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Summary
Meiosis is a cell division in which one diploid parent cell produces four haploid

daughter cells. Accurate alignment and segregation of homologous

chromosomes during metaphase is critical for a successful meiotic division and

viable gametes. Three concomitant events are required for a successful meiotic

division: chromosome pairing, synapsis and recombination. Recombination is

initiated by programmed induction of DNA double-strand breaks (DSBs).

Interchromosomal repair of meiotic DSBs can form a crossover leading to

genetic diversity by modifying linkage groups. Crossovers also tether the

homologous chromosomes and help resist the tension of the first meiotic

spindle. Controlled recombination is required for a successful meiotic division

and segregation, however, recombination has to be tightly regulated. This work

investigates the roles of Te11,Rad6 and Srs2 during meiotic homologous DSB

repair.

Tel1 is protein kinase required for initiating a signalling cascade in response to

many forms of DNA damage. Tel1 has also been proven to function during

meiosis and has been shown in some conditions to initiate a signalling cascade

after the initiation of meiotic DSBs. In this work Tel1 is shown to influence the

early stages of DSB repair during meiosis, however this is not in response to

the formation of Spo11-DSB.

Recombination ensures genetic variation and correct homologue alignment

during meiosis I therefore is extremely important and tightly controlled. Srs2 is

known to be a negative regulator of recombination and is important for normal

sporeulation and viability in yeast. Analysis of an experimental site specific DSB

(made by VDE) and at natural Spo11-DSBs indicates that in the absence of

Srs2 the rate of repair can be increased at Spo11-DSBs and decreased at the

VDE-DSB. One potential role for Srs2 during meiosis is to dismantle

recombination intermediates formed between the sister chromatids.

Rad6 is required for wild type amounts of Spo11-DSB formation. This work

investigated the VDE-DSB repair in the absence of Rad6, and discovered that



Summary

Rad6 has a role in the initiation of repair. Rad6 ubiquitinates histone H2B, and

further analyses suggest that this modification is required for repair at the VDE-

DSB.

Each of the genes studied is required for wild type repair of VDE-DSBs and

Spo11-DSBS, even though they come from widely different functional groups.

This illustrates the diversity of cellular pathways controlling the initiation and

regulation of meiotic recombination.
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Chapter One - General Introduction

Saccharomyces cerevisiae

The budding yeast Saccharomyces cerevisiae is a model organism for higher

eukaryotic cellular processes. This yeast is used extensively as an experimental

system for molecular biology because it is unicellular, straightforward to culture,

the genome is fully sequenced and efficiently curated, mutants are easily

generated and yeast genes have homologues in higher eukaryotes. Both the

mitotic cycle and the meiotic cell divisions have been well characterised. The

rapidly sporulating SK1 strain is widely used by many groups for meiotic studies

because the meiotic division is relatively synchronous, completed within twenty

four hours and is easily induced using starvation media (Kane and Roth, 1974).

The meiotic division: a general introduction

Most eukaryotes spend a greater part of the life cycle as diploids, which is

perpetuated by the mitotic cell cycle. Through the alternation of generations

specialised cells pass into a temporary haploid phase (Fig 1.1). The haploid

phase is created by meiosis, which causes a diploid cell to produce four

recombinant haploid daughter cells such as gametes or spores (in females only

one gamete is maintained).

In both mitosis and meiosis genomic DNA is replicated so that each maternal

and paternal chromosomes consists of two identical chromatids (sister

chromatids; Fig 1.2). In the mitotic cell cycle a single division follows replication;

in meiosis however two divisions follow DNA replication (Fig 1.2). The first

meiotic division is termed reductional because the homologues are separated to

different daughter cells. Consequently the daughter cells contain half the

parental number of chromosomes. The second, equational, meiotic division

separates sister chromatids After the two meiotic divisions there are four

genetically distinct haploid daughter cells each containing one of the original

1



Alternation of generations

Haploid (N)

Meiosis Mating

Diploid (2N)

Figure 1.1 The alternation of generations. The meiotic division is seen

in eukaryotes that replicate by sexual reproduction. In this life cycle the

diploid cell divides via meiosis to produce genetically distinct haploid

daughter cells. The haploid daughter cells mate with another haploid

cell to form a diploid cell. In yeast the meiotic cycle can be induced in

response to starvation conditions. In mammals meiosis is part of

reproduction creating genetically diverse offspring.
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Figure 1.2 The meiotic divisions and the mitotic cell cycle. In the mitotic
division DNA replication (Interphase I) is followed by one division
(Anaphase) that segregates the sister chromatids. In the meiotic division
one round of DNA replication (S phase) is followed by independent
assortment and segregation of the homologues (Anaphase I). A second
division (Anaphase II) separates the sister chromatids. During meiosis I, the
sister chromatids are joined together along their length via the cohesion
complex. During Anaphase I the cohesion complex is destroyed along the
chromosome arms, allowing the homologues to segregate. Cohesion
around the centromere is retained until sister chromatid separation at
Anaphase II. In the first division, tethered homologous chromosomes
(bivalents) align on the meiotic spindle and are segregated. This is
dependent upon three concomitant events, homologue pairing, synapsis
and recombination. During pairing the homologues become physically close.
Synapsis is identified by the formation of a tripartite proteinaceous structure
between homologues. Recombination is the induced DSB repair, a certain
proportion of DSBs are repaired forming crossover events that tether
homologue chromosomes together. The maternal and paternal kinetochores
(protein complex to which microtubles attach) interact with tubulin filaments
of the meiotic spindle (microtubles) from the opposing spindle pole. The
COs and sister chromatid cohesion join the homologous chromosomes
helping bivalent resist the spindle tension; preventing premature
segregation and aneuploidy. The spindle assembly checkpoint is required to
prevent disjunction. The spindle is under tension when homologues are
correctly aligned, and the spindle checkpoint prevents progression unless
tension is achived. Cohesion is lost along the arms of the chromosomes
releasing the CO connection and allowing the homologues to move to
opposite poles.
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chromatids of each chromosome type ((reviewed in Zickler and Kleckner, 1998)

Fig 1.2).

Failure of correct chromosome segregation (nondisjunction) can result in

meiotic arrest, apoptosis or gametes that have an abnormal number of

chromosomes (aneuploidy). Nondisjunction can result in daughter cell death or

impaired function. In humans autosomal trisomy 21 and 18 are respectively

manifested in Down's Syndrome and Edward's Syndrome. Meiotic

nondisjunction can result from incorrect chromosomal alignment on the meiotic

spindle and untimely segregation during MI or MIL In both divisions premature

segregation is prevented by a complex interplay between the cohesion complex

between the sister chromatids, the spindle apparatus and spindle checkpoints.

To achieve correct alignment of bivalents during metaphase I the homologous

chromosomes have to recognise each other, become physically close and

remain together until programmed segregation. In humans and yeast

homologue recognition and juxtaposition are achieved by three events:

homologue pairing, recombination and synapsis that are concomitant with each

other during meiosis. Homologue pairing is the close alignment of homologues

along the entire chromosome length. Homologues are physically joined to form

bivalents by recombination products (called crossovers; COs) and intersister

chromatid cohesion (Fig 1.2). Before recombination, bivalents also undergo

synapsis; that is the formation of a proteinaceous structure that is necessary to
maintain close and tight pairing and plays a role in regulating crossover

formation, frequency and distribution. Crossovers are sites of reciprocal

exchange that physically tether homologues, allowing the force of the meiotic

spindle to be resisted until programmed segregation when homologues are able

to migrate to opposite poles.

In MI sister kinetochores attach to the tubulin filaments from the same spindle

pole. This is known as monopolar attachment. When correctly attached the

homologues are pulled to opposite poles The chiasmata help the bivalent resist

the spindle tension of the maternal and paternal kinetocores. During

4
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programmed segregation cohesion is lost only from the chromosomes arms

allowing the homologue separation but keep the sister chromatids tethered at

the kinetochore. Protection of centromeric cohesin is dependent on shugoshins.

Protection of the cohesin by shugoshin appears to be mediated by tension

across the kinetochore. In MI 8g02 co-localizes with Rec8 but in prometaphase

II 8g02 moves nearer to the kinetochore.

5
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Stages of meiosis - Overview

Meiosis is divided into stages that can be identified cytologically; interphase I,

early and late prophase I, metaphase I, anaphase I, telophase I, interphase,

prophase II, metaphase II, anaphase II, and telophase II. The duration of

meiotic prophase I is longer then mitotic prophase or meiotic prophase II. In

organisms as diverse as yeast and mice prophase chromosomes undergo

twisting, bending, and folding during continuous movement around the nucleus

(Morelli et al., 2008; Scherthan et al., 1994; Scherthan et al., 2007). Meiotic

prophase is broken down into separate stages known as leptotene, zygotene,

pachytene, diplotene, and diakinesis recognised by chromosome organisation.

In leptotene a tangled mass of thread like chromosomes are observed, however

they are ordered on a proteinaceous axial element. During this phase Spo11

catalyses the formation of DNA double stand breaks (DSBs) that stimulate

meiotic recombination. At the leptotene to zygotene transition chromosomes

form a structure known as the bouquet structure, caused by telomere clustering

around the spindle pole body. In zygotene chromosomes are more condensed.

Also axial pairing becomes distinct at DSB sites that will form crossovers. A

tripartite proteinaceous structure the synaptonemal complex (Se) forms

between the homologues which are now observably adjacent to each other (Fig

1.3). During pachytene, chromosomes are tightly associated, sister chromatids

develop a single kinetochore and the bouquet structure is no longer visible as

telomeres are dispersed. Recombination is completed during pachytene and the

homologues are completely joined by a mature se that is fixed in the nuclear

envelope at each end. In the SK1 yeast strain commonly used for the study of

meiosis, pachytene lasts for one hour. The se is completely lost rapidly during

diplotene in yeast and is undetectable in cells that have assembled the

metaphase I spindle; therefore homologues are only joined by chiasmata (site

of chromosome axes exchange and limited parting of sisters; Padmore et aI.,

1991).

6
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In contrast to yeast worms se disassembly is asymmetric, after crossover

maturation se is lost from the long axis of the crossover and persists on the

short axis. When viewed using fluorescent microscopy the distribution of the

Aurora-like kinase (AIR-2) associated with the loss of cohesion closely

resemble the distribution of se components during the transition from

pachytene to diplotene in wild type cells; but not in recombination deficient cells

such as spo 11.1.The asymmetric loss of se provides a link between crossover

maturation and limited cohesion loss during anaphase I (Nabeshima et al.,

2005). Worms unlike yeast do not have a localised centromere that is protected

during cohesion loss consequently worms require a mechanism that links

cohesion loss with se dissociation allowing a controlled cohesion loss in the

absence of a localised centromere. During diakinesis the sisters are still fully

aligned, however the homologues appear to repulse each other (Fig 1.3).

Diakinesis is the final stage in prophase I, chromosomes in this phase can be

seen to dramatically condense (reviewed in (Zickler and Kleckner, 1998); Fig

1.3).

7



Ott>
~

9
•.. "...,
-et j k~, ~jo ....,. ..,;.

~
~ m., ,"I't~""''--.~

~ ."~,,,-• n

Figure 1.3 Meiotic divisions I and II in the rye Secale cereale
microsporocytes.

(a) In leptotene chromosomes are thin and individualised. (a,b) In
late leptotene/ early zygotene chromosomes are condensed and
chromosomes can be seen in a knot or in the bouquet formation. A
tripartite proteinaceous structure the synaptonemal complex (Se)
forms between the homologues. (c-d) early to late Pachytene
chromosomes are associated, sister chromatids develop a shared
kinetochore .The bouquet formation is not visible,recombination is
complete, homologues are completely joined by a mature se. (e)
Diplotene. The se is completely lost and homologues are only
joined by chiasmata. The homologues appear to repulse each
other. (f) Diakinesis is the final stage in prophase, chromosomes
appear condensed. (g) Metaphase I The homologues fully align on
the spindle. (h,i, j) Anaphase cohesion is lost from the arms of the
chromosomes but persists at the at the centromere. The
kinetochores move to opposite poles and the homologous
chromosomes disjoin. (k) Telophase I. (I) Prophase II. (m)
Metaphase II. (n) Anaphase II chromatid disjunction (0) Four
haploid pollen cells (Bar = 51..1)(Figure taken from Zickler and
Kleckner 1998).
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Stages of meiosis - Detail

Chromosome Pairing

Meiotic pairing and pre-meiotic pairing can be classified as associations

between homologous chromosomes before the SC has been established

(Zickler 2006). Correct pairing is a pre-requisite for accurate disjunction as it

increases significantly the chance of physical contact between homologues.

Early meiotic pairing is a weak interaction described as the presynaptic

alignment of homologous chromosomes and might be aided by stirring motions

of chromosomes seen via microscopy (Zickler and Kleckner 1998; Scherthan,

Wang et al. 2007). Late meiotic pairing is stabilised by recombination

intermediates between the homologous chromosomes. Subsequent to paring

the SC is formed completely joining chromosomes along their entire length
(Zickler 2006).

Pre-meiotic pairing

Pairing of homologous chromosomes is not unique to meiosis, non-random

homologue associations are well documented in vegetative cells of

Schizosaccharomyces pombe and somatic cells of Drosophila melanogaster

cells (reviewed in McKee, 2004; Scherthan et al., 1994; Zickler, 2006). Pre-

meiotic pairing is the close non random association of homologues before

meiotic S-phase and may be a result of mitotic events (Zickler, 2006). Unlike

late meiotic pairing pre-meiotic pairing is DSB and can be detected by FISH in

recombination deficient strains such as sp01111,hotn t: and mert S diploids

(Burgess et al., 1999; Weiner and Kleckner, 1994). Pre-meiotic pairing could be

a precursor to homologue pairing aiding homologue recognition and alignment

after replication (Weiner and Kleckner, 1994). Interestingly the frequency of

unstable pre-meiotic pairing sites detected by fluorescence in situ hybridisation

(FISH) is similar to the frequency of recombination events, (one per - 65 kb)

suggesting pre-meiotic pairing may occur at future DSB sites (Weiner and

Kleckner, 1994). Although several studies of yeast have observed non-random

homologue pairing in pre-sporulation media using ectopic recombination

9
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assays, FISH and PCR assays with cross-linking, the existence and

significance of pre-meiotic pairing remains controversial in budding yeast

(Burgess and Kleckner, 1999; Burgess et al., 1999; Chen et al., 2004; Dekker et

al., 2002; Jin et al., 1998; Loidl et al., 1994; Peoples et al., 2002; Weiner and

Kleckner, 1994). It is hypothesised by some that pre-meiotic associations are

disrupted or weakened during S phase possibly to allow the replication fork to

pass (Burgess et al., 1999; Loidl et al., 1994; Weiner and Kleckner, 1994). In

leptotene, homologue associations are formed again followed by the chiasmata

and SC formation (Loidl et al., 1994;Weiner and Kleckner, 1994).

Chromosome architecture in the meiotic nucleus is also influenced by factors

independent of meiosis. In vegetative growth centromeres cluster before being

loaded onto the spindle. In anaphase the centromeres disjoin then move to

opposite poles followed by the telomeres. Consequently in the anaphase

daughter cells telomeres and centromeres exhibit a polarised arrangement

known as the Rabl-orientation (Jin et al., 1998). Vegetative pairing is suggested

to be a result of Rabl organisation where chromosomes of similar sizes would

share the same topological constraints and so share similar space (Jin, Trelles-

Sticken et al. 1998; Lorenz, Fuchs et al. 2003). Loidl et.,al detected pre-meiotic

pairing by FISH but attributed it to residual mitotic chromosome organisation

(Loidl et al., 1994). One influence on chromosome positioning might be

replication which is associated with a complex nuclear organisation of

chromosomes seen in flies, yeast and higher Eukaryotes (reviewed in Cimbora

and Groudine, 2001; Gasser, 2001). During replication chromosomes are

organised into territories and localisation this is mediated by telomere

attachment to the nuclear envelope. This organisation has been suggested to

be involved in silencing (Cimbora and Groudine, 2001; Gasser, 2001). These

chromosomal arrangements may force homologous chromosomes to be

juxtaposed during vegetative growth (discussed in Lorenz et al., 2003). This

organisation may still be present after pre-meiotic replication, before entry

meiotic S-phase and be seen as pre-meiotic pairing.

10
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Early meiotic pairing

After replication has disrupted pre-meiotic pairing, homologous chromosomes

become closely juxtaposed by weak interactions (Zickler and Kleckner, 1998).

Early meiotic pairing like pre-meiotic pairing occurs by multiple weak transient

interactions that align homologous chromosomes independently of synapsis

and recombination; and can be detected by FISH in recombination deficient

spo11 and rad50S cells. The mechanism by which homologous chromosomes

recognise each other and become aligned during early meiotic pairing is

unknown, but is suggested to be the same mechanism used during pre-meiotic

pairing. Although pre-meiotic pairing is suggested to be a result of vegetative

nuclear architecture this has not been proven. Close homologue interactions

during pre-meiotic and early meiotic pairing are suggested to be dependent on

DNA homology sensed in accessible, nucleosome free, regions of DNA

(Keeney and Kleckner, 1996). Pre-meiotic pairing, late meiotic pairing and

Spo11 DSBs are associated with open chromatin suggesting pre-meiotic pairing

may ensure the existence of homology before entering meiosis and committing

to recombination (Keeney and Kleckner, 1996; Weiner and Kleckner, 1994).

Kleckner proposed a model in which homologue contacts in both vegetative and

early meiotic/pre meiotic yeast cells might be aided by mechanical forces like

expansion and contraction of chromosomes (Kleckner et al., 2004). Changes in

chromosomes structure such as expansion and contraction could result from

histone modifications. In this model periods of expansion allow intermingling of

chromosomes aiding initial homologue pairing and contraction facilitates full

homologue pairing (Kleckner et al., 2004; Loidl et al., 1994). Another suggested

mechanism for early meiotic pairing is telomere clustering, during meiosis

telomeres attach to the nuclear envelope, then congregate at one specific area

normally proximal to the spindle pole body (SPD). This creates a highly

conserved structure known as the bouquet (de La Roche Saint-Andre, 2008;

Trelles-Sticken et al., 2000). During pachytene the telomeres are distributed

evenly and the structure is no longer observable. The specific function of the

bouquet is unknown however the associated telomere movement is implicated

in untangling the chromosomes, influencing crossover formation and regulating

recombination at the telomeres. Telomere clustering and dispersion requires

11
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extensive and rapid chromosomes movement; the chromosome movement is

so vigorous in yeast that the NE becomes deformed and nuclear protrusions are

seen, caused by maverick/orphan chromosomes that move away from the main

chromosome mass (Koszul et al., 2008; Scherthan et al., 2007). Analysis using

live cell imaging suggests that chromosome movement also depends upon

telomeres passively associating with nucleus hugging actin cables during

zygotene and pachytene (Koszul et aI., 2008). Chromosome movement is also

depends upon telomeres associating with the NE mediated by Ndj1 and Csm4.

In the absence of these proteins movement is reduced (Conrad et al., 2007).

The movement associated with the bouquet is suggested to increase

homologous chromosome interaction, aiding pairing. This is implied because

homologue pairing is delayed in the absence of Ndj1, which is a meiosis

specific telomere protein required for association of the telomeres with the NE

(de La Roche Saint-Andre, 2008; Trelles-Sticken et al., 2000).

DSB dependent pairing

In contrast to Caenorhabditis elegans and Drosophila males, complete late

meiotic paring in yeast and mammals is dependent on DSBs and homologous

recombination (Dernburg et al., 1998; McKee, 2004). Homologous

recombination is stimulated in meiosis by the programmed formation of DSBs

by. Sp011. Repair of the DSBs requires the homologues to be close and

aligned. Once Sp011 is removed an early stage of repair requires resection to

expose 3' ssDNA. The ssDNA invades the undamaged duplex (known as

single-end invasion events; SEI) bringing the duplexes closer together

strengthening early weak homologue interactions. In meiosis a proportion of

DSBs are destined to form crossovers that bring homologues into extremely

close local proximity. Burgess et a/1999 assayed Cre /loxP recombination and

gene conversion at linked and unlinked sites. The group observed that the

frequency of Cre-mediated recombination events increased near recombination

events destined to become COs (Mell et al., 2008). This evidence supports the

hypothesis that CO events bring together nearby sites physically stabilising

early pairing. The dependence of pairing on recombination intermediates is

12
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illustrated by the absence of full homologue juxtaposition in DSB deficient

mutants strains such as spo 11Y135F diploids. However pairing is observed in

ndtBOI1 cells that form DSB and initiate recombination but are unable to resolve

crossover intermediates (Neale et al., 2002; Peoples et al., 2002).

SEI events are an early step in recombination and are mediated by two highly

conserved strand invasion proteins Rad51 and Dmc1 (Rockmill et al., 1995;

Sheridan et al., 2008). SEI events are involved in homology searching and are

required for full meiotic pairing. The importance of SEI events is demonstrated

by function of Hop2, which promotes synapsis between homologous

chromosomes and Mnd1 that is required for DSB repair. In yeast hop211 cells

arrest in pachytene; are defective in chromosome pairing, crossover formation

and joint molecule formation; and form SCs between non-homologous

chromosomes (Leu et al., 1998). mndt s. cells also arrest during pachytene,

accumulate Rad51 foci, display ineffective pairing and mature SC are absent

(Tsubouchi and Roeder, 2002; Zierhut et al., 2004). Hop2 and Mnd1 form an

elongated heterodimer (H2M1) and are involved in recombination mediated

homologue pairing in both yeast and mice by aiding strand invasion mediated

by Rad51 and Dmc1 (Chen et al., 2004; Petukhova et al., 2005; Sheridan et al.,

2008; Tsubouchi and Roeder, 2002; Zierhut et al., 2004). In yeast and mice

H2M1 has been shown to bind Dmc1 and both H2M orthologues improve the

efficiency of D-Ioop formation although the effect is more pronounced in mouse

than yeast H2M (36- and 3-fold stimulation leading to 70% and 3% reaction

efficiency for mammalian and yeast proteins respectively; Chen et aI., 2004; Chi

et al., 2007; Henry et al., 2006; Petukhova et al., 2005; Tsubouchi and Roeder,

2003). The stimulation of Dmc1 and Rad51 mediated SEI events by H2M is

considered to be highly conserved feature of yeast because organisms in which

Dmc1 is absent, Hop2 and Mnd1 are also nonexistent (Loidl et aI., 1994).

Research in vitro using mouse H2M and human Dmc1 suggests the H2M

stabilises Rad51 and Dmc1 ssDNA filament and promotes dsDNA recruitment

(Chen et al., 2004; Chi et al., 2007; Petukhova et al., 2005). Promoting D-Ioop

formation is a potential precursor to crossover formation that aids full pairing.

Importantly H2M also promotes homology searching by capturing of potential
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template, strengthening the interactions between homologous chromosomes

possibly inhibiting non-homologous synapsis seen in hop2!!. cells (Pezza et al.,

2007).

