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SUMMARY 

The importance of studying the behaviour of soil at small strain lc\·e!s « 0.1 %) 

has been increasingly recognised in recent years. In thc laboratory, t.ests are usually 

conducted on tube samples retrieved from the ground, which inevitably suffer from 

disturbance. 

This thesis describes an investigation of the effccts of sampling disturbance on 

the small strain behaviour of one-dimensionally consolidated kaolin. Following the 

suggestion of I3aligh (1985), tube sampling disturbance was simulated by applying a 

strain cycle in the triaxial cell. Comparative tests on 'disturbed' and 'undisturbed' 

specimens were conducted in a specially designed 100 mm hydraulic triaxial appa­

ratus. Tests were also carried out in a 38 mm triaxial cell to study the effects of 

loading rate and overconsolidation ratio on the small strain deformation behaviour 

of isotropically consolidated kaolin. 

In the 100 mm cell the local axial and radial strains were measured using 

proximity transducers mounted on adjustable fittings, enabling small strains to be 

measured accurately at any stage of a test. The axial strain was also measured 

between the end caps and externally. Comparisons of these three axial strain mea­

surements showed that, under favourable conditions when bedding errors arc neg­

ligible, end cap or external strains may be considered satisfactory. Bedding crrors 

are reduccd by consolidating the specimen to a high stress le\·el and providing a 

rigid connection to the top cap. External strains must be corrected for equipment 

compliance. 

Tests for the effects of sampling disturbance indicated that reconsolidating 

disturbed specimens to their initial stress conditions results in an adequate recov-
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cry of the small strain stiffness, but yields a higher stiffness at larger strains. The 

recovery of the small strain stiffness was better in compression tests than in exten­

sion tests and further work is required to understand this finding. Specimens were 

observed to approach failure during the simulation of sampling disturbance. 

For isotropically consolidated specimens, the relationships betwccn normalised 

small strain stiffness at a given strain level and both overconsolidation ratio and rate 

of shearing were linear on a semi-logarithmic scale. This is in agreement with ex­

pectation on the basis of most previous research, but the effect of overconsolidation 

ratio requires further study using one-dimensionally consolidated specimens. 

The experimental results were compared with the predictions from t.heoretical 

models based on critical state soil mechanics. These comparisons showed that the 

behaviour of kaolin under monotonic loading can be adequately predicted, e\'en at 

small strains. Encouraging predictions were also made for behaviour during the 

loading cycle, as sampling disturbance was simulated. However, futher theoretical 

developments are needed to take into account the rate of shearing. The critical state 

parameters derived from the present tests and used in the model predictions showed 

close agreement with those obtained by other researchers. 

Xll 



LIST OF SYMBOLS 

Alphabetical Letters 

a Lowerbellofram seal area 

A Upper bellofram seal area 

Ac Cross-sectional area of triaxial specimen 

Ar Tube sampler area ratio 

b Function in AI-Tabbaa's model 

bmax 1'1aximum value of b 

B Skempton's pore water pressure coefficient 

Bs Average tube sampler diamater 

Bi Inside diameter of tube sampler 

Bo Outside diameter of tube sampler 

C Constant used in Wroth's stiffness-OCR relationship 

I 

C Drained shear strength 

C1 Constant relating increments of stiffness and rest period 

ell. Undrained shear strength 

D Degree of disturbance 

D, Specimen diameter 

E Young's modulus 

X III 



Eus Undrained secant stiffness 

Eut Undrained tangent stiffness 

f Step number during the application of isotropic consolidation pressure 

F Flow rule function 

Fd Deviator force 

G Shear modulus 

G' Drained shear modulus 

h Hardening function in AI-Tabbaa's model (= H + ho) 

ho Hardening function in AI-Tabbaa 's model 

11 Hardening function 

k Inward movement of radial strain target 

](' Drained bulk modulus 

](0 At rest pressure coefficient (normally consolidated soils) 

](Ou At rest pressure coefficient (overconsolidated soils) 

1 inward movement of radial strain target 

L Specimen height 

Lo Specimen height before consolidation 

Lc Consolidated specimen height 

Lg Specimen gauge length 

xiv 



Lye Consolidated specimen gauge length 

m Parameter used in the evaluation of /{Ou. 

rno Parameter used in the evaluation of /{Ou. 

M Slope bf the cri tical state line in q, p' space 

n Polynomial degree 

ng Number of points in each set of da.ta used for ta.ngentstiffncss evaluation 

ni Number of points defining increment size during tangent stiffness evaluation 

nn Number of steps for the application of isotropic consolidation pressure 

N Specific volume at p' = 1 kPa (isotropic consolidation) 

No Specific volume at p' = 1 kPa (anisotropic consolidation) 

OCR Overconsolidation ratio (= a~max/a~) 

DCRp Overconsolidation ratio (= P~ax/P') 

p Mean total pressure 

, , 
p' Mean effective pressure (= CT I ~2CT 3 ) 

P~ Mean effective pressure prior to loading 

Pld Mean effective pressure after one-dimensional consolidation 

Pi Mean effective pressure after isotropic consolidation 

, 
Pa Mean effective pressure after sampling 

, 
Pb Mean effective pressure before sampling 

xv 



'11' Mean effective pressure after consolidation rc 

P:s Mean effective pressure at critical state for a given v 

p~ Mean effective pressure prior to consolidation 

P~lax Maximum mean effective pressure applied to a soil specimen 

p~ Coordinate of the centre of inner surface in Al-Tabbaa's model 

r Inside radius of the 100 mm cell steel ring 

R Ratio of sizes of inner and state boundary surfaces in Al-Tabbaa's model 

Rl Rate of axial stress application 

R3 Rate of radial stress application 

Rs Specimen radius 

S Scalar quantity in Al-Tabbaa's model 

t Time 

ts Wall thickess of tube sampler 

tT Thickness of triaxial cell steel ring 

u Pore water pressure 

U avg Average pore water pressure 

q Deviator stress (= 0'1 - 0'3) 

qOt Coordinate of the centre of inner surface in AI-Tabbaa's model 

v Specific volume 

xvi 



V Lower chamber volume in the triaxial cell 

V/t Specific volume at p' = 1 kPa (overconsolidated soils) 

x Upper proximity transducer target displacement 

X Coefficient for M in Pender's model 

y Lower proximity transducer target displacement 

z Submersible LVDT armature displacement 

~v \Veight of moving parts in the Bishop \Vesley triaxial cell 

Greek Symbols 

a Exponent of OCR for the determination of I<ou 

/3 Output reading from a proximity transducer 

/31 Parameter used for the evaluation of I<ou 

/3t Output reading from a proximity transducer when no target placed opposite to 

it 

Cf. A vera.ge local axial strain 

(max Maximum axial strain during tube sampling 

£v Volumetric strain 

(. Shear strain 

(e Elastic volumetric strain v 

f.e Elastic shear strain • 

xvii 



Ca Axial strain 

tr Average radial strain 

fee Average end cap axial strain 

ter A verage external axial strain 

tt Tangential strain in the 100 mm cell steel ring 

71 Stress ratio q/p' 

7]0 Stress ratio q/p' during one-dimensional consolidation 

q/ Effective angle of friction 

r Specific volume at critical state with p' = 1 kPa 

/\, Slope of the swelling line in v, In p' space 

/\,* Initial slope of the swelling line in In v, In p' space 

). Slope of normal consolidation line in v, In p' space 

). * Slope of the normal consolidation line in In v, In [I' space 

v Poisson's ratio 

Vi Effective or drained Poisson's ratio 

1jJ Exponent of the hardening function in Al-Tabbaa's model 

0"1 Vertical pressure 

0'3 Radial pressure 

, 
0'1 Vertical effective pressure 

xviii 



I 

0"3 Radial effective pressure 

O"~e In-situ vertical preconsolidation pressure 

O'le Lower chamber pressure 

0'3i Initial radial pressure prior to consolidation 

O"t Tangential stress in the 100 mm cell steel ring 

Subscripts 

cs Critical state 

nc Normally consolidated 

f Final 

1 Initial 

c Current 

1 Strain on one side 

Abbreviations 

o C Degree Celci us 

LVDT Linea.r variable differential transformer 

hr Hour 

m Meter 

XIX 



kN Kilonewton 

pm Micron 

% Percenta.ge 

mm Millimeter 

N Newton 

II Absolute value 

In Natural logarithm 

log Logarithm base 10 

xx 



LIST OF FIGURES 

Chapter 1 

Figure 1.1 Definition of stiffnesses. 

Figure 1.2 Comparison of variation of tangent and secant stiffnesses with strain. 

Figure 1.3 Critical state model-State Boundary Surface. 

Figure 1.4 Yield and bounding surfaces in AI-Tabbaa's model. 

Chapter 2 

Figure 2.1 Definitions of Area ratio (a/A) and Inside Clearance ratio (lCR) 

Figure 2.2 Straining history at centreline of simple sampler (after Baligh et al 

(1987)). 

Figure 2.3 Perfect sampling of normally consolidated and heavily overconsolidated 

soil (after Hight et al (1985)). 

Figure 2.4 Strain at in-situ overburden stress from tests on high quality clay sam­

ples (after Lacasse (1985)). 

Figure 2.5 Comparison of ideal and perfect sampling disturbance effects on undrained 

behaviour of normally consolidated rescdimentcd Boston blue clay (after I3a­

ligh ct al (1987)). 

Figure 2.6 Effects of change in stress path direction on stiffness response (after 

Atkinson ct al (1989)). 

xxi 



Figure 2.7 Reconsolidation effects on ideal sampling disturbancc of normally COIl­

solidated resedimented Boston DIue clay (aftcr Baligh et al (1987)). 

Figure 2.8 Variation of normalised stiffness for drained and undrained tests on 

Lower Cromer Till (after Gens (1983)). 

Figure 2.9 Diagrammatic layout of the conventional triaxial cell. (a) Bishop and 

Henkel (1962); (b) Bishop and Wesley (197.5). 

Figure 2.10 Sources of errors in external strain measurement (after Jardine et al 

(1984)). 

Figure 2.11 Effect of bedding error on the shape of the st ress-strain curve. 

Figure 2.12 Misalignment in the triaxial cell. (a) due to specimcn; (b) due to 

apparatus (after Baldi et al (1988)). 

Figure 2.13 Right cylinder assumption and actual deformation of a triaxial speci-

men. 

Figure 2.14 Effect of end restraint on stiffness in the triaxial tcst (after Maguire 

(1975)). 

Figure 2.15 The use of LVDTs for local axial strain measurement (after Costa 

Filho (1985)). 

Figure 2.16 The use of electrolytic levels for local axial strain measurement (after 

Durland and Symes (1982)). 

Figure 2.17 The usc of proximity transducers for local axial and radial strain mea­

surement (after Hird and Yung (1989). 

Chapter 3 

xxii 



Figure 3.1 I3ellofram area ratio. 

Figure 3.2 Top cap-load cell connection. (a) curved recess; (b) fiat surface. 

Figure 3.3 Schematic representation of the control system for the 100 mm cell. 

Figure 3.4 The 100 mm triaxial apparatus. 

Figure 3.5 Components of the top cap-load cell connection in the 100 mm appa­

ratus. 

Figure 3.6 Schematic representation of the control system for the 38 mm appara­

tus. 

Figure 3.7 External strain measurement in the 100 mm apparatus. 

Figure 3.8 End cap strain measurement in the 100 mm apparatus. 

Figure 3.9 Arrangement of submersible LVDTs in the 38 mm apparatus. (a) sec­

tion; (b) plan of top cap arrangement. 

Figure 3.10 Possible point of contact between loading arm and top cap after 

isotropic consolidation. 

Figure 3.11 top cap-load cell connection in the 38 mm apparatus. 

Figure 3.12 Details of the proximity transducer mounting unit. 

Figure 3.13 Layout for local axial strain measurement. 

Figure 3.14 Target mounting for local axial strain measurement. 

Figure 3.15 Layout for local radial strain measurement. 

Figure 3.16 Method of attaching the radial strain targets to the specimen. 

Figure 3.17 Schematic diagram of the consolidation pot. 

xxiii 



Figure 3.18 Consolidation histories of cakes 1 and 2. 

Figure 3.19 Geometry of the 100 mm sampler used for triaxial specimens prepa­

ration. 

Figure 3.20 Method of sampler driving in the clay cake. 

Figure 3.21 Positions of samplers pushed in the cake. 

Figure 3.22 Rubber compartment for the mid-height pore pressure probe. 

Figure 3.23 Diagrammatic representation of adopted reconsolidation path. (a) 

normally consolidated specimens; (b) overconsolidated specimens. 

Chapter 4 

Figure 4.1 Structure and main modules in the computer program for the 100 mm 

apparatus. 

Figure 4.2 Available menus in the 100 mm apparatus stress path program. 

Figure 4.3 Layout of channel readings on the computer screen. 

Figure 4.4 Division of computer screen into windows. 

Figure 4.5 Flowchart for the saturation stage. 

Figure 4.6 Flowchart for the [(o-consolidation stage. 

Figure 4.7 Flowchart for the shearing stage. 

Figure 4.8 Schematic representation of a computer specified stress path. 

Chapter 5 

xxiv 



Figure 5.1 Definitions of terms relating to transducer output. 

Figure 5.2 Calibration arrangement for the proximity transducers. 

Figure 5.3 Choice of working range for the proximity transducers. 

Figure 5.4 'Linearisation' of the proximity transducer output. 

Figure 5.5 Possible positions of submersible LVDT armature during testing or cal­

ibration. 

Figure 5.6 Method of calibrating the volume change units. 

Figure 5.7 Diagrammatic representation of the three methods of axial st.rain mea­

surement. 

Figure 5.8 Percentage errors in local axial strain measurement. 

Figure 5.9 Percentage errors in end cap axial strain measurement. 

Figure 5.10 Comparison between errors involved in local and end cap strains. 

Figure 5.11 Percentage errors in local radial strain measurement. 

Figure 5.12 Percentage errors in Poisson' ratio (nu=O.5). 

Figure 5.13 Percentage errors in deviator stress. 

Figure 5.14 Percentage errors in tangent stiffness. 

Figure 5.15 Effect of changing cell pressure on radial strain. 

Figure 5.16 Stress-strain curves during loading the steel specimen. 

Figure 5.17 Comparison between desired and actual stress paths (test RUB2). 

Figure 5.18 Strain cycles on the rubber specimen. (a) 0.05 %; (b) 0.1 %. 

xxv 



Figure 5.19 Tests to investigate membrane slippage. (a) series 1; (b) series 2. 

Figure 5.20 Variation of radial strain with vertical effective pressure during /(0-

consolidation (test TR2). 

Figure 5.21 Stress path during Ko-consolidation (test TR2). 

Figure 5.22 Variation of radial st.rain with vertical effecl.ive pressure during /(0-

swelling (test TR2). 

Figure 5.23 change of deviator stress during strain cycle of amplitude 1 (Ic (test 

TR2). 

Chapter 6 

Figure 6.1 Test stages in the 100 mm cell (test ANCUl). 

Figure 6.2 Curve fitting to experimental stress-strain data. 

Figure 6.3 Fluctuations in the fitted curve due to the fitting technique (test .-\NCUl). 

Figure 6.4 Polynomial fitting for overlapping portions of the stress-strain curve. 

Figure 6.5 Sensitivity of Atkinson et aI's fitting method to ng and Hi. 

Figure 6.6 Typical stress-strain plot on a semi-logarithmic scale (test AKCUl). 

Figure 6.7 Sensitivity of proposed fitting method to polynomia.l degree, 11 (test 

ANCUl). 

Figure 6.8 Comparison between propscd and Atkinson et aI's fitting methods (test 

ANCUl). 

Figure 6.9 Typical stress path during Ko consolidation (test AOCUl). 

XXVI 



Figure 6.10 Relationship between axial and volumetric strains during I<o-consolidation. 

(a) strain ratio with vertical stress; (b) volumetric versus axial strain (test 

AOeUl). 

Figure 6.11 Typical variation of I<ou with OCR on a semi-logarithmic scale (test 

AOeUl). 

Figure 6.12 Comparison between experimental and reported Kou-OC R relation­

ships. 

Figure 6.13 Typical v - Inp' plot during Ko-consolidation and Ko-swelling (test 

AOCUl). 

Figure 6.14 Comparison of v - Inp' curve during ]{o-consolidation with curves 

from other researchers. 

Figure 6.15 Variation of Inv with Inp' during I<o-consolidation and I<o-swelling 

(test AOCUl). 

Figure 6.16 Definition of paramaters used in Equations 6.13 and 6.14. 

Figure 6.17 Positions of experimental data points at the end of shearing with 

respect to the estimated critical state line. 

Figure 6.18 Stress-strain curves from local, end cap and external strain measure­

ments - compression loading (test ANCUl). 

Figure 6.19 Stress-strain curves from local, end cap and corrected external strain 

measurements - compression loading (test ANCtJ 1). 

Figure 6.20 Stress-strain curves from local, end cap and external strain measure­

ments - extension loading (test ANEUl). 

Figure 6.21 Non-uniformity in axial strains (test ANCDl). (a) local; (b) end cap. 

xxvii 



Figure 6.22 Non-uniformity in radial strain (test ANCUl). 

Figure 6.23 Stress-strain curves from a typical test in the 38 mm cell. (a) small 

strain range; (b) large strain range (test S/1/2/1). 

Figure 6.24 Stress paths for normally consolidated undisturbed specimens. 

Figure 6.25 Stress-strain curves for normally consolidated undisturbed specimens. 

Figure 6.26 Comparison of experimental normalised str,ess paths with other pub­

lished data. 

Figure 6.27 Stress path for test ANCDl. 

Figure 6.28 Stress path for test ANCD2. 

Figure 6.29 Stress path for test ANEDl. 

Figure 6.30 Variation of p' with time during strain cycles on normally consolidated 

specImens. 

Figure 6.31 Comparison of strain cycle stress paths for normally consolidated soils. 

(a) experimental data (test ANCD2); (b) Baligh et al (198'i); (c) Hight et al 

(1985). 

Figure 6.32 Stress-strain curves during strain cycle application for normally con­

solidated specimens. 

Figure 6.33 Stress-strain curve during strain cycle application on normally con­

solidated Boston Blue clay (after Baligh et al (l987)). 

Figure 6.34 Stress-strain curves for normally consolidated disturbed specimens. 

Figure 6.35 Stress paths for overconsolidated undisturbed specimens. 

xxviii 



Figure 6.36 Stress-strain curves for overconsolidated undisturbed specimens. 

Figure 6.37 Stress path for test AOeDl. 

Figure 6.38 Stress path for test AO ED 1. 

Figure 6.39 Typical reconsolidation stress path for an overconsolidated specimen 

(refer to Figure 6.37). 

Figure 6.40 Variation of pi with time during strain cycles on overconsolidated 

specimens. 

Figure 6.41 Stress-strain curves during strain cycles for overconsolidated speCI­

mens. 

Figure 6.42 Stress-strain curves for overconsolidated disturbed specimens. 

Figure 6.43 Stress paths from tests in the 38 mm cell with rate of loading equal 

to 2 kPafhr. 

Figure 6.44 Stress-strain curves from tests in the 38 mm cell with rate of loading 

equal to 2 kPafhr. 

Figure 6.45 Stress paths for normally consolidated specimens in the 38 mm cell 

with different rates of loading. 

Figure 6.46 Stress-strain curves for normally consolidated specimens in the 38 mm 

cell with different rates of loading. 

Figure 6.47 Comparison of experimental normalised stress paths in the 38 mm cell 

with other published data. 

Chapter 7 

XXIX 



Figure 7.1 Typical stiffness-strain plot on semi-logarithmic scale. 

Figure 7.2 Exaggerated representation of fitted curve at very small strains. 

Figure 7.3 Variation of radial strain with axial strain during undrained loading. 

(a) OCR = 1 ; (b) OCR = 4. 

Figure 7.4 Schematic representation of the distribution of radial strain along the 

specimen height. 

Figure 7.5 Effect of sampling disturbance on the deformation behaviour of nor­

mally consolidated specimens under compression loading. (a) stress-strain; 

(b) stiffness-strain. 

Figure 7.6 Effect of sampling disturbance on the deformation behaviour of nor­

mally consolidated specimens under extension loading. (a) stress-strain; (b) 

stiffness-strain. 

Figure 7.7 Effect of sampling disturbance on the deformation behaviour of O\'er­

consolidated specimens under compression loading. (a) stress-strain; (b) stiffness­

strain. 

Figure 7.8 Effect of sampling disturbance on the deformation behaviour of over­

consolidated specimens under extension loading. (a) stress-strain; (b) stiffness­

strain. 

Figure 7.9 Stress paths during norma.l shea.ring for all tests in the 100 mm cell. 

Figure 7.10 Effect of sampling disturbance on the large stress-strain behaviour 

of normally consolidated specimens. (a) compression loading; (b) extension 

loading. 

xxx 



Figure 7.11 Effect of sampling disturbance on t.he large stress-strain behaviour of 

overconsolidated specimens. (a) compression 10adiIlg; (b) extension loading. 

Figure 7.12 Effect of rate of shearing on the stress path of one-dimensionally nor­

mally consolidated specimens. 

Figure 7.13 Effect of rate of shearing on the deformation behayiour of one-dimensionally 

normally consolidated specimens. (a) stress-strain; (b) stiffness-strain. 

Figure 7.14 Effect of rate of shearing on the stress pa.th of one-dimensionally ovcr­

consolidated specimens. 

Figure 7.15 Effect of rate of shearing on the deformation behayiour of one-dimensionally 

overconsolidated specimens. (a) stress-strain; (b) stiffness-strain. 

Figure 7.16 Diagrammatic comparison between creep behaviour of normally con­

solidated and overconsolidated soils. 

Figure 7.17 Effect of rate of shearing on normalised stiffness. 

Figure 7.18 Effect of overconsolidation ratio on normalised stiffness. 

Figure 7.19 Comparison of deformation behaviour of isotropically and one-dimensionally 

normally consolidated specimens. (a) stress-strain; (b) stiffness-strain. 

Figure 7.20 Comparison of deformation behaviour of isotropically and one-dimensionally 

ovcrconsolidatcd specimens (OCR=4). (a) stress-strain; (b) stiffness-strain. 

Figure 7.21 Comparison between experimental and predicted stress paths from 

Atkinson's model for normally one-dimensionally consolidated specimens. 

Figure 7.22 Comparison between experimental and predicted stress paths from 

Pender's model for one-dimensionally consolidated specimens. 

xxxi 



Figure 7.23 Comparison between experimental and predicted stress paths from 

Pender's model for isotropically consolidated specimens. 

Figure 7.24 Comparison between experimental and predicted stress paths from 

Al-Tabbaa's model for one-dimensionally consolidated specimens. 

Figure 7. 2S Comparison between experimental and predicted stress paths from 

AI-Tabbaa's model for isotropically consolidated specimens. 

Figure 7.26 Compa.rison between experiment.al and predicted deformation behaviour 

of one-dimensionally normally consolidated specimens during compression load­

ing. (a) stress-strain; (b) stiffness-strain. 

Figure 7.27 Comparison between experimental and predicted deformation behaviour 

of one-dimensionally normally consolidated specimens during extension load­

ing. (a) stress-strain; (b) stiffness-strain. 

Figure 7.28 Comparison between experimental and predicted deformation behaviour 

of one-dimensionally overconsolidated specimens during compression loading 

(OCR=4). ( a) stress-strain; (b) stiffness-strain. 

Figure 7.29 Comparison between experimental and predicted deformation behaviour 

of one-dimensionallyoverconsolidated specimens during extension loading (OCR=4). 

( a) stress-strain; (b ) stiffness-strain. 

Figure 7.30 Comparison between experimental and predicted ddormation behaviour 

of isotropica.lly normally consolida.ted specimens during compression loading. 

(a) stress-strain; (b) stiffness-strain. 

Figure 7.31 Comparison between experimental and predicted deformation behaviour 

of isotropically overconsolidated specimens during compression loading. (a) 

stress-strain; (b) stiffness-strain. (OCR=2) 

xxxii 



Figure 7.32 Comparison between experimental and predicted deformation behaviour 

of isotropically overconsolidated specimens during compression loading. (a) 

stress-strain; (b) stiffness-strain. (OCR=4) 

Figure 7.33 Compa.rison between experimenta.l and predicted deformation behaviour 

of isotropically overconsolidated specimens during compression loading. (a) 

stress-strain; (b) stiffness-strain. (OCR=8) 

Figure 7.34 Comparison between experimental and predicted deformation behaviour 

of isotropically overconsolidated specimens during compression loading. (a) 

stress-strain; (b) stiffness-strain. (OCR=45) 

Figure 7.35 Comparison between predicted and experimental stress paths for nor­

mally consolidated specimens during strain cycles. 

Figure 7.36 Comparison between predicted and experimental stress-strain cycles 

for normally consolidated specimens. 

Figure 7.37 Comparison between predicted and experimental stress paths for over­

consolidated specimens during strain cycles. 

Figure 7.38 Comparison between predicted and experimental stress-strain cycles 

for overconsolidated specimens. 

xxxiii 



LIST OF PLATES 

Chapter 3 

Plate 3.1 The 100 mm triaxial apparatus and associated equipmcnt. 

Plate 3.2 Arrangement for mid-height steel ring in the 100 mm ccll. 

Plate 3.3 Mounting unit for the proximity transducer. 

Plate 3.4 The 100 mm cell middle plate. 

Plate 3.5 Proximity transducer mounting for axial strain measurement. 

xxxiv 



LIST OF TABLES 

Chapter 2 

Table 2.1 Sources of soil sample disturbance (after Clayton et al (1982)). 

Table 2.2 Effect of storage method on strength and stiffness (after Brown and 

Chow (1988)). 

Table 2.3 Summary of recent research into sampling disturbance. 

Table 2.4 Summary of local strain measurement techniques. 

Table 2.5 Overall errors in axial strain measurement {after Hird and Yung (1989)). 

Chapter 3 

Table 3.1 Classification parameters assumed for kaolin. 

Table 3.2 Critical state paramaters of kaolin. 

Table 3.3 Sequence of pressure increments during slurry consolidation. 

Chapter 4 

Table 4.1 Graphic display of parameters during testing. 

Cha.pter 5 

Table 5.1 Results of proximity transducer calibrations. 

xxxv 



Table 5.2 Results of load cell calibrations. 

Table 5.3 Results of LVDT calibrations. 

Table 5.4 Results of pressure transducer calibrations. 

Table 5.5 Results of volume change unit calibrations. 

Table 5.6 Summary of proving tests. 

Table 5.7 Regression results from data in tests STE2 and STE3. 

Table 5.8 Summary of v values from tests on the rubber specimen. 

Table 5.9 Summary of stiffness values from tests on the rubber specimen. 

Chapter 6 

Table 6.1 Summary of the main tests in the 100 mm cell. 

Table 6.2 Notation for test names in the 100 mm cell. 

Table 6.3 Summary of the main tests in the 38 mm cell. 

Table 6.4 Summary of /<0 values during normal consolidation. 

Table 6.5 Comparison of the average experimental and other reported /(0 values. 

Table 6.6 Reported values of a for kaolin (partly after Mayne et al (1982)). 

Table 6.7 Summary of the critical state parameters from the present work. 

Table 6.8 Comparison between experimental and other reported critical state pa­

rameters. 

xxxvi 



Chapter 1 

INTRODUCTION 

1.1 Determination of Stiffness Parameters 

Geotechnical engineering design may involve calculations relating to both collapse 

and serviceability. Solutions for the collapse of soil structures can be provided by 

calculating the upper and lower bounds of loading using the theory of plasticity 

where the soil is assumed to behave in a rigid-perfectly plastic manner. However, 

this does not provide any information about the deformations taking place prior to 

collapse. The parameters required for such analyses are either eu , the undrained 

shear strength, or c' and </>', the effective cohesion and effective angle of internal 

friction respectivciy. These are ususally determined with satisfactory accuracy on 

site (e.g. shear vane test) or in the laboratory (e.g. triaxial test) 

On the other hand, solutions for the serviceability of soil structures generally 

prove more difficult due to the complexity of the deformation behaviour of soils. In 

stiff clays, settlements below footings and movements around excavations are usually 
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overestimated (Burland et al (1979) and Jardine et al (1986)). Before attempting 

to evaluate the magnitude of ground movements, it is therefore important to define 

appropriate stiffness parameters and to assess the factors controlling them. 

1.1.1 Definition of Soil Stiffness 

Stiffness is usually defined as the ratio of stress to strain increments at a certain 

stress or strain level. The main disadvantage of such a definition is that. it does 

not distinguish between elastic and plastic components of deformation. As shown 

in Figure 1.1, there are two ways of defining stiffness, namely as a tangent and as 

a secant to a point on the stress strain curve. Tangent stiffness is more difficult 

to evaluate from test data since it requires the use of curve fitting techniques. By 

comparison with the secant stiffness, it is less affected by bedding errors. Strains 

corresponding to peak and ultimate strength can be more clearly identified by the 

tangent stiffness as shown in Figure 1.2 (Atkinson et al (1986)). Tangent stiffness 

is generally more suitable for numerical analyses of stress-strain behaviour, where 

loading is usually assumed to be applied in small increments. 

1.1.2 Field and Laboratory Testing 

Three main approaches may be taken for the evaluation of the required soil pa­

rameters: in-situ testing, laboratory testing and observation, measurement and 

back-analysis of full scale construction. Each of these approaches has its strengths 

and limitations. For example, boundary conditions during in-situ testing are usually 

poorly defined. Strain and drainage control are very difficult if not impossible to 

achieve. In contrast, laboratory tests involve well defined boundary conditions. In 
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addition, the accuracy of laboratory instrumentation is likely to be bcttcr than t.hat 

of in-situ equipment because of the more favourable working environment. Howc\'cr, 

it has been realised for a long time (e.g. Cooling (1949)) that thc validity of investi­

gations carried out in the laboratory depends on the quality of samples and on how 

far they are representative of the stratum from which they are taken. Therefore, 

laboratory testing has two main disadvantages. The first is related to the volume of 

soil tested, which is relatively small compared to that involved in in-situ tests, and 

the second is associated with sampling disturbance. Sami)ling effects on laboratory 

specimens have been extensively investigated with somc degree of success (Scction 

2.2). In general, in-situ tests also involve disturbance the size of which is vcry diffi­

cult to assess, except in the case of self-boring pressuremeter tests (e.g. Clarke and 

Wroth (1985), Fhaye and Randolph (1985), Sayed and Hamed (1988)). 

The back-analysis of field observations can be relatively expensive and some­

times requires complicated soil modelling and computing. Nevertheless, back-analyses 

of foundations and retaining walls have been used by Burland et al (1979) and Jar­

dine et al (1986) to determine stiffness parameters. The results showed good agree­

ment with those from carefully conducted and specially instrumented triaxial tests 

and proved that such tests could be more reliable than plate load or prcssureme­

ter tests. Such observations have demonstrated the importance of measuring the 

small strain behaviour of the soil accurately, especially when the stiffness parameter 

is being used in the design of geotechnical structures undergoing relatively small 

movements under working conditions. 

Generally, comparisons between the results from conventional triaxial tcsts, 

plate load tests, and back-analysis have shown large discrepancies for the stiffness 

parameters of stiff clays. Marsland (1973) concluded that stiffnesses from laboratory 

tests are both variable and difficult to interpret and that plate load tests gi vc the 
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highest and most reproducible stiffness values. St John (1975) similarly reported 

that conventional laboratory tests on London clay give lower values of stiffness than 

in-situ tests. 

The explanations advanced for the discrepancies referred to above include: 

1.1. 2.1 The existence of fissures 

In terms of fabric, the representativity of a laboratory specimen could be poor. 

Marsland (1971a) noted that for fissured London clay, the stiffness values from 38 

mm triaxial specimens were larger than those from 100 mm ones. He concluded that 

the size of the specimen should be large enough to contain the soil fabric. However, 

Costa Filho (1980) reported that, if the fissures are closed, the effects on the stiffness 

are minimal. In glacial tills other factors such as the existence of boulders could be 

significant (Anderson and McKinlay (1975)). 

1.1.2.2 Differences of stress history and applied loading 

Stress paths during in situ testing are generally different from those in the laboratory 

(Parry (1979), Atkinson (1984)). It is not always possible to define the stress path 

being followed during in-situ tests. 

