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ABSTRACT 

Previous studies on Earthquake Risk Assessment (ERA) for Cyprus (Kythreoti. 2001) 

concluded that a new Peak Ground Acceleration (PGA) attenuation law needs to be 

derived based on local data and the vulnerability of the building stock needs to be full) 

re-examined. Field data from recent seismic activity became available and are used to 

derive a new PGA attenuation law. However, the damage data proved limited and 

analytical vulnerability curves were found to be necessary. Previous studies on 

analytical vulnerability underestimate damage from common brittle modes of failures. 

A variety of failure modes were simulated by using relatively simple element models, 

which were calibrated based on experimental data and expert judgment. A modified 

capacity-spectrum procedure was developed for the estimation of structural response 

and verified against time-history results. This procedure includes the bilinearisation of 

softening capacity curves so as to predict the response of structures deteriorating due to 

a variety of local brittle failure modes. 

A new damage index indicator was developed based on fundamental period shift and 

this was linked to damage limits. Key design parameters from capacity models were 

treated probabilistically and analytical vulnerability curves were derived for two 

building types and three design levels. A rapid increase in damage takes place well 

before the anticipated flexural failure threshold is observed in "Pre" and "Basic" design 

buildings. This occurs due to the dominance of brittle failure modes. The effect of the 

hazard spectrum on the vulnerability curves was found to be considerable. In the case of 

Cyprus, Type 2 spectra (EC-8, 2004) were found to simulate better the earthquake 

hazard potential. 

Annual insurance premium allocated for seismic risk in Cyprus is currently set at 0.06-

0.08% of value and this appears to predict the overall risk accurately. However, the use 

of a single premium for all building types and the entire island leads to underestimation 

of seismic risk in Pre-seismic buildings. This underestimation is more profound in 

regions along the southwest coast of the island. 

The single most important issue for analytical vulnerability assessment is the definition 

of an appropriate structural model, which requires sophisticated modelling capabilities 

to simulate brittle failure modes and further work is recommended. 
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Chapter 1 Introduction 

Chapter 1 

INTRODUCTION 

1.1. Introductory Remarks 

Recent worldwide experience indicates that even though new design codes have been 

introduced in most seismic regions, they did not contribute as much to the minimization 

of earthquake damage to buildings, primarily as a result of the fact that the existing 

building stock pre-dates modem codes. An unfortunate verification of the above is the 

recent progressive increase of the amount of sustained economic damage, reaching US 

$20 billions per annum for the last decade of the millennium. Mitigation of the 

unwanted consequences of earthquakes can be planned through Earthquake Risk 

Assessment (ERA), which is based primarily on the assessment of the earthquake 

hazard and vulnerability of the building stock. Seismic hazard relates to all physical 

phenomena which are a consequence of the earthquake (such as strong ground motion, 

liquefaction, tsunamis, landslides, or even induced fires) and can affect exposed 

infrastructure and other aspects of human interaction with the environment. The 

vulnerability of the building stock denotes the amount of damage induced by a given 

degree of hazard, and is expressed monetarily, as the ratio of the damage to the 

replacement cost of the item under consideration. 

ERA forms the basis for the calculation of premium rates for earthquake insurance 

purposes and for the determination of the range of the probable maximum loss that 

would be incurred in the event of a catastrophic earthquake (Kythreoti, 2001). It is also 

performed as part of earthquake risk mitigation programmes in urban areas. the main 

aim of which is to reduce fatalities, injuries, construction damage and other economic 

losses caused by an earthquake. 
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Work on ERA, conducted by Kythreoti (2001) at the University of Sheffield. provided a 

framework (EQ-RACY) for earthquake risk assessment, using Cyprus as a case study. 

The investigation of the vulnerability aspect of ERA was beyond the scope of 

Kythreoti's work and was dealt with in a rather simplistic manner. A detailed hazard 

assessment procedure was derived that provided risk estimates at specific locations. 

Hazard was determined in the form of predicted peak ground acceleration (PGA) for 

every village and municipality, which enabled a more accurate representation than 

offered by the use of a single response spectrum in the current hazard map included in 

the Cypriot seismic code for RC structures (Cyprus Civil Engineers and Architects 

Association, 1991) 

In 1995 accelerometers were installed in various areas around the island by the local 

Seismological Centre, and those started to provide data after the destructive Paphos 

1996 earthquake. Following this earthquake, a governmental authority called 

"Earthquake Rehabilitation Service" (ERS) was established with responsibility to assess 

the damage levels and prepare repair strategies. ERS was assigned the role of evaluating 

the level of damage in each area by site inspections soon after the events. At the onset of 

this work, the author was granted access to information on both PGA and damage data. 

Following this development, it was deemed necessary to analyze the available data in 

view of the limitations of the existing ERA framework (EQ-RACY). Hence, this study 

is to some extend a continuation of the previous study by Kythreoti (2001) and will 

attempt to enhance the PGA attenuation model based on accelerometer recordings and 

produce empirical vulnerability curves for Cyprus based on damage data. The 

conclusions of the empirical analysis of the observed data will indicate whether a new 

framework for vulnerability assessment is required through analytical techniques. These 

curves should use PGA as the hazard parameter to allow the micro-hazard 

representation already included in EQ-RACY. 

It should be noted that most analytical vulnerability studies concentrate primarily on 

flexural and to a small extend shear failures in members. In addition. most existing 

studies fail to address shear and bond deficiencies in joints, which are frequently 

damaged especially in sub-standard constructions. Field investigations, following 

earthquakes in Cyprus and Greece. as well as in other Mediterranean countries, shO\\ 

that many different types of failures occur such as the ones shown in Figure 1.1. These 
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failures include shear failures in joints and columns, short co lumn fai lures. debonding 

of column and beam reinforcement and loca l buckling. 

(a)Shear failure in joints 

(c)Short column failure 

(e )Short column 

(b)Column bars debonding 

(d)Shear failure in column 
and local buckling 

(f)Shear failure and column bars 
debonding 

Figure 1.1 . Examples of common failure modes obse rved durin g Kalamata ( 1986). 

North Athen s (1999) I and Limasso l ( 1999) earthquakes. 

I Fro l11 Report No. ESEE 99--L Elnashai A ( 1999) . 



Chapter i introduction 

These modes of failure, which in practice for sub-standard construction have a greater 

impact than flexural failures since they are related to detailing deficiencies, will need to 

be considered in any future analytical vulnerability study. 

1.2. Research Aims and Objectives 

This study aims to combine empirical damage data and possibly analytical techniques 

and develop a framework for improved earthquake vulnerability assessment. The 

framework will be demonstrated using the island of Cyprus as a case study. 

The following objectives are identified as essential for the fulfilment of the main aim: 

• Review of the literature on existing methods for vulnerability assessment and 

select an appropriate hazard attenuation law. 

• Establish a reliable local databank for PGA and damage data. 

• Evaluate the appropriateness of the existing PGA attenuation models for the 

area of Cyprus. 

• Develop attenuation laws for both PGA and Modified Mercali Intensity (MMI) 

based on the local acceleration database. 

• Develop empirical vulnerability curves for both reinforced concrete (RC) 

buildings in Cyprus for the evaluation of the expected damage levels at various 

hazard levels and assess their ability to represent accurately the vulnerability of 

the local building stock. 

• Identify the most suitable modelling and analytical techniques for the 

simulation of structural response during earthquakes which capture the typical 

fail ure modes expected for the particular class of buildings. 

• Verify the analytical tool used for the simulation of structural response. 



Chapter 1 Introduction 

• Investigate the appropriateness of nonlinear static and dynamic analysis 

procedures for use in vulnerability assessment. 

• Produce a simplified procedure for the estimation of the structural response. 

• Choose the most suitable damage indicator for the correlation of structural 

response and damage potential. 

• Produce analytical vulnerability curves and correlate with available data and 

results from other studies. 

• Substitute the enhanced PGA attenuation model and the derived analytical 

vulnerability curves into the existing ERA framework to estimate the risk for 

Cyprus. 

1.3. Layout of the thesis 

In chapter 2, a literature review is presented on vulnerability assessment methods. In the 

first section, a review of the most comprehensive empirically derived curves takes place 

which concludes with a discussion on the main drawbacks of such an approach. 

Following this, a review is conducted on vulnerability curves derived based on expert 

judgment including an example for the island of Cyprus. In the rest of the review, 

special emphasis is given on simple and detailed analytical procedures. A discussion 

follows on the various issues involved in the determination of the structural response 

and how this can be correlated to structural damage. 

Chapter 3 initially includes a brief discussion on PGA attenuation laws for Cyprus and a 

presentation of the available field data. These are used for the derivation of an improved 

PGA attenuation law and a comparison with available data is conducted. In the second 

part, the available damage data are processed and empirical vulnerability curves are 

derived. It is concluded that very limited information can be derived from the available 

damage data, and that the problem of vulnerability needs to be addressed analytically, 

but in a more sophisticated manner than previous studies. 

5 
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In Chapter 4, the initial sections include a review on modelling issues involved in the 

derivation of analytical vulnerability curves in light of the anticipated damage potential. 

Subsequently, an appropriate analytical tool (DRAIN-3D) capable of simulating the 

previously mentioned damage potential is chosen. The rest of the chapter includes a 

demonstration of the modelling capabilities of the analytical tool along with details on 

the calibration process of each model. 

The verification of the analytical tool is the objective of Chapter 5. For that purpose, the 

results from full-scale shaking table tests on an RC frame are compared with 

simulations results obtained from time-history analysis. The good correlation between 

actual (from testing) and analytical results leads to the conclusion that the analytical tool 

can be safely used for the derivation of analytical vulnerability curves. 

Chapter 6 examines the various steps towards the derivation of probabilistic analytical 

vulnerability curves. Initially, the most reliable procedure is chosen to arrive at the 

estimation of the structural response. The accuracy of this procedure is demonstrated 

against "exact" values obtained from time-history analysis and results from an 

alternative capacity-spectrum procedure. Subsequently a damage index, to correlate 

structural response to damage potential, is selected based on a number of criteria. After 

establishing the procedure to arrive at the damage potential, the probabilistic nature of 

vulnerability is addressed and a number of design parameters, to be included in the 

calibration of capacity models, are selected. The probabilistic distribution function 

(PDF) of each parameter is established. The Latin Hypercube Sampling method is used 

to define the simulation values from the corresponding (PDFs). The most representative 

building types in Cyprus are identified (low and mid rise RC buildings) and separate 

designs are conducted for each type following "Pre", "Basic" and "Modern" design 

guidelines. The last part of the chapter presents the newly derived analytical 

vulnerability curves and a comparison with the limited empirical data. The curves are 

modified to account for the characteristics of the local hazard. 

Chapter 7 comprises of a small discussion on the existing ERA framework developed 

by Kythreoti (2001) and a presentation of the enhancements achieved in this study. The 

calculated risk using the enhanced models is compared with premium values provided 

by insurance companies in Cyprus. 

6 
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In the final chapter, the general conclusions, drawn from the work described above, are 

presented together with recommendations for future research on the topic. 

7 
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Chapter 2 

LITERA TURE REVIEW 

2.1. Introduction 

This chapter provides a review on literature in earthquake vulnerability assessment. 

Literature on attenuation is given in Chapter 3. After a brief background on the topic, a 

review of the most widely used methods for vulnerability assessment is given, 

emphasizing advantages and disadvantages. For each method, the most representative 

examples found in the literature are given in order to assess their ability to simulate the 

damage potential observed in recent earthquakes. Special attention is given to the 

widely used analytical assessment method. The main issues of this method regarding the 

selection of an appropriate damage indicator and the best representation of seismic 

hazard parameter are extensively discussed in the last part of the chapter. Finally, a 

discussion takes place regarding the applicability of these methods for the derivation of 

vulnerability curves for Cyprus. 

2.2. Background 

The prediction of damage potential from earthquakes has always been a challenge for 

the earthquake engineering community. One of the first comprehensive attempts to 

quantify the expected damage potential for different intensity levels was conducted by 

Whitman et al. (1974) based on the damage caused by the 1971 San Fernando 

earthquake. This study introduced for the first time the concept damage ratio (DR). DR 

is the ratio between repair and replacement value and currently is the most widely used 

economic damage indicator. Since then. various methods of vulnerability assessment 

have been developed differing in level of detail and precision. The type of method 

8 
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chosen depends on the objective of the assessment but also on the availability of data 

and technology. The objective of such methods is to quantify the level of damage for 

different levels of seismic exposure. The definition and quantification of damage level 

and the corresponding representation of earthquake hazard (or seismic exposure) differ 

for each method. Irrespective of the method used, the distribution of damage for 

increasing hazard level is referred to as vulnerability curve. 

2.3. Methods for vulnerability assessment 

The three main approaches used for earthquake vulnerability assessment purposes are: 

• Empirical (based on observational data) 

• Expert opinion 

• Analytical (based on some form of simplified or refined analysis) 

2.3.1 Empirical 

This method arrives at vulnerability curves by regressing damage data from historical 

earthquakes against the earthquake hazard. Until recently, the most common 

representation of hazard was through intensity, which in most cases was defined 

through the Modified Mercali Intensity (MMI) scale. A pioneer in compiling statistics 

on damage to buildings from actual earthquakes was Whitman (1974) using data from 

approximately 1600 buildings having five or more storeys. MMI scale was used as the 

earthquake hazard parameter. Damage on the buildings at each MMI level was 

expressed in the form of a Damage Probability Matrix (DPM). The general form of the 

DPM as proposed by Whitman (1974) is shown in Table 2.1. Each number in the matrix 

expresses the probability that a building of a certain building class will experience a 

particular level of damage as a result of a particular earthquake intensity. The level of 

damage was expressed quantitatively through DRs (DR=O for no damage and DR=lOO 

for collapse). 

9 
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Table 2.1. Format ofDPM after Whitman (1974) 

Damage Structmal ~ OD-StruCtural Damage rano Co 0) 
Intensity of Earthquake 

state Damage damage V VI \ II VIII IX 
0 None None 0-0.05 ... ... . .. . .. . .. 
1 None Minor 0.05-0.3 ... ... . .. . .. . .. 

2 None Localized OJ-1.25 .. . ... . .. . .. . .. 

3 1\0 noticeable Widespread L !5-3.5 .. . . .. . .. . .. . .. 

4 Minor Subsrantial 3.5-4.5 ... . .. . .. . .. . .. 

5 Substantial Exten~ive 7.5-20 ... ... . .. . .. . .. 

6 Major Nearly to al 20-65 .. . . .. . .. . .. . .. 

7 Building Condemned 100 .. . . .. . .. . .. . .. 

S Collapse 100 .. . ... . .. . .. . .. 

Eight damage states with qualitative description were assigned at corresponding ranges 

of DRs. The qualitative determination of damage is useful for visual assessment 

purposes. 

Empirical vulnerability curves were also derived by a number of other researchers such 

as Scawthorn (1981) for Japan, Schierle (2000) based on the Northridge earthquake and 

vulnerability data from Steinbrugge and Algermissen (1990) from experience in 

California. Several other examples can be found of curves derived based on local data 

from single or a small number of events. These curves can only be proved reliable based 

on the repetition of similar events. In addition they are derived using a small number of 

data that depend on local characteristics. 

A more general attempt usmg data from different countries and earthquakes was 

conducted by Spence (1992). Five damage grades were considered. The scatter of 

earthquake intensity at which each damage threshold was assumed to be normally 

distributed. This implies that the damage potential at a particular earthquake intensity is 

equally spread around the mean value of the corresponding damage. Although this 

assumption may be reasonably accurate for buildings with flexural behaviour it can not 

represent the possibility of sudden failure from brittle failure modes, which cause a 

corresponding sudden increase in the vulnerability that can not be predicted by a normal 

distribution. 

The most general database for the derivation of empirical vulnerability curves was 

compiled by Rossetto (2002) in an attempt to derive empirical vulnerability curves for 

European-type RC structures. The majority of data were obtained from recent European 

destructive earthquakes in Greece, Italy and Turkey. The database was completed using 

10 
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data from Algeria, Chile, Japan, Mexico, Philippines and the USA in order to cover a 

wider spectrum of building types. Initially, the database was compared with the 

empirical curves from Orsini (1999) and the non-empirical ones from Spence (1992) 

and Singhal (1997). Rossetto (2002) stated that although the non-empirical curves show 

a better fit to the observations the correlation is still poor and the calculated errors in 

prediction are significant. 

The database included in Rossetto (2002) study was divided into six classes based on 

the height of the building (low, medium and high-rise) and the seismic design code used 

in the design process (Pre, Old and New-Code). Six damage grades were used ranging 

from slight damage to collapse. The distribution of damage for a particular damage 

grade and earthquake intensity level is assumed to vary log-normally. This type of 

variability is unlikely to adequately capture the sudden increase in vulnerability from 

brittle modes of failure and it is questionable that any pre-assigned type of variability is 

necessary or correct. The spectral displacement is used as the earthquake intensity 

parameter, which was shown in the study to simulate better the damage potential, but 

makes it difficult to compare them with curves using PGA as the intensity parameter. 

This is reasonable since damage in buildings in the inelastic range is in general a 

function of displacement (Priestley, 1997) and the effect of the local spectrum is 

accounted for directly (Rossetto, 2002). Although this database can be regarded as the 

most complete in Europe, it seems from the data points plotted on the derived curves 

that very little data exist for high earthquake hazard levels (Figure 2.1) and most of 

these correspond to moderate or less damage. Rossetto (2002) also concludes to the 

same. It should also be pointed out that a more refined classification of the buildings by 

combining the six building classes (for example curves for pre-seismic and low-rise) 

would be more meaningful for vulnerability assessment purposes since it would remove 

the large variability of using a single classification for all construction periods. 

Figure 2.1. 
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In the case of remsurance companIes, earthquake risk assessment is in general 

undertaken based on the loss database. Premium values are determined based on the 

expected annual average loss. This form of empirical assessment can be risky since it is 

based on the repetition of previous claims and can be biased by isolated events. 

However, overall it can be considered a safe and easy way for insurance companies to 

ensure a net gain. 

Although post-earthquake building inspection is the best method for determining 

empirical vulnerability curves and is relatively simple to apply, the following should be 

considered when adopting such a method: 

• Very few data exist on non-standard constructions. 

• Only building types in affected areas can be used thus only curves for limited 

building classes can be derived. 

• Relatively few buildings have been subjected to extreme seismic forces and for 

many of them no sufficient data from post-earthquake damage inspection are 

available. There is difficulty in developing a reliable scenario for events that lead 

to collapse. 

• There is uncertainty in determining earthquake intensity. 

• There is uncertainty due to the high variability of damage data. 

2.3.2 Expert judgment 

This method is an effective alternative to the empirical technique, since it is less 

affected by the unavailability of data. The main disadvantage of this method is in its 

subjectivity, i.e. the opinion of the experts, and this uncertainty is compounded by the 

inherent uncertainties in building performance. 

The first complete attempt to identify the damage state of a wide variety of building 

classes at various ground motion levels based primarily on expert judgment was 

conducted by the Applied Technology Council, primarily for the state of California 

(ATe-I3, 1985). The study was funded by the Federal Emergency Management Agenc) 

(FEMA). MMI was used as the earthquake hazard parameter and the DR as proposed by 

Whitman (1974) was used as the damage indicator. The damage assessment was based 

on expert judgment (58 experts) with experience from past earthquakes in a \ariet) of 

areas. Buildings were classified into 40 types along \\ith an additional number of ~8 
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non-building structures (such as bridges, pipelines and tunnels). RC buildings were 

classified into four main categories according to the resisting system type (dual system, 

ductile and non-ductile frames and precast structures). Furthermore each main category 

was divided into three subcategories to account for the number of storeys i.e. low rise 

(1-3 storeys), medium rise (4-7 storeys), and high rise (~ 8 storeys) whereas there was 

an extra category for 'tilt-up' low-rise buildings. The derived curves were also used 

later on for the risk assessment of the state of Utah (A TC-36, 1997) and by Chin-Hsiung 

(2001) to evaluate the damage after the 1999 "Chi-Chi" Taiwan earthquake. 

In 1998 the European Seismological Commission combined the expertise of a number 

of researchers from around Europe (such as UK, Germany, Italy, etc.) to produce the 

European Macroseismic Scale (EMS, 1998), which since then comprises the most 

comprehensive reference point for the derivation of vulnerability curves based on expert 

opinion for any region in Europe. EMS includes fifteen buildings types and six 

vulnerability classes (Table 2.2). The most likely vulnerability class and a probable 

range for each class can be assigned for each building type. Five damage grades both for 

RC and Masonry buildings are used to describe the damage potential. The qualitative 

description of each damage grade is the most comprehensive found in the literature and 

helps assign a grade for damaged buildings (example in Figure 2.2). The probability of 

occurrence of each damage grade at every MMI level is obtained from an additional 

document included in EMS (1998) referred to as "Definitions of intensity degrees" 

(example in Table 2.3). The description of "few", "many" and "most" buildings 

corresponds to 0%-20%, 20%-50% and 50%-100% of buildings, respectively. 

Table 2.2. Differentiation of building types into vulnerability classes (EMS, 1998) 
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Grade3: Substantial to heavy damage 
(moderate structural damage, heavy non-structural damage) 

Cracks in columns and beam column joints of frames at 
the base and at joint of coupled wa lls . Spalling of concrete 
cover, buckling of reinforcement rods. Large cracks in 
partition and infill walls, failure of individual intill panels. 

Figure 2.2. Qualitative description of RC buildings for damage grade 3 

Table 2.3. Definition of intensity degrees for MMI=8 

Intensity VIII. Heavily damaging 

a) Many people find it difficult to stand, even outdoors. 

b) Furniture may be overturned. Objects like TV sets, typewriters etc. fall on the 

ground. Tombstones may occasionally be displaced, twisted or overturned. Waves 

may be seen on very soft ground. 

c) Many buildings of vulnerability class A suffer damage of grade 4; a few of grade 5. 

Many buildings of vulnerability class B suffer damage of grade 3; a few of grade 4. 

Many buildings of vulnerability class C suffer damage of grade 2; a few of grade 3. 

A few buildings of vulnerability class D sustain damage of grade 2. 

For the case of Cyprus, an attempt was conducted by Schnabel (1987) to derive 

vulnerability curves based on damage data from similar seismotectonic environments 

and expert judgment. The derived curves are shown in Figure 2.3. Both the lower and 

upper bound are shown for superior and substandard construction. Since this constitutes 

the only attempt for the whole area of Cyprus, it provides a reference point for 

comparison with the results of this study. 
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2.3.3 Analytical 

Both simple and detailed analytical methods exist in the literature for the derivation of 

vulnerability curves. The main difference lies on the sophistication used for the 

modelling of the building. Simple methods do not require the analysis of the structure 

but rely on simple equations to derive its capacity. Simple analytical methods were 

derived with the objective of analysing a large number of buildings in a rather short 

period of time. Therefore, structural modelling is based on a few input parameters such 

as the period of construction, the number of storeys and the construction material. In 

contrast, for detailed analysis methods capacity is defined through analysis of the 

structural model, the sophistication of which varies based on the required accuracy. 

2.3.3.1. Simple analytical procedures 

A simple analytical procedure was proposed recently by Calvi (1999) and is based on 

the ratio between the displacement capacity of a building corresponding to several limit 

states and the displacement demand from an earthquake event as obtained from the 

corresponding displacement spectrum. Four limit states (LS) are considered ranging 

from slight non-structural damage to collapse. A set of minimum and maximum drift 

limits is provided for each damage state. Each building type is idealised as a single 

degree of freedom system (SDOF). The capacity curve (force versus displacement) of 

the SDOF system is defined based on simple equations for yield and ultimate capacity. 

The following steps are then applied (see also Figure 2.4): 

Figure 2.4. 

Displacement (0) 
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Displacement 
Spectrum 
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Comparison of displacement demand and capacity for LS2 at PGA=O.5g 
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• The secant periods and corresponding displacements at minimum and maximum 

drifts are obtained using a specific equation for each damage state. These 

equations were derived based on drift limits. 

• The lines corresponding to these threshold points are drawn on the displacement 

demand spectrum. 

• The resulting rectangle defined by the intersection points of these lines denotes 

the capacity of the building. The ratio between the areas of the rectangle above 

and below the displacement spectrum corresponds to the probability of 

occurrence of the specific damage state for the particular building type (A m 
B 

Figure 2.4). 

A more thorough attempt to produce simple analytical methods was undertaken by the 

National Institute of Building Science (NIBS) funded by FEMA (1997). After being 

updated in 1999 the project resulted in an interactive software for risk assessment 

referred to as HAZUS99 (NIBS, 1999). Thirty-six building types are considered. The 

damage potential is expressed through four damage grades for slight, moderate, 

extensive and complete damage. For each building type, the threshold value and 

variation of all damage grades are provided using spectral displacement (SO) as the 

earthquake hazard parameter. Threshold values and variation distributions were 

assigned by experts. 

Figure 2.5. 
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As in the Calvi procedure, the capacity of the structure is defined using 2 control points; 

yield and ultimate. The equations for the calculation of yield and ultimate capacity are 

shown in Figure 2.5 as obtained from HAZUS99 (NIBS, 1999). In this case though, the 

earthquake demand is expressed through highly damped response spectra. The 

performance of the structure is defined using the capacity-demand method. A detailed 

discussion on the capacity-demand method is given in Chapter 6 but in brief, the 

performance point (PP) is defined by superimposition of the capacity curve and the 

highly damped demand spectrum (see Figure 2.6). The percentage of buildings in each 

damage grade for the corresponding PP is then extracted from the threshold values and 

variation of the damage states. 

