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Abstract

Dissipation of excess light energy in plant photosynthetic membranes plays an

important role in the response of plants to the environment, providing short-term

balancing between the intensity of sunlight and photosynthetic capacity. The carotenoid

zeaxanthin and the photosystem Il subunit PsbS play vital roles in this process, but the

mechanism of their action is largely unexplained. This thesis reports a novel procedure

for the extraction of the PsbS protein from spinach thylakoids, including a detailed

account of the developmental process and characterisation of the isolated protein. The

ability of the PsbS protein to bind xanthophyll cycle carotenoids in vitro was assessed,

leading to the observation that the isolated protein was able to bind exogenous

zeaxanthin, the binding resulting in a strong red shift in the absorption spectrum, and

the appearance of characteristic features in the resonance Raman spectrum and a distinct

circular dichroism spectrum, indicating pigment-protein, as well as specific pigment-

pigment, interaction. A strong shift in the absorption spectrum of PsbS phenylalanine

residues after zeaxanthin binding was observed. It is concluded that zeaxanthin binding

to PsbS is the origin of the well known energy dissipation-related 535-nm absorption

change. The ability of this PsbS-zeaxanthin complex to affect the rate of chlorophyll

fluorescence quenching of the major LHcn antenna protein is detailed, revealing an

increase in the rate of quenching, whilst the magnitude of quenching remained constant.

The altered properties of zeaxanthin and PsbS after in vitro reconstitution and their

subsequent effect on LHCnb provide the first direct indication about how they regulate

energy dissipation.



Acknowledgements

This PhD thesis does not simply represent the collective work of the last four years. as this

goal has been the focus of my family and myself since I was nine years old. Throughout that

time my family have supported me in everyway imaginable, having made huge sacrifices in

order to give me the best possible start in life. It is safe to say they have succeeded; I will

always be indebted to them. To mum and dad, this has only been made possible by your

unfaltering love and support; I hope this makes you proud, as it is your achievement too. To

my nan, who has been there even when others have not, I will always love you. To uncle

Arthur, thank you for all your help over the years, I have always been grateful.

~I
~i

Professor Peter Horton gave me an opportunity; he had faith in my abilities and that is

i something I will always be thankful for. Your help in completing this thesis has been
~

Ii invaluable. A special mention should go to Mark Wentworth; after five years I consider you
!I
iii! a friend, and through your knowledge and support you have made my life easier over that
~
!! time. Also Alexander Ruban, after many a stimulating conversation I believe you have
~
~Iiii helped me to become a better scientist, if not a better person. Thank you both. To Pam

Scholes, always there when I needed help, and incredibly you always seemed to provide a

solution. I would also like to mention Dr Chi Wong, for his assistance during the final stages

of my PhD, my examiners for taking the time to read this thesis, and the BBSRC for funding

this project. Finally, thanks to the colleagues I have spent much of the last four years with.

Many of you are now close friends, and in some part you have all contributed to this thesis.

Good luck in the future, I wish you all the very best.

Mark Aspinall-O'Dea

..
u



"You can imagine anything you
don't have. Even the future.

Thefuture more than anything"

Father of Walter de Silva
Chief Designer - Audi

III



Abbreviations

ATP

CAB
3Car

CFo

CFI

Chla

3Chla

Chlb

CK2

Cyt b559

Cyt b6f

DCMU

Deriphat 160 -

DTT

ELIPs

FD

FNR

<DF
LHCII

LHCIIb

MODO

Mn

NADP+

NADPH

NPQ

102*

OEC

3p680

PbRC

PC

PO

~pH

Pheo

pi

Adenosine triphosphate

Chlorophyll alb binding proteins

Triplet state carotenoid

ATP-synthase integral membrane complex

ATP-synthase extrinsic stroma exposed complex

Chlorophyll a

Triplet state chlorophyll a
Chlorophyll b

Caesin Kinase II

Cytochrome b559 complex

Cytochrome b.f complex

3-(3,4-dichlorophenyl)-1, 1-dimethylurea

Disodium N-Iauryl-B-iminodipropionate

Dithiothreitol

Early light inducible proteins

Ferredoxin

Ferredoxin-Na.Dl'" Reductase

Fluorescence yield

Photosystem II light harvesting antenna system

Major light harvesting complex

Monogalactosyldiacylglyceride

Manganese

Nicotinamide adenine dinucleotide phosphate

Nicotinamide adenine dinucleotide phosphate (reduced)

Non-photochemical quenching of chlorophyll fluorescence

Singlet state oxygen

Oxygen evolving complex

P680 triplet chlorophyll

Bacterial reaction centre

Plastocyanin

Phosophatidylglycerol

Change in transthylakoid pH gradient

Pheophytin

Isoelectric point

IV



PSI

PSII

PQ

PQH2

RC

qE

qI

qN

qT

SDS-PAGE

TV;

r».
VDE

WT

ZE

Photosystem I

Photosystem I I

Plastoquinone

Plastoquinol

Reaction centre

Rapidly relaxing component ofNPQ

Irreversible/very slowly relaxing component ofNPQ

Non-photochemical quenching

Slowly relaxing component ofNPQ

Sodium dodecyl (lauryl) sulfate - polyacrylamide gel electrophoresis

Half-time

Photosystem II D1protein, Tyrosine Z amino acid

Violaxanthin deepoxidase

Wild type

Zeaxanthin epoxidase



Contents

Abstract
Acknow ledgments
Quotation
Abbreviations
Contents

II

III

IV

VI

General Introduction - Chapter One

1. Introduction 9
1.2 Photosynthetic phases - 'light' and 'dark' reactions 10
1.3 An overview of electron transport in higher plants 11
1.4 Photosystem II 12

1.4.1 Reaction Centre (PSII) 12
1.4.2 Inner (distal) antenna and PSII-core complex 14
1.4.3 Oxygen-evolving complex 15
1.4.4 S-state model of oxygen evolution 16
1.4.5 Spatial organisation of PSII electron transport chain cofactors 16

1.5 PSII light harvesting antenna 18
1.5.1 Major antenna complex - LHCIIb 19
1.5.2 Minor antenna complex - CP29 25
1.5.3 Minor antenna complex - CP26 27
1.5.4 Minor antenna complex - CP24 28
1.5.5 Related Lhcb proteins - PsbS 28
1.5.6 Related Lhcb proteins - LHCIIe/Early light induced proteins (ELIPs) 28
1.5.7 Macromolecular organisation of the Photosystem II antenna 28

1.6 Cytochrome bf complex 31
1.7 Photosystem I 3 1

1.7.1 Photosystem I reaction centre core 32
1.7.2 Photosystem I stromal side subunits 32
1.7.3 Photosystem I lumenal side subunits 33
1.7.4 Additional PSI components - PsaH, PsaL and PsaO Cluster 33
1.7.5 Additional PSI components - PsaK and PsaG 34
1.7.6 PSI structure 34

1.8 ATP-synthase complex 36
1.9 Photosynthetic regulation 36

1.9.1 Cyclic electron transport 37
1.9.2 State transitions 37
1.9.3 Carotenoids 37

1.10 Photoprotection in higher plants 38
1.10.1 Chlorophyll fluorescence yield and quenching 39
1.10.2 Non-photochemical component of chlorophyll fluorescence quenching 40

1.11 The xanthophyll cycle 41
1.11.1 qE - an historical overview 42
1.11.2 qE - the site of energy dependent quenching 43
1.11.3 Relationship between qE and the xanthophyll cycle 44

1.11.3i Direct quenching mechanism: molecular gearshift model 45
1.11.3ii Indirect quenching mechanism: allosteric qE model 46

1.11.4 Genetic Analysis 50
1.12 PsbS
1.13 Aims

52
56

vi



Materials & Methods - Chapter Two

2.1 General laboratory chemicals 58
2.2 Plant material 58
2.3 PSII membrane preparation (BBY particles) 58
2.4 Preparation of PSII antenna complexes by iso-electric focusing (IEF) 59

2.4.1 Gel preparation 59
2.4.2 Pre-focusing of the gel 59
2.4.3 Sample preparation 60
2.4.4 Loading and running the sample 60
2.4.5 Sample elution - pH 3.5-5 60
2.4.6 Sample elution - pH 5.0-7.0/3.0-9.0 60

2.5 Preparation of PSII PsbS protein from BBY particles 60
2.6 Chloroform/methanol extractions 61
2.7 DCCD binding 61
2.8 Isolation, purification and identification of plant carotenoids 61

2.8.1 Large-scale pigment extractions 62
2.8.2 Preparation of standard thin layer chromatography (TLC) plates 62
2.8.3 TLC tank preparation 62
2.8.4 TLC purification of extracted carotenoids 63
2.8.5 Carotenoid identification 63
2.8.6 Identification of viola xanthin by its isomerisation into auroxanthin 64

2.9 Sucrose Gradients 64
2.10 Measurement of the in vitro chlorophyll fluorescence quenching of isolated PSII 65

antenna complexes
2.11 SOS-polyacrylamide gel electrophoresis (SOS-PAGE) 65
2.12 Deriphat polyacrylamide gel electrophoresis (native green gels) 66
2.13 Staining of polyacrylamide gels 66

2.13.1 Silverstain 66
2.13.2 Coomassie brilliant blue staining 67

2.14 Drying polyacrylamide gels 67
2.15 Western blotting 67

2.15.1 Electro-blotting and antibody labelling 67
2.15.2 Antibody detection using ECL ™ detection kit (Amersham) 68

2.16 Concentration using Centricon® centrifugal filter devices 68
2.17 Determination of chlorophyll concentration 68
2.18 Absorption spectroscopy 69
2.19 Circular dichromism (CD) 69
2.20 Resonance Raman spectroscopy 69
2.21 PsbS sequence analysis 69

2.21.1 Reverse phase HPLC 70
2.21.2 Mass spectrometry 70

2.22 Colloidal blue staining (Novex) 70

PsbS Isolation and Characterisation - Chapter Three

3.1 Introduction
3.2 Isolation of a 22kDa polypeptide by iso-electric focusing (IEF)
3.3 Selective solublisation of PsbS
3.4 Optimisation ofNa-Cholate extraction
3.5 Determination of the primary sequence of the 22kDa extracted protein
3.6 Absorption spectra
3.7 Analysis of secondary structure by circular dichromism
3.8 DCCD binding properties ofPsbS
3.9 PsbS homodimer
3.10 Discussion
3.11 Concluding remarks

72
73
87
90
94
94
96
99
100
102
103

Vll



Analysis of PsbS-Zeaxanthin Interactions - Chapter Four

4.1 Introduction 104
4.2 Spectral characterisation of Xanthophyll-Cycle carotenoids 104
4.3 Development of an effective reconstitution technique 105
4.4 Reconstitution of the PsbS protein 109

4.4.i Reconstitution - pigment/protein ratio effect at low component concentration 109
4.4.ii Reconstitution - effect of temperature 111
4.4.iii Reconstitution - pigment drying using solvents 113
4.4.iv Reconstitution - use of high component concentrations 114

4.5 Analysis of PsbS interaction of Antheraxanthin and Violaxanthin 118
4.7 Analysis of reconstituted PsbS interaction with LHCII components using in vitro I 19

fluorescence quenching technique
4.7.1 Introduction 119
4.7.2 Fluorescence Quenching 120

4.8 Discussion 125

General Discussion - Chapter Five

5.1
5.2
5.3
5.4
5.5

Introduction
PsbS - the relationship with pH
PsbS - the relationship with the xanthophyll cycle
PsbS - a model for the role of PsbS in qE
Conclusion

129
129
130
131
133

References - Chapter Six

6 References 136

Appendix - Publications

7 Publications 157

\'111



Chapter One
General Introduction



Chapter One
General Introduction

General Introduction

1. Introduction

Photosynthetic organisms require quanta of light energy to drive the conversion of inorganic

H20 and CO2 into complex organic sugars. The process of oxygenic photosynthesis enables

this through the reduction of NADP+ coupled to oxygen evolution. It is thought to be an

important factor in the evolution of multicellular eukaryotic organisms, as it provides almost

all the reduced carbon required for sustainable life, along with the vast majority of molecular

oxygen predominantly employed as the terminal electron acceptor in respiration.

The photosynthetic machinery in plants is located in specialised organelles known as

chloroplasts. This organelle consists of three membranes, two forming a smooth outer

envelope, which surround the elaborately folded inner membrane known as the thylakoid.

The aqueous phase known as the stroma is found between the thylakoid and the outer

membranes, and it contains the enzymes required for carbon fixation. The differentiation of

the thylakoid membrane into granal and stromal regions (also referred to as

stacked/appressed and unstacked/non-appressed regions, respectively) is a morphological

reflection of the non-random distribution of the photosystems II and I between the appressed

and non-appressed domains known as lateral heterogeneity.

The thylakoid consists of a continuous membrane organised into a 3 dimensional network

with a single interior aqueous phase known as the lumen. Numerous models have been

proposed for thylakoid structure, initially being derived from the early electron microscopy

performed during the 1960s (Weier., 1963), with more recent versions proposed to illustrate

lateral heterogeneity in the thylakoid membrane (Andersson & Anderson., 1980). To a

greater or lesser extent, all of these models fail to accurately depict the thylakoid membrane.

The generally accepted model was proposed by Paolillo., (1970), and later confmned by

Brangeon & Mustardy., (1979). It displays the thylakoid membranes with multiple right-

handed helices of stroma lamellae wrapped round a cylindrical grana forming a contiguous

system. Recently, a computerised model has been generated (Figure 1.1), based upon

electron micrographs from serial sections of granum-stroma assemblies (Mustardy & Garab

2003). The functional justification of the thylakoid architecture is the lateral heterogeneity

of the appressed and non-appressed regions within the thylakoid membrane where the

protein environment varies considerably. Photosystem I and ATP synthase dominate the

unstacked regions of the membrane whilst the majority of Photosystem II is located in the

granal stacks, providing a balance of energy between the two photosystems. The abundance
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Fig 1.1 - Computer representation of the thylakoid membrane modified from Mustardy &
Garab 2003. A: Depicts the helical arrangement of stroma membranes around the granum.
B: Electron micrograph of thylakoid G - grana, Blue circles - stroma membranes.

of LHCII in the granum has led to suggestions that these antennae complexes play a

structural role in the thylakoid.

1.2 Photosynthetic Phases - 'Light' and 'Dark' Reactions

The first of the two photosynthetic phases require photons of light energy to produce

NADPH and ATP, through a series of biochemical events known as the light reactions,

which occur in the chloroplast thylakoid membranes. Numerous multi-subunit pigment-

protein complexes bind both chlorophyll and carotenoid molecules, along with other

cofactors, in a specific orientation that maximises the efficiency of light capture and the

subsequent transfer of this energy along the electron transport chain.

-1.5

P700'
-1.0

P680',

Pheo,~ -0.5

Ew o

0.5

1.0

Figure 1.2 - The Z-scheme for photosynthetic electron transport. Unbroken line, linear

electron transport. Dashed line, cyclic electron transport.
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The vast majority of these pigments function to harvest light energy and increase the

effective surface area for light absorption. The excitation energy is rapidly transferred to the

reaction centres of the two photo systems where it drives charge separation and effects the

release of an electron, which is passed along a series of electron carriers as illustrated in the

Z-scheme. Higher plants transfer electrons from H20 to ferredoxin, the latter being able to

reduce NADP+ to NADPH due to its reduction potential of approximately -0.42 V.

Simultaneously, protons are transferred across the thylakoid membrane from the stroma to

the lumen, creating a proton motive force employed by ATP synthase to drive ATP

synthesis.

The second of the two phases of photosynthesis occur in the stroma and are known as the

'dark' reactions, utilising the NADPH and ATP produced during the 'light' reactions to

assimilate CO2 into carbohydrate.

1.3 An Overview of Electron Transport in Higher Plants

Charge separation occurs following excitation of the PSII reaction centre chlorophyll P680

and an electron is passed onto QAvia a molecule of pheophytin, forming the highly oxidised

species, P680+. P680+ is reduced by extraction of an electron from a tyrosine residue on the

D 1 subunit of PSII. An electron obtained from the splitting of water in the oxygen-evolving

complex subsequently reduces the tyrosine residue.

The electron on QA is passed onto a molecule of plastoquinone bound to the QB site which,

after accepting a second electron, becomes protonated and is then released as plastoquinol

(PQH2). Electrons from plastoquinol are then passed via the cytochrome brJ (cyt br/)

complex to a second mobile electron carrier called plastocyanin (PC). A second charge

separation event within the reaction centre of PSI (P700) liberates a second electron which is

passed along a series of carriers to the terminal electron acceptor ferredoxin (Fd).

Ferredoxin is then used to drive the reduction of NADP+ to NADPH by the Ferredoxin-

NADP+ oxidoreductase (FNR). An electron from plastocyanin finally reduces the PSI

special pair chlorophyll P700+ back to P700.

Translocation of protons across the thylakoid membrane occurs concomitantly with the

vectoral transport of electrons from water to NADP+. The pH gradient is formed by the

production of protons through water splitting in the oxygen-evolving complex of PSl] and

lumenal proton release occurs following the oxidation of plastoquinol to plastoquinone (PQ)

II
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by the cyt b.f complex. The proton motive force generated by the proton gradient across the

thylakoid membrane is subsequently used by the ATP synthase to form ATP.

1.4 Photosystem II

Photosystem II (PSII) is a multisubunit protein-cofactor complex found abundantly in the

appressed (granal) regions of the thylakoid membrane. It functions as a water-plastoquinone

oxidoreductase (for reviews see Hankamer et al. 1997; Barber 1998), with a complement of

at least 28 subunits which collectively form the four principal components ofPSII:

1. Reaction Centre

2. Inner (distal) antenna and RC-core Complex

3. Oxygen Evolving Complex (OEC)

4. Peripheral Antenna

1.4.1 Reaction Centre (PSII)

Found at the heart of PSII, the Reaction Centre (RC) incorporates the chloroplast encoded

D 1 and D2 polypeptides (psbA and psbD genes respectively) which form a heterodimer. The

cofactors involved in charge separation and electron transport bind to the RC's dimeric core,

and these include the primary electron donor P680 reaction centre chlorophylls, the primary

electron acceptor, a molecule of pheophytin a, the PQ secondary electron acceptors QA and

QB, and finally a non-haem iron molecule. The remaining reaction centre components

consist of the cyt bss9 9kDa a and 4kDa 13 subunits, encoded by the chloroplast psbE and

psbF genes, respectively. These polypeptides are known to ligate a single haem group,

however, the function of cytochrome bss9 still remains unclear. Current opinion point toward

a photoprotective role by charge recombination during photoinhibitory periods (Whitmarsh

& Pakrasi 1996). Lastly, cross-linking experiments (Tomo et al. 1993; Shi et al. 1999) and a

high resolution electron density map (Zouni et al. 2001) have located the low MW Psbl and

PsbX proteins close to the reaction centre D2 and cytochrome bss9 proteins. The functions of

these proteins are presently unknown.

Previous studies provided by electron microscopy of intact, active PSII at 15-30A resolution

(Nield et al. 2000), and electron crystallography on 2-D crystals of PSII-fragments at 8A

resolution, which lacked water oxidising activity, have recently been superseded by the x-ray

crystal structures of PSI!. The first, of the PSII structures is from Thermosynechococcus

I'::
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elongatus (formerly Synechococcus elongatus) at 3.8A resolution and consisted of 36

transmembrane helices (Zouni et al. 2001), and the second, from Thermosynechococcus

vulcans at 3.7A resolution that provided structural detail of major large PSll constituents not

identified in the previous structure (Kamiya & Shen 2003). Significant detail has been

observed regarding the spatial organisation of protein subunits, and cofactors, on the basis of

crystal structures fully active in water oxidisation (Shen & Kamiya 2000; Kuhl et al. 2000;

Zouni et al. 2001). The transmembrane a-helices of the PSll reaction centre D I-D2

heterodimer exist as two 5-helix groups arranged in interlocking semi-circles in the form of a

handshake motif. It is thought that some of the D 1 regions are close enough to the Mn-

cluster to provide coordination for it, whilst helix A of D2 is in close proximity to the a and

f3 subunits of cyt bSS9 (Kamiya & Shen 2003). The stromal side of the D2 protein is the

location of the QA binding site (Barry et al. 1994; Svensson et al. 1996; Xiong et al. 1998)

which tightly binds the PQ molecule. The ~ binding site located on the D 1 subunit was

found unoccupied in the model presented by (Zouni et al. 2001). It is thought that the PQ

bound to QB is disassociated during preparation of the crystals (Zouni et al. 2001).

The a-helical arrangements of the PSll-RC D 1 and D2 subunits are structurally and

functionally related to the light (L) and medium (M) subunits of the bacterial reaction centre

(PbRC) (Michel & Deisenhofer 1988; Nitschke & Rutherford 1991; Rhee et al. 1997; Rhee

et al. 1998; Hankamer et al. 1999; Zouni et al. 2001; Jordan et al. 2001; Kamiya & Shen

2003). A high resolution crystal structure at 3A has been determined for the PbRC

(Deisenhofer et al. 1985) and subsequently improved to ~2.5A (for review see Fyfe & Jones

2000). This resemblance is also seen with the five carboxy-terminal helices of PsaA and

PsaB in PSI (Schubert et al. 1998).

The stoichiometry of the cytochrome bSS9 subunit in relation to the PSll-RC is a highly

controversial issue, which has yet to be concluded. The current structural models by (Zouni

et al. 2001) and (Kamiya & Shen 2003) have identified only one cyt b559 subunit per reaction

centre (by virtue of its haem iron) located in the position proposed by (Rhee et al. 1998) and

(Rhee et al. 1997). In support of this data, a ratio of 1.25: 1 cyt b559 to D 1 polypeptide has

been proposed by (Yruela et al. 2003) in a recent study, which highlights the variations of

cyt b559 content in PSll preparations depending on the procedures used. The a and f3
subunits of cyt bS59 form single transmembrane a-helices, and are distinguished by virtue of

the longer a-subunit C-terminus which extends into the lumen.

13
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1.4.2 Inner (distal) Antenna and PSII-core Complex

The reaction centre is surrounded by the other PSII subunits and the PSII-core is the minimal

unit required for oxygen evolution. It is known to include the chlorophyll a (chla) binding

inner (distal) antenna proteins CP43 and CP47, encoded by the chloroplast psbC and psbB

genes respectively, the oxygen evolving complex (OEC) and a number of small polypeptide

subunits thought to have either structural or regulatory roles.

The inner antenna system has been shown to bind 26 chla molecules (Zouni et al. 2001;

Kamiya & Shen 2003) close to the lower limit of the range proposed by (Ghanotakis et al.

1999), whilst being significantly less than the 40 - 50 molecules predicted by (Bassi et al.

1996). CP43 and CP47 are also thought to bind the carotenoids l3-carotene and potentially

lutein (Bassi et al. 1996) however current structural data cannot confirm this (Zouni et al.

2001; Kamiya & Shen 2003). The topology ofCP43 and CP47 suggested that both proteins

consisted of 6 transmembrane helices (Vermaas et al. 1987; Bricker 1990) and initial

confrrmation with respect to CP43 was provided by (Sayre & Wrobelboerner 1994). With

the advent of the 8A structure of the PSII reaction centre from spinach, this prediction was

confirmed for CP47, which could be clearly seen to contain 6 transmembrane helices (Rhee

et al. 1997; Rhee et al. 1998). During the same period (Harrer et al. 1998) used crosslinking

techniques to show that the homologous inner antenna proteins flank both sides of the

reaction centre D I-D2-b559 complex, whilst upon acceptor-side photo inhibition of PSII D 1

and CP43 were specifically crosslinked (Ishikawa et al. 1999). The crystal structures by

(Zouni et al. 2001) and (Kamiya & Shen 2003) confirmed that both CP43 and CP47 consist

of 6 transmembrane a-helices arranged as a trimer of dimers. The assignment is consistent

with the fact that CP47 binds more chia molecules than CP43 (Kamiya & Shen 2003),

however both subunits co-ordinate the antenna chla in the open space between the dimers.

The centre-to-centre distances between pairs of nearest chlorophylls are in the range of 8.5-

13.sA (Zouni et al. 2001). These pigments form two layers close to the stromal and lumenal

sides of the membrane in each subunit. This is consistent with the observation by (Barry et

al. 1994) that the majority of conserved histidines (12 in CP43 and 8 in CP47) are located

toward the stromal and lumenal ends of the proteins. Furthermore, the inner antenna proteins

are structurally similar to each other (particularly in the transmembrane regions) whilst

sharing homology with the six N-terminal a-helices of PsaA and PsaB in PSI (Rhee et al.

1997; Rhee et al. 1998; Schubert et al. 1998; Jordan et al. 2001).

The luminal regions of CP43, CP47, Dl and D2 together with the three extrinsic OEC

proteins form a shield around the Mn-cluster (discussed below). Current structural models

14
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show the lumenal part of CP47 in close proximity to those of D2, the 33kDa PsbO subunit

and the l2kDa subunit found in cyanobacteria. It has been suggested that possible

interactions between these proteins could form important binding sites for the OEC (Kamiya

& Shen 2003) and have a role in chloride sequestration (Bricker & Frankel 2002). The

crystal structure presented by (Kamiya & Shen 2003) has improved upon the 9A map

provided by (Hankamer et al. 1999), and shown the large E loop of CP47 to be particularly

close to the extrinsic PsbO protein. This finding supports the numerous reports proposing

potential association and interaction between these proteins (Seidler 1996; Enami et al.

1997; Bricker & Frankel 2002), and the possibility that CP47 could act to stabilise the

oxygen-evolving complex (Green & Dumford 1996). CP43 is shown to be closely co-

ordinated with the Dl protein of the PSII core (Zouni et al. 2001; Kamiya & Shen 2003) and

a number of studies have proposed that CP43 acts as the protease, which cleaves the Dl

protein during photoinactivation (Salter et al. 1992; Giacometti et al. 1992). It is thought

that the presence of PsbO suppresses the contact between the D1 protein and CP43 (Henmi

et al. 2003).

Additionally, a number of small polypeptide subunits of between 4 - 10 kDa form part of the

PSII-core complex. The small MW proteins PsbH, PsbK and PsbL have all been implicated

in the stabilisation of the PSII dimer, however no consensus regarding these subunits has

been reached (Zouni et al. 2001; Kamiya & Shen 2003) and further study is required to better

establish their function in relation to PSII. An antisense approach has been used to

determine the role of the PsbW protein in Arabidopsis thaliana. This technique generated

mutants, which displayed PSII dimer destabilisation along with a more general

destabilisation of PSII itself (Shi et al. 2000). Finally, an unusual example of a polyprotein

has been discovered in relation to the PsbY-1 and PsbY-2 proteins in Arabidopsis thai iana

(Thompson et al. 1999), both encoded by the same gene. A single preprotein is imported

into the chloroplast where it is processed into two integral membrane proteins with the same

topology. The function of this polyprotein remains to be ascertained however in vitro studies

have shown the protein to possess manganese binding capability and arginine metabolising

activity (Gau et al. 1998).

1.4.3 Oxygen-evolving Complex (OEC)

The OEC is responsible for water hydrolysis in PSII. It is located on the lumenal surface of

the thylakoid membrane and is comprised of a cluster of four manganese atoms bound to the

DIID2 heterodimer surrounded by the extrinsic 33, 23 and 17 kDa peptides. Combined
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these form the catalytic site of the complex. PSII components have been shown to evolve O2

if supplied with high Ca+CI concentration (Bricker 1992) whilst extrinsic components

stabilise the Mn-cluster enabling PSII to evolve O2 at physiological Ca+CI concentration.

(Ono & Inoue 1984; Bricker & Ghanotakis 1996).

PsbO is the 33 kDa subunit of the OEC found in all oxygenic organisms (Bricker &

Ghanotakis 1996), and is encoded by two nuclear psbO genes in Arabidopsis thaliana. The

two isoforms of PsbO separate differently on SDS-PAGE due to differences in pI. The

mature products of psbO have predicted molecular mass of 26536 Da and 26 542 Da

respectively. As the largest PSII lumenal subunit PsbO is the critical component required for

Mn-cluster stability (Ono & Inoue 1984), whilst binding Ca2+ and cr essential for efficient

water oxidation (Bricker & Ghanotakis 1996).

1.4.4 S-state Model of Oxygen Evolution in PSII

Experiments using a series of short (Iu us) saturating flashes on dark adapted chloroplasts

showed that oxygen evolution was maximal after every fourth flash. This clearly

demonstrates that 4 independent photo-oxidation steps are required to oxidise water and

release molecular oxygen. (Kok et al. 1970) suggested a kinetic model called the S-state

model to explain this observation. It suggested that each PSII reaction centre behaves as an

independent unit. The model also suggests that the manganese cluster exists in one of five

different oxidation states (called SO-S4). The model proposes that four separate charge

separation events in the reaction centre of PSII sequentially removes four electrons from the

Mn cluster and that S4 is an unstable activated complex, which releases molecular oxygen

and resets the cycle back to So (Kok et al. 1970). Recent structural data has found the Mn

cluster to consist of five manganese atoms, which are ligated to the polypeptide backbone at

4 to 5 locations (Kamiya & Shen 2003).

1.4.5 Spatial Organisation ofPSII Electron Transport Chain Cofactors

The recent structural models from (Zouni et al. 2001) and (Kamiya & Shen 2003) have

provided detailed information regarding the spatial organisation of chlorophylls and other

cofactors with the PSII-RC. The components of the electron transport chain form two

symmetrical branches assigned to the reaction centre heterodimeric core proteins D 1 and D2,

by analogy with the arrangement of the a-helices in the L and M subunits of the PbRC.
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The D I-D2 heterodimer has been shown to bind six chlorophyll and two pheophytin

molecules, whilst CP43 appears to bind 13 chlorophylls with the location of one molecule

altered between the two species Thermosynechococcus elongatus and Thermosynechococcus

vulcans used for structural studies (Zouni et al. 2001; Kamiya & Shen 2003). However,

CP47 has been found to bind an additional chlorophyll molecule in Thermosynechococcus

vulcans bringing its total to 17 rather than the 16 found by (Zouni et al. 2001).

Two chlorophyll a molecules PDl and PD2have been highlighted as potential candidates for

P680. Lumenally located, they are arranged parallel in relation to each other and

perpendicular to the membrane plane (Zouni et al. 2001; Kamiya & Shen 2003). The large

separation of these chlorophyll molecules provides only weak excitonic coupling, and, as

such, they are regarded as monomeric in nature. The unpaired electron in P680·+ is probably

located on the D 1 protein which lies in close proximity to Tyr., the immediate electron donor

to the cationic radical (Zouni et al. 2001).

The crystal structure by (Zouni et al. 2001) found two spectroscopically unidentified

chlorophyll a molecules ChlDl and ChlD2, termed accessory chlorophylls, located on the

stromal side of the membrane and tilted 30° against its plane, like that of the PbRC (Zouni et

al. 2001), separation of which correlates well with that of PheorwPheoD2. The reaction

centre chlorophylls appear to display stronger interactions than those between the reaction

centre chlorophylls and accessory chlorophylls (Kamiya & Shen 2003). The current

structural models favour the "multimonomer" model proposed by (Barber & Archer 2001)

and (Diner & Rappaport 2002) for PSII.

In the electron transport chain two pheophytin molecules, Pheos, and PheoD2, follow the

accessory chlorophylls. QA is found 12A from Pheos, and 10.sA from the non-haem iron of

PSII (Zouni et al. 2001). P680·+ is located ~27A from QA· as shown by paramagnetic

resonance (Zech et al. 1997) and the crystal structure by (Zouni et al. 2001). As previously

mentioned the QB site has been found unoccupied in the current structural models. An

additional two chlorophyll a molecules were assigned to the spectroscopically identified

species Chlzs, and ChlzD2(Zouni et al. 2001), coordinated by His 118 in Dl and His117 in

D2 (Schelvis et al. 1994; Ruffle et al. 1998). The Cyt bSS9 haem-iron located 27A apart from

ChlzD2and ~8A from the stromal side of the membrane (Zouni et al. 2001).

The most recent crystal structure of PSII suggests that secondary electron transfer may

preferentially involve the cyt bss9-Car-RC pathway, and that electron transfer involving

ChlzD2-Car-RC may also be possible (Zouni et al. 2001; Kamiya & Shen 2003). This
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proposal does not, however, take into account the redox potentials of the various components

within the reaction centre (Kamiya & Shen 2003), and as a result an alternative pathway

could prove to be more efficient. Moreover, the location of these carotenoids near to the

reaction centre chlorophylls could enable them to contribute to excess energy dissipation

during periods of light stress in order to maintain photosynthetic efficiency.

1.5 PSII Light harvesting Antenna

The primary light harvesting pigments in the thylakoid membranes of higher plants are

chlorophylls a and b. Recent structural data shows the precise orientation these

chromophores assume within the antenna system (Kuhlbrandt et al. 1994; Liu et al. 2004) in

order to perform the functions of light harvesting and photoprotection. Early theories,

however, proposed that chlorophyll molecules would be free unbound constituents of the

thylakoid membranes lipid matrix, leading to the suggestion that the first experimentally

observed chlorophyll-protein complexes were artefacts resulting from the non-specific

association of chromophores with solublised membrane proteins. To challenge these

theories a number of groups employed different solublisation and electrophoresis techniques

that enabled them to isolate the majority of chlorophyll present in the thylakoid membrane

ligated to specific binding proteins (Thornber 1975; Anderson et al. 1978). These findings

were further supported by (Markwell et al. 1979) who, using the zwiterionic detergent

deriphate 160 (disodium N-Iauryl-13-iminodipropionate), found all thylakoid membrane

chlorophylls specifically bound to a number of different chlorophyll-protein complexes, each

having a different pigment content and size.

