
Nanoscale Structure and Single 
Molecule Diffusion in Smart Polymeric 

Systems 

Ateyyah AL-Baradi 

A Thesis Submitted for the Degree of Doctor 
of Philosophy 

The 
University 
Of 
Sheffield. 

The Department of Physics and Astronomy 

November 2011 



) 

To my parents 



3 

Abstract 

Soft nanotechnology requires the development and understanding of smart 

polymeric systems that respond to small changes in the surrounding environ­

ment. This thesis reports on the structure and dynamics in poly(methacn"lic 

acid) (PMAA) hydrogels and hyperbranched poly(N-isopropyl acrylamide) 

(HB-PNIPAM) in response to physical and chemical stimuli. 

Fluorescence correlation spectroscopy (FCS) has been utilized to study 

the diffusion of single dextran molecules labelled with fluorescein isothio­

cyanate within a PMAA hydrogel. Diffusion in pure water shows a tem­

perature dependence described by Zimm dynamics, whereas the diffusion 

coefficient decreases with temperature in the hydrogel for which a model has 

been developed. Diffusion in PMAA hydrogel has revealed the mesh size 

dependence on temperature. The effect of pH and salt on the diffusion in 

PMAA hydrogel has also been considered. Introducing magnetic nanoparti­

cles to hydrogels forms ferrogels the mesh of which is controlled by applied 

magnetic fields. The swelling, diffusion and release in PMAA ferro gel has 

been found to follow the same scaling theory developed in this work. 

Small angle neutron scattering (SANS) has revealed the structural be­

haviour of HB-PNIPAM as a function of temperature compared to its linear 

counterpart. These experiments have shown that water is a good solvent for 

HB-PNIPAM at low temperatures, while increasing the temperature leads to 

a gradual collapse of these polymers until they form spherical particles with 

sharp boundaries of the order of 24-40 nm in diameter, depending on the 

branching degree. This indicates that HB-PNIPAM shows no entanglements 

either as a function of temperature or branching degree. In contrast, linear 

PNIPAM showed a network-like behaviour above its collapsing temperature. 

Neutron spin echo experiments on HB-PNIPAM are described well by the 

Rouse model for unentangled chains and the self-diffusion of HB-PNIPAl\I 

by FCS follows Zimm behaviour, which is in agreement with SANS results. 

These studies have given a better understanding of the nanostructure and 

dynamics in the im'estigated polymeric systems, showing their usefulness as 

deliw'ry systems for mcUl)" biological and medical applications. 
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Chapter 1 

Introduction 

Over the past two decades there has been a dramatic increase in t he atten­

tion given to water-based heterogeneous polymeric systems due to their wide 

range of applications in nanotechnology in areas such as medicine, biotech­

nology, membrane technology and environment. For example, soft nano­

machines that can be formed from these heterogeneous systems are useful 

for tissue engineering, biosensors and drug delivery and release [1, 2. 3, 4]. 

The smartness of such materials comes from their high response to exter­

nal physical and chemical stimuli, such as temperature [5, 6], magnetic field 

[7, 8], electric field [9, 10], pH and salt [11, 12]. 

The ongoing studies on these materials are mainly attempting to control 

the responsiveness of such materials and a major area of interest is to find 

structures that can be used effectively in a human body. For instance, a 

material that is to be used as an artificial muscle must function as quickly as 

a real one; this property has been seen in hydro gels , which will be described 

below, but their response time is yet to be improved [13]. For the use of 

such smart materials in medicine, one must consider the diverse conditions 

in a human body such as the different pH in different areas of the body. 

These features of the human tissues could be utilized for drug deli\'er}' and 

release. For example, the difference in pH in the human stomach (pH 1-3) 

and in the small intestine (pH 8) could be utilized for a targeted delivery 

system [14]. A pol}'mer material that swells at high pH and collapses at 

19 



CHAPTER 1. INTROD UCTI01'vT 

20 

low pH will not deli\"er or release a drug in the stomach but rather in the 

small intestine. The body temperature is another example where a polymer 

that collapses at low temperatures and swells around the body temperature 

could be used for a drug injection. Other materials, such as poly(N-isopropyl 

acrylamide) (PNIPAM) are swollen at low temperatures and collapsed around 

the body temperature, which makes them useful for cell penetration and 

drug delivery. The above mentioned examples are just a simple utilization of 

heterogeneous water-based responsive systems which are among man~" other 

more complicated applications. 

An important class of polymers are polylectrolytes, which have ionisable 

groups that, in polar solvents (such as water) can, dissociate into charged 

polymer chains releasing counterions in solution (see Chapter 2). The wide 

range of applications of polyelectrolytes is mainly due to their water solubil­

ity and responsiveness in pH and salt solutions. Therefore, polyelectrolytes 

have been a subject of interest for many decades [12, 15]. A well-known 

example of a polyelectrolyte is poly(methacrylic acid) (PMAA). When these 

polyelectolytes are cross-linked, a polymer network of charged polymers is 

obtained which is called a polymer hydrogel when swollen with water. 

Hydrogels are chemically or physically cross-linked polymer networks 

which are swollen with water but do not dissolve in it. Polymer hydro gels 

are a unique state of matter as they simultaneously have solid and liquid­

like properties once the cross-linking takes place, the process by which the 

polymer chains become part of a three-dimensional cluster (see Chapter 5). 

Although these complex materials have been investigated for many decades, a 

complete understanding of their behaviour is still lacking, especially as there 

are many discrepancies between the predicted theories and the experimental 

results [16]. 

Although these conventional hydrogels are useful for many tasks, materi­

als that can respond to other stimuli, such as electric and magnetic fields, are 

required for some other applications. Composite hydrogels are examples of 

such systems where the addition of inorganic substances to the gels gives them 

different characteristics in terms of their responsiveness to the surrounding 

em"ironments. In this work, the focus will be on magnetic nanocomposite 
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hydrogels. 

Polymer hydrogels are originally paramagnetic materials with a weak re­

sponse to magnetic fields that is hardly detected. A \va\' to make gels re­

sponsive to magnetic fields is by introducing magnetic nanoparticles (f"'o.J 10 

nm) either before or after cross-linking to form so-called "ferrogels". These 

magnetic nanoparticles are bound to the polymer net\vork and are fixed in 

place, with no translational diffusion within the gel medium (see Chapter 6). 

Since Zrinyi et al. [17] introduced the concept of ferrogels in 1995, useful 

applications in biotechnology, membrane technology, artificial muscles, and 

drug delivery and release have been suggested [18, 191. 

Another example of an important type of polymer is poh'(N-isopropyl 

acrylamide) (PNIPAM), which was first synthesized in the 1950s and has 

received considerable attention in the last few decades due to its biocompat­

ibility and transition temperature, which is close to the body temperature 

(32°C for linear PNIPAM) [20, 21]. This transition temperature is a lower 

critical solution temperature (LCST), which is the temperature at which the 

polymer exhibits a coil to globule transition caused by hydrophobic and hy­

drophilic interactions [22]. Therefore, PNIPAM, as a neutral polymer, is 

water soluble below its LCST via strong hydrogen bonding; whereas these 

water-polymer hydrogen bonds are disrupted above the LCST and the poly­

mer chain preferentially makes hydrogen bonds with neighboring chains. 

PNIPAM has been produced in different ways resulting in varied polymer 

architectures. These architectures include linear, micro gels [23] and micelles 

[24]. It has been a challenge to increase the LCST of these PNIPAM to that 

of the body and many attempts have been reported using different synthetic 

methods, such as copolymerizing PNIPAM with hydrophilic chain-end func­

tionalized polymers. For example, Rimmer et al. [25, 26, 27] have been able 

to s\'nthesize highly branched HB-PNIPArvI with no cyclization or microge­

lation. They have utilized the self-considering vinyl polymerization (SCVP) 

principles [28] by using the Reversible Addition Chain Transfer Polymeriza­

tion (RAFT) method to produce HB-PNIPAl\I with imidazole-chain ends. 

These end groups can be replaced with COOH acid groups, which can be 

then used for binding with other polYmers or biological species. Therefore. a 
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number of biotechnological and medical applications haye been reported in 

this way, for example, protein purification for breast cancer therap~' [29, 30], 

DNA binding [31], cell penetration [5] and drug deliven' [32]. 

The structure of the above mentioned water-based polymeric systems is 

important, but the transport and diffusion of macromolecules vvithin these 

systems is also of great importance for molecular delivery and release. Dif­

fusion in polymeric systems, especially in hydrogels, has received a lot of 

attention and the reason behind this is that most biological processes follow 

the same principle, for example, the transport of proteins and drug molecules 

through the cell membrane [33]. The complexity of polymer networks results 

in a complicated diffusion process with a coefficient that lies between that 

in viscoelastic and Newtonian fluids. Moreover, the dependence of diffusion 

on the polymer concentration when making the network and the degree of 

swelling of these networks makes it a challenge to understand the diffusion 

of large molecules or even small particles in such systems. Polymer gels are 

normally characterised by their pore size (mesh size, also called the correla­

tion length, ~) which can be determined from the diffusion of a probe in this 

network, and therefore, the effect of external stimuli can be detected from 

the diffusion results. There have been many techniques used to study the 

diffusion in polymer solutions and gels, such as gravimetry, dynamic light 

scattering and neutron reflectometry [34, 35]. The results of these studies 

have led to a better understanding of the diffusion concepts with the help 

of the physical models based on the hydrodynamic interactions, obstruction 

and the free volume theories [36]. In addition, the development of powerful 

techniques, for instance, fluorescence correlation spectroscopy (FCS), makes 

it much easier to study diffusion in more complex systems [37]. 

1.1 Aims and Objectives 

The previous section introduced the importance of water-based polymeric 

systems and the lack of a complete understanding of such s~'stems \\"hich is 

needed in order to utilize them as predicted theoretically. In this section, the 

main objectiyes of the study presented in this thesis will be discussed. The 
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first goal was to investigate the stimuli responsive polyelectrolyte h~rdrogels 

(namely PMAA) in different physical and chemical environments (temper­

ature, pH and salt). The volume phase transition of such hydrogels has 

been extensively studied with strong agreements with the available theories. 

However, the correlation between the effect of these external stimuli on the 

characteristic length scale (mesh size ~) is still unknown. \Yith the help of 

a powerful technique such as FCS, one can easily study the diffusion process 

in hydrogels in different conditions. The aim in this part of the study was 

to explore the correlation between temperature and mesh size, despite there 

being a little theory in the literature in this regard. In this case, a fiuores­

cently labeled-dextran (FITC-dextran) was used as a probe diffusing within 

the polymer matrix. The results showed no agreement with the available 

theories, which was overcome by modifying and developing the appropriate 

models. Likewise, the effect of pH and salt solutions on the diffusion of 

FITC-dextran was investigated by FCS. 

In addition, to introduce more physical stimuli on hydrogels, magnetite 

nanoparticles were embedded within the PMAA networks during polymeri­

sation (to make ferrogels). As for the temperature effect mentioned above, 

the effect of applied magnetic fields on the mesh size was investigated by uti­

lizing the diffusion measurements of FITC-dextran. To the knowledge of the 

author, there is no existing theory that describes the effect of magnetic fields 

on the diffusion of single molecules within ferrogels. In this study, this effect 

of magnetic fields on diffusion of macromolecules has been modeled in terms 

of the change in mesh size as a function of the magnetic field induction. It 

has also been correlated to the macroscopic swelling measurements and the 

release of FITC-dextran from PMAA ferrogels to the surrounding solution 

using the same scaling law. These ferrogels were also characterised by small 

angle x-ray scattering (SAXS) and superconducting quantum interference 

device (SQUID) magnetometry. 

The other half of this study was looking at another class of water-based 

polymeric systems, hyperbranched PNIPAM. In this part, an investigation 

of the structural behaviour of HB-PNIPAMs in water with different branch­

ing degrees (different LCST) was done using small-angle neutron scattering 
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(SANS). This study revealed the shape and size changes at temperatures be­

low and above their LCST compared to their linear analogues. Furthermore, 

These HB-PNIPAMs were also studied by neutron spin echo (NSE) which re­

vealed the local dynamics of the backbone between branches as a function of 

temperature (below and close to the collapse transition of the polymers) and 

degree of branching. As a complementary study, HB-PNIPAMs and their 

linear analogues were labeled with fluorescein to be able to stud~' their dy­

namics using FCS. FCS results showed an agreement with that seen by NSE 

in terms of the dynamic behaviour of PNIP AMs as a function of tempera­

ture confirming that HB-PNIPAMs do not entangle. FCS also revealed the 

concentration dependence of self-diffusion of HB-PNIPAMs and the linear 

PNIPAMs in their own solutions. 

1.2 Scope of Study 

While this Chapter introduces the plan of this work, in Chapter 2, I discuss 

some of the basic principles of of polymer physics regarding the thermody­

namics of polymer networks and diffusion in polymeric systems. Chapter 3 

introduces the background and basic concepts of water-based systems with a 

review on the previous studies in this field. In Chapter 4, the experimental 

techniques used throughout this work are described including fluorescence 

correlation spectroscopy (FCS), small-angle X-ray scattering (SAXS), small­

angle neutron scattering (SANS), neutron spin echo (NSE) and supercon­

ducting quantum interference device (SQUID) magnetometry. The results 

of this work are divided into two parts. The first part is related to polymer 

gels and networks (chapters 5 and 6) , while the second part is the study of 

HB-PNIPAMs (chapters 7 and 8). The work in Chapter 5 is related to the 

study of single molecule diffusion in PMAA hydrogels in different environ­

ments such as temperature, pH and salt using FCS. Chapter 6 introduces 

the study of the structural behaviour and single molecule diffusion in PMAA 

ferro gels in magnetic fields, including molecular release from these materials. 

The investigation of the structural behaviour of linear and HB-PNIPAlvls as 

a function of temperature, using SANS, is shown in Chapter /, while the 
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dynamics of these polymers, using NSE and FCS, is introduced in Chapter 

8. Finally, Chapter 9 summarizes the work introduced in this thesis with 

some suggestions for future work. 



Chapter 2 

Basic Principles of Polymer 

Physics 

2 .1 Introduction 

A polymer can be defined as a large molecule (macromolecule) made up of 

many repeat segments (monomers) connected together by covalent bonds. 

Since the beginning of polymer science during the 1920s, there has been 

significant progress in the synthesis and understanding of polymers. r..lost 

of the physical principles of polymers were introduced in the first 30 years 

(1930-1960). For example, in his major study, Flory [38] investigated the 

swelling behaviour of polymer gels. Furthermore, the work of Huggins and 

Flory highlighted the principles of thermodynamics of polymeric systems. 

The study of gelation was also carried out by Flory and Stockmayer in that 

period. Polymer dynamics of single molecules was developed during this 

period by Rouse and Zimm [39, 40]. 

During the following 20 years (1960-1980), many scientists contributed 

to the development of modern polymer physics. This includes the work of 

Edwards, de Gennes and Doi, especially in the area of polymer dynamics. 

Nevertheless, despite the above-mentioned progress in polymer science, a 

complete understanding of polymer behaviour is still lacking. This history of 

the progress in pol~'mer physics can be found in more det ail in many useful 

26 
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texts [38, 39, 41, 42, 40, 43, 44]. 

In this chapter, the polymer physics principles relevant to the \\·ork in 

this thesis will be discussed, including the different polymer architectures, 

thermodynamics of mixing and the dynamics of polymer chains. 

2.2 Polymer Architecture 

As noted in the previous section, a polymer is a large molecule containing 

many segments connected together. These segments commonly form what 

is known as a carbon backbone in which carbon atoms form the 'spine' of 

the polymer while other elements dangle from these carbon atoms. These 

segments are connected together in a process called polymerization. The 

nature and structure of these segments and the polymerization method used 

to form the polymer may result in different polymer architectures [39, 40, 38]. 

For instance, if the monomers are connected continuously through the carbon 

atoms, then a linear polymer chain can be formed (Figure 2.1(a)). If the first 

and last monomers of the polymer are connected, then a polymer ring would 

be achieved (Figure 2.1(b)). It is also possible for a polymer chain to have 

some segments branching out of the main backbone. Again, depending on the 

polymerization method and the nature of the segments, different branched 

polymers can be obtained, such as star-branched, H-branched, comb, ladder, 

dendrimer, or randomly branched shown in Figure 2.1 (c), (d), (e), (f), (g) 

and (h), respectively. Introducing cross-links between linear or branched 

polymer chains results in a macroscopic molecule called a polymer network, 

sketched in Figure 2.1(i). 

In this work, chapters 5 and 6 will investigate chemically cross-linked poly­

mer networks (hydrogels and ferrogels of poly(methacrylic acid) [PI\IAAJ), 

including their physical properties and the dynamics of single linear polymers 

within these networks. In addition, Chapters 7 and 8 will study randomly 

branched polymers (poly(N-isopropyl acrylamide) [PNIPAmj) compared to 

their linear counterpart, including their structures and dynamics. 
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(a)'Vz.( (b) (c) 

(d) (e) (f) 

(9) (i) 

Figure 2.1: Examples of different polymer architectures: (a) linear, (b) ring, 
(c) star, (d) H-polymer, (e) comb, (f) ladder, (g) dendrimer, (h) randomly 
branched and (i) network, with the filled circles in (i) indicating the cross­
links. 
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2.3 Polymer Conformations 

Polymer chains are made of atoms connected by covalent bonds. which are 

able to rotate creating different conformations. These conformations and 

therefore the shape of the polymer chain are difficult to define. The simplest 

model to describe a polymer chain is the Freely Jointed Chain model (F JC). 

This modeL as shown in Figure 2.2, considers a chain made of N links or 

bonds defined by vectors rt. These bond vectors have a fixed length I rt I = b 

that is known as the Kuhn length, and can rotate freely in space with an 

angle (). The free rotation of each vector leads to a different orientation from 

its neighbour creating a random walk for the polymer chain. The end-to-end 

vector R is introduced to give the characteristic size of a F JC. This end-to­

end distance is expressed as the mean square displacement (R2), since it is 

possible for this vector to be - R or + R leading to an average of zero. The 

mean square displacement (R2) is proportional to N and can be given as: 

(2.1 ) 

where L is the contour length given by L = Nb. The end-to-end distance 

can easily be calculated for linear polymers but it is difficult to obtaine for 

branched polymer chains. Therefore, an alternative approach to estimate the 

size of polymer chains is the radius of gyration, Rg , which is defined as the 

root-mean-square distance of the segments from the centre of mass. For a 

linear polymer chain, Rg can be given as [40]: 

(2.2) 

For a branched polymer, Kramers theorem is used to obtain the radius of 

gyration, Rg. In general Rg for a branched polymer is given by: 

(2.3) 

where g, which depends on the specific details of the branching, is less than 

1. 
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R : 

. 
. . . 
. 

Figure 2.2: Conformation of a felxible polymer chain according to the freely 
jointed chain model. 

2.4 Thermodynamics of Mixing 

If two or more different chemical species are mixed, then the properties of this 

mixture is governed by the amount of each component and their thermody­

namic interactions. Here, only binary mixtrues are considered, for example, 

two species A and B with volumes VA and VB, respectively. If the total vol­

ume of this mixture is VA + VB, then the volume fractions of these components 

are: 

(2.-J) 

Using a lattice theory allows to determine the entropy, S, in terms of the 

number of arrangements, 0, of the molecules on the lattice 

S = kB In 0, (2.5) 

where kg is the Boltzmann constant. The entropy change of one component 

(e.g. A) on mixing is 

b.SA = kg In( ~) = -kB In 6.\. 
cPA 

The total energy of mixing can be given as [40]: 

(2.6) 
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(2.7) 

where N A and NB are the number of lattice sites occupied by molecules of 

species A and B, respectively. Note that a lattice site can either be occupied 

by a solvent molecule or a monomer. For a regular solution where ~V:-... 

NB = 1, equation 2.7 can be rewritten as: 

(2.8) 

Whereas, for a polymer solution (NA = Nand NB = 1) equation 2.7 reads: 

(2.9) 

Using the same lattice theory above, the energy of mixing (enthalpy) per 

lattice site is given as [40]: 

(2.10) 

where X is the Flory interaction parameter and T is the absolute temperature. 

The free energy of mixing (Gibbs free energy 6Fmix ) is the combination 

of the entropy and enthalpy equations given by [40]: 

(2.11 ) 

and so, 

l:J"mC<. ~ ksT [t: In¢A + t: In¢s + X¢A¢Sj. (2.12) 

The Flory-Huggins equation (equation 2.12) can be simplified by taking ¢A = 

¢ and ¢B = 1 - ¢. Therefore, for polymeric solutions, where NA = Nand 

NB = 1, equation 2.12 can be rewritten as: 

(2.13) 
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Equation 2.1:3 will be exploited in the next section for a mixtue of a polymer 

network and a solvent. 

2.5 Swelling Behaviour of Polymer Networks 

When a solvent is introduced to a polymer network, it swells the net\\'ork 

until an equlibrium is reached. The driving force of this swelling process 

is the change in the entropy of the system. The swelling process is also 

governed by the elastic force that arises from stretching the chains, which 

usually results in a decrease in the entropy of the system. When the osmotic 

pressure due to polymer-solvent interactions balances the elastic effect on the 

polymer network, then the system is in equilibrium. At this point, the total 

free energy of the system can be given as [38, 45, -±OJ: 

(2.14) 

where 6Fe1 is the elastic force contribution to the swelling and 6F mix is 

the thermodynamics of mixing described in section 2.3. Using the classical 

Flory-Huggins lattice theory for polymer networks [38], the energy of mixing 

is expressed as: 

6Fmix = nkBT [¢In¢ + X¢(1 - ¢)], (2.15 ) 

where n is the number of lattice points. One should note the difference 

between equation 2.15 for the energy of mixing in polymer networks and 

that for polymer solutions in section 2.3 (equation 2.13); the term related to 

the contribution of the polymer chains in the lattice is missing in the case of 

polymer networks because of the absence of single molecules in the network 

structure [38]. 
The elastic term in the total free energy (equation 2.1-±) can be obtained 

based on the rubber elasticity with a solvent taken in consideration: 

(2.16) 
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where Ve is the effective number of polymer chains in the network and Os is 

the linear deformation factor which is considered to be equal in all directions 

(os = Ox = Oy = oz) assuming the network is streched to the same degree in 

all directions. 

The total free energy can be obtained by adding equations 2.15 and 2.16. 

By differentiating this total free energy with respect to the number of lattice 

points, one can obtain the chemical potential [38], 

(2.17) 

where R is the gas constant, Va is the total volume of the polymer network 

before swelling and VI is the molar volume of the solvent. At equilibrium, the 

chemical potential inside and outside the gel can be set equal to zero, and 

therefore the elastic and mixing terms in the total free energy must balance 

each other [38, 45, 40] giving: 

and 

[ ) 2] _ VI Ve (1/3 ¢m) 
- In(l - ¢m + ¢m + X¢m - Va ¢m -"2' (2.19) 

where ¢m refers to the maximum polymer volume fraction at equilibrium. 

Equation 2.19 can be given in another form in terms of the molecular weight 

of the chain between two cross-links, Me, and the specific volume of the 

polymer, v, as: 

2 ] VI (1/3 ¢m) 
- [In(l - ¢m) + ¢m + X¢m = ['1\I

c 
¢m -"2' (2.20) 

Equation 2.20 describes the swelling of an ideal polymer network and one 

must multiply the right side of this equation b)" the factor (1 - 2JI,)J.1Jn ) , 

where }lIn is the molecular weight of an identical uncross-linked (linear) poly-
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mer chain, as a correction for problems arising from unreacted chain ends. 

For ideal networks, where lHn = 00, this factor tends to be l. 

The left side of equation 2.20 suggests that the chemical potential de­

creases due to the thermodynamic interactions between the polymer and the 

solvent; while the right side indicates an increase in the chemical potential 

given by the elastic force of the network. 

If the swelling ratio, Q, is defined as the ratio between the swollen volume. 

V, and the unswollen volume, Vo, then the equilibrium swelling ratio. Qm , 

can be obtained from equation 2.19 as [46, 38]: 

(2.21) 

Equation 2.21 indicates the dependence of the swelling ratio on the qualit~· 

of the solvent, X, and the cross-link density in the polymer network. 

2.5.1 Swelling of Ionic Networks 

The swelling forces of polymer networks may be increased if they contain 

ionisable groups; these are polyelectrolyte networks. One of the most studied 

polyelectrolyte gels by Katchalsky et ai. is poly(methacrylic acid) [PMAA] 

[47, 38], which carries carboxylic acid as ionisable groups. 

In a solvent, for any charge located on a monomer there should be a 

counterion to balance the neutrality of the hydrogel. These counterions are 

confined within the gel to maintain the electroneutrality; this creates a signif­

icant osmotic pressure. An illustration is shown in Figure 2.3 for a polymer 

network with fixed negatively charged ions (for example PMAA) surrounded 

by their counterions and some other cations and anions diffusing in and out 

of the gel. 
Weakly charged polymer networks have been studied extensively because 

of their unique swelling behaviour in salt and salt-free solutions. For example, 

Katchalsky et al. [47] studied the effect of the degree of ionisation on the 

swelling of Pl'vIAA networks; \vhile Flory and Rehner developed the earliest 

theory to describe the swelling of ionic networks [38, 12]. In salt free solutions. 

the osmotic pressure is mainly due to the confined counterions interacting 
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Solvent 

<---. 

(j7 Cations present in the solution. EJ Fixed charges (ions). 

o Anions present in the solution. ffi Counterions. 

Figure 2.3: Schematic diagram showing the equilibrium swelling of a poly­
electrolyte network (e.g. PMAA) similar to Donnan membrane equilibrium. 
The arrows indicate the free ions in the solution diffusing in and out of the 
polymer network through the outer part of the network (similar to a mem­
brane) , while the counterions are trapped inside the network, causing the 
osmotic pressure. 
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with their surroundings. However, when salt ions are present the sYstem 

resembles Donnan membrane equilibria (Figure 2.3) where the polymer outer 

part acts as a membrane controlling the diffusion of ions in and out of the 

polymer network [38, 45]. The driving force for salt ions to move into the 

membrane is the electric interaction between the oppositeh' charged ions, 

while ions move out of the membrane because of the concentration gradient. 

These ions keep moving into and out of the membrane until an equilibrium 

is reached, this is called Donnan equilibrium. 

In PMAA, for example, in the simplest case there is only one type of ion 

that can be considered to chemically bind to the network-fixed carboxylate 

(counterion); in this case the hydrogen ion (H+). The electrostatic repulsions 

between the fixed ions are reduced (screened) when other ions are present in 

the solution (H+ and OH- in water solutions and other cations and anions 

in salt solutions). The equilibrium swelling of polyelectrolyte networks is 

described by the Flory theory of non-ionic gels (section 3.4) plus the osmotic 

pressure due to Donnan equilibrium [38]. This ionic effect can be added to 

the total free energy of the swollen gel, which can be given as [48]: 

(2.22) 

where the added term to the non-ionic free energy equation, 6Fion, is related 

to the ionic nature of the network and can be expressed as [49]: 

(2.23) 

The term 6Fdis represents the energy associated with the dissociation of 

the ionisable groups, which for a weakly charged polymer can be negligible. 

assuming no interactions between these charged groups as they are far apart 

in the chains; while the term 6Fcoul is the energy associated with Coulombic 

interactions in the system. 

Equation 2.22 can be given in terms of the chemical potential by: 

(:2 24) 
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The first two terms of equation 2.24 were described in section 2..J for non-ionic 

networks, which can be similar for weakly charged polyelectrolyte networks. 

However, it has been found that the ionisation of highly charged polymers 

affects the mixing and elastic terms in the total free energy H5]. Flon· [38] 

used an osmotic pressure approach to determine the ionic term in equation 

2.24. The osmotic pressure associated with the difference in ionic concentra­

tions inside and outside the gel can be given by the follO\\"ing relation (the 

reader is directed to reference [38] for a full derivation): 

II;on ~ RT [~~ - ,) (c; - C,l] , (2.25) 

where Cs and c; are the total ion concentrations in the gel and in the solution, 

respectively; and {) is the valency factor of the ions in the solution. The term 

icd z_ is the contribution from the ionisable groups in the polymer with iC2 

being the concentration of the fixed charges, where i is the degree of ionisation 

and z_ is the valency of these charged groups. 

The total osrnotic pressure for an ionic network is the sum of that of the 

mixing, elasticity and ions: 

TItotal = TImix + TIel + TI ion · (2.26) 

The relationship between the total osmotic pressure and the equilibrium 

chemical potential is expressed by the following equation: 

f..LI - f..LI ( 0) 
TItotal = - VI . 

(2.27) 

When f..LI - f..L~ = 0, at equilibrium, then equation 2.26 becomes: 

(2.28) 

The two terms on the right hand side of equation 2.28 can be calculated from 

equation 2.18, as for non-ionic networks. Hence, from equations 2.25 and 2.18 

one can obtain the following relation for an ionic net\H)rk at equilibrium: 
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iC2rn _ 19 (c; - cs) = ~ [In(l - ¢m) + ¢m + v02] + (l/e) (/1)/3 _ ¢m) 
Z_ VI " . nt 10 'Pm 2· 

(2.29) 
A special case of this equation is considered when c: > iC2 and the difference 

c: - Cs is comparable inside and outside the gel. The ionic osmotic pressure 

in this case can be given by the following relation [38]: 

I1 rv RT(ic2)2 
Ion - 4S* ' (2.30) 

where S* = {}wc:/2 is the ionic strength with w being the valency of the fixed 

ions on the polymer network (the electrolyte). By substituting equation 2.30 

into equation 2.29 one can obtain: 

(2.31 ) 

As for the non-ionic network in section 2.4, the swelling ratio of an ionic gel 

can be obtained from equation 2.31 as: 

1/ ·2 
5/3 rv 5/3 vo 1, 

Qm, ion = Qm, neut + -4 2 S* l/e V u (2.32) 

where Q~2neut is the maximum equilibrium swelling ratio of a neutral polymer 

network (equation 2.21). 

The Flory-Rehner theory for swelling of ionic networks, described above in 

this section, does not account for the solvent used during the polymerisation 

of the polymer network. Nonetheless, a similar theory was introduced by 

Peppas and Merrill [50, 48] who added a volume fraction term, ¢r, of the 

polymer after cross-linking but before swelling to the Flory-Rehner model 

(equation 2.29) which then reads: 

i C2m ( * ) 1 [1 ( 1 .). 2 ] + -- - {} Cs - Cs = - n - Om + Om + \: Om 
Z_ VI 
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(c\) (Ve) ((cPm)If:
3 
_ 0~1) . 

Vo cPr 20r 

(2.33) 

Furthermore, neither Flory-Rehner theory nor the Peppas-l'vIerrill model 

above takes into account the effect of the solvent on the degree of ionisation, 

i, which was considered later by Brannon-Peppas and Peppas [.J8, .J5, 2] in 

their model to describe the pH effect on the swelling of anionic and cationic 

networks. Brannon-Peppas and Peppas introduced the degree of ionisation 

in terms of other variables of the polymer-solvent system, 

10-pH + J(a' 
(2.3.J) 

with some modification to the right hand side of equation 2.33, which gave 

for anionic network the following relation [48]: 

1 (cP
2

) ( K )2 1 - ~ H a K = - [In(l - cPm) + cPm + XcP~] + 
4S* 1) 10-p + a VI 

(cPr) (Ve) (( cPm) 1/3 _ cPm) . 
Vo cPr 2cPr 

(2.35) 

Similarly for a cationic network they obtained [45, 48]: 

1 (cP~) ( Kb )2 = ~ [In(l - cPm) + cPm + XcP~] + 
4S* V 10PH - 14 + Ka VI 

(2.36) 

where J(a and Kb are the dissociation constants for acid and base, respec­

tively, at equilibrium (see appendix B.1 for more details about these dissoci-

ation constants). 
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2.6 Diffusion 

The basic form of any molecular motion is Brownian motion \\"hereby molecules 

surrounding a colloidal particle, for example, hit it constantly in all directions 

making it jiggle and move in a random walk (diffusion). Therefore, diffusion 

is a process by which molecules are transported from one region of a svstem 

to another as a result of the random motions of these molecules [51]. This 

motion is well understood in the case of gases and uniform particles in solu­

tions by considering Fick's and Einstein's laws. Hmvever, modifications are 

required in the case of macromolecules in solutions and in their melts, despite 

many theoretical and experimental successes in the past sixty years. This 

is because the molecular motion is dependent on viscosity. temperature and 

polymer conformations due to the interactions between the molecule and the 

surrounding environment [52, 53, 51, 40, 44]. Diffusion is only one process 

among others which is happening in electrolytic environments; for instance, 

acid-base reactions and many biological processes in the human body. There­

fore, if the rate of the diffusion is low, it affects the overall process [52]. In the 

following sections, diffusion phenomena will be discussed starting from the 

basics with Fick's laws to those models that describe diffusion in polymeric 

systems. 

2.6.1 Basic Concepts 

If one assumes a gradient of a solute concentration in a solution, oc/ox, then 

according to the second law of thermodynamics and as mentioned above, 

this gradient is not stable but rather the molecules will diffuse throughout 

the system until a constant concentration is reached, assuming the system is 

thermodynamically stable in the mixed phase. If one imagines a flow across 

a cross section of area perpendicular to the concentration gradient, the flux 

(the rate of flow per unit area), J, is directly proportional to oc/ox [54, 52]: 

OC 
J=-D-, ox 

(2.37) 
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where the proportionality constant D is the diffusion coefficient or the diffu­

sivity with dimensions of (length)2(time)-1, e is the concentration and .r is 

the distance in the direction of the diffusion. Equation 2.37 is called Fick's 

first law named after Adolf Fick who developed the first theory for diffusion 
in 1855 [52]. 