In a triaxial test different values of stiffness will be obtained from compres­

sion and extension tests (Hight et al (1985)). Jardine et al (1985) reported that, for 

reconstituted London clay, the extension stiffness could be as low as 50% of the com­

pression stiffness. Atkinson et al (1989) also investigated the stress-path dependency 

of stiffness for clay soil. In particular, they found that a large increase in stiffness 
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takes place upon any change in the effective stress path direction. Richardson (1988) 

argued that the stiffness is not only dependent on the stress path direction, but also 

on the size and timing of the stress increments. Ballasubramanian (1969) showed 

that increasing the stress increment with the same overall loading rate results in 

an increase in stiffness. Gens (1983) and Richardson (1988) found similarly that 

when a specimen of clay is left for a certain period of time under constant effective 

pressure, the subsequent stiffness can be expected to be higher. 

The stress history prior to sampling and testing is another factor which could 

have important implications as far as the stiffness is concerned. Sc\'eral researchers 

(e.g. Gens (1983) and Atkinson et al (1986)) have investigated the effects of consoli­

dation path on the subsequent stiffness response. Natural soils are usually deposited 

under /{o-conditions (no lateral strain) while, for simplicity and to reduce the time 

taken, laboratory consolidations are usually carried out isotropically. For heavily 

overconsolidated London clay, Costa Filho (1980) reported that during the early 

stages of his tests the stiffness of anisotropically consolidated specimens was about 

10% to 15% larger than that of isotropically consolidated ones. 

Of particular relevence to the research described in this thesis is the stress 

history associated with sampling disturbance. During sampling, clay specimens 

follow complicated stress and strain paths (Baligh et al (1987) and Hight ct al 

(1985)). The process of tube sampling and specimen preparation in the laboratory 

is likely to have a significant effect on the stress-strain response of the soil. This is 

discussed more fully in Chapter 2. 
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1.1.2.3 Non-linearity of stress-strain behaviour 

For triaxial specimens, research at Imperial College (Costa Filho (1980) and Burland 

and Symes (1982)) revealed that conventional techniques ( Bishop and Henkel (1962) 

and Bishop and \Vesley (1975)) were not suitable for measuring small strains of 

up to 0.1%. The research demonstrated the need to carry out local axial strain 

measurements by mounting instrumentation directly on the specimen. It was also 

shown that the behaviour of clay soils was non-linear, even at small strains. Costa 

Filho (1980) concluded that the strain levels associated with the values previously 

quoted for laboratory stiffness had often been higher than those experienced in the 

field. Consequently, the laboratory stiffness had appeared too low. 

The introduction of new strain measurement techniques has had a significant 

impact on the importance of laboratory testing relative to in-situ testing. Another 

significant factor has been the development of the Bishop and \Vesley (1975) triaxial 

apparatus. Stresses are applied hydraulically making it relatively easy to apply any 

(axially symmetric) stress path. The development of this apparatus followed the 

introduction of the Stress Path Method by Lambe (1967) and Lambe and Whit­

man (1967). This method recognises the dependence of soil behaviour on the stress 

history and the stress path followed during applied loading. However, certain pro­

cedures have to be adopted to minimise the effects of sampling disturbance. One 

of them consists of restoring the initial effective stress conditions before sampling 

(Bjerrum (1973)). Another involves consolidating the specimen to a vertical effec­

tive pressure which exceeds 1.5 to 2 times the estimated in-situ preconsolidation 

pressure, O"~c' after which it is allowed to swell to the estimated overconsolidation 

ratio (OCR) (the SHANSEP approach advocated by Ladd and Foott (1974)). 
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1.2 Mathematical Models for Soil Deformation 

Behaviour 

Mathematical models make use of physical theories relat.ing to soil in order to de­

scribe its st.ate and predict its response to loading. Ideally a model should be 

general enough to cater for any soil and loading conditions. However, this can only 

be achieved by increasing the complexity of the model ,and hence the number of 

input parameters. Researchers, therefore, haye always tried to reach a compromise 

between complexity and generality. 

In this section, some existing models will be briefly presented, with attention 

focussed on those which will be used in Chapter 7 for comparison with experimental 

data. The models are discussed in the context of axial symmetry (as in the triaxial 

cell). 

1.2.1 Elastic Models 

The most straightforward model used for predicting soil deformations is the linear 

elastic model. For an isotropic material, the linear elastic model predicts that: 

(1.1 ) 

( 1.2) 

where hf" hfv, 6q, and 6p' are the infinitessimal increments of shear strain, 

volumetric strain, deviator stress, and mean effective pressure respectively. G' is 

the shear modulus and /(' is the bulk modulus. 
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Alternatively and more realistically, the values of C' and J( may vary with 

stress or strain. resulting in a non-linear elastic model. This version of the model has 

been used to predict the ground movements around excavations in London clay, as 

reported by Burland et al (1979) and Simpson et al (1979). However, it was reported 

that the computed distributions of strain were not always satisfactory. Furthermore, 

progressive movement was noticed behind walls in large excavations, indicating some 

inelastic behaviour. Simpson et al (1979) showed that a more complicated model 

which takes into account plastic behaviour would give mote satisfactory results (see 

below). The elastic models may be modified to incorporate a.nisotropy at the expense 

of additional complexity (e.g. Costa Filho 1980). 

1.2.2 Elasto-Plastic Models 

Triaxial tests carried out on natural soils have revealed that only a limited amount 

elastic behaviour takes place initially during shearing (e.g. Atkinson (1973) and 

Ballasubramanian (1969)). Therefore, a model which caters for the initially elastic 

and subsequently plastic behaviour appears more suitable. Elasto-plastic models 

have been presented by, for example, Zienkiewicz (1977) and Atkinson (1981). The 

models can be represented by the following equations: 

(1.3) 

(
ll 1) , 

6cv = H8q + F + J{' 8p ( 1.4) 

where F and II arc the flow and hardening parameters respectively. 

One of the successful versions of the elasto-plastic model is Model L.C. devel­

oped by Simpson et al (1979). This model takes also into consideration the initial 

high stiffness associated with recent stress history effects. The stress-strain curve is 
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divided into three parts, namely clastic, intermediate, and plastic. Applications of 

the model are given by Simpson et al (1979) and I3urland et al (1979). However, 

with Model L C, predictions for normally consolidated clays are not likely to be 

very satisfactory due to plastic strains observed during the early stages of shear­

ing. The family of dasto-plastic models includes the critical state models described 

in the next section. These are better suited to normally consolidated and lightly 

overconsolidated soils. 

1.2.3 Critical State Models 

Critical state soil mechanics makes use of a state boundary surface in q, p', v space 

to describe the state of a soil where v is the specific volume of the specimen. Soils 

falling below this surface, shown in Figure 1.3, arc supposed to behaye in an isotropic 

clastic manner. The critical state line r('presents states where distortion can take 

place indefinitely wit.hout any change in effective stress or specific volume. This 

is sometimes described as an ultimate state. Descriptions of the Cam-clay and 

Modified Cam-clay models are given by Schofield and \-Vroth (1968) and Roscoe 

and Burland (1968) respectively. For triaxial compression, the principal equations 

connected with the Modified Cam-clay model are as follows (Similar equations may 

be developed for triaxial extension): 

Critical State Line 

Normal Consolidation Line 

q = Alp 
I 

v = r - >"[np' 

v = N - ,\lnp' 
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Swelling Line 

State Boundary Surface : 

, [ (r -v - Alnp') ]1/2 
q = M p 2exp A _ Ii, - 1 

where 

AI : slope of the critical state line in q - p' space. 

r : specific volume of soil at the critical state with p' = 1.0 kPa 

A : slope of the normal consolidation line 

N : specific volume of soil consolidated isotropically to p' = 1.0 kPa 

VI\: : value of specific volume for overconsolidaLed soils at p' = 1.0 kPa 

Ii, : slope of the swelling line 

( 1.8) 

( 1.9) 

Critical state models have been succesfully used for predicting the behaviour 

of isotropically and normally consolidated soils at fairly large strains. However, 

problems were encountered with overconsolidated soils in two respects. Roscoe and 

Burland (1968) reported that plastic deformation does take place along stress paths 

beneath the the state boundary surface and provided a method for the calculation of 

this additional component of strain. The second problem encountered with overcou-

solidated clays is that deformation is usually non-uniform as failure is approached 

whereas the models assume that strains are uniform. 

Alternative models to the original Cam-clay model and the Modified Cam­

clay model have been developed. These include: 
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1.2.3.1 Atkinson's model 

Atkinson et al (1987) extended the modified Cam-clay model to make it applica.ble 

for anisotropically normally consolidated soils by assuming that the shearing stress 

path lies on the state boundary surface. Starting from Equation 1.9, the state 

boundary surface for Ko-consolidated soils was developed as : 

r - v - )"lnp 

[ ( 
') ]1/2 

7]-7]0= (XM-7]o) 2exp )._K.- 1 

where 

7] is the ratio of q / p' 

7]0 is the initial value of 1J at the beginning of undrained loading 

X is + 1 for compression loading, and -1 for extension loading. 

(1.10) 

For overconsolidated clays the model suffers from the same limitations as the original 

models. 

Thevanayagam and Prapaharan (1988) argued that the assumption that the 

stress path for normally consolidated specimens during shearing lies on the state 

boundary surface is not always true. Using Dafalias's (1987) version of the Modified 

Cam-clay which takes into account the anisotropic behaviour of clays, they intro-

duced another equation for the state boundary surface. They also reported that the 

critical state lines are symmetrical about the p'-axis. 

1.2.3.2 Pender's model 

Pender (1977,1978) developed a model which allows plastic strains to occur below 

the state boundary surface and which can be used for overconsolidated as well as 
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normally consolidated soils. The generalised undrained stress path is given by : 

( )

2 I { I '} 1] - 710 Pes 1 - P /Po 
XM - 710 = 7 1 - p~/p::s 

(1.11) 

p~ and P:s are the initial mean effective pressures at the start of loading and on the 

critical state line at the current value of v respectively. 

Strains are calculated by dividing them into elastic and plastic components. 

The elastic shear strain, t:, is assumed to be zero ,,,hile the elastic volumetric strain, 

(~ is calculated from equation 1.2. Plastic strains are calculated from the following 

equations: 

2K (p~/p~s) (71 - 710) bT7 
btP = ----~--~----~--~--------------------

s (XA1)2 V (2p~/pl - 1) ((AM - 710) - (77 - 710)p'/p~S] 
(1.12) 

bt
P 
= 2K (P~/P~II - 1) (pi /p~s) (" - 710) 877 

v (XM - 710) v (2p~/pl -1) 
(1.13) 

The advantages of this model include its applicability to both anisotropically and 

isotropically consolidated soils. Its applicability to heavily overconsolidated soils 

makes it more relevant for many geotechnical engineering problems, although it 

does not take into account the inhomogeneous deformations that develop in such 

soils. In addition, the model can be used to predict stress paths and progressive 

deformations during cyclic loading. 

1.2.3.3 AI-Tabbaa's model 

Pender's model provides for both elastic and plastic strain componenents to be 

evaluated but does not identify elastic and plastic regions in q, pi, V space. Al Tabbaa 

(1987) extended the modified Cam-clay model to take into account the limited elastic 

behaviour displayed by clays. She introduced within the state boundary surface a. 
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second yield surface inside which the behaviour is isotropic, elastic and non-linear. 

The extra or revised parameters required for this model are: 

). * : the slope of the normal consolidation line in 1nv - 1np' space 

K,* : the initial slope of the swelling lines in 1nv - 111p' space 

M : the slope of the critical state line in q - p' space 

R : the ratio of the size of the inner yield surface to the state boundary surface. 

'IjJ : exponent of the hardening function II 

v' : the effective or drained Poisson's ratio. 

The state boundary surface is given by : 

( ' ,)2 q '2 
P - Po + A12 = Po (1.1-1) 

and the inner yield surface by : 

( 
, _ ') 2 _ (q - qc» _ R2 '2 

P Pa M2 - Po (1.15) 

where Pa and qa are the coordinates of the centre of the inner ellipse a.s shown in 

Figure 1.4. Changes in the yield surface are governed by two rules concerning its 

translation and size within the state boundary surface. The translation rule is given 

by the following equations: 

8' =6p~, s[(p'-p~) _('_ ')] 
Pc> , Pc> + R P Po 

Po 
(1.16) 

Sq. = S~~q. + S [(q ~q.) - q] ( 1.17) 

where the scalar quantity S is given by : 

(p' - p~) [6p' - ~p'] + (q-~,,) [fq - ~q] 
S = Po At Po 

(p' - p~) [(p';~) - (p' - p~) + (qA/~Q) [(q;/~Q) - q]] 
(LIS) 

AI-Tabbaa assumed that the size of the yield locus changes proportionally with that 

of the state boundary surface so that the ratio R is constant. 
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The elastic volumetric strain, (~ inside the inner yield locus is given by equation 1.2. 

By introducing a hardening quantity It which is the sum of two components ho a.nd 

I1 defined hy the following equations: 

h = (p'-]>~) [, (' - ') + q(q-qa)] 
o (.A* _ K*) P P Pex Af2 

( 1.19) 

I1 = [1/ (.\* _ ,..;*)] (~) tJ; ]l~3 
max 

(1.20) 

where band bmax are evaluated from: 

(1.21 ) 

the plastic components of strain are given by : 

p _ 1 [( , , ) '2 (' ') q - qo) I 

Oev - h P - Pex + P - Po 1'12 8p (1.22) 

p 1 [( I , ) q - qa [q - qOt) 2] 
Oe$ = h P - Po Af2 + AJ2 8q ( 1.23) 

It can be easily shown that the model reduces to the ~lodificd Cam-clay model for 

monotonic yielding loading conditions (when I1 = 0 ). 

Al-Tabbaa's model applies to both isotropically and anisotropically consoli­

dated soils and is suitable for cyclic loading applicat.ions. However, as recognised 

by AI-Tabbaa, the change from elastic to elasto-plastic behaviour is sometimes too 

abrupt by comparison with experimental data. 

1.3 Research Objectives 

As was made clear in Section 1.1, the triaxial testing of soil and associated mea­

surement techniques have undergone appreciable developments over the past decade. 

However, sampling disturbance is still an issue of major concern. Although its effects 
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have been realised since the 1940's (e.g. Terzaghi (1911), Hvorslev (1949)), research 

in this field (reviewed in Chapter 2) has often dealt with stress relief and storage 

effccts and has ignored the mechanical disturbance associated with tube sampling 

and specimen preparation. This is mainly due to the complicated stress and strain 

paths followed during such stages. Recently, an important advance was made by 

Baligh (198.5) who introduced the Strain Path Method for deep foundation problems 

and llsed it to predict the strain suffcred by the soil during tube sampling. 

Research canied out by Hight et al (198.5) and Ba.ligh et al (1987) conccn­

trated mainly on the investigation of tube sampling effects on the strength and 

large strain stiffness and the possible methods of reducing them. As will be seen in 

Chapter 2, the effect of tube penetration on the behaviour of normally consolidatcd 

clays is very significant. As the oycrconsolidation ratio increascs, the strength and 

stiffness parameters are less affected ( Hight ct al (1985)). 

In the present research, the main and overall objective was to use state-of 

-the-art triaxial testing techniques to simulate the sampling process and to compare 

the small strain behaviour of 'disturbed' and 'undisturbed' clays. Disturbance of a 

specimen was simulated by applying a strain cycle followed by a release of deviator 

stress. The specimen was then reconsolidated to its initial stress condition, before 

being sheared. The effects on small strain behaviour of other factors such as rate 

of shearing, initial overconsolidation ratio, and consolidation stress-path, \vere also 

investigated. 

Hight ct al (198.5) and Baligh et al (1987) concent.rat.ed their investigat.ions 

on undrained behaviour. In this work also only undrained shearing has been inves­

tigated since test dura.tions could be minimised and a more extensive data base is 

available for comparison purposes. 
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The material used in this research was Speswhite kaolin. This had the ad­

vantage of avoiding the specimen non-uniformities usually encountered with natural 

soils. Specimens were prepared to a specified consolidation pressure before being 

set up in the cell, thereby producing specimens with identical stress histories and 

improving the repeatability of test results. The availability of a considerable amount 

of previous data, especially from tests in the triaxial cell, was a further advantage. 

Details of the testing programme are presented in Chapter 6. 

Before the research could be carried out, it was necessary to undertake con­

siderable development work in relation to the test equipment in the light of previous 

experience (Yung (1987)). Therefore the initial objectives were: 

• To design and manufacture a Bishop and \Vesley type triaxial apparatus for 

100 mm diameter specimens, hereafter referred to as the 100 mm apparatus 

or cell, with special features required for the current tests (see Section 3.3) 

• To improve the existing radial and axia.l small strain measurement techniques. 

• To develop new and improved computer software to control the tests and log 

data. 

In order to provide additional data which could be used to support the results 

from tests on the 100 mm diameter specimens, a number of tests were carried out 

on an existing stress path apparatus for 38mm dia.meter specimens, which will be 

referred to as the 38 mm apparatus or cell. The equipment had to be modified in 

order to measure axial strains inside the cell, so that strain data would be accurate 

enough to be compared with data from the larger cell. In these supporting tests, 

because of time constraints, only 'undisturbed' isotropically consolidated and swollen 

specimens were tested. 
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Chapter 2 

LITERATURE REVIEW ON 

SAMPLING AND TESTING OF 

SOILS 

2.1 Introduction 

It has long been appreciated that measurements of soil parameters may be affected 

by the technique of sampling and testing in the laboratory. As pointed out in 

Chapter 1, both field and laboratory testing usually involve sampling disturbance of 

soil. vVhilc the evaluation of the disturbance effects in the field is very difficult if not 

impossible, recent research on tube sampling (Baligh et at (1987)) allows a better 

prediction of its effects on the behaviour of laboratory specimens. The first part of 

this Chapter deals with soil sampling and its effects in relation to triaxial testing. 

Other factors such as loading rate and OCR will also be considered. The remainder 

is concerned with improvements in testing techniques. Attention is focussed on 
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the Bishop and Wesley stress path apparatus and recent developments in strain 

measurement. 

2.2 Sources and Effects of Sampling Disturbance 

Table 2.1 presents a summary of the different possible sources of disturbance which 

can take place before, during, and after sampling. It can be seen that there arc three 

principal categories of disturbance, namely disturbance due to stress relief, mechan­

ical disturbance and disturbance due to water flow or chemical changes. These 

are not necessarily independent. Some sources of disturbance can be eliminated 

or reduced to negligible levels (e.g. freezing and piping) while others are less eas­

ily avoided.. Under perfect conditions where mechanical and chemical disturbance 

are non-existant, the only source of disturbance would be the stress relief. This is 

usually called perfect sampling. 

Irrespective of the method of sampling, no soil specimen can be considered 

totally undisturbed. The seriousness of the disturbance depends on the soil type 

and the parameters to be evaluated. Block sampling is usually used to minimise 

mechanical disturbance of the specimen. However, stress relief could still result 

in alteration of the stress-strain properties, depending on t.he type of soil and its 

stress history (see Section 2.3). Tube sampling is wid.ely used for both resea.rch 

and commercial purposes due to its convenience. It is also used in offshore site 

investigations where block sampling is virtually impossible. Nevertheless, it has 

always been realised that the mechanical disturbance imposed on a tube sample is 

much larger than that associated with a block sample. 

One of the most important sources of mechanical disturbance for tube samples 
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is the sampler penetration. There are two aspects of disturbance due to sampler 

penetration. Firstly, friction on the inside sampler wall can cause significant local 

distortion of the micro-structure of the soil which is noticeable when the specimen 

is split up and its fabric exposed, as reported by Hight et al (1985). Broms (1980) 

reported that laTge variations in friction forces occur in clays; the general trend is for 

friction to increase with decreasing rate of penetration, increasing surface roughness, 

and increasing plasticity. In normally consolidated clays, disturbance of the outer 

zone of the sample causes a significant increase in pore water pressure relative to that 

at the centre. This means that, under conditions of no overall water content change, 

water migrates from the outer disturbed zone to the inner ( relatively undisturbed) 

one causing it to swell (Schjetne (1971)). Although friction forces are unavoidable, 

they can be minimised by increasing the rate of penetration and making sure that 

the sampler walls are as smooth as possible. 

The second and more serious aspect of disturbance during tube penetration 

is the forced displacement of soil, which is a function of the geometry of the sampler. 

H vorslev (194.9) proposed the use of the area ratio defined in the following equation 

as an indicator of the extent of disturbance due to soil displacement: 

(2.1 ) 

where Ar is the area ratio and Bo and Bi are the outside and inside diameters of 

the sampler respectively (Figure 2.1). The larger the area ratio, the greater the 

disturbance caused to the soil sample. II vorslev found that for equal area ratios and 

similar t.ypes of soil, the disturbance increases with increasing diameter of sampler 

and depth below ground level. Soft clays tend to suffer more disturbance than 

stiff clays or cohesionless soils. Hvorslev concluded that the value of the area ratio 

required for obtaining 'undisturbed' specimens depends on the design and method 

of operation of the sampler as well as its diameter. The current British Standard 
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Code of Practice on Site Investigation (B.S. 5930) suggests the use of an area ratio 

of around 30 %. An additional criterion suggested by II vorslev was that the inside 

clearance ratio (ICR) given by : 

(2.2) 

where Bs is defined in Figure 2.1, should lie between 0.75 % and 1.5 % under normal 

conditions. He also recommended that for 'properly designed and operated' drive 

samplers of 50 mm to 70 mm inside diameter, ratios of specimen length to diameter 

can be increased to between 5 and 10 for cohesionless soils and between 10 and 20 

for cohesive soils. 

The most useful analysis of the effects of sam pIer geometry on the soil was 

presented by Baligh (1985) who developed the Strain Path Method and used it to 

evaluate the nature and extent of the mechanical disturbance along the centreline 

of the sample. As shown in Figure 2.2, elements of soil along the centreline of 

the sampler undergo axial compression followed by axial extension before finally 

experiencing zero net axial strain. The soil is assumed to remain undrained. This 

strain cycle represents the minimum disturbance that must take place during sampler 

penetration and is a function of the aspect ratio Baits, where t, is the wall thickness 

of the sampler. The following important features were noticed by Baligh et al (1987) 

• Even with very high aspect ratios (e.g. Baits > 40), elements along the 

sampler centerline may undergo failure even before entering the sampler . 

• With normally consolidated and lightly overconsolidated clays the disturbance 

significantly changes their stress and strain history and has a considerable 

influence on their subsequent behaviour. 

• With heavily overconsolidated clays the disturbance affects the subsequent 
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behaviour but. t.o a much lesser extent. t.han in the case of normally consolidated 

clays. 

In the hypothetical situation where the ratio Balta t.ends to infinity, tube sampling 

disturbance would reduce to perfect sampling where the only source of disturbance 

would be the total stress relief. 

Skcmpton and Sowa (1963) examined the effccts of pcrfect sampling by mon­

itoring the pore pressure in a Ko-consolidated triaxial specimen after total stress 

relief. Thcy found that a reduction in the mean effective pressure of up to 20% could 

take place. No significant changes in the undrained shear strength were noticed after 

isotropic reconsolidation of the specimen, even though thc stress paths followed in 

the tests were different.. Tests carried out by Kirkpatrick and Rennie (1975) a.nd by 

Hanza.wa (1977) indicated similar results. Atkinson and Kubba (1981) found that 

normally Ko-consolidated specimens which were subjected to perfect sampling and 

reconsolidated back to the initial stresses did not exhibit similar values of stiffness 

to those of 'virgin' samples. However, they found that both samples had similar 

normalised effective stress paths. 

Kirkpatrick and Khan (1984) and Kirkpatrick et al (1986) carried out triax­

ial tests on Ko-consolidated specimens to investigate the perfect sampling effects on 

kaolin and illite. They found that in both cases t.here were significant reductions 

in effective pressure and subsequently in unconsolidatcd undrained shear strengt.h. 

They a.lso reported that the reduction in undrained strengt.h decreased wit.h in­

creasing overconsolidation ratio (OCR) and increascd with the age of the specimen. 

These features are in agreement with those reported by Hight et al (1985). As 

shown in Figure 2.3, the effective stress history of the specimen is changed by the 

total stress relief. Subsequent reductions in both the peak undrained shear strength 
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and stiffness were noticed in Hight et aI's unconsolidated undrained tests, especially 

in the case of normally consolidated soils. However, there was relatively Ii t tIe effect 

on the ultimate shear strength (Figure 2.3). Kirkpatrick et al (1986) concluded that 

for perfect samples, the degree of disturbance depends on the extent of the change 

in total stresses. The stress changes involved in the tests carried out by Skempton 

and Sowa (1963) did not exceed 100 kPa and therefore, according to Kirkpatrick et 

al (1986), were not large enough to change the soil structure significantly. 

The above discussion indicates that stress relief effects on the undrained shear 

strength can be significant. The effects on stiffness do not seem to have been as 

extensively investigated as those on st.rength and, except in Hight et al (1985), 

apply for fairly large strains 

In practice, stress relief is usually followed by a storage period, t.he length of 

which could have important consequences for the subsequent stress-strain behaviour 

of the soil. Hvorslev (1949) realised that, if soil specimens were not stored prop­

erly, their properties could be radically altered. Changes in water content during 

transport and storage can take place if the ends of the sampling tube are not well 

sealed. Different methods of storage have been proposed, some of which have been 

successful in preventing any significant change in water content (Holden (1971)). 

Ideally, soil specimens should be stored under the same stresses as existed in-situ, 

but this is not generally feasible. 

Bjerrum (1973) found that the effects of storage on 'quick' clays were very 

significant, resulting in a reduction of 15% ill the unconsolidated undrained shear 

strength after 3 days. He also reported that low plasticity clays tend to exhibit 

larger changes in undrained shear strength than high plasticity ones. Meyerhof and 

Murdock (1953) reported that the undrained shear strength of stiff fissured London 
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clay decreased with increasing storage period. Skempton and Henkel (1957), on the 

other hand, did not notice such a trend. This could be due to a superior method of 

sealing and storing the specimens. Tests carried out by Brown and Chow (1988) on 

normally consolidated kaolin showed that significant changes took place in specimens 

sealed with wax and stored without the application of estimated in-situ stresses. As 

shown in Table 2.2, the effects were more severe on stiffness than on strength. It 

can also be seen that storage under pressure substantially reduced the detrimental 

storage effects. 

Broms (1980) and Kirkpatrick and Khan (1984) rcported that the reduction 

in undrained shear strength during storage is the result of a decrease in the residual 

pore water pressure with time. They also noticed that the drop in the residual pore 

pressure could take place at constant water content. They were unable to explain 

this phenomenon, but noted that one reason could be cavitation taking place in 

the specimen during storage. This again suggests that, if storage effects are to be 

avoided, the specimen should not only be sealed well but also stored under the 

in-situ pressure condition. 

Graham et al (1988) showed that strain dependent parameters such as the 

undrained stiffness are most affected by the storage stage. They studied the effects 

of 'drained' storage, where the specimen is allowed to change water content, and 

'undrained storage', where no water content alterations were allowed, and found that 

undrained storage did not affect the undrained shear strength, while the stiffness 

showed a significant reduction. Samples with free access to water showed large 

changes in nearly all the soil parameters even after reconsolidation. Changes in 

the strain-dependent parameters were blamed on time-dependent micro-structural 

changes in the soil and not simply on the changes in the water content. 
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Other phenomena that could take place during storage, namely bacterial 

and chemical changes (Jerbo et al (1961)) and temperature variations (Kalleste­

nius (1963)), have been found to be of no practical significance providing proper 

procedures are adhered to. 

2.3 Methods of Evaluating and Correcting Sam­

pling Disturbance 

As seen in the previous section, the sampling disturbance of soil can be a complicated 

process and different sQurces of disturbance can act simultaneously. Researchers 

have generally attempted to simplify the sampling process by considering each source 

of disturbance separately, so as to make it easier to evaluate the effects of each one 

in terms of certain soil properties. Analytical evaluation has proved difficult if 

not impossible because sampling involves operator dependent effects and complex 

changes of stress and strain. This has resulted in reliance on qualitative descriptions 

for assessing the extent of disturbance. Table 2.3 shows a qualitative summary of 

the research concerning the methods of evaluating sampling disturbance effects. 

Okumara {1971} and Nelson et al (1971) proposed the use of the residual 

effective stress to express the degree of disturbance quantitatively: 

(2.3) 

where D, p~ and p~ are the degree of disturbance, the mean effective pressure before 

sampling and the mean effective pressure after sampling respectively. Thus a totally 

undisturbed specimen would have a D-value equal to 0, while a highly disturbed 

specimen would have a D-value close to 1. Typical values of D are shown in Table 

24 



2.3. This approach was successfully used by Okumara (1971) to express the extent 

of disturbance in the case of block sampling. Atkinson and Kubba (1981) found 

that tube-sampled normally consolidated specimens have a larger value of D than 

perfect samples, reflecting the additional drop in the mean effective pressure due to 

mechanical disturbance. This approach can also be used to evaluate the disturbance 

due to storage by monitoring the residual pore pressure over the storage period. 

Berre (1986) suggested the use of the volumetric strain undergone by the 

specimen during reconsolidation to the initial effective stresses as an indicator of 

the sample quality. He suggested 1.5% as the maximum allowable volumetric strain 

if the specimen is to be to considered of good quality. However, this was found to 

be difficult to achieve, especially in the case of soft clays. A better assessment of the 

maximum allowable volumetric strain is achieved when considered in conjunction 

with OCR and depth below ground level (Lacasse (1985)), as shown in Figure 2.4. 

In numerical studies, Alonso et al (1981) showed that tube penetration dis­

turbance is a strain controlled rather than a stress-controlled process. Subsequently, 

Baligh (1985) introduced the Strain Path Method (referred to in Section 2.2 ) for 

deep foundation problems. Using this method, the concept of an ideal sample was 

developed (Baligh et al (1987)) incorporating both stress relief and tube sampling 

effects. As mentioned above, the stress relief effects can be evaluated by calculating 

the value of D. The tube sampling effect is expressed in terms of the maximum axial 

strain undergone by a soil element along the centreline of the sampler (Figure 2.2) : 

\tmax \ = O.385(t,,/ B,,) (2.4 ) 

where \fmax \ is the absolute value of the maximum axial strain. The above equa­

tion represents an ideal (lower) limit to the mechanical disturbance that takes place 

during tube penetration. However, Baligh's approach only considers the mechanical 
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disturbance taking place along the centreline of the sampler. It does not consider 

the disturbance near the periphery where strain paths are known to be more com­

plicated. As noted in Section 2.2, distortion along the specimen's periphery does 

not only affect soil in that zone but also the soil near the centreline because of water 

content redistribution. 

The significance of ideal sampling is illustrated in Figure 2.5 where a compari­

son of the unconsolidated undrained behaviour of an undisturbed triaxial specimen, 

a perfect specimen, an ideally sampled specimen, and a good quality tube speci­

men is presented for normally consolidated Boston Blue clay (Baligh et al (1987). 

Although both perfect and ideal specimens have an undrained shear strength and 

stiffness higher than those of the good quality tube specimen, the overestimation 

associated with ideal sampling is far less than that of perfect sampling. The dis­

crepancies between the strength and stiffness parameters from an ideal sample and 

those from a good quality tube sample can be attributed to the additional mechan­

ical disturbance caused by friction along the periphery of the latter and increased 

during the preparation and setting up of the specimen in the triaxial cell. Figure 

2.5 indicates that, even after perfect sampling, the undrained shear strength of an 

unconsolidated specimen is significantly reduced (Section 2.2). 

Correction of sampling disturbance has been carried out through reconsolida­

tion of the disturbed specimen to a predetermined effective pressure. The methods 

of reconsolidating clay specimens have been investigated by many authors. Hight 

et al (1985) reported that the stress path followed during reconsolidation to the 

initial stresses after sampling is very important as far as the stiffness response is 

concerned, especially during the early stages of shearing. For example, if the sam­

pling process ended with unloading then the stiffest response would be noticed in 

tests that recompress the sample. Atkinson et al (1989) carried out a detailed study 

26 



on the effects of the recent stress history on the stiffness of clays and found that the 

stiffness is influenced by a change in the direction of the stress path, as shown in 

Figure 2.6. The small strain stiffness was found to vary by an order of magnitude 

with different rotations of the stress path. It was also reported that the effects of 

the recent stress history depend on the plasticity index, tending to be less marked 

for low plasticity clays. 

Skempton and Sowa (1963) carried out isotropic rec,onsolidation and reported 

full recovery of the undrained shear strength. However, Kirkpatrick and Khan 

(1984) used different reconsolidation methods and found that isotropically con­

solidated specimens tended to either overestimate or underestimate the undrained 

shear strength depending on the ratio of p~/ p~ where p~ and p~ are the mean effec­

tive stresses initially and after reconsolidation respectively. Graham et al (1988) 

found that isotropic reconsolidation of normally consolidated clays to p~ = O.6a~c 
would give similar results to those from in-situ tests. In addition, they found 

that anisotropic reconsolidation to the original stresses gave a stress-strain response 

close to that of the in-situ soil, with a slight overestimation of the undrained shear 

strength. Reconsolidation after ideal sampling was studied by Baligh et al (1987). 