DSB independent pairing

Late pairing can be independent of both recombination and synapsis, during

non-exchange chromosome segregation (achiasmate segregation/distributive

segregation) homologous chromosomes are paired and segregated

independently of recombination called distributive segregation. Distributive

segregation is routine in Drosophila males and for the fourth chromosome pair

in Drosophila females (McKee, 2004). In yeast distributive segregation has

been observed but has a much lower fidelity than in Drosophila. It is certainly

secondary to homology dependent segregation, and, recombination has to be

present in the cell. Distributive segregation in yeast might be a mechanism to
segregate rare chromosomes with failed chiasmata. In yeast members of the

spindle checkpoint Mad1 and Mad2 have been shown to help aid segregation of

nonexchange chromosomes (Cheslock, Kemp et al. 2005). The exact

mechanism by which Mad1 and Mad2 facilitate distributive segregation is

unknown. The spindle checkpoint might provide extra time for the homologues

to pair or capture the microtubule (Cheslock, Kemp et al. 2005). Achiasmate

segregation could have evolved to separate one pair of non-homologous

chromosomes, which cannot be segregated using recombination dependent

segregation. In a normal meiotic division achiasmate segregation of one

chromosome pair unable to undergo recombination could be a consequence of

structures formed by normal meiotic division including pairing or SC complexes.

In non-exchange segregation the formation of SC complex between non-

homologous chromosomes would strengthen weak interactions. Such

segregation might be aided by pre-meiotic pairing that is recombination

independent or as a secondary result of spindle shape (Weiner and Kleckner,

1994).
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Synapsis

The synaptonemal complex (SC) is a ribbon-like tripartite proteinaceous

structure, that forms between the entire lengths of paired homologues (Roeder,

1997; Fig 1.4). Failure to form a complete SC results in polycomplexes, which

are SC aggregates distinct from the chromatids and is rarely seen in wild type

cells (Chua and Roeder, 1998; Loidl et al., 1994). The proteins of the SC

include Zip1, Zip2, Zip3 and Zip4. The SC as a structure is highly conserved

from yeast to mammals (Baier, Alsheimer et al. 2007).

In worms SC formation can occur independently of recombination. Also

Schizosaccharomyces pombe, Aspergillus nidulans and male Drosophila do not

exhibitSC. In yeast SC forms asynchronously and precursors are visible at

zygotene, mature SCs become visible at pachytene and are absent at the start

of metaphase (Padmore et al., 1991). The SC is presumed to hold the

homologues together along their entire lengths while some DSBs form

crossover products to ensure a correct reductional segregation of the bivalents

(Roeder, 1997). In prophase a proteinaceous core, referred to as the axial

element, forms between sister chromatids (Rockmill et al., 1995). In mature SC

the axial elements are known as lateral elements (Rockmill and Roeder, 1990;

Roeder, 1997). Regions of homologous chromosomes become coupled when a

central element (CE) is formed between the axial elements. This is termed

synapsis and occurs before the axial elements are complete. The CE is

elongated in both directions until the homologues are joined along their enter

length. The CE runs parallel from and equidistant to the lateral elements holding

them in opposition (Fig 1.4). The space between the lateral elements also

contains transverse filaments that lie perpendicular to the long axis of the

complex (Fig 1.4). Zip1 forms dimers that are components of the transverse

filaments. Zip2 and Zip3 are members of the synaptonemal initiation complex

(SIC; as termed in Fung et al., 2004) that localises to axial associations and

subsequently polymerise Zip1 in both directions, initiating zippering up of the

SC (Agarwal and Roeder, 2000; Chua and Roeder, 1998; Padmore et al., 1991;

Tsubouchi et al., 2006). Zip1, Zip2, Zip3, Zip4, Msh4 and Msh5 are collectively
known as ZMM.
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Figure 1.4 The synaptonemal complex (SC). In prophase a

protenaceous core develops between the sister chromatids known

as an axial element. The axial elements are known as lateral

elements in a full SC. The chromatin loops of each sister are

attached to the lateral elements. Lateral elements become full joined

by the central elemant (CE) physically joining the homologous

chromosomes. The CE is comprised of transverse filaments which

perpendicular to the lateral elements. Zip 1 is a component of the

transverse filaments that span the CE from one lateral element to

another or from one lateral element to the CE. Synapsis is the
polymerisation of Zip1.

(Figure taken from Page and Hawley, 2004)
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Fig 1.5 Double strand repair pathways. In meiosis a DSB can be
repaired by the synthesis dependent strand-annealing pathway
(SDSA). In SDSA the 5' ends of the DSB are resected exposing 3'
single stranded DNA. Subsequently single strand invasion of the
donor duplex occurs and is followed by extension and displacement
of the invading strand. This repair mechanism results in a non-
crossover event. Alternatively repair can occur by the canonical
DSBR, in this pathway invasion of the donor duplex by ssDNA is also
followed by replication. Unlike SDSA a second strand invasion event
occurs creating two Holliday junctions. DNA synthesis occurs in both
the broken duplex and the donor duplex creating a joint molecule
(JM). Resolution of the JM can results in a crossover. Both pathways
require a single strand invasion event that is dependent upon Rad51
or Dmc1, however in the SDSA pathway the SEI event is unstable.
White arrows represent 3' extension, arrows indicate cleavage.
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SC formation is contemporaneous with recombination this is illustrated by the

existence of nodules thought to be associated with both recombination and the

SC known as recombination nodules. Electron dense bodies associated with

SC have been observed in many species including Sordaria and Drosophila.

Because of the frequency and distribution of these nodules they were always

thought to contain recombination products. Nodules are classified as early

(when seen in leptotene / zygotene) and late (when present during pachytene;

reviewed in Zickler and Kleckner, 1999). Early nodules are evenly spaced and

occur with a higher frequency compared to late nodules. A proportion of early

recombination nodules mature to become late recombination nodules that are

associated with the SC. Late nodules exhibit interference, and occur with a

frequency that correlates well with the frequency of crossovers. Consequently

late nodules are thought to mark the sites of crossovers. In budding yeast no

nodules can be seen however Zip2, Zip3, Msh4 and Msh5 show similarities to

late nodules when monitored with fluorescent microscopy, all localise to

chromosomes in zygotene in a non random distribution and null strains show a

reduction in ZMM COs (Agarwal and Roeder, 2000; Chua and Roeder, 1998).

The evidence indicates that SC formation is not only contemporaneous with, but

also dependent upon, early steps of recombination and Sp011 DSBs (Agarwal

and Roeder, 2000; Borner et al., 2004; Chua and Roeder, 1998; Henderson

and Keeney, 2004). In the absence of a functional Sp011 mature SC formation

is undetectable or occurs at very low level (- 10) (Loidl, Klein et al. 1994;

Bhuiyan and Schmekel 2004; Henderson and Keeney 2004). In rad50S cells,

which are unable to process DSBs, Zip2 and Zip3 localises to DSB sites as

seen by co-localisation of Zip2, Zip3 and Mre11 (a member of the MRX complex

required for recombination) however mature SC is not formed (Agarwal and

Roeder, 2000; Chua and Roeder, 1998). Strains unable to stabilise DSB repair

intermediates (hop21\ and mnd11\) do not form full SC between homologous

chromosomes (Leu et al., 1998; Zierhut et al., 2004). Also Zip3 interacts with

Rad57 that simulates Rad51 binding and Msh4 that is required for normal levels

of crossovers in yeast two-hybrid screen (Agarwal and Roeder, 2000; Chua and

Roeder, 1998). The localisation of Zip2 also strongly supports the relationship
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between recombination and SC formation. CO interference is the reduced

chance that a CO is formed in region where CO already exists resulting in non-

random distribution of COs that guarantees each chromosome receives at lest

one CO (Fung et al., 2004; Tsubouchi et al., 2006; Zickler and Kleckner, 1998).

The distribution of Zip2 ( a member of the SIC) foci on chromosome III, IV and

XV suggests that, when SC formation is initiated, the likelihood of another

complex being created nearby is reduced (Fung et al., 2004). The observation

that the SIC displays interference suggests that interference is imposed before

formation of the SC; this is important because COs, but not NCOs, display

interference. Therefore Zip2 localises to CO recombination intermediates not

NCO recombination intermediates. However recently a high resolution map can

detect interference not only between COs but also between Msh4 dependent

interference between COs and NCOs, although the group did not detect

interference between NCOs and NCOs (Mancera et al., 2008). The connection

between the SC and crossover formation between the homologues could be

indicative of a regulation mechanism by ensuring mature synapsis can only

occur between chromosomes capable of initiating recombination via strand

invasion.

Although the SC formation is dependent upon stable recombination

intermediates such as JMs, CO intermediates are formed after the SC is fully

formed and appear to be significantly dependent upon the formation of a mature

SC. This hypothesis is supported because there is a strong correlation between

the frequency of crossover events and SC formation, COs are reduced in ziot»;
zip2b., zip3b., zip4b. mer3L1 and msh5 diploid cells at 23°C 30°C and 33°C

(collectively known as ZMM proteins) (Agarwal and Roeder, 2000; Chua and

Roeder, 1998; Dong and Roeder, 2000; (Borner, Kleckner et al. 2004)

Tsubouchi et al., 2006). At 30°C and 23°C the frequency of NCOs are

unaffected. However at 33°C NCO repair products are increased although the

number of DSBs is normal (Borner, Kleckner et al. 2004). Therefore the

CO/NCO decision is made prior to SC maturation because Zip2, Zip3 and Zip4

are required for mature SC (Borner et al., 2004). How does the SC regulate the

frequency of COs in the cell? One likely protein is Pch2, Pch2 is required for the
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pachytene checkpoint which is absent in organisms that lack the se and is

suggested to specifically monitor formation of the se (Mitra and Roeder, 2007).

In strains that have a none null Zip1 mutation known as zip1-4LA, mature se
appears to be formed, the frequency of crossover formation is high and the cells

arrest at pachytene as detected by fluorescent microscopy and Southern blot

analysis (Mitra and Roeder, 2007). In zip1-4LA pch211 cells the arrest is

alleviated and percent of crossovers is more than double compared to pch211,

suggesting that crossovers can be formed in the zip1-4LA mutant. However

zip1-LA cells trigger the Pch2 checkpoint before recombination is completed

and crossovers are formed (Mitra and Roeder, 2007). The results indicate that

the zip1-4LA cell undergoes a Pch2 mediated arrest, halting the formation of

crossovers. The Pch2 arrest might be caused by an inability to disassemble the

se or an aberrant se that appears normal under the microscope. A Pch2

mediated arrest in zmm mutants would provide an explanation for the lack of

crossovers in se defective mutants; and why Zip2 foci display normal

interference in zip 111cells which do not form mature se (Mitra and Roeder,

2007, Fung et al., 2004).

The se also potentially regulates recombination by preventing recombination

intermediates from being dismantled by proteins such as the helicase Sgs1 that

is known to negatively regulate cas (Jessop et al., 2006). zmm mutants display

reduced CO and a very low frequency of axial associations (AA). However,

when single zmm mutants (msh411,merst; ziott: and zip211)are combined with

sgs1 mutant alleles the CO frequency and AA are increased, suggesting that

ZMM are promoting CO formation and preventing Sgs1 from dismantling

recombination intermediates destined to become cas.

Meiotic Recombination

Sp011 is a highly conserved DNA endonuclease that forms approximately 200

double strand breaks via a topoisomerase-like transesterification (Keeney et al.,

1997). Sp011 is type II topoisomerase, these proteins are required for the

catalysis of programmed DNA DSB by breaking the phosophodiester bond and

forming a covalent bond with the now broken duplex. Mutating tyrosine 135 in

yeast Sp011 prevents catalysis of DSBs. This tyrosine is common to
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topoisomerase VI suggesting Sp011 might be a new group of topoisomerase II

proteins. DSB formation occurs approximately one hour after replication and is

regulated by the catalytic subunit of the main cell cyclin dependent kinase

Cdc28 (Henderson et al., 2006; Keeney et al., 1997; Padmore et al., 1991).

Regulation of Sp011-DSB formation by Cdc28 is suggested because Sp011-

DSB are undetectable in mer2(S271 A) in which Mer2 (a protein required for

Sp011-DSB formation) can not be phosphorylated by Cdc28 (Henderson et al.,

2006). After Sp011-DSBs are catalysed the evidence strongly suggests that

Sp011 is removed asymmetrically from the break by single stranded nicks that

release Sp011 bound to a single stranded oligonucleotide (Liu, Wu et al. 1995;

Neale, Pan et al. 2005). Although the proteins responsible for this action are

unknown successive removal is dependent upon Sae2 and Rad50 (Keeney and

Kleckner 1995). Controlled timing of DSB creation potentially prevents toxic

intermediates from being formed at undesirable stages of meiosis and prevents

the formation of DSBs before replication. The next step in repair is resection of

the DSB ends in 5' to 3' direction, leaving 3' single stranded DSB ends. The

ssDNA is rapidly bound by RPA, Dmc1 and Rad51 which mediate repair. The

time at which Sp011 breaks disappear (after 5 h of meiosis) by Southern

analysis is always constant even if the time of appearance is variable (Padmore

et al., 1991).

In yeast Sp011 DSBs are not distributed randomly throughout the genome,

areas that rarely receive Sp011 DSBs (cold spots) have been detected in

telomeric regions and selected centromeric regions (Gerton, DeRisi et al. 2000;

Borde, Lin et al. 2004; Buhler, Borde et al. 2007). In yeast leptotene the meiosis

specific Sp011 catalyses the formation of DSB in open chromatin (Keeney et

al., 1997). Open chromatin is hypersensitive to DNase I and micrococcal

nuclease as a result of nucleosome disruption, this usually is associated with

transcriptionally active regions of DNA; sensitivity has also been detected

before meiotic DSB formation. Histone modification is associated with DSB

repair in mitosis suggesting histone modification might also be required during

repair of meiotic Sp011-DSBs (Costelloe et al., 2006; Maleki and Keeney,

2004). H2B phosphorylation in yeast, H3 phosphorylation in mice and
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sumolyation of H4 in human males has been detected in meiosis by western

blotting and double immunostaining respectively (Ahn et al., 2005; Metzler-

Guillemain et al., 2008; Swain et al., 2007). The lack of H2B ubiquitination and

H3 methylation reduce the frequency of Spo11-DSB detected by Southern

analysis in yeast (Sollier et al., 2004; Yamashita et al., 2004). The exact

function of histone modification during meiosis is unknown. However in

Drosophila barrier to autointegration factor (BAF) binds DNA and the nuclear

envelope. After successful meiotic recombination nucleosomal histone kinase-1

(NHK-1) phosphorylates BAF resulting in release of both the DNA and the

envelope allowing formation of the Karyosome. In yeast it has been shown that

H3K4 trimethylation is increased and the amount of H3 is decreased in DSB

sites compared to cold spots (Borde, Robine et al. 2008). During prophase I

chromosomes condense, chromosome compaction and expansion has been

implicated in chromosome pairing and homology searching; a lack of histone

modification that impairs chromosome compaction and expansion might impair

pairing and recombination. Another possibility is that histone modification

results in histone eviction allowing the Spo11/recombination machinery access

to the DNA this can explain the reduction in Spo11-DSB frequency detected in

mutant strains unable to ubiquitinate H2B, or methylate H3. Although Spo11-

DSBs are created in open chromatin the chromatin state does not guarantee a

Spo11-DSB will be created. When the ARG4 promoter, a known hot spot, is

moved the chromatin can be DNAse sensitive but not receive a Spo11-DSB,

suggesting the state of chromatin is not the only factor that determines if a

regionwill receive a DSB break (Wu and Lichten, 1995).

All Spo11 DSBs are repaired by a high fidelity double strand break repair

mechanism called homologous recombination. Homologous recombination

repair copies homologous DNA from an unbroken template sequence to the

damaged duplex (recombination) changing linkage of the alleles therefore

creating genetic diversity. HR is used to repair DSB during meiosis, mitosis,

immunoglobulin rearrangement and during mating type switching in S.

cerevisiae. In the mitotic cell cycle, conservation of the damaged sequence is

desired therefore the template strand is normally the sister chromatid. In
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meiosis the template sequence can theoretically originate from the sister

chromatid, a homologous chromosome or an ectopic repeat locus. In yeast and

mammals meiotic DSB homologous repair using the homologue is an absolute

requirement for successful alignment and homologue segregation (Schwacha

and Kleckner, 1994). The use of the homologous template is ensured not only

by Dmc1 mediated strand invasion of the homologous chromosome but also by

active inhibition of using the sister as a template by creating a barrier to sister

chromatid repair (BSCR). In this pathway Hop1 and Red1 bind to unbroken

duplexes detected by fluorescent microscopy during meiosis. When Sp011-DSB

are created Mek1 is recruited to hyperphosphorylated Red1 which promotes

Mek1 dimerisation needed for Mek1 autophosphorylation. Phosphorylation of

Mek1 is required for an efficient BSCR, which has been demonstrated by using

Mek1 mutants that are unable to be phosphorylated (Niu et al., 2007; Niu et al.,

2005; Wan et al., 2004). Recently Mec1ITel1 phosphorylation of Hop1 has been

described, this might be the link between DSB damage and the Mek1

dependent BSCR (Carballo et al., 2008). In mutants deficient in BSCR DSBs

are repaired in dmctts mutants and meiosis is completed however the spores

are dead. Although Mek1, Red1 and Hop1 are known to be required for a

barrier to sister chromatid repair the exact mechanism is not known

HR repair of a Sp011 DSB can create two types of product, a non-reciprocal

exchange (gene conversion/non crossover events) or a reciprocal exchange

(crossover). Crossovers result in chiasmata between the homologues that

facilitate chromosome segregation during Telophase I, preventing first meiotic

aneuploidy. Mature crossovers arise late in prophase, (at the end of pachytene

but before telophase I). They are SC dependent and are non-randomly

distributed throughout the genome (Agarwal and Roeder, 2000; Chua and

Roeder, 1998; Mitra and Roeder, 2007; Padmore et al., 1991). Approximately

200 DSBs are generated in the yeast genome each chromosome receives a

high number of crossovers (Mancera et al., 2008). Once a crossover is created

the chance that another will be formed in the same region is reduced. Therefore

the repair product of subsequent DSBs created in that region will be a non-

crossover event. This is known as positive crossover interference. The number
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of crossovers is maintained even when the frequency of Sp011 DSBs formation

is reduced; this is known as crossover homeostasis (Henderson and Keeney,

2004; Martini et al., 2006). However crossover homeostasis cannot be

maintained when the frequency of Sp011-DSB formation is below - 30 % of

wild-type (Martini, Diaz et al. 2006). Crossover interference guarantees at least

one crossover chromosome occurs regardless of chromosome size. This

assurance prevents achiasmate segregation that increases the chance of non-

disjunction. Crossover control also prevents crossovers such as centromeric

crossovers which might also result in aneuploidy (Rockmill et al., 2006).

(Although recombination is generated during meiosis excessive recombination

can be harmful, in mammals hyper recombination causes genome instability

seen in bloom syndrome that results in a high male sterility rate therefore

recombination has to be tightly controlled). The interference seen in cas can

also be observed in the formation of SC. Members of the SIC exhibit

interference and do not form as frequently at the centromeres further

suggesting that the sites of recombination initiation are also sites of SC

formation (Fung, Rockmill et al. 2004).

A potential mechanism for crossover homeostasis is that subsets of DSB

intermediates are directed towards a crossover event achieving the appropriate

number of crossovers. The remaining DSBs automatically resolve to become

non crossovers (Martini et al., 2006). A potential crossover interference model is

that the homologues align linked by recombination complexes. Once a

crossover is generated a signal is dispersed preventing other intermediates

maturing into crossovers (Borner et al., 2004). This was observed when

Burgess et a/1999 assayed Cre-mediated recombination and gene conversion

reporter cassette at linked and unlinked sites. Cre-medicated recombination

was reduced when a CO occurred distant sites, indicating a repression of

recombination in the region distal to the CO (Me II et al., 2008). How the

surrounding DSBs receive the interference signal is unknown. Mechanical

stress generated by chromosome expansion is one candidate. The stress is

relieved by crossover formation, once the stress is released any DSBs in the

area will be repaired by gene conversion (Kleckner et al., 2004). Another
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mechanism suggested is the counting method in which non crossovers are

failed attempts to generate a crossover (Foss et al., 1993; Stahl et al., 2004). In

this model each successful crossover is separated by a fixed number of non

crossovers (Stahl et al., 2004). Importantly the SC complex is has been

implicated in regulating crossover maturation and appears to be dependent on

interference. The SC is thought to mediate crossovers by facilitating the

transition from DSB into an SEI event which is then potentially processed to

become crossover (Fig 1.5; Borner et al., 2004; de los Santos et al., 2003).

Interestingly Zip1 the interference signal might be transmitted by mechanical

forces acting on the chromosome axis and promote Zip1 polymerisation (Borner

et al., 2004; Kleckner et al., 2004). This is suggested because Zip2 foci

detected by immunostaining display interference in zip1!!. cells; interference is

independent of Zip1 (Borner et al., 2004).

In yeast there are at least two crossover pathways, the MUS811MMS4 and the

MSH41MSHS mediated recombination pathway. In budding yeast MSH41MSHS

mediated repair appears to be the primary crossover-generating pathway. This

pathway produces approximately 85% of the meiotic crossovers which display

interference (Borner et al., 2004; Getz et al., 2008; Stahl et al., 2004). The

MUS811MMS4 pathway possibly exists as a backup. These crossovers occur at

a regular number per Kb and are distributed randomly (Hollingsworth, Ponte et

al. 1995; Pochart, Woltering et al. 1997; de los Santos, Hunter et al. 2003).

There is speculation that a third pathway also exists (Argueso et aI., 2004; de

los Santos et al., 2003; Stahl et al., 2004; Tsubouchi et al., 2006). SIC formation

displays a similar CO level and interference pattern to MSHSIMSH4 COs which

is altered in zip4!!. and zip1!!. strains (Fung et al., 2004; Tsubouchi et al., 2006).

However the SC might playa part in both the MUS811MMS4 and MSH41MSHS

pathways therefore would mediate all meiotic crossovers (Tsubouchi et al.,

2006).

Until recently both crossovers and non-crossovers were suggested to have the

same molecular precursor therefore occurred in equal amounts at the same

time. However crossover precursors do not form until non-crossovers have
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been fully formed. The temporal difference between crossover/non-crossover

formation is reflected in the presence of early and late recombination nodules,

supporting the idea that early nodules mark the sites of strand exchange and

late nodules are associated with crossovers (reviewed in Zickler, 2006). The

temporal difference in product formation indicates the crossover non-crossover

decision is made early in meiosis prior to the SEI (Allers and Lichten, 2001 a;

Allers and Lichten, 2001 b). Another implication is that at least two DSB repair

mechanisms function in meiosis. The first model is the canonical double strand

break repair model; the second is known as synthesis dependent strand

annealing (SDSA; Allers and Lichten, 2001 b; Holliday, 1974; McMahill et al.,

2007; Merker et al., 2003; Paques and Haber, 1999; Fig 15).

In the canonical DSB repair model once Spo11 is removed resection exposes 3'

single stranded DSB ends (Paques and Haber, 1999). The homologous regions

align and the ssDNA tail invades and base pairs with the donor duplex. The

invading strand is extended using the unbroken DNA as a template. This

creates a stable Holliday junction containing heteroduplex DNA (hDNA;

reviewed in Paques and Haber, 1999). Intermediate repair structures can be

detected that contain hDNA flanked by two Holliday junctions (Allers and

Lichten, 2001 b). Resolution potentially occurs via two variations of one

pathway, generating a crossover or a non-crossover. If both Holliday junctions

are cleaved in the same plane a gene conversion event occurs; cleavage in

different planes results in crossover (Fig 1.5). In yeast meiosis this pathway is

thought to be responsible for the majority of crossovers rather than non-

crossovers.

