubber and cloth layers have thickness 7z and /¢ respectively. The contact
plane used to calculate the radii is at a distance h above the undeformed base of the ball.
The outer radius for the rubber contact area will be the same as the inner radius for the
cloth contact area, ;. The inner radius for the rubber contact area is r; and the outer radius
for the cloth contact area r;3.

For small deflections, the cross-sectional contact area will be circular rather than annular.
For h less than 3 mm, both r; and r, will be zero. Between 3 and 6 mm, r; will be zero.
This larger circular area (created at higher incoming velocities) will lead to an initial peak
in force as shown in all tennis ball impact measurements. Above 6 mm, the integral area

will be of an annulus as shown in Figure 8.15. This leads to the term (r : —r,.z) being

0

constant (since cross-sectional areas of parallel slices of a spherical shell are constant), and

the force simply being proportional to the square of velocity. The values for the three radii
are shown in Table 8.6.

Table 8.6 Summary of the contact area radius equations.

Deflection i - 2
O<h<3mm 0 0
6 0
3mm < h <6 mm \/(R : 2 Rz—(R—h)z
~tc) =(R~h
h>6 mm \/(R—tR—tC)Z—(R—h)Z c) = ( )
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It is important to note that the velocity used is that of the ball shell rather than the centre of
mass. This difference was noted by both Hubbard and Stronge (2001) and Goodwill
(2002). The physical ball velocity was defined by multiplying the centre of mass velocity
by a scale factor which was the ratio of the total ball mass divided by the mass of the ball
above the surface. This does not have a particularly large effect on the impulsive force
however, as during the early phase where the impulsive force is highest there is little
difference between the physical and centre of mass velocities.

8.4.d Damping force

The “damping force” represents viscoelastic energy losses in the rubber of the ball. The
assumption was made that the energy lost would be due to bending around the edge of the
contact area and compression of the circular area.. A damping coefficient ¢ was therefore
defined as being proportional to the contact area — but only the contact area of the rubber
section, as there will be almost no energy loss in bending the cloth layer. If the area of
material instantaneously coming into contact is an annulus of inner radius r; and outer
radius r, as used to calculate the impulsive force, the average contact diameter d is given
by

Jop (nr)

=r,.+ro

Since the contact area is proportional to the square of the diameter, the damping coefficient
was defined using a constant Cy to give

Fy=Co(r+n)V

This model parameter could not be measured directly from the ball, and therefore a value
of COR had to be used to calculate it. Again the 100 inch drop test was used, and a
damping coefficient chosen to match a rebound value for each ball type.

Goodwill (2002) found a similar relationship relating contact diameter deoyy to ball
deformation Sg4.. using high speed video, which is reproduced in [8.11]. This relationship
was valid only for the compression phase of the impact, as there was too much scatter in
the data for the rebound phase. A significant factor in this is the high impact speeds used
by Goodwill — up to 30 ms™'. These speeds will cause much more irregular deformation
shapes, exaggerating both the oscillations and late force peak shown in the force data in
Chapter 7.

deonr =—1.66x 107 511,4/,/,4 +1.27x10* 53,4/,1.3 -4.13x10° 5,;,41,112 +7.66

BALL

[8.11]
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This gives the diameter of the contact area between the ball and surface, but not necessarily
of the diameter of the disc or annulus where the bending causing damping is actually
taking place. A comparison of the contact diameter calculated using this equation and
compared to that used in the model is shown in Figure 8.17, demonstrating a very close
relationship. The model data here is for an impact at 20 ms.
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Figure 8.17 Contact diameter used for the damping force, as used in the model and
compared to the experimental values of Goodwill (2002).

The values found for the parameter Cy are shown in Table 8.7. The results are difficult to
interpret in isolation; what seems important is the relationship between stiffness and

damping — for example, the oversized ball has the lowest damping coefficient but also
lower stiffness than the pressurised ball, which combine to give the same COR.

Table 8.7 Model damping parameters for the various ball types.

Ball type Co (Ns/m®)
Pressurised 4000
Pressureless 3800

Oversized 3500
Punctured 4500
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8.4.e Solving the model

Initial conditions: zero
displacement,incoming velocity

Y

Centre of mass
movement

Calculate physical
ball deformation

lterate velocities
over contact area

A Y

Calculate Calculate Calculate
structural force damping force impulsive force

Calculate total force

Y.

lterate through acceleration,
velocity and displacement

Figure 8.18 Flowchart of the model iteration process.

The model solving process is summarised in a flowchart in Figure 8.18. A spreadsheet was

used to progress the model in an iterative way, using formulae of the form x,,, =x, +v,6¢.

Amongst the initial parameters were the total mass of the ball and the amount of this made
up by rubber and cloth — to calculate the density of each as used in the impulsive force
component as well as various geometry calculations such as the mass of the ball still
moving towards the surface. Boundary conditions such as initial displacement of zero and
initial centre of mass velocity being that of ball impact speed were also used, but the only
other parameters needed were the coefficients for the various force equations.

The structural force could be calculated directly from the centre of mass displacement x,
but the other two force components needed this displacement to be converted to a physical
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ball deformation as they were calculated using the ball geometry. These three forces, the
variables used to calculate them and the defining functions are summarised in Table 8.8.

The forces were then combined and the model advanced by a timestep ¢.

Table 8.8 Summary of model force components.

| !

f i }
Force component | Govg ming | Defining function ‘ Parameters needed |
variables | | |
L I
1 ‘ |
k =ke™
Structural stiffness ‘ Enire of s ’ ‘ ko, and A ‘
. displacement x B =k ‘
\ 5 = hg |
-, S —— | ‘ e e i
| ‘ r,2x 1 l
| | F=p [V, dad |
| . .| Physicalban | F= p| v, dodr Cloth and rubber |
. Impulsive reaction « . &
| deformation | off x & density p ‘
i \ \ =p7rVy’(r“ = ) \
S e . o
\ i . Physical ball B 3
Damping ‘ deformation Fy=Colr+r,)V Co ~\

8.4.f Model results
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Figure 8.19 Experimental and model predicted rebound velocities.

The model was used to calculate predictions for rebound speed for various ball types, and
the results are shown in Figure 8.19. The match between experimental and model data is
extremely good, and clearly differentiates between the different ball constructions. The
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pressurised and oversized model data are shown as separate lines, but they cannot be
distinguished.

Force data for a pressurised ball is show in Figure 8.20 below, for speeds between 5.8 and
20 ms”. The initial peak force is predicted well by the impulsive force portion of the
model. One difference between the experimental data and model predictions is the drop in
stiffness immediately after the initial peak, which may be caused by buckling of the ball.

This effect is seen to a greater extent as the impact speed increases.

Model and experimental forces are also shown for punctured, pressureless and oversized
balls in Figure 8.21, Figure 8.22 and Figure 8.23 respectively. Again the force matches up
well although it fails to predict the late second peak seen to some degree with the
pressureless ball and particularly with the punctured ball (and thought to be due to
buckling caused by the lack of internal pressure in these two ball types).

400 1000
13.4 m/s
58mi/s 800 4 '
300 :
z Z 600
@ 200 1 3
E 5 400 -
100 | 200 |
0 ~ 0 :
0 5 0 1 2 3 4 5
1000
800 |
Z 600 |
]
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0~
0

Time (ms)

Time (ms)

Figure 8.20 Comparison of model predictions (solid lines) and experimental values (dashed
lines) of f10rce-time data for the normal impact of a pressurised ball at various speeds from 5.8
to20 ms .

146



Chapter 8

Normal impact model

400 - 1000
5.9 m/s 13.4 m/s
800 |
300
z Z 600 -
i} [:1]
Q
:5_’ 5 400 -
200 {
0 +
5
1000 ; 1000 -
B 16.9 m/s 20.1 m/s
800 |
z 3
:
= [=]
2 e
0 1 2 3 4 5 0 1 2 3 4 5

Time (ms) Time (ms)

Figure 8.21 Comparison of model predictions and experimental vaiues of force-time data for
the normal impact of a pressureless ball at various speeds from 5.9 to 20.1 ms™.
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Figure 8.22 Comparison of model predictions and experimental values of force-time data for
the normal impact of a punctured ball at various speeds from 5.7 t0 20.3 ms™
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Figure 8.23 Comparison of model predictions and experimental values of force-time data for
the normal impact of a oversized ball at various speeds from 5.8 to 19.9 ms™.

8.5 Discussion

The second model presented is a far superior representation of a tennis ball impact. Not
only does it give a much more accurate depiction of the forces on the ball, it does so in a
way which attempts to recognise and predict the various physical processes involved. The
forms of the various equations used in the model were carefully chosen to be as “real” as
possible, rather than abstract coefficients (which are often found by circular use of the data
to be predicted). The only experimental data used to find the model parameters was static
properties and force data from a single dynamic impact at fairly low speed (6.8 ms™ from a
100 inch drop test). It must be recognised that if a radically different design of ball was
introduced whose behaviour changed unpredictably compared to the various current balls,
it is possible that this model might not model the various forces adequately to be accurate
over a range of velocities. For example, a single value at 6.8 ms™ is used to find the

damping, and so a ball made from (for example) a different material may not obey the
same damping laws at different speeds.
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Figure 8.24 Various force components for a normal impact model of a pressunsed ball at (a)
58ms ' and (b)20ms”

The three different mechanisms contributing to the total force are shown in Figure 824,
which plots the forces for a pressurised ball impacting at 5.8 and 20 ms™". At the lower
speed the impact is dominated by the structural stiffness. The impulsive force has little
effect on the qualitative look of the overall curve, and the damping is also a fairly minor

effect.

When the speed is increased, the structural and damping forces are still reasonably
symmetrical, but the impulsive force produces the carly rise in force which gives the total
force curve its distinctive shape. This is highest during the first part of the impact as the
cross-section coming 1o rest has the widest arca towards the bottom of the spherical shell,
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as well as the velocity change being at its highest. As the “momentum flux” decreases, the
force reduces and reach zero at the point where the centre of mass downwards velocity
becomes zero. As the centre of mass moves back upwards, there can be no more impulsive

force as the mass elements are leaving the surface and cannot impart a tensile force.

Goodwill (2002) produced a similar initial force peak by introducing an artificially
increased stiffness during the first part of the impact. This method has the obvious

disadvantage that it is impossible to measure this increased stiffness experimentally.
8.6 Summary

A method is described for calculating the centre of mass displacement and changed
moment of inertia of a deformed tennis ball. These variables were calculated for the two
deformation shapes thought most likely, and best fit polynomials used to derive functions
estimating their values.

A spring-damper model was created whose input conditions could be measured in a simple
way. Over a range of velocities which is more than adequate for the normal component of
any realistic tennis shot, the spring and damper coefficients k¥ and ¢ both follow linear
trends. The mathematics of the governing equations of the model mean that these
coefficients can be found from a rebound test where the COR (i.e. the incoming and
outgoing speeds) and the contact time are measured. Thus a minimum of two tests is
needed, perhaps a drop test and an impact at the highest speed expected to be of interest. A
static compression test gives a further value of stiffness equivalent to zero impact speed.

More tests throughout the velocity range will obviously improve the quality of the fit of the
stiffness and damping with speed.

A physically meaningful model was created which was based on measurable parameters.
Quasi-static test data was used to define the structural stiffness of a ball as well as the
energy loss due to hysteresis unloading. A truncated deformation hypothesis enabled
calculation of the centre of mass position and the moment of inertia (although this is not
needed for a normal model). This also led to relationships defining the change in internal
pressure of the ball and therefore the pressure force during an impact. The final force on
the ball was the damping force, which was based on the contact area to simulate the energy
lost in bending of the rubber shell wall. A summary of the model parameters for the
various ball types is given in Table 8.9 below.
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Table 8.9 Model parameters for the various ball types.

Ball type kp (N/m) A(m™) Cy (Ns/m?)
Pressurised 21000 50 4000
Pressureless 22500 25 3800

Oversized 18700 45 3500

Punctured 13600 50 4500
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9 Oblique impact tests
9.1 Introduction

The previous chapter provided a normal impact model which satisfied a number of
requirements, and suggested that the normal behaviour of a tennis ball could be predicted.
The aim of the work described in this chapter was therefore to examine the experimental
characteristics of oblique impacts on a rigid surface. This would not only provide data to
verify any oblique impact models created, but would also give insight into the physics of
how a ball bounces.

For a given tennis ball, there are three fundamental properties which define its motion at a
particular instant: the speed and the angle (which could be grouped as the velocity) and the
spin. The first set of experiments was performed to find and understand the effect of each
property. One of the speed, angle and spin was varied in turn whilst keeping the other two
constant. One of the main aims was to see if there was a noticeable difference between

slipping and rolling impacts.

Two further sets of experiments were then performed to understand the effects of ball
construction and court friction. Two alternative ball types (punctured pressurised and
pressureless) were used together with surfaces of extreme friction (the slowest acrylic
available, and a highly polished wooden surface).

Finally, the effect of incoming angle on ball deformation was investigated by firing balls to
impact with the same vertical velocity component, but different angles (and therefore
different absolute speeds).
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9.2 Experimental setup

9.2.a General setup

i Bola projection
=
/ N\ / machine

| (o )

—
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J PN
/ (e

sample

Massive
) concrete block
J

High speed video camera

Figure 9.1 Experimental set-up for high speed filming of oblique impacts.

The equipment used is shown in Figure 9.1. In each set of tests, three standard pressurised
balls were used after pre-compression, for one impact per ball under each of the conditions.

The surface was firmly fixed to a large concrete block to allow no possibility of
deformation and subsequent energy loss.

In all cases except for the final set of tests, the balls were projected using a Bola machine
consisting of two spinning wheels as for the previous experimental work on normal
impacts. The wheels were orientated in the vertical plane and could be independently
controlled, so a difference in their speed provided either topspin or backspin as required. A
high speed video camera (running at 240 to 400 frames per second for most tests. and 7000

frames per second for others) was used to film the impacts, and the results analysed using
an in-house piece of software.
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Figure 9.2 The three surfaces used for the oblique testing: (a) slow acrylic surface (with sand

included in the paint), (b) medium acrylic surface and (c) fast wooden surface.
The various parameters are summarised below in Table 9.1. For the first set of tests, the
same ball type and surface was used throughout. Each of the spin, speed and angle was
varied in turn while keeping the other two properties constant. For the second set of tests,
two different surfaces were chosen to give as wide a range of friction as possible. These
were a deliberately high-friction acrylic surface, and a highly polished smooth wooden
board to give low friction — shown in Figure 9.2 (a) and (c) respectively. The acrylic was

made by painting directly onto a Perspex sheet, and mixing quantities of sand into the
acrylic paint.

The range of all three impact variables was deliberately chosen to encompass and extend
the range produce by players. This would ensure that the different physical situations such
as slipping and rolling would be reproduced, and their effects hopefully exaggerated.

Literature previously mentioned suggests that players usually hit the ball with an average
spin of 100 to 200 rads™, suggesting that some shots will contain significantly higher spin
rates. The decision was made to use the maximum possible range of spins provided by the
Bola, which can provide up to around 600 rads™ of either topspin or backspin.

Realistic speed and angle values were more difficult to achieve. Experimental practicalities
made it impossible to achieve the shallow angles required to match those seen in a match.
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Rather than project the ball more slowly to give a low vertical velocity, the decision was
made to keep the speed high to give realistic deformation shapes.

The third set of tests involved different ball constructions. Commercial pressureless balls
were chosen as an off-the-shelf type. Standard pressurised balls (as previously used) were
punctured with a fine needle, so that the ball still retained a fixed pressure of one

atmosphere.
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Table 9.1 Summary of the various parameters for oblique impact tests. The parameter of
interest in each test is shaded.
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9.2.b  Ball markings

Figure 9.3 A new unmarked ball (left) and one after a series of impact tests (right). The
markings can still be seen, but the wear on the ball is apparent.

The balls were marked with black ink so that the relative angular position of the ball in
each frame could be determined. A line was drawn around the seam and regular marks

drawn on the felt to intersect. As well as increasing the visibility, having most of the
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marking located on the indented seam minimised any chance of the ink affecting the
frictional properties of the ball, however small these would be. Markings on the cloth itself
were seen to wear off much faster than those on the seam. The ball shown in Figure 9.3
shows how the markings have worn off somewhat after a series of impacts. The markings
on the right-hand side of the ball as pictured clearly do not show the same level of contrast
as those on the left-hand side. The two intersections marked (a) and (¢) could still be used,
but (b) has become too faint to be seen accurately without re-marking — this point would
not be chosen during analysis. Figure 9.3 also shows how the cloth is quickly affected by a
relatively small number of impacts. It was found from experimentation that the cloth wear
was caused by the friction with the Bola wheels rather than interaction with the surface, but

there is no way to impart spin on the ball without producing such wear.

9.2.c 240/400 fps filming

When changing the spin, speed and angle for the first set of tests, the discrete positions
achievable in each range gave a total of 39, 21 and 18 impacts respectively. The surface
used was a non-cushioned acrylic sample which was firmly fixed to a massive concrete
slab. This sample was chosen to give a realistic tennis surface but one which could be
considered rigid, to prevent surface deformation. If deformation did occur, its extent and

therefore its effect on the impact would change with speed and angle, making it harder to

interpret the results. An independent Surface Pace Rating (defined as 100[1 - i:ﬁ‘ ] by the

ITF as discussed in Chapter 3) test on a sample of the same acrylic material gave a value of
45, which according to simple rigid body theory is equivalent to a frictional value of
u = 0.55. This is the highest value in the suggested range for the ITF “Medium/Medium-
Fast” surface category, covering values from 30-45. The “Fast™ category is suggested as
values from 40 upwards. This overlap means that this particular surface could be placed in
either category.

Table 9.2 Nominal incoming speed, angle and spin values for the three parts of the first set of
experiments.

B Incoming speed Vi, | Incoming angle 8, | Incoming spin @,
(ms") (degrees to horiz.) (rads")
Varyingr spm 30 24 -600 to 600
.Varymgspeed 25 to 60 *24 N 0
' Varying angle 30 e
j
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Table 9.2 shows the intended values for incoming speed, angle and spin for the different

experiments. In practice the two “static” variables could not be kept totally constant, and
their variations and the effect this had on the results is discussed in each section.

Experiments varying spin
and speed - angle stays
constant

Angle varies = wider vertical
field of view needed

Filmed at 400 fps Filmed at 240 fps

Figure 9.4 Different frame aspect ratios needed for different impact angles.

The impacts were filmed using a Kodak Motioncorder high speed video system running at
400 frames per second for the changing spin and changing speed experiments, and 240
frames per second for the changing angle experiment. This difference was because the
higher angles used in the latter experiment meant a much wider vertical field of view was
needed, and the design of the camera meant that it could then capture at a lower maximum
frame rate (see Figure 9.4). Impacts where the ball did not land close to the centre of the
video frame were immediately rejected and repeated in order to keep the angle as accurate

as possible, although once the Bola had been set up for each set of impacts it was very
consistent.

