
IMPULSIVE LOADING ON REINFORCED CONCRETE SLABS

Thesis submitted to
The University of Sheffield

for the degree of

Doctor of Philosophy

in the

Faculty of Engineering
Department of Civil and Structural Engineering

by

N. Duranovic

February 1994



PAGE
NUMBERING

AS
ORIGINAL



SUMMARY

A number of reinforced concrete slabs have been exposed to blast and impact loading in order to

access modes of slab behaviour under these extreme dynamic loadings.

Two sizes of specimens were used; small scale slabs modelled the large slabs at 1: 2.5 scale.

Impact loads were produced by a free falling hammer impacting coaxially onto a cylindrical bar

of steel placed at rest in the centre of the slab. The steel bar was instrumented with electrical

strain gauges which recorded the stress pulses produced by the impact.

Blast loads were produced using explosive charges made of Plastic Explosive PE4. In most cases

the charge used was hemispherical in shape and was placed centrally above the slab at close range

standoffs, i.e. up to 10 times the radius of the charge.

Additional blast tests were conducted in order to monitor the transient and spatial pressure

distribution across the slab by using the pressure gauges placed in replica steel slab.

Transient deflections of the slabs under both types of load were obtained using long stroke

displacement transducers, whilst transient strains in the steel reinforcement of the slabs were

obtained using electrical resistance strain gauges bonded to the steel bars at mid span point.

A rotating prism high speed camera was used to film the damage on some of the small scale

specimens at rates of up to 10,000 pictures per second.

The Hopkinson pressure bar tests were used to obtain the dynamic characteristics of the concretes

used at high rates of loading. Differeent concrete mixes were used for the 1:1 and 1:2.5 scale

slabs.

An analytical function of the spatial and transient blast pressure distribution based on the

detonation pressure of PE4 was established. This is in close agreement to experimentally

measured results.

The nature of the local and overall failure are discussed, and the time sequence of the slab failure

is established for the case of explosive loading.



The crack pattern that occurs soon after the explosion in area of local failure has been established

from the high speed films whilst the overall deflected shape was obtained from the displacement

vs time records.

After test scab sizes and slab perforations were used to establish a relation between the slab

thickness, amount of explosive and the slab damage in respect to scabbing and perforation.

The displacement records and the shape of after test damage provided the basis for comments on

"gravity neglected - the ultimate strength" modelling law that was employed in this research.
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CHAPTER!

INTRODUCTION

1.0 General introduction

This thesis presents the findings of an experimental study into the behaviour of reinforced

concrete slabs under impact and blast loading. The work, initially funded for 18 months but later

extended for another 24 months. was commissioned by the Defence Research Agency,

Farnborough. It provided the Special Services Division of the Mott MacDonald Group,

Consulting Engineers. Croydon. with the necessary test results and explanations of R.C. slab

behaviour in order to contribute in developing computer software that deals with the blast and

impact loading of RC. slabs. The study presented here was conducted from February 1990 to

December 1993.



The experimental work was carried out at the laboratories for Civil Engineering

Dynamics, University of Sheffield (CEDUS), Sheffield University Research Laboratories, Harpur

Hill, Buxton.

The impact loading was produced by a free falling hammer whilst plastic explosive PE4

charges of up to 1.3 kg were used to explosively load the specimens.

The tests were performed on specimens of two sizes; the small scale slabs modelled the

large scale slabs at 1: 2.5 scale.

1.1 Dynamic loading

In addition to long term static loads civil engineering structures might also be exposed to

dynamic loads. They can be of different nature and origin but most of them could fall in one of

these three categories.

1. Earthquake loading

2. Impact loading

3. Impulse loading

While in the case of static loading time relation of the structural response is usually not of

major importance, in the case of dynamic loads it becomes the factor that most influences the

structural behaviour. The three above mentioned types of loading are usually best identifiable by

the shapes of their loading functions, Fig. 1.1, Fig. 1.2 and Fig. 1.3.

-~OD~----~--~----~----~----~----~--~----~----~--~~--_'----
10 20 sec

Fi2.1.1 Accelero2ram of the Montene2ro earthguake. 1979. (Petrovic. 1985)
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Earthquake loading usually lasts from a few seconds to a few minutes and structural

response can not be studied through the response of a single structural element but as a response

of the structure as a whole.

Impact loading result from the collision of two solid bodies when at least one of them has

an initial velocity. The loading functions presented in Fig. 1.2 are the result of the impact against

the steel and aluminium barriers at speeds of up to 90kmlhour.

Impulse loading are distinguished from impact loads when the stationary object is not

struck by a solid but by an overpressure. An overpressure acts on a structure in the form of

dynamic pressure as given in Fig. 1.3.

Both impact and impulse loading may cause fast initial deformation of the impacted body

which may then transfer displacement by overall response of the structure. Studies of these two
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phenomena are not only into the behaviour of the structure as a whole but very often concentrate

on the response of a particular element of the structure that is directly exposed to the loading.

Rapidly applied loads produce high strain rates in the structural member. Some typical

strain rates for various types of dynamic loading are shown in Table 1.1.

TYPE OF LOADING STRAIN RATE
(sec! )

Traffic caused loads 10-6 to 10-4

Gas explosions 5 x 10-5 to 5 x 10-4

Earthquake 5 x 10-3 to 5 x 10-1

Pile driving 10-2 to 100

Aeroplane crash 5 x 10-2 to 2 x 10°

Hard impact 100 to 5 x 101

Hypervelocityimpact 102 to 106

Table 1.1 Type ofloading - strain rate relation

1.2 Impact and impulse loading in the field of Civil
Engineering

Short duration intensive loads that cause a dynamic response of structures are very rapidly

increasing in their importance. The most frequent and best known examples of these loads in the

civil engineering field can be divided into the following categories:

(a) Loads caused by falling objects.

(b) Loads caused by impact of moving vehicles.

(c) Loads caused by waves in water.

(d) Concrete pile driving.

(e) Crashing aircraft.

(f) Explosions from chemical or military explosives.

(g) Gas explosions.

(h) Extreme wind loading.

(i) Demolition (Plate 1.1).
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Plate 1.1 Demolition by implosion (New Ciyil Engineer, 22.2. 1990)

The design of structures against all of these loads are predominantly determined by:

(a) The probability of the dynamic load occurrence and the costs of resistant design.

(b) The characteristics of the dynamic load.

(c) The level of damage that the whole structure or individual elements can suffer.

(d) The response of the structure and its constitutive materials under high rates of

loading.

Loading functions for both impact and impulse loading are characterised by a very short

duration which may be less than the natural period of the structure in which case the structure

responds to the impulse. When the load is long relative to the natural period then the structure

responds to the peak force that usually occurs at the beginning of the loading pulse.

Typical pressure-time history produced by an explosion is shown in Fig. 1.4.

Fig. 1.4 Typical pressure-time relation
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Under impulse loads the structure is usually loaded by air type pressure, but impact load is

produced by a solid body whose mass, hardness and velocity greatly influences the response of the

impacted element. The term "soft impact" is widely used when the impactor's stiffness is

significantly lower than that of the structure and consequently a great amount of energy gets

absorbed in deforming the impactor, Fig. l.5.
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Fig. 1.5 Typical.oad time history
produced by a soft impact

Fig. 1.6 Typical load time history
produced by a hard impact

Hard impact, Fig. 1.6, is produced when the stiffness of the impactor is relatively so great

that it does not deform during the impact and consequently most of the impact energy has to be

absorbed by the structure.

A very important aspect in the case of loading that produce high rate straining, is the

change of characteristics of structural materials under these strain rates. In this research the

straining rate of the concrete and steel was up to 106 times higher than in static case loading.

1.3 R.C. slabs under transient loading

The response of RC slabs to a locally applied dynamic load has to be divided into the

local response in the region just under and very close to the area of load application, and to the

overall response of the whole slab.
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The difference in the overall response of the structure and the local response, is that the

overall deformation is associated with the time dependence of flexural response to the natural

period of oscillation but the local, shear-punching response is independent of this parameter.

Inertial loading of the slab, becomes very important in cases of very fast loading and

greatly influences the overall response of the slab. The contribution of inertia to the local

response is in the control of crack velocity and there is hardly any flexural deformation in this

period.

Parameters and phenomena that are most often used to describe R.C. slab response

mechanisms to these fast, centrally applied loads are punching, cratering, spalling, shear response,

flexural response, shear plug formation, crack patterns and deflection profile of the slab.

Consequently due care has to be taken to choose parameters that would describe and explain not

only its local but also overall response.

1.4 Present investigation

The specific purpose of the experiments described in this report was to determine the

shear and flexural modes of behaviour in the response of reinforced concrete 2-way spanning slabs

to impact from a free falling drop hammer or, more importantly, from an explosive blast from the

detonation of a charge at close range. Materials tests at maximum rates of strain of 103 strain/sec,

were carried out using a split Hopkinson or Kolsky bar, to obtain stress-strain curves for the

concrete used in the slabs.

Scale effects were obtained by carrying out the experiments on two sizes of slabs. The

larger slabs were IIOmm deep x 2000mm square. Using a scale factor of 1:2.5 produced the

model dimensions of 44mm deep x 800mm square slabs. The reinforcement and the concrete

were scaled as much as possible, by the same factor. Three concrete cubes and three cylinders to

give compressive and tensile splitting strength, were cast at the same time as each specimen, using

IOOmm cubes and cylinders of 100mm diameter for the full size specimens and 50mm size for the

model scale specimens. These were usually tested at the same age as the slab specimen.

In each impact test the force-time relationship to which the specimen was subjected, was

obtained by making the hammer impact coaxially onto a cylindrical bar of steel placed at rest in
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the centre of the specimen. The steel bar was instrumented with electrical resistance strain gauges

which recorded the stress pulses produced by the impact and is referred to as a pressure bar. Blast

pressure gauges were used to measure the pressure-time curves at different distances. These

results can be used in an analysis to estimate how pressure contours varied over the surface of the

specimen. The details of the drop hammers, the explosive charges, the support conditions and the

instrumentation used at each scale, are given in Chapter 3.

Transient deflections of the beam and slab specimens under the dynamic loads, were

obtained using long stroke, rectilinear potentiometric displacement transducers (RPDT).

Transient strains in the steel reinforcement of the beam and slab specimens, were obtained

using electrical resistance strain gauges bonded to the tensile bars at mid span. These gauges had

a sensitivity limited by a gauge factor given by the manufacturer, and the bonding technique and

instrumentation to record their voltage-time output are also described in Chapter 3.

Attempts have also been made to photograph the transient deformation and crack

development of the reinforced concrete slabs. A rotating prism, high speed cine camera was used

at rates up to 10,000 p.p.s.

In both the impulse and impact tests, nineteen slabs were tested at 1:2.5 scale and five

slabs at full I: I scale. Five I :2.5 scale slabs were tested statically.
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CHAPTER2

LITERA TURE SURVEY

2.1 Impact and blast loading of R.C. slabs

It was observed a long time ago that material characteristics and the overall response of

structures are not the same under different loading rates. With advances in technology and special

measuring equipment, research in the fields of rapidly applied load was intensified. Now there is

a lot of available literature, publications and papers that deal with these problems. To obtain high

rates of loading different rigs for applying load were used. Generally, they were: static-dynamic

rig (Watstein,1953), drop-hammer (Hughes and Gregory,1972, Hughes and Watson,1978,

Suaris and Shah,1981 and 1983, Khawandi,1991), Charpy rig (Gopalaratnam et aI, 1984, John

and Shah,1986), air gun (Cernica and Chargnon,1963, Kaminskiy,1993), Hopkinson pressure

bar (Zech and Witman,1980, Zielinski and Reinhardt,1982 and 1984, Tyas,1993), and finally



direct explosive tests (Colton and Herman,1975, Watson and Sanderson,1984, Wright,1991).

Depending on testing arrangement used, different rates of loading were produced and

consequently different material characteristics and slab behaviour parameters were obtained. In

the following pages an attempt is made to summarise some of the available data which can be

directly related to the work carried out in this research.