They found that recompression of Boston Blue clay to initial estimated in-situ 

stresses results in an approximate recovery of the undisturbed soil parameters. How­

ever, reconsolidation according to the SHANSEP approach (Ladd and Foott (1974)) 

was found to give a superior response, as shown in Figure 2.7. Previously, Hight et 

al (1985) had reported that reconsolidation to the initial in-situ stresses does not 

fully recover the stress-strain behaviour at small and intermediate strains but allows 

it to be 'bracketed'. Lacasse and Berre (1987) carried out tests similar to Baligh's 

on a different material, Drammen clay. They found that for normally consolidated 

and lightly overconsolidated clays tested in compression, the peak shear strength is 
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not affected by disturbance but the initial modulus is much lower for the disturbed 

specimens. Extension tests revealed that large strain shear strength and stiffness 

are higher for the disturbed specimens. The finding regarding peak shear strength 

in the compression tests seems to contradict that reported by Hight et al (1985) 

where the peak shear strength of the disturbed specimen was higher than that of 

the undisturbed specimen. An explanation for this cannot be provided since Lacasse 

and Berre (1987) do not indicate the method of reconsolidation, which may have a 

considerable effect on the subsequent stress-strain behaviour (see also Section 7.3.3). 

From the above review it will be seen that data concerning the small strain 

response of soil after tube sampling is very limited. The effects on the small strain 

stiffness of mechanical disturbance, stress relief and subsequent recompression to 

initial stresses have not been fully investigated. This requires high quality testing 

making use of the developments described in Section 2.5. 

2.4 Other Factors Affecting Deformation Behaviour 

In addition to the effects of sampling disturbance on the stress-strain response of 

soils, other factors with significant effects have been considered by researchers. These 

include the rate of loading, the consolidation history and the overconsolidation ratio. 

Other factors such as temperature and ageing are also thought to have considerable 

influence. The discussion in this section will centre on the first three factors only. 

The rest have been covered in detail by Richardson (1988). 
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2.4.1 Rate of Loading 

Previous studies of loading rate effects on the stress-strain behaviour of clays ha\·c 

mainly concentrated on the undrained strength rather than stiffness. Even when 

the relationship between stiffness and rate of loading has been looked into, the 

conclusions have been mainly qualitative and related to large strains only. However, 

the research has indicated that stiffness increases with increasing stress or strain 

rate in the same manner as strength, for which an increase of about 10 to 20 % for 

a tenfold increase in strain rate has been reported (Graham et al (1983)). Similar 

trends were also reported by Hight (1983). On the other hand, Richardson (1988) 

reported that, provided uniformity of the pore pressure during loading is ensured, 

the rate of loading may not be significant. In this case suitable loading rates may 

be calculated from the method suggested by Bishop and Henkel (1962). The review 

of the research in this field showed a lack of quantitative description of the stiffness­

loading rate relationship. 

2.4.2 Overconsolidation Ratio 

By assuming that the 'pre-peak' stress-strain curves are closely linear, Wroth et al 

(1979) suggested a linear relationship between the normalised shear modulus, G/p~, 

and In( OC R), which takes the form 

~ = (~) [1 + C x In(OCR)] 
Po Po n.c. 

(2.5 ) 

where (G/P~)n.c. is the normalised shear modulus for a normally consolidated spec­

imens. Wroth et al did not have experimental evidence for the above relationship 

but there was experimental evidence for a similar relationship with eu replacing p~ 

as the normalising parameter (e.g. Ladd and Edgers (1972)). 
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Tests carried out by Gens (1983) on Lower Cromer Till and summarised in 

Figure 2.8 indicated that isotropically consolidated soils exhibit a linear relation­

ship between normalised stiffness and In( DC R) while anisotropically consolidated 

specimens display a non-linear relationship. A maximum normalised stiffness can be 

noticed to take place at an OCR of around 2 to 4. It should be mentioned that the 

normalising parameter in the case of Gens's data is the initial vertical consolidation 

As mentioned above, Equation 2.5 has been developed by assuming a linear 

stress-strain relationship during the early stages of loading. Jardine et al (1984) re­

ported that for one-dimensionally consolidated soils the relationship between Eu!/ Cu 

and In( DC R) is non-linear and depends on the strain level. For reconstituted spec­

imens, Ew./cu was a maximum at an OCR of about 2. No particular trend could be 

identified in the case of natural tube specimens. Richardson (1985) reported simi­

lar results for reconstituted one-dimensionally consolidated London clay and kaolin, 

but for isotropically consolidated specimens he reported a linear relationship be­

tween G/p~ and In(OCR). A similar trend was found by Atkinson and Little (1988) 

for a glacial till soil. 

2.4.3 Consolidation History 

Tests carried out by different researchers (e.g. Lewin (1970) and Koutsoftas (1980)) 

indicated that the stiffness of the soil increased with increasing slope of the consoli­

dation stress path, 7J~. This effect was strongest in the case of compression tests on 

normally consolidated and overconsolidated clays. 

As indicated in Figure 2.8, an anisotropically consolidated specimen exhibits a 
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higher normalised stiffness than a corresponding isotropically consolidated specimen. 

Similar results were reported by other researchers (e.g. Richardson (1988) and 

Graham et al (1988)) from tests on London clay and kaolin but the differences 

were significantly lower. 

2.5 Stress Path Testing: Recent Improvements 

In addition to the limitations of stress state that can be applied to the specimen, 

as discussed in detail by Baldi et al (1988), the standard triaxial tests described by 

Bishop and Henkel (1962) suffer from two main disadvantages. The first concerns 

the method of consolidating and shearing the specimens. The second relates to the 

strain measurement technique. 

Figure 2.9a shows a conventional triaxial cell where the axial strain is mea­

sured by monitoring the loading ram movement and shearing is applied by increasing 

the axial stress while keeping the radial stress constant. This 'conventional' method 

of shearing is represented by a stress path with a slope of 3 in q, p space, which 

may not be similar to the stress path applied in the field. In addition, conventional 

triaxial testing involves isotropic consolidation of the specimen which is not a true 

representation of the natural anisotropic process. 

The desire to test soils in the laboratory under conditions similar to those in­

situ resulted in the introduction of a hydraulic stress path cell described by Bishop 

and Wesley (1975). This is shown in Figure 2.9b. Although loading is still axially 

symmetric, by changing the hydraulic pressures in the lower chamber and the cell, 

stress paths in any direction in q, p space can be followed relatively easily. The 

axial strain can be measured externally, by mounting cross-arms on the loading 
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ram supporting two vertical rods passing through clearance holes in the cell which 

deflect the displacement transducers. Alternatively, it can be evaluated from the 

lower chamber volume change as follows: 

fa = (~VjaLc) X 100 (2.6) 

where fa is the axial strain, ~ V is the lower chamber volume change, a is the 

bellofram area, and Lc is the consolidated length of the specimen. 

Costa Filho (1980) carried out tests on London clay to compare axial strains 

measured externally with those measured locally by mounting linear variable dif­

ferential transformers (LVDTs) on the middle third of the specimen. As noted in 

Chapter 1, he reported that strains measured locally were much smaller than those 

measured externally. Similar results were reported by Burland and Symes (1982). 

The conclusion was that conventional strain measurements involve errors arising 

from a number of different sources. 

2.5.1 Sources of Error in External Strain Measurements 

Figure 2.10 illustrates some ofthe errors that can be included in a conventional strain 

measurement. Costa Filho (1985) showed that in certain cases the errors could be 

so large that the initial stress-strain behaviour would be completely masked. The 

errors fall generally into the following categories : 

• Bedding errors: these occur whenever the specimen has irregular end surfaces 

or there is an initial lack of fit between the specimen top cap and the load 

cell. Stress-strain curves from tests with considerable bedding errors show a 

concave upwards shape in their initial part, as illustrated in Figure 2.11. The 
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traditional approach is to extend the linear portion and shift the origin for axial 

strain to the point of intersection. Of course, this procedure is unsatisfactory 

when small strain behaviour is being measured. The error due to irregular end 

surfaces depends on the type and extent of consolidation before shearing. If the 

specimen is brought to a fairly high consolidation pressure, the irregularities 

at the specimen ends may be supressed and most of the bedding between 

the specimen and the top cap removed (Atkinson and Evans (1985)). If the 

consolidation is anisotropic, then other types of bedding errors such as the 

lack of fit at the top cap connection would be effectively eliminated. However, 

if the soil specimen is very stiff, the supression of the irregularities could be 

incomplete. Atkinson and Evans (1985) suggested raising the stress level in 

the cell prior to shearing to eliminate the bedding errors. This method could 

prove to be effective in the case of soft clays, but in tests involving unloading 

recovery of the surface irregularities could take place as shown by Daramola 

(1978) in tests on sands and by Costa Filho (1980) and Gens (1983) in tests 

on London clay and Lower Cromer Till respectively . 

• Misalignment of the specimen: as shown in Figure 2.12a the end surfaces of 

the triaxial specimen after trimming could be non-parallel. They also could 

be non-perpendicular to the vertical axis of symmetry of the specimen. 

• Misalignment of the apparatus: the specimen should be loaded along its verti­

cal axis of symmetry. Any misalignment, as shown in Figure 2.l2b, could cause 

significant tilting of the specimen top cap and make the strain measurement 

inaccurate. 

• Compressibilty of the cell components: the components shown in Figures 2.10 

and 2.12 (e.g load cell, top cap) undergo compression during deviator stress 

application. Theoretically, it should be possible to determine their stiffness 
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and allow for the compression in the calculation of axial strain. However, the 

process would not be free from errors and could prove difficult, especially when 

certain components have non-linear stress-strain relationships (Jardine et al 

(1985)). 

One of the common assumptions in triaxial strain measurement is the ideal­

ized right cylinder behaviour shown in Figure 2.13. End restraints on the specimen 

prevent such behaviour and instead the deformed shape 'Shown in the same figure 

tends to develop. This would not only affect the axial strain measurement but also 

the radial strain measurement and, in turn, the determination of the Poisson's ratio 

( Moore (1966)). The problem of end restraint on the specimen has been realised 

since the 1940's (e.g. Taylor (1941)) but for convenience the majority of triaxial 

testing is still conducted with frictional ends. 

Germaine and Ladd (1988) compared the beha\·iour of normally consolidated 

and overconsolidated clay specimens with frictional and frictionless ends and found 

that tests with frictional ends tend to involve water migration between the ends and 

the middle of the specimen. The migration was found to increase witr.. increasing 

OCR and becomes substantial for highly dilatant soils. However, they concluded 

that the error in strain measurement due to end restraint for soft clays is relatively 

small. End friction effects were also found to be strain-rate dependent; some fast 

undrained tests did not allow water migration to take place. For samples with an 

OCR greater than 6, Germaine and Ladd concluded that lubricated ends should be 

used for tests where large strains ( i.e > 1.5%) need to be measured accurately and 

where pore water pressure measurement is required. 

Many other studies have been made of the end restraint problem. For exam­

ple, Sarsby et al (1980) reported that lubrication of the specimen ends could reduce 
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the small strain measurement accuracy by introducing an additional compressible 

component into the system. Maguire (1975) carried out a numerical analysis of 

end restraint effects and found that they were a function of the specimen height to 

diameter ratio and Poisson's ratio 1/. Costa Filho (1980) used another numerical 

approach and reported similar results. He also found that, during the early stages 

of shearing, the difference between the apparent and true stiffness is modest. The 

results of a number of studies are presented in Figure 2.14 which shows that for 

a soil specimen with 1/ equal to 0.5, the stiffness v,;ould Dnly be overestimated by 

about 10%. The above investigations indicate that the assumption of right cylin­

der behaviour over the middle part of the specimen and during the early stages of 

shearing is justified. 

2.5.2 Strain Measurement Techniques 

The deficiencies of external measurements have led to the introduction of a variety 

of techniques to measure axial strains along the middle portion of the specimen. 

As shown in Table 2.4, these techniques can be divided into two main categories, 

namely, optical and electronic. 

Kirkpatrick and Belshaw (1968) used radiographic techniques to measure 

small strains in sand specimens, while Balasubramanian (1976), Roscoe et al (1973) 

and Arthur and Phillips (1975) used the same method for clay specimens. Although 

this technique has a relatively good accuracy, it can only be used for reconstituted 

specimens since it requires the installation of lead shot inside the specimen. Freeser 

(1984) modified the technique of optographic trace recording for use in triaxial test­

ing. This involves the use of luminous points attached to the specimen and of a 

camera recording their position during the test. Although this method provides 
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information about the progressive failure mechanism of the specimen, its accuracy 

is rather limited. 

Electronic transducers have been used by several researchers for both axial 

and radial strain measurement. LVDT's were used by Brown and Snaith (1974), 

Brown et al (1980), and Costa Filho (1980). Their accuracy has been shown to 

be satisfactory but the mounting methods, one of which is shown in Figure 2.15, 

are only suitable for small strain measurement as jammi~g, or even damage, of the 

transducers may take place at large strain or during failure. Burland and Symes 

(1982) developed an axial displacement gauge which employs electrolevel transduc­

ers. The principle is that a hinged arrangement, shown in Figure 2.16, converts the 

displacement between two footings mounted on the sample into a rotation of the 

transducer capsule from which the axial movement is calculated. Jardine (1985) 

introduced some changes to the configuration of these transducers to improve their 

resolution. The mounting is simpler than that of the LVDTs and the specimen 

can be brought to failure without difficulty. When using some of these transducers 

stiffer membranes or balancing weights have to be used in order to keep full contact 

between the specimen and the membrane during setting up and testing. 

Clayton and Khatrush (1986) introduced a device for measuring axial strains 

which makes use of the Hall effect. The overall accuracy of these transducers did 

not appear to be better than that of the electrolevel gauges. Clayton and Khatrush 

also reported some unspecified problems during isotropic consolidation. In addition, 

the transducers have a small range ( 2.5 mm ) which makes them unsuitable for use 

with soft soils which undergo large changes in dimensions during consolidation. 

Proximity transducers have been used by some researchers, mainly for radial 

strain measurement. These devices respond to the presence of a metallic target in 
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their vicinity and the change in inductance brought about by eddy currents in the 

target. The magnitude of this change is related to the distance between the target 

and the transducer (Seippel (1983)). The main advantage of using such transducers 

is the fact that they can detect changes in the target position without any physical 

contact, although only over a limited range. Initially, proximity transducers were 

used to monitor radial strain during Ko-consolidation (Khan and Hoag (1979)) . 

However, Yung (1987) used them to measure axial as well as radial strains in tests 

on Cowden Till, as shown in Figure 2.17. Details of the method of mounting are pre­

sented in Section 3.3. Although the transducers proved to be sufficiently accurate, 

strains could only be measured during the early stages of the test and collapsible 

targets had to be mounted in order to avoid restraint or damage at larger strains. 

The particular transducers used by Yung had very stiff cables which made their 

mounting procedure difficult. Furthermore, the output from the transducers was 

non-linear resulting in a more complicated analysis of the calibration data. When 

proximity transducers are used in tests on stiff clays, such as Cowden Till, it is not 

too difficult to set the targets so that they remain in range during the saturation 

and consolidation stages of a test because the specimens undergo relatively small 

changes in height and diameter. The use of transducers with a 6 mm range proved 

satisfactory. However, initially soft clay specimens subjected to large consolidation 

pressures undergo relatively large changes in dimensions. A mechanism must there­

fore be provided which allows the position of the transducers to be changed during 

the test so as to keep them in range at all times. With such a mechanism, it is 

possible to deploy smaller range transducers. This is advantageous since the smaller 

the range, the higher the sensitivity. The type of the targets depends on the type 

of transducer employed and on the effect that the targets could have on the soil 

specimen. As will be described in Section 3.3, tests carried out by Yung (1987) and 

the Author have shown that the most sensitive and stable response is achieved by 
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using magnetic stainless steel targets. However, both Brown et al (1980) and Symes 

et al (1983) used aluminum foil targets which are flexible and much lighter than the 

magnetic stainless steel plates. They found that the stiffness of the soil specimen 

was unaffected by the attachment of these targets. 

Although it is important to deploy highly accurate transdu?ers, the errors 

in axial strain measurement can be much larger than those calculated from the 

transducer characteristics. Costa Filho (1985) blamed so~e of the additional errors 

on the following: 

• Transducer and target mounting. The errors clearly depend on the transducer 

type and the method of mounting. For example, if proximity transducers 

are used, it is important to make sure that the target and transducer faces 

are parallel. During consolidation and shearing, some departure from this 

parallelism could take place, thus affecting the displacement measurement. 

• Barrelling during shearing. As mentioned in Section 2.5.1, the soil specimen 

does not deform in a right cylinder manner. The rotation of targets mounted 

on the surface of the specimen may adversly affect the readings taken by a 

transducer. 

• Tilting of the specimen during shearing. Axial displacements measured on 

two diametrically opposite sides of the specimen usually do not yield equal 

strains because of tilting of the specimen or the existence of non-homogeneities 

within the soil. For fairly homogeneous specimens, symmetry may be assumed 

without introducing significant uncertainties (Daramola (1978) and Burland 

and Symes (1982)). 

Hird and Yung (1989) presented a detailed assessment of some of the errors 
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associated with their proximity transducer measurements. The predicted errors were 

as shown in Table 2.5. Two approaches were adopted in evaluating the errors in 

the system. The first incorporated both systematic and random errors while the 

second dealt with the random errors only. However, the scatter noticed on the 

stress-strain curves from shearing tests indicated much larger random errors than 

those calculated. Fluctuations in the pressure system, errors in load measurement, 

and time dependent strains were blamed. It was concluded that the achievement of 

accurate strain measurement is not sufficient if the soil stiffness is to be evaluated 

accurately; attention should also be given to the application and measurement of 

load. 

2.5.3 Some Other Developments in Triaxial Testing 

In addition to the introduction of the Bishop and Wesley apparatus and the devel­

opments in the strain measurement referred to above, other new techniques have 

been introduced that provide a better quality of control and more reliable data. 

The introduction of microcomputer control (e.g. Atkinson et al (1985)) has 

permitted complicated tests to be carried out with relative ease and without the use 

of complicated mechanical equipment. Independent automatic control of axial stress, 

radial stress, and drainage rate means that effective stress paths in any direction in 

q, p' space can be followed. 

For standard tests, Atkinson et al (1985) introduced a method of shearing 

whereby the specimen undergoes a constant rate of loading up to a certain level 

where the rate of axial strain is high enough to cause non-uniformity of pore water 

pressure in the specimen. At this point, the control is switched over to a constant 
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rate of axial straining. This hybrid method of shearing has been mainly introduced to 

avoid excessive rates of straining during the early stages of the test while preventing 

abrupt failure of the specimen. However, Jardine at al (1985) argued that the use of 

sufficiently low strain rates would suffice and would not involve switching between 

strain and stress control. 

Electronic transducers and equipment have also been developed or improved 

to facilitate automatic data logging and test control. Important examples are: 

• The mid-height pore water pressure transducer. A full description of this 

miniature pressure transducer is given by Hight (1982) and Baldi et al (1988). 

Uniformity of the pore pressure in the soil specimen can be checked by record­

ing its value at the top and bottom of the specimen as well as at mid-height. 

Measurement at mid-height has the advantage of avoiding the zones affected 

by end restraint. 

• The differential pressure transducer. In certain tests, for example liquefaction 

tests (Castro (1969)) or tests involving small effective stresses, it is more accu­

rate to measure the effective confining pressure directly by using a differential 

pressure transducer . 

• Volume change units. Alva-Hurtato and Selig(1981) presented a review of 

the available techniques for measuring specimen volume change. Automated 

volume change units, such as the one described by Tatsuoka (1981) which 

makes use of a differential pressure transducer or the unit developed at Imperial 

College and described in Section 3.3, have proved to be appropriate for back 

pressured saturated specimens. Unsaturated soils required more sophisticated 

volume change units. 
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Before sampling 

Stress relief 
Swelling 

Compaction 
Displacement 
Base Heave 
Piping 
Caving 

During sampling 

Stress relief 
Remoulding 

Displacement 
Shattering stones at 

the cutting shoe 
Mixing or segregation 
Failure to recover 

After sampling 

Stress relief 
Migration of water within 

the sample 
Loss of moisture 
Freezing 
Overheating 
Vibration 
Chemical changes 
Disturbance during extrusion 

and setting up 

Table 2.1 Sources of soli sample disturbance 
(after Clayton et al (1982» 

Sample type 
Average c Average E 

kPa kPa 
- - - . -_ .. 

Not unloaded 111.4 (1.4) 11200 (1700) 
Unloaded but not stored 66.2 (3.0) 6890 (210) 
Unloaded. sealed with 

wax and stored 39.6 (3.7) 1720 (130) 
Unloaded and stored in 

compressor 
(1) 55.0 (5.6) 5580 (280) 
(2) 62.5 (0.9) 6980 (190) 
(3) 63.6 (2.2) 6990 (180) 

Note: Numbers in brackets represent standard deviation 

Table 2.2 Effect of storage method on the strengh and stiffness 
(after Brown and Chow (1988)) 



Change in Effect before Method of Effect after 
Authors verticaJ pressure D ~ 1-p,.'/p: 

(kPa) reconsoIidation reoonso/idatlon reconsolidation 

E Cu E Cu 

Skempton 
and 120 0.2 (p.s.) Isotropic AE 

Sowa (1963) 

0.18-0.3 Anisotropic to 
Atkinson (p.s.) 
and 276 CR CA CA (50%) 

Kubba (1981) 0.~.6 initial stresses 
(\.!.) 

Klrtcpatrick 0.15 
Anisotropic to 

CR CA (50%) RE 
et aI (1986) 552 (p.s.) 

CA 
initial stresses 

Hight eI 0.28 (p.s.) Anisotropic to 
aI (1986) 400 CR CR (20%) 51 SA 

0.43 (\.s.) initial stresses 

Baligh eI 0.1 (p.s) Aniso. to init. stresses 51 51 (10%) 
aI (1987) 

0.6 (ls.) 
FA (17%) CA (75%) 

SHANSEP RE AE 

Grahamet Anisotropic CA RE 
aI (1988) 160 0.15 (p.s.) CR CA isotropic to ex.' CA SA 

isotropic to 0.6 cr.,' CA 51 

Notes 0=0 Undisturbed CA Considerable reduction FA Fair reduction 

0=1 Completely Disturbed SI slight increase p.s. Perfect sampling 

AE Full recovery SA Slight reduction ts. Tube samplimg 

Table 2.3 Summary of recent research Into sampling disturbance 



Reference 

Costa Filho (1980) 

Burland & Symes (1982) 

Clayton & Katrush (1986) 

Hlrd & Yung (1989) 

Roscoe et al (1963) 

Freeser (1984) 

Menzies (1976) 

EI-Ruwaylh (1976) 

Method Strain measurement 

Unear variable differential 
transducers attached to studs 
or collars around the specimen 

Electrolytic levels 
as horizontal Inclenometers 

Hall effect semiconductor 
mounted vertically along 
the side of the specimen 

Proximity transducers mounted 
around the specimen to which 
metal targets are attached 

X-ray radiographs from a grid 
of columns of X-ray opaque 
particles within the specimen 

Optographlc trace recording 
of luminous points mounted 
around the specimen 

Circular calliper fitted with 
LVDTs. Based on device suggested 
by Bishop and Henkel 

Radial strain gauged rings 
attached to studs or 
directly to specimen 

vertical 

ditto 

ditto 

vertical & 
horizontal 

ditto 

ditto 

horizontal 

ditto 

Table 2.4 Summary of local strain measurement techniques 



Axial strain 

% 

0.01 

0.05 

0.10 

maximum error maximum fractional largest probable 

error error 
% % 

-3 -3 

8.01 * 10 0.801 2.83 * 10 

-3 -3 
8.06 * 10 0.161 2.83 * 10 

-3 -3 
8.12 * 10 0.081 2.83 * 10 

Table 2.5 Overall errors in axial strain measurement 
(after Hird and Yung (1989» 

largest probable 

fractional error 

0.283 

0.057 

0.028 
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Chapter 3 

EQUIPMENT AND 

EXPERIMENTAL 

TECHNIQUES 

3.1 Introduction 

In Chapter 1, it was explained that the laboratory work would focus on the effects of 

sampling disturbance on the undrained small strain behaviour of kaolin. In order to 

carry out the experimental study outlined in Chapter 1, a special 100 mm triaxial 

stress path apparatus was designed and manufactured. Certain alterations were 

also made to an existing 38 mm cell. The first part of this chapter contains a brief 

review of the existing pieces of equipment in the research laboratory, along with 

their limitations. The second section describes the newly manufactured cell and 

associated instrumentation, together with the additional features introduced into 

the 38 mm apparatus. Finally, the third part of the chapter summarises the testing 
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procedures used, with particular reference to the problems associated with stress 

control and strain measurement. 

3.2 Review of Existing Equipment 

One 100 mm triaxial cell and one 38 mm cell were available at the beginning of 

the research. The 38 mm cell was used by Ilyas (1983) to investigate the behaviour 

of kaolinitic pottery clay. The larger cell was used by Yung (1987) to investigate 

the small strain behaviour of Cowden Till. Both cells operate on the principle 

described by Bishop and Wesley (1975) and were initially purchased from commercial 

manufacturers. However some alterations had to be carried out on them to rectify 

faults and provide more reliable data. Details of these alterations are given by Yung 

and Ilyas. Nevertheless, certain limitations remained. 

3.2.1 Limitations of the 100 mm Apparatus 

3.2.1.1 Bellofram area ratio 

The cross-sectional area sealed by the lower chamber bellofram is unduly large. The 

area ratio (a/A), defined in Figure 3.1, is equal to 6.25. Although such a design 

has the advantage of permitting a large axial stress to be applied, the sensitivity 

of the system is lost. One step of the stepper motor controlling the lower chamber 

pressure would result in a change of 0.4 kPa in the lower chamber pressure and 

hence approximately 2.4 kPa in the deviator stress on the specimen. This causes an 

unnecessary additional difficulty in retrieving small strain data, which is especially 

serious in the case of soft soils. Furthermore, as will be discussed in Section 5.4.3, 
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during [(a-consolidation and [(a-swelling axial and radial stresses have to be applied 

incrementally and, in order to avoid large radial strains, the increments of axial 

stress should be as small as possible. 

3.2.1.2 Top cap-load cell connection 

The top cap has a flat surface at the contact point with the load cell, Figure 3.2b, 

instead of the usual curved recess shown in Figure 3.2a. This arrangement was 

adopted by Yung because, after isotropic consolidation, the load cell and the centre 

of the top cap were not perfectly aligned. With the traditional design, at the start 

of axial loading some horizontal movement of the top cap would take place which 

would result in stress and strain non-uniformities, especially during the early stages 

of shearing. In addition, some vertical movement of the whole specimen would occur, 

thus moving the targets mounted for the proximity transducers (see below) out of 

the most suitable range. On the other hand, with the design adopted, the specimen 

may not be loaded along its centreline. Consequently non-uniformities of stress and 

strain may still take place and the top cap is more likely to tilt, as found by Yung. 

In addition, with this type of connection, extension loading is not possible and the 

range of stress paths that can be applied is therefore restricted. At present there 

is not enough space around the top cap to change the connection into one which 

allows extension loading. 

3.2.1.3 Arrangement of proximity transducers 

Figure 2.17 shows the general arrangement of the instrumentation devised by Yung 

to measure local strains. Axial strain is measured on both sides of the specimen to 
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cater for tilt, and lateral strain is measured across one diameter. This arrangement 

has a major drawback. Since all the transducers are mounted on brackets bolted 

to the cell middle plate, their position cannot be changed once the test starts (i.e. 

the cell top is lowered over the specimen). This means that the initial separation of 

each target and transducer should be suitably within the working range. Saturation 

and consolidation of the soil specimens causes movement of the targets. If the soil is 

stiff (e.g. the Cowden Till tested by Yung) , then the moyements of the targets are 

small and the targets remain within range of the proximity transducers. Soft soils, 

however, undergo large movements during consolidation and such an arrangement 

is not then satisfactory. Even with stiff specimens, only strains during the early 

stages of shearing can be measured since the targets soon move out of range upon 

shearing. Finally, in order to bring the specimens to failure, a collapsible mounting 

arrangement for the targets has to be introduced to avoid jamming or damage to 

the equipment (Hird and Yung (1989)). 

3.2.1.4 Access to cell parts 

Because the proximity transducers used by Yung had very stiff leads, once they were 

mounted they were left in place and hence access to some parts of the cell and to the 

specimen was restricted. Also, to allow the local instrumentation to be installed, a 

50 mm high aluminium spacing ring had to be fitted on top of the perspex of the 

cell top. This had the unfortunate result of hiding the top half of the specimen, 

including the contact point between the top cap and the load cell as well as the end 

cap strain instrumentation which will be described in Section 3.4.5. 
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3.2.2 Limitations of the 38 mm Apparatus 

3.2.2.1 Pressure fluctuations 

The CDS pressure controllers used in conjunction with the cell are supposed to 

maintain a constant pressure to a specified accuracy of ± 2kPa. However, fluctua­

tions of up to ±5 kPa were observed by Ilyas. To overcome this problem, attenuators 

were fitted in the connecting lines but the fluctuations wexe still noticeable. 

3.2.2.2 Axial strain measurement 

Axial strains can be calculated from the volume change in the lower chamber. An­

other method consists of mounting two diametrically opposite vertical rods on cross­

arms connected to the loading ram. The rods pass through holes in the cell base and 

terminate under dial gauges mounted on the cell top. At larger strains a comparison 

between the two methods showed acceptable percentage differences not exceeding 

2%. However, as discussed in Chapter 2, external axial strain measurement has been 

found to be erroneous at small strain levels. Thus in the existing apparatus there 

was no way of accurately measuring small strains. 

3.2.3 Limitations Common to Both Cells 

Each cell, along with its peripheral equipment, was controlled by an Apple 2 Plus 

microcomputer, programmed in the BASIC language. Because of this, the speed of 

control and data collection were rather limited. Furthermore, because of the small 

memory of the computer, Yung had to insert a new floppy disk several times during 
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a test to store his data and the data could not be stored in both raw and processed 

forms. Back-up copies had to be made using a separate similar computer. Finally, 

data could not be processed directly using commercially available statistical and 

graphics packages (e.g. Lotus 123) because they were stored with a different format. 

This meant that another program had to be written to transform the data before it 

could be analysed using these packages. 

3.3 Description of New and Modified Equipment 

In view of the limitations discussed in the previous section, it was decided to develop 

another 100 mm triaxial apparatus for use in the investigation of sampling distur­

bance and also to modify the 38 mm cell so that it could be used to investigate soil 

behaviour at small strains. 

Two options were available as far as the 100 mm cell was concerned. The first 

was to design and manufacture a cell in-house and the second was to purchase one 

from a commercial manufacturer. The main advantage of the first option was that 

the new apparatus would incorporate the special features required for the proposed 

testing programme. For example, enough space would be provided for the prox­

imity transducers which would be on externally adjustable mountings. Significant 

modifications to a purchased cell would have been needed, which could have proved 

difficult, if not impossible. Another advantage was that the cost would be lower. 

Therefore, it was decided to adopt the first option. However, it was realised that 

the design, manufacture and assembly of the cell in-house would require a longer 

period of time. 
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3.3.1 Components of the New 100 mm Apparatus 

Figure 3.3 shows a schematic representation of the apparatus. The main components 

are: 

3.3.1.1 The triaxial cell 

A cross section of the new cell is presented in Figure 3.4, while Plate 3.1 shows the 

cell assembled ready for use. The following features were introduced in order to 

overcome the limitations encountered with the existing 100 mm cell referred to in 

Section 3.2.1 : 

• The bellofram area ratio (Figure 3.1) is now 2.25. With this area ratio an axial 

stress of 1000 kPa can be achieved in about 1100 steps and the axial stress 

increment on the specimen does not exceed 0.9 kPa. For a relatively high cell 

pressure of 700 kPa, the maximum deviator stress that can be applied is about 

1100 kPa which is large enough to bring most soil specimens to failure . 

• As shown in Plate 3.2, there is a steel ring at approximately the mid-height of 

the specimen on which the radial strain proximity transducers are mounted. 

