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Summary

Haze occurs almost every year in Malaysia and is caused by smoke which originates
from forest fire in Indonesia. It causes visibility to drop, therefore affecting the data
acquired for this area using optical sensor such as that onboard Landsat — the remote
sensing satellite that have provided the longest continuous record of Earth’s surface.
The work presented in this thesis is meant to develop a better understanding of
atmospheric effects on land classification using satellite data and method of removing
them. To do so, the two main atmospheric effects dealt with here are cloud and haze.
Detection of cloud and its shadow are carried out using MODIS algorithms due to
allowing optimal use of its rich bands. The analysis is applied to Landsat data, in
which shows a high agreement with other methods. The thesis then concerns on
determining the most suitable classification scheme to be used. Maximum Likelihood
(ML) is found to be a preferable classification scheme due to its simplicity, objectivity
and ability to classify land covers with acceptable accuracy. The effects of haze are
subsequently modelled and simulated as a summation of a weighted signal component
and a weighted pure haze component. By doing so, the spectral and statistical
properties of the land classes can be systematically investigated, in which showing
that haze modifies the class spectral signatures, consequently causing the
classification accuracy to decline. Based on the haze model, a method of removing
haze from satellite data was developed and tested using both simulated and real
datasets. The results show that the removal method is able clean up haze and improve

classification accuracy, yet a highly non-uniform haze may hamper its performance.
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Chapter 1

Introduction

1.1 Introduction

One of the most important types of information needed by regional and natibnal
governments concerns the condition and use of land within its territory, and how these
are changing. This is particularly true for developing countries which are experiencing
urban sprawl, deforestation, increase in impervious surfaces and other major
modifications to the land surface. If land use is not monitored and managed properly,
it may have effects on regional issues such as land degradation, loss of tropical rain
forest, desertification or food security, as well as global issues such as climate change
and loss of biodiversity. In countries such as Malaysia, land use change has caused
undesirable impacts such as landslides, floods, loss of forest, loss of wetlands, loss of

agricultural land and unplanned urbanisation.

We need to distinguish land use and land cover; land use refers to human exploitation
of the land, e.g. for agriculture or forestry. This is related to, but is not the same as,
land cover, which describes vegetation and artificial constructions covering the land
surface (Anderson 1976). Satellite remote sensing instruments normally measure land
cover, from which it may be possible to infer land use, and have been an excellent
basis from which to observe large-scale landscapes systematically, consistently and
synoptically (Wickland 1991). In this thesis we will be concerned with land cover

mapping using remotely sensed data.

Land use and land cover information is vital for a wide variety of decision-making,
planning and managing activities, as well as formulating measures to combat existing
problems at global, regional and national levels. Such information must be gathered
and stored systematically so that it can be retrieved without difficulty by users,
ranging from students, technical workers, researchers, engineers and managers to

policy makers.



Conventionally, information about land use and land cover was obtained from ground
surveys, which require a huge amount of time and logistics, and are therefore very
expensive; yet they have served many users for a long time. Later, aerial photographic
surveys were implemented, which made land use and land cover mapping much easier
but are logistically very expensive. Recent advances in remote sensing technology
offer a much more practical way of mapping land use and land cover over large areas

at an affordable cost.

For global needs, a number of land cover maps have been produced. One of the
carliest was the University of Maryland Land Cover produced using the NOAA
AVHRR satellite. Initially, in 1984, maps with 8 km resolution were produced, but
later, in 1992, maps with 1 km resolution were produced (DeFries and Townshend
1994; DeFries et al, 1998; Loveland et al. 2000; Hansen et al. 2003). Also in 1992,
researchers from the U.S. Geological Survey, University of Nebraska—Lincoln and the
Joint Research Centre of the European Commission used NOAA AVHRR data to
produce a 1 km resolution global land cover database known as DISCover (Loveland
et al. 2000). Later, in 2000, the Joint Research Centre developed Global Land Cover
2000, popularly known as GLC2000, with 1 km resolution, using SPOT Vegetation
data (Bartholome and Belward 2005). In the same year, the MODIS Vegetation
Continuous Fields product, which contains information about vegetative cover types
(i.e. woody vegetation, herbaceous vegetation, and bare ground), with 500 m
resolution was produced by the University of Maryland using MODIS data (Hansen et
al. 2003). In 2010, the European Space Agency and the Joint Research Centre
produced GLOBCOVER with 300 m resolution using ENVISAT MERIS data
(Bicheron et al. 2011). For GLOBCOVER and GLC2000, the land cover
classification is based on the Food and Agricultural Organisation (FAO) Land Cover
Classification System (LCCS), which assures its worldwide applicability and

compatibility with other land cover mapping projects.

Although of benefit to many users, these global land cover maps are at a coarse
resolution (i.e. 300 to 1000 m) and do not fulfil many of the needs at regional levels.
Consequently, several regional land cover mapping projects were initiated in Europe,
Africa and Asia. Developed regions, such as Europe, began such efforts much earlier.

The Image and CORINE Land Cover 2000 (I & CLC 2000) project, initiated in 2000



by the European Environment Agency, was an extended version of the CLC project
which started in the mid-1980s. With 1:200,000 scale and making use of Landsat and
SPOT data as the primary input, the objectives of I & CLC 2000 were to (a) provide a
satellite image snapshot of Europe in 2000, (b) update the CORINE land cover map
and (c) produce land cover change maps for the period 1990-2000. For less developed
regions, FAO has facilitated a number of land cover mapping projects, such as
Africover, initiated in 1994 for Africa, and Asiacover, initiated in 1999 for Asia.
Africover and Asiacover are based on FAO LCCS and used Landsat TM and ETM+
and ALOS-AVNIR data with mapping scales 1:100,000 to 1:200,000. Africover’s
East African module, covering ten countries (Burundi, Democratic Republic of
Congo, Egypt, Eritrea, Kenya, Rwanda, Somalia, Sudan, Tanzania and Uganda), was
completed in 2004, while the preparatory phase of Asiacover, which involved
Cambodia, China (Province of Yunnan), Lao People's Democratic Republic,

Malaysia, Myanmar, Thailand and Viet Nam, was completed in 2005.

Nevertheless, these regional maps were still at a quite coarse scale and therefore were
less useful at national level. Consequently, national land cover mapping projects were
Initiated by countries such as the United States of America and the United Kingdom
that possess up-to-date technologies, facilities and expertise. In the USA, the National
Land Cover Data (NLCD) with 300 m resolution was started in the 1990s by the
Multi-Resolution Land Characteristics Consortium, and its latest version, NLCDZOOI,
with 30 m resolution, was completed in 2001. It used Landsat TM and ETM+ data. In
the UK, the Land Cover Map 2000 (LCM2000) was produced by the Centre for
Ecology and Hydrology in 2000 and was an upgraded version of the LCM Great
Britain developed in 1990 (Fuller et al. 2000; Fuller 2005). The LCM2000 covers the
whole Great Britain, i.e. England, Scotland, Wales and Northern Ireland with a spatial
resolution of 25 m x 25 m and used a hierarchical classification scheme. It has been
used for environmental impact assessments, checking agricultural censuses,
metropolitan and landscape planning, catchment and groundwater management, flood
risk assessment, telecommunications, health and hazard assessments, predicting
climate change impacts, carbon accounting, conservation work, site assessments, and

environmental and ecological research.



Malaysia was also determined to have her own national land cover maps. Since 1966,
land cover maps were produced using aerial photographs by the Malaysian
Department of Agriculture (DOA) (Mahmood et al. 1997). The use of remote sensing
technology was initiated by the Malaysian goverment in 1988 with the establishment
of the Agensi Remote Sensing Malaysia (ARSM), formerly known as the Malaysian
Centre for Remote Sensing (MACRES), under the government’s Ministry of Science,
Technology and Innovation. The main objectives of ARSM are to develop remote
sensing and related technologies and to operationalise their applications in user
agencies for management of natural resources, environment and disasters, and
strategic planning of the nation (ARSM 2011). Beginning the same year, as a joint
effort between DOA and ARSM, land cover maps with 1:50,000 scale have been
produced using Landsat and SPOT data. Initially, satellite data were purchased from
neighbouring countries, such as Singapore and Thailand which have their own ground
receiving stations. Since then, there has been a growing interest in the use of remote
sensing and the amount of remote sensing projects and research has increased; this
persuaded the Malaysian government to allocate more budget for the developmeﬁt of
remote sensing and space related technologies (ARSM 2005). Eventually, in 2002, the
Malaysian Ground Receiving Station (MGRS) was developed, which is capable of
acquiring optical (i.e. Landsat, SPOT, MODIS and NOAA) and microwave (i.c.
Radarsat-1) data (ARSM 2005). Major national projects coordinated by ARSM
include National Resource and Environmental Management (NaREM) and Precision

Farming.

Overview of Remote Sensing Activities in Malaysia
NaREM, the first national project of its kind, was initiated in 1999, with the aim of
developing an operational natural resource and environmental management system
using remote sensing and its related technologies to meet national development
planning. NaREM encompasses three major components (ARSM 2011):
e NaSAT, which is an integrated database using remote sensing as the main
source of data input, enhanced by baseline data on topography, agriculture,
forestry, geology, coastal zone, environment, socio-economic and natural

disaster.



* NaMOS, which provides models and algorithms for various applications, e.g.
landslide hazard monitoring, coastal sensitivity index, soil erosion, ground
water potential, agro-suitability zoning and total forest management,

* NaDES, which is an integrated development planning decision support system
that incorporates resource, environmental, economic, socio-economic and
policy information.

The concept of NaREM is illustrated in Figure 1.1.

Data Baseline Data Applications

Decision
Support

NaSAT NaMOSs NaDES

< . > < b <

Figure 1.1: NaREM major components (ARSM 2011).

The main input to NaSAT is satellite data, provided by ARSM itself. Landsat data are
the main source of satellite data for NaSAT and are obtained from MGRS. The
operation of NaREM requires ancillary data from other government agencies, i.e. the
Survey and Mapping Department, Department of Environment, Department of
Statistics, Department of Fisheries, Department of Agriculture, Department of
Forestry, Department of Mineral and Geoscience, Department of Irrigation and
Drainage and Department of Meteorology,  and experts in various fields, mainly
from universities and industries (Figure 1.2). The outputs of NaREM are used by the
Malaysian Economic Planning Unit, i.e. the agency responsible for economic policies

for Malaysia (ARSM 2011).
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Figure 1.2: NaREM input and output components (ARSM 2011 ).

Another important project coordinated by ARSM is in precision farming, which was
also initiated in 1999. Its main objective is to enhance crop production through the
integration of remote sensing, GIS and GPS into farming practices, whilst at the same
time preserving the quality of the environment. The system emphasizes that
agricultural input, such as fertilizers, pesticides and water, should be used at the right
amount, time and place (ARSM 2011). The Precision Farming Concept is illustrated

in Figure 1.3.
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Figure 1.3: Concept of precision farming (ARSM 2011)

At present, precision farming is being implemented for two major Malaysian cfops,
rice and o1l palm. Rice is a Malaysian staple food; approximately 70% of Malaysian
rice consumption comes from national production and 30% is imported from
Thailand. In precision farming of rice, due to its short life cycle, the incorporation of
remote sensing sensors is very useful for providing data in a timely and cost-effective
manner. Other national projects coordinated by ARSM include Integrated Geospatial
Database and Planning System, Disaster Management, Fishing Zone Identificaﬁon,
Rice Monitoring and Yield Prediction System, Monitoring of Environmentally
Sensitive Areas, Microwave Remote Sensing Research and Development, Integrated
Remote Sensing and GIS Software Development and Satellite Image Map (ARSM
2011).

There are also remote sensing projects carried out by other government agencies,

which use remote sensing as a tool to facilitate their routine tasks (ARSM 20053).

These include the Department of Agriculture, Department of Mapping and Surveying,
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Department of Geology and Geoscience, Department of Fishery and Department of
Meteorology. Research institutes that incorporate remote sensing technology in t-heir
work include the Malaysian Agriculture Research and Development Institute, the
Rubber Research Institute and the Malaysian Palm Oil Board. In addition, due to job
market demands, a number of universities have initiated remote sensing courses at
postgraduate and undergraduate levels; e.g. Universiti Teknologi Malaysia, Universiti
Sains Malaysia, Malaysian Multimedia University and Universiti Kebangsaan

Malaysia (Hashim et al. 2004).

With the establishment of MGRS, Malaysia is now able to continuously acquire her
own remote sensing data, without relying on other countries. As a huge amount of
budget has been spent to establish the remote sensing facilities and more needs to be
spent for maintaining them, the Malaysian government is looking forward to boosting
remote sensing activities in Malaysia, so that as much benefit as possible will be

gained by the country in return.

Haze Effects on Remote Sensing and Land Cover

Unfortunately, remote sensing Malaysian remote sensing data are affected by haze,
which is a partially opaque condition of the atmosphere caused by tiny suspended
solid or liquid particles in the lower atmosphere (Morris 1975). The thick haze that
occurs in Malaysia is caused mainly by smoke originating from large forest fires in
Indonesia, due to agricultural clean-up activities as farmers and large companies
convert forests into plantations using fire to clear land (Hashim et al. 2004; Mahmud
2009). Major forest fires occurred in 1982-83, 1987, 1991, 1994, 1997-98, 2002, 2004
and 2005. For 2005, forest fire distributions in Indonesia from 6 and 10 August are

shown in Figure 1.4.
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Figure 1.4: Fire distributions on (a) 6 and (b) 10 August 2005 determined from

NOAA 16 satellite (Ministry of Forestry Indonesia 2010).

These forest fires release a huge amount of smoke that contains particulates and gases
into the atmosphere (Mahmud 2009). The smoke is carried by the South-west
Monsoon wind to neighbouring countries, such as Malaysia, Singapore, Thailand and
Brunei (Mahmud 2009), and can travel hundreds of kilometres across the Southeast
Asian region, reaching the Philippines. Haze conditions over Malaysia and Indonesia,
based on the aerosol index measured using the Total Ozone Mapping Spectrometer
(TOMS) from 10 and 11 August 2005 are shown in Figure 1.5. These are extreme

examples, but lower level haze is a common occurrence, as seen in Figure 1.6.



(a) 10 August 2005 (b) 11 August 2005

1.0 1.5 2.0 2.5 3.0 3.5 4.0 45>

Aeroasol Index

Figure 1.5: The aerosol index measured by the Total Ozone Mapping Spectrometer on
(a) 10 and (b) 11 August 2005. The horizontal solid line and the vertical dashed line

in the middle of the image represent latitude 0° and longitude 100° east respectively.

Haze occurrences have also been reported in Africa and South America. In South
America, plumes and haze layers originate from biomass burning that occurs every
year over the central Amazon Basin due mainly to deforestation and land conversion
(Guild et al. 2004). The haze layers occur at altitudes between 1000 and 4000 m and
are 100 to 300 m thick but extend horizontally over several hundreds kilometres. The
emissions from the burning significantly affect the chemical and optical

characteristics of the atmosphere over the Amazon Basin (Andreae et al. 1988).

In West Africa, during the dry season, biomass burning occurs particularly in the
Sahelian regions, due to the burning of agricultural waste (Haywood et al. 2008).
Emissions from these fires were reported to reach as far as South Africa. The
Southern African Regional Science Initiative (Justice et al. 1996) studied the
generation, transport and deposition of the associated aerosols to develop better
understanding of related environmental processes, such as the effect of aerosols on the

global radiation balance.
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Visibility will be used as the key parameter to describe haze severity. It is defined as
the greatest distance at which a black object located on the ground can be seen and
recognized when observed against the horizon sky during daylight or could be seen
and recognized during the night if the illumination were raised to the normal daylight
level (WMO 2003) (see also Section 4.1). Air quality and visibility is measured at a
number of stations by the Malaysian Meteorological Department; a more detailed
discussion on air quality monitoring and measurements in Malaysia will be presented
in Chapter 4. Here we display data from one of these stations, Petaling Jaya, in
Selangor, Malaysia, to demonstrate haze occurrence and characteristics in Malaysia.
Figure 1.6 shows a plot of daily visibility against day from 1999 to 2008. White,
yellow, green, violet and red colours indicate clear (above 10 km visibility), moderate
(5 — 10 km visibility), hazy (2 — 5 km visibility), very hazy (0.5 — 2 km visibility) and
extremely hazy (less than 0.5 km visibility) conditions respectively. For most years, a
drop in visibility can be observed at the end of the year, indicating the occurrence of
increased haze. The extreme values seen for 2005 correspond to Figure 1.4 and Figure
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Figure 1.6: Visibility against day for Petaling Jaya from 1999 to 2008.

Table 1.1 summarises the number of days for clear, moderate, hazy, very hazy and
extremely hazy conditions in Petaling Jaya from 1999 to 2008. The years which have
the most days when the visibility is 10 km and less are 2008 (309), followed by 1999
(196), 2007 (159) and 2006 (156). We will show later in this thesis (Chapter 4 and 5),
that when visibility drops to less than 10 km, haze causes classification accuracy to

drop below an acceptable level. Since classification accuracy is the key element that



determines the quality of satellite derived-maps, such situations could severely

degrade the quality of land cover maps for the area.

Table 1.1: Number of days for clear, moderate, hazy, very hazy and extremely hazy
conditions in Petaling Jaya from 1999 to 2008.

Year |[>10km| 5to10 2t05 500 to 2 <0.5km
(Clear) [(Moderate) (Hazy) |(Very hazy)| (Extremely hazy)
1999 179 184 2 0 0
2000 229 135 1 0 0
2001 265 100 0 0 0
2002 237 126 2 0 0
2003 234 131 0 0 0
2004 222 143 0 0 0
2005 259 101 3 1 1
2006 209 149 6 1 0
2007 206 159 0 0 0
2008 56 309 0 0 0

To visualise the effects of haze, Figure 1.7 shows Landsat images of Bukit Beruntung
in Selangor (approximately 30 km from Petaling Jaya) for (a) 6 August (5.8 km
visibility) and (b) 22 August (11.7 km visibility) 2005; Landsat bands 3, 2 and 1 are
assigned to red, green and blue respectively. For 6 August (Figure 1.7(a)), small
patches of cloud and its shadow, masked in black, can be seen mainly on the top and
left of the image, while haze covers mainly the middle and bottom parts of the image.
Due to thé haze, the distinction between different types of land cover is blurred, and
their spectral signatures are altered. For 22 August (Figure 1.7(b)) the land cover can
be recognised easily due to the clear conditions; bright areas represent urban, while
dark areas, agricultural sites. We will show in Chapter 5 that the haze seen in Figure

1.7(a) will cause a drop of 25% in classification accuracy.
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(b)
Figure 1.7: Landsat images of Bukit Beruntung, acquired on (a) 6 August and (b) 22

August 2005, with bands 3,2, 1 assigned to red, green and blue.

Haze also greatly hinders projects that require continual near real-time data, such as
precision farming and NaREM (particularly concerning natural hazard, e.g.
landslides). The possible impact on precision farming of paddy is given here. Paddy
requires approximately 120 days to grow before it can be harvested, and satellite data
is one of the key inputs in monitoring its growth stages (e.g. through satellite-derived
vegetation indexes). Figure 1.8 shows visibility against Landsat overpass date (i.e. 16
days interval) for 1999 to 2008. For convenience, data with visibility 10 km and less
are indicated by vertical bars. The red bars are data that overlap with the main paddy
planting season (August to December), while the black bars show dates outside the

planting season (January to July).
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Figure 1.8: Visibility against Landsat overpass date in 2005 for Petaling Jaya. Black
(off season) and red (main season) bars are Landsat data having visibility 10 km and
less, no bar indicates data with visibility more than 10 km. The red bars are the haze
affected data for the main planting season, while the black bars, for those outside the

planting season.
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Table 1.2 summarises the number of Landsat overpass days overlapping with the main
planting season (10 days) and having visibility 10 km and less, for Petaling Jaya from
1999 to 2008. Landsat gives 23 overpasses of the area each year, and 10 of them
occur during the paddy main planting season. Out of these data, some of them have
visibility 10 km and less, indicating that they were significantly affected by haze.
2008 has the most of haze-affected data (i.e. 9), followed by 2006 and 2004 (6), 2007
(5) and 2005 and 1999 (4). For other years, the number of days was 3 days and less.
Consequently, for 2008, only one acquisition could be used during the main planting
season, and only 4 for 2006 and 2004. 2007 (5) and 2005 and 1999 (6), have the most

haze-free data.

Table 1.2: Number of Landsat overpass days occurring during the main planting

season and the number having visibility 10 km and less, for Petaling Jaya from 1999

to 2008.

Year | No. of overpasses
overlapping with the
main planting season

and have visibility
10 km and less

1999 4

2000 3

2001 0

2002 3

2003 1

2004 6

2005 4

2006 6

2007 5

2008 9

1.2  Statement of the Problem, Aim and Objectives of the Thesis

Haze modifies spectral signatures and reduces the accuracy of land cover
classification using satellite data (Kaufman and Sendra 1988). Also, haze .can
significantly hinder practices that require continual input from remote sensing data
(e.g. precision farming). The current approach to handling hazy data is simply to

remove the data from further analysis; however, this causes losses of valuable surface
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information (Lu et al. 2007). On the other hand, if these data are considered for
further processing, they are likely to degrade subsequent satellite-derived informafion
(e.g. land cover and vegetation index maps) unless they are first corrected for the

haze.

Hence, the aim of this thesis is to develop and test methods for removing haze from
satellite data. Achieving this aim requires a systematic development of several

subsidiary objectives:

(a) Masking cloud from remote sensing data (Chapter 2).
(b) Classifying land covers in the study area (Chapter 3).
(c) Assessing the effects of haze on land covers (Chapter 4) and

(d) Developing and testing of haze removal procedures (Chapter 5).