Park, (1964), developed a theory for determination of the static ultimate strength of

uniformly loaded rectangular R.C. slabs which have either all or three edges restrained against

lateral movement, by using rigid-plastic strip approximation. Compressive membrane action in

the slab, which increases ultimate moments at the yield lines was introduced and the load

deflection curve was as shown in Fig. 2.1.
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CENTRAL DEFLE~ioN

Fie.2.1 Load-deflection curve for slabs with edees
restrained aeainst lateral movement (park. 1964)

Where: Point B - maximum load capacity

Region B - C- for increasing deflection, the load-capacity decreases because of the

decrease in bending resistance and compressive membrane stresses

Point C - point where membrane forces change from compressive to tensile

Region C - D - load is carried mostly by reinforcement in tension because the cracks have

already extended throughout the depth of the slab.

For slabs with all edges fully fixed, compressive membrane action was taken into account for both

directions.

Nilsson and Sahlin, (1982), impact tested two reinforced concrete slabs of 3000mm

diameter, and 150mm thick. The impact velocity of the 250mm diameter and 650mm long
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hammer was about 4.8m1sec. Maximum reinforcement strain recorded was 0.15%. Typical front

side crack pattern is shown in Fig. 2.2.

o 200 mm
I - '- .__....__ ......

Fig. 2.2 Front side crack pattern (Nilsson and Sahlin, 1980)

Watson and Sanderson, (I 984), tested ninety concrete slabs (300mm x 300mm x 50mm)

using up to 109 of explosive. A method of locating subcrater fractures by ultrasonic pulse

transmission has been employed. Fluorescent oil was used to mark the cracks. Most of the cracks

observed were bond cracks around the aggregate particles. The way in which slabs were tested is

shown in Fig.2.3.

150

oo
M

L2A1 Detonator

L 300 .1
rront elevation End elevation

All dlrTlensions in mm.

Fig.2.3 Explosive tests on concrete slabs (Watson and Sanderson, 1984)
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Maximum measured concentration of the crack lengths inside the specimen was

3.5cmlcm2. This suggested that there was limiting crack density of about 4cm/cm2 above which

the concrete no longer could remain intact.

Watson and Al-Azawi, (1984), used a 33.7Kg drop-hammer to test two-way simply

supported R.C. slabs (525mm x 465mm x 42mm or 54mm). Typical failure modes are shown in

Fig.2.4.

Sc.bblng Scabbing
o ' 550 zone

PUNCHING SHEAR FAILURE
(STATIC TEST)

PUNCHING SHEAR FAILURE AND CONCRETE SCABING
(IMPACT TEST)

Fie. 2.4 Slab failure modes (Watson and AI-Azawi. 1984)

All tested slabs suffered punching shear failure and showed the same crack pattern. The slabs

static load capacity was not reduced even after they had been impacted by a blow of energy equal

to the static energy absorption capacity of the slab. They failed only after being impacted by 88%

greater energy than in static case.

Abdel-Rohman and Sawan, (1985), proposed three different analytical approaches to

estimate the impact effects on R.C. slabs.

(a) The Impact Factor Method employed the principle of conservation of energy with the

assumptions that the slab had one degree of freedom, that the striker was rigid, that two bodies

were not separated after the impact, that the slab remained elastic and that type of deformation and

behaviour of slab were the same as for the static loading. Then:

v2 1K - 1+ 1+_£_ -----:::--
d - ~ Qs»: l+K .__£_

m Q

where: Kd - impact factor

8st - maximum deflection due to static load Q (m)
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Km - mass reduction factor

Qo - slab weight (kg)

Vo - velocity of the striking body (m/sec)

g - acceleration of gravity (m/sec-)

Dynamic values for maximum deflection, stress and force were then calculated by multiplying the

static values obtained by applying the same weight statically, by the impact factor Kd•

(b) The Method of Equivalent Mass assumed that the slab was a one degree of freedom

system, that impact would happen in the centre of the slab and that damping was negligible.

The equation of motion for the slab:

M. ·y+Ke 'y= P(t)

where: y - slab mid span deflection (m)

Me - equivalent mass (kg)

K, - equivalent stiffness (~)

pet) - dynamic force is the only unknown which can be obtained by combining Petry

formula for penetration depth:

X=K·A·V' ·R and Newton's law: P(t)=m·X

where: X - depth of penetration into the slab (m)

K - material property constant (for concrete 2.97 x 10-2 m3/kN)

A - ratio of weight of impact and area of contact surface (kg/m2)

V' - striker velocity factor, V' = log (1 + (initial velocity at impact)21l9,973 m2/sec2)

R - penetration ratio, R= Qo ,
21C"'X

r - radius of a ball of equivalent weight Qo

m - impactor mass (kg)

(c) The Continuous Mass Method used Timoshenko's equation of motion for an elastic slab

under a concentrated load:

where: p - mass density of slab (kg/m.')
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H - slab thickness (m)

N - flexural rigidity (Nm2)

P - impact load (N)

a.b- dimensions of the slab (m)

o - Dirac delta function

Impact load P was determined as in method (b) and the dynamic response of the simply

supported slab was given by implementing boundary conditions for the slab and initial loading

conditions .

Henter, Limberger and Brandes, (1985), observed three typical failure modes on R.C.

slabs exposed to impact loads:

1. "Primary punching failure" - real punching failure with only small bending

deformations,

2. "Secondary punching failure" - greater plastic bending deformations and local

bending cracks which induce the shear failure.

3. "Overall flexural failure" - failure occurs because the ultimate rotational capacity

of the yield lines is exceeded.

Ross and Krawinkler, (1985), investigated direct shear failure in fixed supports slabs

caused by dynamic loading. Assumptions included in the analysis were:

1. Bending or shear failure will take place at the support of the slab.

2. Shear failure will occur if shear failure level is reached before the bending

moment reaches the bending strength.

3. Rate effects are included by increasing the static strength values for shear and

bending.

4. Wave propagation through the slab thickness is neglected.

5. A one-way slab can be treated as a beam.

6. Elastic behaviour describes structural response.

7. Dynamic direct shear failure behaves as static one.

The Timoshenko beam model was used as a base for the analytical theory. Equations for bending

moment M(o,t) and shear force at the support V(o,t) when shear failure takes place were

given as:
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r '(0) - Ii> (0) I

V(o,t)=K'·A· G·~" w'l''' JG,,(f).sinw,,(t-f)dt
" 0

where: E - modulus of elasticity (N/mm2)

G - shear modulus (N/mm2)

I - moment of inertia (mm")

A - cross-sectional area (mm-)

K' - shear deformation coefficient of the beam

wIt - natural frequency corresponding to the n-th mode of vibration (sec+)

qJn - beam n-th normal mode due to bending rotation (mm)

f - integration variable

Krauth ammer, Bazeos and Holmquist, (1986), used SDOF analysis to determine the

behaviour of reinforced concrete box-type structures. A proposed model for the dynamic shear

resistance function of slabs vs shear slip is presented in Fig. 2.5.
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Fi&.2,5 Empirical Model for Shear Stress-Shear Slip Relationship
lKrauthammer et ai, 1986)
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where: 't'e = 165 + 0.157 fe'

't'e - elastic shear strength (N/mm2)

't'm - maximum shear strength (N/mm2)

't'L - limiting shear capacity (N/mm2)

Pvt = area of plane that crosses total reinforcement area
total reinforcement area

f; -concrete uniaxial strength (N/mm2)

fy - the yield strength of reinforcement (N/mm2)

Asb - area of bottom reinforcement (mm-)

f; -tensile strength of bottom reinforcement (N/mm2)

Ae - cross-sectional area (mrn-)

Sawan and Abdel-Rohman, (1986). tested reinforced concrete slabs (dimensions 750 x

750 x 50mm, with six different steel percentages; 0.45% to 1.47%) using 6.9kg heavy steel ball

released to fall freely from heights of up to 120mm. The midspan deflection measurements were

taken. Total dynamic deflection decreased with the increase of the steel ratio but proportionately

less for steel ratios of more than 1.07%.

Eibl and Schluter, (1987), presented an empirical method which included a parametric

study of the slab characteristics like thickness, span, percentage of bending and shear

reinforcement, shape and distribution of the dynamic load and support condition. Assumptions

that cracks are allowed to open and close and that the shear modulus is reduced depending on the

crack width were incorporated in the analysis that was based on a finite element approach. It was

concluded that all parameters mentioned above highly influence punching behaviour of the slab.

Tancreto, (1991), applied close-in blast load on 12 reinforced concrete slabs (2286mm x

2286mm x 114mm to 254mm) with reinforcement percentages from 0.15% to 2.54%. He used a

27.2kg spherical charge. The spalling was reduced by reducing the spacing of reinforcement.
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Because of the many different variables as percentage of reinforcement, spacing of the

reinforcement, span to depth ratio and standoff, no further conclusions seem reliable.

Yamaguchi and Fujimoto, (1991), impact tested reinforced concrete slabs (300mm

diameter and 40mm thick) with the 30Kg hammer released from 200mm and 400mm heights.

Displacements were obtained from the acceleration data measured during the test. The authors

observed a dynamic increase in the modulus of elasticity of concrete at failure. On the other hand

the elastic modulus of reinforcement did not show any increase. The dynamic failure crack

pattern observed in the tests is shown in Fig. 2.6.

/---------~.,

Scc t iona l plane Irnpa c t face Rear face

Fie. 2.6 Crackine patterns (experiment) Q'amaeuchi and Fujimoto, 1991)

2.2 Material properties under high rates of strain

Watstein, (1953), tested concrete cylinders in a drop-hammer machine. Maximum strain

rate was 10 strain/sec while the duration of impact was O.3msec. Average ratio of dynamic to

static compressive strength was 1.85, modulus of elasticity increased about 33% and resistance to

impact, measured by the specimen's ability to absorb energy, 2.2 times. The ultimate strain was

also significantly higher for higher load rates.

Green, (1964), impactly tested concrete cubes (I02mm) to see if the mix proportions, type

of coarse aggregate, sand grading, type of cement, method of curing and age of the specimen

influenced impact strength. The absorbed energy was smaller for water-stored than for air-stored

specimens. The impact strength of the specimen increased compared to the static compressive

strength with the same rate of increase for each type of aggregate and condition of storage. For
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the same static compressive strength the impact strength was greater for the concretes made with

aggregate of greater angularity and surface roughness.

Atchley and Howard, (1967), impact tested 152mm diameter x 305mm long concrete

cylinders of three different compressive strengths with free hammer drops of up to 305mm to

define the energy absorption and strength capacity of the concrete. Some of the slow dynamic

tests were performed by deforming the specimens at a speed of 165mmlmin or 0.009 strain/sec.

The authors found that the rate of loading influences the amount of energy absorbed at failure and

the failure strength of material. The ratio of energy absorbed in dynamic and static tests was

proved to be dependent on the strain rate but not on the static strength of concrete and it was

found to be in the range of 1.26 - 1.72. The strain rates were up to 4.48 strain/sec. By increasing

the stress and strain rate the dynamic strength approached a constant value.

Hughes and Gregory, (1972), carried out drop-hammer tests on concrete cubes and

prisms to obtain load-time and strain-time curves. The failure patterns seemed similar to those in

static tests. The ratio of impact to static strength varied around 1.90. Impact compressive strength

was not affected by the aggregate size but it was increased by the larger proportion of fine

aggregate in the concrete mix.

Hughes and Watson, (1978), impact tested different kinds of concrete cubes to obtain

compressive strength, ultimate strain, energy absorption and deformation modulus. The

maximum measured drop velocity of the I06Kg hammer was 5.8m1sec. The authors observed that

changes in cement/water relation affect impact strength in the same way they affect the static

strength. The amount of cement content did not cause any changes but limestone concrete showed

better impact resistance than gravel concrete. The largest increase in the compressive strength of

concrete was 35% of that obtained in the static test. The impact ultimate strain had decreased with

higher rates of strain. By increasing the age of concrete, the impact compressive strength

increased but the ultimate strain decreased. A stress wave analysis was used to interpret the

measurements made during the tests.

Zech and Wittman, (1980), carried out experimental investigations into the behaviour of

mortar bars exposed to impact load. The crack velocity in mortar has been estimated as 400mlsec.

The highest rate of stressing used in these tests was 5 x 104 N/mm2/sec. The coefficient of
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variability of strength of mortar remained unchanged as the rate of loading increased while the

absolute scatter of strength increased with the increase of rate of loading.