Figure 2.6. 
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Rapid Visual Screening 

Simple analytical procedures have also been developed for rapid visual screenmg 

purposes. Such procedures form the first step of a multi-step procedure for identifying 

vulnerable buildings that need to be analysed using detailed analytical procedures. The 

first comprehensive rapid screening procedure was included in A TC-14 (1987) and was 

intended to identify vulnerable areas in the structural system, which could cause 

structural failure. The evaluation in based on a number of statements related to potential 

vulnerable areas in the structural system. A simple "true" or "false" response to each 

statement must be provided by an expert. The former response implies adequate 

structural capacity in the specific area of the structural system whereas the latter 

suggests that further detailed evaluation in required. An updated procedure was recently 
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released by FEMA (FEMA 154, 2001), which reqUIres detail representation of the 

structural system through detailed drawings and destructive tests. 

A more sophisticated alternative representation method towards rapid screenmg 

assessment was developed by Mandas and Dritsos (2004) using fuzzy logic. Visual 

inspection is used to define the vertical regularity and the geometry of the structure. 

whereas a large number of parameters (such as behaviour factor, deterioration factor 

etc.) are used to define three additional variables related to the earthquake hazard 

potential, the structural strength of the building and the construction characteristics of 

the building. A specific combination of these variables provides the damage rate for the 

specific structure. The procedure was later enhanced (Demartin os, 2006) based on the 

information obtained from the damage database compiled after the 1999 Athens 

earthquake. 

2.3.3.2. Detailed analytical method procedures 

Detailed analytical procedures are more thorough and demanding, and are intended to 

be used when more detailed information is required, i.e. buildings with particular 

importance, structures for which no empirical data are available (innovative structural 

designs). In general these methods rely on: 

• the determination of earthquake hazard parameter, 

• the structural modelling and analysis for the determination of the structural 

response, 

• correlation of structural response with damage. 

Initially issues involved with the determination of earthquake hazard, structural 

modelling and analysis methods are examined. Damage analysis is examined in detail in 

the subsequent section. 

Hazard 

The determination of earthquake hazard parameter in general follows the use of site

specific response spectra as for the simple analytical procedures. In some cases though. 

where the objective is to simulate the behaviour of a building in detail (exact 
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displacement profile, the propagation of cracks, the distribution of stresses and the 

shape of the hysteretic curve) several time-history records are used as the earthquake 

hazard parameter. 

Structural modelling 

Modelling of the structure should be able to accommodate a number of failure modes 

such as flexure, shear, local buckling and debonding of reinforcement. It should be 

noted that most analytical vulnerability studies concentrate primarily on the flexural 

and, to a smaller extend, shear failures at the member level (Dymioti, 2000, Rossetto, 

2005, Ahmed, 2007). It can be argued that the modelling issue is not addressed at a 

satisfactory level in these studies, which show a discrepancy between sophisticated 

structural analytical methods and vulnerability studies. In particular, no attention is paid 

in most vulnerability studies to damage in the joint region. Observations of damage 

patterns from recent earthquakes in the Mediterranean region clearly show that severe 

damage occurs in joints such as shear failure due to limited or no shear reinforcement. 

In addition, slip of reinforcement in the joint due to inadequate anchorage length or lack 

of confinement in the anchorage region, can cause bar debonding and result in large 

cracks in the region around the joint. Besides the joint region, inadequate link spacing 

especially in sub-standard constructions can lead to local buckling of the column 

reinforcement bars and subsequently to severe loss in column capacity. Illustrative 

examples of the effects of such failures are shown in Figure 1.1 (from field 

observations) and Figure 2.7 (from experimental testing). Structural modelling issues 

are discussed in further detail in Chapter 4. 

Structural analysis 

Most existing procedures for detailed analytical methods use nonlinear static analysis 

procedures for the estimation of the structural response. Various analytical procedures 

based on nonlinear static analysis were initially proposed in a number of design and 

assessment codes such as A TC-40 (1996) and FEMA 356 (2000). In both cases, the 

capacity of the structure is expressed through the push-over curve (base shear versus top 

displacement). In the former, the performance displacement is computed through highly 

damped spectra (capacity-spectrum method shown in Figure 2.6). whereas in the latter 

the displacement coefficient method is used as a simple alternative. An attempt to 
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improve these methods was conducted in FEM A 440 (2005), Especia ll ) in the case of 

the ATC-40 (1996) method, considerable improvement was achieved and e\ entua ll ) the 

method was substituted by the Modified Acceleration-Displacement Response Spectrum 

(MADRS) procedure. 

Modern assessment codes (EC-8 Part 3, 2004 and GRECO, 2004) provide detail models 

for the assessment of RC member capacities for a variety offailure modes. 

.I 

C4PI}--, 

Figure 2.7. Shear failures in joints (Pagni , 2004, Dhakal , 2005 and Pantel ides 2000) 

The definition of the damage potential can be assessed at three limit states 

corresponding to the threshold of damage limitation (prior to reinforcement yielding) . 

significant damage, and near collapse. It should be noted though that the compl ica tion 

of these model s makes them impractical for large vulnerability assessment studies, 

Irrespecti ve of the procedure used. in stati c analysis. the seIsm Ic demand is 

approximated by an equi valent lateral fo rce distri buti on, EC -8 (200-1- ) proposes the li Se 
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of either a uniform or inverted triangular distribution. The latter is estimated based on 

the fundamental mode of vibration of the structure. 

An adaptive static analysis method was proposed by Antoniou (2002), in which the 

lateral applied load distribution is updated at each load increment based on the 

instantaneous structural stiffness, modal properties and consequent ground motion 

demand. This method was implemented within the framework of the INDY AS 

(Elnashai, 2000) finite-element package and was adopted in the analytical vulnerability 

study conducted by Rossetto (2005). Although this method yields representation of the 

seismic force distribution it can only be adopted in the context of INDY AS (Elnashai, 

2000), which is not commercially available software. 

Simpler procedures that account directly for the influence of higher modes of vibration 

and can be implemented irrespective of the software used were proposed by a number of 

researchers and assessment codes. Chopra (2002) proposed the use of modal static 

analysis in which static analysis on the structure is repeated using modal shapes from all 

credible modes of vibration (contributing to 90% of the modal mass). The peak modal 

responses are combined according to the square-root-of-sum-of-squares (SRSS) or the 

complete quadratic combination (CQC) rules. The drawback of the method lies on the 

fact that a number of analyses, one for each mode shape, are required. 

In FEMA 356 (2000), a simplified model is included for the definition of the of the 

lateral force distribution, which is suggested to account for higher modes of vibration. 

The calculation of the modified vertical distribution factor is shown in eq.2-1. The 

modification is applied on the height of each floor which is raised to the power of k. 

This value is defined based on the natural period of the fundamental mode of vibration. 

C
vx

= ~x(hx)k 

LWJhJk 
i=l 

Where: 

C
yX 

vertical distribution factor for floor x 

k 2 for T>2.5 seconds 

eq.2-1 
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1 for T<0.5 seconds 

Linear interpolation used in-between 

Wi weight at each floor i 

W x weight at floor x 

hi height of each floor i 

hx height of floor x 

In a comparison study conducted by Kalkan (2004), it was shown that top storey 

displacement results for a 4 storey RC building, using both the modal static analysis 

proposed by Chopra (2002) and the FEMA 356 (2000) procedure, are very close to the 

corresponding "exact" displacements computed using time-history analysis. The 

correlation though decreases for the FEMA 356 (2000) procedure for higher buildings. 

Based on the above discussion, it is concluded that the FEMA 356 (2000) approach 

provides a simple, fairly accurate and easily implementable alternative for the derivation 

of the lateral force distribution for static analysis. 

Further to the code guidelines a number of individual analytical vulnerability studies use 

the capacity-spectrum method for the estimation of the structural response (Rossetto, 

2005, Ahmed, 2007, Kappos, 2007). Although analytical vulnerability curves based on 

PGA as the hazard parameters were derived in (Kappos, 2007) it is emphasized in the 

paper that these curves are intended for Thessaloniki buildings since they have been 

developed using a combination of analysis and statistical data. A large portion of the 

statistical data used is from the 1978 Thessaloniki earthquake, which makes them 

inapplicable for the region of Cyprus. 

2.4. Structural Damage Indicators 

A number of structural damage indicators found in the literature can be used for the 

correlation of the structural response with the expected damage potential. Timchenko 

(2002) clustered the variety of damage indicators (01) in the following three categories 

based on the structural parameters required for their calculation. 

• Dynamic parameters of the structure 

• Displacement parameters 

• Displacement and cumulative damage 
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2.4.1 Dynamic parameters assessment 

The most widely used analytical damage indicators using the dynamic parameters of the 

structure are discussed below. 

1. Maximum Softening 

DiPasquale and Cakmak (1989) developed a damage index (eq.2-2) based on the 

evolution of the natural period of a time-varying linear system equivalent to the actual 

non-linear system. This global damage index depends on a combined effect of stiffness 

degradation and plastic deformation (Ghobarah, 1999). Although it is a global index, the 

complexity in the calculation of the maximum period as well as the fact that it does not 

account for the dissipated hysteretic energy and strength deterioration are its main 

disadvantages. 

8 =1-~ 
M T eq.2-2 

max 

Where: 

To initial natural period, 

T max maximum natural period of the equivalent linear system. 

2. Final Softening 

In the same paper, DiPasquale and Cakmak (1989) utilised the concept of the final 

softening as a damage indicator. They used the change in the fundamental period of the 

structure as a measure of the change in the stiffness caused by the earthquake. The 

advantage of final softening method is that it can be evaluated from the initial natural 

period and the final period determined from vibration field-testing after the earthquake. 

On the other hand, it does not provide any information about local and storey damage. 

The period calculation at the final time step of the excitation may be affected by the 

randomness of the instantaneous tangent stiffness at the end of the dynamic load 

(Ghobarah, 1999). Nevertheless, it is a reliable method for rapid field assessment. 
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The proposition that damage is related to the increase In period (or decrease in 

frequency) was recently verified by using experimental data. Calvi et al. (2006) 

concluded from results of experimental tests on RC frames that a significant period 

elongation occurs during strong ground motion and this can be attributed to the 

accumulation of damage in the structure. Zembaty et al. (2006) moved a step fo rward 

by producing a damage scale that can be used for the definition of the degree of damage 

from the recorded decrease in the natural frequency (Figure 2.7). 

-,.- 1", li.1 ;; I . \ h l 

Figure 2.8. Normalised natural frequency drop with progressive damage states (after 

Zembaty et al. ,2006) 

3. Stiffness Index 

A more recent approach, using the dynamic parameters of the building for seismic 

damage evaluation, was conducted by Ghobarah et al (1999) and resulted in a global 

stiffness index. Ghobarah (1999) proposed a methodology in which two nonlinear static 

analyses are conducted before and after subjecting the structure to an earthquake. The 

earthquake is applied with the use of time-history analysis. The stiffness damage index 

(DI)K of the whole structure is calculated as shown in equation 2-3 . 

(Dr)K = 1- (K final / K initial) eq.2-3 
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Where: 

Kinitial 

Literature Revielf 

initial slope of the base shear-top deflection relationship resulting from the 

pushover analysis before the time-history analysis 

Ktinal initial slope of the same relationship after the time-history analysis 

Since this Dr can be derived only after time-history analysis, it is regarded as being 

computationally very demanding. 

2.4.2 Displacement parameters 

Displacement parameters are the most commonly used for vulnerability assessment 

purposes since they can easily be obtained analytically. In addition, it is generally 

accepted (Ambraseys, 2002, Priestley, 1997) that displacement parameters such as drift 

and ductility simulate better the structural response in the inelastic range. Priestley 

(2003) argued that seismic damage is related to material strains, which are related to 

maximum response displacements rather than accelerations. Xue (2000) pointed out 

that, when the inelastic behaviour of a structure is used in the assessment, displacement 

rather than force is recognised as the most suitable indicator of structural damage. A 

detailed discussion follows on the appropriateness of such D1. 

• Ductility Ratio (DR): Ductility ratio IS defined as the ratio of maXImum 

deformation to yield deformation. As a DI it can be shown to be unsatisfactory, 

especially when shear distortion in joints and bar pullout are anticipated 

(Ghobarah, 1999). Additionally the ductility ratio fails to take into account the 

damage induced by repeated loading cycles of inelastic action (O'Connor and 

Ellingwood, 1986) leading to the underestimation of cumulative damage. It is 

commonly assumed that failure occurs when the ductility demand exceeds the 

structural ducti lity capacity. 

• Interstorey drift (ISD): It is defined as the maximum relative displacement 

between two storeys, normalised to the storey height. It was chosen as a damage 

indicator for structural and non-structural damage by Elenas and Meskouris 

(2001), Gunturi and Shah (1992) and Rossetto (2005). An initial attempt \\as 

conducted by Culver (1975) to estimate the threshold ISO \alues at different 
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levels of damage using results from damaged buildings. It was suggested that a 

value of interstorey drift equal to hlI 00 corresponds to damage to non-structural 

components, while h/25 corresponds to severe structural damage or collapse. 

Napetvaridze (1984) concluded that the threshold values of interstorey drift for a 

variety of building types i.e. moderate damage on RC buildings at IDS= h/250. 

Elenas (2001) suggested the values of ISD=h/200 for low damage, hl83 for 

medium and h/58 for great damage. The most recent attempt to provide ISD limits 

for RC buildings (Table 2.1) was conducted by Rossetto (2005) based on an 

extended database of damaged buildings from a number of earthquakes, mainly 

European. 

Table 2.4. 

ISD (%) 

Slight 

h/2000 

ISD (%) for RC buildings (Rossetto, 2005). 

Light 

hll250 

Moderate 

h/330 

Extensive 

h/87 

2.4.3 Displacement and cumulative damage 

Partial collapse Collapse 

hl36 h/23 

Damage models were also developed to take both energy dissipation and peak 

displacement into account. The most popular DI of this category was derived by Park 

and Ang (1985) and is shown in eq.2-4. The ductility level at each displacement 

increment is superimposed on the hysteretic energy dissipated in the structure up to the 

specific displacement. The calibration of this DI is rather demanding since laboratory or 

field data are required to calibrate the constant ~ and, as with most of the cumulative 

damage indices, depends strongly on the hysteretic model of the elements. 

eq.2-4 

Where: 

bm Maximum experienced deformation 

bu Ultimate deformation 

Qy Yield force 

~ Constant determined by experimental calibration 
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As stated by Ghobarah (1999), the model is based on the following two controversial 

assumptions, 

• The contribution to damage of the extreme deformation and the dissipated energy 

can be superimposed linearly, 

• The related evolution in time of these components can be disregarded. 

In addition, it has been suggested by Kappos and Xenos (1996) that, in general, 

cumulative indices are dominated by the ductility term and are only marginally affected 

by the energy term. 

2.5. Conclusions 

Empirical vulnerability assessment curves though easy to derive when the data are 

available suffer from a number of drawbacks in particular relating to the determination 

of high vulnerability values and in describing modem or unusual buildings. Since some 

empirical data have been made available for the island of Cyprus, it is worth making an 

attempt to see how vulnerability curves derived from these data compare with the 

existing curves based on expert opinion. 

It has to be mentioned that at least a comparison with some analytically developed 

curves may be required especially for modem buildings for which no vulnerability data 

exist. 
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Chapter 3 

EMPIRICAL RISK 

ASSESSMENT 

3.1. Introduction-background to empirical risk assessment 

Despite the scientific value of usmg analytical models for seIsmIc hazard and 

vulnerability assessment it is widely accepted that empirical models are essential for 

both hazard and vulnerability assessment for comparison purposes. The single most 

important feature of empirical assessment in each case is the databank, since it 

determines the accuracy of the derived assessment models. The formulation of each 

databank requires careful selection of the input parameters so as to capture the local 

effect. To demonstrate and assess the capabilities and limitations of this type of 

assessment the island of Cyprus is used as a case study. Cyprus was chosen because raw 

data were readily available to the author. 

Empirical studies on risk assessment were conducted in the past mainly from 

reinsurance companies (Swiss Re, Munich Re etc) for insurance premium calculation 

purposes. The initial studies used the Modified Mercali Intensity (MMI) scale to 

describe the hazard parameter and expert opinion damage indices such as A TC-13 

(1985) for the vulnerability parameter of risk assessment. Intensity based hazard 

definition is derived using historical seismicity and knowledge of the geological 

structure of the region. By having enough data the determination of the probabilit) of 

events of specific magnitude can be determined for a specific location. With the 

introduction of accelerometers. peak ground acceleration (PGA) data were used to 
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derive attenuation equations describing the spatial characteristics of earthquake hazard 

for a particular area (Ambraseys 1975, Joyner and Boore, 1981 etc.). 

A recent work on ERA was conducted by Kythreoti (2001) at the University of 

Sheffield, which provided a framework for earthquake risk assessment (EQ-RACY) 

using Cyprus as a case study based on empirical models for both hazard and 

vulnerability assessment. The historical seismicity data for the island compiled by 

Ambraseys were enhanced by data from the Israel Seismological Bulletin (1995), 

Solomi (1998) and Gajardo et. al. (1998). Therefore a more refined earthquake 

catalogue was created and a recurrence relationship (RR) showing the frequency of 

occurrence of earthquake events of specific magnitudes was derived. Since no major 

events took place since that study, no improvements can be made on the RR. In 

addition, RRs are only useful in macro ERA. As far as the spatial detennination of 

hazard in terms of intensities and PGA Kythreoti (2001) used the well-known PGA 

attenuation laws of Theodulidis and Papazachos (1992), which are based on empirical 

data from Greece. Kythreoti (2001) stated that a considerable enhancement of the 

existing PGA attenuation models based on data from local accelerometers is vital to 

increase the accuracy of the risk assessment framework. 

For the vulnerability of the local building stock Kythreoti (2001) used Schnabel's 

(1987) mean damage ratio curves which were at the time the only vulnerability curves 

for the types of buildings found in Cyprus. Kythreoti (2001) pointed out that Schnabel's 

vulnerability curves are based on very limited data and are a result of theoretical loss 

forecasts which possibly makes them highly unreliable. Previous experience is always 

valuable but when new data are available conclusions need to be re-evaluated. 

In 1995 accelerometers were installed in various areas around the island by the local 

Seismological Centre, and those started to provide data after the destructive Paphos 

1996 earthquake. Following this earthquake, a governmental authority called 

"Earthquake Rehabilitation Service" (ERS) was established with responsibility to assess 

the damage levels and prepare repair strategies. ERS was assigned the role of evaluating 

the level of damage in each area by site inspections soon after the events. Following 

these developments, the author was granted access to information on both PGA and 

damage data. The scope of the first part of the research is to use these data in an attempt 
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to develop new models and examine whether these models can help enhance the level of 

accuracy of the risk assessment of the island. 

Initially, the available strong motion PGA data are presented and analyzed to produce 

new PGA attenuation curves specific for Cyprus. These models are used together with 

damage data from the corresponding events to produce empirical vulnerability curves. A 

discussion on the applicability and accuracy of the derived curves follows which will 

influence the next steps of the research. 

3.2. Description of Acceleration Data 

The majority of data used for the derivation of an enhanced PGA attenuation law were 

provided by Mr K. Solomis (Solomis K., 2002), director of the Cyprus Seismological 

Centre, to whom the author is extremely grateful. Briefly, the databank includes data 

for, 

• The location and soil characteristics at the accelerometer stations 

• The magnitude of the events and the number of PGA readings from each 

event 

• The PGA recordings at each station from all the events 

Table A-I in Appendix A provides the location, coordinates and description of the 

geological conditions of the eleven stations considered in this study. The locations of 

the instruments were selected to cover the most seismically intense zones of Cyprus. 

Most of them are located in the basements of low-rise reinforced concrete (RC) 

buildings to avoid spectral amplification due to the structural response. 

The instruments are placed on locations with different geological conditions ranging 

from soft soils to hard rock. The classification of soil conditions, shown in the last 

column of Table A-I, follows the simple procedure proposed by Theodulidis and 

Papazachos (1992) which uses a dummy variable S with values in the range of s=o (soft 

soils) and S=I (hard rock). 

To get a more refined classification for the intermediate geological formations. a table 

was produced based on expert engineering judgment (Cripps, 1999). Table A-2 includes 
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the majority of the geological conditions present in Cyprus as defined by the geological 

map of Constantinou (1997) and an S-value was assigned according to the concentration 

of rock and soft soil in each formation. 

Table A-3 includes the epicentral locations and magnitude of recorded data of 

earthquakes with Ms ~ 4 occurring after 1995, for which acceleration readings were 

available. The magnitude data were obtained in local magnitude ML and were 

transformed to surface magnitude Ms using equation 3-1 proposed by Kythreoti (2001), 

eq.3-1 

The use of Ms for the magnitude parameter is in line with Ambraseys (2002) and 

Theodulidis and Papazachos (1992) for low seismicity areas. 

The number of readings recorded by accelerograms per earthquake is also shown in the 

last column. All of the events are utilised in the attenuation study, but only data from 

the two most destructive events (marked with *) are used for damage assessment later 

on. Only data from earthquakes of Ms ~ 4 are included in the study to avoid 

overestimation of small magnitude earthquakes (Theodulidis and Papazachos, 1992 and 

Ambraseys and Bommer, 1991). 

Table A-4 provides data for the maximum horizontal component of PGA recorded at 

each station and the corresponding Modified Mercali Intensity (MMI) at the recording 

station as estimated by the local Seismological Centre for the various events. The first 

column relates the readings to the corresponding events in Table A-3. Additionally. the 

epicentral distance and depth of the earthquakes are provided since they are key 

parameters for PGA attenuation relationships. 

Before undertaking regressIon analysis of the data the suitability of the existing 

attenuation relationship developed by Theodulidis and Papazachos (1992) for Greece 

and used by Kythreoti (2001) for Cyprus is examined. The data for the independent 

variables (Ms, Rand S-value) and dependent (PGA) variables of the regression are 

listed at Table A-4. 
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3.3. PGA attenuation relationship by Theodulidis 

The data are used to test the relevance of the existing attenuation relationship for 

shallow earthquakes (eq.3-2) derived by Theodulidis and Papazachos (1992) for the area 

of Greece. 

In PGA = 3.88 + 1.12Ms -1.65In{R + 15)+ 0.41S + O.71P eq.3-2 

Where: 

PGA Peak Ground Acceleration, 

Ms Surface Magnitude, 

R Epicentral distance, 

S Surface geology parameter, 

P Error parameter 

The data sets for each earthquake event, listed in Table A-4 (Ms, Rand S-value), were 

substituted into equation 3-2 to obtain the predicted values for PGA (in cm/sec2
). The 

variable P in the equation represents the standard error of the logarithm of the PGA and, 

if it is set to zero, the equation outputs the mean value of the logarithm of the PGA. At 

the extremes of the distribution, P takes the value of ± 1, which correspond to ± 1 cr 

accuracy level of the normal distribution of the residual error. In this study, only the 

mean values (P=O) of the logarithm of the PGA are calculated and used in the 

comparison with the observed values. Figures 3.1 and 3.2 show the results of the 

comparison. The first two figures indicate an increase of the residual error (observed 

PGA-calculated PGA), with regards to the surface magnitude and the distance. The 

influence of the two earthquake parameters (Ms, R) on the residual error is significant to 

deserve some attention. Therefore, since the mathematical model of the relationship is 

sound there is a need only for a minor modification of the relationship to reflect better 

the local geology of Cyprus. 
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3.4. Derivation of enhanced PGA relationship 

The mathematical model used by Theodulidis and Papazachos (1992) for regression 

analysis for the derivation of PGA attenuation relationship is shown below. 

Where: 

SI 

eq.3-3 

the ground parameter. such as intensity. peak ground acceleration. \elocit) 

or displacement, spectral values of the ground motion and the duration of 

the motion, 
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R 
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O'jnY 

P 
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the surface magnitude (Ms), 

the epicentral or hypo-central distance, 

the soil classification parameter (zero for alluvial site and 1 for hard rock), 

the residual error, 

zero for the mean value and ± 1 for standard deviation values 

the regression constants. 

All data (Ms, R, and S-value) to be used in the regression procedure are shown in Table 

A-4. The value of C4 is treated deterministically as prescribed by Theodulidis and 

Papazachos (1992) who proposed the value of 15 after a parametric study in an attempt 

to minimise the residual error (O"lnY) in PGA. This value was found to be close to the 

mean depth of earthquakes in the region. The same value is used in this study since, 

according to Table A-4, it is a good approximation of the mean depth observed from 

past seismicity in Cyprus (16km). Hence, the final regression equation is shown in 

equation 3-4. 

eq.3-4 

The regression analysis for the scaling coefficients Cj, C2, C3, and C6 is based on a simple 

and effective procedure developed by Theodulidis and Papazachos (1992). The two 

independent variables of magnitude and distance are regressed against PGA separately 

in two stages. This is to decouple the determination of the magnitude dependence from 

the determination of the distance dependence. The coefficient of geometrical attenuation 

rate (C3), and the scaling coefficients of magnitude (C2) and soil conditions (C6) are 

recalculated twice at four steps aiming to minimise the residual error in PGA. 

The rest of the section provides a detailed description of the steps involved in 

Theodulidis and Papazachos (1992) regression procedure which is outlined in Figure 

3.3. 
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Mathematical model 
S1 = C I + C 2 M + C 3 In (R + C -I ) + C 5 R + C 6 S + (J In Y P 

~ 
Regression of PGA data vs. Ms, Rand S 

~ 
STEPAand C 
Calculation of geometrical attenuation rate (C3). 