SDSA is conserved and has been proven to exist in Drosophila, Ecoli,

mammals and yeast (reviewed in Paques and Haber, 1999). In this pathway a

single strand invasion occurs via the same mechanism as in canonical DSB

repair, forming hDNA with the template strand. 3' synthesis elongates the

invading single strand that is subsequently displaced. Once displaced the newly

synthesised strand is able to anneal with DNA in the original duplex. Further

synthesis of both broken stands allows full repair of the DSB (Fig 1.5). In this
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pathway synthesised DNA is only present in the broken duplex (reviewed in

Paques and Haber, 1999). To justify the lack of crossover events during mitosis,

SDSA was originally thought confined to mitosis. There is now clear evidence

that SDSA functions during meiosis and to be responsible for the majority of

non-crossover events (Allers and Lichten, 2001 a). SDSA has recently been

shown to process 3' ssDNA ejected from a JM (McMahill et al., 2007).

Resection

The MRX complex functions in both meiosis and mitosis and is formed by three

highly conserved proteins Mre11, Rad50 and Xrs2 (MRX). Loss of a functional

MRX complex results in chromosome instability. Mutations in the human MRX

orthologues are manifested as an increase in cancer typified in Nijmegen

breakage syndrome (NBS) and ataxia telangiectasia-like disorder. In yeast

meiosis the complex is required for both the creation and repair of Spo11 DSBs.

ATP has been suggested to regulate the function of the MRX complex, because

ATP stimulates the endonuclease activity of Mre11 bound to Rad50 and MRX

DNA topology activity is ATP dependent. Although Rad50 is required for Spo11-

DSB removal the role of the MRX complex DSB repair is unknown. The

requirement for the MRX complex members in DSB formation may reflect the

need for prompt repair. MRX formation and presence at the DSB site has been

suggested to ensure efficient DSB repair. The complex would not have to be

recruited to the site if already bound during formation of the break.

Mre11 does not exhibit the expected nuclease polarity required in meiotic DSB

repair (discussed in (Borde 2007)). Several theories have been suggested that

tie the nuclease activity of Mre11 to the formation of Spo11 DSB. One possible

hypothesis is that the polarity of the endonuclease activity is reversed. This

phenomenon is evident in Escherichia coli where the RecBCD nuclease exhibits

reversed polarity after interacting with the Chi site (Hagemann and Rosenberg

1991). The Rad50 hook-mediated bridging may stabilize the chromatin structure

during transition from closed to open allowing Spo11 access to the DSB site

(Lichten 2005; Wiltzius, Hohl et al. 2005; Cahill and Carney 2007). Another

theory suggests that after binding of Spo11 to the DSB Mre11 could cleave in
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region a region adjacent to the DSB creating a 3' overhang the cleaved duplex

is then unwound and further resection occurs via Mre11 or Exo1 (discussed in

(Neale, Pan et al. 2005; Borde 2007)). The 3' ssDNA could be unwound

allowing further resection of the 5' ssDNA end via Mre11. The complex could

tether DNA, physically ensuring close physical proximity of two DNA strands.

Mammalian Mre11 and Rad50 form a structure capable of tethering linear DNA

molecules, supporting the theory (Wiltzius, Hohl et al. 2005).

EX01
WT Spo11-DSB repair generates several intermediate structures including D-

loop formation (duplex DNA which had been invaded by single stranded DNA

forms a D-Ioop) and joint molecules (DSB flanked by two Holliday junctions; Fig

1.5). An early step in meiotic DSB repair is the resection of 5' ends of the

meiotic DSB exposing 3', ssDNA the intact template duplex is then invaded by

the 3' ssDNA. (Fig 1.5). At HO breaks it has been suggested that resection

need only expose 20-30 nt for successful gene conversion (Paques and Haber

1997). However in meiosis the exposed ssDNA has to be able to invade the

homologous chromosome which is further away then the template used during

HO repair, therefore resection has to be more extensive. Therefore an important

factor in DSB repair is resection which cells with insufficient resection might be

unable to successfully invade the template duplex. To expose 3' ssDNA a 5' -

3' nuclease is required, although Mre11 is required for resection the polarity of

Mre11 is incorrect. One possible model is that Mre11 is required for early repair

for example Spo11 removal but another nuclease is required for later long tract

resection.

Exo1 is a good candidate for a meiotic nuclease because Exo1 exhibits a 5' - 3'

exonuclease and a 5'- flap endonuclease activity. In yeast exot S. diploid cells

have a reduced crossover frequency (1.5- to 2 fold in four intervals), a reduced

spore viability (80 % compared to 98 %), and an increased frequency of

nondisjunction during meiosis I (Tran, Erdeniz et al. 2004). Exo1 might be the

nuclease that exposes the 3' ssDNA at Spo11-DSBs because in amct s. exott:
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cells DSB bands seen during Southern analysis appear to be more discrete

than in dmc1 t1. cells (Tsubouchi and Ogawa 2000). Normally discrete DSB

bands are indicative of a lack of resection intermediates that appear as a smear

in wild type. The nondisjunction seen in exott: cells might occur if the length of

resection is insufficient and strand invasion of the homologue fails, preventing

crossover formation resulting in nondisjunction and spore death. This

hypothesis is supported by the observation that transcription of Ex01 is

increased during meiosis. The role of Ex01 is highly conserved from yeast to

mice because both male and female mice deficient in Ex01 are sterile (Wei et

al., 2003).

TRM2

Genes that are involved in HR during mitotic DSB repair are often also involved

in meiotic DSB repair such as Mre11, Ex01, Rad50, Xrs2, Rad51, Rad52 and

Sgs1. Trm2 is an endo-exonuclease that exhibits a 5' to 3' nuclease activity

expected to be required for DSB processing during HR, consequently Ex01 is a

good candidate for a nuclease involved in processing mitotic and meiotic DSBs

(Choudhury et al., 2007). In mitosis trm2t1. cells show an increased sensitivity to

MMS and IR (Asefa et al., 1998). Overexpression of yeast Trm2 in mouse

fibroblasts has been shown to increase the frequency of recombination

suggesting that the role of Trm2 is conserved in organisms as diverse as yeast

and mice (Semionov et al., 1999).

The role of Trm2 during meiosis has been tested by an assay where the HO

endonuclease is persistently induced. HR is normally used to repair the HO

DSB, in the absence of a functional HR pathway repair can occur via the NHEJ

pathway that results in sterile spores. In this assay trm2t1. cells show an

impaired cell viability and increased sterility when compared to wild type cells.

The trm2t1. phenotype in this assay suggests the cell was unable to repair via

HR therefore had to repair by NHEJ or die (Asefa et al., 1998; Choudhury et al.,

2007). A reduced amount of ssDNA was detected in trm2t1. cells by slot blot

during the HO assay. This suggests that in the absence of Trm2 insufficient

resection prevents HR repair therefore repair has to occur via NHEJ
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(Choudhury et al., 2007). Exo1 and Trm2 are suggested to complement each

other during mitotic DNA damage repair. This relationship is indicated because

NHEJ at the HO break results in insertions and deletions that can be detected

with PCR both the single mutants had similar insertion and deletion at the

breaksite in sterile survivors (Asefa et al., 1998; Choudhury et al., 2007). Also

higher sensitivity to MMS and IR is seen in the double mutant compared to the

single mutants (Asefa et al., 1998). Also a higher sterility rate was seen in the

trm2!! exot« double mutant than seen in either single mutant.

Initial aims.

• To analyse processing of meiotic DSBs in three candidate mutants that

are thought to influence resection or the timing of meiotic DSB repair.

• To further investigate the function of proteins that do have a role in

meiotic DSB repair.
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Chapter Two - Materials and Methods

Table 2.1 Haploid Strain List

hAG219 MA Ta ho::L YS2 /ys2 arg4-nsp,bg/ ura3::URA3-[arg4- M. J.

vde] nuc111::LEU2 ade2 spo11(Y135F)- Neale.

HA3His6::KanMX

hAG251 MA Ta ho::/ys2 /ys2 ura3 nuc1D::LEU2 M. J.

ura3::URA3[arg4-bg/] TFP1 ::VDE1 Neale.

hAG317 MA Ta ho::/ys2 /ys2 ura3 /eu2::hisG arg4-bg/ rad5411 Prof. D.

Bishop

hAG337 MA Ta ho::/ys2 /ys2 ura3: :URA3-[arg4- VDE] M. J.

nuc1 D::LEU2 spo11 (Y135F)-HA3His6::KanMX arg4- Neale.

nsp,bg/ sae2::KanMX

hAG339 MATa ho::/ys2/ys2 ura3::URA3-[arg4-bg/] M. J.

TFP1::VDE1 nuc1D::LEU2 arg4-nsp,bg/ Neale.

sae2::KanMX

hAG419 MATa ho::L YS2/ys2 ura3 arg4-nsp,bg/ nuc111::LEU2 M. J.

l1ade2 spo11 (Y135F)-HA3His6::KanMX Neale.

hAG684 MATa ura3/ys2 ho::L YS2 trp1::hisG ade2::URA3- A.E.Bisho

[arg4- VDE, ura3] p-Bailey

hAG803 Mata /ys2 ho::/ys2 arg4-nsp,bg/ ura3::URA3-[arg4- M. J.

vde] nuc111::LEU2 spo11- Y135F-HA3His6::KanMX Neale.

ade211trp1::hisG te/111::ADE2

hAG804 Mata /ys2 ho::/ys2 arg4-nsp,bg/ ura3::URA3-[arg4- M. J.

bg/] nuc111::LEU2 SP011+ ade211TFP1::VDE Neale.

te/111::ADE2

hAG805 Mata /ys2 ho::/ys2 arg4-nsp,bg/ ura3::URA3-[arg4- M. J.

bg/] nuc111::LEU2 spo11-Y135F-HA3His6::KanMX Neale.

ade211TFP1::VDE te/111::ADE2

hAG126 MA Ta ho::L YS2 /ys2 arg4-nsp,bg/ ura3::URA3-[arg4- This
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2 vde] nuc1b.::LEU2 ade2 spo11(Y135F)- study

HA3His6::KanMX rad6::hpMX

hAG126 MATa ho::lys2 lys2 ura3 nuc1D::LEU2 This

6 ura3::URA3[arg4-bgl] TFP1 ::VDE1 rad6::hphMX study

hAG150 MATa ura3 lys2 ho::L YS2 leu2 (Xho 1-Cla 1) This

0 trp1::hisG srs2-101 study

dAG744 lys2 ho::L YS2 arg4-nsp,bgl ura3::URA3-[arg4- M. J.

dAG1312 lys2 ho::L YS2 arg4-nsp,bgl ura3-URA3-[arg4-bgl]

lys2 ho::L YS2 arg4-nsp,bgl ura3::URA3-[arg4-vde] Study

SP011 b. TRP teI1b.::ADE2 dmc1::ADE

spo11(Y135F) trp1::hisG teI1b.::ADE2 dmc1::ADE

ade2b. TFP1::VDE nuc1b.::LEU2

vde] lys2 ho::L YS2 arg4-nsp,bgl ura3::URA3-

[arg4-bgl]

nuc1 b.::LEU2 spo 11-Y135F-HA3His6::KanMX b.

ade2 TFP1::VDE TRP1 teI1b.::ADE2

ade2b. TFP1 trp1::hisG teI1b.::ADE2

ade2b. TFP nuc1 b.::LEU2

Neale,

unpublis

hed

This

dAG1313 lys2 ho::L YS2 arg4-nsp,bgl ura3::URA3-[arg4-bgl] This

lys2 ho::L YS2 arg4-nsp,bgl ura3::URA3-[arg4-vde] Study

nuc1b.::LEU2 rad6::hphMX ade2b.

nuc1b.::LEU2 rad6::hphMX ADE

spo 11(Y135F)-HA3His6::KanMX TFP1

SP011 TFP1::VDE1

dAG1393 ho::lys2 LYS2 ura3::URA3-[arg4-bgl] teI1b.::ADE2 This

ho::lys2 LYS2 ura3::URA3-[arg4-vde] teI1::ADE2 Study

leu2b. SP011

leu2b. spo11-Y135FHA3His6::KanMX TFP1::VDE

sae2::KanMX TFP1

sae2::KanMX
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dAG1395 lys2 ho::L YS2 arg4-nsp,bgl ura3::URA3-[arg4- This

bgl]Iys2 ho::L YS2 arg4-nsp,bgl ura3::URA3-[arg4- Study

vde] sae2!l:: KanMX::SAE2::LEU TFP1::VDE

sae2!l:: KanMX::SAE2::LEU TFP1

dAG1396 lys2 ho::L YS2 arg4-nsp,bgl ura3::URA3-[arg4-bgl) This

lys2 ho::L YS2 arg4-nsp,bgl ura3::URA3-[arg4-vde] Study

seez»: KanMX::SAE215::LEU2 TFP1::VDE

seezc: KanMX::SAE215::LEU2 TFP1

dAG1397 /ys2 ho::L YS2 arg4-nsp,bg/ ura3::URA3-[arg4-bg/] This

/ys2 ho::L YS2 arg4-nsp,bg/ ura3::URA3-[arg4-vde] Study

sae2!l:: KanMX::sae269::LEU2 TFP1::VDE

sae2!l:: KanMX::sae269::LEU2 TFP1

dAG1398 /ys2 ho::L YS2 arg4-nsp,bgl ura3::URA3-[arg4-bgl] This

/ys2 ho::L YS2 arg4-nsp,bg/ ura3::URA3-[arg4-vde] Study

sae2!l::KanMX::sae225689LEU2 TFP1::VDE

sae2!l::KanMX::sae225689LEU2 TFP1

dAG1441 /ys2 ho::L YS2 arg4-nsp,bgl ura3::URA3-[arg4-bgl] This

/ys2 ho::L YS2 arg4-nsp,bg/ ura3::URA3-[arg4-vde] Study

/eu2!l spo11-Y135F- HA3His6::KanMX

/eu2 spo11-Y135F-HA3His6::KanMX

ade2!l te/1!l::ADE2 TFP1::VDE trp1::hisG

ade2!l tel1!l::ADE2 TFP1 TRP

nuc1 !l::LEU2

nuc1 !l::LEU2

dAG1473 /ys2 ho:: LYS2 arg4-nsp,bg/ ura3::URA3-[arg4- This

vde]/ys2 ho::L YS2 arg4-nsp,bg/ ura3::URA3- Study

[arg4-bg/] nuc1!l::LEU2 rad6::hphMX

sae2!l::KanMX ade2!l

nuc1!1::LEU2 rad6::hphMX sae2!l::KanMX ADE

spo11(Y135F)-HA3His6::KanMX TFP1

SP011 TFP1::VDE1

dAG1475 ho::L YS2 /ys2 arg4-nsp,bg/ ura3::URA3-[arg4-vde] This
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ho::L YS21ys2 arg4-nsp,bgl ura3::URA3[arg4-bgl] Study

spo11 (Y135F)-HA3His6::KanMX SRS2

SP011 srs2-101

nuc111::LEU2 ADE2

nuc111::LEU2 ade211

dAG1476 ho::L YS2 lys2 ARG ura3::URA3-[arg4- This

vde] Study

ho::L YS2 lys2 arg4-nsp,bgl ura3::URA3[arg4-bgl]

spo 11(Y135F)-HA3His6::KanMX srs2-1 01

SP011 srs2-101

nuc111::LEU2 ADE2 TFP1::VDE1

nuc111::LEU2 ade211TFP1

dAG1488 ho::L YS21ys2 arg4-nsp,bgl ura3::URA3-[arg4- This

vde] Study

ho::L YS2 lys2 arg4-nsp,bgl ura3::URA3[arg4-bgl]

spo 11(Y135F)-HA3His6: :KanMX srs2-1 01

SP011 srs2-101

nuc111::LEU2 ADE2 TFP1::VDE1 sae211::KanMX

nuc111::LEU2 ade211TFP1 sae211::KanMX

dAG1493 ho::L YS21ys2 arg4-nsp,bgl ura3::URA3-[arg4-vde] This

ho::L YS2 lys2 arg4-nsp,bgl ura3::URA3[arg4-bgl] Study

spo 11(Y135F)-HA3His6::KanMX srs2-1 01

SP011 srs2-101

nuc111::LEU2 ADE2 TFP1::VDE1

nuc111::LEU2 ade211TFP1

dAG1501 ho::L YS2 lys2 arg4-nsp,bgl ura3::URA3-[arg4-vde] This

ho::L YS2 lys2 ARG ura3 Study

leu2-K ade211TFP1::VDE1

34



Materials and methods

leu2::URA3-[arg4-bglj ADE2 TFP1

srs2-101

srs2-101

dAG1502 ho::L YS2 ura3Ieu2(Xho1-Cla1) srs2-101 This

ho::L YS2 ura3 leu2::hisG SRS2 Study

ARG4 RAD54 TRP

arg4-bgl rad54::hisG trp1 ::hisG

dAG1507 ho::L YS2 ade2::URA3 -[arg_4-VDE, ura31 This

trp1::hisG Study

ho::L YS2 l1ade2(EcoRV-Stul) TRP1

ARG4 LEU2 TFP1

arg4-nsp,bglleu2-R TFP1::VDE

rad6::hphMX

rad6::hphMX

dAG206 Ivs2 ho::L YS2Ieu2-K arg_4-nsp,bg_1 M. J.

I ys2 ho::L YS2Ieu2-R arg4-nsp,bgl Neale.

ura3::URA3-farg_4-bg_1l nuc1 ::LEU2 TFP1 ::VDE

ura3::URA3-[arg4-vdej nuc1 ::LEU2 TFP1

SP011

spo11- Y135F-HA3-His6::KanMX4

dAG205 Ivs2 ho::L YS2 leu2-K arg_4-nsp,bg_1 M. J.

lys2 ho::L YS2Ieu2-R arg4-nsp,bgl Neale.

ura3::URA3-[arg_4-bg_1l nuc1::LEU2 TFP1::VDE

ura3::URA3-[arg4-vdej nuc1::LEU2 TFP1

spo 11-Y135F-HA3-His6::KanMX4

spo 11-Y135F-HA3-His6::KanMX4
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Primers

Name Primer size Sequence
Sae2::KanMX6 F 20 GCC AGT AAT TGA CGA TGC GG
Sae2::KanMX6 R 21 GAC CTT CAG TGA GAG AAT GCG
Rad6-471 Primer 1 24 GGGCACATCAAATATGAAACTCCC
Rad6+574 Pnmer 2 23 GGA AGA GCA TAG ATC CAT TCA GC
Hyg3'+Rad6 Primer 3 45 GCG TCAA TCG TAT GTG AAT GCT GTC TTA ATG ATG AAT GCC GAG CCG
Hyg5'+Rad6 Pr-mer 4 42 GGG TAT TCT GGG CCT CCA TGT CAG CTG GTG TGG ACA TGA CGC
Probe forward ATCGAAAAACTAGCTGAAAAATGTGATGTGCTAACG
Probe Reverse CCTTGGGGCAAmCGTTAATAAGCAATTCCCCTG
THR4-2-F (AREI-DSB-2-F) 24 CCAAGGCCACGGTGAAGACTACGG
THR4-2-R (AREI-DSB-2-Bl 26 GGCTCTTGCTCAAATGCAATGCGCCC
THR4-3-F (AREI-DSB-3-F) 24 GGTAACACAGACCAATCCGGTCCC
THR4-3-R (AREI-DSB-3-Bl 23 GCTTCACTTCACCCAA TTCGGGC
THR4-4-F (AREI-DSB-4-F) 22 CTCAGAATTCTCGTTCCCAGGG
THR4-4-R (AREI-DSB-4-1ll_ 22 GAGAAGGGCAGAAACTATCTGG
drugprornotor TEF promoter 20 CCTTGACAGTCTTGACGTGC
druaterminator TEF terminator 20 CAGATGCGAAGTTAAGTGCG
Forward 5rs2 101 CATGCTAGGGT AACGAGACGC
Reverse 5rs2 101 ATCACCTACGATGGTCATCCC
MNll AAAGGAACTATCCAATACCTCGCC
MNl2 AAGGATCCCCACCTATGGGC
CYS3-F GTCGCAGTCAACT ACCCAGG
CYS3-R CCAGGATGATC TCCGCACCTTGAACG
ZiplF (Slava) 20 TGCTATAAGCCGTGTTGTCC
ZiolR (Slava) 21 CCTAAGTCGTGCACCAAGATC
CA probe F TAAACTGGATAATGTAGGGCC
CA Probe R CGCCAGCAAGACGT AGCCCAGCGC
CLB2SRS2 F 59 atgataaeaeeacttaaaacataet aaaataacaaaaeaeaaalteaaae teatttaaa
CLB2SRS2 R 87 ecgetaetetetaltaaatatttaa etaaaataetaaatgcaaccaa~ tcaltalteaaeaacatacaetaaa eaaegtaatC\Q_
HIS4 F 23 ATTCTAGCCCCACCAAACCATGC
HIS4 R 23 AGGAATGAAATCTGGATCAAGGG
hedlF 60 eta cat ate aaa aae aaa eaa aaa aaa aaa ate aaa aea aea too aaa eee aaa ala eee
hedlR 60 cae eaa aet ett tit eaa aea Ite tee tet ne aae Ita gca Ite aea tae aat tea cae
hedl check f 26 ACT ATT TAT TAA GAT AGC CGC CCA GG

All oligonucleotides used in PCR were synthesised by MWG Biotech or
biorners.net with high-purity salt free (HPSF) purification.

General Techniques

Saccharomyces cerevisiae permanent storage of yeast clones

5 ml cultures were incubated at 30DC overnight then centrifuged at 3000 g for 5
min. The pelleted cells were resuspended in 2 ml of sterile 50 % glycerol and
aliquoted into sterile screw capped vials then stored at _BODC_

Saccharomyces cerevisiae growth conditions

Diploid SK1 cells sporulate rapidly therefore all strains were streaked freshly for
each experiment from -BOaC glycerol stocks onto solid media and incubated at
30DC_
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Haploid cell mating

Fresh single colonies of opposite mating types (ala) were mixed on a YEPAD

plate and incubated at 30°C overnight. Then a proportion of the cells were

streaked for single colonies after 48 hr these were streaked again and tested for

diploidisation.

Diploid testing

Potential diploid strains were tested by complementation test with hAG55

(MATa) and hAG56 (MAT a), all strains used in the study are URA2, hAG55 and

hAG56 are wr except for ura2 mutation. Prospective diploids were mated with

hAG55 and hAG56 overnight then replica plated onto minimal media. Diploid

strains would be unable to mate with hAG55 and hAG56 therefore would not

grow; however haploids would be able to mate and consequently would grow.

Possible diploids were also patched onto YEPAD and incubated 30°C overnight

then replica plated onto solid potassium acetate. After a second 30°C

incubation for 1-2 nights the presence of tetrads was confirmed with light

microscopy.

Tetrad Dissection

Diploids were sporulated asynchronously on solid potassium acetate and

incubated at 30°C for two to three days. The resulting tetrads were incubated in

20 IJIof B-glucuronidase (9.45U/IJI) to break down the asci. 300 IJIof water was

added to the cell suspension and plated to a small area on a flat plate and

allowed to dry. The tetrads were dissected using a micro manipulator then

incubated 30°C for 48 hr then replica plated onto selective media and YPEAD

then incubated at 30°C overnight. Most non-wild type genes were marked with

genes required for synthesis of amino acids essential for vegetative growth, and

could be identified by growth on SC- plates lacking the appropriate supplement.