Zielinski, Reinhardt and Kormeling, (1981), used the Split Hopkinson Bar technique to

test concrete specimens by releasing a freely falling weight. Impact strengths were 1.33 to 2.34

times greater than the static ones but they differed for different mixes. By decreasing the

maximum size of the aggregate, impact strength increased which may be partly explained by the

lower bond strength of larger aggregate particles. The higher cement content gave higher strength

but cement type and quality and way of curing did not influence impact strength. Concrete loaded

in the direction of the casting showed lower impact resistance than one tested normally to that

direction.

The authors consider crack propagation as the main reason for different characteristics of

material under different rates of loading. When the load slowly increases the fracture process

starts from existing micro and macrocracks which have time to propagate and develop along the

paths of least energy requirements but under dynamic tensile loading cracks are forced to develop

along a shorter path of higher resistance which results in higher energy capacity and hence

strength of material.

Tensile impact strength of concrete was considerably reduced in the case of repeated

impacts.

Suar;s and Shah, (1981), performed impact flexural tests on concrete beams of different

sizes to validate their analytical approach for calculation of inertial effects in dynamic testing.

Impact velocities were 1 to 3m/sec. The modulus of rupture had up to four times higher value in

dynamic than in static tests. For soft impacts applied through a rubber pad, the dynamic

compressive strength was 1.7 times greater than the static one. The authors considered that a soft

pad between the specimen and the striker eliminated inertial effects in dynamic tests and their

measurements show that in such cases applied load was equal to the static bending load carried by

the specimen.

Suari« and Shah, (1983), impact tested concrete and fibre-reinforced concrete prisms to

study concrete properties under a wide range of strain rates. The strain in the concrete, the impact

load and the deflection of the specimen were measured. The impact velocity was 1m/sec. It was

observed that the higher the value of the static flexural strength the lower is the relative increase in
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the flexural strength of the specimen under high strain rates. The tensile response was more strain

rate sensitive than the compressive one. Dryer specimens showed lower strain rate sensitivity.

The load-deflection curves become more linear with the increase of the strain rate. Since the

nonlinearity in concrete behaviour is the produce of microcracking, the conclusion was that the

amount of microcracking decreases with the increase in strain rate.

The energy absorption measured as the area under the load deflection curve, substantially

increased with the strain rate.

Zielinski, (1984), presented a theoretical model to highlight the problem of tensile

fracture of concrete at high rates of loading. The microcracks, which exists because of the

heterogeneous nature of concrete, are pointed out as a potential initiator of fracture. Since micro-

cracks mostly exist at the interfaces of aggregate particles and mortar matrix, they will, under slow

increased loading, grow along these interfaces without going through the aggregate. But for

dynamic loading, the time in which that propagation should happen is extremely short, and cracks

will be forced to propagate along the shortest possible paths even of much higher resistance. The

criterion which determines where the fracture will occur is the position of the aggregate particles

with respect to crack planes and the rate of loading which influences the crack velocity.

Fracture energy is obtained as a sum of energies absorbed by fracture in the matrix and

aggregate phases and in the interfacial bond phase of concrete. For dynamic loading the energy

absorbed by fracture of the aggregates gains in importance, because of shorter "energy paths" and

consequently a greater amount of broken aggregate particles.

Comparison of the theoretical with the experimental results proved a high degree of

applicability of the theory.

Gopalaratnam et ai, (1984), tested concrete specimens (229mm x 25mm x 76mm) in a

modified Charpy test. Impact velocities varied in the range of O.7 - 2.4m/sec. In some of the tests

a damping rubber pad was placed between the striker and the specimen in order to reduce inertial

effects. Maximum strain rates were 0.3 strain/sec and the dynamic flexural strength was up to

150% of the static one. Failures were mostly the result of pure bending and very similar to those

obtained under static loading. Microcracking was identified as the reason for the nonlinear

behaviour of concrete at higher impact velocities.

20



Authors made an attempt to estimate the period of inertial oscillation, i.e. the oscillations

caused by the inertia loading only, and its amplitude, the frequency of oscillation and maximum

difference between the applied and support load by using a two degrees of freedom model.

John and Shah, (1986), tested concrete prisms of203mm x 25mm x 76mm with a single-

edge notch 17mm deep and 2.5mm wide, to study crack propagation in concrete subjected to

dynamic loading. The load was applied through a rubber pad in a Charpy testing machine. Strain

rates were up to 0.4 strain/sec. For those strain rates crack velocities were linearly related to strain

rates and the maximum observed velocity was about 2.4% of the longitudinal wave velocity in the

material. From crack velocity-time curves it can be seen that at the beginning velocity increases,

then stays constant and after it decreases. Authors observed that the amount of cracks was smaller

for higher strain rates and that the decrease in nonlinearity at higher rates of strain was due to the

reduced amount of slow crack growth.

An attempt has been made to establish the stress intensity factor as a function of the

applied load, the geometrical characteristic of the specimen, the length of crack and ratio of crack

length and depth of specimen.

Oh, (1987), proposed a theoretical model for analysing behaviour of concrete under

dynamic tensile loads by producing rate-independent nonlinear stress-strain relations for concrete.

Strain rate sensibility was introduced by fitting experimental results and assuming similarities in

shapes of stress-strain curves for different strain rates.

2.2.1 Concrete properties

2.2.1.1 Stress-strain diagram

The overall stress-strain diagram for concrete is to a large extent affected by changes in

loading rate. Both the ultimate stress and strain have higher values for higher rates of strain which

is sometimes related to the changes in the Young's modulus of elasticity with an increase in the

stress and strain rate.

Typical stress-strain diagrams for different loading rates are shown in Fig. 2.7

(compression) and Fig. 2.8 (tension).
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Fh:. 2.7 Stress-strain diagrams for two concretes at Fig. 2.8 Influence of a stress rate upon the
different rates of straining (Mainstone, 197:;) stress-strain relationship for concrete in

uniaxial tension (Zielinski et ai, 1981)

The ratio of impact and static value of elastic modulus was given in eEB Bulletin No.]87,

(1988), as:

Ejmp _ ( ~ JA - ( ~ JB-r.-- - ---~~.' .
SI G £

o 0

where: ~o = IN/mm2 sec for compression and 0.lN/mm2 sec for tension and Eo = 30·1O-{;sec-l

A = 0.25 for compression and 0.016 for tension

B = 0.26 for compression and 0.017 for tension

Go and £0 are described as static stress and strain rates respectively.

The formula for calculating the strain rate dependent modulus of elasticity is also given

by:

but here: Go = 0.5 N/mm2 sec.

The increase of Young's modulus is not always proportional to the increase in the strength

of concrete.

From previous experimental investigations a relation between modulus of elasticity and

stress or strain rate can be given as shown in Fig. 2.9.
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The ultimate stress is usually much higher under dynamic than under static loading

conditions. The relation between ultimate strain, stress and strain rates may be calculated as:

e. (G )0.020= (i_)0.020
ultimp» . .

Go eo

where Go and eo are the same as above. They concluded that higber ultimate strains in dynamic

tests were caused by inertial effects and enhanced cracking.

2.2.1.2 Compressive strength

Dynamic compressive strength is highly dependent on stress and strain rate. The

enhancement ratio between dynamic and static values can be given as in eBB Bulletin No. 187,

(1988):

hmp = (!;_Ja
Istat (J

o

for (J < I06N/mm2sec and:

.( • 1/3

.limp = IJ (J

t.:
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for G > 106N/mm2sec, where:

I-compressive strength,
1a = f3 = 6a- 2 and Icm - cube static strength.

5+0.75Icm'
If the predicted influence of strain rate on the Young's modulus is taken into account then:

for E < 30 sec-} and:
1: .1/3

~=r'Er:
for E > 30 sec+ , where: log r = 6.1S6a - 0.492. From these expressions it can be seen that

the stress-strain relation is divided into the two regions (Fig. 2.10), i.e. stress rates lower and

higher than 106N/mm2sec or strain rates above and below 50 strain/sec.
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Fh!. 2.10 Influence of stress and strain rate on
compressive properties of concrete (eEB Bulletin No. 187,1988))

This critical value has been observed by several authors. A similar relation has also been

presented by Mainstone, (1975),(Fig. 2.11).
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On the other hand, Hughes and Watson, (1978), do not report any changes in

compressive strength for stress rates of up to 1.6 . 105N/mm2sec and strain rates of up to ssec+,

while for strain rate of 14sec-1 they report an increase in compressive strength of only 25%. Fig.

2.12 gives more experimental data for the strain rates of up to lo sec+.
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Fig.2.12 Strendh ratio ys strain rate (Atchley and Howard, 1967)
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Finally, it can be concluded that the compressive strength of concrete increases with the

rate of stress and strain but there is still some amount of uncertainty which follows any predictions

of compressive strength under high rates of loading.

2.2.1.3 Tensile strength

A function that describes the tensile strength of concrete under dynamic loads is the same

as that for compressive strength, explained in section 2.2.1.2, but here:

a=----
10+0.51

(] = 0.lN/mm2sec and /3= 7a-2.

The stress rate of 106N/mm2sec and strain rate of 50 strain/sec have again been

considered as the dividing point in the behaviour of concrete under high rates of loading

(Fig. 2.13).
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Fig 2.13 Influence of stress and strain rate on tensile properties of concrete
U.:EBBulletin No. 187, 1988)
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The relationship between tensile strength and stress or stain rates can also be given as function of

strain rate where:
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hmp urr:
for s :=; 30sec-1 and:

hmp .1/3

11£r:
for e > 30sec-1 • where: log 11= 6.933a- 0.492 .

These equations all include the predicted influence of changes in Young's modulus under

high rates of loading.

Veen and Blaauwendraad, (1983), recommend relation based on previous experimental

investigations (Fig. 2.14):

In/cdt = 151+0.043In (J

where: /cdt - average tensile strength (N/mm2)

G - stressing rate (N/mm2msec)
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It must be noted, that in all of these tests stress rates were in the order of up to 102sec-l. For

these relatively low stress rates tensile strength in 90% of cases increases inside dotted lines as

shown in Fig. 2.15.
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Fig.2.15 Relation between tensile stren~h and loading rate
(Rejnhardt.1982)

Reinhardt, (1982), also tries to establish relationships between fcm - cube compressive

static strength and ftm - static tensile strength and its behaviour under different stress rates

(Fig.2.16). Here 0' and 0'0 are dynamic and static strain rates respectively.
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Fh:. 2.16 Influence of different strain rates on the ratio between
compressive and tensile concrete stren~h (Reinhardt. 1982)

A decrease in the water/cement ratio tends to increase static strength of concrete. It also

increases the dynamic tensile strength (Reinhardt,1982). That change can easily be seen even

when concretes made of different types of aggregate were used, Fig. 2.17.

28



120.------------------,

.,/:fi
'/",'" ,

/}l' /,

~ '/, 6', ,
E ' 0
E ' ,,pZ 70 I

~ I, ,-lr-... Ie<: '0 I ",/t; , " ,~... I, /""'-:,A-e<: if":>
SO ~,/':....,.,~

~ ,'-0-:"" ",
,£';9-

~"»: f.. f..,, I' .....' 0 -<>-::e;/
l'lnltt V .q...,
boul,O -0-

ttrMttonf 6 -lr-
10

Iranlt. whirl 0
hlCh .Iumin, +

nm,nt
0
04 OS 06 0·7 D·' 0'

Fig.2.17 Influence ofW/C ratio on dynamic tensile
stren~h of concrete Wughes and Gregory. 1972)

</ ..

In contrast there are some reports, Zielinsky et al,(1981), which lead to the conclusion that a

change in the W IC ratio does not produce consistent changes in concrete dynamic strength.

By increasing the maximum aggregate size the concrete dynamic tensile strength has been

found to decrease (Zielinsky et al ,(1981), Reinhardt ,(1982)) which could be explained by a

lower bond strength for concretes with the larger aggregates particles and by the relative increase

in aggregate surface area for the concretes of smaller aggregate particles. Concrete with a

limestone aggregate showed greater dynamic strength than gravel aggregate, Hughes and Watson,

(1978). The aggregates that are angular in shape and have a rough surface show a tendency to

produce a higher dynamic resistance, Green, (1964). All available information seems to suggest

that any improvement in bond between the aggregate and the mortar matrix, which is the

concrete's weakest area when tested dynamically, leads to an increase in strength.