9.2.d 7000 fps filming

The remaining tests were performed using a Phantom v4 camera (which was not available
for all the testing) at 7000 frames per second. This meant it was possible to measure the

deformation over a large number of frames (typically 30-35) during an impact, and see the
deformation shapes.
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9.3 Experimental analysis
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Figure 9.5 An example calibration grid, with the positional coordinate data after being

manually sampled by clicking on intersection points.
Figure 9.5 shows the calibration grid which was used — in this case for the different ball
constructions (filmed at 7000 fps). The grid was carefully placed in line with the plane of
motion of the ball to ensure accuracy. Repeated testing ensured that the ball remained
extremely close to this plane. Points marked at the intersection of the gridlines were used
to convert positional data measured in pixels on the computer to displacement in
millimetres. This also compensated for any angular rotation of the camera, which can be
seen here in the gradient of the lines (again the raw positional data as shown is measured
downwards from the top of the image, which is why the skew in the grid points seems to
be the opposite direction to the video frame). As long a focal length lens as possible was
used to put a reasonable distance between the camera and impact position, which virtually
eliminated lens distortion effects. This is apparent in Figure 9.5, which shows no
noticeable pincushion or barrel distortion. To verify this, pixel-to-physical calibration
ratios were calculated for each row and column of points in turn. For the columns, this
gave 18 calibration values, with a standard deviation of less than 0.3% of the average, and
all values within 0.52% of the average. For the rows, this gave 7 values, with a standard
deviation of 0.13% of the average, and all values within 0.24% of the average.

Figure 9.6 Two sample frames from oblique impacts filmed at 7000 fps, for (a) the first

impact, and (b) the last impact of a specific ball, showing the wear effects on the markers
used to measure speeds and spins.
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Two example frames from the video footage for the first and last impact of one of the balls
are shown in Figure 9.6. The effect of cloth wear on the markings can clearly be seen as a
blurring effect, but it is also apparent that good accuracy could be maintained if *“sharp”

intersections of markings were chosen - i.e. points (a) or (c) in Figure 9.3 rather than (b).

The position and angle of the ball were found in the analysis software by fitting a circle to
the outline of the ball. This was found to be more accurate and consistent than alternative
methods such as clicking three points on the ball circumference and mathematically
calculating the centre co-ordinates. Unless the lighting is very good (and extremely
consistent across the whole field of view), it is difficult to always mark these points
accurately. The circle was resized to fit the size of the ball, and meant that it was possible
to get good positional data in situations where the lighting was not perfect. The angular
position was then found by clicking a particular point, usually the intersection of the
markings drawn on the ball. This point was chosen to be at as high a radius as possible
looking at the two-dimensional picture, so as to minimise angular error. The images could
also be used to verify by eye that there was only spin about a single axis, i.e. purely topspin
or backspin with no element of sidespin.

300W ‘ 8
g0 . @ g 7{®
= Ny o
[ =4 | . = 6 ) v )
§ 200 \ s |
8 | ﬁ 5;\\
2 150 1 S .l ; y=0.2979x + 15851
£ 100 - S |y=-00084x+55041 :
2 2 31 o
50 ' ' — 2 —
0 200 400 0 2 4 6 8 10 12 14 16 18 20
Horizontal position (mm) Time (ms)

Figure 9.7 Examples of (a) raw positional data and (b) raw angular data, for an impact with
backspin filmed at 400 frames per second.

On almost all impacts filmed at 240 or 400 frames per second, positional and angle data
was found for four frames before and four frames after impact. Those where the ball was in
contact with the surface were not used. Figure 9.7 (a) shows an example of positional data,
with each dot representing the position of the ball every 2.5 ms. It should be noted that the
data is exported from the software such that a positive vertical position is measured
downwards. The height of the ball above the ground was not important — the frame rate
was not high enough to provide any useful information during contact, so only data for
speeds and spins before and after impact were measured. The velocity components were
calculated using the horizontal and vertical positions relative to time rather than to each
other, assuming a linear fit — which will of course be a good assumption given the fairly
high speeds and the short space of time used. The angular data is plotted against time in
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Figure 9.7 (b). The reference points used to find the angle were not necessarily the same
before and after impact, so the relative vertical position of the two parts of the graph is
meaningless. The gradient of the linear trendline gives the spin — in this case 18.1 rads™ of
backspin before impact and 386.3 rads’’ of topspin after impact (the time is shown in
milliseconds hence the gradient must be multiplied by 1000 to give spin rates per second).
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Figure 9.8 (a) positional, and (b) angular displacement data for an oblique impact filmed at

7000 fps.
An example of positional and angular data for an impact filmed at the higher frame rate of
7000 frames per second is shown in Figure 9.8. Because the resolution of this camera is not
as high (256x128 pixels compared to 640x320 pixels for the Motioncorder), the positions
in all frames were measured to keep errors as low as possible. The effect of the lower
resolution can be seen in slightly larger scatter in the data compared to Figure 9.7. The
displacement data is offset so that the origin of the graph corresponds to what visually
appeared to be that start of contact with the surface, although this is difficult to determine
absolutely. Linear trendlines are shown on the graphs for the periods before and after
contact, which were used to calculate the positional and angular velocities — in this case a

small amount of backspin before the impact, and a much larger amount of topspin after.

161



Chapter 9 Oblique impact tests

9.4 Results - The effect of changing spin (constant speed and angle)
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Figure 9.9 Variation of (a) incoming speed and (b) incoming angle with incoming spin, for

impacts nominally at 30 ms™ at 24° to the horizontal.
The spins used ranged from approximately 600 rads™ backspin to 600 rads™ topspin. The
intention was to project the balls with a constant speed and at a constant angle. However,
this was impossible to achieve and there was a systematic error caused by the changing
spin. Even over a fairly short distance the lift force caused by these fairly large spin rates
will affect the trajectory, and the differing speeds of the two wheels of the Bola also skew
the angle. Figure 9.9 (a) shows that the incoming speed changes with incoming spin,
giving a range of about +2 ms either side of the intended value of 30 ms™. This suggests
that the relative speed of the wheels is not perfectly calibrated to provide consistent speeds
as the spin is varied by large amounts. An aerodynamic model was used to assess the effect
of different applied spins on ball trajectories. According to this model, 600 rads™ of top or
back spin (applied to a ball fired at 30 ms™ at 24 degrees to the horizontal from a start
height of one metre) made the ball land approximately 8 cm earlier or later respectively,

but barely changed the speed. This suggests that the speed variation seen was due to the
equipment.

Figure 9.9 (b) shows there was scatter in the angle, although the variation was not as great
as for the speed. The angles for those impacts with incoming backspin were on average
were an average of 24 + 1.5° and appear randomly scattered. When incoming topspin was
applied there was a slight trend for increasing spin to produce a lower incoming angle,
which varied from about 25.5° with no spin to 24° with 700 rads™ of topspin.
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9.4.a Speedresults
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Figure 9.10 (a) outgoing speed and (b) absolute COR against incoming spin.

Figure 9.10 (a) shows how the outgoing speed varies with incoming spin. There is some
evidence of a trend, but this is much more informative when the speed is normalised by
dividing by the incoming speed, thus removing the systematic bias produced by the Bola

projection machine. Figure 9.10 (b) shows that the speed ratio V,,, /¥, or “absolute COR”

out in
is fairly constant for impacts with incoming backspin, and then increases in a roughly
linear fashion when topspin is applied. This is because as the incoming topspin increases,
the ball reaches rolling conditions at an earlier stage of the impact. After rolling starts, the
vertical reaction force no longer produces a horizontal frictional force. Therefore more
topspin means a smaller horizontal impulse and a lower horizontal rebound velocity — and
hence lower absolute speed.
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Figure 9.11 Vertical COR against incoming spin. The 100 inch drop test limits are also shown.

v
The vertical COR e, (defined by e, = —7y"“'-) is shown against incoming spin in Figure
Yin

9.11. This graph clearly shows that the COR significantly changes with incoming
backspin. This explains the slightly increased rebound speed at larger incoming backspin
which was displayed in Figure 9.10 (b) — horizontal velocity components will dominate
and hence the change is not very big. There is a slight downward trend of vertical COR
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when more topspin is applied, but this can be attributed to the bias in the incoming speed,
as shown in Figure 9.9 (a). As shown in Chapter 7, the COR would be expected to decrease
as the incoming speed increased. At the vertical velocity component seen here, the COR
for a purely normal impact would be around 0.7, suggesting that impacts with 200 rads” of
applied backspin match this most closely.

9.4.b  Spin results
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figurg 9.1.2 (a) Outgoing spin against incoming spin, and (b) rolling spin ratio against

incoming spin.
Figure 9.12 (a) shows how the outgoing spin varies with incoming spin. There is an
increasing trend which seems to fit a gentle curve. An alternative measure which can be
used is the rolling spin ratio, calculated by dividing the actual rebound topspin by the
topspin necessary to meet the definition of rolling based on the rebound speed given by
@ =V /r. This is shown in Figure 9.12 (b) and is calculated using both horizontal speed V,
and absolute speed V. There is a clear discontinuity between the balls impacting with
backspin and those with topspin. The graph suggests that all the impacts given incoming
topspin have entered the rolling phase by the end of the impact. The actual outgoing spin
continues to increase as the incoming spin increases past that needed for rolling, because of
the greater outgoing speed.

Although it is difficult to tell accurately because of the absence of data between +100

rads” topspin, it would appear that the incoming spin required for the ball to start rolling
by the end of the impact is somewhere between zero and 200 rads™ of topspin.
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Figure 9.13 Change in horizontal speed divided by change in vertical speed, against incoming
spin.
If the assumption is made that the frictional force F' is proportional throughout impact to
the reaction force R, and F = uR, then it is possible to get an experimental measure of the

friction:

X

AV

¥

' [9.1]

The relationship AV, / AV is plotted against incoming spin in Figure 9.13. It is clear that

this expression gives a consistent measure of friction for all the impacts with backspin.
There is again a clear discontinuity at about zero incoming spin. The graph suggests that as
the ball is given more incoming topspin, the ball rolls rather than slips for an increasing
proportion of the contact time. This means that the change in horizontal velocity is
reduced, and so the expression in [9.1] decreases. The graph does show however that as
long as the ball slides throughout impact, AV, /AV, is a fairly consistent figure (if the ball

rolls, the expression F' = uR no longer holds, so AV, / AV, no longer represents a measure

of friction). The value of friction predicted by this data is 4 = 0.55, which corresponds to a

Pace Rating of 45 and matches almost exactly that measured by an SPR test, despite the
impact angle being considerably higher than the 16° used in that test.
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9.4.c Angle results
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Figure 9.14 Outgoing (a) angle, and (b) angle ratio against incoming spin.

Figure 9.14 shows the outgoing angle against the incoming spin — both as an absolute value
and a ratio compared to the incoming angle, which brings the data for backspin and topspin
closer together. It can be seen that the highest angle is obtained at roughly zero incoming
spin, and the angle decreases as either topspin or backspin is applied. This is the result of
two separate physical processes, explained by the force-time schematics in Figure 9.15.
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Figure 9.15 Schematic profiles for reaction and friction forces.

Firstly, consider the right-hand side of Figure 9.15 — the balls impacting with topspin. As
has been shown, for all these impacts the ball starts off slipping but is rolling by the time it
leaves the surface. As the incoming spin increases, a greater proportion of the contact time
is spent rolling. During the slipping period, F* = 4R but when rolling occurs F drops to

very close to zero. Therefore with more topspin the horizontal impulse given by the

166



Chapter 9 Oblique impact tests

integral IFa’t decreases. As shown in Figure 9.11, the COR and hence the change in

vertical velocity stays almost constant. Given these two factors the rebound angle will

reduce.

Now consider impacts with backspin, as shown on the left-hand side of Figure 9.15. As
more backspin is applied, the vertical COR reduces (as shown in the COR against

incoming spin in Figure 9.11). Because the friction and hence AV, /AV remains constant,

AV, as well as AV, will be reduced. Because of the signs of the incoming components, this

gives a reduced ¥, but an increased V, . This is illustrated by rearranging the frictional

relationship as in equation [9.2] below. If 4 stays the same (which is to be expected, since

it is a physical property of the surface) and e decreases, ¥, ~ will increase since V, is

negative.

AV

X

AV,
4 _Vx .

X,

v, -V,

Your

V n B Vx(‘lll

X,

H

_Vy,,, (1 + e)
VX‘M = me + Vy,,,'u (1 + e) [92]

The angle will therefore be increased as backspin increases (and is quite sensitive to
changes in components) although the speed will not change significantly because of the
increase in one component and decrease in the other. This is shown by the results in Figure

9.10. As a numerical example of this effect, consider an impact with V. =27 and

v, =-12. If AV,/AV, remains constant at 0.55, an impact with COR of 0.75 would

rebound with ¥, =15.45 and V, =9, whereas an impact with COR of 0.70 would
rebound with ¥, =15.78 and V, =8.4. These are fairly small changes in the velocity

components (and in fact the COR changes by far more than this over the range of backspin
tested), but change the angle from 30.2° to 28.0°.
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Figure 9.16 Calculated slide length for oblique impacts with various spins, shown as (a) an

absolute value, and (b) divided by the incoming speed.
Figure 9.16 shows the slide length — the horizontal distance between the start and end of
the contact. This was found by extrapolating a straight line from the positional data to an
interception with the ground level. It is clear that the slide length increases as the spin
moves away from zero. However, if the ratio of slide length to incoming horizontal speed
is used, the value is fairly constant. This suggests that the slide length depends only on
horizontal speed, and is not affected by spin — and is an indication that the contact time
does not significantly change with spin.

9.5 Results - the effect of changing speed (constant angle and spin)
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Figure 9.17 The variation of (a) incoming angle Vi, and (b) incoming spin @y, with incoming

speed.
As with the changing spin experiment, there was an element of scatter in the incoming
angle and spin, the two properties intended to be constant. Figure 9.17 shows the change in
(a) incoming angle and (b) incoming spin as the velocity was increased. The angle has a
clear reduction with increasing incoming speed as is to be expected — for motion between a
fixed start and end point, a higher speed will lead to a straighter trajectory and therefore a
shallower angle. This change in angle is not particularly high however, dropping from
about 24° at 25 ms” to about 22° at 60 ms™. The spin is randomly scattered, averaging
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around 60 rads” of backspin. Ideally the balls would have been projected without spin
(zero incoming spin would mean that speed should not affect slipping/rolling conditions),
but this was not as important as the main criterion of keeping the spin constant, which was
achieved.

9.5.a Speedresults
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Figure 9.18 Outgoing speed V,, against incoming speed V;,.
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Figure 9.19 COR against incoming vertical speed, compared to COR for normal impacts.

The relationship between incoming and outgoing speed is shown in Figure 9.18. As would
be expected, there is a strong dependence, which is linear. Figure 9.19 shows the vertical
COR plotted against the vertical incoming speed. The COR drops from about 0.8 to 0.6
over the velocity range. Also included on this figure is the COR measured from purely
normal impacts. For the same incoming vertical velocity component (including 7 ms™
where the approval tests are performed), the oblique impacts have a higher COR in each
case.
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Figure 9.20 Change in horizontal speed divided by change in vertical speed, against incoming
speed.

Figure 9.20 plots the expression AV, /AV against incoming speed. Although there is an

amount of scatter, the relation is fairly steady, suggesting a frictional measurement of
about 0.56. This ties in extremely well with the measured SPR of 45, which gives
AV,/AV,=0.55. This constant value of AV, /AV, suggests that the impacts all slide

throughout — or that any periods of rolling are short and do not affect the outgoing

conditions.

9.5.b Spin results
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Figure 9.21 (a) Topspin out, and (b) Topspin out as a percentage of rolling spin, against
incoming speed.
The outgoing spin is plotted against incoming speed in Figure 9.21 (a). This graph simply
shows the spin increasing with speed as would be expected (a higher speed leads to a larger
reaction force, hence a larger frictional force and rotational moment), but in Figure 9.21 (b)
the spin is plotted as a percentage of rolling spin, calculated from the outgoing speed using

@ =~ as before. At the lowest impact speed it seems the ball may be rolling (or at least
,

close to rolling) by the end of impact, but as the speed increases we move further away
from the rolling condition and the ball slips throughout impact. A possible reason for this
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can be seen by considering the equation below defining the minimum angle for rolling Gy

in terms of coefficient of friction x and vertical coefficient of restitution e:

2

-
S Su(l+e)

[9.3]

Equation [9.3] gives the theoretical limiting angle for which an impact with no incoming
spin will just start to roll at the end of contact. Figure 9.19 showed that the value of e
dropped from around 0.8 to 0.6 as the incoming vertical speed increased from 10 to 20

ms™'. For a value of = 0.55, this would raise the angle boundary from 22° to 24.4°,

Figure 9.17 (a) shows that the observed incoming angle decreased from 24.5° to 22.5°.
According to this theory, as the incoming speed increases from 10 to 20 ms™, the impact
changes from slipping/rolling to purely slipping. It is impossible to see this from the data in
Figure 9.21 (a), but Figure 9.21 (b) does suggest that the lowest speed impacts may be
rolling if the horizontal speed is used to calculate rolling spin. The fact that the proportion
of rolling spin drops as soon as the incoming speed increases suggests that even for these
impacts, rolling is only just attained by the end of the impact. This means that the
horizontal impulse is barely affected by the rolling, as the reaction force will be very low
for the short period when rolling happens. Therefore AV, /AV, is probably a good

measure of friction throughout this set of tests. This expression is shown in Figure 9.20 and
gives a fairly consistent value averaging to about 0.56, albeit with a degree of scatter.

9.5.c Angle results
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Figure 9.22 (a) outgoing angle dou, and (b) angle ratio o, / 9, against incoming speed Vi,

Figure 9.22 (a) shows how the outgoing angle decreases as the incoming speed increases.
This effect is increased slightly by the bias in incoming angle, which also reduces as the
speed increases. However, Figure 9.22 (b) plots the angle ratio (6,, /6, ) and the trend is

still obvious. The reason for this is the reduction in vertical COR which happens due to the
increased vertical incoming speed. As previously discussed in section 9.4.c, this decreases
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the outgoing vertical speed and increases the outgoing horizontal speed, lowering the

angle.
9.6 Results - the effect of changing angle (constant speed and spin)

This experiment was much more difficult to set up than the two with varying speeds and
spins - in both of the earlier sets of tests the Bola could be more or less left in one position
and the desired variable changed by settings on the machine. Changing the angle meant
moving the relative position of the Bola and the target, and consequent fine-tuning to keep
the impact in the correct place. Therefore only six separate angles were used, with three
impacts at each angle.
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Figure 9.23 The effect of incoming angle on (a) incoming speed and (b) incoming spin.