Haploid strains containing genes marked with hphMX or KanMX were selected

for by growth on YPD with Hygromycin B or G418 plates respectively. Where no

prototrophic or antibiotic resistance phenotype was present for a particular

gene, PCR and digestion was used. When the same marker allele was required
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more than once in the same strain parental ditype (PD)s and nonparental ditype

(NPD)s were scored to find spores that had a 2:2 or 4:0 segregation. To create

a double homozygous mutant several rounds of mating and dissection were

required to produce experimental diploid strains. The haploid strain list contains

only the strains from which the alleles in the final experimental diploids

originate. The diploid list contains all diploids used in experiments.

Chemical transformation

A 5 ml overnight culture was used to inoculate 20 mls of YEPAD to a real 00600

of 0.1 and 0.2, this was incubated at 30°C until a real 00600 of 0.6 to 0.8 was

reached. The culture was centrifuged 3000g for 5 min, harvested cells were

washed in 10 ml H20 and resuspended in 1 ml of 100mM lithium acetate then

spun at 3000 g 15 s. The cell pellet was resuspended in 150 IJI of 100 mM

lithium acetate, 50 IJI aliquots were spun at 3000 g 15 s. 240 IJI of PEG was

layered over the pellet, followed by 36 IJI 1M lithium acetate, 10 IJI boiled

salmon sperm DNA, transformation DNA, the mixture was made up to 360 IJI

final volume and vortexed. The cell suspension was incubated at 300C for 30

min then transferred to 420C for another 30 min. After the successive

incubations the cell suspension was centrifuged at 3000g 15 s the liquid

removed and the pellet resuspended in 400 IJIof sterile water. For prototrophic

selection the cells were plated directly onto solid media, however for selection

by antibiotic resistance the cells were added to 5 ml YEPAD and allowed to

complete two cell divisions at 30°C then plated onto YEPAD with antibiotic.

Electroporation

A 5 ml overnight culture was spun at 3000 g for 5 min the pellet was washed in

1.2 M sorbitol three times then placed on ice for a minimum of 5 min. 40 IJI of

cell suspension was added to chilled DNA with heat denatured salmon sperm

DNA and mixed well. The transformation mix was added to a 2 mm chamber,

electroporated using the settings for yeast transformation 1.5kV, 200 Ohms, 25

IJF for a 5 msec pulse. 400 IJIof cold 1.2 M sorbitol was immediately added to

the cells then incubated on ice for 5 min and plated onto solid dropout media
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with 1M sorbitol for prototrophic selection. Cells were plated onto YEAPO then

replica plated onto YEAPO with Hygromycin B for hphMX selection.

Return to growth

0.5 ml of cells from synchronously sporulating cultures were diluted with sterile

H20 in 10-fold increments. The cell suspension was plated onto duplicate

YEPAO and Arg dropout media then incubated at 30°C for 2 days, slow growing

strains required 3 days. To calculate the viability of the strain and the proportion

of arginine prototrophs the number of colony forming units was divided by the

volume plated out then multiplied by the dilution factor.

Synchronous sporulation of S. cerevisiae

Three 5 ml YPO overnight cultures were inoculated from fresh single diploid

colonies and incubated at 30°C overnight. The cultures were used to inoculate

multiple dilutions of 300 ml PSP2 in 2 I flasks which were incubated at 30°C,

300 rpm for 24 hr. Typically PSP2 dilutions were 1:100 and 1:250, for slow

growing strain a 1:50 dilution was used.

The PSP2 culture density was measured with 00600 of 2-fold dilution, an 00600

within 1.4-2.0 were selected, except for extremely slow growing strains when

the range 0.5-1.0 was acceptable. For slow growing strain synchrony was

tested by OAPI or SC formation and the meiotic progression was comparable to

wild type. The cells were rapidly harvested at 3000 g in a Beckman centrifuge at

300C 4500 rpm for 2 min then washed in 300 ml of 1% potassium acetate and

centrifuged a second time. Cells were resuspended in 300 ml potassium

acetate plus supplements, and transferred to a 37°C pre-warmed 2.8 I baffled

flask and incubated at 30°C and 300 rpm. Time point T=O was taken

immediately following the flask being placed in the incubator.

Harvesting cells for DNA extraction

25 ml of synchronously sporulating cells from time course culture were removed

at each time point and added to 6 ml ice-cold 50% glycerol and 300 1-11 10%

sodium azide. Cells were harvested by centrifugation at 3000 rpm for 5 min and
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resuspended in 6 ml 20% glycerol spheroplasting solution, then centrifuged

again for 5 min. The cell pellets were frozen in liquid nitrogen and stored at

-80°C.

DAPI staining of cells to monitor nuclear divisions

500 ""I of synchronously sporulating cells were fixed in 1 ml of 100% ethanol,

and stored at -20°C. The cells were prepared by centifugation 17,000 g for 1

min then resuspended in 1 ml of H20 with 1 IJIof 0.5 mg/ml DAPI and incubated

in the dark on the bench for 1 min. Cells were harvested by centrifugation and

resuspended in 20 ""I of 50% glycerol then visualised using a fuorescence

microscope (model DMLB - Leica) with a standard DAPI filter. 200 cells from

each time point were scored for the number of discrete DAPI-stained bodies

present in each cell.

DNA restriction digests

DNA was digested according to instructions supplied by the enzyme

manufacturer, the majority of restriction enzymes used were supplied by New

England Biolabs (NEB). Digest volumes were made up with mqH20. All digest

incubations took place in water baths. Digests of yeast genomic DNA for

Southern analysis were incubated for 3-5 hr.

Culture of E. coli DH5a

DH5a bacterial cells were streaked from -80°C stocks onto 2TY medium and

incubated overnight at 37°C. A fresh single colony was used to inoculate 100 ml

of pre-warmed, pre-aerated 2TY media and grown at 37°C with vigorous

aeration to an OD550 of 0.5. Cells were harvested at 4°C, resuspended in 25 ml

TFBI (100mM RbCI, 50mM MnCI2, 30mM K-acetate, 10mM CaCI2, 15%

glycerol, pH 5.8), and incubated on ice for 15 min. Cells were reharvested at

4°C, resuspended in 4 ml TFBII (10mM MOPS, 10mM RbCI, 75mM CaCI2,15%

glycerol, pH 6.8), and incubated on ice for 15 min. 100 ""Ialiquots were snap-

frozen in liquid nitrogen and stored at -BOoC.
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Transformation of chemically-competent DH5a E. coli

100 !-!Ialiquots of frozen cells were thawed on ice then spilt into 50 1-11 aliquots

and incubated with 1-2 ng of plasmid DNA. Cells were heat-shocked at 42°C for

90 s then 450 !-!Iof liquid 2TY was added, the cell suspension was then placed

on ice for 2 min. Subsequently cells were incubated for 90 min at 37°C then

plated to 2TY plus ampicillin plates which were incubated for 24 hr at 37°C.

Large-scale isolation of DNA from E. coli (midiprep)

Bacterial cells were struck from -80°C stocks onto 2TY media and incubated

overnight at 37°C a single colony was cultured for 6 hr in 5 ml 2TY (50!-!g/ml

ampicillin) at 37°C. 1 ml of this culture was diluted into 100 ml 2TY (50!-!g/ml

ampicillin) and incubated at 37°C for 18 hr. DNA was extracted from cells in this

culture using the Wizard Plus Midiprep kit (Promega), following the instructions

supplied.

Ethanol precipitation of DNA

3 M sodium acetate was added at one tenth the volume of DNA solution and

mixed. Twice the total volume of ice-cold 100 % ethanol was layered on top and

mixed by gentle inversion. DNA was then precipitated for 1 hr at -80°C or 20°C

for 24 hr. Purified DNA was isolated by centrifugation at 14,000 rpm for between

5 min and 30 min. The DNA pellet was then washed in 70 % ethanol and air-

dryed DNA was resuspended in 30-50 1-11 of 1xTE.

Gel purification of DNA fragments

DNA was isolated from contaminating template DNA by gel electrophoresis

using appropriate percentage agarose gel (Bio-gene) with 1xTAE and ethidium

bromide. The DNA to be isolated was cut from the gel, keeping UV exposure to

a minimum. DNA was then purified from the agarose block using the QIAquick

Gel Extraction Kit (Qiagen), following supplied instructions.

Polymerase chain reaction (peR)

Routine PCR
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Routine diagnostic extensions, 2.0m M MgCI2, 200 tJM dNTPs, 5-50 units/ml

Taq (NEB or BIOLlNE), 0.1 tJM forward and reverse primers, 100-1000ng of

yeast genomic DNA template made up to 20 tJl final volume with autoclaved

Millipore water.

Example of routine PCR

Short range

Denature 94°C for 2 min, 1 cycle

Denature 94°C for 30 s,

Annealing xoC for 30 s,

Extension 72°C for y s,

25-30 cycles of:

Final extension 72°C for 5min.

Long range

Denature 94°C for 2 min, 1 cycle

Denature 94°C for 30 s,

Annealing 50°C for 30 s,

Extension 72°C for y s,

5 cycles of:

Denature 94°C for 30 s,

Annealing xoC for 30 s,

Extension 72°C for y s,

25-30 cycles of:

Final extension 72°C for 5 min.

where x is the primer-specific annealing temperatures and y is proportional to

the expected size of the product to be obtained (1 min per kb).

Colony PCR.
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DNA for peR was extracted from fresh colonies, a small section of a single

colony was incubated in 10 fAl of spheroplasting solution with zymolyase

solution (5 mg/ ml 20T zymolyase; MP Biomedicals) for 15 min at 3re, 1 ul

was added to the peR reaction.

Alternatively a small section of very fresh yeast colony was boiled in 40 1-11 of

water and 5 1-11 was added to peR reaction.

Measurement of DNA concentration in solution

DNA concentrations was measured using a DyNA Quant 200 fluorometer

(Hoefer), using the DAPI fluorophore. Samples were measured in a quartz

cuvette, in filter-sterilised 1xTNE, 1fAg/mlDAPI. The fluorometer was calibrated

to 100 ng of ABstE11 DNA (New England Biolabs).

Alternatively DNA was run on an agarose gel and compared to a ladder with

known concentration typically Bioline hyperladder.

Native DNA electrophoresis

DNA was fractionated in suitable percentage agarose gels for the expected

product size in 1xTAE 10 fAg/IEthidium (10 mg/ml BioRad). 250 ml 25 cm x 15

cm 0.5 % agarose gels were used to fractionate 0.5-1I-1gdigested yeast

genomic DNA to be southern blotted. These were run at 70 V for 10-14 hr with

circulating buffer. For all native electrophoresis. Ethidium bromide was mixed

with the running buffer prior to running.

Southern blots

Once fractionated stained DNA was visualised with minimal UV, the agarose

gels were rinsed in 1 litre dH20 for 5 min to removed ethidum bromide. To

depurinate the DNA the gels were agitated in 1 litre 0.25 M Hel for 45 min a 15

min rinse in 1 litre dH20 removed Hel, then agitated in O.4MNaOH for 45 min

to denature DNA. ssDNA was blotted to either Zetaprobe GT (Bio-Rad) or
Biotrans (+) (MP Biomedicals) nylon membrane via a VacugeneXL blotter
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(Amersham) at 50-100 mbar for 1.5 hr in O.4M NaOH. The membrane was

rinsed in 200 ml 2xSSPE. The transferred DNA was covalently linked to the

membrane using a UV crosslinker (model XL-1500 - Spectronics).

Generating 32p -labelled DNA probe

The product of four PCR reactions was purified by gel extraction and

subsequently used as the template for second round of PCR. The products from

the second round was ethanol precipitated then diluted to around 0.05 IJg.50-

100 ng of probe and 0.2 ng of ABstEIi were denatured at 100'C then cooled on

ice, 4 IJIdCTP High Prime random priming labelling kit (Roche) was added. 5 IJI
of 32p_dCTP (MP Biomedicals and Amersham) was used as the radioactive

substrate the solution was incubated at 37'C for 20 min. Unincorporated bases

were removed using a G30 Biospin column (Bio-Rad). Salmon sperm DNA

boiled for 5 min was added to the probe then boiled for 4 min at 100'C the

ssDNA probe was then added to hybridisation solution.

Southern hybridisation

Nylon membranes were placed into glass hybridisation tubes that were washed,

coated with 1 ml ethanol, 1 ml sigmacote, 1 ml ethanol then rinsed with water

and pre warmed in 65'C oven. The membranes were pre-hybridised for a

minimum of 3 hr at 65°C in 40 ml of pre-hybridisation solution then

subsequently hybridised at 65°C for a minimum of 6 hr in 20 ml hybridisation

solution. To remove nonspecific bound probe membranes were agitated in three

washing solutions for 15 min each at room temperature. After washing the

membranes were blotted dry, wrapped in cling-film and exposed to a blanked

phosphor screen (K-screen, Kodak).

Scanning densitometry

To quantify the amount of DNA the probe bound to Quantity One software (Bio-

Rad) was used. Kodak phosphor screens were exposed to radioactive

hybridised filters these were scanned (In the dark) using a Personal FX

phosphoimager (Bio-Rad). The background levels were calculated and removed
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boundaries were placed around the upper and lower limits of each band to be

measured.

Yeast genomic prep

1.5 ml YPD overnight culture was pelleted at 14000 rpm for 1 min the

supernatant removed and cells resuspended in 200 ~I of genomic TENS (10

mM Tris.HCI pH7.8, 1 mM EDTA, 100 mM NaCI, 1 % SOS). The cells were

vortexed with sterile glass beads for 1 min, 100 ~I of phenol : chloroform :

isoamylalcohol (25 : 24 : 1) was added followed by another 1 min vortex and 2

min 14000 rpm centrifugation. The aqueous top layer was transferred into a

fresh tube then 200 ~I of phenol was added followed by an additional 1 min

vortex and 2 min 14000 rpm centrifugation. The aqueous layer transferred to a

fresh tube and DNA was extracted by ethanol precipitation.

CTAB yeast genomic DNA extraction

For quantitative Southern analysis a modified CTAS protocol was employed

(Allers and Lichten, 2000). Thawed cell pellets from meiotic culture were

washed in 1.5 ml of ice-cold spheroplasting solution then pelleted at 4000 rpm

for 1 min. The pellet was resuspended in 100 ~I of spheroplasting solution with

0.5 mg/m1100T zymolyase (MP Siomedicals), and 1% p-mercaptoethanol. The

solution was then incubated at 3rC for 6 mins the tubes were inverted every

three min. Post incubation 200 ~I of CTAS extraction solution was added and

mixed by pipetting subsequently 0.5 1-11of 10 mg/ml RNase and 5 1-11of 20mg/ml

Proteinase K was then added and tubes mixed gently. The cell suspension was

then incubated at 3rC for 15 min with gentle vortexing and inversion every 5

mins. 100 ~I chloroform: isoamylalcohol (24:1) was added to extract the CTAS-

DNA complexes, each tube was vortexed for 20 s, allowed to rest for 2 min,

vortexed for 20 s then centrifuged at 14,000 rpm, 18°C for 7 min. The aqueous

upper layer was transferred to a new tube and one volume of CTAS dilution was

added, after a white precipitate become visible a second volume of dilution

solution was added. The interface was disturbed by gentle agitation until the two

layers were mixed, leaving a white precipitate in a clear liquid. The solution was
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removed and the remaining CTAB-DNA pellet was washed twice in 0.4 M NaCI

in 1XTE, and completely resuspended in 300 ul of ice-cold 1.42 M NaCI in

1XTE. DNA was precipitated by the addition of 600 f.!1 of 100% ethanol and

washed twice in 600 f.!1 of 70% ethanol then pulse centrifuged. Excess ethanol

removed and the pellet was briefly air dried but not allowed to completely dry

out and resuspended in 30 ul ice-cold 1xTE.

Media
YPD

2% D-glucose

2% Bacto peptone (Difco)

1% Yeast extract (Difco)

2% Agar (Sold media)

40 !Jg/ml Adenine

Strains expressing resistance genes were selected for on YEPAD plus

antibiotic.

KanMX 200 !Jg/ml G418 (Melford-Labs)

hphMX 300 !JImIHygromycin B (Sigma-Aldrich)

Minimal Medium

2% D-glucose

0.67% yeast nitrogen base w/o amino acids (Difco)

Synthetic complete and dropout medium

2% D-glucose

0.67% yeast nitrogen base w/o amino acids

0.85 gil dropout mastermix.

1 !Jllml of 2M NaOH

Complete mastermix comprised: 0.8 g adenine, 0.8 g arginine, 4.0 g aspartic

acid, 0.8 g histidine, 2.4 g leucine, 1.2 g lysine, 0.8 g methionine, 2.0 g

phenylalanine, 8.0 g threonine, 0.8 g tryptophan, 1.2 g tyrosine, 0.8 g uracil.

Dropout mastermixes were as complete but lacked the relevant supplement(s).
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Used as positive selection media for prototrophic colonies.

K-Ac Liquid

1% potassium acetate (J.T. Baker)

10 jJg/ml amino acid supplement(s)

KAc Solid

1% potassium acetate (J.T. Baker)

2% agar (Solid media)

0.1% yeast extract

O.OS%D-glucose

10 jJ/ml amino acid supplement(s)

PSP2

0.67% yeast nitrogen base w/o amino acids

0.1% yeast extract

1% potassium acetate

1.02% potassium hydrogen phthalate

10 jJg/ml amino acid supplement(s)

2TY

1.1% tryptone (Difco)

1% yeast extract

O.S%NaCI

1.S% agar (Solid media)

pH7.4

Bacteria expressing plasm ids carrying drug resistant genes were selected for

with 2TY plus SOl-tg/mlAmpicillin (Sigma-Aldrich).

General Solutions

10xTE:

100 mM Tris base, 10 mM EDTA, pH 7.S

10xTNE:

100 mM Tris.HCI, 2 M NaCI, 10 mM EDTA, pH7.4
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50xTAE:

2 M Tris base, 100 mM EDTA, 0.95 M acetic acid

20xSSPE:

3.6 M NaCI, 200 mM NaH2P04, 20 mM EDTA, pH7.4

Genomic TENS:

10 mM Tris.HCI pH7.8, 1 mM EDTA, 100 mM NaCI, 1 % SOS

6x Loading Dye:

0.25% Bromophenol-blue, 20% sucrose

Heavy Loading Dye (southern gels):

0.25% Bromophenol blue, 0.25% xylene cynanol, 20% ficol

Proteinase K Solution:

10 mM Tris.HCI pH7.5, 20 mM CaCI2, 50% glycerol, filter sterilised before

addition of 20 mg/ml Proteinase K

RNase Solution:

10 mg/ml RnaseA, 10 mM Tris.HCI pH7.5, 22.5 mM NaCI. Incubated at 100°C

for 15 min, cooled on bench to room temperature.

Spheroplasting Solution (±20% glycerol):

1 M sorbitol, 50 mM KP04, pH7.5, 10 mM EDTA, pH7.5, (20% glycerol)

CTAB Extraction solution:

3% CTAB, 0.1 M Tris-HCI pH7.5, 25 mM EDTA, 2M NaCI, 2% PVP40

CTAB Dilution solution:

1% CTAB, 50 mM Tris-HCI pH7.5, 10 mM EDTA pH8.0, Stored at 37°C

Prehybridisation solution:

2X SSPE, 1% SOS, 0.5% non-fat dry milk, 5 ~g/ml boiled salmon sperm DNA

Hybridisation solution:

2X SSPE, 1% SOS, 0.5% non-fat dry milk, 5% dextran sulphate (Sigma-Aldrich)

Washing buffers (southern hybridisation):

First wash: 2% SSPE, 1% SOS, Second wash: 0.5% SSPE, 1% SOS, Third

wash: 0.1% SSPE, 1% SOS

Plasmids
Plasmids were kindly given by Maria Pia Longhese, Ph.D, Dip. Biotecnologie
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Bioscienze, Universita di Milano-Bicocca and Hannah L Klein Ph.D. Professor

of Biochemistry, Medicine and Pathology New York University School of

Medicine.
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Chapter Three - The influence of TEL1 on VDE-DSB

repair

Brief introduction
Tel1 and Mec1 belong to a conserved family related to the phosphoinositide 3-

kinases, that includes the mammalian TEL 1 MEC1 orthologues ataxia-

telangiectasia-mutated (ATM) and ataxia-telangiectasia, RAD3 related (ATR;

Mallory and Petes, 2000). ATM and ATR respond to DNA damage by inducing

a signalling cascade that is relieved when the damage has been repaired.

Mutations in ATM results in ataxia telangiectasia (AT). Sufferers have

predisposition to cancer, sensitivity to IR, and chromosomal instability (Fritz et

al., 2000; Morrow et al., 1995). In yeast Tel1 and Mec1 mutations result in an

increased sensitivity to IR and MMS.

One substrate for Tel1 is Mre11, which forms a complex with Xrs2 and Rad50

known as MRX. In meiosis MRX is required for Spo11-DSB formation, DSB

repair and removal of bound Spo11 from the break (Cherry et al., 2007;

Mantiero et al., 2007; Usui et al., 2001; Usui et al., 1998). In mitosis Mre11 and

Xrs2 are phosphorylated by the protein kinase Tel1 in response to DNA

damage. This is termed the TM pathway (Usui et al., 2001). In meiosis Spo11

remains covalently bound to the 5' end of DSBs and has to be removed for

successful meiotic HR repair (Prieler et al., 2005). Spo11 removal is dependent

upon Sae2 and Rad50 (Prieler et al., 2005). Tel1 dependent phosphorylation of

MRX has been shown to occur in both sae2t! and rad50S cells (Usui et al.,

2001). A plausible hypothesis is that during meiosis, like mitosis, MRX is

phosphorylated by Tel1 in response to blocked DSBs (discussed in Usui et al.,

2001). In wild type cells Tel1 dependent phosphorylation of MRX is

undetectable (Usui et al., 2001). This could be indicative of a transient MRX

phosphorylation, because Spo11 bound DSBs are repaired. The observed Tel1

phosphorylation of MRX in sae2t! and rad50S strains suggests that in meiosis

Tel1 could initiate a signal cascade that instigates DSB repair in response to

Spo11 bound DSBs (Usui et al., 2001).
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To further analyse the role of Tel1 during meiosis the VDE reporter assay was

used. In meiosis the VDE cutsite is cleaved by the VMA1 derived endonuclease

therefore the break is site specific. Also the VDE-DSB is formed approximately

at the same time as Sp011-DSBs are created. The cassette is heterozygous: on

one chromosome the VDE-DSB site is inserted into the ARG4 open reading

frame forming arg4- VDE. The arg4-VDE is flanked by ura3::ty upstream and

URA3 downstream. The homologous chromosome has an arg4,bgl allele which

can be used as a template for repair of the VDE-DSB by HR. The VDE-DSB

can also be repaired by SSA. In this form of repair resection can expose the

flanking URA3 and ura3::ty repeats which anneal forming URA3.
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Results

Tel1 is required for timely VDE-DSB repair

To see if Tel1 is important for timely meiotic DSB repair I assayed the meiosis

specific Sp011 independent VDE-DSB reporter cassette (Neale et al., 2002; Fig

3.1). The cassette consists of a VDE cutsite in ARG4 creating an arg4-vde

allele that is inserted into ura3::Ty. The meiotic break is catalysed by the VMA

derived endonuclease, the VDE intein expressed from the TFP1 locus (Fukuda

et al., 2003). A template for interhomologue recombination repair of the VDE-

DSB is an arg4-bgl allele that is inserted at the ura3::Ty in the homologous

chromosome. Repair of the VDE-DSB by recombination can result in gene

conversion forming an ARG4 or arg4-bgl co-converted product. An alternative

repair product is created by SSA repair using the flanking URA3 repeat

sequences created by the integrations at the ura3::Ty locus. Repair by SSA

deletes the sequence between the flanking repeats producing either a ura3::Ty

or URA3 repair product. Although SSA can occur at the VDE-DSB Sp011-DSBs

do not repair by SSA.