These complexes are collectively known as the chlorophyll alb binding (CAB) proteins,

which bind ~50% of thylakoid chla, all chlb and the majority of xanthophyll carotenoids in

the thylakoid membrane (for reviews see Thornber et al. 1993; Jansson 1994; Bassi et al.

1996; Green & Dunford 1996). Difficulties in studying individual proteins from the CAB

family emerged upon the discovery that the apparent molecular weights of all these proteins

were found in the range of 20-30 kDa on SDS-PAGE, whilst structural similarities lead to

cross-reactivity of anti-CAB antibodies. Overcoming these issues has involved the isolation

and characterisation of genes encoding CAB polypeptides from a wide variety of plant

species, along with enhanced protein isolation and micro sequencing techniques. More than

20 CAB genes have been characterised (for review see Jansson 1999), and divided into two

groups known as lhea and lheb. The former gene group encode for PSI antennae complexes

as described in section 1.7, whilst the latter are primarily associated with psn and will be

described below.
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Lutein Neoxanthin Violaxanthin

LHCIIb 2 1 Trace- 0.5

CP29 0.7 -2.0 0.5 - 1.0 1.0 - 2.0

CP26 1.0 - 2.0 0.5 - 1.0 0.5 - 1.0

CP24 1.5 - 2.8 0-1.0 0.5 - 1.0

Table 1.1 - Carotenoid composition of individual LHCII antenna complexes. Data was
compiled using Thornber et al. (1993); Ruban et al. (1994a); Phillip & Young (1995); Bassie
et al. (1996); Liu et al. (2004) and is expressed as number of molecules of carotenoid per
LHCII monomer.

The light harvesting antenna of PSII exists as two distinct pigment-protein groups, the first

of which are characterised by the chla binding proteins CP43 and CP47 forming the PSII

core in conjunction with the RC (section 1.4.1). Surrounding the PSII core are a group of

proteins which form the peripheral antenna of PSII, binding both chla and chlb along with

the carotenoids lutein, neoxanthin and the xanthophyll cycle component violaxanthin

(Thornber et at. 1993; Ruban et at. 1994b; Bassi et at. 1996; Ruban & Horton 1999; Ruban et

at. 2001a; Liu et at. 2004). The Lhcb polypeptides can be divided into two groups, the major

light harvesting polypeptides Lhcb 1 - 3 that form trimeric LHCIIb, and the monomeric

minor antenna CP29 (lhcb4), CP26 (lhcb5) and CP24 (lhcb6).

1.5.1 Major Antenna Complex - LHCIIb

The major chI alb binding antennae complex of PSII, LHCIIb constitutes more than 40% of

the photosynthetic membrane protein and binds -50% of the total chl present in the

thylakoid membrane. Oxygenic photosynthesis is largely reliant upon the efficiency and

adaptability of this complex to collect light energy and deliver it to the reaction centres of

PSII (review Horton et at. 1996). LHCIIb consists of three polypeptides Lhcb 1, Lhcb2 and

Lhcb3 of 28, 27 and 25 kDa (Jansson 1999). The complex is thought to exist in a trimeric

state in vivo, with a molecular weight of -72 kDa (Peter & Thornber 1991).

LHCIIb has a chI alb ratio of 1.3 -1.4 (Thornber et at. 1993; Ruban et al. 1994b; Sandona et

al. 1998; Ruban et at. 1999), and some years ago a structural model was released indicating

the positions of 12 chis, three transmembrane helicies and two of the four known

xanthophylls (Kuhlbrandt et at. 1994). The xanthophyll complement per monomer of

LHCIIb consists of 2 lutein molecules, a neoxanthin molecule and a transient
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sub stoichiometric amount of violaxanthin (Thornber et al. 1993; Bassi et al. 1996; Ruban et

at. 1999).

The structural model described above emerged as a result of electron microscopy on 2D

crystals of the LHCllb protein at 6A (Kuhlbrandt & Wang 1991), which reinforced a

previous prediction from (Green et al. 1991), that each LHCllb monomer contained three

transmembrane a-helices, A-C. Additionally, the monomeric protein was shown to bind

between 12 - 15 molecules of chlorophyll with a spacing arrangement indicative of

delocalised coupling energy transfer with the complex, whilst employing the Forster

mechanism between adjacent complexes (Peter & Thornber 1991). In additional to the

carotenoid molecules described above (Ruban et al. 1999) a tightly bound phospholipid

component is present in the complex (Nujiberger et al. 1993).

In 1994, a detailed analysis of LHCllb structural components came in the form of a 3.4A

map from pea (Kuhlbrandt et al. 1994) which showed the intertwining relationship between

helix A (43A) and helix B (51A) caused by their tilt from the membrane normal. This led to

the proposal that a pair of salt bridges capable of stabilising the tertiary structure of the

complex exist between two ion pairs (glutamate 65 - arginine 185 and glutamate 180 -

arginine 70) located in close proximity to each other as the two helices cross. The third helix

(C) proposed by (Green et al. 1991) was found to be the shortest at 31A in length lying

perpendicular to the membrane plane.

The 3.4A crystal structure describes magnesium ligands for 9 - 12 chlorophyll molecules,

with twelve actually visible in the map (Kuhlbrandt et al. 1994). Based upon the chi alb ratio

of the complex, these chromophores were tentatively assigned to 7 chla and 5 chlb and it is

thought at least two of these chlorophyll molecules assume unique conformations relative to

the other LHCs (Pascal et at. 2000). Site-directed mutagenesis has been used to further

eludicate the positions of these chlorophylls in LHCllb. Although some of these mutants

lost more than one chlorophyll molecule and/or more than one type of chlorophyll, the

results of these in vitro studies unanimously described two groups of four specific binding

sites for chla and chlb molecules respectively. The remaining sites exhibiting little selectivity

or alternatively were not assigned (Yang et al. 1999; Rogi & Kuhlbrandt 1999; Remelli et al.

1999). More recently a 3D crystal structure of LHCllb has been solved with 2.72 A

resolution and provides the first x-ray structure ofLHCllb (isolated from Spinacia Oleracea)

in an icosohedral proteoliposome assembly at atomic detail. Ninety-four percent of the

polypeptide chain has been traced along with the accurate locations of 14 chlorophylls

unambiguously assigned as 8 chla and 6 chlb. The resulting Chi alb ratio of 1.33 is
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consistent with previous biochemically determined values (Peter & Thornber 1991; Ruban et

al. 1999).

Helix D inter-related through an internal pseudo-C, axis with an additional short helix,

amphipathic in nature, has been located in the BC loop region. A fifth helix, E, is inclined

30° from the membrane normal and displays a length similar to that of helix D (Liu et al.

2004). The corresponding EC loop forms two antiparallel strands, stabilised by an ionic pair

(Asp III and His 120) located on opposite strands along with a number of hydrogen bonds

(Liu et al. 2004).

The monomer interface, or trimerisation region, of LHCIIb trimers is constructed from the

amino-terminal domain and carboxyl terminus of the protein monomer, along with the

stromal end of helix B, several helix C hydrophobic residues and cofactors associated with

these regions of LHCIIb. The trimer core is formed by a total of six chlorophylls, two from

each monomer (Liu et al. 2004). The most recent structural data regarding LHCIIb

demonstrates the degree to which hydrogen bonding dominates monomer interaction within

the trimeric complex, in addition to the structural role of phosphatidylglycerol (PG) in trimer

stabilisation. Removal of the first 49 - 51 residues from the LHCIIb polypeptide by

proteolytic cleavage results in a loss of PG and consequently, complete trimer dissociation

(Liu et al. 2004). This phenomenon has previously been demonstrated by phospholipase A2

hydrolysis ofLHCIIb PG (NuJ3berger et al. 1993).

The central ligands for 14 chls were identified as seven amino acid residues, two backbone

carbonyls, four water molecules along with the phosphodiester group of a PG (Liu et al.

2004). The coordination mode of chla 611 to the latter is the second case of its kind since its

discovery in PSI (Jordan et al. 2001; Liu et al. 2004). The opposite side of the

phosphodiester group forms a hydrogen bond with Tyr 44 and an ionic bond with Lys 182.

The hydrogen bonding effect between the polypeptide backbone (NH group/side chains) and

chi b C7-formyl groups along with the C 13' -keto groups of several chis strengthen pigment-

protein linkage (Liu et al. 2004) and influence the absorption characteristics of the

chromophores as previously shown (McLuskey et al. 2001). The C7-formyls of all chlb

molecules except chlb 601 are selectively hydrogen bonded to the polypeptide or to the

coordinated water of chlb 607. The amide side chain of Gin 131 is thought to selectively

bind chlorophylls to LHCIIb (Bassi et al. 1999) (Remelli et al. 1999). This amino acid

interacts with three chlb molecules, firstly through the C=O hydrogen bond interaction with

the coordinated water of chl b 606, and then with two additional hydrogen bonds formed by

NH2 interaction with the C7-formyls of chl b 607 and chi b 609. As a result three chi b
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molecules form a close proximity cluster in this region, an effect that could facilitate

efficient energy transfer between these chls (Liu et al. 2004). Selectivity of these sites is

thought to be based on the recognition of the relatively small structural differences between

the methyl group of chla and the formyl group of chlb (Hobe et al. 2003). Recently, a

systematic study of chi alb binding site selectivity in recombinant LHCIIb was performed

using a detergent exchange method to reconstitute protein (Hobe et al. 2003), and the relative

affinities of chla and chlb binding sites were calculated from titration curves (Hobe et al.

2000). This method revealed five sites which exclusively bind chlb and a sixth site

presenting a slight preference to this chromophore. The remaining six binding sites were

found to favour chla, however, they were shown to tolerate chlb when presented in large

excess in vitro (Hobe et al. 2003). It has been proposed that hydrophobic repulsion or steric

hindrance may be the factors affecting chlb binding to chla sites as the environment

surrounding the C7-methyl groups of chLamolecules is mostly nonpolar (Liu et al. 2004).

The data provided by (Hobe et al. 2003) suggests an explanation for the rather consistent chl

alb ratio observed in native LHCIIb, as this shows chla to be essential for the reconstitution

of stable protein. In spite of this the 2.72 A crystal structure observed no mixed binding sites

for the 14 chlorophylls present in the complex (Liu et al. 2004), suggesting that the mixed

occupancy observed during reconstitution (Remelli et al. 1999; Rogi & Kuhlbrandt 1999;

Yang et al. 1999) does not occur during assembly in vivo.

A a603 B

Lut620

Figure 1.3 - Pigments in the LHC-II monomer adapted from Liu et al., 2004. A, Pigment
pattern in a monomer at the lumenal side of the thylakoid membrane. B, Pigment pattern in
a monomer at the stromal side of the thylakoid membrane. Green, Chla; blue, Chlb; yellow,
lutein; orange, neoxanthin; magenta, xanthophyll-cycle carotenoids.

The chlorophyll components of LHCIIb exist in two layers within the complex, distributed

vertically, with each layer in close proximity to the stromal or lumenal surface (Fig 1.3A).

In monomeric LHCIIb the stromal surface chlorophyll layer consists of 8 chls (5 chla and 3

chlb) surrounding the central helices A and B forming an elliptical ring (Fig I.3B). The

I,



Chapter One
General Introduct ion

average chlorophyll centre-to-centre distance is 11.26 A (maximum 12.79 AI minimum 9.74

A), and each chlorophyll is related to its symmetrical opposite via an internal pseudo-C2 axis

(Liu et al. 2004). The lumenal layer consists of six chlorophylls (3 chla and 3 chlb) which

form two independent clusters, the first comprising all three chlb molecules and an

additional chla. The centre-to-centre distance between chlb 606 and chlb 604 in this cluster

is the smallest within the LHCIIb complex at 8.05 A. The second cluster exists as a chla

dimer, with the shortest inter-layer chlorophyll-chlorophyll distance present between chlb

609 and chlb 606 at 13.89 A (Liu et al. 2004).

The crystal structure shows an enrichment of chlb around helix C at the monomer interface

with all six chlb molecules present, five from one monomer and an additional molecule (chlb

601) from a neighbouring monomer. The shortest inter-chlorophyll distance between

adjacent monomers is 11.79 A, highlighting a critical role for this chlb region in maintaining

an energy equilibrium inside functional trimers (Liu et al. 2004).

The stromal chlorophyll layer extends into the trimeric complex, with 24 chlorophylls

organised into two irregular circular rings. An inner ring located in the trimer core

comprising six chla molecules is thought to be important during inter-monomer energy

transfer. The subsequent outer ring consists of 9 chIa and 9 chlb molecules arranged in a

mosaic pattern of 3 chlb molecules alternating with 3 chla molecules. The arrangement of

the stromal chlorophyll layer favours absorption of incident quanta from all directions over a

broad spectral region, and the subsequent transfer of excitation energy to the putative

terminal fluorescence emitter chla 612, at a highly efficient rate and in as few steps as

possible (Liu et al. 2004). Energy transfer between lumenal clusters is significantly less

efficient due to the large separation distances involved. Instead, these clusters are thought to

act as upstream energy collectors transmitting excitation energy to stromal chlorophylls in an

independent manner. The energy collected by the stromal chlorophyll layers is rapidly

focused on chla 612 and chla 611 allowing transmission to neighbouring LHCs or reaction

centres.

Two central all-trans luteins are bound on both sides of the A - B helix supercoil in narrow

hydrophobic cavities, forming a cross-brace. The f3-rings of these lutein molecules are

orientated towards the lumenal surface whilst the c-rings are directed towards the stromal

surface. The polyene chains of luteins 620 and 621 are inclined with respect to the

membrane normal by 59° and 62°, respectively. Both ring-shaped end groups of these two

carotenoids interact through van der Waals forces and hydrogen bonds with four internal

homologous polypeptide segments located on the stromal and lumenal ends of the A - B
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helix supercoil (Bassi et a1. 1997). These lutein molecules are located at the L 1 and L2

carotenoid binding sites of LHCIlb (for review Bassi & Caffarri 2000). When LHCIIb is in

its monomeric form the 0-0, 0-1 and 0-2 transitions for these lutein molecules have been

identified as 495,466 and 437 nm respectively, and a 1hmaximum broadening of the 495 nm

absorption band suggests that slight differences exist in relation to environment and

configuration of the two lutein molecules (Ruban et al. 2000). A decrease in lutein

absorption is seen upon trimerisation, along with the appearance of a red-shifted 510 nm

band thought to result from protein influence or interaction with other pigment-protein

complexes (Ruban et a1. 2000). The presence of Lutein in the LI site is a common feature in

Lhca and Lhcb proteins (Bassi & Caffarri 2000), and has been found to be of critical

importance for the reconstitution of stable LHCIIb (Bassi et a1. 1999; Croce et al. 1999b)

(Niyogi et a1. 1997b). Binding of the carotenoid to the LI site is sufficient to sustain more

than 90% of the complexes 3Chl* quenching capability (for review see Bassi & Caffarri

2000). The L 1 site has been found to lack the ability to exchange a bound chromophore.

Located in the chlb rich around helix C is the third carotenoid 9'cis neoxanthin, found

inclined 58° from the membrane normal supporting previous evidence by (Croce et a1.

1999a). The epoxycyclohexane ring of neoxanthin hangs over the chlorin ring of chla 604

and hydrogen bonds to Tyr 112 via its C3' -hydroxyl group. Side chains from the helix C

amino acid residues Leu 134, Met 135 and Val 138 along with Trp 71 from helix B and the

phytyl chains and chlorin rings of chlb 606 and 608 form a highly selective hydrophobic

binding site for a hook shaped neoxanthin chain, allowing the cyclohexane ring of the

carotenoid to extend into the solvent region. Neoxanthin has been found to occupy the NI

site of LHCIIb under all growth conditions (Bassi & Caffarri 2000) and its electronic

transitions located at 486, 457 and 430 nm (Ruban et al. 2000). Reconstitution experiments

using a recombinant form of LHCIIb with Neoxanthin yield highly unstable protein

complexes that suffer from instability at increased temperatures along with a decreased

resistance to proteolytic attack (Hobe et al. 2000). Evidence of pigment exchange in the NI

binding site has been seen in a number of species (Bungard et al. 1999), whilst being shown

to preferentially bind 9-cis-5, 6-epoxy carotenoids such as neoxanthin and 9-cis-violaxanthin

(Snyder et a1. 2004). Six chla molecules are located in favourable positions with respect to

Lutein for efficient downhill singlet energy transfer from Lutein ~ chla, with other data

indicating that such excitation energy is transferred from Lutein exclusively to chla

(Gradinaru et a1. 1998), whilst the transfer of energy from Neoxanthin to chlb 606 and chlb

608 is deemed highly plausible (Liu et al. 2004). The crystal structure by (Liu et al. 2004)

concludes that all three carotenoid pigments function as effective accessory LH antenna
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components, acting in the blue-green spectral region to complement chI alb absorption, as

well as their structural and photoprotective roles.

At the monomer - monomer interface a carotenoid with all-trans configuration is found with

a 34° incline from the membrane normal in what is thought to be the VI carotenoid binding

site. The hydrophobic binding pocket exists at the interface of several chlorophylls, along

with hydrophobic residues from the polypeptide and PG. Part of the carotenoid polyene

chain and one of its end groups is accommodated within the pocket, whilst the second of the

carotenoid end groups protrudes outwards and faces the chlorin plane of the stromally

located chlb 601. Evidence suggests that this is a mixed binding site containing different

xanthophyll - cycle carotenoids, supported by the fact that the lumenal end group of the

carotenoid points to the cavity formed around a local C3-axis, thought to be the docking site

for VDE (Hieber et al. 2000). Early reports suggested that the V 1 site could only bind

Violaxanthin (Verhoeven et al. 1999), however, more recent data suggests that, with the

exception of Neoxanthin, all xanthophylls could participate in the VI pool with the proposed

order of affmity to be Antheraxanthin > Violaxanthin > Lutein> Zeaxanthin (Caffarri et al.

2001). It has been proposed that the V 1 site represents a reservoir of readily available

Violaxanthin for use in the xanthophyll cycle, and is supported not only through structural

data but also by the observation that xanthophyll cycle chromophores tightly bound to minor

antenna are unaccessible to VDE (Farber et al. 1997; Ruban et al. 1999).

1.5.2 Minor Antenna Complex - CP29

Isolation of this complex from a variety of species has shown a variation in its molecular

weight of between 29-31 kDa. Sequencing studies involving the CP29 polypeptide were

hindered due to the complex being N-terminally blocked, however, partial sequences have

been obtained for CP29 fragments from spinach (Henrys son et al. 1989), tomato and barley

(Morishige & Thornber 1992) identifying the complex as an Ihcb4 gene product.

At ~2S7 amino acids in length the CP29 protein forms the largest of the PSII antenna

complexes (Bassi et al. 1996), due to a 42 amino acid insertion prior to the first predicted

helix, in a region highly conserved within the other lhcb genes (Bassi et al. 1996; Jansson

1999). Lhcb4 is predicted to bind 8 chl molecules (Bassi et al. 1996), thought to consist of 6

chla and 2 chlb molecules based upon the observed chI alb ratio of 3.0. One of these chlb

molecules and up to five chla molecules have been shown to adopt similar binding

conformations to the chromophores of LHCIIb they are thought to correspond with (Pascal et

al. 2000). The carotenoids within the complex are lutein, neoxanthin and violaxanthin,
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however, the carotenoid composition of CP29 has been shown to vary considerably (Table

1.1). This observation is thought to reflect differences in the isolation procedures employed.

Reconstitution experiments involving CP29 derived from E-coli have shown the chlorophyll-

binding sites to be non-specific in nature, whilst lutein has again been shown to be essential

for reconstitution and the correct folding of a light harvesting polypeptide (Giuffra et al.

1996).

In addition to these chromophores, CP29 has been shown to bind a Ca++ ion on the lumenal

B - C loop (Jegerschold et al. 2000) where it is proposed the ion compensates for the charge

on glutamate 166 enabling the acidic residue to ligate chlorophyll (Jegerschold et al. 2000).

CP29 has also been shown to bind the carboxyl-modifying agent dicyclohexylcarbodiimide

known as DCCD (Walters et al. 1994; Ruban et al. 1998a) on residue 166 (Pesaresi et al.

1997) suggesting the complex has an important function in photoprotective energy

dissipation within the PSII antenna (Sandona et al. 1998).

Phosphorylation of the CP29 antenna complex has been shown to occur in plants subjected

to low temperatures (Bergantino et al. 1995). The level of PSII photoinhibition

demonstrated in these plants suggests that phosphorylated CP29 complexes may have a

photoprotective role during cold stress (Bergantino et al. 1995). This theory is supported by

data showing an increased level of photoinhibition under stress conditions in cold-sensitive

maize lines lacking the ability to phoshorylate CP29 (Mauro et al. 1997). Phosphorylation

occurs on threonine 83, an amino acid residue located within a region lacking any homology

to the other light harvesting complexes (Testi et al. 1996). The recognition site possesses the

general requirements for an animal casein kinase II (CK2) motif making this

phosphorylation site unique amongst chloroplast proteins, which has led to the suggestion

that phosphorylated CP29 is the first step in a signal cascade designed to respond to

photoinhibitory conditions (Testi et al. 1996). Additional evidence exists that

phosphorylation leads to conformational change within the complex that could alter energy

transfer efficiencies between CP29 and the reaction centre of PSII, in a process that would

move the equilibrium of PSII excitation energy away from reaction centres and towards the

antenna system for safe dissipation (Mauro et al. 1997).

Functional analysis of CP29 from Arabidopsis thaliana, usmg an antisense approach

(Andersson et al. 2001) has achieved very efficient downregulation of the polypeptide

despite the fact that Lhcb4 is encoded by three different genes producing isoforms of CP29.

Apparently the three genes are sufficiently similar to allow simultaneous RNA interference

of all three InRNAs. Growth of plants lacking CP29 was not affected, and pleiotropic effects
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on other photo system subunits were restricted to Lhcb6 (CP24). In addition there was a

slight decrease in PSII quantum yield, whilst oxygen evolution per leaf area was unaffected

(Andersson et a1. 2001). However, the latter should be related to the observation that PSII

content was increased in the CP29 antisense plants by a factor of 15% when grown in high

light (Andersson et a1.2001).

l.5.3 Minor Antenna Complex - Lhcb5 (CP26)

This complex reportedly exists as two apo-proteins of 29 and 26.5 kDa respectively

(Thornber et a1. 1993), with a mature polypeptide length of 247 amino acids (Bassi et a1.

1996). Like its relative CP29, this polypeptide is N-terminally blocked, however, partial

sequencing of the protein determined its corresponding gene as Ihcb5 (Bassi et a1. 1996).

Observed comparisons between chlorophyll binding residues of CP26 and LHClIb suggest

that the former binds 9 chlorophylls in total (Bassi et al. 1996), represented by 6 chla and 3

chlb molecules based upon the chlorophyll alb ratio of 2.0. Reconstitution experiments

using recombinant CP26 have shown that three of these chromophore binding sites

preferentially select chla molecules, one of them being essential for protein folding (Croce et

a1. 2002). Additional evidence suggests that the one additional chlb molecule present in

CP26, compared to CP29, is located in the B2 site of the complex (Croce et al. 2002).

The carotenoid complement of Lhcb5 includes lutein, neoxanthin and violaxanthin, however

the variations in isolation procedures have shown disparity in the ratios observed (Table 1.1).

Nevertheless, protein reconstitution has identified two xanthophyll-binding sites; the first

(L 1) is essential for protein folding and specifically binds the carotenoid lutein (Croce et a1.

2002), a molecule that appears to be intrinsically involved with this process. The second site

(L2) has a lower specificity in vitro, being able to bind any of the xanthophyll species

present in thylakoids (Croce et a1. 2002), however there is no evidence this occurs in vivo.

Like CP29, this complex has been found to bind the carbonyl-modifying agent DCCD

(Walters et a1. 1996) at positions 116 and 224 (both glutamate residues), suggesting that this

protein may also be important in photoprotective energy dissipation within the peripheral

antenna of PSII. However, an antisense-Ihcb5 line of Arabidopsis thaliana displays growth

characteristics similar to that of wild type plants, with no pleiotropic effects in relation to

other light harvesting subunits (Andersson et aI. 2001). A decrease in psn quantum yield

was detected similar to that of Ihcb4-antisense plants, however, oxygen evolution per leaf

area was marginally increased under high light. PSIl content was again observed to increase

(by a factor of 30%) under these growth conditions (Andersson et al. 2001).
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1.5.4 Minor Antenna Complex - CP24

The smallest antenna complex within PSII is CP24, the molecular mass of which is 21 kDa

(Thornber et al. 1993) and consists of only 212 amino acid residues (Bassi et al. 1996). It

has been possible to identify this protein as a product of the lhcb6 gene using direct N-

terminal sequencing (Morishige et al. 1990). With a chi alb ratio of 1.0, CP24 has been

shown to bind five molecules of chla and five molecules of chlb (Bassi et al. 1996), along

with the carotenoids lutein, violaxanthin and potentially neoxanthin (Table 1.1) whilst the

complex has been shown to have a capacity for xanthophyll exchange during the

xanthophyll-cycle which is only marginally less than that of CP26 (Morosinotto et al. 2002).

1.5.5 Related Lhcb Proteins - PsbS (CP22)

PsbS is a 22 kDa Lhcb related protein, which forms the focus of this thesis and as such will

not be discussed in detail here. Previous work reported that PsbS is important in the

assembly of PSII (Hundal et al. 1990). The protein is predicted to have four membrane

spanning helicies based upon hydrophobicity plots (Wedel et al. 1992; Kim et al. 1992;

Wallbraun et al. 1994) and may bind chlorophyll a and b (Funk 1995b). Work on the

Arabidopsis thaliana npq4 mutant has suggested that the PsbS protein may have an

important role in photoprotection (Li et al. 2000), see section 1.12.

1.5.6 Related Lhcb Proteins - LHCIIelEarly Light Induced Proteins (ELIPs)

(Peter & Thornber 1991) reported the existence of a l3kDa chlorophyll alb binding protein

(LHCIIe) which was enriched in xanthophyll cycle carotenoids, but to date this has yet to be

confirmed. One possible explanation for this is that LHCIIe represents a member of the

LHC-related ELIPs or early light induced proteins, which have molecular weights between

14 - 17 kDa. These proteins are expressed in dark-adapted plants following exposure to

light (Adamska 1997; Jansson 1999) and may be involved in chlorophyll biosynthesis

(Adamska 1997) and are suggested to have a photoprotective function.

1.5.7 Macromolecular Organisation of the Photosystem II Antenna

Light harvesting antenna complexes from PSII are precisely orientated in the PSII

macrostructure forming PSII supercomplexes (Boekema et al. 1999b; Boekema et al. 1999a;

Nield 2000), consisting of the major trimeric complexes LHCII (Kuhlbrandt et at. 1994; Liu
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et at. 2004), and three minor monomeric complexes (Peter & Thornber 1991). Individual

antenna complexes are essential for photosynthetic regulation and the harvesting of sunlight

(Jansson 1994; Paulsen 1995; Horton et at. 1996), however, the relationship between these

functions and the molecular architecture of the antenna system remain unresolved.

Numerous groups have proposed models detailing PSII structural design in an attempt to

uncover the interactive properties of antenna complexes. Initial representations were based

upon 2-D electrophoresis of solublised PSII particles and cross-linking studies (Peter &

Thornber 1991; Bassi & Dainese 1992; Thornber et at. 1993; Jansson 1994). The common

feature running through these models was the existence of a PSII dimer with the minor

antenna (CP29, CP26, CP24 and potentially Lhcb3) linking the PSII core and inner antenna

with the peripheral antenna consisting of LHCIIb. Subsequently a direct method for the

analysis of PSII-macrostructure was employed using the techniques of electron microscopy

and single particle analysis (for review see Hankamer et at. 1997), resulting in two models

being proposed for the PSII unit, derived from a 20 A electron density projection map from

isolated PSII particles (Hankamer et al. 1997; Boekema et at. 1998), and cross-linking

studies (Hankamer et at. 1997).

Cross-linking studies have been further employed in order to locate the minor antenna

complexes, and have shown CP29 to be in close proximity to CP43 and CP4 7, with CP26

positioned adjacent to CP43 (Hankamer et at. 1997). The location ofCP26 has been directly

observed in antisense plants using transmission electron microscopy aided by single-particle

image analysis (Yakushevska et al. 2003). The size of LHCIIb, based on the electron density

map from the 304 A crystal structure (Kuhlbrandt et al. 1994), suggests the complex must lie

within the top right hand comer of each PSII monomer (Fig lAb). The first 3-D structure of

the PSII supercomplex from higher plants has been obtained by single particle analysis of

images obtained using cryoelectron microscopy (Nield et al. 2000). In addition, the

supercomplex structure of PSII derived from Arabidopsis thaliana has been determined, and

shares the common dimeric structure found in other species, albeit at a resolution insufficient

for the identification of individual subunits (Yakushevska et al. 2001).

A structure and function study of Lhcb2 has been performed using an antisense approach

against the Ihcb2 gene (Ruban et al. 2003; Andersson et al. 2003). This led to effective

downregulation of the three isoforrns of Lhcb2 along with the five isoforms of Lhcb 1 at the

mRNA level, and the complete inhibition of synthesis of Lhcb2 at the protein level. As a

consequence, LHCIIb trimers normally formed from these proteins were absent, however the

stacking of thylakoid membranes, thought to rely upon interaction between LHCII proteins

was undisturbed in transformants (Andersson et al. 2003). In addition, PSII isolated from
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these antisense plants (Fig 1.4) were of normal size and shape (Ruban et aI., 2003). In an

attempt to explain these results it was observed that trimers composed of Lhcb5 and Lhcb3

were present in the absence of Lhcb 1 and Lhcb2, and although not found in wild-type plants,

they appear to function very much like normal LHClIb trimers showing only a slight

reduction in antenna size and a 2% decline in quantum yield (Andersson et aI. 2003). A 10-

15% reduction in photosynthetic rate per leaf area was attributed to an observed decrease in

chlorophyll content over the same area, rather than a deficiency in the newly formed

complex (Andersson et al. 2003). The lack of an N-terminus threonine residue in Lhcb5 and

Lhcb3 (compared to Lhcb 1 and Lhcb2) prevented state transitions in the antisense plants

(Ruban et al. 2003).

Figure 1.4 - Two-dimensional crystalline PSII complexes from Arabidopsis wild-type
and Lhcb2 antisense plants modified from Ruban et al. (2003). a, Sum of 600 aligned
crystal fragments from Arabidopsis Lhcb2 antisense plant with the unit cell (24.0 x 21.8 nm)
and two trimers (arrows) indicated. b, Sum of 450 aligned crystal fragments from Arabidopsis
wild-type with the unit cell (25.6 x 21.4 nm) and an outline of the fitting of the C2S2M2

supercomplex (red line) indicated. Scale bar, 10 nm.

Mildly solublised membranes subjected to single particle analysis have been used to

characterise PSI! 'mega-complexes' (Boekema et al. 1999a; Boekema et aI. 1999b), which

contain all the minor antenna complexes and up to three LHCIIb trimers per PSII-core unit,

with the designation of strong (S), medium (M) and loose (L) binding sites depending upon

trimer occupancy. Additionally, a naturally occurring heptameric association of LHCIIb

trimers has been characterised from partially solublised PSII membranes (Dekker et aI.

1999). These membranes have frequently been observed to show crystalline macrodomains,

with PSII organised in rows of large spaced or small spaced crystals (Boekema et al. 2000).

Image analysis of the crystals revealed that the C2S2 and C2S2M supercomplexes form the

basic components of the small-spaced and large-spaced crystals, respectively.
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1.6 Cytochrome bfComplex

The Cytochrome bJf (cyt bJf) complex functions as a plastoquinol-plastocyanin oxido-

reductase in higher plants acting as the electronic connection between PSll and PSI (Allen

2003). Forming a dimer in the thylakoid membrane (Cramer et al. 1997), the complex

contains nine subunits per monomer in higher plant chloroplasts four of which are redox

active polypeptide subunits. Firstly, cytochromef(cytf) is a polypeptide product of the petA

gene, the apoprotein has a molecular mass of 30 - 33 kDa and binds a single molecule of

haem c. Cytochrome b6 (cyt b6) is the 23 kDa product of the petB gene that forms an

apoprotein binding two b - haem molecules, whilst the 20 kDa apoprotein of the petC gene,

Rieske Fe-S protein, binds a single 2Fe-2S centre. Lastly, Ferredoxin.Nafrl'" oxidoreductase

(FNR) is a nuclear encoded apoprotein with multiple isoforms of the petH gene in

Arabidopsis.

A fifth major polypeptide known as subunit IV forms part of the cyt bJf complex, and

shows sequence homology with the C-terminus of cytochrome b from the mitochodrial

cytochrome be, complex (Widger et al. 1984). In addition several small hydrophobic

subunits in the complex are thought to be required for assembly and/or stability of the

complex. This has been shown for the petG and petN gene products (Berthold et al. 1995;

Hager et al. 1999), and has been shown to contain a molecule of chlorophyll and f3-carotene

(Huang et al. 1994; Pierre et al. 1995; Zhang et al. 1999) along with its redox active

cofactors. The isolated complex has been found to be active in vitro in both monomeric and

dimeric states (Chain & Malkin 1991), whilst forming the previously described dimer in

vivo. As has already been established (section 1.3) the cyt bJ! complex supports the

formation of the trans-thylakoid proton gradient through the action of the proton motive Q-

cycle. This involvement leads to the translocation of four protons in a lumenal direction

across the thylakoid membrane, per plastoquinol molecule oxidised to plastoquinone by the

cyt b6/f complex.