The variation of incoming speed and spin (ideally both constant) with angle is shown in
Figure 9.23 (a) and (b) respectively. The speed is fairly consistent, as is the spin. Both vary
at the lowest angle, suggesting the bottom wheel of the Bola was spinning too fast. As the

angle was changed by simply rotating the whole device, it seems likely that this spin
difference was simply an experimental setup error.
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9.6.a Speedresults
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Figure 9.24 (a) Outgoing speed vs. incoming angle, (b) COR vs. incoming angle, and (c) COR

against incoming vertical speed (including normal impacts for comparison).
The effect of incoming angle on outgoing speed is shown in Figure 9.24 (a), and the
vertical COR in Figure 9.24 (b). The rebound speed increases with steeper angles apart
from the very lowest angle, which is significantly faster than the one above it. Although
the vertical COR decreases with increasing angle (and therefore incoming vertical speed)
as would be expected, Figure 9.24 (c) shows that it remains higher than for normal impacts
having the same vertical velocity. The difference widens significantly as the angle
becomes steeper.

Using a value of u = 0.55 (as measured by the SPR friction tests) and a typical COR value
of e =0.75, the theoretical equation [9.3] developed in Chapter 3 gives a minimum angle
of 22.6°, above which rolling will occur. It is possible therefore that this explains the
discontinuity in the speed in Figure 9.24 (a), and suggests that all the impacts apart from
those ringed contain some rolling. As the angle to the horizontal increases, the incoming
vertical velocity will also increase and the horizontal velocity will decrease. The former
will increase the reaction force and hence the frictional moment and rate of spin

application. The latter will decrease the spin needed for rolling to occur as defined by

= Y Both bring about the onset of rolling earlier in the impact.
r
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9.6.b  Spin results
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Figure 9.25 (a) Topspin out, and (b) percentage rolling spin, against incoming angle.

Figure 9.25 (a) shows outgoing topspin plotted against incoming angle. The outgoing spin
drops significantly with increasing angle of impact, from about 600 rads” at 25°, to about
300 rads™ at 52°. This might seem surprising given the statement above that all angles
above the lowest one will end in rolling, but of course both the incoming and the outgoing
horizontal speed reduce by almost half as the angle increases. This is taken into account in
Figure 9.25 (b) which plots the percentage rolling spin, which is much closer to being
constant. It should be noted that the lower outgoing spin for the impacts ringed (whether
absolute value or percentage of rolling spin) should not be taken as absolute evidence of
the angle needed for rolling to occur, as the impacts at the lower angle impacted with
significantly more backspin (100 rads compared to an average of 40 rads” for other
angles). This difference does not totally account for the lower values of outgoing spin
ringed in Figure 9.25 (a), but does explain the sharp discrepancy.

9.6.c Angle results
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Figure 9.26 (a) Outgoing angle, and (b) angle ratio, against incoming angle.

The outgoing angle is shown plotted against the incoming angle in Figure 9.26 (a). A
steeper incoming angle leads to a steeper outgoing angle, but it is difficult to draw many
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further conclusions. Figure 9.26 (b) shows the angle ratio (6,,/6,,) and the trend appears

out | O
to be that as the angle is increased this ratio decreases, thus an increase in incoming angle
leads to a smaller increase in outgoing angle. The effect of an impact which slips
throughout can be clearly seen in that the angle ratio is highest at the limiting incoming
angle for rolling, and drops either side.

9.7 Results — the effect of ball construction
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Figure 9.27 Variation of (a) incoming speed and (b) incoming angle with incoming spin, for
impacts nominally at 30 ms’ ! at 24° to the horizontal for three different ball types.
There was again a variation of impact speed and angle with spin when the first set of tests
was repeated with different ball types, as can be seen in Figure 9.27. The speed showed the
same trend of increasing from the set value when either topspin or backspin was applied,
and the same happened with all three balls. The angle remained roughly clustered around

24° (albeit with a fair degree of scatter) apart from the impacts with large amounts of
incoming backspin, which had a noticeably higher angle.

Figure 9.28 (a) below shows a comparison of outgoing ball speed for the three ball types.
Somewhat surprisingly, there is no significant effect of construction on ball rebound speed.
This is largely because the speed is dominated by the horizontal component, which does
not change much, as shown in Figure 9.28 (b). The main difference can be seen in the
vertical velocity component, which is shown in Figure 9.28 (¢), and normalised to COR in
Figure 9.28 (d). The pressurised balls have a COR that is consistently 0.05 higher than the
pressureless balls across the spin range, which similarly have a COR 0.05 higher than the
punctured balls. Also noticeable is that the COR drops as more backspin is applied for all
balls. The pressurised balls seem to have a fairly consistent COR with topspin, but the
other two construction types both drop. These speed results suggest that all balls would
reach the player at the same time (since horizontal speed is the dominant factor) albeit at a
different height, but of course that assumes they have been hit at the same speed - and the
speed of the ball off the racket is likely to follow the same trends as the COR data.

175



Chapter 9 Oblique impact tests

il . | T o Pressurised || - ]
= ¥ o .
E 26 {[oPressunised | b e S 241 xPunctued | @ @y - oey -
3 24 - X Punctured °:' _____ ll E * Pressureless|| . '+ o.:' °
> ¢ Pressureless XK x w22 : \ : &
o 22 - ' ! % L. n % X o
e i 4o s 6 E 20 :
& 20 oAt i 6o xx'ge
e ° ﬁ ! ™y 2 18 : - X X
o 18 % e ! I *i >
S z ¢ ¢ | £ [ s
o 16 (a) 1 s .,% 16 T%%6 .:L. s ; ! b
a ; 3 (b)
o 14 " ; ' y ; ' y o 14 ¥ T T T T T T
-800 -600 -400 -200 0 200 400 600 800 800 600 400 200 O 200 400 600 800
Incoming topspin, v, (rad/s) Incoming tops pin, o, (rad/s)
3 1 : . 0.9 . ;
oo . & op L el el
o 4 ¢ ‘ . -0 s N g : 1 .:——E"——-n;
E e . Xy - S 4 : :”’:{E— . 8™
" . ke T Iy - y i -0 8. 4. a0
= 91 ; : Re [ o 0. o - ‘
I IO - R oy R =l W, gt R &
[ 4 ' ' ' .
§= 8 ¥ i X M B 0.6-’,3%,’>; e AR
i i ‘ - 2
§ o Pressurised | - 5 % > o Pressurised |
& 7 1xPunctued || @ @ V- TIT 05 poenssstmssssanansiog xPunctured  |-t----eteeeee-
[ : e Pressureless | |
3 6 . Pr?ssure!ess : ‘ . 0.4 ' !

-800 -600 -400 -200 O 200 400 600 800
Incoming topspin, o, (rad/s)

-800 -600 -400 -200 0 200 400 600 800
Incoming topspin, o, (rad/s)

Figure 9.28 (a-d) The effect of ball construction on rebound speeds. (a) absolute speed, (b)
horizontal speed, (c) vertical speed and (d) COR are shown.
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Figure 9.29 Outgoing spin against incoming spin, for three ball types, expressed as (a) an
absolute value, and (b) a percentage of the calculated rolling spin.
Figure 9.29 shows the outgoing spin, expressed as both an absolute value and as a
proportion of the absolute rolling spin. In both cases there is no significant difference
between the ball constructions. Increased topspin before impact led to increased topspin

after impact. The rolling spin percentage seems to level off, suggesting that rolling is
occurring with incoming topspin, but this is not conclusive,
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Figure 9.30 Change in horizontal velocity divided by change in vertical velocity, against
incoming spin, for three ball types.

The expression %Vi is shown in Figure 9.30. As found previously, this gives a reasonably
¥y

consistent value (showing no difference between ball types) when the ball is sliding
throughout impact, suggesting here a friction value of about 0.50 to 0.55. It decreases as
topspin applies, suggesting that the limiting value for rolling for all ball types is about zero
incoming spin. There is also an increase with large amounts of applied backspin.
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Figure 9.31 Outgoing (a) angle and (b) angle ratio against incoming spin, for three ball types.

The outgoing angle for each ball type is shown in Figure 9.31 (a). It is difficult to pick out
any strong trend between balls, but the results become clearer when the angle is normalised
by dividing by the incoming angle to give an angle ratio 0,,/0iy as in Figure 9.31 (b). It is
clear that the punctured ball always has a lower angle ratio than the other two balls. The
pressurised and pressureless balls have a similar angle ratio for those impacts with
incoming backspin, but the pressurised ball bounces higher when there is incoming
topspin.
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9.8 Results — the effect of surface type
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Figure 9.32 Variation of (a) incoming speed and (b) incoming angle with incoming spin, for
impacts nominally at 30 ms™ at 24° to the horizontal for three different surfaces.

Figure 9.32 shows how the impact speed and angle varied with different value of applied
spin. The same trends are seen for each surface, although the values are not exactly the
same — because all the tests were performed on each surface in turn and so the individual
wheel speeds could not be totally consistent between surfaces.
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Figure 9.33 (a) Experimental and (b) stylistic data for outgoing speed versus spin; (c-d)
outgoing spin expressed as absolute and relative to rolling values.
The effect of surface type on outgoing speed is shown in Figure 9.33 (a). As would be
expected, the choice of surface (and therefore surface friction) has a significant effect on
speed. With no spin or backspin, the low, medium and high friction surfaces produce
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consistent speeds of about 24, 20 and 17 ms™. These differences become much less
apparent as the balls are projected with topspin. As each ball type reaches the spin needed
for rolling, they join the same speed trendline - shown stylistically in Figure 9.33 (b). This
is born out by the spin data in Figure 9.33 (c-d). The slow and medium surfaces have
similar outgoing spins, consistently above those for the fast surface apart from those
impacts with high incoming topspin. Plotting the data as a rolling spin percentage shows
more evidence for the slipping/rolling boundary in each case. The data suggests that the
slipping rolling boundaries are between 0 and 100 rads' of backspin for the slow surface,
around 200 rads™ of topspin for the medium surface and around 600 rads™ of topspin for
the fast surface (which just reaches 100% rolling spin at the maximum applied incoming

spin).
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Figure 9.34 COR against incoming spin, for oblique impact on three different surfaces.

The vertical outgoing velocity — expressed as COR - is fairly consistent across surfaces
(Figure 9.34). Each surface shows the same trend of having a peak COR at zero incoming
spin, and significantly lower value when top or backspin is applied. At some spins the fast
surface seems to give a slightly lower COR but it is difficult to say if this is statistically
significant.
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Figure 9.35 Change in horizontal velocity divided by change in vertical velocity, for oblique
impact on three different surfaces.
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X

S' th

can be approximated to the friction (as discussion earlier), the

different surfaces would be expected to produce different values. In all three cases (see
Figure 9.35), applying less backspin (i.e. more topspin) produces a slowly decreasing value
of the expression until the spin boundary for rolling is reached.
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Figure 9.36 (a) Outgoing angle and (b) angle ratio for impacts on three different surfaces.

The effect of surface friction on angle is difficult to analyse until the angle is normalised
by dividing by the incoming angle (Figure 9.36). For low to moderate amounts of top and
backspin, the fast surface always leads to the most shallow angles, and the slow surface to
the steepest. This does not however mean that the ball will necessarily bounce through any
higher, but that for a fairly similar value of COR (and hence vertical speed), the surfaces
will have different horizontal speeds. This can be seen in the velocity plots in Figure 9.37.
The different spins for each surface are not distinguished.
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Figure 9.37 Vertical against horizontal outgoing velocities for oblique impacts on different
surfaces, depicting typical velocity vectors for each surface type.
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9.9 Deformation tests

9.9.a Introduction

Results presented in this chapter suggest that horizontal and vertical velocity components
cannot be totally separated. Many authors have assumed that a model can be created by
assuming a normal model with the correct velocity component, and adding a horizontal
frictional term. Data here found that oblique impacts had a different COR than would be
found by taking the incoming vertical velocity and applying that to a normal test. An
experiment was therefore performed to try to identify the physical mechanism behind this
COR difference.

9.9.b Experimental setup

The impact speed of a standard 100 inch drop test (6.8 ms™') was chosen as the target
velocity component. The balls were fired from an air cannon as spin was not required, and
this method achieves a higher accuracy than using rotating wheels. This accuracy was
particularly important as the impact was filmed extremely close up (a sample frame is
shown in Figure 9.38) in order to be able to measure deformations, meaning that fewer
frames were available before and after impact to calculate velocities. The errors in the
velocities will therefore be higher than for previous experiments.

Figure 9.38 Sample frame from the deformation testing.

The geometry of the air cannon position relative to the surface sample was used to
calculate a required horizontal speed in order to achieve the same vertical speed of 6.8
ms”. Light gates were positioned in front of the surface and the air cannon pressure
adjusted until the horizontal speed measured by the gates was as required. The impacts
were filmed at 7000 frames per second using the Phantom camera previously described.
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9.9.c Results — speeds
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Figure 9.39 COR data for impacts at various angles with the same normal velocity

component.
The COR for each impact is shown in Figure 9.39, together with the effect one standard
deviation either way on the measured velocity makes to the COR. This shows that there
seems to be a sudden decrease in COR as the angle is raised above 20 degrees, although
the errors are large. These errors were calculated by finding the standard deviation of the
incoming and outgoing speeds for each impact, and finding the maximum possible change
on the COR (e.g. adding one outgoing SD to the outgoing speed and subtracting the
corresponding incoming SD from the incoming speed would give the max COR). This is a
reflection on the problems with measuring speed from a relatively small number of data
points over a short time period. It can be seen that the steeper the angle, the smaller the
error — because the speed reduces and thus the ball remains in the field of view longer.

9.9.d Results — deformation shapes

Examples of the deformed shapes of the ball are shown in Table 9.3. For each angle a
single frame is reproduced at the point of maximum deflection. It is immediately clear that
for this vertical impact velocity, all the impacts keep roughly the same deformation shape,
and the part of the ball seen above the surface stays close to a truncated sphere. This
spherical shape is not perfect, as a small amount of bulging can be seen outside the circular
line drawn. This will lead to an error in any assumption of mass distribution, moving the
centre of mass and changing the moment of inertia slightly. This error will however be
acceptably small, as the images shown are at maximum deflection and therefore the “worst
case” frames, and even in these images the bulging shown is not a large feature.
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Table 9.3 Comparison of deflection shapes for oblique impacts at various angles.

Impact angle to horizontal Shape at maximum
(degrees) deformation

14

17

21

26

(normal impact)
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9.9.e
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Figure 9.40 (a-d) Vertical displacement against time for three balls at each angle.

Vertical positional data is shown in Figure 9.40 (a-d). It can be seen that there is a degree
of scatter in the data, but it is not consistent in terms of which ball deforms more. The size
of the ball on the video footage means that the analysis error is as low as possible.
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Figure 9.41 Comparison of vertical displacements for oblique impacts — one ball shown

at various angles with the same vertical velocity component, plotted against (a) horizontal
displacement, and (b) time.
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The “middle” ball from each graph in Figure 9.40 was used to compare the positional data
at each angle as shown in Figure 9.41. The ball projected at the steepest angle of 26
degrees has a deformation of a little under two millimetres more than all the other impacts,

which were reasonably similar. This is particularly noticeable when the vertical
displacement is plotted relative to time as in Figure 9.41.

To investigate this further, the equation developed in Chapter 3 was used to estimate the
minimum angle needed for rolling to occur. It was found that the steepest angle of 27° was
the only one where the impact angle exceeded the required minimum angle for rolling. It is

unclear if this is relevant however, as the rolling will only happen towards the end of the
impact period.

9.10 Discussion

9.10.a The effect of impact conditions on “friction” measurements
Throughout this chapter, the relationship AV, /AV, has been used as an experimental

measure of the friction between ball and surface during impact. A combined set of data
from the first part of this chapter (balls on a single surface varying spin, speed and angle in
turn) was used to look at this calculated variable over a variety of impact conditions.

0.7
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Outgoing spin, as a percentage of calculated rolling spin

Figure 9.42 Change in horizontal velocity divided by change in vertical velocity, plotted

against calculated rolling spin. The data is split into the three sets where the spin, speed and
angle were varied in turn.

Figure 9.42 shows AV, /AV, plotted against calculated rolling spin. This shows a clear

difference between those impacts which were sliding throughout (where the “friction
measurement” is fairly consistent) and those which contained some rolling.
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Figure 9.43 Change in horizontal velocity divided by change in vertical velocity, plotted

against incoming horizontal velocity.
Figure 9.43 shows the same data plotted against incoming horizontal velocity. In this graph
the same shape of symbol is used for each impact series (varying spin, speed or angle) but
a solid shape is used for those impacts where the outgoing spin is below 80% of calculated
rolling spin (using absolute speed), and an outline shape for those with spin above this
value. This arbitrary value was chosen as the rolling spin boundary is not exact, and cannot
be calculated with absolute confidence using either horizontal or absolute speed. This
graph again shows that for those impacts which slide throughout, the measurement

AV, AV, is a good consistent value, and also does not appear to change with speed.

It is also worth noting that although the data shown here seems to be over a fairly small
range of horizontal speeds, the important parameter in terms of measuring the friction is
the relative velocity between the bottom of the ball and the surface. This will vary from
extremely high (for impacts beginning with backspin) to almost zero (for impacts ending at
rolling spin) during the contact period. The fact that a consistent value of AV, / AV, is

produced for all the cases shown where sliding dominates suggests that it is not speed-
dependent.

9.10.b The effect of deformation shape on energy loss

Data in this chapter has repeatedly suggested that oblique impacts have a higher vertical
COR than normal impacts with the same vertical velocity component. In an attempt to
understand this, the deformations during an oblique impact were looked at more closely.

Consider Figure 9.34, showing the COR against spin for surfaces of three different friction.
The nominal vertical velocity for 30 ms™ at 24° is 12.2 ms". At this speed, a normal

impact would have a COR of about 0.7. The incoming spins giving this same vertical COR
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for oblique impacts are about 400 rads™ of backspin for the medium and slow surfaces, and
200-300 rads™ of backspin for the fast surface.
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Figure 9.44 Angular displacement against time, for an oblique impact with 400 rads” of
incoming backspin.

An example of angular displacement versus time is shown in Figure 9.44 for an impact on
the medium friction surface with 403 rads™ of incoming backspin, which had a vertical
COR of 0.70. The rotational data is normalised to give zero displacement at the start of
impact. It is immediately apparent that the curve is roughly symmetrical, with low spin
rates in the period 1 to 3 ms where the forces are highest. When the video footage is
watched, it is clear that the incoming spin rate affects ball deformation. Balls with
incoming topspin keep a much more spherical shape than those with backspin, and there is
very little deformation of the top half of the ball. In contrast, those with large amounts of
incoming backspin experience a buckling of the top portion of the ball, together with
vibrational oscillations after impact. Both of these processes will result in energy loss. It is
also apparent that the highest buckling of the top portion of the ball occurs when one part
of the structure remains at the same angular position, and that the buckling occurs along
the same direction as the motion. A comparison of deformation shapes can be seen in
Table 9.4 and Table 9.5, which show alternate frames for impacts with 600 rads’ of
backspin and 720 rads”’ of incoming topspin respectively. Although there is ball
deformation in the impact with applied topspin, it is much less than that for the impact with
applied backspin, which is reflected in the energy losses seen in the COR data.
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Table 9.4 Deformation shapes for a ball impacting at 27 degrees to the horizontal with 600
rads” of backspin.
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Table 9.5 Deformation shapes for a ball impacting at 23 degrees to the horizontal with 720
rads™ of topspin.