Any differences in the VDE-DSB steady state in teitt; cells and wild type cells

could be caused by differences in the efficiency of cleavage by VDE in the two

strains. To assay the rate of cleavage by VDE Southern analysis was used; the

assay allows visualisation of unique restriction pattern of each homologue and a

loading control (Fig 3.2). The amount of DNA in arg4-vde parental band

decreases as VDE cleaves the recognition site. Consequently the band

disappears as the timecourse progresses. The rate of VDE cleavage can be

calculated by normalising the amount of DNA in the arg4-vde parental band to

the amount of DNA in the loading control. The rate of VDE cleavage in the tettt:
cells is the same as wild type cells (Fig 3.3).

Tel1 dependent phosphorylation of MRX has been shown to occur in both

sae2!! and rad50S cells after induction of DNA damage (Usui et al., 2001).

Consequently Tel1 is implicated in starting a signalling cascade in response to

DNA damage (Mantiero et al., 2007; Usui et al., 2001). If Tel1 is involved in

sensing and signalling the presence of DNA damage the repair of the VDE-DSB
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Figure 3.1 Diagram of the the VDE-DSB reporter cassette.

Cells with the VDE reporter cassette have an arg4-vde or an arg4-bg/

allele inserted in to a ura3::Ty locus on both chromosomes. The

VDE-DSB is created during meiosis at the recognition site in the

arg4-vde allele. The break can be repaired by recombination using

sequence homology from the unbroken arg4-bg/ allele on the

homologue. Recombination repair generates an ARG4 product or an

arg4-bg/ repair product. Repair can also occur via SSA resulting in a

ura::Ty product or a URA3 repair product. After DNA digestion with

Spel, fractionation on 0.5 % gel followed by southem blotting and
probing the parental fragments and gene conversion products are

visible as an 11.5 kb band, the VDE-DSB is identified by a 7.8 kb

band and the SSA URA3 product forms a 2.3 kb band.
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Figure 3.2 Proportion of uncut arg4-vde chromatids.

(A) Cells were removed from sporulation medium at hourly
intervals and the DNA extracted double digested with EcoRV and
8g/11. The DNA was was fractionated on a 0.5% gel for 680 mins,
southern blotted and probed downstream of the EcoRV. The digest
releases a 2.8 kb arg4-vde parental fragment, during the
timecourse the percentage of DNA in arg4-vde fragment decreases
as VDE cleaves the recognition site. The digest also releases a 2.3
kb loading control that contains the arg4-nsp,bg/ allele at the ARG4
on chr VIII. The DNA is normalised to the loading control then the
normalisation is multiplied by 100 and not doubled because only
one homologue has the arg4-nsp,bg/ allele the other carries arg4-
VDE.
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is expected to be slower or faster in a fe/111 strain compared with wild type

strain. When the VDE-DSB was assayed in the fe/111 strain the percentage of

DNA in the DSB band reached a maximum of 50 % after 5 h in meiosis. In wild

type the proportion of DNA in the DSB band peaks between 20 % and 30 %

after 4 h in meiosis (Fig 3.4). In fe/111 strain the higher peak of DNA in the DSB

band suggests that repair is delayed. The VDE-DSB can be repaired by either

gene conversion or SSA. The delay in DSB repair is due to a delay in gene

conversion because the SSA repair product appears after 5 h in meiosis, the

same time as in wild type indicating the timing of repair by SSA is unchanged.

The proportion of repair by SSA is higher in fe/111 cells -40 % at 7 hand 8 h

compared to -30 % 8 h in wild type cells (Fig 3.4), indicating that SSA repair is

initiated on time but the proportion of repair by SSA is changed. The increase in

repair by SSA indicates that repair by gene conversion is reduced. A smear is

visible below the DSB band in the fe/111 strain that is thought to contain ssDNA

produced by 5' - 3' resection that is not seen as strongly in wild type. Another

band is visible below the parental band this is a natural Sp011-DSB that is

detected by the probe. The Sp011-DSB not seen strongly in gels of wild type

DNA and normally peaks at 5h (Fig 3.1). The Sp011-DSB band intensity

reaches a peak at the same time as the VDE-DSB suggesting that Sp011-DSBs

are also delayed in repair. The natural Sp011-DSB band is unquantifiable

because the band is too close to the parental band to be accurately quantified

(Fig 3.4).

The late VDE-DSB repair in te/111 cells is not dependent on Sp011-DSBs

If Tel1 initiates a signalling cascade required for timely repair in response to

blocked Spo11-DSBs, the delayed VDE-DSB repair seen in fe/111 cells should

be dependent upon the presence of Sp011-DSBs. To see if the late VDE-DSB

repair seen fe/111 cells is dependent upon Sp011-DSBs a fe/111 sp011-Y135F

strain was created. In the sp011-Y135F mutant a point mutation changes a

tyrosine to lysine preventing Sp011-DSB formation, but allowing other roles of

Spo11 to be fulfilled. In sp011-Y135F cells the VDE-DSB is repaired faster and

a higher proportion is repaired by SSA comparison to wild type cells
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Figure 3.3 Proportion of uncut arg4-VDE chromatids.

(A) tett c: (dAG744) cells were removed at hourly intervals from
meiotic sporulation media, the DNA was extracted then
processed as described in Fig 3.3 A) Quantification of the rad6t-.
blot in (A) and of the wild type blot in Fig 3.3. The rate of VDE
cleavage is indistinguishable from wild type in the tent: strain.
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(Neale et al., 2002). If the late repair of VDE-DSB in telt« cells is dependent on

the presence of Spo11-DSBs, then in a tett« spo11- Y135F strain the amount of

DNA in the VDE-DSB band should be indistinguishable from in the spo 11-

Y135F single mutant. The tent: spo11-Y135F double mutant shows an

intermediate repair phenotype (Fig 3.5). The amount of DNA in the DSB band is

reduced in the double mutant compared to the ten« strain; in the tetts. spo11-

Y135F strain a maximum 23 % is reached compared to 50 % in the teltt: strain.

The amount of DNA in the VDE-DSB is higher in the tettc: spo 11-Y135F double

mutant than the spo11Y-135F single mutant, 23 % in the tel1/l spo11-Y135F

strain and 17 % in the spo 11-Y135F. Also the maximal amount of DNA in the

DSB is reached an hour later-4 h in the tel1/l spo11-Y135F strain compared to

3 h in the spo 11-Y135F strain-but an hour earlier than in the tettt; strain where

the maximum is reached at 5 h. The proportion of repair by SSA is greater in

the spo11-Y135Fthan the teit c: strain, 60 % in the spo11-Y135F compared to

40 % in the tettt: spo11-Y135F strain. The intermediate DSB repair kinetics of

the ten s. spo 11-Y135F strain suggests that the late repair detected in tent:
cells is not simply dependent upon Spo11-DSBs. The rate ofVDE cleavage was

assayed as for tel1/l cells; the rate of cleavage in the tettt; spo 11-Y135F strain

is the same as wild type (Fig 3.6).

Sae2 and Tel1 are required for wild type initiation of repair at the VDE-DSB

A similar VDE-DSB repair phenotype is seen in tettt: cells and sae2/l cells.

It has been reported that Tel1 phosphorylates Sae2 in response to pre-meiotic

replication and DNA damage (Baroni et al., 2004). The VDE-DSB repair kinetics

in the sae2/l strain resemble a tent; strain; in both mutants the amount of DNA

in the VDE-DSB reaches a maximum at 5 h (Fig 3.7). In the tent; strain the

DSB reaches a maximum of 50 %, which is similar, the maximum of 44 %

reached in the sae2/l strain. The proportion of repair by SSA is different

between the two strains, in tetu: cells 40 % of the DNA is in the SSA repair

product band at 8 h. Conversely -30 % of the DNA is in the SSA product band

at 8 h in sae2/l cells (Fig 3.7). Therefore phosphorylation of Sae2 by Tel1 might

ensure correct timing of DSB repair in meiosis.
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Figure 3.4 In the absence of Te11,VDE-DSB repair is delayed.

(A) DNA was extracted from meiotic cultures of ten~ and processed as
described in Fig 3.1 DNA extracted from tett c: cells shows a smeared
VDE-DSB band which can also be seen in wild type but is less
pronounced. The smear contains DSB intermediates that do not normally
accumulate. The band visible between the VDE-DSB band and the
parental band is a natural Spo11-DSB detected by the probe. (B)
Quantification of gel in (A). Each band was quantified and expressed as a
proportion of total DNA in that lane. The error bars show the standard error
of at least two Southern gels. In the teltt. strain the VDE-DSB reaches a
maximum of 50 % at 5 h compared to 25 % at 4 h seen in the wild type
strain suggesting the VDE-DSB accumulates. Therefore VDE-DSB repair is
slower in the srs2-101Isrs2-101 strain compared to wild type cells. The
amount of DNA in the deletion band is lower than published in Johnson,
Borde et ai, 2007.
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Figure 3.5 The late DSB repair seen in tent: cells is not
dependent upon the presence of Sp011-DSBs.

DNA was extracted from meiotic cultures of fel1ssoot tt
digested, fractionated then southern blotted as in Fig 3. 2. (A) In
the telt c: spo11-Y135F strain a higher percent of DNA is in the
VDE-DSB band compared to the spo11-Y135F mutant; also the
percent of DNA in the VDE-DSB band peaks later in the double
mutant (4 h) than the spo11- Y135F (3 h). After 5 h the amount
of DNA in the VDE-DSB appears to be the same in both the
telt c: and the sp011-Y135F. (B) The amount of repair by SSA in
telt c. spo 11-Y135F appears to be very similar in both strains.
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Figure 3.6 Proportion of uncut arg4-VDE chromatids in the tel1 to,.

.spo11Y135F.

(A) DNA was extracted from teli e: spo11-Y135F cells then
processed as described in Fig 3.3 (8) Quantification of the blot in
(A) The rate of VDE cleavage is similar to wild type in the tel1 to,.

spo 11-Y135F strain.



Tel1 and VDE-DSB repair

VDE-DSB turnover similar to wild type in a tel1~sae2~strain.

The kinetics of DSB band turnover in tet t c; and sae2~ cells are

indistinguishable, however the proportion of SSA repair in each strain is

different. In tent: cells a higher proportion of the VDE-DSB is repaired by SSA.

In seezt: cells the proportion of repair by SSA is essentially the same as in wild

type cells. The higher amount of VDE-DSB repair by SSA in a fel1~ strain

indicates that Tel1 has a greater impact on SSA then Sae2 does. To investigate

the epistatic relationship of Tel1 and Sae2 during VDE-DSB repair a fel1~

sae2~ strain was constructed. To check that the change in the steady state of

the VDE-DSB is not due to the activity of VDE, the rate of VDE cleavage was

assayed as for the teltc: strain; the rate of cleavage was indistinguishable from

that in wild type cells (Fig 3.8). The VDE-DSB repair phenotype of the fel1

seez« strain does not resemble either the sae2~ strain or the fel1~ strain

(Fig 3.9). The repair phenotype is more comparable to wild type cells than either

a fel1~ or a seez« strain. In wild type cells the percentage of DNA in the VDE-

DSB peaks at around 25 % at 4 hand 5 h. In fel1~ sae2~ cells a maximum is

reached of 25 % at 3 hand 4 h. The proportion of repair by SSA in the fel1~

sae2~ strain is different from wild type. The amount of DNA in the SSA is

between 50% and 60% in the fel1~ sae2~ strain compared to -30% in wild type

and seezs. strain and 40% in the tettt; strain.
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Figure 3.7 VDE-DSB repair is delayed in sae2!:,. cells and tent:
cells. The sae2!:,. cells and DNA were processed by Miss R
Johnson.

(A) Comparison of VDE-DSB repair in seer. and tettc. cells. In
tete: mutant the VDE-DSB reaches a maximum between 40 %
and 50 % at 5 h as does the amount on DNA in the DSB In
sae2!:" cells. The kinetics of the VDE-DBS band suggests that
the timing of repair is the same in both the sae2!:,. strain and the
tett s strain. The proportion of VDE-DSB repair by SSA appears
to be different in the strains. In tett s. cells 40 % of the DNA is in

. the SSA repair product band at 8 h however, in the sae2!:,. strain
30 % of the DNA is in the band at 8 h.
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Figure 3.8 Proportion of uncut arg4-vde chromatids.

(A) Cells from a teit ~ sae2~ sporulation culture were removed at
hourly intervals and the DNA extracted then processed as
described in Fig 3.3 (8) Quantification of the blot in (A) The rate
of VDE cleavage is indistinguishable from wild type cells in the
teit ~ seezr; strain.
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Figure 3.9 VDE-DS8 repairs by high proportion of SSA in tettc.
sae2~ cells but repair is not delayed.

(A) The VDE-DS8 band in tel1~ sae2~, tel1~, sae2~ and wild
type cells. The percent of DNA in the DS8 band peaks at 25 % in
both wild type and tel1~ seezt: However, the percent of DNA in
the VDE-DS8 reaches a peak earlier in the tel1~ sae2~ strain
(between 3 hand 4 h) compared to wild type (4 h). (8) The
percent of DNA in the SSA repair product band in teI1~, seez«,
tel1~ sae2~ and wild type cells. The amount of DNA in the SSA
repair product band is much higher in the tel1~ sae2~ 52 % than
wild type, sae2~, or tel1~ cells.



Tel1 and VDE-DSB repair

Discussion

In yeast mitosis Tel1 is known to initiate a signal cascade that initiates repair in

response to DNA damage (reviewed in Rouse and Jackson, 2002). In meiosis

approximately 200 Sp011-DSBs are catalysed. Tel1 could initiate a signalling

cascade that ensures timely DSB repair in response to the formation of Sp011

bound DSBs during meiosis (Usui et al., 2001). We assayed repair at the VDE-

DSB in the tett« strain to see if the absence of Tel1 affected the timing of VDE-

DSB repair. The percent of DNA in the VDE-DSB is higher than in wild type

between 2 hand 5 h in meiosis, suggesting initiation of repair is delayed. Also

an accumulation in ssDNA is suggested by the smeared appearance of the

VDE-DSB band. In wildtype the VDE-DSB appears slightly smeared 5 hand 6 h

however in tettc. cells the smear is visible in time points from 3 h until 6 h and is

more pronounced. The method of DSB repair is also changed because a higher

amount of repair is occurring by SSA. VDE-DSB repair in fel1!). cells indicated

that the cell requires Tel1 for wild type timing of meiotic DSB repair.

In the absence of Tel1 repair of the VDE-DSB is delayed, however this is

not totally dependent on Sp011-DSBs.

In mitosis MRX is phosphorylated by Tel1 in response to blocked DSBs. This is

termed the TM pathway (Usui et al., 2001). If the initiation of meiotic repair by

Tel1 does occur in response to blocked meiotic DSBs in the form of Sp011

bound DSBs then the late repair seen in tent: cells should be dependent upon

Sp01.1-DSBs. In a sp011-Y135F strain no Sp011-DSBs are catalysed

consequently if Tel1 does respond to DSBs covalently bound by Sp011 then in

a tent: spo 11-Y135F strain the VDE-DSB repair phenotype should be the same

as in a spo 11-Y135F strain. The repair kinetics of the VDE-DSB in fel1!).sp011-

Y135F cells does not resemble either a fel1!)' or a spo 11- Y135F strain. The

fel1!). sp011-Y135F strain has an intermediate VDE-DSB repair phenotype; that

is not expected if the late VDE-DSB repair in tett S. cells is a result of Tel1

signalling repair in response of blocked DSBs.
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In the absence of Sae2 repair of the VDE-DSB is also delayed

Another protein that is reported to be phosphorylated by Tel1 is Sae2, which is

a small protein with no known homologues or obvious motifs (Cartagena-Lirola

et aI., 2006). In sae2.1 cells Spo11 remains bound to the DSBs therefore the

DSBs are not repaired (Keeney, Giroux et al. 1997). In mitosis sae2~ cells show

reduced or absent SSA-dependent recombination at the HO break and a slight

delay in resection (Baroni et al., 2004; Clerici et al., 2005; Clerici et al., 2006).

Also ctp1, a possible Sae2 ortholog in S.pombe, is involved in MRN dependent

DSB processing of DSBs (Takeda, Nakamura et al. 2007; Akamatsu,

Murayama et al. 2008). Sae2 is phosphorylated by Mec1 and Tel1 during the

initiation of premeiotic DNA replication, and is dephosphorylated when Spo11-

DSBs are completely repaired (Baroni et al., 2004). Replication is completely

independent of Spo11-DSBs. Therefore the late VDE-DSB repair seen in fel1~

cells might be due to a lack of Tel1 dependent Sae2 phosphorylation. The

repair kinetics of the VDE-DSB in a tettt: and a sae2~ strain are similar. Both

fel1 ~ and seezt: cells show a delay in the initiation of VDE-DSB repair. If the

late repair seen teit S. cells is a result of Tel1 dependent phosphorylation of

Sae2 then repair of the double mutant was expected to resemble VDE-DSB

repair in sae2~ and fel1~ cells.

Both Tel1 and Sae2 are required for regulation of VDE-DSB repair

Repair of the VDE-DSB in the tett sseezt» strain is remarkably similar to wild

type although repair of the VDE-DSB is quicker in the fe/~1sae2~ strain. This is

probably because the proportion of repair by SSA is increased which is faster

than gene conversion (Neale et al., 2002). The increased proportion of VDE-

DSB repair by SSA indicates that the amount of repair by gene conversion is

down, suggesting that the amount of strand invasion is reduced therefore the

break has to repair by SSA. An alternative explanation for the increased

proportion of SSA is that resection is increased. For the VDE-DSB to repair by

SSA repair the flanking URA3 and ura3::fy repeats have to uncovered, which

requires more resection than gene conversion (Fig 3.1; Neale et al., 2002).
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Tel1 and VOE-OSB repair

In both tett S. cells and sae2/). cells VOE-OSB repair is delayed, however in the

fel1/). sae2/). repair of the VOE-OSB is not delayed. One explanation of this is
that Sae2 phosphorylation by Tel1 is required for timely repair. This is

consistent with the recent finding that Sae2 has an endonucease activity,

because Tel1 phosophorylation of Sae2 might be required for Sae2

endonuclease activilty at the break. However an increase in SSA is only seen in

cells that lack Tel1 therefore Tel1 might be required for directing repair of the

VOE-OSB towards gene conversion. In tett S. cells repair by SSA is increased

however in sae2/). cells the proportion of repair by SSA is unchanged. In

tett sseet; cells the amount of repair by SSA is also increased. Therefore the

data suggests that Tel1 functions independently of Sae2.

In sae2L1 all the Sp011-0SBs are blocked. Consequently, all the resection

machinery is available to repair the VOE-OSB and therefore the VOE-OSB

would be expected to repair more efficiently (Johnson, Borde et al. 2007).

However in sae2L1 cells repair of the VOE-OSB is slower than wild type. One

possibility is that although there is an excess of repair machinery, repair of the

break is tightly controlled. In tett a the VOE-OSB is repaired slower then wild

type and the proportion of repair by SSA is increased suggesting that repair at

the VOE-OSB is less regulated.

In an sae2L1 fel1 L1cell repair of the VOE-OSB will be less regulated because

Tel1 is absent therefore a higher proportion of the break will be repaired by SSA

which is a quick repair pathway. However in an sae2L1 fel1L1cell there is also an

excess of OSB repair machinery available because Sp011-0SBs are blocked.

Therefore the break can be repaired faster then wild type because the SSA

pathway is favoured and there is an excess of repair protein available to the

break. This suggests that Tel1 functions independently of Sae2 during repair of

VOE-OSB.
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Chapter Four - SRS2 is required for meiotic DSB repair
Brief introduction

Recombination is used by yeast cells during vegetative growth to repair DNA

damage, and during meiosis to generate genetic diversity and ensure faithful

homologue segregation (reviewed in Zickler and Kleckner, 1998). Uncontrolled

or excessive recombination can be harmful to the cells increasing the risk of

loss of homozygosity and chromosomal re-arrangements (Foiani, 2003; Le

Breton et al., 2008). This chapter investigates the role of one potential regulator

of recombination in meiosis Srs2, originally named Hpr5. Srs2 was shown to

have a 3'-5' DNA helicase activity exhibited by Helicase II family members

when incubated with linear DNAwith duplexed ends of different lengths.

Helicases are required for unwinding DNA and RNA duplexes. They function

during DNA replication, repair, transcription, RNA splicing and protein

displacement (Lee et al., 1999; Pyle, 2008; Sung and Klein, 2006). Various

human disorders are associated with helicase mutants including Bloom

syndrome, which is caused by hyper-recombination due to a mutation of BLM

helicase (German, 1993). Bloom syndrome is typified by genomic

rearrangements and chromosome instability causing premature ageing and a

predisposition to cancer (German, 1993; Karow et al., 1997). In men mutations

in Bloom syndrome also causes sterility indicating BLM has a role during human

meiosis.

There are several potential roles for helicases during meiotic recombination.

Possible functions include unwinding the broken duplex to allow recombination

machinery access to the DNA. Helicase action is also required for dismantling

unwanted recombination intermediates that accumulate in the absence of Sgs1
although the exact mechanism is unknown (Jessop and Lichten 2008; Oh, Lao

et al. 2008). Srs2 belongs to the SF-1 superfamily that share ATPase activity,

which has been suggested to allow the proteins to translocate on ssDNA

(reviewed in Foiani, 2003; Tuteja and Tuteja, 2004). Srs2 is known to negatively

regulate recombination in mitosis (Chanet et al., 1996; Milne et al., 1995). The
protein exhibits homology to the bacterial UvrD and Rep helicases, and is the
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Srs2 and DSB repair

yeast orthologue of the human Hfbh1 protein (Chiolo et al., 2005). Srs2 is a

good candidate for a helicase of importance in meiotic recombination, because

srs2 mutant cells exhibit reduced viability, a delayed commitment to meiosis

and a significant reduction in both sporulation and spore viability which could be

indicative of pre-meiotic S phase problems. Srs2 also interacts with Sgs1, a

helicase that is known to function in meiosis (Chiolo et al., 2005; Palladino and

Klein, 1992). Helicase action separates two strands of duplexed DNA an event

likely to occur during resection of DNA near a DSB therefore Srs2 is possibly

involved in resection of meiotic DSBs. There is evidence for helicases having a

role in resection. Sgs1/BLM has been implicated in MRN-independent long

resection with Ex01 at the HO break which is required for efficient HR repair

(Gravel, Chapman et al. 2008; Mimitou and Symington 2008; Zhu, Chung et al.

2008).

In this chapter analyses of meiosis have been undertaken in cells homozygous

and heterozygous for the srs2-101 allele, which is reported to have no helicase

function. The mutant allele has a point mutation in the highly conserved ATP

binding domain that changes proline 37 to leucine, rendering the protein

helicase null by preventing ATP hydrolysis (Rong et al., 1991). The advantage

of using this mutant is that any phenotype detected can be attributed to the ATP

dependent helicase activity of Srs2.
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Results

Spore viability and meiotic progression in srs2-101 diploids

It has previously been reported that the sporulation efficiency of srs2-101

homozygous diploids is 75 % of wild type sporulation efficiency. Spore viability

is reduced by 60 % when srs2-101 cells undergo meiosis, and only 16 % of

mature tetrads give four viable spores (Palladino and Klein, 1992). The meiotic

progression of srs2-101Isrs2-101 diploids is also affected, cells are delayed in

entering both the nuclear divisions (Palladino and Klein, 1992). The published

studies on SRS2 mutants in meiosis were undertaken using BR strains. To

characterise repair of the VOE-OSB in srs2-101Isrs2-101 diploids in the SK1

background, an srs2-101Isrs2-101 (dAG1493) diploid containing the arg4-vde

reporter cassette and expressing the VOE endonuclease, was constructed.