By applying the mass conservation law (the mass balance), one should 
obtain: 

oe 
ot 

oj 
ox' (2.38) 

From Fick's first law and equation 2.38 one can obtain Fick's second law for 

diffusion, which describes the change in concentration with time, t, as: 

(2.39) 

Equation 2.39 normally describes diffusion in one dimension and can be given 

in three dimensions by: 

oe (02e 02e 02e) 
ot = D ox2 + oy2 + OZ2 = DV

2
e. (2.40) 

Based on Fick's laws, diffusion can be classified into two types: Fickian 

(Case 1) and non-Fickian (Case 2). In polymer systems there are a few ex-

amples that have been reported in the literature to obey Fick's laws. For 

instance, solvent diffusion in polymer networks was found to be Fickian at 

temperatures above the glass temperature (Tg) of the polymer. This was 

explained by the polymer network above Tg being in the rubbery state in 

which the polymer chains have a higher mobility that could allow solvent 

penetration [35]. In this case the solvent diffusion rate is slower than the 

relaxation rate of the polymer chains. On the other hand, "vhen the mobil­

ity of the polymer chains is not high enough to allow immediate or rapid 

penetration of the solvent into the core of the polymer, the diffusion process 

is described as non-Fickian. This case of diffusion is normally observed at 

temperatures below Tg . Non-Fickian diffusion can be di,,"ided into Case :2 

and anomalous diffusion; the only difference between them is the relaxation 

UNIVERSITY 
OF SHEFFIEU 

, IRRARV 



CHAPTER 2. BASIC PRINCIPLES OF POLYl\IER PHYSICS --12 

rate of the polymer compared to the solvent diffusion rate. For Case 2, the 

solvent diffusion rate is faster than the relaxation rate of the poh'mer chains. 

while these rates are equal in anomalous diffusion [35]. 

2.6.2 Diffusion in Polymer Systems 

Diffusion is of great importance in polymer dynamics, especiall!' when scaled 

with other physical quantities such as molecular weight, concentration and 

temperature. In polymer systems, diffusion is normally characterised in terms 

of the lateral (translational) and rotational processes. Rotational diffusion, 

which can be characterised by the time it takes the molecules to reorientate 

themselves [55], is not the subject of this study. Translational diffusion may 

be divided into intra-diffusion and inter-diffusion (or mutual diffusion). Intra­

diffusion can be subdivided into self-diffusion, when a molecule diffuses in an 

uniform system of identical molecules (see Chapter 8 for PNIPAf-.r molecules 

diffusing in PNIPAM solutions), and probe tracer diffusion, when a molecule 

diffuses in a system that consists of different molecules (see chapters 5 and 6 

for a probe diffusing in hydro gels and ferrogels) [56, 57, 58]. Inter-diffusion 

occurs in a two-component system due to the change in concentration gra­

dient, i.e. an equal amount of each component diffuses within the other one 

in a fixed-volume. An example of inter-diffusion is the swelling of a polymer 

network by linear chains [59]. Again, the latter diffusion process in not the 

subject of this study. 

Diffusion in polymer solutions and gels has been extensively studied in the 

last 50 years with some successful experimental and theoretical work. In the 

following sections the most successful theories for diffusion of macromolecules 

in dilute and semi-dilute solutions will be discussed. 

2.6.2.1 Stokes-Einstein Relation 
-+ 

If a particle experiences a constant force, f, pulling it through a liquid, it 
-+ 

will move in the direction of the force at a constant velocity', ~'. Therefore. 

this force can be correlated to the velocity by: 
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--+ --+ 
f = (t', (2..Jl) 

where ( is a quantity known as the friction coefficient. Because of the \"is­

cosity of the liquid there will be an equal and opposite force applied on the 

particle. Einstein introduced the relationship between the diffusion coeffi­

cient and the friction coefficient in terms of the absolute temperature, T and 

Boltzmann constant, kB as [40]: 

D = kBT 
( . 

(2..J2) 

By assuming a spherical particle in a Newtonian liquid, one can obtain Stokes' 

law, 

( = 6rrTJR, (2.43 ) 

where R is the particle size and TJ is the viscosity of the liquid. By combining 

equations 2.42 and 2.43, one can obtain the Stokes-Einstein relation [40]: 

D= kBT 
6rrTJR 

(2.44) 

The Stokes-Einstein equation can describe self-diffusion of macromolecules in 

dilute solutions, which can be utilized in this case to obtain the hydrodynamic 

radius of a polymer coil as: 

kBT 
RH = 6rrTJD 

(2.45) 

The relationship between the hydrodynamic radius, RH , and the radius of 

gyration, R
g

, is highly dependent on the shape of the polymer chain and can 

he given by: 

(2.46 ) 

where p is a constant that is predicted for spherical molecules to be yff!5 

[40]. 
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Figure 2.4: A polymer chain in Rouse model consists of iY beads connected 
by springs. 

2.6.2.2 Rouse Model 

The earliest model to describe the diffusion of macromolecules was introduced 

by Rouse who assumed the polymer chain consists of N beads connected by 

springs, as shown in Figure 2.4. In a Rouse chain, there are only interactions 

between the beads through the springs connecting them and each bead has 

its own friction coefficient, (b' Under the assumption that there is no inter­

actions between the solvent and these beads, the total friction can be given 

as the sum of the friction from the N beads [40, 60, 61]: 

(2.47) 

By substituting equation 2.47 into Einstein's relation (equation 2.-12), one 

can obtain the Rouse diffusion coefficient as [40]: 

(2.48) 

2.6.2.3 Zimm Model 

If a particle moves through a liquid, the viscosity of the liquid must resist 

this movement and the diffusing particle has to drag some of the surrounding 

solvent with it. This results in a force applied on the diffusing molecules 

\vhich is the hydrodynamic interaction. The Rouse model did not take these 

interactions between the solvent and the beads into account; this can be 
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easily corrected for a polymer melt but not for a dilute solution [40, 44. 39]. 

In a dilute solution, hydrodynamic interactions between the monomers 

themselves and between them and the solvent within the pervaded volume 

are strong. Therefore, the molecule drags the solvent with its movement 

within the pervaded volume. The Zimm model considers the polymer chain 

as a solid object diffusing in the surrounding solvent with a size of R ~ bN~l/. 

where, b is the monomer size and v is the reciprocal of the fractal dimension 

of the polymer (for a linear polymer in its melt v = 1/2 , otherwise it depends 

on the quality of the solvent). The friction coefficient of this chain can be 

given in terms of solvent viscosity, TIs , by Stokes' law [40]: 

(2.49) 

As polymer chains are not spherical, the numerical coefficient in Stokes' law, 

67f, has been discarded. By substituting the Zimm friction coefficient into 

the Einstein relation (equation 2.42), one can obtain the Zimm model for 

diffusion: 

k8T k8T k8T 
Dz == -- ~ -- ~ --

(z TlsR TlsbNl/ 
(2.50) 

For an ideal chain, Zimm calculated the hydrodynamic interactions and 

added an extra coefficient of 8/(3V67f3
) as [40]: 

(2.51) 

2.6.3 Temperature Dependence of Polymer Diffusion 

Studying the temperature dependence of diffusion in polymeric systems leads 

to a greater understanding of the behaviour of these systems in response to 

changes in temperature, which might be of great importance for many ap­

plications in biology and medicine. By considering Stokes-Einstein diffusion 

(equation 2.44), one realizes that the diffusion coefficient depends strongly 

on temperature. The size of the molecule does not depend on temperature in 

this case and therefore it is constant (only in the Stokes-Einstein relation). 
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Thus, the diffusion is mainly controlled by the temperature dependence of 

viscosi ty, ''7 (T) . 

The viscosity of a polymer solution is generally proportional to the prod­

uct of the relaxation time, T, and modulus at this time, G [53. --10]: 

(2.52) 

The relationship between any relaxation time (Zimm or Rouse) and the tem­

perature is given in terms of the friction coefficient as [40]: 

(2.53) 

The dependence of the modulus at any relaxation time is generally expressed 

by 

G", pT, (2.54) 

where p is the mass density. Because an understanding of the dependence 

of the friction coefficient on temperature is still lacking, the temperature 

dependence of viscosity can be expressed in the simplest form, the Arrhenius 

equation, as [40]: 

T)(T) ~ exp (k~~ ) , (2.55) 

where Ea is the activation energy, which is a constant at high temperatures. 

One can use equation 2.55 in the Stokes-Einstein equation which results 

in an Arrhenius relation between the diffusion coefficient and temperature 

[62]: 

D = ( k8 ) exp (-~) . 
67rrJR k8T 

(2.56) 

This diffusion model is valid if the diffusion is controlled soley by the dy­

namics of solvent molecules; therefore, the activation energy of the diffusion 

is close to that of the viscosity. To examine this Arrhenius model, one can 

plot In D against the reciprocal of temperature, liT, and obtain a linear 
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relationship [35]. The disadvantage of this theory is that it can be applied 

only at high temperatures where the viscosity and relaxation times depend 

strongly on temperature. Another disadvantage is that this theory does not 

provide any correlation between the diffusing molecules and the medium in 

which they are diffusing. 

The first problem with the Arrhenius theory, the requirement of high 

temperatures, can be solved by using another form of viscosity relation with 

temperature called the Vogel-Fulcher relationship [53, 40]: 

TI ~ TID exp (T ~aTJ ' (2.57) 

where To is the Vogel-Fulcher temperature at which the relaxation time ap­

pears to diverge. Again, by using the Vogel-Fulcher viscosity equation (equa­

tion 2.57) in the Stokes-Einstein relation (equation 2.44), one obtains a dif-

fusion coefficient dependence on temperature as: 

(2.58) 



Chapter 3 

Responsive Water-based Systems 

3 .1 Introduction 

Smart or responsive water-based polymeric systems are water-soluble poly­

mers that show interesting shape transition behaviours. These materials 

are generally environmentally friendly and of great importance for many 

medical and industrial applications. The behaviour of polymeric systems in 

water is controlled by many factors including polymer architecture, concen­

tration, and the external stimulus applied to the system. In this chapter, 

two different water-soluble polymeric materials will be discussed including 

their theory and applications: polymer networks and highly branched poly­

mers. Cross-linked polymers (polymer networks) can be swollen by water 

to form so-called hydrogels. These hydrogels show interesting volume transi­

tions between swollen and collapsed states in response to small changes in the 

physical or chemical properties of the system. Hydrogels that are responsive 

to pH, temperature and ionic strength will be considered in this work. Other 

physical stimuli, such as magnetic fields, can be also applied to hydrogels if 

they have the appropriate functionality. Hydrogels can be made magnetically 

responsive (ferrogels) by introducing magnetic nanoparticles to them before 

or after polymerisation. Temperature-responsive polymers, such as poly( N­

isoporopylacrylamide) (PNIPAM), are examples of smart polymers that can 

be tuned bv a small change in temperature around their critical transition 
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points. I\Iodifying the architecture of such polymers results in changing their 

temperature response. In this chapter, the effect of PNIPA~I branching on 

its response to temperature will be considered. Diffusion of single molecules 

within the above mentioned polymeric systems is a powerful means of ex­

ploring the internal structure of such materials. The control of the inter- and 

intra-diffusion of macromolecules in these systems is also of great interest for 

biomedical and drug delivery and release applications. 

3.2 Polymer Gels and Networks 

3.2.1 Hydrogels 

As described in Chapter 2, polymer architecture plays a significant role in 

controlling the properties of polymer systems. For instance, polymer net­

works, which are physically or chemically cross-linked chains, hm'e differ­

ent physical and mechanical properties from (uncross-linked) linear chains. 

These networks are formed by connecting polymer chains by strong bonds 

(chemical or physical) resulting in a three-dimensional macroscopic molecule 

in a process called gelation. Gelation is a very complicated transformation of 

matter from a liquid (a sol) to a solid-like (a gel) at a critical gelation point, 

at which all polymer chains are connected together. The main property of 

polymer networks is their capability to resist the solvent introduced to them, 

as they cannot be dissolved in solvents but rather they swell in good sol­

vents. This swelling process can be characterized by the swelling ratio which 

may be the ratio between the volume or the mass in the swollen state to 

that in the deswollen or dry state (Figure 3.1). Swollen networks are called 

gels and if the solvent is water then they are known as hydro gels. In other 

words, a hydrogel is obtained when a hydrophilic polymer network uptakes a 

large amount of water by expanding the polymer chains between cross-links. 

Once the solvent is removed, these networks retain their original form, which 

makes them good candidates for many industrial and medical applications. 

Surface coating, paper, photographic and food industries as well as tissue 

engineering and drug delivery and release are good examples which illustrate 
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Figure 3.1: Hydrogel swelling measurements , where the swelling ratio can be 
determined by the ratio of the swollen mass (ms) and dry mass (md). The 
characteristic length scale in hydrogels is the average mesh size, ( 

the importance of such materials [63 , 64, 40, 4, 53]. 

In addition to the classification of polymer networks based on the charged 

nature of the chains forming the networks , which was described in Chapter 2, 

they can also be classified according to the type of the bonds connecting the 

polymer chains. For example, monomers may have a multi-functionality that 

can form covalent bonds connecting these monomers in a three-dimensional 

network. An alternative way is to covalently cross-link polymer chains to 

form the network; rubber is an example of this latter process. Both of 

these gels are known as a "chemical gels", which are permanent and irre­

versible. However , they can undergo volume phase transition when exposed 

to a solvent. In contrast, the physical interactions between linear polymer 

chains, including hydrogen bonding and Van der Waals forces , enable a ther­

morcvcrsible "physical gel" to take place. The following sections will discuss 

physical and chemical hydrogels and their response to the surrounding envi­

ronments. 

3.2.1.1 Chemical Hydrogels 

Chemical hydrogels are stable and permanent gels due to the covalent bonds 

introduced by the cross-links. This type of gel can be formed by polymerising 

monomers in the presence of a cross-linker and an ini tiator to start the poly-
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merisation, J\Iicrogels (gel molecules with a size smaller than 100 pm) and 

nanogels (small hydrogels with size smaller than 100 nm) have been reported 

in the literature which can be distinguished from three-dimensional bulk !r\'­

drogels [57]. There are many ways to polymerise chemical gels, such as radical 

polymerisation, UV polymerisation, gamma rays and X-ray polymerisation 

[65, 66]. The mechanical and physical properties of chemical hydrogels de­

pend strongly on the density of cross-linker in the gel medium. For example. 

the characteristic length scale (mesh size, ~, Figure 3.1) can be controlled 

by the amount of cross-linker added during the polymerisation. However, 

chemical gels are usually heterogeneous due to the cross-linkers not being 

homogeneously distributed in the medium during polymerisation. This can 

form clusters and defects in the hydrogel. Defects in chemical hydrogels also 

arise from non-reacted parts of the chains which can form dangling ends or 

chain loops [40], 

There are three processes to prepare chemical hydrogels: condensation, 

vulcanization and addition polymerisation. The condensation process usu­

ally starts with a monomer solution or melt in which the monomers can react 

with each other if they have a functionality of three or more, while the vul­

canization reaction starts with long polymer chains that can be cross-linked 

by covalent bonds through a cross-linker. An example of the vulcanization 

process is cross-linking natural rubber with sulfur, which was introduced by 

Goodyear in 1839 [40]. In the addition polymerisation process, a free radical 

transfers from one monomer to another resulting in the formation of a chemi­

cal bond. Since some monomers have two double bonds, they can react twice 

with free radicals to form cross-links. This latter process has been utilized 

to make the chemical hydro gels used in this study (see Chapter 5, section 

5.2.1.1). 

3.2.1.2 Physical Hydrogels 

In physical gels, the cross-linking is due to weak or strong physical inter­

actions which results in either weak or strong physical gels. GlaSS\' and 

microCT~'stalline or double and triple helixes are examples of strong phvsi-
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cal gels. Such systems are generally known as thermoreversible gels as the 

bonds break at high temperatures and reform at lower temperatures. At a 

given set of experimental conditions, strong physical gels are analogous to 

the chemical gels described above. In contrast. weak physical interactions. 

such as hydrogen bonds and ionic associations, form physical gels that hm'e 

temporary cross-links with a finite lifetime as they can break and reform 

continuously. This lifetime is important to distinguish between strong and 

weak physical gels. If the lifetime is sufficient enough for a gel to appear like 

a solid, it can then be considered as a strong physical gel. J\Iicrophase sepa­

ration in block copolymers to form micelles is an example of weak physical 

gels [53, 40, 57, 67]. 

3.2.1.3 pH and Salt Effects on Chemical Hydrogels 

The swelling behaviour of ionic networks was introduced in Chapter 2. sec­

tion 2.4.1. pH-sensitive hydrogels are weak polyelectrolytes having acidic 

or basic groups which can accept or donate protons in response to the pH 

environment. Altering the ionization of these groups results in a net charge 

giving rise to more repulsion or attraction forces. These forces in turn cause 

the swelling and collapse of polymer gels which is always explained by an os­

motic pressure effect. In general, polymers can be classified into neutral 

and charged (see Chapter 2). However, charged linear polymers as well 

as cross-linked polymer gels can be subdivided on the basis of functional 

groups into polyacids and polybases. Polyacids, such as poly(methacrylic 

acid) (PMAA), have carboxylic acid groups that accept protons at low pH 

and donate protons at high pH. However, at high pH it is argued that the 

swelling degree decreases at some point due to charge shielding [68, 3]. On 

the other hand, polybases, such as poly(N,N'-diethylaminoethyl methacry­

late) (PDEAEMA), show the opposite effect as they become ionized at 1m\" 

pH due to the release of protons, which is indicated by high swelling degrees 

at low pH. 

The oscillation between swollen and collapsed states by changing the pH 

of the solution has been observed and reported many times in the literature 
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mimicking biological muscles. For instance, Crook and co-workers [68] ob­

served the ability of PMAA hydro gels to change their size periodicall~' with 

an oscillating pH between 3 and 7. Similar results were reported b\· Deen 

et ai. [69], showing the ability of hydrogels synthesized by copolymerizing 

N-acryloyl-N'-ethyl piperazine (AcrNEP) and methyl methacrylate (1\[\I:\) 

to oscillate periodically when alternating the pH between 2.6 and 7. 

Various microscopic (e.g. scanning electron microscopy SEl\I and atomic 

force microscopy AFM) and spectroscopic (e.g. SANS and SAXS) techniques 

have been used to explore the internal structure of hydrogels in response 

to external stimuli. For example, He et ai. [70] used SEM amongst other 

techniques to study the morphology of Pl\IAA hydrogels swollen b~' water and 

a solvent mixture of water and ethanol. There results (Figure 3.2) showed 

that it is not only the pore size that is dependent on the quality of the solvent 

but the morphology of the walls between these pores; solvent containing 

higher amount of water gave a hydrogel with smaller pores and thicker walls. 

The presence of simple salts like NaCI and CaCb has been ohserved to 

affect the swelling behaviour of hydrogels and some other physical properties. 

such as shear modulus [71, 72, 73, 74]. For almost all polyelectrolytes in 

solution, it is known that at very low salt concentrations the electrostatic 

repulsive forces increase, leading to an increase in the swelling degree until 

a critical point is reached at which charge screening takes place. Benmd 

this point, a dramatic volume transition takes place depending on the nature 

of the charges in the solution. The discussion in Chapter 2 showed the 

dependence of the swelling of ionic hydrogels on ion valency. This explains 

the reported results in the literature in which CaC12 was found to introduce 

a stronger effect on the gel structure than NaCl [74, 75. 76]. 

3.2.2 Nanocomposite Hydrogels 

Conventional hydro gels described in section 3.2.1 are reasonable materials for 

certain tasks. However, some applications require materials \yith improved 

properties. which can be fulfilled by introducing other organic or inorganic 

materials into the hydrogels. The resulting multiphase solid materials are 
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Figure 3.2: SEM images of swollen PMAA hydrogels with swelling rat io SR= 
4. 3 in different pH solutions: (A) pH= 6.2 and (B) pH= 3.0. The solvent is 
a mixture of (A) 9:1 and (B) 1:4 water and ethanol. (Taken from H. He and 
co-workers, Photopolymerization and structure form ation of met hacr~ 'li c acid 
based hydrogels in water/ ethanol mixture, Polymer, 47, p1612, Copyright 
(2006) vvith permission from Elsevier Science) [70] . see appendix A. I. 
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known as composite hydrogels. If at least one phase has one: two or three 

dimensions at the nanoscale (1-100 nm), a nanocomposite hydrogel \vill be 

obtained [10, 77, 7S, 79]. The presence of these nanostructured materials 

in the gel composite exhibits significant improvements in the properties of 

the system including mechanical behaviour, molecular permeability and the 

control of drug delivery and release. In some situations, the introduced nanos­

tructured materials yield new properties that cannot be found in the original 

polymer matrix. For example, introducing magnetic nanoparticles to pol~'­

mer networks results in nanocomposite gels with magnetic properties which 

would not be achieved with traditional hydrogels. This type of nanocompos­

ite hydrogels is known as a "ferrogel", which will be discussed in the following 
section. 

3.2.2.1 Ferrogels 

Ferrogels are magnetic hydrogels which are fabricated by introducing mag­

netic nanoparticles (rv 10 nm) into polymer networks during or after poly­

merisation. The presence of these magnetic nanoparticles enhances the influ­

ence of external magnetic fields on hydrogels. The concept of "ferro gels" \vas 

first introduced in 1995 by Zrfnyi and co-workers, who synthesised magnetic 

gels by introducing Fe304 nanoparticles into poly(N-isopropylacrylamide) 

(PNIPAm) and poly(vinyl alcohol) (PVA) networks [7, 17, 16]. The au­

thors first studied the mechanical properties of such materials in uniform 

and nonuniform magnetic and electric fields [SO]. Their results showed that 

uniform magnetic fields align ferrogel beads in the direction of the applied 

magnetic field, whereas nonuniform fields form aggregates of ferrogel beads. 

This was explained by, in the case of nonuniform magnetic fields, the field­

particle interactions being dominant, causing the particles to experience a 

dielectrophoretic or magnetophoretic force, resulting in the particles being 

attracted to the regions of stronger magnetic field intensities. In contrast. 

in uniform magnetic fields there is no field gradient and therefore there are 

no field-particle interactions. In this case, particle-particle interactions are 

dominant and the attracti,"e forces between these particles influence the gel 
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structure. These results suggested many potential applications in which these 

ferrogels can work as magnetic actuators. 

Several researchers have used different techniques to investigate the mobil­

ity of magnetic nanoparticles within the ferrogel matrix. For example, works 

by Torok and co-workers involving neutron spin echo (NSE) and small-angle 

neutron scattering (SANS) confirmed that there is no translational diffusion 

of Fe304 nanoparticles within PYA ferrogels [81, 82]. X-ray photoelectron 

spectroscopy (XPS), which can measure the binding energy, was used by Hu 

et al. [83] who found that magnetic nanoparticles were chemically attached 

to polymer chains in the ferrogel. 

The last decade has seen an increase in the number of studies of ferro­

gels in terms of their synthesis and characterisation. For instance, Chatter­

jee and co-workers [84] synthesized a biodegradable magnetic gel by cross­

linking hydroxypropyl cellulose and maghemite. Their study showed a uni­

form distribution of magnetic particles as a result of using a surfactant, 

cetyldimethylethylammonium bromide (CTAB), to modify the surface of the 

ion oxide nanoparticles. The magnetic properties of the ferrogels in this study 

showed a broad range of blocking temperatures below room temperature. 

Therefore, a superparamagnetic behaviour of these materials was reported. 

A novel type of ferrogel was obtained by Qin et al. [85] who used Pluronic 

F127 copolymer (a copolymer of poly( ethylene oxide) and poly(propylene 

oxide)) and superparamagnetic iron oxide nanoparticles to synthesize an in­

jectable ferrogel. This type of ferrogel has the advantage of being temperature 

and magnetic field-sensitive. Thus, below its temperature transition point, 

it is in the form of a "sol" (or liquid) that can be injected into the body, for 

example, with drug or biological cells incorporated with it [86]. The release 

of the drug from these ferro gels after the injection can be controlled by the 

applied magnetic field. 

Another approach to prepare ferro gels was demonstrated by Resendiz-

Hernandez and co-workers [87], which involved the use of freezing-thawing 

technique to form a ferrogel of PYA and magnetite nanoparticles ('"'-' 12 nm) 

without the need for cross-linkers. However. the disadvantage of this tech­

nique is that magnetic nanoparticles form large agglomerates ('" 58 llm) 
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inside a PYA matrix resulting in a superparamagnetic behaviour of the fer­

rogel. 

In another study by Czaun et al. [88]. it was found that it is possible 

to employ magnetic nanoparticles as nano cross-linkers to replace the con­

ventional cross-linking agents that might be toxic. The authors used the 

"grafting from" method, in which an initiator is used to grow polymer chains 

from inorganic surfaces, to functionalize iron nanoparticles via atom transfer 

radical polymerisation (ATRP). Although this novel approach to prepare fer­

rogels might help to reduce the risk of toxicity, the mechanical and swelling 

properties of the resulting ferrogels have not been tested. 

The type of magnetic particles used to prepare ferrogels plays a signifi­

cant role in determining the magnetic and mechanical properties of the fer­

rogel. The most reported materials for this purpose in the literature are 

magnetite and maghemite. However, other magnetic compounds can be 

used to obtain ferrogels. For example, cobalt-ferrite (CoFe204) was uti­

lized in a study by Monz et al. [89]. In this study, the authors investigated 

the magnetic properties of ferrogels containing CoFe204 and their analogy, 

ferrofluids. The transformation from a superparamagnetic behaviour in the 

ferrofluids to a ferromagnetic behaviour was observed. This was explained by 

CoFe204 nanoparticles showing Neel relaxation when in the gel matrix which 

is responsible for the magnetization hysteresis, whereas Brownian rotational 

relaxation is restricted due to particle-polymer mechanical interactions. In 

contrast, Brownian rotational relaxation is dominant in ferrofluids leading to 

a superparamagnetic behaviour. 

3.2.2.2 Applications of Ferrogels 

The magnetic properties of ferrogels, mentioned in the previous section~ have 

made them useful materials for many possible applications including bio­

separation, artificial mussels and molecular delivery and release. However, 

the focus of this section will be on the use of ferro gels for molecular deli-verv 

and release under applied magnetic fields. In fact, there are two mechanisms 

for the use of ferro gels as delivery carriers. depending on the size of the 
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molecules (solute) required to be delivered; these are illustrated in Figure 

3.3. In the first case, the solute molecule size is small compared to the mesh 

size of the ferrogel and therefore, under applied magnetic fields, ,,"hen the 

ferrogel contracts, solute molecules can be expelled out of the gel medium 

depending on the magnetic field strength. In the second case, the solute 

molecule size is comparable to or larger than the mesh size of the ferro­

gel. As the mesh size becomes smaller in the applied magnetic field, solute 

molecules get trapped inside the polymer network, restricting their release 

to the surrounding environment. When the magnetic field is removed, the 

ferro gel swells again and releases the trapped molecules. 

There are a few examples in the literature in which drug release (the first 

case described above) from ferro gels has been described. For instance, Liu 

et al. [90, 83] showed that drug release rate can be controlled b," an on-off 

magnetic field switch and the time duration between two alternating on-off 

operations. This study also showed that the size of Fe304 nanoparticles in 

the PYA and gelatin ferrogel affects the performance of the system, as larger 

Fe304 nanoparticles result in more sensitivity due to their stronger saturation 

magnetisation and smaller coercive force (see Figure 3.4). Another study by 

the same authors exhibited a similar behaviour of gelatin-Fe30-J ferrogels in 

which the release rate of vitamin B12 was found to decrease by almost 10%, 

in a magnetic field [91]. 
In another study, Satarkar and Hilt [92] found that the application of 

a high frequency (300 kHz) alternating magnetic field (AMF) to ferrogels 

made of temperature-sensitive polymers, such as PNIPAm, can control their 

transition temperature given that magnetic nanoparticles generate heat in 

AMF due to Neel and Brownian relaxations. This can be used to enhance 

the rate of drug release by a pulse application of Al\IF. These authors also 

reported the use of these ferrogels as valves in microfiuidic devices [93]. 

3.3 Temperature-responsive Polymers 

In addition to the polymeric systems that are responsi,"e to pH. ionic strength 

and magnetic fields, described previousb- in this chapter, there are some pol~--
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Figure 3.3: Schematic diagram showing the mechanism by which a ferrogel 
responds to an external magnetic field . In zero magnet ic field , the ferrogel 
can be swollen and drug molecules , for example, can penetrate the network. 
When an external magnetic field is applicd , the fcrrogel cont racts and rc­
leases drug molecules to the surrounding environment . Once the magnetic 
field is removed the ferrogel retains its original state. In diagram (a) , small 
drug molecules are released once the ferrogel cont racts. On the other hand , 
diagram (b) shows large molecules which are trapped under the applied mag­
netic filed but can be released by removing the magnetic field . 
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Figure 3.4: Drug release behaviour of gelatin ferrogels under a high-frequency 
magnetic field . P lot (a) shows the behaviour of the ferrogels when exposed 
to t he magnetic field for 10 min ; whereas plot (b) illustrates t he effect of 
on-off operation of magnetic fie ld on the drug release from gelatin ferro­
gels. In both cases there is an effect of the size of magnetic nanoparticles on 
the performance of the system. (Taken from S.H. Hu and co-workers , Con­
trolled Pulsatile Drug Release from a Ferrogel by a High-Frequency Magnetic 
Field , Macromolecules, 40 , p6786 , Copyright (2007) wit h permission from the 
American Chemical Society [83], see appendix A.I ). 
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mers which are highly responsive to temperature. The most widely investi­

gated responsive systems are those stimulated by temperature and pH due 

to their ease of modification under laboratory conditions and their poten­

tial use in biomedical applications, both in vivo and in vitro. For example, 

temperature-responsive polymers have been considered as candidate smart 

materials for tissue engineering applications [94] and delivery vehicles for 

therapeutic agents [95, 6]. 

In general, the thermoresponsive nature of these polymers exists because 

they possess a critical solution temperature. The solubility of a polymer in 

water is changed dramatically at this temperature which leads to a transition 

between swelling and collapsing. A well known example is gelatin, in which 

the solubility decreases with decreasing temperature and at an upper criti­

cal solution temperature (UeST) this polymer undergoes a phase transition 

from a solution to a gel. However, many other temperature responsive poly­

mers display reversed solubility. In other words, these polymers have been 

observed to undergo a sudden decrease in solubility as the temperature of 

the system increases. The temperature at \vhich this reverse phase transition 

occurs is the lower critical solution temperature (LeST), as shown in Figure 

3.5. The LeST here indicates a transition from hydrophilic to hydrophobic 

structures. This phenomenon is thermodynamically described as a result of 

a small change in entropy which leads to a transition from a random pol)"mer 

coil to a collapsed polymer (or globule). However, this globule structure is a 

highly disordered system. 

The most widely studied thermoresponsive polymers are poly( N -alkylacrv­

lamide)s due to their ease of synthesis via free radical polymerisations. l\lore­

over the LeST of this class of materials can be controlled by using various , 
alkyl groups, which in turn change the balance between hydrophobicity and 

hydrophilicity. It is also possible to copolymerize these polymers with some 

other desired materials to control their LCST. One of the most widely used 

polymers of this class is poly(N-isopropylacn"lamide) (PNIPAM) which has 

a sharp phase transition around its LeST of 32°C. Because the LeST of 

PNIPAl\1 is close to the bocl~' temperature. it is a popular polymer for use 

in many proposed applications [96, 20]; for these reasons there have been 



CHAPTER 3. RESPONSIVE WATER-BASED SYSTEMS 62 

T 
Two phases 

LeST-

Single phase 

o 1 
¢ 

Figure 3.5: Schematic diagram showing the phase diagram of a polym r 
binary mixture indicating the change of LCST with molecular weight. 

many attempts to increase this transition temperature to be closer to 37°C. 

The following sections will discuss the thermodynamics of PNIPAM and the 

possibility of controlling its LCST. 

3.3.1 Thermodynamics of PNIPAM 

The reversible solubility of PNIPAl\I was first reported by Scarpa et al. m 

1967 [97]; however, a full understanding of the mechanism of this phase 

transition is still lacking. The scope of this section is only concerned with 

the basic mechanism by which the LCST of PNIPAM is controlled including 

some factors that affect this LCST. For more details about the historical 

and current discussions about the LCST of PNIPA II , the interested reader 

is referred to some reviews in the literature [20j . 

A remarkable change in solubility of linear PNIPAM chains in aqueous 

solut ion is observed at 32°C . Below this temperature, linear PNIPAM chains 

are in the form of individual extended coils which is a characteri ti of a 

polymer dissolved in a good solvent. Above this temperat ure, PNIPA I co ils 



CHAPTER 3. RESPONSIVE H'ATER-BASED SYSTEA1S 63 

collapse and form aggregated globular structures which precipitate out of 

solution. This can also be observed at the macroscopic le\"el. at high polymer 

concentration, as a change from a clear to a cloud:,>! solution. 

As described in Chapter 2, section 2.3, any solubility process or mixing 

can be explained by the second law of thermodynamics (equation 2.11). Be­

low the LCST of the polymer, Gibbs free energy is dominated by the enthalpy 

term which is favourable for interactions such as hydrogen bonding between 

water molecules and the amide moiety of PNIPA~Is. Once the temperature 

increases, hydrogen bonds formed earlier will break, increasing the entropy of 

the system until it overcomes the enthalpy and the Gibbs free energy becomes 

positive which leads to the collapse of the polymer. 