1.7 Photosystem I

This large macromolecular intrinsic membrane protein is primarily located in the non-

appressed stromal lamellae regions of the thylakoid membrane. Its main function as a

plastocyanin-ferredoxin oxidoreductase (Scheller & Moller 1990), terminates the

photosynthetic electron transport chain.
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1.7.1 Photosystem I Reaction Centre Core

This catalytic core is composed of a heterodimer of the 83 kDa PsaA and 82.4 kDa PsbB

proteins which are homologous in their primary sequences and the topgraphic organization

of their transmembrane helices (for review see Chitnis 2001). PsaA and PsaB proteins bind

the majority of the chlorophyll including the P700 special pair chlorophyll, a member of

which has been shown to be chlorophyll a molecule (Jordan et al. 2001). The heterodimer

core also binds all the carotenoid molecules, both phylloquinone molecules and the Fx Fe-S

cluster (for review see Chitnis 2001). The remaining PSI subunits are arranged around the

heterodimeric core, and are spatially organized toward the stromal and lumenal sides of the

thylakoid membrane.

1.7.2 Photosystem I Stromal Side Subunits

The proteins PsaC, PsaD, and PsaE form the stromal peripheral domain of Photo system I.

This domain contains the terminal electron donors, the ferredoxin-docking site and the

ferredoxin-NADP+ oxidoreductase (FNR). In addition, this domain is thought to stabilise the

reducing side of PSI (for review see Scheller et al. 2001).

The 9 kDa peripheral protein PsaC is closely associated with the PSI PsaA and PsaB

heterodimer, and combined, these three subunits, are responsible for binding all the cofactors

of the electron transfer system. PsaC binds the remaining two 4Fe-4S clusters which form

the terminal electron accepters FA and Fa (Krauss et al. 1993; Krauss et al. 1996; Chitnis

2001).

It has been established that PsaD contains specific residues involved in the binding of

ferredoxin (for review see Chitnis 2001). The protein has a predicted mass of 15.6 kDa and

recent studies support the theory that PsaD acts to stabilise the other peripheral subunits and

PSI itself (Chitnis et al. 1989). PsaE is the last stromally orientated subunit of the peripheral

domain with a predicted mass of 8 kDa, it too is thought to be involved with the binding of

ferredoxin (Rousseau et al. 1993; Chitnis 2001). Other possible functions include the

stabilisation of the PsaC - PSI core interaction, which would facilitate the efficient transfer

of electrons from Fx to FA and Fa (Weber & Strotmann 1993). Two psaE genes have been

found in Arabidopsis thaliana and studies involving an insertional knock-out of one of these

genes caused a 60% decrease in PsaE levels compared to wild type 01arotto et al. 2000).
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1.7.3 Photosystem I Lumenal Side Subunits

The photo-oxidaton of plastocyanin occurs on the lumenal side of PSI. The role of the PsaF

protein, in this event, has been studied for some time, and it had been proposed that the 18

kDa protein contained the plastocyanin-docking site. Studies by (Haehnel et al. 1994) using

site directed mutagenesis supported this theory, whilst PsaF-platocyanin interaction was

confirmed in a nuclear mutant of Chlamydomonas (Farah et al. 1995). PsaF in plants has a

multifunctional role, firstly responsible for interaction with PC, as evidenced by the

reduction of the electron transport rate in the absence of this subunit (Haldrup et al. 2000).

Secondly, PsaF appears to promote efficient energy transfer between the peripheral antennae

and the PSI core, which is more susceptible to photodamage in the absence of this protein.

PsaF has been shown to cross-link with the stromal subunit PsaE (Jansson et al. 1996).

Photosystem I lacking PsaF possessed a normal subunit complement with the exception of

PsaN (Jansson et al. 1996). The 9.8 kDa subunit is the final component of the lumenal side

of PSI and has been studied with a cosuppression approach (Haldrup et al. 1999). Plants

lacking detectable amounts of PsaN showed no significant difference compared to wild type

in terms of growth and photosynthesis. The function of the PsaN subunit is still unknown.

1.7.4 Additional Photo system I Components - The PsaH, PsaL, PsaO Cluster

In cyanobacteria the PsaL subunit is involved in the trimerisation of PSI (Chitnis & Chitnis

1993), however, in plants, the photosystem has only been found in monomeric form. PsaL

is found associated with the PsaH and PsaO subunits (absent in cyanobacteria) interactions

between which have been evidenced by crosslinking studies (Jansson et al. 1996). PsaH

deficient plants showed that essentially all state transitions (see section 1.9.2) were absent

(Lunde et al. 2000). The absence of PsaH causes the phosphorylation state of LHCII to

increase whilst remaining attached to PSII and the PSI antenna size to remain fixed during

state l-state 2 transition. It is thought that LHCII binds to PSI in the facinity of PsaH during

state 2.

PsaL and PsaO are found in close proximity to PsaH, however, it has proven difficult to

clarify the specific individual functions of these subunits to date. Pigment analysis of

Arabidopsis plants lacking PsaL (and resultantly a proportion of PsaH and PsaO) suggested

that this protein cluster binds 5 chlorophylls with absorption maxima near 688 and 667 nm

(Ihalainen et al. 2002). It is thought that these chlorophylls could be implicated in the

connection of the PSI core antenna systems with LHCII during state 2.

~~
_' -'
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1.7.5 Additional Photosystem I Components - PsaK and PsaG

These subunits have a finite sequence similarity thought to have resulted from a gene

duplication, and, it has been suggested, that they provide interaction between the core and

peripheral antenna proteins, however, to date there is no evidence of specific functional

similarity (Scheller et al. 2001). Absence of PsaK results in decreased levels of Lhca2 and

Lhca3 in addition to a reduction in state transitions (Varotto et al. 2002; Jensen et al. 2002).

Pigment analysis on plants lacking PsaG indicated that this subunit binds ~2 molecules of

red-shifted J3-carotene (Ihalainen et al. 2002) similar to that seen in PsaD and PsaF. PsaG is

thought to provide dynamic regulation of PSI activity under normal growth conditions.

1.7.6 Photosystem I Structure

PSI and PSIT form part of the photosynthetic reaction centre superfamily, which is divided

into two distinct groups, based upon the terminal electron acceptors employed, type I Fe4S4

clusters and type IT quinone (for review see Nitschke & Rutherford 1991). The original

crystal structure model of trimeric PSI at 6A was produced in 1993 and isolated from

Synechococcus sp. (Krauss et al. 1993), and was subsequently superseded by a 4A map of a

type I PSI reaction center isolated from Synechococcus elongatus (Krauss et al. 1996; Klukas

et al. 1999). Recently published work at 2.sA atomic resolution (Figure 1.5) has provided

the most complete structural detail regarding PSI in relation to the role of its protein subunits

in binding cofactors, and the interactions between cofactors (Jordan et al. 2001). Isolated

cyanobacterial PSI exists as a trimer with a three-fold rotational axis perpendicular to the

membrane plane. At the 'trimerisation domain' PsaL is seen to form the majority of contacts

between the monomers (Jordan et al. 2001). Each monomer consists of at least 11 different

protein subunits coordinating more than 100 cofactors. The large subunits PsaA and PsaB

are related by a pseudo-C, axis located at the center of the PSI and consist of 11 helices each

(Krauss et al. 1996). The electron transport components were shown to be surrounded by a

protein core consisting of 10 helices, 5 each from PsaA and PsaB (Krauss et al. 1996).

These cofactors are arranged in two branches along the pseudo-C, axis, with most of the

antenna ChI a molecules, carotenoids and lipids bound to PsaA and PsaB. As previously

mentioned (section 1.4.1) the C-terminal domains of PsaA and PsaB are structurally similar

to the D 1 and D2 reaction center subunits of PSIT. In contrast with the latter, the C-terminus

domains of PsaA and PsaB cannot be considered as pure reaction center domains (Schubert

et al. 1998) due to the concentration of antenna Chla coordinated by PsaA (12 chla) and

PsaB (13 chlb). Inaddition, the central region of the PSI core antenna contains a total of 43

Chla molecules in stark contrast to the equivalent region of PSIT(Jordan et al. 200 I).
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Figure 1.5 - Structural model of PS I trimer at 2.5 A resolution as adapted from Jordon et
al., 2001. Side view of the arrangement of all proteins in one monomer of PSI, PsaA (blue),
PsaB (red), and the stromal subunits PsaC (pink), PsaD (turquoise), PsaE (green) and the
Fe4S4 clusters. View direction indicated by arrow at monomer II in 27a. The vertical line
(right) shows the crystallographic axis.

However, the distribution of peripheral antenna Chla molecules on the N-terminal domains

of PsaA and PsaB show strong resemblance to the PSII integral antenna proteins CP43 and

CP47 (Jordan et al. 2001). Sequence similarity is found between CP43-PsaA and CP47-

PsaB, which fold into comparable structures consisting of six transmembrane a-helices each

(Zouni et al. 2001). These structural similarities between PSI and PSII are suggested to be a

result of common evolutionary origin (Hankamer et al. 1999). The remaining membrane-

intrinsic subunits are peripheral to the PSI-core and aide the coordination of antenna

cofactors. The PSI structure indicates a possible lumenal docking site for cytochrome C6 or

plastocyanin and a stromal site for ferredoxin or flavodoxin, with the latter being formed by

PsaC, PsaD and Psa.E.
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1.8 ATP-synthase Complex

The ATP-synthase complex of plant chloroplasts is a large macromolecular structure of ~600

kDa located within the non-appressed regions of the thylakoid membrane. The complex

shows strong similarity to bacterial and mitochondrial ATP-synthase. The proton gradient

generated by the photosynthetic electron transport pathway is used to synthesise ATP via this

complex. The ATP-synthase has two distinct regions in the form of an integral membrane

complex (CFo) and an extrinsic stroma exposed complex (CF I)'

CFo consists of four different polypeptides (I-IV), which act in concert to channel protons

through the membrane. Between 9-12 copies of subunit ill are present which, along with

subunits I and IT,are required for CF 1 binding (Lemaire & Wollman 1989) whilst subunit IV

is essential for activity (Feng & McCarty 1990). Ch contains the catalytic sites responsible

for ATP-synthesis, and is formed from five different polypeptide subunits (u, p, y, D, E)with

a stoichiometry of U3J33yDE.The u and J3bind ADP and phosphate and convert ADP into

ATP (Bar-Zvi et al. 1983) in a three stage process, involving the catalytic site present on

each of the J3subunit resulting J3- y interaction, enabling the release of ATP (Abrahams et al.

1994). This interaction is thought to occur as a result of y-subunit rotation within the U3J33

barrel of the complex (Sabbert et al. 1996; Noji et al. 1997), allowing the sequential release

of ATP from the three active sites on the complex. This rotation is thought to be provided

by the CFo-ill subunit, (which forms a ring like structure within the membrane), as a result

of the protonation of key carboxyl group on a single subunit due to the proton motive force

across the membrane. The D-subunit links CFo and CF1 and the y-subunit appears to control

proton-gating through the enzyme (Xiao & McCarty 1989; Engelbrecht & Junge 1990). The

s-subunit blocks catalysis in the dark preventing breakdown of ATP and may be involved on

proton gating through interaction with the y-subunit (Richter et al. 1984).

1.9 Photosynthetic Regulation

To sustain photosynthesis, the biochemical network of higher plants has developed into a

highly flexible system in the face of changing environmental conditions, which can fluctuate

both rapidly and over longer time periods. During high light conditions the rate of

photosynthesis will reach saturation, at which point a number of processes act to ensure

photosynthesis is maintained, some of which are described below.
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1.9.1 Cyclic Electron Transport

During periods of stress when CO2 fixation is low there is a lack of electron acceptors

causing a collapse in linear electron flow between the two photosystems. Under such

conditions, the generation of low pH in the thylakoid lumen is prevented and the prerequisite

signal for the dissipation of excess light energy is not formed. This obstacle is overcome

through a process of cyclic electron transport around PSI in a process that relays electrons

between NADPH, ferredoxin, Cyt bf, plastoquinone and PSI.

1.9.2 State Transitions

This is a process by which an imbalance in the electron flow between PSII and PSI is

restored. It involves the phosphorylation of LHCIIb in PSII complexes resulting in the

mobile antenna disassociating from the latter and migrating to PSI through the thylakoid

membrane. The question still remains, however, as to whether phosphorylated LHCIIb

actually binds to PSI, if so where, and what regulatory role does PSI provide? Recent data

indicates that the PSI-H protein (see section 1.7.4) may act to bind phosphorylated LHCIIb

as plants lacking this component fail to perform state transitions. The enzymatic mechanism

of this process is still unresolved. A number of candidates exist for the LHCIIb kinase

protein which include the PSII-core associated kinase (Race & Hind. 1996), the four kinases

(30, 55, 64 and 84 kDa) where the 55 kDa kinase has homology with a histidine kinase

(Weber et al. 1998) and the recently identified TAK kinase (Snyder & Kohorn 1999; Snyder

& Kohorn 2001).

1.9.3 Carotenoids

Carotenoids have multiple roles in oxygenic photosynthesis (for review see Owens, 1996).

They can act as accessory light harvesters in support of chlorophyll in higher plants whilst

being of particular importance to organisms that exist in environments which restrict the

light available for chlorophyll absorption. The provision of defence against triplet

chlorophylls and singlet oxygen species generated within the antenna system is the

responsibility of the carotenoid molecules, which act to prevent photo-oxidative damage.

This process involves the transfer of energy from triplet state chla CChla) or singlet state

oxygen C02.) to a carotenoid molecule. In doing so, a triplet state carotenoid is formed

CCar) which leads to the non-destructive thermal dissipation of this triplet energy by the

carotenoid. Lastly, the carotenoid zeaxanthin, along with the xanthophyll cycle that

,
_'
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produces it, have an important role in the photoprotective dissipation of excess excitation

energy during periods of light stress.

1.10 Photoprotection in Higher Plants

The exposure of plants to conditions of excess light intensities can lead to increased

production of damaging reactive oxygen species as by-products of photosynthesis. As a

result, plants have evolved both biochemical and physiological responses to light that enable

optimisation of photosynthesis and continued growth. The regulation of light harvesting is

required in order to balance the absorption and utilisation of light energy and prevent photo

oxidative damage. Under conditions of excess light, plants employ protective non-

photochemical mechanisms that quench singlet state chlorophylls and dissipate excitation

energy as heat. Beyond the point of photosynthetic saturation, the antenna pigments of PSII

continue to absorb light energy leading to an increase in the excitation density within the

antenna, in a manner that is linearly proportional to the intensity of absorbed light. The

result is an over reduction of PSII and increased photoinhibitory damage to reaction centre

pigments and proteins. Such increases in the excitation density can result in triplet-state

excitation of chlorophyll a within the antenna which can transfer energy to ground state O2

to generate singlet oxygen C02*), which can in tum lead to further damage to the pigments

and proteins in the thylakoid membrane.

The specific inactivation of PSII and photo inhibition arises from electron transfer in the RC

through one of two mechanisms, referred to as either the 'acceptor' or 'donor' side

mechanism (Andersson & Barber 1996). The acceptor side mechanism results in the over

reduction of the plastoquinone pool and the QA site. This causes the recombination of the

P680+Pheo- radical pair and the formation of the P680 triplet-state chlorophyll ep680). This

can then react with molecular oxygen forming 102* which, in turn, damages the chlorophylls

and amino acids of the reaction centre (Andersson & Barber 1996). The rate of electron

donation from P680 in the donor side mechanism exceeds the rate of electron removal from

water and increases the lifetime of the P680+ species causing a build up of this cation. The

high redox potential of P680+ required for the oxidation of water is great enough to oxidise

the surrounding pigments and amino acids within the reaction centre (Barber & Andersson

1992; Andersson & Barber 1996). Damaged reaction centres can themselves release

chlorophyll molecules and free radicals causing wide spread damage to other components of

the thylakoid membrane. Repairing reaction centres requires the disassembly of PSIl, the

proteolysis of the damaged components and the subsequent synthesis and incorporation of a



Cl Chapter One
Genera/Introduction

new Dl (Andersson & Barber 1996). If the rate of damage begins to exceed the rate of

repair, inactive PSll reaction centres accumulate in the thylakoid membrane resulting in

decreased photosynthetic efficiency and the plant is said to be photoinhibited.

1.10.1 Chlorophyll Fluorescence Yield and Quenching

This excess energy is dissipated as heat via a number of mechanisms, which, collectively,

reduce the quantum efficiency of PSll. They can be detected as non-photochemical

quenching of chlorophyll fluorescence (NPQ). The electrons of chlorophyll molecules

absorbing photons of light energy are promoted from the Soground state to one of a number

of higher energy levels, which results in rapid decay to the first excited state S, and the

conversion of electronic vibrational energy into heat. Electrons at S, will decay to So over

time and release their absorbed energy as fluorescence. However, chlorophyll molecules

within a photosynthetic membrane are influenced by a number of competing processes all of

which can return an S, electron back to its ground state. These processes are listed below:

1. Re-emitted energy as fluorescence (kp)

2. Inter-chlorophyll energy transfer (kT)

3. Energy usage in photochemistry (kp)

4. Energy dissipation through non-radiative processes as heat (kD)

The fluorescence yield (<1>F)of any chlorophyll (whether a single molecule or a group of

molecules) consists of the remaining energy after competition with all the above processes.

This energy is re-emitted as light. The quenching of the fluorescence yield occurs in two

distinct ways. Firstly, through photochemical quenching of chlorophyll fluorescence (qP or

qQ), caused by an increase in kp which can be used to gauge the redox state of QA.

Secondly, through processes that stimulate non-photochemical quenching of chlorophyll

fluorescence (qN or NPQ) due to an increase in kTor kDand is detailed below.

The photochemical and non-photochemical components of chlorophyll fluorescence

quenching have been studied using numerous techniques. Initially, (Krause et al. 1981)

blocked qP using 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) whilst light doubling

techniques (Bradbury & Baker 1981) enabled the separation of qN and qP. In (Quick &

Horton 1984) used modulated fluorescence techniques, which employed saturating pulses to

measure quenching and directly probe the relative contributions of qP and qN.



Chapter One
General lntroduct ion

1.10.2 Non-photochemcial Component of Chlorophyll Fluorescence Quenching

Non-photochemical quenching of chlorophyll fluorescence is symptomatic of the regulation

of energy dissipation by the light harvesting antennae of PSII. NPQ can be divided into at

least three different components based on their relaxation kinetics in darkness, after a period

of illumination, and their response to a number of different uncouplers and inhibitors

(Horton & Hague 1988; Walters & Horton 1991).

1.10.3 Rapidly Relaxing qE

qE state is the major and most rapid component of NPQ in most algae and plants and is

referred to as the pH- or energy-dependent component (Briantais et al. 1979). It has a dark

relaxation half-time (TlI2) of ~30 seconds (Walters & Horton 1991), and the level of qE has

been shown to closely correlate with the conversion of violaxanthin to zeaxanthin through

the action of the xanthophyll cycle (see section 1.11) in numerous plant species (Demmig-

Adams 1990).

1.10.4 Slowly Relaxing state qT

This component relaxes in minutes. Under low light conditions qT is attributed to the state 1

to state 2 transition associated with energy redistribution between PSII and PSI. Chlorophyll

fluorescence quenching due to qT is thought to arise due to the phosphorylation of LHCIIb

(Allen 1992) since it is sensitive to the phosphatase inhibitor NaP (Horton & Hague 1988).

The total contribution to fluorescence quenching from the state transition is ~20%,

decreasing in high light (Horton & Hague 1988). However, during periods of prolonged

high light stress the total amount of 'qT' has been shown to increase due to a slow relaxation

component of qE (Lee et al. 1990; Walters & Horton 1991).

1.10.5 Irreversible or Very Slowly Relaxing State qI

The third component of NPQ, qI has the slowest relaxation and is the least defined. It

consists of two distinct components; the first is sensitive to protein synthesis inhibition and is

related to photoinhibition of photosynthesis whilst, the second, appears to be a

photoprotective mechanism, forming a sustained quenching in the antenna (Lee et al. 1990;

Walters & Horton 1991; Gilmore & Bjorkman 1994). Such prolonged quenching of

chlorophyll fluorescence is supported by a number of elements including the maintenance of

thylakoid ~pH in the dark by ATP hydrolysis (Gilmore & Bjorkman 1994); the long-term
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retention of zeaxanthin (for review see Demmig-Adams & Adams 1996), and a stable

protonation site (Ruban & Horton 1994).

1.11 The Xanthophyll Cycle

The xanthophyll cycle was first characterised by (Yamamoto et al. 1962) as the two-step de-

epoxidation of violaxanthin to zeaxanthin via an intermediate molecule antheraxanthin.

Situated within the chloroplast this cycle has been found to be organised across the thylakoid

membrane with the de-epoxidation reaction (violaxanthin ---+ zeaxanthin) lumenally located

whilst the epoxidation reaction (zeaxanthin ---+ violaxanthin) occurs on the stromal side of the

membrane (Yamamoto et al. 1999). Violaxanthin de-epoxidation occurs in the light and is

catalysed by the enzyme violaxanthin de-epoxidase (VDE).

VDE has been purified from spinach usmg a combination of gel filtration and anion

chromatography (Arvidsson et al. 1996) and from lettuce using lipid-affinity precipitation

with monogalactosyldiacylglyceride (MGDG) (Rockholm & Yamamoto 1996). The enzyme

from both species was found to have an apparent molecular weight of approximately 43 kDa

on SDS-P AGE. Successful cloning of the first cDNA encoding VDE from lettuce was

performed in Ecoli resulting in the expression of a fully functional enzyme (Bugos &

yamamoto 1996). Its activity is controlled by the lumenal pH of the thylakoid, with a

maximum activity between pH 4.8 - 5.2 whilst being completely inactive above pH 6.3

(Eskling et al. 1997). Additionally, the enzyme also requires the presence of ascorbate

(Neubauer & Yamamoto 1994) and the thylakoid lipid MGDG for maximal activity.

During periods of dark or weak illumination the xanthophyll cycle is completed in a reaction

catalysed by the enzyme zeaxanthin epoxidase (ZE). To date, it has not been possible to

isolate the enzyme directly, however cDNA's encoding ZE have been cloned from Nicotina

plumbaginifloria (Marin et al. 1996), pepper (Bouvier et al. 1996) and tomato (Burbidge et

al. 1997) enabling the synthesis of fully functional ZE in E.coli. As with VDE, zeaxanthin

epoxidase displays a strong pH dependency, with optimum activity occurring around pH 7.0

_ 7.5 (Siefermann & Yamamoto 1975). Additional components are required for the reaction

including molecular oxygen (Takeguchi & Yamamoto 1968), and the cofactors NADPH

(Siefermann & Yamamoto 1975), FAD (Buch et al. 1995) along with the presence of

ferredoxin or 'ferredoxin like' reductants (Yamamoto et al. 1999).

The role of the xanthophyll cycle in the dissipation of excess excitation energy will be

detailed in section 1.11.3. Additionally, the cycle has been implicated in a number of other

-II
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important roles. It has been demonstrated that an association exists between the peroxidation

and degradation of thylakoid lipids in pea and high light stress (Havaux et al. 1991), whilst

the inhibition of zeaxanthin formation by dithiothreitol (DIT) exacerbates light-induced

lipid damage. In support of this evidence, analysis of the zeaxanthin-deficient Arabidopsis

thaliana npq 1 mutant showed an elevated level of thylakoid lipid damage under high light

stress when compared to WT, whilst the npq4 mutant plants, capable of zeaxanthin synthesis

but lacking the rapidly reversible component of NPQ, displayed a transient increase in lipid

damage with full recovery in a 24 hour period. Over expression of the chyB gene encoding

the j3-carotene hydroxylase enzyme (a component of the zeaxanthin biosynthetic pathway) in

Arabidopsis thaliana, results in a specific two fold increase in the size of the xanthophylls

cycle pool (Davison et al. 2002). These plants possess an increased tolerance to high light

conditions, showing a reduction in lipid peroxidation, along with decreased leaf necrosis and

antherocyanin levels. Such evidence highlights a strong link between zeaxanthin and the

protection of thylakoid lipids from photodegredation.

The fluidity of the thylakoid membrane in the peripheral region of the hydrophobic core has

been shown to be sensitive to the light-induced formation of zeaxanthin (Gruszecki &

Strzalka 1991). The presence of zeaxanthin reduces the fluidity of the membrane and

protects against heat-induced increases in lipid bilayer permeability (Gruszecki & Strzalka

1991; Havaux et al. 1996). These observations suggest the xanthophyll cycle helps to

regulate membrane stability in vivo.

1.11.1 qE - An Historical Overview

Chlorophyll fluorescence quenching was originally thought to be unrelated to

photochemistry (Murata & Sugahara 1969), however further investigation using DCMU

discovered that this quenching could be inhibited/abolished by uncouplers such as nigericin

and ~CI (Wraight & Crofts 1970). This led to the suggestion that pH gradient formed

across the thylakoid membrane during photosynthesis was related to light-induced quenching

of chlorophyll fluorescence (Wraight & Crofts 1970), and was supported by data which

found the fluorescence yield of intact chloroplasts to be largely dependent on the high-

energy state of the thylakoid (Krause 1973). A linear correlation between chlorophyll

fluorescence quenching and the intra-thylakoid proton concentration of broken pea

chloroplasts was found by Briantais et al, (1979), and it was shown that abolition of the

proton gradient using the uncoupler gramicidin led to complete reversal of quenching. This

provided indisputable evidence of the link between 'energy dependent' chlorophyll

fluorescence quenching qE and the Apl-l gradient across the thylakoid membrane and added
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support to the idea that it was the pH gradient, across the thylakoid membrane, which is

necessary for the induction of chlorophyll fluorescence quenching.

The formation of a Apll can be achieved in the dark using ATP hydrolysis which has been

shown to induce chlorophyll fluorescence quenching, suggesting that light itself is not

directly responsible for qE formation (Gilmore & Yamamoto 1992). The role of qE in

photoprotection emerged after it had been observed that increases in light intensity resulted

in a decreased steady state quantum yield (~s), whilst qP remained largely unchanged (Weis

& Berry 1987), indicating that the reduction in quantum yield was not a result of negative

feedback from reduced photosynthetic electron transport chain components, but due to

increased dissipation of excess excitation energy. The function of qE, therefore, is to down

regulate PSII preventing reduced QAaccumulation and, in doing so, averting the subsequent

photoinhibition of PSII (see section 1.4) during high light stress (Weis & Berry 1987; Krause

& Weis 1991). Energy dependent quenching of chlorophyll fluorescence has been shown to

correlate closely with the formation of zeaxanthin (Demmig-Adams 1990) implicating

xanthophyll cycle as a component of qE regulation (Demmig-Adams & Adams 1996; Horton

& Ruban 1999; Yamamoto et al. 1999; Wentworth et al. 2000).

1.11.2 qE - The Site of Energy Dependent Quenching

A considerable body of evidence exists that suggests, under most physiological conditions,

the rapidly relaxing or qE component of NPQ occurs within the antenna rather than the

reaction centre of PSII. The latter is thought to play only a minor role (if any) in qE

contribution (Horton & Ruban 1992; Ruban & Horton 1995; Wentworth et al. 2000). The

major observations, which support this theory, are as follows:

1. The qE inhibitor DeeD (Ruban et al. 1992a) has been shown to bind only the

minor antenna polypeptides Lhcb4 (ep29) and Lhcb5 (ep26) (Walters et al.

1994; Ruban et al. 1998a). Recent evidence suggests that the PsbS (ep22)

protein also binds DeeD (Dominici et al. 2002), however, the exact location of

this polypeptide in PSII remains uncertain (Nield 2000).

2. Xanthophyll cycle carotenoids are located in the peripheral antenna, whilst qE

and zeaxanthin levels observed in vivo closely correlate with each other

(Demmig-Adams 1990).
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3. Heat ermssion kinetics measured directly using laser-induced optoacustic

spectroscopy show completion within l.4 IlS (Mullineaux et al. 1994). This time

is significantly faster than QA- and P680+ recombination reaction (~120 1lS)

necessary to cause quenching within the reaction centre.

4. Preferential quenching of excitation energy within the antenna complexes has

been observed during PSll analysis at 77K (Ruban & Horton 1995). Following the

induction of qE, the spectrum of PSII resembled that of partially aggregated

LHCII, with bands at 680 and 700 nm.

Taken together, this data strongly suggests that the antenna of Pxll is the loci for qE related

quenching. However, under certain physiological conditions, the reaction centre could also be

involved, and, it has been shown, that reversible chlorophyll fluorescence quenching associated

with the latter may occur as a consequence of low pH-induced Ca2+ release from the OEC

(Krieger & Weis 1993). Such release is associated with a specific thermoiuminescence (TL)

band around 50°C, also seen in pea leaves under conditions in which reversible NPQ was

observed (Johnson & Krieger 1994). Its absence however, in mature leaves indicates that

reaction centre quenching could only occur under certain circumstances and would not

normally contribute significantly to NPQ.

1.11.2 Relationship between qE and the xanthophyll cycle

Photosynthetic electron transport has been detailed in section 1.3 where the mechanism of

proton translocation in the thylakoid, resulting in the formation of a ~pH gradient, is

outlined. As a consequence of this process, the lumenal pH of the thylakoid decreases and, in

doing so, activates violaxanthin deepoxidase (see section 1.11) instigating the reversible

conversion of violaxanthin into zeaxanthin. This decrease in lumenal pH also promotes qE

formation resulting in excess excitation energy being dissipated within the antenna system.

Currently two mechanisms have been proposed in order to rationalise the relationship

between the xanthophyll cycle and the rapidly relaxing (qE) component of NPQ (for a

review see (Horton & Ruban 1999). These hypostheses depend upon the structures and/or

energetics of xanthophyll cycle carotenoids, however they have not yet been fully eludicated.

1. Direct Quenching Mechanism - the direct singlet-singlet downhill energy

transfer from chlorophyll to carotenoid as the driving force behind fluorescence

quenching.
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2. Indirect Quenching Mechanism - regulation of antenna complex organisation b

the xanthophyll cycle resulting in LHCII conformational changes that promote

energy dissipation.

1.11.3.i Direct Quenching Mechanism: molecular gear shift model

This model proposes the direct quenching of chlorophyll excited states by the xanthophylls

via singlet-singlet energy transfer resulting in the subsequent dissipation of excitation energy

(Owens 1984).

Carotenoid energy diagrams display a minimum of two excited states designated as 21Ag

(SI) and 11Bu (S2) based upon their symmetrical relationship. Direct transition from ground

state (So) to the first excited state (SI) is symmetrically forbidden for xanthophylls, however

conversion between the second excited state (S2) and the SI state is possible, and is employed

by carotenoids as a means for energy transfer to chlorophyll molecules.

SI state energy levels have been approximated by employing energy gap law in a number of

carotenoids upon measurement of SI (Frank et al. 1994). The SI state energy for zeaxanthin

was 530 cm-I lower than that of chlorophyll a (14700 ern"), whilst the SI energy of

violaxanthin was greater than the latter at 15290 ern". The energy level disparity between

violaxanthin and zeaxanthin forms the basis of the molecular gear shift model (Owens 1984;

Frank et al. 1994). Although only approximations, the fact that the chlorophyll a Qy band

was found to be higher than the SI energy level of zeaxanthin suggested the latter would be

energetically suitable for quenching excess excitation energy from chlorophyll a than the SI

state of violaxanthin. Since the latter was significantly higher than that of chlorophyll a it

would be more likely to act as a light harvesting pigment. Hence the molecular gear shift

model proposes that violaxanthin would predominate under low light conditions as an

accessory light harvesting pigment, whilst high light levels exceeding photochemical

requirements would promote the conversion to zeaxanthin, enabling the dissipation excess

chlorophyll excitation energy as heat.

However, advances in fluorescence spectroscopy allowed for direct measurement of

violaxanthin and zeaxanthin SI energy levels (Polivka et al. 1999; Frank et al. 2000), and

both studies concluded that SI energy level differences between xanthophylls were far lower

than previously calculated (Frank et al., 1994), making the differential effects of

violaxanthin and zeaxanthin on chlorophyll fluorescence quenching more likely to invol e
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indirect factors rather than being solely due to the SI energy levels of the carotenoids (Poli ka

et al. 1999; Frank et al. 2000).

More recently in vitro studies using low temperature fluorescent spectroscopy have been

employed to again attempt to accurately measure the SI energy levels of the xanthophyll

cycle carotenoids (Josue & Frank 2002). The results obtained are similar to work by (Frank

et al. 1994), and it has been suggested that in order for the S I-SO transitional energies

observed at low temperature in vitro to change a protein, they would have to cause

significant distortion of the carotenoid (Josue & Frank 2002). In spite of this, chlorophyll

fluorescence quenching by zeaxanthin has never been directly observed, however, carotenoid

cation radicals have been transiently observed after photoexcitation of bacterial light

harvesting complexes (Frank & Brudvig 2004). This has led to the suggestion that electron

transfer between carotenoids and chlorophylls could be a mechanism for quenching of

excited states, and subsequent heat dissipation.

1.11.3.ii Indirect Quenching Mechanism: allosteric qE model

Fluorescence quenching has been observed in the absence of zeaxanthin in dark-adapted

chloroplasts (Rees et al. 1989; Noctor et al. 1991), isolated LHCn complexes (Ruban &

Horton 1994; Ruban et al. 1996) and in the Chlamydomonas npql mutant (Niyogi et at.