This method of mounting has the benefit of permitting external adjustment 

of the proximity transducers, as will be described in Section 3.4.6. During 

a test, any change in the cell pressure results in a change in the stresses in 

the steel ring and causes it to deform. This has the potential to cause strain 

measurement errors. An analysis was therefore carried out to check on the 

deflection of the steel ring under radial pressure. This is presented in Appendix 

A and indicates that for a ring of 40 mm wall thickness, the deflection has a 

negligible effect on the radial strain measurement. 
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• The top cap is connected to the load cell by a vacuum connection. Figure 

3.5 shows the components of the connection. A circular plate (A) is screwed 

onto the load cell (8). Through this plate there is a hole which is connected 

by a 2 mm diameter flexible pipe either to atmospheric pressure or to the cell 

pressure line. A rubber seal (C) fits onto the top cap (D) connected to the 

specimen. After the flexible pipe has been connected to the cell pressure line, 

the load cell and the plate are lowered into the rubber seal until the plate and 

the top cap are in contact. Any trapped water is squeezed out through the 

flexible pipe back into the cell. This operation involved maximum changes 

in deviator stress of ±3 kPa and very small strains in the specimen. At this 

stage the flexible pipe is disconnected from the cell pressure line and opened 

to atmospheric pressure. Full contact is ensured by the difference between 

the pressures on each side of the rubber seal. For high extension loading a 

vacuum may be applied in the flexible pipe to increase the tensile capacity of 

the connection. However, this was unnecessary in the present research . 

• Access to the specimen and proximity transducers has been made easier by 

providing more space around the bottom pedestal. The height and diameter 

of the cell top have been increased in order to allow more space for the vacuum 

top cap connection and the end cap axial strain instrumentation. 

• As indicated in Figure 3.4, the moving cylinder in the lower chamber is guided 

by a plain bushing rather than a roller bearing in the lower chamber to min­

imize tilting and to ease manufacture. Modest friction losses in the bearing 

are not a problem since the axial stress is calculated from the load cell and 

cell pressure readings. 
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3.3.1.2 The stepper motors 

These are precision pressure controllers (manufactured by Watson Smith ,Leeds, 

England) which can be operated either manually or by computer. The maxi­

mum number of steps that can be applied is 2000 so that if the limiting pressure 

from the air compressor is 800 kPa, each step will correspond to approximately 

0.4 kPa. The three stepper motors are each connected to an air-liquid inter­

face (one air-oil for the lower chamber and two air-water for the cell and back 

pressures). As illustrated in Figure 3.3, along each pressure line, a pressure 

gauge (manufactured by Budenburg Gauge Co. Ltd, Cheshire, England) is 

mounted to give a visual indication of the pressure levels. 

3.3.1.3 The microcomputer 

The computer is a 640K 16 bit IBM compatible PC with one 20 MB hard 

disc drive, one double sided 40 track floppy disc drive, a monochrome video 

monitor, an IBM printer, and an HP7475A plotter. 

3.3.1.4 Interfaces for data logging 

Two types of transducer-computer interface systems are used. The first, 'Sys­

tem 16' (manufactured by Sangamo, West Sussex, England), is used to convert 

analogue readings from the AC proximity transducers into digital signals ac­

cepted by the computer. The second, an "Analogue Input Unit" (AIU) type 

2014 (manufactured by MC - Computers, Berkshire, England), is used to per­

form analogue to digital conversions for all the DC transducers, Two AC 

submersible LVDTs used for end cap axial strain measurement (see Section 

3.4.5) are connected to type OD3 signal conditioning units (manufactured by 

Sangamo) before being connected to the AIU. They could not be interfaced via 
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the System 16 because the gain setting required for the proximity transducers 

differed from that needed for the submersible LVDTs. 

3.3.2 Components of the Modified 38 mm Apparatus 

The configuration of this system is presented in Figure 3.6. Its basic components 

are: 

3.3.2.1 The microcomputer 

A BBC Master microcomputer with two floppy disk drives, a monochrome video 

monitor and an Epson printer are used. Although this system is much less powerful 

and versatile than the one used in conjunction with the 100 mm cell, it was felt 

to be adequate for the proposed tests (see Section 6.2). The data analysis can still 

be carried out on an IBM compatible machine thus limiting the use of the BBC 

microcomputer to the control of tests and logging of data. 

3.3.2.2 Interfaces for data logging 

An Analogue Input Unit (AIU) similar to the one described in Section 3.3.1 is used. 

Again, two submersible LVDTs used for end cap axial strain measurement (see 

Section 3.4) were first connected to type OD3 signal conditioning units. 
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3.3.2.3 The pressure control systems 

The lower chamber and cell pressures are controlled by two GDS controllers (man­

ufactured by Geotechnical Systems Ltd, Walton-on-Thames, England). Each con­

troller can perform the following actions: firstly, achieve a specified volume change 

or maintain a specified pressure and, secondly, read the volume change and pressure 

and provide information about the status of the controller (i.e. whether under auto­

matic or manual control). More information about the behaviour of the controllers 

is provided by Ilyas(1983). In this research, the CDS controllers were used only to 

achieve target pressures set by the computer so as to follow a certain stress path. 

The back pressure was applied by a manually controlled manostat connected to a 

Budenberg pressure gauge, Figure 3.6. 

3.3.2.4 The triaxial cell 

Details of this cell and its characteristics have been presented by Bishop and Wes­

ley (1975). Additional fittings have been mounted to permit end cap axial strain 

measurement as will be discussed below (Section 3.4.5). 

3.4 The Instrumentation 

In the previous section, reference has been made to load cells, pressure and dis­

placement transducers, and proximity transducers. The calibration methods and 

performance of these devices will be discussed in Chapter 5. Here, the characteris­

tics of the transducers and their methods of use will be briefly described. 
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3.4.1 The Load Cells 

An Imperial College load cell was used in each of the triaxial cells to measure deviator 

forces. The principle of these cells has been described by EI-Ruwayih (1975) and 

later by Hight (1983). They have a capacity of 350 kgf and are unaffected by 

horizontal forces or eccentricity of loading. Temperature effects are also thought to 

be minimal. 

3.4.2 The Pressure Transducers 

The cell, lower chamber, and pore water pressures at top and bottom of the speci­

men were measured in the 100 mm cell using transducers (manufactured by Bell and 

Howell, type 4-306-01l90-0nIO) with a range of 0 to 700 kPa. A miniature trans­

ducer (manufactured by Druck, type PCDR81) was used to measure the mid-height 

pore water pressure following the method described by Hight (1983). In the 38 

mm cell, the cell and lower chamber pressure were recorded by the GDS controllers. 

Another miniature transducer was installed in the bottom pedestal to measure pore 

water pressure. 

3.4.3 The Volume Change Units 

Imperial College units were deployed for measuring the volume changes of the spec­

imens in both cells. Their maximum range is about 100 cc. Although this proved 

sufficient for the 38 mm specimens, a reversing valve had to be connected to the unit 

when it was used for the larger volume changes of the 100 mm specimens. De-airing 

is essential before use and checks on air in the unit or the pipes connected to it were 
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carried out frequently. 

3.4.4 External Axial Strain Measurement 

This is a conventional type of measurement where two LVDTs are mounted dia­

metrically opposite to each other on cross-arms, as shown in Figure 3.7. In the 100 

mm cell, the middle plate serves as a reference and the transducers deployed have a 

maximum travel of 50 mm. The external axial strain in the 38 mm cell was simply 

calculated from the volume change in the lower chamber, as recorded by the GDS 

controller. 

Although the accuracies of the external measurements are inadequate at small 

strain levels (see Section 2.5), at large strains the percentage errors become relatively 

small and the external measurements become useful. The results at large strains can 

be cross checked against other types of measurement to give increased confidence in 

the data. 

3.4.5 End-cap Axial Strain Measurement 

The arrangement of the transducers in the 100 mm cell is presented in Figure 3.S. 

The bottom pedestal has an extension on which two diametrically opposite metal 

brackets of the shape shown in Figure 3.8a are bolted. Four stainless steel rods are 

mounted on these brackets on top of which a perspex ring is fixed. Two diametri­

cally opposite cross-arms mounted on this ring hold the submersible LVDTs, Figure 

3.Sb. The armatures of the LVDTs rest under their own weight on two rectangular 

stainless steel targets connected to the top cap. Extensions for the armatures may 
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be attached to cater for axial movement during consolidation and to make sure that 

the transducers are in range during shearing. The above mounting arrangement was 

adopted because it was thought to be more rigid than the one used by Yung (1987). 

It also provided more space for the top cap-load cell connection described in Section 

3.3.1 and for bulging of the specimen as it approached failure. 

Because of the potential errors involved in external strain measurement dis­

cussed in Section 2.5.1, the measurement of axial strains in the 38 mm cell had to 

be improved if the data were to be compared with the high quality data from the 

100 mm cell. Due to the limited space available in the 38 mm cell, the use of local 

instrumentation (proximity transducers or Imperial College electrolevel gauges) was 

ruled out and an alternative method had to be developed. It was decided to make 

use of some available submersible LVDTs and to measure axial strains between the 

specimen end caps. The arrangement finally adopted is presented in Figure 3.9. 

The two LVDTs are mounted on opposite sides of the loading ram inside the cell. 

An elliptical stainless steel plate is mounted on top of the specimen top cap with 

a 10 mm diameter hole in the middle (Figure 3.9b) to allow the load cell to touch 

the top cap in the normal way. On each side of the plat~ (Figure 3.9a), a fishing 

line is connected from which the LVOT armature is suspended. The armature and 

its connection to the fishing line have a weight large enough to cause the line to be 

fully stretched but small enough to avoid significant creep. This arrangement proved 

satisfactory, except that after isotropic consolidation the top cap could not be guar­

anteed to be horizontal and correctly aligned with the pin of the load cell. This 

caused eccentric loading, tilting of the top cap and sometimes complete masking of 

the true axial strain. As noted in Section 3.2.1, Yung (1987) used a fiat surfaced 

top cap and assumed that a certain eccentricity in the loading could be tolerated. 

However, some of his end cap strain measurements still proved erroneous, since the 
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point of loading did not fall on the horizontal line passing through the two mea­

surement points (Figure 3.10) and tilting of the top cap took place. To avoid such 

problems, a stainless steel tube was attached to the top cap in the manner shown 

in Figure 3.11. Immediately after the cell had been assembled, the load cell pin was 

lowered into the tube until full contact with the specimen top cap was achieved. In 

order to avoid excessive friction between the pin and the inside wall of the tube, 

silicon grease was spread over the inner surface of the pin. Air and grease could 

escape during penetration through a hole in the top of the pin. Trial tests indicated 

that some negative deviator stress (up to 20 kPa) took place during isotropic con­

solidation. This was the result of the still significant friction between the load cell 

pin and the stainless steel tube which opposed the downward movement of the top 

cap as the specimen reduced in volume. Similar problems were encountered during 

isotropic swelling. The problem was solved by getting the computer to monitor the 

deviator stress every 5 seconds. If the computer detected a value of deviator stress 

larger than ±3 kPa, it adjusted the lower chamber pressure to bring the deviator 

stress back within the specified range. 

3.4.6 Local Strain Measurement 

As mentioned in Section 2.5.2, a number of different techniques have been intro­

duced to measure the axial strain locally over the central part of the specimen. At 

Sheffield University, Yung (1987) developed a system based on the use of proximity 

transducers to measure both axial and radial strains. For the new 100 mm appa­

ratus it was necessary to look for transducers with more flexible cables than those 

used by Yung and to find a method of mounting them so that their position could 

be changed from outside the cell during a test. In this way the problems related to 
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the limit on the range of transducer (see section 3.2.1) could be avoided. 

A survey of the commercially available proximity transducers was carried out 

and three types from different manufacturers were tested in the laboratory. The 

SMP type manufactured by Sangamo was finally selected. The main advantages of 

this type, as compared to the one used by Yung, were much smaller size and weight, 

significantly higher sensitivity and much lower cost. The fact that the transducers 

have a range of only 2 mm, compared with 6 mm for those used by Yung was not seen 

as a problem since the transducers were to have externally adjustable mountings. 

However, this type of transducer was not intended to be immersed in water and 

some form of protection had to be developed. 

A detailed investigation into the behaviour of the new transducers was carried 

out to evaluate their response with different target materials. The results showed 

that the best target material was magnetic stainless steel which, in addition to 

providing the most sensitive response, does not react with the cell water. Similar 

findings were reported by Yung. 

A detailed drawing of the mounting unit is shown in Figure 3.12. Plate 3.3 

shows a photograph of the unit. The proximity transducer is fitted into a stainless 

steel housing. This housing has a threaded end which screws into a stainless steel 

tube through which the cable of the proximity transducer is passed. To proyide 

an effective seal between the housing unit and tqis tube, a groove is drilled in the 

flat part of the housing where an O-ring is placed. The tube is fitted in a brass 

tube which has two internal O-rings to prevent cell water from escaping between 

the two tubes. The outer brass tube is in a fixed position at all times while the 

inner tube holding the transducer is manoeuverable. The outer end of the inner 

tube is threaded where a nut is placed. By turning this nut, the position of the 
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proximity transducer can be altered. The whole mounting is attached to the cell by 

four screws entering threaded holes in a brass unit. An O-ring is provided at the 

surface of contact to prevent cell water from escaping. Adjustment of the position 

of the proximity transducer is carried out so that the inner tube is always moving 

towards the target. If the proximity transducer has to be moved away from the 

target, it is moved a larger distance than necessary and then brought back towards 

the target into the required position. This procedure eliminates slackness in the 

threads between the inner tube and the adjusting nut. 

Sealing of the transducer housing was carried out using medical fingercots 

(type X200-906 manufactured by Regent, England). As shown in Plate 3.3, the 

housing has grooves for two O-rings. To increase the chances of proper sealing two 

fingercots, similar to the one shown in Plate 3.3, were used for each transducer. The 

first was rolled around the housing and an O-ring was placed in the groove. Then 

another fingercot was placed on top of the first one and sealed by the second O-ring. 

In principle, the instrumentation arrangement for axial strain measurement 

IS similar to that shown in Figure 2.17. Two pairs of proximity transducers are 

mounted on opposite sides of the specimen. The target movements are not generally 

equal and therefore separate adjustable mountings for each transducer had to be 

provided. Four holes were drilled in the cell middle plate, as shown in Plate 3.4. 

into which the mounting units were inserted. Since the target movements had to 

be monitored in a vertical plane passing through the vertical axis of symmetry of 

the specimen, the proximity transducers had to be positioned accordingly and also 

had to be equidistant from the axis of symmetry. The arms holding the axial strain 

transducers consisted of three brass tubes welded together as shown in Figure 3.13 

and Plate 3.5. The rods were connected together and screwed to the housing in a 

way that allowed the flexible cable of the transducer to pass through them. Opposite 
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each transducer, a 30 mm x 30 mm x 1 mm stainless st.eel target is mounted on 6 

mm thick perspex rings around the specimen, Figure 3.14. The rings have two pairs 

of diametrically opposite holes through which brass rods pass. On one end of each 

rod there is a small bearing pad of the same curvature as the specimen and, on the 

other, a V-shaped fitting. A rubber band passing over the V-shaped fitting is used 

to hold the perspex ring onto the specimen without causing the bearing pads to 

penetrate the membrane or deform the specimen locally. This method of mounting 

the targets was developed by Yung (1987). 

Radial strain measurement was carried out in two perpendicular directions by 

symmetrically mounting four proximity transducers on straight stainless steel tubes 

which pass into adjustable mountings in the stainless steel ring described in Section 

3.3.1, as shown in Figure 3.15 and Plate 3.2. Rectangular (45 mm x 15 mm x Imm) 

magnetic stainless steel targets were attached to the membrane at about midheight 

of the specimen, each target being opposite a proximity transducer. Attachment of 

the targets to the rubber membrane was carried out by spreading silicon rubber gel 

over a roughly 5 mm diameter circular area in the middle of the target, Figure 3.16, 

and sticking it to the membrane. Support was needed for the first half hour until 

the silicon rubber set. The contact area between the target and the membrane was 

kept to a minimum to avoid restraining the specimen (see Section 5.4.2). 
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3.5 Specimen Preparation 

3.5.1 Test Material 

As mentioned in Chapter 1, the clay used in this research was Speswhite kaolin. 

This soil has been tested by many other researchers. Index and Cam-clay model 

parameters derived from previous studies (e.g Pang (1987) and Richardson (1988)) 

are presented in Tables 3.1 and 3.2 respectively. These were used to plan the spec­

imen preparation procedure. The soil was prepared in the form of a slurry and 

consolidated one-dimensionally to form a cake from which triaxial specimens could 

be extracted. A similar technique was used previously by Pang (1987). 

3.5.1.1 Slurry preparation 

De-aired de-ionised water was first poured into the mechanical mixer which was then 

set in motion. Speswhite kaolin was sprinkled in to form a slurry of a water content 

equal to about 1.5 times the liquid limit. Although some researchers have suggested 

the use of a mixing water content of twice the liquid limit to ensure full homogeneity 

(e.g Sheeran and Krizek (1971)), a factor of 1.5 was adopted in this research since it 

allowed an entire batch to be mixed in one operation. A similar value was adopted 

by Kirkpatrick et al (1986). The mixing took place for about two hours after which 

the slurry was placed in the consolidation pot. 
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3.5.2 Consolidation 

The consolidation pot had three main components, namely a bottom plate, a cylin­

drical body and a rubber bellows assembly, Figure 3.17. The body consisted of a 

number of chromium plated steel rings, each 153 mm high and 400 mm in diameter. 

Sealing between the rings was achieved by using O-rings. Steel tie rods were used to 

ensure that the rings were tightly clamped together between the bottom plate and 

the top plate of the bellows assembly during consolidation. The bellows assembly 

consisted of a steel top plate, a central piston, a rubber bellows, and a steel consoli­

dation plate. It was filled with water which was pressurised by an air-water system. 

As settlement of the clay took place, the central piston, which was connected to the 

consolidation plate, moved downward. Porolls plastic drainage layers were provided 

at the top and bottom of the sample. Drainage from the top of the sample was al­

lowed by connecting a nylon tube passing inside the bellows assembly to the upper 

drainage layer. Two holes in the bottom plate allowed drainage from the base. 

Before the pot was filled with slurry, silicon grease was applied to the internal 

wall of the pot to minimise friction between the consolidating slurry and the wall and 

to allow easier removal of the rings at the end of consolidation (see Section 3.5.3). 

The drainage disc was placed on the bottom plate under 100 mm of de-aired water. 

The slurry was poured into the consolidation pot under this dc-aired water to make 

sure that no air was trapped in the clay. The top drainage disc was then placed 

on top of the slurry and the bellows assembly lowered, thereby displacing the water 

on top of the porous disc. The top and bottom plates were then clamped together 

by means of the tie rods. The consolidation pressure was applied in steps indicated 

in Table 3.3 up to a maximum of 150 kPa. Application of pressure increments was 

carried out after ensuring that no significant volume change was taking place after 
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the previous pressure increment (i.e. volume change of less than 0.1 litre in 24 hours). 

The final vertical effective pressure (150 kPa) was applied for a period of about 10 

days to allow some secondary compression to occur. 

During consolidation the volume of water squeezed out of the clay and the 

settlement of the piston were monitored regula.rly. The results for the two cakes 

(1 and 2) prepared for the present work are presented in Figure 3.18. The results 

indicate that there is a very good correspondence between \'olume change and piston 

settlement. This implies that the amount of a.ir in the slurry was negligible. There is 

also a good agreement between the results for cakes 1 and 2. The modest divergence 

between the results noticed during the initial stage of loading, could be due to a 

difference in the amount of water left on top of the slurry before lowering the bellows 

assembly. 

3.5.3 Triaxial Specimen Preparation 

After consolidation, the pressure applied by the bellows assembly was released slowly 

and the rings forming the consolidation pot were removed by sliding them vertically 

upwards. The top drainage disc was then removed quickly to prevent water from 

being sucked back into the clay. Because the sampling process described below 

usually took about a day, a small amount of water was probably drawn back into 

the specimen from the bottom drainage disc which had to be left in place. 

Sampling was carried out by using tubes with the maximum possible aspect 

ratio to minimise disturbance (see Section 2.3). The samplers were prepared from 

aluminium tubing and had the geometry shown in Figure 3.19. Silicon grease was 

applied on both the inside and outside of the tubes which were then driven by hand 
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using the guiding equipment shown in Figure 3.20 to ensure that penetration was 

taking place in a constant vertical direction. Seven 100 mm diameter tubes were 

pushed in first followed by twelve 38 mm diameter tubes in the top half of the cake, 

as shown in Figure 3.21. \Vith the aid of a metal wire, the tubes were cut out of the 

cake before another set of 38 mm diameter samplers were driven into the bottom half 

of the cakle. The sample ends were cleaned up and waxed, and then closely wrapped 

in thin plastic sheeting (cling film). All the samplers were placed in polythene bags 

which were then sealed and placed in a temperature and moisture controlled room. 

According to Baligh et al (1987), the maximum axial strain that takes place 

during tube penetration is given by Equation 2.4. This equation indicates that the 

maximum axial strains that occurred during the above sampling operation were 

about 0.7% and 1.0% for the 100 mm and the 38 mm specimens respectively. How­

ever, since the specimens were subsequently subjected to a high consolidation pres­

sure, at least 2.3 times larger than that used in the consolidation pot, the effects of 

such disturbance could be assumed to be largely eliminated (Baligh et a11987, Hight 

et a11985, Graham et a11988, and Ladd and Foott 1974). For the same reason and 

because of the care taken in sealing the specimens, stora~e effects, including the 

different times of storage for different specimens, could also be assumed minimal. 

During the sampling operation, water content specimens were taken from 

various positions in the cake corresponding to the top and bottom of the sampling 

tubes. No systematic variation of water content ill any direction was detected, 

although the average water content at the bottom might have been expected to be 

less than that at the top due to friction on the sides of the consolidation pot. \Vater 

sucked from the bottom drainage disc, if any, would not have reached the position of 

the bottom of the samplers and therefore would not have affected the water content 

measurements. The water contents were found to be 52.0 ± 1.6% and 53.0 ± 2.2 
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% for cakes 1 and 2 respectively. Both the variations of the water contents within 

each cake and the difference between the average values were considered acceptable 

since they amounted to less than 5% of the plasticity index of the clay. 

3.5.4 Specimen Extrusion and Setting up 

Before the specimen was extruded from the aluminum sampling tube, some prepa­

rations were made on both cells. Firsly, the pressure transducers were thoroughly 

de-aired and kept saturated prior to testing. The top and bottom porous stones 

were cleaned from soil particles in an ultrasonic bath and then left to saturate in 

boiling water for about 20 minutes. Checks on the rubber membrane and the finger­

cots (used to seal the proximity transducers) were carried out to find any possible 

defects which could result in leakage of water into the specimen or into the proximity 

transducers respectively. 

Standard techniques were followed in the extrusion and setting up of the 38 

mm diameter specimens. However, extra care had to be taken when placing the 

top cap to which the two strings holding the submersible LVDT armatures were 

attached. 

In the case of the 100 mm specimens, the setting up was more complicated. 

A 100 mm diameter tube sampler was taken out of the storage room and placed 

in a vertical frame for extrusion using a hydraulic jack. The soil specimen was 

driven out of the tube into a specially manufactured 200 mm high split tube. The 

specimen was then trimmed and a water content specimen taken near both ends. 

The specimen was weighed and placed on the bottom pedestal of the triaxial cell 

on top of a saturated porous stone. The split tube was removed and measurements 
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of the specimen's height and diameter were taken by digital vernier (average of six 

measurements each). 

The rubber membrane was then placed around the specimen using a stan­

dard membrane stretcher and two O-rings were placed around the bottom cap. A 

thin layer of silicon grease had previously been applied to the grooves on the top 

and bottom caps to ensure effective sealing of the membrane. The four proximity 

transducers used for the axial strain measurement were then sealed and the two 

perspex rings holding the targets for the local axial strain measurement were placed 

around the specimen, with their bearing pads placed on positions previously marked 

on the membrane. Silicon rubber adhesive beneath the pads was used as insurance 

against failure of the rubber band holding the pads onto the membrane (see Figure 

3.14). The top cap, with the two rectangular targets for end cap strain measure­

ment attached to it, was then placed over a porous disc on top ofthe specimen, while 

making sure that no air was trapped by opening the back pressure valve and letting 

water flow while the connection was taking place. It was important to make sure 

that the two end cap strain targets on which the LVDT armatures rested were in 

the same vertical plane as the local axial strain targets, so that all the axial strain 

readings were made in the same vertical plane. The rubber membrane was then 

rolled onto the top cap and sealed with two O-rings. The two submersible LVDTs 

were positioned so that, after the intermediate test stages, they would be in range at 

the start of shearing. The targets for local radial strain measurement were attached 

to the rubber membrane opposite the corresponding proximity transducers (sec Sec­

tion 3.4.6). At approximately mid-height of the specimen, a hole of about 2mm in 

diameter was opened in the rubber membrane. A rubber fitting used to attach the 

miniature pore pressure transducer to the specimen was glued using silicon rubber 

on the membrane over the hole, as shown in Figure 3.22. The transducer was then 
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pushed into the fitting and sealed on the outside with two O-rings. 

The cell top was lifted by a pulley system, because of its heavy weight, and 

lowered slowly over the specimen. While the cell was being lowered, the flexible pipe 

from the load cell-top cap connection (see Section 3.3.1) was connected to a hole 

in the cell middle plate. Initially tap water was used to fill the cell, but because of 

the long duration of each test, algal growth occurred during trial tests. Therefore, 

de-ionised water, which showed very little algal growth, was used in all the main 

tests. 

3.6 Test Stages 

Tests in the 38 mm apparatus followed standard procedures as described by Bishop 

and Henkel (1962). All the consolidation and swelling stages were performed isotrop­

ically and the cell pressure increment was applied in one step only. Tests in the 100 

mm apparatus were performed as follows: 

3.6.1 Saturation 

After the cell had been filled with water, the cell and lower chamber pressure valves 

were opened resulting in the application of an all round pressure of 1:3 kPa. This 

was the minimum pressure that could be applied under automated control. A period 

of about two hours was then allowed for pore water pressures in the specimen to 

equalise. Saturation was achieved in a conventional manner by increasing the cell 

pressure in increments of 50 kPa and recording Skempton's B-value (= !::"u/ !::,.a3 

where ~u and ~(J3 are the increments of pore water pressure and cell pressure 
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respectively). After applying the cell pressure. a period of about one hour was 

required to obtain comparable pore pressure readings at t.he mid-height and ends 

of the specimen. If the B-value was less than 0.98, the back pressure was increased 

to a value equal to the cell pressure minus 7 kPa and water was allowed to enter 

the specimen. Trial tests indicated that four increments of cell pressure, i.e. a total 

increase of 200 kPa, could achieve full saturation of the specimen. The time required 

for this stage was about 25 hours. 

3.6.2 J(o-Consolidation 

The specimen was required to follow a stress pat h such that the radial strain would 

not deviate from zero. One way of achieving this is to llse trial and error, i.e. to 

try different stress paths and to find the one that leads to the smallest radial strain. 

For normal consolidation the value of Ko has been found to be constant. A number 

of different methods predicting Ko have been suggested with the most widely used 

being that of Jaky (1948) 

/(0 = 1 - sin(<;,>') (3.1) 

where </>' is the angle of friction of the soil. Hence, it has been relatively easy to 

carry out normal consolidation stages without causing any significant radial strains 

(e.g. Gens (1983)). 

A second approach is to apply small increments of axial and radial stress and 

to check on the radial strain to make sure that it does not exceed a certain limit. 

If this limit is exceeded, stresses are changed to bring the strain back within the 

specified range. This method is potentially more accurate but requires radial strain 

measurement. In this research the proximity transducers were available to monitor 

the radial strain during consolidation and therefore the second method was used. 
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If the average of the two measurements exceeded ±O.005%, a correction was made 

to the axial or radial stress. On the other hand, if the excess pore water pressure 

measured at mid-height exceeded 10 kPa, pressure application was halted until the 

excess pore pressure decreased to a value less than 5 kPa. 

On average, the Ko-consolidation stage bringing the specimens to a maximum 

effective pressure, a~, of 350 kPa took 10 days. A period of 40 hours was also allowed 

for secondary compression to take place. 

3.6.3 [(a-Swelling 

In order to prepare overconsolidated specimens, it was necessary for specimens to 

undergo swelling under Ko conditions. Researchers have found that the determina­

tion of the stress path for Ko-swelling is much more difficult than that for normal 

consolidation because the value of Ko is not constant. Gens (1983) found that using 

trial and error to determine the stress path in this case was time consuming. He 

nonetheless tried a limited number of stress paths and used the one that involved 

the minimum radial strain. 

In the present research, the same method could be used as for normal consol­

idation. As before, the average radial strain was not allowed to exceed ±0.005% and 

the maximum excess pore water pressure was kept below 10 kPa. However, as will 

be shown in Chapter 6, control of the stress path during swelling was more difficult 

since the allowance of ±0.005% radial strain resulted in larger pressure changes than 

during normal consolidation. 

At the end of swelling the specimen was allowed to stand for a period of 40 

hours to reduce creep effects. 
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3.6.4 Sampling Disturbance, Deviator Stress Relief and 

Reconsolidation 

Sampling disturbance was simulated in the tests by applying a strain cycle to the 

specimen. The size of the strain cycle was determined by referring to Figure 2.2, 

remembering that this figure applies to a soil element along the vertical axis of 

symmetry of the sampler and does not take into account friction effects along the 

sides of the tube. A strain cycle of 1% amplitude was chosen, corresponding to 

the disturbance imposed by a sampler with an aspect ratio (Bslt s) of 40. This was 

achieved by keeping the radial stress constant and varying the axial stress under 

undrained conditions 

Immediately after the strain path was completed, the deviator stress was 

released to simulate the stress relief that takes place during sampling. Since the 

pore water pressure in the specimen was by now different from the back pressure 

previously applied, the axial and radial stresses were released (keeping the deviator 

stress equal to zero) until the average pore water pressure was equal to the back 

pressure, at which time the drainage valves were opened. The remaining total 

pressure was not released to avoid cavitation in the specimen or the drainage pipes. 

Reconsolidation to the initial conditions (before disturbance) was carried out 

by following an effective stress path which led to a point on the consolidation or 

swelling stress path and then followed the original path back to the initial condi­

tion, Figure 3.23. In this way, the 'disturbed' and 'undisturbed' specimens had 

similar effective stress paths shortly before undrained shearing was started and re­

cent stress history effects (Stallebrass (1990)) were avoided. As for the 'undisturbed' 

specimens, a period of about 40 hours after reconsolidation was given to the 'dis-
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turbed' specimens for creep to occur. 

3.6.5 Undrained Shearing 

Although any total stress path could have been followed, for simplicity a conventional 

total stress path with a gradient D.q/ D.p = 3 was adopted. The axial stress was 

changed at a rate of 2 kPa/hr. This proved to be slow enough for the equalisation 

of pore water pressure in the specimen (see Chapter 5). 

At the end of shearing, the lower chamber pressure and cell pressure were 

slowly and simultaneously released under manual control. This ensured that no 

further significant deformation took place. Water was then drained out of the cell 

as soon as possible and the specimen was weighed and cut into six pieces to check 

the water content distribution with height. 
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Plate 3.2 Arrangement for the mid-height 

steel ring In the 100 mm cell 
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Plate 3.5 Proximity transducers mounting for 

axial strain measurement 



parameter value 

LL% 72 

PL% 40 

PI% 36 

G 2.65 

%<200 mm 77.8 

Table 3.1 Classification parameters assumed 
for kaolin 

parameter value 

~ 0.19 

k 0.05 
N 3.26 

M 0.96 

r 3.16 

Table 3.2 Critical state parameters of kaolin 

pressure kPa period days 

20 8 

38 5 

75 6 

150 > 10 

Table 3.3 Sequence of pressure increments 
during slurry consolidation 
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Chapter 4 

COMPUTER PROGRAMS 

4.1 Introduction 

In order to implement the testing procedures described in the previous chapter 

(Section 3.6), a computerised control system was essential. In this chapter, the 

software used for both the 100 mm and 38 mm cells will be described, although the 

emphasis is placed on the former. 

For the 100 mm cell, Yung (1987) had previously developed a computer pro­

gram for stress path testing using the BASIC language on an Apple 2 Plus micro­

computer (see Section 3.2.3). Although the software performed satisfactorily, it was 

difficult for anyone else to use. since information given to (and interaction with) the 

operator was kept to a minimum. It could have taken the Author longer to learn how 

to use this program and develop it further than to develop a completely new one. 

Some of the peripheral hardware used by the Author was different from that used 

by Yung and therefore the control statements would have been quite different. Fur-
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thermore, the computer and the programming language used by Yung had become 

outdated. Running speed and storage capacities have increased tremendeously in 

recent years. For similar reasons, the 38 mm test system used by Ilyas (1983) needed 

further development in respect of both computer control and interfacing equipment. 