The phase transition behaviour of PNIPAM can be explained by two dis­

tinct polymer-solvent interactions. First is the hydrophobic effect, which is 

a result of water molecules orienting themselves around non-polar regions of 

the polymer (i.e. the isopropyl groups), forcing the isopropyl groups to asso­

ciate with the polymer backbone to form aggregates. The second effect is the 

hydrogen bonding effect, which is a result of water molecules orienting them­

selves around amide moieties [20, 98]. These two effects were first suggested 

by Heskins and co-workers in 1968 [99] when they introduced the "ice like" 

behaviour of water molecules around amide and isopropyl groups. However, 

different research groups have reported, with evidence, each effect indepen­

dently as the driving force for the phase transition [100, 101, 102, 103, 104]. 

Soon after these arguments, Winnick [105] suggested that both effects are 

important in the phase transition behaviour of PNIPAl\L which is the con­

clusion that was drawn in Schild's review in 1992 [20]. 

The Flory-Huggins theory of solubility and mixing of polymer solutions 

(see Chapter 2) included a characteristic parameter (the interaction param­

eter, X) that describes the strength of the interactions between the solvent 

molecules and the monomer units within a polymer. The quality of sol­

vents can be classified based on this interaction parameter. In conditions 

where \ = ~ (the () point), the polymer-solvent interactions are balanced 

b:v lllonomer-monomer interactions and the polymer is said to be an ideal 

random coil. \\Then \ < ~, the solvent is described as "good". in which 
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monomers effectively repel each other and monomer-solvent interactions are 

energetically favcmrable for mixing. Therefore, the polymer is in a swollen 

random coil conformation. By contrast, when X > ~, the solvent is "poor", 

in which the solvent-monomer interactions are weak and the polymer exists 

in a collapsed conformation [40, 106]. 

According to the second law of thermodynamics, mixing and solubility 

are dependent on temperature. Thus, ideal () conditions occur only at a 

specific temperature which is called the () temperature. For example, the 

transition temperature of linear PNIPAM is observed rapidly over the () tem­

perature, which is equivalent to the LCST, 32°C. In the case of PNIPAM, 

water is a good solvent below 32°C, whereas it is a poor solvent above it where 

PNIP AM linear chains change their structures from swollen to a collapsed 

conformation. 

The LCST of PNIPAM is affected by various factors including polymer 

design and additives to the solution like salts and surfactants. The focus of 

this work is on the effect of polymer architecture on the LCST of PNIPAMs. 

PNIPAM has been rarely used as a homopolymer and normally it is copoly­

merized with other monomers in order to control its physical properties and 

to be able to functionalize it with biochemical materials. This copolymeri­

sation has been used to modify the LCST of PNIP AM depending on the 

architecture of the obtained copolymers. For example, when PNIPAM is 

copolymerised with a more hydrophobic monomer, such as styrene [107], the 

LCST will decrease. Whereas, if it is copolymerised with a more hydrophilic 

monomer, such as acrylic acid [108, 109], the LCST will increase. Block or 

graft copolymerisations [110, 111, 112] are particularly popular, but these 

have a little effect on the LCST. This was explained by PNIPAM chains 

behaving as independent homopolymers in these systems. 

Chain end groups also have a significant effect on the LCST of PNIPAMs. 

Chung et al. [113] were the first to introduce the idea that the transition 

from a soluble to an insoluble phase starts from chain ends. These authors 

showed that the LCST is dramatically enhanced when the end groups were 

attached to one end of the polymer chain rather than along the backbone. 

Other pol.vmer architectures of PNIPAM, such as microgels [23] and 
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highly branched PNIPAl\I [114, 21] have also been reported with an LCST 

different from their linear PNIPAM counterparts. For example, in highly 

branched PNIP Al\I, it has been found that the LCST depends on the num­

ber of branch points per backbone and the end groups of these branches 

[115, 21]. 

3.3.2 Highly Branched PNIPAMs 

The wide range of applications of branched polymers is due to the large 

number of chain ends per molecule and their controlled architecture. Whilst 

polymer architecture affects the rheology and solubility of branched poly­

mers, the large number of chain ends is useful for functionlization with dif­

ferent chemicals from those along the main chain. Branched polymers can be 

synthesized by chain growth polymerisation in which branching units are used 

acting as transfer agents or initiators. Addition-fragmentation and reversible 

addition-fragmentation chain transfer (RAFT) methods are examples of the 

approaches that can form branched polymers. RAFT method has the advan­

tage of giving the opportunity to modify the end groups [21]. This method 

has been used throughout this work and the mechanism of such approach 

will be discussed in Chapter 7, section 7.2.1. 

Using RAFT polymerisation, Rimmer et al. [21, 26, 29, 114, 5] were 

able to prepare various highly branched PNIPAMs with different functional­

ities for different applications. For example, they used a polymerizable chain 

transfer agent that contains an imidazole thioacarbonylthio RAFT group to 

prepare highly branched PNIPAM with imidazole groups at the chain ends. 

These polymers were found to be useful for protein purification and temper­

ature controlled entry and delivery into cells [29, 5]. A similar approach was 

used by Vogt and Sumerlin [116] to prepare branched PNIPAM in which they 

used RAFT polymerization with acryloyl trithiocarbonate. 

I t was found that an increase in the branching degree of PNIPAM leads 

to a reduction in the LCST by several degrees compared to the equivalent 

linear PNIPAl\I [21, 114]. This was attributed to the aggregation of chain 

end groups. Another study by Rimmer et al. [115] showed that converting 
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the chain end groups from N-pyrrole into more polar acids, such as COOH, 

improves the stability of the solution above the LCST by forming a dispersion 

of sub-micron particles. The LCST was also found to increase in the case of 

COOH end groups to be above that of N-pyrrole end groups. 

Although many studies showed that the phase transition behaviour is 

independent of PNIPAM concentration, at least below 1% [103, 20], more 

recent studies on PNIPAM hydro gels [117] and highly branched PNIPAI\1 

[118] revealed a dependence of the LCST on concentrations above 1%. In 

the latter study, Tao et al. used laser light scatting (LLS) to measure the hy­

drodynamic radius of highly branched PNIPAM and found that the particle 

size (or molecular weight) and the polymer concentration play a significant 

role in controlling the phase behaviour of PNIPAM. 

3.4 Diffusion in Water-based Systems 

The basic principles of diffusion of macromolecules in polymeric systems were 

introduced in Chapter 2. The main purpose of this section is to review some 

of the most advanced studies on molecular transport in polymer solutions 

and gels. Diffusion in polymer solutions and gels is of great importance 

for biological and industrial applications, such as drug delivery and release 

in living tissue, and chromatographic separation. Thus, a thorough under­

standing of diffusion in polymeric systems is required to explore the structure 

and the mechanism of molecular transport in these systems. For instance, 

the diffusion coefficient of single polymer chains was found to be dependent 

on the structural behaviour of hydrogels including the change of mesh size, 

C with response to the change in the surrounding environment. This gives 

the opportunity to sense the entrant structure of these materials which is dif­

ficult to obtain by conventional techniques. Various experimental techniques 

have been utilized to study diffusion in gels and solutions. Among these 

techniques are gravimetry, ion scattering, dynamic light scattering, neutron 

reflectometry and neutron spin echo [34, 35, 119, 120,59]. Fluorescence spec­

troscopy techniques, such as fluorescence correlation spectroscopy (FCS) and 

fluorescence recoyer~' after photobleaching (FRAP) are also powerful tools for 
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Figure 3.6: Chemical structure of fragment of dextran molecule showing a-
1,6 glycosidic linkage between glucose molecules. The branching begins from 
a-1,3 linkages. 

studying diffusion. 

Fluorescently labeled dextran is the most widely used probe to study dif­

fusion in living and polymeric systems. Dextran is a neutral homopolysac­

charide that has many glucose units connected by a-1,6 linkeages to form the 

molecular backbone. Dextran is a branched biopolymer with the side-chains 

being formed by a-1,3linkeages of glucose units (Figure 3.6). Water is a good 

solvent for dextran in which it forms a clear and stable solution. However, as 

a neutral polymer, the pH of the solvent and the addition of salt do not affect 

the solubility and viscosity of dextran. In many studies and for several bio­

logical applications dextran has been labeled with fluorescent materials, such 

as fluorescein isothiocyanate (FIT C) . It is debatable whether FITC-dextran 

is a neutral or charged polymer, although in many cases in the litreatue it is 

considered as a negatively charged biopolymer due to the negatively charged 

FITC that is attached to it [121, 122]. FITC-dextran has been used many 

times as a probe to study diffusion and release in various polymeric systems. 

For example, FCS has been utilized to investigate the effect of polymer con­

centration, temperature, pH and salt on the diffusion of FITC-dextran in 

polymer solutions and gels [123, 12-1, 125, 126. 127, 128, 129]. This method 

will be used throughout this work to study the diffusion of FITC-dextran 
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in PMAA hydro gels and ferrogels (Chapters 5 and 6) and highly branched 

PNIPAM solutions (Chapter 8). The choice of the molecular weight of FITC­

dextran (70 kDa in this study) was based on the possibility of penetrating 

the polymer networks in the collapsed state. Smaller molecular weights of 

this tracer will minimize the interactions between the probe molecules and 

the mesh of the polymer network. However, these interactions were not taken 

into account in this study. Previous studies [130] showed a strong dependence 

of diffusion coefficient on the probe molecular weight. This can be explained 

by considering Phillies diffusion model: 

(3.1 ) 

where (X is a scaling prefactor that is a function of the probe size and its 

interactions with the polymer matrix. It has been found that (X depends 

strongly on the molecular weight as ((X rv M~·8) for macromolecular probes. 

c in equation 3.1 refers to the concentration of the polymer matrix and v is a 

stretching exponent that is related to the properties of the polymer solution 

and has a value between 0.5 and 1. 



Chapter 4 

Experimental Techniques 

4.1 Introduction 

Progress in nanotechnology has brought with it the need to describe and 

understand the processes and interactions on a molecular basis. There­

fore, powerful techniques have been developed or improved, incorporating 

lasers, X-rays and neutrons. In this chapter, the experimental techniques 

used throughout this work will be discussed. However, some techniques were 

used only for basic characterisations, such as NMR, GPC and UV-visible 

spectroscopy, and these will only be briefly mentioned in the subsequent 

chapters. All of the techniques described in this chapter are considered to 

be analytical techniques that provide information about the examined ma­

terials at the nanoscale. These methods use primary probes (light, X-rays, 

neutrons) to excite secondary effects (electrons, photons, ions) in the regions 

of interest in the sample under study. These secondary effects can be recorded 

as a function of different variables including energy, temperature, intensity, 

angle and phase. 

The work in this thesis involved the use of fluorescence correlation spec­

troscopy (FCS) and neutron spin echo (NSE) to investigate the dynamics 

in different polymeric systems; small-angle (X-ray and neutron) scattering 

(SAXS and SANS) to study the structural behaviour of different organic and 

inorganic materials. In addition, a superconducting quantum interference 

69 
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device magnetometer (SQUID) was used to measure magnetization and par­

ticle size. The theoretical background and the principles of these techniques 

will be discussed in this chapter, but the operation of these techniques is 

beyond the scope of this work. 

4.2 Fluorescence Correlation Spectroscopy 

One of the most powerful techniques with a temporal resolution for investi­

gations at the molecular level is fluorescence correlation spectroscopy (FCS) 

which has been extensively used in physics, chemistry and biology. The most 

obvious examples are the study of molecular mobility, photophysics and pho­

tochemistry. There is a considerable number of FCS studies, developments 

and reviews in the literature [131, 132, 133, 134, 135, 136, 137, 138], and the 

aim of this section is to give an overview of the principles of the technique. 

FCS was first introduced by Magde and co-workers in 1970 as a dynamic 

light scattering technique [139]. The early work done using FCS was the 

study of biological systems including DNA kinetics and interactions [131]. 

After that, FCS was used for measuring concentrations and molecular mo­

bilities [134]. In 1993, Rigler and co-workers demonstrated the importance 

of the confocal volume for FCS measurements. Following this, in 1995, the 

multiphoton technique was introduced in order to decrease and improve the 

sampling volume in a similar way to the confocal technique but without 

the need of emission pinholes [140, 141, 133]. Another advantage of using 

two-photon FCS is that only the part of the sample at the focal spot is ex­

cited by the used laser which prevents damage of other parts of the sample. 

This was a great development especially for living cells [141]. In addition 

to its usefulness in three-dimensional systems, FCS has been adopted for 

two-dimensional diffusion (on surfaces) [1-12. 143]. 

4.2.1 Principles of FCS 

FCS is a single molecule technique that uses a very tightly focused laser beam 

to observe the random Brownian motion of fluorescently labelled molecules 
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within a very small detection volume (rv 1 femtolitre). Earlier confocal S\"S­

tems like the one used by Ricka and Binkert (1989) [1~~] suffered from poor 

signal-to-noise ratio due to many reasons including the large number of de­

tected molecules, unstable laser sources and low-efficiency detectors. The 

widespread use of confocal systems started after the work of Rigler and co­

workers in the early 1990s [138]. The use of confocal illumination was the 

main key for pushing the sensitivity of FCS to the single molecule level. The 

setup used in the Rigler confocal system contains an epi-illuminated micro­

scope configuration, a strong and focused laser beam, a small pinhole and an 

avalanche photodiode (APD) detector. This focused laser beam is reflected 

by a dichroic mirror into a high numerical aperture (NA) objective, which 

projects a more focused laser beam into the sample. The emitted light from 

the sample is collected by the same objective which then passes through a 

pinhole to be filtered by cutting off the out-of-focus light. This results in the 

formation of a typical observation volume (confocal volume) for FCS of about 

1 femtolitre. This small detection volume allows the fluctuations generated 

by single molcules to be accurately recorded. As a result, the signal-to-noise 

ratio is large compared to that at high number of molecules. Thus, FCS 

has been found to perform best when the number of fluorophores in the de­

tection volume is <10 [145]. In typical experiments, the concentration of 

the fluorescent probes should be around 1 nM, which gives an average of 

0.7 molecules in the detection volume (for the setup used in this work with 

a detection volume of 1.2 femtolitre). The diffusion or transport into and 

out of the detection volume can be easily measured for the average num­

ber of molecules passing through this volume. Therefore, FCS is an ideal 

technique to measure diffusion coefficients, fluorophore concentrations, par­

ticle sizes, chemical reactions, conformational changes, binding/unbinding 

processes and some others. 

4.2.2 Fluorescence Phenomena 

The emission of light from electronically excited states in any substance is 

called luminescence. There are two types of luminescence, fluorescence and 
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Figure 4.1: A schematic of a typical Jablonski diagram showing the radia­
ti ve process (solid arrows) and non-radiati ve processes (dashed arrows) from 
the singlet states (ground, 80 , and excited , 81 and 82 , states) and t riplet 
states T 1 and T 2. Each of these electronic energy levels has a number of 
vibrational levels (0 , 1, 2, etc) in which the fluorophores can exist. This 
diagram also shows the two different photophysical processes: fluorescence 
and phosphorescence. 

phosphorescence, depending on the excited states from which t he emission 

occurs. A Jablonski diagram (Figure 4.1) shows the electronic states of a 

substance and the transition between them. Acording to the Pauli exclusion 

principle, the ground state is usually occupied by two electrons. The absorp­

tion of a photon (with energy hv A) results in an excitat ion of an electron 

from the ground state, So , to an excited state , Sn , (n = 1,2,3 , ... ) with many 

vibrational levels. The excited electrons can return to the ground state via 

a number of routes including radiative and non-radiative transit ions. 

The radiative transitions include the absorption of energy (hl! A)' when 

the excited electron moves from the ground state to a higher energy level, 

and the photon emission energy (hl! em ). Fluorescence emission occurs when 

an electron t ransfers between the same spin states (Sn - So)· On the other 

hand , the phosphorescence emission occurs when the transition is between 

states with different spin multiplicity (Tn - So). The fluorescence emission 
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Figure 4.2: A Schematic graph showing the Stokes shift between excitat ion 
and emission light . 

has a lower energy (longer wavelength) compared to the excitation energy. 

This phenomenon is called the Stokes Shift (figure 4.2). 

In contrast , the non-radiative transitions can t ake place in three different 

ways. First, the vibrational relaxation of the excited st ate to its lowest vibra­

tionallevel , which occurs quickly « 1 ps) and can be enhanced by physical 

contact of the excited molecule with other molecules. The energy lost in t his 

process dissipates in the form of heat. Second, the internal conversion which 

is a result of the transition from an excited state to a lower electronic state 

of the same spin multiplicity. Third, the intersystem crossing which is the 

transition between the electronic states with different spin multiplicity. 

There are a number of processes that occur during the excited state, such 

as photobleaching , collisional quenching and fluorescence energy t ransfer , 

which can cause a loss of some fluorescence phot ons. For example, photo­

bleaching , which occurs when a fluorophore irreversibly loses the abili ty to 

emit light due to chemical damage and covalent modification , is fou nd to 

arise after the transition from an excited singlet state to the excited triplet 

state in many fluorescent molecules, because t he t riplet st ate is a long-lived 

st a te tha t allows excited molecules to interact with t he surrounding environ­

ment for longer times [146] . Although t his phenomenon can be destructive 

to microscopy measurements , it has been exploited for st udying diffu ion of 

lIlolecules in a technique called fluorescence recovery aft er pliot-oblearilillg 
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(FRAP) [147, 146]. Therefore, not all of the excited fluorophore molecules 

will go back to the ground state, and the ratio between the emitted and 

absorbed photons is called the quantum yield, which can be between 0, for 

non-fluorescent materials, and 1 for highly fluorescent fluorophores in the 

ideal case assuming no triplet state excitations. However, even highly flu­

orescent materials do not emit as many photons as they absorb due to the 

above mentioned non-radiative transitions which compete with fluorescence. 

This quantum efficiency can be affected by the surrounding environment, 

such as temperature, pH and ionic strength [148]. 

Fluorophore molecules can be repeatedly excited, unless they are dam­

aged by photobleaching, resulting in a cyclical process of fluorescence. The 

distribution of the excitation spectrum of a given fluorophore is due to the 

fact that an electron can be excited from different energy levels in the ground 

state and can move to any energy level of the excitation state. Fluorescence 

techniques are highly sensitive and this sensitivity is determined by the shift 

in the wavelength between the excitation and emission spectra (Stokes Shift, 

Figure 4.2). The emitted photons can be detected against low background 

by using bandpass filters to separate them from the excitation ones (see the 

setup in the next section). In dilute solutions, there is a linear relationship 

between the fluorescence intensity and the molar excitation coefficient, the 

optical path length, the fluorophore concentration, the fluorescence quantum 

yield, the excitation intensity and the detector efficiency in the instrument. 

If one used a laser light source, then the illumination wavelength (energy) 

and the excitation intensity can be constant and the fluorescence intensity 

would be only a linear function of the fluorophore concentration. However, at 

high fluorophore concentrations, this relationship is not linear due to some 

other processes, such as self-absorption, which interfere with the measure-

ment [148]. 

4.2.3 FCS Instrumentation and Setup 

A typical confocal microscope setup is shown in figure 4.3. The incident laser 

beam is collected by an objective and a lens. The resulting parallel beam 
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Figure 4.3: Schematic diagram showing the main principles of FCS and the 
optics of the inverted confocal microscope. 

is then deflected by a main dichroic mirror to an objective lens placed in 

the focal plane of this objective, which fo cuses the beam into a diffraction 

limited volume in the sample, forming a double cone of excitation light (called 

confocal volume). It has been found that the highest intensity is between 

these two cones , although it is possible for the excitat ion and fluorescenc to 

take place anywhere in the volume outlined by the two cones. 

Once the fluorophores are excited , the fluorescence emission is collected 

through t he same objective and focused onto a pinhole. Hence, the waist 

of the laser beam in the sample can be imaged onto the pinhole aperture. 

The main idea of t he confocal approach is spatial filt ering which i u e I to 
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-----------
Figure 4.4: Schematic diagram showing the confocal volume with wand w x y z 

being the confocal waist in xy-plane and z-axis, respectively. 

eliminate the out-of-focus light in the sample t hat is thicker than the plane 

of the focus. The coupling of the obj ective and t he pinhole results in a spa­

tial filter , which controls the size of the sampling volume. If t he pinhole is 

relatively small (30 - 50 pm) , only fluorescent light from t he focal plane of 

the objective can go through this pinhole. This passing light is collected by a 

photon counting detector and then transformed into an autocorrelation func­

tion . However , this autocorrelation function can be affected by some of the 

properties of the detector such as "aft erpulsing". Afterpulsing phenomenon 

is the detector pulse that follow the genuine output. In photomult ipliers, af­

t erpulsing is usually caused by ionized atoms of the residual gas resulting in 

delayed photoelectrons or by the effect of t he fluorescence and luminescence 

of the residual gas . In avalanche photodiode (APD), some of the charge 

carriers are trapped in the junction depletion layer which can be thermally 

released at a later t ime leading to afterpulsing [1 49]. In order to overcome 

the afterpulsing problem resulting from the collected light on the detector , a 

beam splitter is used to split the fluorescent light between two photodetec­

tors. The collected lights on both detectors are then cross-correlated to give 

a similar function to the autocorrelation function but without the afterpul -

ing noise [1 34]. This way of collecting the fluorescent light on two d tector 

is also useful in the case of two photon and two colour FCS et up [1-01 · 
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The sampling volume (confocal volume), shown in Figure -1.-1. does not 

have sharp boundaries due to the diffraction of the light in the sample but 

forms an elliptical shape. Hence, this sampling volume can he considered as 

a 3D image of a point source for which the point spread function of a lens 

system can be applied. This means that there are more excited fluorescent 

particles than those detected. By using a small pinhole, one can approximate 

the point spread function by the Gaussian function. Therefore, the Gaussian 

distribution of the detected intensity can be given as: 

(-1.1) 

where fo is the peak intensity, (x, y) and z are the radial and axial coordinates 

of the fluorescent particle in the confocal volume, respectively, and wxy and W z 

are the radial and axial sizes of the beam waist, respectivel~', \vhere Wz > wxy . 

4.2.4 FCS Autocorrelation Functions 

As mentioned in the previous section, each emitted photon from a single 

molecule in the detection volume is recorded by highly sensitive single-photon 

counting modules in a time-resolved way. The probahilitv of detecting this 

photon determines the shape of the correlation function. This detection 

probability is the probability that a molecule emits a photon and that this 

photon is detected. Therefore, this probability depends on the excitation 

laser intensity distribution and the detection efficiency function. However, 

the number of the detected photons fluctuates with time due to the change 

of the number of fluorescent molecules in the confocal volume (diffusion) and 

the fluctuation in the number of emitted photons per molecule. The diffusion 

of fluorophores in the confocal volume contributes to the signal and the noise, 

while the number of emitted photons per molecule affects the noise only. In 

addition, the background noise and the correlated laser noise contribute to 

the limitation of the signal-to-noise. Although increasing the concentration 

of fluorescent molecules reduces the background in the signal, the amplitude 

of the correlation decreases with the number of fluorescent molecules, .Y. 
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The probability of the molecular detection can be given as: 

P = k . 1(r, t) = k . exp (_ 2(x2 + y2) _ 2Z2) 
10 w2 w2' (4.2) 

xy z 

where k is the collection efficiency function. The total fluorescence intensity 

can be written as: 

F(t) = Q ! 12(r, t)C(r, t)dr, (4.3) 

where C(r, t) is the local concentration of the fluorescent particles. The 

diffusion of these particles into and out of the confocal volume changes the 

particle concentration within this volume which, according to equation 4.3, 

affects the fluorescence intensity. 

If the excitation power is constant, then the fluctuations of the fluores­

cence signal are characterized by the deviations from the temporal average 

of this signal: 

6F(t) = F(t) - (F(t)) , (4.4) 

where 

T 

(F(t)) = ~ ! F(t)dt. (4.5) 

0 

If the signal fluctuations are only due to changes in the particle concen­

tration within the effective confocal volume, Veff, then the fluctuation of the 

fluorescence intensity is given as: 

6F(t) = ~ ! 1(r) . S(r) ·6(0" . q . C(r, t)) . dV, (4.6) 

v 

where ~ is the overall detection efficiency and S(r) is the optical transfer func­

tion of the objective-pinhole combination. The parameter 6(0" . q. C(r, t)) is 

the dynamics of a single probe, where 60" is the fluctuation in the molecu­

lar absorption cross-section, 6q is the fluctuation in the quantum yield and 
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bC(r, t) is the fluctuation in the concentration (Brownian motion) of the 

particles at time t. 

Because it is difficult to obtain the parameters in equation -1.6, it is sim­

plified as follows: 

bF(t) = K, I W(r)b(7]C(r, t)) . dV, (4.7) 

v 

where W(r) is a combination of the two dimensionless spatial optical transfer 

functions, which are related to the spatial distribution of the emitted light 

by: 

W(r) = f(r) . S(r) = exp ( 2(x
2 + y2) _ 2z2) . 

fo w 2 w2 (4.8) 
xy z 

The parameter 7] in equation 4.7 defines the photon count rate per detected 

molecule per second and can be given in terms of the excitation intensity 

amplitude, fo, as: 

7] = fo . K, • (J • q. (4.9) 

This parameter is important as a measure of the signal-to-noise ratio which 

is therefore used for measurement quality and setup. 

The autocorrelation function, G( T), which is used to describe the fluc­

tuation of the flurescence intensity, compares the fluorescence intensity at 

time t, F(t), with that after a lag time, T, F(t + T). Mathematically, the 

normalized form of G( T) can be written as [151]: 

G(T) = (bF(t)bF(t + T)) 
(F(t))2 

(4.10) 

Depending on the diffusing probe, there have been a number of correlation 

models. For example, these models depends on wether the probe is diffusing 

freely or anomalously, or if it is affected by photodynamical properties of the 

dyes (triplet state kinetics and photobleaching). However, the anomalous 

diffusion will not be discussed in this work, as all of the studied systems 

showed no such process. In all of these models, the autocorrelation function 
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is taken as the product of the different involved processes as: 

G(T) = 1 + (Amplitude) . (Flickering) . (Diffusion) 

(4.11) 

where GF (T) and Gdiff ( T) are the correlation of flickering and diffusion, re­

spectively. 

Assuming a freely diffusing fluorophore through a 3D sampling volume 

without any changes in its fluorescence properties (i.e. 67] = 0), then the 

autocorrelation in this case can be given by [134, 131, 136]: 

1 ( T ) ( T)-~ 
G(T) = VefdC) 1 + TD 1 + R2TD ' (4.12) 

where R = wxy/wz is the elongation parameter and the effective confocal 

volume can be calculated as follows: 

(J W(r)dV)2 = 'TT"3/2 . w2 . W 

Veff = J W2(r )dV " xy z· 
(4.13) 

The amplitude of the correlation curve, shown in Figure 4.5, is related to the 

mean number of particles by: 

1 1 
G(O) = (N) = Veff. (C) (4.14) 

The autocorrelation function (4.12) is useful for determining the concentra­

tion of the diffusing fluorophores (as will be seen in chapter 5) and their 

translational diffusion time, TD. From this diffusion time, and for particles 

with hydrodynamic radius less than wxy /10, the diffusion coefficient can be 

obtained using a relationship described by Varma and co-workers [152, 131]: 

(4.15) 

The above-mentioned assumption, however, cannot be true for real dyes 

at high excitation powers (i.e. fluorescence properties change and 67] i- 0). 
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Figure 4.5: A typical autocorrelation curve showing the triplet contribut ion 
at short t ime scales (first shoulder) and the diffusion contri bu tion at longer 
t ime scales (second shoulder). This curve was achieved by plotting the auto­
correlation function described by Equation 4.19. 

Flickering phenomena (intersystem crossing process in Figure 4. 1) are caused 

by the transition of the dye to triplet states. According to quantum mechan­

ics , this transition is forbidden and the fluorophore needs extra t ime to relax 

back to its ground state. The dye at this "flickering" stage cannot emit any 

photons and can accordingly be called a dark stage, which interrupts the 

continuous fluorescence emission of the excited molecule. 

If the fluorescence fluctuations which arise from intra- or intermolecular 

reactions are much faster than those caused by the movement of the particle 

itself, t hen the autocorrelation function can be written in terms of these 

dynamics in a general form as: 

(4. 16) 
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This assumption can only be true if the diffusion coefficient is not affected 

by this reaction [153, 154]. The triplet blinking is described as: 

I 
Xtriplet(/) = 1- Pt + Pt' exp(--), 

It 
( 4.17) 

where Pt is the triplet fraction and It is the triplet time. The addition 

of this term to the autocorrelation function adds another shoulder in the 

correlation curve at shorter time scales (see Figure 4.5). Equation 4.17 can 

also be normalized by dividing by (1 - Pt) [155, 136] to give: 

Pt I 
Xtriplet(/) = 1 + 1 R' exp( --). 

- t It 
(4.18) 

The overall autocorrelation function, including diffusion and flickering, for a 

freely diffusing fluorophore in 3D can be written as: 

1 [( I) -1 ( I) -~ (Pt I )] G ( I) = 1 + N 1 + - 1 + -2 - 1 + . exp( - - ) . ID R ID 1 - Pt It 
(4.19) 

It can be noticed from equation 4.19 that the flickering is independent of the 

size of the confocal volume. One requirment for equation 4.19 to be used 

is that the confocal volume must be Gaussian and therefore the detector 

aperture should be relatively small. 

4.3 Small-Angle Scattering 

Small-angle scattering generally encompasses small-angle neutron (SANS), 

X-ray (SAXS) and light (SALS) scattering [156, 157, 158, 159]. All of these 

techniques use the elastically scattered radiation from a sample to obtain 

a scattering pattern that is used to give information about the size, shape, 

orientation and surface-to-volume ratio of the sample under investigation. 

SANS and SAXS, for example, are able to probe nanostructures ranging 

from 1 nm to more than 100 nm (see Figure 4.6). Therefore, they have 

8 wide range of applications such as in the investigation of polymer and 
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Figure 4.6: A scale diagram of some condensed matters with respective char­
acterisation techniques. 

biological molecules and nanoparticles . The type of radiation one can use 

depends on many factors including the nature of the sample, the sample 

environment , the length scale to be probed and the information that can be 

obtained. For example, SALS cannot be employed to study optically opaque 

samples and SAXS would not be a useful tool to study thick samples, whereas 

SANS can be used in most cases to probe different length scales. Despite the 

difference in radiation , basic laws (Guinier , Zimm, Kratky and Porod) can be 

employed to analyze the data obtained from these three t echniques , making 

them complementary to each other with some differences in the experimental 

details . 
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4.3.1 Small-Angle X-ray Scattering (SAXS) 

Small-angle X-ray scattering (SAXS) is a reliable and economic analytical 

technique that allows one to study the structure and interactions of organic 

and inorganic systems with no need to crystallize the sample under investiga­

tion [160, 161]. Therefore, SAXS has been utilized to probe complex systems 

(from 1 nm up to several hundred of nanometres), such as proteins, nucleic 

acids and a variety of synthetic polymer structures [161, 162, 77, 163, 164, 

165, 166]. The materials that one can study by SAXS could be solid, liquid or 

a combination of solid, liquid or gaseous domains. Particles as well as ordered 

systems and fractal-like materials can be studied using SAXS. Applications 

of SAXS include colloids of all types, metals, cement, oil, polymers, plastics, 

proteins, foods and pharmaceuticals. Despite being mostly used for research 

purposes, SAXS could also be used for quality control. 

4.3.1.1 SAXS Principles 

Scattering processes are generally described by the inverse relationship be­

tween particle size and scattering angle. For example, a particle with size 

between 1 nm and 100 nm, which is larger than the wavelength of X-rays 

(0.15 nm for the frequently used CuKa-line), requires a small range of scat­

tering angles (typically 0.1-10°). X-rays are scattered by electrons; therefore, 

there must be electron density inhomogeneities in the sample under study. 

These electrons oscillate with the same frequency as the X-rays used, then 

emit coherent secondary X-ray waves. If the scattered X-rays have the same 

wavelength as the incident beam, it is called elastic (coherent) scattering. 

In contrast, if the scattered radiation has a different wavelength from the 

incident beam, it is inelastic (incoherent) scattering. However, incoherent 

scattering is insignificant at small angles [160]. 

The diffraction of X-rays (Figure 4.7) produced by the interference be­

tween the waves scattered by the electrons in the sample is used to study 

the different structures in the sample. X-rays with wavelength, A, reflected 

from the planes of the sample interfere with each other. This interference is 

destructive unless the path difference between the interfered rays is equal to 
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Figure 4.7: Bragg reflection of two X-rays from two adj acent planes , sepa­
rated by a distance d, having a path difference (OA + OB) = 2d sin B. 

an integer number of the wavelengths (n = 1, 2, 3, .. . ). Therefore, according 

to Bragg's law, the path difference for a constructive interference of reflected 

waves from any two planes separated by a distance, d, is given by [167, 160] 

2dsin B = nA. ( 4.20) 

In a typical experiment, the collimated X-rays are scattered by a sample 

through an angle 2B (Figure 4.8) . The intensity of the scattered radiation 

is recorded as a function of the scattering angle , from which the structure 

information can be obtained. As mentioned previously, t he scattering of 

X-rays occurs when there is a difference in the electron density and t he 

scattering pattern , on the detector, occurs because of the interference of 

the secondary waves that are emitted from the various irradiated electrons. 

Hence, the small-angle scattering of X-rays can be observed if and only if 

there is an inhomogeneity in the electron density in the sample and when 

these electrons resonate with the frequency of the applied X-rays , emitting 

coherent secondary waves which interfere with each other. 

The obtained pattern (Figure 4.8) does not show directly t he structural 

and morphological information in t he sample, but rather it is related to the 
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intensity of the Fourier transformation of the electron density. which can be 

interpreted to obtain the required information about the structure and size 

and morphology. The scattering of X-rays of a wavelength, '\ through an 

angle 28 is represented by the scattering vector, 1, the modulus of which is 

given by 

1
-+1 41f. q = (--:\) Slll 8. 