1.3  Thesis plan

Land cover mapping from remote sensing data is an important asset in providing
useful information for managing land activities at local and global scales.
Unfortunately, at certain places and times, satellite data are affected by haze. To
overcome this problem, this thesis develops and tests methods for removing haze from

satellite data and is organised as follows:

Haze shares some characteristics with cloud, which also creates problems for land
cover classification. Hence, Chapter 2 is concerned with cloud detection and masking
for Malaysian satellite data. In this chapter, MODIS data, due to the richness of the
spectral bands, will be analysed to develop understanding of the spectral properties of
cloud (Ackerman et al. 1998; Ackerman et al. 2010). We then relate and apply the

analysis to Landsat data, which will be used in later chapters.
In Chapter 3, we carry out land cover classification using Landsat data based on the

ML (Maximum Likelihood) classification. The performance of ML classification is

assessed by comparison with the ISODATA (Iterative Self-organizing Data Analysis
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Technique) clustering in terms of visual analysis, classification accuracy, band

correlations and decision boundaries (Thomson et al. 1998; Low and Choi 2004).

Chapter 4 is mainly concerned with investigation of haze effects on satellite data. For
this purpose, hazy datasets are modelled and simulated by incorporating the haze path
radiance and the effects of signal attenuation into the Landsat dataset. This makes use
of the 6S (Second Simulation of a Satellite Signal in the Solar Spectrum) radiative
transfer model (Vermote et al. 1997; Kotchenova et al. 2006). The simulated hazy
datasets undergo ML classification and accuracy analysis (Song et al. 2001; Zhang et

al. 2002) so that the effects of haze on the classification can be assessed.

Chapter 5 is devoted to the development and testing of a haze removal procedure for
hazy satellite data (Chavez 1988; Schott et al. 1988; Liang et al. 2001). Physical and
mathematical descriptions of the haze removal are discussed. We assess the haze
removal performance based on the quality of simulated and real data and
classification accuracy. For the real data, Landsat data from Bukit Beruntung from 6
August 2005 will be used due to the hazy conditions, while a clear satellite data of the

same area from 22 August 2005 will be used as a reference data (see Figure 1.7).

Chapter 6 summarises the main conclusions of this thesis and gives recommendations

for future work.

20



Chapter 2

Cloud Detection and Masking

2.1 Introduction

Our main concern in this thesis is to characterise the effects of haze on satellite data of
land surfaces, and to use this understanding to develop methods to mitigate these
effects, particularly in the context of land cover mapping, though the outcomes are
also relevant for other remote sensing applications. However, atmospheric
contamination of surface information is also caused by cloud, which, if thick, can
completely obscure the surface within the satellite field of view or, if thin, attenuate
solar radiation both on the incident path and after reflection and scattering at the

surface. This is particularly important over tropical regions where cloud is persistent.

The later chapters of this thesis rely heavily on methods of land use classification,
which need to take account of cloud (and cloud shadow). One approach would be to
simply treat cloud as another land cover type and use the same methods as for any
other land cover. However, this is unsatisfactory for at least two reasons: (1) unlike
most land covers, cloud has known physical characteristics affecting its spectral
response at different wavelengths, and it is advantageous to exploit these in its
detection; (2) cloud occurs in different types, and hence characterising it in an overall
classification scheme is not straightforward. Hence, in common with many other
studies (Meng et al. 2009; Luo et al. 2008; Ackerman et al. 2006), we prefer to use an
approach that detects and masks (thick) cloud and cloud shadows before undertaking

land cover classification.

We are also interested in studying cloud because cloud and haze share some spectral
properties; this is exploited in Chapter 4 where cloud data are used to learn some of
the statistical properties of haze. Furthermore, cloud detection schemes have difficulty
in removing thin cloud, and in many cases thin cloud needs to be treated similarly to

haze (Ji 2008; Moro and Halounova 2007; Lu 2007; Zhang et al. 2002).
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The primary data used in later chapters is from Landsat, and the scheme we use to
deal with data in these images is MODIS cloud mask. However, this scheme is
intended for global use, and may not be optimised for tropical regions, such as
Malaysia. We therefore perform a critical analysis of this scheme in order to assess its
likely weaknesses when used over Malaysia (and hence ways in which it might be
improved, although we do not develop such an improved scheme here). To do this we
make use of the spectrally rich satellite data provided by MODIS, which is equipped
with 36 bands ranging from visible to thermal wavelengths, several of which overlap
with those of Landsat. Although MODIS has much coarser spatial resolution than
Landsat (250 to 1000 m vs. 30 to 120 m), this analysis is valid, since our principal

concern 18 spectral behaviour.
The principal aims of this chapter are therefore:
to analyse the relationship between the spectral properties of cloud and haze.

to determine a suitable cloud detection method for Malaysia

to analyse the method most relevant for this thesis

il

to apply the cloud analysis onto Landsat data

We begin in Section 2.2 with a brief survey of cloud properties, including their
morphology, physical properties and associated spectral signatures, placing particular
emphasis on the types of cloud and their occurrence throughout the year in a
Malaysian context. The relations between haze and cloud are also discussed in this
section. Section 2.3 explains how the physical and spectral properties discussed in
Section 2.2 can be translated into detection approaches for cloud and cloud shadow,
and follow this in Section 2.4 with a survey of the main approaches relevant to this
thesis. In Section 2.5 we provide a critical analysis of the scheme most important for
this thesis (MODIS), in particular examining how well the global thresholding
approach lying at the centre of this scheme is adapted to Malaysian conditions and
likely errors arising from use of the global schemes. This section also describes the

datasets and methods for cloud masking over Malaysia.

(3]
(8]



sarrying out this analysis, we have to confront the issue of how to validate the
1d detections. Clearly we have no independent data which we can use as a
rence, so have adopted a pragmatic approach which is visual analysis. As an
>nded analysis we will compare the results with Landsat ACCA (Automatic Cloud
/er Assessment) scheme. We will show that the analysis of MODIS scheme cah be
lied to Landsat data with reasonably high accuracy. To further validate this, we

ry out the scheme on Landsat data with different cloud conditions.

tion 2.6 summarises the chapter and explains which aspects of it will be exploited

r in the thesis.
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2.2 Cloud Morphology and Physical Properties

Over 60 per cent of the Earth’s surface is covered by cloud at any time (Rossow et al.
1993, Choi and Ho 2009), where a cloud is a visible mass of condensed water droplets
or ice crystals suspended in the atmosphere above the Earth's surface. Cloud is made
of either water droplets or ice particles or both with diameters ranging from 10 to
several hundreds pm. It scatters electromagnetic energy in UV through mid-infrared
wavelengths due to the much larger particle diameter than the wavelengths and
therefore causing Mie scattering. This leads to the two most obvious features of
clouds seen from space; they are white and bright. The primary cloud types are
cumulus, stratus and cirrus (Figure 2.1). Those further classified from the main types
include cumulonimbus, nimbostratus, stratocumulus, altocumulus and cirrocumulus;
depending on their height and appearance from ground, i.e. cirro- (curl), alto- (mid),

strato- (layer), nimbo- (precipitation) and cumulo- (heap).

w0

cirrostratus

1 BEC Wenther Centre 2000

Figure 2.1: Common types of cloud (BBC 2011).

For simplificaiton, these cloud types often categorised based on their heights. Table
2.1 shows clouds that are typically divided into three main categories, i.e. high-level
clouds (i.e. cirrus, cirrostratus and cirrocumulus), mid-level clouds (i.e. altostratus and

altocumulus) and low-level clouds (i.e. stratus, stratocumulus, nimbostratus, cumulus



and cumulonimbus). From these clouds, only cumulus and cumulonimbus fall into

convective clouds, i.e. those have a larger vertical extent (thickness), but smaller

horizontal extent; while the remaining are stratiform clouds, i.e. those have a far larger

horizontal extent than the thickness.

Table 2.1: Category, type and description of clouds (Weather Forecast Office 2011).

Category Type Description

High level clouds Cirrus (Ci) They are the highest of all clouds, and are thin

(5000 - 13000 m) and wispy. They composed entirely of ice
crystals, which evaporate high above the earth

They are given the prefix surface.

cirro-. Due to cold Cirrostratus Sheet-like thin clouds that usually cover the

temperatures at these levels; (Cs) entire sky. Sometimes, the sun or moon will

the clouds primarily are appear to have a halo around in the presence of

composed of ice crystals cirrostratus clouds. They consist of ice crystals.

and often appear thin, Cirrocumulus Appear across the sky as patches or thin layers

streaky, and white (Co) of cloud consisting of tiny individual smaller
clouds. They are usually a transitional phase
between cirrus and cirrostratus clouds and
composed of ice crystals.

Mid level clouds Altostratus Known as strato type clouds that possess a flat

(2000 — 5000 m) (As) and uniform type texture in the middle latitudes.
They can appear as thin or thick layers of

They are given the prefix clouds. They composed of both water droplets

alto-. Depending on the and ice crystals, and produce occasionally light

altitude, time of year, and showers or snow.

vertical temperature Altocumulus Known as cumulo type clouds that usually occur

structure of the troposphere, (Ac) as a layer or patch of more or less separate

these clouds may be
composed of liquid water
droplets, ice crystals, or a
combination of the two,
including super-cooled
droplets (i.e., liquid droplets
whose temperatures are
below freezing).

Low-level clouds
(below 2000 m)

They normally consist of
liquid water droplets or
even super-cooled droplets,
except during cold winter
storms when ice crystals
(and snow) comprise much
of the clouds.

Stratus (St)

Stratocumulus
(S¢)

Nimbostratus
(Ns)

Stratiform clouds

cloudlets in the form of heaps, rolls, billows or
pancakes. They mainly consist water droplets
of, but ice crystals are often present. Usually
they produce no or very occasional light rain.

Appear uniform and flat, producing a grey layer
of cloud cover which may be precipitation-

free or may cause periods of light precipitation
or drizzle. They consist of water droplets and
commonly form near coasts and mountains..

Usually appear as low and puffy clouds but
sometimes they line up in rows or spread out.
They consist of water droplets and may produce
light rain or snow.

They formed from thick, dense stratus or
stratocumulus clouds that produce steady rain or
snow. They common occur in middle latitudes
and composed of water droplets, snow flakes
and ice crystals.




Cumulus (Cu)

(Cb)

Cumulonimbus

Convective clouds

Thick fluffy clouds, with a flat base. A cumulus
cloud starts forming at a very low altitude, but it
has the ability to cover a significant vertical
distance, which gives it a gigantic appearance.
They commonly occur over land and located
worldwide, except polar regions. They
composed of water droplets and can produce
brief showers.

Much larger and more vertically developed than
cumulus clouds which form in a more stable
atmosphere. Larger cumulonimbus clouds can
produce heavy downpours and even '
thunderstorms. They commonly occur in tropics
and temperate regions but rare at poles and may
composed of water droplets and ice crystals.

In cloud observation, cloud amount can be measured as the average “amount” for a
given period is the product of frequency-of-occurrence (f) and amount-when-present
(awp). For example, if in a particular season altocumulus is reported in 30% of the
usable observations and if it covers 40% of the sky when it is present, then f=O.3,
awp=0.4, and the seasonal average altocumulus amount is 12% (=0.3*0.4) (Warren

and Hahn 2002).

Figure 2.2 shows Malaysian and global monthly average of daily cloud amount for 26
years, i.e. from 1971 to 1996; Malaysia has about 30% more cloud than the global.
For Malaysia, the highest cloud amount occurs in November (87%), followed by
October, September and December (86%), observed from land stations located
approximately 2.5° North and 102.5° East (Hahn and Warren 1999). The higher cloud
amount at the end of the year is due to the occurrence of Northeast Monsoon
(November to February) which brings much rain to Malaysia, while the lower cloud
cover in the middle of the year is associated with Southwest Monsoon (May to

September) which brings less rain.
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Figure 2.2: Overall average cloud amount versus month for Malaysia from 1971 to

1996 (Hahn and Warren 1999).

Figure 2.3 shows plots of the average of daily cloud amount for each cloud type
against month for Malaysia from 1971 to 1996 observed from land stations. It can be
seen that cloud amount for cirrus, cirrostratus and cirrocumulus (high clouds) and
altocumulus are much higher in term of percentage of cloud amount than other cloud
types and invariant throughout the year, while stratus is quite low, but also invariant
throughout the year. During the Northeast Monsoon (November to February) and
Southwest Monsoon (May to September), there is a noticeable increase in cumulus,
cumulonimbus and nimbostratus. It also can be seen that stratocumulus is much
higher during the Northeast Monsoon than during the Southwest Monsoon. In this

period occurrence of completely clear sky has not been recorded.



Average Cloud Amount Based on Type Vs. Month
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Figure 2.3: Average cloud amount based on cloud type versus month for Malaysia

from 1971 to 1996 (Hahn and Warren 1999).

Spectral Properties of Cloud and Their Relationship with Haze

Both cloud and haze scatter solar radiation but the former has higher scattering
intensity, therefore is more reflective than the later. Haze often occurs at a wider
horizontal scale than cloud, so tends to distribute more homogeneously and therefore
has a lower standard deviation than cloud (Martin et al. 2002). Figure 2.4 shows
histogram of 3 x 3-window standard deviation of haze and clouds when sampled from
0.55 pum MODIS band 12 and 4 (1000 and 500 m spatial resolutions); haze has lower
standard d‘eviations than cloud in both bands. As haze gets more severe, it scatters
more solar radiation and eventually becomes as reflective as cloud. Hence, it is
sensible to assume that if haze is very thick, it possesses the standard deviation of
cloud. In our study, we will make use of the cloud properties (i.e. covariance) to

simulate haze for use in studying its effects on satellite data (Chapter 4).
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Figure 2.4: Histogram of 3 x 3-window standard deviation at 0.55 um from band 4
(500 m spatial resolution) and band 12 (1000 m spatial resolution) showing the basic
separation between haze and clouds at 1000 and 500 m spatial resolutions (modified

after Martin et al. 2002).

2.3 Cloud Detection from Satellites

Cloud detection from satellites data is based on radiative properties in visible and
thermal infrared spectral range. Cloud appears very brighter in the visible wavelengths
due to the shorter path of the photon come from the sun and reflected by cloud
particles towards the satellite sensor, than in a cloud-free atmosphere, while darker in
the thermal wavelengths due to the lower temperature than the surroundings (Couvert

and Seze 1997; Chen et al. 2002; Jose et al. 2003).

In visible wavelengths, the larger the water content and the thicker the cloud, the
higher the reflectance measured from the satellite sensor, therefore it appears brighter
(Li et al. 2003). The convective clouds look brighter than the stratiform clouds
because they contain more water droplets and are thicker. Among the convective
clouds, cumulonimbus is brighter than cumulus. Hence, in most cases, cloud formed
in the lower levels is brighter that the higher levels. In near infrared wavelengths, a
cloud with high cloud top height looks bright and a cloud with low cloud top height

look dark. Among the stratiform clouds, high level clouds are the brightest, followed
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by middle level clouds and low level clouds. In terms of forms, a stratiform cloud
often appears with fairly large extent of cloud area, while the convective cloud exists
as a rather small cloud cluster. In terms of texture, a stratiform cloud has a smooth and

even cloud surface, while a convective cloud has an uneven and ragged cloud surface.

Spherical albedo represents a mean value of the reflection function over all solar and
observational zenith and azimuth angles and the reflection function is subject to

particle size (King et al. 1992). Figure 2.5 shows plots of spherical albedo for various
cloud effective radius r, as a function of wavelength. It is obvious that cloud droplets
with smaller r, gives higher spherical albedo than those with bigger r, ; therefore, the

higher the reflectance, is the smaller the cloud effective radius is. Also shown is the
wavelength locations of selected MODIS bands which signify the relevance of using

MODIS bands in cloud detection.
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Figure 2.5: Cloud spherical albedo for selected effective radius of cloud droplets as a
function of wavelength (King et al. 1992). Also shown is the location of selected

MODIS bands.

In thermal infrared wavelengths, thicker cloud has lower brightness temperature than
thinner cloud, therefore appears darker; hence convective clouds often look darker

than stratiform clouds. Figure 2.6 shows the brightness temperature spectrum between



9.1 and 16.7 pm over clear scene and optically thin, moderate and thick cirrus clouds,
and location of MODIS bands 30 to 36 (King et al. 1992). From 10 to 13 um, it is

clear that thick cloud has the lowest brightness temperature compared with those of

moderate and thin cloud and clear scene.

Wavelength (um)
16 15 14 1
300 T T T ¥ I—Y ? T 1'2 T 1;*— 10
| MODIS-N
Bands b
280 TN
@ L -W“(TT"‘
\5 i ; 3 1y “fﬂ
B 260 il !l.
2 | B - w'm".-"f""‘" i
% 240 il
= 8| DF e

Cirrus Infrared Spectra
2 November 1986
. % S 1 A A

YR P SN ST U NN S et i
600 800 900 1000 1100
Wavenumber {cm ')

Figure 2.6: Brightness temperature spectrum between 9.1 and 16.7 yim over clear
scene and optically thin, moderate and thick cirrus clouds. Also shown are location

and bandwidth of MODIS bands 30 to 36 (King et al. 1992).

Due to the higher reflectance and lower temperature values than land, cloud can be
identified by selecting threshold values that denote the lowest cloud reflectance and
the highest cloud temperature in an image (Buriez et al. 1997; Baum and Trepte 1999;
Bendix et al. 2004). The exceptions to this rule in the visible wavelengths are snow,
ice, and white sand, which can have reflectance values that are greater than or equal to
the cloud reflectance values (Di Vittorio and Emery 2002). Such exceptions can be

ignored as most of the study areas are highly vegetated land areas.

Clouds have higher optical thicknesses in the visible spectral range compared to all

other atmospheric constituents such as haze and fog, therefore often block the surface
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from the solar radiation. Cloud, can consist of water or ice droplets, often have
different spectral properties at different wavelengths so requires different spectral
bands with appropriate thresholds. The spectral properties of cloud over land differ
significantly from ocean. Hence, using different thresholds for such conditions tends

to give better results than using the same thresholds.

Most of cloud detection scheme employs cloud detection algorithm involving a
number of tests which are based on differences between the spectral properties of
cloud and non-cloud features. The tests are applied to each pixel within a satellite
field-of-view, where the pixels that are flagged as cloud in some of the tests are
judged as cloudy; in other words only those identified as cloud-free pixels in évery

test are judged to be cloud-free.

In day time, both visible and thermal bands of the satellite data can be used, so
detection of cloud is more informative than night time. Generally high and thick
clouds are easier to detect than others. The accuracy of cloud detection depends very
much on the properties of the underlying surface. Higher accuracy can be gained for
remote sensing data covering surfaces having fairly constant temperature and
emissivity (Saunders 1986). This is due to the little variation of the spectral properties
for these surfaces; this provides a quite constant difference between them and those of

the cloud.

Cloud detection tests can be categorised into four categories, i.e. brightness
temperature test, brightness temperature difference test, simple reflectance test and

reflectance ratio test.

(a) Brightness Temperature Tests

The tests commonly performed using brightness temperature measurements are from
11 um and 14 pm wavelengths. 11 pum measurement was initially used for partial
coherence test (Coakley and Bretherton 1982; Saunders 1986; Franca and Cracknell
1995). The idea behind this technique is that the absolute value of BT should be lower
than surface area that the variability of brightness temperature for cloudy pixels
should be higher than clear-sky pixels. This can be carried out by using standard

deviation value of an array of pixels. For high latitude regions, cloud pixels are
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indicated with standard deviation less than 0.2 K, while 0.4 K for equatorial regions.
However, the main problem of this technique is its performance in detecting cloudy
pixels over land and coastal areas (Saunders 1986; France and Cracknell 1995). In
more recent years, Ackerman et al. (2010) used this test as a clear-sky restoral test
over sea and land; if pixels are determined as cloudy from initial tests, it may be

restored to clear given the brightness temperature exceeds certain thresholds.

CO, absorption bands (near 14 um) can be used to distinguish transparent clouds from
opaque clouds and clear-sky. Using this test, clouds at various levels of the
atmosphere to be detected, though is particularly effective for detecting thin cirrus

clouds that are often missed by simple infrared and visible tests (Wylie et al 1994).

(b) Brightness Temperature Difference Test
The frequently used brightness temperature difference tests are BT(11) — BT(12), BTy
- BT(3,9) and BT(8,6) — BT(11).

BTy — BT test can be used to detect thin cloud (i.e. cirrus) because they are larger
than that of clear-sky and thick cloud conditions (Inoue 1987; Saunders and Kriebel
1988). This test has been widely used for cloud screening using satellite sensor such

as MODIS, NOAA AVHRR and GOES.

BT s — BTy test indicate certain cloud properties based on the difference of water
vapour absorption between 8.6 and 11 pm wavelengths. This is because at 8.6'um
wavelength, ice/water particle absorption is low, while atmospheric water vapour
absorption is quite high; the reverse is true at 11 pm wavelength. Large positive
values of BT g6, — BT(11) indicate the presence of cirrus clouds (ice clouds), due to the
larger increase in the imaginary index of refraction of ice over that of water. On the
other hand, negative values of BT@gs — BT indicate clear conditions, due to
stronger atmospheric water vapour absorption at 8.6 um than at 11 um (Ackerman et

al. 1998).

BTy — BTy test can be used to differentiate between cloud over land and water; its

value over land is different from over water. For cloudy pixels over land, the long-
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wave minus shortwave brightness temperature (i.e. BTy — BTy ) has a large
negative value during the day for thick clouds. This is because much of the energy
sensed by the satellite comes from the Earth’s surface and atmosphere below the
cloud, and the 3.9-pm channel’s response to warm pixel temperatures is greater than it

is at 11 pm, resulting in negative difference values during the day.