LnPGA = C II + C 21 M + C 31 Ln (R + 15) 

LnPGA - C 22 M - C42S = C I3 + C33 Ln(R + 15) 

~ i 
STEPB and D 
Calculation of Ms (C2) and S (C6) scaling coefficients. 

LnPGA - C 3 ILn (R + 15)= C I2 + C 22 M + C 42 S 

LnPGA - C 33 Ln{R + 15) = C'4 + C 24 M + C 44 S 

~ 
Derived PGA attenuation equation for Cyprus 

LnPGA = 0.405 + 1.596M s -1.301Ln(R + 15)+ 0.484S + 0.54P 

Figure 3.3 Summarised schematic of the methodology for PGA attenuation 

equation. 

STEP A. The data in Table A-3 are initially substituted into the first equation in Step A 

and C to obtain the regress ion equation 3-S. The first estimation of the geometrical 

attenuation rate (C 31 = -1.228) is obtained from this equation. 

LnPGA = - 0.124 + 1.68SM -1.228Ln{R + IS) eq.3-S 

STEP B . The value of C 31 (-1.228), obtained in Step A, is substituted into the first 

equation in Step Band D which is regressed against the same data. The resulting 

regression equation (eq.3 -6) is used to obtain an initial estimation of the scaling 

coefficients of magnitude (C22=1.S67) and soil conditions (C42=0.444). 

LnPGA = -1.228Ln{R + 15) = 0.273 + I.S67M + 0.444S eq.3-6 



Chapter 3 Empirical Risk Assessment 

STEP C. The geometrical attenuation rate is recalculated by substituting the scaling 

coefficients for magnitude and soil conditions calculated in Step B into the second 

equation of Step A and ~. The resulting regression equation (eq .3-7) provides the final 

value for the geometrical attenuation rate (C33=C3=-1.301), which will be substituted in 

the mathematical model. 

LnPGA-l.S67M -0.444S = 0.S43+-1.301Ln(R + IS) eq.3-7 

STEP D. The final geometrical attenuation rate (C33) is substituted into the second 

equation in Step Band D, which is regressed against the same databank. The resulting 

regression equation (eq.3-8) is used to obtain the final scaling coefficients for 

magnitude (C24), soil conditions (C44) and constant C]4, which corresponds to C] in the 

mathematical model. 

LnPGA -1.30 lLn(R + IS) = 0.40S + I.S96M + 0.484S eq.3-8 

The scaling coefficients C]4, C24, C33, and C44 are now substituted into the mathematical 

model (eq.3-3) and the predictions of the model are compared to the corresponding 

observed values of PGA (see section 3.4.2) to obtain the residual error for each 

prediction (O"lnY)' The standard deviation of the residual error is added in the 

attenuation model as a fraction of a dummy variable P, which is equal to zero for mean 

values and P=±I for ±lcr (standard deviation). Thus, the refined attenuation equation is 

shown below, 

LnPGA = 0.405 + 1.596M s -1.30ILn(R + 15) + 0.484S + 0.54P 
em 

(-) eq.3-9 
S2 

3.4.1 Comparison of predicted to observed PGA 

In this section, the predicted PGA values for all earthquakes in the databank (Table A-4) 

are compared with the corresponding observed data to obtain the distribution of the 

residual error defined as the difference between observed and predicted PGA' s. The 

residual error in the predicted PGA values is plotted against the magnitude (Ms) and the 

distance of the corresponding earthquake (Figure 3.4). In both cases the trend-line as 
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expected coincides with the x-axIs indicating that the error does not increase with 

increased magnitude or distance. In addition the peak values are slightly smaller than 

the ones obtained using the Theodulidis and Papazachos (1992) relationship developed 

for Greece. The frequency of the residual error is approximated by a normal distribution 

with mean (f.l) equal to zero and a standard deviation (cr) equal to 0.54 (Figure 3.5), 

which is substituted in the final attenuation equation (eq.3-9) . 
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Figure 3.5 

Empirical Risk Asse sment 
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3.5. Relationship between PGA and MMI 

A relationship between PGA and MMI also proposed by Theodulidis and Papazachos 

(1992) was used in the earthquake risk assessment (ERA) framework (EQ-RACY) by 

Kythreoti (2001). This equation was derived through a two step regression analysis 

using equations 3-10 and 3-11 and this approach is followed in the following using the 

field data. In the first step, the data in Table A-4 are used in the regression process of 

eq.3 -10 to obtain the values for the regression constants (b'
J and b2). The value of b2 

substituted in eq.3-11 and the regression is repeated to obtain the final value of constant 

b l and the scaling coefficient for geology (b3). The final form of the derived relationship 

using the field data from Cyprus is shown in eq.3 -1 2. As in the case of PGA the 

standard deviation of the residual error (observed minus predicted) is added as the last 

parameter in the equation as a function of a dummy variable P. 

LnPGA = 0.18 + 0.63MMI + 0.31S + 0.27P 

eq .3-10 

eq .3-1 I 

eq.3 -12 

The compari son of the predictions of equation 3-12 with the obse rved data is shown in 

Figure 3.6. It can be seen that the deri ved equation (eq3-1 2) agree wi th the fie ld data in 

a sati sfactory manner. The deri ved equation is a sl ight im provement on the mean 

predictions of the relationship proposed by Theod ul id is and Papazachos ( 1992) ~ r 

Greece and used b Kythreoti in the ERA framework for C pru 
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The new equation 3-12 together w ith eq.3-9 w ill be adopted fo r use in the ERA 

framework for the estimation of seismic risk for Cyprus. 

Figure 3.6 Relationship between PGA (in cm/sec2) and MMI 

3.6. Empirical vulnerability -Introduction 

The second part of this study will focus on the assessment of existing damage data from 

the two most recent destructive earthquakes in Cyprus (No.1 and 4 in Table A-3) for use 

in the derivation of empirical vulnerability curves for buildings in Cyprus. Table A-5 

shows a representative sample of the data used for this purpose. The data were collected 

by the ERS during site inspections, and cover the district areas of Limassol and Paphos. 

All damage data are expressed in Cypriot Pounds per square metre (CY£/m2) in 1997 

and 2000 for earthquakes I and 4, respectively. 

The magnitude and epicentral locations of the two earthquakes are shown in Table A-3. 

Data from the first event cover both the affected areas of Paphos and Limassol , whereas 

data from the latter were from the affected area of Limassol. 

The following section presents the format of the damage data and the class ification 

scheme of the building inventory . 
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3.7. Data classification 

The information about the location, building type, and repair cost is provided for the 

whole of the databank, whereas data regarding the dynamic properties (number of 

floors) and construction year are only provided for a limited number of data. Therefore, 

the building stock is grouped in a rather simplistic manner using the single criterion of 

building type. The influence of the construction material is the single most important 

factor affecting the vulnerability of a structure mainly because of the variation in 

structural capacity, weight and stiffness. A more refined classification scheme 

accounting for the height of the buildings and level of design practice was not possible 

due to the lack of data. 

3.S. Identification of damage grade 

The vulnerability of the building stock is expressed USIng the ratio of repair to 

replacement cost denoted by Whitman (1974) as the damage ratio (DR). A previous 

study funded by UNOPS and conducted by the Technical Chamber of Cyprus (2003) 

used the damage databank from recent seismicity in Cyprus to assign repair cost per 

square meter to each damage grade (DG) as defined in the European Macroseismic 

Scale (EMS, 1998). The description of each damage grade for both RC and Masonry 

buildings is shown in Figures A-I and A-2 respectively. The resulting cost of repair per 

square meter for RC and Masonry buildings in Cyprus is shown in Tables 3.1 and 3.2, 

respectively. These values are based on repair costs based on 1997 values. 

Unfortunately, it has not been possible to obtain information on the number of buildings 

used to derive these repair values, but in the absence of more refine data, they will be 

adopted for the derivation of empirical vulnerability curves. 

Table 3.1 Repair costs/m2 for each DG for RC buildings in Cyprus (1997 prices) 

Damage Grade 1 2 3 4 5 

CY£/m2 2 10 30 50 400 

Table 3.2 Repair costs/m for each DG for Masonry buildings in Cyprus (1997) 

Damage Grade 1 2 3 4 5 

CY£/m2 5 1 1 50 80 300 

40 
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The corresponding average replacement cost per square meter for RC buildings for the 

same year was CY £312 as obtained from data of the Statistical Service of Cyprus 

through a personal communication with Kypridakis (2003). It is interesting to observe 

the fact that for RC buildings the replacement value is less than the repair value at 

damage grade 5 (Table 3.1), which corresponds to collapse of the structure. In the case 

of masonry buildings the maximum repair was considered to be CY£300/m2 and this 

value was adopted as the replacement value since most collapsed masonry buildings had 

to be repaired since replacement can not be achieved. The corresponding DRs for each 

damage grade are shown in Tables 3.3 and 3.4. 

Table 3.3 DR for each damage grade for RC buildings (account for 1997) 

Damage Grade 

DR(%) 0.63 

2 

3.2 

3 

9.6 

4 

16 

5 

128 

Table 3.4 DR for each damage grade for masonry buildings (account for 1997) 

Damage Grade 

DR(%) 

1 

1.67 

2 

3.67 

3 

16.67 

4 

26.7 

5 

100 

The DR of each damage grade can now be used for the derivation of empirical 

vulnerability curves. 

3.9. Empirical Vulnerability curves 

The first step towards the derivation of empirical vulnerability curves requires the 

determination of the hazard level (PGA) at each location in the damage databank. For 

this step, the previously derived PGA attenuation model is utilised. The Cartesian 

coordinates of the centre point of the all villages and municipalities were provided by 

Kythreoti (2001), along with the corresponding ground conditions expressed in an S

value. It is assumed that the same PGA applies for the whole village or municipality. 

In the second step, the repair cost per square metre is computed for each building in the 

databank. Based on the threshold values (Tables 3.1 and 3.2) for each damage grade, the 

percentage of damaged buildings in each damage grade is calculated for each PGA 

level. The matrix of the percentage of buildings in a particular damage grade and PGA 
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level is referred to as Damage Probability Matrix (OPM). The OPMs as computed 

herein for Cyprus for RC and Masonry buildings are given in Tables 3.5 and 3.6. The 

recorded PGA values at the areas with damage data are listed on the first row of the 

matrix. Each column represents the percentage of damaged buildings at the 

corresponding damage grade. 

Table 3.5 DPM in % values for RC buildings in Cyprus 

Damage Peak Ground Acceleration (g) 
Grade 

0.11 0.12 0.13 0.15 0.17 0.25 

1 0.43 0.3 0.23 0.21 0.14 0.09 

2 0.51 0.6 0.65 0.65 0.65 0.45 

3 0.09 0.1 0.12 0.14 0.21 0.45 

4 0.01 

MDR 2.78 3.08 3.38 3.56 4.19 5.99 

Table 3.6 DPM in % values for Masonry buildings in Cyprus 

Damage Peak Ground Acceleration (g) 

Grade 0.11 0.12 0.13 0.15 0.17 0.25 

0.4 0.285 0.125 0.145 

2 0.4 0.4 0.33 0.36 

3 0.2 0.3 0.51 0.45 

4 0.015 0.033 0.03 

5 0.017 

MOR 5.47 7.34 10.80 12.74 

.+2 



Chapter 3 Empirical Risk Asse smenf 

The percentage of buildings in each damage grade for the range of PGA values can be 

plotted directly from the DPM. The results for RC buildings are shown in Figure 3.7. 
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• 
• 

0.12 0.14 0.16 0.18 0.20 0.22 0.24 
PGA(g) 

Percentage of buildings for each damage grade (DG) for the range of 

PGA values. 

The vulnerability (Mean Damage Ratio) of each building type for the range of PGA 

values obtained can also be derived from the DPM as shown in eq.3-15. 

4 

MDRlPGA= LOR; =DRi x (% of damaged buildings) eq.3-15 
;=1 

Where: 

DRi damage ratio of damage grade i (found in Table 3.3 and 3.4) 

The derived empirical vulnerability curves for RC and Masonry buildings in Cyprus are 

shown in Figure 3.8. 
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Figure 3.8 Empirical vulnerability curves for RC and masonry buildings for Cyprus 

3.10. Discussion on the Vulnerability Results 

It should be pointed out that the newly derived vulnerability curves were obtained fro m 

a limited data set and cover mainly a small range of PGA levels (0 .11 g-0.17g) since 

only one set of data is available for moderate PGA leve ls (PGA=0.25g). It is obvious 

from Figure 3.8 that masonry buildings are more vulnerable than RC ones. However, it 

is not possible to tell from Figure 3.7 how structural damage (OG3) will progress after 

0.25g since the curve could climb rapidl y. Therefore an analytical in vestigation of the 

behaviour of buildings at higher PGA levels needs to be undertaken to complete the 

distribution of the vulnerability curves. The rest of the work will aim to derive 

analytical vulnerability curves for several classes of RC buildings. 
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Chapter 4 

Structural Modelling 

4.1 Introduction 

The initial objectives of the research relating to improving the attenuation and 

vulnerability models using empirical data was completed in the previous chapter. 

Though a considerable enhancement was attained in the hazard model based on the 

seismic data, very limited conclusions were drawn from the damage data regarding 

vulnerability. To enhance the risk assessment procedure, it is therefore necessary to 

focus on the vulnerability models by adopting a more theoretical and thus more 

challenging approach through analytical vulnerability. The outcome of this work should 

lead to MDR curves at different PGA levels. 

The framework for the derivation of analytical vulnerability curves presented herein 

requires the determination of the following: 

• Appropriate structural analysis modelling. 

• Suitable analytical tool able to simulate all the anticipated failure modes. 

• A procedure capable of determining the damage potential for various seIsmIC 

scenarios and that takes into account the probabilistic nature of the problem. 

This chapter will focus on selecting an appropriate structural analysis tool with suitable 

element models in order to assess and verify their capability against experimental data 

obtained from full-scale seismic tests. 
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4.2 Background on Analysis and Modelling 

Following the development of capacity-spectrum method in the mid 1970s (Freeman, 

1975) static nonlinear analysis has become the main alternative for performance 

evaluation purposes since it provides a simple and effective alternative to complicated 

non-linear time-history analysis. This method is discussed in a subsequent chapter, but 

in brief, it compares the nonlinear capacity of the structure with the reduced force-based 

demand from a seismic event to evaluate the performance of the structure for the 

particular event. 

The most important parameter for the accurate simulation of the nonlinear seIsmIC 

behaviour of RC frames is the modelling of the structural elements. To address the 

modelling deficiencies of previous work in this field it is necessary to select element 

models that can simulate any possible damage potential. A brief outline of possible 

damage on RC frames includes: 

• Cracking of concrete in tension 

• Plastic hinge formation through yielding of reinforcement 

• Slip of the reinforcement due to excessive bond deterioration 

• Shear failure due to 

o inadequate shear reinforcement 

o inadequate spacing of the shear links 

o diagonal compressive failure 

o cumulative deterioration 

• Local buckling of the reinforcement 

• Concrete deterioration and crushing 

It is obvious from the above and from the discussion in 2.3.3.2 that realistic RC 

modelling should cover flexural, shear and bond failures in members and joints. The 

remaining part of this section discusses the issues concerning each failure mode and 

proposes the corresponding requirements for their appropriate modelling. 
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4.2.1 Lumped plasticity constitutive models 

In most frame analysis tools nonlinearity is added to the element through finite hinges at 

the element ends with lumped plasticity moment-rotation models that accounts for the: 

• formation of plastic hinges at member ends 

• dissipation of energy in the hinges 

• ductility of the members 

An example of a simple lumped plasticity element as introduced by Clough and Johnson 

(1965) is shown in Figure 4.1, which consists of two parallel sub-elements, an elastic

perfectly plastic element to represent yielding and a perfectly elastic one to represent 

strain hardening. The response envelop is formed by the addition of moments from the 

two sub-elements for every increase in rotation. 

Figure 4.1. 

p+q=1 

k=EI 

''''''-'-'-'-'Pk-
-.-.--,-.--'~-""-"--"--- ---~ 

MA r..-- .. ~ ~. ___ -:\ Me 
-----............----~-. A B 

Elasto-plastic component 
(1-p)k 

elastic component 
pk 

Clough and Johnson lumped plasticity element 

Considerable improvements in lumped plasticity constitutive models have been 

proposed to date accounting for cyclic stiffness degradation and pinching in flexure and 

shear (Takeda et aI., 1970 and Brancaleoni et aI., 1983) shown in Figure '+.2 and fixed 

end rotations at the beam-column joint interface due to bar pullout (Taucer. F., 1991. 

Deng Chang-Gen et aI.. 2000 etc.). 
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(a) (b) 

Figure 4.2. (a) Stiffness degradation with shear deterioration, and (b) Takeda 

hysteretic model 

Ghobarah et al (1999) moved a step further by producing separate lumped plasticity 

constitutive models accounting for several softening effects, which can be used both for 

element and joint modelling (Figure 4.3). 

Figure 4.3. 

lVbrn.ent lVbrn.ent 

lVbrn.ent 

Hysteretic modelling of the moment-curvature relationship (Ghobarah, 

1999) 

However, even sophisticated constitutive moment-rotation models such as the above are 

insufficient since they need to be calibrated against experimental cyclic testing data. 

The analytical definition of these constitutive models becomes difficult due to the 

combination of different effects such as flexure. shear and bond. Therefore though they 

provide direct control on the strength capacities, initiation of degradation and 
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degradation rate at the global level, the question is how to obtain this information. An 

additional limitation is that lumped plasticity at element ends is just an approximation of 

the true plastic hinge zone, which may distribute considerably both in the member and 

in the joint. 

4.2.2 Resistance models 

Another approach for determining element behaviour is to utilise resistance models for 

each potential failure type. 

4.2.2.1 Flexure 

To increase the accuracy of flexural behaviour modelling a multi-section (fibre) analysis 

element which enables distributed plasticity needs to be introduced. The element should 

be able to produce the moment-curvature envelopes and interaction diagrams using only 

the cross-section details and material properties. In addition, the element should provide 

the user with the capability of decoupling the effects of various failure modes. 

4.2.2.2 Shear 

Most studies treat shear deformations in an elastic manner and assume abrupt shear 

failure when the shear capacity is reached in members (Dymiotis, 1999). Although this 

is a conservative assumption, it is not a realistic one since shear failure may exhibit 

different post-peak characteristics. In particular, shear failure in joints is not discussed 

in any of the recent vulnerability studies although it is a very common failure mode for 

sub-standard construction. This is due to the fact that in most cases no shear links were 

placed in the joint region (due to practical reasons), and also due to the fact that in most 

cases the joint capacity is less than that of the corresponding of the beam. 

Experiments in joints conducted by numerous researchers show that the degradation rate 

can lead to gradual strength loss for up to considerable deformations as shown in 

Figures 4.4 (Biddah and Ghobarah, 1997) and Figure 4.5 (Walker, 2001). Even in the 

case of no shear reinforcement as in the case of Figure 4.4 (b) degradation is not 

immediate and there is some level of residual strength. 
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Figure 4.4. (a) Shear failure after reinforcement yielding and (b) no shear in joint 

and poor anchorage of reinforcement (from Biddah, 1997). 
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Figure 4.5. Hysteretic response of damaged joint (after Walker. 2001) 
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4.2.2.3 Bond 

Most studies fail to address bond issues at all, mainly due to lack of suitable models, but 

also due to underestimation of its importance. The flexural forces from beams and 

columns cause tension and compression forces in the longitudinal reinforcement passing 

through the joint. Bond stresses increase as the force in the bar increases up to the yield 

level. When the longitudinal bars passing through the joint are stressed beyond yielding, 

debonding along the bar can cause the deterioration of bond between steel and concrete. 

This deterioration may cause slip which can contribute to additional apparent flexural 

deformations. A typical steel stress versus slip behaviour for column bars with 

inadequate anchorage length in shown in Figure 4.6. Kwak and Filippou (1990) 

analysed the deformations on an interior joint and concluded that bond-slip of the 

reinforcing bars in the joint contributed approximately 33% of the total deformation 

near the ultimate load. Sezen (2002) also monitored slip deformations on columns and 

concluded that these contribute between 25-40% of the total lateral displacement 

(Figure 4.7). Slip of the reinforcement is only prevented by providing adequate 

development length and confinement detailing in the lapping regions placed outside the 

yield penetration zone, which is defined as the length of the reinforcement bar expected 

to reach yielding. 

:I -
I 
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-0.1 ~.08 .(J.()6 .(J.(M.(J.()2 0 om 0.04 0.06 0.08 0.1 
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Figure 4.6. Experimental stress-slip response of anchored reinforcing bar under 

cyclic push-pull (Viwathanatepa, 1979) 
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Figure 4.7. 
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Contribution of flexure, shear and slip deformations to total column 

displacements (from Sezen, H. , 2002). 

4.3 Choice of Analytical Tool 

The issues addressed in the previous paragraphs regarding the member and joint 

response lead to the conclusion that sophi sticated mode lling needs to be used in order to 

improve the estimation of structural performance. After a wide literature search and 

consideration of available resources it was decided to use DRAIN-3D frame analys is FE 

software (Prakash, 1994) as it includes local elements with degradation characteristics 

fulfilling the requirements discussed above. It should be noted that the 3D vers ion is 

preferred to the 20 since it includes a cyclic shear element. Besides having an extensive 

element library (Powe ll , 1994) and access ible source code it has been wide ly used for 

both dynamic and static analyses (Dymioti s, 1999, Deng, 2000, Rubiano, 2001 , Shin, 

2004, Karayanni s, 2005 , etc.) and proven to have a reliable solver (good convergence). 

Its main drawback is that it lacks a user friendl y visua l interface, which makes it 

difficult to work with. 

The following paragraphs describe the elements used both for member and joint 

modelling based on the requirements set above. 

4.3.1. Drain-3D (Flexure) 

The element library of DRAIN-3D includes a section ana lys is element (e lement 15). 

which is used to model the fl exural behaviour of beams and co lumns. This element can 

have ri gid zones (to simulate joints) and deformab le reg ion. Withi n the length of the 

deformable region the element has di stributed plasticity accounting for the pread of th 
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inelastic behaviour both over the cross section and along the member length (Powell 

and Campbell, 1994). It also accounts automatically for the interaction between axial 

force and bending in columns (M-N interaction). 

A schematic representation of the element is shown in Figure 4.8. Each cross-section 

comprises of a number of concrete and steel fibres. The location of each fibre depends 

on a local axis system defined at the beginning of the analysis. The cross-section 

characteristics are defined by assembling these fibres based on their coordinates and 

sectional area. The response of each fibre is concentrated at its centre of gravity. As a 

result, the stiffness and strength of the section depends on the number and location of 

the fibres. A dense rectangular grid discretization increases the accuracy in the flexural 

capacity predicted by the section analysis routine of DRAIN-3D. but is computationally 

more intensive. 

Figure 4.8. 

NodeJ 

Optional connection mnp 
(also made up offiben) 

51 j c:e Fi her 

Section analysis element (Prakash, 1994) 

The deformable part of the element can be divided into a number of segments. The 

cross-section properties are assumed to be constant within each segment, but can vary 

from segment to segment if required. The behaviour is monitored at the mid point of 

each segment and accounts for the spread of the inelastic behaviour both over the cross 

section and along the member length (Powell and Campbell, 1994). A study conducted 

by Isakovic and Fischinger (1998) investigated the effect of the number and length of 

segments required to accurately simulate the distribution of rotations along the element 

length and concluded that the plastic hinge regions at member ends could be modelled 

as separate single segments. Division of the plastic hinge in a number of smaller 
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segments seems to have little effect on the element res ponse. It has also suggested the 

use of one segment that can even be elastic for the length of the element outside the 

plastic hinge regions. 

4.3.1.1 Material Modelling 

The material library includes both concrete and steel models. The backbone cur es for 

both models are shown in Figure 4.9. In both cases, the element allows for the use of up 

to 5 stress-strain points for the curve definition. In the case of concrete, two additional 

points can be added to account for its tensile strength. As far as the "post-y ield" 

behaviour is concerned, kinematic strain hardening can be assumed for steel and 

strength deterioration for concrete. Although the concrete model allows for intermediate 

and full degradation in unloading stiffness it was proven by Isakovic and Fi schinger 

(1998) that only the full degradation option actuall y works. However, stiffness 

degradation can also be modelled through connection hinges as discussed later. 

Compressive 
Stress 

E2T 

sn 
EJC Stra in 

Stress Steel 

E1 E2 

Figure 4.9. Concrete and steel stress-strain envelopes 

4.3.2. Drain-3D (Anchorage) 

E3 Strain 

Element 15 (used above for flexural behaviour) is al so capable of modelling slip 

deformations at connection hinges at element ends. These connection hinges are defin ed 

as fibres having both pullout and gap characteri stics. Pullout fibres can mode l slip 

movement of the reinforcement bars whereas gap fibres are used to accoun t fo r gap 

opening of concrete. Therefore, pullout and gap fibres replace stee l and concrete fib res 

at member ends, and are mode lled based on the connecti on hin ge properties as 

explained in more detail be low. 
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4.3.2.1 Pullout Fibres 

This section starts with the description and calibration of the bar pullout hysteretic 

behaviour model included in DRAIN-3D. The monotonic stress-displacement envelope 

consists of trilinear tensile and compressive portions representing the relationship 

between slip in bar reinforcement with increased bar stress (as shown in Figure 4.10). 

Stl'e -,-, 
~ . ss 

S2T I----_~t~ 

S 1 T 

Displacenlent 

S l C 

K:.:L_~---iS2C 

Figure 4.10. Trilinear backbone curve of pullout fibre 

The stiffness of the trilinear portion is the same in both tension and compression whi le 

the strength may vary. The calibration of the trilinear envelope is discussed in detail 

later in the section. 