Since incoherent and Compton scatterings can be neglected at small scat­

tering angles, the scattered waves are assumed to be coherent. Hence, the 

resulting amplitude is the sum of all the secondary waves, and the intensity 

is the absolute square of this amplitude. However, the resulting amplitude 

is usually given in terms of the electron density, p(r), because of the large 

number of electrons given that single electrons cannot be localized. 

If one takes a solution, for example, the particles in the solution are not 

oriented. However, the physical scattering process is the contribution from 

a large number of randomly oriented particles. Therefore, the 3-dimensional 

electron density distribution, p(r), which represents the structure of the parti­

cle, is reduced to a one-dimensional distance distribution function, P(r). The 

Fourier transformation of this function, P( r), is the mathematical expression 

of the physical scattering process. Practically, the scattering intensity is af­

fected by the polychromatic radiation, the length and width of the slit of 

the collimator and the detector. Thus, this scattering intensity must be cor­

rected according to these effects. However, these effects can be neglected if 

one uses a monochromatic primary beam with a point collimator of very high 

intensity and an infinitesimal detector. 

The focus of the SAXS experiments in this work is on dilute s.vstems, in 

which the inter-particle interactions are negligible and the scattering from 

these systems is mainly due to the particle scattering (form factor) [1681· In 

this case, SAXS data can be obtained using the indirect Fourier transfor­

mation method. Hence, the scattering intensity from one scattering particle 

(the form factor), I (q), is the Fourier transformation of the pair distance 

distribution function, P(r), given by [1601: 
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ex:; 

I sm(qr) 
I(q) = 47f P(r) dr, 

qr 
( 4.22) 

° 
where P(r) is related to the characteristic function, ,(r), of the particle by 

( 4.23) 

where r is the distance between two scattering centres in the particle and d is 

the dimension which determines the symmetry type (e.g. d = 3 for spherical 

symmetry). This pair distance distribution function provides information 

about the particle size, shape and internal structure. 

The simplest case of particle scattering is that of spherical particles be­

cause they show equivalent orientations all over the scattering volume. This 

allows a direct calculation of the scattering intensity. Assuming a spherical 

particle in a dilute solution with a radius, R, and volume, V; and if the 

difference between the constant electron density in the particle, p, and in the 

solvent, Po, is ~p = (p - Po), then the scattering intensity can be given by 

the Rayleigh equation [160]: 

( ) 
= (~ )2V2 [3(Sin qR - qR cos qR)]2 

I q p (qR)3 ( 4.24) 

4.3.1.2 SAXS Instrumentation 

In this work, SAXS measurements were carried out using the Bruker NanoS­

tar pictured in Figure 4.9. This technique has an optical system, which 

contains an active crossed multi-layer monochromatic system and a passive 

pinhole collimator, to adjust the X-ray beam (as illustrated in Figure 4.8). 

The X-ray radiation is monochromatised by the muti-Iayer monochromator, 

so the divergent 2-dimensional beam is adjusted to a 2-dimensional beam 

with a single wavelength from a distribution of A.. The use of the pinhole col­

limator system helps to obtain a direct and controlable beam size by which 

SAXS achieves the highest resolution with an extremely low background. A 
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spatial resolution can be obtained by using many pinhole collimators com­

bined with a "cross-coupled Gobel Mirror" (ccGM). 

An X-ray generator, operated at 40 kV and 35 mA, is used to generate 

X-ray radiation through a water cooled ceramic diffraction (KF type) X-ray 

tube which focuses an electron beam on a copper anode and allows the gener­

ated X-rays to exit via a Beryllium window. The X-ray beam passes through 

the ccG M system making four parallel beams. These beams are then con­

trolled by a four pinhole system. The unwanted radiation is removed at the 

first pinhole and the rest of the X-rays continue to the second pinhole "which 

controls the size of the beam with to a 750 /.Lm diameter. The beam is defined 

at the third pinhole that has a diameter of 400 /.Lm. The first three pinholes 

are mounted on XY translational stages and positioned between beam path 

tubes made of steel. The fourth pinhole is mounted on the chamber itself 

and the function of this pinhole is to remove the edge scattering of the third 

pinhole, which is why it is called an anti-scatter pinhole. 

The (xy) position of the scattered X-rays entering the imaging area of the 

detector is determined by xenon gas atoms in the detector which are ionised 

by X-rays. These xenon ions move towards an electrode generating electrical 

signals that are transferred to a preamplifier in the detector. These signals are 

represented by the real time colour display building up the scattering pattern 

as shown in Figure 4.8. The built-in SAXS software is used to integrate 

intensity profiles and to transfer the 2-dimensional scattering patterns into 

a one-dimensional intensity I (q), as a function of the scattering angle or the 

scattering vector (q). 

4.3.2 Small-Angle neutron Scattering (SANS) 

Small-angle neutron scattering (SANS) was developed in the 1960s, i.e. 30 

years after the discovery of small-angle scattering by Guinier during X-ray 

diffraction experiments on metallic materials [169]. Since its development, 

SANS has become a powerful technique for probing different structures and 

materials. At the beginning, the technique was mainly used for studying 

CT~'stallille materials, which improved the understanding of structural infor-
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Figure 4.9: A typical setup of NanoStar SAXS , The University of Sheffield. 

mation of many important materials . However , the last two decades have 

seen increasing intrest in using SANS for other disciplines , including soft 

matter (organic polymers and biological macromolecules). These materials 

contain many hydrogen atoms which makes them suitable for labeling with 

deuterium. Using this labeling method enhances the contrast between differ­

ent regions in the sample or between the sample and the surrounding solvent 

[157] . 

The following sections will consider the principles and theory behind 

SANS with some description of its instrumentat ion and setup. However, 

the theories used to deal with the data obtained from SANS will be given in 

detail in Chapter 7. 

4.3.2.1 Neutron Sources and Properties 

Generally, there are two different ways to produce neutrons: by usmg a 

nuclear reactor or a spallation process. In the first approach, neut rollS are 

obtained by the fission of uranium-235. Each fission process result s in 2-3 

neutrons . The most powerful research reactor in the world is the 57 M\i\1 

HFR at ILL, France. The second approach employs particle accelerators 

and synchrotrons to acquire intense, high-energy protons. These protons are 
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directed at a target containing heavy nuclei (usually tantalum) to obtain 

20 to 30 neutrons after each impact. The most powerful spallation neutron 

source in the world is currently the ISIS facility at Rutherford Appleton 

Laboratory (RAL), UK [156, 170]. 

The neutrons produced have wavelengths of between 0.01 and 3 nm b~· 

cooling them, for example, down to 20 K in liquid H2 . The energy of these 

neutrons can be calculated using the following equation, 

( 4.25) 

where kB is Boltzmann constant and T is the absolute temperature (e.g. 20 

K). According to the Maxwell-Boltzmann distribution, the most probable 

speed (v) can be calculated from: 

which gives 

31 2 -kBT = -mv 
2 2' 

( 4.26) 

( 4.27) 

where m is the neutron mass. The momentum of the neutron is given b~' 

Therefore, 

h 
P = mv =~. 

h h 
A=-= , 

mv J3kBTm 

( 4.28) 

( 4.29) 

where h is Planck's constant. Neutrons travel a distance L from the chopper 

to the detector in a time t (i.e. v = Lit). Intensity is measured as a function 

of time (number of neutrons arrived to the detector in time t), so the intensity 

can be obtained as a function of wavelength (A). 
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Figure 4.10: A schematic diagram showing the basic scattering principles 
(ko , k1 are the initial and final wave vectors) and including the solid angle of 
scattering, dD . 

4.3.2.2 SANS Principles 

A det ailed theory of SANS can be found in many books and review in t he 

literature [1 58 , 171 , 172, 173]. As for any small angle scattering met hod , 

the scattered momentum transfer Q is the difference between the incident 

wavevector ko and the scattered wavevector h (Q = /';1 - ko) 111 a gIven 

direction () (see Figure 4.10) . 

When neutrons are scattered by a sample, they exchange energy and 

momentum with this sample. Therefore, the change in energy of the scattered 

neutrons is given by 

1 ? ?) 6.E = El - Eo = - m( vi - Va . 
2 

(-01. 30) 

where w is the neutron frequency and n is the reduced Plank 's constant 

(n = h/ 27r) . The momentum transfer Q can be written as : 

(--1 .31 ) 

For elast ic scaHering, kl = ko and 
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( -1.32) 

A SANS detector usually records the scattering intensity as a function of 

the energy and the scattering angle in terms of the differential cross section 

dO"( fJ) / dOdE , where 0"( fJ) is the cross section in barns (la- 28m2 ) and dO is 

the solid angle (see Figure 4.10)" This differential cross section is [173, 156]: 

dO"( fJ) 
dOdE 

number of neutrons scattered per second into dO 

<I> dO 
( 4.33) 

where <I> is the incident neutron flux. In other words, dO"( fJ) / dOdE is the 

probability that neutrons will be scattered by the sample with energy dE 

in an element of solid angle dO. From this differential cross section one can 

obtain the so-called scattering function (or Van Hove scattering law) [173]: 

ko 1 dO"( fJ) 
S(Q,w) = kl Nb2 dOdE' ( 4.34) 

where b is the scattering length, which is the probability that a neutron 

will be scattered by a nucleus, and N is the number of incident neutrons. 

The differential scattering cross section dO" (fJ) / dOdE is referred to as the 

microscopic differential cross section to distinguish it from the macroscopic 

cross section that can be given by: 

d~(fJ) dO"(fJ) 
dO = n x dOdE' 

(4.35) 

where n is the number concentration of scattering centres in the sample. 

The macroscopic differential cross section (which is often referred to in the 

literature as the scattering intensity J( Q)) can be written as [156]: 

( 4.36) 

where l' is the volume of one scattering centre. (~p)2 is the contrast betwee.n 

the solute and the surrounding medium, given b\" (~p)2 = (p - Pm)2 \\"ith P 

and Pm being the neutron scattering length densities of the solute and the 
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Figure 4.11: A schematic diagram showing a typical setup of small-angle 
neutron scattering based on the PAXY spectrometer at LLB , Saclay. 

medium, respectively, and B is the background scattering signal. Equation 

4.36 is a generalized form of the macroscopic differential cross section with 

P( Q) and S( Q) being the form factor and structure factor , respectively. 

4.3.2.3 SANS Instrumentation 

A typical setup of SANS based on the PAXY spectrometer used at LLB , 

Saclay (France) is shown in Figure 4. 11 , alt hough other instruments have 

been used such as the one at the ISIS facility at Rutherford Appleton Lab­

oratory (RAL) , UK [1 56, 172, 171]. The incoming neutrons are mono­

chromatized by a velocity selector to achieve wavelengths from 0.4 nm to 

2 nm. The neutrons are then collimated using two collimation guides under 

vacuum. A sample holder is placed in the neutron beam path equipped with 

various sample environments, such as an automated temperature controller , 

magnetic field and shearing cells (e.g. Couette cell ). The scattered neutrons 

arr ive at a two dimensional detector in a vacuum tube at a distance between 

1 and 7 m from the sample. 
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4.4 Neutron Spin Echo (NSE) 

Relaxation and transport properties of polymer systems play a significant 

role in controlling the processing and applications of these systems [120, 

174, 175, 176]. Therefore, characterizing these dynamic properties at the 

molecular level is necessary. However, understanding such dynamics is yery 

complicated due to the fact that different molecular motions take place on 

different length scales governed by the general chain properties and the chem­

ical structure of monomers [39, 44]. The first and simplest theoretical ap­

proach to address such dynamics was started by Langevin as an alternative 

to Brownian theory. However, the first successful model to describe molec­

ular motions was developed by Rouse, who introduced the entropic effect 

between monomers (beads). This was followed by Zimm theory. which takes 

into account the hydrodynamic interactions between monomers and the sur­

rounding solvent. For dense polymer systems, e.g. polymer melts, reptation 

(tube) theory was introduced by de Gennes and Edwards [40, 39, 61]. 

Testing these theories involves microscopic and mesoscopic techniques 

with high temporal resolution. For instance, quasi-elastic scattering tech­

niques, such as neutron spin echo (NSE) spectroscopy playa significant role 

in the study of long-range relaxation processes of soft polymers and local 

dynamics of solid matters in space « 15 nm) and time (0.005 ns to 40 ns). 

The following sections will highlight the principles and instrumentation of 

NSE. 

4.4.1 NSE Principles 

Generally, as mentioned in section 3.3.2.3, the information obtained from 

neutron scattering is in terms of the differential cross section. which can be 

used to obtain the scattering function S( Q, w) (equation ':1:.3':1:). The interme­

diate scattering function S(Q, t) can be written as the Fourier transform of 

S(Q, (0) [119, 177, 178]: 



CHAPTER 4. EXPERIMENTAL TECHNIQUES 96 

00 

S(Q, t) = ! S(Q,w)eiwtdw. (4.37) 
-00 

This intermediate scattering function depends on the atomic displacement 

(time) by: 

Sij(Q, t) = / Lei2.[B~(t)-Etn(O)1) , 
\n,m (4.38) 

where R~(t) is the position of an atom (n) of a type (i) at time t. NSE mea­

sures the change in neutron velocity (~v), i.e. the energy transfer between 

the scattered neutrons and the sample. The frequency (w) is proportional to 

this energy transfer 

w _ m [ 2 2] 
21(" - 2h v - (v + ~v) . ( 4.39) 

The analyzer of the NSE instrument allows the determination of the cosine 

transform of the scattering function S(Q, w). Therefore, the output data of 

NSE is in the following form: 

( 4.40) 

where J = J lEI dl is the integral of the magnetic field induction, lEI, 
path 

along the distance between the .first 1("/2 flipper and the sample, and "( = 

1.83033 X 108 rad/sT is the gyromagnetic ratio of the neutron. The type of 

the analyzer and the sign of the second 1("/2 flipper determine the sign of the 

integral in equation 4.40. The term (J)" 3"( 2r;:~2) is the time parameter, t. 

4.4.2 NSE Instrumentation 

Figure 4.12 illustrates the typical setup of an NSE spectrometer which was in­

vented by F. Mezei [120, 174, 119, 179, 178, 180]. Neutrons first pass through 

a velocity selector to select the required velocity (wavelength) of the neutron 

beam. The neutron beam is then polarized and the resulting neutrons are 
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aligned in the velocity direction, e.g. x-axis. A ;:,/2 flipper is used to change 

the spin direction of neutrons from x to z direction (i.e. perpendicular to the 

coil's magnetic field). The polarized flipped neutron beam travels through 

the first precession coils that produce a homogenous magnetic field in the di­

rection of the beam path. Each neutron spin will make a Larmor precession 

around the magnetic field direction. Faster neutrons trayel through the mag­

netic field rapidly and hence their angle of precession will be smaller. The 

neutron beam at the end of these precession coils is completelY depolarized. 

A rr flipper is used to rotate the spin of the neutrons 180 0 around the z-axis. 

When the neutron beam meets the sample, neutrons exchange momentum 

and energy with the sample resulting in changes in their velocit\, and direc­

tions but not the spin direction unless the sample is magnetic. The scattered 

neutrons then travel through the second precession coils. These precession 

coils produce the same value of magnetic field as the first coils but with an 

opposite direction. The elastically scattered neutrons will be fully polarized 

at the end of these coils, whereas the inelastically scattered neutrons will 

not experience a full repolarization. The resulting neutron beam will have 

spin direction distributed around the z-axis. Another rr/2 flipper is employed 

to adjust the spin direction to a direction in the xy plane. A supermirror 

analyzer transmits the passing neutrons with a probability proportional to 

the cosine of the angle between the final neutron beam direction and z-axis. 

Finally, the transmitted neutrons are then collected on an area detector. 

4.5 Magnetometry (SQUID) 

A superconducting quantum interference device magnetometer (SQUID) is 

a very sensitive technique used to measure magnetisation [181]. Due to the 

extremely weak magnetic fields (~ 5 X 10-18 T) that can be detected by' 

the SQUID with a very low noise level (~ 3 fT.HZ- 1
/

2
), it has been used 

for many applications including biomagnetism and material characterisation 

[182]. SQUID lllRy' be clRssfied into direct current (DC) SQUID and radio 

frequency (RF) SQUID. These two types of SQUID use superconducting 

loops containing Josephson junctions. Hovvever. RF SQPIDs use ollh' one 
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Figure 4.12: A schematic diagram showing a typical setup of NSE spectrom­
eter. 

Josephson junction, which makes them cheaper but less sensit ive compared 

to DC SQUIDs [183, 184]. In this work , an RF SQUID was used for all 

magnetisation measurements (see section 6.2 .3). 

4.5.1 SQUID Principles 

The main principle behind the SQUID is the measurement of the voltage 

induced by the magnetic field originating from a sample in a fie ld-sensit ive 

coil. RF SQUID, for example, consists of an Nb-superconducting ring and 

RF circuit (tank circuit) , which are inductively coupled to each other by 

superconducting transformers (Figure 4. 13). T he superconducting ring is fed 

with an oscillating external flux. The tank circuit is used to detect changes 

in t he internal flux which has a typical resonance of 20-30 MHz [183]. The 

entire syst em must be operated at low temperatures using liquid helium. 

After removing t he magnetic fi eld , t he superconducting ring wil l retain 

some discrete levels of magnetic flux due to induced surface currents. This in 

t urn generates a supercurrent in t he superconducting ring which will remain 

indefini tely. However , this supercurrent must remain at the same level for 

superconduction to cont inue . T he presence of a Josephson junction ':weak­

link" has the advantage of lowering the supercurrent significantly to about 

50 ILA because electron pairs can tunnel through the weak-link [18 ]. A 
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Figure 4.13: A schematic diagram showing the principles of RF SQUID. 

magnetic flux will be generated from the oscillation of the supercurrent with 

a period of one fluxon (one fluxon = 2 x 10-15 Tm2) [186]. 

The supercurrent through the weak-link can be changed by the magnetic 

field originating from a system placed near the sensing coils, which in turn 

can change the total flux (the total flux is a combination of the external 

flux and that from the oscillating current in the weak-link). This change in 

the flux inductively changes the resonance of the tank circuit which can be 

recorded by a controlling system. The recorded variation in flux can then be 

converted to magnetisation values using some theoretical models. 
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Chapter 5 

Single Molecule Diffusion in 

Hydrogels 

5.1 Introduction 

The development of smart polymer systems has gained attention in the last 

decade because of their many possible applications for drug delivery and tis­

sue engineering [71, 63]. Smart polymers have the ability to change their 

physicochemical properties in response to the surrounding environments. 

Different polymer systems are responsive to different physical and chemi­

cal stimuli, such as temperature, magnetic field (see chapter 6), pressure, pH 

and ions. Hydrogels are an example of responsive polymer systems that can 

be stimulated by changes in temperature, pH and ionic strength. 

The theory of diffusion of linear polymers in a fixed network was intro­

duced by Doi and Edwards [44]. In this theory, the controlling factor of the 

diffusion coefficient is the network mesh size, which is the distance between 

cross-link points, and the size of the linear polymer chain. This diffusion 

process is very complicated and there is no simple theory to describe and ex­

plain many observed behaviours. However, some work in the literature can 

be considered as progress in combining the above theory with the responsive­

ness of hydrogels for useful applications [187, 15]. Studying diffusion through 

polymer networks is key to understanding their properties and to explore the 

101 
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possibility of modifying their behaviour for certain tasks [188. 189]. There 

have been many techniques used to study diffusion in polymer solutions and 

gels, such as gravimetry, dynamic light scattering, neutron reflectometry and 

fluorescence correlation spectroscopy (FCS) [34, 35]. Furthermore, under­

standing diffusion in heterogeneous media is of special importance in many 

processes in biological systems, such as the transport of proteins and drug 

molecules through the cell membrane [190]. 

In this chapter, the diffusion of FITC-dextran in poly(methacrylic acid) 

(PMAA) hydrogels will be investigated as a function of different physical 

and chemical stimuli including temperature, pH and salt using fluorescence 

correlation spectroscopy (FCS). The macroscopic swelling behaviour of the 

PMAA hydrogel in the above conditions will be considered to support the 

understaning of the diffusion behaviour in the system. 

5.2 Experimental 

5.2.1 Materials and Synthesis 

5.2.1.1 Free Radical Polymerisation 

Free radical polymerisation [191] is a type of polymerisation by which a 

polymer is formed in three steps: initiation, propagation and termination, 

as shown in Figure 5.1. The free radicals (atoms or molecules with unpaired 

electrons), which are responsible for starting the polymerisation, are formed 

in the initiation step under conditions of heat or electromagnetic radiation. 

These free radicals must remain active and stable enough until reacting with 

monomers to create other active centres out of these monomers in a step 

called propagation. The new active centres can react with other species to 

form active chain ends in a process called chain transfer. In principle, the 

chain can propagate until consuming all the monomers but these radicals are 

very reactive and bind to other species very rapidly. forming inactive cm'alellt 

bonds which terminate the polymerisation process. Termination of chains can 

lw formed through two \vays: (1) combination, in ,,"hich t\\"U radical chain 

ends are bound together to form one long chain; (2) disproportionation, in 
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Figure 5.l: Free radical polymerisation mechanism. 

which two separate polymer chains are formed by moving a hydrogen atom 

from one active end to another to prevent chain growth on both sides. Due to 

the fact that termination steps cannot be controlled, the reactions generate 

very heterogeneous systems. 

5.2.1.2 Hydrogel Synthesis 

PMAA hydrogels [68] were synthesized VIa a free radical polymerisation. 

An initiator, 2,2'-azobis (2-methylpropionamidine) dihydrochloride (A]\IPA) 

(Aldrich, 98%) and a cross-linker, methyl-bisacrylamide (MBA) (Aldrich, 

98%), were dissolved in distiled water and added to the monomer methacrdic 

acid (MAA) (Aldrich, 98%) in a sealed container and then exposed to a 

nitrogen flow for 30 min. The chemical structures of the used reagents are 

shown in Figure 5.2 and the quantities used for this preparation are listed in 

table 5.1. However, the amount of water and cross-linker were \"aried resulting 

in different structural behaviour of the hydrogel (this will be discussed in 

more detail in the corresponding sections). The polymerisation of :\1.-\.\ 
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MAA AMPA MBA 

Figure 5.2: Chemical structures of the reagents used to prepare P11AA 11\'­
drogels. 

I Reagents I Quantities 

H2O 10 ml 0.555 mol 
MAA 2 ml 0.024 mol 

AMPA 0.002 g 7.3-17 X 10-6 mol 
MBA 0.006 g 3.892 x 10-5 mol 

Table 5.1: Quantities used to prepare the hydrogels. 

took place by placing the sealed solution in an oven at 6·5 °C for 8 h. After 

the polymerisation was completed, the hydrogels were washed many times 

with distilled water to remove unreacted materials. 

5.2.1.3 FITC-dextran Solution Preparation 

In order to study diffusion in PMAA hydrogels, FITC-dextran was used as 

a fluorescent probe since it can be detected by FCS. FITC-dextran solutions 

were prepared by dissolving the required amount of FITC-dextran in 5 ml of 

distilled water (HCI, NaOH and salt solutions were used as well depending 

upon the experiment required) to obtain a concentration of 10-5 1\1 depending 

on the molecular mass of FITC-dextran (in this case 70 kDa). The obtained 

solution was then diluted to 1 nM to meet FCS requirements, which \vill be 

discussed in the following section. A small piece of the hydrogel was placed in 

these probe solutions for sufficient time to allow penetration of FITC-dextran 

chains and to reach the equilibrium of the hydrogel. 
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5.2.2 FCS Measurements 

FCS measurements were conducted using a ConfoCor2 FCS ~1odule fitted to 

an L8::\1510 inverted confocal microscope (Zeiss), which is pictured in Figure 

5.3. The temperature of the sample was controlled using a Linkam heat­

ing stage (Linkam Scientific Instruments Ltd, Surrey, UK) with T\1S9-1 heat 

controller and LNP-1 nitrogen flow control. The required excitation WC1YE'­

length for FITC-dextran is 492 nm which then emits light with a wavelength 

of 518 nm. Thus, this excitation radiation was obtained using an argon laser 

beam (488 nm), which was directed into the microscope objectiye (water 

immersion objective 40x 11.2NA), via a dichroic mirror and focused on the 

sample. The resulting fluorescence light from the sample was collected by 

the same objective and passed through the dichroic mirror and the Long 

Pass 505 (LP505) emission filter. The spatial resolution was obtained h\' a 

pinhole (70 f-Lm) in the image plane, which cuts off any fluorescence light not 

coming from the focal plane. The light was then detected using an avalanche 

photodiode (SPCM-200PQ), which is a single photon sensitive detector. The 

translational diffusion of the fluorescence molecules within the confocal vol­

ume leads to fluctuations in the fluorescence intensity of the emitted light 

that are recorded by the detector. These fluctuations, and hence the autocor­

relation function, are quantified from the changes in the local concentration 

of the fluorophore within the confocal volume. The power of the excitation 

laser beam was kept at 5% in order to to keep the fluorescence emission linear 

with the excitation and to reduce the distortion of the correlation function 

originating from triplet state formation. 

The confocal waist radius, wXY ' was ascertained by evaluating the diffusion 

time of Rhodamine (Rh6G), which has a known diffusion coefficient (D = 281 

f-Lm 2 Is) in water. From the fitting to the autocorrelation function (equation 

4.19), the diffusion time of Rhodamine in water was T = 80 f-LS. Using 

this value in equation 4.15 yielded a confocal waist radius wxy = 150 nrn. 

This value has been used throughout this work to calculate the diffusion 

coefficients from the respective diffusion times using equation -1.15. 

The obtained FCS autocorrelation function for each sample is the C1CCU-
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Figure 5.3: A photograph of the inverted confocal microscope, including FCS , 
used for diffusion measurements. 

mulat ion of at least 100 short runs, wit h 10 s measuring t ime in each run . 

This measuring t ime was found to be of sufficient durat ion in this work , for 

single fluorescent molecules to be detected while passing the confocal volume. 

However , a longer measuring t ime would be required if large aggregates were 

expected in the confocal volume, in order to minimize the distortion they 

might cause in the autocorrelation function. T he average value of the runs 

is taken as t he normalized autocorrelation data. Diffusion t imes were ob­

tained from t he fit of t hese autocorrelation data to t he model described by 

equation 4. 19, from which the diffusion coefficients were determined using 

equation 4. 15. An example of the obtained FCS data is shown in Figure 5.4 

in which t he autocorrelation curves for F ITC-dextran in water at different 

selected temperatures are fitted to t he autocorrelat ion model (equation 4. 19). 

For t he reason t hat Pl\!lAA hydrogels are heterogenous [192]. five mea 'ure­

ments in different areas of each sample were taken from which averages of 

the diffusion times and coefficients were obtained. 

T he work in this chapter involved two different diffusion mea urement : 
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Time (5) 

Figure 5.4: An example of FCS data for diffusion of FITC-dextran in water 
at selected temperatures, showing the decrease of diffusion time with tem­
perature. The solid lines are the best fit to equation 4.19. 
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the self-diffusion of FITC-dextran chains in solutions and the diffusion of 

FITC-dextran within PMAA hydrogels. For self-diffusion, 1 n1\1 of FITC­

dextran in water (at different pH and ionic strength) was used and it was 

assumed to be in an infinite dilution of non-interacting spherical molecules. 

Using these assumptions, the hydrodynamic radius of FITC-dextran, RH . 

can be calculated from the Stokes-Einstein equation for diffusion \,"hich is 

given by: 

(5.1) 

where TIs is the viscosity of the solvent. 

The diffusion coefficient of FITC-dextran in PMAA hydrogel can be cor­

related to the molecule size (diameter), d, and its diffusion coefficient in pure 

solvent, Do, (equation 5.1) to obtain the average mesh size (also known as the 

correlation length) of the PMAA hydrogel, ~, using a relationship introduced 

by de Gennes and co-workers [193, 194]: 

D ~ Do exp ( -~ U) ') , (5.2) 

where 5 = 2.5 for cross-linked networks and (3 can be considered to be of the 

order of one [193]. 

5.2.3 Swelling Measurements 

The PMAA hydrogel, synthesized as described in section 5.2.1.2, was Im­

mersed in distilled water to ensure complete swelling and when equilibrium 

was reached (constant mass), small pieces of hydrogel were taken for exami­

nation. For measurements of the swelling of PMAA hydrogels, the hydrogel 

pieces were first dried under vacuum at 40°C for 5 h before being immersed 

in water and allowed to reach an equilibrium swelling as a function of tem­

perature, ionic strength and pH. The equilibrium swelling ratio, Q, is defined 

as: 
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(5.3) 

where ms and md are the mass of the swollen and dry hydrogel, respectiyel~·. 

5.2.4 Titration and NMR 

H20 was boiled vigorously for 10 min to remove any dissolved CO2 then put 

in a sealed airtight container to cool. 500 J.tl of l.0 1\1 HCI was added to 

30 ml of the previously degassed water which gave a pH of 2. 0.013 g of 

FITC-dextran was added to the water. The pH changed immediately from 2 

to 2.4 upon the addition of FITC-dextran. 1 M NaOH was added drop-wise 

to the solution while the pH was recorded as a function of the added volume 

of NaOH. 

1 H NMR (Bruker 400 MHz spectrometer) was used in order to detect 

any chemical shift in FITC-dextran as a result of changing the pH of the 

solution. For this experiment, 50 mg of FITC-dextran was added to 1 mlof 

D20 at different pHs: 1, 4, 8 and 12. 

5.3 Results and Discussion 

5.3.1 Swelling of PMAA Hydrogel: Effect of Synthesis 

As discussed in chapter 3, hydrogels can be defined by their equilibrium 

swelling degree. This swelling degree of hydrogels (the capability of absorb­

ing water) can be controlled by many factors including the cross-link density 

and the volume fraction of the solvent used to prepare the hydrogel. Fig­

ure 5.5 shows the dependence of the equilibrium swelling ratio of Pl\IAA 

hydrogel in pure water on the amount of the solvent used during the poly­

merization of l\IAA. The swelling ratio of P1\1AA hydrogel increases b~' a 

factor of 25 upon an increase in the solvent volume fraction from 0.5 to 0.83. 

The same trend can be seen for different cross-link densities. At Imv solvent 

volume fraction (0.5-0.75), different cross-linker concentrations show identi­

cal swelling ratios, whereas the swelling ratio increases \\"ith increasing the 
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cross-linker concentration at high solvent volume fraction. These re ults in­

dicate that the number of cross-links per unit volume playa significant ro le 

in the swelling behaviour of PMAA hydrogels. This is due to the fact that 

introducing more cross-links in the matrix leads to the formation of shorter 

chains between cross-links , which is unfavourable for a large expansion. In 

other words , the elasticity of these networks decreases with increasing the 

cross-link concentration, which is unfavourable for mixing according to the 

thermodynamics described in Chapter 2, section 2.3. 
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Figure 5.5: The effect of solvent volume fraction duri~g. pr: paration on the 
swelling of PMAA hydrogel at different cross-link densItIes III neutral water. 
The error bars are the statistical errors calculated from five measurements 

and the lines are guides for t he eye. 
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5.3.2 Temperature Effect 

The diffusion coefficient of F ITC-dextran in pure water increases with tem­

perature as expected from Zimm t heory, described in Chapter 2. Figure 

5.6 shows such a behaviour wit h the solid line being the fi t to Zimm model 

(equation 2.51). This is due to a change in t he viscosity of water at high 

temperature result ing from the disrupt ion of hydrogen bonding leading to 

an increase in fluidi ty [1 95, 196]. The conformat ional behaviour of FIT C­

dextran chains with temperature might playa role in increasing the diffusion 

coefficient ; however , t his needs further study to be verified (see Chapter 9). 
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Figure 5.6: Temperature dependence of diffusio~ c~effic i ent ?f FITC-dextr~n 
in pure water (circles) fi tted to Zirnrn model (solId Ime) and l~l P MAA h.Ycl I O~ 
gel (diamond) fitt ed to t he modified Zimm model (dashed lme) . T he lattel 
model was developed by my colleague Matthew Mears. 

The diffusion coefficient of FITC-dext ran in PI\ IAA hydrogel follow ' a 

negative t rend from that seen in water (F igure 5.6) . This can be att ributed 
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Figure 5.7: Temperature effect on the swelling of Pl'vIAA hydrogel. The 
negative values of Q mean that PMAA hydrogel collapses or shrinks wit h 
temperature, hence the fin al mass is smaller than the init ial mass. The error 
bars are the sta tist ical errors calculated from three measurements and the 
dashed line is a guide for t he eye. 

to t he fact that the polymer network adds an effect that overtakes the nor­

mal thermal motion and decreases the diffusion coeffi cient with increa.sing 

temperature. Zimm theory suggests that in order to ovenvhelm any ther­

mal effect the viscosity of the system must increase sufficiently. By studying 

the swelling behaviour of Pl'vIAA hydrogel as a function of temperature, it 

was found that the sVlelling ratio decreases wit h increasing tempreature ( ' ee 

F igure 5.7), although P l\ IAA hydrogel is not among the class of materi al. 

that is considered to be highly sensiti, 'e to tempreature, Thi mean that 

PIVIAA hydrogel shrinks in size up on an increa e in temperature, \\'it h th e 

solvent being drained out of the net\\~ork. As Ullling that no mate ri al is lost 

from the lwd roo-el durilw this collapse process, the decrease of 'oh 'ent lllass 
. b b 
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per unit volume leads to an increase in the polymer mass concentration, c. 

In other words, removing some solvent from the hydrogel with temperature 

without any effect on the polymer network means the mass ratio of polymer 

to solvent increases per unit volume. 