(c) Reflectance Test

The frequently used reflectance tests are such as Re6), R(1.38) and Ro76); Rioge) has
been widely used in discriminating clouds from vegetated land due to the difference
reflectance properties measured at 0.66 um wavelength. R 35y in day time can be used
to detect the presence of high-level clouds, particularly thin cirrus, due to the strong
water vapour absorption at that region (Gao et al. 1993). Another useful band is
R(0.76), which is based on oxygen absorption band at 0.76 um and have been used in
the past to estimate pressure in MERIS 0.76 um band (band 11) (Fischer et al. 1997),
so is also useful for cloud detection. Surface pressure can be calculated from the ratio
of pixel observations made at 0.76 um to observations made at 0.75 pm, The presence
of thin cirrus cloud can produce errors of up to 150 hPa to the calculated surface
pressure. This effect on the surface pressure can be used as an indirect means of

detecting thin cirrus cloud.

(d) Reflectance Ratio Test

This test was proposed by Saunders and Kriebel (1988) and is based on the ratio of
reflectance in the near-infrared and visible infrared bands. For cloudy pixels, due to
similar reﬂectance properties resulted from quite similar scattering effects (Mie
Scattering) in both spectral bands, R.87/R.66) values are close to 1, i.e. between 0.8
and 1.1 (Saunders and Kriebel 1988; Ackerman et al. 1998). For land pixels,

Ro87/Rs6) values are higher than 1 due to the higher reflectance in the near-infrared

than the visible band.
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24  Literature Survey

A number of global cloud detection schemes have been developed over the years but
the most popular ones are such as APOLLO (AVHRR Processing Scheme Over
Cloud, Land and Ocean), CLAVR (Clouds from AVHRR), EUMETSAT (European
Organisation for the Exploitation of Meteorological Satellites), SCANDIA
(SMHI(Swedish Meteorological and Hydrological Institute) Cloud Analysis Model
Using Digital AVHRR Data), ISCCP (International Satellite Cloud Climatology
Project), CERES (Clouds and the Earth's Radiant Energy System), MODIS
(Moderate-resolution Imaging Spectroradiometer) and Landsat ACCA (Automatic
Cloud Cover Assessment). For convenience, we denote the satellite measured éolar
reflectance as R, and the infrared radiance as brightness temperature denoted as BT.
Subscripts with bracket refer to the wavelength while subscript without bracket refer

to the satellite band number, at which the measurement is made.

(a) APOLLO scheme

The APOLLO scheme was among the earliest scheme and used all five NOAA
AVHRR (Advanced Very high Resolution Radiometer) (Saunders and Kriebel 1988).
The five AVHRR band wavelength ranges are 0.58 — 0.68 um (R — visible), 0.72 -
1.10 um (R, — near infrared), 3.55 — 3.93 um (R3 - middle infrared), 10.3 — 11.3 pm
(R4 — thermal infrared) and 11.5 — 12.5 pm (Rs — thermal infrared). This scheme is
designed for applications using full spatial resolution HRPT (High-Resolution Picture
Transmission) and LAC (Local Area Coverage) and reduced spatial resolution GAC

(Global Area Coverage) data formats, particularly for NOAA 7 through 14.

The tests involved can be categorised based on surface types, i.e. ocean surfaces,
vegetated land, arid land, and snow and ice. Each pixel in these categories undergoes
a sequence of threshold tests to determine pixel status, i.e. fully cloudy, partially
cloudy, cloud free, and snow—ice (Kriebel et al. 2003). The pixel identification is
carried out in three stages: In stage 1, the tests are: the gross temperature using BTs;
the spatial coherence thermal test over sea surface based on the standard deviation

thresholds on BT;; the thin cirrus detection based on BT4 — BTs; the dynamic visible
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band test using R; and the dynamic ratio test using Ro/R; over land and water. In stage
2, the Ro/R; and the spatial coherence tests are repeated in order to identify the fully
cloudy pixels among the partially cloudy pixels using slightly different thresholds
(Kriebel et al. 2003). In stage 3, R; is used to identify snow-ice pixels. The main
disadvantage of Apollo scheme is the tests make use only the five NOAA AVHRR
bands, therefore may miss some clouds that cannot be detected within the bands’

wavelength range.

(b) CLAVR scheme

CLAVR is a main cloud identification scheme for use of AVHRR global data
processing (Stowe et al. 1999), aiming to work with AVHRR GAC (Global Area
Coverage). It is particularly designed for NOAA 15 through 18, which are equipped
with bands 3A (1.58 - 1.63 um) and 3B (3.54 - 3.87 um), so has better detection
capability compared to Apollo scheme. CLAVR is designed to be clear-sky
conservative (i.e. ensures that no cloudy pixel is identified as clear sky) and uses
ancillary datasets (e.g. surface type maps, digital elevation maps and climate data) to
set up thresholds. The tests include R, (over water) and R; (over land) as the gross
contrast test, BT4 to identify bright and cold pixels corresponding to clouds, Ry/R; for
contrast test over water and land, R3a/Rsg for albedo test over water and land, - the
BTz — BT for cirrus detection test, BT3 — BTs for uniform low stratus test, BT4 —
BT;s for thin (large positive) and thick cloud test (near zero or negative difference),
R3p for opaque (below 1) and transparent (above 1) cloud test. Although seems better

than Apollo scheme, the use of limited bands is still seen as the main limitation.

(c) SCANDIA and EUMETSAT scheme

The SCANDIA scheme (Karlsson 1989) is similar to the CLAVR and Apollo schemes
in many ways, i.e. involved applying sequences of threshold tests using NOAA
AVHRR bands. SCANDIA extra feature is that it groups a series of tests together
rather apart from applying the individual threshold tests, i.e. the identification of a

cloud pixel requires several threshold tests must be passed.

The EUMETSAT scheme (Dybbroe et al. 2005) is a more sophisticated scheme
compared to SCANDIA, CLAVR and Apollo. The sheme uses dynamic thresholds
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that separate fully cloudy or cloud-contaminated from cloud-free pixels. The
thresholds take into account the actual state of the atmosphere and surface and the
sun-satellite viewing geometry using cloud-free radiative transfer model simulations.
Cloud detection is done using sequences of grouped threshold tests that employ both
spectral and textural features. Cloudy pixels are further divided into 10 different
categories: 5 opaque cloud types, 4 semitransparent clouds, and 1 subpixel cloud
category. However, the scheme does not use AVHRR band 2, which may be

considered as a weakness.

(d) ISCCP scheme

The ISCCP scheme is the first project of the World Climate Research Programme and
uses measurements from visible (0.65 + 0.15 pm) and thermal infrared (11 £ 1 um)
wavelengths to detect cloud (Rossow and Garder 1993; Rossow and Schiffer 1999).
The measurements are either from AVHRR GAC data or from the data obtained from
geostationary satellites. Besides the conventional spectral-based approach, the ISCCP
scheme also uses a temporal-based approach to separate cloudy and clear-sky pixels.
In ISCCP, a cloud classification scheme based on height, pressure and optical

thickness was introduced.
The major steps in the ISCCP scheme are:

(1) the gross spatial thermal contrast test — classifies pixels as cloudy if they are
much colder than other pixels within a limited spatial domain,

(2) the gross temporal thermal contrast test — applied to a sequence of images over
a 3-day interval and classifies a pixel as cloudy if it has sharply lower IR
radiance compared to a day earlier or later,

(3) the generation of spatiotemporal statistics for both thermal and visible bands —
conducted over 5-day time intervals,

(4) the identification of clear-sky thresholds using the results of the previous step
and

(5) the classification of pixels into three categories: clear, cloudy, and marginally
cloudy using the derived thresholds — the pixel is placed into the clear-sky

(cloudy) category if visible and IR radiances pass the clear-sky (cloudy)
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thresholds. If the radiances fall in between, the pixel is assigned to' the

marginally cloudy category.

The main weakness of the ISCCP is the use of only visible and thermal infrared
wavelengths in detecting cloud, which may miss clouds detectable from other

wavelength regions, e.g. near and middle infrared.

(e) MODIS scheme

The MODIS scheme can be regarded as the most comprehensive cloud detection
scheme in terms of the number of spectral bands used, i.e. 22 out of 36 MODIS bands
(i.e. in visible, near infrared and thermal infrared wavelengths) to maximise the cloud
detection capability (Ackerman et al. 1998; Ackerman et al. 2010). Apart from the
spectral information, it also uses other ancillary input such as topography and
geometry of observation for each 1-km pixel, land/water and ecosystem maps, and
daily operational snow/ice data products from the NOAA and National Snow and Ice
Data Center. The MODIS cloud mask is a 48-bit cloud mask with flags specify the
confidence level of clear-sky detection (confident cloudy, uncertain, probably clear,
and confident clear), while other flags indicate high cloud type, shadow, thin cirrus,
snow/ice, sun glint, and results from the other tests, including the 16 values of the
cloud flags for all 250 m x 250 m sub-pixels within the 1 km x 1 km field of view. A
cloud test may use a single band, ratio of bands or difference of bands. Each test
returns a confidence level that a pixel is clear, ranging in value from 1 (high) to 0
(low). The tests are grouped into five categories based on their capability to detect
similar cloud types: thick high clouds, thin cloud, low clouds, high thin cloud and
high thin cirrus cloud. For a group, its confidence indicator is the smallest confidence
level for the individual tests within that group. Other important criterion of the
MODIS scheme is the inclusion of algorithm to detect cloud shadows. The Cloud
shadow detection implemented in MODIS uses the spectral (not geometrical)
approach and checks for cloud shadows once a confident clear-sky pixel is found.
Cloud shadow is detected if reflectance in the 0.94-um band (band 19) is less than
0.07, the ratio of reflectances at 0.87 and 0.66 pm (bands 2 and 1) are greater than-0.3,
and the reflectance in the 1.2-um band (band 5) is less than 0.2 (Ackerman et al 1998;

Ackerman et al. 2006). The cloud mask was validated by using image interpretation
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and quantitative analysis. The former used visual inspection of the spectral and spatial
features in a set of composite images, while the latter used pixel-to-pixel comparison
with ground instruments or platform-based observations, which both show a good

agreement with the cloud mask.

The MODIS cloud mask can be downloaded from the MODIS website
(http://modis.gsfc.nasa.gov). For detecting cloud in daytime over land, only seven bits
are involved:

(1) bit 14; BTss,

(2) bit 15; BTy,

(3) bit 16; Ry ,

(4) bit 18; BT3; — BTs,,

(5) bit 19; BT3; — BT,

(6) bit 20; Ry,

These MODIS cloud tests are divided into:
(1) Group 1; detection of thick high cloud using bits 14 and 15.
(2) Group 2; detection of thin cloud missed by Group 1 tests using bits 18 and 19.
(3) Group 3; detection of low cloud using bits 20.
(4) Group 4; detection of thin high cloud using bit 16.

For each test, a confidence level between 0 and 1 is assigned, where O represents high
confidence of a cloudy condition and 1 represents high confidence of a clear

condition. For a group, its confidence indicator is the minimum confidence level for

the individual tests within that group, i.e.:
Gi-1.s =min [E] R

The final cloud mask confidence, Q, is a product of all individual tests:

Q= ﬁF - (22)
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If any test gives high confidence of a cloudy condition (F; = 0), then the final cloud

mask will indicate cloud (Q = 0).

In the latest version of MODIS cloud mask, the thresholds for day-time cloud

detection over land is summarised in Table 2.2 (Ackerman et al. 2010).

Table 2.2: Cloud criteria , test, its function and the threshold used in the MODIS

cloud mask for day-time detection over land (Ackerman et al. 2010).

Cloud
teri
(szrel ’;Zgle Test Description Threshold
2.1
CO; slicing. Values smaller
than threshold indicate ice
Thick high BTss cloud at middle and upper 226K
clouds atmosphere
Values smaller than threshold
BTz indicate water low clouds 225K
o Values smaller than threshold
Thin h . . )
c;(r)ludlfh BT, — BT, indicate high cloud or cirrus 2K
cloud
. Values smaller than threshold
Tl(‘:‘lf)lfuli‘;w BT, —~ BT, | indicate low level water 110K
clouds
Reflectance gross cloud test
with vegetated land
Low clouds R, background. Values larger 0.14
than threshold indicate cloud.
Thin high R Values larger than threshold 0.03
clouds 26 indicate thin cirrus cloud '
(f) ACCA Scheme

ACCA is an automatic cloud cover assessment algorithm, developed in early 1980s
for TM (Thematic Mapper) onboard Landsat 4 and 5 (Irish et al 2000). The first
version of TM ACCA algorithm uses a single pass process that employs Bands 3, 5
and 6 radiance thresholds to detect cloudy pixels. The second version, the Landsat 7
ACCA algorithm uses five of eight ETM+ bands:

e Band 2 reflectance (Ry): 0.53 to 0.61 um — green; 30 m resolution

e Band 3 reflectance (R3): 0.63 to 0.69 um — red; 30 m resolution

e Band 4 reflectance (Rs4): 0.78 to 0.90 um — near infrared; 30 m resolution
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* Band 5 reflectance (Rs): 1.55 to 1.75 um — middle infrared; 30 m resolution

* Band 6 brightness temperature (BTs): 10.4 to 12.5 pm — thermal infrared: 60

m resolution.
Landsat 7 ACCA algorithm involves two passes. For pass one processing, the eight
tests involved are:
¢ Filter 1: 0.08 > R;

Rz_Rs
R, +R;

¢ Filter 2: Normalized Snow Difference Index = <0.7

e Filter 3: BT¢ <300 K

* Filter4: (1-R,)}*R, <225

e HFHilter 5: R4/R3 <2

e Filter 6: R4/R; <2

¢ Filter 7: Ry/Rs > 1

¢ Filter 8: Rs/R¢ > 210 (warm clouds); Rs/Rg < 210 (cold clouds)

Pixels that passed filter 1 through 7 are classified as clouds; Filter 8 further classifies
the cloud pixels into warm or cold clouds. Pass two processing involves thermal
analysis using band 6 exclusively, in which a thermal cloud signature is developed
from the product of pass one and used to identify the remaining clouds in a scene.
Finally, the last step involves processing the cloud mask for ambiguous pixels. Each
non-cloud image pixel is examined and converted to cloud if at least 5 of its 8

neighbours are clouds.

From the analysis above, it is clear that MODIS cloud mask is the most
comprehensive scheme, so will be adopted in our study to learn the spectral properties
of cloud and then to detect cloud within satellite data. Subsequently, we will apply
the MODIS analysis to Landsat data and finally its performance will be compared
with the ACCA scheme.

Cloud shadow is a by-product of cloud that results from the projection of cloud and

can cause a substantial impact to satellite data. In visible wavelengths, if undetected, it

is likely to be classified as other classes; dark cloud shadows possess spectral
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properties quite similar to those of water, while lighter shadows can be easily
confused with dark vegetation. Therefore, cloud shadow needs to be detected and
masked from remote sensing data before performing further processing. Ackerman et
al. (2006) proposed a cloud shadow detection procedure based on spectral analysis of
MODIS data. They proposed that cloud shadow can be indicated by R¢ smaller than
0.07, Ro/R| larger than 0.3 and Rs smaller than 0.2. The results were visually analysed
and was sensibly matched with the location of the shadow. Later, Luo et al. (2008)
proposed a method for detecting cloud shadow on MODIS data based on
Max(R;,R¢)/R3less than 1.5, R;less than 0.12, R, less than 0.24 and Rgless than 0.24.
They claimed that by using the method, most of the shadow pixels can be successfully
removed from the data. Due to the simplicity and effectiveness, our study will make
use of the Ackerman et al. (2006) method to remove cloud shadow; subsequently

comparison with the Luo et al. (2008) method will be carried out.

2.5 Datasets and Methods

2.5.1 The MODIS Satellite

The MODIS instrument is the primary payload attached to two satellites, Terra and
Aqua. Terra (Figure 2.7) was launched on December 18, 1999, and Aqua on May 4,
2002.

Figure 2.7: Terra satellite (MODIS 2007).

Table 2.3: MODIS instrument specifications (MODIS 2007).

Ownership: National Aeronautics and Space Administrations (NASA),
USA
Orbit: 705 km, 10:30 a.m. descending node (Terra) or 1:30 p.m.

ascending node (Aqua), sun-synchronous, near-polar,

42



Scan Rate:

Swath Dimensions:

Telescope:

Size:

Weight:
Power:

Data Rate:
Quantization:

Design Life:

Spatial Resolution:

circular

20.3 rpm, cross track

2330 km (cross track) by 10 km (along track at nadir)
17.78 cm diameter off-axis, afocal (collimated), with
intermediate field stop

10x16x1.0m
228.7 kg

162.5 W (single orbit average)

10.6 Mbps (peak daytime); 6.1 Mbps (orbital average)

12 bits

250 m (bands 1-2)
500 m (bands 3-7)
1000 m (bands 8-36)
6 years

MODIS instrument specifications are shown in Table 2.3. The main advantage of

MODIS data is that it offers a wide range of spectral bands. There are 36 spectral

bands covering the visible, near infrared and thermal infrared ranges of the

electromagnetic spectrum. The primary use and the corresponding spectral

information for all bands are summarised in Table 2.4.

Table 2.4: Primary use and spectral information for MODIS bands (MODIS 2007).

Primary Use Band Band Range' Bandwidth RSa %?Z:Ca; Wg/:lgxa;th“
Land/Cloud/Aerosols 1 0.620-0.670 41.8 21.8 0.659
Boundaries 2 0.841 -0. 876 39.4 24.7 0.865
3 0.459 — 0.479 17.6 35.3 0.470
Land/Cloud/Aerosols 4 0.545 - 0.565 19.7 29.0 0.555
. 5 1.230 - 1.250 245 5.4 1.240
Properties 6 16281652 297 73 1,640
7 2.105 - 2.155 52.9 1.0 2.130
8 0.405 — 0.420 11.8 44.9 0.415
9 0.438 — 0.448 9.7 41.9 0.443
10 0.483 — 0.493 10.6 32.1 0.490
Ocean Colour/ 11 0.526 — 0.536 11.8 27.9 0.531
Phytoplankton/ 12 0.546 — 0.556 10.4 21.0 0.565
Biogeochemistry 13 0.662 - 0.672 10.1 9.5 0.653
14 0.673 - 0.683 11.4 8.7 0.681
15 0.743 - 0.753 10.0 10.2 0.750
16 0.862 —0.877 15.5 6.2 0.865
Atmospheric 17 0.890 - 0.920 35.7 10.0 0.905
18 0.931 - 0.941 13.7 3.6 0.936
Water Vapour 19 0.915— 0.965 46.3 15.0 0.940
20 3.660 - 3.840 36.4 0.45(300K) 3.750
Surface/Cloud 21 3.929 - 3.989 182.6 2.38(335K) 3.959
Temperature 22 3.929-3.989 85.7 0.67(300K) 3.959
23 4.020 - 4.080 88.2 0.79(300K) 4.050
- 24 4.433 - 4.498 87.8 0.17(250K) 4.465
Atmospheric 25 4.482 - 4.549 93.7 0.59(275K) 1515
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Temperature

Cirrus Clouds 26 1360 - 1.390 943 6.00 1375

Water Vagour 27 6.535 - 6.895 254.6 1.16(240K) 6.715
28 71757475 3253 2.18(250K) 7325

Cloud Properties 29 3.400 - 8.700 369.2 9.58(300K) 8.550

Ozone 30 | 9.580-9.880 3006 3.69(250K) 9.730

Surface/Cloud 31| 10.780- 11.280 5103 9.55(300K) 11.030

Temperature 32 | 11770 12.270 4935 8.94(300K) 12.020
33| 13.185- 13485 13335 | 4.52(260K) 13.335

]

Cloud Top 34 | 13.485-13.785 13.635 | 3.76Q250K) 13.635

Altitude 35 | 13.785-14.085 13935 | 3.11(240K) 13.935
36| 14.085- 14.385 14235 | 2.08Q220K) 14235

TBands 1 to 36 are in um

? Bandwidth values are in nm
3 Spectral radiance values are in Wm? pm'l sr!
* Central wavelength values are in pm

MODIS Level 1B (MODIS L1B) are the main data used in this study. There are four
product files in the MODIS LI1B product, summarised in Table 2.5 (MODIS

Characterization Support Team 2006).

Table 2.5: Summary of MODIS LIB products (MODIS Characterization Support

Team 2006).
Product Type Product Content
MODIS/Terra MODIS/Aqua

MOD02QKM MYD02QKM Calibrated Earth View data at 250 m resolution

MODO02HKM MYDO02HKM Calibrated Earth View data at 500 m resolution, including the
250 m resolution bands aggregated to 500 m resolution.

MODO021KM MYD021KM Calibrated Earth View data at 1 km resolution, including the 250
m and 500 m resolution bands aggregated to 1 km resolution.

MODO020OBC MYDO020BC On Board Calibrator (OBC) and Engineering Data

In this study, the MODO021KM product from MODIS Terra is used. These datasets

were downloaded from the Level 1 and Atmosphere Archive and Distribution System

(LAADS) website (NASA 2007). MOD021KM contains data in three forms: (1)

Radiance (W m'zpm'lsr_l) for the reflective bands (2) Radiance (W m? um‘lsr'l) for

the emissive bands; and (3) Reflectance (dimensionless) for the reflective bands.

The relationship between the TOA reflectance, p and TOA radiance, L at the

isotropic surface can be expressed as:
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L — E}J"Lsp
T

.. (2.3)

where E, is the mean exoatmospheric solar irradiance at TOA (W m™ um™), U, 1s

cos(0,) and 7 is a constant equal to ~3.14159 (unitless); 8, is the solar zenith angle.

The MODIS Level 1B also contains thermal data, which are recorded as TOA
radiance, and can be converted to brightness temperature using the Planck function.
Brightness temperature is defined as the temperature for an ideal black body with the
observed radiance; it is the temperature a blackbody needs to have to emit radiation of
the observed intensity at a given wavelength. From Planck’s Law, the obsefved

radiance is expressed as

24 -5
L= 2hh°_K . (2.4)

where
L = radiance (Wm'zum'lsr'l)
h = Planck's constant (Js) = 6.626 x 10724 Js
¢ = speed of light in vacuum (ms™) =3 x 10° ms™
k = Boltzmann gas constant (JK'I) =1.3806503 x 102 JK!
A = band or detector centre wavelength (1Lm)

T = brightness temperature (K)

By inverting this formula, we can solve for brightness temperature, T:

hc 1 .
r-[he . (2.5)
(klj mQhc? A7 L +1)

In a simpler form,
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h 2
where c, =TC:1.438><104 and ¢, =2hc* =1.191x10°.