Further to the monotonic envelope, the complete hysteretic behaviour of the fibre can be 

modelled with the definition of degradation parameters account ing for the effects of 

repeated loading and unloading cycles. These parameters are capable of capturing 

degradation in strength, stiffness and pinching behaviour in the unloading branch of 

each cycle. 

The process for applying degradation starts with the decomposition of the trilinear curve 

(F igure 4.10) into two bilinear curves and an elastic curve act ing in parallel as shown in 

Figure 4.1 I a. Stiffness degradation factor (SDF) controls the unloading/reloading 

stiffness of the bil inear curves (see Figure 4.1 I b). A va lue between zero and one i 

spec ified for the degradation. No degradation of stiffness occurs if a va lue of zero i 

given (unloads at initial stiffnes ) while a va lue of one causes the cur e to un load along 
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a line passing through the point where the curve last crossed the zero stress axis (Figure 

4.11 b). Values between zero and one cause a linear interpolation of the stiffness 

between the two extremes. 
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Figure 4.11. Pullout fibre degradation properties (a) Basic trilinear curve decomposed 

in three parallel components, (b) Stiffness degradation factor (SOF), (c) 

Strength loss in each component depends on strength degradation factor 

(STOF or SCOF) and the ratio of accumulated plastic displacement to 

saturated displacement (ST or SC), and (d) Pinch factor (PF), pinch 

strength factor (PSF) and plateau factor (PPF). 

Strength loss in each component depends on the strength degradation factor (STOF or 

SCOF) and the ratio of accumulated plastic displacement to saturated displacement (ST 

or SC) (Figure 4.11c). STOF is treated as a dummy variable in the model taking values 

of 0 and 1 for no and full degradation. Thus, degradation rate is controlled only with the 

ST and SC values, which correspond to bar slip in tension and compression at full 

debonding conditions. Tensile plastic slip causes compressive strength degradation and 

vice versa. The strength degrades linearly between zero loss below capacity stress to full 
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loss at saturated plastic slip (ST or SC). Despite the wide spectrum of pullout tests in the 

literature it was decided that the most comprehensive set of slip values for the definition 

of ST and SC can be found in the CEB (1993) model, which account both for 

confinement conditions in the anchorage region and quality of bond conditions. 

Pinching behaviour is controlled by three parameters (see Figure 4.11 d). The first is the 

pinching factor (PF) that determines how much of the fibre strength undergoes 

pinching. The strength at which pinching occurs is controlled by the pinch strength 

factor (PSF) whereas, after pinching begins, the pinch plateau factor (PPF) determines 

the length of the plateau. A value of one indicates that the plateau extends until it meets 

the last unloading curve. Since no extensive experimental data could be found, full 

pinching degradation is modelled in subsequent analysis, which is in line with various 

models proposed by researchers in the field of bond (El igehausen, 1983, Fili ppou, 1983, 

CEB, 1993 etc.). 

Node or Zero length hinge 
Deformable 
element 

rigi d zone~_--!====-___ -tf __ -=-:-:--:::-_-:-___ -j-__ --j 
Fibre force (stress x 
area) 

Pull out fibre 

Figure 4.12. Fibre deformation (reproduced from Prakash, 1994) 

The following key parameters need to be defined for the calibration of the trilinear 

backbone curve shown in Figure 4.10 for use in subsequent analysis: 

1. The initial stiffness (K 1 in Figure 4.10) defines the bond conditions prior to 

yielding of the reinforcement (S 1 T in Figure 4.10) and it is defined as the ratio 

between steel yield strength (SIT) and elastic bar slip (see Figure 4.12). For the 

calculation of elastic slip the equilibrium of forces acting on the bar is assumed. 

Therefore, the normal force at the bar end (Figure 4.12) is balanced by the bond 

force acting on the bar circumference, which is assumed uniform, as shO\\ n in 
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equation 4-1 below. The slip caused by the normal force is assumed to be a 

function of the steel strain distribution along the bar (eq.4-2). which can be found 

by substituting fs=EsEs and As= 1t d 2 into equation 4-1 and rearranging. Thus, by 
4 

integrating the strain for the whole anchorage length (eq.4-3) the elastic slip up to 

yielding can be computed. 

4'te 
E =--x 

s dE 
s 

Where: 

fs bar stress 

d bar diameter 

fs<fy 

'te bond strength for elastic steel 

C" steel strain Us 

Es Elastic steel modulus 

anchorage length as shown in Figure 4.12 

x distance from zero strain in the bar 

Therefore, K 1 is calculated as 

SIT 
KI=----

elastic slip 

eq.4-1 

eq.4-2 

eq.4-3 

eq.4-4 

In cases where anchorage failure occurs before bar yielding, due to inadequate 

anchorage length, SIT is defined as the maximum stress that can be achieved in 

the bar for the provided anchorage length as shown in eq.4-5. 

4't I 
SIT=_e 

d 
eq.4-5 
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2. In cases where anchorage failure precludes yielding, stiffness K2 is set to zero 

whereas a model needs to be adopted for the slip in reinforcement loaded beyond 

yielding. For that purpose the distribution of bond stress in yielded steel (Ty) 

needs to be assumed. Existing nonlinear models for stress-slip found in the 

literature (Lowes et aI., 2003 and Sezen et aI., 2003) assumed a piecewise 

constant bond distribution for reinforcement in the strain hardening region, with 

bond strength lower than 't e used previously for steel in the elastic region (see 

Figure 4.13). 

Column-joint 
interface 

'ty 

Piecewise constant 
bond distribution 

Figure 4.13. Piecewise constant bond distribution for yielded steel. 

Based on this' assumption eq.4-1 is rearranged into: 

Where: 

As area of steel bar 

Eh steel hardening modulus 

Cs steel strain in the hardening region 

eq.4-6 

The nonlinear slip model, based on eq.4-6, used in Lowes et al. (2003) and Sezen 

et al. (2003) studies is shown in eq.4-7. 

eq.4-7 
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Where: 

't y bond strength in yielded steel 

Eh steel hardening modulus 

For the definition of the uniform elastic ('tJ and yielded ('t)) bond strength 

required in equations 4-3 and 4-6, proposals from various researchers are 

examined. Eligehausen et al. (1983) experimentally defined the peak and average 

value of 2.sK and 1.8K for steel moderately confined that remains in the 

elastic region. Shima et al. (1987) arrived at average bond strength of O.4K for 

yielded steel. Lehman (2000) used the values of 1.0K and O.SK respectively 

which were also adopted in Sezen (2003) study. The CEB (1993) bond model 

shown in Figure 4.14 proposes 1.oK as the ultimate value of bond strength for 

unconfined concrete in poor bond conditions and 1.25K for confined concrete 

in similar bond conditions. In cases of good bond conditions these values are 

doubled in the model. EC-2 (2004) design model for ultimate bond strength yields 

approximately a value ofO.75K for good bond conditions, which is lower than 

the CEB (1993) since it is used for design purposes. 
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Figure 4.14. Bond-slip model in CEB (1993) 

- - Unconfined- -- Confined 
concrete concrete 

Bond conditions Bone cond itIons 

Good 
All other Goo All other 
cases I cases 

s1 0.6 mm 0.6mm 1.0 mm 

s2 0.6 mm O.6mm 3.0 mrr. 

53 1,0 mm 2.5 mm clear rib spa:;mg 
,------------------------
, a I 0 . .1 o.~ 

I ,. .15 7 max .4 "max 

From the above it can be concluded that the elastic bond strength proposed b 

Lehman (2000) is in agreement to the ultimate value proposed in CEB (l993) and 

the y ielded bond strength proposed in the same stud imilar to the finding 
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from Shima et al. (1987). In addition, the ultimate design bond strength in EC-2 

lies in between of the two values proposed in the same study. As far as confined 

concrete is concerned, there is a good agreement between elastic bond strength 

values calculated by Eligehausen et al. (1983) and the peak value proposed in 

CEB (1993) for good bond conditions (2.SJf:). The average value proposed in 

the same study (1.8f( ) also lies in-between the values for good and poor bond 

conditions proposed in CEB (1993), which can be assumed to simulate moderate 

bond conditions. 

In light of the above it is concluded that in this study the values proposed by 

Lehman (2000) are used in subsequent analysis for cases of unconfined concrete. 

In cases of moderate confinement the average value proposed by Eligehausen 

(1983) for elastic bond strength will be used since it is very close to the average 

between the two values in the CEB (1993) model for good and poor bond 

conditions. In the latter case, the bond strength for yielded steel is assumed to be 

half the strength of the elastic following the pattern found in Lehman (2000) and 

the CEB (1993) model for unconfined concrete. 

In addition threshold slip values (S3) for unconfined and confined concrete, as 

shown in Figure 4.14 (CEB, 1993), are used to define the saturated slip (ST or 

SC) deformations required for the calibration of the pullout fibre model. As 

mentioned earlier, these deformations correspond to the ultimate slip prior to 

complete bar debonding and thus control the strength degradation rate. 

4.3.2.2 Reinforcement local buckling 

The pullout fibre model shown in Figure 4.10 provides an additional capability for 

modelling local buckling failures in steel reinforcement. Local buckling reduces the 

capacity of the steel in compressive loading and depends on: 

1. shear link spacing 

2. shear link diameter 

3. longitudinal bar diameter 
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The reduction In compressIve bar strength (S 1 C in Figure 4.10) is assumed to be 

linearly correlated with the ratio between the required and provided spacing (eqA-8) of 

confinement reinforcement as prescribed by Penelis (1997). 

eqA-8 

Where: 

s shear link spacing 

dbw shear link diameter 

dbl longitudinal bar diameter 

fyw shear link yield strength 

fys bar yield strength 

In sub-sequent analysis a check for the required spacing is included and the compressive 

strength of the bar is reduced accordingly. 

4.3.2.3 Gap Fibre 

Gap fibres can be used to simulate crack opening at the joint interface, which cause 

additional deformations of the joint. Gap deformations for various levels of compressive 

stress can be modelled in DRAIN-3D through the model in Figure 4.15. 

Co m pressive 
Stress 

S2C 

S1 C -

Displ acement 

Figure 4.15. Model for gap fibres 

For the purpose of this study, elastic gap deformations are assumed to be included in the 

elastic pullout model whereas after the attainment of elasti c bond stress capac ity it is 

assumed that bar slip dominates the additi onal deformati ons at the co lumn in te rfac e. 
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Thus, in all subsequent analysis the values for stiffness K 1, K2 and K3 are set at very 

high values so as not to include any deformations due to gap openings and clos ings. 

4.3.3. Drain-3D (Shear) 

The nonlinear shear behaviour of members and joints can be modelled using element 8 

in DRAIN-3D with the use of shear "hinges" distributed along the element length. 

These "hinges" account for additional elastic and inelastic shear deformations. The 

backbone curve of the element is in the form of shear force versus shear deformation as 

shown in Figure 4.16. 

Shear Force 

F2P r--~----- K3 

K2 

Defollnatioll 
Kl 

-FlN 
K2 

K3 _~----1 -F2N 

Figure 4.16. Backbone curve of inelastic shear element. 

The inelastic shear model In DRAIN-3D is used in parallel to a linear elastic mode l 

accounting for the elastic flexural deformations prior to the attainment of the shear 

capacity. There can be up to two shear hinges, for shear deformations in the two loca l y 

and z axes (Figure 4.17). The calibration of the model requires the definition of the 

shear capacity values (F1 P and F2P in Figure 4.16) and the corresponding elastic and 

post elastic stiffness (K 1 and K2 in Figure 4.16). 

Similarly to the pullout model defined in 4.3.2. 1, degradation in strength (F 1 P in Figure 

4.16), stiffness and pinching can be defined based on the hysteretic rules of shear 

behaviour. Degradation parameters are app lied using the same process as in the pull out 

hysteretic model shown in Figure 4.11. In thi s case though. strength capacity is 
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expressed in the fonn of shear force Fl P (Figure 4. 16) and displacements represents 

additional shear defonnations. 

Shear t 
force I 

Zero len h hinge 

Figure 4.17. Shear hinge deformation 

Shear clef orm ati on 

Sbear 1 
force 

Based on the experiments from Biddah (1997) and Walker (200 I) full pinching 

behaviour is assumed for the unloading curve. As in the pullout model , strength 

degradation at each cycle varies linearly with the ratio between accumulated to saturated 

shear deformations (ST and SC). Therefore, the rate of decrease in shear strength of a 

member after the attainment of ultimate shear capacity depends on the ultimate 

deformation at full shear strength loss (ST and SC). For a co lumn in a frame, thi s 

saturated deformation corresponds to the storey di splacement at which the shear 

capacity of the column approaches zero. This value depends primarily on the amount of 

shear reinforcement and on the anchorage of shear reinforcement. Inadequate anchorage 

of shear links produces abrupt shear failure , whereas detailing according to EC-8 (2004) 

allows for a more soft post-capacity degradation rate (as shown in Figures 4.4 and 4.5). 

For the purpose of subsequent analysis, thi s parameter is treated deterministica ll y as 

discussed later in Chapter 6. 

4.3.3.1 Calibration of shear model 

The monotonic envelop in Figure 4.16 provides the poss ibility of definin g bil inear shear 

behaviour prior to the attainment of ultimate shear capac ity accounting for the change in 

stiffness between uncracked and cracked conditions. Nevertheless fo r the purpose of 

thi s study it is deemed possible to di sregard uncracked cond iti ons and assume cracked 

stiffness up to the attainment of the ultimate shear capacity . Shear force capacity (F 1 P. 

see Figure 4. 16) of RC members can be obtained direct ly from design codes. I n most 

codes such as AC I (1999), S S8 )) 0 (1985) and EC-2 (2000) the main parameters 

included in the ca lculati ons are concrete strength. flexural reinforcement. ax ial force 

and size effect. Although shear capac ity mode ls in the above codes differ they are all 
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based on the assumption that concrete strength contribution can be added to the shear 

reinforcement contribution. The latest version of EC-2 (2004) uses a different approach. 

based on the strut and tie method, and uses only the shear reinforcement contribution 

after the concrete capacity is exceeded. It is believed that the latter procedure 

underestimates the shear capacity and yields unrealistic results. Great concerns were 

expressed by various researchers such as Cladera, A. and Mari, A. (2004) suggesting 

that EC-2 (2004) approach leads to considerable underestimation of the shear capacity 

for lightly shear reinforced members compared with experimental results. 

Further to the code provisions more advanced models exist in the literature accounting 

for the reduction in shear strength with increased ductility. Sezen (2004) compiled a 

database of 51 test columns having inadequate and poorly detailed transverse 

reinforcement obtained from experiments conducted by a number of researchers cited in 

Sezen (2004) to develop a shear strength model for lightly reinforced columns. The 

study also compared experimental results with analytical ones computed using FEMA 

273 (1997), ACI 318-2002 and Priestley et al. (1994) models. It was concluded by 

Sezen (2004) that although these models address most variables influencing shear 

strength, a refined model should be derived including considerations for ductility

related strength degradation and degradation due to increase in aspect ratio that are 

evident from the experimental results. The refined model proposed in the above 

mentioned study is shown in eq.4-9. The value of k accounts for the ductility-related 

strength degradation. A value between 1 and 0.7 is attributed linearly for ductility levels 

2 to 6. The ratio a is also assumed to cause a linear decrease on the shear strength, 
d 

which is verified against experimental results with a ratios from 2 to 4. 
d 

V = V + V = k _v f d +k c (
A ) (0.5K 

n s c S Y aid 

Where: 

P axial force 

k ductility-related strength degradation value 

aid aspect ratio 

Ag cross-sectional gross area 

Av shear link area 

eq.4-9 
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Although this model may serve as a powerful tool for design calculations it can not be 

used as a capacity estimation model since it depends on the ductility undergone by the 

structure. The definition of the ductility at shear capacity is not a trivial decision, which 

requires the coupling of the flexure and shear models. In order to bypass the 

uncertainties and complications related with modern code provisions (EC-2, 2004) and 

advanced model calibration (Sezen, 2004), it is decided to use the well-known and 

verified EC-2 (2000) model (similar to BS811 0) shown in equations 4-10 and 4-11, in 

combination with the provision in EC-8 (2000) for increased ductility. As a result, only 

40% of concrete contribution for DC "M" RC buildings is accounted for in the 

calculation of the ultimate shear capacity of a member (eq.4-12). 

eq.4-IO 

eq.4-II 

eq.4-I2 

Where: 

Vrdl design shear resistance without shear reinforcement 

p ratio of longitudinal reinforcement 

O'ep ratio of axial force to cross-sectional area 

V wd shear link contribution 

V cd concrete contribution 

Vrd3 design shear force of a member with shear reinforcement (F 1 P in Figure 4.16) 

Further to the definition of the shear capacity, the calibration of the monotonic envelope 

in Figure 4.16 requires the calculation of stiffness K I. The shear stiffness of a member 

depends on the shear modulus (G) of the material, the shear area of the cross-section 

and the shear span of the member. As it was stated earlier in the section, cracked shear 

area is assumed for the definition of KI, which is a realistic simplification since the 

magnitude of shear deformations prior to the attainment of ultimate shear capacity is 

very small. 

At this point the calibration procedure for each capacity model is established. In the 

next chapter an attempt is conducted to verify the effectiveness of these models and the 

applicability of DRAIN-3D based on the results obtained from a full-scale shaking table 

testing of an RC frame. 
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Chapter 5 

VERIFICATION of ANALYTICAL 

TOOL 

5.1. Data for Verification of Analytical Tool 

Drain-3D has been used extensively by many researchers in the field of seismic analysis 

(Deng, 2000, Rubiano, 2001, Shin, 2004, Karayannis, 2005, etc.). However, few 

researchers have examined the accuracy of the degradation models by using full-scale 

data, and most work has been done at the element level (Deng, 2000, Shin, 2004 and 

Karayannis, 2005). In order to address this issue the Construction Innovation research 

group at the University of Sheffield received support from the European Union 

(ECOLEADER PROJECT N° 2 - SEISMIC TESTS ON A REINFORCED 

CONCRETE BARE FRAME WITH FRP RETROFITTING, 2004) to participate in the 

full-scale seismic testing of a two storey full-scale RC frame. The testing was conducted 

at the mechanical seismic studies laboratory EMSI (d'Etudes De Mecanique Sismique) 

at CEA research centre (Commissariat a l'Energie Atomique) in Saclay, Paris (Chaudat, 

2005). The aim of the project was to assess different strengthening strategies and 

techniques on a damaged RC frame. Therefore, the frame was intentionally designed for 

low seismic loading, with poor detailing and no capacity design considerations. Tests 

were initially conducted on the bare frame and were repeated after the damaged frame 

was retrofitted using FRP sheets. 

For the purpose of the verification of the degradation models in DRAIN-3D the results 

obtained during the testing of the bare frame are used. The following section gives 

details of the frame and the results of the tests. 
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5.1.1. Design Details of the frame 

The geometry of the frame is summarised as follows: 

• Total height of the specimen: 6.87m 

• 4 square columns: 260mm section 

• 2 square slabs: 120mm thickness and 4.26m width 

• 4 beams per slab: 400mm thickness and 260mm width 

The self-weight of the structure is around 20 tons. Additional masses were provided to 

the building for the testing in the form of two steel plates, with mass equal to 9 tons 

each, fixed under each slab. The detailing of the connection between the masses and the 

slabs was designed to enable the free rotation of the slab as shown in figure 5.1. In this 

way the stiffness of the plate does not prevent the slab and subsequently the beams from 

deforming. 

Distribution 
steel plate 

40 mm hole '-===""1=::1 

(a) 

Concrete 
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Steel semi 
cylinder 

Steel plate 

Figure 5.1. a) Connection detail of steel plate, and b) free rotation of the slab 

(reproduced from Chaudat, 2005) 

The reinforcement details of the members are summarised below and can be seen in 

Figure 5.2 along with a plan view of the frame. 

• Longitudinal reinforcement: 

Columns: 1st floor: 3¢14+2¢14+3¢14 

2nd floor: 2~14 + 2~14 

Beams: top and bottom: 4¢14 

• Transverse reinforcement: 

Columns: ~ 6/200 stirrups 
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Beams: ~ 8/300 stirrups 

• Slab Reinforcement: steel mesh top and bottom: ¢9 mm - 100x 100mm 

• Distance to the centre of reinforcement: 30 mm 

The reinforcement consists of Fe500-3 (equivalent to Class C in EC-2, 2004) bars. Tests 

were performed to determine the mechanical properties of 8mm and 14mm diameter 

bars . The results are shown in Table 5.1. Conventional elongation (A %) refe rs to the 

elongation at mid-point of the bar where necking occurs. It is suggested that thi s strai n 

is 2.5 times higher than the ultimate steel strain (Dritsos, 2008) which is required for 

subsequent analysis. In addition, the design compressive strength of concrete was 

20MPa. To assess the properties of concrete, 12 cylindrical concrete specimens from 

each floor were sampled during pouring and tested. The results are shown in Table 5.2. 

Figure 5.2 . 
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Reinforcement deta il s of the e lements (Chaudat et a \. . 2006) and plan 

view of the frame. 
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Table 5.1. Steel Mechanical Properties (Chaudat et aI., 2005). 

Tensile Conventional 
Diameter Yielding Limit 

(mm) (MPa) 
Strength Elongation 

(MPa) A % 

8 582 644 25 

14 551 656 23.6 

Table 5.2. Concrete Mechanical Properties (Chaudat et aI., 2005). 

Mean Compressive Tensile Resistance Elastic Modulus 

resistance (MPa) (MPa) E (MPa) 

Floor 1: 22.1 2.1 25590 

Floor 2: 19.6 2.07 23500 

5.1.2. Reinforcement detailing 

The significance of proper anchorage of longitudinal bars for seIsmIC design is 

emphasised in modern design codes EC-8 (2004). Adequate anchorage is regarded as 

the most important detailing provision in order for the reinforcement to yield and the 

element to achieve ductility. 

In the case of the Saclay frame the detailing of the columns was supposed to simulate 

detailing provided by old codes. A very short anchorage length was initially used, but 

that led to disproportional damage to the joints. As a result, the details were modified 

for the column reinforcement bar; anchorage bars were welded on short re-bar lengths. 

The beam reinforcement anchorage was provided in accordance to BS811 o. The spacing 

of the links was 200mm in the columns and 300mm in the beams in accordance to old 

construction practice. 
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Anchorage detai ls of 1 st and 2nd storey (a) beams, and (b) columns 

(Chaudat et aI. , 2006). 

The detai led drawings and in place arrangement of the anchorage arrangement at the top 

of the 15t and 2nd storey joints are shown in Figures 5.3 and 5.4. 

Figure 5.4. Detail of anchorage of column bars at the top of the storey jo ints 

(Chaudat, 2005). 
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At the base of the column the aim was to ensure fully fi xed support conditions. The 

column reinforcement was anchored by we lding at the base of a steel box, which served 

as a foundation. The steel box was 270mm deep and 700mm square in plan and was 

anchored with the use of 30mm bolts onto the shaking table platform. An additional 

measure to ensure no rotation at the column ends was the placement of a horizonta l tie 

bars (<D16) welded at the sides of the steel box as shown in Figure 5.5. 

'1; 

.-
, 

700 

Column 

Sleel hars 
<I> 1(; 

! 

-----
r' 

.....----r---~ 

c 
0. 

o ___ .. ' . r---

<1>3 1 Hole 

(a) 

'. '. . _ 1.- __ _ _ .1. , _ _ _ 

<I> 17 Holt: 

<1>1 7 Hok 
<1>:101:301 1 

. 
'-' .' , . :~ r--
N 

= = (b) 

Sleel bar <I> 14 
,'/ ... .. r; -- __ A - -

Slee l bar ' : • :: • \\'e lulIl g 
<I> 16 .. : . . 

... ---- .--

, . - - -uuuIi-

(c) 

(e) 

SIC I bo \ 

basI (d) 

Figure 5.5. (a-d) reproduced from Chaudat, 2005) , a) Pl an view of the stee l box. b) 

S ide v iew of the stee l box, c) Cross-section of a typical stee l box. d) 

Co lumn bar we lding detail into the steel base and e) Isometri c view of 

the foundation (obta ined from Chaudat. 2005). 
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5.1.3. Instrumentation 

The behaviour of the frame members was monitored both globally and locally. Both 

force and displacement readings were taken at all nodes. The force at the nodes was 

computed with the use of capacitive accelerometers whereas the corresponding 

displacements were read from the L VDT (Linear Variable Differential Transformer) 

displacement transducers fitted on a retaining wall at one side of the frame. The exact 

locations of all the transducers are shown in Figure 5.6. 

A Y1 GP2 AY2G P2 

A 
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AXTAB ..... 

B 

Left h:.nd ,; ide 

B 
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Sei!mic oaccOOcr, il'LX dhcti;,r, 

......... JIIf ...... ~ 

Figure 5.6. Location of Displacement and Acceleration transducers (Chaudat, 2005). 

All accelerometers and displacement transducers have a specific code which identifies 

their measuring direction and position . The general form is IDPF and the description 

for each letter is the following: 

I stands for type of instrumentation 

[0 = displacement transducer and A =accelerometer] 

D measuring direction [X ,Y,Z = x, y and z direction respecti vely] 

P position of the instrumentation [G = left M = middle. 0 = right] (F igure 5.6) 

F floor level [PI = floor I, P2 = fl oor 2 and if it is an intermed iate level 

POT(number) ; where number is the number of the co lumn] 
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For example, DXGP2 is a displacement transducer, in the x directi on, bonded on the left 

hand side and located on the second floor (level of the slab) of the building. It should be 

mentioned that the nomenclature was based on the French vocabulary , hence G stands 

for gauche (left) , M for moyen (middle), 0 for droite (right) , P for plancher (fl oor) and 

Pot for column. 