1997a; Niyogi et al. 1997b) whilst the presence of zeaxanthin itself has been shown to

amplify the level of qE at subsaturated W concentrations (Rees et at. 1989). This data fails

to support the idea of direct quenching by zeaxanthin and, as a result of the earlier work

mentioned above, has led to the model proposed by (Horton et al. 1991) in which four key

aspects related to the mechanistic process ofNPQ are defined:

1. Location - energy dissipation occurs on one or more LHCII components

2. Induction - conformational change in single or multiple LHC components

3. Control - synergistic effect of targeted protonation and violaxanthin

deepoxidation

4. Dissipation - thermal dissipation of excess excitation energy resulting from

altered chlorophyll-chlorophyll interaction

This mechanism relies upon the structural and physical differences of the xanthophyll cycle

carotenoids to mediate structural changes within the LHCll antenna, resulting in the thermal

dissipation of excitation energy (Horton & Ruban 1999). It has been shown that the

synergistic or allosteric nature of NPQ control can be characterised in enzymatic term .
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defining qE as a regulatory enzyme catalysed reaction (Horton et al. 1991; Horton et al.

2000). Confirmation that qE occurs in the light harvesting system (Ruban & Horton 1994),

along with the discovery of potential protonation sites (Walters et al. 1996; Pesaresi et al.

1997) and the influence of the xanthophyll cycle, substantiate the proposed mechanism for

indirect quenching of qE. The allosteric model provides a quantitative basis for qE based

upon kinetic measurements on isolated thylakoids (for review see Horton et al. 2000). It is

proposed that the reaction rate of qE is, in fact, the magnitude of quenching whilst the trans-

thylakoid pH gradient provides a substrate for the reaction in the form of protons. The

titration of W concentration against qE in spinach chloroplasts has been shown to give rise

to a sigmoidal response suggesting positive cooperatively in relation to proton binding

(Noctor et a1. 1991). The apparent pK of this reaction has been observed to vary (Krause et

a1. 1988), with pH shifts that can be systematically stimulated using modulators such as

antimycin A and dibucaine (for review see Horton et al. 2000) which function to raise or

lower the pH requirement for qE respectively. However, it is interesting to note that the

inhibitory effect of Antimycin A is dependent upon the deepoxidation state of the antenna,

and provides evidence of antagonism between qE effectors (Noctor et al. 1993). In vivo qE

is regulated by the xanthophyll cycle where zeaxanthin has been shown to have a role in

non-photochemical quenching (Demmig-Adams 1990). The activation of qE and a shift to

lower lumenal pH always corresponds with violaxanthin deepoxidation and the formation of

zeaxanthin (Horton et a1. 1991), altering the properties of protonation, the dynamics of wh ich

approach those of 'Michaelis-Menton' kinetics. However, at saturating pH levels the

maximum quenched level remains constant regardless of the presence of zeaxanthin,

suggesting the latter acts to amplify qE in vivo (Rees et al. 1989; Noctor et al. 1991). The

kinetics of qE formation in leaves have been shown to be biphasic in nature, possessing a

rapid early phase in high light associated with Apl-l formation, and slower phase

corresponding with the formation of zeaxanthin. The PSII antenna is thought to exist in two

forms based upon the structural changes said to induce qE as a result of protonation and the

deepoxidation of the xanthophyll cycle. Known as U (unquenched) and Q (quenched) forms

respectively, they each have been observed to display different fluorescent lifetimes

(Gilmore et a1. 1995; Gilmore et a!. 1998), and interaction between LHCII components give

rise to positive cooperativity in relation to the transition from U ~ Q (for review see Horton

et a1. 2000).

This data supports two important predictions made by the allosteric model for qE. The first

states that qE formation is absolutely dependent upon the formation of the trans-thylakoid

pH gradient, whilst the second focuses on the protonation of specific residues within the

antenna system. Collectively these processes result in a conformational change that bring
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about quenching within the antenna (Horton et al. 1996). Further insights regarding the

regulation of these processes have been obtained through observations involving LHCn

behaviour in vitro (Ruban et al. 1994a; Ruban et al. 1996; Wentworth et al. 2000; Wentworth

et al. 2001). Experiments using purified LHCll complexes in detergent have described

highly fluorescent characteristics when held above the critical micelle concentration (CMC),

which resemble that of the unquenched state. Dilution below the CMC results in the

formation of a quenched species, and the rate of transition to such a state can be controlled

through the application of known in vivo qE modulators such as Antimycin A and Dibucaine

(Ruban et al. 1994a) as well as xanthophyll cycle carotenoids (Ruban et al. 1994a; Ruban et

al. 1996). The application of DCCD has also been shown to inhibit such quenching in vitro

(Ruban et al. 1996; Ruban et al. 1998b). All LHCII complexes emulate this behaviour,

however the rate and magnitude of quenching is both accelerated and amplified for CP29

and CP26 when compared to LHCIIb under controlled conditions (for review see Horton et

al. 2000). In all cases the kinetic characteristics displayed by LHCII complexes invitro fit

the same second order rate equation found for qE in vivo (Ruban & Horton] 999; Wentworth

et al. 2001; Ruban et al. 2001 b), whilst the rate constant is modulated by the xanthophylls

and effectors described above (Ruban et al. 1996). Carotenoid structure also plays an

important role on the function of a given molecule in relation to qE modulation (Horton &

Ruban 1999). Auroxanthin, the epoxy analogue of violaxanthin, affects quenching in a

manner similar to that of zeaxanthin (Ruban et al. 1998b) as the epoxide of this carotenoid is

located in the 5-8 position resulting in the end group being fixed in the plane of the carbon

double bond chain. The positioning of the end group is inconsistent with that of

violaxanthin, instead presenting similar structural characteristics to that of zeaxanthin.

The PSII light harvesting complex in vivo exists as a multi-subunit macromolecular

aggregate (see section 1.5.7). In order to determine the mechanism of qE regulation it is

necessary to ascertain whether the conformational changes responsible for qE induction

occur within a single protein subunit or, alternatively, over LHCII as a whole. Initial

experimental evidence found that large macromolecular protein aggregates formed under

conditions used to promote quenching in vitro (Ruban & Horton 1992), the size of which

could be modulated with controlled changes in detergent concentration (Ruban et al. 1997).

It was proposed that zeaxanthin promotes the adoption of an aggregated state, whilst

violaxanthin inhibits oligomer formation (Horton et al. 1991). However, more recent data

has shed light on novel conditions under which zeaxanthin induced quenching can occur

without protein aggregation (Wentworth et al. 2000), where it is assumed that xanthophyll-

cycle carotenoids interact with the antenna proteins of PSII in a manner which optimises the

frequency of contact with the external medium. Earlier work has shown that aggregation of
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PSII antenna under quenching conditions gives rise to a qE absorbance spectrum at 683 nm

with a 700 nm shoulder (Horton et al. 1991), the former displaying kinetic correlation to

quenching upon the addition of zeaxanthin (Wentworth et al. 2000). This evidence suggests

that the absorbance change around 680 nm eminates from a species that is either closely

related to the quencher or is the quencher itself. The red-shift in peak maximum of

fluorescence spectra from LHCIIb at 700 nm is due to protein aggregation. Control

experiments using CP29 have shown that zeaxanthin is not responsible for this aggregated

state, and, instead, acts to enhance the fluorescence yield of the complex (Wentworth et al.

2000). Additionally, qE has been shown to be closely associated with an absorbance change

centred around 535nm (Noctor et al. 1993; Ruban et al. 1993b; Bilger & Bjorkman 1994),

with the loss of qE in the npq4 mutant of Arabidopsis thaliana (see section I. II A) resulting

in a loss of absorption at 535nm (Li et al. 2000). This absorbance change has been shown to

arise due to dramatic changes in the environment of the xanthophyll cycle carotenoid

zeaxanthin (Ruban et al. 2002).

As already mentioned, previous work suggests that qE involves a conformational change

within LHCII (Noctor et al. 1993; Ruban et al. 1993a; Bilger & Bjorkman 1994). Such

changes are thought to underlie the process of fluorescent quenching both in the high light

system, involving aggregation of isolated LHCII, and the low irradiance system, which

simulates in vivo properties of excess light. This data suggests that the mechanism of

conformational change may be the same in both systems, even though the driving force

behind the structural changes are different (for review see Horton et al. 2000). Quenching

has been observed to follow second order reaction kinetics (Wentworth et al. 2000) with

modulators acting to alter the rate constant of the reaction (Wentworth et al. 2001), a trend

also seen in chloroplasts and leaves (Ruban & Horton 1999; Ruban et al. 2001b). The

hyperbolic kinetics of quenching support the theory that qE follows a second order reaction

of the type A + A ~ 2A. The fluorescent species found in the unquenched state is A, whilst

2A is the quencher found in the Q-state (for review see Horton et aI. 2000). As a result of

this model for the formation of 2A is predicted to follow first order reaction kinetics,

corresponding to the absorbance change at 683 nm, which displays such kinetic behaviour in

all in vitro experiments (Ruban et al. 1998b; Wentworth et al. 2000) and in isolated

chloroplasts (Ruban et al. 1992b). If A is a chlorophyll molecule, then it follows that 2A

could be a chlorophyll dimer (Horton et al. 2000; Wentworth et al. 2001).

All LHCb proteins posses a capacity to convert into a quenched state, however, in vitro

studies cannot determine whether this potential is realised in vivo. To this end, genetic

analysis has been employed to further explore the components involved in qE.
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1.1104 Genetic Analysis

Molecular genetics has been employed to improve our knowledge of photosynthesis, with a

substantial amount of research undertaken in the area of light harvesting. Chlorophyll b-

deficient mutants have been widely used to eludicate the genetic and biochemical control of

chlb biosynthesis, as well as the function of the chromophore in the assembly of LHC

proteins (Anderson et al. 1978; Eggink et al. 2001). Various Chi b-defiecient mutants have

been identified in higher plants (Falbel et al. 1994), which differ both in the manner and

location of the mutations (Lin et al. 2003). To develop a greater understanding of energy

dissipation and the in vivo parameters controlling it, xanthophyll cycle components have

been isolated in Arabidopsis thaliana that possess altered non-photochemical quenching

characteristics. The Arabidopsis thaliana mutants described in below were derived from

mutagenesis of M2 seedlings with fast-neutron bombardment or 0.3% ethylmethane

sulphonate (Niyogi et al. 1998; Li et al. 2000), and identified with chlorophyll fluorescence

video imaging (Niyogi et al. 1998).

The inability of the npql mutant to convert violaxanthin into zeaxanthin during periods of

excess light (Niyogi et al. 1998) is due to a lack of VDE activity. As a result npql plants

exhibit significantly reduced NPQ levels highlighting the requirement for violaxanthin

deepoxidation as a key contributor to qE. The component of qE retained in npql mutants is

not related to the xanthophyll cycle as it is thought that Lutein plays an important role in

NPQ (Pogson et al. 1998). New alleles of abal found in npq2 mutants constitutively

accumulate zeaxanthin, however, this alone is insufficient to generate qE in the absence of a

~pH (Niyogi et al. 1998). The Arabidopsis thaliana mutant npq4 displays an altered state of

NPQ whilst maintaining a normal pigment content. The isolation of the npq4 mutant was

part of an attempt to identify the components necessary for qE (in addition to Apl-l and

xanthophylls) and it was found to be specifically deficient in this NPQ component, whilst

being able to produce zeaxanthin during high light at rates indistinguishable from wild type

plants (Li et al. 2000). The npq4 gene encodes the PsbS protein, a member of the LHC

superfamily (Kim et al. 1992), and is discussed in section 1.12. The effect of PsbS gene

dosage on pH and xanthophyll cycle mediated NPQ has been analysed using molecular and

global time-resolved techniques, showing PSII chlorophyll a fluorescence lifetime

distributions or steady-state intensities to be stiochiometrically related to the amount of PsbS

protein (Li et al. 2002a). Over expression of the PsbS protein ultimately leads to an increase

in qE. The precise mechanism by which the antenna system in higher plants detects lumenal

AplI remains uncertain, however structural and genetic advances have greatly improved our

knowledge of the proton transport mechanism in bacteriorhodopsin, with numerous ide

()
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chains actively involved in a protonation/deprotonation cycle (Grigorieff et al. 1996; Belrhali

et al. 1999; Balashov 2000; Luecke et al. 2000). Recently, analysis of the quadruple

glutamic acid mutant (4Glu) has concluded that two cation binding sites could exist in the

extracellular region of bacteriorhodopsin (Sanz et al. 2001). It is thought these sites may

form part of a proton transport pathway in which cations would be ligated by three Glu

residues and a water molecule (Sanz et al. 2001).

Reaction centre properties have been observed to change in the npq4 phenotype resulting in

the formation of photochemically inactive, yet strongly quenching centres, which could

potentially support a carotenoid or chlorophyll cation quencher (Peterson & Havir 2003).

An npq4-npqi double mutant has been observed with the same characteristics as npq4,

indicating that the latter mutation blocks the small amount of qE normally seen in npql

mutants. The characteristics of non-photochemical quenching in tobacco plants

overexpressing VDE, PsbS and VDE+PsbS have been observed over a range of light

intensities (Hieber et al. 2004). Analysis showed an increase in zeaxanthin formation and

NPQ in plants over expressing VDE and PsbS respectively. The latter was observed to

increase deepoxidation in addition to NPQ under low light conditions, a phenomenon

thought to be caused by PsbS binding or inducing binding of zeaxanthin, causing the

xanthophyll cycle equilibrium to shift towards higher deepoxidation states as a result of the

limited capacity of the lipid matrix for xanthophylls (Hieber et al. 2004). The Arabidopsis

thaliana lut2 mutant, deficient in lutein, has been shown to induce NPQ at a rate slower than

wild type plants, reaching a lower maximum extent (Pogson et al. 1998). When combined

with the npq l mutant it has been shown than all qE is lost (Niyogi et a1. 1998). Recent data

suggests that lutein acts indirectly by organising LHCII (Lokstein et a1. 2002) rather than

specifically being involved in qE. The npq l mutant was originally isolated in

Chlamydomonas reinhardtii (Niyogi et a1. 1997a), and provided the first genetic evidence for

the importance of zeaxanthin synthesis in non-photochemical quenching, whilst

characterisation of the lor I mutant revealed the potential role for lutein in NPQ (Niyogi et al.

1997b ).

It has been proposed that PGR5 is an essential component of the antimycin A sensitive cyclic

electron transport system, involving the newly identified Cyt hi - FNR complex. In vitro

biochemical studies have shed light on alternative pathways that contribute to Apl-l, whilst it

has become apparent that only a proportion of the cyclic electron transport chain is

antimycin A sensitive (Cleland & Bendall 1992; Scheller 1996). The ndh complex present in

Arabidopsis thaliana is thought to support cyclic electron transport or proton transport.

Contribution to the latter may also be accomplished via chlororespiration (for review see

"'I
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(Peltier & Coumac 2002) as the terminal oxidase (PTOX), known to be essential for

carotenoid synthesis (Carol et al. 1999), has been shown to have a substantial affect upon

plastoquinone reoxidation when the gene from Arabidopsis thaliana is over expressed in

tobacco (Joet et al. 2002).

1.12 PsbS

The PsbS subunit of PSII has become one of the most intensively studied components of the

photosynthetic apparatus in recent times as a result of its role in protective energy dissipation

during periods of excess illumination (Li et al. 2000). The following section will detail the

current state of research into the PsbS protein, which forms the foundation for this PhD

Thesis.

Research related to the oxygen-evolving complex of PSII by (Ljungberg et al. 1986) made

use of oxygen evolving preparations isolated from spinach thylakoid membranes. Mild

detergent treatment at pH 6.5 in the presence of 1M NaCI revealed the existence of an

intrinsic membrane protein with an approximate molecular mass of 22 kDa (Ljungberg et al.

1986). This protein is the product of the nuclear encoded psbS gene and has various

nomenclature in the literature. This initial work suggested PsbS was laterally segregated in

the thylakoid membrane, being found almost entirely in the PSII rich appressed regions of

the grana and all but absent from the unappressed regions (Ljungberg et al. 1986). These

initial observations suggested that PsbS could be located in PSII core preparations, thereby

inferring that the protein might form an integral subunit in the PSII core (Ghanotakis &

Yocum 1986; Ljungberg et al. 1986; Marr et al. 1996). However, more recent studies

involving cryoelectron microscopy and single particle analysis imply that the PsbS protein is

not located in the PSII supercomplex (Nield 2000). By inference it was suggested to be

present in the LHCII regions. In support of this it has been shown that PsbS is not located

near the additional M-LHCII and CP24 subunits present in PSII-LHCII supercomplexes

(Yakushevska et al. 2001).

As a result of preliminary work on the purified protein isolated from spinach, it was believed

that the protein was hydrophobic in nature (Ljungberg et al. 1986). in 1992, amino acid

sequence data highlighted four potential membrane-spanning regions giving rise to a very

hydrophobic protein (Kim et al. 1992). This was later confirmed using topographic studies

with trypsin digestion of the PsbS protein (Kim et al. 1994). Particle-induced X-ra
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emission data generated with isolated polypeptides showed that the protein did not bind any

metallic cofactors, and absorption spectroscopy in the visible region indicated a lack of

pigments (Ljungberg et al. 1986; Bowlby & Yocum 1993). In addition, the behavior of the

polypeptide during ion-exchange chromatography indicates that the protein has a pI greater

that 6.5 (Ljungberg et al. 1986), which is supported by data from (Funk et al. 1995b)

showing PsbS to have a pI 6.1 determined by isoelectric focusing using ampholine carriers

(pH 4-6.5).

Analysis of sequence data from a cDNA clone encoding the 22kDa PsbS protein suggested

that the protein was probably N-terminally blocked. The cDNA clone consisted of 1,012

nucleotides with an ORF encoding a 274 amino acid precursor of the spinach PsbS protein.

It is thought that the mature protein includes at least 198 residues (Wedel et al. 1992; Kim et

al. 1992). Sequence similarity exists between PsbS and other LHC proteins, which is

comparable to that between LHC proteins and ELIPS (Wedel et al. 1992; Kim et aJ. 1992).

The latter group of proteins are known not to bind any pigments (Green et al. 1991; Jansson

1999).

Current evidence regarding the pigment binding properties of PsbS has been obtained using

various protein purification methods. The implementation of milder solublisation techniques

(using octyl-thioglucopyranoside [0.6 %] and octyl-glucopyranoside [with a

detergent/chlorophyll ratio of 30: 1]) and native SDS-PAGE gels has yielded a protein with

bound pigments (Funk et al. 1994). However, the chlorophyll binding properties of PsbS

isolated under these, and other conditions, differ widely. Analysis showed an absorption

peak at 674 nm and two maxima at 440 nm and 468 nm indicating the presence of

chlorophyll a, whilst the shoulder at 650 nm inferred the presence of chlorophyll b. A

chlorophyll alb ratio of 1.8 and a chlorophyll-protein ratio of 3-4 were determined. 77 K

fluorescence excitation spectra indicate that there was energy transfer from a pigment

(possibly chlorophyll b) to chlorophyll a. In a further study it was suggested that the protein

contained six chlorophyll a molecules along with one chlorophyll b and a carotenoid (Funk

et al. 1995b). In this instance, the protein was purified using non-ionic detergents and

isoelectric focusing. The PsbS apoprotein has also been shown to be stable in the absence of

pigments (Funk et al. 1995a), a unique feature of the protein, since the tertiary structure of all

other known psn antennae proteins have been found to be unstable in the absence of

pigments (Giuffra et al. 1996; Ros et al. 1998). Native PsbS preparations purified from

chloroplasts or obtained by overexpression in bacteria have also been shown to lack any

detectable bound chlorophylls or carotenoids under conditions in which Lhc proteins

maintain full pigment binding (Dominici et al. 2002). Reconstitution with zeaxanthin (see
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chapter four) results in the energy-dissipation related 535nm absorbance change shown in

vivo to arise from the activation of 1-2 molecules of this pigment (Aspinall-O'Dea et a1.

2002; Ruban et a1. 2002). In addition, expression of the PsbS gene has been seen in etiolated

spinach seedlings grown either in complete darkness or exposed to light of various qualities

(Adamska 1996), whilst low-temperature effect on gene expression has been observed to be

minimal under both field and laboratory conditions (Noren 2003).

The amino acid sequence of the Zea mays PsbS protein has been determined, allowing the

subsequent development of an anti-PshS antiserum targeted to a highly specific region on the

stroma-exposed loop of the protein between the second and third helices (Bergantino et a1.

2003). Immunoblot analysis of a variety of higher plant species (spinach, tobacco, rice,

barley and carrot) revealed a 42 kDa band thought to be the result of a PsbS dimer. Two

acidic residues (EI22, E226) located on what is thought to be the lumenal side ofPsbS have

been shown to be essential for its function (Li et a1. 2002b), and it has been proposed that

protonation at these sites during periods of light stress could form a critical aspect of the

mechanism responsible for excess energy dissipation. Analysis of structural homology

between PsbS and ep29 has also revealed acidic residues on the two lumenal exposed loops,

which have been shown to bind DeeD (Dominici et a1. 2002), whilst light induced lumenal

pH changes in intact chloroplasts and whole plants have been shown to associate with a

reversible variation in the PsbS monomer/dimer ratio, with an acidic environment promoting

monomerisation and interaction with the light harvesting complex, whilst an alkaline pH

causes dimerisation and PSII core association (Bergantino et a1.2003).

As previously mentioned the psbS gene was found to have significant homology with the

genes of the Lhcb family of proteins, which encoded the different members of the peripheral

antennae complexes of PSII (Wedel et a1. 1992; Kim et a1. 1992; Green & Pichersky 1994).

The psbS gene was also shown to have homology with genes encoding both the early light

inducible proteins (ELIPS) and the fucoxanthin-chlorophyll alb antennae proteins (Green &

pichersky 1994). A recent review of light harvesting related proteins (LHes, ELIPs and

HLIPs) suggests that the original function of these proteins was the dispersal of absorbed

light energy (Montane & Kloppstech 2000), a function now inextricably linked to PsbS. The

hydropathy profile ofPsbS was used to predict the folding pattern of the protein, the result of

which suggested that, unlike the chlorophyll alb binding peripheral antennae complexes

which have three membrane spanning helices, PsbS has four (Wedel et a1. 1992; Kim et al.

1992; Wall braun et a1. 1994). This prediction was confirmed by topological studies on the

PsbS protein in an isolated from spinach (Wallbraun et a1. 1994). In addition to the sequence

for the spinach gene X68552, full length sequences are now available for the psbS genes of
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tomato U04336 (Wallbraun et al. 1994), rice (Iwasaki et al. 1997), Arabidopsis AF134131

(Jansson 1999) and tobacco X84225 (Kim & Pichersky 2004) and are all predicted to contain

four membrane spanning helices.

Analysis of the psbS gene sequences derived from different species show that there are

internal homologies between the first and third helices of the protein in a manner, which is

similar to that, found in the Lhcb proteins (Wedel et al. 1992; Kim et al. 1992). In addition,

the second and fourth helices were also found to show strong sequence similarities with each

other (Wedel et al. 1992; Kim et al. 1992). The internal homology present within PsbS and

its strong similarities to the light harvesting proteins of PSII has led to the theory that the

protein arose following two successive gene duplications from an ancestral one-helix protein

(Green & Pichersky 1994; Jansson 1999; Montane & Kloppstech 2000). The four-helix

PsbS like protein then lost the majority of the C-terminal helix through a deletion event,

giving rise to the three-helix chlorophyll alb proteins of the PSII antennae (Green &

Pichersky 1994; Jansson 1999; Montane & Kloppstech 2000). This theory suggests that a

PsbS like protein predates the formation of the antennae of PSII. This idea is supported by

the observation that a 22 kDa homologue of PsbS is present in the cyanobacterium

Synechocystis 6803, which lacks the chlorophyll alb binding antennae complexes (Nilsson et

al. 1990).

The function of the PsbS protein is still unclear although initial work has suggested a number

of functional and structural roles which have included the stabilisation of the acceptor side of

PSII (Ghanotakis & Yocum 1986), and a possible docking site for the 23 kDa extrinsic

protein of the oxygen evolving complex (Ljungberg et al. 1986). A possible role in

chlorophyll binding has been inferred (Funk et al. 1994), with sequence data revealing strong

homology between PsbS and the various LHC-gene products and the ELIPs (Wedel et at.

1992; Kim et al. 1992). An alternative view is that the protein may bind pigments in a

transient fashion, and could act to chaperone newly synthesised pigment molecules to their

target sites or act to bind excess pigments during turnover of chlorophyll binding proteins

(Funk et al. 1994). However, the previously described role of PsbS in NPQ is most

convincing, and forms the foundation of this thesis.
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1.13 Aims

1. Extraction and purification of the Photosystem ITPsbS protein, and characterisation

of the basic structural features of the protein.

2. Analysis of PsbS binding properties in relation to xanthophyll cycle carotenoids

3. Study the effect of PsbS in relation to the in vitro fluorescence quenching of LHCIT

antenna proteins
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Materials and Methods

2.1 General laboratory chemicals

General Laboratory chemicals were obtained from Sigma and were Analak or the highest grade

available unless stated otherwise.

2.2 Plant material

The Photosystem II light harvesting complexes used for the isolation of PsbS were isolated from

market spinach Spinacia oleracia (L.) cv. Subito. This plant material was purchased fresh from a

supermarket and stored at 4°C in the dark until required for use.

2.3 psn membrane preparation (BBY particles)

The preparation PSII particles were carried out essentially using the method of Berthold et al.

(1981). During preparation all solutions and glassware were kept on ice and all centrifugation steps

were carried out at 4°C. Up to 80 g of fresh leaves were used with midribs removed and finely

chopped with a sharp knife before homogenising in 300 ml of slushy grinding medium (0.33 M

sorbitol, 10 mM Na4P207.10H20, 5 mM MgCh, 2 mM sodium Dviso-ascorbate, pH 6.5) with 2-3

short bursts from a Polytron (Kinematica GmbH). The homogenate is initially filtered through a

double layer of muslin followed by 8 layers of muslin surrounding a central layer of highly

absorbent cotton wool. Filtration was aided by gentle squeezing of the muslin and prior wetting

with ice cold grinding medium. The sample was then centrifuged at 4,000 x g for 5 minutes (MSE

Mistral, 6L), the supernatant discarded and the pellet resuspended in washing medium (0.33 M

sorbitol, 10 mM MES, pH 6.5) before centrifugation for 7.5 minutes (4,000 x g). The resulting

pellet was resuspended in 30 ml of resuspension medium (0.33 M sorbitol, 1 mM EDT A, 1 mM

MgCI2, 50 mM HEPES, pH 7.6) and osmotically shocked by the addition of 50 m] of breaking

medium (5 mM MgCh, pH 7.6) with mixing. The osmotic potential was restored after 30 seconds

by the addition of 50 ml of osmoticum medium (0.66 M sorbitol,S mM MgC12, 40 mM MES, pH

7.6). The thylakoids were then centrifuged for 10 minutes (4,000 x g) and the pellet resuspended in

stacking medium (5 mM MgCh, 15 mM NaCI, 2 mM MES, pH 6.3). A 0.5ml aliquot was used for

chlorophyll determination, described in section 2.x, with the remainder pelleted by centrifugation at,

4,000 x g for 10 minutes before resuspension to a final chlorophyll concentration of 3 mg/ml in

stacking medium. The sample was left on ice in the dark for a minimum period of 45 minutes to
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promote membrane stacking. Following this the sample was diluted with half its volume of 10 %

(v/v) Triton X-lOO in stacking medium to give a final detergent concentration of 3.33 % (v/v). The

sample was then incubated on ice for 30 minutes with occasional inversions to help membrane

digestion. Following this the digestion was stopped by dilution of the detergent with the addition of

at least 6 ml of stacking medium. The sample was then pelleted by centrifugation for 30 minutes at

30,000 x g in a Beckman 12 centrifuge using the 12-21 rotor. The pellet was resuspended in particle

wash medium (2 mM EDTA, pH 7.5) and the centrifugation repeated (30,000 x g, 30 minutes, 4

QC). The supernatant was discarded and the final pellet resuspended in dH20, for use on lEF, or

SMC solution (O.4M sucrose, 50mM Mes-NaOH/pH 7.0, 20mM CaCh), at a final chlorophyll

concentration of 2.5 mg/ml. Samples were flash frozen in liquid nitrogen and stored at -80 QC.

2.4 Preparation of PSII antennae complexes by iso-electric focusing (IEF)

IEF was carried out using a Multiphor II Electrophoresis system (Pharmacia) following the method

of Bassi et al. (1991) modified by Ruban et al. (1 994a).

2.4.1 Gel preparation

The flat bed gel tray (24.5 x 11.0 cm) was carefully cleaned prior to use. Electrode strips were

prepared by soaking them in 2 % (w/v) ampholine solution (pH range 3.5-5.0/5.0-7.0/3.0-9.0,

Sigma). Excess solution was removed with tissue and the strips placed at either end of the gel tray.

100 ml of slurry was prepared containing 2 % (w/v) ampholines (pH ranges 3.5-5.0/5.0-7.0/3.0-9.0,

Sigma), 1 % (w/v) glycine, 4 % Ultrodex (Pharmacia) and 0.06 % (w/v) n-dodecyl ~-D maltoside

(Sigma). The slurry was carefully poured into the gel tray after which any surface bubbles were

removed. Over a 2-hour period the gel was allowed to solidify through the evaporation of between

26-30 g of water, aided by a fan mounted above the gel tray. The anode and cathode were prepared

in the following way. An electrode strip was soaked in either anode solution (5.6 % (v/v) H3P04) or

cathode solution (l M NaOH), the excess removed by a tissue and the electrode strip carefully

placed at either end of the gel on top of the other strips.

2.4.2 Pre-focusing of the gel

A 0.1 % (v/v) solution of Triton X-lOO was applied to the surface of the Multiphor 11cooling plate

to improve heat transfer from the gel tray. The gel tray was then placed on the cooling plate and the

';;l)
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electrodes connected to the electrode strips. Prefocusing of the gel was carried out at ~sW (13 rnA,

600 V) for 1-2 hours.

2.4.3 Sample preparation

Approximately 45 minutes before the completion of the prefocusing procedure samples were

prepared for IEF. lrnl of 3 % (w/v) n-dodecyl ~-D maltoside was added to 2 ml of BBY particles

(~2 mg total chlorophyll), to give a final detergent concentration of 1 % (w/v). The resulting

solution was incubated in a sealed container on ice for 30 minutes with occasional stirring.

2.4.4 Loading and running the sample

The electrode holder was removed from the prefocused gel and the sample applicator appl ied

approximately 2 cm from the cathode. The gel within the applicator was removed and mixed with

the sample, after which the mixture was place back in the applicator and allowed to settle for 2-3

minutes. After this time the applicator was removed, the electrodes replaced and the sample was

focused overnight (~20 hours, SW, 13 rnA, 600 V).

2.4.5 Sample elution - pH 3.5-5

A thin spatula was used to collect each band into elution columns, from which antenna complexes

were eluted with elution buffer (25 mM HEPES, 200 ~ n-dodecyl ~-D maltoside, pH S.O) using a

plastic pasteur pipette. PSII antenna complexes were either used fresh or aliquoted into 2.5 ml

cryogenic storage ampoules (Nalgene) and flash frozen in liquid nitrogen and stored at - SO°c.

2.4.6 Sample elution - pH 5.0-7.0/3.0-9.0

Samples were collected every centimeter along the length of the gel (23 in total) for analysis. All

samples were eluted as in 2.4.5 and stored at -SO°c.

2.5 Preparation ofPSIl PsbS protein from BBY particles

This procedure is described in chapter 3 as part of method development.
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2.6 Chloroform/methanol extractions

Protein extraction is achieved by mixing OAml sample and OAml MeOH in an 1.5 ml eppendorf

tube (standard quality), followed by the addition of 0.2ml of chloroform. The mixture was then

vortexed for a few seconds and centrifuged for 3 min at 13000 rpm using a bench top centrifuge

(Mistral). This leaves three layers in the tube with water at the top, followed by the protein and

finally chorophorm. Careful removal of water was followed by the addition of 0.3ml MeOH. The

sample was then mixed. Centrifuge at 1300 rpm for an additional 3 min and discard the resultant

supernatant. Dry the pellet and add 40J.lIdH20. Store at minus 20°C.

2.7 DCCD binding

A sample protein concentration of l SOug/rnl is required. A total ofOAml of this sample was mixed

with 5J.lIof DCCD [CI4
] taken from a 10mM stock solution, giving a final concentration of 125~.

This was incubated at room temperature for 15 min and then extracted using the

chlorophorm/methanol technique described in 2.7. Once completely dry the resultant pellet was

dissolved using loading buffer (0.0625 M TrislHCI (pH 6.76), 2 % (w/v) SDS, 5 % (v/v) ~-

mercaptoethanol, 10 % (w/v) glycerol (BDH), 0.001 % (w/v) bromophenol blue (FSA Laboratory

supplies)) and heated at 90°C for 20 min. These samples are then either loaded onto a 17%

polyacrylamide gel or stored at -20°C in a designated radioactive freezer.

2.8 Isolation, purification and identification of plant carotenoids

Plant carotenoids in vivo are stabilised by association with proteins. However extraction of these

pigments can potentially cause damage, particularly to the extended series of conjugated double

bonds. These pigments are susceptible to attack from a range of chemical and environmental

factors including oxygen, heat, light and acids.