The viscosity in the Zimm model (equation 2.51) can be considered to be 

the viscosity of the whole system (the total viscosity TJ = TJs + TJp , where TJp is 

the viscosity of the viscoelastic polymer network), which can be determined 

from Huggins equation of intrinsic viscosity, [TJ] [40] 

TJ - TJs 2 
-- = [TJ] + kJ-I [TJ] C + ... , 

TJsC 

where kJ-I is the Huggins coefficient. By substituting the Huggins equation 

into the Zimm model, the result is a diffusion model that shows a good fit to 

the data in Figure 5.6. 

This modified Zimm model suggests that the change in hydrogel structure 

is due to the change in the net viscosity. However, there might be some other 

effects on the diffusion coefficient such as the change of the excluded volume of 

FITC-dextran molecules (chain conformation) with increasing temperature. 

Although the hydrodynamic radius of FITC-dextran can be determined from 

the diffusion in pure water, the latter effect was not taken into consideration 

in this work as further thermal characterization of FITC-dextran is required, 

in a similar manner to studies on other linear polymers such as polystyrene 

[197] and polyethylene [198], in order to be distinguished from the structural 

changes of the gel. 

The mesh size of PMAA hydrogel was determined using equation 5.2 

with the size of the diffusing molecule obtained from equation 5.1. Figure 

5.8 shows an exponential decrease by almost a factor of 20 in the mesh size 

upon an increase in the temperature from 283 K to 333 K. In comparison 

to the swelling ratio change with temperature shown in Figure 5.7, which 

appears sigmoidal with a constant Q at high temperatures, the mesh size 

decays monotonically with temperature. The overall trends of the curves in 

Figures 5.7 and 5.8 are comparable, although the mesh size was obtained from 

the diffusion coefficient of FITC-dextran the interaction and conformation of 
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which was not taken into account (see the future work in Chapter 9). 

If the hypothesis above that the only effect on the diffusion in PMAA 

hydrogel is the net viscosity is true, then the mesh size of the hydrogel can 

be correlated to the this viscosity. In reviewing the literature, little data were 

found on the association between the mesh size and temperature, although 

the mesh size of polymer networks after equilibrium swelling is well estab­

lished [199, 200, 187]. The mesh size can be correlated to the equilibrium 

swelling ratio, cP, and the number of cross-links per chain, n, as [200]: 

(5.5) 

where Cn is a characteristic ratio of the polymer with a value of 14.6 for 

PMAA [200] and l is the C-C bond length (1.54 A). The swelling ratio of the 

polymer network under temperature, cP(T), can be correlated to the viscosity 

of the medium by 

cP(T) 

cPo 

fJ (T) 

fJo 
(5.6) 

where cPo is the initial equilibrium swelling ratio. The viscosity of the medium 

can be written as a function of temperature using the Williams, Landel, and 

Ferry (WLF) equation [201, 202]: 

( 
-Cl (T - To) ) 

fJ(T) = fJo exp C
2 
+ (T - To) , (5.7) 

where C1 and C2 are quasi-universal constants with values of 17.4 and 51.6 

K, repectively, and To is a reference temperature, which is commonly taken 

to be the glass transition temperature Tg , at 273 K. By substituting equation 

5.7 into equation 5.6 and then using the result in equation 5.5, the mesh size 

can be given as: 

~ = ¢~/3 [exp (;2C~ ~~ -:: ~)) ) r vc;. Viii (5.8) 

This model shows a good fit to the data in Figure 5.8. The values of cPo 

\vere determined from the swelling measurements in section 5.3.1. n was not 
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Figure 5.8: Mesh size of PMAA hydrogel as a function of temperature cal­
culated using equation 5.2. The solid line is a fit to equation 5.8 , a model 
developed to describe the effect of temperature on the mesh size. The er­
ror bars are the statistical errors originating from the errors of the diffusion 
coefficient (the data in Figure 5.6). 

known previously and therefore it was let to vary during the fitting , giving a 

value of 47 cross-links per chain. 

5.3.3 pH Effect 

PMAA hydrogel is a weak polyacid that has a carboxylic acid group whose 

charge equilibrium is affected by the pH of the solution (as described in Chap­

ter 3). In acid conditions , the carboxylic group is protonated (Figure 5.9) 

and therefore, due to the absence of repulsive forces between the charges , the 

polymer chains are in a "collapsed state". In basic conditions, the carboxylic 

grou p is more charged and therefore the polymer chains are in a "swollen 

state" due to the electrostatic repulsion between these charged groups and 
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Figure 5.9: Effects of acid and basic conditions on the carboxylic acid in 
water. 

the counterions. Polymer chains swell because they absorb the solvent to 

reduce or "screen" this electrostatic repulsion. 

Therefore, any change in the pH results in structural changes in PMAA 

hydrogels which can be determined by measuring the equilibrium swelling 

ratio Q as shown in Figure 5.10. Compared to the small change in the 

swelling ratio as a function of temperature (Figure 5.7), the swelling ratio 

in the case of pH showed a significant increase at high pH. As expected and 

shown in previous studies [68, 203, 11], at low pH the swelling ratio is very 

low because PMAA chains tend to form very dense hydrophobic clusters 

connected by short polymer chains. This is due to the attractive forces 

caused by the carboxylic groups' acceptance of more protons. By increasing 

the pH, the swelling ratio increases due to the decrease in the hydrophobicity 

of these clusters, allowing polymer chains to extend (this occurs up to pH 

6). As a polyelectrolyte, the swelling of PMAA hydrogel can be explained 

by the osmotic effect as the total osmotic swelling pressure is the sum of the 

mixing pressure, elastic pressure and ionic or Coulombic pressure, 7rswelling = 

7rmixing+7relastic +7rionic (see Chapter 2). At equilibrium, these three pressures 

must compensate each other and give 7rswelling = 0 [72, 204, 11, 205]. Above 

pH 6, there is some conflict [68, 11] as to whether the swelling continues with 

increasing pH, or whether the increase of ionic strength causes a degree of 

charge shielding which allows the gel to collapse a little. The results presented 

here show the decrease of swelling ratio between pH 6 and pH 8, and this can 

be explained by the screening (or shielding) effect where an insoluble layer is 

formed which prevents further swelling. The swelling ratio then increases at 
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Figure 5. 10: Swelling ratio of PMAA hydrogel as a function of pH. The 
two plots show t he time of swelling before the measurement in order to test 
the time needed for equilibrium. The error bars are t he statistical errors 
calculated from t hree measurements and the lines are guides for the eye. 

higher pH after disengaging from the screening effect. 

Testing the effect of cross-link density on the swelling of P MAA hydrogel 

in acid and basic condit ions is shown in Figure 5.11. The swelling of different 

PMAA hydrogels with different cross-link densit ies showed identical trends 

in response to pH; however , in alkaline condit ions, the swelling ratio reached 

higher values at low cross-link densit ies due to t he fact t hat a low cross-link 

density leads to longer sub-chains between cross-links, increasing the elastic 

pressure 7T clast ic' In terms of t he t hermodynamics of mixing (Flory theory 

described in Chapter 2, equation 2. 19) , t he decrease in cross-link density 

leads to an increase in the elastic energy term which is favorab le for mixing. 

The swelling results above can help wit h understanding the mechanism 

of FITC-dextran diffusion wit hin PMAA hydrogel in acid and alkaline con-
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ditions. The pH of the solution influences not only the structure of the 

hydrogel but also the conformation of FITC-dextran molecules which is in 

turn reflected in their diffusion coefficient. Figure 5.12 shows that the diffu­

sion coefficient of FITC-dextran in pure water decreases with increasing the 

pH of the solution. This can be attributed to the change in the net charge of 

the solution, which therefore gives FITC-dextran molecules different confor­

mations at different acid and basic conditions. For example, extending the 

FITC-dextran chain due to repulsive forces might delay the diffusion pro­

cess at a certain pH value. However, previous studies have debated whether 

FITC-dextran is charged or neutral. For example, loan and co-workers [206] 

demonstrated that the radius of hydration of dextran in water is comparable 

to that in 0.5 mM NaOH. This study also showed a similar intrinsic viscosity 

of dextran in water and NaOH which is in agreement with the data in Figure 

5.12 at high pH. Nevertheless, the titration results in Figure 5.13 provide ev­

idence that FITC-dextran is a charged molecule (negatively charged) which 

seems to be consistent with other previous research [207, 208]. Yet, NMR 

spectra, shown in Figure 5.14, do not show any chemical shift with changing 

pH, which can be explained by the charges originating from the FITC, which 

was not the subject of the NMR investigation. 

Moreover, the effect of pH on hydrogel structure (seen in Figure 5.10) 

plays a significant role in the diffusion process of FITC-dextran in these 

systems, taking into consideration the effect of pH on the FITC-dextran 

molecule itself. Figure 5.12 also shows that acidic conditions decrease the 

diffusion coefficient of FITC-dextran due to the collapse of the hydrogel. 

This collapse results in an increase in the polymer concentration (similar to 

the temperature case in section 5.3.2; however, further work would be re­

quired to be able to apply the same modeling procedure as for temperature), 

which hinders FITC-dextran molecules and reduces their diffusion coefficient. 

The repulsive force between the carboxylic group in PMAA hydrogel and the 

charges introduced in the solution at high pH causes the gel to swell and up­

take a large amount of the solvent, which enhances the diffusion coefficient of 

the traversing molecules. It is noticeable from Figure 5.12 that at the highest 

pH point, within errors, the diffusion coefficient in the swollen hydrogel is 
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Figure 5.12: Diffusion coefficient of FITC-dextran in pure water and PMAA 
hydrogel as a function of pH . The diffusion coefficient of FITC-dextran in 
water decreases wit h increasing pH, while it increases with pH in P MAA 
hydrogel which follows t he swelling ratio shown in Figure 5. 10. Wit hin errors, 
at the highest pH value, the diffusion coefficient in P MAA hydrogel reaches 
that in water , meaning t hat t he effect of t he gel network is negligible here. 
The error bars are t he statistical errors calculated from three measurements 
and t he lines are guides for t he eye. 

comparable to t hat in gel-free solut ion , which indicates t hat the hydrogel 

can be swollen upto a point where t he concentration of the polymer network 

becomes negligible. 

5.3.4 Salt Effect 

T he same approaches used in the previous sections (temperature and pH) 

can be used to analyze the effect of introducing salt ions on t he st ructural 

behaviour of PMAA hydrogel and subsequent ly on t he t raversing molecules 



CHAPTER 5. SINGLE MOLECULE DIFFUSION IN HYDROGELS 121 

I 
c.. 

14 
- FITC-dextran 

12 
...... deionized water 

10 

8 

6 

4 

2 

~ .0 
~ ." ------- ........ . ................•.............. 

.' .' o 
o · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · .. 

••.•........ 

OL-~----~--~~--~----~----~--~----~ 
0.04 0.06 0.02 0.00 

NaOH (molll) 

Figure 5. 13: Tit ration curves for a solut ion of FITC-dextran at 0.011 M and 
deionized water. The shift between these two curves indicates that FITC­
dextran is a polyelectrolyte. 



CHAPTER 5. SINGLE MOLECULE DIFFUSION IN HYDRO GELS 122 

pH12 

~L~ ;vJ~}I!.,-
I 
I 
I pH8 

prJiLA 

pH4 

~-.-----~ 

pH1 

PPM 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 

Figure 5.14: IH NMR spectra showing FITC-dextran at 0.1 M in D20 as a 
function of pH. The spectra shows the identical chemical shifts at different 
pH which means that there is no structural change in the polymer chain with 
pH. This indicates that the charges on FITC-dextran are originating from 
the FITC (see text). 



CHAPTER 5. SINGLE AI0LECULE DIFFUSION IN HYDRO GELS 123 

within it. There are similarities between the effect shown by pH and that tw 

salt upon PMAA hydrogel in that the swelling ratio changes significantly with 

increasing ionic strength. PlVIAA hydrogel behaves differently in N aCl and 

CaCb solutions. The swelling ratio varies non-monotonically with increasing 

the concentration of N aCl, first increasing and then decreasing; whereas Q 
decreases exponentially with increasing the concentration of CaC12 (Figure 

5.15). Given that, according to the Hofmeister series [209, 210], the effect of 

Na+ is larger than that of Ca2+, the salting-in effect can take place at low 

NaCI concentrations then the hydrogel is salted-out with increasing NaCI 

concentration. By contrast, Ca2+ ions cause a charge condensation which 

makes the chains less charged. Nonetheless, at high salt concentration (> 

0.1 mol/L), Q is almost independent of the salt concentration in both cases 

(NaCl and CaCb), but it is dependent on the nature and valency of the 

cations (Na+or Ca2+) present in the solution. 

The dependent structural behaviour of PMAA hydrogel upon the ionic 

strength can also be investigated by tracing single molecules diffusing through 

the gel medium. Equation 2.32 and Figure 5.15 suggest that the diffusion 

coefficient of a molecule traversing through ionic hydrogels drops drastically 

with increasing ionic strength until it becomes independent of ionic stength 

at high salt concentrations. This behaviour was seen in the case of FITC­

dextran diffusing through PMAA hydrogel (Figure 5.16). The reason behind 

this is the increase in the net viscosity of the gel, considering the viscos­

ity term in the Zimm model (equation 2.51). Surprisingly, the increase of 

ionic strength has an effect not only on the diffusion of FITC-dextran in 

the hydrogel, but also in gel-free solutions, where the diffusion coefficient of 

FITC-dextran follows a similar trend. This can also be attributed to the 

change in the viscosity of the medium plus the change in the conformation 

(hydrodynamic radius) of FITC-dextran, due to its charge (section 5.3.3), 

via a change in the exponent v in equation 2.51 depending on the quality 

of the solvent. This is in agreement with previous studies [211, 212] that 

demonstrated the dependence of viscosity on the ionic concentration in polY­

electrolyte systems vvhich was given by: 
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Electrolytes Debye length 

NaCl (1:1 electrolytes) KD = \J.~04 nm 
vi[NaCI] 

CaCb (2:1 or 1:2 electrolytes) K:D = U.170 nm 
V[CaCI2] 

Table 5.2: The Debye screening length for some common electrolytes at room 
temperature in aqueous solution. For example, the Debye length for N aCl 
solution K:D = 30.4 nm at 10-4 M, 4.6 nm at 10-3 M, 0.96 nm at 0.1 "\1. and 
0.3 nm at 1 M, which is comparable to 960 nm in pure water [213] . 

K:D(O 

TJ(c) = TJo + 4807r' (5.9) 

where TJo is the viscosity of pure solvent, (0 is the friction coefficient of an ion 

in the soultion of an infinite concentration, and K:D is Debye screening length, 

which can be defined as the critical distance over which the charge effect is 

screened (i.e. in 3D, the Debye length is the radius of a sphere of influence 

beyond which the charge effect is reduced). This lengthscale is given by [213] 

(5.10) 

where co is the permittivity of free space, Cr is the dielectric constant of the 

medium, e is the elementary charge. The two parameters related to the ionic 

strength I are Ci, the molar concentration of the ions, and Zi, the charge 

number. I can be written as 

(5.11) 

Table 5.2 lists the Debye length for NaCl and CaCb based on equation 5.10. 

Bv substituting the viscosity model above (equation 5.9) into the Zimm 

diffusion equation, the diffusion coefficient would be affected by the ion con­

centration in the solution via a change in viscosity. However. there are two 

limitations that would affect the diffusion of FITC-dextran when substituted 

into the Zimm equation; these are the high ionic concentration (Ci ---t x) 

and low ionic concentration (Ci ---t 0). At high ionic concentration. the Deb\"e 
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length is negligible and the viscosity of the solvent will remain unchanged. 

Therefore, the diffusion coefficient would be expected to reach a plateau 

at high salt concentrations as the viscosity will become independent of ion 

concentration. In contrast, low salt concentrations will increase the Debye 

screening length which would increase the viscosity of the medium. This is 

because the sphere of influence of ions increases with decreasing ion concen­

tration. 

Diffusion measurements using FCS, shown in Figure 5.16, revealed the 

dependence of the diffusion coefficient of FITC-dextran on N aCl and CaCb 

concentrations, both in water and PMAA hydrogel. The diffusion behaviour 

of FITC-dextran in N aCI and CaC12 solutions show a significant dependence 

on the ion concentration differing from the hypothesis of the viscosit:v model 

above, which might be due to charge driven conformational changes, in ionic 

environments (this must also be taken into account when studying the diffu­

sion in the gel medium). However, at high ion concentration in both N aCI 

and CaCb solutions, the diffusion coefficient reaches a plateau which is in 

agreement with the viscosity model above. This also suggests that the con­

formation of FITC-dextran molecules is independent of ionic strength at high 

ion concentration. 

A similar behaviour was observed when investigating the diffusion of 

FITC-dextran in PMAA hydrogel as a function of N aCI and CaCb concen­

trations but with a lower diffusion coefficient plateau at high salt concentra­

tions (Figure 5.16). The decrease in diffusion coefficient may be attributed to 

change in the overall viscosity of the medium (the viscosity of the gel plus the 

solvent). Assuming the FITC-dextran size is independent of the type of ions 

(as seen in gel-free systems), the difference between the diffusion coefficient 

plateau in the two cases (NaCI and CaCb) suggests that Pl\IAA hydrogel 

undergoes different degrees of swelling, which was observed when measuring 

the swelling ratio of PMAA hydrogel in salt solutions, Figure 5.15. To model 

the diffusion coefficient with the ion concentration, a further investigation on 

t he effect of salt solutions on the conformation of FITC-dextran (see chap­

tel 9). However, one can minimize the contribution from the effect of the 

ion concentration on FITC-dextran molecules by normalizing the diffusion 
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Figure 5.17: Normalized diffusion coefficient of FITC-dextran in NaCl and 
CaCb obtained from the data in Figure 5.16 . The horizontal dashed line 
corresponds to the equal value of the diffusion coefficients in water and the 
PMAA hydrogel. 

coefficient in PMAA hydrogel to that in water , as shown in Figure 5. 17. An 

interesting point that can be seen from the data in Figure 5. 17 is that the 

normalized diffusion coefficient shows a value of unity, which corresponds to 

an equal diffusion coefficient in both water and gel and might indicate that 

the PMAA hydrogel has no effect of the conformation of FITC-dextran . It 

is also noticeable from this figure that at high diffusion coefficient values 

(> 1), t he FITC-dextran diffuses faster than in gel-free salt solutions. This 

can be explained because PMAA hydrogel undergoes a swelling transition at 

low salt concentrations which is in agreement with the previously observed 

behaviour of PMAA hydrogel in salt solutions (Figure 5. 15). 
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5.4 Conclusions 

The purpose of this study was to use FCS to investigate the diffusion of 

a single molecule of FITC-dextran in water and PMAA hydrogels. This 

method was able to reveal the structural dependence of diffusion of FITC­

dextran on temperature, pH and ionic strength. The success of this study 

was not limited to the fit of the data to well-known theoretical models (e.g. 

Zimm model) but rather it requires macroscopic measurements such as the 

swelling behaviour of the hydrogel. 

This study has shown that the diffusion of FITC-dextran in water followed 

the Zimm model, as expected, showing an increase in the diffusion coefficient 

with increasing temperature. Whereas the diffusion in PMAA hydrogel was 

found to decrease with temperature, which was modelled by using Huggins 

relation for viscosity. These results suggested that the swelling and collapse 

transition of PMAA hydrogel can be explained in terms of the change of 

viscosity by increasing or decreasing the distance between cross-links, with 

the limitation that there is no effect from the gel matrix on the diffusing 

molecule. The obtained mesh size from diffusion measurements has been 

found to decrease exponentially with temperature for which a model has 

been developed by using Williams, Landel, and Ferry (WLF) equation for 

viscosity. 

The diffusion coefficient of FITC-dextran in water was, surprisingly, found 

to decrease with increasing solution pH, which indicated a charge effect on 

the molecule itself. Titration measurements revealed that FITC-dextran was 

a charged molecule but NMR spectra showed that the charges originate from 

the FITC. The diffusion coefficient of FITC-dextran increased with increas­

ing pH in the case of PMAA hydrogel. However, there was a discontinuity 

between pH6 and pH8 which was attributed to the shielding effect of charges. 

The same trends have been observed for the swelling behaviour of PMAA 

hydrogel. 
The final investigation of this chapter was to determine the effect of salt 

solutions on the behaviour of PMAA hydrogel and single molecules diffusing 

within it. In both NaCI and CaCh solutions, the diffusion coefficient was 
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found to decrease and then reach a constant value at high ion concentra­

tions, which was in agreement with a previously proposed viscosity model. 

Similarly, the diffusion of FITC-dextran in PMAA immersed in salt solutions 

followed the same trends except that the gel behaves differently in response 

to different ions, depending on their valency. Normalization of the diffusion 

coefficient in the gel and water has shown an unexpected increase of the dif­

fusion coefficient in PMAA hydrogel at low salt concentrations, which was 

explained by the gel having undergone swelling transition at these concen­

trations, allowing the probe to diffuse faster than in salt solutions. These 

findings coupled with the swelling behaviour of PMAA hydrogel in salt solu­

tions remain an open question. 



Chapter 6 

Controlled Diffusion in Magnetic 

Fields 

6.1 Introduction 

In recent years there has been increasing interest in stimuli-responsive ])oh-­

meric materials. Polymeric gels, for example, can be made into devices re­

sponsive to temperature [69, 214], pH [68, 71], and electric [215, 216] and 

magnetic fields [217, 7] depending on the polymer and any other components 

added to the system. A way to make gels responsive to magnetic fields is hy 

introducing magnetic nanoparticles (rv 10 nm) either before or after cross­

linking to form so-called "ferrogels". These magnetic nanoparticles are bound 

to the polymer network and are fixed in place, with no translational diffusion 

within the gel medium [218, 81]. 

The magnetic properties of ferrogels are similar to those of ferrofluids 

[217, 219]. Each magnetic nanoparticle can be considered as a monodomain 

with its own magnetic moment. In a magnetic field, these moments align 

in the direction of the applied magnetic field, so the magnetic force fm on a 

ferrogel can be given as [80]: 

fm = fLo I (JJ -V)HdV, (Ci.l) 

v 

131 
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where J.lo is the magnetic permeability of vacuum, M is the magnetization, H 

is the magnetic field strength, and V is the ferrogel volume. The saturation 

magnetization Ms and magnetic susceptibility Xm depend strongly on the 

nanoparticle size (radius ro), and their volume fraction in the gel </>, and can 

be written as follows [17, 16]: 

(6.2) 

(6.3) 

where Mf is the magnetization of the pure ferromagnetic material, kB is the 

Boltzmann constant, and T is the absolute temperature. 

Since Zrfnyi and co-workers [17] introduced the concept of ferrogels in 

1995, useful applications in biotechnology, membrane technology, artificial 

muscles and drug delivery and release have been suggested [18,19]. A number 

of achievements have been reported particularly in terms of magnetically 

controlled drug release. For instance, direct current magnetic fields have 

been used to restrict the amount of drug released from ferrogels [220]. In 

addition, controlled drug release rate through an on-off magnetic field switch 

has also been demonstrated [91], with recent results demonstrating both in 

vitro and in vivo release of cells [86]. 

Nevertheless, the physical properties of molecular transport within ferro­

gels (i.e. Brownian motion or intradiffusion) and from these systems to the 

surrounding environment (interdiffusion) in an applied magnetic field remain 

poorly understood. The work in this chapter considers single molecular diffu­

sion measurements within ferrogels in an applied magnetic field. Herein, the 

diffusion process of dextran molecules labeled with fluorescein isothiocyanate 

(FITe) within ferrogels based on poly(methacrylic acid) hydrogels (PMAA) 

under applied magnetic fields will be discussed. The synthetic method used 

in this study results in ferrogels with no cluster formation, even under the 

applied magnetic field, as confirmed by small-angle X-ray scattering (SAXS) 

and superconducting quantum interface device (SQUID) magnetometry mea­

surements. However, these ferrogels are observed to undergo structural defor-
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mation when exposed to magnetic fields, and it is this that can be controlled 

for molecular release applications. The work described in this chapter has 

been published [221]. 

6.2 Experimental 

6.2.1 Ferrogel Synthesis 

Three different ferrofluid solutions were prepared by dissolving 0.012 g, 0.053 

g and 0.13 g of magnetite (Fe304) nanoparticles (of density 5.1 g cc and pur­

chased from Sigma-Aldrich) in 10 ml of distilled water. To prevent magnetic 

nanoparticle aggregation, 0.01 g of the surfactant dodecyl sulfate sodium 

(SDS) salt was added to the mixtures. The resulting mixtures were also son­

icated for 5 minutes. This process was observed, using an optical microscope, 

to keep the aggregation of the magnetite to a minimum. 

The ferrofluids were added dropwise to three mixtures of 2 ml of methacrylic 

acid (MAA), 0.002 g of 2,2'-azobis (2-methylpropionamidine) dihydrochloride 

(AMPA) and 0.008 g of methyl-bisacrylamide (MBA) (all materials were used 

as received from Sigma-Aldrich) in a sealed container and exposed to a ni­

trogen flow for 30 min. The polymerization of :t\IAA took place by placing 

the solution (in its sealed container) in an oven at 65°C for 8 h. Samples 

studied immediately after this preparation are denoted as "unswollen" in the 

text. We also studied these ferrogels (with 0.1 wt%, 0.5 wt% and 1 wt% of 

Fe304 nanoparticles) after immersion in distilled water to ensure complete 

swelling. When equilibrium was reached (constant mass), small pieces of fer­

rogel were taken for examination. These ferrogels are denoted as ··swollen" 

in what follows. For measurements of the swelling of ferrogels under an ap­

plied magnetic field, the ferrogel pieces were first dried under vacuum at -40°C 

for 5 h before being immersed in water and allowed to reach an equilibrium 

swelling under different applied magnetic fields for 2-J h. 

For diffusion experiments, fluorescein end-labeled dextran (FITC-dextran) 

with molecular mass of 70 kDa (Sigma-Aldrich) ,,·as introduced into the fer­

rogels in a nanomolar concentration to ensure single molecule detection in 
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the confocal volume in the FCS experiments. 

6.2.2 FCS Measurements in a Magnetic Field 

FCS principles and setup were described in Chapter 4, while the procedure of 

FCS experiemnts is similar to that described in Chapter 5, section 5.2.2. Fe'S 

measurements were carried out using a ConfoCor2 FCS module fitted to an 

LSM510 inverted confocal microscope (Zeiss) (pectured in Figure 5.3). The 

FITC was excited using a 488 nm Ar laser. A Linkam heating stage (Linkam 

Scientific Instruments Ltd, Surrey, UK) with TMS94 heat controller and 

LNP-1 nitrogen flow control was used to control the temperature. Nlagnetic 

fields were introduced using a homemade electromagnetic solenoid mounted 

on the FCS to produce a magnetic field strength of between 0.1 and 1 T. The 

obtained autocorrelation curves were fitted to the Widengren FCS autocor­

relation function for diffusion in three dimensions (equation 4.19). 

From fitting to equation 4.19, shown in Figures 6.1 and 6.2, one can 

determine the diffusion time TD. This diffusion time can then be converted 

to a diffusion coefficient using equation 4.15 as described in Chapter 4, section 

4.2.4 and Chapter 5, section 5.2.2. 

6.2.3 Magnetisation Measurements 

The magnetization measurements were carried out III a Quantum Design 

RF SQUID magnetometer (model MPMS- 5), which enabled magnetic fields 

up to 5 T and temperatures from 2 to 400 K to be attained. All of the 

hysteresis loops in this study were acquired at room temperature. Any linear, 

diamagnetic contribution was subtracted off from the hysteresis loop, and 

each hysteresis loop was normalized to the corresponding sample weight. Zero 

field cooled/field cooled (ZFC/FC) measurements were made by cooling the 

sample to 5 K in zero magnetic field, and then a small magnetic field of 8.0 

kA m (100 Oe) was applied, and the magnetization measured as a function of 

temperature whilst heating the sample to 300 K. \Yhile maintaining the field 

COllstallt, the magnetization was again measured during cooling back down 
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to 5 K. These ZFC/FC measurements permit a determination of particle size, 

as well as other properties not pertinent to the present study. 

The resulting data are presented as the magnetisation versus magnetic 

field with the magnetisation being the contributions from the ferromagnetic 

and paramagnetic components in the sample. Typical raw SQUID data are 

shown in Figure 6.3(a) for an unswollen ferrogel with 1 wt% Fe304. Here, we 

are interested in characterizing the ferromagnetic materials (Fe304 nanopar­

ticles); therefore, the contribution from the paramagnetic materials is sub­

tracted from the data Figure 6.3(b) by calculating the slope of the line and 

subtracting this from each point to leave the ferromagnetic contribution. 

6.2.4 SAXS measurements 

Swollen and unswollen ferro gel (with 0.5 and 1 wt% of magnettite nanopar­

ticIes) and hydrogel were loaded on a sample holder with holes of 2.5 mm in 

diameter and 2 mm in thickness. The samples were held between two sides 

of a capton tape. Pure Fe304 nanopowder was compressed in a washer with 

2.5 mm in diameter and 0.42 mm in thickness. 

Small-angle X-ray scattering measurements for this study were carried 

out at room temperature using a Bruker AXS Nanostar (Figure 4.9) in­

strument (CuKcx radiation) at zero magnatic field. The scattered intensi­

ties were recorded on a two-dimensional multiwire gas proportional detector 

(Hi-Star, Siemens AXS). The sample-detector distance was about 1.045 m 

giving a wave vector with a magnitude 0.01 A-I < q < 0.10 A-I, where 

q = (411:/ A) sin e, with 2e being the scattering angle, and A the radiation 

wavelength. The obtained two-dimensional scattering patterns, shown in 

Figure 6.4, were then normalized (the instrument is equipped with a semi­

transparent beamstop) and integrated using Bruker AXS software. 

Nanostar was also used to perform wide-angle X-ray scattering (WAXS) 

for pure Fe304 with increasing the scattering angle up to 20 degrees in order 

to investigate the crystalline structure of these nanoparticles. 
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U nswollen (left) and swollen 

U nswollen left) and swollen ht) hydrogel 

Fe3 0 4 nanopowder 

Figure 6.4: SAXS 2D patterns for swollen and unswollen ferrogels and hy­
drogels and for pure Fe3 04 nanopmvder. 
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6.3 Results and Discussion 

6.3.1 Nanoparticle Size Distribution 

Small-angle X-ray scattering (SAXS) by two-phase systems with sharp bound­

aries was studied by Porod in 1951 [222, 223]. This study predicted that. 

at large values of q, the scattering intensity decreases proportionally to the 

reciprocal fourth power of q: 

lim [Ip(q)] = K:, 
q-too q 

(6.-1) 

where Kp is Porod's constant. This means that the scattering intensity 

reaches a constant value, Kp , when Iq4-too (the Porod regime). Porod's 

constant is of importance in that it can be used to determine other parameters 

such as the specific surface area, I:/V, of nanoparticles, which can be given 

by Porod's equation, 

I: 7r¢s(1- ¢s)Kp 
V Jooo I(q)q2dq , 

(6.5) 

where I: is the total area of interface in a scattering volume V, cPs is the 

volume fraction of the component from which scattering occurs, and ,/ is 

the volume of a single nanoparticle assuming it is spherical. From equation 

6.5, and with the assumption that the nanoparticles are spherical, one can 

calculate the sphere radius, r, from I:/V = 3¢s/r. 

SAXS plots from the ferro gels (Figure 6.5) demonstrate an increase in 

scattering intensity with increasing magnetic nanoparticle concentration. In 

addition, and for comparison, the scattering intensity by pure Fe304 nanopow­

der is shown in Figure 6.6. The data in this figure (with slope of -4) indicate 

the Porod behaviour of the scattering by this magnetite nanopowder. How­

ever, the tail of this plot is not continuing as Porod behaviour but rather 

there is an increase in the scattering intensity at high q values suggesting that 

there might be a crystalline structure within these nanoparticles. Therefore, 

\VAXS was used to investigate the possibility of cr~'stallinity in these S~'s­

terns, and the data from this method are shmvn in Figure 6. -;-. It is apparent 
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that the intensity is constant with increasing scattering angle (no scatter­

ing peaks), which indicates a dominant single structure. The tail in SAXS 

plots can then be ignored, especially since it appears only at Imv scattering 

intensities (below 1). 

The difference between the swollen and unswollen states can be distin­

guished at different nanoparticle concentrations from Porod plots of the 

SAXS data (Figure 6.8). These plots correspond to the scattering intensity 

originating from the magnetite nanoparticles, and are obtained by subtrac­

tion of the scattering signal of a hydrogel sample containing no magnetite 

from the ferro gel SAXS patterns. The intensity for all of the ferrogels stud­

ied has the q-4 dependence indicative of Porod behavior at large q ,"ahles. 

which indicates that the dominant scattering mechanism is that from smooth 

spherical particles [173, 160j. 

Porod's constant, Kp , can be determined from the data in Figure 6.8, 

which is the value of I q4 at the shoulder of each plot. By using Equation 6.S. 

one can obtain the specific surface area from which the size of the nanopar­

ticle can be calculated. It can be seen from these results that T ~ To, and 

the calculated values for the studied systems are listed in Table 6.1. The 

absence of fringes in these data indicates that the nanoparticles do not have 

a monodisperse distribution of sizes. 

The values in Table 6.1 indicate that the size of these nanoparticles is in 

reasonable agreement with their original size in feed (::; 30 nm in diameter 

from the manufacturer). In addition, the size of these particles is shown to 

be independent of whether or not the ferro gel was measured in the swollen 

or unswollen states. 

6.3.2 Magnetic Properties 

The magnetic hysteresis loops in Figure 6.9 show the concentration depen­

dence of the saturation magnetization for unswollen ( a) and swollen (b) ferro­

gels at room temperature. It is noticeable that b~" increasing the nanoparticle 

concentration the saturation magnetization increases because the density of 

magnetic moments increases. From these hysteresis loops, it is clear that 
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Figure 6.8: Background-subtracted scattering SAXS Porod plots for swollen 
and unswollen ferrogels containing 0.5 and 1 wt% magnetite nanoparticles . 