As far as the local response of steel bars is concerned, strain gauges were placed on 

steel bars at locations close to the joint where plastic behaviour is expected to take place 

(Figures 5.7 and 5.8). The sections in Figure 5.7 refer to Figure 5.2. These gauges also 

serve as a means to identify slip of the reinforcement. They were placed on selected bars 

with inadequate development length at a distance of 130mm from the column-joint 

interface thus they were expected to be close to the middle of a possible plastic hinge 

(Figure 5.8). 

Figure 5.7. 

Figure 5.8 . 
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.J3POT 

J4POT 

SECTION A-A 
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SECTION r-r 

COLUMN 4 

I JI POT] 
t2 PO T 

I • • • 

SECTION B-B 

J5POT 
J6 POT 
• • 

SECTION ~-~ 

Location of strain gauges on steel bars (reproduced from Chaudat, 2005) 

I 

--'---- 1 

Location of strain gauges relati ve to the co lumn-j o int interface (Chaudat. 

2005). 
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5.2. Shaking Table Tests 

During the tests on the bare frame 5-uniaxial seismic tests w ith artificial acce leration 

records and increasing peak ground acceleration (PGA) leve ls from 0.05g to O.4g were 

applied on the structure. The natural frequencies of the frame were measured before and 

after each test by white noise tests. The first and second natural frequencies of the frame 

before testing were measured as 1.9Hz and 5.6Hz respectivel y. 

The artificial acceleration signal used as input on the shaking table , was generated us ing 

as a target the Ee8 elastic response spectrum corresponding to a medium so il category 

(type e), which simulates the magnitude of the input on a structure located on medium 

dense sand. The excitation acceleration signal had a duration of 40 seconds with a 

frequency rate of 100 Hz and the spectrum of this signal , calculated with a damping of 

5%, is given in Figure 5.9. 

Log PGA (g) 

0.1 -, 

10 100 
Hz 

Figure 5.9. Spectrum of the acceleration signal (Chaudat, 2005). 

A more detailed description of the experiment can be found in ehaudat (2005). 

5.3. Observed Damage 

Five tests were conducted corresponding at each PGA level shown in Table 5.3. The 

recorded natural periods of vibration of the frame after each se ismic test, obta ined by 

low level white noise excitation , are also shown in the same table. 

The damage after eac h test was marked on the frame e lements w ith the use of marker 

lines to represent cracking pattern s. In thi s way it is easier to see the level at \\ hich 
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cracks are formed and how they deve loped as the shak ing strength increased . A general 

conclusion drawn from the damage observation is that most cracks are located close to 

the joints and very few in beams. The damage hi story after each test is discussed below. 

Cracking of the concrete was observed after the first two sei smic tests (0.05g and 0.1 g) 

as evident by the drop in frequency . During the 0.2g PGA test, di agonal cracki ng 

appeared on the 1 st floor joints along with horizontal cracking at the top interface of the 

1 st floor joint. Also, horizontal cracking was observed at the interface below the 2nd 

floor joint. Figure 5.10 shows the damaged areas after 0.2g PGA seismic test. From the 

increase in period of the structure the equivalent reduction in stiffness is around 75%, 

which indicates severe cracking and possible yielding. 

Table 5.3. Frequency change after each test (Chaudat, 2006) 

PGA (g) o 0.05 0.1 0.2 0.3 0.4 

Frequency (Hz) 1.9 1.66 1.36 1.07 .88 .68 

Natural Period (sec.) 0.526 0.6 0.74 0.93 1.14 1.47 

Figure 5.10. Damage at the column-joint interface and column length after the 0.2g 

and O.4g tests (Chaudat, 2005). 

At 0.3g some new horizontal cracks were added at the top interface of the 1
5l 

fl oo r joint. 

at the mid span of 1 st floor columns and at the base of a single column . Fi nall y. during 

the last test (O.4g PGA), cracking was visible on a column between the base and the first 

leve l. In addition, spalling of concrete at the base of the co lumn. where horizo ntal 

cracks were formed during the previous test (0. 3g PG A). was obse rved (F igure 5. 10). 
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By the last test, the structure experienced a 64% frequency decrease (245% period 

elongation), which according to damage scales included in Russian (International 

Building Codes ofNIS, 2001) and Armenian (Building Codes of Armenia, 1995) codes 

indicates severe damage (Timchenko I., 2002). A similar damage scale compiled from 

experimental results (Zembaty, 2006) quantitatively categorises this level of period shift 

in damage state five, which qualitatively corresponds severe damage at the columns and 

joints. 

5.4. Capacity-Demand 

Although the elongation in period calculated above agrees with the severity of damage 

observed, a closer examination of displacement and accelerations is expected to increase 

the understanding of the buildings' actual behaviour. For that purpose, the demand on 

the structure is compared to the capacity of its members to identify two key points: 

I. the capacity of the structure based on modem design codes 

2. the response of the structure at post-capacity demand 

In order to establish the capacity of the structure, the design moment of resistance of the 

I st floor column section is calculated based on the assumptions included in EC-2, (2004) 

concerning material safety factors (Yc= 1.5 and Ys= 1.15) and the area of the concrete 

compressive stress block. The factored axial load on the column was 135kN as a result 

of 18kN imposed and 20kN dead loading. In addition section analysis was used to 

calculate the yield and ultimate moment capacity of the same column cross-section with 

an unfactored axial load of 95kN. Using these values, the corresponding maximum 

shear force demand for each column is calculated by means of eq.5-1, which is based on 

the assumption of zero moment at the column mid-point. Therefore, the maximum base 

shear force demand for the whole frame can be found by adding the demand from the 

four columns. The capacity values for 1 st and 2nd storey columns are shown in Table 

5.4. The considerable reduction in flexural capacity of the 2
nd 

floor columns is due to 

the severe reduction in flexural reinforcement. 

2xM 
F=--

1 
eq.5- I 
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Table 5.4. Strength capacities for 1 st and 2nd floor columns. 

Md (kNm) My (kNm) Mult Fd (kN) Fy (kN) Fult (kN) 

(kNm) 

Floor 1 41 60 80 100 145.5 194 

Floor 2 25 37 46 61 90 111.5 

A backwards analysis using the Eurocode 8 (2004) relationship between base shear and 

PGA (eq.5-2) is used to calculate the design PGA based on modem design codes. 

According to Eurocode 8 (EC8:2004, equation 4.5), the base shear force is calculated as 

follows: 

eq.5-2 

Where: 

TJ fundamental period (0.526 sec) 

m total mass of the building (38 tons) 

A correction factor (A=l for less than three-storey buildings) 

Sd(Tl) ordinate of the design spectrum 

The ground is classified as ground type C and a type 1 elastic response spectrum is used 

following the relationship in eq.5-3. 

2.5 
S (T.) = a . S . -
dIg q 

Where: 

Gg design ground acceleration 

q behaviour factor (q=I.0 for elastic design) . 

S soil parameter (S=1.15 for soil type C) 

eq.5-3 
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Therefore, 

Sd(T1) = U g ·S· 2.5 ~ Sd(T1) = u
g 

·1.15· 2.5 ~ Sd(T
1

) = 2.875.u 
q 1.0 g 

eq.5-4 

By substituting Fd into eq.5-4 the design seismic demand is equal to, 

Since F d (design base shear force) ~ 100 kN as calculated before the building is 

expected to remain in the elastic range up to a PGA=O.1 g. Its post-elastic behaviour 

depends on material overstrength, design safety factors and ductility of the 

reinforcement steel. The next section examines its post-elastic behaviour by comparing 

the capacity-demand after each test. 

5.4.1 Post-elastic behaviour 

In this section the maximum shear force demand (Table 5.4) as calculated using the 

flexural capacity of columns is compared with the shear demand on columns expressed 

by the shear force time-histories at each floor. Initially, the demand values of the 0.2g 

test, at which point visible structural damage has occurred and post-elastic behaviour is 

expected to take place, are compared with the yield demand time-histories of the two 

floors (Figures 5.11 and 5.12). The shear demand on the second floor is around 11 OkN 

(Figure 5.11), which is in the range of the column yield shear force capacity. Similarly, 

the base shear force on each column is around 160kN, which exceeds the 1st floor 

column yield capacity of 145kN. In light of the above results it is safe to assume that 

steel reinforcement in columns was close to reaching its yielding capacity at the 0.2g 

test. 
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Figure 5.11. Time-history of shear force at 2nd floor after the O.2g test. 
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Figure 5.12. Time-histories of base shear force after the O.2g test. 

Similarly the ultimate shear force demand of the 1st floor columns is compared to the 

shear demand imposed during the final test (O.4g). In this case though, the column has 

not reached its ultimate flexural capacity (Figure 5.13) as it was expected due to strain 

hardening of the steel reinforcement, but remained close to its yielding capacity. Thus, a 

further investigation into this softening behaviour of the building after yielding needs to 

be conducted to identify any possible effects from failure modes other than flexure. For 

that purpose it is required to move a step further and examine local recordings from 

strain gauges, which may enlighten what happens after strain at yielding is achieved in 

the bars. 
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Figure 5.13. Time-histories of base shear force after the O.4g test. 

5.5. Strain histories 

The investigation of the local response uses the strain histories of columns after the O.2g 

test where, yielding of the reinforcement is likely to initiate. The consistency between 

strain results and displacements is checked for each test, using green and red circles to 

graphically indicate whether results are consistent or not. 

5.5.1 First storey response 

Unfortunately, only results from the 1 st storey column (strain gauge code j3pot in Figure 

5.7) were considered reliable (Figure 5.14). 
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Figure 5.14. Strain history of 1 st storey columns U3pot). 
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These show that the maximum tensile strain is still in the elastic range (less than yield 

strain). Even at higher intensity seismic excitations (Figure 5.15), no yielding of the 

reinforcement appears to happen on this side of column 3 (see in Figure 5.7). In 

contrast, yielding is attained in the reinforcement as seen from results obtained in strain 

gauge j2pot (Figure 5.16) located in the opposite side of column 4 (see Figure 5.7), 

which is expected to be in tension when j3pot is in compression. 
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Figure 5.15. Strain histories of 15t floor column 3 for O.3g and O.4g (j3pot). 
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Figure 5.16. Strain histories of 15t floor column 2 for O.3g and O.4g (j2pot). 

The ultimate strain in the yielded bars though is just above the yield strain indicating 

that no considerable strain hardening took place. To conclude the di scuss ion on the I
s l 

storey strain results , their consistency is checked against the co rresponding storey 

displacement results for the two PGA levels shown in Figure 5. 17 . The peak 

displacement values circled in green co lour in Figure 5.17 can be traced in the 
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corresponding green circles of Figure 5. 16. Hence, without further analysis it is difficult 

to conclude that there were any significant problems in thi s storey. 
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Figure 5. 17. 1 st storey disp lacement records. 

5.5.2 Second storey response 

In the absence of re liable strain resu lts for the 2nd storey columns at O.2g, the 

investigation focuses on the two remaining tests. Strain history of j8pot (Figure 5.18), 

which is located on co lumn 3 that undergoes higher tensile excitation (at the leve l of 

reinforcement above j4pot) shows yielding of the reinforcement at t=6.6 seconds, and 

further yielding at t= 12.4 seconds 
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Figure 5.18. Strain hi story of 2nd floor column 3 (j8pot) for O.3g. 

By examining the corresponding top displacement hi story. a peak displacement (green 

circle in Figure 5.19) appears to occur at the time of first yielding t=6.6 second 



Chapter 5 Verification of Analytical Tool 

second peak at 12.4 seconds also coincides with the second yielding of the bar (red 

circle in Figure 5. 19). 
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Figure 5.19. Top storey displacement history at O.3g. 

40 

Although the second yie ld displacement is higher than the first , lower extra yield strains 

were added. In addition , the strain cycles after this point are smaller than expected from 

the displacement levels observed. The combination of these observations leads to the 

conclusion that some kind of softening of the building occurs after yielding. 

The strain history of the same strain gauge at O.4g (Figure 5.20) shows the yielding of 

reinforcement also consistent with the peak displacement (Figure 5.21). However, the 

residual strain levels at subsequent yielding (red circles in Figures 5.20 and 5.21) are 

considerably lower than expected from approximately equal displacement level s as the 

first yielding, which may indicate loss of bond. 
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Fi gure 5.20. Strain hi story for j8pot at O.4g. 

8-+ 



Chapter 5 

0.25 

0.20 

I 0. 15 
'-' 

I 
0.10 

0.05 

0.00 Q. 
tj) 

Li -0.05 
Q. 

{l. -0.10 

-0.15 

-0.20 

-0.25 
Trrre (sec.) 

Figure 5.21. Top storey displacement history at O.4g. 
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30 35 40 

In order to determine if softening behaviour took place in the columns, it is necessary to 

undertake global time-history analysis with the incorporation of sophisticated models 

such as the ones discussed in Chapter 4. 

5.6. Modelling of the Saclay frame in DRAIN-3D 

The remammg of the chapter discusses the simulation of the shaking table results 

obtained from the Saclay frame testing. Due to symmetry, 2D time-history analys is is 

conducted on half the frame. This section addresses all issues invo lved with the 

modelling of the structural and dynamic characteristics of the frame based on the whole 

spectrum of modelling capabilities provided by DRAIN-3D. The final section of the 

chapter includes the comparison of the experimental recordings with the analytical 

results and the final conclusions regarding the frame response. 

5.6.1 Section modelling 

Section geometrical properties follow the dimensions given in 5.1.1. An example of the 

section di screti zation process is given in Figure 5.22 for the 1 SI floor co lumn of the 

Sac lay frame. The cross-section is divided into 4 concrete and 8 steel fibre s. Thi s 

di scretizat ion pattern of concrete fibres was determined after a small parametric study to 

simulate accu rate ly the flexural behaviour of the section . Thus a finer grid , which wo uld 

be more time consuming, was avo ided . 
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Figure 5.22. Layout of the fibre element for the 1 st storey columns 

5.6.2 Material modelling 

The stress-strain enve lopes of concrete and steel strength are shown in Figure 5.23. Five 

stress-strain coordinates are used to define the concrete compressive envelope in the 

input fi le, whereas two points are needed to represent the trilinear tensile (and 

compressive) properties of steel bars . Both models are derived using EC-2 models and 

ultimate strength values based on the material results given in Tables 5.1 and 5.2. 
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Figure 5.23. Stress-strain envelops of concrete and reinforcement steel. 

Concrete compressive stre ss value at ultimate strain depends on the le ve l of 

confinement and on the axial load (Pilakoutas, 2007). The exact crushing st ress due to 

flexure can be obta ined from sect ion ana lys is hence a lower stress va lue was used to 
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account for all possibilities and to eliminate numerical instability problems. In addition, 

modelling of the tensile properties of concrete is neglected since their effect at high 

seismic excitation levels is regarded as minimal. 

5.6.3 Moment-curvature relationships 

To verify the effectiveness of the section discretization described in 5.6.1 the moment

curvature results obtained by DRAIN-3D for the corresponding column section are 

compared to results given by a widely used fibre section analysis software XTRACT 

(lmbsen, 2002) and manual section analysis calculations based on EC-2 models. The 

cross-section characteristics are as shown in Figure 5.22. The M - ~ curves show exact 

agreement with DRAIN-3D (Figure 5.24), which verifies the accuracy of the section 

analysis element in DRAIN-3D in predicting member flexural response. 
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Figure 5.24. Comparison of moment-curvature curves for 1st floor columns. 

5.6.4 Modelling slip deformations 

The need to include additional deformations due to bar slip was identified in 5.5. Based 

on the findings from the local strain response analysis, softening of the structure due to 

bond slip was suspected in the columns of the 2nd storey. The softening effects were 

activated after the yielding of the reinforcement, and contributed to additional 

deformations. 

87 



Chapter 5 Verification of Analytical Tool 

~ 700000 l N 
E 600000 

---3 500000 ---------------------
--r/l 400000 
r/l 

~ 300000 
VJ 

200000 ;.... 
C\l 

CO 100000 1E09 

-0.02 -0.015 -0.01 -0.005-100000 0.005 0.01 0.015 0.02 

-200000 

-300000 
Slip Defonnations (m) 

-400000 

-500000 

-600000 

-700000 

Figure 5.25. Backbone curve of pullout hinge. 

Slip defonnations at yielding and ultimate stress values are calculated using the models 

given in 4.3.2.1 for unconfined concrete. The resulting backbone curve is shown in 

Figure 5.25. The model is completed by applying the hysteretic rules for the simulation 

of degradation in loading and unloading cycles. Based on the findings of the strain 

analysis no strength degradation below fy is applied in the model since the yield strength 

was achieved. Unloading stiffness is set equal to the initial stiffness based on the CEB 

(1993) cyclic bond model whereas full pinching degradation is assumed in the 

unloading curve based on findings from cyclic experimental pullout tests conducted by 

various researchers, such as, Viwathanatepa et al. (1979). In addition, unloading 

stiffness and pinching behavior is consistent with cylcic bond models derived by 

Tassios (1979), Balazs (1991), Monti et al. (1997), Filippou (1999) and Elmorsi et al. 

(2000). 

5.6.5 Modelling of joints 

Joints are modelled using a combination of a linear element to account for the elastic 

joint deformations, and a nonlinear shear element, described in 4.3.3 to account for 

additional shear defonnations. The joint is modelled to behave linear elastically with 

stiffness equal to EIcr up to the attainment of its shear capacity. In the case of the Saclay 

frame E=29GPa and Icr=0.5*Ig=0.0019. Elastic shear defonnations in this joint are 
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modelled using the cracked shear stiffness GAcr of the column (Figure 5.26). The shear 
1 

capacity of the joint is calculated using equation 4.12. 
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Figure 5.26. Model for elastic shear deformations 

Since the shear column capacity (Vrd3) is higher than the shear force demand observed 

in Figure 5.13 (around 150kN for 4 columns) the shear model is calibrated only for 

elastic response. 

5.6.6 Segment distribution 

Each member is divided in three segments to account for the spread of plasticity. Two 

segments at the member ends having a length of 10% of element length are used to 

model the plastic hinge region based on the guidelines of Isakovic and Fischinger 

(1998). This segment distribution leads to accurate results with the least computational 

effort. 

5.6.7 Frame Mass 

The mass of the structure is modelled in DRAIN-3d with the use of lumped masses at 

each floor. In order to calculate the total mass at each floor, the mass of each structural 

element at the floor is added to the imposed load of the steel plates (4.4.1). Detailed 

mass calculations are shown below: 
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• 

• 

• 

• 

Mass of the slab: (4m· 4m . 0.12m) . (24kN / m3
) / g = 4.6tons 

Mass of beam: (4m· O.4m . 0.26m) . (24kN / m 3
) / g = 0.99tons 

Mass of column: (3.3m· 0.26m· 0.26m)· (24kN / m 3
) / g = 0.54tons 

Mass of Steel plate (imposed loading): 9 tons 

Half of the floor mass is carried by each frame. Therefore the mass at each level is 

calculated by adding half the slab weight, the beams connected on the frame, and 

half the column weight above and below the floor. Consequently, the floor masses 

are calculated as in eq.5-5 and 5-6. : 

• ( 1) ( 1 ) M plate m l = 2" M slab + (2M beam) + 4 2" Mcolurnn + ( 2 ) => m l = 9.8tons eq.5-5 

• 

5.6.8 Dam ping 

DRAIN-3D accounts for the effect of linear damping through Rayleigh damping 

coeficients for mass and viscous element related damping. The damping matrix is 

assembled together by adding the effects of each damping coefficient. 

eq.5-7 

Where: 

0.0 mass damping coefficient 

a} element viscous damping coefficient. 

Based on the above equation, the damping ratio of mode n is calculated as follows: 

The coefficients 0.0 and a} can be calculated for the corresponding damping ratios (; and 

~. of the ith andjth mode by solving the following matrix equation 
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Where: 

O)j, O)j angular frequencies of each mode of vibration (OJ = 2Jif ) 

The initial natural frequencies for the 15t and 2nd mode of vibration of the building are 

1.9Hz and 5.6Hz (0)1= 11.94rad/s and 0)2 = 35.18rad/s), respectively. Damping ratios of 

5% and 2.5% for the two modes of vibration are assumed for the determination of 0.0 

and 0.1 for elastic analysis (up to O.lg) For higher PGA levels the effect of Rayleigh 

damping is reduced linearly with the reduction in frequency since hysteretic damping 

dominates the response. 

5.7. Correlation of experimental and analytical dynamic results 

The correlation of the experimental shaking table results with the analytical predictions 

described in 5.6 is examined in this final section of the chapter. The cumulative damage 

caused by each successive exposure to the various levels of seismic excitation is 

accounted for in the analysis by continuing the analysis after each event. Bond-slip 

deformations are included in the analysis when shown to be necessary to capture the 

frame behaviour. A comparison of the recorded results versus the predictions for the 

first two tests (0.05g and 0.1 g) shown in Figures 5.27 and 5.28 indicates an excellent 

correlation both as far as the peak displacement and response frequency change is 

concerned. 
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Figure 5.27. Analytical vs. experimental top storey displacements (0.05g) 
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Figure 5.28. Analytical vs. experimental top storey displacements (0.1 Og) 

The very good correlation ceases to exist at the 0.2g test as can be seen in Figure 5.29; a 

small difference (between recorded and predicted top displacements) begins early. after 

about 7 seconds, but a more considerable difference is obvious in the two peaks 

occurring in the negative direction just after 14.84 seconds. The initial difference in 

recorded results can be attributed to an underestimation of the structural damping which 

is expected to increase with concrete cracking. The predicted 2nd floor relative 

displacements (Figure 5.30) show a peak displacement in the positive direction at 

t= 13 .84 seconds, which according to the analytical strain results (Figures 5.31) causes 

yielding of the reinforcement. Given that the analysis underestimates damping and 

predicts yielding of the reinforcement at t=13.84 seconds it is very surprising that it 

underestimates massively the negative displacements after t= 13 .84 seconds. One 

possible explanation is that bond-slip starts after yielding of the reinforcement. 

Therefore, analysis is repeated including bond-slip deformations at 2nd storey column 

ends. The comparison of the revised analysis results (Figure 5.32) shows considerable 

improvement in simulating the displacement behaviour, which provides fairly good 

evidence that bond-slip deformations playa role in these tests. Further confirmation of 

this will be needed from the next test at O.3g. 
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The results for the 0.3g test are shown in Figure 5.33. Although the analysis simulates 

the initial positive and negative displacement peaks at t=6.6 and t=9.8 seconds 

respectively, significantly lower displacement values are predicted for peaks at t=I1.5 

and t=12.4 seconds. In addition, the change in response frequency observed in the 

experimental results does not appear in the analytical predictions. By checking the 

consistency between the displacement history results (Figure 5.33) and the available 

strain results for j8pot (tension in positive displacement) (Figure 5.34) it is concluded 

that, as in the 0.2 g test, only the first yielding (green circle) is predicted by the analysis. 

The next displacement peak at t=12.4 seconds fails to reach the same magnitude in the 

analysis since lower strains are observed at that instant (see Figure 5.34). This leads 

again to the suspicion that some kind of softening mechanism altered the post-yield 

displacement response. Hence, the analysis is repeated including the bond-slip model 

described before. This increases the accuracy of the prediction substantially both as far 

as displacement magnitude and response frequency change are concerned (Figure 5.35). 

This provides firm evidence that bond-slip takes place soon after yielding. 
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Figure 5.33. Analytical vs. experimental at O.30g with no bond slip. 
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In the same way, excluding slip deformations leads to unrealistic results for the 

prediction of the OAg test. In this case the displacement predictions at a number of 

displacement cycles are considerably lower while an underestimation of the response 

frequency change is also evident (Figure 5.36). These variations in response diminish 

with the inclusion of the bond-slip model as shown in Figure 5.37. 
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Figure 5.36. Analytical vs. experimental at OAOg with no bond slip 
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Figure 5.37. Analytical vs. experimental at OAOg with bond slip 

5.S. General Discussion 

This chapter dealt with the analytical tool and its modelling capabilities and made 

comparisons with a structure which exhibited deteriorating behaviour. The analytical 

tool (DRAIN-3D) was shown to predict the behaviour very well prior to structural 

softening. Structural softening was attributed in this case to bond-slip after bar yielding 
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and the analytical tool was able to predict the structural response successfully after 

modelling bond-slip in a relatively simple manner. Bond deterioration may be a result 

of deficiencies in the anchorage detailing of the bars shown in Figure 5.4. Most likely 

this caused the crushing of concrete between the column bars and welded "anchors" due 

to the sharp angle between them allowing for some amount of slip. On the other hand 

though, full debonding of the bars was avoided, thus no complete degradation in 

strength leading to pullout failure was observed. 

Given that the analytical tool performed so well in predicting the behaviour of this 

difficult weak structure and since it includes the modelling capabilities for the 

calibration of failures other than flexural (mainly shear and pullout failures) it is thus 

considered appropriate for modelling the range of deficiencies that are likely to be 

encountered in structures in Mediterranean countries. Therefore it will be adopted in the 

following vulnerability analysis. 
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Chapter 6 

ANAL YTICAL VULNERABILITY 

ASSESSMENT 

6.1 Introduction 

The first two steps of the framework for the derivation of analytical vulnerability curves 

(as stated in 4.1) dealing with structural modelling and the verification of the analytical 

tool were completed in the previous chapter. This chapter deals with the final step, 

which is to develop a procedure capable of using the analysis results for the derivation 

of analytical MDR vulnerability curves at different PGA levels and examine their 

probabilistic nature. To develop this procedure the following three tasks are required: 

1. To predict the structural response (ultimate deformation) on the force

displacement envelope for varIOUS PGA levels for a range of typical 

Mediterranean RC buildings 

2. To quantify the damage potential for the predicted structural response 

3. To produce the statistical distribution of damage at each PGA level 

The following sections will provide reliable ways to meet each of the three tasks. 