For these reasons, it was decided to develop new computer software which 

would not only perform the desired tasks, but also would give the experimenter 

continuous information on the progress of the test and options to correct mistakes 

in input data or to change the course of a test. In addition to the computer software 

prepared for stress path testing, programs were developed for the analysis of data, 

as will also be briefly described in Section 4.3.5. 

4.2 Requirements and General Approach 

4.2.1 Test Control 

The main requirements of the software were as follows: 

• To initialise the hardware, select the channels to be scanned and set the cor­

responding gains. 

• To take channel readings from the data logging interface and to convert these 

into engineering values using the appropriate calibration coefficients. 

• To calculate stresses and strains along with other parameters (e.g. Poisson's 

ratio and B-value) 

71 



• To use these results to determine commands to be sent to the stepper motors 

so as to perform the desired test stage . 

• To store data on the hard disc in both processed and unprocessed forms and 

provide back-up copies. 

Depending on the microcomputer, hardware, and software language, a given 

task may take different times to complete. In programs which perform several 

functions, timing is important and the present generation of microcomputers cannot 

carry out a certain task unless the previous one has been completed succesfully. In 

this research, care had to be taken to prevent the computer from attempting to 

apply loads and retrieve data simultaneously. 

4.2.2 Interaction with Operator 

The main functions of the computer software in this respect were: 

• To display channel readings and calculated parameters in an easily compre­

hended way on the screen and on a hard copy. 

• To give information about the stepper motor command currently being carried 

out and the status of the computer (e.g. memory available). 

• Wherever possible, to provide a graphical display of data on t he screen and 

on a plotter during the test. 

• To allow checks on input data and any necessary corrections to be made. 
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Interaction with the operator was carried out by making the computer present as 

many options as possible in the form of menus. This kept to a minimum the amount 

of typing required by the operator. 

4.3 Description of the Computer Programs 

Two different stress path programs were developed, one' for the IBM compatible 

microcomputer, used to control the 100 mm cell, and one for the BBe microcom­

puter, for use with the 38 mm apparatus. Because both programs have similar basic 

features and adopt the same logic for controlling the stress path, only the software 

developed for the large cell will be described in detail. 

4.3.1 Stress Path Program for the 100 mm Apparatus 

The program is written in Microsoft QuickBasic 4 and made up of three modules 

called 'SM.BAS', 'SMLIB.BAS' and 'SMPATH.BAS', Figure 4.1. 'SM.BAS' is the 

main or controlling module, which performs tasks such as initialising the hardware, 

declaring and calling subroutines, and setting the updating interval (see Section 

4.3.2). The other two modules are made up of subroutines only. 'SMLIB.BAS' con­

tains those dealing with data logging and presentation, file management, and menu 

displays. 'SMPATH.BAS' contains some subroutines for controlling the stepper mo­

tors and others for data conversion into engineering values and error trapping. 

As shown in Figure 4.2, the program involves a main menu of three options: 
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4.3.1.1 The 'Test' option 

When this option is chosen, the program first carries out a survey of the existing files 

in the directory allocated for stress path testing (see Section 4.2.2). This ensures that 

no existing file gets overwritten or deleted. Readings from the nineteen channels are 

then displayed on the screen as shown in Figure 4.3. In addition, the average local 

axial strain fl, the two radial strains frl and fr2, the average end cap strain fee, the 

average external strain tex) and the average pore water pressure in the specimen U avg 

are calculated and displayed. Figure 4.4 shows how the screen is divided into four 

windows. Window 1 is where the data are displayed, window 2 displays information 

about the current operation being carried out by the computer, window 3 displays 

the current stage of the test (i.e saturation, consolidation or shearing), and window 

4 contains a submenu of options as follows . 

• The 'Units' option: data in window 1 can be presented in either engineering 

units (see Figure 4.4) or unprocessed form (mV). The latter mode is useful 

when the operator wants to check that the transducers are working in their 

calibrated range. The display can be switched from one mode to another by 

pressing the Ctd + U keys. \Vhen a transducer is out of range, the term 

'O.o.R.' starts flashing to indicate so . 

• The 'Values' option: this allows the operator to display the last values logged 

on the disc in either engineering units or unprocessed form and, by pressing 

the Ctrl+ V keys, a comparison with the current values is possible. As will be 

described in Section 4.3.2, the computer updates the channel readings every 

5 seconds, but the logging interval on the disc is usually much larger and 

depends on the test stage. This option is useful in deciding when to stop the 

test and in checking whether the logging interval is satisfactory. 
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• The 'Pause' option: it is sometimes desirable in stress path testing to allow 

the test to be stopped for a period and then continued from the stoppage 

point. This was certainly necessary in the present research. As explained in 

Chapter 3, the local axial and radial strain measurements were carried out 

using proximity transducers which could be manoeuvered from outside the 

triaxial cell. From time to time adjustments were required to bring the targets 

back within range. Pressing of the Ctrl+P keys stops all the operations being 

carried out by the computer, except the updating and display of the channel 

readings on the screen. Adjustment of the positions of the transducers can 

then be performed, at the end of which pressing of the Ctrl+C keys allows 

the test to be resumed. On average the transducer adjustment takes about 5 

minutes and therefore does not affect the implementation of stress paths that 

have reasonably low stress or strain rates. 

Feed back is very important if the stress path is to be followed accurately. 

Special commands have been included in the program which check whether the 

channel readings are reasonable and if not, the test is paused automatically 

until the operator has made sure that it is sensible to continue . 

• The 'Stage' option: when the stress path program is first started, the display 

shown on the screen after the 'Test' option has been selected from the main 

menu contains in window 3 the instruction "Select a stage to start". By 

pressing of the Ctrl+S keys a submenu of the test stages shown in Figure 4.2 

appears in window 3. These stages will be discussed in detail in Section 4..1. 

Once the stage selection has been completed, the name of the stage and its 

corresponding data filename are displayed . 

• The 'Graph' option: a graphical display of certain parameters, as indicated 

in Table 4.1, is available during any test stage. When the Ctrl+G keys are 
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pressed, the numerical display shown in Figures 4.3 and 4.4 disappears and is 

replaced by the graphical display. Hard copies of these graphs can be obtained 

at any time. To return to the numerical display, the same keys are again 

pressed. This option permits the behaviour of the specimen and progress of 

the test to be rapidly assessed . 

• The 'Quit' option: although this option is not actually displayed in window 

4, the program can be permanently stopped (rather than paused) by pressing 

the Ctrl+Q keys at any time. The main menu is again displayed and the test 

can only be continued by reselecting the test stage. 

4.3.1.2 The 'File' option 

Subroutines are provided to make sure that back-up copies of data are automatically 

taken as soon as a test stage finishes. The files for each stage are properly named 

and stored in the relevent directory. As shown in Figure 4.2, a submenu of the 

following options is provided . 

• The 'View' option: this option permits the operator to look at the data from 

a completed or partially completed test stage before moving on to another 

one. The operator is provided with some extra information (e.g. file size and 

logging interval). 

• The 'Print' option: a hard copy of data can be obtained. This is important 

since data on the storage discs of the computer can be lost or corrupted. 

• The 'Delete' option: unwanted files in the stress path testing directory can 

be deleted. 
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• The 'Quit' option: \"'hen this option is chosen the operator is taken back to 

the main menu. 

4.3.1.3 The 'Quit' option 

This option allows the operator to quit the program and return to the Quick Basic 

4 editor environment. 

4.3.2 Algorithms of Test Stages in the 100 mm Apparatus 

The stress path test is divided into five main stages, namely saturation, isotropic 

consolidation, one-dimensional consolidation, one-dimensional swelling and shear­

ing. Each stage can be carried out independently of the others. For example, if 

saturation is not required, the operator can choose to go straight to a consolidation 

or shearing stage. 

4.3.2.1 Saturation 

The logic of this stage is shown in Figure 4.5. Although it is controlled by the 

computer, valves to open and close the drainage lines to the specimen have to be 

operated manually. Incremental cell and back pressures are applied and a check 

on the B-value is subsequently carried out. At the beginning of the stage, values 

of cell and back pressure increments must be fed to the computer as well as the 

desired value of B. Once the data file name and logging interval have also been 

specified, the saturation starts and a display similar to that shown in Figures 4.3 

and 4.4 appears on screen. The current B-value is displayed in window 1. After 
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an increment of cell pressure has been applied, the computer waits until the pore 

pressure reading at the middle of the specimen is within 2.5 kPa of those at the 

top and bottom before displaying the average calculated value of I3 (If the operator 

wishes to continue the stage without waiting until the above specified condition is 

achieved, then it is possible to press the Enter key and proceed). If the a\'erage 

B-value is larger than the desired value, the computer applies the last back pressure 

increment and terminates the stage. If, on the other hand, this value is not achieved, 

a back pressure which is less than the cell pressure by about 7 kPa is applied and 

the computer waits until the pore pressure in the specimen is uniform (within ±2.5 

kPa) before applying the next cell pressure increment. (Again, the operator can also 

proceed without waiting by pressing the Enter key). 

4.3.2.2 Isotropic consolidation 

This stage is completely controlled by the computer. The required input data arc 

the desired change in effective pressure and the number of steps to achieve it. The 

current cell presssure is calculated from the equation : 

0"3 = 0"3i + ~O";/(nn - (J - 1)) (4.1 ) 

where 0"3i and ~O"; are the total cell pressure at the beginning of the consolidation 

stage and the desired change in effective pressure respectively, and nn and fare 

the number of steps and the current step number respectively. The computer waits 

until 90% dissipation of the average excess pore water pressure has been achicved 

during the current step before moving on to the next one. (Pressing the Enter key 

would make the computer go to the next step without waiting for 90% pore pressure 

dissipation). 

Isotropic swelling can be carried out using the same algorithm by specifying 
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a negative value for the desired change in effective cell pressure (~17;). 

4.3.2.3 Ko-Consolidation 

After completion of the saturation stage, the load cell is connected to the specimen 

top cap as described in Section 3.3.1. During Ko-consolidation the specimen is 

consolidated to a specified vertical effective pressure without allowing the lateral 

strain and the excess pore water pressure to exceed specified limits of ±0.005% and 

10 kPa respectively (see Section 3.6.2). 

The flow chart for this stage is presented in Figure 4.6. Once the maximum 

vertical effective pressure and the logging interval have been specified, the computer 

starts the stage by applying small increments of lower chamber pressure ( equivalent 

to about 0.9 kPa of axial stress) and checks on the radial strain as well as the 

excess pore pressure at the middle of the specimen. If the values are within the 

specified limits, another increment of axial stress is applied. If, however, the radial 

strain exceeds either the upper or lower limit, the radial stress is altered in small 

increments (about 0.4 kPa) accordingly until the strain is back in range. The radial 

strain used in this stage is the average of two measurements, each calculated from 

the readings of a pair of proximity transducers (see Figure 3.15). It was realised that 

any of these transducers could accidentally go out of range (e.g. due to detachment 

of the metal target, as happened during one of the tests). If this happens, the 

computer ignores the faulty reading and takes the radial strain from the other pair 

of transducers providing these are still in range. Otherwise the test is paused. 

Proving tests (Section 5.5) showed that, even after the maximum effective pressure 

had been achieved, some volume change still took place which could be attributed to 

secondary compression. Therefore, the computer continues to log data indefinitely 
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until the operator decides to terminate the stage. 

/(o-swelling is carried out in a similar manner to /(o-consolidation. Howeyer, 

a desired OCR value is specified instead of a target effective pressure. 

At the end of these two stages, the drainage valves have to be closed manually 

if loading is to be performed under undrained conditions. 

4.3.2.4 Shearing stage 

This stage involves two main subroutines, one for stress path testing and the other 

for simulating sampling dist urbance by applying a strain cycle (see Section 3.6.4). 

As shown in Figure 4.7, once the shearing stage has been selected, the operator 

is given the option of applying a strain cycle or going straight into a stress path 

application. When the first option is selected, the operator is asked to specify the 

magnitude of the strain cycle to be applied, the logging interval and the data file 

name. The axial stress is then varied so as to achieve the strain cycle, while the 

cell pressure is kept constant. The increments of axial stress decrease in size as the 

strain approaches the specified limit to avoid overshooting it. 

In the present work after the strain cycle had been completed, the axial stress 

was altered slowly until the deviator stress became very small, i.e. within a range 

of ± 1 kPa. In the case of normally consolidated clays, the pore pressure in the 

specimen after the strain cycle was much higher than the initial back pressure. The 

axial and radial stresses were therefore decreased in parallel until the pore pressure in 

the specimen became equal to the back pressure. Changes in pore pressure resulting 

from the strain cycle in the case of overconsolidated clays were very small. Therefore, 
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no such changes in total pressure were required. When the drainage valves were 

reopened, the reconsolidation to the initial stresses (see Section 3.6.4) could be 

started. Reconsolidatioll was carried out using the second option available in the 

shearing stage (i.e. stress path application). A stress path for reconsolidation was 

specified which lay as close as possible to the original consolidation stress path, with 

a similar rate of axial stress change. 

In the Bishop and Wesley apparatus, the radial stress can be controlled di­

rectly, while the axial stress is controlled indirectly via the lower chamber. The 

relationship between the axial stress and the lower chamber pressure is given by the 

following eqaution : 

( 4.2) 

where CTlc is the lower chamber pressure, a is the bellofram seal area, Ac is the 

cross-sectional area of the specimen and lV is the weight of the piston and other 

moving components including the specimen and top cap. It is possible to measure 

or calculate the quantities a, Ac and \V and develop software based on Equation 

4.2. However, experience in this and previous research has shown that friction 

losses usually occur in the bellofram seals and the bushing (or bearing) in which 

the piston slides, thus making Equation 4.2 inaccurate. By using an internal load 

cell to measure the deviator stress this problem can be avoided. Then axial stress 

is simply calculated as : 

CT1 = q + CT3 (4.3) 

where q is the deyiator stress measured by the load cell. 

When taking the option of applying a stress path, the operator is asked 

whether it is to be specified in terms of the principal stresses (CTI and CT3) or the 

parameters q and p . As shown in Figure 4.8, the stress path can be divided into a 
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number of sections with different directions. The number of sections for the complete 

stress path must be entered. For each section the coordinates of the starting and 

finishing points are specified, along with the axial stress rate R I . The radial stress 

rate is calculated by the computer as 

( 4.4) 

where the subscripts f and i stand for the end and beginning of a section on the 

stress path respectively. With the aid of the computer timer, the desired changes 

of axial and radial stress are calculated from any given point reached on the stress 

path according to the following equations 

(4.5) 

( 4.6) 

where tlt is the change in time. As soon as either of these changes exceeds 0.9 kPa, 

the new values of 0'1 and 0'3 to be applied are calculated from the following equations 

(4.7) 

(4.8) 

where the subscript c stands for the current values. The appropriate stepper motors 

are then activated by the computer until the axial and radial stresses are within 

± 0.2 kPa of their desired values. This range has been specified after taking into 

consideration the sensitivity of pressure control via the lower chamber (i.e. area 

ratio a/A) and the accuracy of deviator stress measurement. 

As the specimen approaches failure, two conditions are specified to avoid any 

damage to the specimen or the instrumentation. The test will stop, firstly, if the 
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axial strain rate exceeds 20 %/hr or, secondly, if the external axial compressive 

strain exceeds 10 %. At any time during the shearing stage, the 'Pause' option (sec 

Section 4.3.1) can be used to temporarily disable the computer control and allow 

manual operations to be carried out. 

4.3.3 Stress Path Program for the 38 mm Apparatus 

Many of the options and facilities available within the software developed for the 

IBM computer and the 100 mm cell could not be provided in the corresponding 

software for the BBC computer and the 38 mm cell. This was mainly due to the 

limitations of the BBC computer concerning memory size, graphical display, and 

programming language. However, software with as much flexibility as possible was 

prepared based on the principles explained in the previous section. Ko-consolidation 

and Ko-swelling routines were not developed since t he present work on the 38 mm 

cell only involved isotropic consolidation. The program consists of one module which 

incorporates all the statements and subroutines. 

4.3.4 The Use of Lotus 123 and Other Programs for Data 

Analysis 

Lotus 123 is a commercially available computer package that can be used on IBt\[ 

compatible microcomputers for data processing and manipulation. Mathematical 

and statistical analyses can be carried out as well as graphical representations. Data 

from both cells were loaded into the Lotus 123 spreadsheet where they could be easily 

viewed and checked. However, all the original data files had first to be reformatted 

to be accepted by Lotus 123, by means of some QuickBasic 4 programs specially 
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developed for this purpose. These programs carry out checks on the conversion of the 

channel readings into engineering values, allocate titles and arrange miscellaneous 

information for each test. A variety of 'macro' programs were developed within 

Lotus 123 to carry out regression analysis and curve fitting by different methods. 

Calculations of tangent and secant stiffness could also be carried out, as described 

in more detail in Chapter 6. 
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Chapter 5 

CALIBRATION METHODS 

AND PROVING TESTS 

5.1 Introduction 

In the research being described, careful attention has been given to the determination 

of calibration factors for the transducers. The first section of this chapter describes 

the methods of calibration adopted and contains a discussion of the factors affecting 

the calibration results. Stresses and strains may be readily calculated from the 

readings of the transducers using the calibration factors. However, it is important 

to quantify the errors in the calculations, if a proper evaluation of the small strain 

stiffness of the soil is required. In the second section of the chapter the errors in the 

strains and the deviator stress are analysed; a similar analysis could be performed 

for other parameters. Proving test results are presented in the third section, along 

with a discussion of their implications for the main testing programme (outlined in 

Section 1.3 and described in Section 6.2) 
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5.2 Calibration of Transducers 

In order to achieve reliable calibration data, it was important to minimise the dif­

ference between conditions during calibration and those during actual testing. All 

the calibration tests were performed in the temperature controlled room where the 

stress path testing was to be done. Additional tests were sometimes carrried out to 

check whether a change in the ambient conditions would have a significant impact 

on the calibration data. 

Special computer programs were prepared for calibration purposes alld changes 

III the output of the transducers during calibration were recorded automatically. 

Electronic arrangements (e.g. wiring and gain setting) during calibration were sim­

ilar to those during testing. A minimum of three cycles of pressure, load or dis­

placement was adopted for each transducer as appropriate. The methods of data 

analysis varied from one transducer type to another depending on the output (i.e. 

degree of non-linearity) and the level of precision required. Precision is defined as 

the scatter of measurements above and below a mean value and involves random 

errors only. All values of precision in this chapter are quoted with not less than 95% 

confidence unless otherwise stated. During calibration the errors include those in 

the calibration device. To take account of the systematic errors in the calibration 

device, it was necessary to rely on the quoted accuracy. 

The determination of the calibration factors was carried out using two sta­

tistical computer packages. The first one, called ~IE\ITAIl and available on the 

University's mainframe computer, was used to carry out regression analyses with dif­

ferent mathematical functions including various degrees of polynomial. Data points 

with exceptional deviations could be ignored and their effect on the overall precision 
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determined. The second one was the Lotus 123 spreadsheet package (see Section 

4.4) This enabled checks on the calibration factors to be carried out and plots of 

fitted and actual calibration data to be produced. 

Before the calibration of each type of transducers is described in detail, some 

general factors with potential effects on the calibration results or their use will be 

briefly discussed. 

5.2.1 Non-linearity and Hysteresis 

As mentioned above a minimum of three cycles of the measured quantity was used 

in the calibration of every transducer. Therefore the effects of non-linearity and 

hysteresis defined in Figure 5.1 could be taken into account, by fitting the calibration 

curve to all of the data collected. However, these effects were not serious since in 

all cases the precisions obtained were satisfactory. The load cells and pressure 

transducers did show some hysteresis so that the precision based on data from 

one half cycle was slightly better than that for all three cycles. Although separate 

calibrations could have been adopted for loading and unloading directions, this would 

have made the transformation to engineering units during testing more complicated, 

especially for applications where the readings from the transducer were liable to 

fluctuate. 

5.2.2 Temperature Variations 

Both the calibration and testing were carried out at a temperature of 20 °G ± 

lOG. Thus, the temperature fluctuations were too small to cause any detectable 
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changes in transducer output. Although water used to fill the cells often had a 

temperature considerably lower than 20°C and therefore could have affected the 

transducer output, by the time the specimen had been saturated the cell water had 

reached room temperature. The effect of any temporary temperature variation was 

disregarded. 

5.2.3 Noise and Drift 

Noise is fluctuation in transducer output caused by electrical effects. In the present 

work steps were taken, wherever possible, to reduce or eliminate noise (e.g. instal­

lation of filters). Each measurement from a proximity transducer was actually the 

average of ten readings, in order to minimise the effects of noise. 

The drift of transducer output with time was also investigated. The results 

showed that the drift over a period of one month (a typical test period) was very 

small compared to the precision achieved during calibration. Calibration factors of 

transducers may also change with time. This was checked by carrying out calibration 

tests on selected transducers after all testing had been completed (all the transducers 

were initially calibrated before testing started). It was found that no significant 

changes in the calibration characteristics had taken place over the testing period. In 

addition, the last test carried out in the 100 mm cell was a repeat of the first test. 

Similar results from the two tests indicated that gross changes did not take place. 
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5.2.4 Proximity Transducers 

As explained in Section 3.4, the proximity transducers were used in the 100 mm 

triaxial cell to measure local axial and radial displacements, from which the corre­

sponding strains in the specimen can be calculated. 

Figure 5.2 shows the calibration arrangement. It involved the use of a mi­

crometer mounted above a V-shaped steel block (A) (Figure 5.2a) on a metal frame 

(B) so that the micrometer spindle head (C) is within the two inclined sides of the 

block. The micrometer was used only as a convenient seating arrangement, i.e. the 

spindle head was not adjusted during calibration. A proximity transducer within the 

housing described in Section 3.4 and Figure 3.12 was mounted on the metal frame so 

that its head was opposite the micrometer spindle head within the sides of the steel 

block. A 30 mm x 30 mm x 1 mm thick magnetic stainless steel plate (D), used as 

a target (see Section 3.4.6), was attached to a 20 mm x 20 mm x 10 mm steel block 

(E) as shown in Figure 5.2b. The assembly was placed in front of the transducer 

with block E in contact with the micrometer spindle. By wringing together a given 

number of slip gauges in accordance with the British Standard (1968) and placing 

them between block E and the micrometer spindle (Figure 5.2c), the target position 

was altered by a known amount and the resulting proximity transducer output was 

recorded. The stated accuracy of the slip gauges was 0.2 J.Lm (British Standard 

(1968)), but in practice it was difficult to achieve such accuracy when wringing to­

gether a number of slip gauges. For each target position, an average of 10 readings 

was taken to reduce noise effects. Although the manufacturers claimed that the 

proximity transducers had a working range of about 2 mm, it was decided to use 

a range of only 1.16 mm starting from the minimum transducer-target distance, as 

indicated in Figure 5.3, and to calibrate the transducer in steps of 0.04 mm. This 
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helped to reduce the effects of non-linearity when computing the calibration factors. 

A smaller range was acceptable since, as explained in Section 3.4.5, the transducers 

could be moved at any time during a test. 

Two different methods for the calculation of the calibration factors were in­

vestigated. In the first method the output range was first divided into six intervals 

within each of which a polynomial fit was carried out for the calibration curve. This 

method had the drawback of involving discontinuities in the overall calibration curve 

and was found to be cumbersome. Although the method would have presented no 

major problems in being incorporated in the computer programs of Chapter 1, it 

was felt that a second method which did not divide the curve into intervals might be 

better. Yung (1987) adopted a 'linearisation' technique which involves calculating 

the function : 

f(f3) = In({3 - f3t) (5.1 ) 

where f3 and f3t are the transducer's output at a given target position and when 

no target is placed in front of it respectively. This technique was found to be 

superior and was again used in the present research. The function /((3) was then 

plotted against displacement, Figure 5.4, and a polynomial curve, with a degree 

varying between 4 and 8 according to the transducer characteristics and the level of 

precision achieved, was fitted to the data. Table 5.1 shows the precision achieved 

for each transducer. The overall average value was 2.7 j.lm. As will be shown later 

(Section 5.3) this overall precision was found to be satisfactory for the purpose of 

measuring strains. 
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5.2.5 Load Cell 

Imperial College type load cells were calibrated for use with the two triaxial cells. 

The results for that used in the 100 mm cell are summarised in Table 5.2. The load 

cell was used to measure the deviator force on the specimen from which the deviator 

stress can be calculated. The testing programme involved compression and extension 

loading and therefore calibration of the load cell was carried out in both directions. 

Special attention was paid to calibration of the load cell at low loads, such as would 

occur in tests on an isotropically consolidated specimen or any specimen with an 

initially small deviator stress. 

Two different methods of calibration were adopted over different ranges. A 

Budenburg dead weight pressure system was used to calibrate the load cells 1Il 

compression over a range a to 3000 N in steps of 200 N. Unfortunately, this apparatus 

could not be used for calibration in extension and another method, using dead 

weights placed directly on a plate connected to the load cell, had to be adopted. 

This produced less accurate but still tolerable results over the range 0 to 1600 N. 

This second method was also used to calibrate the load cells in compression in the 

range 0 to 400 N with smaller load steps than was possible with the Budenburg 

apparatus. A polynomial of degree 4 was fitted to data (in the latter range) while 

another of degree 3 was fitted to data from the Budenburg apparatus (in the range 

400 to 3000 N). Correspondingly, two sets of calibration factors were then used in 

the computer program. A small difference (equivalent to a load of 1.2 N) between 

the results of the two calibration equations at a load of 400 N was tolerated. The 

precisions achieved during calibration are shown in Table 5.2 in terms of both force 

and deviator stress. 
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5.2.6 LVDTs 

As mentioned in Section 3.4, submersible LVDT's were used in both triaxial cells to 

measure the end cap displacements from which axial strains in the specimen can be 

calculated. LVDTs were also deployed to measure the displacement of the piston of 

the 100 mm cell. 

Whilst it was accepted that a digital micrometer with an accuracy of 3 Jlm 

was a potentially less accurate calibration device, it was used in preference to the 

slip gauges to reduce the time involved. In a preliminary trial it was found that a 

similar precision was achieved using both methods, indicating that stated accuracy 

of the slip gauges could not be achieved, as mentioned in Section 5.2.1. During 

calibration, as well as during a test, the armature in each submersible LVDT was 

able to move slightly in the direction perpendicular to the axial displacement, as 

shown diagrammatically in Figure 5.5. However, it was found that the changes in 

the output of the transducer due to such movements were very small. Table 5.3 

summarises the results of the LVDT calibrations. The precisions of the submersible 

LVDTs for use in the 100 mm cell, 3.7 J1.m on average, are n0t too different from 

those of the proximity transducers shown in Table 5.1. The precision of the LVDTs 

used in the 38 mm cell were found to be higher and in one case very much higher 

at 49 J1.m. Another calibration was carried out to check this result and a similar 

precision was achieved. Yung (1987) calibrated similar transducers and reported a 

typical precision of 70 J1.m which cannot be considered satisfactory for small strain 

measurement. Unfortunately, it was not possible to obtain any better transducers 

during the time available. 
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5.2.7 Pressure Transducers 

In the 100 mm triaxial cell, pressure transducers of a similar type were used to 

measure the cell and lower chamber pressures as well as the top and bottom pore 

water pressures of the specimen. The mid-height pore water pressure in the 100 mm 

cell and bottom pore water pressure in the 38 mm cell were measured by another 

(miniature) type of transducer, referred to in Section 3.4.2. Dc-airing of all these 

transducers prior to calibration was carried out by placing them under water in a 

triaxial cell and applying a relatively high vacuum pressure to remove not only the 

air trapped in the transducers but also that dissolved in the water. A Budenburg 

deadweight tester was used for the calibration and the results are shown in Table 

5.4. A typical precision of about 1 kPa was achieved. 

5.2.8 Volume Change Units 

Two Imperial College volume change units were calibrated using a method developed 

by Goodwin (1991). After the two CDS controllers mentioned in Section 3.3 and 

the volume change unit had been de-aired, one GDS controller was connected to 

the top of the volume change unit and the other to the bottom, as shown in Figure 

5.6. The computer instructed one GDS controller to apply a certain volume change 

which was then recorded by the volume change unit and checked by the other CDS 

controller to make sure that no air existed in the system. Table 5.5 shows the results 

for both volume change units. 
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5.3 Analysis of Errors in Stresses and Strains 

5.3.1 Axial Strains 

The analysis developed and the results presented in this section relate to the 100 

mm cell only. However, a similar, if not identical, approach could be adopted for the 

38 mm cell. As described in Section 3.4, three methods of axial strain measurement 

(local, end cap and external) were adopted, Figure 5.7. The errors in the local 

measurement will first be discussed, following closely the analysis presented by Hird 

and Yung (1989). 

As shown in Figure 5.7, the local strain on one side of the specimen, fil, is 

given by : 
x-y 

fil =-­
Lge 

(5.2) 

where x,y, and Lge are the displacements of the upper and lower targets and the 

consolidated gauge length respectively. The maximum error in fil is given by : 

6 - 6x + 6y Ifctl cL 
fil - L + -L U gc 

ge ge 
(5.3) 

where 6x, 6y, and 6Lgc represent the uncertainties in x, y, and Lge respectively and 

Ifit! is the absolute value of til' From Table 5.2, it can be seen that a representative 

value of proximity transducer precision is 2.7 J1.m. This was achieved through cali­

bration against the slip gauges referred to in Section 5.2. The total uncertainty in 

x or y equals 5.8 J1.m (= 2.7 + 0.2 + 2.7 + 0.2) since the displacement of the target is 

calculated as the difference between the current and datum readings of the proximity 

transducer. This uncertainty includes both random and systematic errors. 

The initial gauge length Lg was measured six times by a digital vernier. The 

error in a single measurement of the gauge length consisted of two components. The 
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first, a systematic component due to inaccuracy of the vernier, was taken as 20 lJ,m 

(BS 4311 (1968)) and the second, a random component evaluated by measuring a 

constant distance of 100 mm about 50 times, was found to be about 80 pm. Following 

Taylor (1982), the error in the average gauge length is equal to the error in a single 

measurement divided by the square root of the number of measurements. Therefore, 

the error in the gauge length prior to consolidation is 40.8 pm (= (20 + 80) / -/6). 

Since all the specimens underwent anisotropic consolidation, the consolidated gauge 

length had to be calculated as 

(5.4 ) 

where ~Lg is the change of gauge length during consolidation. Therefore, the error 

in Lgc is given by : 

(5.5) 

where 8Lg and 8(~Lg) are the errors in the measurement of the initial gauge length 

(= 40.8pm) and the change during consolidation respectively. The volume change 

in the specimen during consolidation is measured by the volume change unit (see 

Section 3.4.3). For the tests conducted in the 100 mm cell no lateral strain was 

allowed to take place during consolidation. In this case, the change in specimen 

height, ~L, is given by : 

~L= ~V 
Ac 

(5.6) 

where ~ V and Ac are the volume change and the specimen cross-sectional area 

respectively. Therefore the error in the specimen height change after consolidation 

IS : 

6(~L) = h(~ V) I~ VI 
A + A hAc 

c c 
(5.7) 
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where b(~ V) is the error in the evaluation of the volume change of the specimen 

and bAe is the error in calculating the cross-sectional area of the specimen. Under 

normal circumstaces, the second term of the above equation is much smaller than 

the first term. From Table 5.5, for the 100 mm specimens, the random error in a 

volume measurement from the volume change unit is about 189 mm3
. To this must 

be added a possible systematic error during calibration against the GDS controllers 

of 20 mm3
, giving a total error of 209 mm3

• The error in a volume change b(~V) 

can be evaluated as 418 mm3 since it involves errors in both the datum and current 

readings of volume. This corresponds to an error in the specimen height change, 

b(~L), of 53 J..l m. Assuming that the change in the gauge length is proportional to 

that in the specimen height : 

(5.8) 

where Lo is the initial height of the specimen. For Lo = 200 mm and Lg = 100 

mm the overall error b(!}.Lg ) is equal to about 26.5 J..l m. Therefore, the error in 

the gauge length after consolidation, bLge , is equal to 67.3 Jl m (= 40.8 + 26.5). 

This value may be less than the actual error, since the above analysis does not take 

into account the existence of small amounts of air in the specimen and the drainage 

pipes which influence the volume change measurement. 