Nanoparticles (wt .%) Ferrogel SAXS (r) (nm) ZFCj FC (r) (nm) 
0.1 Unswollen . . . . . . . 12.4 ± 1.1 
0.1 Swollen .. .. ... 12.0 ± 1. 2 
0.5 Unswollen 12.0 ± 1.1 12.4 ± 1.0 
0.5 Swollen 12.5 ± 0.5 12.1 ± 1. 2 
l.0 Unswollen 14.3 ± 0.4 12.3 ± 1.1 
1.0 Swollen 13.6 ± 0.7 12.0 ± 1.3 
100 Pure 12.5 ± 1.0 . .. . . . . . 

Table 6.1: Calculated nanoparticle size from SAXS measurements using 
Porod 's theory for scattering from spherical part icles and ZFCj FC SQUID 
magnetometry measurements under an applied magnetic field of 8.0 kAj m. 
The errors in SAXS measurements are the statistical errors associated with 
determination of Porod 's constant , K p , while the errors in ZFC FC m a­
surements arise from the determination of the blocking temperature, T8 . 
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these systems show ferromagnetic behavior at room temperature. Figure 

6.9 also shows the similarity in the coercivity He at different nanoparticle 

concentrations and in different ferrogel states (4.9 kA/m for unswollen fer­

rogels and 5.1 kA/m for swollen ferrogels). From the relationship between 

coercivity and magnetic domain size [224, 225], the agreement between these 

values of the coercive fields indicate the similarity in the magnetic domains 

and therefore in the magnetic nanoparticle size. 

According to the Neel theory of superparamagnetism [226], in an applied 

magnetic field there are two stable orientations for the magnetic moments of 

the nanoparticles (due to the magnetic anisotropy) which are antiparallel to 

each other and usually called the "easy axes". The magnetization can flip 

between these two orientations and the average time between these flips is 

called the Neel relaxation time, TN, and is given by an Arrhenius relation, 

(
KVp) 

TN = Toexp kBT ' (6.6) 

where Vp is the magnetic particle volume, K (= 1.35 x 104 J /m3
) is the 

magnetic anisotropy constant and TO is a constant known as the attempt time 

and is usually taken as 10-9 s. If we were able to measure the magnetization of 

nanoparticles and let the measurement time be T m, the magnetization would 

flip to the other orientation only if T m > TN. This measuring time is usually 

taken to be Tm = 100 s for a typical set-up (such as ours). When Tm = TN 

and the applied magnetic field is much lower than the anisotropy field, then a 

maximum blocking temperature TB is reached at which a transition between 

superparamagnetic and blocked states occurs. The peaks in the ZFC curves 

in Figure 6.10 denote the absolute TB for different ferrogels from which one 

can obtain the magnetic particle size by the Bean-Livingstone equation [30] 

(6.7) 

where the factor 25 :::::: In(Tm/To) is calculated from the values in the discussion 

above (equation 6.6). From the data in Figure 6.10, it is apparent that the 

peaks of the ZFC curves are displaced from the separation point between 

ZFC and FC curves (this is usually referred to as a bifurcation) indicating a 
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distribution of particle size. The calculated average nanoparticle sizes from 

these measurements are included in Table 6.1, and are in good agreement \\'ith 

those obtained from SAXS measurements, further confirming that there is 

no aggregation in these systems even under an applied magnetic field. 

6.3.3 Swelling in a Magnetic Field 

The swelling and collapse of PMAA ferro gels in pure water has been measured 

as a function of the magnetic nanoparticle concentration and the applied 

magnetic field. This was obtained by measuring the change in equilibrium 

swelling (swelling ratio), which can be defined as 

(6.8) 

where ms and md are the mass of swollen and collapsed gels, respectively. 

Figure 6.11 demonstrates the swelling dependence on the concentration of 

magnetic nanoparticles and the applied magnetic field. It is noticeable that 

the swelling ratio remains constant with magnetic field when the magnetic 

nanoparticles are absent (i.e. swollen hydrogel). However, the swelling be­

havior of ferro gels is very dependent upon the applied magnetic field. For 

instance, from Figure 6.11, the swelling ratio of the ferrogel with 0.1 wt. % 

nanoparticles decreases by a factor of two upon an increase of magnetic field 

strength from 0.1 to 0.8 T. Likewise, ferrogels with the other two nanopar­

ticle concentrations (0.5 and 1 wt. %) contract by almost the same factor in 

the same magnetic field. This can be understood by these single-domain 

magnetic nanoparticles being adhesively attached to the polymer chains and 

having no translational diffusion [81]. During the magnetic alignment of 

these nanoparticles under the applied magnetic field, the adhered nanoparti­

cles disrupt the polymer network from further swelling. It is also reasonable 

to suggest that the nanoparticles might form magnetic clusters under the 

magnetic field, and this can affect the swelling behavior of the \\'hole s~'stelll. 

However, from the ZFC data above it can be shown that this latter effect 

is not taking place in these systems, as the particle size under the applied 

magnetic field is similar to that in the feed. 
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Figure 6.11 also shows the linear relationship between the logarithm of 

the swelling ratio and the square root of the applied magnetic fi eld , which 

can be rewritten in terms of the magnetic-field energy density, B
2
/ 2110 as 

follows: 

( ( e B 2 ) 1/4) 
Q = A exp - 2110k

B
T ' 

(6.9) 

where A is a constant and ~ is a correlation length in t he gel. T he calculated 

correlation lengths obtained from fi t ting to equation 6.9 are shown in Table 

6.2. The values in this t able indicate no discernable change in the correlat ion 

length wit h increasing magnetite concent ration. 
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N anoparticles Swelling (0 Diffusion (~) Relase (~) '70 
(wt%) (nm) (nm) (nm) (mPa s) 

0.1 1.8 ± 0.1 2.2 ± 0.1 2.2 ± 0.2 0.9 ± 0.1 
0.5 1.3 ± 0.3 2.3 ± 0.2 2.1 ± 0.2 1.3 ± 0.2 
1.0 1.9 ± 0.1 2.2 ± 0.1 2.9 ± 0.1 1.4 ± 0.3 

Table 6.2: Calculated correlation lengths from swelling [fits to equation (6.9)], 
diffusion [fits to equation (6.12)]' and release [fits to equation (6.U)] mea­
surements. The values of viscosity obtained from the fits to the difFusion 
data (Figure 6.12) are also tabulated. 

6.3.4 Diffusion of Dextran in Ferrogels 

In order to understand the structural behavior of ferrogels as well as trans­

port properties in these materials, the diffusion of labeled dextran was inves­

tigated using FCS. Diffusion coefficients so obtained are plotted as a function 

of magnetic field in Figure 6.12. Three different (swollen) samples with differ­

ent magnetic nanoparticle concentrations demonstrate the same trend, with 

different magnitudes, that the diffusion coefficient decreases exponentially 

upon an increase in magnetic field strength. In order to explain these data, 

we consider a model based on a Stokes-Einstein relationship for diffusion 

[227, 228] 

D = kBT 
67r7]R' 

(6.10) 

where 7] is the viscosity of the medium and R is the size of the diffusing 

molecule. In this relation, the only parameter that can be affected by adding 

magnetite nanoparticles and applying a magnetic field is the viscosity within 

the ferro gel. From the swelling measurements in section 5.3.3, we observed 

the effect of the added magnetite nanoparticles and the applied magnetic 

field on the mesh size, which can be related to the viscosity of the ferrogel 

by 

(( 
e B2 ) 1!-1) 

77 = 7]0 exp 21L
O
k

B
T ' 

(6.11 ) 
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where 7]0 is the viscosity of the solvent. By substituting equation (6.11) into 

equation (6.10), the Stokes-Einstein diffusion becomes 

D = exp-kBT (( e B2 ) 1/4) 
67r7]oR 2P,okBT' 

(6.12 ) 

which is fitted to the data shown in Figure 6.12. The results obtained are 

presented in Table 6.2, with the size of dextran taken as R = 9 nm' R , 

was obtained from measurements of the diffusion coefficient of dextran in 

water using the Stokes-Einstein relation for diffusion at T = 298 K. From 

the diffusion results in Table 6.2, it is clear that the viscosity obtained is the 

viscosity of water at or close to room temperature and the correlation lengths 

are comparable to those obtained from the swelling measurements. The data 

shown in Figure 6.12 demonstrate that there is no effect of the magnetic field 

on dextran diffusion when no magnetite particles are present, which shows 

that the dextran does not interact with the magnetic field. Our results are 

incapable of testing for any anisotropy in the diffusion, i.e. whether or not 

the diffusion increases or decreases in the direction of the magnetic field 

compared with directions orthogonal to it. 

6.3.5 Controlled Molecular Release 

The concentration gradient method [151, 150] was used to determine the 

concentration of dextran molecules released from swollen hydro gels and fer­

rogels into the surrounding solvent. A certain amount of dried hydro gels and 

ferrogels were swollen in 10 nM FITC-dextran solution. The swollen gels 

were then placed in 5 ml of water and exposed to a magnetic field. 1 ml of 

the resulting solution was taken for each measurement and replaced with 1 

ml of distilled water. FCS was used to study the diffusion of FITC-dextran 

in these solutions to determine the number of molecules N, \vhich can be 

obtained from the fits to equation -!.19. The concentration of the released 

molecules (in mol L) can be calculated from 

c = N/l~ff, (6.13) 
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fits to the Stokes-Einstein model (equat ion 6.1 2) . 
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where Veff is an instrumental parameter, the effectiye confocal volume, given 

by Ven = 7T3/2r~zc, where rc and Zc are, respectively, the confocal radius and 

height. (For our experiments Veff= 1.25 fL.) Molecular release from the fer­

rogel matrix to the surrounding solvent is strongly controlled by magnetic 

field (Figure 6.13). In general, increasing magnetic field strength causes some 

disruption in the polymer network during magnetic alignments, leading to 

less freedom for the diffusing molecules. This disruption increases with in­

creasing concentration of the magnetic nanoparticles. The concentration of 

the FITC-dextran released under the applied magnetic field is reduced b!· 

almost a factor of two at 0.8 T for the highest magnetite concentration (1 

wt%). This can be understood from the release mechanisms which were 

explained in Chapter 3, section 3.2.2.2 (see Figure 3.3). The increase of 

magnetic nanoparticle concentration leads to a smaller mesh size under ap­

plied magnetic fields which causes the macromolecular probe to be trapped 

inside the ferrogel. This explains the decrease in the release fraction in Figure 

6.13 with increasing magnetite concentration. From the application point of 

view, ferrogels with higher magnetite concentrations work better in trapping 

macromolecules under applied magnetic fields to be delivered to the desired 

place according to the second mechanism in Figure 3.3. It is also notice­

able from Figure 6.13 that the magnetic field has no effect on the molecular 

release from hydrogels (i.e. PMAA but without magnetite), which is to be 

expected for a paramagnetic material, and is in keeping with the diffusion 

results shown in Figure 6.12. Figure 6.13 also indicates that the concentra­

tion of expelled dextran molecules depends on the applied magnetic field by 

the same scaling behavior as the swelling of the ferrogels, 

( ( 
eB2 )1/4) 

C = 0: exp - 2J-LokBT ' 
(6.14) 

where 0: is a proportionality constant. This means that the volume phase 

transition of the ferrogel is the controlling factor for the molecular release and 

other influences such as physical or chemical interactions are not significant. 
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6.4 Conclusions 

Introducing magnetite nanoparticles controls the structural and magnetic 

behaviour of hydro gels under applied magnetic fields. These properties make 

this class of materials good candidates for many applications, especially in 

the fields of bionanotechnology and drug delivery. 

The work presented in this chapter considered the effect of applied mag­

netic fields on the diffusion of single dextran molecules labeled with fluores­

cein isothiocyanate within a ferrogel [a composite of magnetite nanoparticles 

in a poly(methacrylic acid) hydrogel (PMAA)] using fluorescence correlation 

spectroscopy (FCS). FCS studies of single molecule diffusion within these 

systems revealed the relationship between the applied magnetic field and the 

viscosity of ferro gels based on Stokes- Einstein diffusion. It has been found 

that the mesh size of the ferrogel is controlled by the applied magnetic field, 

B, and scales as exp ( - \Ie B2 /2 /-Lo kB T). The diffusion coefficient of the 

dextran can be modeled with a simple Stokes-Einstein law, containing the 

same scaling behavior with magnetic field as the swelling of the hydrogel. 

Furthermore, the magnetically controlled molecular release from ferrogels to 

the surrounding solvent was found to decrease considerably with increasing 

magnetic field induction from 0.2 to 0.8 T, especially at higher magnetic 

nanoparticle concentrations. The results suggest that the concentration of 

the released molecules is controlled only by the volume phase transition of 

the ferrogel under the applied magnetic field without any contributions from 

other physical or chemical interactions. The magnetic field-dependent release 

of dextran from these ferrogels is also controlled by the same relationship as 

the diffusion and swelling of these systems. 

The samples were characterized by small angle x-ray scattering (SAXS) 

and magnetometry experiments. Magnetic hysteresis loops from these fer­

rogels and zero field cooled/field cooled measurements reveal single domain 

ferromagnetic behavior at room temperature ,vith a similar coercivity for 

both as-prepared and fully swollen ferrogels, and for increasing magnetic 

nanoparticle concentration. SAXS experiments, such as the In'steresis loops, 

show that magnetite does not aggregate in these gels. 
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Chapter 7 

Structure of Hyperbranched 

PNIPAM 

7.1 Introduction 

Poly(N-isopropyl acrylamide) (PNIPAM) is a reasonably biocompatible and 

popular polymer due to its temperature-induced collapse transition at a phys­

iologically useful temperature of 32 cC. Therefore, PNIPAl\I has been a good 

candidate for many possible applications (see Chapter 3). It has been a chal­

lenge to increase the collapse transition temperature (LeST) of this poly­

mer to the body temperature for which many attempts have been reported 

using different synthetic methods, such as copolymerizing PNIPAM with 

hydrophilic chain-end functionalized polymers. For example, Rimmer and 

co-workers [21, 114] have been able to synthesize hyperbranched PNIPAl\I 

(HB-PNIPAM) with no cyclization or microgelation. They have utilized 

the self-considering vinyl polymerization (SCVP) principles b~' using the Re­

versible Addition Chain Transfer Polymerization (RAFT) method to produce 

HB-PNIPAl\I with imidazole-chain ends. These end groups can be replaced 

with COOH acid groups or can be used for binding \vit h other pol~'lllers or 

biological species [29]. 

However. a complete understanding of the structural behaviour of these 

ltypel'branched polymers as a function of temperature is still lacking. h:llU\d-
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edge about the internal structure of HB-PNIPAl\I is necessary so that the 

improvement and development of such materials into useful applications can 

rely on a logical design. How these polymers behave as the~' approach their 

LCST and whether they entangle or not are important questions that need 

to be answered. SANS is a powerful tool which is able to provide qualitative 

and quantitative answers to these questions. 

The work presented in this chapter is extending the physical characteriza­

tion of the previously synthesized HB-PNIPAM by Rimmer and Co-\\"orkers. 

The temperature dependent behaviour of HB-PNIPAM as a function of the 

degree of branching will be explored and compared to a linear PNIPAl\I. UV­

visible spectroscopy will be used to determine the macroscopic LeST of such 

polymers and SANS will be used to study the structural beha\"iour of HB­

PNIPAM. Also, HB-PNIPAM has has been labelled with fluorescent species 

and will be visualized by a confocal laser scanning microscope (CLSM). 

7.2 Experimental 

7.2.1 RAFT Polymerisation 

Reversible Addition-Fragmentation chain Transfer (RAFT) polymerisation is 

a type of controlled radical polymerisation which was introduced by Thang 

et al. in 1998 [229, 230j. RAFT polymerisation is advantageous over other 

controlled radical polymerisations in that it can be used with a variety 

of monomers and reactions, producing controlled molecular weight poly­

mers with narrow polydispersities using thiocarbonylthio compounds, such as 

dithio-ester. RAFT polymerisation has been successfully used to synthesize 

polymers with well-defined architectures, such as linear block copolymers, 

polymer brushes and branched polymers. Figure 7.1 shows the currently 

accepted mechanism of RAFT polymerisation. The process starts with a 

reaction between an initiator (1-) and a monomer unit. producing a radical 

species (P~) which can start a polymerizing chain. The created acti\'e chain 

(P~) reacts 'with the dithioester giving a radical adduct \\"hich fragments into 

a Pol~"IlJeric dithioate product and a new radical species (R -). The latter 
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radical reinitiates a polymerisation creating a new propagating radical (p~J 

The last step of the RAFT process is the equilibration between the propa­

gating radicals P~ and P;n and the dormant dithioate compound in which 

these radicals are trapped, forming an intermediate radical. In a reversible 

way, one polymer chain exists in the dormant stage (bound to the dithioate 

species), while the other is active to proceed in further polymerisation. The 

use of a variety of Rand Z groups has been reported to produce desirable 

polymer chain-end functionality. 

7.2.2 Synthesis 

The work in chapter is concerned with the preparation and analysis of highly­

branched poly(N-isopropylacrlamide) (HB-PNIPAM) (Figures 7.2 and 7.3) 

using a branching RAFT agent which had previously been developed bv 

Rimmer and co-workers [21]. The resultant highly branched polymers, which 

contained the residual RAFT groups N-pyrrole dithioate at their chain-ends, 

could be converted to carboxylic acid chain-end functionalised polymers using 

previously developed methodology [115]. Three HB-PNIPAM samples with 

different degrees of branching (number of monomers between branch points 

25, 60 and 90) were synthesized as follows: 

Synthesis of hyperbranched N-pyrrole chain-end func­

tionalized poly-Nisopropylacrylamide: 

As shown in Figure 7.4, N-isopropylacrylamide (NIPAM), 4-Yinylbenzylpyrrolec­

arbodithioate (RAFT agent) and azobis(isobutyronitrile) (AIBN) were dis­

solved in dioxane (quantities are given in table 7.1). The mixture was then 

transferred to a glass ampoule. The ampoule was sealed and freeze-pump­

thaw cycles were carried out three times at 10-4 mbar. It was then heated at 

60°C for -J8 hours and quenched with liquid nitrogen. The polymer solution 

was precipitated by dropwise addition to diethylether (600 ml). The ether 

was decanted off, the solids further washed with ether then vaCUUlll-Oyen 

dried at roOlll temperature for 16 hours. The procedure ,,'as repeated twice 
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monomer 

Step I: Initiation 

------ p. n 

Step II: Addition-Fragmentation 

.:;;;o: .. =F=r=ag=m=e=n=ta=t=io=n~_ p:SyS 
Z 

Step III: Reinitiation 

• 
+ monomer (m) ------ Pm 

Step IV: Equilibriation 

.. 

· -P~SyS +0 
Z monomer 

Figure 7.1: A general mechanism for RAFT polymerization. 
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Figure 7.2: Structure of HB-PNIPAM showing links to polymer backbone via 
xylyl residues and residual N-pyrrole dithioate groups at branch chain-ends. 

Figure 7.3: Schematic diagram showing HB-PNIPAM. The ringed area indi­
cates t he distance beyween two cross-links which is, in t his study, 25 , 60 or 
90 monomers. 
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Figure 7.4: Synthesis of HB-PNIPAM via RAFT polymerisation and conver­
sion to carboxylic acid chain-end functionalised HB-PNIPAM. 

more to give a yellow solid (yields are shown in table 7.1). 

Synthesis of hyperbranched carboxylic-acid chain-end func­

tionalized Poly -N isopropy lacry lamides: 

The highly-branched N-pyrroledithioate chain-ended polymers above were 

dissolved in DMF (degassed with nitrogen/30min) and stirred at 60°C under 

a nitrogen atmosphere, The 4,4'-azobis-(4-cyanopentanoic acid), 20 equiva­

lents relative to the number of pyrrole chain-end groups, was added to the 

reaction mixture as a solution in DMF and heated at 60°C for 16 hours. 

This procedure was repeated twice more so that a total of 60 equivalents of 

the reagent were added. The DMF was removed under high vacuum at 40-

50°C and the resultant oil was ultrafiltered using a blend of acetone/ ethanol 

(10:1, vol:vol) through a 3,000 MWCO cellulose filter. The resultant con­

centrate was evaporated under reduced pressure and vacuum-oven dried at 

room temperature to give a buff coloured solid. The quantities and yield of 

this reaction are shown in table 7.2. 
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NIPAM/ NIPAM/g RAFT AIBN/g Dioxane Yield 
RAFT agent/g /ml 
Ratio 

(25:1) 2.5 g 0.229 g 0.1450 g 8.75 ml 84% 
22.1 mmol 0.882 0.894 2.424 g 

mmol mmol 
(60: 1) 2.5 g 0.095 g 0.0598 g 9.24 ml 88% 

22.1 mmol 0.367 0.369 2.2903 g 
mmol mmol 

(90: 1) 2.5 g 0.0636 g 0.0398 g 8.54 ml 71% 
22.1 mmol 0.246 0.245 1.8283 g 

mmol mmol 

Table 7.1: Quantities used to synthesize HB-PNIPAl\I. 

NIPAM/RAFT Ratio DMF to 4,4'-azobis-( 4- DI\IF to Yield 
dissolve cyanopen- dissolve 

the tanoic the acid 
polymer acid) 

HB-PNIPAm (25:1) 123 ml 8.582 g 22 ml 73% 
2.121 g 

HB-PNIPAm (60:1) no ml 7.659 g 20 ml 75% 
1.987 g 

HB-PNIPAm (90:1) 88 ml 6.097 g 18 ml 79% 
2.132 g 

Table 7.2: Quantities used to convert N-pyrrole dithioate chain end groups 
to carboxylic acid in HB-PNIPAM. 
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I Ratio NIPAM/RAFT (in Feed) I Ratio NIPAT\I RAFT C\,~IR) . . 
(25: 1) ( 48:1) o 6-8.5 

end-groups 
evident 

(60: 1) (82:1) 5 6-8.5 
end-groups 

evident 
(90:1) (94:1) 5 6-8.5 

end-groups 
evident 

Table 7.3: Branching degrees after conversion of N-pyrroledithioate chain­
ended highly-branched polymers (HB-PNIPAM) to carboxylic-acid chain-end 
functionalized polymers. 

7.2.3 NMR Characterisation 

A Bruker 400 MHz NMR spectrometer was used to obtain NMR spectra 

(see Appendix C) for HB-PNIPAM at room temperature. 70 mg of each 

polymer was dissolved in 1 ml of deuterated chloroform and then transferred 

to an NMR tube. NMR spectra were used to calculate the actual branching 

degrees, as shown in table 7.3, which is the ratio of NIPAM to imidazole 

obtained from the integration of NMR spectra (Appendix C). The following 

are examples of the NMR analysis of a highly branched PNIPAM (25:1) with 

N-pyrrole and acid chain-end functionalities. 

N-pyrrole chain-end functionalized PNIPAM: 

IH NMR (CDC13 , ca. 5% CD30D, RT, 400MHz): 5/ppm 1.0 (s, br, -

N(CH3h), 1.45-1.60 (m, br, 2H, -CH2-CH-C6H4-) and (m, br, IH, -CH2-

CH-C6H4-)' 1. 75-2.05 (m. br, IH, -CH2- CH-CO-NH-) and (m, br, IH. -CHT 

CH-CO-NH-), 3.32 (s, br, H20-polymer bound), 3.98 (s, br, IH, (CH3 hCH-), 

4.50 (m, br, IH. CH2CH-S-C(=S)-N-pyrrole), 6.30 (s, br, 2H, N-pyrrole-Hb), 

7.62 (d, br, 2H, N-p~;lTole-Ha). 
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Carboxylic-acid chain-end functionalized PNIP AM: 

IH NMR (CDCI3, ca. 5% CD30D, RT, 400MHz): 0, ppm l.0 (s. br, -

N(CH3h), l.45-l.60 (m, br, 2H, -CH2-CH-C6H4-) and (m, br, IH, -CHT 

CH-C6H4-)' l.75-2.05 (m, br, 1H,-CHT CH-CO-NH-) and (m, br, IH, -CH2-

CH-CO-NH-), 3.32 (s, br, H20-polymer bound), 4.05 (s, br, IH, (CH3 hCH-), 

6.60-7.40 (m, br, 4H, -C6H4- ), 7.65 (s, br, -NHCO-). 

7.2.4 Gel Permeation Chromatography (GPC) 

The average molecular weight, molecular weight distributions and polydis­

persity were measured by GPC relative to a poly( ethylene oxide) reference 

standard. Two different GPC techniques were used with single and triple 

detection features. For the single detection technique, 200 mg of ammonium 

acetate was dissolved in 1 litre of DMF. 2.5 ml of this solution was added to 5 

mg of each polymer and all solutions were filtered before injecting them into 

the GPC. The solutions were then run through PL gel (mixed B, 950 mm) 

columns at 70°C with flow rate of l.0 ml/min. For the triple detection GPC, 

the same polymer quantities were used as for the single detection, but 0.1% 

of tetrabutyl-ammonium bromide (TBAB) in tetrahydrofuran (THF) was 

used as eluent. Then the solutions were run through PL gel (2 x mixed-C) 

columns with flow rate of l.0 ml/min. Figures 7.5 and 7.6 illustrate typical 

size exclusion chromatography (SEC) molecular weight distributions using 

the two techniques mentioned above. It is noticeable from these plots that, 

as expected, by introducing branching monomers the molecular weight distri­

butions become broad and have multiple peaks compared to their analogous 

linear PNIPAms [21]. Table 7.4 show the obtained values of ~lw, Mn and 

PD for linear and hyperbranched PNIPAM. 

7.2.5 Fluorescently labelled Linear and HB-PNIPAM 

The RAFT polymerisation procedure described in section 7.2.2 was also used 

to sYllthesize linear and hyperbranched PNIPA1d with a chemically attached 

fluorescein to the polymer backbone. The same quantities shown in table 1.1 
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Figure 7.5: Typical SEC chromatograms for linear and hyperbranched P I 1-
PAM with different branching degrees (25 :1, 60:1 and 90:1) using a single 
detection GPC system. This figure shows a single peak for linear P NIPAM 
and broad and multiple peaks for HB-PNIPAMs. It is clear that single de­
tection G PC is not appropriate for the highest degree of branching (25: 1) as 
only a single peak is observed from which the average molecular weight is 
underestimated as shown in table 7.4. 

Description 
DMF (0. 1% THF (0.1% TBAB) 

ammonium acetone) 

Mw II Mn II PD lVlw II Mn II PD II Rgw 
(25: 1) II 48291 I 3911 II 12.3 316187 18551 II 17. 0 10.74 I 
(60: 1) II 46634 3706 II 12.6 168579 31831 II 5.3 8.86 I 
(90 : 1) II 82073 I 7180 /I 11 .43 357442 37399 II 9.6 11 .4 I 
Linear /I 28689 I 8513 II 3.37 135584 63452 /I 2. 14 8.63 I 

Table 7.4: GPC data for linear and HB-PNIPAlVI using single (DMF (0.1 % 
ammonium acetone)) and t riple (THF (0.1%TBAB)) detection GPC system 
at 70°C. 
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Figure 7.6: Typical SEC chromatograms for linear and hyperbranched PNI­
PAM with different branching degrees (25: 1, 60: 1 and 90: 1) using a tri pIc 
detection GPC system. This figure shows broad and multiple peaks for all 
HB-PNIPAMs and a single peak for the linear PNIPAM. The average molec­
ular weights from these measurements are listed in table 7.4. 
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were used to prepare fluorescently labeled linear and hyperbranched PNI­

PAMs, but with the addition of 25 mg (i.e. 1% of the NIPAl\I quantitv) 

of fluorescein o-acrylate (97% from Sigma-Aldrich). The N-pyrroledithioate 

chain-end groups were also converted to carboxylic-acid chain-end groups us­

ing the conversion method described in section 7.2.2 with the same quantities 

in table 7.2. To test the existence of the fluorescent labels, a UV-\"isible spec­

trometer (U-2010 spectrometer) was used to obtain the absorption spectra 

show in Figure 7.7 for 1% wt/wt of fluorescently labeled PNIPAM in pure 

water. These labelled linear and HB-PNIPAMs will also be used to study the 

dynamics of these polymers as a function of temperature and concentration. 

7.2.6 LeST Determination 

A Cary 3Bio UV-visible spectrophotometer, fitted with a Cary temperature 

controller, was used to determine the cloud point (LCST) of different con­

centrations (5 mg/ml and 10 mg/ml) of HB-PNIPAMs in D20 (Figure 7.8). 

A Varian Cary tern perature controller was utilized to an accuracy of ±0.1 ° C 

to control the temperature of the cell holder and the condensation of the 

sample cell holder was avoided by a flow of nitrogen gas. All samples were 

heated from 15°C up to 60°C and the cloud points were obtained using a 

wavelength of 500 nm. The LCST of the polymer was determined as the 

point of inflexion of the increased absorbance with raising the temperature 

and the results are summarized in table 7.5. 

It is clear from table 7.4 that the polydispersity (PD) of HB-PNIPAM is 

larger than that of linear PNIP AM due to an increase in the heterogeneity in 

the composition of the highly branched polymers. This increase in PD has 

been observed to affect the transition temperature (LCST) of HB-PNIPAM 

leading to a more gradual increase in the turbidity of the sample. The reason 

behind this is that some molecules or some parts of a molecule nucleate at 

lower temperatures forming intermolecular aggregates before the onset of 

the bulk sample. This effect can be seen in Figure 7.8 from the change in 

ahsorption with temperature. This figure shows a gradual increase of the 

absorption with a significant slope instead of a sharp change as in homo-
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Figure 7.7: UV-visible spectra for fluorescently labeled linear and hyper­
branched PNIPA1VI wit h (a) N-pyrroledithioate and (b) carboxylic-acid chain­

end groups. 
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Sample Cloud point Cloud point 
in D20, 10'7c in D20, ·57c 
polymer/oC polymer/oC 

HB-PNIPAM (25:1) 25 26 
HB-PNIPAM (60:1) 24 24 
HB-PNIPAM (90:1) 18 30 

Linear PNIP AM* 32 32 

Table 7.5: Cloud points (LCST) of linear and hyperbranched PNIPAMs in 
D20 at different concentrations. * The LCST of linear PNIPAM has been 
taken from reference [21]. 

PNIPAM which occurs over 1°C. The data in Figure 7.8 also indicate that 

the slope of the transition increases with decreasing the number of branches; 

in this case HB-PNIPAM (90:1) has the largest slope especially at higher 

polymer concentration (7.8 (b)). 

7.2.7 Confocal Laser Scanning Microscopy (CLSM) 

A confocal laser scanning microscope was used to visualize the microstruc­

tures of fluorescently labelled PNIPAMs prepared as described in section 

7.2.5. The CLSM used in this study was an LSM510 inverted confocal mi­

croscope (Zeiss), which was discussed in Chapter 5, and pictured in Figure 

5.3. Solutions containing 5% of linear and HB-PNIPAMs were prepared by 

dissolving 100 mg of each polymer in 2 ml of D20. The temperature of the 

sample was controlled using a Linkam heating stage (Linkam Scientific In­

struments Ltd, Surrey, UK) with TMS94 heat controller and LNP-1 nitrogen 

flow control. The samples were excited by an argon laser with wavelength 

of 488 nm to obtain images in 2D with scan depth of 8 bit in a single di­

rection, resulting in 512x512 pixel images. In order to measure the particle 

concentration and distribution from the resulting images as a function of tem­

perature, ImageJ software was utilized which allows the number of particles 

per unit area to be counted. 
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Figure 7.8: Optical density of (a) 5 wt% and (b) 10 wt % HB-P NIPAm in 
D

2
0 as a function of temperat ure for three different branching degrees (25 , 

60 and 90 monomers between branch points). 
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7.2.8 SANS Measurements 

SANS measurements presented in this work were performed at the Ruther­

ford Appleton Laboratory (ISIS Spallation Neutron Source, Didcot, UK) us­

ing the fixed-geometry, time-of-flight LOQ spectrometer. SANS experiments 

were also partially carried out at Laboratoire Leon Brillouin CEA-Saclay us­

ing the PAXY instrument. At ISIS, the LOQ instrument uses incident neu­

tron wavelengths from 2.2 to 10.0 A, which covers a scattering wavevector, Q, 

range of 0.009 to rv1.3 A-I at a sample-detector distance of 4.1 m. 5 and 10 

wt% solutions of each polymer ((25:1), (60:1) and (90:1) HB-PNIPAl\I and 

linear PNIPAM) were prepared by dissolving 150 and 300 mg, respectivel~', 

in 2.8 ml of D20. All samples were transfered to 2 mm path-length quartz 

Hellma cells. The temperature was controlled by using circulating fluid baths 

giving a temperature range from -20 to 100 cC. A similar procedure was used 

on the PAXY instrument which covers almost the same Q-range from 0.003 

to 1 A-I at a sample-detector distance of 1 to 7 m. Scattering intensities were 

reduced and normalized as described in reference [156], using the standard 

procedures on the allocated softwares at each facility to obtain the differ­

ential scattering cross section, dl::/dn, in absolute units (cm- I
), which is 

referred to here as I ( Q). Two-dimensional (2D) SANS patterns of linear and 

HB-PNIPAM are shown in Appendix D.1 at temperatures below and around 

the LCST of each polymer. 