6.2 Prediction of structural response 

In the case of the Saclay frame, the overall response was obtained by using the results of 

time-history analysis at 5 PGA levels. Time-history analysis is supposed to lead to 

"exact" solutions provided the input data are accurate. It is widely accepted though that 
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significant variation in peak values may be obtained if different records are used for the 

same PGA due to, 

1. Frequency content of the signal 

2. Variations in soil conditions 

3. Duration of the excitation 

4. Type of elastic response spectrum (defined as Type 1 and 2 in EC-8, 2004) 

Thus, to obtain a complete view of damage potential for a specific excitation level, a 

number of records are required accounting for the above parameters. For example, EC-8 

(2004) prescribes the use of the mean value obtained from analyses of at least 7 records 

both for design and assessment purposes. Therefore an average "exact" solution, for 

each excitation level, is required to define the response envelope of a structure. Clearly, 

such level of analysis is extremely time-consuming. In addition to the complications of 

defining the appropriate records for each PGA level and the amount of time required for 

the analysis, a further issue involving the definition of the dynamic characteristics (e.g. 

damping values) of the structure also needs to be chosen for every analysis case. In light 

of the issues associated with time-history, a more efficient yet reliable alternative for 

performance evaluation can be achieved through Capacity-Spectrum method (CSM). 

The Capacity Spectrum Method (CSM) can trace its roots to John A. Blume's Reserve 

Energy Technique (RET) (Blume et al. 1961), which estimates the inelastic 

displacement by equating elastic energy (or work) with inelastic energy (Freeman, 

2004). It was originally developed and implemented by Freeman in 1975 as part of a 

pilot program on establishing the seismic vulnerability of the Puget Sound Naval 

Shipyard (PSNSY). After the PSNSY project was completed the process was used for 

several case studies including two high-rise 7-storey hotel buildings (Freeman, 1978). 

The philosophy behind this method is based on the assumption that the performance of 

a Multi-degree of freedom (MDOF) system under a particular earthquake event can be 

estimated by comparing the demand from the earthquake event with the capacity of an 

equivalent SDOF system. This capacity is defined by the transformation of the force

displacement envelope of the MDOF system into that of an equivalent SDOF system. 

The earthquake demand is expressed in the form of a representative response spectrum, 

which is similarly transformed for an elastic SDOF system to enable their direct 

comparison by superposition. The response spectrum is obtained by reducing the elastic 
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spectrum to account for the nonlinear behaviour of the force-displacement envelope. A 

number of procedures for the reduction of the elastic spectrum have been proposed in 

the literature and will be examined later. This section will deal with the issues regarding 

the determination of the capacity and demand envelopes and the applications ofCSM. 

6.2.1. Capacity Envelope 

For the purpose of this study, the force-displacement envelope of each MDOF system is 

obtained from push-over analysis using DRAIN-3D models discussed in Chapter 4. The 

transformation of the force-displacement relationship of a MDOF system into that of an 

equivalent SDOF system requires the definition of the modal participation factor (f) 

and the equivalent mass of the SDOF system (m *) calculated as shown in equations 6-1 

and 6-2. 

N 

Imj~j[ 
f[ = --=~-=[---

Imj~2j[ 
j=[ 

Where: 

mj lumped mass at the jth floor 

<pjl is the jth floor element of the fundamental mode <PI 

N number of floors 

m * I is the effective modal mass for the fundamental vibration mode 

eq.6-1 

eq.6-2 

The transformation process, shown in Figure 6.1, results in a capacity envelope in the 

Spectral Acceleration versus Spectral Displacement (SA-SD) space. 
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Figure 6.1 Transformation of push-over curve to capacity diagram 

In the context of CSM, the transformed capacity envelope is required to be idealised 

into an elastic-perfectly plastic form. This is necessary so as to enable the establishment 

of the ductility levels at each displacement. This form is universally accepted and even 

the latest variation of CSM, included in FEMA 440 (2005), assumes an elasto-plastic 

(E-P) approximation. However, this assumption means that the energy of the elasto

plastic (E-P) system is not necessarily equal to the energy of the capacity envelope at all 

displacements. This may cause inaccuracies in degrading structures. 

In the context of this work, the use of the E-P approximation is considered insufficient 

to model the more complex degrading behaviour encountered in sub-standard 

constructions. Therefore, in order to maintain the special characteristics of the capacity 

curve it is proposed that the shape of the curve is approximated by a number of different 

elastic-perfectly plastic systems with zero post-yield stiffness. Each SAj-SDj coordinate 

on the capacity curve is treated as the strength and ultimate displacement of an 

equivalent elastic-perfectly plastic system (ES) defined using the equal energy rule. 

However, after degradation, energy dissipated above the current force level is 

considered unrecoverable and is excluded from the energy balance calculation. An 

example of the idealisation process for a specific capacity curve is shown in Figure 6.2. 

The example illustrates the idealised curve for the point on the capacity curve with 

coordinates SA=0.25g and SD=O.2m. The bold dotted line corresponds to the equivalent 

elastic-perfectly plastic system for the point on the capacity curve with coordinates 

SA=0.25 and SD=O.2. Unrecoverable energy above this point is filled in yellow colour. 

Negative energy (-ve), filled with green colour, corresponds to the additional energy 

dissipated in the equivalent system and is balanced by positive energy (+ve) filled with 

red colour, which is not dissipated under the elastic part of the equivalent system. 
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This process is repeated for every point on the capacity curve. Thus, a single capacity 

curve is divided into a number of equivalent elastic-perfectly plastic systems. For CSM 

calculations, the ductility at a certain point on the capacity curve is obtained from the 

equivalent system corresponding to that point. The accuracy of this idealisati on 

technique in the context ofCSM is assessed herein in a small simulation study. 

The Saclay frame is used as a reference frame in this simulation study. The frame 

details (member sizes, member reinforcement and frame geometry) are treated 

deterministically as presented in the previous chapter. Material parameters fc and fy are 

treated probabilistically with /-lfc=20 MPa, CJtc=6MPa and /-l fy=550 MPa, CJ fy=20M Pa. 

Latin Hypercube Sampling (LHS) technique is used to derive 25 simulation values, 

which are shown in Table 6.1 . LHS technique is explained in detail later in thi s chapter. 

The same number of random values were also derived for the shear link spacing (s) and 

the bar development length (I) based on the corresponding stati stical di stributions fo r 

Pre-Seismic buildings found in Table 6.5. The corresponding joint shear and bar pullout 

capacity for each simulation was calculated based on the simulated va lues by using the 

models discussed in chapter 4. Besides the first four simulations, both strength 

(depending on saturated deformations as defined in 6.4.1) and fu ll pinching degradati on 

is assumed after the attainment of these capacities. 

Each simulated frame (25 simulated frames) was subjected to the same cu mulat ive time

hi stories as the ori ginal Sac lay frame (from PGA=0.05g-0.4g). The maximum top 

displacement at the end of the fina l test (PGA=O.4g) was recorded and is shown at the 
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last column of Table 6.1. The recorded results were compared with the performance 

point predictions at PGA=OAg for the same frames using the revised CSM included in 

FEMA 440 (2005). A detailed discussion on the FEMA 440 (2005) CSM and the 

specific application for performance point prediction is given in subsequent sections. 

Displacement-based cyclic push-over analysis is used for the derivation of the capacity 

curve. The details regarding the displacement step and the force distribution are 

discussed later in the chapter. The same recorded time-history results were compared 

with performance point predictions, obtained using a simpler idealisation technique for 

the capacity curve. In this case, the curve is idealised by a single elastic-perfectly plastic 

system based on the equal energy assumption at the final displacement (FD). The final 

displacement is assumed to be at a top drift of 4.5%, which is shown later in the chapter 

to be the threshold for complete damage for low-rise buildings designed according to 

basic code provisions. The capacity of the idealized curve is assumed equal to the 

maximum capacity of the original capacity curve. 

The recorded time-history spectral displacements at PGA=O.4g are shown in Table 6.1 

whereas a plot of the residual error between the recorded values and the performance 

point predictions using the two idealisation techniques is shown in Figure 6.3. The 

residual error in the performance point prediction in the first 4 simulation cases where 

no softening was included is approximately the same for both idealisation techniques. 

This consistency ceases to exist for all subsequent simulation cases where strength 

degradation effects due to bar pullout or shear deterioration took place. In all these 

simulation cases the residual error using the proposed ES technique is considerably 

lower with a mean residual error value equal to /-l=1.38% and 0'=4.94%. The mean 

residual error for FD is /-l=-4.08% and 0'= 11.96%. 
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Table 6.1. Values used in simulation study 

No fc (MPa) fY (MPa) Shear Capacity (kN) Bar pullout capacity Comments Recorded from 
(fs in MPa) time-history (m) 

14.3 532 49 610 Strain hardening-No degr. 0.153 
:2 21.0 572 44 608 No hardening-No degr. 0.180 

3 16.2 580 44 611 No hardening-No degr. 0.172 

4 15.3 564 44 594 No hardening-No degr. 0.172 

5 10.6 550 41 575 No hardening-Shear degr. 0.209 
6 10.8 564 39 588 No hardening-Shear degr. 0.206 

7 10.5 527 41 551 No hardening-Shear degr. 0.209 

8 16.4 554 42 585 No hardening-Shear degr. 0.168 

9 23.1 557 46 596 Strain hardening-Pullout degr. 0.171 

10 16.5 536 48 569 No hardening-Pullout degr. 0.194 

II 21.0 542 49 580 Strain hardening-Pullout degr. 0.227 

12 13.1 523 43 552 No hardening-Pullout degr. 0.158 

13 22.3 533 46 573 Strain hardening-Pullout degr. 0.167 

14 19.7 515 47 551 Strain hardening-Pullout degr. 0.169 

15 18.5 558 47 592 Pullout degr. 0.169 

16 22.6 537 51 576 Strain hardening-Pullout degr. 0.165 

17 17.8 500 50 535 Strain hardening-Pullout degr. 0.175 

18 21.4 519 44 558 Strain hardening-Pullout degr. 0.198 

19 19.9 546 46 582 Strain hardening-Pullout degr. 0.173 

20 22.0 554 49 592 Strain hardening-Pullout degr. 0.192 

21 24.1 506 52 548 Strain hardening-Pullout degr. 0.159 

22 18.5 559 45 593 Pullout degr. 0.170 

23 14.4 516 42 546 Pullout degr. 0.202 

24 22.7 571 49 609 Strain hardening-Pullout degr. 0.161 

25 18.8 545 45 580 Pullout degr. 0.167 
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Figure 6.3 Comparison of the residual error using the two idealization techniques 

Since the ES increased significantly the accuracy in the predictions, this idealization 

technique will be adopted in the analytical vulnerability procedure. 

6.2.2. Response Spectrum 

In the context of this study the response spectrum models (elastic or design) of EC-8 

(2004) will be used as the earthquake demand for any subsequent analysis. These 

spectra represent the envelopes of recorded earthquake events in the European regIon 
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and are regarded as representative of the expected seismic activity in Cyprus since they 

are adopted in the local seismic code (Cyprus Civil Engineers and Architects 

Association, 1991). Equations 6-3 to 6-6 and 6-7 to 6-10 are defined in EC-8 (2004) for 

the calculation of the Type 1 elastic and design spectrum respectively. 

SA(T) = agS[1 + :. (2.5'1-1)] O<T<TB eq.6-3 

SA(T) = 2.5agSll TB<T<Tc eq.6-4 

SA(T) = 2.5ags{i ) Tc<T<TD eq.6-5 

SA(T) = 2.5agS'1(T~;D ) TD<T<4sec. eq.6-6 

SA(T) = a S -+- ----[2 T e.5 2)] 
g 3 TB q 3 

O<T<TB eq.6-7 

SA(T) = a S 2.5 
g q TB<T<Tc eq.6-8 

SA(T) = a S 2.5 (Tc ) 
g q T 

Tc<T<TD eq.6-9 

SA(T) = a S~(Tc TD ) 
g q T2 TD<T eq.6-10 

Where: 

T period of vibration of an elastic SDO F system 

ag design ground acceleration 

T B lower limit for the period of the constant spectral acceleration branch 

T c upper I imit for the period of the constant spectral acceleration branch 

T D value defining the beginning of the constant displacement response branch 

SEC soil factor 

11 damping correction factor with a reference value of 1 for 5% viscous damping 

q behaviour factor 
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The values for SEC, T B, T c. and T D are obtained from Table 6.2 (as obtained from EC-8, 

2004). 

Table 6.2. Values of the parameters used in elastic and design response spectra 

Ground Type SEC T B (sec.) T C (sec.) TD (sec.) 

A (Rock) 1 0.15 0.4 2 

B (Dense sand, very stiff clay, gravel) 1.2 0.15 0.5 2 

C (Medium dense sand) 1.15 0.2 0.6 2 

o (Loose cohesion less soil) 1.35 0.2 0.8 2 

E (alluvium) 1.4 OJ5 0.5 2 

Either the elastic or the design spectrum described above is used as the demand 

parameter in all proposed CSM procedures as will be discussed later. In order to enable 

their comparison with the capacity curve defined in the previous section, a 

transformation into the SA-SO space is needed using the relationship for an elastic 

SOO F system (eq .6-11). Both the design and transformed design spectra are shown in 

Figure 6.4. 

eq.6-11 

Where: 

SO displacement ordinate of the elastic spectrum 

SA acceleration ordinate of the elastic spectrum 

T corresponding period of vibration 

I TB Tc To 1 TB Tc 

0.9 0.9 

0.8 0.8 

0.7 0.7 
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,--. 
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0.2 0.2 
0.1 0.1 

0 0 
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Figure 6.4 Transformation of elastic spectrum based on EC-8 (2004) model for 

PGA=0.25g and ground type C. 
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In the case of SDOF systems with nonlinear behaviour, various procedures are used to 

account for the resulting strength reduction in the demand spectrum (either elastic or 

design). The initial codified CSM procedures, included in A TC-40 (1996), used the 

elastic spectrum with increased viscous damping to account for the reduction in strength 

due to hysteretic damping introduced during nonlinear behaviour. Increased damping is 

introduced in the elastic spectrum through parameter 11 which decreases with increased 

viscous damping ratio. The relation between the increase in viscous damping and 

ductility is provided in ATC-40. The procedures included in ATC-40 (1996) have been 

proven by Chopra (1999) to yield large errors in the prediction of performance point and 

are considered as inadequate for the scope of this study. 

More recent CSM procedures such as the "N2" method proposed by Fajfar (1999) use 

the design spectrum and account for the reduction in strength through the behaviour 

factor. A number of researchers have examined the effect of ductility ().1) on the strength 

reduction (R) for the three branches of the design spectrum (for different T values). In 

the "N2" procedure the three parameters are related through R-).1-T relationships as 

proposed by Vidic et al. (1994) shown in equations 6-12 to 6-14. 

T 
R~ = ().1-1)T + 1 T<To eq.6-12 

0 

R!l=).1 T>To eq.6-13 

To = 0.65).1 O.3Tc eq.6-14 

Fajfar (1999) allows for a simplification by assuming To=Tc. The application of this 

procedure for structural performance assessment is schematically shown in Figure 6.5. 

The intersection of the radial line corresponding to the elastic stiffness of the idealised 

bilinear system and the design spectrum defines the strength required for elastic 

behaviour and the corresponding elastic displacement demand. If the elastic period lies 

in the constant displacement region of the spectrum (eq.6-13) the inelastic displacement 

demand (SO) is equal to the elastic one. The ductility ().1 in Figure 6.5) is equal to the 

reduction factor (R/l) and can be obtained directly from the graph. Therefore, the SA 

coordinates of the performance point are defined by dividing the strength of the elastic 

system with R/l' In cases where the elastic stiffness lays in the constant acceleration 

region of the design spectrum (T<Tc) the reduction factor R/l is similarly determined as 
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the ratio between the elastic to the yield SA. In this case though, the corresponding 

ductility demand is calculated using eq.6-12. 
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Figure 6.5 Graphical application ofN2 method after Fajfar (1999) 

The latest attempt to improve the accuracy of CSM, included in FEMA 440 (2005), uses 

an iterative procedure to arrive at the performance point. The displacement response of 

the nonlinear SDOF system is computed using an "equIvalent" linear system with 

effective period Teff and damping ~eff. The procedure is explained in the following 

steps: 

1. Select a representative elastic spectrum denoted as ADRS (~o) in Figure 6.6. 

2. Assume a performance point (PP in Figure 6.6) on the capacity envelope and 

calculate the corresponding ductility and secant period Tsec using eq.6-11. 

3. Calculate Teff and ~eff for the particular ductility level using the corresponding 

equations in sections 6.2.1 and 6.2.2 of FEMA 440 (2005). 

4. Substitute ~eff in the elastic spectrum equations to adjust the ADRS (~o) into 

ADRS (~eff). 

5. Multiply the SA ordinates only of the ADRS Weff) by the modification 

factor M = (Teff J2 to generate the Modified Acceleration-Displacement Response 
Tsec 

Spectrum denoted as MADRS (~eff, M) in Figure 6.6. This factor corresponds to 

the difference in ductility between the nonlinear (Tsec) and "equivalent" linear 

(Teff) SDOF systems. 

6. The intersection of the MADRS (~eff' M) with the capacity envelope corresponds 

to the estimated performance point (PP). The estimated performance point is 
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adopted if it is within acceptable limits to the assumed one in step 2. Otherwise, 

the process is repeated with a refined assumed performance point. 
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Figure 6.6 MADRS in FEMA 440 (2005) for use in CSM 

0.25 

The simulation study on the Saclay frame conducted in 6.2.1 is repeated here to assess 

the accuracy of the two procedures (N2 and MADRS) for performance point prediction. 

The corresponding predictions were compared with the recorded time-history spectral 

displacements shown in Table 6.1. The residual error in the displacement predictions of 

the two procedures is shown in Figure 6.7 and provides enough evidence to assume that 

an increase in accuracy can be achieved through the MADRS procedure. Thus, it is 

decided to use this procedure for the determination of the structural response for 

analytical vulnerability assessment purposes. 
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Figure 6.7 Residual error of the simulation study 

109 



Chapter 6 Analytical Vulnerability Assessment 

At this point the initial objective set in 6.1 is completed by establishing and verifying an 

efficient and fairly accurate alternative to time-history analysis for the prediction of the 

structural response. 

6.2.3. Applications of CSM 

In the previous section the most recent variations of CSM were evaluated for 

performance assessment purposes. Although this is the most widely used application of 

CSM it is not the only one since it can also be used for: 

1. performance based seismic design (PBSD) and, 

2. to find the correlation between earthquake ground motion level and building 

performance. 

For modem displacement-based design purposes, as proposed by Priestley (1997), the 

displacement and ductility (Figure 6.8) need to be known to determine the elastic 

stiffness and corresponding strength, whereas for conventional force-based design the 

elastic stiffness and ductility are fixed to determine the strength and, possibly, 

performance displacement. In both design and performance assessment applications 

though, the peak ground ordinate of the elastic spectrum is obtained a-priori from 

design codes for the specific area and soil conditions. 

Figure 6.8 

Ductility 
Strength 

Displacement 

Quantities required to define structural behaviour 

For the scope of this study though, the PGA ordinate of the elastic spectrum, at every 

displacement step (SD 1-2 shown in Figure 6.9) on the force-displacement envelope, is 

the required output for the formulation of the vulnerability curves. This application of 

CSM was initially used in A TC-l 0 (1982). It requires that all parameters characterising 
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the structural response (capacity envelope) should be known at every displacement step 

in order to predict the PGA level required to bring the structure at a specific 

displacement. In effect this is the reverse procedure of calculating the PP. Each SDj 

point on the capacity envelope is treated as a PP, with known ductility (J.!), strength 

(SAj) and initial period (T) as obtained from the capacity envelope (an example IS 

shown in Figure 6.9 for two performance points). Thus, the MADRS procedure IS 

reversed deterministically to define the peak ground ordinate (PGA) of the 

corresponding ADRS (~o) spectrum . 
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Figure 6.9 Schematic of the application to determine PGA using CSM (colouring 

based on Figure 6.6) 

6.3 Quantification of damage potential 

The quantification of damage potential at the estimated structural response is the second 

task en route to the derivation of analytical vulnerability curves. A number of damage 

indices (DIs) were presented in the literature review and could be used at this stage to 

predict damage potential. For the purpose of this framework, the following criteria need 

to be satisfied by the chosen 01: 

1. It should account for the residual strength and safety of a damaged structure as a 

whole (global 01) 

2. It should be easily calibrated against simply recorded data from damaged 

buildings 

3. It should be correlated to the capacity envelope 
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4. It should be able to account for critical damage thresholds such as cracking, 

yielding and softening due to local and cumulative damage. 

In light of the above criteria set in this study, it emerges that the most appropriate 

quantification of damage potential is through a direct correlation with the increase in the 

natural period of vibration of the structure since: 

1. An increase in the natural period is a global effect emerging from localised 

damage. 

2. The increase In period can be easily measured after the earthquake USIng 

relatively simple recording equipment. 

3. The increase in period can be easily extracted from the capacity envelope using 

equation 6-16. 

4. Any alteration In the increase rate of the natural period signifies critical 

structural damage such as yielding and strength loss (softening). 

The proposition that damage is related to the increase in period was recently verified by 

Calvi et al. (2006) using experimental data. Zembaty et al. (2006) moved a step forward 

by producing a damage scale that can be used for the definition of the degree of damage 

from the recorded drop in natural frequency of a structure (Figure 2.7). Similar damage 

scales are included in Russian (International Building Codes of NIS, 2001) and 

Armenian (Building Codes of Armenia, 1995) codes of practice. 

The DI defined based on the above proposition, normalised for the initial condition of 

zero damage at initial period Tinitial is given in equation 6-15. 

D I = Tsec _ 1 = Tsec - Tinitial 

Tinitial Tinitial 

eq.6-15 

Where Tsec is the secant period at each SAi-SDi coordinate given by equation 6-16. 

eq.6-l6 
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This DI is bound by an additional condition (DI=IOO) for the value of period at 

complete damage defined herein as TlOo. The value of TlOo is defined later on in the 

chapter (see Table 6.9). Therefore a final adjustment is applied to equation 6-15 to 

produce the final relationship for the DI (standardised for no damage at DI=O and 

collapse at DI=l 00) at each SAj, SDj coordinate. 

D I = 1 OO( Tsec = Tinitial ) 

TJOO Tinitial 

eq.6-17 

In order to use the adopted DI for the scope of this work its predictions should be 

correlated to MDR's (eq.6-18). Thus, the shape of the function relating DI with MDR 

needs to be defined. 

MDR = f(DI) eq.6-18 

For that purpose, the empirical results from chapter 3 (section 3.8, Table 3.3) are used 

as reference. It is observed that a linear increase in the damage grade causes an 

exponential increase in the DR. Since the adopted DI increases exponentially with an 

increase in damage grade (due to the exponential increase in period) it is decided to 

assume that the DI is linearly correlated to the MDR with a correlation coefficient equal 

to 1. For example, the increase in the period of vibration of the Saclay at PGA=O.4g was 

around 70% and the frame was close to complete damage. Future work needs to be 

conducted for the verification of this assumption. 

At this point, the tools for the derivation of analytical vulnerability curves are 

established, since a procedure to predict the structural response (described in 6.2.3) and 

a DI to compute the MDR's (damage potential) has been established. To take into 

account the probabilistic nature of analytical vulnerability assessment the key 

parameters involved in the procedure that need to be treated probabilistically are 

discussed in the next section. 

6.4 Probabilistic vulnerability assessment 

The key parameters involved in the derivation of the capacity curve are assumed to 

control the probabilistic nature of analytical vulnerability curves. These key parameters. 

which are used for the calibration of flexural, bond, buckling and shear capacity models, 

113 



Chapter 6 Analytical Vulnerability Assessment 

are shown In Table 6.3. Geometrical parameters such as section and reinforcement 

dimensions and positioning are not considered as key parameters since it is considered 

that their mean value is close to the nominal value and their variability is low. The 

overall effect on variability of such parameters could be accounted for at a later stage. 

Table 6.3. Calibration parameters for capacity models 

Capacity model Key Deterministic Parameters Design 

Parameters Parameters 

Flexure: fe, fy b d k fUIt P 
" = -, Csu 

fy 

Shear: fe, s b, d, fyw, saturated Asw, s 

displacements (SC and ST) 

Bond: fet. s, 1 Saturated slip (SC and ST) s, 1, db 

Buckling: s, fy fyw, dbw db 

Where: 

fe concrete compressive strength 

fy steel yield strength 

s shear link spacing 

fet concrete tensile strength 

anchorage length 

db longitudinal bar diameter 

dbw shear link bar diameter 

fyw shear link yield strength 

b, d section dimensions 

p longitudinal reinforcement ratio 

Csu strain in steel at ultimate steel stress 

fult ultimate stress capacity of a steel bar 

The probability distribution functions (PDF) for the key parameters are defined based 

on statistical studies and professional judgment in accordance with the typical 

construction and design practice (CDP) at the assumed time of construction. To cover 

the whole spectrum of CDP in the area under consideration. the simulation study \\i II be 

divided in three well-defined periods as shown in Table 6.4. 
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Table 6.4. Qualitative description of CDP for the selected periods 

Description Period 

Pre-seismic early 70's to 

mid 80's 

Basic mid 80's to mid 

seIsmIC 90's 

Modern mid 90's-

seIsmIC 

Construction and Design Practise (CDP) 

Rapid and in general uncontrolled CDP with no 

seismic design provisions. The most widely used 

design guidelines had the sophistication level of 

CP110 (BSI, 1972). 