To minimise the exposure of the extracted pigments all work was performed as quickly as possible

in subdued light. This was especially important during sample chromatography when the

carotenoids were particularly susceptible to damage. Therefore, TLC was carried out in in an acid

free, dark fume hood. Prevention of sample oxidation was ensured by pigment storage of at -20°C,

sealed in containers that had been thoroughly flushed with O2 free N2• All solvents used during the

procedures were either the highest grade available.

61
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2.8.1 Large-scale pigment extractions

Large quantities of plant material (using up to 1 kg fresh weight of starting material) are required in

order to purify individual carotenoids. Fresh orange peppers were diced with their core removed

and frozen in liquid nitrogen. This material was transferred to a 1 I glass beaker and ethanol

(EtOH) was added to submerge the sample up to a depth on 1cm. This was then homogenised for

1-2 minutes with a hand held Polytron (PT 1200 CL, Kinematica GmbH), the resulting homogenate

was covered in foil and stored overnight in the dark. After this period the homogenate was filtered

using a Buchner funnel and Whatman filter paper (12.5 cm diameter) and the residue re-extracted

with re-distilled ethanol for approximately 30 minutes. The sample was then re-filtered and the

procedure repeated until all of the pigments had been extracted. The filtrate was then treated with a

6: 1 ratio 50% KOH, and stored overnight in the dark. An equal volume of diethyl ether was added

to the treated filtrate and the mixture transferred to a large separating funnel. Phase separation was

achieved by the gradual addition of dH20. If phase separation did not occur concentrated NaCI (5

M) solution was added and the solution left. If separation still did not occur then additional EtOH

was added until the phases began to separate. Once separation had occurred the aqueous phase was

removed and the diethyl ether layer, which containing the extracted pigments was washed with

dH20. The phases were again left to separate before the aqueous phase was removed, this procedure

was repeated twice before the aqueous phase was finally removed and the dry diethyl ether layer

collected. The diethyl ether was removed and the pigments dried at 40 QCusing a rotary evaporator.

Any remaining water was driven off by the addition of a small amount of EtOH. The sample flask

was then flushed with Os-free N2 to remove oxygen, sealed and stored at -20 QCuntil needed.

2.8.2 Preparation of standard thin layer chromatography (TLC) plates

The glass support plates were thoroughly cleaned with ethanol prior to use. A single pellet of KOH

was dissolved in 60 ml dH20, to which was added 30 g Kieselgel 60 F254 (Sigma). The mixture was

gently stirred to produce a lump free slurry and a commercial plate spreader used to produce

uniform 0.5 mm thick preparative TLC plates. The plates were then oven dried for approximately 2

hours at 120 QC.Dry plates were removed and allowed to cool prior to use.

2.8.3 TLC tank preparation

The chromatography tank was lined with filter paper and filled with approximately 100 ml of the

diethyl ether. The tank was allowed to equilibrate for approximately 30 minutes prior to use.
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2.8.4 TLC purification of extracted carotenoids

Dry pigments were re-dissolved in 100 % diethyl ether, then applied in a concentrated band to a

TLC plate using a drawn out pasteur pipette. The band was allowed to dry and the plate quickly

transferred to a prepared TLC tank (see above). The solvent system for standard TLC was 100 %

diethyl ether. Development was stopped when the solvent front was almost at the top. The TLC

tank was covered at all times during the development of the plate to prevent damage to the

carotenoids from the light. Individual pigment bands were then removed from the plate using a

small brush. The silica was transferred to a scinted glass funnel and 100 % diethyl ether used to

elute the carotenoid. Violaxanthin was removed first due to its susceptibility to degradation on

silica. Eluted carotenoids were blown down to dryness under a stream of Or free N2. Repeating the

TLC procedure until the carotenoid ran as a single discrete band purified individual carotenoids.

The final sample of pure carotenoid was dried under O2 free N2 and stored in a sealed N2 flushed

container at - 20°C.

2.8.5 Carotenoid identification

A number of techniques were used in conjunction to identify particular isolated carotenoids. Initial

identification was performed by room temperature absorption spectroscopy using a Carey 500

UV IVis scanning spectrophotometer. Absorption spectra of samples were measured in 100 %

ethanol and the 3 main carotenoid peak positions were then compared to published values (Young

and Britton, 1993). TLC was then used to calculate the R, values of individual pigments in a 100 %

diethyl ether solvent system (see table 2.1). Identification of individual carotenoids was achieved by

comparing the R, values of the pigments to those obtained from purified standards, (provided by

Prof. A.J. Young).

Distance Moved by PigmentR=------_____:'---~~-
f Distance Moved by Solvent Front

(Equation 2.1)

(1 ,
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Table 2.1 Standard carotenoid Rj values (100 % diethyl ether solvent system)

Rj values represent the mean .i the standard error from the mean from 4 individual runs

Rf Value
Pigment

Standard Experimental

Violaxanthin 0.19 0.19±0.01

Antheraxanthin 0.37 0.38 ± 0.03

0.51Zeaxanthin 0.50 ± 0.03

2.8.6 Identification of vi01axanth in by its isomerisation into auroxanthin

Violaxanthin (di-5,6-epoxide) is highly susceptible to attack by acids, leading to the formation of

the difuranoid (5,8-epoxide) auroxanthin. This isomerisation displays a characterised blue

chromatic shift of approximately 40 nm (see table 2.2), and can be used to aid identification of

violaxanthin, The carotenoid to be tested was dissolved in ethanol and its absorption spectra

measured using the Carey 500. Following this a few drops of 0.5 M HCI were added to the cuvette

and the contents mixed. The absorption spectrum was again measured to identify any changes in

peak positions.

Table 2.2 Peak positions of viola xanthin and auroxanthin in 100% ethanol

Peak
AuroxanthinViolaxanthin

1 419 380

2 442 400

3 472 425
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2.9 Sucrose Gradients

A seven step exponential gradient from 0.1M to 1M sucrose was used. Two 60 ml stock solutions

of O.lM and 1.5M respectively (buffered with 20mM HEPES/pH 8.0 containing 20l1M OM) are

prepared for a total of six tubes. 1.5ml ofO.1M sucrose was pipetted into each of the six tubes (9ml

total). Subsequently, 9ml of the 1.5M stock solution was added to the 0.1M stock and mixed.

Again, a total of 9ml of the latter stock are added to the tubes. This process must be repeated six

times to form the gradient. Finally 0.6ml of 1.5M sucrose was added to help prevent any sample

pelleting. 200 to 300,..tl of sample are loaded onto each tube and centrifuged at 200 000 x g in a

SW41 rotor for 18 h at 4°C.

2.10 Measurement of the in vitro chlorophyll fluorescence quenching of isolated PSIl antenna

complexes

In vitro fluorescence quenching measurements were carried out on individual antenna complexes

using the method described by Ruban et al. (l994b; 1996). A modified DW2/2 aqueous-phase

oxygen electrode (Hansatech instruments Ltd.) was used as the sample chamber and this was linked

to a PAM 101 fluorimeter (Walz instruments Ltd.) by means ofa fibre-optic. The output channel of

the PAM 101 was connected to an R-50 multi-channel chart recorder (Rikadenki) allowing real time

measurement of the fluorescence yield. Chlorophyll fluorescence was excited repeatedly by light

pulses of either 1.6 or 100 kHz produced by a light emitting diode (LED). The LED had a peak

wavelength of 650 nm with a short pass filter that cut at 680 nm. A long pass filter was used on the

detector side to filter out light with wavelengths less than 700 nm. The sample chamber was

maintained at 20 QC throughout the experiment by an RTE-4 refrigerated water circulator

(NESLAB).

IEF prepared antenna complexes were adjusted to a final chlorophyll concentration of

approximately 60 mg/ml in elution buffer (25 mM HEPES, 200 mM OM, pH 8.0) prior to use.

LHCII samples were diluted into 1.2 ml of assay buffer (20 mM HEPES, 10 mM MES, pH 8.0)

with constant stirring to give a final chlorophyll concentration of 3 - 6 mg/m!. Chlorophyll

fluorescence was monitored continuously after the addition of the sample to the sample chamber

and the level of quenching was quantified as the difference in fluorescence divided by the amplitude

of the quenched fluorescence, (F- F ')/F', where F is the level of fluorescence recorded for a sample

diluted into 200 11MDM.
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2.11 SDS-polyacrylamide gel electrophoresis (SOS-PAGE)

Polypeptide compositions of samples were analysed by fully denaturing SOS polyacrylamide gels,

using the Biorad™ mini-protean II system. The concentration of the resolving gel used was

dependent on the size of the proteins to be separated. A 15-17 % gel was routinely used for analysis

of the PSII antenna complexes as 17 % gels were found to give good resolution of the Lhcbl-3

polypeptides of LHCIIb. Samples were denatured at 90 QCfor 20 minutes in sample loading buffer

(0.0625 M TrislHCI (pH 6.76), 2 % (w/v) SDS, 5 % (v/v) f3-mercaptoethanol, 10% (w/v) glycerol

(BDH), 0.001 % (w/v) bromophenol blue (FSA Laboratory supplies)) then loaded onto a 15-17 %

gel (15-17 % (w/v) 30/0.8 acrylamide/bis-acrylamide, 0.375 M Tris/HCl pH 8.8, 0.1 % SDS)

polymerised using 1 % (v/v), ammonium persulphate (APS) and 0.1 % (w/v) N, N, N', N'-

tetramethylethylene diamine (TEMED, Biorad). The stacking gel used was 6 % 30/0.8

acrylamide/bis-acrylamide, 0.125 M TrislHCI, pH 6.8, 0.1 % SDS, polymerised using 0.4 % APS

and 0.16 % TEMED. The gel running buffer contained 25 mM Tris, 192 mM glycine and 0.1 %

SDS. SeeBlue+2™ standards (Invitrogen) were used as molecular weight standards. Gels were run

at 120-150 V for approximately 60 minutes, until the standard markers had run fully.

2.12 Deriphat polyacrylamide gel electrophoresis (native green gels)

Non-denaturing gel electrophoresis was carried out according to the method of Peter and Thornber

(1991) using a water-cooled Midget Electrophoresis unit (LKB). Antenna complexes were taken

directly after preparation by IEF along with the rEF loading origin and applied at approximately 2

ug ChI/lane onto a 4.5 % Deriphat polyacrylamide gel (4.5% (w/v) 20/1 acrylamide/bis-acrylamide,

12 mM glycine, 1.54 mM Tris/HCI pH 8.3, polymerised with 0.05 % (v/v) TEMED, 0.12 % (w/v)

APS). The running gel buffer contained 0.2 % (w/v) Deriphat 160-C (sodium N-dodecyl f3-

iminodipropionate), 0.01 % SDS, 95.9 mM glycine, 12.4 mM TrislHCI pH 8.3. Gels were cooled to

4 QC during running with a water circulator, and electrophoresed at 130 V for approximately 45

minutes.

2.13 Staining of polyacrylamide gels

A number of staining techniques were used depending on the function of the gel in question.
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2.13.1 Silver Stain

Silver staining of gels using the Silver Stain Plus kit (Biorad) was employed to visualise low

quantities of proteins present in some samples. The protocol used followed the manufacturer's

instructions, except that the Development Accelerator solution was prepared freshly each time. All

glassware and containers were thoroughly cleaned using nitric acid (50 % (v/v)), and then well

rinsed with dH20 prior to use. 5 ml Silver Complex solution,S ml Reduction Moderator solution

and 5 ml Image Development solution were added to 35 ml of dH20 in order. This mixture was

then added to 50 ml of Development Accelerator solution (5.3 % (w/v) development accelerator

reagent), mixed briefly and poured onto the gel. Gels were stained for 5 - 15 minutes depending on

the intensity required with gentle shaking. The reaction was stopped by placing the gels in 5 %

(v/v) acetic acid for approximately 15 minutes, after which they were rinsed in dH20 before drying,

2.13.2 Coomassie brilliant blue staining

Gels were stained overnight with Coomassie brilliant blue stain (0.25 % (w/v) Coomassie brilliant

blue-R250, 10 % (v/v) methanol (BDH), 7 % (v/v) acetic acid 83 % (v/v) dH20). Gels were de-

stained for 2-10 hours in 10 % (v/v) methanol, 7 % acetic acid 83 % (v/v) dH20,

2.14 Drying polyacrylamide gels

Gels were dried between sheets of cellophane (Prom ega) using a gel drying kit (Promega). The

cellophane sheets were dipped in dH20 and the gel placed between them, ensuring that no air

bubbles were present. The assembled gel-drying frame was then warmed in an oven (BioRad

GelAir Dryer) until the cellophane and gel were completely dry.

2.15 Western blotting

Primary antibodies against the PSII antenna proteins Lhcb 1, Lhcb2, Lhcb3, Lhcb4, Lhcb5, Lhcb6

(provided by Dr Stefan Jansson (Urneaj) and PsbS (provided by Dr Mark Wentworth (Sheffield))

were used for the western blot analysis of samples.
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2.15.1 Electro-blotting and antibody labeling

Following separation of protein samples by SDS-PAGE the gels were then electro-blotted onto a

Hybond-C''>' (Amersham) membrane using a BioRad electroblotting system. For 2 gels the protein

was transferred to the membrane at a current of 30 rnA and 250 V for 50 minutes in western transfer

buffer (72 g glycine, 15.15 g trizma base, 11 methanol, 15 mIlO % SOS, dH20 to a final volume of

5 I). After transfer the membrane was blocked overnight at room temperature with gentle agitation

in membrane blocking solution (150 mM NaCl, 10mM Tris-HCl, pH 7.5, 0.05 % Tween 20, 5 %

dried milk powder). Following this it was rinsed 2 x 5 minutes at room temperature with gentle

agitation using wash solution (150 mM NaCl, 10 mM Tris-HCI, pH 7.5, 0.05 % Tween 20). The

primary antibody was diluted from 1:1000 to 1:10000 times (depending on the antibody and sample

used) in blocking solution and added to the membrane, which was then incubated at room

temperature with gentle shaking for 2 to 3 hours. The blot was then washed 3 x 5 minutes at room

temperature with gentle agitation in wash solution. The secondary antibody (horse-radish

peroxidase labelled anti-rabbit IgG; Amersham Life Science) was then added to the blot and

incubated at room temperature for 50 mins with gentle shaking. Finally, the membrane was washed

3 x 15 minutes at room temperature with gentle shaking with wash solution.

2.15.2 Antibody detection using ECUM detection kit (Amersham)

Antibody binding was detected using an ECL Western Detection Kit (Amersham Life Sciences)

following the manufacturer's guidelines. To summarize, Reagents 1 and 2 were mixed in equal

volumes and added to the membrane between two layers of polythene. After I minute of gentle

agitation, excess fluid was drained, the bag sealed and the blot exposed to Kodak X-OMAT AR

film for 30 minutes. Subsequent exposure times were estimated depending upon the intensity of the

signal from the initial exposure.

2.16 Concentration using Centricon" centrifugal filter devices

Isolated antenna complexes were routinely concentrated using Centricon" micro-concentrators

(Millipore) with a lOkDa limit. The reservoir (2 ml maximum volume) was filled with sample and

then before centrifugation at 4,500 x g for up to 20 minutes in a bench top centrifuge (MSE Mistral

1000). After the initial spin the sample was resuspended using a pipette, additional sample added

and the centrifugation repeated. This process was repeated until the sample was at the concentration
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required. The concentrated sample was collected by applying the collection cap to the top of the

reservoir, inverting the filter and centrifuging at 2,000 x g for 2 minutes.

2.17 Determination of chlorophyll concentration

Sample chlorophyll concentration was measured using the method of Porra et al. (1989). Pigments

were extracted with 80 % (v/v) acetone and centrifuged at 3,000 x g for 5 minutes to remove debris.

Sample absorption was measured at 663 run (A663)' 645 nm (A645) and 470 nm (Al7o) using a

Beckman DU650 spectrophotometer. Chlorophyll concentration and chlorophyll alb ratio were

estimated using the following equations.

[Chi a]= 12.7 (A663)- 2.69 (A64S)

[Chi b]= 22.9 (A64S)- 4.68 (A663)

Total [ChI] = 20.2 (A64S)- 8.02 (A663)

Chi alb Ratio = [Chi a]
[Chi b]

(Equation 2.2)

(Equation 2.3)

(Equation 2.4)

(Equation 2.5)

2.18 Absorption spectroscopy

Temperature controlled absorption spectroscopy of samples were recorded using a Carey 500

UVNisible scanning spectrophotometer. For standard measurements absorption spectra were

scanned at 5 nmIsec from 350-750 run for chlorophyll containing samples or 350-600 nm for

isolated carotenoids. Absorption spectroscopy in the protein region was scanned at 5 nm/sec from

]90-500 nm. Data analysis and manipulations were carried out using Grams/32 (Galactic Industries

Corporation) software.

2.19 Circular dichromism spectroscopy (CD)

Temperature controlled CD spectroscopy of samples were recorded using a Jasco J810

spectropolarimeter. Spectra were scanned at 5 nm/sec from 750-190 nm. Data analysis and

manipulations were carried out using Grams/32 (Galactic Industries Corporation) software.
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2.20 Resonance Raman Spectroscopy

Low temperature resonance Raman spectra were obtained in a helium flow cryostat (Air Liquide,

Paris, France) using a Jobin-Yvon Ulooo Raman spectrophotometer equipped with a liquid

nitrogen-cooJed charge-coupJed devices detector (Spectrum One, Jobin- Yvon, Paris, France).

Excitation was provided by Coherent Argon (Innova 100) and Krypton (Innova 90) lasers (at 457.9,

476.5,496.5,488.0,501.7, and 514.5 nm and at 528.7 and 413.1 nm, respectively) and a Liconix

helium-cadmium laser (at 441.6 om). The choice of this wavelength range was determined by the

absorption profiles of the xanthophylls used. This work was kindly carried out by Dr A Ruban

(Sheffield).

2.21 PsbS sequence analysis

Sequencing of the PsbS protein was carried out using reverse phase HPLC mass spectrometry

technique, provided by Dr Chi Wong (Sheffield). PsbS samples were ran on a 17% polyacrylamide

gel and stained using colloidal blue (Novex), see section 2.20. Bands thought to be PsbS were cut

from the gel and placed in 2ml eppendorftubes (standard quality), kept at 4°C.

2.21.1 Reverse Phase HPLC

A CapLC (Waters) HPLC machine was used with a PepMap Cl8 column (LC Packings, USA) at a

flow rate of 200 nl/min, Two HPLC grade solvents were used. Solvent A (95% dH20, 4.9%

acetonitrile and 0.1% formic acid) and Solvent B (4.9% dH20, 95% acetonitrile, 0.1% formic acid),

with the following gradient:

I. 3 min at 100% solvent A

2. 33 min 100% solvent A to 80% solvent B.

3. 2 min 80% solvent B

4. 2 min 100% solvent A.

2.21.2 Mass Spectrometry

This used a QTOF micro (Waters) mass spectrometer, set for MS scan for doubly and triply charged

peaks, then switched into MSMS mode for fragmentation (Le. peptide sequencing). Data analysis

used MassLynx version 4 software with the ProteinLynx Global Server.
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2.22 Colloidal blue staining (Novex)

Colloidal blue staining was performed following the manufacturer's instructions for Tris-Glycine

gels. The gels were covered in freshly prepared staining solution (55 % (v/v) dH20, 20 % (v/v)

methanol, 5 % (v/v) stainer B solution, 20 % stainer A solution) and left to stain for 3-12 hours with

gentle shaking. The stain was removed and the gels de-stained overnight with 200 ml of dH20.
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3.1 Introduction

It is now established that whenever incident light exceeds the dissipative capacity of electron

transport and carbon assimilation, there is an excess of excitation density, which can

destabilise the photosynthetic apparatus, and result in its damage. Protection against such

damage requires the dissipation of excess light energy, which is detected as the

nonphotochemical quenching of chlorophyll fluorescence, qE (see section 1.11). The

transthylakid pH gradient and the xanthophyll cycle act to regulate qE, with the relationship

between the latter and PsbS observed by Li et al. 2000 when mutational studies involving

Arabidopsis thaliana generated the npq4-1 mutant described in section l.11.4. However, the

mechanism by which PsbS and the xanthophyll cycle detect changes in transthylakoid pH

and subsequently regulate qE remains largely unexplained. One obstacle which has

hampered attempts to eludicate the role of PsbS in qE is its extreme hydrophobicity, which

leads to problems of aggregation when using established methods of thylakoid membrane

fractionation (Dominici et a1. 2001). Studies by other groups (Ljungberg et al. 1986; Kim et

al. 1992; Funk et al. 1994; Funk et a1. 1995a) have yielded conflicting results with regard to

the ability of PsbS to bind cofactors and pigments. Absorption spectra suggesting that this

protein can bind pigments (Funk et a1. 1994; Funk et al. 1995a) have not been consistent,

giving rise to the suggestion that such data is a result of non-specific binding. It was thus

evident that further work was required to isolate the PsbS protein in both a native and highly

purified state. Research leading to the development of a rapid procedure for the preparation

of PsbS from spinach psn membranes (Aspinall-O'Dea et al. 2002) is described here, along

with characterisation of the purified protein.

3.2 Isolation of a 22 kDa polypeptide by iso-electric focusing (IEF)

Earlier work has employed IEF to isolate native LHCn components from photo system n

BBY particles (Berthold et a1. 1981) using the method previously described by Bassi et al.

1992 (modified as in Ruban et al. 1994b). Therefore, an investigation was carried out to

discover if PsbS could be purified using the same methodology. Immunoblot analysis of

samples generated by IEF (for method see section 2.15) determined that PsbS was focused at

the loading origin, or Z-band, of the gel as shown in figure 3.1 (referred to as a). The

loading origin has been defined as Z as it is the last possible band on any IEF. Using an

ampholine range of pH 3.5 - 5 IEF resolves psn antenna proteins at a pI of approximately 3

(Fig 3. II, sections 16 - 22) resulting in the formation of five green bands depicted by the

letters A-E. Band A is the most intense of the five as it contains LHCIIb
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Figure 3.1 - IEF ampholine range pH 3.5-5. I, IEF gel loaded with
digested BBY particles (2mg/ml). Arrow indicates the direction of decreasing
pH. II, Silver stained SOS-PAGE gel loaded with LHCII antenna proteins, M
Seeblu+2 marker (hd), lanes A to E (10 ul) refer to the coloured bands on IEF
labelled A to E. III, Silver stained SOS-PAGE gel loaded with sample from IEF
section a (10~d). M, Seeblue+2 marker (hd). a, as above, b, anti-PsbS
immunoblot of a.
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and the majority of chlorophyll present in the PSII particle preparation. This band is also

seen to migrate the furthest. The next two bands (Fig 3.11, bands B and C) represent the

minor antenna complex proteins CP24 and CP26 respectively, with the former migrating

slightly further than CP26 and displaying reduced chlorophyll intensity. Finally, bands D

and E are formed by two protein species, CP29 and CP29'. These bands have comparable

intensities and are thought to arise due to the phosphorylation of a percentage of the CP29

population in PSII. The IEF region denoted by the section 6 to 15 (Fig 3.11) contains a large

amount of carotenoid pigment along with the D I and D2 PSII core proteins, whilst sections I

- 5 contain a number of protein species including PsbS.

SDS-PAG E analysis of bands A to E (Fig 3.111) confirmed the presence of the protein

complexes described above, with lane A displaying a broad band containing LHCllb after

silver staining. Lanes D and E show CP29' to migrate slightly further on SDS-PAGE,

probably due to a charge difference between the species. CP24 and CP26 can be seen in

lanes Band C respectively, however the intensity of staining for the latter is significantly

less. Analysis of sections I - 5 using SOS-PAG E and western blots revealed the location of

PsbS on this IEF. All five sections were taken as one from the ampholine gel and

concentrated using centricon" micro-concentrators (see section 2.15 for method). After

silver staining the SDS-PAGE gel revealed nine distinct protein bands (Fig 3.1111, lane b).

One high molecular weight band at -40kDa could be resolved with an additional three bands

grouped at around 20kDa. A band present at -15kDa could be observed with an additional

four low molecular weight bands below 10 kDa. Immunoblot analysis using an anti-PsbS

antibody confirmed PsbS to be present at -20kDa migrating the shortest distance of the three

protein bands in that region (Fig 3.1111, lane c). Such observations are consistent with

previous data suggesting that PsbS would focus at a pi greater than five (Ljungberg et al.

1986), which has been supported by analysis of samples prepared from flatbed IEF using the

detergent octyl-glucopyranoside (Funk et al. I995a). These preparations were derived from

both etiolated and mature spinach plants, with the resultant psbS gene product shown to be

located at the loading origin between pH 5.9 and 6.1 respectively.

A narrow pH range was employed between 5 and 7 (Fig 3.2), with the intention of focusing

PsbS away from the loading origin at approximately pH 6. Analysis of the IEF showed that

the central region of the ampholine gel was relatively free from pigments (Fig 3.21, sections

5 - 15) with the major and minor PSII antenna components tightly focused at the end of the

gel (Fig 3.21, sections 21 and 22) preventing the resolution of individual minor antenna

complexes. The loading origin retained the starch like consistency of earlier IEF runs as

seen in figure 3.lla. SDS-PAGE analysis of samples A to D indicated that PsbS was not
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Figure 3.2 - IEF ampholine range pH 5.0-7.0. I, IEF gel loaded
with digested BBY particles (2mg/ml). Arrow indicates the direction of
decreasing pH. II, Silver stained SDS-PAGE gel loaded with samples A to D
from IEF. M Seeblu+2 marker (7pl), lanes A to D (10 pi) refer to the sections
on IEF labelled A to D (10pl). Red arrow indicates the location of the PsbS
band on the gel.
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focused and could be found across the entire gel, as shown in figure 3.211 were PsbS is

denoted by a red arrow. Due to the intensity of the PsbS bands in lanes A and B (Fig 3.211) it

appeared the protein was predominantly located at this region on the corresponding lEF gel

(Fig 3.21), on or near the loading origin. In addition to PsbS, lanes B to C possess a number

of other protein bands at approximately 18, 15 and> I0 kOa along with PSII reaction centre

and antenna proteins above the 22kDa PsbS band. The ampholine range between pH 5 and 7

was thought to be too narrow for effective focusing of the PsbS protein, however it was also

possible that PsbS could not be resolved on IEF due to some inherent characteristic of the

protein.

Analysing the first of these possibilities could easily be achieved through employing a wider

pH range between 3 and 9 with the predicted pi of PsbS located far from the loading origin

of the gel. Initial observations found that the LHCII antenna complexes were

characteristically resolved around pH 3, with a broader focus of pigment throughout the

latter half of the gel (Fig 3.31). Four green bands can been observed in sections 20 to 22,

which constitute PSII antenna complex proteins, however the resolution of the minor antenna

proteins is significantly reduced from that seen in figure 3.11, as shown by SOS-PAGE

analysis in Fig3.311. Lane 22 appears to contain LHCllb almost exclusively, whilst the

minor antenna complex proteins are poorly resolved between lanes 20 and 21. SOS-PAGE

analysis of sections 1 to 19 determined that PsbS was only present in four of the first five

sections taken from this IEF. It can be seen from the polyacrylamide gel shown in figure

3.3III that a significant amount of PsbS is present in lanes 2 and 3, which account for the

loading origin (approximately pH 9) of the corresponding IEF (Fig 3.1 I, a). The intensity of

PsbS staining in lanes 4 and 5 is considerably less than in the latter two lanes, suggesting that

the concentration of protein in these areas is relatively small. Interestingly, silver stains

show sections I to 5 to almost solely contain PsbS, however it should be noted that the

loading origin at section a is significantly cleaner than in previous IEF trials. The

appearance of the loading origin depends upon the qual ity of market spinach used to prepare

PSII particles, and this can be seen to vary widely between seasons, thus purity within the

loading origin can not consistently be reproduced. It was evident that further purification of

PsbS using isoelectric focusing may not be possible. The location of the protein was

consistent across all three of the pH ranges employed during these experiments. However,

the PsbS extracted from the loading origin could not be used for further study due to the

presence of so many other polypeptides. Nonetheless, the Z-band did provide an excellent

platform from which further purification of PsbS could be attempted using alternative

techniques.
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Figure 3.3 - IEF ampholine range pH 3.0-S.0. I, IEF gel loaded
with digested BBY particles (2mg/ml). Arrow indicates the direction of
decreasing pH. II, Silver stained SOS-PAGE gel loaded with LHCII antenna
proteins derived from section 20 to 22 on the IEF M Seeblu+2 marker (7~d),
lanes 20 to 22 (10 Ill). Ill, Silver stained SOS-PAGE gel loaded with samples
from IEF sections 1 to 5. M, Seeblue+2 marker (hd). Lanes 1 to 5 as
described.
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The experiments using lEF could be explained simply by the fact it is not possible to focus

PsbS using this technique, however it was important to ensure that the protein was not

immobilised in some way, for instance through aggregation due to its extreme

hydrophobicity. PsbS enrichment had been observed in the Z-band sample extracted using

an ampholine range between pH 3.5-5 (Fig 3.11). Previous attempts to isolate the protein

from PSI! membranes by Funk et at. (1994) using octyl-thioglucopyranoside (OTG) had

given rise to a pellet that possessed remarkable similarity to the Z-band extract from lEF.

Treatment of this pellet with repetitive electrophoresis under non-denaturing conditions

isolated a single green band containing the 22 kDa PsbS as shown by immunoblot analysis.

II III

Fig 3.4 - Native green gel. I and II, Z-band preparation extracted with detergent mix
(for method see section 2.x). 8ml sample loaded per lane separated on a 10%
polyacrylamide gel by Deriphat-PAGE having 0.3ml 10% SDS added to reservoir buffer at
100V and 4°C for -20 mins. A, PSII - RC core components. S, PsbS protein. C, Additional
low molecular weight Z-band components. D, Free Pigment. II, same result as I with
comassie blue stain. III western blot of I with anti-PsbS antibody at 1:2500 dilution.

The use of non-denaturing gel electrophoresis would enable the characterisation of the Z-

band fraction and determine if PsbS (in a non-denatured state) could be resolved using

PAGE. The use of this procedure when analysing PSI! membranes from barley found the

LHCI! antenna proteins migrated between the reaction centre components and free pigment,

with the latter travelling furthest in the gel (Peter and Thornber, 1991). Figure 3.41 displays

a gel containing four pigmented bands designated A to D, which were tentatively assigned

using the evidence described by Peter and Thornber, (1991). Thus, band A was thought to

consist of reaction centre components, with free pigment denoted by band D. Band C is

observed to travel almost as far as free pigment, thus accounting for low molecular weight
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components in the Z-band. Therefore, it was possible that band B could contain PsbS, as this

band appeared in a region of the gel normally occupied by LHCII antenna components

during PSII membrane separation. The colouration of these bands would also indicate that a

number of Z-band components could potentially bind pigments. Staining of the gel with

coomassie blue (Fig 3.411) did not indicate the presence of any additional protein bands

absent from fig 3.41, and consisted of four similarly positioned bands again designated A to

D. It was not clear whether any of these represented PsbS, thus immunoblot analysis of the

gel was performed, which determined that the protein was located within the second

pigmented band (Fig3.4111) as had earlier been predicted. The configuration of the bands

within the gel suggested that reaction centre components along with additional low

molecular weight proteins were also isolated in the Z-band extract, albeit with less

abundance than PsbS. This technique had shown that PsbS could be separated from the

other Z-band components, however it was not a suitable basis with which to start large-scale

protein purification and extraction for two reasons. Electro elution of PsbS from the gel

would be an inefficient method of isolation, whilst the small loading volumes (8J.l1per lane)

required for the procedure would reduce this efficiency further still, thus a more effective

method of isolation was required.

Previous work with LHCII antenna proteins had employed sucrose density gradient

centrifugation to purify these complexes after isolation by IEF Ruban et at. (1999), using an

exponential gradient from 0.15 to 1.0 M sucrose (for method see section 2.9). This

technique was therefore used for analysis of the Z-band. A total of eight Z-band fractions

concentrated to -500J.l1 were required in order to achieve a chlorophyll concentration that

could be visualised on the sucrose gradient (Fig 3.5). It is predicted that PsbS would be

located slightly lower on the sucrose gradient than monomeric LHCII and higher than

trimeric LHCllb, which had been observed at sucrose densities of 0.3M and 0.43M

respectively (Ruban et al. 1999). Additionally, PSII components were found at 0.51M

sucrose with PSI located at 0.61M. Free pigment was observed at 0.21 M sucrose. The

sucrose gradient for LHCIIb trimers isolated by IEF can be seen to display four distinct

coloured bands (Fig 3.5, tube I). Band A possesses very weak colourisation and is denoted

as free pigment due to its presence at -0.21 M sucrose. The pale green band at O.30M

sucrose (band B) is occupied by LHCII monomers, whilst band C (0.43M) contains trimeric

LHCllb. The population of band D (0.48M) is unknown, however it is possible that it

contains PSII components along with proteins damaged as a result of IEF. Tube II (Fig 3.5)

displays a similar banding pattern to that of tube I, however the trimeric LHCllb band

observed in the latter is absent. The free pigment band at -0.21 M is paler than in tube I,

with the overall chlorophyll content significantly reduced. Again, LHCII monomers
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(specifically CP29) are located at O.3M sucrose with an additional band at ~0.48M similar to

that described in tube I, albeit with significantly reduced pigment content.

IV
TAB CD E FP

Fig 3.5 - Sucrose gradient analysis of IEF Z-band. Sucrose density gradient
analysis of PSII-antenna components and Z-band isolated using IEF. I, LHClib trimer. II,
CP29 monomer. III, Z-band. Free Pigment in all tubes designated as (A). (8) in tubes I and
II is LHCII monomer (CP29/CP26). (C) tube I LHCllb trimer. (D) tube I PSII. (C) tube II
PSII. Tube III, (8) apparent monomer band, (D) pigment free region, (E) PSII, (F) PSI, (P)
gradient pellet. IV, western blot analysis of tube III samples A - P with thylakoid control (T)
using anti-PsbS antibody at 1:2500 dilution.