'I

'
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9.11 Summary

In this chapter, a series of experimental oblique impacts was presented which attempted to

isolate each in turn of the many factors affecting ball-surface interaction, specifically:
¢ Ball speed before impact
¢ Ball angle before impact
e Ball spin before impact
e Ball construction
e Court surface friction

The impacts were filmed at a mixture of 240, 400 and 7000 frames per second, and the

footage used to measure velocities and spin rates before and after impact.

9.11.a The effect of spin

It is clear from Figure 9.12 (b) that for the conditions used in this experiment, there is an
incoming spin which caused rolling to occur. This change from slipping throughout to just
rolling at the end of the impact happened to occur at around zero incoming spin, but this is
merely a function of the angle chosen and the friction between the ball and the surface. On
a slower surface with higher friction, balls would need to start with backspin to maintain
slipping throughout impact. Figure 9.10 suggests that the speed stays fairly constant for a
range of spins if the slipping condition applies. As more and more time is spent rolling the
cumulative effect of the frictional force reduces and the ball speeds up. When large
amounts of backspin are applied, the vertical COR drops. When there is a small amount of
spin or the ball rolls (including large topspin) the COR is almost constant. When the ball

slips throughout impact, the expression AV, /AV, is almost constant and seems a good

measure of the friction between ball and surface. The highest (steepest) outgoing angle
occurred for the impacts which were on the boundary of slipping and rolling, which was

with almost no incoming spin. As spin was applied as either topspin or backspin, the angle
decreased. This was a result of two different physical mechanisms.

9.11.b The effect of speed

For most of the range of speeds, the ball slipped throughout impact. Even at the lowest
speed where it may be rolling as it leaves the surface, it seems likely that rolling has only
just occurred before the end of the contact period. This means that the drop in frictional
force will have very little effect. The vertical COR dropped significantly with incoming
speed, but remains higher than for normal impacts with the same vertical velocity
component.
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9.11.c The effect of angle

Again there is only one set of impacts which appear to contain rolling, but in this case there
is a noticeable effect on the outgoing conditions. The lowest speed and highest spin are
achieved for those conditions which are the boundary between sliding throughout and
rolling. Moving the angle either way increases the speed and lowers the spin.

9.11.d The effect of ball construction

Ball construction does not have as great an effect on ball speed as might be expected, as
speed is dominated by the horizontal component. The COR does vary significantly, and
therefore the rebound angle changes. This means that the ball would reach the opposing
player at the same time, but at a different height — if it was hit at the same speed. The
different balls will of course come off the racket at different speeds however. There was no
significant difference in spin generated by the different ball types.

9.11.e The effect of surface friction

As might be expected, the surface friction has a large effect on ball rebound speed. This
difference is reduced as incoming topspin is applied, as the different surfaces approach the
same trendline of speed versus spin. The slow, medium and fast surfaces seem to achieve
rolling with applied spins of zero, 200 and 600 rads™! of topspin respectively. There is no
significant COR difference across the surfaces, meaning the balls will bounce to similar
heights, but there is a large difference in horizontal component and therefore both time to
reach the opponent and angle of trajectory.

9.11.f The effect of ball deformation shapes

The video footage from the main sets of tests suggested that ball deformation was an
important factor in energy loss, and that ball deformation depends on the spin rate
throughout the impact — and therefore incoming spin and surface friction. A separate
experiment found that the vertical deformation stayed constant for balls fired at different
angles with the same vertical velocity component (7 ms™, the same as a normal 100 inch
drop test), apart from the steepest angle tested. This angle was the only angle where the
ball rolled by the end of the impact (according to simple theory). This experiment also
found that the visible part of the ball retains the same shape above the surface and appears
to be a truncated sphere. This contrasts with the video footage of impacts with higher
vertical velocity components (12 to 15 ms™), where the ball most definitely changes shape.
For these impacts with higher vertical speed, the spin throughout impact seems to be the
key to a changing COR due to its effect on ball deformation shapes and therefore energy
loss — when the applied spin means that the angular rotation stays low through the impact
period where the forces are highest, there is more deflection and thus more energy loss.
Momentum causes the part of the ball shell at the rear (if a line is drawn along the velocity
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vector) to deform or buckle inwards to varying degrees. When there is topspin applied, this
does not happen as this momentum is taken round the shape of the ball by the angular

rotation.
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10 Oblique impact model
10.1 Introduction

The normal model previously presented proved to simulate ball impacts very well, and
gave good predictions of the force data throughout the impact period as well as just
outgoing conditions. This suggested that it was a good representation of the physics of the
impact and could be extended to a second dimension. In this chapter further properties of
horizontal displacement, velocity and force are introduced, as well as the rotation variables
needed to predict spin. The model was created as a standalone program as it became too
complex to be calculated easily in a spreadsheet. A variety of experimental data was used

to validate the model predictions.
10.2 Model Overview

A number of authors have proposed normal models which give reasonable representations
of normal impacts, but oblique spinning models are considerably more complicated. One

aspect in particular which has never been modelled analytically is the generation of spin,
and how the ball deformation affects this.

As in the normal model, the forces on the ball are made up of a combination of structural
stiffness, damping and impulsive reaction forces. The first two of these can be directly
transferred into an oblique model, but the impulsive force is more complicated. Each of
these forces is discussed in more detail below.

One of the first assumptions to be made in the oblique model was that the vertical
displacements, velocities and forces (apart from the impulsive force) acted in the same way
as for a normal model with the same components. The experimental data in Chapter 9

suggested that this is not strictly the case, but the deformation shapes are far too complex
to be easily modelled.

Throughout this chapter, three ball construction types were considered. The oversized ball,
although it behaved somewhat differently in terms of force data throughout impact, had
rebound characteristics so close to a conventional pressurised ball that it was not
considered further, and the decision made not to include it in the oblique model. The only
difference between the oversized and normal pressurised ball was the force data, which
could not be measured for oblique impacts.
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10.2.a Ball geometry and deformation shapes

Figure 10.1 Defining the geometry and model space of the ball during oblique impact.

A tennis ball part-way through an oblique impact is show in Figure 10.1. A single variable
+ was used to define the position in the normal impact model of chapter 8, but the axes are
changed when a second degree of freedom is introduced. The variable x is now used to
denote horizontal movement, and y the vertical displacement of the centre of mass. The
ball has velocity V acting at an angle @ to the horizontal. Forces acting on the ball are a
normal reaction force R and a horizontal frictional force F, which will be discussed in more
detail.

The geometry of a deformed tennis ball was discussed in detail in Chapter 8. To
summarise, the shape that the ball assumes when it is compressed is an important factor in
creating an accurate model. The model is defined in terms of a centre of mass
displacement, but this must be related to physical ball deformation in order to calculate
both the damping and impulsive forces. It is also important when the model is extended to
simulate oblique impacts. Spin on the ball is generated by forces which do not act through
the centre of mass, and therefore the moment arm (defined as the perpendicular distance
between the centre of mass and the line of action of the force causing the moment) is
important. After calculating a rotational torque, the moment of inertia of a deformed ball
must also be taken into account to find the rotational acceleration.

In summary, the work in Chapter 8 considered two deformation assumptions: buckled
(where the ball deformation is inverted inside the original shape) and truncated (where a
flat circular contact area is formed). The decision was made to use the truncated shape, as
this was felt to be more representative for the relatively minor deformations found in
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oblique impacts (where the normal component of impact speed is often less then 10 ms’™).
It was found that the ball construction had negligible effect on the relationship between
centre of mass position y and physical ball deformation 4. It should be noted that this
position y is relative to its original position, not to the centre of the displaced ball. The
relationship used for the truncated ball assumption (for all three ball types considered) is
given by (for units in metres):

5 =27.203y% +0.9645y [10.1]

The reason that the ball construction does not affect this relationship is that a large
proportion of the centre of mass displacement is given by the deformation of the bottom of
the ball, and the ball construction only affects the movement of the centre of mass relative
to the centre of an undeformed ball (or another way of looking at it, relative to the top of
the ball). But when considering the moment of inertia, the governing equation is a function
of mass (and therefore density) and the square of the distance from centre of mass. A
pressureless ball with a thicker rubber shell will have a slightly lower moment of inertia
than a conventional pressurised ball due to the mass being shifted towards the centre. The
external diameter of the rubber shell remains the same, but the internal diameter moves
inwards, lowering both the average radius and the density. The difference between / for
pressurised and pressureless balls was found to stay roughly the same as deformation
increased. giving pressureless balls on average a value about 2.5% lower. The functions
defining the moments of inertia are given in Table 10.1 (again, for SI units).

Table 10.1 Ball moment of inertia as a function of centre of mass movement, for different ball
construction types.

Ball deformation type Moment of inertia / as function of COM movement y
Pressurised / punctured 1=3.2428*10" —0.030558y% —3.4082*107° y
Pressureless 1=3.1541*%10" - 0.032638y* - 3.9665*10™ y
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Figure 10.2 Ball geometry showing the moment arm for a frictional force on a deformed ball

during oblique impact.
When calculating spin, the moment arm distance is critical. Although a number of previous
geometry calculations have been rather complicated, the moment arm is simply the
difference between the radius and the centre of mass displacement variable y as used in the
model — there is no need to calculate physical ball shapes. This is illustrated in Figure 10.2,
which is defined by a centre of mass displacement y. In order to calculate the external ball
deformation would need some knowledge of the displacement of the centre of mass
relative to the undeformed ball, but the moment arm is just the distance from the centre of
mass to the surface — which is R-y on the figure above.

10.2.b Structural force

The structural force is modelled as a spring whose stiffness varies with ball deflection. For
a vertical centre of mass displacement y the governing equation giving the stiffness k is

given in [10.2] below. The spring stiffness parameters ky and 4 were found in the normal
model discussed in Chapter 8, and are given in Table 10.2.

k = ke” [10.2]
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Table 10.2 Spring stiffness model parameters for the various ball types.

Ball type T ko (N/m) A j
Pressurised ‘ 21000 50
Pressureless ] 22500 25

| Puncwred | 13600 50

10.2.c Damping force

As the ball compresses, energy is lost in the bending of the rubber wall. This is represented
by a damper component. The damping coefficient is a function of ball deformation, and
was chosen to be proportional to the contact cross-sectional area. For the rubber contact
area of internal and external radii r; and r, respectively, the damping force Fy, is
proportional to the constant Cy and ball shell velocity V as given by

Fy=Cy(r+r)V [10.3]

The damping coefficient Cy for each ball type is shown in Table 10.3.

Table 10.3 Model damping parameters for the various ball types.

Ball type Co (Ns/m®)
Pressurised 4000
Pressureless 3800

Punctured 4500

10.2.d Impuisive force

As in the normal model, an impulsive reaction force is caused by the instantaneous
velocity change of material as it comes to rest on the surface. However, the situation is
complicated by the spin on the ball - even a ball projected without spin will generate spin
during an impact due to the frictional force and the rotational moment this produces. Spin
on the ball means that the velocity is not constant across the cross section which is in
contact with the ground at any particular instant. For example, topspin will increase the
downwards velocity at the front of the ball and decrease it at the back, with a variation in
between.
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B v g esatoe L ek RS
A cross-section through the centre of the ball is shown in Figure 10.3. The ball lands with
an oblique velocity ¥ and topspin @. There is also a velocity component due to the spin,
which is shown as Vg relative to the velocity of the ball centre. When V and Vs are
combined, the resultant velocity Vk is different at the front and back, leading to différing
reaction forces Fr. At a different position around the contact annulus the effective radius
about the spin axis will change, affecting the value of Vs There will therefore be a
distribution of velocity and force throughout the contact area. If the topspin is high enough
there may be parts of the ball (towards the rear) where the resultant velocity is upwards
and therefore no impulsive force. There can of course be no force in the opposite directior;
due to this upwards velocity.
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Figure 10.4 Cross-sections of the ball during an oblique impact, showing (a) a horizontal slice
of the contact area, and (b) the geometry of the velocity.

For the small element shown in Figure 10.4 (a) - which is at a vertical distance & below the

ball centre - the velocity due to spin Vs will be the spin rate @ multiplied by the radius R
about the spin axis. This will be given by

R=\a* +h
=+r’sin’ @ +h’

Thus Vi =R

=w\r’sin’ 0+ h’
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where vertical height 4 is a function of ball deformation. The impulsive force is caused by

the vertical component of the spin velocity, i.e. V;cosa . Because the combination of

rotational and translational velocities results in a non-symmetrical velocity profile around
the contact area of the ball, there will be a net horizontal impulsive force, but this was
found to be extremely small and was neglected.

Thus the resultant vertical velocity for the element shown (for a given vertical speed due to
the motion V}) is given by

VR, = V; +Vx

=V, +wcosaNr’sin’ 0 +h

Resultant upwards velocity Resultant downwards velocity

Line of zero velocity

Figure 10.5 Velocity profiles across the ball cross-section.

A program was written to calculate the velocity across the cross-section for visualisation
purposes. An example is shown in Figure 10.5, for a slice taken 11.7 mm above the
surface. Both the cloth and rubber layers are shown, giving overall values for internal
radius and external radius of 16.6 and 25.2 mm respectively. The downwards speed at the
time instant chosen was 4 ms”, and the topspin 400 rads™. Vertical lines show the
boundary of zero velocity; to the right of these lines the velocity is downwards and to the
left it is upwards. In either case a darker colour indicates a higher velocity. Because of the

axis of spin, the velocity is purely a function of the position towards the front or back of
the ball.
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As in the normal model, the impulsive force is given by calculating the rate of change of
momentum. This momentum change per unit time for the small element shown is equal to

the mass of the element hitting the surface per unit time multiplied by the speed. The mass

rate is given by the area 44 multiplied by the density p, multiplied by the speed V, . This

gives an impulsive force SF for the element,

SF=p38AV,’

Integrating for the total contact area (which must be done separately for the cloth and the
rubber),

r2r

F=p|[rv, dodr
r 0

Because V, is a complex function of R and 6, this integral is impossible to solve

analytically. A numerical solution was therefore written in software, as described later in

this chapter.

10.2.e Frictional force

The various mechanisms of impact create a vertical reaction force. The model assumes that
this reaction creates a frictional force opposing the relative motion between the bottom of
the ball and the surface. In most cases this will be opposing the horizontal motion of the
ball, although it is theoretically possible for a ball to bounce with such a high amount of
topspin that there is “topspin slip”.

The coefficient of friction between tennis ball cloth and the surface being used in the
model was then used to give a frictional force. This is applied until rolling occurs, which is
defined as the state where the tangential velocity at the bottom of the ball matches the
horizontal speed. This is a slightly simplistic definition, as there will be a distribution of
horizontal velocity components across the contact area. Cross (2002) looked at the
interaction of ball and surface during impact and concluded that the ball did not simply
roll, but “gripped” the surface, causing horizontal vibrations. A physically realistic
simulation would allow certain parts of the ball on the contact area to move while others
were stationary. This will cause horizontal deformation of the ball shell and is beyond the
scope of this model.

10.2.f Rotational moments and spin generation

The frictional force described above will create a rotational moment about the ball centre
of mass, which acts along the interface between the ball cloth and the surface. Using the
moment arm discussed earlier, a torque T can be calculated. Taking into account the
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relationship between deformation and moment of inertia /, this gives a rotational
acceleration and therefore a change of spin rate @ using 7' =/ 62—(;) .

Because a non-symmetrical velocity profile is created by the addition of spin, the
impulsive force will also create a moment about the centre of mass. Although this is small,
it was calculated and included in the total moment.

10.3 Model software

The complexities introduced by applying the impulsive force equations to an oblique
impact meant that it was no longer possible to solve it in a simple manner using a
spreadsheet. A stand-alone piece of software was therefore written in Visual Basic.

The structural and damping forces were simple calculations, but the impulsive force was
worked out numerically for each timestep. The contact area was split into a number of
elements (the radius was split into ten, and the angle one hundred, giving a total of a
thousand elements). The area of each element was calculated as a proportion of the total
contact area.

Apart from the calculations, the model solution method was approached in the same way
as for the normal model. Initial boundary conditions of speed, spin and angle are entered,
either as absolute values or as horizontal and vertical components. The other parameters

are defined on a “per ball” basis, and so the user must simply select the ball type — this then
selects the various coefficients as discussed in section 10.2.

i Oblique impact model

truction: —————  Total force Struct force
Bal - Impulsive force Damping force Force (N)
Pressurised X ———  Friction force 300
50[]} 3
Coefficient of friction: 400 100
|0.55
300
300
Run model 2001 |
€ ,‘I
8 100 00
Current contact time (ms}): 1= i
100
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0 e
RO AT S R T P S O S [ I ¢
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ontact time = me
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Figure 10.6 Software model - a screenshot of the result of an oblique impact prediction.
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A screenshot showing the model results after calculation is shown in Figure 10.6. This
gives a quick overview of the results and allows the various forces to be compared. This
fairly simple case gives forces as would be expected from a normal model. The structural
force is an approximate half sinusoidal, as would be produced by a simple spring. The
damping is also a smooth curve which always acts opposing the velocity and so has half
the period. The impulsive force rises quickly to give the total force curve its distinctive
shape. It also drops fairly quickly, and reaches zero about halfway through the impact. The

horizontal frictional force is a simple scaled multiple of the total force, as there is slipping
throughout and therefore straightforward frictional interaction.

Various other outgoing parameters can also be seen in the bottom-right hand corner of

Figure 10.6, such as the contact time, slide length and COR. Also shown is the “Apparent

SPR”, which is calculated using the standard SPR equation i:j‘ . It can be seen that for

y

this case where there is no rolling, this is 45, equal to 100(1 -~ ,u) .

I T 0] ]
Data to include
Time ¥

% displacement [~ % velocity [~

y displacement v yvelocity [~
spin L

Force data 7

Total force v

Stuctwral force [~ Damping force [~

Impulsive force [~ Frictional (horiz) [~

Export Cancel

Figure 10.7 Software model - a screenshot showing the data exporting options.
Any of the data produced such as forces, displacements and velocities can be casily
exported for further analysis — for example, the two graphs discussed below were produced
by copying the data into Microsoft Excel as seen in Figure 10.7.
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Figure 10.8 Model forces for an oblique impact at 30 ms™' at 24.5° to the horizontal, with 400

rads™ of topspin. All forces except the frictional force are vertical.
A more interesting situation happens during an impact with incoming topspin, as is shown
in Figure 10.8. In this case two differences can be seen. The large topspin throughout the
impact creates an impulsive force which remains for much longer than for impacts with
backspin. In fact, in this case it remains significant well into the second half of the impact,
after the ball centre of mass is moving upwards. This is because some portions of the front
half of the ball still have a resultant downwards velocity due to the high topspin. The
impulsive force is a numerical summation of the forces produced by a large number of
elements — so there may still be elements hitting the surface when the ball as a whole is
moving upwards (this will in fact often be the case unless the ball impacts with

considerable backspin, as most impacts have achieved some amount of topspin by the
midway point).