Following growth on solid medium and transfer to meiosis inducing medium,

cells were monitored by light microscopy and no mature tetrads were visible. To

establish at which stage of sporulation dAG1493 arrested, cells were OAPI

stained to monitor nuclear divisions. In srs2-101Isrs2-101 (dAG1493) the

absence of a functional Srs2 results in 50 % of the culture arresting with one

OAPI stained body i.e before the first meiotic division (Fig 4.1). The remaining

50 % successfully completed both the first division and second divisions (Fig

4.1). This was seen in the majority of srs2-101Isrs2-101 independent

transformants with an identical genotype to dAG1493 (Table 4.1). Another srs2-

1011srs2-101 SK1 diploid (dAG1521) was assayed that does not express VOE

or contain the arg4-vde allele. For dAG1521, after 8 h in liquid meiosis inducing

medium 70 % of cells still had only one OAPI stained body indicating that the

first meiotic division was delayed (Fig 4.2). After 24 h in meiotic conditions

between 80 % and 90 % of cells had four OAPI stained bodies and the strain

formed mature tetrads. When dissected dAG1521 spores have reduced

viability, 19 % of tetrads formed no viable spores, 10 % formed one viable

spore, 20 % formed two viable spores, 22 % formed three viable spores and 29

% of the tetrads were four spore viable, compared with 93 % in wild type

(dAG1522; also lacking the VOE system; Fig 4.3). This suggests that the strains

expressing VOE have reduced sporulation. This has also been observed in

other lab strains with the reporter cassette (unpublished results).
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Figure 4.1 Meiotic progression is delayed in srs2-101Isrs2-101 cells
with the VOE reporter cassette.

Meiotic progression was determined by scoring nuclear divisions.
Cells were harvested and fixed in ethanol, stained with OAPI and
visualised using fluorescence microscopy. 200 cells from each
timepoint were scored for the number of OAPI-staining bodies
(nuclei). Cells containing two nuclei indicate completion of meiosis I.
Cells with three or four nuclei indicate the cumulative total of cells
that have passed meiosis I. (A-C) Examples of wild type cells at
timepoint 0 h, 6 hand 8 h, white arrows indicate the position of OAPI
stained nuclei, (C) contains two tetrads with 4 nuclei clearly visible
and one tetrad with only 3 visible stained bodies, the other nucleus is
in a different focal plane. (0) Wild type meiotic progression. Only cells
with 1 nucleus are visible between 1 hand 4 h, cells with 2 nuclei are
prevalent at 6 h. At 8 h the majority of cells have 4 nuclei. (E) Meiotic
progression of an srs2-101Isrs2-101 culture, at 8 h the majority of
cells have only 1 OAPI strained body. After 12 h, only 50% of cells
have 4 nuclei.



Strain Genotype
number

No mature
spores.

Percent
~orulation

dAG1537 MAToc ura3Ieu2fXho1-Cla1J srs2-101 No mature
MATa ura3Ieu2::hisG srs2-101 spores.
trp1::hisG ZIP1-GFP ho::L YS2
trp1::hisG ZIP1-GFP ho::LYS2

dAG1534 MAToc ura3Ieu2fXho1-Cla1) SRS2 100%
MATa ura3Ieu2::hisG SRS2
trp1::hisG ZIP1-GFP ho::L YS2
trp1::hisG ZIP1-GFP ho::L YS

dAG1521 MAToc ura3/l fhind3-sma1J Ivs2 HIS4 16%
MATa ura3/l lys2 his4::URA3
arg4Meco47111-hpa1 J cvh2-z leu2-R::URA3
arg4/l(eco47111-hpa1) cyh2-z leu2-R
rev-tel-ARG4 srs2-101 ho::L YS2
rev-tel-arg4+9pac1(62528)-sph1 srs2-101 ho::L YS2

dAG1522 MAToc ura3/l fhind3-sma1J lys2 HIS4 80-90 %
MATa urest: lys2 his4::URA3
ara4Meco4711I-hpa 1J cyh2-z leu2-R::URA3
arg4f:.{eco47111-hpa1) cyh2-z leu2-R
rev-tel-ARG4 ho::L YS2
rev-tel-arg4+9pac1(62528)-sph1 ho::L YS2

dAG1476 MAToc lys2 ARG ura3::URA3-{arg4-vdel
MATa lys2 arg4-nsp,bgl ura3::URA3[arg4-bgl]
spo11fY135F)-HA3His6::KanMX srs2-101
SP011 srs2-101
nuc1/l::LEU2 ADE2 TFP1::VDE1 ho::L YS2
nuc1/l::LEU2 ade2/l TFP1 ho::LYS2

dAG1493 MAToc lys2 arg4-nsp.bgl ura3::URA3-{arg4-vdel
MATa lys2 arg4-nsp,bgl ura3::URA3-[arg4-bgl]
spo11fY135FJ-HA3His6::KanMX srs2-101
SP011 srs2-101
nuc1/l::LEU2 ADE2 TFP1::VDE1 ho::LYS2
nuc1/l::LEU2 ade2/l TFP1 ho::LYS2

dAG1501 MAToc lys2 arg4-nsp.bgl ura3::URA3-{arg4-vdel
MATa lys2 ARG ura3

leu2-K ade2/l TFP1::VDE1
leu2::URA3-[arg4-bgl] ADE2 TFP1
srs2-101 ho::L YS2
srs2-101 ho::L YS2

No mature
spores.

No mature
spores.

Table 4.1 Strains used to assay the sporulation efficiency
of s(s2-101/s(s2-101 diploids.

To assess the sporulation efficiency of s(s2-101/s(s2-101
diploids, cells were removed after 24 h in sporulation
medium and monitored by light microscopy. 200 cells were
scored from each culture for the formation of mature
tetrads. The s(s2-101 mutation prevents dAG1476, 1493,
1501 and dAG1537 from forming mature tetrads. dAG1521
is capable of forming mature tetrads however this strain
has a reduced sporulation efficiency of 16 % of cells form
mature tetrads compared to 80 % - 90 % of cells in the wild
type culture (dAG1522).
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Figure 4.2 Meiotic progression is delayed in srs2-101Isrs2-101
cells without the VOE reporter cassette.

(A) Meiotic progression of wild type cells and (8) srs2-101Isrs2-
101 cells. Meiotic progression of the srs2-101Isrs2-101 SK1
cells without the VOE reporter cassette is more successful then
with the reporter cassette (the genotype for dAG1521 and
dAG1522 is detailed in table 1). However MI is delayed in the
srs2-101Isrs2-101 strain compared to wild type. In wild type the
majority of cells have three or more OAPI stained bodies at 9 h
however in the srs2-101Isrs2-101 culture 70 % of cells have
one nucleus.
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% of dissected tetrads (100 tetrads dissected
Wild type srs2-101/srs2-101

No viable spores 0 19
One spore 2 20
Two spores 4 22
Three spores 93 29
Four spores 1 10

Figure 4.3 In the srs2-101Isrs2-101 strain spore viability is
reduced.

Wild type cells (dAG1522) and srs2-101Isrs2-101 cells
(dAG1521) were incubated on 1 % KAc plates. 100 tetrads
were dissected from both strains. Example of (A) wild type
dissection, (8) srs2-101Isrs2-101 dissection. (C) The
percentage of dissected tetrads that formed one viable
spore, two viable spores, three viable spores, four viable
spores and no viable spores was calculated for each strain.
In the srs2-101Isrs2-101 strain viability is reduced compared
to wild type; only 29 % of srs2-101Isrs2-101 tetrads are four
spore viable compared to 93 % in wild type.



Srs2 and DSB repair

Following RTG, cell viability is reduced by the srs2-101 mutation

In a return to growth (RTG) assay to meiotic recombination can be measured

(Esposito and Esposito, 1974). The meiotic arrest seen in srs2-101Isrs2-101

(dAG1493; which expresses VDE and contains the arg4-vde allele) suggests an

error such as a failure to repair DSBs is occurring preventing further meiotic

progression. In a return to growth assay cells are removed from starvation

medium and introduced to rich medium permitting exit from meiosis and entry

into the mitotic cell cycle. This allows cells to be recovered that have committed

to heteroallelic recombination but are unable to complete both meiotic divisions

(because the mitotic repair machinery can be used to resolve recombination

intermediates), and the cell viability at each hour into meiosis can also be

calculated.

Cell viability was measured by calculating the colony forming ability at hourly

timepoints in meiosis. In srs2-101Isrs2-101 diploids a reduction in cell viability

was seen following RTG after 3 h of meiosis (Fig 4.4). This coincides with the

beginning of the formation of large numbers of meiotic DSBs, and when Arg+

recombinants start to appear in wild type cells (Fig 4.4). An increased frequency

of recombination in srs2-101Isrs2-101 might account for the reduced viability

after 3 h in meiosis because hyper recombination is associated with gross

chromosomal re-arrangements and precocious sister chromatid separation, all

of which result in reduced spore viability. srs2-101Isrs2-101 (dAG 1493)

contains the VDE reporter cassette that consists of arg4 alleles inserted in to

the ura3::ty locus on both chromosomes. During meiosis the VDE

endonuclease creates a DNA DSB at the recognition site in the arg4-vde allele

that can be repaired by an interchromosomal gene conversion using the

unbroken arg4-bg/ allele on the homologue as a template; forming either an

ARG4 or arg4-bg/ repair product. In RTG experiments, cells are removed from

sporulation medium, washed and plated onto nutrient rich medium and medium

lacking arginine. Commitment to meiotic recombination can be measured by

determining the frequency of VDE-DSB repair by interchromosomal

recombination, which can be assayed during RTG by determining the proportion

of cells that are ARG4. This assay detects the formation of ARG4 gene

74



(A)

--E 30--

---- Wild type
---- srs2-101Isrs2-101

With the VDE reporter cassette35

~ 25
:0 20co
's 15
ID
o 10

5

o 0 1 2 3 4 5
Time (Hours)

6 7 8

(B)

-- 30
:::R0-- 25>-oc 20ID
:::J
0-

15ID.....-+ 10(9
0:::« 5

o 0 1 2 3 4 5 6 7 8
Time (Hours)

Figure 4.4 Cell viability and gene conversion in srs2-101Isrs2-
101 strain.

(A) Wild type and srs2-101Isrs2-101 cells were removed hourly
from meiotic starvation media and plated onto YEPAD. Both the
strains contain the VDE reporter cassette, once the VDE-DSB is
cleaved the break can be repaired by a gene conversion event
using the undamaged homologue or by using the flanking
homology using SSA. The viability of the strain was determined
by calculating the colony forming ability at each hour. The cell
viability of the srs2-101Isrs2-101 strain is reduced after 3 h
compared to wild type. (B) Frequency of gene conversion
events. The number of arginine prototrophs was divided by the
total colony forming ability to give the frequency of Arg+
recombination events. In srs2-101Isrs2-101 diploids the
frequency of gene conversion events is reduced (5 %) compared
to wild type (25 %).
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conversion repair products only, not arg4-bg/ gene co-conversion repair

products. Although the assay only allows a subset of gene conversion events to

be calculated the result is indicative of the total frequency of gene conversion at

the VDE-DSB. In srs2-101Isrs2-101 a reduction in the frequency of gene

conversion was seen (-5 % ARG4 at 8 h) compared with wild type (-25 %

ARG4 at 8 h; Fig 4.4). An explanation for the result is that the total amount of

recombination at the VDE-DSB is not reduced but repair by the SSA pathway

has increased. Another alternative explanation is that the template for

recombination has changed in srs2-101Isrs2-101 diploids, for example to the

sister chromatid or an ectopic locus.

Srs2 is needed for wild type repair at the VDE-DSB

In viable cells gene conversion detected by RTG is reduced. This could be due

to an increase in SSA repair that can be quantified by southern blotting.

Quantification of the bands allows changes in DSB repair to be analysed

including steady state of the VDE-DSB and the proportion of DSBs repaired by

SSA. The srs2-101 mutation has been reported to show both a semi-dominant

and dominant suppression of UV and y-ray sensitivity of rad6fl diploids;

therefore both a homozygote (dAG1493) and heterozygote (dAG1475) srs2-101

strain were assayed (Schiestl, Prakash et al. 1990). If Srs2 is a negative

regulator of recombination the turnover of the VDE-DSB could be faster.

Any change in VDE-DSB appearance and disappearance in srs2-101Isrs2-101

might result from a change in kinetics of VDE cleavage. The rate of VDE

cleavage can be calculated using southern blots. DNA extracted from srs2-

1011srs2-101 and srs2-1011SRS2 was digested with EcoRV Bg/II as described

in Chapter 3. The amount of DNA in the uncleaved chromatid band was

increased in the srs2-1011SRS2 cells compared with wild type cells. This

indicates that in the srs2-1011SRS2 timecourses the rate of cleavage is slower

than in wild type (dAG206; Fig 4.5). In the srs2-101Isrs2-101 timecouse the rate

of VDE cleavage is same as wild type (Fig 4.6). In srs2-1011SRS2 timecourses

the rate of VDE cleavage is consistently slower compared with wild type

timecourses. To allow for the different rate of cleavage the amount of
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Figure 4.5 Proportion of uncut arg4-vde chromatids in a srs2-101
.heterozygote strain.

(A) Cells from a srs2-1011SRS2 sporulating culture were
removed at hourly intervals and the DNA extracted then double
digested with EcoRV and 8glll. The wild type cultures and the
srs2-1011SRS2 cultures were not done in parallel. DNA was
southern blotted and probed downstream of the EcoRV. The
probe detects the 2.8 kb arg4-vde parental fragment and a 2.3
kb loading control that contains the arg4-nsp, bgl allele a the
ARG4 on ch VIII. During the timecourse the percentage of DNA
in arg4-vde fragment decreases at VDE cleaves the recognition
site. (8) Quantification of blot in (A) DNA is plotted as percentage
of the total amount of probe hybridising to all the bands in each
lane. In the srs2-1011SRS2 timecourse VDE cleavage appears
to be slower compared to wild type.



(A) 5r52-10115r52-101 Probe

Hours
"'-012345678 ura3::Ty arg4-bgl URA3o(]"'*"'~=--!IIIi.. ---.....::::;::,=:l__ Chr V

R R
5,686bp_

VDE-DSB site

+
------ ~rg4-bgl

parent
& repair 5.7 kb

3,675bp_ ura3::Ty arg4-vde URA3
~ __ ChrV

R B
_______ arg4-vde parent 2.8 kb

arg4-nsp,bgl

1,264 bp_

ura3::Ty ARG4 URA3o(]~~~~"'i .i~---~= ChrV
R B

----- - -_ ARG4 and VDE DSB (lkb)

... Wild type
... 5r52-101Isrs2-101

o 1 2 3 4 5 6 7 8
Time (Hours)

Figure 4.6 Proportion of uncut arg4-VDE chromatids.

(A) Cells from a 5r52-101Isrs2-101 sporulation culture were
removed at hourly intervals and processed as described in Fig
4.5 (8) The rate of cleavage in 5r52-101Isrs2-101 strain is
indistinguishable from wild type cells.
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srs2-1011SRS2 DNA in the VDE-DSB was expressed as a proportion of cut

chromatids (Fig 4.5 and 4.7). The turnover of the VDE-DSB was is essentially

the same in srs2-101/SRS2 as wildtype cells after correcting for the rate of VDE

cleavage (Fig 4.8). The amount of DNA in the deletion band was not

significantly different in the srs2-101/SRS2 strain and the wild type strain,

indicating the proportion of DSBs begin repairing by SSA is unchanged
(Fig 4.7).

In srs2-101/srs2-101 the kinetics of repair appear to be different to wild type

because the amount of DNA in the VDE-DSB band is higher than wild type

between 2 h to 5 h in meiosis (Fig 4.8). Once repair is initiated the rate of repair

is very fast because after 5 h of meiosis the amount of DNA in the srs2-

101/srs2-101 (dAG1475) VDE-DSB band is lower than the wild type strain. In

srs2-101/srs2-101 (dAG1493) the proportion of DSBs repaired by SSA is not

different from the heterozygote and wild type at 8 h (Fig 4.7 and Fig 4.8). The

dynamics of SSA repair product is different in srs2-101/srs2-101 diploid, the

gradient curve of the SSA product band is steeper in srs2-101/srs2-101 mutant

compared to wild type at 6 hand 7 h (Fig 4.8). This suggests that repair by SSA

in srs2-101/srs2-101 is occurring earlier or faster in comparison to wild type.

The VDE-DSB can be repaired by a SSA or gene conversion, only the SSA

product can be seen as a separate band on a southern blot because repair by

gene conversion creates a product the same size as the parental band. Repair

of the DSB is delayed and the proportion of repair by SSA initiates earlier,

therefore the delay in repair of the VDE-DSB is most likely to be caused by a

delay in repair by recombination. The results from RTG experiments suggest

that repair by gene conversion is impaired because the ARG+ gene conversion
frequency is so low.
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Figure 4.7 Repair of the VDE-DS8 in srs2-1011SRS2 cells.

DNA was extracted from synchronous meiotic cultures of srs2-

1011SRS2 and wild type cells, fractionated, blotted and hybridised

with a 1kb probe specific to a chromosome V region. (8)
Quantification of wild type and srs2-1011SRS2 southern blots. The

kinetics of VDE-DS8 appearance and disappearance and the
amount of repair by SSA in srs2-1011SRS2 diploid cells is
indistinguishable from wild type diploids. This data is this graph has
been normalised to the rate VDE cleavage. The amount of DNA in
the srs2-1011SRS2 is always greater than wild type at 5 hand 6 h

however the difference is not statistically significant.
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Figure 4.8 srs2-1 011srs2-101 cells exhibit a delay in the
initiation of VDE-DS8 repair.

(A) DNA was extracted from wild type and srs2-101Isrs2-101
synchronous meiotic cultures and southern blotted. (8)
Quantification of gel in (A). In the srs2-101Isrs2-101 strain the
amount of DNA in the VDE-DS8 accumulates to a higher
percentage than in wild type between 2 hand 5 h suggesting a
delay in VDE-DS8 repair. The percentage of DNA in SSA repair
product band is higher then wild type at 6 hand 7 h however is
indistinguishable from wild type at 8 h.
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Repair at the ARE1 Spo11-DSB in srs2-101 cells.

Repair of the VDE-DSB can be used as a model for repair at Sp011-DSB. To

see if the delayed onset of repair seen at the VDE-DSB in s(s2-101Is(s2-101

cells (dAG1493) is also seen at natural Sp011-DSBs, a hot spot in the ARE1

promoter was assayed via southern blotting. Again both the homozygous and

the heterozygous strains were assayed. In both homozygous and the

heterozygous mutant strains the amount of DNA in the Sp011-DSB band was

reduced compared to wild type (Fig 4.9 and 4.10). In wild type the amount of

DNA in the DSB band reached a maximum of 9 % at 4 h (Fig 4.9 and 4.10). In

s(s2-101ISRS2 the maximum amount of DNA in the DSB band peaked at 3 %

at 5 h, in s(s2-101Is(s2-101 a maximum of between 3 % and 4 % is reached

between 3 hand 4 h (Fig 4.9 and 4.10). A possible explanation for this result is

that in both the heterozygous and the homozygous mutants a lower percentage

of Sp011-DSBs are formed. Fewer breaks might be formed if Sp011 needs Srs2

to unwind the DNA duplex allowing Sp011 access to the duplex. An alternative

explanation is that in s(s2-101 cells replication is delayed and therefore there is

a delay in Sp011-DSB formation.

Spo11-DSB are made at wild type levels in srs2-101 mutant

The reduced amount of DNA in the Sp011-DSB band might be result of fewer

Sp011-DSB being made in the region. To assay the total percentage of DSBs

formed in the s(s2-101Isrs2-101 the ARE1 DSB was assayed in a double

homozygous sae2!l srs2-101 (dAG1488) and a sae2!l (dAG277) strain. In the

absence of Sae2, Sp011 remains bound to the 5' of the Sp011-DSB end

(Keeney et al., 1997). Consequently the Sp011-DSBs are not repaired allowing

the total amount Sp011-DSB to be detected. If fewer Sp011-DSBs are formed in

srs2-101Is(s2-101 diploids the amount of DNA in the Sp011-DSB band at 8 h

will be lower in srs2-101 sae2!l double homozygote than a sae2!l. It was found

however that the total amount of Sp011-DSB created in sae2!l s(s2-101 mutant

is the same as the seezc: In both strains the maximal amount of DNA in the

Sp011-DSB band reached between 12 % and 16 % respectively at 8 h (Fig

4.11). This suggests that in the absence of Srs2 wild type amounts of
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Figure 4.9 The amount of DNA is reduced in srs2-1011SRS2
cells at the ARE1 hotspot.

(A) DNA was extracted from wild type and heterozygote srs2-101
synchronous meiotic cultures and southern blotted. (B)
Quantification of southern blot in (A). The maximal amount of
DNA in the Spo11-DSB band reaches a maximum of 3 % at 5 h
compared to 8.8 % at 4 h in wild type. The lower peak in the
DSB band suggests that in the srs2-1011 SRS2 diploid early
repair is much faster, alternatively less Spo11-DSB are being
made at the ARE1 hot spot.
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Figure 4.10 The ARE1 natural hotspot srs2-101 shows a
. reduced amount of DNA In DSB band.

(A) DNA extracted from wild type and mutant srs2-101
homozygote synchronous meiotic cultures digested,
fractionated and southern blotted. (B) Quantification of blot
plotted as percentage of the total amount of probe hybridising to
all the bands in each lane. The amount of DNA in the natural
Sp011- DSB band in the srs2-101 mutant is reduced compared
to the wild type.
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Figure 4.12 Quantification of DNA at the CYS3 hotspot in srs2-
101 homozygous strain.

(A) DNA was extracted from both wild type and srs2-101Isrs2-
101 synchronous meiotic cultures. The DNA was digested with
Hlndll, and southern blotted (8) The repair kinetics of the
Spo11- DS8 are indistinguishable in both the wild type and the
srs2-101 homozygous strain.
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Sp011-DSBs are created, and repair at the ARE1 site is faster in srs2-101/srs2-

101 cells than in wild type cells.

Repair at the CYS3 Sp011 hotspot is not dependent on Srs2

To see if the Sp011-DSB repair is faster only at the ARE1 locus a second

natural hot spot was assayed at the CYS3 promoter. The srs2-101/srs2-101

strain was assayed no reduction in the percentage of DNA in the Sp011-DSB

band was seen. In the wild type and homozygote strains the amount of DNA in

the Sp011-DSB band reached a maximum of between 3.5 % and 4.5 % at 4 h

(Fig 4.12). The ARE1 Sp011-DSB is hotter hot spot then the CYS3 Sp011-DSB

therefore Srs2 activity might only be important at very hot spots (Baudat and

Nicolas 1997).