In practice, this conversion can be carried out using built-in tools in image processing

software, such as ENVI.

2.5.2 Methodology

The study area is Peninsular Malaysia, located within latitude 6°47" N, longitude
88°25’ E (upper left), and latitude 1°21° N, longitude 106°20" E (lower right) as

shown in Figure 2.8 that covers an area of about 140000 km”.

MAP OF PENINSULAR MALAYSIA

KUALA/ LUMPUR
(Capital of Malaysia) ¢Sk

N

Figure 2.8: Map of Peninsular Malaysia.

A MODIS Terra dataset (i.e. MOD021KM.A2004030.0355) recorded on the 30
January 2004 at 03:55 UTC (11:55 a.m. local time; sun elevation angle 59.2%) was
used because it was haze-free due to the Northeast Monsoon, which occurs from
November to March every year. In Malaysia, the highest rain amount, which 1S
associated with the high cloud amount, occurs during this period. Figure 2.9(a) shows

bands 1, 4, and 3 of the MODIS dataset assigned to red, green and blue channels
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respectively; Malaysia is indicated by the area within the yellow box and Northeast
Monsoon is demarcated by the arrow. For convenience, the same location from
Google Map is shown in Figure 2.9(b). By comparing both images, it can be revealed

that most parts of Malaysia are covered by clouds.

We will first carry out visual analysis of cloud to identify cloud pixels from the
MODIS dataset. We will then carry out spectral analysis of cloud from both reflective
and thermal MODIS bands; cloud and its shadow detection and masking will then be
performed using the MODIS scheme on two MODIS datasets, i.e. 30 January 2004
and 15 February 2004. Subsequently, cloud detection and masking based on
multitemporal basis are carried out for 2004 and 2005 to see cloud trends throughout
these years. The MODIS analysis will later be applied to Landsat data, focusing on

Klang district in the state of Selangor Malaysia, for use in later chapters.

Northeast
Monsoop
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(b)
Figure 2.9 : (a) MODIS Terra data dated 30 January 2004 (03:55 UTC); Malaysia

indicated by the yellow box and the arrow is the Northeast Monsoon and (b) the same

location from Google Map.

Visual Analysis of Cloud from MODIS Data

Initially, we carried out visual analysis on MODIS Terra dataset dated 30 January
2004 using individual bands, which all 36 bands were individually displayed. For each
of the 20 reflective bands (1 to 19 and 26), bright features (high reflectance), which
were suspected to be cloud, were visually extracted. For the 16 thermal bands (20 to
25 and 27 to 36), the same procedure was carried out for dark features (low
temperature). Figure 2.10 shows (a) MODIS band 2 and (b) band 31, in which the
bright regions in the former correspond to very high reflectance resulting from the
high scattering efficiency of cloud droplets, while the dark regions in the latter
correspond to the very low brightness temperature of cloud. In Figure 2.10(c), bands
1, 2 and 3 displayed simultaneously as a colour composite image in order to enhance
the difference between clouds and other features. With such a combination, cloud
tends to appear as white, since it has high reflectance in these visible wavelength

regions; this helps to ‘double check’ the first approach.
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Figure 2.10 : MODIS Terra data for 30 January 2004: (a) MODIS band 2, (b) band
31 and (c) bands 3, 2 and 1 assigned to red, green and blue.

Spectral Analysis

The visual analysis approach was used to sample 100 x 100 blocks of cloud over land
and ocean pixels from the dataset. The locations of the sampling areas are shown in
Figure 2.11(a) cloud over land, (b) cloud over ocean, (c) land and (d) ocean pixels.
The image on the lower left is the full scene of MODIS Terra bands 3, 2 and 1
assigned to red, green and blue channels respectively from 30 January 2004; the top
and the lower right images are the enlarged versions of the red box in the lower left

and the top images respectively.
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Figure 2.11: Sampling for (a) cloud over land, (b) cloud over ocean, (c) land and (d)
ocean pixels. The image on the lower left is the full scene of MODIS Terra bands 3, 2
and 1 assigned to red, green and blue channels respectively from 30 January 2004;
the top and the lower right images are the enlarged versions of the red box in the

lower left and the top images respectively.

The reflectance curves for the reflective MODIS bands are shown in Figure 2.12(a).
The negative reflectances for cloud in bands 8 to 17 are caused by saturation problems
and have been omitted. For the remaining bands, cloud over land has lower
reflectances because it tends to be thinner than cloud over ocean. Brightness
temperature curves for the thermal MODIS bands are shown in Figure 2.12(b). These
have the opposite trend to reflectance, with the brightness temperature of cloud over

land being higher than cloud over the ocean. This is due to the fact that cloud over



ocean 1s colder because it tends to be thicker than cloud over land (Ackerman ét al.
2010). Much larger standard deviations in reflectance and brightness temperature are
observed for clouds over the land than ocean due to the larger variations in surface
reflectivity and emissivity respectively (Ackerman et al. 2010). Land has much lower
reflectances than cloud due to the much less reflective surface properties and lower
altitudes. Land has higher reflectances and brightness temperatures than ocean due to
the lesser energy absorption and higher temperature respectively. Ocean has lc;wer
standard deviations in reflectance and brightness temperature due to the much uniform

spectral properties.

(a) Mean Reflectance Vs. MODIS (Reflective) Bands

-+~ Cloud Over Ocean
-~ Cloud Over Land

~ Land
—+ Ocean

MODIS Bands
(b) Brightness Temperature Vs. MODIS (Thermal) Bands
g
2
g
g .
E § -~ Cloud Over Ocean
=
2 £ 150 1 Cloud Over Land
@ Land
fn 100 1 ——QOcean
o

0 T T T T T T T T T T T T T T |
20 21 22 23 24 25 27 28 29 30 31 32 33 34 35 36
MODIS Bands

Figure 2.12: (a) Reflectance of cloud over the ocean and cloud over the land relative

to non-cloud features. Vertical bars indicate standard deviations; (b) Same as (a) but

for brightness temperature.

We subsetted Malaysia from the full scene of MODIS dataset and masked the sea in
white. Since this study focuses on land studies, the term ‘cloud’ in the following
sections means cloud over the land. Based on MODIS scheme in Table 2.2, cioud
detection is carried out using single reflective bands and thermal bands and brightness

temperature differences.
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Cloud Detection Using Single Reflective Bands

TOA reflectance curves for cloud, land and ocean for all 20 MODIS reflective bénds
are plotted in Figure 2.13, and the mean reflectance for cloud, ocean and land against
the MODIS bands and wavelengths, are shown in Table 2.6. Bands with negative

values, due to saturation, have been omitted.

Table 2.6: Mean reflectance for the MODIS reflective bands for 30 January 2004. R,

is reflectance for band k.

30 January 2004
MODIS Centre Mean R, (dimensionless)
Band (Ry) | " avelemgth Cloud Land
(um)

1(R)) 0.659 0.571 0.081
2 (Ry) 0.865 0.600 0.186
3 (Ry) 0.470 0.603 0.122
4 (Ry) 0.555 0.574 0.097
5 (Rs) 1.240 0.500 0.222
6 (Rg) 1.640 0.228 0.175
7 (Ry) 2.130 0.117 0.091
17 Ry7) 0.905 0.095 0.139
18 (Ryg) 0.936 0.399 0.040
19 (Ry9) 0.940 0.357 0.072
26 (Rye) 1.375 0.187 0.002

After removing all negative reflectance values (i.e. due to saturation) from the data,
meaningful trends of spectral reflectance for cloud and land were revealed, as shown
in Figure 2.13(a). Cloud exhibits much higher reflectance than land or ocean for bands
1 to 5, 18 and 19, but low reflectance values for bands 6, 7 and 26 (with a decreasing
trend towards longer wavelengths). Figure 2.13(b) shows the reflectance plotted
against wavelength with the corresponding band numbers given in red fonts, showing
that cloud and land have distinctive spectral reflectance signatures. Both cloud and
land exhibit a fluctuating trend. As most of the land is covered by vegetation, strong
chlorophyll absorption occurs at wavelengths of 0.46 and 0.66 um, which are often
called the chlorophyll absorption band (Swain and Davis, 1978; Lillesand et al. 2004).
Land reflectances increase from 0.66 pum to 0.86 um because in this wavelength
region, leaves typically reflect 40% to 50% of the incident energy respectively due to

their internal structure (Lillesand et al. 2004). As all features contain water, the
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reflectance curves show absorption in the water absorption bands near wavelengths of

1.4 um.
Mean Reflectance Vs. MODIS Reflective Bands
0.8 - -« Cloud
o7+ 17 Land
0.6 §e *‘“Tl
8 i i T T v
T S A T
T 0.4 ”\ a—
- B N v /o h
3 0.3 \\i // | \\
0.2 1 ‘\\\\ 5 /
0.1 - ’ /
0.0 . ; . ; . —
1 2 3 4 5 6 7 18 19 26
MODIS Bands
(a)
Mean Reflectance Vs. Wavelength
0.31 341 7189
0.7 4 1 P 5% -+ Gloud
0.6 - g Land
8 . et I 6
e 05 aobd iV A
o s R 278
Q 0.4 - 1/’ \
Q ? A 7
8 0.3 A 1
o 3 Al -
0.2 - g Y e
0.1 - g R
0.0 . - . . .
0 0.5 1 15 2 2.5
Wavelength (um)
(b)

Figure 2.13: Cloud spectral signature using reflectance data for 30 January 2004. (a)
Plot of mean cloud reflectance without bands 8 — 17, and (b) Same as (a) but in term
of wavelength to form the spectral signature of cloud and land, with MODIS band

number in red font. Vertical bars indicate standard deviations.

To separate between cloud and non-cloud, a threshold value from the MODIS cloud
mask was used and the cloud masking results for R; and Rog reflectance tests are
shown in Figure 2.14((a) and (b)). The raw data and masked data are shown in left and
middle column, while the corresponding histogram, on the right column. For R; test,
Figure 2.14(a(left)) clearly shows bright patches of opaque clouds in the east and
south of Malaysia, while transparent clouds can be seen surrounding the opaque
clouds. In Figure 2.14(a(right)), pixels with reflectance larger than the threshold were
labelled as cloud and masked red. Pixels detected as cloud by R; test can be seen

distributed throughout almost the whole Malaysia. These are low clouds, i.e. stratus,
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stratocumulus, cumulonimbus, cumulus and nimbostratus (see Table 2.1 and Table
2.2). The effectiveness of this test is due to the surface types, i.e. mainly vegetations,
which posses much lower reflectance in 0.66 um wavelength measurement; therefore
separation between the cloud and cloud-free pixels can be done easily. For Ry test,
Figure 2.14(b(left)) shows a much brighter but smaller cloud patches in the south and
east of Malaysia and transparent clouds in between them. The Earth surface seems
very dark due to the very low surface reflectance measured at 1.38 um wavelength
(i.e. near infrared), resulting in a high contrast between the clouds and their
background. In Figure 2.14(b(right)), when mask is applied, more cloud pixels can be
observed in the middle towards the north; clouds detected by this test are thin high

clouds, 1.e. cirrus, cirrostratus and cirrocumulus (see Table 2.1 and Table 2.2).
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Figure 2.14: (a) R; and (b) Ry test for 30 January 2004 before (left) and after
(middle) applying the thresholds with the cloud pixels masked in red, and the
corresponding histogram for cloud and land (right). Cloud-free and water body pixels

are masked grey and white respectively.



Cloud Detection Using Brightness Temperatures and Brightness Temperature

Difference

Conversion from radiance to brightness temperature was carried out for all 16 thermal
bands using Equation 1.5. The mean brightness temperatures values for each of the

thermal MODIS bands are shown in Table 2.7.

Table 2.7: Cloud and land mean brightness temperature from MODIS thermal bands

for 30 January 2004.
30 January 2004
MODIS Wavelength Mea(1§;3 T
Band (BT (pm) Cloud Land

20 (BT,) 3.750 269.964 306.490
21 (BT, 3.959 254.896 304.237
22 (BTy) 3.959 249.560 303.843
23 (BTy) 4.050 245.129 299.746
24 (BT,y) 4,465 229.749 256.047
25 (BT,s) 4.515 232711 277.244
27 (BT»y) 6.715 227.489 250.893
28 (BTy) 7.325 232.098 263.732
29 (BTy) 8.550 237.042 294.706
30 (BTs) 9.730 235.807 277727
31 (BT5)) 11.030 235.607 296.679
32 (BTy) 12.020 234.682 294.901
33 (BTs3) 13.335 230.818 270.227
34 (BTs,) 13.635 228.322 258.166
35 (BTss) 13.935 226.383 249.858
36 (BT3¢) 14.235 220.722 231.596

Curves of brightness temperature for the thermal MODIS bands for cloud and land
against band number and wavelength are shown Figure 2.15(a) and (b) respectively.
Each point in (b) corresponds to that of (a) consecutively. Land exhibits a brightness
temperature ranging from approximately 231 to 306 K shows a sharp increase
between 4 and 5 um, then a fluctuating trend at longer wavelengths. The cloud

brightness temperature is nearly constant in the lower-numbered bands but increases

at longer wavelengths.
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Brightness Temperature Vs. MODIS (Thermal) Bands
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Figure 2.15 : Brightness temperature for cloud and land for MODIS Terra data dated
30 January 2004 plotted against (a) MODIS bands and (b) wavelength. Here, the
points in (b) consecutively correspond to those in (a). Vertical bars indicate standard

deviations.

Brightness temperature tests using BT,; and BT;s were applied to the MODIS dataset
from 30 January 2004. Figure 2.16 shows (a) BT»; and (b) BTss tests for 30 January
2004 before (left) and after (right) applying the thresholds with the cloud pixels
masked in red; cloud-free and water body pixels are masked grey and white
respectively. Figure 2.16(a(left)) shows dark patches of cloud by BT,7 in the south of
Malaysia and much smaller patches can be seen in the east of Malaysia. In Figure
2.16(a(right)), the red masks are located about the same place where the black patches

are found — almost no cloud is found elsewhere. Quite similar outcomes are shown by
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(a)

(b)

BT;s Figure 2.16(b) due to the quite similar spectral response to cloud (Figure 2..15)

3

both tests are sensitive to thick high clouds, e.g. cumulonimbus.
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Figure 2.16: (a) BT,; and (b) BT;s tests for 30 January 2004 before (left) and after
(right) applying the thresholds with the cloud pixels masked in red. Cloud-free and

water body pixels are masked grey and white respectively.

Brightness temperature difference tests using BTs; - BTs, and BT;, - BT», were
applied to the MODIS dataset. For BT3; - BT3, test, cloud can hardly be seen by
visual analysis of Figure 2.17(a(left)). In Figure 2.17(a(right)), when the mask was
applied, most clouds are detected in the east of Malaysia. Clouds detected by this test
were thin high clouds, e.g. cirrus, cirrostratus and cirrocumulus. In Figure
2.17(b(left)), for BT3; — BT» test, it seems that only a few cloud patches are visible in
the middle and south of Malaysia; pixels detected as cloud can be seen throughout the
whole Malaysia when the mask was applied (Figure 2.17(b(right))). Clouds detected
by BT; — BTy are thick low clouds, e.g. cumulonimbus and cumulus, which the

former brings heavy downpour in Malaysia during the Northeast monsoon season.
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Figure 2.17: (a) BT3; - BT3; and (b) BT;; - BT»; tests for 30 January 2004 before (left)
and after (right) applying the thresholds with the cloud pixels masked in red. Cloild-

free and water body pixels are masked grey and white respectively.

It is useful to know the amount of cloud captured by each test so we can assess its
effectiveness. Hence, for each test we calculate the amount of cloud in terms of area
(kmz) and percentage land area (%). All cloud tests used and the amount of cloud
captured on 30 January 2004 are given in Table 2.8. R, gives the largest area, i.e. 84%
of the land or 121,549 km”. This is followed by the BT;, — BT,, with 82% (119,968
kmz) and the BT,, — BT, test with 70% (102,370 km®). The least clouds are detected by
the BTy, 7% (9,549 kmz) and BTjss, 9% (13,522 kmz). The 84% captured by the R,
test is due to the various types of cloud that are detectable in 0.66 um wavelength; this

owing to the much higher difference in cloud and vegetation spectral properties.

Table 2.8: Cloud tests and area covered for 30 January 2004.

Mask MODIS Test (based on |Same as the second column, ; l?;:caenlage of cloud
type band number) but based on wavelengths (km") e, L ares (96
BT», BTn 9549 6.6
BT BT 19 13522 9.3
BT;, — BT;, BT - BTy 90627 62.3
Cleud BTy =Bl Bln—Blas 119968 82.5
mask R, Roco 121549 83.6
Ry R(i13) 52406 36.0




The final spectral cloud masks were prepared from the six tests given above. Since the
cloud masking performed here was meant for cloud conservative, i.e. ensures that no
cloud-free pixel is identified as cloudy; therefore we selected the maximum
confidence level for all tests (see Table 2.2) (Ackerman et al. 2010). A pixel was
labelled as cloudy if it was identified as cloud by at least one test. By combining all
the cloud tests, the final cloud mask for Malaysia is shown in Figure 2.18; cloud

covers approximately 97% or 141000 km? of the land area.

Figure 2.18: The final cloud mask for Malaysia for 30 January 2004. Cloud pixels are

masked red; cloud-free and water body pixels are masked grey and white respectively.

To examine the mask in term of overlapping tests, we segmented the mask based on
the number of tests that occured. Figure 2.19 shows the cloud mask for 30 January
2004 classified based on the number of overlapping tests. The colours (blue, cyan,
yellow, magenta, maroon and green) are associated with the number of tests, while
non-cloud and water pixels are masked grey and white respectively. It can be seen that
the three-tests overlapping covers the largest area (36%) followed by the two-tests
overlapping (24%) and the four-tests overlapping (16%), while the five-tests
overlapping has the smallest area (4%). The six-tests overlapping (5%) occurs at the
middle southern parts of Malaysia (southern Pahang, northern Johor and southern
Selangor) — this indicates that several types of cloud occurred simultaneously over
these areas. This is consistent with the fact that these areas received much higher rain
(e.g. Muadzam Shah station in southern Pahang recorded more than 270 mm of mean
rainfall) than other areas during January every year (Malaysian Meteorological

Department 2010).



Number Percent cloud Area
of test from land area (km®)
No cloud 34 4943
1 12.5 18174

2 23.7 34458

3 35.7 51905

4 16.0 23263

5 3.7 5380

6 5.0 7270

Figure 2.19: The cloud mask for 30 January 204 classified based on the number of
overlapping tests; the colours (blue, cyan, yellow, magenta, maroon and green) are
associated with the number of tests, while non-cloud and water pixels are masked

grey and white respectively.

To evaluate the robustness of the cloud masking algorithm, the analysis was then
applied to MODIS dataset from 15 February 2004, with sparser clouds. Similarly, all
the tests are performed based on those shown in Table 2.2. Figure 2.20 shows the
results of all the tests (a) Ry, (b) Ry, (¢) BTss, (d) BTa7, (e) BT3; - BT, (f) BT3 -
BT, before (left) and after (right) mask applied; cloud pixels are masked red while
cloud-free and water body pixels are masked grey and white respectively. Test BT3; —
BT;3, detected the most cloud (74% or 107591 kmz) followed by R, and BT3; — BT,
while no cloud is detected by BTss test (Table 2.9). The final cloud mask for 15
February 2004 is shown in Figure 2.20(g). In overall, 83% or 121000 km? of land area
was found covered with cloud and as expected, the eastern parts of Malaysia having
more cloud than the western parts. This is about 14% less than that of 30 January
2004; February falls within the inter-monsoon season (i.e. the dry period in between
the Northeast Monsoon and Southwest Monsoon), so is drier than January (Malaysian

Meteorological Department 2010).
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Table 2.9: Cloud tests and area covered for 15 February 2004.

Mask MODIS Test (based on Same as the second et
type band viinber) column, but based (kmg) Percentage of cloud
on wavelengths from land area (%)
BT, BT 29 0.02
BTiss BT sy 0 0
Cloud BT}] —BT32 BT(H)—BT“Q) 107591 74.0
mask BT31 — BT22 BT“ = BT(3.9) 32277 22.2
R, R0.66) 60775 41.8
R R(1 38 11922 8.2
(a)
(b) %
>
‘3
) '~
4 e
Y S
;% e
e
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(d)

()

(g)

Figure 2.20: Cloud masking results from all the tests (a) R;, (b) Ras, (c) BT53s, (d) BT>;,
(e) BT3; - BT3, (f) BT3; - BTs: before (left) and after (right) mask applied. (g) the
final cloud mask for 15 February 2004, cloud pixels are masked red, while cloud-free

and water body pixels are masked grey and white respectively.



Figure 2.21 shows the cloud mask for 15 February 2004 classified based on the
number of overlapping tests for 15 February 2004. The colours (blue, cyan, yellow,
magenta, maroon and green) are associated with the number of tests, while non-cloud
and water pixels are masked grey and white respectively. Most of the cloud pixels
were due to the single test (40%). The percentage decreases with the number of tests;
only 0.4% pixels are associated with the four-tests overlapping. Unlike January
dataset, there were no pixels detected as cloud by all the six or even five of the tests.
This indicates the less cloud (and so as rain) that occurs in February due to the effects

of the inter-monsoon season (Malaysian Meteorological Department 2010).

Number of Percent cloud
test from land area
No cloud 17.4
1 39.8
2 28.8
3 13.6
4 0.4
) 0
6 0

Figure 2.21: The cloud mask for 15 February 2004 classified based on the number of
overlapping tests; the colours (blue, cyan, yellow, magenta, maroon and green) are
associated with the number of tests, while non-cloud and water pixels are masked

grey and white respectively.