The second difference is a reversal of the frictional force. After about 2.3 ms. the frictional
force is positive, which indicates that the ball has enough topspin that the relative motion
between ball and surface is in the opposite direction to normal. The intuitive understanding
of the situation might suggest that the spin on the ball should reach that needed for rolling,
and the friction would “switch on and off™, keeping the velocity and spin in step. However,
this does not take into account the ball deformations. What happens is that during the
middle part of the impact, the ball gains a large amount of spin due to the reduced moment
of inertia, while the spin required for rolling increases because of the lowered radius (from
the deformed shape). Then as the ball regains its shape, the radius increases back to its

original value, and the rolling spin boundary drops “faster” than friction reduces the value
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of the overspin. Figure 10.9 shows how the spin increases until overspin occurs and the
friction reverses direction.
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Figure 10.9 Frictional force and spin on the ball during an oblique impact at 30 ms™ at 24.5°
to the horizontal, with 400 rads™ of topspin.

10.4 Comparison with experimental data

The various sets of data presented in Chapter 9 were used to validate the model. In each
case two of the three incoming variables (speed, spin and angle) were kept nominally
constant while the other was varied. In practice the two “constant” variables showed some
variability. This variability would be significant enough to affect the rebound
characteristics, and so the variation was included in the model boundary conditions, which
are described for each set of tests.

Three different surfaces were used. In each case the additional model parameter needed to
extend from a normal to an oblique model was coefficient of friction. This was obtained by
using a combination of experimental measurements from SPR tests and also the use of a
Haines pendulum. The friction values (given later in this chapter) from these two tests
matched well.

10.4.a Varying spin tests

These tests measured the rebound conditions for a pressurised ball projected at a nominal
speed of 30 ms’' and 24° to the horizontal, with spin ranging from 600 rads™ of backspin to
600 rads” of topspin. As the spin changed, the impact speed and angle — which was
intended to be constant — changed enough to affect the rebound properties. It was thercfore
important to include this variation in input boundary conditions to the model.
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Figure 10.10 (a-b) Model input parameters used at various spins: (a) speed and (b) angle.

Figure 10.10 shows how the impact speed and angle changed with spin, and the nominal
value used as a model input parameter at each spin rate.
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Figure 10.11 (a-d) Comparison of experimental data and model predictions for rebound
characteristics of pressurised balls impacting at a nominal speed of 30 ms™ and a nominal

angle of 24°, with varying spins.
Figure 10.11 shows the model predictions. The rebound speed predictions are excellent for
the full range of input spins. The predicted outgoing spin is a good match for most cases,
but becomes too high for large incoming topspin. The rebound angle is accurate for
impacts with incoming backspin, but 2 to 3 degrees lower than the experimental values for
impacts with incoming topspin. This discrepancy is most likely due to the large topspin
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throughout these impacts, and the effect this has. As discussed in Chapter 9, this spin alters
the deformation shapes, which is impossible to predict in this kind of model. In summary,
it is hypothesised that the impacts with topspin cause much less buckling deformation in
the wall of the ball by keeping a more circular shape, thus reducing energy losses. The
effect of this can be seen in Figure 10.11 (d), where those impacts with incoming topspin
have a noticeably higher coefficient of restitution than those with backspin. As the model
assumes the spin and the horizontal speed have no effect in the vertical direction, the only
change in COR is due to the change in incoming speed.

10.4.b Varying speed tests
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Figure 10.12 (a-b) Model input parameters used at various speeds: (a) angle and (b) spin.

The second set of data used to validate the model was a series of impacts with varying
speed. As this speed increased, the impact angle changed systematically, and this is
reflected in the incoming speeds used in the model as shown in Figure 10.12 (a). The

impact spin was fairly randomly scattered but consistent, and so an average value of 60
rads” of backspin was used.
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Figure 10.13 (a-c) Comparison of experimental data and model predictions for rebound
characteristics of pressurised balls impacting with varying speeds at a nominal angle of 24°,
with a nominal value of zero spin.

The rebound speed, spin and angle are shown in Figure 10.13 (a), (b) and (c) respectively.
The speed is an excellent match throughout. The model predicts slightly too high spin as

the impact speed increases, although the scatter in the experimental data also increases.

The angle is consistently 2 to 3 degrees lower than that seen experimentally, suggesting an
energy loss that is not reproduced in the model.

10.4.c Varying angle tests
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Figure 10.14 (a-b) Model input parameters used at various angles: (a) angle and (b) spin.
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Figure 10.14 shows how changes in the angle affected the impact speed and spin. In
comparison to the other tests, the speed was fairly consistent (because no change in
settings of the Bola projection device were needed, just a physical rotation), with a
maximum change of 1 ms™. The incoming spin was also fairly consistent apart from the
values at the shallowest angle, which was noticeably different.
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Figure 10.15 (a-c) Comparison of experimental data and model predictions for rebound
characteristics of pressurised balls impacting at a nominal speed of 30 ms™ and a nominal value

of zero spin, at varying angles.
The model predictions are shown in Figure 10.15. As the angle increases above about 27
degrees, the predictions for rebound speed diverge from the experimental values seen. The

oblique tests increase rebound speed as the angle increases, whereas the model reduces and
tends to a rebound speed of about 17 ms™. At the extremes of angle this is almost 5 ms™'

too low. The rebound spin and angle predictions match the experimental values quite well.

10.4.d Testing on different surfaces

The next model verification was for the oblique impact tests on three different surfaces.
Friction tests on these surfaces gave values of 1 as shown in Table 10.4 below.
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Table 10.4 Coefficients of friction for the three different surfaces used.
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Figure 10.16 (a-b) Model input parameters used to predict three different surfaces at different

spins, showing how (a) impact speed and (b) impact angle varied from the nominally constant
values.

Figure 10.16 shows how the nominally constant impact speed and angle varied with
applied spin, and how the model input parameters were adjusted to reflect this. Although
there was a degree of scatter, the speed was judged to have the same average value for the
tests on each surface. There was a slight difference in the angle data, where the balls
projected onto the medium speed surface were consistently lower than the other two
surfaces (apart from for the highest amount of applied backspin).
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Figure 10.17 (a-c) Experimental values and model predictions for (a) rebound speed, (b)
rebound spin and (c) rebound angle for oblique impacts on three different surfaces. In each
case the discrete points are experimental data and the lines are model predictions.
Figure 10.17 shows the model predictions. The speed and spin values give extremely good
correlations to the experimental data for all three surface types, clearly differentiating
between them. The predicted angle is very accurate on the medium and fast surfaces, but

gives a value several degrees too low for those impacts on the slow surface with low values
of incoming spin (topspin or backspin).

10.4.e Testing with different balls
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Figure 10.18 Model input parameters used to predict the impact of three different ball

constructions at different spins, showing how (a) impact speed and (b) impact angle varied from
the nominally constant values.
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The parameters for the normal model in Chapter 8 were used to predict the impact of three
different ball types. The incoming data is shown in Figure 10.18, and is aggregated for all

ball types (pressurised, pressureless and punctured) as the incoming conditions were not
affected by the ball construction.
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Figure 10.19 (a-c) Model predictions for (a) rebound speed, (b) rebound spin and (c) rebound

angle for impacts of three ball types at a nominal speed of 30 ms™' and a nominal angle of 24°.

In each case the discrete points are experimental data and the lines are model predictions.
Model rebound predictions are shown in Figure 10.19. There is no significant difference
between the predicted behaviour of the different ball types for the speed and spin data, but
this follows the same trends as the experimental results. The pressurised and pressureless
balls have very similar rebound characteristics throughout. The punctured ball has a
slightly lower speed when topspin is applied; it is not possible to see whether this happens
experimentally as no impacts happened with enough incoming topspin and there is too
much scatter in the data to attach significance to the values at low incoming topspin. The
punctured ball predicted spin is very slightly lower than the other two balls for almost all
impacts. Again this seems to be the case with the experimental data, but it is impossible to
be certain. The clearest difference between the ball types is seen on the rebound angle. The
pressurised ball bounces slightly steeper than the pressureless, and both significantly
steeper than the punctured ball. This is as would be expected when considering the normal

COR values. The experimental data shows the same trend. albeit perhaps

2 10 3 degrees
higher in each case.
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10.5 Discussion

For most conditions the model gives very good predictions of rebound speed and spin. The
rebound angle is less accurate and in a number of cases is several degrees too low, but this
is a notoriously hard variable to predict. One source of error investigated was the analytical
method used to find the moment of inertia of the deformed ball. If this gave a significantly
inaccurate value for moment of inertia, the horizontal impulse would be changed by
enough to affect the rebound angle for impacts with rolling — since rolling occurs when the
spin reaches the rolling spin value vy/r, effectively “switching off” the frictional force or
even reversing it. However, the outgoing spins were fairy accurate for the impacts in the
first set of data where rolling definitely did not occur, suggesting the moment of inertia
predictions were a reasonably good approximation.

The images in the previous chapter showing deformation shapes show that the ball
structure does not exactly remain in the shame assumed. Although this does not have a
huge effect on moment of inertia, there will also be an error in the relationship between
ball deformation and centre of mass deflection — caused by both the slight bulging in the
upper half of the ball and also the shape in the knuckle where the shell bends round on
meeting the surface, which will not be the sharp angular cut-off assumed.

The increased angle in the experimental data also explains why the model predicts slightly
too high a spin for the rolling impacts. The reduced vertical forces will lead to a lower
frictional force. This produces a slightly increased horizontal velocity component and
therefore a higher spin, as spin is “bound” to horizontal speed when rolling occurs.

The deformation shapes discussed in Chapter 9 seem to provide the most likely mechanism
for energy loss, which means that impacts generating significant topspin reduce the
deformation of the part of the ball away from the surface, decreasing the energy loss. This
is seen in the rebound angle data, where the increased vertical velocity component raises
the angle. It is interesting that the highest friction surface showed the largest deviation
between experiment and model data. It seems likely that the extra spin caused by the
higher friction causes the ball deformations to be reduced, and thus the energy losses are

lower.
10.6 Adding a spin-related damping term

10.6.a Introduction

It is clear that a major difference between the model and the experimental data lies in the
vertical COR seen. If the degrees of freedom of the model are kept separate, there is no
way that the COR can change in the way seen repeatedly in experiments. The decision was
therefore made to introduce an empirical term which would affect the COR. Figure 10.11
shows that relative to an impact with zero applied spin, there is a definite tendency for the
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COR to decrease as the ball impacts with more backspin, and to increase as topspin is
applied (the COR only increases slightly, but the impact speed also increases, so the trend
is larger than it appears as the COR would be expected to decrease). The point between the
two trends seems to be about 100 to 200 rads™ of applied backspin, which happens to be
roughly the impact where the average of the incoming and rebound spins is zero. This
suggests that the spin does have a direct influence on energy loss, although the exact nature
is rather complicated.

An adjustment was made to the damping coefficient so that it would change proportionally
to the spin rate — an increased backspin leads to an increased damping coefficient and thus
reduced COR, and vice versa. This still gave a damping force proportional to the ball

velocity ¥ by the equation £, =C, (s, +ru)2 V', but the damping coefficient was now

changed to the form

C,=C,+Ci0

Values for the spin-compensation damping are shown in Table 10.5. These were found by
running the model and considering the COR values for the two impacts with extreme cases
for incoming topspin and backspin on the “varying angles” test. It was not possible to
predict or measure the values of Cs due to the complicated nature of the physical processes
involved — it would require a much more complicated model taking into account the
different material properties for each ball. The most likely explanation for the difference
between Cs for different balls is that the pressurised ball keeps its shape much more at low
spins, and therefore the extra deformation due to spin has more of an effect.

Table 10.5 Model damping parameters for the various ball types.

Ball type Cs (Ns¥/m®)
Pressurised -4
Pressureless 2

Punctured -1.5

10.6.b Model results

The same sets of data as used in section 10.4 were used to compare the new model with
experiment. Unfortunately it was not possible to show both model predictions on the same

graphs for comparison purposes without the data becoming unclear, so in each case only
the adjusted model is shown.
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Figure 10.20 (a-d) Model predictions and experimental values for (a) rebound speed, (b)
rebound topspin, (c) rebound angle, and (d) vertical COR for impacts with varying spin.
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Figure 10.21 (a-c) Comparison of experimental data and model predictions for rebound

characteristics of pressurised balls impacting with varying speeds at a nominal angle of 24°,
with a nominal value of zero spin.
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Figure 10.20 shows how the new model predicts rebounds with varying impact spin. The
rebound speed and spin are virtually exactly the same as the previous model. The rebound
angle is however much closer, and this is reflected in the COR data. Figure 10.21 shows
the model predictions for the “varying speed” test. Again the change to the model does not
affect the speed, but it does correct the rebound angles, now matching experimental values

extremely well. The rebound spin is still too high.
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Figure 10.22 (a-c) Comparison of experimental data and model predictions for rebound

characteristics of pressurised balls impacting at a nominal speed of 30 ms™ and a nominal value
of zero spin, at varying angles.

Figure 10.22 shows the model predictions for the tests with varying angle. Again the speed
results are not significantly changed by the alteration to the model, and the rebound speed
remains much too low for the angles above 30 degrees. The rebound spin and angle are
reasonably accurate.
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Figure 10.23 (a-c) Experimental values and model predictions for (a) rebound speed, (b)

rebound spin and (c) rebound angle for oblique impacts on three different surfaces. In each
case the discrete points are experimental data and the lines are model predictions.
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In each case the discrete points are experimental data and the lines are model predictions.
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Figure 10.23 shows the adjusted model predictions for impacts on different surfaces. The
model values are much closer to experiment in each case, although the rebound angle is
slightly under-predicted on the slow surface.

Model predictions for the three different ball types are shown in Figure 10.24. As in all
cases, the rebound speeds are not changed much by the model alteration. The rebound
angles are now much closer to experimental values however. Rebound spins for the

punctured and pressureless ball are too high for those impacts with incoming topspin.

10.6.c Discussion

Most of the model predictions are much improved by the change to the damping
coefficient, and under realistic conditions likely to be seen during play the results are very
good. The tests at high impact angles however are still somewhat inaccurate, although it
should be noted that even an angle of 24° as used in the experimental oblique impacts is
steeper than the majority occurring in a game.
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Figure 10.25 Comparing vertical COR values for normal impacts at (a) different speeds and

(b) different angles. The results in (b) are plotted against vertical impact velocity.
Figure 10.25 shows how vertical COR differs between normal and oblique impacts, and
demonstrates the difficulty posed by modelling steep angles.. Figure 10.25 (a) shows
impacts with nominally zero incoming spin at a range of angles, and the oblique impacts
have a noticeably higher COR. In Figure 10.25 (b), data is shown for impacts at a range of
incoming angles (but the same absolute speed and zero spin). There is a significant
difference here — oblique impacts at high angles (and therefore high vertical velocity
component) increase the COR by a large amount, and the difference between normal and
oblique impacts becomes much greater as the angle increases.

10.7 Sensitivity Analysis

It is instructive to know the sensitivity of the model to each of its defining parameters,
which gives an idea of their relative importance and also the necessity for accurate
measurement. The static stiffness ko, the stiffness exponential coefficient 4 and the
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damping coefficient Cy were all investigated by changing their values by 10 and 20% (for a
pressurised ball on the medium speed surface). The “changing spin” set of tests was used

as this showed results where there was a clear different between slipping and rolling
impacts, and definite trends in the outgoing data.
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Figure 10.26 (a-c) (a) Rebound speed, (b) rebound spin and (c) rebound angle showing the
original model, and with 10% and 20% higher static stiffness k, values.
Model predictions are shown in Figure 10.26, Figure 10.27 and Figure 10.28. Changing
any of the coefficients by even 20% makes no noticeable difference to the speed and spin —
these model outputs cannot be differentiated on the graphs. A small to moderate change in
the rebound angle is produced, but this is only evident in the incoming spins which slide
throughout impact. It is interesting to note that increasing the damping does not alter the

rebound speed of an oblique impact — although the vertical speed is reduced, the horizontal
speed is increased as discussed in Chapter 9, leading to a change in angle.

These results suggest that none of the parameters in themselves are particularly sensitive to
errors. The different behaviours of various ball constructions seem to be due to

combinations of changes of the three variables (or simply much larger changes, as between
the stiffnesses of pressurised and punctured balls).
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Figure 10.27 (a-c) (a) Rebound speed, (b) rebound spin and (c) rebound angle showing the
original model, and with 10% and 20% higher static stiffness coefficient A values.
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original model, and with 10% and 20% higher damping coefficient C, values.
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10.8 Summary

The normal model presented in Chapter 8 was extended to cover the horizontal direction
and the spin on the ball. The geometry of the impulsive force makes the oblique situation
much more complicated to evaluate, but this is a vital component of the total force and
gives the force-time curve its distinctive shape. A spreadsheet could no longer be used to
create a quick and simple model and therefore a software solution was written. This model
generally gives very good predictions of rebound speed and spin. The predicted rebound
angle is in a number of cases two to three degrees lower than that found experimentally,
which is due to the vertical COR being higher for oblique impacts than the equivalent
normal impacts matching the vertical velocity component. This COR discrepancy is
thought to be caused by the spin generated during an oblique impact, and the effect this has
on deformation shapes and energy losses.

To compensate for this discrepancy, a simple compensation term was introduced to adjust
the damping for instantaneous spin rate. This improved the quality of the model
predictions, but does require more experimentation to find the extra parameter, which
cannot be measured statically.

The effect of the errors in the model predictions will be discussed in the next chapter, to
see how important the errors would be over the course of a ball’s trajectory, to see whether
the damping compensation term is necessary.

The one set of tests where the adjusted model did not closely match experimental values
was where the angle was increased. At steep angles (where the changes in shape due to
deformation will be more severe), the rebound speed in particular is much too low. These
are however incoming conditions where it is unlikely a model is required, as they will not
be seen in any realistic shot and such steep angles will not occur at significant speeds
except for the particular example of a smash. This case is not one where predicting the
rebound conditions is likely to be important.
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11 Tennis GUT
11.1 Introduction

The surface impact model presented in this thesis covers one part of the ball’s interaction
with its surroundings during a game of tennis. Before it reaches the court surface, the ball
has undergone an impact with a racket and a three-dimensional trajectory under the effects
of gravity and aerodynamic forces. There is then of course a further trajectory after the ball
bounces before it reaches the opposing player.

When working on a single part of the whole tennis “process”, it is easy to lose sight of the
effect of (often small) changes in a ball’s behaviour. This is particularly true in assessing
model accuracy — for example, how much effect does a 5% error in predicted speed on
rebound have on how the ball behaves through the rest of the shot?

A piece of software was developed to streamline the modelling process by tying together
the currently most advanced models in the three main areas: ball-racket impact
aerodynamic trajectory and ball-surface impact. The primary focus was ease of use, so that

small changes in one variable (such as racket or ball mass) could be propagated through
the models in turn to see their effects.

11.2 Racket impact model

14.2.a Introduction

Of all the components of the sport of tennis, the two which have changed most
dramatically in recent decades are the player and the racket. Improvements in diet, training
techniques and a huge change in the marketplace rewards for professional sport have led to
modern players being significantly taller, heavier, stronger and faster than ever before.