In Equation 5.3 the second term (involving the error in the consolidated gauge 

length) is small compared to the first, especially at small strains. Additional errors 

in the gauge length due to misalignment of the targets could occur but are negligible 

for the same reason. If only random errors are considered, then the error in strain 

measurement can be written as : 

(5.9) 

where &11 is now the largest probable error in ftl and bx and fly are each equal 
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to the precision of the proximity transducers, i.e. 2.7 Jim since the errors in the 

gauge length and the datum reading become systematic. The results obtained from 

Equations 5.3 and 5.9, expressed as percentage errors, are plotted versus strain level 

in Figure 5.8 . 

A similar analysis to that presented above can be carried out for the end 

cap axial strain measurement. Under ideal conditions, where bedding errors and 

compression of the top and bottom caps and porous discs are equal to zero and 

where the specimen behaves in a right cylindrical manner, the end cap axial strain 

on one side, feel, is given by : 

(5.10) 

where z and Lc are the displacement recorded by the submersible LVDT and the 

consolidated height of the soil specimen respectively. The maximum error in feel is 

therefore 

(5.11) 

where oz and oLc are the magnitudes of the uncertainties in z and Lc. The largest 

probable error in feel is given by : 

(5.12) 

where oz is either the maximum error or random error in z, as appropriate. Results 

from equations 5.11 and 5.12 are presented in Figure .5.9. 

The largest probable percentage errors from local and end cap strain measure­

ments are compared in Figure 5.10. This figure shows that under ideal conditions, 

the end cap measurement is more accurate than the local one, despite the fact that 

the proximity transducers have a better precision. The closest situation to the ideal 

one arises when the specimen end surfaces are flat, the specimen is initially relatively 
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soft, a high axial stress is applied prior to making small strain measurements and a 

rigid load cell- top cap connection is used (see Section 3.3.1) to prevent tilting. 

Since the local and end cap measurements are carried out on both sides of 

the specimen, it was argued by Yung (1987) that the errors quoted above could 

be reduced by a factor of V2 if an average result was taken. However, it was 

later stated by Hird and Yung (1989) that the measurements on each side were not 

completely independent, because of the target mounting arrangements, and therefore 

the reduction factor should not be applied. 

5.3.2 Radial Strains 

The analysis for errors in radial strain measurement can be carried out in a similar 

way to that for the local axial strains in the previous section. The radial strain, Cr!, 

from one pair of proximity transducers (Figure 3.15) is given by 

k+l 
frl = 2R 

s 
(5.13) 

where k apd I are the inward movements of the targets calculated from the current 

and datum readings of the proximity transducers (In a compression test the radial 

strain is negative). Therefore, the maximum error in radial strain is 

(5.1·1 ) 

where 8k and 81 are the errors in k and I (= 5.8J.l m) and bRa is the uncertainty 

involved in measuring the radius of the specimen. Employing the same digital 

vernier as used to measure specimen length, the diameter of the specimen, Da, was 

measured six times and therefore the maximum error, SD., is again equal to 40.8 

J.lm. The uncertainty in R. is 

SR. = SD, (5.l.j) 
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so that 8R s = 40.8 pm. 

If only random errors are taken into consideration and assuming the second 

term in Equation 5.15 is negligible, the largest probable error in radial strain is gi\·en 

by 

(.5.16) 

where 8k = bl = 2.7pm. 

Since there are bvo pairs of proximity transducers making independent read-

ings of radial strain, it can be argued that the error in the average reading, bf r , is 

lower and gi ven by 

(5.17) 

where 8f r and bErt refer to either maximum error or largest probable error. Figure 

5.11 shows the resulting variations with strain of the maximum and the largest 

probable errors in the average radial strain measurement. 

5.3.3 Poisson's Ratio 

Poisson's ratio, v, is calculated as 

(5.1S) 

where fr and f( are the average radial and local axial strains. The maximum and 

largest probable errors in v are given by 

(5.19) 

and 

( 5.20) 
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respectivly, where 6fr and 6ft are the errors in radial and axial strains respectively. 

Results from equations 5.20 and 5.21 are shown in Figure 5.12 which reveals the 

difficulty in measuring Poisson's ratios at small strain levels. 

5.3.4 Deviator Stress 

An internal load cell was used to measure the deviator force on the specimen. The 

deviator stress is simply calculated as 

(5.21) 

where Fd is the deviator force. The maximum error in deviator stress is 

6 = SFd + WSA q A A C 
c c 

(5.22) 

and the largest probable error is 

(5.23) 

The current cross-sectional area of the specimen can be calculated knowing 

the change in the diameter, measured by the proximity transducers and assuming 

that the specimen deforms as a right cylinder. With one pair of proximity trans­

ducers readings the current diameter, Dllc , is thus: 

(5.24) 

Therefore, the maximum error in measuring the current diameter is 

(5.25) 

As in Section 5.3.2, 6D, = 40.8 Jlffi and 6k = 61 = 5.8 Jlm . Therefore 6D llc = 52.4 

11m. By assuming that the two radial strain measurements are independent SD r , IIC 
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becomes 37.0 ILm (52.4/,;2) The error in the current area of the specimen is gi\'en 

by 
7r 

hAc = 2"DschDsc (5.26) 

which amounts to 5.8 mm2
• For deviator forces of up to 400 N, the precision of 

the load cell is approximately 3 N (Table 5.3). The accuracy of the calibration 

equipment is quoted by the manufacturers as 0.16 N. Therefore, hFd is equal to 3.16 

N. Figure 5.13 shows the variation, with deviator stress, of the maximum and largest 

probable percentage errors in the deviator stress for a 10d mm specimen. 

5.3.5 Stiffness 

For a conventional test ~0"3 = 0, the tangent stiffness can be defined as 

E = ~q (5.27) 
~f.l 

where ~tl is the change in local axial strain. Following the same reasonll1g as 

adopted in the previous sections, the maximum error in stiffness is 

6E = ~q + : (h(~(d) 
Uf.t Uf.t 

(5.28) 

where hq and 6ft are the maximum errors in deviator stress and axial strain respec-

tively. On the other hand, the largest probable error in stiffness is given by 

(,5.~9) 

where 6q and 6(~f.t) are random errors. For secant stiffness ~(t is replaced by 

tt in Equations 5.28 and 5.29. For typical data (from test AOeU1 which will be 

presented in Chapter 6) the results of the analysis are shown in Figure 5.14. This 

figure indicates that both the maximum and largest probable percentage errors in the 
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very small strain region are significant. It should be noted that the term involving 

hq in Equations 5.28 or 5.29 is relatively small and the error in stiffness is mostly a 

result of the errors in strain measurement. 

5.4 Proving Tests 

Upon completion of the transducer calibrations and the analysis of errors described 

in the previous sections, trial tests were performed for the following purposes : 

• To gain experience in setting up the specimen, especially in the 100 mm cell 

where both care and skill are required. 

• To check on the repeatability of the test results. 

• To establish suitable values of certain parameters needed for testing, such as 

the rate of loading and the limits on radial strain during Ko-consolidation or 

Ko-swelling. 

• To evaluate the loading system compliance. 

• To evaluate the performance of the computer software, especially its ability 

to follow accurately a specified stress path and to store suitable readings for 

later analysis. 

Stainless steel, rubber, and kaolin specimens with heights and diameters of 

200 mm and 100 mm respectively were used for proving tests in the 100 mm cell. 

Experience gained during the trial tests in the 100 mm cell was used in the 

38 mm apparatus, especially in the automated control of testing. A small number 
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of trial tests was also carried out in the 38 mm cell but these will not be discussed. 

A summary of the proving tests along with the specimens used and their aims is 

presented in Table 5.6. 

5.4.1 Tests on Stainless Steel Specimen 

Two types of test were carried out on this specimen. These were designed, firstly, to 

check one aspect of the radial strain measurement method (test STEl) and, secondly, 

to evaluate the compression under stress of system components such as the top cap 

or the load cell (tests STE2 and STE3). 

5.4.1.1 Radial strain measurement 

As described in Section 3.4.6, radial strain measurement is carried out by mount­

ing four proximity transducers on a stainless steel ring (Figure 3.15). The analysis 

presented in that section indicated that changes in cell pressure would have a neg­

ligible influence on the dimensions of the steel ring, and therefore on the proximity 

transducer readings. 

In test STE1, the steel specimen was first surrounded by a rubber membrane 

on which the radial targets were attached at mid-height using a thin film of silicon 

rubber (Figure 3.16). Three cycles of cell pressure between 0 and 580 kPa were then 

applied and the resulting radial strain recorded. As shown in Figure 5.15, this strain 

did not exceed ±0.005% and did not depend on the cell pressure. The compression 

of the steel specimen itself is negligible. Thus neither changes in the mounting ring 

diameter nor compression of the silicon rubber had a significant effect on the radial 

strain measurement. In fact, all the sampling disturbance and shearing stages in 
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the test programme (see Section 6.2) were carried out with constant cell pressure, 

and therefore the radial strain measurement during these stages could not possibly 

have been influenced by cell pressure variations. 

5.4.1.2 Loading system compliance 

The compressiblity of certain parts of the triaxial apparatus was measured by carry­

ing out two tests (STE2 and STE3) with external and end' cap axial strain measure­

ments only. A top cap and porous stones were installed at the ends of the specimen. 

A deviator stress of up to 440 kPa was applied slowly while strains were recorded. 

The results are shown in Figure 5.16. It should be mentioned that in both tests the 

end cap strain was very small (less than 0.0005%) while the external strain varied 

with deviator stress. Compression of the top cap and the porous stones, must there­

fore be negligible compared to that of the load cell-top cap connection (described in 

Section 3.3.1), the load cell itself and other components. When the deviator strcss­

external strain curves from the two tests are compared (Figure 5.16), it may be seen 

that test STE3 involved a significantly higher strain at low deviator stresses, which 

can be attributed to the lack of rigidity between the load cell and the top cap. This 

bedding error may not happen in every test and depends on the setting up proce­

dure. A linear regression analysis was performed on the subsequent portions of the 

curves, the results of which are presented in Table 5.7. The slopes represented by the 

regression coefficients are similar, indicating that the compression is systematic or 

repeatable. Although it is possible to evaluate the elastic component of compression 

and allow for it in the calculation of the external axial strain, the initial bedding 

referred to above is much more difficult to evaluate. 

The results of these tests were also used to check on the ratio between the 
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lower chamber pressure and the axial stress. Theoretically this ratio should equal 

the bellofram area ratio (a/A) of 2.25. The regression analysis of the two test results, 

presented in Table 5.7, shows that the deduced ratio ranges between 2.0S and 2.50 

with an average of 2.26. The relationship between ale and 0'1 is not perfectly linear 

due to the friction between the piston and its bushing. Tilt of the piston can be 

checked by plotting the movements of the cross arms, measured externally on both 

sides of the apparatus. A significant tilt occured initially in test STE2 while in test 

STE3 the tilt was negligible. When the cylinder is at its very lowest position, a 

certain amount of tilt may take place but the tilting becomes relatively small once 

the cylinder is above that position. Thus all tests should be conducted after ensuring 

that the cylinder is not at its lowest position to avoid non-uniform strains in the 

specimen. 

5.4.2 Tests on Rubber Specimen 

Tests were conducted on the rubber specimen for several purposes, namely to check 

the application of stress paths (RUB2), the application of strain cycles (RUB3 and 

RUB4), the measurement of local strains by evaluating Poisson's ratio ( RUBS and 

RUB6 among others), and the effect of other factors such as stiffening of the speci­

men due to the mounting of the small strain instrumentation (RUB7) and membrane 

slippage (RUBS). The specimen deployed had a hardness of about 55 (British Sta.n­

dards Institution (1957)). In the course of these tests, different techniques were 

tried to find the most satisfactory ways of setting lip the local strain targets and 

of connecting the load cell to the top cap without applying any significant deviator 

stress to the specimen. 
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5.4.2.1 Application of stress paths 

Trial tests were carried out to find the most accurate method of implementing a 

desired stress path. Suitable limits on the axial and radial stress increments which 

were specified in the computer software were determined (see Section 4.3.3). Results 

shown in Figure 5.17, taken from proving test RUB2, show a satisfactory agreement 

between the applied and intended stress paths. A regression analysis showed that 

the precision achieved in the deviator stress was ± 1.22 kPa. 

5.4.2.2 Application of strain cycles 

The simulation of sampling disturbance involved the application of a strain cycle 

in the manner described in Section 2.3. Proving tests RUB3 and RUB4 were per­

formed to check the ability of the software to apply strain cycles of 0.05% and 0.1 % 

respectively. In order to maintain a positive deviator stress throughout the cycle, 

the specimen was initially subjected to a deviator stress of about 7 kPa. The results 

are shown in Figure 5.18 which shows that the maximum and minimum values of 

axial strain during the cycle were within ±0.005% of the specified limits. Figure 

5.18 indicates that the strain cycle could be applied sufficiently accurately over a 

relatively short period of time (about 10 minutes). The figure also shows a fairly 

good agreement between the average local and end cap strains. The external strain 

shows poor agreement and a much larger scatter. 

5.4.2.3 Poisson's ratio 

Although the determination of Poisson's ratio, v, in the small strain range is not 

very accurate (Section 5.3.3), results from proving tests RUB.S and RUB6, among 
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others, gave a value of v very close to 0.5, as indicated in Table 5.S. These values 

have been calculated by performing linear regression between the radial and axial 

strains over the whole range of local strain in each test (i.e. beyond the small strain 

range). The overall range of 0.4 7 to 0.50 agrees well with that quoted for rubber by 

Kaye and Laby (1973) of 0.46 to 0.49. 

5.4.2.4 Membrane slippage and stiffening effects of target mountings 

Membrane slippage was checked by carrying out four proving tests. Two of these, 

RUB8 and RUB9, involved the use of a rubber membrane around the specimen 

with the targets for the proximity transducers mounted in the usual way, while in 

the other two, RUBIO and RUEll, no rubber membrane was used. Because the 

surfaces of the soil specimens used for the main tests were contaminated with a thin 

layer of silicon grease after extrusion from the sampling tubes, a similar layer of 

grease was applied to the rubber specimen in tests RUBS and RUE9. The results 

are shown in Figure 5.19 where the deviator stress was varied between 2 kPa and 15 

kPa. No significant effect of membrane slippage is apparent. The scatter in each set 

of results is within the known uncertainties of the stress and strain measurements, 

as described in Section 5.3. 

A check on the effects of mounting the local strain targets on the stiffness of 

the specimen was carried out by comparing the end cap stiffness from test HUB/. 

which did not involve the mounting of local targets, with those from other tests. :\s 

shown in Table 5.9, there was no significant difference between the results. 
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5.4.2.5 Repeatability checks 

The data retrieved from the proving tests on the rubber specimen permitted the 

repeatability of the techniques for stress and strain measurement to be assessed. 

Good repeatabilty was obtained for both Poisson's ratio, Table 5.8, and stiffness, 

Table 5.9. The stiffness was determined by carrying out a linear regression analysis 

of the data of deviator stress versus strain. Variations in the 'end cap' and 'local' 

stiffnesses were much lower than those in the' external' stiffnesses reflecting both the 

low precision of the external LVDT's and the additional errors involved as discussed 

in Section 5.2.3. The 'local' stiffnesses were larger in every case than the 'end cap' 

ones which may be explained by bedding and seating errors. This illustrates a 

situation where a local strain measurement is more reliable than an end cap one. 

5.4.3 Tests on Soil Specimens 

Despite the satisfactory test results obtained for the stainless steel and rubber spec­

imens, it was considered important to carry out some trial tests on soil specimens 

to investigate how 'the apparatus and the controlling software would operate under 

conditions similar to those in the main tests. Certain parameters also had to be 

determined before the start of the testing programme, some of which could only be 

evaluated by running trial tests. Two tests TRI and TR2 were performed using 

kaolin specimens prepared in the manner described in Section 3.5 but taken from a 

slurry consolidated under a higher vertical effective pressure of 280 kPa. Discussion 

will focus first on test TRI. 

The setting up of the soil specimens proved more difficult than that of the 

steel or rubber specimens, since they were much softer. The pressure lines also had 
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to be de-aired. Saturation of the specimens was carried out as described in Section 

4.3.2. A satisfactory B-value was achieved with a back pressure of about 200 kPa. 

After saturation, Ko-consolidation was performed. The results showed a con­

siderable scatter in the stress path data, although the direction of the stress path was 

similar to that expected. This scatter was blamed on the large limit on radial strain 

initially adopted in the software ( 0.01 %) as well as the large increments (about 5 

kPa) of axial and radial stress initially allowed. The maximum radial strain actually 

measured was found to be 0.018% which was clearly unsatisfactory. The excess pore 

water pressure recorded by the midheight pressure transducer did not exceed the 

allowable limit of 10 kPa. The average rate of loading achieved was about 2 kPa/hr 

of axial stress. 

Ko-swelling was next carried out. Although the desired OCR was achieved 

accurately, an even larger scatter in the stress path data occured than during consol­

idation. This scatter was equiyalent to a variation in deviator stress of ± 5 kPa and 

was again attributed to both the large limit on radial strain and the high increments 

of stress. The rate of axial stress unloading of 2 kPa/hr ensured that the mid-height 

pore water pressure deficit did not exceed 10 kPa. 

Sampling disturbance was then simulated by applying a strain cycle of ampli­

tude 0.3%. The results indicated that the cycle was not followed accurately. As the 

compressive strain approched 0.3%, the apparatus did not respond quickly enough 

in reversing the strain direction due to friction losses in the loading system. Conse­

quently, the specimen was sheared in compression to a strain of about 0.5% before 

the strain started to decrease. This problem was not encountered when applying 

strain cycles to the rubber specimen since material creep was virtually non-existent. 
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Finally, the specimen was sheared conventionally (0"3 = constant) in undrained 

compression at an axial stress rate of 2 kPa/hr without being recompressed to its 

initial stress state. No significant non-uniformity of pore water pressure in the spec­

imen was noticed at this rate of loading. However, the stress strain data showed 

significant scatter, which was attributed to the large increments of axial stress (about 

5 Kpa) initially adopted in the controlling software. 

Experience from test TRI was used to plan another test on a similar soil 

specimen to make sure that all the problems encountered with TRI could be avoided. 

In test TR2 Ko-consolidation was carried out by adopting the smallest pos­

sible increments of axial and radial stress (0.85 kPa and 0.38 kPa respectively) and 

attempting to limit the radial strain to ±O.005%. The variation of radial strain with 

axial stress is shown in Figure 5.20, which indicates that only occasionally did the 

radial strain exceed ±0.005% and never did it exceed ± 0.007%. Figure 5.21 shows 

the stress path for this stage which can be considered satisfactory. The regression 

analysis showed that /(0 = 0.67 ± 0.006. The rate of loading was found to be similar 

to that achieved in test TRI. 

The /(o-swelling stage was carried out under the same control limit for lateral 

strain (±0.005%). Figure 5.22 shows that during swelling the measured radial strain 

rarely exceeded ±0.006%. A larger scatter in the stress path data for this stage than 

for the consolidation stage was obtained but the scatter was smaller than in test TRI. 

Since the desired OCR was achieved accurately with no significant lateral strain, the 

irregularities in the stress path were considered tolerable. 

Sampling disturbance was then simulated by following a strain cycle with an 

amplitude of 1.0%. Quicker procedures were adopted in the software than in test 
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TRl. The resulting strain cycle is shown in Figure 5.23 which indicates that the 

performance of the software was now satisfactory. 

As in test TRl, shearing in compression at a rate of 2 kPa/hr of axial stress 

was applied straight after the sampling disturbance stage, without any reconsolida­

tion of the specimen. The stress-strain data for the shearing stage over the small 

strain range had a maximum scatter found from a regression analysis equiyalent 

to about ± 1.22 kPa of deviator stress. This is satisfactory considering the errors 

involved in the determination of the deviator stress and the local axial strain. 

Following the above tests on the soil specimens all the control parameters 

required for the main test series could be finalised. 
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Transducer 95 % Canf. 
interval code 

{f-m> 

PR1 2.470 
PR2 2.537 
PR3 3.110 
PR4 2.878 
PR5 2.447 
PRS 2.699 
PR7 2.723 
PR8 2.705 

Table 5.1 Results of proximity transducer 
calibrations 



Loading Method of Range (N) 
Calibration 

Compression Budenburg Apparatus 0-3000 (382) 

Compression Dead Weights 0-400 (51) 

Extension ditto 0- -1600 (-204) 

Extension ditto 0- -360 (-46) 
- - - - _ .. -- --"---- -------- - .. --- --- - ... - ----- -

Note : Numbers in brackets represent values of deviator 
stress on a 100 mm specimen (kPa) 

Increment 
(N) 

200 (25) 

20 (2.5) 

-100 (12.5) 

-20 (2.5) 
_. "--- -_. 

Table 5.2 Results of load cell calibration 

95 % Cant. 
Interval (N) 

5.07 (0.65) 

3.00 (0.38) 

10.89 (1.39) 

2.25 (0.29) 
". .-. --- ---



Transducer Range Increment 95% Cont. 
code (mm) (mm) interval (mm) 

LVDT92 0-10 0.5 3.82x10 -3 

LVDT546 0-10 0.5 3.60x10-3 

LVDT56 0-10 0.5 9.35 xl 0-3 

LVDT91 0-10 0.5 4.90 xl 0-4 
LVDT21 0-50 1.0 0.164 
LVDT98 0-50 1.0 0.118 

Table 5.3 Results of LVDT calibrations 

Transducer Range Increment 95% Cont. used for 
triaxial 

code {kPa) (kPa) interval (kPa) cell 

L112793 0-700 50 0.684 cell pressure 100mm 
L117292 0-700 50 0.429 I.c. pressure 100mm 
L102671 0-700 50 1.110 top p.w.p. 100mm 
L33090 0-700 50 1.280 bottom p.w.p. 100mm 
253 0-700 50 0.592 mid-height p.w.p. 100mm 
- 0-500 VARIABLE 0.782 bottom p.w.p. 38mm 

- --- ------ - --------- ~-- --~ -

Table 5.4 Results of pressure transducer calibrations 



95 % Conf . Triaxial Range Increment Interval 

mm 3 mm3 mm3 cell 

0-95000 5000 188.9 100mm 

0-95000 5000 271.5 38mm 

Table 5.5 Results of volume change unit 
calibrations 



Test 
Specimen Cell pressure Loading rate 

Purpose 
material kPa kPa/hr 

STE1 steel variable 10 to check radial strain measurement method 

STE2 steel 10 
and cell components compressibility 

----

RUB2 rubber ---- 40 

RUB3 ditto variable 60 to check stress path application 

RU84 ditto 53 60 

RUBS ditto 53 20 
to check Poisson's ratio 

RU86 ditto 15 7 

RUB? ditto 200 18 to check stiffening of the specimen 

RUB8 ditto 200 2 

RUB9 ditto 200 2 
to check membrane slippage 

RUB10 ditto 200 2 

RUB11 ditto 200 2 

TR1 kaolin 200 2 to evaluate behaviour of the cell with 

TR2 kaolin variable 2 
actual soil specimens and determine 

I 
certain parameters 

~-

Table 5.6 Summary of proving tests 



--

Test System compressibility 
----

Constant kPa Coefficient kPa/% 

STE2 0.0187 0.0007 

STE3 0.136 0.0007 

pressure ratio 0Ic/01 
I 

\ 
initial intermediate overall 

r---
STE2 2.08 2.33 2.44 

STE3 2.10 2.31 2.50 
~ 

Table 5.7 Regression results from data In tests STE2 and STE3 

Test U 

RUB2 0.48 
RUB3 0.47 
RUB4 0.48 
RUBS 0.50 

RUB6 0.49 
RUB7 ----- , 

RUB8 0.48 

RUB9 0.48 

RUB10 0.48 

RUB11 0.48 

Table 5.8 Summary of u values for tests on 
the rubber specimen 



Test local end cap external 

RUB2 4240 3503 3808 
RUB3 3947 3555 3852 
RUB4 3920 3492 3918 
RUBS 4384 3599 3931 
RUB6 4274 ------- 3339 
RUB7 ------ 3692 3745 
RUB8 4208 3350 2120 
RUB9 3980 3640 3898 
RUB10 4061 3605 3182 
RU811 4156 3502 3503 
Average 4130 3549 3536 

Note : Stiffness In kPa calculated by regression 

to 0.1 % strain 

Table 5.9 Summary of stiffness values from 
tests on the rubber specimen 
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Chapter 6 

EXPERIMENTAL RESULTS 

6.1 Introduction 

In this chapter the main test programme is described and the results are presented 

in a mainly factual manner. The results are discussed and interpreted in Chapter 7. 

The test programme and the methods of processing the data and evaluating 

the stiffness parameters are described in the first two sections. Results from the COIl­

solidation and swelling stages of the tests in the 100 mm cell are then presented and 

compared with other published data. An evaluation of the axial strain measurement 

methods is presented in the fourth section. The final sections of the chapter deal 

with the shearing stage results from both normally consolidated and overconsoli­

dated specimens. Stress paths obtained during the shearing stages ( including the 

application of strain cycles) are compared with those published by other researchers. 
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6.2 Description of the Test Programme 

The overall aim of the test programme was to provide an insight into tube sampling 

effects on the small strain behaviour of soils over a wide range of initial conditions 

(see Sections 1.3 and 2.5). Most natural soils are encountered in an overconsoli­

dated condition and small strains are often associated with engineering works in 

heavily overconsolidated soils (e.g. Burland et al (1979)). Nevertheless, several of 

the present tests were carried out on normally consolidated specimens. 

6.2.1 Tests in the 100 mm Apparatus 

Ten tests were carried out in the 100 mm apparatus. These are listed in Table 6.1 

where it can be seen that six tests (including two repeatability tests) involved nor­

mally consolidated specimens, while four tests were carried out on overconsolidated 

specimens. Figure 6.1 shows the stages involved in the tests. All the specimens were 

consolidated under zero lateral strain conditions using the technique described in 

Section 4.3. Half the specimens were then sheared in undrained compression, the 

other half in undrained extension. For each type of loading disturbed and undis­

turbed specimens were tested. The notation for the test names used in Table 6.1 

is explained in Table 6.2. For example, test ANCU1 involved one-dimensional con­

solidation (A) of a normally consolidated specimen (N), was loaded in compression 

(C) without disturbance (U), and was the first of its type (1). 

Ideally, every test would have been repeated but due to time constraints 

(each test took about one month to complete) this was not possible. It was decided 

instead to carry out two repeatability tests, one at the beginning of the testing 

period (ANCU2) and the other at the end (ANCD2). The latter permitted the 
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stability of the measuring devices and the applicability of the previously determined 

calibration factors to be checked. In addition, although the number of complete 

repeatabilty tests was limited, processes of consolidation, swelling and simulated 

sampling disturbance were repeated more than once. 

6.2.2 Tests in the 38 mm Apparatus 

In support of the tests in the 100 mm cell, isotropically consolidated and swollen 

specimens were tested in the 38 mm cell with special axial strain instrumentation 

(Section 3.4.5). Only one overconsolidation ratio (OCR = 4) was adopted in the 

100 mm apparatus. Therefore, the tests in the 38 mm cell were designed, firstly, 

to provide more data about the effects of OCR on the small strain deformation 

behaviour. Secondly, tests were conducted at different shearing rates to provide 

information about undrained creep effects on the small strain deformat ion behaviour. 

These were carried out on normally consolidated specimens, where rate effects would 

be expected to be most pronounced. 

Seventeen tests were carried out in the 38 mm apparatus, as listed in Table 

6.3. A test name comprises the letter S followed by three numbers representing the 

overconsolidation ratio, the rate of shearing and the order of testing for repeatability. 

These numbers are separated by the symbol 'I'. For example, test S2/2/1 is a test 

carried out in the 'small' 38 mm cell (S), at an OCR of 2 and an axial stress rate 

during shearing of 2 kPa/hr, and is the first of its type. 

It was found in the proving tests, as in other research (e.g. Atkinson (1985)), 

that as long as the rate of undrained shearing was small enough. no significant 

gradients of pore water pressure developed in the specimen. In the investigation 
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of shearing rate effects three different 'slow' rates of axial stress increase of 0.5 

kPa/hr, 2kPa/hr and 4 kPa.fhr were adopted. In addition, much higher loading 

rates (about 100 kPa/hr) were adopted to provide data for comparison with the 

tests in the 100 mm cell involving high rates of shearing during the simulation of 

sampling disturbance. 

As can be seen in Table 6.3, each test was repeated once. This was possible 

since tests in the 38 mm cell involved relatively short periods of time compared to 

those in the 100 mm cell. 

A higher mean effective consolidation pressure was adopted in the 38 mm 

cell than in the 100 mm cell because it was thought that the 38 mm specimens 

suffered greater disturbance when they were initially set up (Section 3.5.3). For 

overconsolidated specimens with high OCRs (over 40) it was difficult to achieve the 

desired overconsolidation ratio accurately because of fluctuations in the cell pressure 

(see Section 3.2.2). 

6.3 Data Processing 

As mentioned in Section 4.3.4, test data were loaded into Lotus 123 spreadsheets 

before processing and the production of graphs were carried out. Extensive usc was 

made of the least squares regression option available in Lotus 123. With this option, 

a curve is fitted to the experimental points, Figure 6.2. The curve is a polynomial 

of the form : 

(6.1) 

where ao, all···an are the coefficients calculated by Lotus 123 (along with their stan­

dard deviations), x is an experimentally determined value (independent variable) 
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and Y is the calculated value ( dependent variable). The slope of the curve at any 

point, x = xo, is therefore: 

I (dY) ? 3 2 n-t Yxo = dx Xo = at + _a2 xO + a3xo + ... + nanxo (6.2) 

Alternatively, by taking very small increments of x and Y : 

y~o = (hY) = Y2 - Yl 
hx X2 - Xl 

(6.3) 

with Xo being the mean of Xl and X2' The above method of slope determination 

was found to be satisfactory in most cases (e.g evaluation' of v and ](0 ). However, 

when it was used to evaluate the tangent stiffness (i.e. x = (. and y = ~q) it 

was noticed that the fitted curve depended significantly on the polynomial degree 

and the amount of scatter of the data points. Thus spurious fluctuations of slope 

occurred, as indicated in Figure 6.3 at strains of more than 0.05 %. 

Atkinson et al (1986) developed a different computerised method to evaluate 

the tangent stiffness. This makes use of least squares fitting to produce overlapping 

sections of the stress-strain curve, Figure 6.4. For each group of data points a 

quadratic function is fitted which is then differentiated at each point. The tangent 

stiffness is determined as the average of the differentials so calculated. Experience 

of using this method with the present data showed that, to be successful, it required 

evenly distributed data (i.e. data points located at constant intervals of stress or 

strain). Also, as illustrated in Figure 6.5, some trials were required to determine the 

optimum number of points in each group, ny, and the number of points within each 

increment between groups, ni, to give a smooth variation of tangent stiffness with 

strain. 

It was desirable to develop a method for calculating both tangent and secant 

stiffnesses which could be used with any distribution of stress-strain data without in-

volving the above mentioned disadvantages. When the stress-strain data are plotted 
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on a semi-logarithmic scale, the data plot is in the form shown in Figure 6.6. When 

polynomial fitting is carried out, a much better fit is obtained and the irregularities 

shown in Figure 6.3 disappear. The tangent stiffness can be determined as 

(6.4 ) 

where fib and fia are suitably close axial strains and qb and qa are corresponding 

deviator stress values determined from the regression analysis. The secant stiffness 

can be calculated as : 
. _ 6.q 

Eus -­
Ee 

(6.5) 

A computer program was written in Lotus 123 'macro' language to calculate the 

tangent and secant stiffnesses and provide appropriate graphical output. 

The sensitivity of this method to the polynomial degree (n) was examined. 

Figure 6.7 compares the stiffnesses based on polynomials with n of 3,4 and 6. It can 

be seen that for strains of more than 0.004 %, the differences are less than 7 %. The 

larger difference at strains lower than 0.004 % may be the result of increased scatter 

in the stress-strain data due to the proportionately larger measurement errors in­

volved (Section 5,4). An investigation was also carried out to evaluate the sensitivity 

of this method to the upper limit of the strain range over which the curve fitting 

was carried out. The results indicated that the method was relatively insensitive to 

this limit. 

Figure 6.8 shows the superiority of the aboye method over Atkinson's method. 

It should be mentioned that, in applying Atkinson's method, the number of points 

on each overlapping section of the stress-strain curve (see Figure 6,4) was 40. This 

is much larger than the number used by Atkinson et al (1986) because the total 

number of data was much larger. 
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6.4 Consolidation and Swelling Results 

As mentioned in Section 6.2.1, the tests in the 100 mm cell involved one-dimensional 

consolidation and swelling while tests in the 38 mm cell involved isotropic consoli­

dation and swelling. The consolidation and swelling stages in the 38 mm cell were 

carried out under one increment of loading and limited data were retrieved. There­

fore, only the more worthwhile data from the 100 mm cell will be presented. 