Tube three (Fig 3.511I) shows the gradient of the lEF Z-band to have five distinct coloured

bands marked A-E, along with a pellet (P). A free pigment band had formed at 0.21M

sucrose (band A) with a second band located at ~.35M sucrose (band B), which was

initially thought to contain PsbS due to the prediction described earlier. Additionally, band

C (0.43M) had the appearance of the trimeric LHCllb population in tube I, whilst bands E

(O.SlM) and F (O.61M) were both located at densities previously described for psn and PSI

components respectively (Ruban et al. 1999). However, observations derived from

immunoblot analysis of the gradient fractions (Fig 3.5IV), indicated that PsbS was associated

80



Chapter Three
PsbS Isolation & Characterisation

with PSII (Band E), with a significant quantity of the protein in the gradient pellet (P) and

completely absent from the remaining bands in the sucrose gradient.

The outcome of the sucrose gradient appeared to contradict earlier work involving non-

denaturing PAGE, and it was thought that the concentration step employed to visualise the

Z-band sample on the gradient had caused the hydrophobic PsbS protein to aggregate, or

simply precipitate out of solution. It was also possible that the detergent used in non-

denaturing PAGE (Oeriphat-160) had solublised PsbS. If correct, the latter would indicate

that incubation of PSII particles with I% OM had failed to solublise the protein; this in turn

could account for its inability to focus on IEF. To further explore these possibilities PSII

particles treated with OM were centrifuged at 10 000 x g for 20 minutes prior to application

on IEF to ensure all suspended particles were removed from the sample. Figure 3.61 shows

the effect of centrifugation on the IEF gel analysed over an ampholine range of pH 3.5-5. As

in earlier experiments (Fig 3.1 I) five green bands could be observed between sections 17 and

22 (labelled A to E), indicating that centrifugation had not adversely affected the

performance of the IEF. The region located between sections 6 and 16 could again be seen

to contain a large quantity of carotenoid pigments, however the loading origin of the gel

appeared significantly cleaner in figure 3.61, due to the removal of starch and insoluble

components from the sample applied. SDS-PAGE analysis of the antenna complexes (Fig

3.611) revealed samples A - E possessed similar characteristics to those seen in figure 3.111,

with a broad LHCllb band (Fig 3.611, lane A), a slight disparity between the two CP29

species in lanes D and E, and a significantly reduced staining intensity for CP26 when

compared to CP24 (lanes C and B respectively). An additional band at ~ 15kDa could also

be seen in lane C. Analysis of sections I to 5 (Fig 3.6111, lane a) displayed a significant

reduction in protein content when compared to figure 3.11Il (lane a), whilst an anti-PsbS

immunoblot confirmed the presence of PsbS in the loading origin, albeit at a greatly reduced

concentration. When using a narrow ampholine range between pH 5 and 7, PsbS had been

observed across the entire IEF gel. Figure 3.71 again appeared similar to an earlier gel (Fig

3.21) with the LHCII antenna complexes poorly resolved at ~pH 5 (Fig 3.71, section H),

whilst the central region of the gel seemed largely devoid of pigments (Fig 3.71, sections G

and F). Here the loading origin also appeared cleaner after centrifugation. SDS-PAGE

analysis of the IEF (Fig 3.711) indicated that PsbS was now only present in lanes E and F,

corresponding to the first half of the gel nearest the loading origin. A high molecular weight

protein (~50kOa) is present in lanes F to H, with all LHCII antenna components located on

lane H. The intensity of PsbS bands present in lanes E and F was sign ificantly reduced when

compared to the earlier gel (Fig 3.21I), whilst the total number of bands present had fallen

dramatically. The third ampholine range employed in these experiments followed the same
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Figure 3.6 - IEF ampholine range pH 3.5-5. I, IEF gel loaded with
digested BBY particles (2mg/ml), centrifuged at 10 000 x g for 20 min prior to
application. Arrow indicates the direction of decreasing pH. II, Silver stained
SOS-PAGE gel loaded with LHCII antenna proteins, M Seeblu+2 marker (htl),
lanes A to E (10 ul) refer to the coloured bands on IEF labelled A to E. III,
Silver stained SDS-PAGE gel loaded with sample from IEF section a (10!l1).
M Seeblue+2 marker (7!l1). a, as above, b, anti-PsbS immunoblot of a.,
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E

Figure 3.7 - IEF ampholine range pH 5.0-7.0. I, IEF gel loaded
with digested BBY particles (2mg/ml), centrifuged at 10 000 x g for 20 min
prior to application. Arrow indicates the direction of decreasing pH. II, Silver
stained SOS-PAGE gel loaded with samples A to 0 from IEF. M Seeblu+2
marker (7pl), lanes A to 0 (10 pi) refer to the sections on IEF labelled A to 0
(10pl). Red arrow indicates the location of the PsbS band on the gel.
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Figure 3.8 - IEF ampholine range pH 3.0-9.0. I, IEF gel loaded
with digested BBY particles (2mg/ml), centrifuged at 10 000 x g for 20 min
prior to application. Arrow indicates the direction of decreasing pH. II, Silver
stained SOS-PAGE gel loaded with LHCII antenna proteins derived from
section 20 to 22 on the IEF. M Seeblu+2 marker (7pl), lanes 20 to 22 (10 pi).
III, Silver stained SOS-PAGE gel loaded with samples from IEF sections 1 to
5. M, Seeblue+2 marker (7pl). Lanes 1 to 5 as described.
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trend (Fig 3.81). LHCIIb could be located in section 22 of the IEF; with the minor antenna

proteins poorly resolved between sections 20 and 21. Again, a broader focus of pigment

could be observed throughout the latter half of the gel (Fig 3.81). SOS-PAGE analysis of

lanes 20 to 22 (Fig 3.811) confirmed the presence of LHClIb in lane 22, whilst the LHCII

minor antenna were dispersed between lanes 20 and 21. Interestingly, however, PsbS was

only present in lanes 2 and 3 (Fig 3.8111), corresponding exactly with the loading origin of

the IEF.

It was evident that the amount of PsbS present in PSII particles had been significantly

reduced as a result of centrifugation, with the remaining population largely unable to migrate

through the gel, again suggesting that it was simply not feasible to focus PsbS on IEF.

However, the observations made in these experiments could also be explained by

considering the extreme hydrophobicity of the protein. It was possible that residual PsbS

protein, present within the supernatant of the PSII particle preparation after centrifugation,

was effectively 'sticking' to other hydrophobic membrane proteins. Thus, by increasing the

duration of PSII particle incubation with 1% OM, this residual protein could be effectively

washed off. To further investigate these proposed explanations, PSII particles were

subjected to a series of increasing incubation periods, beyond the 30 minutes already

employed for IEF sample preparation.

SOS-PAGE analysis of the pellet and supernatant derived from extracted BBY particles after

centrifugation found that the pellet was highly enriched in PsbS (Fig 3.9), with the majority

of high molecular weight proteins present in the supernatant. In order to determine the

percentage yield of PsbS, it was assumed that PSII particles possessed 100% of the available

PsbS protein. It was necessary that samples were loaded onto the SOS-PAGE gel on the

basis of volume, not protein concentration. To achieve this the pellet, formed after

centrifugation, was resuspended in buffer to Iml, whilst the supernatant concentration using

IOkOa centricon" micro-concentrators to the same volume. Of each sample, 2001-11would be

taken and diluted five times into loading buffer, insuring good mixing of sample prior to

extraction. Once diluted, samples were denatured in the normal way (see section 2.11). The

SOS-PAGE gel shown in figure 3.91 displays the result of each incubation period tested.

Lanes A to C show the content of pellets formed after incubation for 40, 45 and 50 minutes

respectively. Lanes 0 to E show the supernatant content over the same incubation periods.

The striking feature of lanes A to C is an almost complete lack of protein bands above the

~22kOa PsbS band indicated by the red arrow. Additionally, these lanes display a number of

low molecular weight bands. In each case, the level of band staining intensifies with

increasing incubation period. Lanes 0 to F contain a large number of tightly packed protein
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M A B c D E F

Fig 3.9 - OM optimisation. I, silver stain analysis of SOS-PAGE gel
loaded with 10111sample per lane treated with 5x loading buffer. M, molecular
weight marker Seeblue+2 (invitrogen). A, BBY pellet after 40 min extraction
with 1% OM. B, 45 min extraction pellet. C, 50 min extraction pellet. D, BBY
supernatant after 40 min extraction with OM. E, 45 min extraction supernatant.
F, 50 min extraction supernatant. Red arrow indicates position of 22kOa
PsbS band in gel. II, densitometry data comparing concentration (density) of
PsbS in BBY pellet and supernatant vs extraction time, A - D, 40 min
extraction. B - E, 45 min extraction. C - F, 50 min extraction. Dark cyan
(pellet) and light cyan (supernatant). III, western blot of I using anti-PsbS
antibody at 1:2500 dilution.
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bands above the ~22kOa PsbS protein, accounting for LHCII antenna and PSI core proteins.

A number of bands can also be detected below 22kOa, with the staining intensity of two

bands around 10kOa increasing with each incubation period. The high molecular weight

proteins can be seen to follow a similar trend, whilst the PsbS protein appears to decrease

over the same range. Some low molecular weight bands do not follow this trend, and can

be seen to increase in both the pellet and supernatant. This phenomenon is thought to result

from staining imperfections, as a sample with fewer proteins will stain differently to a

sample with a large number of components. As a result, it is difficult to quantify the staining

of specific bands between heterogeneous samples, however, densitometry analysis can reveal

trends and provide an idea of protein yield. It is also possible, however, that these bands

represent different proteins. Figure 3.911 shows the estimated PsbS yield for each incubation

period, with column labelling corresponding to a lane on the SOS-PAGE gel (Fig 3.91). The

graph displays a steady increase in PsbS enrichment within the pellet from ~60% after 40

minutes to almost 95% after 50 minutes. Figure 3.611 shows an anti-PsbS immunoblot of

these samples, and highlights the change in PsbS concentration within the pellet and

supernatant respectively, and supports the densitometry analysis described above. Thus,

incubation with OM can be used to remove most of PSII proteins from the pellet, leaving

almost 100% of the available PsbS protein along with a number of low molecular weight

proteins. This provides an excellent platform from which to selectively solublise PsbS using

a different detergent.

3.3 Selective Solublisation of PsbS

A number of detergents had previously been employed when solublising and extracting

intrinsic membrane proteins from the thylakoid including Triton X-I DO (Ljungberg et al.

1986), OGP (Funk et al. 1994; Funk et al. 1995a) and Sodium Cholate (Bowlby and Yocum,

1993). Oeriphat - 160 had been observed to solublise PsbS during non-denaturing

electrophoresis (Fig 3.4). Thus deriphats ability to solublise PsbS, along with the others

mentioned, would be used in an attempt to selectively extract the protein from the DM pellet.

In each extraction, the OM-pellet was resuspended in Iml of detergent buffer to maintain

consistency with earlier experiments involving OM.

The results of these extraction experiments are presented in figure 3.101. After extraction

with 0.06% Triton X-I DO in the presence of IM NaCI (lane 2), the resultant supernatant

appeared to posses a similar protein complement to that of the OM-pellet (lane I), albeit at a

significantly -lower concentration. Densitometry analysis determined that the concentration

of lower molecular weight proteins present in the supernatant appeared to be higher than that
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M 1 2 3 4 5 6

Fig 3.10 - Selective Solublisation of PsbS I, silver stain analysis on
SOS-PAGE gel loaded with 10111of sample per lane pre-treated with 5x loading
buffer. M, molecular weight marker SeeBlue+2 (invitrogen). 1, OM-pellet control.
2 - 5 are detergent extractions of 1.2,0.6% triton X-100. 3, 1% deriphat - 160.
4,0.6% OTG. 5, 0.5% Na-Cholate. 6, Western blot of 5 using anti-PsbS antibody
at 1:2500 dilution. Samples 2 - 5 incubated with detergent, vigorously shaken
for 5 mins and kept overnight at 4°C. II, densitometry analysis of bands resolved
on SOS-PAGE gel. Total of 13 individual bands resolved across lanes 1 - 6.
Blue box indicates absence on a particular band in that lane. Bands counted
horizontally from top to bottom. III, Densitometry chart of band 6 (PsbS) showing
the percentage purity of the band vs treatment. 1 - 5 relate to lanes 1 - 5 on I.
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of PsbS (Table 3.1). In addition, the use of Triton seemed to efficiently extract a high

molecular weight protein at ~50kDa (Fig 3.71, lane2) which constituted ~11% of the total

protein in that lane, with a number of lower molecular proteins present at similar

concentrations. Extraction using a 1% deriphat-160 solution had a relatively minor effect

upon incubation with the DM-pellet (Fig 3.71 lane 3). A number of proteins can be observed

with molecular weights both higher and lower than 22kDa at bands 3, 7 and 9 - II (Table

3.1), extracted with roughly the same efficiency as PsbS (Table 3.1, band 6), thus no

enrichment of the PsbS protein had occurred.

Bands Lane
1 2 3 4 5 6

1 1 9
2 2
3 11 8 5
4 1 7 9 19
5 1 4 3 4
6 20 9 19 16 92 100
7 12 8 12 8
8 15 10 7 17
9 13 13 13 5 3
10 20 12 13 5
11 7 15 13 18
12 8
13 13

Table 3.1 - Densitometry analysis of detergent extractions. Total of 13
individual bands resolved across lanes 1 - 6. Blue box indicates absence on a particular
band in that lane. Bands counted horizontally from top to bottom. III, Densitometry chart of
band 6 (PsbS) showing the percentage purity of the band vs, treatment. 1 - 5 relate to lanes
1 - 5 on I.

The 50kDa protein present in lane 2 (Table 3.1, band 1) is absent in this extract, along with a

low molecular weight component of ~10kDa (Table 3.1, band 13). Lane 4 is the result of an

extraction with 0.6 % OTG, and appears to be remarkably similar to that of deriphat-160

with an overall extraction efficiency roughly half that of Triton. Bands 4, 8 and 11 are all

present at similar concentrations to that of PsbS (Table 3.1, band 6). In addition, a number

of other bands have been resolved and are also clearly present in lanes 1 to 3. Extraction

with 0.5% Na-cholate (Fig 3.10, lane 5), in the presence of 250mM NaCI at pH 7 as

described by Bowlby and Yocum, (1993) yielded a significant enrichment in PsbS. Analysis

of the SDS-PAGE gel shows a single heavily stained band at 22kDa (~92%), along with a

minor contamination from a higher molecular weight protein at about 35kDa (~5%) and a

single low molecular weight protein (~3%). Incubation with anti-PsbS antibody (Fig3.10,
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Jane 6) determined that the 22kDa band was indeed PsbS. Figure 3.1Oil tracks that

extraction efficiency of each treatment. The percentage yield ofPsbS shown is calculated on

the assumption that 100% of the protein is present in a PSil particle preparation, and 95% of

this protein is present in the DM-pellet (Fig 3.10, lane 1). Thus, it can be concluded that Na-

Cholate is 4 to 5 times more efficient at extracting the protein than the other detergents,

providing an overall PsbS yield from PSil membranes of ~87%.

3.4 Optimisation of Na-Cholate extraction

The Na-Cholate incubation of the DM-pellet had been established as an extremely

reproducible method for PsbS extraction, it was necessary to further optimise the extraction

procedure in order to determine method of isolating PsbS could be developed that produced

similar yield, whilst minimising the extraction period. It should be noted that only a five of

the severn extraction variations used provided a positive result, and these are described in

table 3.2.

Extraction Procedure Duration Protein Extraction

Shaking (ice) 5 Yes

Shaking (ice) 10 Yes

Pipette Mixing 5 No

Pipette Mixing 10 Yes

Resuspend (leave) 30 No

Resuspend (leave) 60 No

Resuspend (leave) ON* Yes

* ON - Over night (24 hr) incubation

Table 3.2 - Extraction procedures. Description of the three extraction techniques

have been employed, incubation duration and the extraction result (ie presence or absence

of protein bands on SOS-PAGE gel).

Figure 3.111 shows the outcome of SDS-PAGE analysis for those methods, which supported

any extraction at all. Mixing of the DM-pellet in the presence of Na-Cholate and NaCI on

ice, using an automated shaker for 5 min (Fig 3.111, lane 1) gave rise to a similar result as

that described above (Fig 3.10, lane 5), albeit with a slight increase in the concentration of
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Figure 3.11 - Na-Cholate extraction optimisation. I, silver stain
analysis on SOS-PAGE gel loaded with 101-11 of sample per lane pre-treated with
5x loading buffer. M, molecular weight marker SeeBlue+2 (invitrogen). 1,
extraction with vigorous shaking for 5 min. 2, extraction with vigorous shaking for
30 min. 3, extraction using Pasteur pipette for 5 min. 4, extraction using Pasteur
pipette for 10 min. 5, extraction using overnight extraction at 4°C only. II,
analysis of PsbS yield calculated using densitometry analysis. 1 - 5 related to
lanes 1 - 5 on I. III, densitometry analysis of PsbS yield vs treatment. Inset
colour coding for pH treatments.
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impurities present in the supernatant. This period was increased to both 10 (not shown) and

30 mins (lane 2), displaying little affect on the volume of PsbS extracted, with the

supernatant in both cases containing 80% PsbS (Table 3.3, lanes 1 and 2). The overall PsbS

yield in these samples constituted ~90% of the protein originally present in the PSII

membrane preparation (Fig 3.11II). The use of a pipette to mix the DM-pellet and detergent

extraction medium over a 5 min period failed to extract PsbS (Fig 3.l1l, lane 3), and could

only manage minor extraction of the 35kDa band. Doubling of this time significantly

improved extraction of PsbS and the 35kDa band (Fig 3.111, lane 4), with each component

constituting ~50% ofthe protein within the sample (Table 3.3).

Bands Lane
1 2 3 4 5

1 7 15 100 50 97
2 1 1
3 1
4 80 80 50 1
5 1
6 5
7 3
8 5
9 2
10 1

Table 3.3 - Densitometry analysis of cholate extraction procedures.
Total of 10 individual bands resolved across lanes 1 - 5 (Fig 3.111). Blue box indicates
absence on a particular band in that lane. Bands counted horizontally from top to bottom.

However, the yield was significantly less than that shown in both lane 1 and 2 (Figure

3.1UI). Finally, overnight incubation at 4QCafter initial mixing of the pellet with detergent

failed to extract PsbS at all. Only the 35kDa protein could be resolved on silver stain (97%)

along with a number of minor high molecular weight components. Thus, vigorous shaking

on ice provided the most efficient method of agitation during incubation, enabling the rapid

extraction of PsbS whilst maintaining a very high protein yield. The next stage of

optimisation involved variations in detergent concentration and pH. Figure 3.11 III details

the effect of altering the detergent environment during extraction, with the most efficient

extraction yield occurring between 0.75% and l.5% Na-Cholate across all pH ranges. Once

at 2% detergent concentration protein yield is significantly impaired until ~7% when levels

steadily increase to the maximum concentration tested at 10%. However, it should be noted

that at no point does the extraction yield increase beyond that of 1% Na-cholate. The effect

of pH is negligible at lower detergent concentrations, whilst having a significant impact at
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higher detergent concentrations. At all times extraction dependency on pH follows the same

trend; to a greater of lesser extent increased alkalinity results on improved extraction yield.

Although effective, extraction with Na-Cholate delivers inconsistent results relating to the

level of purity. Thus, the final purification step involves gel filtration (Fig 3.12) in order to

separate PsbS from the other protein species that may be extracted along with it during

incubation with Na-Cholate, whilst replacing the detergent with DM. This process employed

a G-25 Sephadex column, with lml aliquots being collected ten seconds after the sample had

completely entered the column. SDS-PAGE analysis shows that the contents of the

optimised Na-Cholate extraction appear in aliquots 4 to 6 (Fig 3.12, lanes 4 to 6), however,

PsbS is found in aliquot 6 with minor contamination from other proteins. When collected

from the gel filtration column the sample is completely free from pigments and runs behind a

green band containing the majority on the other protein components from the pellet

extraction. Running aliquots 4 and 5 through the column again allows almost all the PsbS

protein contained within them to be isolated, resulting in highly purified protein sample (Fig

3.l2II, lane 6).

II

M 1 2 3 4 5 6 7 8 9 5 6
18898
62
49
38
28 -17
14

6

Fig 3.12 - Gel Filtration. M, SeeBlu+2 marker (7111).Lane 1, Control sample Dm-
pellet (10111).Lanes 2 - 9 correspond to column aliquots 2 - 9 (10111).

In order to determine if soluble PsbS could be focused using IEF, a sample of the purified

proteins was applied to a gel with an ampholine range between pH 3 and 9 (Fig 3.13). The

protein sample was incubated with coomassie blue prior to application to the gel so that the

PsbS location could easily be determined. The loading origin of the gel is indicated by a,

whilst the location of the PsbS protein is shown by b. Excess coomassie blue stain can be

found at c. It can be concluded that soluble PsbS can be focused using IEF, and the protein

species possesses a pI of ----6.
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This data presents a very reproducible, rapid procedure for the extraction of the PsbS protein

from PSII membranes and provides for investigation of PsbS structure and function. This

first stage of investigation described below involves the characterisation of the protein, using

biochemical and spectroscopic techniques.

a

Fig 3.13 - Solublised PsbS IEF. IEF pH 3 - 9, contains PsbS sample (1ml) loaded
after incubation with coomassie blue stain.

3.5 Determination of the primary sequence of the 22kDa extracted protein

The method used for the determination of this sequence is detailed in section 2.21. The

22kDa protein isolated from PSII particles proved to be identical in every aspect to the

original PsbS sequence obtained from spinach (Kim et al. 1992; Wedel et at. 1992). Figure

3.141 displays the full PsbS polypeptide sequence including its 69 amino acid targeting

sequence highlighted by the blue box between 001 and 069. The four predicted

transmembrane helices are underlined in light blue, whilst the regions of protein that have

been sequenced are shown in red. Additionally, the epitope for the anti-PshS antibody is

highlighted between helix two and three by a red box. The total number of matches scored

when sequencing the 22kDa extract was 7, many of which overlapped, resulting in only three

distinct sequenced regions in figure 3.121. All 7 individual sequence matches are shown in

figure 3.12II along with their start and end points.

3.6 Absorption Spectra

The absorption spectrum of the PsbS preparation shows that it contained no bound pigment;

if the absorption spectrum shown in figure 3.15 is extended into the visible region, there is

no recorded absorption from either carotenoid or chlorophyll. In contrast, a sample of LHen
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at the same protein concentration would give an OD of ;:~20in the red region of the spectrum.

The spectra can be used to further test the purity of the PsbS preparation. The published

amino acid sequence of spinach PsbS indicates the presence of 17 phenylalanines and 1

tyrosine (Kim et al. 1992; Wedel et al. 1992), which can also be seen in the sequence

analysis carried out for the extracted PsbS protein (Fig 3.141). By using the extinction

coefficients at 257 and 274 nm of 0.19 x 105 and 1.25 x 105 M-I.m-I, respectively, a

theoretical absorption ratio of phenylalanine to tyrosine of 2.5 is predicted. The absorption

spectrum of the PsbS preparation was deconvoluted to show the contributions from

phenylalanine and tyrosine (Fig 3.15), and these data gave a phenylalanine/tyrosine ratio of

2.0. A very minor contribution from tryptophan (not present in the PsbS sequence) at 288

nm is evident, but given the large extinction coefficient of this amino acid, the level of

contamination by other proteins would appear to be minimal.

co
:.0::;
a..._
oen
.0«

300 700400 500 600
Wavelength (nm)

Figure 3.15 - Absorption spectra of the preparation of purified PsbS.
The absorption was deconvoluted, revealing the bands at 257nm (A) and 274nm (8) arising
from phenylalanine and tyrosine, respectively.

3.7 Analysis of secondary structure by circular dichromism

The CD spectrum of the PsbS preparation shows the presence of secondary a-helical

structure with characteristic minima at 208 and 222 nm (Fig 3.16), providing evidence that

the protein was not denatured and suggesting that it had been isolated in a native form.

Protein denaturation (unfolding of helical structure) is induced at high temperature and is

measured by a loss of CD. A temperature dependency analysis of the secondary structure for

purified PsbS was carried out, and compared to LHCII. Figure 3.17A shows spectra for
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LHCllb at 10 and 70°C (after denaturation), with PsbS spectra shown at 10 and 90°C (Fig

3.178) due to the proteins ability to retain helical structure at higher temperatures than

LHCII antenna.

Figure 3.16 - CD spectra of the preparation of purified PsbS. Spectrum

taken at room temperature shows minima at 208 and 222 nm, characteristic of a-helical

structure.

The change in CD signal at 211 nm with increasing temperature (Fig 3.17C) indicates that

LHCllb can retain helical structure up to 60°C, after which the signal diminishes sharply

with all secondary structure lost at 90°C. In contrast PsbS secondary structure is unaffected

up to 75°C, at which point the 211 nm signal is reduced, but at a slower rate than LHCllb.

All structure is lost at 110°C, with approximately 50% of the total signal at 211 nm lost

between 100°C and 110°C. Figure 3.140 displays a similar effect at 222nm, however PsbS

can be seen to lose signal from 70°C although the overall rate of structural decline is similar

to that of the signal at 211 nm. Again all structure is lost at 110°C.

Low pH also commonly denatures proteins. Figure 3.17E shows the loss of secondary

structure of the PsbS protein at pH 4. This is a common feature in LHCII antenna proteins

(personal communication Dr M Wentworth), however it should be noted that the pH changes

potentially detected by PsbS in vivo would occur on the lumenal side of the protein and not

across the entire structure as can be seen here. Thus, it is possible that the thylakoid
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Figure 3.17 Analysis of PsbS Temperature and pH
Kinetics. A, CD spectrum of LHCllb at 10°C (dark cyan) and
70°C (red). B, CD spectrum of PsbS at 10°C (dark cyan) and
90°C (red). C, temperature vs 10910 amplitude at 211 nm for
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membrane in vivo supports PsbS, enabling it to retain helical structure at low pH levels than

in vitro.

3.8 DeeD binding properties ofPsbS

Biochemical analysis of purified PsbS from spinach chloroplasts and recombinant expression

of the Arabidopsis thaliana protein in E-coli, have shown that structural homology exists

between ep29 and PsbS in the form of acidic residues residing in each of the two lumenally

exposed loop regions (Dominici et al. 2002). It is thought that these residues promote

binding of DeeD to the PsbS protein. In ep29 these loops constitute a nccrvc," binding

domain, suggested to be involved in sensing low lumenal pH.

A E8 c o

• re

Figure 3.18 - DCCD binding analysis. Samples prepared as in section 2.7. 10".11
loaded per lane. A, PSII particles. B, LHClib. C, CP26. 0, CP29. E, PsbS.

Figure 3.18 shows the DeeD binding analysis for the spinach PsbS protein. Lanes A - D

contain control samples of PSII particles, LHeIIb, ep29 and ep26 respectively. Lane A

displays ~ 10 bands bound with DCCl) including the PSII antenna proteins shown in lanes B
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- D. The latter have only one band per lane with bound DeeD. Lane E contains purified

PsbS, and shows no detectable binding. Further analysis of PsbS binding across the pH

range 4 to 8 also failed to show DeeD binding (data not shown).

3.9 PsbS Homodimer

Recently, a 42kDa homodimer of the PsbS protein has been characterised in a number of

species including spinach, tobacco, rice, barley and carrot (Bergantino et al., 2003) by means

of a highly specific antiserum with an epitope on the stroma-exposed loop between the

second and third helices. The monomer/dimer ratio has been shown to vary with lumenal

pH, with dimerisation prevalent under alkaline conditions and monomerisation under acidic

conditions. This phenomenon has never been seen using the anti-PsbS antibody developed

for the epitope shown in figure 3.141. In an attempt to verify the ability of this antibody to

detect the presence of a 42kDa band, thylakoid membranes were incubated under partially

denaturing conditions to preserve any dimerised PsbS complexes. The incubation was

performed in loading buffer at room temperature over a range of times from 2 to 20 minutes.

A slightly alkaline pH was used (pH 8) to also promote homodimer formation. Figure 3.19

shows the gradual formation of the 22kDa protein band over time, however there appears to

be a complete absence of other bands, most notably that of a 42kDa band.

4 5M 1 2 3

Figure 3.19 - Analysis of anti-PsbS antibody detection of 42kDa PsbS
dimeric band. Western blot using anti-PsbS antibody at 1:2500 dilution. M, molecular
weight marker SeeBlue+2 (invitrogen) 7ml loaded. All other lanes loaded with 10ml BBY
sample in 5x loading buffer 1, 1 min incubation. 2, 2 min incubation. 3, 5 min incubation. 4,
10 min incubation. 5, 20 min incubation. All BBY samples incubated for the designated
duration at 900C in 5x loading buffer.
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3.10 Discussion

The data shown in this chapter provides the first dedicated purification procedure developed

for the PsbS protein. This rapid method has succeeded in extracting PsbS with a remarkably

high yield and purity, in the complete absence of pigments. Such an effective method of

isolation for this protein has never before been described, thus it is reasonable to conclude

that a reproducible and unique method has been established as a result of this work.

Due to this success, the first stage of characterisation for the PsbS protein has been

completed and provides unequivocal evidence that the 22kDa protein extracted is, indeed,

PsbS. The purity of the PsbS protein has been analysed using biochemical and spectroscopic

techniques, whilst densitometry analysis of SDS-PAGE gels indicates that isolated PsbS

represents more than 90% of the species population in PSII particles. Quantitative analysis

of protein UV absorption spectra confirmed the level of purity.

Analysis of the protein secondary structure has shown isolation of PsbS is achieved whilst

maintaining helical structural within the complex, in the absence of pigments. The protein

has previously been shown to be present in the leaves of etiolated spinach plants (Funk et al.

1995), a phenomenon unique to PsbS, as the remainder of the LHCII antenna family require

chromophores and carotenoids for correct folding. This helical structure is maintained at

relatively high temperatures when compared to LHCIIb, indicating that PsbS may be

significantly more robust than other LHCII proteins. Structural integrity is lost very quickly

between pH 5 and 4 when analysed in vitro. Such instability at low pH may not be

surprising as physiological acidity peaks at approximately pH 5. However, as mentioned

earlier it is also possible that in vivo the thylakoid membrane provides further support to the

PsbS protein at lower pH levels.

Analysis of the DCCD binding properties for this protein shown to exist in a highly purified

state with structural integrity maintained over a wide range of conditions, has failed to

observe any interaction. Over the full physiological pH range DCCD has failed to bind this

protein, an observation that contrasts with earlier work (Dominici et al. 2002). Although it is

difficult to explain such inconsistencies it should be noted that the protein analysed here has

been isolated using a significantly different method, and perhaps the binding of DCCD to

PsbS is dependent upon interactions with other components such as LHCII proteins or,

alternatively, even other PsbS proteins. Such interaction has been observed in the form of

42kDa PsbS homodimers (Bergantino et al. 2003), however analysis using the PsbS antibody

developed for the experiments described in chapter 3 has failed to locate this dimer.

I () 1
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Analysis of the western blot in figure 3.20 shows a steady increase in PsbS detection at

22kDa as a result of increasing the incubation time for the sample. This increase can be

explained in a number of ways; firstly, the increase in incubation time simply breaks down

more of the PSII particles present in the BBY sample used, resulting in more solublised

protein entering the gel. Secondly, the increased intensity ofPsbS detection could be a result

of homodimer collapse due to longer incubation with loading buffer. Figure 3.20 shows the

predicted structure of monomeric PsbS in the thylakoid membrane (modified from Kim et al.

1992) with the 12 amino acid epitope of the anti-PsbS antibody located on the stromal side

of the membrane (marked in red) in a loop region between helix two and three. Dimerisation

of the PsbS protein could obstruct this region resulting antibody being unable to detect a

dimeric form of PsbS.

Figure 3.20 - Predicted helical structure of the spinach PsbS protein.
Amino acids corresponding to transmembrane a-helices shown in green, loop regions shown
in blue with the anti-PsbS antibody epitope highlighted in red. Thylakoid membrane is
designated by the horizontal black lines with the stromal and lumenal sides indicated.
Adapted from Kim et al. 1992.

3.11 Concluding Remarks

The data presented in this chapter has allowed a reproducible method for the extraction of

soluble PsbS to be established and is detailed below, whilst figure 3.21 displays a flow

diagram of the extraction proceedure. PSII membrane fragments were prepared from

spinach thylakoid membranes essentially as described (Berthold et al. 1981). For PsbS

preparation, the PSIl membrane fragments (2 mg of total chlorophyll) were extracted with

1% n-dodecyl b-D-maltoside (DM), incubated on ice for 50 min, stirred occasionally, and

centrifuged at 10,000 x g for 20 min. The pellet was extracted with 0.5% sodium cholate
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(Sigma), pH 7.0/250 mM NaCI (Bowlby & Yocum 1993), incubated in the dark on ice with

vigorous stirring for 5 min, and centrifuged at 10,000 x g for 10 min. The supernatant was

passed through a Sephadex G-25 column, and eluted fractions containing PsbS were stored

in a solution of elution buffer (25 mM Hepes, pH 8.0 (0.01% DM).