The most revolutionary change in rackets came when Prince introduced the first oversize
racket (Head, 1976). The oversized head means that the “sweet spot” of the racket is much
larger, giving a greater margin for error. Modern rackets are incredibly stiff and light,
allowing increased swing speeds. A combination of these factors means that shots (in
particular the serve) are increasingly being hit with such power and accuracy that it is
physically impossible for the receiver to return the ball. (refs about serve speed?).

As governing body for the sport, the ITF has recognised its responsibility to understand the
effects of players and equipment on how the game is played at both a professional and
recreational level (Coe, 2000; Miller, 2003). Amongst much other research, they built a
serve impact simulation machine (Kotze and Mitchell, 2002) capable of producing impact
speeds of up to 50 ms’' at specified racket positions.
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11.2.b Model description
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Figure 11.1 The model used to simulate ball impact on a freely suspended racket.

The racket model used here is based on that given by Goodwill and Haake (2003) and is
more fully described in that publication. A freely suspended racket was chosen, as this is
the most valid way of representing a player’s grip (Brody, 1987). The model defines a
system consisting of three discrete components: the ball, the stringbed and the racket
frame, as shown in Figure 11.1.

The ball is modelled as a point mass connected to the stringbed by a spring (kz) and
dashpot damper (Cp) in parallel. Both of these parameters depend on ball deformation and
therefore change during the course of an impact. Their values were empirically found by
Goodwill (2002). The stringbed was similarly represented by a parallel spring (ks) and
damper (Cs), whose values were obtained from experimental data. The stiffness ks was
found by applying a quasi-static load to a racket stringbed via a rigid 55 mm diameter disc.
The damper Cs was given a value of 2 Nsm™ in order to provide a energy loss of 5%,
corresponding to the experimental results of Cross (2000).

Actual racket 2D approximation 1D approximation

(F),
| —* Sy i ) .
| | - Impact
‘ point

Figure 11.2 (a) One-dimensional representation of the racket, with (b) the assumed
loading shape.
The racket model was represented by a simplified one-dimensional shape as shown in
Figure 11.2(a). A two-dimensional approximation was first created to represent the varying
mass distribution, which provided the same mass and balance point as the racket. This was
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then simplified to give a one-dimensional model with the same mass distribution along the
longitudinal axis. Cross (1999) formed a similar model and applied the stringbed force as a
point load, but Goodwill (2002) found that model accuracy was improved by assuming the
stringbed applies a distributed force to the racket frame, as illustrated in Figure 11.2 (b).

The beam can then be split into N segments, each of mass m,, position along the beam x
and length s, where each segment has displacement y, and is acted on by a force F,,. giving
equation [11.1] which can be numerically solved. Model verification and further detail can
be found in Goodwill and Haake (2003).

o'y, 2'y,
m, 5 =F,,—[E1s P [11.1)

11.3 Aerodynamic model

The aerodynamic model used has been described in Chapter 4. In summary, lift and drag
coefficients were taken from the results of Goodwill et al. (2004), who mounted both non-
spinning and spinning tennis balls in a wind tunnel. C), and C, were measured for varying
values of spin coefficient S (defined as circumferential velocity V divided by wind speed
U). They tested at wind speeds of 25 and 50 ms™', and found that C), and C}, changed a
small amount for these different Reynolds numbers. For values of S below 0.2 — where lift
and drag were measured for both wind speeds — interpolated values were used between the
trendlines for the two wind speeds, and for values of S above 0.2 those measured at 25 ms

were used. It was assumed that the spin rate stayed constant throughout the trajectory.

11.4 Surface impact model

The surface impact model is described in detail in Chapter 10. In summary, it uses a
minimal number of parameters to measure the ball properties, and a single frictional
coefficient to define the surface. A structural stiffness force, a damping force and an
impulsive reaction force are combined to give an overall force acting on the ball centre of
mass. Assumptions about the deformed shape of the ball are used to relate centre of mass

position to external ball deformation, and to calculate the rotation effect produced by the
friction force.
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11.5 Putting the models together

11.5.a User interface and parameter specifications
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Figure 11.3 The interface to the racket properties.

As already stated, the main aim was ease of use of the software. The interface to the racket
model was taken from Goodwill (2002) who constructed a standalone program for this

part. Figure 11.3 shows the ball and racket properties screen, where the relevant parameters
can be viewed and defined.

The aerodynamic model required much less user input. As it would be difficult to describe
lift and drag coefficients numerically at run-time, these were coded into the software for
the selection of balls tested. Future work may provide functionality to take data straight
from automated wind tunnel tests, but this was not judged practical or necessary.

11.5.b Output data
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Figure 11.4 Trajectory output and numerical data from the model.

The combined trajectory of the shot (including before and after impact) can be shown in
several ways. The most visual representation is a three-dimensional view which can be
rotated to see the path of the ball from any viewpoint. An example is shown in F igure 11.4,

An overhead view can also be used to see the velocity, spin etc at any point on the
trajectory.
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11.6 Model results

11.6.a Example data

As an example shot, a serve was recreated. A racket was swung virtually with a racket
head speed of 36 ms™', and an instantaneous rotational speed of 46 rads™. The ball speed
predicted by the racket model is 44.2 ms™ (99.5 mph). An interesting side note is that the
mode! can predict speeds generated if the racket was infinitely stiff — in this case 45.0 ms™
(101.2 mph), which shows that modern stiff rackets are extremely efficient and not far off
the theoretical limit. More difference would be noticed if the shot was hit towards either
the tip or throat of the racket head.

Elliott e al. (1986) found that on average, a player will hit a serve from a vertical position
of 1.53 times their height. For a player who is 1.9 m tall, this would give a starting height
of approximately 2.9 m. UC Davis (2001) measured the spin on professional serves to
average 2000 to 3000 rpm. A spin of 2500 rpm (262 rads™') was chosen for this example.

A goal seek within the software found that the angle required for the ball to land on the
baseline was 2.09 degrees below the horizontal and it impacted at 28.91 ms™ (65 mph) at
an angle of 17.47 degrees to the horizontal.

3

N
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Height (m)

Service line

-
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Horizontal distance along court (m) 2

Figure 11.5 Predicted trajectory for a serve hit at 99 mph with spin of 262 rads"'

The surface chosen was a standard uncushioned acrylic, which was measured to have a
coefficient of friction of 0.57. The surface impact model predicted a rebound of 20.6 ms™
(46.3 mph) at 18.9 degrees to the horizontal, with a spin of 593 rads™. After applying the
trajectory model again, the speed at the baseline was calculated to be 17.4 ms™ (39.1 mph)
and the ball was just still rising — the velocity vector was 2.5 degrees above horizontal. The
total time taken was 0.827 seconds, and the complete trajectory is shown in F igure 11.5

11.6.b Using the GUT model to assess the oblique mode!

The software was then used to compare the two oblique impact models described in
Chapter 10. The main reason for this was to visualise the effect of any differences between
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the model predictions and the experimental values measured. An error of 5% would seem

reasonable, but how much difference would this make to the way the ball actually
behaves?

The data chosen was from the “varying spins” set of experiments. An impact was
deliberately chosen that was probably the worst prediction from the initial oblique model,
which was the impact with 400 rads™ of incoming topspin. Both oblique models matched
the experimental rebound speed of 21 ms™. Similarly, both had the same rebound spin
value, of 700 rads™ of topspin. The experimental value here was somewhat lower, at about
600 rads™. The main difference was in the rebound angle, where the experimental value
was 27 degrees. The first model predicted an angle of 23.6°, and the second model 26.5°.

Both of these angles are too low; the addition of too much topspin will emphasise the low
trajectory.
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Figure 11.6 Comparing trajectories from two model predictions to that from experimental
rebound properties.
The speed, spins and angles were used to predict the trajectory using experimental and
model rebound characteristics for the impact which was assumed to be 18 metres along the
court (close to the service line). The results are shown in Figure 11.6. All three trajectories
are plotted up to the time interval where the experimental trajectory reached the baseline.
In each case the horizontal position is almost exactly the same. At this point the
experimental rebound characteristics predict a bounce height of 2.16 m. According to the
first oblique model the ball has a height of only 1.77 m. This discrepancy of 39 c¢m is
significant. The model with the spin-compensated damping has a height of 2.08 m. This is

8 cm below the experimental position of the ball, meaning the addition of this damping
term has reduced the error to about a fifth.

For all other data sets (except those with high impact angles), the difference between
model predictions and experimental rebound characteristics was much smaller. A
maximum error of 8 cm in the position of the ball after travelling such a large distance was
judged to be acceptable. It is also worth noting that the nominal impact conditions chosen

throughout were deliberately used as the “worst-case” scenario likely to be seen. Most
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impacts produced by real shots would have a considerably lower vertical velocity. This
would reduce the effect of deformations on energy loss, making the impact easier to
predict. Slower speeds would also produce more accurate trajectories, as even the same

proportional errors would leave experimental and prediction ball positions closer together.

11.6.c Comparing pressurised and pressureless balls

An analysis was performed to see the effect of a pressureless ball on an overall shot. The

racket swing speed used in 11.6.a produced a slightly slower ball speed of 43.4 s
(compared to 44.2 s for the pressurised ball).
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Figure 11.7 Comparing the trajectories for pressurised and pressureless balls hit with the
same racket conditions.
Figure 11.7 shows the trajectory for the pressureless ball compared to that for a pressurised
ball. The two balls behave in a very similar manner, and the pressureless ball reaches the

baseline only 3 cm lower than the pressurised ball. This difference is extremely unlikely to
be noticed by a player.

11.6.d The effect of an oversized ball

The software was also used to analyse the effect of an oversized ball. The serve speed and
angle described in 11.6.a was used to calculate the trajectory (before and after impact on
the court) of a normal ball. An oversized ball of 6.5% larger diameter (70.3 mm compared
to 66 mm) was simulated with the same launch conditions. A goal seek was then used to
vary the angle so that the oversized ball landed on the service line. This would be a more

realistic simulation of a real serve, as a player would adjust the way he hit the ne

w ball
(after some experience) to achieve the same results.
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Figure 11.8 Trajectories showing the effect of an oversized ball (at two initial angles)
compared to a conventional pressurised ball. Final positions are shown at the time where the

normal ball reaches the baseline.

The three trajectories are shown in Figure 11.8; all were plotted to show the finishing
positions relative to the time the normal ball reached the baseline. Hitting the oversized
ball the same way as the normal ball clearly makes the trajectory dip more, producing a
shorter and steeper impact. If the angle is adjusted to ensure the ball lands on the service
line, the ball is hit higher (2.38 degrees below horizontal compared to 3.09 degrees) but the
extra drag brings its flight down. Interestingly, the normal and oversized balls follow fairly
similar trajectories after impact, although the oversized ball is slower and starts to “dip”
soon after the time shown, landing well short of the normal ball for its second bounce.

The normal ball reaches the baseline after about 780 ms, and the oversized ball after about

820 ms. This time difference is significant, and would be noticed by the receiving player as
a “slower” shot.

11.7 Summary

Although not within the initial remit of the study, a piece of software was developed to aid
the use of the oblique impact model, particularly in predicting the effect of a whole shot
from one player to the opponent. This software was used to assess the effect of errors in

rebound predictions on the ball trajectory after bouncing, and particularly the result when
the ball reached the other end of the court.

It is hoped that the software presented here could be of use to the ITF in their role of
assessing the effect of technology on the sport of tennis, and perhaps it could prove useful
to the tennis industry in general as a predictive tool for comparing potential new products.
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12 Conclusions

12.1 Introduction

This chapter provides a summary of the important findings of the study, describing the
steps taken to produce an experimentally verified model of oblique ball impacts.
Summaries for each stage of the project are given, providing static and dynamic ball
properties, model construction and verification. Overall conclusions of the study are also
described, together with suggestions for possible related work in the future to progress the
research.

12.2 Summary of study

12.2.a Quasi-static ball testing

Balls were compressed at various quasi-static loading rates. It was found that for the
loading rates possible in a laboratory, compression strain rate does not have an affect on
ball stiffness. Various ball constructions behave in a very similar manner in a static
compression test (but of course they have been designed to behave in such a way). If holes
are drilled in balls so that the effect of internal pressure is totally removed, the effect of the
rubber shell can be seen. Pressureless balls are considerably stiffer, since they rely on the
structure to create the stiffness under compression. Pressurised balls rely on a combination

of shell stiffness and the rise in internal pressure. Both ball types exhibit a stiffness when
drilled which is close to constant.

12.2.b Surface testing

The important properties of a surface in relation to ball impacts were identified as friction
impact absorption and ball bound. A number of established tests exist to quantify each o;‘
these properties and these tests were examined. It was found that most of the commonly
used friction tests use a rubber surface to simulate the interaction with a player’s shoe, and
this did not correlate particularly well with the friction found using the cloth on a t;nnis
ball. The Surface Pace Rating is an accepted measure of the “speed” of a court, and theory
suggests it is a linear function of the coefficient of friction. One simple test which
correlated well with the SPR (which requires expensive equipment to measure) is the
Haines Pendulum.

Impact absorption tests rely in general on impacting an instrumented mass on a surface
either directly or via a spring. Again this test is designed to quantify human interactior;
with the surface, and so the energies involved are orders of magnitude higher than that
produced by a tennis ball. A number of tests were considered and it was found that for the
vast majority of tennis court surfaces, the surface is so much stiffer than the ball that it may
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be considered rigid. This was born out by the ball rebound tests, which showed no
significant differences between tennis court surfaces.

12.2.c Normal impacts

Experimental tests

Balls were projected at a force plate at speeds up to 20 ms™', and the impact and rebound
speeds measured with a combination of high speed video and light gates. Four ball types
were tested, and for each one the COR dropped with increasing impact velocity. At speeds
up to 7 ms’!, the three “off the shelf” balls had very similar rebound speeds. Above this, the
pressureless ball rebounded consistently slower than the pressurised and oversized balls,
which were very similar. The punctured ball rebounded slower throughout the tests.

The force data showed that the pressurised and oversized balls behave in a similar manner
throughout the range of speeds. The punctured ball has almost identical characteristics to
the pressurised ball at low speeds, but at higher speeds it behaves more like a punctured
ball.

Impact modelling

A one degree-of-freedom model was created to simulate the normal impacts. It consisted of
three components: a structural stiffness, a material damping term and an impulsive reaction
force term. The relevant parameters for each of these three components were found via a
combination of quasi-static compression tests and a minimal number of simple dynamic
tests just measuring speeds (one drop test and one higher speed test).

A feature of the model was that it attempted to relate the force components to the physical

nature of the impact, and so for example the impulsive force component was described and
calculated in an intuitive way rather than an abstract calculation.

The model predicted rebound speeds for the four ball types extremely well and matched
the various features of the force data. This gives an insight into a ball’s behaviour and the
contribution of the various parts of its construction (for example, the relative importance of
the rubber shell and the internal pressure at various speeds). The impulsive force was
found to be the main contribution to the sharp increase in force seen early in all ball
impacts, particularly at higher speeds.

42.2.d Oblique impacts

Experimental tests
A number of tests were performed in an attempt to isolate the various impact variables and

to assess the importance of each one. In particular, the speed, spin, angle, ball type and
surface type were investigated. It was found that whether or not the ball rolled during
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impact had an important affect on the way it rebounded. Sharp changes in the rebound
characteristics were observed either side of the limiting rolling conditions, in a very similar
way to those predicted by simple Newtonian rigid body models.

One significant observation was that the energy loss was affected by the nature of the
impact. A good example of this was the impacts with the same speed and angle, but
varying spins. The vertical velocity component on rebound was affected by the incoming
spin. On examining the high speed video data, this was found to be caused by the
deformation shapes. Although the overall deformation was similar in all cases, incoming
topspin reduced the deformations in the part of the ball above the surface, reducing energy
loss and increasing COR. The opposite effect was seen with incoming backspin. The
jmpacts which most closely matched the normal COR were those where the average spin

throughout impact was close to zero, and so the rotation of the ball was minimised during
the middle of the impact where the forces were greatest.

Impact modelling

The normal impact model was extended to a three degree-of-freedom situation with the
addition of horizontal and rotational components. The initial model assumed that the
yertical component was independent of the other two. The impulse force component was

found to be a complex function of both translational and rotational velocity, and a stand-
alone software solution was programmed to solve the problem.

This initial model was found predict the rebound speeds and spins reasonably well, but the
angle was consistently too low. This was because of the effect of ball spin on the vertical
COR. A simple damping compensation term was incorporated into the model such that the

damping was instantaneously reduced for topspin and increased for backspin. This reduced
the prediction errors to an acceptable level.

12.2.e Tennis GUT

When the surface impact model was complete, it was linked to a racket impact model and a
trajectory model to give a “Grand Unified Theory” piece of software. This enables the
effect of a single property to be tracked throughout a shot (for example, how would a new
racket string imparting 50% more spin on the ball affect the way it reached the opposing
player on various different speeds of court?). It is hoped that a development of this

software could be a useful tool in assessing the impact (or potential impact) of
technological changes on the sport.
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12.3 Conclusions

e Almost all tennis court surfaces are stiff enough in relation to the ball that they do
not contribute to energy losses during ball-surface impact. This means that for

modelling purposes in the majority of cases, a tennis court can be considered to be
arigid surface.

e When balls impact normally on a surface, the coefficient of restitution decreases
with increasing impact speed. At all speeds, normal and oversized pressurised balls
rebound with similar speeds. As speeds increase above those of a drop test (7 ms™),
pressureless balls rebound slower than these two pressurised types. Punctured balls
rebound significantly slower than all three other ball types at all speeds.

e All balls create a sharp initial rise in impact force. The magnitude of this initial

peak varies with impact speed. At high speed there is a short reduction in force as
the shell buckles inwards.

e A viscoelastic model was able to predict the force-time properties of normal impact
at all speeds tested (up to 20 ms’') using parameters which were simple to measure.
Features of the impact such as the initial peak in force were created by a
combination of structural stiffness, damping and impulsive reaction forces.

o Oblique impact tests showed smaller (but distinguishable) differences between the
behaviour of different balls. The trends of the balls’ behaviour matched that
predicted by Newtonian rigid body models. In particular, the difference between
slipping and rolling behaviour was observed and was noteworthy.

e An oblique model with the main addition of a coefficient of friction simulates a
variety of impacts well. Only when the impact angle is significantly higher than the
vast majority of “real” impacts is the accuracy reduced. An empirical coefficient to

compensate for the effects of spin rate on energy loss was included which
significantly improved the results.
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12.4 Future research

This project has provided a relatively simple normal model which gives good results and
whose governing parameters are easy to measure. A series of experimental tests gave a
good insight into the oblique rebound characteristics of tennis balls, and a model created

which predicted these well in most cases. There are several areas in which it would be
interesting to continue the research.

Surface modelling

This study concluded that for the vast majority of tennis courts, treating it as a rigid surface
is a good approximation — even including those with shockpads designed to reduce player
impact forces. It is recognised however that there are potential uses for simulating the
impact on softer surfaces, or particularly the specific case of clay where the surface
undergoes permanent deformation which affects the impact. To include such surfaces in
the model was not deemed feasible (in part due to the large amount of extra experimental
data necessary), but this is an area which could be explored in the future.