In the following sections the results from consolidation and swelling stages 

will be presented separately. Typical data are presented in graphical form, but 

individual data points are too numerous to show on the graphs. Instead, in most 

cases curves passing through the data points are shown. In addition, appropriate 

critical state parameters are evaluated and compared with other published data. 

6.4.1 Consolidation 

In Section 3.6.2 it was explained that one-dimensional consolidation was carried out 

by increasing the axial and radial stresses in small increments while monitoring the 

radial strain. The value of Ko was determined from a graph of the type shown in 

Figure 6.9, using the curve fitting procedure described in Section 6.3. As expected 

the plot of 0'; versus O'~ is linear indicating that the value of Ko is constant during 

normal consolidation. Table 6.4 shows the value of Ko from each test. The average 

value of 0.70 compares well with other published values, as shown in Table 6.5. 

However, using the empirical Equation 3.1 developed by Jaky (1944) and taking 

<p' = 23° (Roscoe and Burland (1968) and Al Tabbaa (1987)), a lower value of /(0 is 
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predicted, Ko = 0.61. Brooker and Ireland (1965) suggested a revised relationship: 

Ko = 0.95 - sin (<p') (6.6) 

which gives an even smaller value of Ko. Therefore, in the present case, the empirical 

formulae developed to predict Ko do not seem to be satisfactory. 

A typical variation wi th a~ of the ratio of axial to volumetric strain (fa I tv), 

determined from the external LVDTs and the volume change unit respectively (Sec­

tions 3.4.3 and 3.4.4) is shown in Figure 6.10. Theoretically, the ratio should be 

constant and equal to 1. However, Figure 6.10 indicates that during the initial 

stages of consolidation fa is much smaller than fv' The ratio fa/ fv then increases 

rapidly until a constant average ratio of 0.9 is achieved. Gens (1983) reported a 

value of 0.88 from tests on natural soils. This result can perhaps be explained by a 

limited amount of membrane penetration into cavities in the vicinity of the porous 

stones or in the surface of the specimen. The latter is less likely in the present case. 

6.4.2 Swelling 

The value of ](0 during one-dimensional swelling, I(ou, is not constant but depends 

on OCR. AI-Tabbaa (1987) reported that a plot of ](ou versus OCR on a semi­

logarithmic scale produces a straight line. However, in the present research, it was 

found that the relationship is visibly non-linear, Figure 6.11. As OCR approached 

the desired value of 4, the unloading stress path lay very close to the pi axis and 

hence the value of ](ou approached 1. 

Attempts to evaluate /(ou theoretically (e.g. Pender (1978)) using constitu­

tive laws have not proved successful. However, many empirical (or semi-empirical) 
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relationships have been proposed. For example, Schmidt (1966) suggested that: 

(G.t) 

where a is a parameter which depends on the soil type. Values of Q for kaolin 

determined by different researchers are shown in Table 6.6. Mayne and K ulhawy 

(1982) carried out a statistical analysis to determine I<ou for a wide range of soils. 

Using Equation 6.7 and assuming Q = sin <p', Kou can be evaluated as : 

[(OU = (1 - sin <p')(OCRtincp' . (G.8) 

with <p' = 23° for kaolin. Wroth (1975) noticed that for small Oelts the swelling 

stress path in q,p' space could be represented by a straight line. Using the principles 

of elasticity, he suggested the following equation: 

I 

Kou = [(o(OCR) - _v-,(OCR -1) 
1 - v 

(6.9) 

where Vi is the 'drained' Poisson's ratio determined from a correlation with the 

plasticity index. AI-Tabbaa (1987) reported an average value of Vi of 0.3 for kaolin. 

Equation 6.9 is only applicable for small overconsolidation ratios. At larger OCHs 

the assumption of elasticity becomes unrealistic but, by assuming a linear relation­

ship between q/p' and In pi, Wroth (1971) arrived at the following equation: 

m [3(1 - [(0) _ 3(1 - [(ou)] = In [(OCR)(1 + 21(0)] 
1 + 21(0 1 + 2I<ou 1 + 2I<ou 

(6.10) 

where m is a parameter related to the plasticity index. For kaolin, m value'S of 1.S 

and 1.5 have been reported by Wroth (1971) and Al-Tabbaa (1987) respectively. 

Mitachi and Kitago (1978) proposed the following equation for [(ou : 

1 + 2I<ou = (1 + 2I(0)(OCR)t11 (6.11 ) 

where {3I is given by : 

(3I = -log(l + 2I<0/3) log rno (6.12) 
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and the value of rno can only be determined if /(ou is already known for a certain 

OCR larger than 1. 

The spread of experimental data from all four of the present tests involving 

swelling is shown in Figure 6.12 along with the relationships reviewed above. For 

OC R < 2 reasonable agreement between the experimental results and most of the 

predicted values is seen. However, for OCR> 2 some of the equations predict 

far higher values for /(ou than those found experimentally. This discrepancy could 

possibly be due to differences between the methods of unloading adopted by different 

researchers. The rate of unloading could have a significant effect on the shape of 

the stress path and hence on /(ou' 

During swelling the ratio fa/ fv was found to be very close to 1 throughout 

the test stage, as expected. 

6.4.3 Critical State Parameters 

Critical state parameters from tests in the 100 mm apparatus are summarised in 

Table 6.7. 

Figure 6.13 shows a typical plot of v versus In p' during one-dimensional 

consolidation and swelling. The non-linearity of the v - Inp' relationship during 

consolidation illustrated in this figure is mainly due to disturbance of the specimen 

during preparation. In the present work, ). has been calculated as the tangent to 

the final portion of the consolidation line. The average value of ). from 10 tests 

was 0.184 (see Table 6.7). A comparison of the approximately linear portion of the 

one-dimensional normal consolidation line with other published work is shown in 

Figure 6.14. Although the positions of the lines differ significantly, their slopes are 
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similar. A comparison of the values of ). is given in Table 6.8. AI-Tabbaa (1987) 

reported that a plot of In v versus In p' produced a straight line with a slope). * and 

found that that ).1).* = 2.2. A typical graph of In v versus In p' from the present 

research is shown in Figure 6.15. There does not appear to be any improvement on 

the previous plot (i.e. v -Inp'). A regression analysis carried out on the present data 

to determine the average ).* gave a value of 0.083 and hence a ratio of ).1).* = 2.22. 

Both values are similar to those reported by Al-Tabbaa. 

The swelling line shown in Figure 6.13 has a slope, denoted by K, \,,,'hich 

depends on OCR, in contrast to the common assumption that K, is constant. Again, 

Al-Tabbaa suggested plotting In v versus In p' and defined K* as the slope of the 

swelling line on this plot. For values of GCRp between 1 and 1.4, where GCRp is 

defined as the ratio of P~axlp' where P~ax is the maximum mean effective pressure 

the specimen has been subjected to, the average value of ",* based on the present data 

was 0.0074 (see Table 6.7) which compares well with the value of 0.0078 reported 

by Al-Tabbaa. Over the same OC Rp range the ratio of "'1"'* was found to be 2.19. 

Richardson (1988) proposed the use of two parameters, "'I and "'0, representing the 

slopes of two straight lines fitted to the swelling data on the v - Inp' plot. He 

reported values of 0.0057 and 0.047 for "'1 and "'0 respectively. The average of these 

two values (0.026) compares well with that reported by AI-Tabbaa (0.028) and that 

found during the present work (0.026). 

Table 6.7 shows also the values of No) the reference specific \'olume under 

one-dimensional conditions (Figure 6.16), found by extrapolating the straight line 

portion of the consolidation line. Comparisons with other published values are shown 

in Table 6.8. 

Because most of the specimens tested in the 100 mm cell were not brought 
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to a critical state condition during shearing, it was not possible to determine r 

experimentally. However, use could be made of the following equations proposed by 

AI-Tabbaa 
I 

In(NJNo) = (A* - 11:*) In \i 
Pld 

I 

In(Njr) = (A* - 1'.:*) In p/ = (,\* - 1'.:*)ln2 
Pes 

(6.13) 

(6.1-1) 

where P~, P~d' P~s and N are as defined in Figure 6.16. Using the average experi­

mental values for ,\* and K,* shown in Table 6.8 and taking .Al-Tabbaa's value of 1.09 

for P~/P~d' the ratio of N/ No can be evaluated from Equation 6.14 as 1.006. Taking 

No = 3.11 (Table 6.7), Equation 6.15 then gives a value of r of 3.06 which falls 

within the range of 2.87 to 3.44 reported by various researchers. Since the critical 

state line is theoretically parallel to the normal consolidation line, the experimen-

tally determined value of ,\ and the predicted value of r can be used to draw the 

critical state line, Figure 6.17. On the same graph the final data points obta.ined 

during shearing stages in the 100 mm cell are also shown and arc consistent wit h 

the predicted line. Since the tests were not conducted on heavily overconsolidated 

soil, they could be expected to produce points either on the line or to the right of 

it, depending on when shearing was terminated. Only a couple of the experimental 

points lie to the left of the line and then only by a small amount. 

6.5 Evaluation of Strain Measurement Methods 

Discussion in this section will mainly concentrate on the strain measurement meth-

ods used in the 100 mm cell. As described in Section 3.4, during the shearing stages 

measurement of axial strain was carried out locally, between the end caps and ex­

ternally. Radial strain was measured locally at approximately the mid-height of the 
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specimen. 

Stress-strain curves from a typical compression test (test ANCUl) for the 

small strain range are shown in Figure 6.18. The good agreement between the 

local and the end cap strains indicates that bedding errors between the specimen 

and end caps are negligible. In this test, the external strain is only slightly larger 

than the local or end cap strain, but the measurements suffer from a larger scatter. 

After correcting for the errors due to the compression of the load cell and other 

components using the relationship developed in Section 5.4.1, the external strain 

agrees more closely with the local and end cap strains, Figure 6.19. On the other 

hand, the stress strain data from a typical extension test (test ANEUl) plotted in 

Figure 6.20 show a considerably larger discrepancy between the external and the 

local or end cap strain. 

The above results show that axial strain measurement can be adequate ley 

carried out either locally or between the end caps under the favourable conditions 

applying in this research, i.e. where the specimens were homogeneous, had flat 

end surfaces and were one-dimensionally consolidated to a high vertical effective 

pressure before shearing commenced. Two features were noticed as far as external 

strain measurement was concerned. The first was the significantly larger scatter 

in the stress-strain data, resulting from the inadequate precision of the LVDTs at 

small strains. The second was that in situations where a change in the direction of 

movement of the loading piston was involved, the external axial strain appeared to be 

larger than both the end cap and locally measured strains. Slackness at the load cell­

top cap connection and the load cell bushing connected to the cell top plate may be 

behind this phenomenon. However, under the favourable conditions described above, 

it is possible that if more precise external instrumentation is adopted, no reversal 

in loading direction is involved, and a correction for the load cell compression is 
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applied the external strain measurement could be satisfactory, even at small strains. 

Although the method of connecting the load cell to the specimen top cap 

(Section 3.3.1) should prevent any tilting of the top cap, the measured axial de­

formation of the specimen was not uniform, as illustrated by the typical results of 

Figure 6.21. In addition, the radial strains were found to display non-uniformities 

which varied randomly from one test to another, Figure 6.22. It is clear, therefore, 

that the evaluation of Poisson's ratio from a single pair of transducer readings can­

not be satisfactory. This could be one of the reasons why Yung (1987) encountered 

unrealistic values of Poisson's ratio in his tests on Cowden Till. Results of radial 

strain measurement will be presented and discussed in Section 7.2. 

Typical results from the 38 mm cell (test S/2/2/1) are shown in Figure 6.23 

where axial strains derived from the lower chamber volume change are compared 

with the end cap measurements. There are the expected dicrepancies at small 

strains (Figure 6.23a) but there is good agreement at larger strains (Figure 6.23b). 

These results suggest that confidence can be placed in the end cap strains, which 

ought to be superior at small strain levels. 

6.6 Results from Shearing Stages 

The results presented in this section relate to the shearing stages bot.h during the 

simulation of sampling disturbance and 'slow' undrained loading. Sections 6.6.1 to 

6.6.4 relate to the results from tests in the 100 mm cell, while in Section 6.6.5 the 

results from tests in the 38 mm cell are presented. 
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6.6.1 Results from Normally Consolidated Undisturbed 

Specimens 

Stress paths and stress strain curves from all three normally consolidated undis­

turbed specimens (ANCU1, ANCU2, ANEU1) are shown in Figures 6.24 and 6.25 

respectively. Unfortunately, the tests had to be terminated before large strains were 

achieved because of the danger of damaging the submersible LVDTs which were 

moving towards the cell top plate as axial strain increased. Test ANCU2 was in­

tended to be a repeat of test ANCUl. However, large differences were noticed in 

both the stress paths and the stress-strain curves. The main difference between 

the two tests is that due to an operational error, the specimen in test ANCU2 was 

given a shorter rest period at the end of the one dimensional consolidation stage 

(approximately a third of that allowed in test ANCU1). Effects of the rest period 

on the stress-strain behaviour of clay soils have been experimentally investigated 

at relatively large strains by Richardson (1988). He concluded that the increase in 

stiffness is approximately linear with the logarithm of the rest period so that: 

~E = Cllog~t (6.15) 

where !:::.t is the elapsed time during the rest period and C1 is an experimentally 

determined constant. By considering the relative durations of the rest periods in 

tests ANCU1 and ANCU2 it may be predicted that 

EANGU2 = 0.7 EANGUl (6.16) 

The present experimental result, based on average stiffnesses from tests ANCUI and 

ANCU2 over the strain range of 0.005 to 0.01 %, is 

EANCU2 = 0.62EANCUl (6.17) 
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which is comparable to the prediction. It should be noted that the effect of rest 

period on tangent stiffness decreases as axial strain increases. 

The stress paths shown in Figure 6.24 did not involve large stress increments 

and in the compression tests no stress reversals occurred. In extension tests some 

temporary stress reversals took place, but these did not exceed 2.5 kPa in magnitude 

and usually happened after the specimen had undergone a change of deviator stress 

large enough to take it beyond the small strain region. 

The stress paths of Figure 6.24 compare well with those in other tests on 

kaolin carried out by Atkinson et al (1987) and Parry and Nadarajah (1974). This 

is seen most clearly by normalising the results with respect to P~ax' Figure 6.26. 

6.6.2 Results from Normally Consolidated Disturbed Spec-

imens 

As mentioned in Section 3.6, disturbance to the specimen was simulated by applying 

a strain cycle of amplitude 1 %, followed by a release of deviator stress and reconsoli­

dation to the initial conditions. The complete effective stress paths for tests ANCD 1, 

ANCD2 and ANEDI are shown in Figures 6.27 to 6.29. Due to an operational error 

at the beginning of the testing programme, the reconsolidation path in test ANCDI 

was achieved by initially dissipating the excess pore water pressure in the specimen 

after the strain cycle and then moving the stress state vertically towards the original 

/(0- line before following this line to the initial condition. Research carried out by 

Hight et al (1985) and Atkinson et al (1989) illustrated the importance of following 

the original /(0- line during reconsolidation if the effects of the recent stress history 

are to be minimised. 
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Variations of the mean effective pressure with time during the application 

of the strain cycle are shown in Figure 6.30 where the overall decrease in p' varies 

between 40 and 60 %. During loading phases (positive increments of axial stress) a 

large increase in the pore water pressure is noticed, while during unloading (nega­

tive increments of axial stress) the pore water pressure is relatively constant. Step 

changes in pore water pressure can also be seen which correspond to quick reversals 

of loading direction. 

Changes in water content as a result of sampling disturbance and reconsol­

idation are shown in Table 6.9. The average drop in water contcnt is about 1.5 

% which is significant enough to cause changes in the strength and stiffness of the 

specimens as will be shown in Section 7.3. 

For comparison purposes, in Figure 6.31 the strain cyclc strcss path from tcst 

ANCD1 is shown alongside that reported by Baligh et al (1987) for Boston lllue 

clay and that estimated by Hight et al (1985). The general shapcs are fairly similar 

and the drop in p' found presently is comparable with that rcportcd by 13aligh ct 

a1. The shapes during the initial loading phase are closely similar, but both Baligh 

et al and Hight et al show a large decrease in p' during the unloading phase whilc 

the present data indicates a somewhat more moderate drop in p' during this phase. 

While Baligh's experimental curve shows a slight recovery in p' during the sccond 

(last) loading phase, Hight's estimation indicates no significant change in p' and the 

present data displays a fairly significant drop in p'. Such diffcrcnces may be the 

result of differences in the method of application of the cycle. For example, naligh's 

data does not show such a large change in deviator stress between the cycle phases 

as that seen in the current work, where the abrupt change in the loading direction 

was carried out quickly (with a sizeable change of deviator stress) to prevent the 

axial strain from overshooting. Indeed, the fact that in Baligh's work the stress 
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path during the initial compression phase was similar to that for a slowly tested 

undisturbed specimen suggests that the strain cycle was applied more slowly than 

in the present case, where axial stress rates over 100 kPa/hr were used (the effects 

of rate of loading on the position of the stress path and the deformation behaviour 

will be discussed in detail in Chapter 7). 

The stress-strain curves from the three strain cycles are shown in Figure 

6.32. Repeatability is evidenced by the closeness of these curves, especially during 

the initial compression phase. These stress strain curves compare well with those 

reported by Baligh et aI, Figure 6.33. Scatter in the test data both within and 

between tests, starts to increase during the unloading and reloading phases, as can 

also be seen in the data of Baligh et al. In the present case, this could be partly due 

to the difficulty of applying a maximum positive axial strain of 1.0 % under stress 

control at high rates of loading. as discussed in Section 5.4.3. At a strain of about 

0.4 %, the deviator stress becomes constant as strain increases, indicating that the 

specimens had failed. The failure of normally consolidated specimens during tube 

sampling was noted by Baligh et al. The deviator stress at the end of the strain 

cycle is slightly lower than that at the beginning, a feature also noticed in Baligh's 

data. 

Stress-strain curves in the small strain region during shearing after reconsol­

idation are shown in Figure 6.3-1. Although test ANCD2 is a repeat of test ANeDl 

it had a different reconsolidation path as explained abO\·c. However, both tests show 

similar deformation behaviour at small strains. Bascd on this limited experimcntal 

evidence, it can be concluded that, as long as the final stage of the reconsolidation 

stress path approaches the initial condition in the same way (i.e. along the original 

Ko-line), the same deformation behaviour at small strains will be obtained. How­

ever, there is likely to be a minimum distance which the specimen has to travel along 
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the J(o-line before the recent history effects can be effectively erradicated (Atkinson 

et al (1989)). 

6.6.3 Results from Overconsolidated Undisturbed Speci-

mens 

Two tests, AOCU1 and AOEUl, on undisturbed overconsolidated specimens (OCR=4) 

were carried out, one in compression and the other in extension. The stress paths 

and stress-strain curves for these tests are shown in Figures 6.3.5 and 6.36 respec­

tively. 

The normalised stress paths from both tests are shown in Figure 6.26 where, 

although the starting points are different, the pattern of the current data is similar 

to that reported by other researchers. 

6.6.4 Results from Overconsolidated Disturbed Specimens 

Two tests were conducted on specimens with simulated sampling disturbance. The 

stress paths from these tests, AOCDI and AOEDl, arc shown in Figures 6.37 and 

6.38. In both tests the effective stress state after disturbance is very close to the ini­

tial state. Since the direction of approach of the stress path to the initial conditions 

during reconsolidation may influence the stiffness responsc, the reconsolidation was 

conducted in the manner illustrated in Figure 6.39 which relates to test AGCDl. 

Changes in pi during the strain cycle in both tests are shown in Figure 6.40. 

At the end of the cycle a reduction of not more than 10 % is observed. Hight 

et al (1985) reported that during tube sampling heavily overconsolidated specimens 
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would exhibit an increase rather than a decrease in p', as would occur with normally 

consolidated soil. Hence, moderately overconsolidated specimens might be expected 

to exhibit a neutral response. This is confirmed by the results from the current 

tests. It is also reflected in the relatively small changes in water content during 

sampling and reconsolidation, Table 6.10. These changes might be expected to 

have a smaller effect on the stress-strain behaviour than in the case of normally 

consolidated specimens. 

Stress-strain curves o\'er the whole strain cycle for these specimens are shown 

in Figure 6.41 where good rcpeatability can be noticed. In contrast to the normally 

consolidated specimens, the O\'crconsolidated specimens do not appear to have un­

dergone failure. 

Stress-strain curves for the disturbed specimens during shearing after rccon­

solidation are shown in Figure 6.42. 

6.6.5 Results from the Isotropically Consolidated Speci-

mens 

Stress paths and stress strain curves from the eleven tests on isotropically consoli­

dated and swollen specimens with a rate of axial stress increase of 2 kPafhr are shown 

in Figures 6.43 and 6.44 respccti\'ely. The stress paths and stress-strain curves for 

tests with other rates of loading are shown in Figure 6.45 and 6.46 respccti vcly. The 

more erratic stress path data from these tests, which were conduded in the 38 mill 

cell, can be blamed on the lower accuracy of the pressure control devices (see Section 

3.2.2). The strain data are also of lower quality than those obtained from the 100 

mm cell. Although the end cap strain data should perhaps have been of comparable 
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accuracy in the two cells, this was not the case since one of the submersible LVDTs 

used in the 38 mm cell had a significantly lower precision (see Section 5.2.6). As a 

result, the repeatability of data from this cell is less good than that of data from 

the 100 mm cell. 

Comparison of the normalised stress paths with data published by other re­

searchers is shown in Figure 6.47. General agreement between the current and 

published data sets is seen for both normally consolidated and ovcrconsolidated 

specImens. 
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Test OCR I~I% Loading 
/ 

P'o (kPa) D;o (kPa) w'" WC Cake 
i% f % 

ANCDl 1 1.0 Compression 351.5 285.5 52.0 42.08 1 

ANCU1 1 0.0 ditto 350.0 285.3 52.0 44.2 1 

ANCU2 1 0.0 ditto 342.8 2n.1 51.5 43.8 1 

ANEU1 1 0.0 Extension 347.0 281.0 53.4 43.13 1 

AN ED 1 1 1.0 ditto 345.0 276.0 53.0 41.9 1 

AOCUl 4 0.0 Compression 86.4 82.7 51.5 45.5 2 

AOCDl 4 1.0 ditto 87.0 89.2 52.7 44.15 2 

AOEUl 4 0.0 Extension 86.4 84.3 53.4 44.5 2 

AOEDl 4 1.0 ditto 81.8 82.1 53.0 44.53 2 

ANCD2 1 1.0 Compression 347.9 279.9 53.5 42.60 2 

Notes : 
• Average of top and bottom trimmings (before test) 
, Average of six portions (after test) 

Table 6.1 Summary of the main tests in the 100 mm cell 



Letter Meaning 

A one-dimensionally consolidated 

I isotropically consolidated 

N normally consolidated 

0 overconsolidated 

C compression loading 

E extension loading 

U undisturbed (no strain cycle) 

D disturbed (with strain cycle) 

Table 6.2 Notation for test names In 
the 100 mm cell 



OCR 
Rate p' 

Test 
kPa/hr 

0 

kPa 

81/130/1 1 130 327 

81/2/1 1 2 329 

81/4/1 1 4 325 

81/0.5/1 1 0.5 321 

81/4/2 1 4 315 

81/0.5/2 1 0.5 313 

81/2/2 1 2 316 

81/100/1 1 100 329 

84/2/1 4 2 84 

84/2/2 4 2 84.6 

810/2/1 10 2 35 

88/2/1 8 2 46 

S35/2/1 35 2 9 

845/2/1 45 2 7 

S8/2/1 8 2 4 

82/2/1 2 2 163 

S2/2/2 2 2 160 

Notes: 

* Average of top and bottom 
I before test 

f after test 

* * Wi Wf 

% % 
I 

! 
51.6 41.U 

51.3 42.0\ 

53.2 42.5 
I 
I 

51.7 42.7 \ 
I 

52.5 42.9 I 
53.0 41.6 i 

53.0 41.8 ! 
I 

51.8 42.4 I 

53.4 43.0 , 

53.0 42.8 

53.1 43.0 

52.5 45.8 

53.1 45.8 

53.8 46.0 

53.3 45.0 

53.6 42.0 

53.5 42.0 

Table 6.3 Summary of the main tests 
In the 38 mm cell 



Test Ko 

ANCD1 0.71 
--

ANCU1 0.72 

ANCU2 0.68 

ANEU1 0.72 
--

ANED1 0.70 
---

AOCU1 0.71 

AOCD1 0.69 

AOEU1 0.10 

AOED1 0.70 

ANCD2 0.70 

Average 0.70 

Table 6.4 Summary of Kovalues during 
normal consolidation 

Reference Ko 

Author 0.70 

Calladine (1971 ) 0.71 

AI-Tabbaa (1987) 0.69 

Roscoe and Burland (1968) 0.70 
--

Burland (1967) 0.69 
--

Parry & Wroth (1976) 0.64 

Sketchly and Bransby (1973) --- 0.66--
--

Richardson (1987) 0.63 

--

Table 6.5 Comparison of average experimental 
and other reported Ko values 



LL% PI% 

72 32 

- -
76 37 

- -

55 23 

- 31 

- -

- -
- -
~~-

Clay ¢I OC~ax C>( Reference Content 
-

- 22.6 2.6 0.66 Parry and Nadarajah (1973) 

- 23.2 5.2 0.38 Parry and Wroth (1976) 

68 20.7 4.0 0.29 Sketchleyand Bransby (1973) 

- 23.0 7.8 0.28 Burland (1967) 

40 23.3 40 0.30 Singh (1966) 

- 23.0 10 0.46 AI-Tabbaa (1987) 

- - - 0.47 Schmidt (1966) 

- - - 0.41 Schmertman (1975) 

- - - I 0.50 I Meyerhof (1976) 

Table 6.6 Reported values of 0( for kaolin 
(partly after Mayne and Khulhawy (1982» 



A * * Test v \ \ k + k No 

ANCD1 2.111 0.186 0.084 - - 3.189 
ANCU1 2.105 0.188 0.086 - - 3.130 
ANCU2 2.110 0.185 0.083 - - 3.110 

ANEU1 2.100 0.188 0.085 - - 3.140 

ANED1 2.110 0.185 0.084 - - 3.100 

AOCU1 2.135 0.186 0.084 0.0172 0.0078 3.150 

AOCD1 2.136 0.180 0.082 0.0150 0.0068 3.120 

AOEU1 2.154 0.181 0.082 0.0150 0.0069 3.130 

AOED1 2.179 0.175 0.080 0.0174 0.0079 3.120 

ANCD2 I 2.128 0.185 0.084 - - 3.110 
---

Notes: "just before shearing 

+ over the initial part of swelling 

Table 6.7 Summary of the critical state 
parameters from the present work 

~~ 

0.345 
0.341 
0.354 
0.355 

0.375 ! 

0.0661 
0.0520 
0.0200 
0.0050 
0.361 



* * Ref. A A k k No M 

Author 0.184 0.083 0.162 0.0079 3.12 0.9 

AI-Tabbaa 0.187 0.085 0.171 0.0078 3.13 0.9 

Pender 0.180 - 0.06 - - 1.0 

Atkinson 0.180 - - - - 0.92 

Richardson 0.190 - 0.05 - 3.26 0.95 
--

Table 6.8 Comparison between experimental and 
other reported critical state parameters 

fl.: 
0.34 

-

0.4 

0.32 

-



Test 
w% w% Change 

(before) (after) % 

ANCD1 43.70 42.08 1.62 

ANCD2 43.90 42.60 1.30 

ANED1 43.40 41.89 1.51 

Table 6.9 Changes In water content due to 
disturbance of normally consolidated 
specimens 

Test 
w% w% Change 

(before) (after) % 

AOCD1 44.21 44.15 0.06 

AOED1 44.38 44.53 -0.15 

Table 6.10 Changes In water content due to 

disturbance of overconsolldated 
specimens 
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Chapter 7 

DISCUSSION OF 

EXPERIMENTAL RESULTS 

7.1 Introduction 

This chapter contains a discussion of the small strain deformation behaviour of 

kaolin under undrained conditions. The first section is concerned with the relevant 

parameters, such as the tangent stiffness, that can be derived from the t.ests described 

in Chapter 6. In the following sections, the effects of sampling disturha.nce, rate of 

shearing, and overconsolidation ratio on the small strain deformation hehaviolll" art' 

examined. A comparison is then made between the beha\"iour of one-dimensionally 

and isotropically consolidated specimens. In the final section, comparisons are madt' 

between the experimental results and the predictions of some of the models discussed 

in Chapter 1. The discussion will centre on the small strain region where these 

models have not been adequately checked. 
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7.2 Stiffness Parameters 

The stiffness parameters calculated from the results from the 100 mm triaxial cell 

will be presented in this section. In Section 1.1.1, it was indicated that stiffness 

can be evaluated either as a tangent or a secant value. A typical plot of stiffness 

versus axial strain on a semi-logarithmic scale is shown in Figure 7.1. Theoretically 

the secant stiffness, Eus, should be always larger than the tangent stiffness, Eul ' In 

the present case, this is true except at very small strains where scatter in the stress 

strain data may result in a fitted polynomial curve with a reversal of curvature, 

as illustrated in Figure 7.2. For discussion purposes, unless otherwise stated, only 

tangent stiffnesses will be used, which have been evaluated according to the method 

described in Section 6.3. 

Non-linearity of the stress-strain behaviour is clearly shown by the large dif-

ferences between the stiffness values at different strain levels in Figure 7.1 and Table 

7.1. A linearity index L (Jardine et al (1984)) may be defined as 

L = Eu10.1 

EUIO.01 
(7.1 ) 

where EutO.01 and EutO.1 are the stiffness values at axial strains of 0.01 % and 0.1 % 

respectively. This index is tabulated in Table 7.2. For compression tests, a general 

increase in L with OCR can be noticed. A similar trend was reported by Bight ct al 

(1985). It also shows that tests with high rate of shearing exhibit generally a morc 

non-linear response. 

The evaluation of Poisson's ratio, v, for tests in the 100 mm cell was carried 

out using the average local radial strain and the average local axial strain (for details 

of measurement techniques see Section 3.4.6). The test results are shown in Figure 

7.3. Calculation of v was carried out according to the method described in Section 
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6.3. Due to end restraint (see Section 2 .. 5.1) the radial strain can be expected to be 

larger over the middle part of the specimen than near the end caps. End restraint 

effects on the evaluation of Poisson's ratio have been analytically examined by Moore 

(1976) using the theory of elasticity. Moore concluded that if l/ is to be evaluated 

correctly, a correction factor should be applied which depends on v and the height 

to diameter ratio of the specimen. However, this was found to be unnecessary in 

the present research. As argued in Section 2.5.1, at small strains (where both axial 

and radial strain measurements are made) the middle part of the specimen remains 

closer to a right cylinder than the whole specimen does, as shown diagrammatically 

in Figure 7.4. 

The results of linear regression analyses carried out on the data of the type 

shown in Figure 7.3 are presented in Table 7.3. Over the axial strain range of 0 to 

0.7 %, the values of v are acceptably close to the theoretical value for undrained 

loading of saturated soil, v = O.tl. On the other hand, values calculated over larger 

axial strain ranges were found to be higher than 0.5 suggesting that barrelling effects 

become more significant as shearing progresses. 

7.3 Effects of Sampling Disturbance 

In this section, results from the tests carried out in the 100 mm apparatus .. .,.ill 

be analysed to provide a comparison between the responses of 'undisturbed' alld 

'disturbed' specimens. It was shown in Section 2.3 that the tube sampling pro­

cess is complicated and difficult to simulate accurately. Therefore, it should be 

re-emphasised that the application of a strain cycle to a specimen in the triaxial 

cell can be considered as significant but still, according to Baligh et al (1987), ideal 
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disturbance by comparison with that which might actually occur. 

For comparison purposes, the changes in deviator stress and stiffness have 

been normalised with respect to p~, the initial mean effective pressure prior to 

shearing. The reasons for using p~ as the normalising parameter rather than the 

undrained shear strength, cu , have been discussed by Jardine ct al (1981). These 

include the fact that the value of eu depends on several factors such as the rate of 

loading, total stress path, sampling disturbance and the soil microfabric. In partic­

ular, for anisotropically consolidated soil, the value of Cu in compression is differeIlt 

from that in extension. In any case, the value of Cu was not generally known for the 

present specimens, since the majority of the specimens were not brought to failure. 

A further point is that the ratio of Eu/p~ is less dependent on the stress history 

than Eu/cu. 