As mentioned in Chapter 4, section 4.3.2.2, the differential scattering 

cross section or I ( Q) can expressed in terms of the form (shape) and struc­

ture factors of the sample (equation 4.36). However, the structure factor in 

the systems invistigated in this work can be considered as unity (S(Q) = 1), 

because the studied polymer solutions are diluted and therefore there is no 

interference between neutrons scattered by different scattering centres. In 

other words, there is no long-range local ordering in the samples which min­

imizes the possibility of the interactions between scattered neutrons [1561· 
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7.3 Results and Discussion 

7.3.1 Temperature-Dependent Microstructure of Linear 

and HB-PNIPAM 

As discussed in Chapter 3, section 3.3, PNIPAM molecules in general un­

dergo conformational transitions from swollen polymer coils to collapsed or 

globular structures above their transition temperatures (or the LeST). It has 

been found [115] that this conformational behaviour depends on the archi­

tecture of PNIPAM molecules and the chain end groups. In this section, a 

comparison between the microstructure of fluorescently labelled linear and 

hyperbranched PNIPAMs with different branching degrees is investigated us­

ing a confocal laser scanning microscope as a function of temperature. Fig­

ures 7.9, 7.10 and 7.11 show CLSM images for HB-PNIPAM with branching 

degrees of (25:1), (60:1) and (90:1). These polymers have different LCST 

transition points, 26°C, 24°C and 30°C, respectively, at a concentration of 

5 wt% in D20 (as shown in table 7.5). It can be seen clearly from these 

images that, at temperatures (e.g. 15°C) much lower than the LCST of 

all HB-PNIPAMs, polymer chains are swollen with no aggregate formation 

confirmed by the very low bright regions in the images at this temperature. 

Increasing the temperature leads to a collapse of HB-PNIPAMs which then 

interact with their neighbours and form aggregates. Surprisingly, the forma­

tion of these aggregates starts below the LCST of each polymer and the size 

of these aggregates increases with increasing temperature until they form 

stable and uniform closely packed colloidal dispersions. At and above the 

LCST of HB-PNIPAMs, these aggregates are spheres (the clearest case is 

the HB-PNIPAr..r (60:1) shown in Figure 7.10). Although gelation is not ex­

pected to take place in these systems at temperatures that much higher than 

the LCST of HB-PNIPAMs, for example 40°C as shown in Figure 7.14. gel 

regions as well as some spherical aggregates have been seen. By analysing 

these images (see Figure 7.13), it is clear that the aggregate concentration 

increases with temperature then remains constant abm'e the LeST of each 

HB-PNIPAr..r. It is noticeable from Figure 1.13 that the aggregate concen-
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tration increases with increasing the number of branches per molecule (i.e. 

the highest aggregate concentration was observed for HB-PNIPAI\I with :!5 

monomers between branch points). 

Linear PNIP AM also follows the same trend as HB-PNIPAMs and forms 

aggregates with increasing temperature, as shown in Figure 7.12. However, 

linear PNIPAM seems to form undefined structures with increasing tempera­

ture. Furthermore, these linear PNIPAM aggregates form physical cross-links 

around the LCST (32°C) resulting in a network-like structure as shown in 

Figure 7.12 (f, g and h). In terms of the aggregate concentration as a function 

of temperature (Figure 7.13), linear PNIPAM shows an increase in aggregate 

concentration with temperature; however, this concentration was observed 

to level off even below its transition temperature. 

7.3.2 SANS Study of The Structural Behaviour of Lin­

ear and HB-PNIPAM 

7.3.2.1 Temperature-Dependent Shape and Size of Linear and 

HB-PNIPAM 

Figures 7.15, 7.16 and 7.17 show log-log scale plots of SANS data from HB­

PNIPAM with different branching degrees, while Figure 7.18 shows a similar 

plot for linear PNIPAM. It is apparent from these figures that scattering from 

linear and branched PNIP AMs follow the same Gaussian behaviour below 

their LCSTs where all polymers are swollen in good solvent environments. 

The scattering intensity increases with increasing temperature in both cases 

at low Q, which is an indication of contribution of scattering from the whole 

particles. However, SANS intensity is significantly higher in the case of HB­

PNIPAl\I compared to the linear counterparts, increasing as the number of 

branches per molecule is increased (see Figure 7.19( a)) due to the increase of 

particle size. Tanaka and co-workers [231] obtained a similar SANS plot for 

linear PNIPAM in solution below and above the LCST when they compared 

it with the scattering from cross-linked PNIPAM. 

SANS data shown in Figure 7.19 (b) indicates that linear and HB-PNIPAi\Is 

change conformation ,,,hen collapsing and forming aggregates above their 
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Figure 7.9: CLSM micrographs of 5 wt% of HB-P NIPA I (25:1). Th tem­
p ra ture range is as follows: (a) 15°C, (b) 18°C, (c) 21°C, (d) 24°C, (e) 27°C, 

- J ~ _~ ..... _ ,, 1 , \ l""\,.... n ~ rr'l 1 1 11 11 L L _ T {""1CH'"T' ( () C 0 0\ 



CHAPTER 7. STRUCTURE OF HYPERBRANCHED PNIPAM 177 

F igur 7.10: CLSrvI micrographs of 5 wt% HB-PNIPAM (60: 1) . T he t mper­
a t ure range i a follows: (a) 15°C (b) 18°C , (c) 21 °C , (d) 24°C, ( ) 27°C . 
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Figur 7.11: CLSM micrographs of 5 wt% HB-P IPA I (90:1 ). The temper­
ature range is as follows: (a) 15°C , (b) 18°C , (c) 21°C, (d) 24°C, (e) 27°C, 

- - . - - - _ _ .. .. , ~ ................ ..,...., / <"" '"'r. ........... , 



CHAPTER 7. STRUCTURE OF HYPERBRANCHED PNIPAM 179 

Figure 7.12 : CLSM micrographs of 5 wt% of linear P NIP 1. The temper­
atur range is a follows: (a) 15°C, (b) 18°C, (c) 21°C , (d) 24°C, (e) 27°C, 

~ - . _ _ _ .... ~.. • T /"""'fnrT"1 I nt"'\ () .f'"'""'I \ 
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Figure 7.13: Percentage of PNIPAM particles as a function of temperature 
calculated from CLSM images (Figures 7.9 , 7.10, 7.11 and 7.12). 

Figure 7.14: CLSM micrograph of 5 wt% of HB-PNIPAM (60:1 ) at a temper­
ature (40°C) much higher than its LCST (24°C). This figure shows different 
regions of gels and spherical particles , indicated by the arrows. 
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LCSTs, showing a Porod scattering behaviour attributed to 3D spherical ob­

jects with sharp boundaries (slope of -4). However, scattering from linear 

PNIPAM slightly deviates from the slope of -4 due to the contribution to 

the scattering from entangled chains (network-like as seen in CLSM images, 

Figure 7.12). Interestingly, the change of conformation in HB-PNIPA}\ls 

starts immediately at the macroscopic LCST shown in Table 7.5; whereas 

the change to the Porod scattering behaviour was reached at a temperature 

much higher than the LCST oflinear PNIPAM. This might be understood as 

the HB-PNIPAMs being more sensitive to temperature than their linear coun­

terparts, due to the COOH end-groups in HB-PNIPAMs. This phenomenon 

was not observed in the work by Tanaka et al. [231] as the the highest 

temperature they used was only 1°C above the LCST of linear PNIPAl\l. 

However, the SANS intensity in Figure 7.19 (b) above the LCST continues 

to decay with a slope of -1 independently of temperature at high Q-values, 

indicating a one dimensional rod-like scattering behaviour from the internal 

structure of both linear and HB-PNIPAMs. This might be corresponding 

to the scattering from the backbone between branches in the case of HB­

PNIPAM. This means that the branches and their COOH end-groups play 

a significant role in controlling the overall shape and size of HB-PNIPAMs, 

whereas the internal structure is similar to that of linear PNIPAM. 

Another useful representation of scattering data can be obtained by plot­

ting J( Q)Q2 versus Q, which is known as a Kratky plot. A typical Kratky 

plot should asymptotically reach a plateau at high Q values. Figure 7.20 

shows a typical Kratky plot of linear PNIPAM at different temperatures. 

Below the LCST of linear PNIPAM (32°C), the polymer is swollen (good 

solvent) forming a Gaussian chain, indicated by the plateau at high Q values 

of the Kratky plot. However, a deviation from the asymptotic behaviour can 

be seen at 36°C (above the LCST) when the D20 becomes a poor solvent and 

the polymer collapses. The tail of the curve in this case follows an ascending 

line which if extrapolated towards Q = 0 passes through the origin. This is a 

characteristic of rod-like behaviour at the local structure or a local ordering 

of the polymer units at short ranges. 

On the other hand, scattering from branched polymers is quite different 
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Figure 7.16: Log-log plot of SANS intensity versus t he scattering vector for 
5 wt% of HB-PNIPAM (60:1) in D2 0 at temperatures below and above its 
LCST. The dashed lines are guides for the eye. This figure shows t he tran­
sition from a swollen chain (Lorentzian scattering behaviour) to a shperical 
particle above the LCST (24°C) indicated by the slope of -4 (Porod scattering 
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Figure 7.17: Log-log plot of SANS intensity versus the scattering vector for 
5 wt% of HB-PNIPAM (90:1) in D20 at temperatures below and above its 
LCST. The dashed lines are guides for the eye. This figure shows t he tran­
sition from a swollen chain (Lorentzian scattering behaviour) to a shperical 
particle above the LCST (30°C) indicated by t he slope of -4 (Porod scattering 
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from that obtained from linear polymers. Figure 7.21 is a typical example 

of scattering from a branched polymer, which shows a Kratky plot of HB­

PNIPAl\I (25:1), the highest branching degree in this study. These curves 

are different from that of linear PNIP AM in that, below the LCST, a peak is 

formed at low Q values which precedes the asymptote. These maxima in the 

Kratky plots indicate nonrandomly branched polymers in solution [232]. The 

magnitude of these peaks increases with increasing temperature with a shift 

towards low Q-region. These maxima disappear at temperatures above the 

LCST because the scattering at this low Q-range is representing the overall 

globular structure of the collapsed HB-PNIPAl\I. The behaviour of the tail of 

the curves at high Q values (local structural behaviour) in this case is similar 

to that of linear PNIPAM which shows a rod-like characteristic of the local 

structure (in this case the backbone between branches) above the LCST. A 

similar scattering behaviour was observed from lightly branched PNIPAl\I 

(60:1) and (90:1), shown in Figures 7.22 and 7.23, respectively, above their 

LCSTs. However, no peaks were observed below the LCST of these samples, 

which can be attributed to the dominated scattering by the backbone of the 

polymers given that there are considerable distances between branches. 

7.3.2.2 Scattering Behaviour Below The LeST 

Elastic scattering from polymer solutions in the semidilute regime can be 

described by a Lorentzian equation, Ornstein-Zrnike (OZ) equation, of the 

type: 

1(0) 
I(Q) = (1 + eQ2)' 

(7.1 ) 

where ~ is the blob size or the correlation length. This length scale is yer~' 

important in the case of semidilute solutions, which is a distance at which 

neighbouring chains start to interact. Equation 7.1 allows the correlation 

length, ~, to be determined from SANS in the case of semidilute theta so­

lutions. From the discussion in the previous sections it is apparent that the 

scattt'ring from linear and HB-PNIPA'l\I below the LCST, when the\' are 

completely swollen in D20, is different from that abO\'e it, when the\' are col-
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Figure 7.20: SANS scattering profiles represented as Kratky plots of 5 wt% 
Linear PNIPAM in D2 0 . The solid lines are guides for the eye. This fig­
ure shows the linear increase of 1(Q)Q2 with Q until the LeST is reached 
above which a different structure is observed. This structure is a network-like 
structure (see sections 7.3.2.2 and 7.3 .2 .3) . 
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Figure 7.21: SANS scattering profiles represented as Kratky plots of 5 wt% 
HB-PNIPAM (25:1) in D20. The solid lines are guides for t he eye . T he peaks 
in this figure indicate a highly branched P~IPAM . These peaks increase with 
increasing t emperature, because the number of branches increases per unit 
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Figure 7.23: SANS scattering profiles represented as Kratky plots of 5 wt% 
HB-PNIPAlVI (90:1) in D20 . The solid lines are guides for the eye. This plot 
shows a similar scattering behaviour as for HB-PNIPAM (60: 1) in Figure 7.22 
where the increase of the distance between branch point led to a scattering 
behaviour which , below the LeST, is similar to that of linear PNIPAM. 
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lapsed. The change of gradient of the scattering curves suggests scattering 

from molecules with different fractal dimensions, Df , due to the change of 

polymer conformation as the temperature increases. In other words, the scat­

tering intensity decays as a power law that is related to Q by 1 ( Q) '" Q- Dr. 

where Dr is an exponent that correlates mass and size .AI = RDr, which 

according to Flory's theory is 5/3 for linear polymers and 2 for branched 

polymers in a good solvent [233, 40, 156]. In this case, polymer chains are 

represented as closely packed separated regimes of size ~ that are correlated to 

other regimes on different chains by the fractal dimension D f . The scattering 

function in this case can be given as, 

I(Q) = 1(0) . 
[1 + (l+Dr1(Q.;)2] Dr/2 

(7.2) 

This equation is known as the generalized Ornstein-Zernike (OZ) equation 

which reduces to equation 7.1 if Df = 2 in equation 7.2. 

As shown in Figure 7.24, the scattering from linear PNIPAM below the 

LeST is described well by the general OZ equation with a fractal dimen­

sion Dr = 5/3 which does not change with increasing temperature until the 

LeST is reached. This fractal dimension is known to be valid for the case 

of extended linear polymer chains in a good solvent with excluded volume, 

according to Flory's theory. The correlation length (~) increases with in­

creasing temperature which is an indication of the increase in swelling degree 

of the linear PNIPAM. In this case PNIPAM monomers are interacting only 

with neighbouring monomers on the same chain and the surrounding solvent 

molecules. Table 7.6 summerizes the obtained ~ values from fitting to the 

generalized OZ equation. Surprisingly, even above the LeST of linear PNI­

PAl\I, SANS data are described by the general OZ equation, but the fractal 

dimension increases to 1.9 and the correlation length increases significantly 

as well. This fractal dimension is known to be for a 2D network [156] and 

the correlation length in this case is the mesh size between the entangled 

PNIPAl\I linear chains. Therefore, it can be concluded that, at its transi­

tion temperatlll'E'. linear PNIPAM forms a network-like structure ,,'hich is 



CHAPTER 7. STRUCTURE OF HYPERBRASCHED PSIPA.U 193 

in agreement with the microscope images in Figure 7.12. despite the 10\\' 

resolution of CLSM. 

Scattering from HB-PNIPAMs below their LCSTs can also be described 

by the generalized OZ model. Figures 7.25 (a), 7.26 (a) and 7.27 (a) show 

the fits to equation 7.2. Unlike the case of linear PNIPA~I. the contribution 

of Lorentzian scattering disappears exactly at the macroscopic LCST of each 

polymer and the general OZ equation is no longer valid beyond these points. 

The fitting parameters of OZ equation for HB-PNIPAtIs are shown in table 

7.6. The fractal dimension, Dr , of the scattering from these hyperbranched 

polymers starts with a value of 2 at temperatures much below their LC­

STs (15°C) which is in agreement with theoretical predictions for branched 

polymers in the semidilute regime in a good solvent [233]. Increasing the 

temperature leads to an increase in Dr, depending on the branching degree; 

the highly branched polymer showed a significant increase in Dr value at 

temperatures far below the LCST of this polymer. This can be explained by 

that D20 is becoming a poor solvent with increasing temperature even be­

low the macroscopic LCST. It can be noticed from table 7.6 that Dr reached 

a value of 4 at temperatures below the LCSTs of HB-PNIPAM (25:1) and 

(60:1), which means a change of conformation of the polymers to separated 

3D spherical aggregates with no sharp boundries because the scattering here 

is still showing the Guinier regime described by a Lorentzian function. Again, 

CLSM images, in section 7.3.1, showed a similar transition from a randomly 

swollen chains to a spherical structures. However, this effect was not seen 

in the case of the lightly branched PNIPAM (90:1) below its LCST (below 

30°C) and D20 remains a good solvent up to a temperature close to the 

LCST. The correlation length values in table 7.6 show a decrese in ~ with 

temperature for all HB-PNIPAMs, confirming the gradual collapse of these 

polymers below their LCSTs. 

7.3.2.3 Scattering Behaviour Above The LeST 

Scattering from linear PNIPAM at 36°C (far above its LeST) in Figure 7.2-1 

shows a different behaviour from that below its LeST, as described in the 
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Linear HB-(25:1) HB- (60: 1) HB- (90: 1) 
T ;oC D f ~ j A Df ~ j A Df ~ j A D f ~ jX 

15 1.66 23.3±2 2 63.9±1 2 1l0.4±2 2 108.5±3 
18 1.66 24.9±3 2.7 48.4±2 2.5 103.8±1 2 94.3±5 
21 1.66 26.9±1 4 45.9±1 2.7 100.4±1 2 88.6±2 
24 1.66 30.4± 2 4 25.1±5 4 80 .5±3 2 86 .7±4 
27 1.66 37.0±4 . . . .. . ... . .. 2.5 76.1±6 
30 1.66 59.9±3 ... . . . . .. .. . ... ... 

33 1.9 256. 1±2 .. . ... ... .. . . .. _.-

Table 7.6: A summary of t he parameters obtained by fitting SANS data for 
5 wt% linear and HB-PNIPAMs to the generalized OZ (equation 7_2) below 
the LCST of these polymers. 
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Figure 7.27: SA S intensity profiles of 5 wt% HB-P NIPAM (90:1 ) a a fun c­
tion of temperature. T he data in figure (a) , below the LCST, were fitt ed 
to the generalized OZ scattering funct ion (equation 7.2 ); whereas figure (b) 
~ h owc t he fit to t he Porocl scatter ing function (equat ion 7.4 ) above the LCST. 
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Linear HB-(25: 1) HB-(60:1) HB-(90:1) 

T re ro Inm ro Inm ro Inm ro Inm 
27 ... 14.4±1.0 13.5±0.6 . .. 

30 ... 16.2±0.5 16.8±0.8 15.7±1.2 
33 ... 18.5±0.9 16.6±1.1 18.6±0.9 
36 127±4.0 19.7±1.0 17.3±0.7 17.9±1.1 

Table 7.7: A summary of the particle size obtained by fitting SANS data for 
5 wt% linear and HB-PNIPAMs above their LeST to the (i) the combined 
Porod-Lorentzian function (equation 7.3) in the case of linear PNIPAl\I and 
(ii) the pure Porod scattering function (equation 7.4) in the case of HB­
PNIPAMs. 

previous section. The gradient of the intensity in this case, as shown in the 

log-log plot in Figure 7.18, indicates a behaviour close to Porod's regime 

(slope ~ -4). The deviation from Porod's behaviour is attributed to the 

contribution of Lorentzian scattering resulting from the slightly solvated and 

entangled polymer chains. SANS data in this case can be described by a 

model that combines Porod and Lorentzian scattering, given by: 

K ( 1) 1(0) 
I(Q) = Q4ro 1 + Q2r6 + 1 +eQ2' (7.3) 

where ro is the particle radius and K = 6Jr¢p (6p) 
2 

is a constant with 

CPp being the volume fraction of particles. The first term in equation 7.3 is 

corresponding to Porod scattering behaviour for the scattering from the whole 

particle, from which the shape and size of the polymer can be obtained. The 

second term in this equation is the Lorentzian scattering contribution from 

the internal structure of the polymer, from which the interactions with other 

chains can be determined (the correlation length). The fitted SANS data for 

linear PNIPAM at 36°e in Figure 7.24 shows that collapsed linear PNIPAM 

can be described well by the Porod-Lorentzian model (equation 7.3), giving 

a particle radius ro = 127 nm (see table 7.7). The correlation length from 

the fitting in this case droped from 256.1±2 A at 33°e to 69±3 A. A similar 

hehayiour to the scattering from linear PNIPAl\I above 32°C was observed 

in the case of collapsed microgels, where cross-links are introduced hetween 

linear PNIPA~·d chains, for which SANS data were fitted to equation 7.3 [234]. 
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This scattering behaviour of linear PNIPAI\I above its LCST is attributed 

to the entanglements formed when the polymer collapses 'with increasing 

temperature. CLSM images, shown in section 7.3.1, confirm the formation 

of a network-like structure above the LCST of linear PNIPAM. 

On the other hand, scattering from HB-PNIPAl\Is at and above their 

LCSTs showed, on double logarithmic plots (Figures 7.15, 7.16 and 7.17). 

a gradient of exactly -4, indicating a pure Porod scattering behaviour from 

single spherical particles with sharp boundries. Therefore, the second term in 

equation 7.3 can be ignored and the scattering in this case can be described 

by Porod scattering function given as: 

I(Q) ~ Q~o (1 + Q!r6) . (7.4) 

The fits in Figures 7.25 (b), 7.26 (b) and 7.27 (b) to equation 7A demonstrate 

that all HB-PNIPAMs are well described by a Porod scattering function 

above their LCSTs, with particle sizes that increase with increasing temper­

ature (see table 7.7). This increase in particle size is expected for colloidal 

particles formed by aggregation. However, particle size seems to be indepen­

dent of the degree of branching as all HB-PNIPAMs in this study showed, 

within errors, similar average particle radii (between 13.5 nm and 19.7 nm) 

depending on temperature. Again, this scattering behaviour agrees with 

CLMS images in section 7.3.1 where HB-PNIPAM showed a transition from 

a completely swollen to spherical structures, despite the lack of resolution in 

CLSM images. 

7.3.2.4 Concentration Effect 

Macroscopic measurements of the LCST shown in table 7.5 indicate a sim­

ilarity of the cloud points at 5 wt% and 10 wt% (it is equal in the case of 

linear PNIPAM and there is a difference of 1°C for HB-PNIPAMs except 

for (90:1)). In this section, SANS measurements at 10 wt% of linear and 

HB-PNIPAMs are compared to the that at 5 wt% presented in the previous 

:-it'd iUll. The scattering behaviour from linear PNIPAM is not affected by 

increasing the concentration from 5 'wt% to 10 'vvt%. Figure 7.28 shows fits 
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Linear HB-(25: 1) HB-(60:1) HB-(90:1) 
T rC Df ~/A Df ~/A D f ~ IA Dr t; A 

15 1.66 18.9±1 3.2 50.9±3 3.5 104.5±3 2 120±1 
18 1.66 20±3 3.8 40.9±4 3.8 85.6±2 2 94.6±5-! 
25 1.66 27±2 4 23.1±1 ... . .. . .. . .. 

30 1.66 50±2 ... . .. . .. . .. ... . .. 

Table 7.8: A summary of the parameters obtained by fitting SA:l\S data for 
10 wt% linear and HB-PNIPAMs to the generalized OZ (equation 7.2) below 
their LCST of these polymers. 

to the general OZ equation with a fractal dimension of 1.66 at all temper­

atures < 30°C. It can be noticed from the fitting parameters in table 7.8 

that the correlation length decreases with increasing concentration, \vhich is 

expected as polymer chains become closer to each other. However, whether 

increasing concentration affects the entanglement of these linear polymers at 

higher temperatures needs further investigation (see Future Work in Chapter 

9). 

Likewise, scattering from 10 wt% HB-PNIPAM gives a similar behaviour 

to that at a lower concentration, as described in section 7.3.2.2. Figures 7.29. 

7.30 and 7.31 show fitted SANS data of HB-PNIPAMs with different branch­

ing degrees at 10 wt%. These data are fitted to the generalized OZ model 

below the LCST and to Porod scattering function around the LeST. The fit­

ting parameters are summarized in tables 7.8 and 7.9. It is clear from these 

values that both the correlation length and the particle size decrease with in­

creasing concentration. The fractal dimension, D f , increases with increasing 

concentration below the LCST of HB-PNIPAMs (25:1) and (60:1) indicating 

that the quality of D20 as a solvent for HB-PNIPAMs changes with con­

centration, which might affect the internal structure of these polymers but 

not the overall shape and size. It is also worth mentioning that scattering 

from HB-PNIPAMs at high concentrations indicates scattering from sepa­

rated spherical particles with sharp boundaries. Therefore, and despite the 

fact that there are few concentration data points, it can be concluded that 

HB-PNIPAM chains do not entangle \vith increasing temperature e\"en at 

COlH'{,lltrations as high as 10 wt%. 
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Figure 7.28: SANS intensity profiles of 10 wt% linear PNIPAl'vI as a func­
tion of temperature. The data were fitt ed to the generalized 02 scattering 
function (equation 7.2) below the LCST (solid lines). 

HB-(25 :1) HB-(60:1) HB- (90:1) 
T JOC TO j nm TO j nm TO j nm 

25 ... 12.3±0.6 13.5±0.8 
30 14.3±0.5 13.1±0.8 14.1±1.0 

Table 7.9: A summary of the particle size obtained by fitting SANS data 
for 10 wt% HB-PNIPAMs above t heir LCST to the (i) the combined Porod­
Lorentzian function (equation 7.3) in the case of linear PNIPAM and (i i) th 
pure Porod scattering function (equation 7.4) in the case of HB-P NIPAMs. 
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Figure 7.29: SANS intensity profiles of 10 wt% HB-PNIPAM (25 :1 ) as a 
function of temperature. The data in this figure, below the LCST, were 
fitt ed to the generalized OZ scattering function (equation 7.2); whereas t he 
dashed line is a fit to the Porod scattering fnnction (equation 7.4) above the 
LCST. 
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Figure 7.30: SANS intensity profiles of 10 wt% HB-PNIPAM (60: 1) as a 
fun ction of temperature. The data in this figure, below the LCST , were 
fitt ed to the generalized OZ scattering function (equation 7.2); whereas t he 
dashed line is a fit to the Porod scattering function (equation 7.4) above the 

LCST. 
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Figure 7.31: SANS intensity profiles of 10 wt % HB-PNIPAM (90:1) as a 
fun ction of temperature. The data in this figure, below the LCST, were 
fitted to the generalized OZ scattering function (equation 7.2); whereas t he 
dashed line is a fit to the Porod scattering function (equation 7.4) above the 
LCST. 
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7.4 Conclusions 

The work presented in this chapter describes the structural behaviour of hy­

perbrallched PNIPAM with different branching degrees: (25:1), (60:1) and 

(90:1) compared to their linear counterparts using small-angle neutron scat­

tering (SANS). SANS results show that both linear and HB-PNIPAtIs are 

completely swollen at very low temperatures (e.g. 15°C) and the scattering 

from these polymers in this case can be described by a Lorentzian scatter­

ing model known as the generalized Ornstein-Zernike (OZ). Both linear and 

HB-PNIPAMs showed a good fit to this model giving correlation lengths 

dependent on both temperature and concentration. The fractal dimension 

is also a parameter in this model, describing the conformational behaviour 

as a function of temperature. However, at temperatures above the LCST 

of each polymer, the OZ model failed to describe the scattering behaviour. 

Therefore, and according to the gradient of the scattering intensities (= --1), 

Porod scattering behaviour was applied, indicating the formation of sepa­

rated spherical particles with sharp boundaries that are not entangled with 

other aggregated colloidal particles. In contrast, scattering from linear PNI­

PAM above the LCST is not purely Porod scattering and therefore an ad­

dition of a Lorentzian scattering was used to describe their behaviour above 

the LCST. This can be explained by linear PNIPAM forming a network-like 

structure at high temperatures due to entanglements between interacting 

PNIP AM chains. 

These polymers were also studied by CLSM and the images obtained are 

in good agreement with SANS results. These images illustrated the transition 

from extended HB-PNIPAM chains at low temperatures to form spherical 

structures at and above the LCST. CLSM showed linear PNIPAtI to have a 

network-like structure, compared to the spheres in the case of HB-PNIPA~Is. 

despite the lack of resolution. Basic characterisations of such polymers using 

techniques like NMR and GPC were also considered. The macroscopic cloud 

point (LCST) was determined using UV-visible spectrometer. 



Chapter 8 

Dynamics of Hyperbranched 

PNIPAM 

8 .1 Introduction 

The previous chapter covered the structural behaviour of HB-PNIPATvI as a 

function of temperature compared to its linear counterpart using SANS. This 

study showed that HB-PNIPAM gradually collapses with increasing temper­

ature until it forms spherical particles above the LeST. These spherical par­

ticles were observed to have sharp boundaries with a particle radius between 

12.3 and 19.7 nm depending on branching degree. These findings indicate 

that HB-PNIPAM shows no entanglements at these length scales. However, 

the internal dynamics of these systems is worth testing in order to judge the 

behaviour of the entire system. In other words, self-entanglement is another 

point of interest, which is important for the stability and functionality of 

HB-PNIPAl\I in applications such as drug delivery systems. 

Polymer dynamics in general is very complicated due to the fact that 

different molecular motions take place on different length scales governed bv 

the general chain properties and the chemical structure of monomers [39, ~~I· 

The first and simplest theoretical approach to address such dynamics was 

started hy Langevin as an alternative to Brownian theory. However, the first 

successful model to describe molecular motion ,vas developed by Rouse, \,·ho 

206 
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introduced the entropic effect between monomers (beads). This \\"I:1S followed 

by the Zimm theory which takes into account the hydrodynamic interactions 

between monomers and the surrounding solvent HO. 39, 44]. These theories 

were described in detail in Chapter 2, section 2.5. 

In this chapter, the internal dynamics of deuterated HB-PNIPA?\I (Dr 

HB-PNIPAM) is investigated using neutron spin echo (NSE). These cl~'llam­

ical results complement the structural behaviour of these polymers as ob­

tained by SANS in Chapter 7. In addition, self-diffusion of fluorescentl~' 

labelled linear and HB-PNIPAM is studied using FCS. 

8.2 Experimental 

8.2.1 Synthesis of DrHB-PNIPAM 

Deuterated NIPAM (D7-NIPAM) was used to prepare three deuterated HB­

PNIPAM samples with the same branching degree as the non-deuterated 

samples used in Chapter 7: these are (25:1), (60:1) and (90:1). The reason 

behind using deuterated monomers is to give a better contrast for neutron 

spin echo experiments to study the dynamics of these branched polymers. 

Dr HB-PNIPAM was prepared in a similar way to that described in Chapter 

7, section 7.2.2. The quantities used to prepare these polymers are shown 

in table 8.1. The conversion method to COOH acid end-groups that was 

used in Chapter 7, section 7.2.2, has been employed here as well, with the 

quantities shown in table 8.2. 

8.2.2 NMR Characterisation 

Nr-..IR spectra (see appendix C) of D7-HB-PNIPAM were obtained using the 

method described in the previous chapter, section 7.2.3. NMR spectra were 

used to calculate the ratio of D7- NIP AM to imidazole (the branching degree) 

and the calculated ratios are shown in table 8.3. 



CHAPTER 8. DYNAlvIICS OF HYPERBRANCHED PNIPA1\I 2(J;--; 

NIPAr-..I/ D7- RAFT AIBN (g) Dioxane Yield 
RAFT NIPAM agent (g) (ml) 
Ratio (g) 

(25: 1) 1.1085 g 0.0956 g 0.0597 g 3.9 ml 80% 
9.222 0.369 0.369 1.0121 g 
mmol mmol mmol 

(60:1) 1.039 g 0.0373 g 0.0234 g 3.6 ml 84% 
8.644 0.144 0.144 0.9080 g 
mmol mmol mmol 

(90:1) 1.1417g 0.0273 g 0.0171 g 4.0 ml 82% 
9.498 0.106 0.106 1.1021 g 
mmol mmol mmol 

Table 8.l: Quantities used to synthesize DrHB-PNIPAM. 

NIPAM/RAFT Ratio DMF to ,.!, 4' -azo bis- ( 4- DMF to Yield 
dissolve cyanopen- dissolve 

the tanoic the acid 
polymer acid) 

D7-HB-PNIPAm (25:1) 47 ml 3.204 g 9 ml 52% 
0.658 g 

D7-HB-PNIPAm (60:1) 42 ml 2.892 g 8 ml 91% 
1.002 g 

D7-HB-PNIPAm (90:1) 47 ml 3.232 g 9 ml 85% 
1.013 g 

Table 8.2: Quantities used to convert N-pyrrole dithioate chain end groups 
to carboxylic acid in Dr HB-PNIPAr-..1. 
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I Ratio NIPAf\l,iRAFT (in Feed) I Ratio NIPAf\I RAFT (N:\IR) 

Dr (25:1) (21:1) 5 6-8.5 
end-groups 

evident 
Dr(60:1) (57:1) 5 6-8.5 

end-groups 
evident 

D7-(90:1) (75-80:1) 5 6-8.5 
Level of end-groups 
accuracy evident 

Table 8.3: Branching degrees after conversion of N-pyrroledithioate chain­
ended highly-branched polymers (D7-HB-PNIPAl\I) to carboxylic-acid chain­
end functionalized polymers. 

Description 
DMF (0.1% THF (0.1% TBAB) 

ammonium acetone) 

Mw II Mn /I PD Mw /I Mn II PD II Rgw 

Dr (25:1) II 53460 II 3987 II 13.4 II 366630 II 21846 11 16.8 II 9.78 I 
D7-(60:1) II 97556 " 7355 II 13.2 11 166171 II 57549 II 2.9 II 8.38 I 
Dr(90:1) II 66566 II 7042 II 9.5 11 189837 II 47711 II 4.0 II 6.21 I 

Table 8.4: GPC data for D7-HB-PNIPAMs using single (DMF (0.1% am­
monium acetone)) and triple (THF(O.l%TBAB)) detection GPC systems at 
70°C. 