For most of the concretes studied, any quantity of cement within the British Standard

recommendations showed no effect on the behaviour of concrete. Some investigators however did

observe a higher dynamic strength if the cement content was 375kglm3 instead of 325kg/m3 and

they explain this by the poor workability that leaves excessive air voids compared with that when

a smaller amount of cement was used.
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The effect of moisture content on the strength of concrete has been studied by very few

authors. Some of them concluded that the moisture content of the specimen did not affect the

mechanical properties of concrete (Zielinski et al,(1981) and Reinharrdt,(1982)) while others

found that the relatively wet specimens exhibited a slightly higher strain rate sensitivity than the

drier specimens (Suaris and Shah, (1983)) .

Direction of casting and loading highly influences the dynamic behaviour of concrete.,

Fig. 2.18. The tests performed in the direction parallel to the direction of casting showed 20% to

30% lower tensile strength than those performed in a perpendicular direction.

cem. pe
c..m.conl. 375

w/c 0.40
==-::'~ I-- -L- 0 mQJl 16

Fig. 2.18 Effect of changes in loading/casting direction upon the impact
fath:ue tensile strens;h (Reinhardt, 1982)

The load history of any rapidly applied load, that is larger than 80% of the static strength

of the specimen, is a very important factor that can determine the behaviour of concrete. The

specimen may suffer failure even during unloading if it takes place slowly after the rapid loading.

Some of typical cases can be seen in Fig. 2.19.
o r---------------~
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Fig. 2.19 Effect of loadins: history on concrete behaviour
(CEB Bulletin No. 187, 1988)
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2.2.1.4 Poisson's ratio

There is some evidence that Poisson's ratio, for both compression and tension, does not

depend on the stress or strain rate.

2.2.1.5 Energy absorption and modulus of rupture

The energy absorption per unit volume is usually defined as the area under the stress-

strain curve. Since much higher stresses occur in dynamic than in static tests, the energy

absorption must be higher for the specimens exposed to rapidly applied load. For a load applied

more than l06 times faster then in the static test, the energy absorbed was reported as 70% higher

than in the static test and this value increased with the strength of concrete, Atchley and

Howard,(1967).

The modulus of rupture as a measure of the flexural strength of concrete changes with

strain rate. It can be seen that the change of strain rate from 10-6 sec-l to lsec"! cause a 1.6 to 2.0

times increase in flexural strength of concrete and mortar (Fig. 2.20).
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Fi&. 2.20 Relatiye MOR vs. Strain-Rate for Mortar and Concrete, (Suaris and Shah. 1983)

The increase in MOR is greater for hard than for soft impact, obtained by placing a rubber

pad between the striker and the specimen, Suaris and Shah,(1981). All of these investigations
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cover strain rates of up to lsec"! and no data are available for higher strain rates. The values

presented were calculated assuming linear behaviour ofthe material.

2.2.2 Reinforcement properties

Reinforcement properties also exhibit considerable change under dynamic loading. These

changes are best seen from stress-strain diagrams for different kinds of steel under the different

rates of loading, Fig. 2.21.
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Fie. 2.21 Stress-strain diaa:rams (or three steels at different rates o( straining,
(Mainstone et ai, 1975)

A significant difference between upper and lower yield points can be seen for all kinds of

steel and is described as a major characteristic of the behaviour of steel subjected to high loading

rates. The increase of yield stress is much more pronounced than any changes in ultimate tensile

strength. The relationship between lower yield point and the strain rate for dynamic and static

loading itself may be given as in Veen and Blaauwendraad,(l983), and eBB Bulletin No. 187,

(1988):

(

. )115
(1ydyn _ 1+ s_
(1YSla/ 40

where: (1y - yield stress and Es - straining rate.

The various experimental results (Fig. 2.22) graphically show the increase of the upper

yield point in dynamic test.
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The ultimate strain in steel seems not to be influenced by the strain rate (Veen and

Blaauwendraad,1983, eEB Bulletin No 187,1988, Mainstone,1975). Young's modulus of

elasticity also remains almost unchanged (Edyn = 2.06 x 105N/mm2) under high rates of loading.

The bond between the steel and concrete, materials of completely different characteristics,

has been considered as one of the weak regions in the overall structural response under dynamic

loading, but despite this there is not a lot of available data about this issue. Generally it can be

said that the influence of stress rate on the bond of smooth bars is negligible (Reinhardt,1982)

while the ribbed steel characteristics are considerably different. This influence is mostly seen as

an increase in pull-out resistance of deformed bars under different rates of pull-out force,Fig. 2.23.

lSt-- ~-...--~--~_..___It.,.wt ...o
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6(mm)

Fig.2.23 l-§ relation at four loading rates for concrete with
a cube stren~h of 22.7N/mm2 (Reinhardt, 1982)
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With the increase of concrete strength this becomes even more pronounced and the relationship

between bond stresses under dynamic Tand static T. stress rates can be given as :

h 0.7(1- 2.58)w ere: ,,--_;_~-...:...."- fco.s

0- relative displacement of reinforcement bar (mm) and

fc- static cube strength (N/mm2)

2.3 Local response of RC slab to impact and close range
blast loading

2.3.1 Stress-wave propagation

The dynamic nature of impact and impulsive loading produces changes in the stress state

of the part of the structure exposed to the load. A rapid rise of external load requires that the

material under pressure quickly develops the internal stresses necessary to balance the external

load. The nature of solid bodies requires that the stresses in two points close together, have to be

in equilibrium and the consequent result is the initiation of stress waves which are propagated at a

definite speed across the structure.

As long as the structural element remains in the elastic region, the stress changes are

caused by elastic stress waves. They are usually divided into longitudinal elastic stress waves,

associated with the dilatation of the particles and torsional stress waves that are also called the

waves of distortion.

Longitudinal waves that propagate through the body can be initiated by the compression

(disturbed particles move in the direction of the stress waves) or tensile stresses (particles move in

direction opposite to the stress wave propagation) and its speed is given as:

CL=~

and they are the fastest propagating waves. The speed of torsional waves is given as:
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E and G are modulus of elasticity and shear modulus, respectively and p is the density. The

main characteristic of torsional waves is that they cause the particles to oscillate inside the plane

orthogonal to the direction of wave propagation.

If the lateral dimensions of the body are large then the change of lateral dimension

(Poisson's ratio) is included in the analysis, and the speed of these two fundamental types of wave

is given as:

E·(1- v)
CL = p- (1+ v) .(1- 2 v)

ECT =_.(1+ v)
2p

A third type of elastic stress waves that propagates on the surface or just inside the

material body are surface or Rayleigh waves. Since their intensity decreases exponentially with

the depth of the element their importance is much greater for the thin structures than for the

thicker elements like RC beams. The elastic stress wave intensity (J is directly proportional to the

density of the element p, velocity of the stress wave C and the velocity of the impacting particle

v so their relationship is given as:

(J=p·C·V

As soon as the behaviour of the structural element becomes a part of the plastic response

the nature of the stress waves becomes dual and there are now new types of waves, called plastic

waves. They are associated with the permanent type of damage inflicted onto the RC elements

and are, in nature, more complicated than the elastic ones. Its complexity is usually associated

with the nonlinear behaviour of the concrete in the plastic region and, because of this, wave speed

is a function of p and also of the change of stress under different strains. Since the modulus of

plasticity is always lower than the Young's modulus in the elastic region, plastic stress waves are

slower than the elastic ones.

Ko/sky,(l963), Go/dsmith,(1960), and Johnson, (I 972), also discuss the nature of flexural

stress waves, body waves, visco-elastic waves and Love waves.
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2.3.2 Cracking

Dynamic load and the heterogeneous nature of concrete make the understanding of

cracking even more complicated. The microcracks, air voids, interfacial bond failures between

different concrete phases are the main source of fracture initiation and cracking, Zielinski, (1984).

The cracks always start to propagate in the mortar matrix or in the mortar/aggregate interfaces and

they can be stopped only if the stresses are reduced or if the local strength becomes higher, for

example at an aggregate particle. In the case of dynamic load the cracks initiated at lower stress

levels do not have enough time to propagate through the regions of lower resistance before the

stress increases and they can then propagate through aggregate particles which obviously have

much greater strength than the mortar matrix. This eventually causes higher concrete strength

under rapidly applied loads. The cracks also propagate through the aggregate particles particularly

in dynamic failures. The maximum crack velocity is about 25% of the elastic longitudinal wave

velocity and its strain rate dependence is shown in Fig. 2.24.
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Fig. 2.24 Experimental crack velocity (V) versus strain rate E relationship
(,John and Shah. 1986)

An attempt was made (Zielinski,1984) to establish a fracture criterion which determines

whether a crack would propagate through an aggregate particle or around the aggregates as occurs

in most static tests. It was concluded that the angle between the crack front and the aggregate
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surface, is a major influence on the fracture criterion. The critical value of that angle was a

function of the loading rate and its values are given in Fig. 2.25.
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~5° ----------------------------~~~
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Fil:. 2.25 Critical anl:le <Pc versus stress rate CJ (Zielinsky et ai, 1981)

The total crack density could also be used as a failure criterion. The value of 3.5cm/cm2

has been considered as the ultimate one by Watson and Sanderson, (1984).

Spalling is the phenomenon which happens on the top surface of the specimen when a

solid striker or blast front impacts the concrete. It can be defined as ejection of pieces of concrete

from the front face region surrounding the area of impact or the epicentre of the blast. The ejected

pieces in the great majority of cases will be formed from the concrete cover to the top side

reinforcement. The product of spalling is known as a front crater. Spalling is thought to be

caused primarily by the compressive stress wave crushing the concrete and producing radial

cracks.

Scabbing occurs when the tensile strength of the concrete close to the back side of the

specimen is exceeded and is characterised by the fast ejection of concrete pieces from that side of

the slab. It is caused by the reflection of the compressive wave as tension. For cylindrical

dropped objects, if the scabbing number Nscab' given as:

is less than 50 then scabbing will not happen, eBB Bulletin 187,(1988). For Nscab > 60, the

scabbing is almost certain to occur. In this formula: de is the diameter of the impact area (m), m
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is the mass of the dropped cylinder (kg) and do is its diameter (m), V; is the impact velocity (rn/s),

e is the thickness of the concrete (m), It is the tensile strength of concrete (Pa) and E; is the

Young's modulus of elasticity (OPa). This formula shows that scabbing does not depend on the

spacing of the back face reinforcement but the cover concrete is usually part of the scab.

In the case of explosive blast loading the size of the scab can best be related to the peak

blast pressures that occur on the top surface of the slab and to the pulse duration, since the

reflected tensile stress wave that causes scabbing is initiated by the blast wave. The thickness of

the slab is determined by the shape of the stress pulse and the attenuation of the peak of the stress

wave.

2.3.3 Penetration

Penetration is the depth to which a projectile or the load transmitter, enters an RC slab

without passing through it. In an ideal case the concrete is not assumed to scab on the back face.

There are a lot of formulae dealing with this problem but we will consider the situation in which

the heavy solid cylinder was dropped on to the specimen. The penetration distance X (m) may

be given as:

where:
m05.v_

N = I
pen E 05.d 15

c e

and all the other notation is the same as previously given.

Perforation represents the full penetration of the target in the case of impact loading. In

the case of the blast loading it is closely related to the formation of the top and back side craters.

2.3.4 Shear plug formation

This phenomena is closely related to scabbing, which can be part of the shear plug.

Different forces and mechanisms take part in this process as can be seen from the Fig. 2.26.

This shows the mutual behaviour of concrete, stirrups and bending reinforcement which

all share the load. When concrete is intact it takes almost all the load but once it has failed, then

the reinforcement holds the load and even the concrete plug in place.
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Fig. 2.26 Idealised behaviour of punching cone (Eibl. 1987)

Dragosavic and Beuwel, (1974},c1aim that punching resistance and consequently the

shear plug are not influenced by the reinforcement at all. They explain punching resistance in the

case of impact load, as a function of the effective depth of the section, the splitting tensile strength

of the concrete and the diameter through which the load was applied. In the case of impulse

loading it is related to the area of distribution and intensity of the blast pressure, and the R.C.

section characteristics.

All investigators appear to agree that the size of the shear cone under impact loading is

mainly dependent on the striker velocity (Fig. 2.27).