Environmental conditions

It has been noted several times that environmental conditions (particularly temperature
humidity and air pressure) will have an effect on the ball impact. Although it was beyonc;
the scope of this study, looking at the influence of each of these properties would be
important to gain a fuller knowledge of the behaviour of a ball in all conditions.

Further oblique experimental study

In order to gain more understanding of the nature of an oblique impact, further knowledge
of the forces and their interactions is necessary. Although the experimental arrangements
are not straightforward, accurate measurements of the horizontal frictional forces would be
extremely useful. It seems likely that there is some form of grip-slip interaction between
the ball and the surface, although it is not obvious how this would be recreated in a model
Further ultra-high-speed video footage would be useful to try to analyse deformatior;
shapes and their effect on changing COR with different spin. An improved ball projection
method which enables independent variables to be kept more consistent would also prove
useful.

Increased model complexity

Throughout this study, one of the major underlying aims was to keep the model simple
Not only does this make it easy to understand and use, it makes it much faster to solve
There was also important placed on the value of model parameters which were easy to

find. However, the nature of the spring-damper model used means that it is impossible to
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predict some forms of behaviour — a tennis ball simply is not a trivial assembly of two or

three component parts.

To improve the accuracy of the model would require substantial extra work and
complexity (such as dealing with horizontal deformations). At some point the question
must be asked as to whether this is the correct approach. In striving to create a physically
representative model, it may be necessary to turn to other approaches such as finite
clement analysis. This has the benefit of creating a model which actually looks and
behaves like a real tennis ball, but brings with it the downsides of vastly increased model
solution times and the potential for “black box syndrome” — where the user tends to accept
the forces, shapes and other such predictions as absolute truth.

Software development

The Tennis GUT software described in Chapter 11 was not a particularly important
original objective of the project, but as the study progressed it proved to be an intriguing
idea — particularly as there was a considerable amount of parallel research being
undertaken in the fields of racket modelling and tennis aerodynamics. It is both instructive
and practically useful to know how impact conditions propagate through an entire shot.

There is potential for the software to be developed into a much more complete and user-
friendly package, with a number of potential uses.

12.5 Concluding remarks

It is hoped that the work presented in this study gives a useful insight into understanding
the physical processes of impact, as well as one possible approach to modelling and
predicting their effects. The experimental results will also be useful for verifying existing
and future models. With further development and application (particularly of the software
user interface), there is great opportunity for controlling and improving the sport of tennis.
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Appendix A Ball specifications from The Rules of Tennis

A Ball specifications from The Rules of Tennis

Extracts from the Rules of Tennis are listed below (ITF, 2000a).

The ball shall be more than 1.975 ounces (56.0 grams) and less than 2.095
ounces (59.4 grams) in weight.

The ball shall be more than 2.575 inches (6.541 cm) and less than 2.700 inches
(6.858 cm) in diameter.

The ball shall have a bound of more than 53 inches (134.62 cm) and less than 58
inches (147.32 cm) when dropped 100 inches (254.00 cm) upon a flat, rigid
surface e.g. concrete. The ball shall have a forward deformation of more than
.220 of an inch (559 cm) and less than .290 of an inch (.737 cm) and return
deformation of more than .315 of an inch (.800 cm) and less than .425 of an inch
(1.080 cm) at 18 1b. (8.165 kg) load. The two deformation figures shall be the
averages of three individual readings along three axes of the ball and no two

individual readings shall differ by more than .030 of an inch (.076 cm) in each
case.

An additional section was added to the rules in 2000 describing two new types of balls.

From I* January 2000 until 31*" December 2001 two further types of tennis ball
may be used on an experimental basis.

The first type is identical to those described in paragraphs a. to c. above except
that the ball shall have a forward deformation of more than .195 inches (495
cm) and less than .235 inches (397 cm) and return deformation of more than
.295 inches (.749 cm) and less than .380 inches (965 cm). This type of ball shall

be described as Type 1 and may be used in either a pressurised or non-
pressurised form.

Another type is identical to those described in paragraphs a. to c. above except
that the size shall be more than 2.750 inches (6.985 cm) and less than 2.875
inches (7.302 cm) in diameter as determined by ring gauges and detailed in

Appendix I section (iv). This type of ball shall be described as Type 3 and may be
used in either a pressurised or non-pressurised form.

All other type of ball defined by Rule 3 shall be described as ball Type 2.
For the purpose of tournaments played under this experiment.
1. Ball Type 1 (fast) should only be used for play on court surface types which

have been classified as Category 1 (slow pace) (see Appendix ).

2. Ball Type 2 (medium) should only be used for play on court surface types

which have been classified as Category 2 (medium/medium-fast pace) (see
Appendix I).

3. Ball Type 3 (slow) should only be used for play on court surface types which
have been classified as Category 3 (fast pace) (see Appendix I).

For non-professional play any ball type may be used on any surface type.
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Appendix A Ball specifications from The Rules of Tennis

The Rules of Tennis give a list of regulations describing how each of the approval tests
should be performed. Extracts from these are listed below.

Tests should be made at a temperature of approximately 20° Centigrade and
relative humidity of 60%.

The limits given are for tests conducted in an atmospheric pressure resulting in a
barometric reading of approximately 30 inches (76 cm). Other standards may be
fixed for localities with differing average temperature, humidity and pressure.

Metal ring-gauges are used to test the ball diameter. Two circular openings have
the minimum and maximum diameters specified for the particular ball type. The
inner surface of the gauge has a convex profile with a radius of one-sixteenth of
an inch (159 cm). The ball should not drop through the smaller opening by its
own weight and should drop through the larger opening by its own weight.

Before carrying out any of the tests, a ball should be pre-compressed by
approximately one inch (2.54 cm) on each of three mutually perpendicular axes.
This should be carried out three times on each axis, and the tests completed
within two hours of pre-compression.
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Appendix B Normal impact model — force-deflection results

B Normal impact model - force-deflection results

B.1 Introduction

Supplemental data is presented to complement that given in Chapter 8. Force-deflection
graphs comparing model predictions to experimental data are shown for normal impacts
between approximately 6 and 20 ms’', for the four ball types considered in that chapter.

B.2 Model results

B.2.a Pressurised ball
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0 = e e =y v )
0 2 4 6 8 10 12 14 16 18 20 R

0 2 4 6 8 10 12 14 18 18 20
Centre of mass displacement (mm)
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Figure B.1 Comparison of experimental data (dashed lines) and mode! data (solid lines) for

force against c1entre of mass displacement, for a pressurised ball impacting normally between
5.8and 20 ms™.
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B.2.b Pressureless ball
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Figure B.2 Comparison of experimental data (dashed lines) and model data (solid lines) for

force against ce_r}tre of mass displacement, for a pressureless ball impacting normally between
5.9and 20.1 ms .
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B.2.c Oversized ball
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Figure B.3 Comparison of experimental data (dashed lines) and model data (solid lines) for

force against cer:tre of mass displacement, for an oversized ball impacting normally between
58and 19.9ms".
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B.2.d Punctured ball
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Figure B.4 Comparison of experimental data (dashed lines) and model data (solid lines) for

force against1centre of mass displacement, for a punctured ball impacting normally between 5.9
and 20.1 ms’.
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Appendix C Oblique impact data

C Oblique impact data

C.1 Introduction

This section presents some of the raw data from the various oblique tests, which may prove
useful in the future. Table C.1 shows a summary of the nominal impact conditions

describing each test. For conciseness, relevant SI units are used throughout, where no units
are quoted.

Table C.1 Summary of the various parameters for oblique impact tests. The parameter of
interest in each test is shaded.

pulace Ball type | Vin (m/s) - (degf'ees @i (rads™)
to horiz)
ing spi a9 24 -600 to 600
Varying spin,
speed & ' Medium Pressurised 25 to 60 24 0
angle 7
30 24 10 52 0
- Fast .5
(u=03)
Changing Medium ;
Press d 30 2
surface | (1 =0.55) g 24 600 to 600
Slow
(u=0.61)
Pressurised
Changing ¢
ball type Medium | pressureless 30 24 -600 to 600
Punctured
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Oblique impact data

tests

ing spin

Appendix C
C.2 Vary

[ in Out <_rollingspin —> % ofVx *ofVi
Spinref Ball# | Vx Vy Vi angle Topspin| Vx Vy Vi angle Topspin |ASpin fiom Vx from V1 _roll spin _soll spin 4 Vx AVy AVX'AVy horiz COR vert COR_ abs COR 004 8in
83 1 2819 -1264 30.89 2415 61880 [1690 767 1855 2440 4540 |6B42 5175 568.3 88 8.0 -11.3 203 0.5 05995 = 0607 0.601 1011
2 |2850 -1278 31.23 2415 62170 {1744 777 1908 2403 2520 | 6469 5312 581.6 47 43 111 206 054 06120 " 0808 o611 0.995
3 |2834 -1223 3087 2335 62050 |1705 729 1855 2316 3700 (6575 5205 566 1 71 65 -11.3_185 058 06017 " 053 0601 0992
B25 1 |2834 -1254 3099 2388 -64660 |17.35 790 19.06 2448 4540 | 892 5312 5837 85 78 110 204 054 06120 '~ 0830 0615 1.02%
2 [2859 -1223 3110 2317 57730 |17.96 728 1938 2206 1310 [5904 5472 5904 24 22 106 195 054 06284 ° 0595 0623 0.952
3 |2995 -1258 3248 2278 55830 {1905 767 2053 2192 2590 5842 5814 626.8 45 41 109 202 054 0630 " 0610 0632 0.963
B2 1 {2710 -1231 2977 2443 48450 |1572 818 17.72 2748 13990 [ 6244 4814 5427 291 28 114 205 0% 05800 ’ 0664 0595 1125
2 {2702 -1216 2063 2422 -48010 |1659 812 1846 2607 11690 597 505.2 562.4 231 208 -104 203 051 06138 ” 0668 0623 1.076
3 2788 -1285 3070 2476 53570 [16.46 829 1843 2672 10870 | 6444 5025 562.6 216 193 114 211 0.54 05906 " 0645 0.600 1.079
B15 1 |2676 -1186 2913 2365 -32900 |1552 793 1745 2725 19180 | 5208 4753 5346 40.4 ¥9 112 197 057 05799 ~ 0685 0.598 1.157
2 2769 -1228 3029 2392 -39060 (1629 806 1818 2633 16900 | 5596 493 5537 341 305 -114 203 05 05884 " 0657 0.600 1.101
3 (2633 1239 2910 2520 -284.10 j1562 8.03 1756 2720 17390 | 458 4766 5359 ¥%.5 324 107 204 052 05931 " 0648 0.603 1.079
81 1 2656 -1200 29.14 2432 -28270 (1544 B16 1746 2786 25980 | 5425 4729 5349 549 486 -11.1 202 055 05813 ~ 0680 0.593 1.146
2 [2620 1124 2851 2322 34050 (1482 771 1671 2749 19740 [ 5379 4514 508.9 437 388 114 190 060 05656 ” 06% 0.586 1.184
3 2613 1162 2859 2397 -350.60 [1575 790 1762 2663 18430 | 5349 4808 537.8 36.3 343 -104 195 0.53 06028 " 0.680 0.616 1.1
B0.5 1 {2603 -11.41 2842 2367 -41150 1516 7.74 1702 27.05 18390 | 5954 4643 521.4 396 3%3 -109 132 057 05824 ° 0678 0593 1.143
2 |2617 -1200 2879 2464 -32000 (1533 8.10 1733 2775 16970 | 4897 4689 5298 36.2 320 -108 21 054 05881 " 0675 0.804 1126
3 |2610 -1239 2889 2540 -400.40 [15.12 832 1725 2882 11490 5153 4614 5266 249 218 110 207 0.53 05792 " 0867t 0.597 1.135
0 1 [2579 1110 2807 2330 -12480 |1578 791 1765 2663 37490 [4997 4833 5407 776 693 -160 180 053 06120 ~ 0713 0.629 1.143
2 2520 -1064 2735 2289 -98.40 [1502 813 1708 2842 29790 |39%.3 4576 520.3 65.1 573 -10.2 188 054 05962 ~ 0784 0625 1.242
3 {2561 -1103 2789 23.29 -14570 [1542 827 1750 2820 368.20 [5139 4708 5342 78.2 689 -10.2 19.3 053 0602 " 0750 0.628 1.211
T0.5 1 2663 1177 2820 2467 13340 [1406 904 1672 3274 50670 |[3733 4308 5121 1176 %89 -116 208 0.56 05487 0768 0593 1.327
2 2571 1270 2867 2629 10400 [1499 903 1753 3123 50200 398 456.6 5340 109.9 940 -107 218 0.49 05831 " 0716 0611 1.188
3 |2609 1162 2765 2484 12650 [14.34 864 1674 31.07 439850 372 437.7 5111 1138 975 -10.7 203 0.53 05716 " 0744 0.606 1.251
T 1 2572 1158 2821 2424 18030 1522 892 1764 3037 55520 |[3749 4862 540.4 119.1 1027 -105 205 0.51 05918 7 0.770 0625 1.253
2 |2602 -1185 2853 2448 23930 [1505 886 17.47 3047 54180 | 3025 4585 5320 118.2 1018 -110 207 053 0578 ”~ 0748 0611 1.245
3 |2548 -1216 2823 26551 27860 1518 8.63 1746 2961 54830 | 2697 4633 532.9 118.4 1028  -103 208 0.50 05358 " 0710 0618 1.161
T5 1 |26.17 -1208 2882 2477 34540 [1660 9.17 1896 2891 58530 | 2399 5085 5808 1151 1008 96 212 045 06343 ~ 0759 0658 1.167
2 |2757 1231 3019 2407 33090 |17.17 931 1953 2845 60650 | 2756 5231 595.0 159 1019 -104 216 048 0620 ”~ 07% 0647 1.182
3 |2671 -1270 2958 2542 25530 ]17.10 962 1962 2936 57210 |3168 5219 5388 109.6 3%.5 96 23 043 06400 " 0757 0.663 1.155
T2 1 2794 -1237 3055 2389 39620 |1913 960 21.40 2666 61280 | 2166 5858 6555 1046 935 88 220 0.40 06346 ' 0776 0.700 1.116
2 12695 -1223 2953 2442 48130 |1903 8.84 2099 2492 6283 147 579.7 6393 108.4 9.3 79 211 0.38 07063 7 0723 0709 1.021
3 |2664 -1262 2948 2535 49200 [1840 9.85 2077 2767 61030 | 1183 5616 634.1 108.7 96.2 82 23 0.37 06907 " 0764 0.705 1.092
25 1 2919 -1316 3202 2427 68580 [21.81 1005 2401 2475 6394.20 6.4 667.8 7354 1039 944 7.4 232 0.32 07470 7 0764 0.750 1.020
2 (218 -1247 3174 2313 57700 {2021 883 2205 2359 75330 | 1763 6156 671.8 122.4 121 <90 213 0.42 06923 " 0708 0.695 1.020
3 2834 -1254 3099 2388 54010 |20.92 9.48 2297 2437 68400 | 1439 6386 701.1 107.1 97.6 74 220 034 07382 " 075% 0741 1.021
T3 1 266 -1316 3245 2393 63780 2199 9.37 2390 2308 74560 {1088 6735 7321 1108 1020 77 225 0.34 07415 7 Q712 0737 0.964
2 |2966 -13.48 3257 2444 71020 (2176 9.45 2372 2347 63810 | -721 862.7 7225 9.3 83.3 79 229 034 07337 7 o700 0728 0.960
3 12942 1332 3230 2435 53900 [2215 9.37 2405 2293 66440 | 1254 6760 7340 98.3 90.5 73 227 0.32 07527 " 0703 0.745 0.942
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C.3 Varying speed tests

Appendix C

Speed ref In Out <_rolling spin > % of Vx % of Vi (abs)
{mph) Ball# | Vx Vy Vi angle Topspin| Vx Vy Vi angle Topspin|ASpin from Vx fiom Vs roll spin roll spin deha Vx deha Vy horiz COR vert COR abs COR o“negn[AVx«'AVy
60 1 2240 -10.28 2465 2464 -92.10 {1194 796 1435 3367 35950 {4516 3658 4395 983 818 10.5 18.2 05331 0774 0582 1367 0574
2 2270 -10.18 24.88 2414 -69.30 (1255 751 1463 3090 33510 |4044 3824 4456 876 752 10.1 177 05530 0738 0588 1280 0574
3 21.67 -953 2367 2375 -2B.80 {1225 753 1438 3158 38520} 414 3738 4388 1030 87.8 9.4 171 0.5653 0.7%90 0607 1330 0552
70 1 2649 -11.71 2896 2385 -3950 [1552 873 17.81 2935 40690 |4464 4754 5454 6856 7486 110 204 05861 0.745 0615 1230 0536
2 2687 1151 2923 2320 -11.20 (1557 893 17.95 2983 41870 | 4299 4742 5466 883 76.6 113 204 05795 0775 0614 1286 0553
3 2674 1205 2933 2426 63.20 |15.36 873 1766 2960 40980 | 473 4688 5332 874 76.0 11.4 208 0.5743 0.724 0602 1220 0548
80 1 3206 -1421 3507 2390 6750 |19.12 995 2156 2748 46240 (5299 5857 660.2 789 700 129 242 0.5965 0.700 0615 1150 053%
2 31.17 -13.23 3386 23.00 6690 |17.78 10.24 20.52 2993 41360 |4805 5417 6250 764 66.2 13.4 235 0.5706 0.774 0606 130t 0570
3 31.01 -13.07 3365 2285 -29.80 |18.48 9.87 2095 28.12 43450 [4643 5641 6396 770 679 125 29 0.5960 0.756 0623 1231 0546
90 1 38.14 -16.33 41.49 2318 -37.20 |2268 11.95 2564 27.79 48500 |522 ©946 7852 698 618 155 283 0.5947 0732 0618 1199 0547
2 38.43 -17.63 42.28 2464 -9530 (2260 11.11 2518 26.19 52180 [617.1 68383 7670 758 68.0 15.8 287 0.5880 0630 0596 1063 0551
3 38.04 -16.03 41.28 2285 -84.80 [2252 1157 2532 27.20 45460 [539.4 BB874 7728 661 58.8 155 276 0.5920 0722 0613 1190 0562
100 1 4352 -18.35 47.23 2286 -70.40 [2599 11.86 2857 2452 49950 [5699 79%.0 8750 627 571 175 30.2 0.5973 0646 0605 1073 0580
2  |43.02 -1865 46.88 23.44 -81.10 [26.04 1283 29.03 26.24 53950 |6206 7930 B884.1 680 61.0 17.0 315 0.6053 0.689 0613 1.120 0539
3 [43.12 -1795 4670 2260 840 (25801266 2873 26.13 548.70 |557.1 787.4 8771 637 6526 17.3 306 0.5982 0.705 0615 1156  0.566
110 1 49.09 -21.37 53.54 2352 -74.40 (2899 1384 3213 2552 54320 [6176 8880 9839 61.2 5.2 201 35.2 0.5906 0648 0600 108 0571
2 |48.19 -21.77 5379 2387 -71.00 [29.01 1388 32.16 2556 56950 [6405 8837 G796 644 58.1 202 356 0.5899 0638 0598 107t 05866
3 |49.29 -21.67 53.84 2373 -76.80 [28.79 13.84 31.95 2567 63550 [7123 8788 9752 723 65.2 205 355 0.5842 0.639 0593 1.082 0577
120 1 5417 -2279 58.77 2281 -87.30 ({3299 16.02 3667 2589 51150 {5988 10105 11233 506 455 212 388 0.6091 0.703 0624 1135 054
2 |54.17 -2299 5884 2299 -49.60 {33.08 1392 3589 2282 56780 {617.4 10077 10933 563 519 211 369 0.6107 0.606 0610 0992 0571
3 [54.38 -2169 5854 2175 -54.90 [33.68 14.42 3664 23.17 64320 |708.1 10282 111B4 626 57.5 2.7 361 0.6195 0.665 0626 1066 0573
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Appendix C