8.2.3 Gel Permeation Chromatography (GPC) 

Single and triple detection GPC methods like those described in Chapter 

7, section 7.2.4 were used to obtain the average molecular weight, molecu­

lar weight distributions and polydispersity of D7-HB-PNIPAM. Figures 8.1 

and 8.2 show size exclusion chromatography (SEC) molecular weight distri­

butions of D7-HB-PNIPAM with different branching degrees, (25:1), (60:1) 

and (90:1). The obtained molecular weight and polydispersity values of these 

samples are listed in table 8.4. 
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Figure 8.l: Typical SEC chromatograms for hyperbranched DTHB-PNIPAM 
with diHerent branching degrees (25 :1, 60:1 and 90:1 ) using a single detection 
GPC system . The broad and multiple peaks indicate branched polymers of 
PNIPAM. It is clear that the single detection GPC method underestimates 
the average molecular weight of the highest branched PNIPAM, where a 
single and narrow peak was observed. The average molecular weights are 
listed in table 8.4. 
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Figure 8.2: Typical SEC chromatograms for hyperbranched Dr HB-PNIPAM 
with different branching degrees (25:1 , 60 :1 and 90:1) using a t riple detection 
GP C system . This figure shows broad and multiple peaks for at all branchi ng 
degrees . The average molecular weights are listed in table 8.4. 
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Sample Cloud point Cloud point 
in D20, 10(7c in D20. 57c 
polymer/oC polymer/oC 

D7-HB-PNIPAM (25:1) 28 28 
DrHB-PNIPAM (60:1) 27 26 
D7-HB-PNIPAM (90:1) 23 30 

Table 8.5: Cloud points (LCST) of 5 and 10 wt% of D7-HB-PNIPAJ\I with 
different branching degrees in D20. 

8.2.4 LeST of D 7-HB-PNIPAMs 

The cloud points (LCST) of DrHB-PNIPAM were determined by using a 

UV-visible spectrophotometer as described in Chapter 7, section 7.2.6. Fig­

ure 8.3 shows the optical density of 5 and 10 wt% of DrHB-PNIPAJ\I with 

different branching degrees as a function of temperature. The obtained LCST 

values of each polymer at these two concentrations are listed in table 8.5. 

8.2.5 NSE Measurements 

NSE measurements were carried out using INll at Institut Laue-Langevin 

(ILL) in Grenoble, France, with incident neutron beam wavelength of 5.5 

A and 6,)"/),, = 10% at a scattering angles 2e = 20° and 45° resulting in a 

range of Q between 0.0438 and 0.1734 A-I. The obtained time window was 

between 0 and 50.5 ns. 5 wt% solutions of two different D7-HB-PNIPAM, 

(25:1) and (90:1), were prepared by dissolving 150 mg of each polymer in 

3 ml D20. The samples were held in a 2 mm pathlength aluminum cell 

(4x3 mm). NSE measurements were conducted at 15°C and 25.4°C for Dr 

HB-PNIPAM (25:1), and at 24°C and 31.PC for DrHB-PNIPAM (90:1). 

These are temperatures far below and around the LCST of each polymer, 

respectively (see table 8.5). All NSE spectra were corrected and background 

subtracted from the scattering of the pure solvent and the sample holder at 

the ILL. 
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Figure 8.3: Optical density of (a) 10 wt% and (b) 5 wt% DrHB-PNIPAm 
in D20 as a function of temperature for three different branching degrees 
((25:1) , (60:1) and (90:1)). 
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T (ns) 
Q(A 1) d=27r/Q(A) (25:1), (25:1), (90: 1), (90: 1), 

15°C 25.4°C 24°C 31.1°C 

0.0438 143.5 249.6 48.5 1018.9 31.6 
0.0543 115.7 71.9 23.5 51.0 35.4 
0.0647 97.4 44.5 26.1 32.7 36.3 
0.0980 64.1 23.7 14.2 16.0 12.1 
0.1086 57.9 17.7 7.6 12.6 6.7 
0.1191 52.8 14.2 7.0 10.1 4.6 
0.1524 41.2 9.63 4.8 6.0 3.3 

Table 8.6: Relaxation times for DrHB-PNIPAM (25:1) and (90:1) at different 
temperatures obtained by fitting the NSE data to a single decay function 
(equation 8.1) in the Q range shown in the table. The table also shows the 
length scales (d = 27r/Q) being probed by the NSE. 

8.2.5.1 NSE Data Analysis 

The obtained NSE data are normaly in the form of the normalized interme­

diate scattering function, S(Q,t)/S(Q,O), as a function of Fourier time, t 

(see Chapter 4, section 4.4). Preliminary NSE data were fitted to a single 

exponential decay in the form: 

S(Q,t) ( t) 
S (Q, 0) = Aexp --:;. + So, (8.1 ) 

where A and So = 1 - A are constants while T is the relaxation time. Figure 

8.4 shows tvpical NSE data for DrHB-PNIPAM (25:1) at 15°C fitted to 

equation 8.1. All of the obtained NSE data showed the same behaviour and 

the values of the relaxation times from this fitting for the studied polymers 

are listed in table 8.6. This indicates that simple dynamics theories, such as 

Rouse and Zimm, can be applied to these systems (see results section 8.3.1). 

8.2.6 FCS Measurements 

The fluorescently labelled linear and HB-PNIPAM samples described in Chap­

ter I, section 1.2.5 \\Jere used to study the dynamics of these polymers. Self­

diffusion of linear and HB-PNIPA~ls were studied in their mvn solutions 
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Figure 8.4: A typical NSE plot of dynamic structure factor as a function of 
Fourier time for DrHB-PNIPAlV! (25: 1) at 15 ae. This figure shows that the 
obtained NSE data from these HB-P NIPAM can be described by a single 
exponential decay. The solid lines are fits to a single exponential decay 
(equat ion 8. 1) . 
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as a function of temperature and concentration. 1 n~I solutions of the la­

beled linear and HB-PNIPAMs were prepared in their coresponding linear 

and HB-PNIPAM solutions with different concentrations (1.0, 1.2 and 1.5 

wt%) as described in Chapter 5, section 5.2.1.3. FCS was used to investigate 

the self-diffusion behaviour of linear and HB-PNIPAM in their solutions in 

a similar way to that described in Chapter 5, section 5.2.2. A ConfoCor2 

FCS module fitted to an LSM510 inverted confocal microscope (Zeiss) was 

used to carry out these experiments. The fluorescently labelled linear and 

HB-PNIPAMs were excited using a 488 nm Ar laser. The temperature was 

controlled by a Linkam heating stage (Linkam Scientific Instruments Ltd, 

Surrey, UK) with TMS94 heat controller and LNP-1 nitrogen flow control. 

FCS data were fitted to equation 4.19 to obtain the diffusion times which 

were then be converted to diffusion coefficients using equation 4.15. 

8.3 Results and Discussion 

8.3.1 Internal Dynamics of HB-PNIPAM 

The obtained NSE data are presented in Figures 8.5, 8.6 and 8.7. These 

figures show the dynamic structure factor of D7-HB-PNIPAM with differ­

ent branching degrees at temperatures below and around the LCST of each 

polymer. The data analysis described in section 8.2.5.1 indicated that the 

dynamics of D7- HB-PNIP AM follows a single exponential decay. The single 

exponential decay given by equation 8.1 can also be written in the form 

of the stretched exponential equation introduced by Zilman and Granek 

[119, 178, 40] as: 

5(Q, t) f3 
5 ( Q , 0) = exp ( - rt ) , (8.2) 

where (3 is the stretching parameter which has values of 1/2 and 2 3 for Rouse 

alld Zimm dynamics, respectively, and r = Detl Q2 is the relaxation rate with 

Deff being the effective diffusion coefficient. The characteristic relaxation rate 

in the cast' of Rouse dynamics can be given by [178]: 



CHAPTER 8. DYNAJvIICS OF HYPERBRAlVCHED PNIPA"\I 211 

(8.3) 

where b is the segment length. The data in Figure 8.5 show the fitting to 

Zimm dynamics with (3 = 2/3. The relaxation behaviour of hyperbranched 

PNIPAM at this length sacle cannot be described by the hydrodynamic in­

teractions in the Zimm model. This can be attributed to the small length 

scale that is probed by NSE. This length scale, as shown in table 8.6, is be­

tween 4l.2 A and 143.5 A corresponding to 0.0438 A-I < Q :; 0.1524 A-I. 
Below the LCST of HB-PNIPAM (25:1) and (90:1) these length scales start 

from distances smaller than the correlation lengths for each polymer (63.9 

A and 86.7 A at 15°C for HB-PNIPAM (25:1) and 24°C for HB-PNIPAl\I 

(90: 1)) to distances that are larger than the interaction distance with neigh­

bouring chains. Above the LCST of each polymer, where the correlation 

length is no more valid because the polymer is in a poor solvent, the probed 

length scale is mush smaller than the polymer size (diameter) measured by 

SANS at these temperatures (288 A for HB-PNIPAM (25:1) and 314 A HB­

PNIPAM (90: 1)). In this case, the observed motion is not corresponding to 

the centre of mass diffusion but rather it is the motion of a trapped linear 

PNIPAM between the cross-links (i.e. the motion of the backbone between 

branch points). Therefore, the dynamic structure factor of hyperbranched 

PNIPAMs shown in Figures 8.6 and 8.7 is described well by the Rouse dy­

namics behaviour ((3 = 1/2) for relaxation of unentangled short chains « 
100 monomers). This confirms that these systems are not entangled, at least 

at the length scales probed and the temperatures studied. Figure 8.8 shows 

the double logarithmic plot of the relaxation rate of DrHB-PNIPAM (25:1) 

and (90:1) as a function of Q at different temperatures. It is clear from this 

figure that the relaxation rate dependence of Q is linear following the Rouse 

behaviour (the slope of 4 in equation 8.3). The calculated effective diffu­

sion coefficient (Deff ) is shown in Figure 8.9 as a function of Q. This figure 

illustrates the linear increase in Deff with Q and with increasing tempera­

ture for both DrHB-PNIPAM s)"stems. An interesting point which can be 

observed in Figure 8.9 is that the Deft increases as the number of branches 
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per backbone is decreased. This confirms that the length scale probed is the 

backbone between two branch points. Hence, the more monomers bet\\"een 

branch points, the more flexible the chain and the more effectively it diffuses. 

These results show that the length scale probed is not that of the branches of 

the polymers, because these polymers have identical branches and therefore 

should have similar relaxation behaviour in these two systems. 

8.3.2 Self-Diffusion of linear and HB-PNIPAMs 

Self-diffusion coefficients of linear and HB-PNIP AMs were determined as a 

function of temperature and concentration. Figure 8.10 shows the depen­

dence of the self-diffusion coefficient on temperature in HB-PNIPAl\I (25:1). 

In this figure, the self-diffusion coefficient increases linearly with tempera­

ture for all of the studied concentrations, although the diffusion coefficient 

drops with increasing concentration. This linear relationship was found to 

follow the Zimm diffusion behaviour of a freely diffusing molecule in a so­

lution (equation 2.51). These results suggest that these polymers, despite 

being large and branched, show a temperature-induced fast diffusion as they 

collapse and form spheres (confirmed previously by SANS measurements in 

Chapter 7). Likewise, the data in Figures 8.11 and 8.12 illustrate similar find­

ings where the self-diffusion of both HB-PNIPAM (60:1) and (90:1) showed 

a linear increasing behaviour as a function of temperature with a good fit to 

the Zimm model for diffusion of hydrodynamically coupled polymer chains. 

Also, the increase of the concentration of these solutions was found to slow 

down the self-diffusion process. By comparing the self-diffusion of these three 

HB-PNIPAMs in Figures 8.10, 8.11 and 8.12, it is clear that, as expected, 

increasing the number of branches per molecule reduces the diffusion of HB­

PNIPAM. However, these results also indicate and confirm the unentangle­

ment of such s~rstems. This behaviour has also been observed by NSE for the 

internal dynamics, as described in section 8.3.l. The particle size, R. of these 

HB-PNIPAMs was determined from the fit to the Zimm model and the values 

are listed in table 8.7. The size range of these particles, 7.9-21.3 nm, is lower 

than the values obtained by SANS (table 7.7), 2~--W nm. Given that the 
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Figure 8.5: Dynamic structure factor for: (a) D7-HB-PNIPAM (25 :1 ) at 
15°C and (b) DrHB-Pl IPAM (90:1) at 24°C, at the indicated Q value. 
Th solid lines are fits to Zimm dynamics (equation 8.2 with f3 = 2/ 3) 
behaviour , showing the discrepancy between the obtained result and the 
predicted Zimm-type hydrodynamic interactions. 
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Figure 8.6: Dynamic structure factor for D7-HB-PNIPAM (25:1 ) at: (a) 15°C 
and (b) 25.4°C, at the indicated Q values. The LCST of this polymer at the 
studied concentration is 28°C (table 8.5). The solid lines show a good fit to 
the Rouse model (equation 8.2 with f3 = 1/ 2) of unentangled chains. 
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Figur 8.7: Dynamic structure factor for DrHB-PNIPAM (90 :1 ) at : (a) 24°C 
and (b) 3l. 1°C, at the indicated Q values. The LCST of this polymer at the 
studied concentration is 30°C (table 8.5) . The solid lines show a good fit to 
the R.ouse model (equation 8.2 with f3 = 1/ 2) of unentangled chains. 
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Figure 8.8: Double logarthmic plot of the relaxation rate of D7-HB-PNIPAM 
(25: 1) and (90 : 1) as a function of Q. The solid line represents a slope of 4 
that corresponds to Rouse relaxation behaviour equation 8.3. 
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Figure 8.9: Effective diffusion coefficient of DrHB-PNIPAM (25 :1 ) and 
(90:1) as a function of Q. The solid lines are t he linear least square fit 
to the data. This figure shows t he increase of the effective diffusion coeffi­
cient with increasing temperature and the decrease of D eff as the number of 
branches per backbone is increased. 
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Figure 8.10: Temperature dependence of the diffusion coefficient of HB­
PNIPAM (25:1) in its own solution as a function of concent ration. This 
figure shows the linear increase of the diffusion coefficient with temperature, 
as opposed to its drop with increasing concentration. The solicllines are fi ts 
to the Zimm diffusion model (equation 2.51). 

investigated concentrations here are much lower than those used for SANS 

experiments , these polymers do not form large aggregates. Another reason 

behind this discrepancy in size is that R is independent of temperature in 

the Zimm model. 

On the other hand , linear PNIPAM self-diffusion, shown in Figure 8. 13, 

was found to decay exponentially with increasing temperature, depending on 

concentration. The Arrhenius diffusion model that correlates the diffusion 

coefficient with temperature requires an activation energy, Ea , given as: 

(8.4) 
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Figure 8.l1: Temperature dependence of t he diffusion coefficient of HB­
PNIPAM (60:1) in its own solution as a function of concentration. This 
figure shows the linear increase of the diffusion coefficient with temperature, 
as opposed to its drop with increasing concentration. The solid lines are fit s 
to the Zimm diffusion model (equation 2.51). 

R (nm) 
(25: 1) (60: 1) (90: 1) 

1.0 wt% 20 .1±0.4 10.5± 0.2 7.9±0.4 
1.2 wt% 21.3±0.5 11.0±0.5 8. 1±0.2 
1.5 wt% 20.5±0.2 10.9±0.3 8.2±0.4 

Table 8.7: Part icle size for HB-PNIPAMs as obtained from the fit to the 
Zimm diffusion model in Figures 8.10 , 8. l1 and 8. 12. 
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Figure 8. 12: Temperature dependence of the diffusion coefficient of HB­
PNIPAM (90:1) in its own solution as a function of concent ration. This 
figure shows t he linear increase of the diffusion coefficient with temperature, 
as opposed to its drop with increasing concentration. The solid lines are fit s 
to the Zimm diffusion model (equation 2.51) . 
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Ea (KJ/mol) 
1.0 wt% -19±0.5 
1.2 wt% -17±0.7 
1.5 wt% -14±0.6 

Table 8.8: Activation energy of linear PNIPAM obtained from the fit to the 
Arrhenius diffusion model in Figure 8.13. 

This equation was used to describe the self-diffusion of linear PNIPAM. In 

equation 8.4, Do denotes the diffusion coefficient of linear P.:.JIP AM in the 

solvent (water) and R=8.3115 J/moiK is the gas constant. The deviation 

from Zimm behaviour in this case indicates that linear PNIPAl\I molecules 

are not freely diffusing in the solution, but rather they entangle and minimize 

their mobility. These findings are in good agreement with the previously pre­

sented results in Chapter 7 from CLSM microscopy and SANS measurements. 

Another point of interest is that the activation energy of linear PNIPAM ob­

tained from fitting to the Arrhenius diffusion model in table 8.8 is negative. 

This indicates that the interactions between linear PNIPAlvI molecules de­

crease with increasing temperature which is due to the netwok-like structure 

formed by the entangled chains. 

8.4 Conclusions 

The aim of this chapter was to investigate the dynamics of HB-PNIPAM. 

Two different techniques have been employed: NSE has been used to probe 

the internal dynamics of HB-PNIPAM and FCS to study self-diffusion of 

such a polymer, in comparison to their linear counterparts. NSE results have 

shown that the internal dynamics of these hyperbranched PNIPAMs can be 

described well be the Rouse relaxation behaviour of unentangled short chains. 

The length scale studied by NSE is lower than the correlation length obtained 

by SANS measurements in the previous chapter. Therefore, no hydrodynamic 

interactions were observed, as confirmed by the inability to fit the 0JSE data 

to the Zimm model. However, the NSE data were described well by the 

Rouse model for unentangled short chains. By studying the effective diffusion 
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Figure 8. 13: Temperature dependence of the diffusion coefficient of linear 
PNIPAM in its own solution as a function of concentration. The diffusion 
coefficient in this case decreases exponentially with increasing temperature 
and concentration. The solid lines are fits to the Arrhenius diffusion model 
(equation 8.4). 
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coefficient, it was found that the length scale probed is the backbone between 

branch points. Hence, the backbone of the hyperbranched polymer with more 

monomers between branch points was observed to effectively diffuse more 

than a similar polymer with a higher branching degree. 

The FCS study of HB-PNIPAMs revealed the center of mass diffusion 

behaviour of the polymers as a function of temperature and concentration. 

The measured diffusion coefficients of the polymers were found to follow the 

Zimm diffusion behaviour of hydrodynamically interacting chains for differ­

ent polymer concentrations. The diffusion coefficient was found to increase 

with increasing temperature as the size of the particles decreased, indicating 

that these polymers do not entangle. It was also observed that the increase of 

the branching degree leads to a decrease in the diffusion coefficient, which is 

expected because this corresponds to an increase in the molecular weight of 

the polymer. In contrast, linear PNIPAM was also investigated by FCS show­

ing that the the centre of mass diffusion coefficient decreased exponentially 

with increasing temperature and concentration. This was well described by 

the Arrhenius diffusion model and can be explained by the linear polymes 

forming a network-like structure as a result of their entanglements. This was 

also seen by CLSM images and SANS experiments described in Chapter 7. 



Chapter 9 

Summary and Further Work 

9.1 Summary 

The work conducted in this thesis has described the structural behaviour 

and dynamics of different smart polymeric systems at the molecular level. 

Powerful techniques, such as fluorescence correlation spectroscopy (FCS), 

small angle X-ray and neutron scattering (SAXS and SANS) and neutron spin 

echo (NSE) allowed quantitative and qualitative analysis of stimuli responsive 

PMAA hydro gels , ferro gels and HB-PNIPAM. 

FCS has been used to study the structural dependence of diffusion of a 

single molecule of FITC-dextran on temperature, pH and salt. This study 

has shown an unusual diffusion of FITC-dextran in PMAA hydrogels as a 

function of temperature, while in contrast, the diffusion of FITC-dextran 

in pure water has been found to follow Zimm diffusion behaviour. This 

strange diffusion behaviour in the case of PMAA hydrogel has been modelled 

by inserting the Huggins relation for viscosity into the Zimm model. This 

suggests that the observed macroscopic swelling and collapse transition can 

be understood in terms of the change in viscosity. The obtained mesh size 

from the diffusion measurements using de Gennes equation has been found 

to decrease exponentially with temperature. To the best knowledge of the 

author there is no existing theory that correlates the change in the mesh size 

to temperature. For this reason, a model has been developed by using the 

230 
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Williams, Landel, and Ferry (WLF) equation for yiscosi ty in a well-knO\\'n 

equation for determining the mesh size from swelling measurements. The 

diffusion coefficient of FITC-dextran in water was found to decrease with 

increasing the pH of the solution, indicating a diffusing charged molecule. 

This was confirmed by titration measurements, but NMR spectra showed no 

chemical shift from dextran suggesting that the charges are originating from 

the FITC part of the molecule. The effect of N aCl and CaCl2 on the swelling 

of Pl\IAA hydrogel and the diffusion of FITC-dextran \-vithin it has also 

been studied. The diffusion coefficient of FITC-dextran in PMAA hydrogel 

showed an increase at low salt concentrations suggesting a swelling of PMAA 

hydrogel at these concentrations. 

PMAA ferrogels have been prepared by introducing magnetic nanopar­

ticles (Fe304) to PMAA hydro gels during polymerisation. This resulted in 

these magnetic nanoparticles being attached to the polymer network which in 

turn affects the structural behaviour of this network under applied magnetic 

fields. Controlling these polymer networks under applied magnetic fields is 

a key feature of these systems, making them possible candidates for deliv­

ery and release applications. The effect of the applied magnetic field on 

the diffusion of FITC-dextran within these ferro gels has been investigated 

using FCS. These experiments have shown that the diffusion coefficient of 

FITC-dextran depends strongly on the applied magnetic field, from which a 

relationship between the applied magnetic field and the viscosity of ferrogels 

based on Stokes-Einstein diffusion has been developed. The model devel­

oped has shown that the mesh size of the ferro gel is controlled by the applied 

magnetic field, B, and scales as exp ( - Vie B2 j2J-LokBT). The diffusion of 

FITC-dextran was found to follow a simple Stokes-Einstein law containing 

this scaling behaviour. In addition, the release of FITC-dextran molecules 

from Pl\IAA ferrogels to the surrounding environment has been studied by 

FCS showing a considerable decrease, of the molecular release with increas­

ing magnetic field induction from 0.2 to 0.8 T. This effect was observed to 

increase with increasing the magnetic nanoparticle concentration in the gel. 

The scaling relationship mentioned above has also been found to be appropri­

ate for describing molecular release from ferrogels as a function of magnetic 
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field. Small angle X-ray scattering has been used to characterize these ferro­

gels, finding that the size of magnetic nanoparticles does not change before 

(as a powder) and after (within the gel medium) polymerisation. This in­

dicates that no particle aggregation is taking place in these gels. This has 

also been confirmed by magnetic hysteresis loops from these ferro gels and 

zero field cooled/field cooled measurements using SQUID where single do­

main ferromagnetic behavior at room temperature with a similar coercivitv 

has been observed for both as-prepared and fully swollen ferrogels, and for 

increasing magnetic nanoparticle concentration. 

HB-PNIPAM has been investigated by SANS, NSE and FCS. SANS ex­

periments have revealed the structural behaviour of HB-PNIPAl\I as a func­

tion of temperature compared to its linear counterpart. These results have 

shown that D20 is a good solvent for linear and HB-PNIPAM at low tem­

perature, while increasing the temperature leads to a gradual collapse of 

these polymers. Data for both linear and HB-PNIPAM could be fitted well 

to the generalized Ornstein-Zernike equation for scattering giving a correla­

tion length that is dependent on temperature. Increasing the temperature 

caused a change in the fractal dimension in the generalized OZ equation 

until the spherical behaviour is reached around the LCST of each polymer 

(Dr = 4). Above the LCST of HB-PNIPAMs, the scattering showed Porod 

behaviour for scattering from spherical particles. The measured sphere ra­

dius is between 12.3 and 19.7 nm depending on the temperature and degree 

of branching. These findings indicate that HB-PNIP AM does not entangle, 

which has also been observed in CLSM images in all studied HB-PNIPAf,I. 

In contrast, linear PNIPAM at temperatures above its LCST (above 32°C) 

shows a network-like structure (entanglements) where Porod's scattering law 

alone did not describe the scattering in this case and a Lorentzian contribu­

tion was included. Increasing the concentration of HB-PNIPAM from 5 wt% 

to 10 \vt% did not change the scattering behaviour (no change in the struc­

tural behaviour) except, as expected, that the particle size decreases ,,"ith 

increasing concentration. NSE measurements show that the relaxation of 

HB-PNIPAl\I at length scales below the correlation length can be described 

h,· Rouse model for unentangled polymer chains. FCS results show that. 
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despite being branched, HB-PNIPAM diffuses faster with increasing temper­

ature. However, the increase of branching degree leads to a decrease in the 

center of mass diffusivity of HB-PNIPAM. The diffusion coefficient of these 

polymers has been found to increase linearly with temperature, \vhich can 

be described by the simple Zimm theory. On the other hand, a deviation 

from Zimm theory has been observed at high concentrations of linear PNI­

PAM. This is in good agreement with SANS findings that HB-PNIPAl\I with 

different branching degrees and with increasing temperature are not entan­

gled while their linear counterparts show entanglements at high temperatures 

above their LCST. 

9.2 Further Work 

The obtained results summarized in Section 9.1 suggest many future experi­

ments and investigations. Although most of the results shown in this thesis 

are coupled with theories that described them well, more experimental and 

theoretical work is still needed. The purpose of this section is to give an 

overview on the possible work that can improve or lead to a better under­

standing of the systems under investigation. 

9.2.1 Responsive Hydrogels 

FCS experiments on PMAA hydro gels showed interesting diffusion behaviour 

of FITC-dextran within the gel. However, it is not clear if this is mainly due 

to the swelling behaviour of the hydrogel or if there is a contribution from 

the FITC-dextran molecule itself. Therefore, experimental techniques such 

as dynamic light scattering might reveal the structural behaviour of FITC­

dextran as a function of temperature, pH and ionic strength. Moreover, in 

this work the FITC-dextran used has a fixed molecular weight throughout the 

whole study, therefore varying the molcular weight might be a point of inter­

est. The mesh size of PMAA hydrogel has been obtained based on diffusion 

measurements and it is worthwhile investigating the effect of temperature on 

the mesh size of chemical hydro gels using imaging techniques. The diffusion 
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of FITC-dextran in PMAA hydrogels in the presence of salt ions shmved a 

strange behaviour which could not be described by known diffusion models. 

Hence, more experimental and theoretical work needs to be conducted for a 

complete understanding of the diffusion under these conditions. 

9.2.2 Ferrogels 

Regarding the described work on PMAA ferro gels there are a number of sug­

gestions to obtain a better understanding of such systems in magnetic fiels. 

The results shown in Chapter 6 included the measurement of the release from 

PMAA ferrogels to the surrounding solvent. However, the only measured pa­

rameter here is the number of molecules as a function of the applied magnetic 

field. The time parameter in these systems is significant, i.e. how fast these 

systems can release or restrict the diffusing molecules is of great importance. 

Therefore, an experiment that would measure the time of release from these 

ferrogels might be worth doing. An important issue with these ferrogels in 

general is their toxicity. Although Fe304 has been proved to be a safe ma­

terial for biological and medical applications, the toxicity originating from 

cross-linking materials is not so clear. As a solution to this problem one 

might think of synthesizing ferrogels without using cross-linkers. This can 

be obtained if one successfully coats Fe304 nanoparticles with a monolayer 

that can form covalent bonds with MAA monomers. 

9.2.3 Hyperbranched PNIPAM 

The SANS results showed that HB-PNIP AM does not entangle at the mea­

sured temperatures, concentrations and branching degrees. Although the 

SANS measurements included some in excess of the LCST of each polymer, 

whether these HB-PNIPAM molecules are entangled at high temperatures for 

concentrated systems remains an open question. The studied HB-PNIPAtvI 

has COOH end groups which might be appropriate for investigation as a 

function of pH or salt concentration. Previous studies showed that these 

hyperbranched polymers exhibit interesting behaviour under shear which de­

ClTClS(-,S their collapsing temperature. Thus, a rheology investigation using a 
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technique such as Rheo-SANS on these systems might reveal the structural 

behaviour of these polymers under shear. 

The study of the dynamics of DrHB-PNIPAN! using ~SE. shown in 

Chapter 8, looked at the internal dynamics of these polymers at quite high 

Q values. According to SANS measurements, the probed length scales are in 

the order of below the correlation length, above which most of polymer inter­

actions occur. Hence, performing NSE experiments at a lower Q range would 

allow us to probe larger length scales of more interest. Also, the molecular 

dynamics of these polymers in different environments is important, and can 

be investigated using FCS. 
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Appendix B 

Appendix B.l: Acid and Base 

Properties 

According to Bronsted Lowry theory, an acid is described as any substance 

that donates a proton to another substance, a process after which the acid 

is said to be dissociated. On the other hand, the same theory defines a 

base as any substance that accepts a proton from another substance. These 

definitions are generic for any substance in any condition. However, the 

common example is the dissociation of acids and bases in aqueous solutions. 

If an acid, for example, is represented by HA, the following formula can be 

written for the dissociation of this acid in water: 

(B.l) 

where A-is the conjugate base of the acid and H30+ is the hydronium 

ion, which is the protonated water molecule. A Hydronium ion is usually 

refered to as H+ (hydrogen ion) or a proton. The equilibrium constant for 

the reaction of HA with H20 (or acidity constant), Ka. is given by, 

[A -][H30+] 
Ka = [HA] , (B.21 

where [A -l, [H30+] and [HAl are the concentrations of the conjugate base, 

the hydronium and the acid, respectin'l\·. If HA is completely dissociated in 
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water, a high value of Ka (unity or greater) is obtained and the acid in this 

case is said to be a strong acid (e.g. Ka = 107 for Hel). On the other hand, 

if the acid is partially dissociated in water, the three species HA. H30+, A.­

will be present in the solution in significant amounts, leading to a range of 

Ka values depending on these concentrations. Organic acids (e.g. carboxylic 

acid) are known as weak acids. The common way to measure the strength of 

an acid is by taking the negative logarithm of Ka, which is refered to as pKa: 

pKa = - log Ka. (B.3) 

In this case, a high value of pKa means a small value of Ka indicating a weak 

acid; while zero or less values of pKa indicate a strong acid. 

A similar reaction to that of an acid in water can be considered for a base 

in water, which can be given as, 

(B.4) 

where HB+ is the conjugate acid of the base B. As for the acid case above, 

the basicity constant, Kb, can be given by, 

[HB+][OH-] 
Kb = [B] . (B.5) 

The strength of a base can be determined from its Kb as pKb = -log Kb· 

However, base strength can also be determined from its conjugate acid HB+, 

which gives 

(B.6) 

in water. Therefore, 

(B.7) 

The dissociation of water can be 'written in the following \\'a~': 

(B.8) 
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The dissociation constant (or self-ionization constant) of water, h:w. is 

expressed as, 

(B.9) 

which can be obtained by multiplying equations B.5 and B.7, 

(B.10) 

For pure water at room temperature, Kw = [H30+] . [OH-] = 10-7 X 10-7 = 

1.0 X 10-14 and pKw = -log(l.O x 10-14 ) = 14. This means that if the solution 

has more H+ ions it is more acidic and it is more basic if [OH-] > [H+]. A 

neutral solution has equal amounts of H+ and OH-. It is common to express 

the acidity and basicity of a solution just in terms of the concentration of H+ 

as, 

pH = -log[H+]. (B.ll) 

In a neutral solution, at room temperature, [H+] = 10-7 , which gives pH = 7. 
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I Au 
I I I I I I I I I I I 1 I I I I I I I 

PPM 7.2 6.8 6.4 6.0 5.6 5.2 4.8 4.4 4.0 3.6 3.2 2.8 2.4 2.0 1.6 1.2 0.8 0.4 

Figure C.l: IH NIVIR (400 MHz) spectrum ofHB-PNIPAl\I (25:1). 

I I I I I I I 1 1 1 I I I 
PPM 7.2 6.8 6.4 6.0 5.6 5.2 4.8 4.4 4.0 3.6 3.2 2.8 2.4 2.0 1.6 1.2 0.8 0.4 

Figure C.2: IH N}'IR (400 MHz) spectrum of HB-PNIPAl\I (60:1). 
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I 
PPM 7.2 6.8 6.4 6.0 5.6 5.2 4.B 4.4 4.0 3.6 3.2 2.8 2.4 2.0 1.6 1.2 0.8 0.4 

Figure C.3: IH NMR (400 MHz) spectrum of HB-PNIPAM (90:1). 

1 

I I I I I I I I I I I 
PPM 5.8 6.4 6.0 5.6 5.2 4.8 4.4 4.0 3.6 3.2 2.6 2.4 20 1.6 1.2 0.8 

Figure c.~: IH NMR (400 MHz) spectrum of linear PNIPAl\I. 
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I I I I I I I I I I I I I I I I I I I 
PPM 7,6 7,2 6,8 6.4 6,0 5,6 5,2 4,8 4.4 4,0 ),6 ),2 2,8 2,4 2,0 1.6 1.2 0,8 0,4 

Figure C.5: IH NMR (400 MHz) spectrum of DrHB-PNIPAl\I (25:1). 
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Figure e.6: IH NJ\IR (400 J\IHz) spectrum of DrHB-PNIPAl\I (60:1). 
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.------------------------ ._._-- -.--~--
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PPM :.2 6.8 6.4 6.0 5.6 5.2 4.8 4.4 4.0 3.6 3.2 2.8 2.4 2.0 1.5 1.2 0.8 

Figure C.7: IH NMR (400 MHz) spectrum of D7-HB-PNIPAIvI (90:1). 
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Figure D.l: SANS 2D scattering patterns for HB-PNIPAM (25:1 ) below 
(15°C , top) and around (27°C, bottom) its LCST. 
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Figure D.2: SANS 2D scattering patterns for HB-PNIPAM (60:1) below 
(1SoC, top) and around (24°C, bottom) its LCST. 
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Figure D.3: SANS 2D scattering patterns for HB-PNIPAM (90:1 ) below 
(15°C, top) and around (27°C, bottom) its LCST. 
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Figure D.4: SANS 2D scattering patterns for linear PNIPAM below (15°C, 
top) and around (33°C, bottom) its LCST. 
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