II II

Fig.2.27 Variation ofshear cone angle with the striker velocity (CEB Bulletin 187,1988)
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2.4 Overall response of R.C. slab to impact and close
range blast loading

2.4.1 Inertiaiioading

In the cases of fast loading when the deflection rates of the specimen amount to tens of

metres per second and strain rates of up to IOsec-1 it is not possible to neglect the existence of

inertial forces that act on the structure. These forces by their nature act in the direction opposite to

that of the specimen motion and their intensity F is given by Newton's equation:

F=m·x

where m is the mass of the body and x is the displacement.

It can be said that all dynamics problems that are not stress wave propagation problems

only, could partly be considered as inertial problems. This is particularly evident in the case of

large deformation of elasto plastic structures under fast sudden loading.

If the inertial forces are linearly distributed, its intensity could be given as (Eibl and

Feyerabend, (1985)):

L

R= Jpdx=ex.F
o

where: ex - percentage of the applied load

R - overall intensity of inertial force p

F - external load

Obviously for a static load ex= 0, while for the case of ex= 1 all of the external applied load F

is carried by the inertia and the support reactions are zero. Shear forces Q and moments M for

both of these two extreme cases are given in Fig. 2.28.

The main problem in this approach is obviously the assumption of the shape of the

displacement curve and consequently accelerations and inertia forces. It can be overcome by

experimentally obtaining the real acceleration distribution across the structure.

40



~ :::r
,l L '1L

a 11111111 :+:1111111111 ~
11111111 :1.111111111

a

M

Fie. 2.28 Distribution of inertia forces P, moments and shear forces
for extreme values ex (Eibl, 1987)

Bentur et al, (1986),established that the time required for this inertial load to be absorbed

was about three times the period of the apparent specimen oscillation. The relation of the

resulting bending load Pb(t) measured applied load Pa(t) and inertial load P;(t) was given as :

2.4.2 Resistance function

The problems in defining the resistance function of an R.C. slab exposed to locally

applied fast transient loading are due to the dual nature of the specimen response, mainly shear

response locally and flexure dominated response overall. All available information indicates that

the exact resistance function is not likely to be just simple superimposition of the responses

mentioned above but a time-load-deflection related expression that would reflect interference and

a combination of these responses, with some of them being predominant in particular phases of

response for example shear in the initial phase of the load application, leaving the remaining to

dominate in the following phase or phases.
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Biggs, (I 964), considered an ideal, one degree of freedom system represented by the

bilinear resistance function (Fig. 2.29).

R

-Rm.

Fig. 2.29 Bilinear resistance function (Biggs, 1964)

The reversal part of the resistance trace means that the system assumes that the ultimate

displacement has not been reached. This idealisation of the actual behaviour can be expressed in

terms of the equations of motion as follows:

r

M y+ky -F(t) = 0 for: 0< Y <Yet

My+Rm -F(t) = 0 for: Yet< Y < Ymand

My+ Rm -k(Ym -Y)-F(t) = 0 for: (Ym- 2I:,) < Y < Ym

For the real structure Biggs employed a trilinear resistance function Fig. 2.30.

R

r

Fig. 2.30 Effective linear resistance function (Biggs, 1964)
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The solid line represents a real structural response, where RI is considered to be the

resistance before the first (support) hinge forms while Rm is the resistance after the span hinge

formation. The dotted line represents an idealisation obtained by choosing stiffness KE in a way

that it gives the same area under the curve as the real structural response line.

For the case of two-way spanning RC slabs under uniformly distributed dynamic

triangular shape pulse loading the response was based on the behaviour inside the elastic region

and on the idealised yield lines that occur during plastic distortion.

Eibl, (1988), proposes a SDOF model but only when flexural failure occurs along yield

lines. When punching failure is also present the response has to be approximated with a two

degree of freedom model Fig. 2.31.

F (t)

lllllIlll

F ( t )

rn, -t
+w, (tl

Fi~. 2.31 Two degree of freedom model albl, 1988)

Resistance RI is related to the bending of the slab according to elastic plastic type of behaviour,

Fig. 2.32, while resistance R2 represents contributions from the tensile strength of the concrete

along the cone boundaries (very minor), stirrups elongation across the crack opening and from the

bending reinforcement in case of large deformations, usually called dowel action,Fig. 2.31 .

.",---------~
/~

/
'/

w,
Fi~. 2.32 Idealised elastoplastic material (Eibl, 1988)
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Krauthammer, (1986), introduces a dynamic shear resistance function that is the same as

the static one described by Muntha and Holland, (1981), with a 40% linear increase in all

resistance contributions due to the rate sensitive increase in material strengths, Fig. 2.5.

Point A' represents the end of the elastic response when the dowel action influence on the

response is still negligible and when the max crack opening is about O.lmm. Point B' represents a

crack opening of about O.3mm while the region B' to C' does not exhibit any resistance increase

and lasts till cracks become about O.6mm wide. The slope of the curve in area C' to D' does not

seem to be influenced by the amount of reinforcement crossing the shear plane. Point E'

represents a point of shear failure which happens in the support region along the vertical plane.

Tankreto, (1991), presented the resistance function for a slab explosively loaded as given

in Fig. 2.33, while Smith and Mlakar, (1991), used the bilinear function as in Fig. 2.34.

Actual Resistance-Deflection
I Design Ultimate Rotation

I Actual Ultimate DeflectionIJ
U
I:
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8= SO 8>1120

Flexural Tension Membrane Action ~

Fh!. 2.33 Resistance-Deflection (Tankreto, 1991)
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Fil:. 2.34 Resistance Function (Smith and Mlakar, 1991)
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Kyger and Hyde, (1987), presented the resistance function Fig. 2.35 for a two way slab

that includes the effects of membrane action enhancing the flexural capacity of the slab.

QSh h

DEFLECTION

Fii:.2.35 Resistance function CKY2er and Hyde, 1987)

The reduction in peak resistance at 0.5h is caused by the crushing of the concrete, loss of

compressive membrane action and large deformations in the slab. When the peak displacement

increases to about the slab height (h) it is then mostly controlled by the tensile strength of the

bending reinforcement.

2.5 Blast pressure characteristics

2.5.1 Introduction

An explosion is a phenomenon resulting from a sudden release of energy. The energy

required for activation of the explosion of high explosives, such as the Plastic Explosive PE4

employed in this research, is mechanical in its nature and always produced by shock pressure

forces. This process is called detonation and it proceeds at speeds of V = 5,000 - 10,000m/sec.

Explosion is always followed by the blast wave - a pulse of air in which the pressure increases

sharply at the front and is accompanied by blast winds. Typical above atmospheric pressure,

overpressure vs time relation produced by a blast wave from an explosion source at a fixed

distance is shown in Fig. 2.36.
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Fh:.2,36 Typical overpressure-time relation produced by the blast wave

The finite time interval required for the blast wave to travel from the centre of an

explosion to any particular location is known as the arrival time. It can be calculated from:

1 dr
1 v:+--7~

where: Ux - the speed of sound in the air (m/sec)

P..- peak overpressure (bar)

re - radial distance (m)

P,- atmospheric pressure (bar)

The interval between the time of arrival of the blast wave la and the time for the

magnitude of the blast produced pressure to return to ambient atmospheric pressure is known as

the duration of the pulse T, and it increases with the distance from the charge.

A length of time between the arrival of the pulse ta and the end of the positive part of the

pulse td is known as the positive duration of the pulse and is closely related to the positive

impulse of the pulse which represents the area under the positive part of the pressure time record

and is given as:

Id

r = f ~(t)dt
ta
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Consequently a period of time from Id to T, is known as a negative phase of the pulse and is

related to the negative impulse:
Td

r = J~(t)dl
Id

Overpressure P.(I) decays with time at a fixed location, while the peak overpressure P.. decreases

with distance from the source till it finally becomes a sound wave.

Typical pressure-time curves for successive distances are shown in Fig. 2.37.

111

1 (2)

wa:
:J
I/)
I/)

wa:~ (4)

DISTANCE ---

Fi2.2.37 Typical pressure-time curves for successive distances after an explosion
(Kinney and Graham, 1985)

The total amount of energy transferred from an explosive to its blast wave gives the

energy of the explosion:
2

E= JPdv
1

where: P - pressure produced in explosion and v - volume. The energy of the shock front over a

unit of surface area of shock decreases with the distance squared from the explosion. A relative

measure for the energy of the explosion is the explosion yield Wand is related to the energy

released in the explosion of TNT (symmetricaI2.4.6 - trinitrotoluene). The standard gram TNT is

defined as the blast energy of 4610J (1IOOcal).

The velocity ofa shock front of blast wave is given by:

U -u 5~Rfi6~- +- +-
sf s 7P 7P

Q Q
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Mach number M is another important parameter of a blast wave. It represents a

dimensionless index of speed given as the ratio of the magnitude of a velocity to the speed of

sound in the surrounding medium.

2.5.2 Blast wave scaling and parameters

Since the 1NT equivalent has been widely accepted as a measure of the characteristics of

different explosives, a spherical charge of conventional chemical explosive with energy release

equivalent to one kilogram TNT will be taken into consideration in the following text.

The scaling law for explosions is based on conservation of momentum and geometrical

similarity. Geometrical similarity of three dimensional bodies such as an explosive charge leads

to a third power of ratio relations which are often represented in all blast wave scaling

applications.

Two explosions can be expected to produce identical blast waves at distances which are

proportional to the cube root of the respective energy release which is taken as the controlling

parameter. Conservation of momentum can be introduced through the density of the atmosphere

as a measure of the mass of the air which leads to the expression for the scaled distances Z as:

Z = Id' (actual distance)
ifW

where: Id - dimensionless ratio of the density of the atmosphere through which an explosive

shock travels and that of the atmosphere for the reference explosion.

W - explosion yield (kg of TNT)

If Id is taken as one, it can be shown that two charges of the same shape and explosive type but

different masses M. and M, have peak overpressures that occur at distances that are related as:

where: k =VM,
M2

Although the peak overpressures will be the same at RI and ~ , the scaling of times will mean

that the other important parameters as duration of the pulse Ts and its impulse I are not the

same and they can also be given as:
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If non uniform atmospheres are considered fd cannot be taken as one and the above

mentioned relations have to be adjusted for temperature and atmospheric density factors.

2.5.3 Interaction of shock waves with plane surfaces

A blast shock wave of spherical shape and low overpressure reflects from a plane surface

as if the reflected wave comes from an imaginary identical source on the opposite side of the

barrier and travels at the same velocity, Fig. 2.38.

.........····.Iimaginary wav~

",,'.,

o .. I
x' .

........ __ .......

IPLANE SURFACE!

Fh:. 2.38 ReOection of a low overpressure spherical shock (Watson, 1991)

Reflected overpressure P, can be given in terms of overpressure P, as:

P=2P.7PQ-4~
r s 7P +P

Q $

where ~ is atmospheric pressure.

Reflection coefficient An represents the ratio of reflected overpressure to the overpressure

in the incident shock. In the case of normal reflection from the rigid barrier reflection coefficient

for an ideal gas can be given as:

where: Mx - Mach number for an incident shock.
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In the case where the Mach number becomes close to one (low overpressure waves that

are starting to transform to a sound wave) An becomes 2 and consequently the reflected

overpressure has twice the value of an incident pulse overpressure.

In all cases where the angle of incidence is up to 35° it can be said that reflected

overpressure almost doubles the incident one. In the cases of not rigid, yielding barriers this

factor is much lower.

Strong overpressure shocks happen under much greater Mach numbers and because of that

the reflection coefficient can take any value up to 8. The reflection process for these waves is

more complicated and apart from the incident and reflection waves it comprises of a new shock

wave - the so called Mach stem that connects the ring of intersection points of these two waves,

Fig.2.39.

'/////////////////////////////////////////////7////////~

U ISin /l•

_--
MACH
STEM

Fh:. 2,39 Formation of Mach stem (Kinney and Graham, 1985)

If the duration of the incident shock wave is significantly greater than the natural period of

the surface then the structural response is similar to that of a spring loaded with a constant static

load.

If the duration of the shock wave is significantly smaller than the natural period then the

overpressure reduces to zero before there is any significant deflection of the structure which,

because of that, does not show any resistance.