C.4 Varying angle tests

In _Oow ) <-rolling spin > % ofVx %ofVi  (abs) J

Angref BallZ| Vx_Vy Vi angle Topspin | Vx Vy VI__angle Topspin [ASpin fiom Vx from Vi roll spin roll spin _dela Vx_deltaVy horiz COR _+ve Vyin vert COR _ abs COR  6o'in l AVxAVy
anglel 1 2037 -2604 3306 519 -4370 [1022 1881 21.41 B1.49 29260 | 3363 3130 B655.7 935 445 102 448 0.5015 2604 0723 0648 1184 0226

2 20.81 -2651 3370 518 -13.30 {983 1910 21.48 6277 296.00 | 3093 2993 B654.2 %89 452 1.0 456 0.4722 26.51 0721 08637 1210 0241

3 2075 -2682 33.92 5227 180 [1059 1906 2180 6093 28990 | 2917 3234 B65.6 89.7 436 10.2 459 05104 2%6.82 0711 0643 1.166 0.221
angle? 1 2459 -23.14 3376 4327 7460 [1208 17.55 21.30 5544 386.60 | 461.2 3701 8525 104.5 59.3 125 407 0.4915 23.14 0.758 0.631 1.281 0307

2 2472 -2360 3417 4367 3990 (1248 1769 2165 5480 37800 | 4179 3802 B659.6 994 573 122 413 0.5050 2360 0.750 0634 1.265 0.296

3 2406 -2335 3353 4415 -43.10 {1220 1683 20.78 5405 41650 | 4596 3725 634 5 111.8 65.6 119 402 0.5072 2335 0.720 0620 1.224 0.295
angle3 1 2663 -1967 3311 3644 5630 |1354 1496 20.17 4786 45890 | 5152 4145 617.8 10.7 743 131 346 0.5082 19.67 0.761 0608 1.313 0.378

2 2695 -1981 3345 3630 -29.10 [13.41 1528 2033 4873 47630 | 5054 4085 619.4 116.6 769 136 31 0.4974 19.61 0.772 0.608 1.342 0.386

3 26.43 -19.49-32.84 36.40 890 (1368 1452 19.95 4670 45580 [ 4687 4176 608.9 110.1 755 128 340 0.5176 19.49 0.745 0.607 1.283 0.375
angled4 1 2316 -17.27 3389 3065 -310 {1509 1365 20.35 4213 55290 | 55 462.2 623.2 119.6 88.7 14.1 309 05176 17.27 0.790 0600 1.375 0.455

2 2879 -17.23 3355 3083 -4890 |1531 1260 19.83 3947 54000 | 5889 466.2 603.9 1158 89.4 135 28 05315 17.23 0.732 0591 1278 0452

3 28.18 -16.57 3269 3045 -4800 [1503 1246 1953 3966 56940 | 6174 4589 59% .1 1241 955 132 290 05334 16.57 0.752 0597 1.302 0453
angles 1 2947 1468 3292 2648 -2510 {1582 1208 1990 3735 58790 | 613 4847 609.6 1213 9%.4 136 %8 05370 14.68 0823 0605 1.411 0510

2 3023 -14.78 3365 26.06 -2440 1598 1161 1975 3598 61750 [ 6419 4068 601.6 126.8 1026 14.2 %4 0.5287 14.78 0.785 0587 1.381 0.540

3 30.18 -1491 3366 26.28 -3540 1595 11.58°19.71 3597 596.10 | 631.5 4870 601.7 122.4 99.1 14.2 25 0.5286 14.91 0.777 0.586 1.369 0537
angle6 1 3165 -1437 3476 2441 -13310 [1820 1045 2099 2085 51820 (6513 5575 642.8 929 806 134 248 0.5752 1437 0727 0.604 1223 0542

2 |31.74 -14.02 3469 2383 -102.40 [18.88 10.18 21.44 2833 49950 | 6013 5749 653.2 859 76.5 12.9 242 0.5948 14.02 072% 0618 1189 0532

3 31.08 -13.03 3372 2282 -106.70 [1785 1031 2061 3002 50270 | 6094 5448 629.2 923 799 13.2 23.4 0.5742 13.08 0.788 0611 1.315 0.566
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Appendix C

C.5 Changing balls — medium surface, pressurised and punctured balls

Note: P denotes pressurised, N denotes punctured.

suf baltype spin| Vin  Vyin Vin Wn Bn | Viow Vyor VYout  “ow Gu | COR CORams & SPR % roll  Bouw /G
medum P 3| 2704 -1425 3136 6037 5702|1661 953 1915 1068 29 85| 067 061 048 524 212 1.10
medun P 32915 -1454 3258 -7596 %51 1571 948 1835 1430 31 10| 065 05 0.56 44 1 313 1.17
medum P 3| 2967 -1441 3293 5885 2589|1558 10.11 1857 1314 32961 070 05 0.57 425 278 1.27
medium P 2 | 3080 -1533 3414 5573 2669{ 1724 945 1966 1607 2874|062 058 053 465 308 1.08
‘medum P 2| 3018 -1455 3351 -5683 257411653 955 1909 1774 3001 06 057 057 434 354 1.17
megium P 2| 302 -1479 3368 -5994 2605|1686 934 1928 1526 2899 | 063 057 056 445 299 1.1
medum P 1 | 2958 1309 3235 -4028 2386( 1885 921 2098 2242 2605|070 065 0.48 519 332 1.08
medun P 4 12934 1282 3202 -3%16 23 60| 1302 879 2095 2109 2480 069 085 g4 522 3.6 1.05
mediun P 112932 1257 3190 -3786 2320} 1784 929 2012 1833 2750] 074 0863 053 475 339 1.19
medum P o | 2816 -1251 308t -181 2366|1771 99 203 363 2839 080 066 0.46 535 720 1.23
medum P o | 2758 -1211 3012 367 2371)1667 963 19 2% 391 3000]079 064 050 498 78.4 127
mediun P 0| 2725 -1215 2084 -344 2403} 1673 974 1935 3873 3021|080 065 0.48 519 76.4 126
medum P 1 | 2815 -1228 3071 3497 2356 1783 1026 2057 5904 2991 | 084 0.67 0.46 542 1093 1.27
medum P 112800 1278 3078 2666 2454 1783 982 2036 6303 2885|077 0866 0.45 550 1259 1.18
medum P 1 | 2755 -1257 3028 2619 24521739 99% 2004 5688 29 781 079 066 0.45 549 107.9 1.21
medum P 2 | 3036 -1309 3306 4449 2332|229 962 2489 6943 274|074 075 033 674 998 0.98
medum P 2 | 3003 -1252 3254 5483 2283 21.15 1053 2363 6711 26.46| 084 073 038 . 615 104.7 1.17
medum P 2 13075 1301 3339 5157 2293{ 2258 1025 2480 6906 24.42|1 079 074 0.3 64.9 100.9 1.06
medum P 3 | 3055 1362 3345 5379 2403 2384 964 2571 6866 2.01 071 077 028 711 95.1 092
medum P 3 | 3141 1299 3393 7227 2246 287 992 2493 7493 23.45]| 076 0.73 037 62.7 108.1 1.04
medum P 3 3119 -1311 3383 5410 2280 2314 987 2615 7068 23.10) 075 0.74 0.35 650 100.8 1.0
medium N 3| 2880 -1483 3239 5472 2726 1690 8.15 1876 1898 2573 | 055 058 0.52 482 371 0.94
medium N 3 | 2927 -14B4 3273 5185 2657|1687 6.4 1873 1937 2576 056 057 0.54 456 379 0.97
medium N 312985 -1482 3333 -5416 2640 1663 7.92 18.42 1727 2547|053 05 0.58 418 343 0.96
medium N 2| 2881 -1484 3241 5236 27.25{ 1663 806 18.53 2000 25.78| 054 057 0.53 470 35 0.9
medium N 22972 1509 3333 5494 69 1674 874 1888 2455 2756| 058 057 0.55 455 484 1.02
medium N 2| 2961 -1476 3308 -5502 26.49 1678 830 18.72 237.7 2632|056 057 056 444 46.7 0.99
medium N 1 | 2763 -1329 3066 -3045 2569 1766 800 1939 2640 2436 060 0. 63 0.47 532 49 3 0.9
medium N 1 12895 -1342 3192 -2839 2487[17.77 773 1938 2264 2351|058 081 053 471 420 095
medium N 4 | 2857 1340 3158 -2760 2513 1781 865 1980 2911 2583| 065 083 043 512 539 1.03
medium N 0 | 2885 -1293 3162 -419 2415 1830 B51 2018 4578 2494| 0 66 054 0.49 508 826 1.03
medum N 0 | 2826 1197 3083 580 2295 17.47 B56 19.45 4475 2610| 072 063 0.53 47 4 845 1.14
mediun N 0 | 2861 -1291 3139 -407 2429 1770 901 1986 3277 2697|070 083 0.50 80.2 61.1 1
medium N 1 | 2049 1268 3211 2500 23.27|19.14 815 2081 4703 2307 064 D065 0.50 50.3 81.1 0.99
mediun N 1 12849 1241 3200 3131 22.82|19.18 855 2100 4978 2403|063 066 0.49 508 857 1.06
mediun N 1 12047 1265 3207 2893 23.23|18.42 853 2030 4563 2484| 067 083 052 478 818 1.07
medium N 2 | 2846 -1273 3210 3213 23.36(2093 781 .27 5338 1998) 060 063 0.42 581 84.1 0.86
medium N 2 13010 1271 3267 3977 2289|2 59 710 272 5593 1820| 05 070 0.43 570 855 080
medum N 2 12897 -1320 3183 3543 2450|2060 802 211 5457 2128|061 069 0.39 006 87.4 087
medium N 3 | 3068 -1266 3319 4733 2243|2125 787 266 6266 2033|062 063 046 581 97.3 09

medum N 3 | 3037 1375 3334 4165 2436]21.40 794 0283 4650 2036|058 068 0.41 586 i 084
medgium N 3 2027 1316 3208 3549 2421|2154 803 2301 4866 2059 062 072 03 637 745 08
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Oblique impact data

C.6 Changing balls — medium surface, pressurised and punctured balls

Note: L denotes pressureless

Appendix C

surf baltype spin] Vyn Wy Vin Wn & | Viow Vyou Vout  @ua  &u | COR CORas M SPR % roll  Gou / B0

medium L -3 13039 -1483 3381 -716.4 26.02) 1544 951 1814 2283 3161 | 064 054 061 3B6 258 122
medium L 33133 1633 3538 5161 27.48[/155 961 1829 1869 3171 058 052 g .61 T390 39 7 115
medium L 3 (3083 -1452 3413 K755 2617|1559 911 1805 1986 3032 063 053 065 353 490 120
medium L 212936 -1578 3333 5841 28251709 952 195 2392 2913 060 059 043 515 462 103
medium L 23115 1559 3484 5376 2659] 1653 967 1915 2640 3033 062 055 © 058 421 527 114
medium L 2 13004 -1570 3389 -6240 2759|1583 936 1840 2628 3060) 060 054 057 433 548 111
medium L 113022 -1321 3298 -34t.1 2362{18.12 8. 55 2004 3230 2626|085 061 0.56 444 58.8 107
medium L 1 {2964 -1305 3239 -3331 2377|1727 880 1938 2813 2700} 067 060 0.57 434 538 114
medum L -1 {2998 -1287 3262 -362.1 23.3|18.06 98 221 7743 %69| 071 0B gs4 457 5041 115
medum L 0 (2768 -1217 3023 -248 2373|1650 902 1880 4346 2866| 074 062 053 472 869 121
medum L 0 |27.74 1218 3030 -123 2371/17.40 858 1940 3955 2624|070 064 050 502 750 111
medium L 0 [2747 -11.99 2970 15 2381|1703 895 1924 4051 27711075 065 (48 516 785 116
medium L 112880 -1372 3190 3951 2548(1879 911 2089 5511 2585 066 065 0.4 '55 2 96.8 102
medium L 1 13010 -1329 3291 3659 23821951 938 2165 5561 2589|071 066 0.47 533 941 108
medium L 1 (2824 -1265 3094 4546 2413[/1908 955 2133 5245 2660) 076 069 0.41 587 907 110
medium L 2 | 279 -1401 3127 5752 26622250 944 2440 6575 2277|067 078 023 767 g4 085
medium L 2 | 3049 -1388 3350 5803 2447(2281 866 2440 6035 20 78 062 073 0.34 5.9 87 3 0.85
medium L 2 [ 3211 1482 3528 6250 2448|2370 994 2570 6721 2275|068 073 0.34 ‘65 8 936 0. 93
medium L 3 1308 -1273 3337 4684 2243|2337 836 2517 7497 2182073 075  g34 61 1059 097
medium L 3 13021 1483 3366 5928 2615)2402 886 2561 6600 2026] 060 O07g 0.26 739 90.7 0.77
medium L 3 12966 -1454 3303 4557 2611)2474 946 2643 6299 2093|065 080 gog 795 84 0 0.80

253




Oblique impact data

Appendix C

C.7 Changing surface - fast and slow surfaces with pressurised balls

SPR

surf balitype spin| Vi  Vyin Vin @n 60 | Ve Vyou VOut  Gou 8 | COR CORas 2 %roll o/ 8n
P 3297 1617 3270 6349 2763|1987 904 2183 -2B1 2446| 060 067 038 624 47 0.89
st P 3 |3151 1496 3488 6338 2540|2305 951 2434 1185 243|064 071 035 64 170 0.88
et P 3 |3105 -1450 3427 6874 2504|2278 879 2441 1958 2111|061 071 036 645 -84 084
et P 2 |3034 1427 3353 5216 2518|2327 943 251 7.2 »oe|0es 075 030 700 251 088
st P 2 |3112 1414 3418 5959 24442174 810 220 20 042|057 068 042 578 41 084
st P 2|2028 41387 3240 5885 2535|2117 892 297 836 "»es| 064 071 03% 644  -108 0.90
P 1 |2812 1308 3101 3550 2495(2157 901 2338 &7 »66| 069 075 03 703 10 0.91
st P 1 |2818 1400 3146 380 2642|225 944 24456 B34 271|067 078 024 760 93~ 08
st P 42778 1302 3068 384 2510[215 955 2412 312 BR[073 079 025 750 46 093
@t P 0 |2605 1303 2013 339 26572198 940 2391 2123 B15|072 082 01 89 319 0.87
@t P 02722 4320 3026 592 2587|2192 974 2B 2107 2397|074 079 023 769 317 093
st P 0 |2684 1280 2973 03 2550|2164 955 2386 2078 381{075 080 023 768 317 093
et P 1 |2758 1261 3033 3174 2456|2216 981 2423 306 7388|078 080 024 758 582 097
st P 1 |2651 -1304 2954 3483 2619|2228 9.83 243 3746 2380( 075 082 018 815 555 0.91
fast P 1 |2662 -138 3001 4242 2751|2187 1021 2414 3542 503|074 080 020 803 534 091
fast P 2 |2797 -1429 3141 4686 2706|235 399 2559 %18 2298|070 081 018 818 787 085
et P 2 | 2828 1304 3114 4756 2475|2280 899 2451 6656 2151|069 079 025 751 997 087
fast P 2 |2888 -1360 3192 4701 2522|2500 945 %672 595 2070 069 084 017 832 778 082
et P 3 |203 -1422 3262 5934 2584/ 2399 917 2568 593 093 065 079 023 770  B24 0.81
st P 3 |2070 1392 3280 5612 25112448 1035 2658 6454 291 074 081 021 785 870 0.91
st P 312918 -1380 3228 5188 25.31/2378 10.20 2687 6710 2321|074 080 028 775 931 0.92
dow P 3 | 2069 -143% 3207 6526 2581|1514 868 1745 1250 2984/ 080 053 063 369 272 116
dow P 3|3005 -1472 3346 6308 2609|1585 894 1820 1109 2942} 06 054 060 400 231 113
dow P 3 |2877 1487 238 7312 7.3 1487 919 17.48 1951 3173|062 054 05 422 433 116
dow P 212017 -1331 3206 6113 2453|1594 879 1820 1562 2867|066 057 060 401 323 1.18
dow P 2 |2005 -1476 3333 5970 2624|1494 913 1754 264 3160 062 053 063 373 50 120
dow P 2 |2098 -1452 331 5779 2584[1441 900 1699 2804 31.98 | 062 051 066 338 642 124
dow P 1 |2761 -1268 3039 -3725 2467|1405 920 1680 2617 33224073 055 062 380 591 @ 135
dow P -1]2843 1315 3133 -3069 2482|1445 920 1713 2306 3250|070 05 063 375 527 1.31
sdow P -1|2745 1327 3049 -381.1 2580} 1365 350 1663 3053 3484(072 055 061 394 738 135
dow P 0 |2701 1297 2097 364 2564[1403 10.11 1729 4641 3576 078 058 05 437 1091 | 139
dow P D | 2637 -1285 2033 225 2599|1325 989 1654 4215 3674|077 056 058 423 1050 1.41
dow P 1 |2735 1280 3019 3044 2509|1734 1037 2021 5038 3087|081 067 043 568 958 123
dow P 1 |2656 1299 2957 2905 26.06|1683 1050 1983 5794 319|081 067 041 585 1136 123
dow P 1 |2798 1309 3090 2726 2506|1714 1030 2000 5439 3100|079 085 046 536 1047 1.24
dow P 2 | 2822 1406 3154 4745 %46{2092 988 2313 642 25291070 073 03 634 1016 09
dow P 2 |2838 1313 3123 4875 248|202 991 25 657 2609|075 072 035 648 1021 105
dow P 2 |2771 1306 3064 4772 2522|2045 926 2245 662 2436|071 073 033 675 1010 097
dow P 3 |2855 1373 3168 6010 2569|2203 1029 2431 63386 2503 075 077 027 729 957 097
dow P 3 |2809 -1387 3133 4936 2628|2160 975 2370 5989 2430|070 076 0% 725 915 092
wow P 3 |2868 -1486 3230 7862 2739|2174 995 2391 7160 2460|067 074 08 720 1087 090
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