Multitemporal Cloud Analysis

We further investigate the effectiveness of the cloud analysis by applying it to
multitemporal datasets. The same procedure such as that of the 30" January 2004
dataset were applied to 24 other datasets from January 2004 to December 2005 at
0355 UTC (1155 LST). Figure 2.22 shows cloud masks generated for these datasets. It
can be seen that cloud distribution changes dynamically with time; in overall, the
cloud amount in 2005 seems to be more than 2004. This agrees with the fact that the
total amount of rain received in 2005 was more than 2004 due to the effects of La
Nina (wet spell) and El Nino (dry spell) respectively (Malaysian Meteorological
Department 2010).



19/04/2004

15/02/2004 }8/03/2004
% ‘J’:mm

3
=X
08/07/2004  09/08/2004  10/09/2004  12/10/2004  13/11/2004  15/12/2004

17/02/2005  05/03/2005  06/04/2005  08/05/2005  09/06/2005

11/07/2005  12/08/2005  13/09/2005  15/10/2005  16/11/2005  18/12/2005

(b)
Figure 2.22: Cloud masking for selected dates in (a) 2004, and (b) 2005; cloud pixels

are masked red, while cloud-free and water body pixels are masked grey and white

respectively.

To see the cloud trend within this period, we plotted graph of area against the date of
the datasets. Figure 2.23 shows cloud area against the date of the data from January
2004 to December 2005. It is noticeable that the 2005 datasets have more cloud than
2004 due to the effects of La Nina and El Nino respectively (Malaysian
Meteorological Department 2010).
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Cloud Area Vs. MODIS Date
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Figure 2.23: Cloudy area versus different MODIS acquisition date from January 2004

to December 2005.

We further examine the areas where clouds are prone to form by classifying the cloud
based on its frequency of occurrence. This was carried out by overlapping the cloud
masks in Figure 2.22 and then assigning colours to cloud pixels, based on the
frequency of occurrence, for the year 2004 and 2005. Figure 2.24 shows the cloud
area classified based on overlapping cloud pixels from the selected dates within 2004
and 2005; The colours are associated with the number of overlapping dates; non-cloud
and water are masked grey and white respectively. The eastern parts of Malaysia
seems to have more cloudy days than the western parts, in which consistence with the
fact that the former is having more amount of annual rain than the later. It is also clear
that the year 2005 is cloudier than 2004, in which is consistent with Figure 2.23, due

to La Nina and En Nino respectively (Malaysian Meteorological Department 2010).




Figure 2.24: Cloud area classified based on frequency of cloud occurrence from
selected dates for (a) 2004 and (b) 2005. The colours are associated with the number

of overlapping dates; non-cloud and water are masked grey and white respectively.

Cloud Shadow Masking from MODIS Data

Cloud shadow masking was carried out based on Rjg < 0.07 and R»/R; > 0.3, and Rs <
0.2; pixels were labelled as cloud shadow if they pass all these tests at once
(Ackerman et al. 2006). Figure 2.25 shows (a) Rj9, R2/R; and Rs assigned to red,
green and blue respectively and (b) the final cloud shadow mask for Malaysia for 30
January 2004; cloud shadow pixels are masked yellow, while cloud-free and water
body pixels are masked grey and white respectively. The colour composite image
(left) does not tell much about the cloud shadow distribution. When the tests were
applied, cloud shadow (masked yellow) can be seen in mostly in the northwest of
Malaysia in Figure 2.25(right). Table 2.10 gives the area covered by the cloud shadow
analysis on 30 January 2004; cloud shadow area is 2.5% of the land or 3674 km”.

(a) (b)
Figure 2.25: (a) Rjo, R/R; and Rs assigned to red, green and blue respectively and (b)

the final cloud shadow mask for Malaysia for 30 January 2004; cloud shadow pixels
are masked yellow, while cloud-free and water body pixels are masked grey and white

respectively.
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Table 2.10: Cloud shadow test and area covered 30 January 2004.

VIS kst sei(i;n;fs}:;in AreaPe cent
Mask t , ‘ ’ ; IEsiiage
et (basea om burid but based on (km®) from land
number) ,
wavelengths area (%)
Rio; R(0.94);
Cloud shadow mask R./Ry; Ri0.87//R0.66): 3674 2.5
Rs R

A similar procedure is applied to dataset dated 15 February 2004; the cloud shadow
mask is given in Figure 2.26(b) and the area is given in Table 2.9. More cloud
shadows are found on 15 February (8.4% or 12213 km?) compared to 30 January
dataset because the severe cloud amount in the latter has prevent the cloud shadows to

be visible from the satellite sensor.

(a) (b)
Figure 2.26: (a) Rjo, R¥/R; and Rs in red, green and blue respectively and (b) the final
cloud shadow mask for Malaysia for 15 February 2004, cloud shadow pixels are
masked yellow, while cloud-free and water body pixels are masked grey and white

respectively.

Table 2.11: Cloud shadow test and area covered 15 February 2004.

Same as the Area
MQDIS Testd second column, Percentage
Mask type (based on bar but based on (km?) from land
MG wavelengths area (%)
th)', R((),‘)J):
Cloud shadow mask RA2/Ry; R0.87/R066): 12213 8.4
Rs R
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2.6 Application of the Cloud Analysis to Landsat data

The Landsat Satellite

The Landsat satellites have been providing optical data for almost 40 years. Landsat 1

— 3 launched in the 1970s and used Multispectral Scanner (MSS), while Landsat 4 — 5,

launched in the 1980s, use Thematic Mapper (TM) as their main sensor. The latest

Landsat 7, launched in 1999, uses the Enhanced Thematic Mapper (ETM+).

Comparison between the specifications of these satellites is given in Table 2.12.

Landsat 5 was launched on March 1, 1984 with an expected lifetime of 5 years, and,

after more than 26 years of operation, has provided the global science community

with over 900,000 individual scenes and is the longest running satellite of the series

(Figure 2.27). This study uses Landsat 5 TM for land cover classification, haze

simulation and haze removal purposes (Chapters 3, 4 and 5).

Table 2.12: Landsat satellite specifications (Markham et al. 2004).
T Landsat 1 -3 Landsat 4 - 5 Landsat 7
Satellite : ]
4 VNIR, 4 VNIR, 2 SWIR, 1 thermal,

st Bads 1 thermal (Landsat 3) e P SR, - tisel 1 panchromatic

ati 30 m — VNIR, SWIR
Spatial 79 m - VNIR 30 m - VNIR, SWIR e
Resolution . 120 m — thermal m — thermal -
(IFOV) Pt themid 15 m — panchromatic
Sampling 1.4 samples/[FOV along scan 1 samples/IFOV along scan 1 samples/IFOV along scan
Cress Traek 185 km 185 km 183 km
Coverage

6 bits (usually non-linearly

Radiometric compressed in bands 1 — 3 and 8 bits 8 bits (2 gain states)

Resolution

decompressed to 7 bits on the
ground)




Internal lamps and shutter,

Internal lamps, shutter and

Radiometric . Internal lamps, shutter and black body tial aperture
i Partial aperture solar (Landsat D% 7 PATA - HCPIIE
Calibration - e e black body solar, full aperture solar
diffuser
Scanning P g5 . Bidirectional Scanning with | Bidirectional Scanning with
. Unidirectional S °
Mechanism ficirectional scanning Scan Line Corrector Scan Line Corrector
riad o Landsat 1: 1972 - 1975 Landsat 4: 1982 — 2001
P Landsat 2: 1975 — 1982 Landsat 5: 1984 — present Landsat 7: 1999 — present
Landsat 3: 1978 — 1983
. MSS
Main senso MSS
1 nsor ™ ETM
Altitude 917 705 km 705 km
Repeat Cycle 18 days 16 days 16 days
Equatorial . . .
c?o:s?;;a 9:30 AM +/- 15 minutes 9:45 AM +/- 15 minutes 10:00 AM +/- 15 minutes
Type Sun synchronous, near polar Sun synchronous, near polar | Sun synchronous, near polar
Inclination 2502 98.2° 98.2°

99.1° (Landsat 3)

Landsat 5 TM level 1 data come in Product Generation System (LPGS) format and
need to be converted into a physically meaningful common radiometric unit,
representing the at-sensor spectral radiance. The Level 1 Landsat 5 TM data received

by users are in scaled 8-bit numbers, Q_,, or also known as digital number (DN).

cal ?

Conversion from Q_, to spectral radiance, L, , can be done by using the following

equation (Chander et al. 2009):

(Lmux)\ - Lmin)\ )
(Qcalmax - Qcal min )

L. =

A

(chl - Qcalmin )+ Lmink (27)

where

L, = Spectral radiance at the sensor's aperture (W/ m? sr pm)

Q,, = Quantized calibrated pixel value (DN)

Q.umin = Minimum quantised calibrated pixel value corresponding to L, , (DN)
Q. yme = Maximum quantised calibrated pixel value corresponding to L ; (DN)

L . = Spectral at-sensor radiance that is scaled to Q_,, (W/ m”srum)

minA

L . = Spectral at-sensor radiance that is scaled to Q_,,,,, (W/ m”srum)

max A
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Qeamin @and Q. are 1 and 255 respectively. Table 2.13 shows L

mean exoatmospheric solar irradiance (E, ).

Table 2.13: Landsat TM spectral range, post-calibration dynamic ranges and the

mink ?

mean exoatmospheric solar irradiance (Chander et al. 2009).

L_.., and the

Band Spectral range Centre wavelength L im L. E,
(Lm) (W/ m? sr 1m)
1 0.452 - 0.518 0.485 -1.52 169 1983
2 0.528 — 0.609 0.569 -2.84 333 1796
3 0.626 — 0.693 0.660 -1.17 264 1536
4 0.776 — 0.904 0.840 -1.51 221 1031
5 1.567 - 1.784 1.676 -0.37 30.2 22.0
6 10.45-12.42 11.435 1.2378 15.3032 N/A
7 2.097 —2.223 2.223 -0.15 16.5 83.44

Scene-to-scene variability can be reduced by converting the at-sensor spectral
radiance to TOA reflectance, also known as in-band planetary albedo. By performing
this conversion, the cosine effect of different solar zenith angles due to the time
values of the

difference between data acquisitions is removed, different

exoatmospheric solar irradiance arising from spectral band differences are
compensated and the variation in the Earth-Sun distance between different data
acquisition dates is corrected. The TOA reflectance can be computed by using

(Chander et al. 2009):

L, d®
Py = 5

= .. (2.8
E, cos(6,) @9

where

p, = Planetary TOA reflectance (unitless)

1t = Mathematical constant equal to ~3.14159 (unitless)

. \ 2 - -1
L, = Spectral radiance at the sensor's aperture (Wm?sr!um™)

d = Barth-Sun distance (astronomical units)

E, = Mean exoatmospheric solar irradiance (W m” um™)

6, = Solar zenith angle (degrees)
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d can be generated from the Jet Propulsion Laboratory (JPL) Ephemeris at

http://ssd.jpl.nasa.gov/?horizons or can be obtained from the literature (e.g. Chander

et al. (2009)). In this study, conversion to at-sensor spectral radiance and TOA

reflectance is performed using ENVI software.

The relationship between Landsat bands and MODIS cloud bands is shown in Table
2.14. It can be seen that 8 MODIS cloud bands overlap with Landsat bands. Due to

the much narrower bandwidth, a Landsat band can overlap with more than one

MODIS bands.
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Table 2.14: Relationship between MODIS cloud bands and Landsat bands. Shaded area indicates irrelevancy.

MODIS Landsat
. Centre Band 3 Centre Band
Spauql Band Band Range wavelength width Spatla_l Band R Rangs wavelength width
Resolution v (Lm) (o) - Resolution No (um) (i) (i)
(m) ' H (m) : R
20 — 26 —
1 S Hea—L B 0.659 41.8 30 3 0.626--1.693 0.660 67.0
250 (Red) (Red)
0.841-0.876 0.776 — 0.904
)
. (Near infrared) B805 39.4 30 4 (Néar infrated) 0.840 128.0
0.459 -0.479 0.452-0.518 v
3 (Blue) 0.470 17.6 30 1 (hilue) 0.485 66.0
0.545 - 0.565 0.528 — 0.609
)
4 (Groen) 0.555 19.7 30 2 (Green) 0.569 81.0
1.230 - 1.250
200 3 (Near infrared) Lt =43
1.628 — 1.652 1.55-1.75 .
6 (Mid infrared) LBt = 3 3 (Mid infrared) 1670 200
2.105-2.155 2.08 —2.35
9 2 29D )
¥ (Mid infrared) %100 9%:d i E (Mid infrared) — =0
0.915-0.965
19 . .94 46.3
(Near infrared) foA 6
3.929 - 3.989
%9
B (Mid infrared) 3359 85.7
1.360 - 1.390
2 T 375 4.3
; (Near infrared) Ll 2
1000 5 6.535 - 6.895
- (Mid infrared) B.V1a L340
= 2
T s 120 6 (Thermal 11.435 2100.0
Bl 2.02 8; infrare
32 (Thermal infrared) 12.020 4935 infrared)
13.785 - 14.085
'%
29 (Thermal infrared) e 0.0




Results of the Applications of the Cloud Analysis to Landsat Data

By analysing Table 2.9 and Table 2.14, in term of spectral characteristics, for visible
wavelengths, it can be seen that R; of Landsat with centre wavelength (0.660) closely
matches with R; of MODIS (0.659 pum centre wavelength) so Landsat R can be used to
simulate the MODIS R; test in order to detect cloud. For thermal infrared wavélengths,
only BT is available on Landsat so it will be used to simulate the BTjss test of MODIS.
After exhaustive testing of a variety of thresholds to separate cloud and non-cloud within
Landsat data, we settled on 0.23 and 291 K for R3; and BTs respectively; pixels values
greater than 0.23 and less than 291 K in R; and BTy respectively will be classified as
cloud. By combining both tests, a pixel will be flagged as cloudy if it is detected.as cloud
by at least one of the tests. Similarly, for cloud shadow, we analysed Table 2.11 and
Table 2.14 and found that the ratio of R4/R; of Landsat matches the ratio of R,/R; of
MODIS cloud shadow. Besides that, R4 of Landsat will be used to simulate Rjo test in
MODIS. We found that the same thresholds as used in MODIS also suited Landsat data;
pixels values less than 0.07 in R4 and greater than 0.3 in Ry/R; were to be flagged as .
cloud shadow. Table 2.15 shows cloud and cloud shadow tests and their thresholds for

Landsat and those equivalents in MODIS.

Table 2.15: Tests and thresholds for Landsat data.

MODIS Tests (subscript refers | Tests Determined for Landsat
Mask type to MODIS band) Data (subscript refers to
Landsat band)
Cloud R;>0.14 or BT35 <226 K R3>0.23 or BTs <291 K
Cloud shadow Ri9<0.07 and Ry/R; > 0.3 R4 <0.07 and R4/R53 > 0.3

For the purpose of this thesis, cloud masking will be carried out on Landsat data for
Klang in Selangor, Malaysia, which located within longitude 101° 10’ E to 101°30” E and
latitude 2°99’ N to 3°15° N which covers an area of approximately 540 km?. Initially,
cloud masking was carried out on data from 2 April 1994 by using the tests and

thresholds as given in Table 2.15. Figure 2.28 shows (a) R3 and (b) BT¢ in raw form (left)
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and with cloud mask (right) for 2 April 1994; cloud pixels are masked red, while cloud-
free and water body pixels are masked grey and white respectively. In Figure
2.28(a)(left), due to the very high reflectance, cloud can be seen as white patches in the
Northern parts of the image; in the middle and southern parts, cloud patches are seen
quite similar to other bright features (e.g. bare land and urban). After red mask is applied
to the cloud and grey mask as non-cloud, a much clearer view of cloud was obtained;
some cloud patches can be seen in the middle and southern parts of the image Figure
2.28(a)(right). In Figure 2.28(b)(left), cloud, due to its very low temperature, appears as
black patches in the northern and middle of the image; not much cloud is detected by the
BT test as seen in Figure 2.28(b)(right). More cloud pixels are detected by R3 (2.8% or |
15 km®) than BTg (0.1% or 1 km?) due to the better separation capability between cloud

and non-cloud in reflective compared to thermal wavelengths (see Figure 2.13 and Figure

2.15).

(a)
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(b)
Figure 2.28: (a) R; and (b) BT in raw form (left) and with cloud mask (right) for 2 April

1994; cloud pixels are masked red, while cloud-free and water body pixels are masked

grey and white respectively.

Pixels that were detected as cloudy by any of the tests were labelled as cloud pixels; they
were found amounting 2.8% (15 km?) from the land area, where 0.1% overlaps occur
between cloud pixels detected by R; and BTe. By combining the tests, pixels detected as

cloud by at least one of the test were flagged as cloudy; the final cloud mask is shown in
Figure 2.29. |

0

Figure 2.29: The final cloud mask for Landsat data from 2 April 1994, cloud pixels are
masked red, while cloud-free and water body pixels are masked grey and white

respectively.



For cloud shadow, R4 and R4/R; test were used simultaneously based on the thresholds
given in Table 2.15. Figure 2.30 shows the outcomes of applying R4 and Ry/Rjs tests in
colour composite (left) and (b) the resulting cloud shadow mask for Landsat data from 2
April 1994; cloud shadow pixels are masked yellow, while cloud-free and water body
pixels are masked grey and white respectively. Cloud shadow pixels were found 2.4% (13

kmz) from the land area.

(b)
Figure 2.30: Result of applying Ry and R4/R; in colour composite (left) and (b) with cloud

shadow mask for Landsat data from 2 April 1994, cloud shadow pixels are masked

yellow, while cloud-free and water body pixels are masked grey and white respectively.

The outcomes from cloud and cloud shadow masks were combined and maske_d black;

the combined mask 1s about 5.2% (28 kmz) from the land area (Figure 2.31).
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Figure 2.31: The combined cloud and cloud shadow mask for Landsat data from 2 April
1994; cloud and cloud shadow pixels are masked black, while cloud-free, cloud shadow-

free and water body pixels are masked grey and white respectively.

Figure 2.32 shows the Landsat bands 4, 5 and 3 from 2 April 1994 assigned to red, green
and blue (a) before and (b) after cloud and its shadow masked black. Visually most cloud

and its shadow were successfully removed from the data.

Lol =
(a) before (b) after
Figure 2.32: Landsat data from 2 April 1994 (a) before and (b) after masking of cloud

and its shadow; cloud and its shadow are masked black.
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The cloud analysis was then applied to Landsat data from 11 February 1999 with sparser
cloud; this data will be used as the main data for the subsequent chapters of this thesis.
Figure 2.33 shows (a) the cloud mask (red), (b) the cloud shadow mask (yellow) and (c)
the combination of (a) and (b) (black) for Landsat data from 11 February 1999. The total
cloud area was 0.24% or 1.3 km” from the land; cloud detected by Ry was 0.2% or 1.2
km?, while BT¢, 0.1% or 0.6 km* with about 0.06% overlapping between the two tests.
For cloud shadow, the amount was 0.23% or 1.2 km® from the land area. Total cloud and
cloud shadow (0.5% or 2.5 kmz). Figure 2.34 shows the data (a) before and (b) after |

masking of cloud and its shadow (masked black).

(a) “ b)

£

«

(c)

Figure 2.33: (a) cloud mask (red patches), (b) cloud shadow mask (yellow patches) and

(c) combination of (a) and (b) (black patches) for Landsat data from 11 February 1999.
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(b)
Figure 2.34: Landsat data from 11 February 1999 before and after masking of cloud and

its shadow; cloud and its shadow are masked black.

Validation works were carried out in two parts, i.e. visual and quantitative analysis. For
visual analysis, the cloud masking results were qualitatively compared with the ACCA
scheme. Figure 2.35 shows cloud mask produced using our masking method (left) and
ACCA scheme (right) from (a) 2 April 1994 and (b) 11 February 1999. The cloud was
masked red for the cloud analysis and green for the ACCA scheme; non-cloud and water
pixels were masked grey and white respectively. For 2 April 1994, as can be seen in
Figure 2.35(a), the methods fairly agree between each other; only very small amount of
cloud in the middle of the image that is not detected by the cloud analysis but detected by
the ACCA method. This is due to the use of more tests in ACCA, so it tends to detects
more cloud than the cloud analysis. For 11 February 1999, where the cloud patches are

sparser, a more consistent outcome from both methods were obtained (Figure 2.35(b)).
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(a)

<

(b)
Figure 2.35: Cloud mask produced using our masking method (left) and ACCA scheme
(right) from (a) 2 April 1994 and (b) 11 February 1999. Cloud pixels are masked red for
the cloud masking method and green for the ACCA scheme; non-cloud and water pixels

are masked grey and white respectively.

For cloud shadow, validation was made by visually compared with the Luo et al. (2008)
method. Figure 2.36 shows cloud shadow mask produced using our masking method
(left) and Luo et al. (2008) scheme (right) from (a) 2 April 1994 and (b) 11 February

1999. For 2 April, the outcomes from both methods are comparatively consistent. For 11
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February 1999, more patches of cloud shadow were detected near the Northwestern

coastal areas by Luo et al. (2008) method compared to the cloud shadow analysis.
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Figure 2.36: Cloud shadow mask produced using our masking method (left) and Luo et
al. (2008) scheme (right) from (a) 2 April 1994 and (b) 11 February 1999. Cloud shadow |
pixels are masked yellow for our method and blue for Luo et al. (2008) method, non-

cloud shadow and water pixels are masked grey and white respectively.
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In term of quantitative analysis, the cloud mask produced using the cloud analysis was
compared with the ACCA scheme through a confusion matrix. Table 2.16 shows
confusion matrix between our cloud mask and ACCA scheme for 2 April 1994 based on
(a) pixels and (b) percentages. A quite high agreement was obtained for which 87.2% and
99.6% of the pixels were detected as cloud and non-cloud respectively by both methods,

giving an overall accuracy of 99.2% and kappa coefficient 0.86.