Mature se persists in the absence of Srs2

Faster turn over of Sp011-DSBs might be attributed to less regulation of

recombination. If recombination intermediates are begin formed that would

normally be prevented / dismantled this would be seen as a faster turnover of

breaks. The synaptonemal complex (SC) is a ribbon-like tripartite proteinaceous

structure that forms between the entire lengths of paired homologues during

leptotene (reviewed in Roeder, 1997). Evidence strongly suggests that SC

formation is initiated at sites of recombination that result in crossovers (Agarwal

and Roeder, 2000; Borner et al., 2004; Rockmill and Roeder, 1990). However

costaining of Zip1 and Ctf19 (a centromere component) suggest that SC

formation initiates at or near centromeres at zygotene (Tsubouchi, Macqueen et

al. 2008). However the SIC might assemble at the centromere then move along

the chromosome until they reach a recombination intermediate then stop until

SC formation is initiated (Tsubouchi, Macqueen et al. 2008). Like Srs2 the Sgs1

helicase is a known negative regulator of recombination; full chromosome

synapsis detected by Zip1 antibody staining is seen earlier in sgs1t:. diploids

compared to wild type cells (Jessop et al., 2006; Rockmill et al., 2003). An

increase in the frequency of recombination in srs2-101/srs2-101 cells might

result in early SC formation. To see if SC formation is altered in srs2-101/srs2-

101 diploids a ZIP1-GFP strain was constructed to monitor SC formation
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Figure 4.13 visualisation of SC formation.

(A) The srs2-101 ZIP1::GFP homozygote and wild type strains
were synchronously sporulated and cells were removed in 30
min intervals. Cells were scored for mature fluorescent SC,
punctate florescence and diffuse/no visible florescence. Graphs
show the percentage of cells that have punctate fluorescence
and mature SC in (A) wild type cells and (8) the srs2-101 ZIP1-
GFP homozygote strain. In the srs2-101 ZIPr-GFP homozygote
diploid mature SC are visible for longer (two hours) then in wild
type cells (one hour).
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(dAG1537; Fig 4.13) (Scherthan, Wang et al. 2007). Cells with points of GFP

were scored as punctate and are indicative of cells in Zygotene. Cells with long

stretches of GFP are classed as mature SC and are indicative of Pachytene

cells. In wild type (dAG1534) and srs2-101Isrs2-101 full length SC is observed

concomitant with the loss of punctate structures.

In the wild type culture over 60 % cells had mature SC for less then an hour

between 5 hours and 6 hours. In srs2-101Isrs2-101 cells over 60% of the cells

had mature SC for two hours, between 5 hand 7 h. Therefore, in srs2-101Isrs2-

101 cells mature SC persists for longer than in wild type. This suggests that in

srs2-101Isrs2-101 diploids the SC specific recombination sites are not resolved

as quickly as in wild type. The faster turn over of the Sp011-0SB and the late

dismantling of the SC suggests that recombination is initiated but SC resolution

is impaired; therefore the cell cycle delay seen via OAPI staining could be

indicative of a pachytene checkpoint activation. This suggestion fits with the

hypothesis that in srs2-101Isrs2-101 cells recombination is less controlled and

results in toxic recombination intermediates that can cause cell death. This

could be assayed by 20 gel electrophoresis that separates recombination

intermediates by shape as well as size (Allers and Lichten 2001). The

persistence of mature SC could be indicative of a problem with SC disassembly,

however in both cultures loss of mature SC takes one hour. In wild types cells

the SC is lost between 5.5 and 6.5 h in the srs2-101Isrs2-101 culture mature

SC is lost between 7 hand 8 h. Therefore the persistence of SC is not due to an

inability to dismantle mature SC.

The frequency of ectopic repair is reduced in the absence of Srs2

The faster turn over of the Sp011-0SB might be due to reduced regulation of

repair partner choice. In yeast, to ensure a successful meiotic division the

template for recombination has to be the homologous chromosome. A reduction

in the regulation of crossover formation might result in increased ectopic

recombination at the VOE-OSB. To test this hypothesis an ectopic reporter

cassette was used (Fig 4.14). In this assay the VOE recognition sequence is

inserted at umsc« chromosome Vand the donor cassette is located at leu2 on
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Figure 4.14 Reporter cassette to detect ectopic crossovers.

(A) The VDE-DSB is at URA3 Chr. V, a donor sequence is inserted at
LEU2 Chr. III. For successful repair the cell can ether use SSA or ectopic
homologous recombination using the template at LEU2. b) DNA was
digested with Spel and fractionation 0.5% gel blotted onto a nylon
membrane and hybridised with a probe specific to Chr. V. Spel digestion
releases 11.5 Kb parental band and the VDE-DSB 7.8 Kb band. The
crossover product can be seen at 6 h,7 hand 8 h as a 12.8 Kb band
above the parental band. A fourth band contains arg4 and the SSA
repair product at 2.3 Kb.
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Figure 4.15 Ectopic recombination is reduced in srs2-101/srs2-
101 cells compared to wild type.

(A) DNA was extracted from synchronous meiotic cultures of

srs2-101 homozygous and wild type cells that contain the ectopic

cassette and Southem blotted. The amount of DNA in the VDE-

DSB in wild type and srs2-101 cells. There is slightly more DNA

in the VDE-DSB band in wild type cells, however there is no

statistical difference between srs2-101 and wild type VDE-DSB

formation. (B) shows the amount of ectopic repair in srs2-101
homozygous cell is reduced 1.3 % when compared to wild type
3.6 %.
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chromosome III. Ectopic crossovers can be detected because the sequence

surrounding the DSB region and the donor sequence is heterologous. In srs2-

1011srs2-101 (dAG1501) the frequency of ectopic crossovers appears to be

lower than wild type (dAG228; Fig 4.15). The difference in the proportion of

ectopic VDE-DSB is statistically significant (P=0.0006, determined by Student's

T-test). Ectopic recombination at Sp011-DSB hotspot was also assayed using

reported cassette (Allers and Lichten, 2001 a) (Fig 4.16 and Fig 4.17). At this

locus ectoptic recombination was also decreased however the observed

reduction was not significant (P=0.1280, Students T-test; Fig 4.16).

Hed1 is required at the ARE1 Spo11-DSB for wild type DSB repair

The faster turn over of the ARE1 DSB band might be because Srs2 is required

to remove Rad51 from ssDNA at the break; consequently in a srs2-101 cells

Rad51 is not removed resulting in an excess of Rad51 at Sp011-DSB (Veaute,

Jeusset et al. 2003). To see if the faster turnover of the DSB at ARE1 is due to

an excess of Rad51 a nedt r. (dAG1530) strain was assayed. Hed1 negatively

regulates the amount of Rad51 during meiosis, therefore in a hed1fl diploid a

higher amount of Rad51 should be present at the ARE1 DSB (Busygina et al.,

2008; Tsubouchi and Roeder, 2006). If the faster turnover of DSBs in the srs2-

101 is due to an excess of Rad51 then reduced amount of break should be

seen in the tieat s ARE1 DSB compared to wild type. (Fig 4.18). In the hed1fl

diploid a lower amount of DNA is seen in the ARE1-DSB throughout the

timecourse compared to wild type. A reduction in the DSB band is also seen in

the srs2-101/srs2-101 strain (Fig 4.10). However, in the hedt t: the amount of

DNA in the DSB band peaks at 5 h compared to the wildtype strain that peaks

at 4 h.
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Figure 4.16 Reporter cassette to detect ectopic crossovers at the URA3
ARG4 interval.

The Spo11-DSBs flank URA3, a donor sequence is inserted at his4.
DNA can be digested with Xho1 and probed with the ARG4 sequence to
detected DSBs and cas. The crossover product can be seen at 5 h, 6 h,
7 hand 8 h as a 19.8 Kb band above the parental band and 5.2 kb
below the parental band. NCO and CO products can be detected by
digesting with EcoR1 and Xho1 and probing with HIS4 sequence. NCO
can be seen as a 4.1 kb band cas can be seen as 7.0 kb band.

Figure taken from (Jessop, Rockmill et al. 2006).
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(A) DNA was extracted from synchronous meiotic cultures of
srs2-101 homozygous and wild type cells. (A) Quantification of
blot in (A). There is slightly more DNA in the DSB band in wild
type cells, however there is no statistical difference between
srs2-101 and wild type. The amount of ectopic repair in srs2-101
homozygous cell is reduced when compared to wild type.
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Figure 4.18 The ARE1 natural hotspot heatc: (dAG1530) shows a
reduced amount of DNA In the Spo11-DSB band.

(A) DNA was extracted from wild type and mutant hed1L1
synchronous meiotic and southern blotted. (B) Quantification of
blot in (A). When compared to wild type the amount of DNA in the
Spo11-DSB is reduced in hedt S. The maximal amount of DNA in
the Spo11-DSB band is 2 % compared to 9 % in wild type cells.
Also a delay is seen in hedtc: cells maximal amount of DNA in the
Spo11-DSB band is reached at 5 h, however in wild type cells
peak is reached earlier at 4 h.
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Discussion
Srs2 is a good candidate for a helicase with meiotic functions

Proteins involved in the repair of Sp011 breaks include many which also

function during mitotic DNA repair, and also some meiosis specific proteins

(reviewed in Paques and Haber, 1999). Helicases unwind duplexed DNA

during DNA replication, repair and transcription (Pyle, 2008). During meiotic

DSB repair duplexed DNA has to be unwound therefore there is potential role

for helicases in meiosis. Srs2 is a strong candidate for a meiotic helicase

because Srs2 is required for commitment to meiosis, sporulation and spore

viability (Palladino and Klein, 1992).

In agreement with previous reports SK1 srs2-101 homozygous diploids show

reduced sporulation efficiency and reduced viability suggesting that in srs2-

1011srs2-101 diploids a meiotic event is occurring that is detrimental to the cell

(Palladino and Klein, 1992). To further investigate the meiotic role of Srs2,

commitment to ARG+ recombination was assayed by RTG. In wild type cells the

frequency of gene conversion is 25 % however in srs2-101 cells a frequency of

5 % is seen. A reduction in the colony forming ability was also seen from 3 h

onwards in the srs2-101 strain. This correlates with the timing of Sp011-DSB

formation and the appearance of ARG+ recombinants suggesting that in srs2-

1011srs2-101 diploids cell death is a result of recombination at Sp011-DSBs.

Meiotic DSB repair appears to be abrogated in the absence of Srs2

The translocase activity of Srs2 is thought to be similar to the shuttling seen in

Rep, a bacterial Srs2 homologue involved in replication restart (Myong et al.,

2005). A possible function of the repetitive shuttling exhibited by Rep is to

remove unwanted proteins from ssDNA at a stalled replication forks (Myong et

al., 2005). In an early step of recombination, proteins such as Rad51 bind to

ssDNA forming a structure known as Rad51 nucleofilaments (reviewed in

Paques and Haber, 1999). During meiosis these structures mark the sites of

recombination (Rockmill et al., 1995). Srs2 has been suggested to prevent

crossovers by dismantling Rad51 presynaptic filaments by its translocase
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activity in mitosis (Veaute et al., 2003). If Srs2 is required to remove Rad51

from ssDNA during meiotic DSB repair then an increase in recombination is

could occur in srs2-101 mutant strains. Hyper-recombination mutants exhibit

altered se formation this is also seen in our srs2-101 strain (Rockmill, Fung et

al. 2003). An increased frequency of recombination could also result in

chromosomal re-arrangements or a change in crossover frequency (discussed

in Foiani, 2003). In meiosis a change in the frequency of crossovers between

homologous chromosomes could prevent the homologues from segregating

correctly, potentially explaining the reduced viability in srs2-101 diploids after 3

h of meiosis.

A hyper-recombination phenotype could increase the rate of meiotic DSB repair,

because recombination events that are normally prevented in wild type are to

mature into crossovers and noncrossover products. At the VDE-DSB the rate of

DSB turn over was wild type in the heterozygote as was the proportion of repair

by SSA. In the homozygote strain a higher percentage of DNA is in the VDE-

DSB between 2 hand 6 h compared to wild type. This suggests that the rate of

VDE-DSB is altered and there is a delay in repair. Repair at the VDE-DSB site

is normally indicative of the kinetics of repair at the natural Sp011-DSBs. A

natural Sp011-DSB hotspot was also assayed by Southern blot. Unlike the

VDE-DSB the heterozygote strain showed a change in repair kinetics. A

reduction in the proportion of DNA in the DSB band is seen in both the

homozygote and the heterozygote. This was shown to be a result of faster DSB

repair.

In meiosis recombination can occur between the DSB and one of three

templates the: homologous chromosome, the sister chromatid or an ectopic

locus. However for a successful meiotic division repair using the homologue is

imperative. An increase in recombination could result in reduced regulation of

partner choice. To see if there is an increased frequency of ectopic

recombination an ectopic reporter cassette was used to assay the VDE-DSB

and a Sp011-DSB. In both experiments the frequency of ectopic recombination

was reduced in the srs2-101 strain. A reduction in gene conversion events and

96



Srs2 and DSB repair

a decrease in ectopic recombination suggests that less recombination is

happening in the cell. An alternative explanation is that DSB repair is being

directed towards the sister chromatidwhich can be detected by 2D gels.

Srs2 might prevent the inter sister repair.
Rad51 mediated repair is biased towards the sister chromatid during mitosis.

Dmc1 is only expressed in meiosis and is thought to direct repair towards the

homologous chromosome (reviewed in Paques and Haber, 1999). If Srs2 is

required to remove Rad51 from meiotic DSB sites in the absence of Srs2 an

excess of Rad51 might push repair towards the sister chromatid rather then the

homologous chromosome. The faster turn over of the ARE1 DSB seen in the

srs2-101/srs2-101 strain might be a result of an excess of Rad51, because

repair of the ARE1 DSB in srs2-101/srs2-101 diploids is similar to that seen in

the hed1 Il mutant, which negatively regulates transcription of Rad51 during

meiosis (Busygina et al., 2008; Tsubouchi and Roeder, 2006). The increased

rate of DSB repair at the Sp011 hotspot is consistent with repair being directed

towards the sister. In meiosis the sister chromatids are held together via the

cohesion complex and consequently the search for homology could be quicker

if the strand invasion event occurs between the broken duplex and the sister.

This can also explain the different repair profiles of the VDE-DSB and the

natural Sp011-DSB, because at the VDE-DSB site both the sisters are broken.

Consequently Rad51 maybe unable to direct repair towards the sister and the

template has to originate from an alternative locus, such as the homologous

chromosome. To achieve this the DSB ends may have to undergo more

resection therefore repair is slowed.

Additionally Srs2 might also dismantle strand invasion events that occur

between the sister chromatids. Sgs1 is suggested to dismantle recombination

intermediates that are not protected by ZMM proteins (Jessop et al., 2006). Also

sgs11lsrs21l mutants are lethal due to excessive recombination, indicating the

lethality in sgs1 Ilsrs21l cells is due to a accumulation toxic recombination

intermediates normally dismantled by Srs2 or Sgs1 (Gangloff et al., 2000;
discussed in Foiani, 2003). The substrate might be Rad1 mediated inter sister
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recombination intermediates. Therefore in an s(s2-101 diploid, not only is there

an excess of Rad51 at the DSBs directing repair towards the sister, but also

Srs2 is not dismantling recombination intermediates formed between the

sisters. Therefore in the absence of Srs2 meiotic DSB repair is more rapid but

toxic recombination intermediates are formed. However when srs2-101 viable

tetrads are dissected the result is not indicative of increased intersister repair, in

srs2-101 cells Dmc1 is still present pushing repair towards the homologous

chromosome also the barrier to intersister repair is present. Consequently in an

s(s2-101 diploid repair using the sister is possibly increased but repair using the

homologous chromosome is not absent.

If repair in srs2-101/s(s2-101 is directed towards the sister chromatid Srs2 has

an extremely important role. Srs2 is potentially required to prevent Rad51

mediated repair during meiosis ensuring that crossovers occur between the

homologue to help guarantee correct alignment during meteaphase. If in the

absence of Srs2, repair is directed towards the sister this strengthens the theory

that Dmc1 directs repair towards the homologous chromosome. In this model

the reduced viability in srs2-101 cells would be due to incorrect homologue

alignment and toxic recombination intermediates and chromosomal

rearrangements causing cell death.
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Chapter Five - RAD6 influences meiotic eSB repair

Brief introduction

Histones are components of nucleosomes in which DNA is packaged, allowing

the genome to be organised but accessible for replication, transcription and

DNA repair. Histones form an octomer comprised of one H3-H4 tetramer

between two H2A-H2S dimers (Luger, Mader et al. 1997). DNA is wound

around the octomer and each nucleosome is joined to its neighbour by a stretch

of linker DNA; histone H1 binds the linker DNA and the nucleosome

(Kaczanowski and Jerzmanowski 2001). In the presence of H1 the "chain"

structure can form a helical structure 30 nm in diameter termed the 30 nm fibre

(Felsenfeld and Groudine 2003). Histones have tail extensions which project

from the nucleosome and are therefore easily accessible and have been shown

to be modified.

Post-transcriptional modification of histones can occur in a variety of ways

including ubiquitination, acetylation, methylation and phosphorylation and are

thought to be important for the interaction between the dimers and the tetromer

therefore possibly influencing nucleosome structure (Felsenfeld and Groudine

2003). The modifications normally occur in the N-terminal tails however

modifications in C-tails have also been reported. Histone modifications are

implicated in regulating DSS repair events in mitosis (Tsukuda et al., 2005).

The ubiquitin system is an enzymatic cascade which allows long chains of

ubiquitin to be formed by attaching a uSia to a Lysine of another uSia (Li and

Ye 2008). Ubiquitin chains are normally associated with protein degradation,

however mono-ubiquitination might be involved in protein signalling (Raiborg,

Slagsvold et al. 2006). Deubiquitination or ubiquitylation depends upon an

activating enzyme (E1), a conjugating enzyme (E2) and an ubiquitin ligase (E3).

For ubiquitination to occur an E1 activates ubiquitin in the presence of ATP then

transfers it to the active cysteine residue of an E2. In the final step uSia is

transfered from the E2 to a lysine on the substrate protein in the presence of an
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E3 (Li and Ye 2008). Malfunctions in the ubiquitin system have been associated

with cancer, HIV and neurodegenerative diseases (Petroski 2008).

The ubiquitination of H2B is involved in both gene silencing and transcription.

Ubiquitination is dependent upon the E3 Bre1 (Kao et al., 2004). H2B

ubiquitination has been linked with regulating transcription of GAL4 and ACT1

and is absent from silent chromatin. Ubiquitination is normally associated with

protein transportation and degradation (Ulrich, 2002). However while long

chains of ubiquitin appear to signal protein turnover, monoubiquitination does

not. Consequently monoubiquitination is thought to be associated with signalling

and structural modifications (Ulrich, 2002).

Histone modifications are also suggested to affect the distribution of Sp011-

DSB, which is known to relate to chromatin structure. Sir2 is a deacetylase, one

of whose substrates is H4K16. In sir21:! the distribution of Sp011-DSB is altered,

this has been attributed to the H4 modification possibly allowing Sp011 /

recombination machinery access to the DNA (Kao et al., 2004). Also Set1 a

known H3 methyltransferase is required for wild type DSB frequency at the

CYS3 hotspot (SoHier et al., 2004).

Rad6 is an E2 ubiquitin-conjugating enzyme that has been shown to

monoubiquitinate the histone H2B at lysine 124 in S. cerevisiae (Robzyk et al.,

2000) Rad6 is implicated in diverse cellular functions including post replication

repair, transcription and gene silencing. In mitosis rad61:! cells show growth

retardation on rich medium and are sensitive to IR, UV and MMS (Prakash et

al., 1993). Regulation of meiotic events by Rad6 is also reported including

chromosome compaction and expansion that possibly aids pairing (Kleckner,

Zickler et al. 2004). During the meiotic division rad61:! cells exhibit a delayed

entry in to pre-meiotic S-phase and late prophase I arrest. The formation of

Spo l t-induced DSBs is also delayed with a reduction in the formation of DSBs

at stronger hotspots (Yamashita et al., 2004) ..
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Histone modifications possibly allow or regulate Spo11 or recombination

machinery access to the DNA or stabilise DNA protein interactions. Therefore

Rad6 dependent ubiquitination of H2B might influence the processing of meiotic

DSBs. This is supported because Rad6 dependent ubiquitination of histone

H2B has been suggested as the direct cause for rad6ll mutants failing to

sporulate, and their reduced amount of DSBs. To establish if Rad6

ubiquitination of H2B important for wild type timing and processing of meiotic

DSBs the VDE-DSB was assayed in a non-ubiquitinatable H2B mutant and in

reas« cells.
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Results

Meiotic progression and viability of the rad6~strain

In previous reports the majority of synchronously sporulated rad6~ cells arrest

during prophase and are unable to form spores (Robzyk et al., 2000; Yamashita

et al., 2004). To analyse meiotic progression of rad6~ in our hands diploid cells

(dAG1313) were synchronously sporulated and treated with the DNA stain

DAPI. Consistent with previous reports, rad6~ cells are delayed entering the

first meiotic division (Fig 5.1). In wild type cells the majority of the cells have two

DAPI stained nuclei at 6 h, at 7 h 50 % have more than 2 nuclei. In the rad6!l

strain only cells with one DAPI stained body are visible at 6 h and at 7 h only 40

% have more then one nucleus. Surprisingly in the rad6~ strain 90 % of cells

have four DAPI stained bodies at 8 h comparable to wild type, however no

mature tetrads are formed (Fig 5.1).

Sp011-DSB are reduced in rad6~ cells

Previously a reduction in the frequency of Sp011-DSB has been reported at

Sp011 hotspots in rad6~ cells (Yamashita et al., 2004). To check that our rad6!l

diploid behaved consistently with previous reports, the frequency of DSB

formation at the ARE1 hotspot was assayed (Fig 5.2). In wild type cells the

amount of DNA in the Sp011-DSB band reaches a peak of 9 % at 4 h. In rad6!l

cells the amount of DNA in the Sp011-DSB band reaches a peak of 6 % at 5 h.

The result indicates that Sp011-DSBs at this locus are reduced and are formed

later compared to wild type consistent with the reported rad6~ mutant

phenotype. The delay in Sp011-DSB formation is also consistant with the

reported delay in replication seen in rad6A cells (Yamashita, Shinohara et al.

2004).

Timely repair of the VDE-DSB is dependent on Rad6

The VDE reporter cassette was assayed to see if repair of the VDE-DSB is

changed when fewer Sp011-DSB were present in the cells (Fig 5.3). In a wild

type cell the VDE homing endonuclease forms DSBs at the same time as

Sp011. In rad6~ cells Sp011-DSBs appear one hour later than in a wild type cell
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Figure 5.1 Meiotic checkpoint progression in reasc; cells (dAG1313).