OM Treatment

PSII
Membranes

Sodium Cholate
Extraction

Centrifugation

6
~
C
Gl
U
Coo

Concentration Buffer Exchange
&

Figure 3.21 - Flowchart describing PsbS isolation proceedure.

The first characterisation of PsbS secondary structure is detailed here, with the protein

shown to be stable under a number of conditions. The helical structure of the protein in the

absence of pigments provides an ideal platform for further study, specifically in relation to

its interaction with the xanthophyll cycle carotenoid zeaxanthin. In addition, it will be

possible to determine the effect of the PsbS protein on other LHCII components using an in

vitro fluorescence quenching assembly.
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Analysis of PsbS-Zeaxanthin Interactions

4.1 Introduction

Dissipation of excess excitation energy absorbed during photosynthesis by the light-harvesting

antenna of plant PSII is detected as the non-photochemical quenching of chlorophyll

fluorescence (qE), which is regulated by the transthylakoid pH gradient (L1pH) and the

xanthophyll cycle (see section 1.11). Conditions of excess light result in the accumulation of

zeaxanthin (Demmig-Adams 1990). An absorption change with a wavelength maximum of

~535 nm correlates with the formation of qE (Ruban et al. 1993b; Bilger & Bjorkman 1994)

resulting from an unusually large red shift in the absorption spectrum of one or two molecules

of zeaxanthin to ~525 nm (Ruban et al., 2002). This absorption change is thought to arise from

the molecule binding to the specific site in PSII involved in qE regulation. PsbS is an essential

component for qE (Li et al. 2000), and has been proposed as a candidate for the site of

zeaxanthin binding in PSII. The extracted protein described in chapter 3 was used to probe the

binding properties of PsbS in relation to zeaxanthin, which required the development of a new

reconstitution technique.

4.2 Spectral characterisation of Xanthophyll-Cycle carotenoids

All three components of the xanthophyll cycle were employed in reconstitution experiments

using extracted PsbS, to determine if conditions suitable for zeaxanthin binding would also

favour specific interactions with either Violaxanthin, Antheraxanthin or both (section 4.5). It is

essential to analyse the absorption spectra of freshly prepared pigments prior to their use in

reconstitution experiments in order to determine the concentration of the sample, and ensure the

pigment is in the required isomeric state. Table 4.1 presents the absorption maxima for each

xanthophyll cycle component when dissolved in ethanol, and the characteristic absorption

spectrum for zeaxanthin can be seen in Fig 4.1A, with maxima at 428,454 and 482 nm. The

absence of a cis peak at ~350 nm indicates that the zeaxanthin sample exists in an all-trans

conformation, essential for binding to LHC proteins. Violaxanthin and Antheraxanthin also

display characteristic absorption spectra when dissolved in ethanol (Fig 4.1B and C), with peak

maxima at 423,447,472 nm and 425, 450, 475 nm respectively. Again, this confirms that these

samples have not been damaged, and specifically ensures that Violaxanthin has not been

isomerised to Auroxanthin during extraction. The absorption spectrum of a given pigment can

be shifted depending on the polarity of the solvent, as can been seen with zeaxanthin when

10-.f
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dissolved in diethyl ether (Fig 4.1D). This spectrum has peak maxima at 424, 450 and 478 run,

which directly correlate to those in table 4.1.

Absorption Maxima (nm)
Pigment Solvent1-1 0-1 0-0

Violaxanth in 426 453 483 Ethanol

Antheraxanthin 430 456 484 Petro llEthano I

Zeaxanthin 428 454 482 Ethanol

Zeaxanthin 424 450 478 Diethyl Ether

Table 4.1 - Characteristic absorption maxima for xanthophyll cycle components in ethanol

(Young and Britton, 1993) and diethyl ether (experimental observation).

4.3 Development of an effective reconstitution technique

Characterisation of the PsbS protein extracted using the method described in Chapter 3a had

suggested that the protein existed in a native state in vitro (Chapter 3b). This stability in the

absence of pigments had previously been observed in etiolated spinach leaves (Funk 1995a),

and presented a problem with using conventional reconstitution techniques. The latter rely upon

the absolute requirement of pigments for protein folding, and have been employed studying both

LHCIIb (Hobe et al. 2000; Hobe et al. 2003) as well as the minor antennae complexes CP26 and

CP24 (Frank et al. 2001; Morosinotto et al. 2002). Although variations in technique exist, the

basic process is to attempt refolding of a denatured protein (pigments removed) in the presence

of controlled pigment ratios, relying upon the knowledge that a given protein can bind specific

pigments. Prior to the experiments described in section 4.4, however, the evidence that PsbS

could bind pigments was controversial (Funk et al. 1994; Funk 1995b), making reconstitution

using traditional methods difficult.
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Figure 4.1 - Absorption spectra of Xanthophyll Cycle carotenoids. A, Zeaxanthin

dissolved in absolute ethanol. B, Violaxanthin dissolved in ethanol. C, Antheraxanthin

dissolved D, Zeaxanthin dissolved In diethyl ether.III ethanol.
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The initial aim was to develop a method that ensured the pigment in question could be dissolved

into the detergent buffered protein sample without causing aggregation of the carotenoid.

Zeaxanthin dissolved in ethanol was initially added to the protein sample in an effort to

reconstitute PsbS using a rapid and efficient procedure. Analysis showed that zeaxanthin

dissolved in solvent could indeed be directly added to samples without precipitating the protein,

or causing pigment aggregation. The absorption spectrum in figure 4.2 (trace 1) possesses peak

maxima at 435, 451 and 485 nm, correlating well with those shown in table 4.1. The spectrum

also appears to display broadening beyond the 0-0 transition, along with a small shoulder

present at 407 nrn. Unfortunately, the use of this method was later found to frequently cause

zeaxanthin aggregation with a large peak maxima forming at 388 nm (Fig 4.2, trace 2), a

characteristic feature of zeaxanthin aggregation (Ruban et al. 1993a).

0.6 435 454

388 403 ~I _- -10.5 483435 451

r:::::: 0.4 / 407
0 2 485-Q.
L-
0 0.3Cl>
..0«

0.2

0.1

0.0
350 400 450 500 550

Wavelength (nm)

Figure 4.2 - Absorption spectrum of PsbS-zeaxanthin complex reconstituted using ethanol-

dissolved pigment (1). Aggregated zeaxanthin spectrum formed after reconstitution usmg

ethanol dissolved zeaxanthin (2).

Further analysis of this spectrum reveals that the 1-1, 0-1 and 0-0 transitions are consistent with

spectrum 1, located at 432, 454, and 485 nm respectively. The small shoulder found at 407 nm

(spectrum 1) is still visible at ~.3 nm in spectrum 2. Again there appeared to be a slight
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broadening of the spectrum beyond the 0-0 transition. Due to this frequency pigment

aggregation it was necessary to explore alternative methods of reconstitution.

0.15

c 0.12
0
:.t:i
0- 0.09I.-
0
(/)
..c 0.06«

0.03

0.00
350 550

Figure 4.3 - Absorption spectra of zeaxanthin in ethanol (solid line) and in detergent

buffer used in reconstitution experiments (dashed line) and BSA control (dash-dot line)

400 450 500

Wavelength (nm)

The second approach involved briefly incubating PsbS with zeaxanthin deposited as a dry film

on the surface of a glass tube. Initial observations found that the zeaxanthin layer was rapidly

absorbed by the PsbS sample and spectroscopic analysis determined that the pigment was in a

stable, non-aggregated state. The absorption maxima of this spectrum were found to be similar

to those in figure 4.2 (trace 1) at 434, 456 and 486 nm along with the shoulder at 407 nm,

suggesting that quantitatively similar results could be obtained with both methods. It should be

noted that aqueous buffer minus PsbS causes a quite different effect (Fig 4.3, dashed line), with

very little pigment uptake detected resulting in a poor, largely featureless, spectrum when

compared to zeaxanthin in ethanol (solid line). A similar result is found with the BSA control

(dash-dot line). However, due to the uneven nature of the zeaxanthin layer (Fig 4.4 A), a

pigment residue would still remain after incubation with PsbS, which could only be marginally

reduced with extended sonication. This issue would significantly hinder accurate

pigment protein ratio calculations during reconstitution experiments, and would need to be

overcome as this method effectively prevented pigment aggregation. To form a more uniform

layer the pigment sample was vortexed whilst being dried under oxygen free nitrogen (Fig 4.4
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effective at creating a smooth layer around the base of the glass (Fig 4.4 C). Pigment uptake

was visibly improved using this method, with a significant reduction in pigment residue

remaining in the tube.

A c

B

Oxygen Free
Nitrogen

Glass Vial (Sterile)

ClampI 11===:

Extracted Zeaxanthin

Vortex

Figure 4.4 - Pigment drying procedure. Unevern distribution caused in the absence of vortex

(A). Diagram of apparatus used during pigment drying (8). Uniform pigment layer resulting

from vortex during drying procedure (C).

4.4 Reconstitution of the PsbS protein

Once a method had been developed that could reproducibly combine zeaxanthin and PsbS, the

next stage was to test the hypothesis that PsbS would bind zeaxanthin leading to changes in the

visible region of the spectrum, and shed light on the potential role involving the protein and the

in vivo ~535 nm shift (Ruban et al. 2002).

4.4.i Reconstitution - pigment/protein ratio effect at low component concentrations

In order to conserve materials, initial experiments were conducted using relatively low volumes

allowing the concentration and, therefore, the quantity of raw materials needed for each

experiment to be minimised. Initial analysis of PsbS binding properties in relation to zeaxanthin

focused used a total of five different pigment/protein ratios to characterise the effectiveness of

pigment uptake from the glass tube and, consequently observing any spectral changes taking

place in the visible region as a result. Each incubation involved increasing molar ratios of
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zeaxanthin compared with PsbS, which were calculated, based on the concentration of protein.

Thus a 2: 1 ratio would contain twice as much zeaxanthin as PsbS. These spectra are displayed

in figure 4.5, with the 0-0, 0-1 and 1-1 transitions highl ighted along with the ~05 nm

1.0
1-1 0-1 -- 1:1

-2:1
0.8 - 31

-5:1
-4:1

..--. 0-0
E
c 0.6.._...
c
0:;:;
o,
L-
0
I/) 0.4.D«

0.2

380 400 420 440 460 480 500 520 540
Wavelength (nm)

Figure 4.5 - Spectral analysis of increasing zeaxanthin concentration. Peak maxima for all

spectra highlighted at 1-1, 0-1 and 0-0 transitions. Shoulder (~405 nm) indicated by ". 520 nm

marker shown by vertical line. Refer to key in upper right corner for description of each

spectrum.

shoulder (*) mentioned previously. Peak maxima for each individual spectrum are summarised

in Table 4.2. The structure of each spectrum is similar to that of the zeaxanthin control (Fig

4.1 A), however, further analysis reveals variations, not only in the presence of PsbS, but also

with increasing zeaxanthin concentration. The 1: 1 ratio of pigment to protein (Fig 4.5, black

trace) displays absorption intensity similar to that of the control (Fig 4.1A). Peak maxima are

found at 434, 456 and 486 nm, correlating wel1 with data shown in table 4.1, and are

representative of the maxima for al1 five ratios (Table 4.2). Overal1 the spectrum is broader than

that of zeaxanthin in ethanol and this observation is particularly characteristic of the region

between 500 and 520 nm (Fig 4.5, #), and can be seen for al1 five spectra. It is possible,

however, that this phenomenon results from light scattering caused by elements within the

PsbS-zeaxanthin sample. The 2:1 ratio (red trace) is largely identical to that of spectrum one

having roughly twice the absorption intensity of the latter, however the 0-1 transition appears to

be slightly blue-shifted at 451 nm (Table 4.2). Spectrum 3 (green trace) follows a similar

pattern with standard absorption maxima, whilst the increased absorption intensity of spectrum
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4 (pink trace) is significantly less than that seen for earlier ratios; with the increase for the

highest zeaxanthin ratio 5: 1 (blue trace). In all spectra the shoulder at ::::405run remains

constant (Table 4.2).

Absorption Maxima (run) *Ratio

(Zeaxanthin:PsbS) 1-1 0-1
(::::405run

0-0
shoulder)

1:1 434 456 486 407

2:1 434 457 488 406

3:1 434 453 486 406

4: 1 434 451 484 407

5: 1 437 456 490 407

Table 4.2 - Summary of absorption maxima and shoulder from spectra taken in Figure 4.5

The nature of these increases in absorption intensity indicates that pigment uptake is most

efficient between the 2: 1 and 4: 1 ratios, indicating that zeaxanthin uptake can be saturated at

higher pigment concentrations.

4.4.ii Reconstitution - effect of temperature

Earlier research usmg the pigment Astaxanthin has shown that temperature alone could

profoundly affect the aggregate state of a carotenoid (Mori et at. 1995), and it was thought this

may act to improve the effectiveness of any potential pigment binding. The reconstitution

temperatures are maintained by incubating samples in a water bath and sustained during spectral

analysis using a temperature controlled spectrophotometer. The temperature range used was

from 4 to 40oe, and measurements were taken at key points previously shown to alter the

visible spectrum of Astaxanthin (Mori' 95). A pigment/protein ratio of 2: 1 was employed (Fig

4.6). Again the three transitions are highlighted along with the shoulder at ~405 nm (*) and the

marker at 520 run (#). The spectra taken at 4 and l20e display very little structure when

compared with those taken at higher temperatures, with spectrum 2 (blue trace) showing only a

marginal increase in pigment uptake, with both samples leaving significant residue behind after

incubation. Peak maxima correlate with the zeaxanthin control figures (Table 4.3). Increasing

the reconstitution temperature dramatically boosted pigment uptake (red trace), improving upon

the original 2: 1 ratio incubation performed at room temperature in section 4.4. i. The 0-0, 0-1

1 1 1
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and 1-1 transitions all appeared to be red-shifted. Additionally, the ::::405run shoulder could be

clearly seen.

Absorption Maxima (nm) *Temperature

(OC) 1-1
(::::405run

0-1 0-0
shoulder)

4 430 452 484 409

12 433 455 487 406

21 436 458 493 409

28 437 459 495 408

30 439 461 494 411

35 435 460 492 409

40 437 460 490 408

Table 4.3 - Absorption Maxima determined during temperature controlled

reconstitution experiments. Analysis of the shoulder at ::::405nm.

At 28°C the spectrum changed significantly (dark red trace), with a significant reduction in

pigment uptake, resulting in reduced absorption intensity. Table 4.3 shows that absorbance

maxima for the latter transitions to be characteristic of zeaxanthin, with a shift in the 0-0

transition of ~7 run.

1.0,----------------;::===:::;-

0.8

1-1 0-1

- 40C
-12oC
-21oC
- 280C
- 300C
- 350C
-400C

c:: 0.6oe-
o
<n.a« 0.4

0.2

350 400 450 500

Wavelength (nm)

Figure 4.6 - Spectroscopic analysis of temperature controlled reconstitution. 4°C (red), 12°C
(light green), 21°C (blue), 28°C (pink), 30°C (dark green), 35°C (grey) and 40°C (purple). Peak
maxima at 1-1, 0-1 and 0-0 highlighted along with the shoulder at ~405 nm and the 520 nm
marker (vertical line).
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A further increase to 30°C resulted in a slight increase in zeaxanthin uptake, however overall

absorption remained lower than that found for 21°C. Again, the 0-0 transition was found to be

red-shifted (Table 4.3). The incubation temperatures at 35 and 40°C are denoted by spectra 6

and 7 (Fig 4.7, dark red and light blue traces), both displaying identical pigment uptake, similar

to that seen at 30°C. This data indicates that optimum pigment uptake is achieved at 21QC,with

a pigment ratio of2:1 zeaxanthin to PsbS.

4.4.iii Reconstitution - Pigment drying using alternative solvents

These results described above failed to generate the large absorbance shifts described in vivo

(Ruban et al. 2002) and it was thought that the manner in which zeaxanthin was packed, once

dry, could be hampering efforts to successfully achieve binding, a factor which could be

affected by residual water deposits in the pigment sample. Thus, using an alternative solvent,

zeaxanthin could be dried in such a way as to render it more amenable to binding at lower

concentrations and temperatures. It was also possible that the nature of such binding could

create spectral shifts similar to those reported in vivo. The use of different solvents was,

therefore, designed to 'prime' zeaxanthin for uptake by PsbS.

Initially dry ethanol was dried usmg water-absorbing microbeads (Sigma), which were

immersed in solvent for 24 hrs prior to use. Contrary to expectations, however, the use of dry

ethanol actually reduced pigment uptake efficiency during reconstitution, resulting in a

significant residue remaining in the vial after incubation. Spectroscopic analysis of this sample

revealed that absorption intensity was less than half that seen at 21°C with standard ethanol (Fig

4.7).

0.5

0.4

coao 0.3
<n.o«

0.2

0.1

350 400 450 500 55<

Wavelength (nm)

Figure 4.7 - Spectroscopic analysis of reconstituted zeaxanthin-PsbS complex using dry
ethanol. Peak maxima at 1-1, 0-1 and 0-0 transitions highlighted along with the ::::405 nm
shoulder (*) and the 520 nm marker (vertical line).
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Absorption maxima were found at 437,458 and 491 nm with the latter displaying a shift similar

to earlier experiments. The spectrum did appear characteristically broader than the zeaxanthin

control (Fig 4.lA) with a shoulder present at 408 nrn. The use of acetone and CS2 failed to

produce any visible pigment uptake (data not shown).

1.5

c
.Q
15.. 1.0o
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0.5
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Figure 4.8 - Spectroscopic analysis of reconstituted zeaxanthin-PsbS complex using diethyl
ether. Peak maxima at 1-1, 0-1 and 0-0 transitions highlighted along with the ~A05 nm shoulder
(*) and the 520 nm marker (vertical line).

The key component during pigment extraction from raw materials is diethyl ether (see section

2.8 for method), employed here to rapidly dry zeaxanthin to ensure minimal water retention in

the sample. The spectrum in figure 4.8 appears slightly blue-shifted, with peak maxima at 425,

455 and 486 nm and a shoulder at 396 nrn, similar to that seen in the zeaxanthin control using

diethyl ether (Fig 4.ID). Second derivative analysis (Fig 4.8, red trace) shows peaks at 492,457

and 427nm corresponding to the 0-0, 0-1 and 1-1 transitions respectively. Additionally,

shoulders can be seen at 405 and 384nrn. No evidence of red shifted peaks can be seen.

4.4.iv Reconstitution - use of high component concentrations

Zeaxanthin concentration had been observed to have reach saturation of pigment uptake.

However, it remained unclear whether this was simply due to a limitation imposed by protein

concentration (and therefore density within a given sample), or whether a more complex

interaction between pigment and protein was being hindered at low component concentrations.

To address this issue reconstitution was performed using component concentrations ten times

that used in earlier experiments.
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Suer/

0.2

0.4 .... 35-

Figure 4.9 - Sucrose density gradient analysis of reconstituted PsbS. PsbS-zeaxanthin

complex (grey region), minor pigment band (black region).

Reconstitution using high concentrations of each component (9 llM/ml PsbS and 14nMlmi

zeaxanthin) resulted in a dramatic change in the absorption spectrum of zeaxanthin (Fig4.10,

trace 1). The spectrum displayed a strong red shift, with the 0-0 absorption maximum appearing

at ~523 run, whilst the second derivative of this spectrum shows maxima at 525, 487 and 450

run, along with a secondary band at 536 nm (Fig4.10, trace 2).

-20

-0.4 l____l_ _ _j__j___J_ _ _l__l____L _ ___L___l_--,

330 360 390 420 450 480 510 540 570 600 630
Wavelength, nm

Figure 4.10 - Spectroscopic characterisation of zeaxanthin shift. Absorption spectrum of PsbS

reconstituted with zeaxanthin (1), second derivative of spectrum 1 (2), CD spectrum of PsbS

reconstituted with zeaxanthin (3).
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The PsbS-zeaxanthin complex possessed a novel CD spectrum, which could not be observed for

either constituent alone. Positive bands at 491 and 536 nm, along with a strong negative band at

380 nm can be seen (Fig 4.10, trace 3). These negative and positive symmetrical features can be

attributed to the negative and positive Cotton effects of excitonically coupled pigments (Zsila et

al. 2002), suggesting that two zeaxanthin molecules are interacting. The negative and positive

components of this spectrum resemble those of the CD spectrum (trace 3), whilst displaying

positive bands with better resolution and a clear minimum at 507 nm. The latter represents a

higher excitonic component, the existence of which could be explained by the presence of a

band at 525 nm, clearly seen in the second derivative absorption spectrum (trace 2). It is

possible that this transition could belong to a monomeric zeaxanthin molecule bound to PsbS.

The CD spectrum described above suggests that the protein is capable of significantly affecting

the properties of zeaxanthin, and these CD characteristics indicate that PsbS binds zeaxanthin in

this complex.

0.3

0.2

c
0:;:; 0.1Q.._
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-0.2 L__ _ __l_ _ __J __ _!_ _ __J._ __ -'----_----'-----'

250 265 280 295 310 325 340
Wavelength (nm)

Figure 4.11 - UV absorption spectrum of PsbS reconstituted with zeaxanthin (1), and a

(PsbS+zeaxanthin) - (PsbS only) absorption difference spectrum (2).

The PsbS protein itself presented an altered absorption spectrum in the presence of zeaxanthin.

Analysis of the UV region of the PsbS spectrum in the absence of pigment shows an absorption

band at 258 nm, arising mainly from phenylalanine (Fig 4.11). However, upon formation of a

complex with zeaxanthin results in this band shifting to 280 nm (Fig 4.11, spectrum 1). The

conserved nature of the corresponding difference spectrum shows that that change can be

explained by a red shift in a population of phenylalanine residues in the PsbS sample (Fig 4.11,
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spectrum 2). This provides further support that a specific interaction exists between PsbS and

zeaxanthin.
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Figure 4.12 - Resonance Raman spectra of zeaxanthin In V4. qE-activated zeaxanthin

absorbing at 535 nm (modified from (Ruban et al. 2002)) (1), zeaxanthin bound to PsbS (2),

zeaxanthin in detergent-lipid micelles purified on a sucrose gradent (modified from (Ruban et al.

2002)). The arrows indicate the five main transitions assocated with zeaxanthin activation.

Data provided by Dr Alexander Ruban.

A red-shifted zeaxanthin spectrum has been observed in vivo associated with characteristic

features in the Resonance Raman spectrum (Ruban et al. 2002). The V4 region of the spectrum

arises from wagging vibrations of various C-H groups (Robert et al. 1999), and bound red-

shifted zeaxanthin in vivo displays five new transitions not found in zeaxanthin dissolved in

detergent or solvent. This zeaxanthin "fingerprint" is shown in Fig 4.12 (spectrum 1), in

comparison with the rather featureless spectrum of zeaxanthin in detergent micelles (spectrum

3). The in vitro PsbS-zeaxanthin complex displayed an almost identical Resonance Raman

spectrum to that associated with qE (spectrum 2). The two major bands at 954 and 963 crn'

were the same in vivo as for the PsbS-zeaxanthin complex, although the minor bands varied

slightly in intensity and position in the two spectra.
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4.5 Analysis ofPsbS interaction of Antheraxanthin and Violaxanthin

The binding characteristics of PsbS in relation to the remaining xanthophyll cycle carotenoids,

Antheraxanthin and Violaxanthin, were studied under conditions suitable for zeaxanthin binding

in order to determine if the shifts in absorption spectra seen in section 4.4 were specific to that

pigment.

Analysis of Violaxanthin reconstitution over the pH range from 6 - 8 resulted in maximum

pigment uptake at pH 6 (Fig 4.13, trace 1) with samples incubated at pH 7 and 8 (Fig 4.13, trace

2 and 3) adopting similar absorption properties. However, pigment uptake over the chosen pH

range was of a relatively low efficiency, as significant amounts of pigment remained after

incubation. The peak maxima positions display little variation to the Violaxanthin control (Fig

4.1B).

0.25 .....----------------- --,

c 0.15o
:;::;
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Figure 4.13 - Spectroscopic analysis of PsbS reconstitution with Violaxanthin at pH 6 (black),

350 400 500 550

pH 7 (red) and pH 8 (blue).

The same pH range was employed when analysing Antheraxanthin uptake upon incubation with

PsbS. Absorption efficiency was almost double that of Violaxanthin, with pH 8 proving to be

the most successful (Fig 4.14, trace 1). Uptake at pH 6 and 7 appeared broadly similar (Fig

4.14, trace 2 and 3) and only marginally less than that of pH 8. Again peak maxima for all

spectra identical to the control (Fig 4.1C).
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Figure 4.14 - Spectroscopic analysis of PsbS reconstitution with Antheraxanthin at pH 6 (black),

pH 7 (red) and pH 8 (blue).

4.7 Analysis of reconstituted PsbS interaction with LHCII components using the in vitro

fluorescence quenching technique

4.7.1 Introduction

Manipulating experimental conditions can reduce the fluorescence yield of chlorophyll in

purified PSII light harvesting complexes, and provides a model system for investigating the

mechanism of non-photochemical quenching observed in, intact, chloroplasts and leaves.

Kinetic analysis has been used on data generated from isolated chloroplasts and purified

LHCIIb, CP26 and CP29. This has given rise to a second-order kinetic model for the decrease

in fluorescence with respect to time after the induction of quenching (Ruban et at. 2001;

Wentworth et al. 2001). All pigment protein complexes of the Lhcb family have displayed a

level of quenching in vitro, that is consistent with the extent of qE observed in vivo (Ruban et at.

1996) (Ruban & Horton 1999). As detailed in previous chapters, PsbS has been directly

implicated with qE (Li et al. 2000) and the formation of the 535 nm shift as a result of the

proteins ability to bind exogenous zeaxanthin (Aspinall-O'Dea et at. 2002), a pigment known to

directly modulate the second order rate constant for isolated Lhcb proteins (Wentworth et at.

200 I). In Iight of the work presented thus far, it was therefore possible to study the effects of

the PsbS protein in relation to this model; specifically the ability ofPsbS to modulate the rate of
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fluorescence quenching seen for isolated Lhcb proteins in relation to pH and the presence of
zeaxanthin presence.

4.7.2 Fluorescence Quenching

Isolate LHCIIb exhibits pH-dependent fluorescence quenching characteristic in isolated form

(Ruban & Horton 1999) figure 4.15 (closed circle). The extent of quenching recorded 20

seconds after sample dilution into a reduced detergent medium at a specified pH. The titration

appears to have two components; the first between pH 7 and 5 with the second between pH 5

and 4. The latter which accounts for most of the quenching has an approximate pKa of 4.7. In

the presence of PsbS there is a small shift to 4.9 (Fig 4.15, open circle).

3_5
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Figure 4.15 - Quenching of chlorophyll fluorescence in LHCllb (60f...lg/mlfinal concentration

chlorophyll) as a function of medium pH. (Closed Circle) the effect of reducing the detergent

concentration to 6f...lM,(Open Circle) the effect of 5f...l1of buffered PsbS (1f...lM).Quenching was

initiated by dilution of the complex into a medium containing 60f...lMOM at a specified pH as

described in the text. Quenching was calculated as the change in fluorescence (f'..F) divided by

the fluorescence intensity after 30 seconds (Ft).

The presence of zeaxanthin has previously been shown to shift the pK of LHCITb fluorescence

quenching to a higher pH (Wentworth et al. 2001), as can be seen in figure 4.18 (open circles).

The control sample (closed circles) displays a similar pK to that of LHCIIb in figure 4.15,
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whilst the addition of 20JlM zeaxanthin causes the pKa to rise from 4.7 to 5.1. This value is

increased further when LHCIIb is incubated with 5JlM PsbS resulting in a pKa of 5.4.
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Figure 4.16 - Quenching of chlorophyll fluorescence in isolated CP26 as a function of medium

pH. (Closed Circle) the effect of reducing the detergent concentration to 61-1M,(Open Circle) the

effect of 51-11of buffered PsbS. Quenching calculated as in Fig 4.17.

The quenching kinetics of these samples have previously been shown to display similar

characteristics to qE in chloroplasts (Wentworth et al. 200 1). In all cases the quenching with

LHCIIb fitted a second-order reaction as evidenced by good fits to hyperbolic kinetics
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and linear reciprocal plots (Figure 4.17). Both the rate constant and the maximum quenching

level could be altered with the addition of zeaxanthin or zeaxanthin and PsbS, with the latter

showing the highest level of quenching.
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Figure 4.17 - Kinetics of chlorophyll fluorescence quenching in isolated LHCII. Upper graph,

decrease in fluorescence. Data points were obtained by digitization of chart recorder traces,

and the line represents the best fit generated using equation F=1 /(kt + 1/Fq) + Fu. Lower graph,

second-order reciprocal plot of the data where F is the level of fluorescence and ? values of

0.98 to 0.99. k is the second order rate constant; Fq is the amplitude of quenchable

fluorescence; Fu is the amplitude of unquenchable fluorescence.

To determine if the increase in LHCIIb quenching observed in the presence of zeaxanthin and

PsbS was the result of a hydrophobic interaction or a specific interaction between the three

components, a control experiment using BSA was performed. Again, the titration appears to

have two components; the first between pH 7 and 5 with the second between pH 5 and 4. The
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latter, which accounts for most of the quenching, has an approximate pKa of 4.7. In the

presence ofBSA there is a small shift to 4.6 (Fig 4.18, open circle).

Figure 4.18 - Quenching of chlorophyll fluorescence in isolated LHCllb as a function of medium

pH. (Closed Circle) the effect of reducing the detergent concentration to 6j.lM, (Open Circle) the

effect of 5j.l1of buffered BSA. Quenching calculated as in Fig 4.15.

The effect of zeaxanthin in the presence of LHCIIb was similar to that observed earlier (Fig

4.18, open circle). This value was unaffected by incubation of LHCIIb with 51lMBSA (figure

4.18, Closed triangle). The kinetic analysis of these samples showed that quenching with

LHCIIb fitted a second-order reaction as evidenced by linear reciprocal plots (Figure 4.19), both

displaying similar results to those seen in figure 4.17. However, it can be seen that the presence

of BSA does nothing to enhance the maximum level of LHCIIb quenching in the presence of

zeaxanthin, unlike PsbS.
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Figure 4.19 - Kinetics of chlorophyll fluorescence quenching in isolated LHCII in the presence

and absence of zeaxanthin and BSA. Second-order reciprocal plot of the data where F is the

level of fluorescence and? values of 0.98 to 0.99.

Finally, spectral analysis of the sample containing quenched LHCIIb in the presence of

zeaxanthin and PsbS could be seen to display a peak at 520nm, similar to that seen in Figure

4.10, along with additional peaks at 455 and 480nm (Figure 4.20). Thus, it is evident that the

presence of PsbS and zeaxanthin in a heterogeneous protein environment generate a large shift

in the zeaxanthin spectrum during quenching, even when component concentrations are low.
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Figure 4.20 - Absorption spectrum of quenching LHCllb in the presence of zeaxanthin and
PsbS. Peak maxima shown in the visible region.

4.6 Discussion

Reconstitution of PsbS using zeaxanthin dissolved in ethanol frequently generated an unusual

spectral signature. Previous studies had shown that zeaxanthin would adopt a strong peak

maximum at 380 nm upon aggregation in the presence of water, resulting in a dramatic

reduction in absorption between 400 and 500 nm. However, peak maxima are maintained

within this range with spectral structure similar to that seen for the control. This would indicate

that two populations of zeaxanthin are present in the sample; one bound to PsbS displaying a

normal spectrum with a second highly aggregated species absorbing strongly at ~380 nm. This

issue was effectively overcome with the introduction the highly reproducible and robust

reconstitution technique described in section 4.3. This approach requires the brief incubation of

PsbS (at room temperature), with zeaxanthin deposited as a dry film on the surface of a glass

tube. The latter is produced by drying zeaxanthin in oxygen free nitrogen under sonication (see

Fig 4.4 for details), whilst the volume of pigment used is determined by the concentration of

pigment required to achieve the required ratio (i.e. 2: 1 pigment protein) with PsbS.

The uptake of zeaxanthin by a buffered PsbS sample using this technique appears to saturate

after a ratio of 3: 1 is reached (Fig 4.5, trace 3). The level of increased absorption intensity seen

for the 4: 1 ratio (Fig 4.5, trace 4) is significantly less than that of earlier ratios (traces 1 to 3), an

observation supported by data from the 5: 1 ratio, which lacks any increase in absorption
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intensity suggesting that the maximum zeaxanthin load for a PsbS sample of that concentration

had been attained.

Temperature was also found to have a profound effect upon zeaxanthin binding with very little

uptake being seen below l2oe, perhaps indicating that an energy barrier must be overcome to

encourage efficient binding. Pigment absorption appeared to largely saturate above 30°C, with

the maximum temperature held at 40°C in order to prevent zeaxanthin degradation. Any

attempts to further enhance pigment uptake or spectral shifts using alternative solvent failed. It

is unlikely this is due to zeaxanthin aggregation caused as a result of water contact, and is

perhaps more readily explained in terms of an energy barrier. Drying of zeaxanthin with

different solvents causes the pigment to pack together in different orientations, based on the

polarity of the solvent used. As a result the packing achieved may be unfavourable for binding

to a specific protein (in this case PsbS), and this may be due to an increase in the energy

requirement necessary for pigment binding, hence an larger energy barrier is created. This

would explain why binding appeared so inefficient using dry ethanol, at a temperature normally

responsible for the most efficient uptake of pigment when using absolute ethanol. This theory

would also explain the results obtained using other solvents.