The deflection rate of the structure y can be given as:
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and since impulse [= J PId where: P - overpressure and Id - time duration of its application

and M - effective mass of the structure i.e. the mass of the structure that is actually moving, we

can calculate the kinetic energy K that sets the structure in motion as:

1 [2
K=-M·V2=-

2 2M

Oblique reflections occur when the shock impinges at an angle onto an unyielding surface,

Fig.2.40.

Fie. 2.40 Oblique shock reflection (Kinney and Graham, 1985)

The angle of reflection 8 for an ideal gas can be given as:

tan ({3- S) 5+M;
tan {3 = 6M;-

The reflection coefficient for oblique reflections Ao is given by:

A =(7M;-I).(7M;-I)-36
o 42(M; -1)

where r means the reflected wave.

2.5.4 Loading due to a short range explosion

The case when R.., < a ~ 10Rw where R.., is the radius of the charge and a is the distance

of the structure from the charge centre is considered as a short range or nearby explosion. All of

the blast tests in this research belong to this category. The outburst pattern produced by this type

of explosion for the case of spherical charge is shown in Fig. 2.41.
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Fig, 2.41 Outburst pattern for the nearby explosion (Henrych, 1979)

If the central region of the slab is still at rest and the velocity of the outflowing particles of

the explosion products U = const then a U = 0 and a u = 0 then:at aR
au au 1 sr--+u·_-+_·_=Oat aR p aR (Henrych,1979)

reduces to:

_!_. ap = 0 and since _!_ ::!: 0 then
p aR p

which means that in the whole region, except for the hatched area in which the reflection of the

waves started to take place, the pressure at a given time is constant.

At a particular time instant t,R, can be calculated as:

where r is the period for which the pressure acts on the obstacle. It usually lasts up to 10-4 sec

and can be given as:

r= R.., .(_1 +_1 Ju, »:
where N rw - displacement velocity of the outburst surface.

These equations provide a relation between the co-ordinate of a point on the surface of the

obstacle and the time t measured from the moment of incidence of the first particle. The relation

between explosion product density p, distance and time can be given as:
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where (0 v- I) = 2 for the spherical charge.

It can also be found that the pressure at any point on the obstacle can be given as:

P=p·(l+I(·r)

where p can be calculated as above and 7( - coefficient of restitution:

For the very short period of time for which this pressure acts the structural loading does not

depend only on the magnitude of the pressure P but on the specific impulse i . At point A it

can be given as:

A ·Wi =_0_ cos'«
a2

where: W =!x- pw .R w' - mass of the spherical charge and
3

A = Nxw +Ux•

° 47r

If we consider an explosion occurring above the centre of the circular plate the total impulse of
r

explosive loading is given as Jidr which leads to:

°

where: ao is given in Fig. 2.42.

8

d

Fig. 2.42 Nearby exp'-Qsionabove a circular plate (Henrych, 1979)

In the case when the charge dimensions are greatly smaller than the plate size (plate of infinite

dimensions) and since ao ~ 7r= 90° total impulse is given as:
2

1= 7r·A ·W
°
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Further explanations of phenomena and relations connected to the blast loading and its

characteristics are given in much more detail in Watson (lecture notes 1991), Kinney and

Graham (1985), Henrych (1979), Baker (1973) and Cook (1958).

2.6 Modelling considerations

Structural modelling has been widely and successfully used for assessing the

characteristics and behaviour of materials and structures produced at different scales. There is

great economic and practical advantage in using smaller structures exposed to scaled loads that

represent the real structure and loads. Additionally when tests require the use of explosives as in

this research, structural modelling provides the powerful tool for avoiding use of greater amounts

of explosive so eliminating unnecessary risks.

A structural model is usually described as structural element or assembly of structural

elements built to a reduced scale (in comparison with full size structures) which is to be tested,

and for which laws of similitude must be employed to interpret test results.

2.6.1 Dimensional analysis

The similitude requirements that relate the model to the real structure are based upon the

theory of modelling which is derived from a dimensional analysis of the physical phenomena

involved in the behaviour of the structure.

The dimensional characteristics widely used for describing the physical phenomena are:

(a) Length

(b) Force (or mass)

(c) Time

(d) Temperature

(e) Electric charge

Since most of the structural problems are of a mechanical nature the first three above

mentioned dimensions are the most important for structural engineering.
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The main requirement of dimensional analysis is that any mathematical relationship that

describes the behaviour of a structure must be dimensionally valid regardless of the parameters

that quantify the effects.

This implies that any relation of the form F(XI' X2 •••••• Xn) = 0 can be expressed in term

of G( 1tI,1t2 •••••• 1tm) = 0 where the n's are dimensionless measures of physical effects previously

given in the form of XI to Xn•

This allows a reduction of the unknown quantities that fully represent physical behaviour

of the structure because m = n -r where the r is the number of fundamental dimensions that are

involved in the physical phenomena. This means that a dynamic problem that combines the

effects of say 6 different parameters can be effectively reduced in our case to three dimensionless

parameters because r = 3 (length, time and mass).

Dimensional analysis and structural modelling can use replica models of complete

similarity with the prototype when all of the dimensionless products are exactly the same in both

model and prototype or adequate models that provide a close similarity but eliminate those

variables that are not considered of relevant importance. Since it is usually very difficult to obtain

exact similitude replica modelling adequate models are most frequently used.

2.6.2 Theory of modelling for structures exposed to impact
and blast loading

Modelling considerations for transient dynamic loading include the loading function

(force, pressure, time, gravitational acceleration and velocity) the geometry of the specimen (linear

dimensions, displacement and strain) and the material characteristics (modulus of elasticity, stress,

Poisson's ratio, mass and mass density).

The approach that would provide a so called true replica model would require selection of

three physical quantities for independent scaling since there are three independent basic quantities

(M,L,T) that describe the phenomena. Since in all possible combinations the gravity acceleration

must be the same for the model and the prototype, two additional quantities can be chosen as say

Poisson's ratio and velocity V. To fulfil the dimensional analysis requirements, time, linear

dimensions and displacement would need to be scaled with a linear scaling factor. Strain, gravity
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acceleration, Poisson's ratio and velocity would be the same for the model and the prototype, but

scaling of mass density, mass, modulus of elasticity, force and pressure would require an

additional change of modulus of elasticity of the material. This inevitably leads to the use of

different material than concrete which is obviously not acceptable and consequently this true

replica model can not be of great use in dynamic modelling of structures.

The model that one would naturally be expected to use would require the same material

characteristics in the model and prototype and a linear scaling of geometry. An adequate model

which would provide these requirements is called a Gravity Forces Neglected model and has been

widely used for dynamic modelling and is also used in this research. The main difference with a

true replica model is that gravitational acceleration g is neglected and this is acceptable since

gravitation forces do not represent a significant part of the loading function in the cases of impact

and blast loading. The relationship of the physical quantities for model specimens and those of

the real structure, the full scale specimens, used in this research are given in Table 2.1.

M, L and T represent units for mass, length and time respectively, SI is the linear scaling

factor between the model and the prototype and I means that values are the same in both scales.

GRAVITY FORCES
PHYSICAL QUANTITIES DIMENSION NEGLECTED ADEQUATE

MODEL

Force M Sl2

Pressure ML-2 1

Time T SI

Gravitational acceleration LT-2 Neglected

Velocity LT-I 1

Linear dimensions L SI

Displacement L SI

- 1Strain

Modulus of elasticity ML-2 1

Stress ML-2 1
- 1Poisson's ratio

Mass density MT2L -4 I

Table 2,1 Summary of scale factofs fOf dynamic loading

The rules that govern the modelling of blast pressure function quantifiers are given in

section 2.5.2 ofthis chapter.
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Works by Sabnis et al (1983) and Noor and Boswell,(1992}, provide further details

about structural modelling of structures exposed to dynamic loading.

2.7 Some theoretical approaches to the problem

2.7.1 Timoshenko, (1951)

He studied the problem of an impacted beam by introducing assumptions that:

(1) The beam mass can be neglected if it is small in comparison with mass of falling body.

(2) The stresses are in the elastic region so there is no energy loss due to plastic deformation.

(3) The deflection curve during impact has the same shape as that during a static test.

Since there is no energy loss, the energy stored in the beam is the same as the work done

by a static force. Then for impact at the mid span of a beam with a rectangular cross-section:

W·13

where: l) = ---
SI 48£.1

W·V2 18£
2g I·A

v = .J2g·h and

17 st
By introducing a reduced mass for the beam of m = - .- then the maximum deflection

35 g

becomes:

~2 Ds, ·V2 1
us/+ . 17 q-l

g 1+-·-
35 W

2.7.2 Goldsmith, (1960)

Impact by a rigid striker on a uniform straight beam has been studied using the equations

of energy balance of the system, i.e. initial kinetic energy of the striker and maximum strain

energy stored by the spring, which represents the beam, at the instant of maximum dynamic

deflection.
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ACTUAL GEOMETRY EQUIVALENT SYSTEM

Fh:· 2.43 Central impact on a simply supported beam (Goldsmith. 1960)

If the effects of change of potential energy of the striking mass are to be included, then the

maximum dynamic deflection is:

m.g( Rf,'V)Wm=- 1+1+--
k m-g"

where: K - stiffness of the beam

v - striker velocity (m/sec)

m - mass of the striker (kg)

g - gravity (ms-2)

2.7.3 Norris, (1964)

He used the differential equation of motion for beams where the beam is considered to be

loaded and to move in one plane only. Shear deformations, rotations and axial movement of the

beam were neglected, Fig. 2.44.

Fie.2.44 Notation for flexural vibration (Norris.1964)

then:
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where: w - intensity of load (per unit of length)

- dynamic load intensity (per unit of length)

- inertial load (per unit of length)

v - transverse deflection

c - weight (per unit of length)

E·! - flexural rigidity of beam

Solution of these equations was obtained by applying boundary conditions for different

support conditions. In the case of the simply supported beam the solution gives the characteristic

shapes of the first three normal modes of vibrations as presented in Fig. 2.45 .

..J.l.
'/1/1/,

9'1 (x) =A, sin Z.r ( ) A . 2rrx'1'2 x = 2 510L

Fil:. 2.45 Characteristics shapes of first three normal modes ofyibration (Norris, 1964)

2.7.4 Ezra, (Johnson, 1972)

He describes an analysis by Ezra for a uniform simply supported beam dynamically

loaded at its midspan by a rigid striker. It is considered that the kinetic energy delivered by the

striker is dissipated in the moving plastic hinges and is of greater magnitude than the ultimate

elastic strain energy for the beam.

At the moment of impact a plastic hinge is formed at the impact point and two more

hinges travel outwards from it. These travelling plastic hinges become stationary and always lie

between O.67L and O.59L, Fig. 2.46.

According to this analysis, the deflection at midspan is:
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where: M -mass (Kg)

Vo - velocity at time of impact (m/sec)

Mp- moment of plasticity (Nm)

m - unit mass (kg/m)

t L

I ...
x :1: L :1x ~I

MOVING B
PLASTIC
HINGE

8'

Fi2. 2.46 Travellin2 plastic hin2e (Johnson, 1971)

2.7.5 Popov, (1976)

He considered a free falling body which strikes a structure to deliver an impact load, Fig. 2.47.

(a)
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Deflection

spnng

External work of
the falling weight

Fie.2.47 Behayjour of an elastic system under
an impact force (popov, 1976.)
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His assumptions for analysing the problem are that there is no dissipation of energy at the

point of impact or at the supports, that materials behave elastically, that inertia forces of a system

are negligible and that deflection of the system is always directly proportional to the force applied,

From the equality of external work to internal strain energy:

1 P = dmax•wW· (h +drrwt) = - Pdyn' drrwt
and

2 dyn dS'

Then: p.. =W{l+ ~1+!:J and ~~=~"{l+~J
2.7.6 Symond, (Watson, 1991)

Symond's analysis of a simply supported beam of unit mass m and plastic moment of

resistance Mp under the uniformly distributed blast type loading pet) neglects elastic

deformation of the beam (Fig. 2.48).

P(t}

A ~ 1 1 1 1 I 1 I) 1 ! ! 1 ! ! !~ B
moment of resistance

M

x rotation a

Fig. 2.48 Symond's analysis -load (unction (Watson, 1991)

It can be seen that Symond assumes rigid-plastic behaviour of the structure, and a hinge

must form at a midspan point C before any rotation can take place.