7.3.1 Normally Consolidated Specimens 

Stress-strain curves for normally consolidated disturbed and undisturbed specimens 

sheared in compression are compared in Figure 7.5a. The result for Test ANCU2 

is omitted since, as explained in Section 6.6.1, this did not have the standard rest 

period before shearing. Although test ANCD1 involved a different rccollso\idation 

path from test ANCD2 (see Section 6.6.1), the directions of the reconsolidatioll 

paths immediately prior to shearing were still similar. Therefore, it is likely that 

the effects of the recent stress history, as described by Atkinson et al (19K9), have 

been minimised. 

Corresponding stiffnesses, normalised with respect to p~, are shown in Figure 

7.5b. For strains below 0.01 %, the differences between the values of Eudp~ may 
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be blamed on the inaccuracies in the data. As explained in Section .3.3.2, scatter in 

the stress-strain data at small strains can be mainly attributed to the larger random 

errors involved in measuring the strains. The maximum difference in the stiffnesses 

for strains between 0.01 % and 0.1 % does not exceed 7 % and therefore there is 

very good agreement between the disturbed and undisturbed beha\'iour. 

Results from tests on disturbed and undisturbed specimens sheared in exten­

sion are compared in Figure 7.6. Agreement between d~sturbed and undisturbed 

behaviour in this case is not as good as that found with specimens loaded in com­

pression. The stress-strain curve for the disturbed specimen (ANEDl) lies abo\'e 

that for the undisturbed specimen (ANEUl) except at very small strains (Figure 

7.6a). 

7.3.2 Overconsolidated Specimens 

Results from the overconsolidated specimens loaded in compression are presented 

in Figure 7.7. Very good agreement can be seen between stress-strain behaviour of 

disturbed and undisturbed specimens. This is in contrast to the data from tests 

on overconsolidated specimens loaded in extension, Figure 7.8 where the disturbed 

specimen displays a markedly stiffer response. 

7.3.3 Overview 

The results from the present work have shown that disturbed specimens, when re­

consolidated to the initial stress conditions, exhibit similar small st rain stiff nesses 

to those of undisturbed specimens, although somewhat higher stiffncsses have been 
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obtained from the disturbed specimens in the case of extension tests on both nor­

mally consolidated and overconsolidated soil. It is difficult to assess whether these 

latter differences are within the repeatability limits or not since none of the exten­

sion tests were repeated. Fluctuations in the deviator stress just before the start of 

the shearing stage may have contributed to these differences. This is particularly 

likely in the case of overconsolidated specimens loaded in extension from a nearly 

zero deviator stress since small absolute fluctuations may represent a large percent­

age error in the small strain region. Table 7.2 shows that except in the case of 

test ANEUl, the disturbed specimens exhibit similar non-linear behaviour as the 

undisturbed specimen. 

Effective stress paths during shearing for all the specimens tested in the 100 

mm cell are compared in Figure 7.9. Since strains are related to changes in effective 

stress, it is not surprising that the general agreement between the stress-strain curves 

of disturbed and undisturbed specimens at small strains is reflected in the agreement 

between the corresponding sections of the stress paths. For normally consolidated 

specimens, deviations of the stress paths of disturbed and undisturbed specimens 

at larger strains correspond to signifkant differences in large strain stiffness and 

strength, as indicated in Figure 7.lD. However, in the case of overconsolidated 

specimens, the smaller difference between the stress paths reflects better agreement, 

Figure 7.11. 

Most previous research on sampling disturbance effects (reviewed ill Sections 

2.3 and 2.4) has been concerned with undrained strength and stiffness at large 

strains under compression loading. Atkinson and Kubba (1981) reported from tests 

on normally consolidated kaolin that, despite the fact that the stress path of a 

reconsolidated perfect sample (Le. one subjected to stress relief only) was similar 

to that of an undisturbed sample, the stiffnesses at large strains were not equal. 
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For tube samples they reported that, after reconsolidation to the initial stresses, 

the soil exhibited a different stress path from that of undisturbed soil and that 

the tube samples had higher stiffnesses. Similarly, Baligh ct al (1987) found that, 

for normally consolidated Boston Blue clay, reconsolidation to the initial stresses 

after tube sampling and stress relief resulted in a higher stiffness at large st rains 

and a larger shear strength. Therefore, the results from the present work arc in 

agreement with previous research but indicate that, although reconsolidation docs 

not result in similar stiffnesses at large strains, the small strain stiffness is fairly well 

recovered by reconsolidation (or swelling) along the original stress path, especially 

under compression loading. 

Lacasse and Berre (1987) carried out similar tests to those described here 

and those performed by Baligh et al (1987), but did not make local strain llIeasure­

ments. Their results showed that, for both normally consolidated and ()vercollsol­

idated soil, disturbed and undisturbed specimens loaded in compression attaincd 

similar strengths. Furthermore, the disturbed specimens showed lower stiffncss(·s. 

These results contradict the findings of Baligh et al (1987) and the present [esult s. 

It is difficult to give an explanation for the difference in the results, since it is not 

known how Lacasse and Berre reconsolidated their specimens after the application 

of the strain cycle. As explained in Section 6.6.2, the stress path followed during 

reconsolidation could have a significant effect on the initial deformation bchayiour. 

However, they report volumetric strains of 1 % and 0.13 % for normally consolidat(·d 

and overconsolidated specimens respectively which are similar to the correspol\dil\~ 

values of 1.8 % and 0.12 % found in the present work. Therefore dif(~rences in the 

change in water contents upon disturbance between the two sets of tests could 1101, be 

the reason for the disagreement between Lacasse and Herre's results and those from 

the present research. In contrast, the results from the extension tests carried out by 
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Lacasse and Berre, again on both normally consolidated and overconsolidated spec­

imens, agree with the present results in that the stiffness for the disturbed specimen 

was higher than that of an undisturbed specimen. 

The present normally consolidated disturbed specimens underwent a signif­

icant increase in mean effective stress during reconsolidation, which resulted in a 

reduction of water content as compared with the undisturbed specimens (Table 

6.9). This explains the higher strengths and large strain s~iffnesses of the disturbed 

specimens (Hight et al (1979) and Balasubramanian (1969)). The overconsolidated 

specimens exhibited a smaller change of water content upon disturbance and recon­

solidation (Table 6.10). This agrees with the much better agreement between the 

large strain stiffnesses of the dist urbed and undisturbed specimens (see Figure 7.11 ). 

Differences between the water contents of corresponding disturbed and undis­

turbed specimens just before shearing were comparable for specimens tested in com­

pression and those tested in extension. Therefore, water content variations cannot 

be responsible for the discrepancies in small strain stiffness seen in the extension 

tests, discussed above. 

The results show that, in general, recovery of the small strain deformation 

behaviour in both normally consolidated and overconsolidated disturbed specimens 

is similar although, as noted above, the former had undergone a larger change in 

water content as a result of the disturbance. 
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7.4 Effects of Rate of Shearing 

In Section 2.4 it was mentioned that isotropically consolidated specimens exhibit 

an increase in stiffness upon increasing the loading rate. During the application of 

the strain cycle in the 100 mm apparatus, the specimens were subjected to a much 

higher rate of shearing (axial stress rate of over 100 kPafhr) than that adopted 

during normal shearing (axial stress rate of about 2 kPafhr). The effect of this for 

normally consolidated specimens can be seen in Figures 1.12 and 7.1:3 showing the 

stress paths and stress-strain curves respectively. There is agreement here with the 

results reported by Graham et al (1988) in that a higher rate of loading produc('s 

not only a larger stiffness but also an expansion of the yield locus (sec Section 2.4). 

Corresponding data for overconsolidated specimens, Figures 7.14 and 7.15, 

show that the rate of shearing effects are not as significant especially in the case of 

stress paths. This is due to the fact that creep effects and associated changes in 

undrained pore water pressure response are not as significant in the ca.<;e of over­

consolidated clays. As illustrated in the diagram of Figure 7.16, under drained 

conditions it would take an overconsolidated specimen longer than a normally con­

solidated one to produce a given change of volume due to creep. lIenee, under 

undrained conditions it would take longer for positive pore pressures to develop as 

a result of creep (Bjerrum (1973)). 

As described in Section 6.2, an investigation of strain rate effects was con­

ducted on isotropically consolidated specimens in the 38 mm apparatus. A plot of 

normalised stiffness against the rate of shearing for different strain levels is shown 

in Figure 7.17 where some data from the 100 mm cell are also included. The nor­

malised stiffness is seen to increase with increasing rate of loading in a similar way 
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to that reported by Hight (1983). Furthermore, the results are in agreement with 

the finding of Graham et al (1983) in that the effect of loading rate on stiffness 

becomes less significant as the strain increases. On the same graph, the relationship 

between Eut!p~ and rate of shearing at 1% strain is shown. In terms of slope, this 

agrees well with the approximate relationship between strength and rate of loading, 

i.e. 10 to 20 % increase per log cycle (Graham et al (1983)). 

In Figure 7.17, there is reasonable agreement between the data from the 38 

mm and 100 mm cells. However, it should be noted that only two data points 

are available from the 100 mm cell for each strain level and therefore a definiti\"c 

conclusion concerning this set of data cannot be drawn. 

7.5 Effects of Overconsolidation 

The discussion presented in Section 2.4 indicated that for isotropically consolidated 

specimens, the normalised stiffness varies linearily with OCR on a semi-logarithmic 

scale (Wroth et al (1979)). On the other hand, anisotropically consolidated speci­

mens may be expected to exhibit a non-linear relationship (Gens (1983) and Jardine 

et al (1986)). 

Tests in the 100 mm cell involved specimens with OCRs of 1 and 4 only. As 

expected, the latter had a higher stiffness when normalised with respect to t he mean 

effective pressure just before shearing, Table 7.1. 

Tests in the 38 mm cell involved a wider range of OCRs, as explained in 

Section 6.2.2. In these tests similarly, it was found that the higher the OCR, the 

larger the normalised stiffness. The data are included in Figure 7.18. This figure 
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shows an approximately linear relationship between the normalised stiffness, Eudr~ 

and In OCR at a given strain level. As in the case of the rate of shearing effects, 

the effects of overconsolidation are seen to become smaller as strain increases. Lin-

ear regression analysis carried out on the data in Figure 7.18 revealed that in the 

associated relationshi p 

Eudp~=(Eudp~) (I+ClnOCR) 
n.C. 

(7.2) 

(Eut!p~L.c. and C take the values summarised in Tabl~ 7.4. Figure 7.18 shows 

similar patterns to those reported by Atkinson and Little (1988) testing natural 

clays and Georgiannou et al (1990) in tests on clayay sands who also reported that 

in the case of extension loading, the normalised stiffn~ss decreases with the logarithm 

of OCR in a linear fashion. 

7.6 One-dimensional versus Isotropic Behaviour 

The influence of the method of consolidation on the deformation bdlaviour, touched 

on in the preceding section, has been appreciated by many researchers. The present 

research involved compression tests on both one-dimensionally and isotropically con­

solidated specimens and therefore a direct comparison between the corresponding 

small strain deformation behaviours can be made. 

Figures 7.19 and 7.20 show the comparisons for normally consolidated and 

overconsolidated specimens respectively. There is reasonably good agreement be­

tween the stress strain curves from the normally consolidated specimens (Figure 

7.19a). The anisotropically consolidated specimen exhibited a somewhat higher 

degree of non-linearity as shown in the plot of tangent stiffnesses against the loga-
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rithm of axial strain (Figure 7.19b). Agreement in the case of the overconsolidatcd 

specimens (Figure 7.20a) appears less satisfactory. Once again, the anisotropically 

consolidated specimen shows a higher degree of non-linearity (Figure 7.20b). The 

larger discrepancy may be due to the definition of OCR which is in terms of ver­

tical stress. If, instead, the overconsolidation ratio is defined in terms of the mean 

effective pressure, it becomes equal to about 3.5 rather than 4 for the specimens in 

the 100 mm cell. By examining Figure 7.18, a difference of 0.5 in OCR accounts for 

a small difference in the normalised stiffness and theref(){"e could not be the main 

reason for the apparent discrepancy. 

In general, the trends found in this work are similar to those reported by 

Gens (1983) and Richardson (1988). 

7.7 Comparison between Model Predictions and 

Experimental Results 

In this section comparisons are made between the experimental results and con­

stitutive model predictions for behaviour during ordinary undrained shearing (slow 

monotonic loading) and behaviour during simulated tube sampling (fast cyclic load­

ing). Most of the soil parameters used for the model predictions were determined 

in the laboratory, as shown in Section 6.4.3. Those which were not available experi­

mentally were assumed equal to those given by the authors of the respective models. 

The model predictions are compared with experimental curves from all the available 

tests. 

The models used in this section are those presented by Atkinson et al (1987), 
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Pender (1978 and 1979) and AI-Tabbaa (1988) which will be referred to as Atkin­

son's model, Pender's model and AI-Tabbaa's model respectively. These models 

are described in Section 1.2. Atkinson's model will be applied for normally one­

dimensionally consolidated soils for the predictions of stress paths only during mono­

tonic loading. The latter two models are applicable to isotropically or anisotropically 

normally consolidated and overconsolidated soils. They will be used to predict bot h 

stress paths and stress strain curves for both monotonic and cyclic loading. 

7.7.1 Predictions of Undrained Behaviour During Mono­

tonic Loading 

7.7.1.1 Stress paths 

The test results from the 100 mm cell are shown alongside Atkinson's model predic­

tions on the diagram of Figure 7.21. In general terms the agreement is acceptable. 

However, the prediction for extension loading appears to be less accurate than for 

compression loading. Atkinson et al (1987) reported similar findings. Thevanayagam 

and Prapaharan (1988) thought that the poorer prediction of the extension stress 

path was due to a difference between the stress path and the state boundary sur­

face, which Atkinson et al assumed to be coincident. They also reported, contrary 

to what was suggested by Atkinson et ai, that the state boundary surface is sym­

metrical about the p' axis rather than the [(0 line. They suggested an alternat in' 

model but their predictions did not represent a major improvement. 

Pender's model predictions for both normally consolidated and overconsoli­

dated specimens are shown in Figure 7.22. As with Atkinson's model, acceptable 

agreement with the experimental data can be seen. As before, but to a lesser ex-

145 



tent, for normally consolidated soils the agreement appears to be less adequate for 

extension loading than for compression loading. The prediction of the stress paths 

for the overconsolidated specimens is not as good as for the normally consolidated 

specimens. Pender's model was also used to predict the stress paths of isotropically 

consolidated specimens in the 38 mm cell. The results are shown in Figure 7.23 

where fairly good agreement may be seen. 

Al-Tabbaa's model predictions of stress paths for anisotropically consolidated 

specimens are presented in Figure 7.24. Once again, this model predicts the stress 

paths of normally consolidated specimens loaded in compression better than the 

rest. Corresponding predictions for the stress paths of isotropically consolidated 

specimens are shown in Figure 7.25. The performance of the model is similar to 

that of Pender's model. 

7.7.1.2 Stress-strain curves and stiffnesses 

Predicted and experimental stress strain curves and tangent stiffnesses for normally 

one-dimensionally consolidated specimens loaded in compression are shown in Figure 

7.26. The tangent stiffness appears to be well predicted for strains larger than 0.01 

%. Predictions of the deformation behaviour for the normally one-dimensionally 

consolidated specimens loaded in extension are shown in Figure 7.27 along with cor­

responding experimental data. Here, the agreement does not seem to be satisfactory. 

In the case of one-dimensionally overconsolidated specimens, predictions and 

experimental data are compared in Figure 7.28 for compression loading and Figure 

7.29 for extension loading. In the former case, both models used give comparable 

predictions but underestimate the tangent stiffness, while in the latter case the 
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model predictions are not as satisfactory. Nevertheless, for strains higher than 0.01 

% the stiffness is adequately predicted. 

Predictions for isotropically normally consolidated specimens are shown in 

Figure 7.30. Corresponding predictions for the overconsolidated specimens are pre­

sented in Figures 7.31 to 7.34 for OCRs ranging between 2 and 45. For the normally 

consolidated specimens, the predictions are markedly less satisfactory than those for 

the corresponding one-dimensionally normally consolidated specimens. For overcon­

soli dated specimens, the predictions improve on average with increasing OCR. 

7.7.2 Predictions of Undrained Behaviour during Cyclic 

Loading 

As mentioned in Section 4.3.3, the strain cycle was applied to anisotropically consol­

idated specimens in the 100 mm cell by keeping the cell pressure constant, varying 

the axial stress in small increments and monitoring the axial strain. In making 

predictions it was assumed that the identical increments of deviator stress had been 

applied to the soil. For a given increment the resulting axial strain and change 

in mean effective pressure were calculated from the appropriate equations listed in 

Section 1.2. Parameters defining the state of the sample were updated before the 

calculations for the next stress increment were performed. 

Predicted and experimental results for the normally consolidated specimens 

are shown in Figures 7.35 and 7.36. The general shape of the stress path (Figure 

7.35) is fairly well predicted by both models. However, the final drop in p' is under­

predicted because of the divergence of the actual and predicted stress paths during 

the final leg of the cycle (reloading stage). Both predictions of the stress path for 
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the initial compression phase lie below the experimental stress path. The general 

shape of the stress-strain cycle (Figure 7.36) is well predicted by both models. 

Corresponding predictions of the models for the overconsolidated specimens 

are shown in Figures 7.37 and 7.38. The stress-strain cycle (Figure 7.38) appears to 

be better predicted than the stress path (Figure 7.37) and the predictions are espe­

cially good during the initial compression phase. As before, the greatest divcrgencc 

of the predicted and experimental stress paths occurs during the reloading stage. 

7.7.3 Overview of Model Performance 

7.7.3.1 Monotonic loading 

The models of Pender and AI-Tabbaa capture the general pattern of behaviour 

adequately. Stress paths are seen to converge on the critical state. For onc­

dimensionally overconsolidated specimens, the stress paths are initially symmetrical 

about the swelling line thus reflecting anisotropy of behaviour. This feature is not 

captured by either model. Atkinson's model is almost as good as those of Pen­

der and AI-Tabbaa for normally consolidated specimens but would give unrealistic 

predictions for overconsolidated soils since the behaviour would be assumed elastic 

initially. 

In the case of the stress-strain curve and stiffness, the model predictions 

are variable in accuracy, depending on the stress history and the type of test (i.e. 

compression or extension). At the 0.01 % strain level discrepancies in Eut are up 

to 100 %. At the 0.1 % strain level agreement is more satisfactory; discrepancies 

are generally less than 20 %. More test data is required in some cases to assess the 
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accuracy properly in relation to repeatability limits. 

The previous section indicated that the best predictions were obtained for 

compression tests on normally consolidated soil. Distinctly poorer predictions were 

noticed for extension tests. One reason for this may be that models have been 

developed largely on the basis of data from compression tests, where the model 

parameters may not take the same values as those under extension loading. For ex­

ample, the value of M in extension has been found to be smaller than in compression 

(Atkinson et al (1987)) whereas the models employed above use the same value of 

M for both compression and extension cases. 

7.7.3.2 Cyclic loading 

For cyclic loading both Pender's and AI-Tabbaa's models capture the general pat­

tern of behaviour remarkably well. However, major discrepancies in the stress paths 

arise in the final reloading stage of shearing. This is true for both normally consoli­

dated and overconsolidated specimens. One reason may be the fact that both types 

of specimen approach a failure stat~ towards the end of the first leg of the cycle 

and therefore major changes to the soil microfabric or the development of shear 

planes may take place, thus rendering the parameters adopted for the predictions 

unrealistic. 

The stress strain loops are predicted to have larger areas (i.e. larger deviator 

stresses). This is thought to be due to loading rate effects, discussed in Section 7.4. 

The models have been developed on the basis of data obtained from tests conducted 

at relatively low loading rates. 
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~Jp; 
Test 

0.01% 0.05% 0.1% 

ANCD1 199 45 22 
ANCD2 214 54 24 
ANCU1 180 44 23 
ANED1 528 163 98 
ANEU1 334 160 107 
AOCD1 628 202 123 
AOCU1 605 190 109 
AOED1 244 73 20 
AOEU1 161 43 15 
ANCD1* 375 42 7.7 
ANCD2: 340 54 17 
ANED1 * 298 36 5.4 
AOCD1* 1009 224 30 
AOED1 610 183 97 

~----

Note: 

* data from the first phase of the strain cycle 

Table 7.1 Summary of stiffness values from tests In 
the 100 mm cell 



Test L 

ANCD1 0.11 
ANCD2 0.15 
ANCU1 0.13 
ANED1 0.18 
ANEU1 0.32 
AOCD1 0.19 
AOCU1 0.18 
AOED1 0.10 
AOEU1 0.09 

ANCD1 • 0.02 
ANCD2 : 0.05 
ANED1 • 0.02 
AOCD1. 0.09 
AOED1 0.16 

Note: 
* data from the first phase of 
the strain cycle 

Table 7.2 Summary of linearity Index values from 
tests In the 100 mm cell 



Test U 

ANCD1 0.501 
ANCD2 0.481 
ANCU1 0.490 
ANED1 0.510 
ANEU1 0.500 
AOCD1 0.497 
AOCU1 0.512 
AOED1 0.499 
AOEU1 0.511 

Table 7.3 Summary of Poisson's ratio values 

Strain Level \ ~/p~ } C 
% n.c. 

0.01 91 103 

0.05 81 50 

0.10 75 31 
~--

Table 7.4 Summary of (E;ip~) 
".c. 

and C values 
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Chapter 8 

CONCLUSIONS AND 

RECOMMENDATIONS 

8.1 Introduction 

The work described in this thesis has been mainly concerned with the effects of sam­

pling disturbance on the small strain behaviour of one-dimensionally consolida.ted 

kaolin. The disturbance due to tube sampling was simulated in the triaxial cell 

after being computed using the method put forward by I3aligh (1985). The effects 

of two other parameters, the rate of loading and the OCR, were also examin(,d \Ising 

isotropically consolidated kaolin specimens. 

Tests concerned with the effects of sampling disturbance were conducted ill a 

specially designed and manufactured 100 mm triaxial apparatus of the Bishop and 

Wesley (1975) type. This equipment superseded an earlier version, used in previous 

studies of the small strain behaviour of clays (Yung (1987)). The rest of the tests 
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were carried out in an existing 38 mm Bishop and \\lesley triaxial apparatus after 

some modification. All the tests were performed under computer control. 

In this short chapter the main findings of the work are summarised and sug­

gestions for future work are presented. 

8.2 Conclusions Relating to Experimental Tech­

niques 

8.2.1 The 100 mm Apparatus 

Significant improvements in data quality were achieved by companson with the 

previous work of Yung (1987). This can be attributed to changes made to t.he 

bellofram area ratio of the cell, the use of a rigid top cap-load cell connection and 

improved instrumentation arrangements. 

The proximity transducers, used fur local strain measurement have bcttf'r 

precision than the ones used by Yung. Furthermore, they are placed on adjustable 

mountings, which not only allow the transducers to be kept in range throughout the 

test but also make it possible to bring the specimens to failure without imposing any 

restraint and without causing any damage to the instrumentation. The collapsible 

targets for radial strain used by Yung are no longer necessary. 

The local radial strain can now be measured along two perpendicular diam­

eters rather than a single diameter. Thus Poisson's ratio can be evaluated more 

confidently. 
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A comparison of the results of the three methods of axial strain measurement 

employed in the 100 mm cell revealed that strains evaluated locally and between 

the end caps were in good agreement, indicating that the bedding errors at the end 

caps were negligible. This was possible in the present work because the specimens 

were initially homogeneous, with relatively flat surfaces, and were subjected to a 

high consolidation pressure prior to shearing. The external strain lllcasurcllwnt 

suffered from larger random and systematic errors. However, in compression tests, 

better agreement between external and local strains was obtaincd after correcting 

the external strain for system compliance. The tests indicated that under favourable 

conditions, strains could be measured externally with sufficient accuracy, but. t.his 

would require more accurate transducers than presently used. 

8.2.2 The 38 mm Apparatus 

The axial strain measurement in this cell was improved by introducing end cap 

strain measurement similar to that adopted in the 100 mm cell. However, the 

data obtained at small strains were of lower quality than those from the larger cell 

since the transducers used displayed larger random errors during calibration. More 

accurate transducers would significantly improve the quality of thc IllcaslII'ed stra.ins. 

8.2.3 Computer Programs 

The provision of computer control has proved to be virtually essential for the killd of 

testing described in this thesis. The computer programs developed provided great(!r 

fiexibilty of control than those used by Yung (1987). They allowed considerable and 

speedy interaction with the operator through the system of menus and the visual dis-
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play of numeric and graphical output during the test. The desired stress paths were 

followed with sufficient accuracy, but further improvements in performance could 

be achieved by controlling more closely the stresses applied during one-dimensional 

consolidation and swelling. This would eliminate the unwanted oscillations in the 

stress paths from these stages. 

8.2.4 Data Processing 

In the present work advantage was taken of advances made in computerised data 

processing via commercially ayailable software. Using the Lotus 123 spreadsheet 

package, macro programs were deyeloped for polynomial curve fitting and regression 

analysis. This permitted an automated method of evaluating tangent stiffnesses from 

the stress-strain data to be de\'eloped, so that the evaluation became considerably 

faster and more accurate. Thus. it s-eems likely that data processing of this kind via 

computer spreadsheets will become standard practice. However, it should be noted 

that, the sensitivity of the interpretation to the curve fitting technique needs to be 

checked. 

An analysis of errors present in data from the 100 mm cell showed that the 

percentage error in stiffness decreases rapidly with strain level but can be larger than 

50 % at strains lower than 0.01 o/c. These errors were found to stem mainly from 

uncertainties in the axial strain measurement, with a lesser contribution from the 

errors in the deviator stress. A similar analysis revealed that at such small strains 

the percentage error in Poisson's ratio can be as high as 100 %. Once again, this 

error decreases rapidly with increasing strain. At the 0.1 % strain level the errors 

in stiffness and Poisson's ratio are i% and 10% respectively. 
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8.3 Conclusions Relating to Test Results 

8.3.1 Value of I{o during Consolidation and Swelling 

One-dimensional consolidation test results gave an average ](0 value of 0.7 which 

compares well with other reported experimental values for kaolin. Semi-empirical 

relationships proposed in the literature were found to underestimate ](0. One­

dimensional swelling test results indicated that Kou varie~ non-linearily with either 

OCR or In (OCR). Comparison with proposed relationships for evaluating ](ou pro­

duced reasonable agreement at low OCRs (i.e. < 2); discrepancies between the 

experimental and proposed relationships increased at larger OCRs. 

8.3.2 Critical State Parameters 

The critical state parameters evaluated from the current tests are in good agreement 

with those reported by other researchers. Where specimens approached failure they 

were found to be in states close to the estimated critical state line. 

8.3.3 Sampling Disturbance 

The sampling disturbance was achie\·ed by subjecting the triaxial specimens to a 

quick strain cycle of amplitude 1 % under undrained conditions. Normally con­

solidated specimens were seen to undergo a significant drop (40 to 60 %) in the 

mean effective pressure while overconsolidated specimens (OCR=4) exhibited much 

smaller reductions « 10 %). By inspection of the stress paths in q, p' space, both 

normally consolidated and overconsolidated specimens appeared to approach failure 
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during the strain cycle. However, while the former exhibited complete flattening 

of the stress-strain curve at strains approaching 1 %, the latter showed persistent 

strain hardening. Upon re-consolidation, the average drop in the water contents of 

the normally consolidated specimens (1.5 %) was significantly higher than that of 

the overconsolidated specimens (0.12 %). 

Generally, after re-consolidation to the initial stress conditions, the disturbed 

specimens exhibited small strain stiffnesses similar to th,ose of the corresponding 

undisturbed specimens. The disturbed specimens loaded in extension showed slightly 

larger small strain stiffnesses than the undisturbed ones, but it is difficult to assess 

whether this is genuine or due to inadequate repeatability of test technique. In 

agreement with the results published by Baligh et al (1987), the disturbed speci­

mens exhibited larger stiffnesses than undisturbed specimens at intermediate and 

large strains. 

8.3.4 Rate of Shearing and Stress History Effects 

Tests concerned with the effects of rate of shearing indicated that the small strain 

stiffness increased linearily with the logarithm of loading rate at a given strain level. 

The experimental relationship between stiffness and loading rate at large strain levc1s 

was found to be in agreement with those reported by other researchers. The effects 

of loading rate were found to be most significant in the case of normally consolidated 

specimens. 

Tests carried out on specimens with different overconsolidation ratios sup­

ported the linear relationship between normalised stiffness at a given strain level 

and In (OCR) for isotropically consolidated specimens suggested by Wroth et al 
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(1979). It must be appreciated that for anisotropically consolidated specimens the 

relationship has been reported to be non-linear. 

Reasonably good agreement was found between normalised small strain stiff­

nesses of isotropically and one-dimensionally normally consolidated specimens. A 

less satisfactory agreement was noticed in the case of overconsolidated specimens. In 

both cases, however, the one-dimensionally consolidated specimens exhibited larger 

degrees of non-linearity. 

8.3.5 Model Predictions 

The three theoretical models, all based on critical state soil mechanics, were found 

to predict the general patterns of stress paths followed in the tests adequately. In 

the case of stress-strain curves and stiffnesses at small strains, discrepancies between 

predicted and experimental behaviour patterns were encountered; these were more 

serious for extension loading. 

The general pattern of behaviour of specimens subjected to sampling distur­

bance (cyclic loading), in terms of both stress paths and stress-strain curves, was 

well captured by the models, although larger discrepancies started to appear a." 

the strain cycle entered its final phase. Smaller predicted areas of the stress-strain 

loops are thought to result from the fact that the models do not account for rate of 

shearing effects. 
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8.4 Recommendations for Future Research 

The described work concerned with sampling disturbance effects in clays was car­

ried out using the latest developments in triaxial testing and computer control tech­

niques. However, all the tests were carried out on kaolin and only a limited number 

of tests could be conduded in the available time. It is suggested, therefore, that a 

more comprehensive series of tests be carried out, not only on kaolin, but also on 

natural clays which also take into account the effects of ageing discussed lately by 

Burland (1990). This would establish the generality or otherwise of the behaviour 

patterns observed for kaolin. 

The sampling disturbance effects were studied for only one case where the 

amplitude of the strain cycle was equal to 1 %. Consequently, a fuller understanding 

of the effect of tube sampling could be achieved by examining the behaviour of soil 

specimens subjected to different strain cycles corresponding to different sampler 

geometries. Progress might also be made through the use of theoretical models. 

The work described in this thesis indicates that the models predict reasonably well 

the general patterns of behaviour during the strain cycle. 

The strain cycle simulates the minimum mechanical disturbance to a lube 

sample and does not reflect other disturbances due to friction along the wall of the 

sampler, storage or mishandling. Therefore, an experimental study which took illto 

account such effects would provide a more representative simulation of sampling 

disturbance. 

Tests carried out to examine the effects of OCR on small strain stiffness 

were mainly limited to isotropically consolidated specimens in the 38 mm cell which 

provides data of lower quality than the 100 mm cell. It is suggested that more 
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tests be performed in the 100 mm cell to quantify the relationship between nor­

malised stiffness and OCR. It is recommended that tests involving different pre­

consolidation pressures and both isotropically and one-dimensionally consolidated 

specimens should be carried out. 

To quantify the effects of ageing on the small strain behaviour of clays, tests 

similar to those described are required on specimens with different rest periods prior 

to shearing. The results of such a study could have an important bearing on triaxial 

testing practice. 
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Appendix A 

Steel Ring Response to Changes 

in Cell Pressure 

Proximity transducers are mounted on the stainless steel ring as shown in Figure 

3.15. The thickness of this ring had to be large enough so that upon any change 

in the cell pressure, the resulting strains in it are insignificant compared to those 

measured on the soil specimens. The two perspex parts of the cell have an inside 

diameter of 330 mm. The change in tangential stress over a cross section is given 

by: 

(A. 1 ) 

where ~0'3, r, and tr are the change in cell pressure, the inside radius of the steel 

ring (= 0.145m) and the thickness of the ring respectively. The change in tangential 

strain of the steel ring due to the change in cell pressure may be written as 

(A.2) 
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where E is the Young's modulus of the stainless steel (= 2.1 X 108
) kPa. Since radial 

and tangential strains are equal, the change in the inside radius of the steel ring is : 

(A.3) 

For a 100 mm specimen, the additional strain due to the change in the steel ring 

diameter is given by 

(A.4) 

For a cell pressure change of 800 kPa, the change in spe~imen radial strain due to 

stresses on a steel ring with tr = 40 mm is about 2 x 10-4 %. This is very small 

compared to other errors such those resulting from the inaccuracy of the proximity 

transducers. 
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