Table 2.16: Confusion matrix between our cloud mask and ACCA scheme for 2 April
1994 based on (a) pixels and (b) percentages.

ACCA scheme (Pixels)
Not cloud Cloud Total

w5 = |Notcloud 507663 1916 | 509579
35 o ;é ~[Cloud 2130 13095 | 15225
©8 £ Itowl 509793 15011 | 524804

(a)
ACCA scheme (Percent)
Not cloud Cloud Total

o G 3 Not cloud 99.58 12.76 97.10
35 5 E|Cloud 0.42 87.24 2.90
©8 = o 100 100 100

(b)

Overall Accuracy = 99.23%
Kappa Coefficient = 0.862

For 11 February 1999, 81.2% and 100% pixels were detected as cloud and non-cloud -
respectively, giving an overall accuracy of 100% and kappa coefficient of 0.79 (Table
2.17). In overall, the Landsat data from 2 April 1994 and 11 February 1999 give an
overall accuracy and kappa coefficient of more than 90% and 0.7, indicating a high
agreement between the cloud analysis and the ACCA scheme. The difference is mainly

due to the more tests used in the ACCA scheme compared to the cloud analysis.
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Table 2.17: Confusion matrix between our cloud mask and ACCA scheme fo.r 11
February 1999 based on (a) pixels and (b) percentages.

ACCA scheme (Pixels)
Not cloud Cloud Total

°E 2 Not cloud 523336 223 523559
= o)
S < » % ~|Cloud 282 963 1245
8§ &

Total 523618 1186 524804

ACCA scheme (Percent)
Not cloud Cloud Total

=3 g [Notcloud 99.95 1880 | 99.76
= >N ~

&3 » 5 2|Cloud 0.05 8120 | 024
8 = hoa 100 100 100

Overall Accuracy = 99.90%
Kappa Coefficient = 0.792

The cloud shadow mask produced using the analysis was compared using the Luo et al.
(2008) scheme. Table 2.18 shows the confusion matrix between the shadow analysis and
Luo et al. (2008) scheme for 2 April 1994 based on (a) pixels and (b) percentages. For 2

April 1999, approximately 91.3% and 100% pixels were detected as cloud shadow and |
non-cloud shadow respectively by both methods, giving an overall accuracy of 99.4% and

kappa coefficient of 0.86.

Table 2.18: Confusion matrix between our shadow mask and Luo et al. (2008) scheme for
2 April 1994 based on (a) pixels and (b) percentages.

Luo et al. scheme (Pixels)

Non-cloud shadow|Cloud shadow| Total
o o ‘& [Non-cloud shadow 511432 965 512397
2 R & 5 [Cloud shadow 2323 10084 [ 12407
© 7 &l 513755 11049 [524804

Luo et al. scheme (Percent)

Non-cloud shadow|Cloud shadow| Total
o o & |Non-cloud shadow 99.55 8.73 97.64
2 § # 5 [Cloud shadow 0.45 9127 | 236
©“ S ol 100 100 100
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Overall Accuracy = 99.37%
Kappa Coefficient = 0.857

For 11 February 1999, approximately 81 % and 100% pixels were detected as cloud
shadow and non-cloud shadow respectively by both methods, giving an overall accuracy
of 99.4% and kappa coefficient of 0.845 (Table 2.19). For dates, the overall accuracy and
kappa coefficient was more than 90% and 0.8 respectively, indicating a high agreement |

between the cloud analysis and the Luo et al. (2008) scheme.

In overall, the cloud and cloud shadow analysis give a high agreement with the ACCA
and the Luo et al. (2008) scheme respectively. Subsequently, the masked Landsat data

from 11 February 1999 will be used as the main data in classification analysis in Chapter .
3.

Table 2.19: Confusion matrix between our shadow mask and Luo et al. (2008) scheme for
11 February 1999 based on (a) pixels and (b) percentages.

ACCA scheme (Pixels)

Non-cloud shadow|Cloud shadow| Total
o o 'z [Non-cloud shadow 519632 961 520593|
2 3 & Z'|Cloud shadow 154 4057 | 4211
©@ & ot 519786 5018 524804
ACCA scheme (Percent)
Non-cloud shadow|Cloud shadow;} Total
s o & Non-cloud shadow 99.97 19.15 99.20
2 B 3 5 [Cloud shadow 0.03 8085 | 0.80
©% 3 ol 100 100 100

Overall Accuracy = 99.79%
Kappa Coefficient = 0.878
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2.7

1.

Summary and Conclusions

Haze has a lower standard deviation and less reflective than cloud; as haze gets
severe, it scatters more solar radiation and eventually becomes as reflective as cloud.

Hence, very thick haze has standard deviation and reflectance similar to cloud.

Spectral analysis based on MODIS scheme is the most suitable for Malaysia due to -

allowing the optimal used of its rich bands.

Cloud masking using MODIS analysis over Malaysia shows a comparable outcome

with climatological observations.

When applied to two scenes of Landsat data, the cloud and shadow analysis shows a

high agreement with ACCA and Lou et al. scheme respectively.
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Chapter 3

Land Cover Classification using Remote Sensing Data

3.1 Introduction

The primary objective of this thesis is to assess the effects of haze on our ability to
recover information about land cover and land use, and to develop and test methods to
reduce its negative impact. Our particular interest is in mitigating the effects of haze on
land cover classification, though the outcome is also relevant to other remote sensing
applications, e.g. precision farming, etc. A number of land covers in Malaysia are
considered, involving those of commercial and non-commercial values, e.g. oil palm,
rubber, coconut, industry, forest, urban, industry, etc. Such efforts are impoi‘tant for
realising the Malaysian government’s vision in preparing Malaysia to be a fully

developed country by the year 2020 (Malaysian Prime Minister Office 2010).

In order to quantify the effects of haze and our ability to remove it, we therefore need to
define a set of classification methods and performance criteria against which to measure -
these effects and to assess how they are changed by the correction methods described

later.

A large number of classification methods are available, and a brief review is given in
Section 3.2. In this review, we describe the main features of the methods, but our
principal aim is to select the methods most appropriate to the studies of haze in the later
chapters. Our criteria for this selection include:

e simplicity, i.e. the practicality of using a large amount of data. This should
involve a smaller number of procedures but should produce reasonably accurate
and standard results,

e the ability to select important land covers with an acceptable accuracy, i.e. each -

pixel will be assigned to the correct land cover on the ground — the performance
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of the method should not be easily affected by factors such as the complexity of
land covers, topographic conditions, etc. and

* objectivity, i.e. not involving tuning by a user to improve performance — the -
generated classification works straight away without needing any adjustment in

terms of the number of classes, training pixels, etc.

In practice, these criteria lead us to consider the use of Maximum Likelihood (ML),
which is a supervised method (Section 3.3). In order to facilitate the use of this method,
we can analyse its behaviour from a single image from 11 February 1999 (Section 3.4). |
This image contains the main land covers of Malaysia and has clear sky conditions (free
from haze and little cloud cover), and therefore meets the purpose of our study, 1.e. to
provide a base map for use in studying the effects of haze on land cover classification and

how this can be corrected (i.e. does not involve change detection).

A critical issue for classification is accuracy and in Section 3.4 we discuss howr this can
be defined and how we can measure it, given the available satellite and ground data.
Since this is the fundamental issue for the later assessment of the effects of haze and their
correction, we will provide an extended analysis of the suitability of our data in order to

arrive at meaningful estimates of accuracy

This analysis in this chapter serves several important purposes, viz. to classify the land
covers, assess classification accuracy, relate the spectral correlation with the
classifications of the land cover types, investigate the roles of covariance and mean
structure in separating different classes and investigate the decision boundary of the
classes. Section 3.5 summarises our findings and provides the context for the haze

analysis in Chapters 4 and 5.
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3.2 Literature Review

There are thousands of papers on land classification, so in this review we will focus on
two of the most important issues, viz. classification methods and classification accuracy -
(Jensen 1996: Lillesand et al. 2004; Lu and Weng 2007). Studies on such issues have

actively carried out in many parts of the world but this is not the case for the tropics and

countries like Malaysia.

3.2.1 Classification Methods

Classification approaches can be grouped in several ways, such as supervised and
unsupervised, parametric and non-parametric, hard and soft (i.e. fuzzy) classification or
per-pixel, subpixel and per-field (Mather 2004; Canty 2006; Lu and Weng 2007). For

convenience, we will group classification approaches as per-pixel, subpixel and per-field.

Per-pixel Classification

This is the oldest and most frequently used approach; it ensures that each pixel within an
image is assigned to a class. Per-pixel classification algorithms can be supervised or
unsupervised. Supervised classification is knowledge-driven, while unsupervised
classification is data-driven, i.e. the former uses the knowledge about the study area in
order to classify it, while the latter uses the knowledge to label the clusters to land covers -

after the clustering processes end.

In supervised classification, land cover classes are defined and reference data are used as
training samples. The signatures generated from the training samples are used to train the
classifier in classifying the satellite data into a thematic map. In unsupervised

classification, clustering-based algorithms are used to partition the image into a number
of spectral classes based on the statistical information inherent in the image. Since no
prior definition of the classes is used, the users are responsible for labelling and merging
the clusters into meaningful classes. Examples of supervised classification classifiers are

ML, minimum distance and Mahalanobis distance for those using parametric classifiers
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(e.g. those assuming the data has a Gaussian distribution with parameters, viz. the
covariance matrix and mean vector, estimated from training samples), while
parallelepiped, neural networks, decision tree classifiers and support vector machines use
non-parametric classifiers (i.e. they do not make any assumptions about the data and do
not use any parameters to calculate cluster separation). Examplés of unsupervised
classification classifiers are ISODATA and K-means. In land cover mapping, per pixel

classification based on supervised methods is often preferred to unsupervised methods.

The parallelepiped classifier, known as the ‘box decision rule’, is often considered to be
the simplest supervised algorithm (Campbell 2002). This algorithm makes use of the
ranges of values within the training data to define regions within a multidimensional data
space. The Mahalanobis distance uses statistics for each class but assumes that all class
covariances are equal. All pixels are classified to the closest region of interest (ROI)
class, depending on the distance threshold specified by users; some pixels may be
unclassified if they do not meet the threshold (Richards 1999). The minimum distance
classifier employs the central values of the spectral data that forms the training data set to -
classify pixels. The neural network classification is a self adaptive method that is able to
estimate the posterior probabilities, which provide a basis for establishing the
classification rule (Zhang 2000). A decision tree classifier makes use of a series of binary
decisions to determine the correct category for each pixel. The decisions can be based on
any available characteristic of the dataset. The support vector machine method involves a

learning process based on structural risk minimisation, which can minimise classification |
error without .the need to assume data distribution (Mountrakis et al. 2011). It is capable
of handling data with a limited training sample. However, it often linked to high
computational requirements and processing times. An ML classifier is a powerful
classification technique based on the maximum likelihood decision rule and depends on
the quality of training samples, which are usually determined based on ground--verified :
Jand cover maps and knowledge of the area. Due to its practicality, and its ability to
discriminate between land covers effectively, objectivity and easy availability through the
use of most image processing software (Lu and Weng 2007) (e.g. ENVI, ERDAS and

PCI Geomatics), numerous remote sensing data users worldwide, including those in
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Malaysia, use ML to classify land covers in their projects or research studies (Fuller et al.
2005; Fuller et al. 1994).

Subpixel Classification
Subpixel classification approaches have been developed as a better solution for mixed ‘
pixels problems, i.e. the existence of more than one class in a pixel, especially when
coarse spatial resolution data are used. Such approaches require a fuzzy representation, in
which each pixel is composed of multiple and partial memberships of all candidate
classes. The most popular approaches are the fuzzy-set technique (Zhang and Kirby 1999;
Zhang and Foody 2001) and spectral mixture analysis (SMA) classification (Rashed et al. |
2001; Lu et al. 2003). |

In SMA, each pixel is evaluated as a linear combination of a set of endmember spectra.
The output is in the form of fraction images, with one image for each endmember
spectrum, representing the area proportions of the endmembers within a pixel. It has been
demonstrated that SMA is helpful for improving classification accuracy and is important
for improving area estimation of land use and land cover classes based on coarse spatial
data. However, its main shortcoming is that it is rather difficult to assess the accuracy of
subpixel classification (Lu and Weng 2007), which cannot be measured in a
straightforward way using the confusion matrix technique (i.e. each pixel being
associated with one class), which will be used to investigate the effects of haze in Chapter
4. Moreover, in the Malaysian context, the subpixel classification approach is less
preferable due to the constraints in expertise, facilities and cost. Remote sensing
applications (e.g. land cover mapping, precision farming) are still rely heavily on per-

pixel classification.

Per-field Classification

Per-field classifiers are designed to deal with the problem of environment heterogeneity;
i.e. high spectral variation within the same land cover class. They make use of land

parcels (i.e. known as ‘fields’) as individual units. This is also known as a segmentation
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approach. It requires the use of a geographical information system (GIS) than can |
integrate both raster (i.e. satellite data) and vector data. The vector data are used to
subdivide an image into parcels, on which classification processes are based on. This
avoids interclass spectral variations (Lu and Weng 2007). Nevertheless per-field
classifications are frequently affected by factors such as the spectral and spatial properties
of remote sensing data, the size and shape of the fields, the definition of field boundaries -
and the land covers chosen (Janssen and Molenaar 1995; Lu and Weng 2007). In
addition, difficulties in handling vector and raster data can affect the use of the per-field
classification approach. Another per-field approach is to use object-oriented
classification, which does not require the use of vector data (Lu and Weng 2007). This
involves two consecutive stages, i.e. image segmentation and classification. The former
merges pixels based on objects and the latter classifies the objects rather than the pixels. |
The most commonly used object-oriented classification is eCognition (Benz et al. 2004,
Wang et al. 2004). However, the main shortcoming of this method is that land surface
objects are often difficult to acquire (Smith and Fuller 2001). Also, it is not relevant in the

Malaysian context and for achieving the aims of this thesis.

3.2.2 C(lassification Accuracy

Classification accuracy is one o the key parameters required to judge the quality of land
cover classification and can be defined as the degree to which the derived image
classification conforms to the ‘truth’ (Campbell 2002). Two of the most important
components in accuracy assessment are analysis of reference data and sampling design -

(Stehman 1999).

Analysis of Reference Data

Studies have shown that the most widely used technique to analyse reference data is to
use a confusion or error matrix (Congalton 1991). A confusion matrix works by
comparing classification result with reference information, while accuracy is conveyed in
terms of percentage of overall classification accuracy, producer accuracy and user

accuracy (Congalton 1991). The acceptable of overall accuracy is 85%, with no class less
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than 70% accurate (Thomlinson et al. 1999). Kappa statistics have been used as early as .
the 1980s as an additional classification accuracy measure to compensate for chance
agreement (Congalton 1991). In Chapter 4 and 5, we will show that the confusion matrix

technique is very useful in investigating the effects that haze has on land cover

classification.

Since then, researchers worldwide have been heavily relying on these measures (ie.
measures of overall, producer and user accuracy) due to their robustness and simplicity in
assessing the quality of land cover classifications. Hence, not many promising assessment
techniques have been developed. However, in 2001, Koukoulas and Blackburn proposed
a way of calculating the classification success index (CSI) using a confusion matrix that
takes into account errors of omission (producer accuracy minus one) and commission ‘
(user accuracy minus one). CSI was initially proposed for use in studies of forested
environments and especially in natural or semi-natural landscapes, where the variety of
species and spatial heterogeneity makes land cover classification complicated. An
individual classification success index (ICSI) was established to account for the
classification success of a specific class, while a group classification success index
(GCSI) was used to measure classification success for the main classes in the study area. -
An index of 0.8 was considered to be adequate for successful classification. Koukoulas
and Blackburn (2001) claim that their technique is an important research tool rather than
just an indicator of the errors that accumulate during the classification process. Our study
will make use of CSI and ICSI as extended measures for assessing the performance of

classifications.

Sampling Design

The collection of reference pixels can be performed using interpretation of higher
resolution imagery or hardcopy maps with adequate ground truth knowledge of the study
area (San Miguel-Ayanz and Biging 1996) and on-site collection using a global
positioning system (GPS) (Lillesand et al. 2004). Due to logistics and time, the former is .
more preferable than the latter. When selecting samples within study area, the minimum

number of samples required per class is 50. If the types of land use and land cover
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exceedl2, the minimum number of samples needs to be increased to 75 or 100
(Congalton 1991; Lillesand et al. 2004). The samples can be in form of pixels, clusters of
pixels, or polygons. Sampling designs frequently considered include simple random

sampling, systematic sampling, stratified sampling and cluster sampling (Congalton
1991; Stehman 1997).

In random sampling, locations for sample collection are selected randomly, using a -
random number generator or a table of random digits to ensure that every member of the
population has an equal chance of being selected for the sample (Stehman 2000). This
method ensures that the allocation of sample locations is not biased and does not require
any prior information about the field site. The main problem with simple random
sampling is that it tends to undersample classes with small areas. In systematic sampling,
the chosen samples are distributed in a regular pattern, such as a grid. The starting pixel is
chosen randomly. Sampling is then carried out in every Kth pixel in both horizontal and
vertical directions from the starting pixel for a square grid. A different sampling interval
may be chosen for the horizontal and vertical directions to form a rectangular grid. The
advantages of this technique are that it is simple and has good spatial coverage. The main
drawback of systematic sampling is the absence of an unbiased estimator of the variance .
(Gallego 2004). In stratified random sampling, a simple random sample of i)ixels is
selected for each stratum (Stehman et al. 2007). The strata are usually land cover classes
and the size of samples collected from each stratum takes into account the size of that
stratum. This is the most commonly employed sampling design. However prior
information about the land covers within the study area is required. This can normally be
obtained from maps and satellite data. Cluster sampling involves‘ taking a group of
samples from a predetermined number of random locations. It employs two types of
sampling unit, i.e. a primary sampling unit and a secondary sampling unit. The cluster
often consists of a block of pixels (e.g. 3 by 3 or 5 by 5). The disadvantage of cluster
sampling is that the standard error formulae are more complex than those required for
simple random sampling, due to the need to account for the lack of independence among

the secondary sampling units within a cluster (Stehman 1997).
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3.2.3 Implementation of Land Cover Classification

Studies of classification of remote sensing data have long been carried out by numerous
researchers worldwide, with more efforts made regionally than globally. Many regional
studies have been carried out in places such as Europe (Thompson et al. 1998) and
America (Jia and Richards 1994; Guerschman et al. 2003; Low and Choi 2004) due to the
existence of up-to-date remote sensing facilities as well as ground truth information.
There is also an increasing interest in carrying out such studies in climate-affected
regions such as Africa (Wang et al. 2010) and highly populated regions such as India
(Thenkabail et al. 2005) and China (Liu et al. 2011). Nonetheless, not much effort has
been expended in tropical countries such as Malaysia (Baban and Yusof 2001; Ismail and
Jusoff 2008), despite the recent promising developments in remote sensing capabilities in

such countries (Yusoff et al. 2002).

Two studies that were undertaken in Malaysia are cited here. Baban and Yusof (2001)
used ML classification to map landuse/cover distribution on a mountainous tropical
island, Langkawi. An unnamed unsupervised classification using Landsat bands 3, 4 and
5 was initially performed to aid the selection of the training pixels for the study area. ML
classification was then carried out on eight classes, namely, inland forest, mangrove '
forest, rubber, paddy fields, mixed horticulture, grassland, urban and water. The overall
classification accuracy was 90% with individual class accuracy ranging from 74% for
rubber to 100% for paddy. Another study was conducted by Ismail and Jusoff (2008),
where ML classification was used to classify five forms of land use and land covers in
Pahang, Malaysia, viz. primary forest, logged over forest, agriculture crops, water and
cleared lands. The classification accuracy of the classified images was assessed by -
comparing the classes with the corresponding reference pixels (i.e. obtained using visual
interpretation of satellite data and land use maps) by using a confusion matrix technique.
The result was acceptable for both studies. Here, the reference pixels were obtained using
stratified random sampling approach based on visual interpretation of satellite data and
land use maps. The overall accuracy of the classification was 89% with a kappa

coefficient of 0.8.
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In Great Britain, one of the earliest initiatives for national land cover mapping was the
Land Cover Map of Great Britain (LCMGB), initiated in 1990 by the UK Institute of
Terrestrial Ecology. LCMGB raster dataset was the first comprehensive land cover of
Britain to be mapped using satellite data. It was produced using a per pixel supervised
ML classification of Landsat TM consisting of 25 land cover classes (Fuller et al. 1994).
Later, its updated version, LCM2000, was produced using per-pixel supervised ML
classification, combined with ancillary geographical data and containing 26 land cover
classes. The accuracy of LCM2000 and LCMGB is assessed using a confusion matrix in
comparison with field surveys, selected based on a stratified random sampling scheme,

where the overall levels of accuracy obtained were 85%, and 80% respectively (Fuller et
al. 2003).

Thompson et al. (1998) compared ML classification and ISODATA clustering methods
for coasts and river corridors along the East coast of England using all 14 bands of -
Compact Airborne Spectrographic Imager (CASI). The 12 classes considered were water,
bare earth/river banks, urban, arable, pasture, haycut, lowland rough vegetation,
deciduous wood, coniferous wood, upland grass, heather/grass mix, heather, burnt
heather, upland bog and bare rock. Training and reference pixels were sampled based on
visual interpretation of satellite data itself and land cover maps. However, details of the
sampling approaches used were not stated. The results are presented as classification
maps, confusion matrices and feature space images. They show that ML classification
produced excellent results in separating inland cover types while ISODATA clustering
was considered to be an acceptable alternative, due to it involving less user input rather

than dependence on a priori information in the study area.