Since M» = p. L then if Me{ M, there is no rotation 8 at the ends and no deformation
4

but if M,~M, a hinge is formed at the centre and the only forces that oppose the deformation

are inertial forces - m- a where a is acceleration of the beam. If the uniformly distributed load

pet) is greater than inertial forces then (Fig 2.49):
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v - shear force

.~ ••••••••••••q> ••.•.••••« ••••.••••••.•••.•••••••..•••••••.•.••.q••••••••••••••••.••~ M-moment

Mp

Fig.2.49 Symond's analysis - oyeraUload. shear force and moment

The intensity of uniformly distributed load P(t) that can produce a plastic hinge at

midspan C can be obtained from the equation of angular motion about the plastic hinge point:

where: I -moment of inertia and

(0 - angular acceleration

It can be shown that if:

4Mp sP(t) s 12Mp

1 1
then residual deflections can occur, but not necessarily collapse if the hinge rotation, calculated

12Mp
from equation of angular motion, can absorb all the energy. If P(t) reaches -1- then the

plastic hinge forms at C and the maximum deflection occurs at time t =_1_. JPdt which can
4Mp

be derived from the maximum deflection requirement that (0=0.

If P(t) is greater than 12Mp
then instead of having a single point hinge at C, we have

1
a "hinge region" where plasticity occurs, while the rest of the beam is still rigid.

2.8 Standard recommendations

The standards that deal with the dynamic problems of fast transient loads can be divided

into two basic categories:

(a) Standard recommendations for ordinary reinforced concrete structures, and
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(b) Standard recommendations for structures of particular interest (domestic shelters,

nuclear reactors, key military installations, structures of strategic importance etc.)

The most common approach is to give a safety factor allowance (usually 1.20 to 1.50) on

all designed loads when there is an indication of a possible case for this type of load. HMSO

guide on domestic sheiters,1975, (Bangash.I 993) introduces ultimate unit resistance 1~ as:

1r =F.._--
U J 1-0.5,u

where: ~ - resistance force and

,u - damage factor.

For the case of moderate damage factor u = 3, ultimate unit resistance becomes:

r; = 1.21<;

The ultimate shear capacity is given as O.4/cu and for fixed ends boundary conditions it

shall not exceed 17.2N/mm2.

The minimum area of high tensile flexural reinforcement in the tensile zone of the

specimen should not be less than 0.2% of the effective cross-section.

The value of the ultimate unit resistance for a two-way slab can be written as:

8(MIIN +MHP)' (3L - x)
ru = 2H ·(3L-4x)

for the shorter span

and
5(MHN-MHP)

", = 2X
for the longer span

where: MHN and MHP - ultimate unit negative moment capacity at support and midspan point

respectively

L - span and

H - height of the section.

MHN and MHP can be calculated using either of:

M = /v(dyn) •As' Z or:

M = 0.225/cu(dyn)·b -d? where:
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d- (1- O.84fy(dyn) . As)
Z= <O.95d

fcu(dyn) -b-d

BS81l0 states that when accidental loads are anticipated, a safety factor of 1.05 should be

applied to the defined loads.

Most of the available and applicable standard recommendations refer to American

Concrete Institute codes and other American codes. ASCE Manual42 and TMS-1300 (both from

Bangash,1993) for the explosive and impact loading on structural element with both tensile As
,

and compression zone reinforcement As give ultimate unit resistance moment, for the width b ,

as:
, ,

Mu = As ~ As. fy.(d _ ~)+ As~fy ·(d -d')

,
where: d - distance from the extreme compression fibre to the centre of compression zone

reinforcement

a - depth of equivalent rectangular stress block

The difference between the reinforcement percentages of tensile and compressive zone

reinforcement must not exceed 0.75 of the ratio that produces a balanced reinforced concrete

section. The minimum amount of tensile flexural reinforcement for the high pressure range

loading on two-way R.C. slabs can not be less than 0.25% of b-d, while in the compression zone

it can not be less than 0.18% b-d; .

The ultimate shear capacity is calculated by replacing the static value for the concrete

strength with the corresponding dynamic value which means that the strain rate must be known.

ACI Standard 318-77, (1977) gives a safety factor as 1.7 (applied to all live and impact

loads) while ACI- 349-76, Appendix C, (1977) increases the static characteristics of materials

ranging from 10% for the concrete exposed to shear to 20% for the high yield steel.

European codes for concrete CEB - FIP, (1978), for ordinary reinforced concrete

structures classify impact and blast into the category of incidental loads. To reduce the effects of

these loads, in the cases when they are not considered as very likely in the life time of structure,

codes suggest design of the structure in such a way that, when an element is directly exposed to

dynamic overload and destroyed, this will not cause disproportionate structural collapse.
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CHAPTER3

EXPERIMENTAL TECHNIQUES

3.0 Introduction

The reinforced concrete slab specimens used in this research are based on typical

structural elements which can exist in various types of structure (for example bridges and

industrial buildings). The models have been designed to represent approximately 1:4 scale and

1:10 scale models of typical prototypes. In the remainder of this report the 1:10 scale will be

called small or model specimens and the 1:4 scale the large or full scale specimens. Thus the

small specimens model the large specimens at I :2.5 scale. This chapter will explain the methods

of manufacturing these two sizes of structural specimen, specify the concrete and steel used in

their production and fabrication and describe the manufacture of specimens used to obtain the

properties of the materials.



The test equipment consists of a drop hammer impact rig and explosive blast cells

appropriate for the model and full size tests. The test equipment and the instrumentation used on

the specimens and on the rig are described in section 3.2. The explosive charges and their

calibration are described in section 3.3.2.

3.1 TEST SPECIMEN

3.1.1 Slab dimensions

All outside dimensions for the model slab are 2.5 times smaller than for the prototype

specimens. The slabs were all square shaped, had rectangular cross-sections and the overall

dimensions are given in Table 3.1.

SMALL SLABS LARGE SLABS

CROSS SECTION 44 x 800mm 110 x 2000mm

LENGTH 800mm 2000mm

SPAN FIXED SUPPORTS 640mm 1600mm

FREE SUPPORTS 720mm -

Table 3.1 Specimen dimensions

According to BS811 0 the balanced section for design purposes is defined as one in which

the steel stress reaches the design strength of 0.87 fy simultaneously as the concrete reaches the

strain of 0.0035. For the concrete used in this investigation with the target static compressive

strength feu = 40N/mm2 and high yield steel of fy = 460N/mm2, a balanced section is obtained

when the reinforcement ratio is p = 2.52%. After taking into account design requirements for the

spacing and the size of the bars it was decided to use tensile reinforcement in all possible

conditions i.e. over reinforced, balanced and under reinforced section, with 85% of the specimens

being of the under reinforced section out of which the great majority were just lightly reinforced

(0.26% for the small specimen and 0.41% for the large scale slabs).

The specimen details are shown in Fig. 3.1.
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SLABS:LS1,LS2,LSE1,LSE2
I. 2000 mm .. i

1:1 SCALE SLABS

SLABS:LS3,LS4,LS5,LSE3,LSE4,LSE5
I.. 2000 mm

top reinforcement:
11 No 1e mm H.Y. steel bars, each way

bottom reinforcement:
11 No 1e mm H.Y. steel bars, each way

cover: 10 mm

top layer reinforcement:
R.MESH: B.S.4483 A393 10/200/200 mm
(without central region 1.0 X 1.0 m)
bottom layer reinforcement:

R.MESH : B.S.4483 A39310/200/200 mm
cover: 10 mm

11:2.5 SCALE SLABS 1

SLABS:S1 ,S2,SE1 ,SE2
I. 800 mm .. I
I,. ••••••••••••••••.•• J !~

SLABS:S3,S4,SE3
~ 800 mm --i
I,. !JI t~

top reinforcement: -
bottom reinforcement:

11 No 8 mm H.Y. + 10 No 6 mm H.Y.,each way
cover: 4 mm

top reinforcement: -

bottom reinforcement:

21 No 6 mm H.Y.,each way
cover: 4 mm

SLAB:SE4
I. 800 mm .. I
I: . : . : . : . : . : . : . : . : . : . :1!~

SLABS:S5,S6,S7,sa
I. BOOmm .1

top reinforcement:

11 No 6 mm H.Y.,each way
bottom reinforcement:

21 No 6 mm H.Y.,each way
cover: 4 mm

top reinforcement: -
bottom reinforcement:

11 No 6 mm H.Y.,each way
cover: 4 mm

SLABS:SE5,SE6,SE7,SEe
I. 800 mm

SLAB:SE9

~ 800 mm .. i
I: : : : : : : : : :
top reinforcement:
11 No 6 mm H.Y.,each way

bottom reinforcement:

11 No 6 mm H.Y.,each way
cover: 4 mm

top reinforcement:
6 No e mm H.Y.,each way

bottom reinforcement:
6 No 6 mm H.Y.,each way
cover: 4 mm

SLABS:S9 to S1e,SE1 0 to SE19 and SS1 to SSS
~ 800 mm .. I

!~
SLAB:S19

I.. BOOmm .. I

top layer reinforcement:
R.MESH: 3.15 mm DIAM. / 76.2 mm CENTRES
(without central region 400 X 400 mm)

bottom layer reinforcement:

R.MESH: 3.15 mm DIAM. / 76.2 mm CENTRES
cover: 4 mm

top layer reinforcement:
R.MESH: 3.15 mm DIAM. / 76.2 mm CENTRES

(without central region 400 X 400 mm)

bottom layer reinforcement:

R.MESH : 3.15 mm DIAM. / 76.2 mm CENTRES
(without central region 400 X 400 mm)
cover: 4 mm

Fig. 3.1 Slab reinforcement details
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50mm cubes and 50mm diameter cylinders were used to obtain the static compressive and

tensile strength for the concrete used for the model specimens. Corresponding strengths for the

full scale concrete were obtained from IOOmm cubes and cylinders. The compressive stress-strain

curves for both concretes at high rates of strain, were obtained from 50mm diameter cores.

3.1.2 Materials

3.1.2.1 Concrete

An attempt was made to produce concrete of similar mechanical characteristics for slabs

of both scales. In order to do this the maximum size of aggregate used in full scale specimens was

scaled I :2.5. The same kind of cement, but different mix proportions were used.

Both kinds of concrete, microconcrete (used for the small specimens) and macroconcrete

(used for the large specimens), were designed to achieve an early compressive strength of

40N/mm2 so that testing of the specimens could be done at 7 days after casting.

Natural washed river sand was used with a nominal maximum particle size of 4mm and

grading to zone 3, BS882. The sieve analysis was carried out according to BS410 and is given in

Fig. 3.2. The sand was supplied by ARC-Concrete Ltd, .

The coarse aggregate used in this research was uncrushed river gravel with a maximum

particle size of IOmm. The percentage of absorbed water in aggregates of both sizes was

determined by using the Speedy Moisture equipment and it was found to vary between 1% and

2%. A sieve analysis for the gravel was also carried out and the results are given in Fig. 3.3. The

gravel was supplied by ARC-Concrete Ltd.

100 100

90 90

80 80

e 70 (!) 70
Z 60 MASS % OF FULL ASSING ~ 60
~ (gram) MASS (%) ~
~ 50

4.75 94 6.31 93.69 ~ 50

~ 40 2.26 234 15.7 77.99 ~ 40

30 1.18 116 7.79 70.2 30
0.6 76 5.1 65.1

20 0.3 783 52.55 12.55 20

10 0.15 160 10.74 1.B1 10
0 27 1.81 0

0 0
0 2 4 0

SIEVE(mm)

fig. 3.~ Sand sh:n anal)::sis

7.1 0.14 99.86
410 7.91 91.95
004. 77.25 14.7
594.2 11.46 3.24
153.3 2.96 0.28
6.5 0.13 0.15
8.2 0.16 0

2 4 6 8 10
SIEVE(mm)

12 14

Fig. 3.3 Gravel sieve anal)::sis
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Ordinary grade rapid hardening Portland cement (RHPC) (made by the Blue Circle

Group) was used in these concretes to give the early strength and shorter time of curing.

3.1.2.1.1 Microconcrete mix

This mix was used for the production of the small scale slabs and it contained the river

sand as aggregate and none of the river gravel. The proportions by weight are given in Table 3.2.