Minimum requirements for earthquake resistant 

structures (1985) are introduced in Cyprus and are 

used in addition to BS8110 (1985) for RC design. 

Thus, design is enhanced with the inclusion of the 

seismic demand in a rather simplistic manner. Minor 

improvement in construction practise. 

The introduction of the Seismic Code for RC 

structures in Cyprus (Cyprus Civil Engineers and 

Architects Association, 1991) raised the design 

practise to a higher level. The seismic hazard is 

identified in more detail and capacity design has been 

introduced. Construction practise has also been 

improved considerably due to compulsory quality 

assurance checks. 

6.4.1 CDP considerations 

In order to account for the variations in CDP per period, two basic frames (low-rise and 

mid-rise) for each period will be designed using the corresponding design codes of the 

reference period. In that way, the probabilistic nature of vulnerability will be assessed 

for each period by assigning different PDF for the key parameters for each period. Most 

of the statistical data for the PDF of key parameters per period are given in Table 6.5. 
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Table 6.5. Statistical data of PDF for the four key parameters per period 

fc(MPa) 

Key Parameter 
(normal distribution) 

Mean 
Design cr mm max 

(Jl) 

Pre-seismic 20 30 8 Jl-3.}cr Jl+3.}cr 

Basic seismic 25 35 7 Jl-3.}cr Jl+3.}cr 

Modem seismic 35 45 6 Jl-3.1cr Jl+3.lcr 

fy (MPa) 

Key Parameter 
(log-normal distribution) 

Mean 
Design cr mm max 

(Jl) 

Pre-seismic 350 420 32 Jl-80 Jl+80 

Basic seismic 460 530 32 Jl-80 Jl+80 

Modem seismic 500 570 32 Jl-80 Jl+80 

s (mm) 

Key Parameter 
Mean 

(normal distribution) 

mm max 
(Jl) 

Pre-seismic 250 30 Jl-IOO Jl+IOO 

Basic seismic design 30 Jl-50 Jl+50 

Modem seismic design 30 Jl-25 Jl+25 

If(d) 

(normal distribution) 
Key Parameter 

Mean 
mm max 

(Jl) 

Pre-seismic 30 6 Jl-2cr Jl+2cr 

Basic seismic design 4 Jl-2cr Jl+2cr 

Modem seismic design 3 Jl-2cr Jl+2cr 
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The statistical data for the key material parameters are obtained from Neocleous (1999), 

whereas in the case of the key detailing parameters the standard deviation, minimum 

and maximum values are defined based on the opinion of expert designers in Cyprus 

(PiIakoutas, 2007, Kyriakides, 2007 and Demetriou, 2007). The mean values for the 

key detailing parameters (s, I) are obtained from the relevant design. 

The key material parameters (fe and fy) along with deterministic parameters (for the 

corresponding period) as shown in Tables 6.6 and 6.7 (for each frame) are used for the 

structural design. 

Table 6.6. Values for deterministic design parameters for LR (per period) 

Determ inistic b, d (mm) k Csu fyw(MPa) dbw 

Parameters Columns Beams (mm) 

Pre-seismic 200x200 200x400 1.15 0.1 250 6 

Basic seismic 250x250 250x400 1.15 0.075 250 8 

Modern seismic 300x300 250x400 l.20 0.075 500 10 

Table 6.7. Values for deterministic design parameters for MR (per period) 

Deterministic b, d (mm) k Csu fyw(MPa) dbw 

Parameters Columns Beams (mm) 

Pre-seismic 250x250 250x400 1.15 0.1 250 6 

Basic seismic 300x300 250x500 1.15 0.075 250 8 

Modern seismic 400x400 250x600 l.20 0.075 500 10 

For saturated slip deformations (SC and ST) the values for S3 = 2.5mm and S3 = 1 cm 

(clear rib spacing) in the CEB (1993) model (Figure 4.14) are used for unconfined 

concrete (Pre and Basic seismic) and confined (Modern seismic) respectively. The 

definition of saturated shear deformations is more trivial since no specific model was 

found in the literature for this purpose. From the experimental tests on RC joints 

conducted by Biddah (1997) it was observed that members with no shear reinforcement 

undergo approximately 2% drift deformation before full strength loss, which increases 

to 3% for members with nominal shear reinforcement. In a similar experiment 

conducted by Clyde (2000) on an RC frame with no shear reinforcement it was 

observed that failure of the joint occurred approximately at 2% drift. Results from joint 

testing conducted by Shiohara (2001) concluded that, in the case of joints designed 
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based on early 90s code provisions, failure was observed on average at 4.5% drift. This 

observation is verified from Pagni (2004) results on similar joints. In light of the above 

discussion and based on expert judgment (Pilakoutas, 2007) it was concluded that a 3% 

and 4.5% storey drift limits (saturated deformation) will be used for Pre and Basic 

seismic design in subsequent analysis. 

Two loading combinations are used for each period are shown in Table 6.8. Gravity 

loading combination is used as prescribed in the corresponding codes, whereas an 

additional horizontal load combination is also used for each period based on the 

standard practice of the period. During the pre-seismic design it was of standard practice 

to account for wind loading through the load combination in CP 11 0 (1972) using a 

value of around 0.2 MPa per m2 as the horizontal force uniformly distributed on the 

structure. During the basic seismic design period, basic seismic zonation was introduced 

and seismic loading was accounted for in design using simple equivalent static 

techniques. "Minimum requirements for earthquake resistance structures" (1985) were 

also introduced in Cyprus. In this document it was proposed to apply a horizontal force 

equal to 10% of total weight at each floor, which corresponds to using a design seismic 

coefficient of 0.1 in the equivalent static analysis included in EC-8 (2004). In modem 

seismic design period it is of common practice to use the modal analysis procedure for 

design purposes. The regional seismicity is obtained from an updated seismic hazard 

map included in the Seismic Code for Reinforced Concrete Structures in Cyprus 

(Cyprus Civil Engineers and Architects Association, 1991). 

Table 6.8. Loading combinations used in design (per period) 

Loading Gk Qk Seismic loading 

Com binations 

1.4 1.6 -
Pre-seismic 

1.2 1.2 ± 1.2 ( 0.2 MPa per m2
) 

1.4 1.6 -
Basic seismic 

1.2 1.2 ± 1.2 ( 10% of base shear) 

1.35 1.5 -
Modern seismic 

1 0.3 EC-8 design spectrum 

Two example buildings (low and mid-rise, based on the (NIBS, 1999) categorisation), 

are chosen to illustrate the proposed probabilistic framework. The lo\\-rise (LR) 
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consists of two storeys of equal height and one bay and the mid-rise (MR) of four 

storeys and two bays. The layout and dimensions of both frames are shown in Figure 

6.10. As far as the MR is concerned, it is of common practice in Cyprus to be 

constructed using the "pilotis" system, thus not including infill walls in the ground 

floor. In effect the ground floor or 1 st storey is less stiff than the rest of the storeys, 

which may lead to "soft storey" failure. In order to account for the likely stiffness 

variation in elevation, it was decided to increase the height of the 1 st storey. It is 

anticipated that this arrangement can simulate the "pilotis" system but future work using 

wall panels is required to verify this assumption. 

Gk = 24 kN/m 
Qk= 4 kN/m 

,Ir , ",Ir 

Gk = 24 kN/m 
Qk= 8 kN/m 

1UUUUU 
4m 

3m 

4m 

Gk = 24 kN/m 
Qk= 8 kN/m 

Gk = 24 kN/m 
Qk= 8 kN/m 

11111111111 11111111111 
Gk = 24 kN/m 
Qk= 8 kN/m 

Gk = 24 kN/m 
Qk= 8 kN/m 

11111111111 11111111111 
Gk = 24 kN/m 
Qk= 8 kN/m 

4m 
Ir 

Gk = 24 kN/m 
Qk= 8 kN/m 

r ,Ir Ir 

4m 
Ir 

Figure 6.10 Layout of LR and MR simulation frames 

Both frame geometries are defined deterministically and are shown in Figure 6.10 along 

with the design dead and live loads. Design for the three periods in Table 6.4 is 

conducted using the CPll 0 (BSI, 1972), BS811 0 (1985) and the Seismic Code for RC 

structures in Cyprus (Cyprus Civil Engineers and Architects Association. 1991) 

respectively. 
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6.4.2 Analytical determination of capacity envelope 

Both frames will be analyzed in DRAIN-3D to determine their capaci ty enve lopes using 

cyclic push-over analysis to simulate better the repetiti ve nature of se ismic loadi ng. The 

load cycles are applied at increasing levels of displacement well into the inelastic range. 

One load cycle is applied at each di splacement step . The hysteretic response of the 

simulated frames (6.2.1) from time-history analysis (PGA=O.4g) described in 6.2. 1 is 

compared to the corresponding cyclic envelope obtained using three di ffe rent 

displacement steps. The cyclic envelope for each simulated frame is obtained by using 

0.15%, 0.3% and 0.6% top drift (~) as the displacement step. The comparisons of the 

hysteretic time-history (dynamic) and cyclic envelope response for two different 

degradation levels (simulation 14 and 19 in Table 6.1) are shown in Figure 6.11. It is 

evident from the figure that the 0.3% top drift displacement step simulates well the 

envelope of the 40 second artificial record used. 

- Dynamic - 0 .3%6 

......... 0 .15%6 ---- 0.6% 6 

-0..25 -D.20 

- Dynami c - 0.3%6 
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SilTl.l latioll NJ. 19 (Tabk 6. I ) 

Figure 6. 11 Comparison between time-hi story and cyc lic push-over for different 

di spl acement step 
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For brevity, a 2D analysis on a single frame will be conducted in one direction. 

Irregularities in plan are not accounted for and should be taken into account in a more 

comprehensive study. The force distribution along the height of the structure is 

determined as proposed by the lateral force method of EC-8 (2004). The seismic 

demand at each storey is calculated from eq .6-19. 

eq.6-19 

Where: 

Fj horizontal force acting on storey i 

F b base shear 

hi, hj height of masses mj and mj from the base of the building 

mi, mj storey masses 

'In the case of the MR frames, the horizontal storey force distribution accounts for the 

effect of higher modes of vibration through the modification of the lateral force 

distribution (eq.6-19) as proposed in FEMA 356 (2000) and discussed in detail in 

2.3.3.2. The sum of the effective modal mass for the first two modes taken into account 

amounts to at least 90% of the total mass of the structure, as required in EC-8 (2004). 

6.4.3 Definition of complete damage 

The threshold values for top storey drift corresponding to the collapse of the building 

are obtained from HAZUS99 (NIBS, 1999) for each combination of construction period 

and building height (Table 6.9). The failure plane for each combination in Table 6.9 is 

defined by the radial line corresponding to the limit value of SD for a non-degradating 

building with strain-hardening (black envelop in Figure 6.12). This radial line 

corresponds to TlOo in equation 6.17. Any capacity envelope crossing the corresponding 

failure plane is regarded as collapsed. 
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Table 6.9. Top storey drift at complete damage (as obtained from SO va lues in 

HAZUS99 (NIBS, 1999) for an h=6m and h= 13m building) 

Top drift (%) 

Low-rise (1-3 storeys) 

Mid-rise (4-7 storeys) 

SA (g) 

.' .' 

High-Code Low-Code 

(Modem seismic) (Basic se ismic) 

7 4.5 

5.5 3.5 

SD 1· . 
.... ,T1oo = 2n linn 

~===-==:::;;::::~ ... .' SA 

.' . ' 
.... .. ' ..... 

SD limit (m) 
(NIBS, 1999) 

Figure 6.12 Definition of the failure plane 

Pre-Code 

(Pre-sei smic ) 

3.6 

3 

At this point the formulation of the framework for the derivation of analytical 

vulnerability curves is completed since: 

I. An analytical tool is verified for the simu lation of the structural behavior 

2. A reliable procedure is established for the prediction of the structures response 

3. A DI is adopted for the quantification of the damage potential at the predicted 

structura l response 

4. The probabilistic nature of vulnerability curves IS addressed through the 

statistica l distributions of the key parameters. 

The final step before the derivation of analytical curves for the example structures 

involves the definition of the required number of simulations. 

6.4.4 Process for choosing the simulation values 

For the derivation of probabili stic analyti ca l vu lnerabi lity curves a number of simul ati on 

values have to be chosen from the stati stical di stributions of the key parameters, These 

simulation va lues will be used to formulate the correspondin g number of LR and t\ IR 
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frames for each period. The simulation values from each statistical distribution are 

obtained using the Latin Hypercube Sampling algorithm. This technique, proposed by 

McKay (1979), enables the reduction in the number of simulations compared to the 

Monte Carlo technique (Ayyub, B. and McCuen, R., 1995) by adopting a stratified 

approach in selecting the simulation values from the PDF. Initially it is assumed that 

each key parameter is uniformly distributed in the space between 0 and 1. The uniform 

distribution is divided into a number of non-overlapping sub-intervals equal to the 

number of simulations. A uniform value Uj is then selected at random from each sub

interval (eq.6-20) and the inversion method is applied to transform them into values that 

correspond to the cumulative distribution function (CDF) of each key parameter. 

U. = (7t-l)+U j 

1 N eq.6-20 

Where: 

N the number of simulations 

7tj random permutations of the integers i= 1, .... ,N 

Uj uniform random numbers on [0,1] generated independently from nj 

An example is given to describe the procedure for the determination of the simulation 

values for concrete compressive strength fc (Jl=25 and 0'=8 MPa) using Latin Hypercube 

sampling (for 9 simulation values). Initially, the uniform distribution is divided into 9 

sub-intervals and a random number (Uj) is chosen from each sub-interval (values in the 

1 st column of Table 6.10). Next, a random arrangement of the integers between "0" and 

"9-1" is computed and hence, an integer (n-l) corresponds to each Uj value. Each 

combination of [(n-I), uiJ is substituted into eq.6-20 to provides a probability value (Ui). 

The values in the last column of Table 6.10 are at obtained at Ui% on the cumulative 

distribution function of fc. 
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Table 6.10. Latin hypercube sampling procedure using 9 si mulation va lues 

Value at Ui% of the inverse 

TC- ] Ui 
normal cumulative 

U j 
distribution function with 

~=25 and a=8 MPa. 
0.01 0 0.10% 6.53 
0.16 4 46.17% 24.42 

0.25 7 80.57% 30.17 

0.42 8 93.58% 34.12 
0.49 3 38.80% 23.29 
0.66 2 29.52% 21.77 
0.69 6 74.30% 28.92 
0.81 5 64.52% 27.23 
0.91 21.17% 20.20 

1J=24.07 and 0=7.91 

In order to define the required number of simulations a small study was conducted to 

assess possible variations in analytical vulnerability curves using 10, 25 and 50 

simulations. The framework was applied using the data from the simulation study 

described earlier in section 6.2.1 to derive probabilistic vulnerability curves usi ng 25 

simulations. Using the same statistical distributions as in 6.2 .1 (for fe, fy, s and I) revised 

sets of simulation values were derived (10 and 50 simulation va lues). The framework 

was applied twice using 10 and 50 simulation values and the comparison of the resu lts 

is shown in Figure 6.13. Although a very good correlation exists between 25 and 50 

simulations a smaller number of 10 simulations overestimate the MDR. This conclusion 

is consistent with the findings of similar studies conducted by Ahmed (2007) and 

Rossetto (2005). Therefore, 25 simulations will be used for the derivation of the 

analytical vulnerability curves. 

100 
5X) 50 s inulations 

80 25 s inl.llatio ns 

cr: 70 10 simLiat ions 

~ 60 

50 
40 

30 

20 

10 · 

0 

0 0.5 1.5 2 
PGA..(m:h 

.3 

Figure 6.1 3 Comparison of analytical curves using 10.25 and 50 simulati ons 
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6.4.5 Probabilistic vulnerability curves 

The final section of thi s chapter deals with the deri vation of the analytical vulnerability 

curves for the two building classes for different types of COP. The models for different 

failure types as described in 4.3. 1-3 are determined based on the key and determini stic 

parameters shown in Tables 6.5-7. The simulation values for the key deterministic 

parameters are tabulated in Appendix B. The design member cross-sections for both LR 

and MR for the three periods are shown in Appendix C. 

Zero damage (MDR=O) is assumed prior to cracking. The derived curves are compared 

to the predictions based on the guidelines included in HAZUS99 (N IBS, \999) fo r each 

period. 

6.4.5.1. LR buildings 

The three sets of curves for LR buildings (corresponding to Pre, Basic and Modern 

seismic design) are shown in Figures 6. J 4 to 6.16. In all cases, the mean, 95% and 5% 

probabi lity of exceedance (PO E) curves are deri ved. 
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14 

In the first two figures it can be seen that at MDR=IOO% there is a considerable 

diffe rence between the lower (95% POE) and the upper (5% POE) bound curves. This 

va ri ati on can be attributed to severe damage of the structure due to failures initiated 

fro m bar pullout or shear deterioration . The lower bound curve (95% POE) of the Pre

se ism ic bui ldings (F igure 6.14) indicates that around 25% damage occurs before 

y ieldi ng. In addit ion, the same curve shows rapid failure of the structure at around 

PGA=0.22g. In contrast, the mean and 5% POE curves do not shoy\' similar rapid 

increase in damage . This can be attributed to the fact that the fle xura l capacity of the 

co lu mns is lower in most cases that the corresponding shear and bond capaciti es. It can 

be c learly see n though that the threshold median value in HAZU S99 (N IB S. 1999) lo r 

compete damage acco unts so le ly for flexural failures and o\ erestimate the mean 
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response of such structures smce it coincides with the 5% POE curve. Using the 

HAZUS99 (NIBS, 1999) value in this case can be unconservative. 

In the case of the curves for basic design (Figure 6.15) rapid failure of the buildings is 

obvious in all three curves at 0.33g, 0.42g and 0.51 g, respectively. This shows that most 

buildings suffer severe damage initiated by local failures and this is again 

underestimated by the HAZUS99 (NIBS, 1999) median value for complete damage. 

In the last case, modern seismic designed buildings are shown not to exhibit any 

softening behaviour due to brittle modes and the damage is due to the spread of 

plasticity. The buildings on average fail at approximately 3x times the design capacity. 

Even in this case the HAZUS99 (NIBS, 1999) guidelines appear to overestimate the 

capacity and underestimate the damage. 

6.4.5.2. MR buildings 

The vulnerability curves for the MR buildings are shown in Figures 6.17 to 6.19. As in 

LR buildings, most Pre-seismic buildings do not exhibit rapid failure due to brittle 

modes due to their low flexural capacity. However they are affected by local 

deficiencies as suggested by their large variability in response. Such variability can not 

arise purely from material variability. 

The limit for complete damage in HAZUS99 (NIBS, 1999) is relatively high and may 

account to some extend for structures dominated by flexural response but does not come 

close to accounting for softening behaviour from brittle modes. As in LR buildings, 

most MR Basic design buildings fail due to abrupt failure modes. These modes are not 

accounted by the median complete damage limit given in HAZUS99 (NIBS, 1999). In 

the case of the Modern design buildings, damage is dominated by the spread in 

plasticity and the small variation in the derived curves is attributed to material strength 

variability. Although the response is dominated by the flexural mode, HAZUS99 

(NIBS, 1999) median limit for complete damage again underestimates the damage 

potential. 
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It should be noted that the HAZUS99 (NIBS, 1999) limits are probably intended for the 

seismic region of California for which the design ground acceleration may be higher 

than the ones used for Cyprus. These limits were derived from threshold SO values, and 

are based on the combination of available drift/damage information from a number of 

published sources from researchers in the US (NIBS, 1999). This information, which 

relies heavily on US expert opinion and may be based on US practice and a building 

stock that in general complies with code guidelines, may overestimate the 

characteristics of buildings in other regions and with less stringent code compliance. 

Nonetheless it is fairly clear that such universal limits, as given by HAZUS99 (NIBS, 

1999), are neither adequate for all places nor for all building classes. For example. a 

Pre-seismic building in Pakistan is very different from one in Cyprus which is very 

different from the one in California. In addition, Modern design buildings may well 

exceed the HAZUS99 (NIBS, 1999) limit for complete damage if the buildings are 

designed accordingly. 

6.4.5.3. Comparison with other empirical vulnerability curves 

The curves for LR buildings are compared with the empirical vulnerability curves (for 

superior and substandard construction) derived by Schnabel (1987) based on experience 

from similar regions and observed damage data from the region of Cyprus (Kyriakides, 

2007). These curves are the only ones proposed for the specific region, and were also 

used by Kythreoti (2001) in an Earthquake Risk Assessment framework (EQ-RACY). 

The curves cover two types of construction practice, Substandard and Superior (for 

buildings less than 4 storeys). Since the curves were derived in 1987, the Substandard 

buildings correspond to buildings in the Pre-seismic period and the superior buildings to 

Basic designed buildings. Upper and lower limit curves are provided for each type of 

construction. The original curves used MMI as the earthquake demand parameter. For 

comparison purposes the derived vulnerability curves, which were developed using 

PGA, are modified using the previously derived equation (eq.3-12) to convert PGA to 

MMI. The comparison of the Substandard with the Pre-seismic vulnerability curves is 

shown in Figure 6.20. Although the corresponding predictions for MOR agree at the 

very early stages the derived curves show a much more rapid increase in MOR and 

predict considerably lower MMI level at complete damage. The same conclusion can be 

drawn from the comparison of the Superior with the Basic design buildings curves 

shown in Figure 6.21. 
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It is clear that the derived curves for LR buildings overestimate the damage potential 

compared to the empirical observations used in the derivation of Schnabel's curves. 

This may be attributed to the fact that in the reverse MADRS procedure the EC-8 

(2004) Type I elastic spectrum is used, which is widely accepted that it overestimates 

the earthquake potential in Cyprus. This type of elastic spectrum can be used as the 

envelope of seismic records in regions with high seismicity and most importantly with 

long duration events. In such regions, buildings undergo several cycles at the high PGA 

levels. Cyprus is located in a moderately seismic region, in which case most damaging 

events constitute of a single spike. Therefore, it is anticipated that for the specific case 

of Cyprus, the EC-8 (2004) Type 2 elastic response spectrum may be more appropriate 

to simulate the seismic activity. It is also suggested by EC-8 (2004) that t( the 

earthquakes that contribute most to the seismic hazard defined for the sile for the 
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purpose of probabilistic hazard assessment have a sUllace-wave magnirude .. 'vis. nor 

greater than 5.5, it is recommended that the Type 2 spectrum is adopted. Therefore. to 

address the specific classes of buildings in Cyprus, the probabilistic vulnerability cun'eS 

are re-calculated using the Type 2 elastic spectrum as the eal1hquake demand parameter. 

The comparIson of the revised curves (Type 2 spectrum) for Pre-seismic and Bas ic 

designed buildings with Schnabel's curves for substandard and superior construction is 

shown in Figures 6.22 and 6.23 , respectively. 
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from recent se ismic activity in Cyprus (see chapter 3) showing very good correlat ion 

with the derived vulnerability curves. Beyond MOR=50% Schnabe l's curves seem to 

underestimate the rapid increase in damage observed in the proposed curves. Since no 

previous experience exists for such buildings subjected to high levels of excitation. 

reference can be made to the Saclay frame (see Chapter 5). The MRO for the Sac lay 

frame computed based on the OJ in equation 6.17 is shown in Figure 6.2 1. Though no 

much visible damage was observed at PGA=O.4g the frame was severely damaged and 

was considered to be close to collapse. Hence, it is unlikely that the frame would have 

resisted much higher intensity levels, contradicting the Schnabel ' s curves in this region . 

Based on the above di scuss ion it is concluded that the revised curves using the Type 2 

elastic spectrum are more representative of the distribution of damage for buildings in 

Cyprus. ]t should be noted though , that the initially derived vulnerab ility curves (using 

Type 1 elastic spectrum) should be used for vulnerability assessme nt purposes in high 

se ismicity regions. The analytical vulnerability curves adopted for the region of Cyprus 

for LR and MR buildings for the three COP periods are shown in Figures 6.24 to 6.29. 

It should be pointed out that what is proposed here is that vulnerabi lity curves are not 

just a function of the structural characteristics, but they are also a fu nction of the 

response spectrum. Hence, for the same type of building different vulnerability curves 

should be derived , based on the local se ismic hazard . 

The objective set in Chapter 1 for the enhancement of the existi ng vulnerability curves 

for Cyprus is now completed. The deri ved curves wi ll be substituted into the earthquake 

risk assessment framework produced by Kythreoti (EQ-RACY , 200 I) to improve the 

estimation of the earthquake ri sk for Cyprus. 
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Chapter 7 

EARTHQUAKE RISK 

ASSESSMENT 

7.1. Introduction 

In this chapter, the enhanced models developed for PGA attenuation and vulnerability 

are used in the Earthquake Risk Assessment framework "EQ-RACY" (Kythreoti, 2001) 

to compute the seismic risk for the region of Cyprus. 