Finally, reconstitution experiments were performed using high concentrations of both PsbS and

zeaxanthin in order to determine if the absorption change at 535nm (Ruban et al. 1993b; Bilger

& Bjorkman 1994) related to the dissipation of excitation energy in PSII in the presence of

PsbS, could be achieve in vitro. This change is thought to result from a strong red shift in the

absorption spectrum of one or two zeaxanthin molecules (Ruban et al. 2002). The shifted

zeaxanthin absorption between 523 and 525 nm compared to ~505 nm in the absence of qE,

gives rise to a bind at 535 nm in the qE difference spectrum. The results of reconstitution

experiments involving high component concentrations (section 4.4.iv) suggests that these

'activated' molecules are bound to PsbS as the pigment-protein complex displays a strong red

shift to ~523 nm, sufficient to generate a 535 nm band. This observation would explain why the

535 nm change is absent from the Arabidopsis thaliana mutant which lacks PsbS (Li et al.

2000).

The CD spectrum of the reconstituted complex has a conserved nature in relation to zeaxanth in

and an altered UV-absorption spectrum for PsbS. This would suggest that the protein provides

a highly polarized framework for zeaxanthin binding, which significantly affects the

photochemical properties of the pigment. Zeaxanthin binding also alters the helical structure of

PsbS, in which all phenylalanine residues are contained. The highest concentration of residues
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can be found in the predicted fourth helix (Wedel et al. 1992; Kim et al. 1992), which may

provide the binding site for zeaxanthin. The enhancement of the Resonance Raman spectrum of

zeaxanthin supports the theory that a strong and specific interaction between zeaxanthin and

PsbS exists, resulting in a particular pigment configuration being established. The changes in

the absorbance and Resonance Raman spectra after reconstitution have the same characteristic

features found in vivo, indicating that this in vitro reconstitution is similar to a process occurring

in vivo. Analysis of the effect of PsbS upon the kinetics of fluorescence quenching in isolated

light harvesting complexes indicates that in the presence of zeaxanthin this protein is capable of

enhancing the rate of quenching, beyond that normally observed for zeaxanthin alone.

Additionally, it is evident that low concentrations ofPsbS can generate the shift in the spectrum

of zeaxanthin to ~520nm in the presence of LHCIIb. This data further supports the suggested

role of PsbS in qE, specifically as a prerequisite for the qE related 535nm spectral shift. A

model for the role of the PsbS-zeaxanthin complex will be detailed in chapter 5.
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General Discussion

5.1 Introduction

The process of photosynthetic light harvesting in higher plants can adapt in response to altered

levels of light quanta. This ability enables the plant to regulate the quantity of light energy

present within the photosynthetic system and ensure that the capacity for CO2 fixation is not

exceeded. Surplus excitation energy present in the antenna system ofPSII is dissipated as heat,

in a process termed non-photochemical quenching, however, the mechanism of this thermal

dissipation remains poorly understood. To develop a greater understanding of the key elements

involved in photo-protection Arabidopsis thaliana mutants were isolated on the basis of

impaired energy dissipation. It became evident that the PsbS protein was essential for the qE

component ofNPQ (Li et al. 2000), whilst light harvesting and photosynthesis were unaffected

by its absence. An exhaustive analysis of this protein in vitro has required a new isolation

technique to be established (chapter 3), which has enabled the basic properties of the protein to

be uncovered whilst providing an ideal platform to study the manner in which PsbS interacts

with the key regulatory components of qE, namely trans-thylakoid Apl-l, zeaxanthin and antenna

complexes.

5.2 PsbS - the relationship with pH

Experiments usmg site-directed mutagenesis uncovered two conserved, protonatable ammo

acids in the PsbS protein (E122 and E226). These residues were shown to be critical elements

in PsbS function (Li et al. 2002), with a double mutant at these loci displaying the most

dramatic phenotype in which effectively all qE had been abolished. A single mutation was also

observed to result in a 60-70% reduction in qE. Despite having such a profound effect upon the

proteins function, the mutations had little effect on PsbS accumulation when compared to wi Id

type, suggesting that the expression and stability of the protein had not been altered.

It was proposed that these residues could bind ft ions; whilst in contrast to the experimental

evidence seen in chapter 3, PsbS was shown to bind the carboxyl modifier DeeD (Dominici et

a1. 2002). Such inconsistency between experimental observations is difficult to reconcile. It

should be noted that the methods employed to isolate PsbS vary significantly and as a result

may be responsible for such differing results. Recently however, PsbS has been shown to

undergo pH-dependent structural changes involving the formation of a homodimer at high pH

levels, which under high light, (hence low pH), breaks down into its constituent PsbS monomers

(Bergantino et al. 2003). This conversion is reversibly induced by light with the resultant PsbS
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monomer or dimer associated with the light harvesting antenna and PSI! core complexes

respectively. Thus, PsbS has been shown to possess protonatable residues essential for its role

in qE, whilst displaying a structural dependence on pH. However, it should be noted that in

vitro the helical structure of the protein is affected by low pH levels (chapter 3), a factor that in

vivo may prevent PsbS from directly sensing AplI changes in Photo system II. Alternatively,

low pH in the thylakoid membrane may not affect PsbS in this manner because acidification is

only present on the lumenal side of the membrane (hence the protein), whereas in vitro this

effect would be applied across the entire protein.

5.3 PsbS - the relationship with the xanthophyll cycle

The evidence described in section 5.2 can be used to further explain the outcome of the

reconstitution experiments detailed in chapter 4. Incubation of PsbS and zeaxanthin high

concentration creates an absorbance shift in the zeaxanthin spectrum at 523 nm, which gives

rise to a band at 535 nm in a calculated difference spectrum (chapter 4) attributed to the

presence of activated zeaxanthin (Ruban et a1.2002), thought to arise through the formation of a

head - to - head zeaxanthin dimer. At lower component concentrations this shift is difficult to

detect, and, in many cases, is not present at all, even though zeaxanthin is bound. However,

spectral analysis of LHCIIb in the presence of PsbS and zeaxanthin (taken after in vitro

quenching measurements at low CMC) reveals a distinct band at ~520nm. Thus, the formation

of activated zeaxanthin is possible at low concentrations of PsbS and zeaxanthin when studying

heterogeneous protein populations.

It is possible to explain these results by considering the ability of PsbS to form homodimers in

vivo (Bergantino et al. 2003). As described above, PsbS forms dimers under low light

conditions when the pH level is high, and violaxanthin is the predominant xanthophyll

population in the thylakoid membrane. An increase in light intensity causes the lumenal pH to

drop and consequently the PsbS homodimer splits. This event correlates with an increase in

violaxanthin conversion to zeaxanthin and the formation of qE and ~535nm. Under these

conditions it is proposed that zeaxanthin is bound by PsbS (Aspinall-O'Dea et a!. 2002), which

subsequently interacts with the light-harvesting antenna ofPSIl (Bergantino et a!. 2003).

As a consequence, interaction between PsbS protein species IS blocked In favour of

heterogeneous interactions, however during reconstitution experiments PsbS is found in a

homogeneous state. Thus, the rapid uptake of dried zeaxanthin by PsbS could well repre ent

binding, however the lack of interaction between PsbS proteins prevents the formation of

activated zeaxanthin and the resultant spectral shift at ~525nm. This would indicate that the
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zeaxanthin dimer is formed by inter- rather than intra-protein pigment interaction. Therefor.

the formation of activated pigment at high component concentrations could result from PsbS-

zeaxanthin being forced to interact with each other due to the sheer quantity of complexe

present in solution. Formation of the shift at ~520nm in a heterogeneous solution at low

component concentration supports this hypothesis and suggests that the PsbS-zeaxanthin

complex favours interaction with other protein species in PSll.

5.4 PsbS - a model for the role ofPsbS in qE

Figure 5.1 describes how events could potentially unfold in vivo. With a reduction in lumenal

pH, the xanthophyll cycle is activated through VDE resulting in violaxanthin deepoxidation.

Simultaneously, PsbS-dimers monomerise and newly formed zeaxanthin is bound by PsbS

preventing feedback inhibition of VDE. It has been shown that increasing the level of PsbS

expression results in elevated deepoxidation as well as NPQ (Hieber et al. 2004), supporting the

theory that the thylakoid lipid phase has a limited capacity for xanthophylls, which would be

responsible for negative feedback on VDE.

H -, Zeaxanthin

Antheraxanthin
Monomerisation -,Protonation Violaxanthin

0( •Dimerisation PsbSProtein
De-protonation

_. qE
H

H

Figure 5.1 - Proposed mechanism of formation for the PsbS-Zeaxanthin
complex.

The PsbS-zeaxanthin complex then performs its required function in qE; however, partly due to

the absence of structural information regarding this proteins location in PSII, the mechani m f

hi . I The absence of PsbS from the crystalline areas of the th lakoidt IS process remains unc ear.

membrane (Nield 2000) suggest that the protein may be present in less ordered area of the

membrane. The formation of zeaxanthin has been shown to reduce the rigidity of th thylakoid



Cl
membrane and PsbS itself may display a significantly less ordered structure compared to the

rest of the Lhcb family as a result of reduced chromophore binding. It is likely that PsbS play

a key role in the effects observed as a result of zeaxanthin formation in the thylakoid membrane,

and two potential functions for the protein have been suggested:

:'Ch~ple~~Five--- -~-:. -. ~ - .,~
Genera! DisclIssion---"

1. PsbS is the unique site of rapidly forming qE

2. PsbS is necessary to enable qE to take place efficiently

The apparent absence of pigments upon isolation of PsbS suggests that the protein is incapable

of acting as the unique site of qE. There is no evidence that PsbS in vivo or in vitro is able to

bind chlorophylls (Dominici et al. 2002), although that alternative reconstitution methodology,

as studied in this thesis, could yield different results. The presence of PsbS is, however,

important for the proper formation of qE, and may promote, or assist, conformational change in

neighbouring LHC proteins resulting in quenching, enhancing the efficiency of qE. The

observation that PsbS stimulates quenching of LHCIl fluorescence in vitro is consistent with

this suggestion.

PsbS has been proposed to act either directly or indirectly to dissipate excess excitation energy

during quenching. A model in which PsbS is the site of Apl-I- and xanthophyll-dependent

quenching, rather than other pigment-binding LHC proteins from PSII, suggests that protonation

of PsbS results in a conformational change leading to quenching of singlet excited chlorophyll

via direct energy transfer from chlorophyll to zeaxanthin (Demmig-Adams 1990; Owens, 1994)

which is bound to PsbS. Alternatively, zeaxanthin-dependent quenching could occur within the

protein between a chlorophyll dimer or a chlorophyll molecule and the protein. However, in

order for PsbS to act as a direct quencher and form the site of qE it would be necessary for the

protein to bind both chlorophylls and xanthophylls. Evidence reported here shows that PsbS

can bind zeaxanthin in favour of antheraxanthin and violaxanthin. Nontheless, it is possible that

the accelerated quenching rate observed for LHCIIb in the presence of PsbS and zeaxanthin

(chapter 4) is a result of the direct quenching model as PsbS may have bound free chlorophyll

pigments present in the LHCIIb preparation. However it is perhaps more likely the PsbS

accelerates quenching by the introduction of 'activated' zeaxanthin.

PsbS may also act indirectly to support conformational changes and quenching that occur in

adjacent LHC proteins in the PSII antenna. Evidence suggests that isolated light harve ring

proteins possess intrinsic quenching capabilities (Ruban et a!. 1996; Wentworth et a!. 2000),

similar to those seen for qE in vivo (Horton et al. 1996), and it is proposed that interacti n

between PsbS and one or more of these proteins controls the dissipation proce (Horton et a!.
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2000). The relationship between thylakoid Apl-l and zeaxanthin, ill which the latter is an

allosteric regulator of qE (Ruban et al. 2001; Wentworth et al. 2001), indicates that they bind to

the same protein or protein complex. The evidence presented in this thesis would suggest PsbS

is an excellent candidate for this protein, and its ability to form a heterogeneous complex in vivo

could be regulated by the protonation and binding of zeaxanthin to PsbS. According to the

explanation proposed in section 5.2 such a heterogeneous complex would be essential for

zeaxanthin activation. The absorbance change detected at 683 run upon quenching of isolated

light harvesting complexes, could arise in vivo due to the formation of such a quenching

complex involving PsbS, in which activated zeaxanthin mediates thermal dissipation, It should

be noted, however, that this absorbance change can occur in vitro in the absence of PslrS. The

PsbS protein may also have a role in arranging supermolecular organisation to allow quenching

to occur. The formation of a quenching complex described above would require space, and

PsbS could perhaps promote the conformational change required in adjacent complexes by

providing such room, prior to the formation of any complex. It has been observed when

preparing PSII particles from npq4 mutant plants, that an increased detergent concentration is

required to solublise the membranes (personal communication Dr A Ruban and Dr M

Wentworth). It has been suggested that the absence of PsbS results in closer packing PSII

membranes forming significantly more rigid bilayer.

5.5 Conclusion

The research carried out in relation to non-photochemical quenching aims to eludicate the

mechanism by which excess energy present in the light-harvesting antenna system of PSII is

dissipated. This thesis has added to the understanding of the PsbS protein in relation to its

interaction with the regulatory components of qE. However, every new discovery asks as many

questions as it provides answers, and much work still needs to be done in order to discover the

mechanism of thermal dissipation and the exact role the PsbS protein plays in this process,

Characterisation of chromophore binding similar to that discussed here for xanthophyll cycle

carotenoids would be an essential step forward. A structural analysis of the PsbS protein and

the affect of pigment binding and protonation should be attempted using electron microscopy

and FTIR whilst further efforts should be made to locate PsbS within the thylakoid membrane,,
Characterisation of the PsbS effect in relation to the in vitro quenching model using increa ingly

. ..' I t develop a greater understandino of thecomplex protem combinations IS a so necessary 0 b

manner in which PsbS can influence adjacent protein complexes in its environment. The u e of

femtosecond spectroscopy (Fleming et at. 1997) could also uncover the pathv a which

. . . d long prior to thermal dissipation. Individually the e mea ure wi l]excrtation energy IS passe a

d b dl h knowtedze of photosynthesis however, it will take a collecti e eff rtun ou te y en ance our b '
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to fully unravel not only the complete PsbS story but, more importantly, the mechanism of qE in

higher plants.
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Dissipation of excess light energy in plant photosynthetic mem-
branes plays an important role in the response of plants to the
environment. providing short-term balancing between the inten-
sity of sunlight and photosynthetic capacity. The carotenoid zeax-
anthin and the photosystem II subunit PsbS play vital roles in this
process. but the mechanism of their action is largely unexplained.
Here we report that the isolated photosystem IIsubunit PsbS was
able to bind exogenous zeaxanthin. the binding resulting in a
strong red shift in the absorption spectrum. and the appearance of
characteristic features in the resonance Raman spectrum and a
distinct circular dichroism spectrum. indicating pigment-protein. as
well as specific pigment-pigment. interaction. A strong shift in the
absorption spectrum of PsbS phenylalanine residues after zeaxan-
thin binding was observed. It is concluded that zeaxanthin binding
to PsbS is the origin of the well known energy dissipation-related
535-nm absorption change that we showed in vivo to arise from
activation of 1-2 molecules of this pigment. The altered properties
of zeaxanthin and PsbS that result from this interaction provide the
first direct indication about how they regulate energy dissipation.

Plants possess a variety of features that enable them to adjust
to changes in the intensity of light encountered under natural

conditions (I. 2). These features serve not only to optimize
photosynthesis but to provide protection from the damaging
effects of absorbed radiation. Dissipation of excess excitation
absorbed by the light-harvesting antenna of plant photosystem II
(PSII) provides a dynamic response to short-term changes in
light intensity (3. 4). It has been shown to be an important
regulatory mechanism that impacts plant fitness (5). Energy
dissipation is detected as the nonphotochemical quenching of
chlorophyll fluorescence (qE) and is regulated by the transthy-
lakoid pH gradient (ApH) and the xanthophyll cycle. the revers-
ible deepoxidation of violaxanthin into zeaxanthin (3. 4. 6).
Zeaxanthin accumulates under conditions of excess light because
of the aetivation of violaxanthin deepoxidase by ApH generated
under these conditions (6). In order for zeaxanthin to carry out
its role in qE. it is bound to one or more of the proteins that
eonstitute the LHCII (light-harvesting complexes of PSII)-PSII
macromolecular complex (7. 8). This binding. which has the
eharacteristics of an allosteric regulator of qE (9. 10). depends
on or is stimulated by the increase in thylakoid ApH (11).
Formation of qE is correlated with an absorption change.
wavelength maximum =535 nm (12. 13). which we showed
recently to be caused by an unusually large red shift in the
absorption spectrum of one to two molecules of zeaxanthin to
".,525 nm (14). This absorption change was considered to arise
from binding to the specific site in PSII involved in regulating qE,
which was suggested to be on the PsbS subunit. PsbS has an
obligatory role in qE (15). and it therefore has been suggested
to be the site at which protons and/or zeaxanthin bind. To date.
however, the evidence that PsbS can bind any pigments is still
controversial (16, 17); there is certainly no evidence that PsbS
can bind zeaxanthin. and therefore the identity of this key
binding site of zeaxanthin is unknown.

www.pnas.org/cgi/doi/l0.l073/pnas.252S00999

One obstacle to the elucidation of the role of PsbS is its
extreme hydrophobicity. which leads to problems of aggregation
when isolated by using established methods of fractionation of
thylakoid membranes (17). Here we describe a rapid procedure
for preparing PsbS from spinach PSII membranes that yields a
pure. soluble protein. amenable to the study of pigment binding
in vitro. Itwas found that the PsbS preparation. when mixed with
zeaxanthin. was able to bind this pigment. Moreover. after
interaction with PstrS, zeaxanthin showed a strong red shift in its
absorption spectrum and the appearance of a characteristic
resonance Raman (RR) spectrum almost identical to those
observed after qE formation in vivo. Hence. the activated state
that gives rise to the 535-nm change. and which is a key event in
the dissipation of excitation energy in plants. has been recon-
stituted in vitro.

Methods
PSII membrane fragments were prepared from spinach thyla-
koid membranes essentially as described (18). For PsbS prepa-
ration. the PSII membrane fragments (2 mg of total chlorophyll)
were extracted with 1% n-dodecyl {3-D-maltoside (OM). incu-
bated on ice for 50 min, stirred occasionally, and centrifuged at
10.000 X g for 20 min. The pellet was extracted with 0.5% sodium
cholate (Sigma), pH 7.0/250 mM NaCI (19). incubated in the
dark on ice with vigorous stirring for 5 min. and centrifuged at
10,000 X g for 10 min. The supernatant was passed through a
Sephadex G-25 column. and eluted fractions containing PsbS
were stored in a solution of elution buffer (25 mM Hepes, pH
8.0/0.01 % OM). The protein concentration was determined
from the absorption spectra of the sample by using the OD of
phenylalanine at 275 nm and taking into account the phenylala-
nine-to-protein ratio in PsbS. Protein samples were solubilized
and separated by 15% denaturing SOS/PAGE using standard
procedures (20). Proteins were transferred to a poly(vinylidene
difluoride) membrane (Hybond-P, Amersham Pharmacia) in a
Mini Trans-Blot transfer cell (Bio-Rad) at 30 rnA for 12 h.
Membranes were probed with an antibody raised in rabbit
against a 12-aa synthetic peptide (GDRGRFYDEPTT) that was
completely specific to spinach PsbS. The primary antibody was
detected by using a horseradish peroxidase-labeled secondary
antibody using an ECL Plus kit (Amersham Pharmacia). Chemi-
luminescence was detected on Hyperfilm ECL (Amersham
Pharmacia) photographic film and developed for 20 min. Zeax-
anthin was purified from orange peppers and dried onto the
surface of a glass tube under a stream of N~. Binding of
zeaxanthin to PsbS was achieved by adding 1 ml of 9 J,LMPsbS
solution to a glass tube containing 14 nmol of dried zeaxanthin
and mixing for 30 s with sonication in an ultrasonic bath.

Thispaper was submitted directly (Track II) to the PNASoffice.

Abbreviations: PSII.photosystem II; ~pH. transthylakoid proton gradient; qE. nonphoto-
chemical quenching dependent on ~pH;lHClI. light·harvesting complexes of PSII;RR.
resonanceRaman;OM. n-dodecyl /l·o·malto,ide; CD.circular dichroism.
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Fig. 1. Purification of PsbS. Silver-stained SDSpolyacrylamide gel showing
spinach thylakoids (lane 1). PSIImembrane fragments (lane 2). pellet after
extraction with OM (lane 3). supernatant after extraction with cholate (lane
4). and after passing down a Sephadex G-25 column (lane 5). AWestern blot
of lane 5with anti-PsbS antibody isshown in lane 6. Molecular weight markers
(See Blue. Invitrogen) are shown in the far-left lane.

Sucrose-gradient centrifugation was carried out as described
with a OM concentration of 0.3% (8). Absorption spectra were
recorded by using a Cary 500 spectrophotometer at room
temperature. Circular dichroism (CD) spectra were obtained by
using a Jasco J810 spectropolarimeter. RR spectra were re-
corded as described (14).

Results
Extraction of PSII membrane fragments (Fig. 1, lane 2) with DM
leaves a pellet enriched in a protein that has an apparent
molecular mass of 22 kDa (lane 3). Treatment of this sample with
cholate, shown to be useful for extracting PsbS (19), brings about
solubilization of many of the proteins in the OM pellet, with
some apparent enrichment of this 22-kDa protein (lane 4). This
cholate extract was passed through a Sephadex G-25 column,
yielding a sample that was assessed to be 90% pure in this protein
from observation of the silver-stained gel (lane 5). The protein
reacts with an antibody raised against a PsbS peptide (lane 6)
that does not crossreact with any other PSII protein. We
conclude that this represents a highly purified preparation of
PsbS. The absorption spectrum of this PsbS preparation shows
that it contained no bound pigment; if the absorption spectrum
shown in Fig. 24 is extended into the visible region, there is no
recorded absorption from either carotenoid or chlorophyll. In
contrast, a sample of LHCII at the same protein concentration
would give an OD of -20 in the red region of the spectrum.

Spectroscopic analysis was used to further establish the purity
of the PsbS preparation. The published amino acid sequence of
spinach PsbS indicates the presence of 17 phenylalanines and 1
tyrosine (21, 22). By using the extinction coefficients at 257 and
274 nm of 0.19 x 1(}~and 1.25 x 1(}~M-I·m-I, respectively, a
theoretical absorption ratio of phenylalanine to tyrosine of 2.5
is predicted. The absorption spectrum of the PsbS preparation
was deconvoluted to show the contributions from phenylalanine
and tyrosine (Fig. 2A), and these data gave a phenylalanine/
tyrosine ratio of 2.0. A very minor contribution from tryptophan
(not present in the PsbS sequence) at 288 nm is evident, but given

16332 I www.pnas.org/cgi/doi/l0.l073/pnas.252500999
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Fig.2. Absorption (A) and CD(8) spectra ofthe preparation of purified PsbS.
The absorption spectrum was deconvoluted. revealing the bands at 257 and
274 nm arising from phenylalanine and tyrosine. respectively.

the large extinction coefficient of this amino acid, the level of
contamination by other proteins would appear to be minimal.
The CD spectrum of the PsbS preparation shows the presence of
a secondary a-helical structure with characteristic minima at 208
and 222 nm (Fig. 28), providing evidence that the protein was
not denatured and suggesting that it had been isolated in a native
form.

We tested whether purified PsbS would bind zeaxanthin. For
this, zeaxanthin deposited as a dry film on the surface of a glass
tube was washed with a solution of PsbS. (This procedure was
found to be more satisfactory than mixing zeaxanthin dissolved
in ethanol with the PsbS preparation, although qualitatively
similar results were obtained with both methods.) The mixture
then was analyzed by sucrose-gradient centrifugation, and it was
found that 60% of the zeaxanthin was located in the PsbS-
containing band at =0.3 M sucrose. Very little free carotenoid
was detected. It was concluded that PsbS was able to bind
zeaxanthin to form a PsbS-zeaxanthin complex. We estimated
the molar ratio of zeaxanthin/PsbS to be =2:1 in this complex.

Zeaxanthin dissolved in ethanol has a characteristic absorp-
tion spectrum with maxima at 482, 454, and 428 nm (Fig. 3A,
trace 1). The positions of these maxima can be shifted depending
on the polarity of the solvent, the 0-0 transition at 482 nm in
ethanol shifting to 511 nm in CS2 (14). When zeaxanthin and
PsbS are mixed, the absorption spectrum of zeaxanthin was
altered dramatically; there was a strong red shift, with the 0-0
absorption maximum position appearing at =523 nm (Fig. 38,
trace 1). The derivative spectrum shows maxima at 525, 487, and
450 nm, with evidence of a secondary band at =536 nm (Fig. 38,
trace 2). It should be noted that mixing of zeaxanthin with the
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Flg.3. (A) Absorption spectra of zeaxanthin in ethanol (1) and in detergent
buffer used in reconstitution experiments (2). (8) 1, Absorption spectrum of
PsbS reconstituted with zeaxanthin; 2, second derivative of spectrum 1; 3, CD
spectrum of PsbS reconstituted with zeaxanthin; 4, simulated CD spectrum of
two excitonically coupled zeaxanthin molecules with the higher and lower
exciton components at 507 and 536 nm, respectively.

aqueous buffer minus PsbS causes a quite different effect (Fig.
3A. trace 2): the appearance of tbe slightly blue-shifted bands,
arising probably from some aggregation of zeaxanthin. similar to
that described (23). A spectrum the same as trace 2 was obtained
when zeaxanthin was mixed with BSA dissolved in buffer (not
shown). Under the same reconstitution conditions. there was no
evidence of formation of a complex between violaxanthin and
PsbS; there was no difference between the absorption spectra of
violaxanthin mixed with PsbS and with the detergent buffer
alone.

The PsbS-zeaxanthin complex displayed a CD spectrum not
found for either constituent alone. There were positive bands at
491 and 536 nm and a strong negative band at 380 nm (Fig. 38.
trace 3). These negative and positive symmetrical features can be
attributed to the negative and positive Cotton effects of exci-
tonically coupled pigments (24), suggesting that two zeaxanthin
molecules are interacting. Indeed. because the CD spectrum has
a differential nature. it can be modeled by using two shifted-
absorption spectra. Fig. 38 (trace 4) represents the difference
between spectrum I and the same spectrum with a I5-nm blue
shift. It is clear that both the negative and positive parts resemble
those of the CD spectrum (trace 3). The only difference is that
the positive group of bands is better resolved. and there is a clear
minimum at 507 nrn, the higher excitonic component. This
difference could be due to a presence of the band at 525 nrn,
which is seen clearly in the second derivative absorption spec-
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Fig.4. UV absorption spectrum of PsbS reconstituted with zeaxanthin (1)
and a (PsbS ! zeaxanthin) (PsbS only) absorption difference spectrum (2).

trum (trace 2). This transition could belong to a monomeric
zeaxanthin bound to the protein. These features of the CD
spectrum demonstrate that PsbS can exert strong effects on the
properties of zeaxanthin. indicative of binding.
It was noted also that the absorption spectrum of PsbS in the

UV region was altered by the presence of zeaxanthin; the
absorption band at 258 nrn, arising mainly from phenylalanine
(see Fig. 2A), was shifted to 280 nm (Fig. 4, spectrum I). The
conserved nature of the corresponding difference spectrum
shows that the change can be explained by a red shift in a
population of phenylalanine residues in the PsbS sample (Fig. 4.
spectrum 2). This is further evidence of a rather specific inter-
action between zeaxanthin and PsbS.

In vivo, the appearance of the red-shifted zeaxanthin was
associated with characteristic features in the RR spectrum (14).
The 1/4 region of the RR spectrum arises from wagging vibrations
of various C-H groups (25). and bound red-shifted zeaxanthin in
vivo displays five new transitions not found in zeaxanthin dis-
solved in detergent or solvent. This zeaxanthin "fingerprint" is
shown in Fig. 5 (spectrum I), in comparison with the rather
featureless spectrum of zeaxanthin in detergent micelles (spec-
trum 3). The in vitro PsbS-zeaxanthin complex displayed an
almost identical RR spectrum to that associated with qE (spec-
trum 2). The two major bands at 954 and 91'l3cm -I were the same
in vivo and for the PsbS-zeaxanthin complex, although the minor
bands varied slightly in intensity and position in the two spectra.

Discussion
The dissipation of excitation energy in PSll, qE. correlates
strongly to an absorption change at 535 nm (12, 13). Recently
we showed that the 535-nm change could be explained by a
strong red shift in the absorption spectrum of one to two
molecules of zeaxanthin (14). The appearance of red-shifted
zeaxanthin absorbing at 523-525 nm, compared with ""505 nm
in the absence of qE, gives rise to a band at 535 nm in the qE
difference spectrum. Here we provide evidence to support the
hypothesis that this "activated" zeaxanthin is bound to PsbS.
because we successfully reconstituted a zeaxanthin-PsbS com-
plex that shows a similarly strong red shift to =523 nm. This
shift was found to be sufficient to give rise to a 535-nm band
in a difference spectrum calculated by subtracting an absorp-
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Fig.5. RR spectra of zeaxanthin in •.•. I, qE·activated zeaxanthin absorbing
at 535 nm (modified from ref. 14). 2, zeaxanthin bound to PsbS obtained as
described for Fig. 3; and 3, zeaxanthin in detergent· lipid micelles purified on
a sucrose gradient (modified from ref. 14). The arrows indicate the five main
transitions associated with zeaxanthin activation.

tion spectrum of "nonactivated" zeaxanthin, simulated by
using a spectrum recorded in CS! as described ( 14), Therefor~,
these data represent the first direct link between zeaxanthin
and PsbS, which both play vital roles in qE (6, 15). The. data
also provide an explanation of why the 535-nm change IS a~-
sent in the npq4 mutant of Arabidopsis. which lacks this
protein (15).
The zeaxanthin-PsbS complex has several important features.

In addition to the large red shift in the absorption spectrum of
zeaxanthin, there is a strong CD spectrum of zeaxanthin with a
conserved nature and an alteration in the U'V-absorption spec-
trum of the protein. These features indicate that PsbS provides
a highly polarizing environment that strongly affects the photo-
physical properties of zeaxanthin and, convers~ly, that zeax.an-
thin binding alters the structure of PsbS, precisely the helical
regions, which contain all the phenylalanine residues. Specifi-
cally, it is in the predicted fourth helix, present in PshS hut not
in the Lhcb proteins (21, 22), that numerous phenylalaOl~e
residues are found, suggesting that this region of the protem
provides the binding site for zeaxanthin. V~ol~anthin does not
appear to bind to this site. In l'im, zeaxanthin IS bound to all the
Lhch proteins (7, 8), and in vitro zeaxanthin can induce fluores-
cence quenching in these proteins (26-28). However, thus far we
have not observed any red shifts in the absorption spectra of
zeaxanthin bound to these proteins (29). It is interesting that in
Chlamydomonas, mutation of the Lhcbm1 protein results in a
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loss of qE (30). It is possible that in this organism, the much
weaker qE (compared with higher plants) is controlled hy
zeaxanthin binding to LHCII.

The features of the CD spectrum of the zeaxanthin-PsbS
complex can he interpreted as resulting from two processes.
First, there is an excitonic interaction between two bound
zeaxanthin molecules (507- and 535-nm components of a split-
ting), consistent also with the upper estimate of two molecules
bound (both in vitro and in \'ivo). Second, there is binding of a
single pigment with absorption shifted to =520 nm. The pres-
ence of these two effects indicates some heterogeneity in the
binding stoichiometry in the complex. The enhancement of the
RR spectrum of zeaxanthin provides further compelling evi-
dence of a strong and specific interaction between zeaxanthin
and PshS, which establishes a particular configuration of the
bound zeaxanthin. Moreover, the changes in the absorption and
RR spectrum after reconstitution of the zeaxanthin-PshS com-
plex have the same features found in \';l'O, suggesting that the
binding of zeaxanthin to PsbS in vitro is mimicking a similar
process occurring in l·il'O.

These conclusions add considerably to the understanding of
the chain of events that lead to energy dissipation in PSII under
excess light conditions. The two factors that control this process
are the thylakoid ~pH and the deepoxidation of violaxanthin to
zeaxanthin. The interaction between these factors, in which
zeaxanthin is an allosteric activator of qE (9, 10), suggests that
they bind to the same protein or protein complex. Recently,
evidence has been obtained that certain carboxyl amino acids on
PshS arc essential for qE formation (3J). Here we show that PsbS
can bind zeaxanthin, and the features of this binding are con-
sistent with a similar hinding associated with ill I'it·o qE (14),
suggesting that the qE-associated activation of zeaxanthin arises
because of its binding to PsbS. We should point out that
zeaxanthin binding to PsbS in vitro was not pH-dependent (data
not shown). We suggest that in l'il'O, binding is prevented by
structural constraints imposed by the local environment in the
thylakoid membrane. A conformational change in PshS induced
by protonation of these carboxyl amino acids would be necessary
then for zeaxanthin binding.

The subsequent event, how the protonated PsbS-zeaxanthin
complex is able to interact with the antenna chlorophyll to bring
about dissipation of excited states, of course, is not resolved.
However, given the abundant evidence of the intrinsic quenching
capabilities of isolated light-harvesting proteins (26-28) and the
similarities between this process and in vil'O qE (.1), the most
favored hypothesis is that an interaction between PsbS and one
or more of these proteins controls the dissipation process (32).
We suggest that this interaction is controlled in turn hy the
protonation and binding of zeaxanthin to PsbS. The successful
reconstitution of PshS and zeaxanthin reported here should
enable further testing of this hypothesis.
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