In the USA, Paola and Schowengerdt (1995) carried out a detailed comparisdn of the
back-propagation neural network and ML classification, using Landsat TM bands 1, 2, 3,
4, 5 and 7, for urban land use in Tucson and Oakland in California. 13 classes were
considered, viz. tarmac, building, grass, foothills natural vegetation, sand, desert scrub,
bare soil, urban residential, asphalt, riparian vegetation, dense urban and shaded

foothills natural vegetation. For each class, training pixels were extracted from a training
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region (i.e. about the same size) and were defined through visual interpretation of the
Landsat image and knowledge of the study area. Reference pixels were determined using
the same approach and a confusion matrix was then employed for accuracy assessment.
Analyses were conducted in terms of classification accuracy, class mean, class standard
deviation, density plots and decision space analysis. It was found that the neural network
method could classify areas with highly mixtures of land cover compared more

effectively than the ML, However, this method did consume much more computing time.

Low and Choi (2004) performed a hybrid classification for land use and land cover
mapping by using Landsat 7 ETM+ data over the Atlanta metropolitan area, in the largest
city of the state of Georgia, USA. The land use and land cover classes within the study
area are urban/industry, settlement, cleared land, crop land, forest and water. In their
approach, ISODATA clustering was initially used to aid the selection of training pixels,
followed by a supervised fuzzy classification. Accuracy assessment was carried out using
a confusion matrix with reference pixels based on the visual interpretation of aerial -
photographs. No details concerning the sampling approach were given. The hybrid
classification was compared with: (a) ISODATA clustering, (b) ML classification and (c)
supervised fuzzy classification. The hybrid classification was found to be slightly better
in terms of classification accuracy than the ISODATA clustering, but the ML and

supervised fuzzy classification produced much lower levels of accuracy.

In Japan, Yovshida and Omatu (1994) used a neural network approach, i.e. a back-
propagation algorithm, to classify land use and land cover in Tokushima city using
Landsat TM bands 3, 4 and 5, and compared their results with those obtained by ML
classification. Nine classes were considered, viz. the dark part of the forest, bare land,
inhabited districts, roads, forests or grassy places, rivers or seas, farms, clquds and .
shadows of clouds. In order to select training pixels, Kohonen’s self-organizing feature
map and geographical information were used. A confusion matrix was subsequently used
to assess the classification accuracy. However the approach to collect the reference pixels
used in the confusion matrix was not stated. The neural network classifications show a

better overall accuracy compared to ML classification, but more effort and time were
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required, particularly in determining the number of output layers in Kohonen’s method

and the categories and numbers of neurons at the hidden layer by the BP algorithm.

In Turkey, Erbek et al. (2004) examined the performance of two artificial neural network _
classifiers for land use classification using Landsat TM bands 2, 3 and 4, viz. multi layer
perceptron and learning vector quantization. The study area was near Istanbul
(approximately 270 km?), a rapidly growing metropolis with a wide range of land use
activities. Separate sets of training and reference pixels were selected, based on visual
interpretation of the Landsat data and aerial photographs of the study area. However, the
sampling approach used was not stated. The performance of these classifiers was -
compared to the ML classification for six classes, viz. green area, bare soil, urban areas,
water, highway and industrial areas. In terms of overall accuracy and its Kappa
coefficient, the ML classification was better than the learning vector quantization neural
network but worse than the multi layer perceptron neural network classification.
However, Erbek et al. (2004) claim that neural network classification using both

classifiers required a much longer time than ML classification.

In East Africa, Otukei and Blaschke (2010) assessed land cover change in the Paillisa
District, Eastern Uganda from 1986 to 2001 using Landsat TM and ETM+ datasets. They
employed several classification methods, viz. decision trees, support vector machines and
ML classification algorithms and compared their classification accuracy. Training and -
reference pixels were selected, based on knowledge of the study area as well as visual
interpretation techniques by which subsequently classification accuracy was evaluated
using a confusion matrix. However, the sampling techniques used were not discussed.
The highest classification accuracy and Kappa coefficient were shown by the decision
tree method, followed closely by the ML and support vector machine methods. No effort
was made to further analyse the classifications using other means, ¢€.g. band correlations

and decision boundaries.

In China, Liu et al. (2010) carried out a mixed-label analysis classification, based on the

k-nearest neighbour (K-NN) using a nonparametric regression algorithm, and compared it
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with ML, neural network and minimum distance classifications. The classification
analysis was carried out using simulated and real data (i.e. Landsat TM) of Dongguan in
the Pearl River Delta, China (i.e. covering 296 x 299 pixels) and involved six classes, i.e.
urban, forest, water, grass, agriculture and developing land. Training and reference pixels
were selected using random stratified sampling based on visual interpretation of high- .
resolution satellite data and collection of ground truth data. The mixed-label.analysis
classification was found to be producing the highest overall accuracy and Kappa
coefficient, followed by the neural network, ML and minimum distance classifications.
As with ML, the accuracy of the mixed-label analysis classification was mainly
influenced by the quality of the training data. However, the major setback was that it

required longer than other methods.

Liu et al. (2011) used an integrated fuzzy and ML classification method, known as fuzzy
topology-based ML classification, to classify land use and land cover in Xuzhou City,
China. Landsat bands 1 — 5 and 7 were used to classify the study area into four classes,
i.e. building, woodland, water and farmland. By using this method, each class in the
image is treated as a fuzzy set in a fuzzy space to give a natural representation of objects.
The fuzzy class is then decomposed into two parts; an interior and a boundary. The
interior represented the core of a class and the boundary represented an overlapping area
between classes. The two parts were eventually combined by using the properties of
spatial connectivity in fuzzy topology. Training and reference pixels were selected
randomly based on visual interpretation of satellite data and land use maps of the study -
area. Accuracy assessment was then performed using a confusion matrix. The fuzzy
topology-based ML yielded higher classification accuracy and coefficients than the
conventional ML classification. Liu et al. (2011) assumed pixel uncertainty to be one of

the main sources of error in such classification. However, no further discussion was

carried out concerning this issue.
In Israel, Rozenstein and Karnieli (2011) compared several land use and land cover

classification approaches using Landsat TM bands 1 — 5 and 7, in the northern Negev. Six

classification methods were employed: ISODATA, integration of ISODATA and DSS

98



(decision support systems), ML classification, integration of ML classification and DSS,
hybrid (combination of ISODATA and ML) classification, integration of hybrid
classification and DSS, where the classes involved were urban or built-up land,
agricultural fields, rangeland and mixed rangeland, forest, water bodies such as reservoirs
and barren land. Training pixels were obtained by digitising polygons on high-resolution
orthophotos of Israel, and then projecting them onto the satellite image. Reference pixels -
were selected by using stratified random sampling based on the ISODATA cluster map.
The integration of hybrid classification and DSS yielded the highest classification
accuracy and Kappa coefficient. Rozenstein and Karnieli (2011) remarked that the
incorporation of DSS could increase the classification accuracy by 5 to 10%. However,
this depends on the availability of quality ancillary data. This is often a problem,

particularly when mapping large areas, especially in developing countries.

A quite different study was carried out by Wilkinson (2005) who examined a compilation
of 15 years of peer-reviewed experiments on satellite data classification to assess the
degree of progress being made in land cover mapping through developments in
classification algorithms and systems approaches (e.g. postclassification analysis). The -
results of over 500 reported classification experiments were quantitatively analysed in
terms of types of classifier (neural network and nonneural approaches), classification
accuracy, the number of classes, and resolution of the satellite data and test areas. The
outcome of the study reveals that no significant upward trend was shown in the hundreds
of experiments analysed in the study over the past 15 years. It was concluded that
improvements in the techniques are too small to have had any appreciable effect on |
classification.. From this, we can infer that the performances of conventional classifiers,

such as ML, are as effective as advanced classifiers, such as artificial neural networks,

fuzzy-sets and expert systems.

Hence, in our study, we employed ML classification using Landsat data for Klang in
Selangor, Malaysia. ML classification is used as it is still the preferable classification
method in national land cover mapping (e.g. LCMGB and L.CM2000) (Fuller et al. 1994).

The use of ML is also justified by the fact that recently developed methods do not show

99



significant improvement in classification accuracy in determining the quality. of land °
cover map (Wikham 2004). The choice of Landsat data is due to the fact that it is still a
preferable data for national land cover mapping (e.g. LCM2000 and NLCD2001) and
local applications (e.g. Low and Choi (2004), Erbek et al. (2004), Otukei and Blaschke
(2010), Liu et al. (2010), Liu et al. (2011) and Rozenstein and Kamieli (2011)). An
Accuracy assessment was carried out by means of the well known confusion matrix
technique (Wilkinson 2005; Liu et al. 2007) and reference data were selected using |
stratified random sampling (Jensen 1996; Lillesand et al. 2004). Subsequently, the
performance of ML was measured by making use of classification accuracies (Wilkinson
2005; Song et al. 2001). This was further verified by the assessment technique proposed
by Koukoulas and Blackburn (2001). Other quantitative analyses, e.g. band correlations
and decision boundaries (Paola and Schowengerdt 1995), were also considered. Klang in -
Selangor Malaysia was selected as the study area due to having important land covers in
Malaysia (Baban and Yusof 2001), and also because the area is not too complex,

therefore suitable for use in haze removal analysis in subsequent chapters (Chapters 4 and
5).

33 General Classification Concepts

In remote sensing, classification is the process of assigning a pixel to a particular type of
land cover. Classification uses data (typically a measurement vector or feature vector ® )
from a space borne or airborne acquisition system. It aims to assign a pixel associated
with the measurement ® at position X to a particular class i, where 1 <i<MandMis the
total number of classes. The classes are defined from supporting data, such as maps and
ground data for test sites. Two types of classification are commonly used, supervised and
unsupervised. Supervised classification starts from a known set of classes, learns the
statistical properties of each class and then assigns the pixels based on these properties.
Unsupervised classification is a two-step operation of grouping pixels into clusters based
on the statistical properties of the measurements, and then labelling the clusters with the

appropriate classes.
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As supervised classification classifies pixels based on known properties of each cover
type, it requires representative land cover information, in the form of training pixels. |
Signatures generated from the training data will be in a different form, depending on the
classifier type used. For ML classification the class signature will be in the form of class
mean vectors and the covariance matrices. However, the disadvantage is that the derived

classes may not be statistically separable.

On the other hand, in terms of unsupervised classification, the clustering process
produces clusters that are statistically separable, giving a natural grouping of the pixels.
Landcover information is then used in the following labelling process where clusters are
assigned to classes based on the available landcover information. This has the
disadvantages that (1) a cluster may represent a mixture of different landcover types and
(2) a single landcover may be split into several clusters. Furthermore, the assignment of -
clusters to classes (the labelling process) requires manual input using available
knowledge, and needs to be carefully performed after the clustering, in order to correctly

label the clusters.

The probability distributions of the data may take a variety of forms, but very frequently
they are assumed to be Gaussian (Normal). When each class obeys a multivariate normal
distribution for N spectral dimensions (i.e. the number of bands used), we can define the

probability that feature vector a @ occurs in a specified class i as:

N
2

Plow1i)=(2n) (jci|)‘% exp(— % (@-m)CHo-n, )) .. (3.1)

where,

Q

.= {(oy-w) (o) )= (0w ) (0 -w)

i J=1
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where L, is the class mean vector, C; is the class covariance matrix for class i, Q, is the

number of pixels in class i, @ is the feature vector of the ™ pixel and | ’ is determinant.

This assumption is likely to be suitable for data that comes directly from spectral band
measurements, but should not be used if the feature vector contains more general types of

data, e.g. band ratios, without first testing its validity.

3.3.1 Maximum A Posteriori and ML Classification

The most commonly used supervised classification method is ML. It is based on a more
general approach derived from Bayes’ theorem, which states that the a posteriori
distribution P(il®), i.e., the probability that a pixel with feature vector ® belongs to class

i, is given by:

P(w 11)P(i)

..(32
Plo) (3.2)

Pilo)=

where P(wli) is the likelihood function, P(i) is the a priori information, i.e., the probability
that class i occurs in the study area and P(w) is the probability that @ is observed, which

can be written as:

p@):ip(mu)p(i) . (33)

=1

-

where M is the number of classes. P(O)) is often treated as a normalisation constant to

M .
ensure ZP(i |®) sums to 1. Pixel x is assigned to class i by the rule:

i=1

xei if P(ilw) > P(jlw) for all j# ..(3.4)
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Maximum a Posteriori (MAP) classification is possible by using Equation 3.6 if we have
the prior information P(i). This is the most powerful use of the Bayes Theorem. If we do

not know P(i), it is common to assume a uniform prior:
PG)=PG) V 1,j ...(3.5)

Hence, P(1) can be neglected and Equation 3.3 becomes:

..(3.6)

The absence of prior information is the distinction between ML and MAP classification.

Maximising P(il ®) is equivalent to maximising the likelihood function P(w1i), i.e. ML:
xei if P(wli) > P(wlj) forall j#i .. (3.7
ML often assumes that the distribution of the data within a given class i obeys

multivariate Gaussian distribution. It is then convenient to define the log likelihood (or

discriminant function):
N o N 1 '
g.(0) =InP(o ll):—a(m—pi) C; (co—pi)—gln(h)—zlnqcip ... (3.8)

Since log is a monotonic function, Equation 3.7 is equivalent to:
xei if gi(w)> gj(w) for all j#i . .. (3.9)
Each pixel is assigned to the class with the highest likelihood or labelled as unclassified if

the probability values are all below a threshold set by the user (Lillesand et al. 2004). The

general procedures in ML are as follows:
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1. The number of land cover types within the study area is determined.

2. The training pixels for each of the desired classes are chosen using land cover
information for the study area. For this purpose, the Jeffries-Matusita (JM) distance
can be used to measure the class separability of the chosen training pixels. For |
normally distributed classes, the JM separability measure for two classes, J;;, is defined

as follows (Richards, 1999):

J.=42l-¢" .. (3.10)

b

where o is the Bhattacharyya distance and is given by (Richards, 1999):
C +C;
(c,+¢,) ] | 5

1 t i i
°‘=§(l‘a—"j) {——2 : } (ui—u,-)+51n - . (3.11)

\/|CiHCJ

J;; ranges from 0 to 2.0, where J; > 1.9 indicates good separability of classes, moderate

separability for 1.0 < J;; <1.9 and poor separability for J;; < 1.0 (ENVI 2006).

3. The training pixels are then used to estimate the mean vector and covariance matrix of

each class.

4. Finally, every pixel in the image is classified into one of the desired land cover types

or is labelled as unknown.

In ML classification, each class is enclosed in a region in multispectral space where its
discriminant function is larger than that of all other classes. These class regions are

separated by decision boundaries, where the decision boundary between class i and j

occurs when:

gi(w) = gi(®) .. (3.12)
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For multivariate normal distributions, this becomes:

_%((’) - l"i)[ Ci_] (") - “i)_gln(zn)"%lnﬂci‘)_

1 ) N .. (3.13)
(—5(&) — H,-)t le ((o - m)——;ln@n)—%ln(l@‘)) =0
which can be written as:
_'(m_l‘li ) c ((‘)—lli)_lnqci’)'*'((‘)'llj)t C,'_l ((D_l‘lj)+1n QCJ,‘):O - (3.14)

This is a quadratic function in N dimensions. Hence, if we consider only two classes, the

decision boundaries are conic sections (i.e. parabolas, circles, ellipses or hyperbolas).

34 Methodology

In this study, ML classification was applied to our study area (Klang in Selangor, |
Malaysia), which covers approximately 540 km?® within longitude 101° 10’ E to 101°30’
E and latitude 2°99’ N to 3°15° N. The satellite data comes from bands 1, 2, 3,4, 5 and 7
of Landsat-5 TM dated 11™ February 1999, while the supporting data is a land cover map
from October 1991 of the study area. The map, with a 1:50,000 scale, was produced by
ARSM using SPOT data dated 26 February and 10 June 1991 and was supplemented by -
Landsat data (i.e. date not stated) and a ground truth survey carried out on October 1991.
Although there is a relatively lengthy time gap between the Landsat data and the
landcover map, the study area is known to be a non-intensively developing zone, with no

major changes in land cover.

Visual interpretation of the Landsat data (Figure 3.1(b)), aided by the land cover map '
(Figure 3.1(a)), was carried out and 9 main classes were identified, viz. coastal swamp

forest, dryland forest, oil palm, rubber, industry, cleared land, urban, coconut and bare
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land (Figure 3.1(b)) (sediment plumes refer to off-shore sediment from erosion caused by

natural and man-made alteration of the landscape (Gupta, 1996)).

Coastal swamp forest covers most of Klang Island (in the south-west of the image) and
coastal regions in the south-west of the scene. Most of the dryland forest can be
recognised as a large straight-edged region in the north-east. Oil palm is the most
important commercial crop and can be found in the centre towards the north-west, while
rubber is unevenly distributed in the north and south-east of the scene. Oil palm
plantations, mostly managed by FELDA (the Federal Land Development Authority,
Malaysia) are far more abundant than rubber plantations due to higher demand and a
better price in the global markets (Simeh and Ahmad, 2001). Urban areas fill the lower
middle of the scene, from the coastal region and inland. Industry can be recognised in the
brighter patches near the urban areas, especially in the southwest and northeast. The
relatively large urban and industry areas reflect the fact that Klang town and Klang port
play an important role in stimulating the surrounding areas economically. Cleared land is
spread all over the scene and is indicated by line-like shapes and patches of no particular
shape. In the ML classification, regions of interest (ROIs) associated with the training |

pixels for 9 classes of land cover were determined based on the land cover map. -
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Urban Urban
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0il palm Oil palm
Rubber Rubber

Coastal
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Diversified Dryland
crops forest
Cleared land Cleared land
* 4+  Bareland Bare land
Sediment
Dryland forest plumes
Coastal swamp Water
forest
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Figure 3.1: The study area from (a) the land cover map and (b) the Landsat-5 TM with bands 5 4 and 3 assigned to the red, green and

blue channels, with cloud and its shadow masked in black.
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3.4.1 ML Classification

Sampling was carried out by means of stratified random sampling technique by
making use of built-in functions in the ENVI software. This technique involves
dividing the population (the entire classification image) into homogeneous subgroups
(the ROI for individual classes) and then taking a simple random sample in each
subgroup. The ROI was determined by choosing one or more polygons for each class
based on visual interpretation of the land cover map and Landsat data (Figure 3.1).
This was assisted by region growing tools from the ENVI software. With the region
growing tool, pixels within the polygons were grown to neighbouring pixels based on
a threshold, i.e. the number of standard deviations away from the mean of the drawn
polygons. Approximately 30% of the pixels within the ROI of each class were
selected to be training pixels, using a random sampling technique. Figure 3.2 shows
the locations of (a) the original sampling pixels (b) those chosen for training pixels to

be used in classification and (c) reference pixels for accuracy assessment. The

numbers of training pixels are: rubber (196), coastal swamp forest (4452), dryland
forest (1849), oil palm (3148), industry (105), cleared land (375), urban (693),
coconut (465) and bare land (94).

Coastal swamp forest
Dryland forest
Oil palm
Urban

Industry
Rubber
Coconut
Cleared land

Bare land
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(b)

Figure 3.2: Locations for (b) training pixels and (c) reference pixels; the colours

within the images are associated with the land cover classes within the study area as

shown in the colour table in (a).

The class separability of the chosen training pixels was determined by means of the
JM distance (see 3.3.1), which is shown for all class pairs in Table 3.1. Fifty-two pairs
have a JM distance of between 1.9 and 2.0, indicating good separability, three from
1.0 to 1.9 indicating moderate separability and none less than 1.0 indicating poor
separability. The worst separability, possessed by the oil palm — coconut pair (1.553),
was expected since both have very similar spectral characteristics. For each class,
these training pixels provide values from which to estimate the means and covariances

of the spectral bands used.
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Table 3.1: The separabilities measured by Jeffries—Matusita distance for the training

pixels.

S

o -

g 8 9

z & &

s |2 |§ |z |3 |2 |3 3

o1z |2 |2 |3 % % (& |2

= E 9 3 g 2 2

QO [ @] [ Q o m jon] £
Coastal swamp forest | () 0g0 - - - - - -
Dryland forest 2.000 0.000 i - - - -
Oil palm 2.000 | 1985 | 0.000 - - - - -
Rubber 2.000 1.942 | 2.000 | 0.000 - - - -
Cleared land 1.999 1997 | 1.952 | 1.981 | 0.000 - - -
Coconut 1.984 | 1999 | 1.553 | 2.000 | 1.965 | 0.000 - -
Bare land 2.000 2.000 | 2.000 | 2.000 | 1.997 2.000 | 0.000 -
Urban 2.000 | 2000 | 2.000 | 1.999 | 1.703 2.000 | 2.000 | 0.000
Industry 2.000 | 2.000 | 2.000 { 2.000 | 1.930 | 2.000 | 2.000 | 1.955 | 0.000

The outcome of ML classification, after assigning the classes with suitable colours, is
shown in Figure 3.3: coastal swamp forest (green), dryland forest (blue), oil palm
(yellow), rubber (cyan), cleared land (purple), coconut (maroon), bare land (orange),
urban (red) and industry grey. Clouds and their shadows are masked black, while non-
land classes, i.e. water and sediment plumes are masked white. Although being
similar, coastal swamp forest and dryland forest can be clearly seen in the south-west
and north-east of the classified image, as indicated by the land cover map (see Figure
3.1). Oil palm and urban dominate the northern and southern parts respectively.
Rubber appears as scattered patches that mostly are surrounded by oil palms. Coconut
can be seen in the coastal area in the north-west of the image. Industry mostly
occupies areas near the Klang port, in the south. A quite large area of bare land can be
seen in the east, while cleared land can be seen mostly in the north, south and south-
east of the image. The class areas in terms of percentage (with respect to the whole
image) and square kilometres are given in Table 3.2. The three biggest classes are oil
palm (133 kmz), cleared land (103 kmz) and urban (37 kmz), while the smallest class
is bare land (8 km?). The classified land areas add up to a total of 453 km?, i.e. 84%

from the whole image.
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Table 3.2: Classes determined by ML classification with corresponding areas in

percentage and square kilometres.