7.2. Background on EQ-RACY 

The Earthquake Risk Assessment framework "EQ-RACY'· was initially developed by 

Kythreoti (2001) to predict the earthquake risk for the region of Cyprus. Both 

parameters constituting the earthquake risk (hazard and vulnerability) were treated 

probabilistically. The hazard is based on an earthquake catalogue compiled for past 

seismicity in the region for a period of 103 years. The variability of future seismic 

events is introduced by varying spatially the epicentral location (± ISkm), depth 

(±20km) and magnitude (±0.2) of past events. 

The coordinates of the all cities and villages in Cyprus were introduced in the 

framework in small geographical units which include amongst other, information on 

geology and type and number of buildings. The hazard at each location from each 

earthquake was calculated using Theodulidis and Papazachos (1992) attenuation laws as 

derived for Greece. The soil conditions at each location \\ ere also treated 

probabilistically (±0.2SS). The vulnerability (MDR) of the building stock \\as obtained 

from Schnabel's empirical curves and was also treated probabilisticall) (:1:20%). The 
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estimated hazard and vulnerability at each location was combined with cost and 

integrated to arrive at the total risk. 

The main recommendations for future research included the enhancement of the hazard 

attenuation laws based on data from Cyprus and the derivation of new vulnerability 

curves representative of the building stock in Cyprus. These recommendations have 

already been addressed in this thesis and the enhanced models were used in EQ-RACY 

to arrive at the seismic risk for Cyprus. 

7.3. Estimation of earthquake risk for the region of Cyprus 

The average total risk using the previous models was found to be CY£802m for a return 

period of 103 years, which corresponds to an annual risk of CY£7,8m (1996 

replacement values). 

After substituting the newly derived PGA attenuation law (chapter 3) and the analytical 

vulnerability curves (chapter 6) into EQ-RACY (Kythreoti, 2001) the probabilistic 

analysis of the framework (EQ-RACY) was repeated using 100 simulations (using the 

inherent variability discussed in 7.2) of the 103 years earthquake catalogue. This 

simulation study resulted in average annual risk prediction (average of 100 earthquake 

catalogues x 103 years for each catalogue) of CY£8,9m (1996 values). This value 

increases to CY£13m for the same building stock using 2007 prices. The increase can 

be attributed to the rapid increase in damage observed in 6.4.5.3 for Pre and Basic 

design buildings. 

Based on data from the Statistical Service of Cyprus, Kythreoti (2001) concluded that 

the total number of buildings used as living quarters up to 1996 was 294,563. By 

dividing the average annual risk with the total number of buildings the annual risk per 

building (with a 1996 average construction cost of CY£44,490) is equal to CY £30. The 

insurance premium value allocated to seismic risk in 2007 by insurance companies 

(Hatzijortsis, 2007) in the island range between 0.06-0.08%. Hence, the average annual 

insurance premium allocated to seismic risk per building (using 1996 values) is CY£31. 

which is very close to the annual risk per building estimated value using the new models 

and EQ-RACY. Therefore, it appears that insurance companies estimate the overall 

earthquake risk accurately as far as the whole of the island is concerned. 
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Since the framework (EQ-RACY) provides ri sk estimates fo r every locati on and 

different buildings types around the island, it was decided to examine the risk re sults 

only for Pre-Seismic buildings since it is regarded as the most vulnerable constructi on 

period. The analysis of the risk results concluded that the average annual ri sk pe r 

building in this construction period is equal to CY£98, which is three times the average 

annual premium value. Therefore for Pre-seismic construction, it appears that the 

Insurance companies underestimate this risk considerabl y. However, thi s IS 

compensated by the fact that the number of these buildings is reducing with time. 

Finally the spreading of risk around the island was assessed using the ri sk estimates 

from the simulations for each city. The spread of risk in the island was also assessed by 

Kythreoti (2001) (Figure 8.1), concluding that existing premium values are : 

• Conservative for Nicosia and Larnaca 

• Unconservative for Limassol and Famacusta 

• Unrealistically low for Paphos 

AER per Building (f) 
Less than 10 
10 to 50 
50 to 100 
100to250 
Generally UninhOlb ited AJeOls 

Figure 7.1 Spreading of risk around the island (Kythreoti, 2001 ). 

The results from the simulation study conducted herein verified Kythreoti' s (00 1) 

observations resulting in a maximum annual ri sk of CY £ 150 for Pre- eisl1li c 

construction in Pegeia (Paphos municipality). 
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Chapter 8 

SUMMARY 

AND CONCLUSIONS 

8.1 Introduction 

The aim of this study was to combine empirical damage data and analytical techniques 

and develop a framework for improved earthquake vulnerability assessment. The 

framework was intended to be demonstrated using the island of Cyprus as a case study. 

Early in the study it was realised that due to limited empirical data the framework 

should rely entirely on analytical techniques, and empirical data should only be used for 

comparison purposes. Thus, the bulk of the work concentrates on the derivation of 

analytical vulnerability curves. 

This chapter presents a summary and mam conclusions followed by a list of the 

recommended topics for future work. 

8.2 Summary and main conclusions 

The derivation of analytical vulnerability curves is a multidisciplinary problem, whose 

accomplishment is dependent on many issues. It is concluded that the single most 

important issue is the definition of an appropriate structural model, which requires 

sophisticated modelling capabilities to simulate brittle failure modes, something which 

has not been done in detail in the past. It was shown in the vulnerability curves in 

chapter 6 that such failure modes influence the shape of the vulnerabilit) curves In a 

great degree by causing sudden increase in MDR's. 
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From the review of existing vulnerability assessment methods it is concluded that: 

• Empirical vulnerability curves in the literature are derived based on limited data 

especially at high vulnerability levels, and disregard the effect of a combination 

between construction type and period. 

• Curves based on expert opinion are biased towards the types and age of buildings 

of the expert experience. 

• Analytical vulnerability curves provide the most reliable alternative but, in order 

to be examined in detail, require sophisticated modelling and analysis techniques. 

From the processing of field data it was concluded that: 

• A new PGA attenuation law (based on the mathematical model and derivation 

procedure proposed by Theodulidis and Papazachos, 1992) is proposed and this 

leads to improved predictions for the region of Cyprus. 

• Very limited information can be drawn from the processing of the damage data 

from Cyprus since they cover only low vulnerability values. 

From the review on modelling it was concluded that: 

• Sophisticated modelling needs to be adopted in order to obtain results on the 

structural response for a variety of typical failure modes. The models in DRAIN-

3D were found to be appropriate for this study. 

• The calibration of the capacity models, available in DRAIN-3D, for each 

anticipated failure mode was undertaken using data from the literature and expert 

judgment. 

• The analytical tool was verified both on the global and local Je\el against 

recorded data from shaking table tests. 
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From the derivation process of analytical vulnerability curves: 

• A modified capacity-spectrum procedure was adopted for the estimation of 

structural response and verified against time-history results. This procedure 

includes the bilinearisation of strain softening capacity curves so as to simulate 

structural deterioration due to a variety of local brittle modes of failure. 

• A reverse capacity-spectrum procedure was assembled for the estimation of 

structural response for exposure to specific PGA levels. 

• A damage index was adopted based on fundamental period shift and this was 

linked to MDR's. 

• The selected key probabilistic parameters were chosen from the capacity models 

of all credible failure modes. 

• The probability distribution functions of the key parameters are defined based on 

experimental results and expert judgment. 

• The simulation values used in probabilistic analysis can be obtained using the 

Latin Hypercube Sampling method. 

• Analytical vulnerability curves were derived for two example buildings and three 

design levels. 

From the derived analytical vulnerability curves 

• A rapid increase in damage well before the anticipated flexural failure threshold is 

observed in "Pre" and "Basic" design buildings. This occurs due to the dominance 

of brittle failure modes. Such behaviour is not currently anticipated by an) simple 

analytical vulnerability curves or existing curves for Cyprus. 
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• The effect of the local spectrum on the vulnerability curves was found to be 

considerable and should be taken into account when developing regional 

vulnerability curves. 

• In the case of Cyprus, Type 2 spectra (EC-8, 2004) were found to simulate better 

the earthquake hazard potential. 

• The average annual earthquake risk for Cyprus is CY£9.8m (1996 values) and 

CY £13m for the same building stock for 2007 values. 

• Annual insurance premiums allocated for seismic risk range between 0.06-0.08% 

and as such predict the overall risk accurately. However, the use of a single 

premium for all building types and the entire island leads to an underestimation of 

seismic risk in Pre-seismic buildings by up to three times. This underestimation is 

more profound in regions along the southwest coast of the island. 

8.3 Recommendations for future work 

• The derived PGA attenuation law needs to be verified against an extended PGA 

database. 

• The derived analytical vulnerability curves should be compared with future local 

damage data and data from experimental results on these types of buildings. 

• The calibration of the capacity models in DRAIN-3D needs to be undertaken in 

more detail using more experimental data. More sophisticated models are still 

required to capture all the anticipated failure modes. 

• 

• 

The damage index used should be calibrated against field data so as to improve 

the link to damage limits. 

The effect of semi-rigid foundations on structural response needs further 

examination. 

1.t 1 



Chapter 8 Summary and Conclusions 

• The effect of infills was beyond the scope of this study but should be considered 

in future similar work. 

• The probabilistic distribution functions of the key parameters should be verified 

against experimental data. 

• A larger number of deterministic design parameters should be treated 

probabilistically. 

• A larger number of building types and configurations need to be considered. 

• Statistical data in EQ-RACY need to be updated. 

• EQ-RACY framework should be implemented in GIS. 
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DATA FOR EMPIRICAL 
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Table A-I. Location and surface geology at the recording stations (Solomis, 2002) 

CODE LOCATION COORD INA TES BUILDING GEOLOGY s 

I-st RC small 

Yermasoya warehouse at 
YER 34.73 33.08 Marly chalk 0.75 

Dam the edge of the 

dam 

I-st 

LMS Limassol 34.67 33.04 prefabri cated 
Sands, clays. 

0 

building 
gravels 

Sandstones, 
I-st RC 

PSR Pissouri 34.65 32.72 marly 0.5 
building 

limestone 

River 
I-st RC small 

Arminou deposits, 
ARM 34.87 32.73 warehouse at 

Dam over pillow 
dam basement 

lavas 

I-st RC small 

EVR Evretou Dam 34.98 32.47 warehouse at Marly chalk 0.75 

dam basement 

Limassol Sandstones, 
2-st RC 

LWP Water 34.70 33.00 marly 0.5 

building 
limestone Refinery 

2-st RC Sands, clays, 

VAS Vasilikos 34.71 33.32 0 

building gravels 

Sandstones, 

Kalavasos 
KAL 34.8 33.26 Dam Crest marly 0.5 

Dam limestone 

KOU Kouris Dam 34.73 32.92 Dam Crest Marly chalk 0.75 

I-st stone Sands, clays, 

KPF Kato Pafos 34.69 32.44 0 

building gravels 

3-st RC Sands, clays. 

Pafos 34.77 32.42 0 
PAF building gravels 

:\-2 



Table A-2. Main geological formations of Cyprus (after Kythreoti , 200 1) 

:\0 CODE I.ITIIOLOGY FORl\tAT I01\ [l'oeil P ERIOD 
I'FUr't[ S 

0 ' ", .. II \ . \1.1 I: 

H Sands. silts, day Allullium-
Holocene QUATERNARY +2 0 and gravels Colluvium 

Chalks. marls . 

2 Mi-Mu marly chalks, 
Pakhna MiOdie Miocene ECGE hE +2 0 .7 5 chalky marls and 

calcarenites 
Graywacke , 

marls, 
3 Mm sandstones, Kylhrea Middle Miocene NEOOGENEO +1 .5 0 .5 

siltstones. basal 
conglomerate 
Chalks. marls . 
m arly chal s . 

Oligocene 
4 Kw-Ou chalky marls ·"'~th 

Lelkara Eocene P".!.A( OGtoN E:. + 0 .5 ctlens in places 
Palaeogene as bands or 

nodules 
Agia Varvara Upper 

CRETACEOUS 
5 Ku Mammonia Agios Photios (Maastrichtian) 

-1 0 Tm-Km Complex Group 
Middle TRIASSIC Dhiarizos Group 

Recrystallised 
m assive or 

6 JI-KI medium to th ick Hilarion U " .SSIC - I 
~d 

limestones 
Olwine, pillow Upper Pillow 

Ku lavas "";th Lavas Lower 

7 UPL occasional sheet Pillow Lavas Upper 
CRETACEOUS -1 l PL flows . dykes and (Cam panian) 

8G sills altered to (Volcanic 
zeolite facies Sequence) 

Diabase dykes up 
to 3m wide. 

Sheeted Dykes aphyric and 
(Diabasej 

8 Db cli nopyroxene Upoer 
CRETIIC OIJ S -I and P'a gioclase-

(Intrusi ve 
(Can panian) 

phyric altered 10 
Seq lence) green sch is! 

facies 

Isotropic, uralite, 
Gabbro y 

Pyroxenite 
and olivine 

Wehrilite 
a4 gabbros, 

Dunne 
9 a3 websterites. 

Hazburgite 
Upper 

CRETACEOUS -I 
a2 wehril iles. Serpentine 

(Campanian) 
a 1 dunites, 
a tectonized (Mantke 

harzburgites. etc . 
Se5juencel 

:\ -3 



Table A-3. Magnitude and epicentrallocation of earthquakes in Cyprus (Solomis, 2002) 

Earthquake Date Magnitude No. of 
f'N IOE 

No. Time Ms readings 

09/10/96 
1* 34.41 32.12 5.74 

13:10:52 

13/01/97 
2 34.27 32.37 5.25 3 

10: 19:26 

25/05/99 
3 34.49 32.30 4.69 4 

17: 15:29 

11/08/99 
4* 34.75 33.03 5.6 8 

04:27:35 

12/08/99 
5 34.79 33 4.13 3 

03:48:21 

13/08/99 
6 34.81 32.98 4.55 4 

15:31:40 

17/08/99 
7 34.79 33.02 4.41 

15:06:20 

23/08/99 
8 34.78 33.01 3.99 

15:02:23 

26/08/99 
9 34.83 32.99 4.27 

01:48:50 

23/04/00 
10 34.67 33.29 3.99 

04:56:39 

16/12/00 
11 34.27 33.32 4.27 5 

14:27:20 

01/09/01 
33.75 4.13 12 34.87 

19:22:46 

10/11/01 
32.51 4.20 2 13 34.94 

02:23:57 

25/04/02 
32.72 3.99 14 35.16 

22:34:52 

20/06/02 
33.16 4.06 ') 

15 34.75 -
02:55:48 

*. Data used for damage assessment 



Table A-4. Strong-motion data and surface geology at the recording stations (Solomis, 2002) 

Earthquake 

No. 

2 

2 

2 

3 

3 

3 

3 

5 

5 

5 

4 

4 

4 

4 

6 

4 

6 

6 

6 

4 

4 

4 

7 

8 

9 

10 

11 

11 

11 

11 

11 

12 

13 

13 

14 

15 

15 

Record 

Code 

YER 

LMS 

PSR 

ARM 

LMS 

EVR 

LWP 

VAS 

LMS 

LMS 

LWP 

LMS 

LWP 

YER 

LMS 

LMS 

LMS 

LMS 

LMS 

LMS 

LMS 

LMS 

YER 

LMS 

LMS 

LMS 

KAL 

LMS 

LWP 

KOU 

YER 

LPS 

KOU 

KPF 

PAF 

KOU 

LMS 

LHL 

Ms 

5.74 

5.25 

5.25 

5.25 

4.69 

4.69 

4.69 

4.69 

4.13 

4.13 

4.13 

4.97 

4.97 

4.97 

4.13 

4.27 

3.99 

4.06 

4.13 

3.99 

4.06 

4.55 

4.55 

4.41 

3.99 

4.27 

3.99 

4.27 

4.27 

4.27 

4.27 

4.27 

4.13 

4.20 

4.20 

3.99 

4.06 

4.06 

Intensity 

MMI 

6 

5 

4.5 

4.5 

5 

4 

5 

2 

3.5 

5 

6 

7 

7 

7 

6 

2.5 

4.5 

3.5 

3.5 

3.5 

4.5 

5 

5 

5.5 

3 

3 

4 

2.5 

2 

2 

3 

2 

2 

2.5 

2.5 

2 

5 

5 

Distance 

R (Ian) 

95 

76 

53 

74 

71 

55 

71 

71 

8 

8 

8 

6 

4 

5 

10 

14 

10 

17 

16 

8 

22 

13 

13 

15 

9 

17 

15 

55 

56 

63 

56 

52 

77 

22 

28 

51 

14 

14 

Depth 

(Km) 

25 

20 

20 

20 

30 

30 

30 

30 

8 

8 

8 

12 

12 

12 

8 

5 

5 

3 

5 

20 

5 

5 

5 

5 

5 

20 

30 

30 

30 

30 

30 

40 

10 

10 

35 

8 

8 

43 

26 

19 

16 

25 

15 

34 

4 

9 

24 

49 

119 

164 

135 

39 

6 

16 

10 

9 

10 

15 

25 

25 

30 

7 

8 

21 

6 

6 

6 

9 

5 

5 

6 

5 

4 

25 

26 

Soil 

parameter 

(S) 

0.75 

o 
0.5 

o 
0.75 

0.5 

o 
o 
o 

0.5 

o 
0.5 

0.75 

o 
o 
o 
o 
o 
o 
o 
o 

0.75 

o 
o 
o 

0.5 

o 
0.5 

0.75 

0.75 

0.5 

0.75 

o 
o 

0.75 

o 
0.5 
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Table A-5. Representative sample of damage data 

Municipality Building No. of Total Damage Construction V ulnerabi I ity 

Type floors building (repair in Date (repair/m2) 

Area CY£) 

(m2
) 

Town centre RC 2 120 £750.00 1997 6.25 

* RC 2 140 £1,035.00 1985 7.39 

* RC 1 240 £800.00 1974 3.33 

* RC 2 140 £310.00 1983 2.21 

* RC 1 120 £185.00 1985 1.54 

* RC 2 150 £1,500.00 1996 10.00 

* RC 1 200 £690.00 1993 3.45 

* RC 2 130 £920.00 1989 7.08 

* RC 1 160 £510.00 1993 3.19 

* RC 1 140 £355.00 1995 2.54 

* RC 1 140 £210.00 1992 1.50 

* RC 2 380 £555.00 1995 1.46 

* RC 1 130 £505.00 1957 3.88 

* RC 1 180 £845.00 1990 4.69 

* RC 1 140 £440.00 1990 3.14 

* RC 1 95 £640.00 1988 6.74 

* RC 2 120 £950.00 1993 7.92 

* RC 2 120 £950.00 1997 7.92 
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Grade I: :\egligible (0 sljoht damaon 
!:> !:>" 

(no structural damage. 

'itighl non-srfllCrUf:1l damage) 

Fine cracks in pias[~:- o\'c; frJ.mt: m~mbl.!rs 

l)r in walls at the base 

Fine cracks in partitions ano infills. 

Grade 2: Yloderate damaoe 
!:> 

(slight structural damage, 

moderate non-structur::ll damage) 

Cracks in columns and heams of frames 

~md in slruc[urJl \\atts. 

Cracks in partition and ior:ll walls: fall of 

brittle cladding. and plaster. Fal'ling mortar 

from the joints of wall panels. 

Grade 3: Substantial to heavy damage 

(moderate structural damage, 

heavy non-structural damage) 

Cracks in columns and beam column joints 

of frames at the base and at joints of 

coupled walls. Spatting of conrete cover. 

buck1ing of reinforced rods. 

Large cracks in partition and infill walls. 

failure of individual intill panels. 

Grade 4: \' ery heav), damage' 

(heavy structural damage. 

very heavy non-st ructural damage) 

Large cracks in structural elements with 

compression failure of concrete and 

fracture of rebars: bond f<:lilure of heam 

reinforced bars: lilling of columns. 

Collapse of a few columns or of a single 

upper floor. 

Grade 5: Destruction 

(very heavy structural damage) 

Collapse of ground floor or pans (e. g. 

wines) of buildines. 
~ -

Figure A-l. Damage Grade classification scheme for RC buildings (EMS-1998) 
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li II ~ II ; I 

; S' D P.I 

Grade I: Negligible to slight damage 

(no structural damage. 

slight non-structural damage) 

Hair-line cracks in very few walls. 

Fall of small pieces of plaster only . 

. Fall of l~ose stones from upper parts of 

buildings in very few cases. 

Grade 2: Moderate damage 

(slight structural damage, moderate 

non·structural damage) 

Cracks in many walls: 

Failor fairly large pieces of plaster . 

. Partial coHapse of chimneys. 

Grade 3: Substantial to heavy damage 

(moderate structural damage, 

heavy non-structural damage) 

Large and extensive cracks in most walls. 

Roof tiles detach. Chimneys fracture at the 

roof line: failure of individual non-struc

tural elements (partitions. gable walls). 

Grade 4: Very heavy damage 

(heavy structural damage, 

very heavy non-structural damage) 

Serious failure of \valls: partial structural 

failure of roofs and !loors. 

Grade 5: Destruction 

(very heavy structural damage) 

Total or near total collapse. 

• 

Figure A-2. Damage Grade classification scheme for Masonry buildings (EMS-1998) 
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Appendix B 

SIMULATION VALUES FOR 

PROBABILISTIC VUNERABILITY CURVES 
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Table 8-1. Simulation values for key parameters (Pre-seismic buildings) 

fc {Mea} fy {Mea} s I f{d} 

24.4 465 275 21 
31.3 429 198 26 
26.3 426 286 22 
27.3 446 243 23 
22.3 368 255 19 
35.9 377 240 29 
25.6 411 233 22 
29.8 483 295 25 
33.2 353 282 27 
19.6 393 309 17 
32.4 421 217 27 
38.6 460 237 31 
37.3 389 266 31 
40.3 435 212 33 
21.5 405 273 19 
29.3 424 227 24 
24.0 454 270 20 
43.1 402 254 35 
18.2 386 251 16 
49.2 418 263 39 

15.3 415 224 14 

34.5 440 260 28 

35.6 399 196 29 

28.8 409 248 24 

31.2 445 232 26 
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Table B-2 Simulation values for key parameters (Basic seismic buildings) 

fc {M~a~ fy {M~a~ s I f{d~ 
30.1 575 205 36 
36.1 540 128 31 
31.8 537 216 31 
32.6 556 173 33 
28.2 477 185 23 
40.1 487 170 25 
31.1 521 163 29 
34.9 592 225 38 
37.8 462 212 21 
25.9 503 239 27 
37.1 531 147 30 
42.5 570 167 35 
41.4 500 196 26 
44.0 545 142 32 
27.6 515 203 28 
34.4 535 157 31 
29.7 565 200 34 
46.4 512 184 28 
24.7 496 181 26 
51.8 529 193 30 
22.1 526 154 30 
38.9 550 190 33 
39.9 510 126 28 
33.9 520 178 29 

36.0 556 162 33 



Table B-3. Simulation values for key parameters (Modern seismic buildings) 

fc {M~a2 fy {M~a} s I f{d} 

50.1 573 118 47 
34.7 482 108 43 
52.2 561 59 48 
43.6 554 93 46 
46.0 547 90 42 
43.0 597 144 46 
41.7 564 66 41 
54.0 588 80 51 
51.3 593 112 44 
56.8 539 97 47 
38.4 585 100 43 
42.5 603 72 50 
48.1 610 103 46 
37.4 544 54 44 
49.7 568 164 45 
40.5 535 133 42 
49.0 522 107 49 
45.7 559 140 43 
45.1 530 78 45 
47.7 553 85 45 
39.8 583 89 47 
47.1 573 129 41 
34.1 661 117 40 
44.7 626 125 44 

41.5 580 47 49 

8-4 



Appendix C 
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Figure C-I . 

200 

4<D14 

250 

. ". f : . ' . • 

4<})16 

300 

.• , f. , 

. , '. 
~ . . .. , .. 

... , , ' 
' r ' . 

, ', ' -.. .. . -
- . ~ ...... . .. ... ..... , 

" ... ~ . 0: .-, ~ .. ', .. 

• 

," .. ' ~. ,:' ,: . ' : .' 
" .. ' , ' .. " .. ', ' : " 

8<D 16 

o 
o 
r-..J 

.. 

(a) 

(b) 

o 
o 
rr-. 

(c) 

)00 

' . . ,- ' : ' ' . ; . ' 

. : ..... 
. . ~ '" 

• ':. I : "" : ~ _ : ~ 
.. ... :' ..... .. . 

6<1> 14 
250 

o 
o 
""1" 

: '1It . '. .~ : " " " ~' • 
• : • • ': : . " , j . :. ", . : :~ " s . ~' .. , .••• • I • 

" . ~. J": _'" " 
. :~ . ' '' . . , ' '. ... . .. : . -.. ' : 

- ' , ' ; :' ,' :: • ~ ... 1 " ." • 

' . . : '. . ~ .:. ' .... .... .-.' . ' .. ~ 
' ... '::-- . ' .. .. . , . ~ . ': .' ... 

" ..... " .. :', 
~ .. ". "' .- _ . ..... . ' , . t· ... , _, .. 

. ' .~ ... : ..... . ' . " , 

. . . ~ 

6$16 

250 

" t ••• • 1 

.' ,J ~. J",: '0 _ " • • •• " , . ' 

" . 
• '~ ,I ' • .. 

..... ... ' . . ' ",' , ', o. ',_ . :. - ' , ' . . 

" '.~ .' ,. . ' 
:,' . 

" . " .:. : ' .. .: '" 

" 

" ' 

8eD 16 

o 
o 
""1" 

o 
o 
-::t 

Cross-sect iona l design detail of LR frames for (a) Pre. (b) Basic al1J 

(c) Modern sei smic des ign (co lu mll s 0 11 the left hand side), 

('-2 



Figure C-2. 
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