Meiotic progression was determined by scoring MI and Mil nuclea
divisions. Cells were fixed in ethanol and stained with OAP!.
Samples were visualised using fluorescence microscopy and scored
for the number of DAPI-staining bodies. completion of meiosis I is
indicated by cells containing 2 nuclei. Cells with 3 or 4 nuclei
represent the cumulative total of cells that have passed meiosis I.
(A)-(C) Examples of wild type cells at t=O. t=6 and t=8. (D) wild type
meiotic progression. Only cells with 1 nucleus are visible between 1
hand 4 h, cells with 2 nuclei are prevalent at 6 h. At 8 h the majority
have 4 nuclei. (E) Meiotic progression of rad6/J. cells both divisions
are delayed compared to wild type cells. At 7 h in the rad6/J. mutant
there is an equal amount of cell with 1,2,3 and 4 DAPI stained
bodies. In wild type at 7 h only a small number of cells with 1 DAPI
stained body is visible. In both strains both meiotic divisions are
completed by 8 h.
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Figure 5.2 A reduced amount of DSB is seen at the natural ARE1
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(A) DNA was extracted from rad6t-.. synchronous meiotic time course
and southern blotted. The filter was hybridized with a probes specific
to a regions downstream of ARE1 on Chr. III. (8) Quantification of the
southern blot in (A) compared to the wild type strain. The maximal
amount of DNA in the rad6t-.. ARE1-DSB band peaks at a lower
percentage then in wild type. Normally the maximal amount of DNA in
DSB (9%) is reached at 4 h, in the rad6t-.. strain 6 % reached by 5 h.
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Figure 5.3 The VDE DSB repair profile shows a delay in the initiation of
resection.

(A) rad6/'). DNA was extracted from synchronous meiotic cultures,
digested with Spe/ and fractionated on 0.5% agarsoe gel, Blotted on to a
nylon membrane and hybridised with a 1 kb probe specific to the region of
chromosome V. The VDE-DSB is not a discrete band as seen in wild type,
a smear is seen under the DSB band, the smear is characteristic of a
delay in resection containing accumulated unresected structures that are
normally processed. (B) Quantification using scanning densitometry of the
blot in (A). A higher percentage of DNA is seen in the maximal value of

, VDE-DSB band in the rad6/'). mutant 50 % compared to 20 % in wild type,
this is indicative of a delay in repair at the VDE-DSB. In rad6/'). and wild
type cells the proportion of the DSB by SSA is essentially the same.
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and fewer are catalysed (Fig 5.2). Proteins required for DSB repair are limited

during meiosis, therefore the amount of DSB created during meiosis can

influence repair by changing the steady state of repair proteins (Johnson et al.,

2007). In a cell in which Sp011-DSBs are resected but not repaired (like dmc111)

ssDNA binding proteins bind to resected DNA but are not removed because the

break is unrepaired; consequently less ssDNA protein is available to repair

DSBs subsequently created (Johnson et al., 2007). In a cell with fewer or

unprocessed Sp011-DSBs, the amount of free resection machinery I ssDNA

binding proteins available to DSBs such as the VDE-DSB is increased. In rad611

cells fewer Sp011-DSB will be present during catalysis of VDE-DSB compared

to wild type, therefore, repair of the VDE-DSB could be more rapid, because a

higher proportion of resection proteins I ssDNA binding proteins will be available

to the VDE-DSB. In rad611 cells the total percent of DNA in the VDE-DSB band

reaches maximum of 40 % at 5 h. In wild type a maximum of 25 % is reached at

5 h. This indicates that repair of the DSB is not accelerated but in fact delayed

in rad611 cells. In wild type cells the 30 % of the DNA is in the SSA repair band.

A similar amount of DNA is the SSA repair band in rad611 cells at 8 h. The delay

in VDE-DSB repair suggests that Rad6 has a role in the initiation of repair at the

VDE-DSB.

The VDE-DSB repair phenotype in rad611 cells is not due to a change in the rate

of VDE cleavage. Sp011-DSBs are created at the ARE1 Sp011-DSB hotspot

with a reduced frequency in rad611 cells. Repair of the VDE-DSB can be used

as a model for Sp011-DSB because both breaks are repaired by the same

proteins and are created at the same time (Fukuda et al., 2003; Neale et al.,

2002). Therefore the efficiency of VDE cleavage might also be affected by the

absence of Rad6, consequently the kinetics of VDE-DSB repair seen in the

rad611 cells might be due to a change in the rate of VDE-DSB creation. The rate

of cleavage by VDE can be assayed by southern blots. DNA was extracted from

rad611 cells and processed as described in chapter 3. The rate of VDE cleavage

in rad611 cells and wild type cells is essentially the same (Fig 5.4).
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H2B ubiquitination affects VDE-DSB repair

Rad6 is the E2 ubiquitin-conjugating enzyme that catalyzes H2B ubiquitination

at lysine 123with the E3 ubiquitin ligase Bre1. Histones have been implicated in

changing chromatin structure to allow Spo11 or recombination machinery

access to DNA (Petes, 2001). To see if the change in initiation of repair is due

to the Rad6 ubiquitination of H2B repair of the VDE-DSB was assayed in a

htb1-K123R htb2-K123R mutant (dAG1518; referred to as from now as htb1/2)

carrying a mutated residue in both subtypes of H2B that prevents Rad6

mediated ubiquitination. Similar to rad6/l, htb112 cells are reported to be unable

to sporulate this was also true in our diploid (Yamashita, Shinohara et al. 2004).

If Rad6 ubiquitination does playa role in the timing of VDE-DSB repair a higher

percent of DNA in the VDE-DSB is expected to be seen in htb1/2 compared to

wild type as in the rad6/l cells. The kinetics of VDE-DSB repair is different in

htb112 cells compared to rad6/l cells and to wild type cells. At 8 h 25 % of the

DNA is in the VDE-DSB band indicating there is a significant delay in the

formation of the VDE-DSB (Fig 5.5).

The htb1-K123R htb2-K123R VDE-DSB repair phenotype is not due to

histone eviction

Histone modifications have several potential roles in meiosis including

regulating Sp011 and I or recombination machinery access to the DNA or

stabilising DNA protein interactions. Ubiquitination is associated with protein

degradation therefore Rad6 dependent ubiquitination of H2B might signal

histone eviction allowing proteins access to the DNA. To test this hypothesis

chromatin analysis was performed in collaboration with Dr. Nick Kent (Cardiff

University). In this assay chromatin is digested with Micrococcal nuclease

(MNase), chromatin is only accessible to MNase in the absence of

nucleosomes therefore if H2B is degraded after Rad6 mediated mono

ubiquitination the MNase digestion pattern should change in rad6/l cells. The

MNase cleavage pattern in rad6/l cells does change during the timecourse

therefore there is chromatin remodelling at the VDE-DSB between 2 hand 6 h
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Figure 5.5 H2B ubquitination is required for wild type kinetics at the
VDE-DSB.

(A) DNA was extracted from htb112 cells and processed as for Fig 5.2
(B) Quantification of the blot in (A). In a wild type culture less then 10
% of the DNA is present at 8 h however, in the histone mutant 25 % of
the DNA is present at 8 h. The amount of DNA in the SSA repair
product band is also reduced at 8 h there is 15 % of the DNA in SSA
repair band in the histone mutant compared to 30 % in wild type. This
illustrates that H2B unbitination is required for normal DSB repair.
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however this is very subtle and difficult to see on the electronic file. However the

chromatin structure is the same in wild type and rad6~ cells therefore there is it

is unlikely that the different in recombination at the VDE-DSB in rad6~ cells is

due to histone eviction (Fig 5.6).
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Figure 5.6 Mnase digestion of the VDE-DSB in rad6 cells.

Hourly samples were removed from synchronously sporulating cultures

of rad6~ and wild type cells. The chromatin was digested with MNase

and Nrul then fractionated on an agarose gel and southern blotted. The

blots were probed with a PCR product specific to the arg4 region

(amplified by CA probe F and CA probe R). No change is visible in

Mnase accessibility between rad6~ cells and wild type cells.
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Discussion
In our rad6!1 strain the previously described slow growth and spore inviabilty

was observed, also the strain demonstrated late meiotic progression consistent

with the reported delayed pre-meiotic replication (Yamashita et al., 2004). To

further characterise the role of Rad6 during meiosis, meiotic DSBs repair was

assayed, at the ARE1 locus the previously reported reduction in Sp011-DSB

was detected (Yamashita et al., 2004).

The amount of Sp011-DSBs created in the cell has been reported to affect

repair at the VDE-DSB site (Johnson et al., 2007). When Sp011-DSBs are

resected single stranded DNA is exposed. The proteins required for resection

and repair can be sequestered to Sp011-DSBs. In cells that are unable to repair

Sp011-DSBs but are able to resect DSB ends (such as dmct a cells), the repair

machinery (for example RPA) remains bound to the Sp011-DSB resection tracts

(Johnson et al., 2007). Consequently a lower proportion of free protein is

available to the VDE-DSB and repair is inefficient. In cells with fewer Sp011-

DSB or unresected DSB (such as sp011-Y135F) a higher proportion of the

resection machinery is available to process the VDE-DSB and repair is efficient

(Johnson et al., 2007). In rad6!1 cells few Sp011-DSBs are thought to be

created at hot spots which was observed at the ARE1 site, therefore repair of

the VDE-DSB was expected to be efficient and more rapid however VDE-DSB

repair in the rad6!1 strain is delayed.

In the absence of Rad6 VDE-DSB repair is delayed

In the rad6!1 strain VDE-DSB repair is rapid after 5 h into meiosis, the same

Sp011-DSBs decline. This indicates both breaks start to repair at the same time

therefore they might be repaired by a common mechanism that is dependent

upon Sp011-DSBs. In the absence of Rad6 a delay has been reported in

replication, a delay in replication causes a delay in Sp011-DSB break formation.

Consequently the delay in VDE-DSB repair might be a result of late replication.

However the delayed repair in the rad6!1 cells is not due a delay in replication

because the VDE-DSB is formed on time and can be repaired in the absence of
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Sp011-DSBs. The data suggests that Rad6 has a direct role in the initiation of

DSB repair. One hypothesised is that this could be related to chromatin

structure.

H2B monoubiquitination is required for VDE-DSB repair

Rad6 has been shown to modify H2B by monoubiquitination; the reduced
amount of Sp011-DSBs seen in rad611 mutants has been attributed to the lack

of Rad6 dependent monoubiquitination of H2B (Robzyk et al., 2000). To see if

the delay in VOE-OSB repair seen in rad611 is a consequence of Rad6 mediated

ubiquitination VOE-OSB repair was also assayed in a htb112 diploid, in this

strain the lysine residue cannot be ubiquitinated (Robzyk et al., 2000). In htb112

cells the delay in VOE-OSB repair is more pronounced than the rad611 diploid.

The formation and repair of the VOE-OSB appears to be severely delayed

compared to wild type and even more delayed than a reae«. During

ubiquitination ubiquitin is conjugated to a lysine residue, ubiquitin also contains

a lysine therefore can self-conjugate creating polyubiquitin chains. Normally

multiubiquitination targets proteins for degradation by proteasome, although

monoubiquitination is normally associated with signaling an association with

protein degradation has also been reported (Sun and Chen, 2004). In mitosis it

is suggested that tnosu-orornoteo nucleosome displacement is required for

efficient RadS1 replacement of RPA during OSB repair at the HO break

(Tsukuda et aI., 200S). Therefore degradation of H2B at the VOE-OSB break

site might be required to allow repair machinery access to the VDE-OSB.

Consequently late repair of the VOE-DSB seen in rad611 and htb112 might be

caused by a lack of histone eviction. It is suggested that during transcription

H2A and H2B ubquitination affects the higher structure of chromatin, or

provides an interaction surface for transcription machinery (Berger, 2002;

Berger, 2007). If this is true it could have an impact on meiotic OSB formation

and repair; which often is sensitive to similar chromatin limitations as

transcription. However there is no detectable change between wild type and the

rad611 or in MNase sensitivity of the chromatin around the VOE-OSB site (In

collaboration with Or.Nick Kent, Cardiff University). The lack of chromatin

modification suggests that the delay in VOE-OSB formation and repair is not
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due to a lack of histone eviction. However the assay is only able to detect large

chromatin modification therefore a small change would be undetectable by the

assay.

Another possibility is that Rad6 is not the only E2 required for H2B

monoubiquitination. In mice there are two Rad6 sequence homologues HR6A

and HR6B. hr6b knockout mice are viable and male mice are sterile, however

ubH2B is detected and no change in chromatin modification can be identifyed

between wild type and hr6b mice (Baarends et aI., 2003). This suggests that in

mice HR6A and HR6B are redundant. Also another E2 UbcH6 has also been

found that can interact with the human orthologues of Bre3 in vitro and is

involved in transcription (Lee et al., 2008). If two E2 conjugating enzymes do

function during yeast meiosis this would also explain the different severity of

VDE-DSB repair in rad611 cells and htb1/2 cells. When the RAD6 sequence is

entered into BLAST three sequences with a high degree of homology are

returned including UBC11, 13 and CDC34. All are ubiquitin conjugating

enzymes therefore are possible enzymes that might also be able to ubitquitinate

H2B.

Ubiquitination cannot be thought of as a solitary event because it has been

reported that Rad6, Bre1 mediated ubiquitination of H2B is a pre-requisite for

H3 methylation (Bartova et al., 2008). This has been discovered to be a result of

a second mutation in the htb112 strain. This mutation mayor may not be present

in the assayed diploid because the haploid strains were crossed and then

dissected to produce haploids that carried the reporter cassette and the htb112

mutations. Therefore the late repair phenotype seen in the htb112 cells might be

more severe compared to rad611 diploid cells because H2B ubquitination absent

but so is H3 methylation.
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Chapter Six - General Discussion
Meiosis is a cell division in which one diploid parent cell divides producing four

haploid daughter cells (Zickler and Kleckner, 1998; Zickler and Kleckner, 1999).

Accurate alignment and segregation of homologous chromosomes during

metaphase is critical for a successful meiotic division and viable gametes.

Three concomitant events are required for correct homologue alignment and

segregation: chromosome pairing, synapsis and recombination (Zickler and

Kleckner, 1998; Zickler and Kleckner, 1999). Pairing is the close alignment of

homologous chromosomes, synapsis is the formation of a tripartite

proteinaceous structure between the homologues along their entire length.

During meiosis recombination is initiated at meiotic DSBs. Interchromosomal

repair of a meiotic DSB can form a crossover that creates genetic diversity by

changing linkage; recombination is also required for the formation of chiasmata

between the homologous chromosomes that resist the tension of the spindle.

Control of recombination starts with regulation of Sp011-DSBs formation.

This thesis investigated the roles of the protein kinase Te11,the Srs2 helicase

and Rad6 mediated histone modification, in regulation of recombination during

meiotic DSB repair. All of these protein are required for normal DSB repair. The

diversity of the proteins investigated indicates how complex meiotic DSB repair

regulation is and how many levels of control are required.

Control at the histone level

Histones have been implicated in two meiotic events, pairing and Sp011-DSB

formation (Yamashita et al., 2004; Zickler and Kleckner, 1999). Sp011-DSB

hotspots are associated with open chromatin. In hb112, which is unable to be

ubiquitinated, the frequency of Sp011-DSB is reduced and at the VDE site

DSBs are formed later. This suggests that histone modification regulates the

formation of DSBs during meiosis. Ubiquitination is associated with protein

degradation. Histone eviction due to ubiquitination might allow meiotic proteins

access to chromatin. However the impaired VDE-DSB formation is not simply

due to a lack of histone eviction because chromatin remodelling is not detected

in rad6/). cells. Histone modifications have been suggested to create new
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binding sites during transcription; this might also be a possible mechanism

during meiosis. The role of histones during meiosis is not just during DSB

formation; during pairing homologous chromosomes have to recognise each

other and become physically close. Chromosome expansion and compaction

has been suggested to increase the chances of regions of homology finding

each other. Chromosome compaction and expansion is mediated by histones

consequently histone modifications is suggested to aid pairing (Zickler and

Kleckner, 1999).

Control of meiotic DSB repair

All Spo11-DSBs are repaired by homologous recombination; some proteins that

are involved in mitotic homologous recombination are also involved in meiotic

DSB repair (Zickler, 2006; Zickler and Kleckner, 1998). Tel1 and Mec1 are

protein kinases that function during mitosis and meiosis. In mitosis Tel1 and

Mec1 activate a signalling cascade in response to DNA damage (Mantiero et

al., 2007; Usui et al., 2001; Usui et al., 1998). In meiosis Tel1 is known to

respond to meiotic DSBs therefore it potentially regulates the timing of meiotic

DSB repair (Usui et aI., 2001). Repair of the VDE-DSB initiates later in fe/1f1

cells compared to wild type cells, however this late repair is not totally

dependent upon the presence of Spo11-DSB. Tel1 has been shown to

phosphorylate Sae2 in response to pre-meiotic replication, and the VDE-DSB

repair phenotype of fel1 f1 and sae2f1 cells show a similar delay in repair that is
not observed in tettc: sae2f1 cells (Palladino and Klein, 1992). This suggests

that Tel1 phosphorylation of Sae2 is required for timely repair of meiotic DSBs.

In fel1 f1 and sae2f1 strains the proportion of repair by SSA is different,

suggesting that once the delay is overcome the method of repair is different in

each strain. Tel1 appears to be required for a wild type proportion of
recombination repair at the VDE-DSB because a high amount of SSA repair is

detected in ten s. cells and teitt: sae2f1 cells. This indicates that Tel1 is required

to ensure that the VDE-DSB is repaired by gene conversion, therefore Tel1 has

a potential role ensuring meiotic Spo11-DSB are repaired by recombination.

Consequently in the absence of both Tel1 and Sae2 the VDE-DSB is not

regulated and a high proportion of DSB repair occurs by SSA.
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How could Tel1 phosphorylation of Sae2 be required for prompt DSB repair?

Sae2 has recently been proven to have endonuclease activity (Lengsfeld et al.,

2007). In mitosis Sae2 is hypothesised to be involved in initiating resection at

DSBs that have bulky adducts (discussed in Huertas et al., 2008). This is

consistent with the meiotic requirement of Sae2 to remove Spo11 from Spo11-

DSB. During meiosis Spo11-DSBs are unrepaired in cells in which Sae2 is

present but is unable to be phosphorylated by Tel1 or Mec1, indicating that

Sae2 has to be phosophorylated for repair. Sae2, can be phosphorylated by

Mec1 therefore in a tent: strain Sae2 is not completely unphosphorylated.

However Tel1 is thought to respond to blocked DSBs and Mec1 is thought to

respond to ssDNA consequently in the absence of Tel1 Sae2 will not be

phosphorylated until Mec1 has sensed ssDNA. This might explain the late

repair seen in a te1111.

Control of the repair template

Helicases are proteins which unwind DNA and RNA duplexes during DNA

replication, repair and transcription (Pyle, 2008). There is evidence to link

certain helicases with meiotic break repair. For instance Bloom syndrome is

caused by a mutation in a human helicase, and one symptom of this is male

sterility (German, 1993; Karow et aI., 1997). In yeast, Srs2 is a good candidate

for a helicase of importance in meiotic recombination because srsz« cells

exhibit delayed commitment to meiosis, a reduction in sporulation and

decreased spore viability (Palladino and Klein, 1992). Srs2 belongs to the SF-1

superfamily which have an ATPase activity that possibly allow the proteins to

translocate on ssDNA potentally allowing protein displacement from DNA

(Myong et al., 2005).

When srs2-101/srs2-101 cells are removed from meiosis after 3 h and forced to

re-enter vegetative growth they show reduced cell viability compared to wild

type. Meiotic DSB begin to form at 3 h into meiosis suggesting that in srs2-

101/srs2-101 diploids cell death is a result of meiotic recombination. To see if

Srs2 is important for successful meiotic DSB repair, the VDE-DSB was
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assayed. At the VDE-DSB srs2-101Isrs2-101 shows a delay in repair. Repair of

the VDE-DSB can be used as a model for repair at Sp011-DSB. Therefore for

comparison a natural Sp011-DSB hotspot was also assayed. Surprisingly, in

srs2-101Isrs2-101 Sp011-DSB breaks were repaired with faster kinetics than

wild type. One possible explantion for this result is that recombination is

uncontrolled. A possible function of helicase translocation is protein

displacement from DNA, perhaps to strip Rad51 from ssDNA preventing

recombination. Mitotic Rad51 mediated repair is biased towards the sister

chromatid, rather than the homologue. If Srs2 is required to remove Rad51 from

meiotic DSB sites, then in the absence of Srs2 an excess of Rad51 at the break

might bias repair towards the sister chromatid. The sister chromatids are held

together via the cohesin complex and consequently the search for homology

might be quicker if the strand invasion event occurs between the broken duplex

and the sister than between the break and the homologue. The different repair

profiles of the VDE-DSB and the Sp011-DSB can also be explained if template

for repair is the sister; at the VDE-DSB site both the sisters are broken,

consequently Rad51 is unable to direct repair towards the sister and

consequently VDE break the template has to originate from an alternative locus

and repair is slowed. Uncontrolled recombination can also occur between the

DSB and an ectopic locus. When ectopic repair was assayed at both a Spo11-

DSB and the VDE-DSB a decrease was observed consistent with repair using
the sister chromatid as a template. Uncontrolled recombination can increase the

frequency of COs. One example are sgs 1~ cells, these cells also exhibit a

change in SC and SIC formation (Rockmill, Fung et al. 2003; Jessop, Rockmill

et al. 2006). The SC is a proteinaceous structure, which forms between

homologues and is initiated at sites of recombination that form COs. Therefore
in cells with increased recombination SC formation might be changed. Results

indicate that in srs2-101Isrs2-101 mature SCs persist for longer; the extended

presence of SC suggests CO intermediates are being formed but are not

resolved with normal kinetics.

If the sister is used as template for repair rather then the homologous

chromosome this would explain the reduced viability of srs2-101 mutants during
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meiosis. When repair is directed towards the sister a lower proportion of

chromosomes will receive a crossover preventing proper alignment during

metaphase. This would increase non-disjunction during meiosis I however srs2-

101 homozygous tetrads do not (Mantiero et al., 2007; Usui et al., 2001; Usui et

aI., 1998) show an increase in two spore viable spores that normally indicate an

increase in non-disjunction during meiosis I. However in an srs2-101 Dmc1 is

still present at the DSB site therefore is still directing repair towards the

homologue and Hop1, Mek1 and Red1 are also present blocking sister

chromatid repair. Srs2 might also dismantle Rad51 mediated recombination

events between the broken duplex and the sister chromatid. Dismantling of

recombination events is also suggested to be the role of Sgs 1 during meiosis

(Jessop et al., 2006). This would also explain the faster turnover of the Sp011-

DSB and the difference in repair of the VDE and the Sp011-DSB.

Further work

The results so far suggest that Srs2 is involved in preventing intersister repair,

and this hypothesis can be answered using 2-D gels as JM formed between

sister chromatids can be detected.

SRS2 could also be placed under the CLB2 promoter. Clb2 is expressed during

the mitotic cell cycle but not during meiosis therefore we can assay the effect of

deleting SRS2 meiosis. Consequently this strain could also be used to see if the

loss in viability seen in the RTG is due to DNA damage accumulated during

mitosis or as a result of a meiotic defect. Because srs2-101 cells are known to

be hyper recombinant, therefore accumulate gross chromosomal

rearrangements during the mitotic cycle. This strain could also be used to see if

repair in srs2-101 strain is dependent upon Rad54 which is required for

intersister repair.

Srs2 has been shown to remove Rad51 from DNA in vitro. In mitosis the

removal of Rad51 by Srs2 is thought to prevent Rad51 from binding to nicks at

stalled replication forks, therefore allowing a translesion polymerase to bind and
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continue replication. In meiosis Srs2 might prevent Rad51 and Dmc1 to bind to

the ssDNA allowing RPA to bind and the resection tract to be extended until

programmed strand invasion. Therefore in the absence of Srs2 Rad51 and

Dmc1 might prematurely bind to the single stranded DNA. If the resection tract

is short repair might be pushed towards the sister chromatid. Therefore during

meiosis srs2-101 cells should have a higher amount of Rad51 and possibly

Dmc1 at early time points when compared to wild type cells.
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