Class Area (%) Area (kmz)

Coastal swamp forest 6.5 35.3
Dryland forest 54 294
Oil palm 24.5 132.6
Rubber 3.3 17.8
Cleared land 19.2 103.5
Coconut 6.9 37.3

Bare land 1.5 7.8
Urban 10.8 58.4
Industry 57 30.9

e

Coastal swamp forest
Dryland forest

Oil palm

Rubber

Industry

Cleared land

Urban

Coconut

Bare land

Accuracy assessment of the ML classification is determined by means of a confusion
matrix (sometimes called an error matrix), which compares, on a class-by-class basis,
the relationship between reference data (ground truth) and the corresponding results of
a classificqtion (Lillesand et al. 2004). Such matrices are square, with the number of

rows and columns being equal to the number of classes, i.e. 9.
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For each class, a different set of the pixels (i.e. those not overlapping with the training
pixels) were chosen to be reference pixels. They were selected by making use of the
stratified random sampling technique: rubber (230), coastal swamp forest (5175),

dryland forest (2194), oil palm (3665), industry (125), cleared land (347), urban (811),
coconut (564) and bare land (111) (Figure 3.2 (¢)).

Table 3.3 shows the confusion matrix for the ML Classification. The diagonal
elements in Table 3.3(b) represent the percentage of correctly assigned pixels and are
also known as the producer accuracy. Producer accuracy is a measure of the accuracy
of a particular classification scheme and shows the percentage of a particular ground
class that has been correctly classified. The minimum acceptable accuracy for a class
is 70% (Thomlinson et al. 1999). This is calculated by dividing each of the diagonal

elements in Table 3.3 (a) by the total of the column in which it occurs:

Producer accuracy = Ca .. (3.15)

C.,

where,

.. h
c,, =element at position a™ row and a” column

c,, = column sum

Table 3.3 (c) shows the producer accuracy for all the classes. It can be seen that all
classes possess producer accuracy higher than 90%. Bare land gives the highest
(100%) and cleared land the lowest (91%) figures. The low accuracy of figures for
cleared land is mainly because 3% and 2% of its pixels were classified as coconut and
oil palm, while 1% each as industry and rubber respectively; i.e. the small roads and

spaces between trees were misclassified as cleared land due to their having quite

similar spectral properties.

User accuracy is another measure of how well the classification has performed. This

indicates the probability that the class to which a pixel is classified from an image
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actually representing that class on the ground (Story and Congalton 1986; Congalton
1991). This is calculated by dividing each of the diagonal elements in the confusion

matrix by the total of the row in which it occurs:

User accuracy = Sa ... (3.16)

C

ae

where, ¢ , = row sum

Coastal swamp forest, dryland forest, oil palm, bare land and urban show a user
accuracy of more than 90%. Cleared land possesses the lowest accuracy, i.e. 77%,
while coconut and industry account for between 80% and 90%. The low accuracy of
cleared land is because the cleared land (3%) and oil palm (3%) pixels are classified

as coconut,

A measure of behaviour of the ML classification can be determined by the ovérall

accuracy, which is the total percentage of pixels correctly classified, i.e.:

U
2 Ca
Overall accuracy = 4! .. (3.17)

Q

where Q and U represent the total number of pixels and classes respectively. The

minimum acceptable overall accuracy is 85% (Thomlinson et al. 1999; McCormick

1999; Scepan 1999; Wulder et al. 20006).

The Kappa coefficient k¥ is a second measure of classification accuracy which
incorporates the off-diagonal elements as well as the diagonal terms to give a more

robust assessment of accuracy than overall accuracy. This is computed as (Jensen

1996):
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... (3.18)

where ¢, =row sum and c,, = column sum . The ML classification yielded an

overall accuracy of 97.8% and Kappa coefficient 0.97, indicating very high agreement

with the ground truth.

To further validate the accuracy achieved, we extended this analysis by performing
the assessment technique proposed by Koukoulas and Blackburn (2001), in terms of
the classification success index (CSI) and individual classification success index

(ICSI). CSl is defined as the sum of average user and producer accuracy minus one:

U
> (UA,+PA,)
CSI=| ==

-1 ...(3.19)

Where UA, and PA, represent user accuracy and producer accuracy for class i. The

CSI for the ML classification was 0.9 (Table 3.3(d)).

ICSI is the CSI for specific class and is defined as the sum of producer and user

accuracy, minus one for a particular class:
ICSI for class i can be calculated using:

ICSI=[UA,+PA, - 1] .. (3.20)

Five classes, i.e. coastal swamp forest, dryland forest, bare land, oil palm and rubber,

show a ICSI of more than 0.9, while that of cleared land and coconut is less than 0.8

(Table 3.3(d)).
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Table 3.3(a): Confusion matrix for ML classification in pixels.

Overall Accuracy = 97.72%
Kappa Coefficient = 0.97

Ground Truth (Pixels)

g 3

£ g = o

| & £ = ER - 5 25| 2

Sz 2 e | Bl £ 24

3 = o) g O S = & g

2 | 7 3

@] =
Coastal swamp forest 5156 0 0 0 0 0 0 0 0 0
& | Dryland forest 0| 2180 2 0 0 0 0 0 0 0
% | Oil palm 0 4 3504 6 12 0 0 0 0 0
% Cleared land 0 0 22 310 8 0 59 1 77 1
S | Coconut 0 1 126 9| 533 0 0 0 0 0
S | Bareland 0 0 0 1 0 111 0 0 0 0
2 | Urban 0 0 3 7 6 0 744 0 0 0
S | Industry 6 1 0 3 0 0 8| 124 | 1063 0
o | Rubber 0 6 0 3 0 0 0 0| 223 232
Total ground truth pixels | 5162 | 2192 | 3657 339 559 | 111 811 125 | 230 | 13186
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Table 3.3(b): Confusion matrix for ML classification in percentages.

Ground Truth (%)

3 o)

<] B z - 2

g | < E e ERN I 5 z | 5| 3

Cluss Sz BBl e 22 E ¢

s | 2| 8 | & | Sl& | 7| = %] 3

z | A © 3

S e
Coastal swamp forest 99.88 0 0 0 0 0 0 0 0 39.1
~ | Dryland forest 0| 9945 0.05 0 0 0 0 0| 217 16.59
E Oil palm 0 0.18 95.82 1.77 2.15 0 0 0 0 26.74
.§ Cleared land 0 0 0.6 91.45 1.43 0 7.27 0.8 | 0.87 3.05
é Coconut 0 005 3.45 2.65 | 95.35 0 0 0 0 5.07
% Bare land 0 0 0 0.29 0 100 0 0 0 0.85
O Urban 0] 0 0.08 2.06 1.07 0 91.74 0 0 5.76
§ Industry 0.12 0.05 0 0.88 0 0 0.99 99.2 0 1.08
Rubber 0| 027 0 0.88 0 0 0 0 | 96.96 1.76
Total ground truth pixels 100 100 100 100 100 100 100 100 100 100
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Table 3.3(c): Producer accuracy for the classes.

Producer Accuracy

Class -
(Pixels) (%)
Coastal swamp forest | 5156/5162 99.88
Dryland forest 2180/2192 99.45
0Oil palm 3504/3657 95.82
Cleared land 310/339 91.45
Coconut 533/559 95.35
Bare land 111/111 100
Urban 744/811 91.74
Industry 124/125 99.2
Rubber 223/230 96.96
‘ User Accuracy

Class (Pixels) (%)

Coastal swamp forest 5156/5156 100
Dryland forest 2180/2187 99.68
Oil palm 3504/3526 99.38
Cleared land 310/402 77.11
Coconut 533/669 79.67
Bare land 111/112 99.11
Urban 744/760 97.89
Industry 124/142 87.32
Rubber 223/232 96.12

Table 3.3(d): CSI and ICSI for the classes.

User Producer

Class Accuracy Accuracy ICS1
Coastal swamp forest 1 0.9988 0.9988
Dryland forest 0.9968 0.9945 0.9913
0Oil palm 0.9938 0.9582 0.952
Cleared land 0.7711 0.9145 0.6856
Coconut 0.7967 0.9535 0.7502
Bare land 0.9911 1 0.9911
Urban 0.9789 0.9174 0.8963
Industry 0.8732 0.992 0.8652
Rubber 0.9612 0.9696 0.9308

CSI=09
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3.4.2 Accuracy Analysis

ML with 9 classes has an overall accuracy 97.7% and a Kappa coefficient of 0.97)
(Table 3.3(a)).

In terms of individual classes, in descending order, the producer accuracies (Table
3.3(c)) of the classes are bare land (100%), coastal swamp forest (99.88%), dryland
forest (99.45%), industry (99.2%), rubber (96.96%), oil palm (95.82%), coconut
(95.35%), urban (91.74%) and cleared land (91.45%).

The CSI and ICSI by Koukoulas and Blackburn (2001) (see Section 3.2.2), is also
considered. The CSI for ML was found to be 0.9 (i.e. exceeding 0.8 - the index for an
acceptable classification (Koukoulas and Blackburn 2001)). The ICSI for the
individual classes were coastal swamp forest (1), dryland forest (0.99), oil palm
(0.95), cleared land (0.69), coconut (0.75), bare land (0.99), urban (0.89), industry
(0.87) and rubber (0.93). Only cleared land and coconut showed an ICSI of less than
0.8. However, these classes are less important economically compared to the rest of
the classes. Overall, the analyses show that the ML classification is a satisfactory and

therefore can be used as a base map for studying the effects of haze in Chapter 4.

3.4.3 Correlation Matrix Analysis
As discussed in Section 3.3, classification uses the covariance of the bands.

Nonetheless, covariance is not intuitive; more intuitive is the correlation, p,, i.e.

covariance normalised by the product of the standard deviations of bands, k and 1:

Ck,l' E((Ik _uk) (Il _”1))

Pr1 = 5.0, = 5.0, .. (321

where C,, is the covariance between bands k and 1, o, and o, are the standard

deviations of the measurements in bands k and I respectively, E is the expgcted

value operator, and I, and I, and u, and , are the intensities and means of bands k

and 1 respectively. When using more than two bands, it is convenient to use a
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correlation matrix, where the element in row m and column n that correspond to

band k and | is given by p, . If m=n, then p,, =1, so this will be the value of the

diagonal elements of the matrix. Otherwise, if m#n, p, | lies between -1 and 1.

In order to analyse the correlation matrices, plots of correlation versus band pairs for
all classes from ML are plotted (Figure 3.4). Each coloured curve represents a

correlation between a specific band (given by a specific colour) and all bands (on the

X-axis).

Landsat bands 1, 2 and 3 are located within a very close wavelength range of the
visible spectrum, with their centre wavelengths differing only by about 0.1 pm.
Measurements made from these bands normally exhibit similar responses and
therefore are highly correlated. Poor correlations may result from mixed pixel
problems (the existence of more than one class in a pixel). Correlations between
lower-numbered bands (i.e bands 1, 2 and 3) and higher-numbered bands (i.e. bands 4,

5, and 6) are much lower because involving bands with non-adjacency wavelengths.

A high correlation is shown by industry (with very high reflectances) due to the strong
relationships of variation between the brightness of pixels and mean brightness in all

bands (1, 2, 3,4, 5 and 7).

For dryland and coastal swamp forest, it is apparent that correlations involving bands
1, 2 and 3 are always quite high. This is because these band combinations are always
correlated when measuring reflectance from green-vegetation types; band 1 is ideal to
discriminate vegetation from soil, band 2 detects green reflectance from healthy
vegetation and band 3 detects chlorophyll absorption. However, for coastal swamp
forest, negative correlations can be seen for pairs involving bands 4 and 5, which are
very sensitive to forest stand timber volume (Gemmel 1995). This is consistent with
the fact that the distinct vegetation species in both forests have different spectral
properties observed from bands 4 and 5. The different spectral properties are

associated mainy with the tree species composition, forest stand structures and

vegetation vigour (Lu et al. 2004).
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Dryland forest has a stronger pair a 7:4 correlation than the coastal swamp forest
because of the stronger relationship between the timber volume and ratio of bands 7 /
4 (Ahern et al. 1991). Most timber in Malaysia comes from the dry land forest type as
the tree structure is much bigger than that of the coastal swamp forest. It mainly
comes from the dipterocarp forest species, which include Anisoptera, Dipterocarpus,
Dryobalanops, Hopea, Shorea and Parashorea (Suzuki 2005). Since bands 5 and 7 are
located in the near and mid infrared region respectively, they are sensitive to water in

leaves. Hence, they are well correlated with each other.

When compared with individual class accuracies (Table 3.3(c)), bare land (100%),
rubber (96.96%), coconut (95.35%), industry (99.2%) and dryland forest (99.45%)
have positive correlations for all pairs. Overall, industry has higher positive
correlations for all pairs in comparison to bare land, but the former has a lower
classification accuracy compared to the latter, while coastal swamp forest with the
second highest accuracy has a mixed correlation trend. Thus there is no clear

relationship between the positiveness of the correlation and classification accuracy.

In conclusion, land covers have unique band correlation trends that explain the
relationship s between measurements from different bands. However it was found that
there is no clear relationship between the correlation trends and the classification

accuracy of a land cover.
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Figure 3.4: Correlations between band pairs from the ML classification for the

classes.
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3.4.4 Mean and Standard Deviation Analysis

It is interesting that, despite being very similar, both forests can still be separated quite
effectively by the ML. Figure 3.5 shows the means of coastal swamp forest and dryland
forest classes, which are almost the same, particularly in bands 1, 2, 3 and 4. The quite
low DNs in band 3 are due to the absorption of the red light by vegetation within the |
forests (i.e. also known as chlorophyll absorption band). Since vegetation has high
reflectance in band 4 (near IR region), they have quite big DNs (bright). The quite
different DN in bands 5 and 7 between the forests is due to the quite different moisture
conditions of the vegetations occupying the forests. The largest difference in mean
occurred in band 5 due to the sensitivity to the variation of moisture conditions between -

the forests. This is followed by bands 1 and 7.
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Figure 3.5: Means of coastal swamp forest and dryland forest classes in ML. DLF and

CSF are dryland forest and coastal swamp forest respectively.

In term of standard deviation, the largest is in band 4 (chlorophyll absorption band) due to
the variation in spatial patterns of vegetation species within the forest. The largest
difference in standard deviation occurs in band 5, which is due to the variation of
moisture conditions of the vegetations within the forests, which is consistent with the
mean analysis. The smallest difference occurs in band 4, indicating that the variation of

chlorophyll absorption by vegetation within the forests is not significant.
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Figure 3.6: Standard deviations of the coastal swamp forest and dryland forest classes in

ML.

Overall, band 5, with the biggest difference in terms of forest mean and standard
deviation, seems to be the most effective band for discriminating between the coastal

swamp forest and dryland forest.

3.4.5 Decision Boundary Analysis

In this section, we will investigate ML further in terms of the decision boundaries

generated from Equation 3.18 between coastal swamp forest and dryland forest.

The 15 sets of decision boundaries, generated for all band pairs are shown in Figure 3.7;
‘M1’ and ‘M2’ are the means for dryland forest and coastal swamp forest respectively,
‘Band k Vs. Band I’ denotes that the vertical axis is band k while horizontal axis is band 1
and ‘DLF’ indicate dryland forest respectively, i.e. to which class the boundary belongs

to. For convenience, the points associated with the forests are also plotted.

The decision boundaries has the form of conic sections; pairs 2:1, 3:1, 7:1, 3:2 and 7:2
form an elliptic curve, while pairs 5:1, 5:2, 5:3, 7:3 and 7:5 form a parabolic curve and

pairs 4:1,4:2,4:3, 5:4 and 7:4 form a hyperbolic curve.



It can be seen that some dry land forest points are outside of its boundary; this
inconsistency is due to the misclassification occurred (see Table 3.3),i.e. 0.3% and 0.2%
of the dry land forest pixels were classified as rubber and oil palm respectively, while
0.05% pixels were classified as coconut and industry. The boundaries of these classes are
not shown here because the focus of this discussion is on the forests that are spectrally

very similar, besides them involving lengthy computational times.

For pairs 2:1, 3:1, 7:1, 3:2 and 7:2, the decision region for dryland forest is located inside
the decision boundary because dryland forest has a smaller variance than coastal swamp
forest in these bands (see Figure 3.6). This is consistent with the coastal swamp forest
points that are more widely scattered than dryland forest. For pairs 2:1, 3:1 and 3:2, as
expected, the orientation of the points indicates that these pairs have quite similar spectral
properties, therefore are highly correlated. This causes much pixel redundancy and -
produces limited information for separating the forests. The decision boundaries for pairs

2:1 and 3:2 seem to be very small due to the quite small variance in both bands.

For pairs 5:1, 5:2, 5:3, 7:3 and 7:5, the points for both forests seem to concentrate at the
narrower part of the decision boundary. For pairs 5:1, 5:2 and 5:3 the coastal swamp

forest points seem scattered in a circle-like shape, indicating that the pairs have quite low |
correlations due to the quite distict spectral properties of the bands. A longer vertical
shape is shown by the dry land forest points due to the much bigger variance in band 5
compared to band 1, 2 and 3. For pair 7:3, both forests seem to have low correlations, but
a higher correlation can be seen in pair 7:5, due to the quite similar spectral properties of
the bands. It is clear that, compared to other bands, pairs involving band 5 locate quite a -
large number of points within the boundary while reasonably large portions of dry land
forest points are located within the boundary with less overlapping occurs with the
coastal swamp fores, indicating that band 5 1s very useful in discriminating between the

forests. The main advantage of band 5 is its ability to separate the forest means quite

effectively (Figure 3.5).
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For pair pairs 4:1, 4:2, 4:3, the points are aligned vertically along the lower part of the
boundaries due to the much bigger variances in band 4 compared to bands 1, 2 and 3 (see
Figure 3.6). This indicates the usefulness of band 4 in discriminating between the species
within the forests. The quite significant overlapping which occurs in x-direction is
because band 4 has the smallest difference between the forest means. For 5:4 and 7:4, the
points seem to be concentrated horizontally along the lower boundary, due to the much
bigger variance in band 4 compared to bands 5 and 7. However, less overlapping can be
seen in pair 5:4 compared to 7:4, indicating the usefulness of pair 5:4 in discriminating -
the forests. In conclusion, the ability of ML to position the forests means (although the
difference is very small) that the different side of most of the decision boundaries

appears to be one of the key factors that enable ML to discriminate effectively between

the forests.
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Figure 3.7: Decision boundaries between coastal swamp forest with points coloured in

yellow and dryland forest with points coloured in cyan for ML classification. ‘M1’ and

‘M2’ are the means for dryland forest and coastal swamp forest respectively. ‘Band k Vs.

Band |’ denotes that the vertical axis is band k while horizontal axis is band l. The

decision space for dryland forest is indicated by 'DLF .
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Here, we have shown just a two dimensional decision boundary for two classes. It is
anticipated that higher dimensional plots (i.e. taking account three or more bands) will
cause difficulty in analysing and interpretation. To explain this, a six-dimensional scatter

plot of the forests, without a decision boundary, is shown in Figure 3.8.
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Figure 3.8: A six-dimensional scatter plot of coastal swamp forest (cyan) and dryland

forest (yellow); the numbers correspond to Landsat band.



3.5  Summary and Conclusions

In this chapter, an analysis of ML classification for Selangor, Malaysia, has been carried

out using a Landsat dataset:

1. ML classification is suitable for Malaysian land covers due to its simplicity,

objectivity and ability in classifying land covers with a good agreement with the

land cover map.

2. ML classified the study area into 9 classes, as chosen earlier, with accuracy of |
97%, x = 0.97 and CSI = 0.9, i.e. overall and producer accuracy Wére fairly

consistence with those indicated by Kaokoulas and Blackburn (2001), i.e. CSI and
ICSIL.

3. Land covers had a unique band correlation trends that explains the relationships
between the spectral measurements from different bands. However, it was found
that there was no clear relationship between the correlation trends and the

classification accuracy of a land cover.

4, The band correlation of classes with high reflectance, e.g. industry, was quite high
for all band pairs because of the strong relationships of variation between the

brightness of pixels and the mean brightness in all bands.

S. Band 5 was found to be the most effective band in discriminating between the
coastal swamp forest and the dry land forest, due to its having shown the biggest

difference in terms of forest mean and standard deviation.

6. The ability of ML to position the forests means that the different side of most of
the decision boundaries appeared to be one of the key factors that enabled ML to

discriminate effectively between the forests.
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Chapter 4

The Effects of Haze on Land Classification

4.1 Introduction

This chapter deals with one of the crucial aims of this thesis, which is to investigate the
effects of haze on land classification. In achiving this aim, we need to make use of
datasets with known haze conditions; nevertheless, acquiring real hazy datasets with a
desired range of haze concentrations over an area is not possible. A more practical way is
to model the haze and simulate its effects on clear datasets. To do so, we need-to know
the effects that haze concentrations have on scene visibility and to translate it onto real
remote sensing data. The primary objectives of this chapter is therefore to simulate hazy
datasets, investigate their spectral and statistical properties and examine classification

performance on these hazy datasets in terms of classification accuracy.

To achieve this aim, we need to know the existing approaches and issues encéuntered;
Section 4.2 discusses previous studies of the effects of haze on land classification. Since
this chapter deal with haze, Section 4.3 relates haze with visibility while Section 4.4
discusses haze scenario that occurs in Malaysia. An important issue in investigating the
effects of haze is to model hazy dataset; in Section 4.5, a model for integrating haze with
a clear atmosphere dataset is described. Next, we need to translate the model to practical
processes; Section 4.6 discusses simulation of hazy datasets by incorporating simulated
haze path radiance and the effects of signal attenuation onto clear datasets. Since the
primary issue is to investigate the effects that haze has on classification; Section 4.7
discusses ML classification of the hazy datasets when the training pixels are from hazy
datasets, and measures the performance of the classification. We are left wanting to know |
the effects of haze on classification when the training pixels are from clear dataset;

Section 4.8 discusses this issue and compares the results with classification that uses
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training pixels from the hazy dataset itself. Finally