CEMENT SAND GRAVEL WATER

MICROCONCRETE MIX I 3 - 0.6

MACROCONCRETE MIX I 2.28 3 0.6

Table 3.2 Mix proportions

The workability of the microconcrete mix was medium giving an average slump of 56mm

and good compaction in the mould was easily reached. The average 7 days cube compressive

strength (50mm x SOmm x SOmm) and cylinder tension strength (SOmm dia x 100mm long) for

microconcrete prepared with these mix proportions were 38.97 N/mm2 and 4.20 N/mm2

respectively. The control specimens were made and later tested in accordance with BS1881 at the

test age of the specimen cast from the same batch. The results are given in Table 3.4

Loading rates for static cube compressive and split cylinder tensile strength for this kind

of specimen were lSN/mm2/min and l.SN/mm2/min respectively.

Static compressive stress-strain relationships for the microconcrete have been obtained by

testing 102mm diameter x 306mm long concrete cylinders in the ELE static loading rate cube

crusher. Altogether three tests were conducted by using the concrete from the same mix. All

three cylinders had the same kind of electrical resistance KYOW A SOmm long strain gauges

which were bonded to the concrete using KYOW A CC-33A strain gauge cement. Typical results

and test arrangements together with the ultimate stresses and strains for all three tests are shown in

Fig.3.4.
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Static modulus of elasticity E, for the microconcrete was about 27kN/mm2. The cylinder

strength was found to be 75% of the cube compressive strength (taken from the 100mm cube)

which is in the range of 70% to 90% given by ASTM.
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........-r-..' -.... ,. ."".
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.' "..' ".... ,..' /.... /..'/..../
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TEST 1 TEST2 TEST3

MAX STRESS 29.28 N/mm2 28.61 N/mm2 27.38 N/mm2

Z st A 0.0017 0.0027 0.0020

~ st B 0.0025 0.0020 0.0021t;;
st C 0.0021 0.0020 0.0032

~
:! st 0 0.0036 0.0010 0.0026

0.002 0.003 0.004
STRAIN

0.001

Fig. 3.4 Microconcrete stress-strain diagram

The stress-strain curves produced from these cylinder tests at so called static rates of

strain, 10-6 strain/sec, can be compared with the stress-strain curves obtained from the split

Hopkinson bar by testing the same kind of concrete but in this case under high strain rates of up to

2 x 103 strain/sec which represents .the behaviour of concrete in the main slab tests more

accurately.

The apparatus used for the Hopkinson pressure bar tests has already been used in previous

investigations and it consists of two 51.2mm diameter EN26 pressure bars suspended in a cradle

of steel wires, Fig. 3.5. The strain gauge stations are located at two points, to measure the

incident El' reflected ER and transmitted Er strain pulses from which the stress strain relation was

obtained for the 50mm dia concrete specimens. The relations between these pulses and concrete

characteristics are:

and
2Coes=---·eI R

o
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where: as -
E. -
E -
A -
C -o

I -o

average stress in the specimen

average strain in the specimen

Young's modulus for the steel

cross-section area of the specimen

longitudinal wave velocity in the steel

length of the specimen

Specimens 50mm diameter x 16mm long (for the 1:1 scale concrete) and 50mm diameter

x lOmm long (for the 2.5 scale concrete) were obtained from 450mm diameter x 125mm thick

concrete discs by coring, slicing and surface grinding. This technique avoided the wall effect

which would have been a significant feature of 50mm diameter cast cores. After initial trials an

explosive charge of 45mm diameter and 3mm thick SX2 explosive, was chosen to produce the

high rate of strain sufficient to produce failure of the concrete.

The specimen itself was obtained from concrete which was cured in the same manner as

slabs. Eighteen specimens were tested from both microconcrete and macroconcrete mixes.

LOSIVE
ARGE

A ~ .- ANGLE SUPPO

I I

STRAIN GAUGES
I- STEE

SPECIMEN
EXP

~ ..';: 1 .~: .~:; :..~ CH
r: :::::. _J

~
~ INCIDENT BAR tA ~ CANVAS HANGER

ISIDE VIEW I

PRESSURE BAR

Fi2. 3.5 Hopkinson Pressure Bar Test Rie

Dynamic modulus of elasticity Ed calculated from these results was about 22kN/mm2 and

the dynamic compressive strengths, strains at max stress and peak strain rates of the microconcrete

at different ages are given in Table 3.3.

Typical results for these tests are shown in Fig. 3.6
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1:2.5 SCALE CONCRETE

AGE TEST MAX STRESS STRAIN AT MAX STRAIN RATE

days N/mm2 MAX STRESS X 103 Sec-l

1 103.21 0.0207 2.02
11 2 114.56 0.0089 1.88

3 110.81 0.0070 1.88
1 112.64 0.0056 2.23

13 2 110.36 0.0291 2.17
3 108.80 0.0098 2.13
1 142.73 0.0204 2.06

15 2 127.86 0.0183 2.29
3 129.43 0.0049 2.04

Table 3,3 Hopkinson pressure bar test results for small scale concrete
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Fie. 3,6 Hopkinson pressure bar test results for microconcrete
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3.1.2.1.2 Macroconcrete mix

This mix was used for the production of the large scale slabs and it contained both river

sand and river gravel in the proportions by weight given in Table 3.2. The W/C ratio was again

0.6 and the aggregate/cement ratio was 5.28. These mix proportions reduce the creep and

shrinkage effects in the concrete prior to testing. The workability was good and gave an average

slump of 54mm. The average 7 days cube compressive strength (lOOmm x 100mm x IOOmm) and

split cylinder tensile strength (I OOmm dia x 200mm long) for these mix proportions were:

45.6N/mm2 and 3.42 N/mm2 respectively.

The compression machine used for the static testing of the cube and cylinder specimens

was an ELE (Engineering Laboratory Equipment Ltd) cube crusher. The loading rates were inside

the static range of 0.2 to 0.4 N/mm2sec and 0.02 to 0.04 N/mm2sec respectively, BS1881, parts

116 and 117.

The results for all of the tests are given in Table 3.4 and related to the small scale slabs,

SI - S19 (impact tests), SSI to SS5 (static tests) and SEI to SEl9 (impulse tests), and to the large

scale slabs, LS 1 to LS5 (impact tests) and LSEI to LSE5 (impulse tests).

TEST S1I2 S3/4 S5/6 S7/8 S9/10 Sl1-13 S14-16 S17-19 SSI-2 SS3-5

~OMP.STRENGTH (N/mm2) 35.7 37.7 37.6 36.6 40.0 43.3 45.3 48.4 49.5 51.6

trENS.STRENGTH (N/mm2) 3.90 4.12 4.33 4.02 4.03 4.58 4.88 4.62 4.08 4.33

TEST SE1I2 SE3/4 SE516 SE7/8 SE9 SEI0-12 SE13-15 SE16-18 SE19 -

ICOMP.STRENGTH (N/mm2) 47.7 43.3 38.4 36.8 30.3 37.3 40.7 39.3 40.0 -

~ENS.STRENGTH (N/mm2) 4.55 3.69 4.12 4.41 3.0 3.52 4.65 5.05 4.03 -

TEST LSI LS2 LS3 LS4 LS5 LSEI LSE2 LSE3 LSE4 LSE5

~OMP.STRENGTH (N/mm2) 47.8 46.8 56.0 43.9 41.9 45.0 45.3 39.1 38.7 36.4

[fENS.STRENGTH (N/mm2) 3.78 3.86 3.59 3.44 3.32 3.37 3.28 3.61 3.54 3.24

Table 3.4 Control specimen test results
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Macroconcrete has also been tested in the Hopkinson Pressure bar arrangements (Fig. 3.5)

and typical stress-strain trace together with the corresponding stress-time, strain-time, and strain

rate-time results are presented in Fig. 3.7.
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Fie. 3.7 Hopkinson pressure bar test results for macroconcrete

Maximum dynamic compressive stresses, corresponding strains and ultimate strain rates

for the macro concrete of different ages are given in Table 3.5.
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1:1 SCALE CONCRETE

AGE TEST MAX STRESS STRAIN AT MAX STRAIN RATE

days N/mm2 MAX STRESS X 103 Sec-l
1 99.30 0.0093 l.20

8 2 97.74 0.0081 l.21
3 90.36 0.0072 l.13
1 9l.87 0.0121 l.46

10 2 103.13 0.0106 l.33
3 114.29 0.0143 l.31
1 95.7 0.0132 l.33

14 2 95.55 0.0075 lAO

Table 3.5 Hopkinson pressure bar test results for the macroconcrete

In the case where the loads are rapidly applied to a limited area of the reinforced concrete

slabs, there is an increase in compressive strength of concrete due to the speed of loading, and a

further increase in compressive strength which can be associated with the confinement effect of

the neighbouring areas of concrete. Additional tests on macroconcrete in confined conditions

were performed in which six confined concrete cylinders were statically tested. The arrangement

is shown in Fig. 3.8.

STEEL TUBE LENGTH:

150mm (fEST 1-3)
300mm (fEST 4-6)

OUTSIDE DIAMETER: 101.6mm

WALL THICKNESS: 12.7mm

INSIDE DIAMETER: 76.2mm

STRAIN GAUGE FACTOR: 2.15

STRAIN GAUGE RESISTANCE: 119.8ohms

STRAIN GAUGE LENGTH: 30mm

SINGLE ARM WHEATSTONE BRIDGE

E
E

~
s

1.LOADING MACHINE
2.STEEL PLATTEN
3.STRAIN GAUGES
4.R.P.D.T.
5.CYLINDER SPECIMEN

53.3 N/mm2
STATIC CUBE STRENGTH:

CYLINDER
CROSS SECTION

Fh:. 3.8 Confined concrete test arram:ement

Confinement was provided by a high yield steel tube with wall thickness 12.7 5mm and

inner diameter, 10l.6mm. Three cylinders were 150mm long and three were 300mm long. The

load was applied by an Amsler loading machine of maximum capacity 2000kN and loads of up to

1950kN were produced.
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The strain in the steel tube was recorded both axially and circumferentially by ERSG's.

The movement of concrete inside the steel tube was measured by LVDTs attached to the upper

and lower machine faces. Since the length of the steel tube was equal to the length of the concrete

specimen the load had to be applied through specially made platens placed on both ends of the

specimen, with diameter lmm smaller than the inner diameter of the tube, Fig. 3.8. Strain in the

platens was deducted from the overall strain obtained from the displacement record to give real

strain in the concrete cylinder. Typical stress-strain curves obtained in the test are shown in Fig.

3.9.
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Fig.3.9 Confined concrete test results

3.1.2.2 Steel Reinforcement

Two main types of reinforcement were used: H.Y. steel reinforcement bars, later used to

produce reinforcement meshes, and ready made welded reinforcement meshes. A constant

percentage of reinforcement in the small and large specimens, which is one of the main modelling

requirements, could have been achieved if the bar spacing and diameter were both scaled down by

the 2.5 scale factor. That requirement was almost fulfilled in the slabs using reinforcement bars

(16mm bars large scale and 6mm bars small scale tests, H.Y. steel grade 460 in both cases, and

scaled spacing) but in the case of the welded reinforcement meshes it was not possible because the
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necessary bar size and spacing of the mesh that would be used for the small scale specimens was

not available in widely used H.Y. grade 460N/mm2 steel. So for the large slabs BS4483,A393

H.Y characteristic strength 460N/mm2 reinforcement mesh (bar size IOmm and spacing 200mm x

200mm) was used, but for the small size slabs the reinforcement mesh with bar spacing and steel

characteristics closest to that required, H.Y. 460N/mm2, bar size 2.5mm and spacing of 80mm x

80mm reinforcement mesh, was Heavy Twilweld self coloured 600N/mm2 mesh with the bar

diameter of3.15mm and bar spacing of 76.2mm x 76.2mm. This mesh had a tensile capacity of

at about 95% of that required.

about 113% of that required for the model slab whilst very importantly, the bar spacing was kept

3.1.2.2.1 High Yield grade 460 deformed reinforcement bars

These bars were used in the production of reinforcement meshes for some of the small and

large scale slabs (SI-8, SEI-9, LSI-2 and LSEI-2). The nominal stress at yield for this type of

reinforcement is fy = 460N/mm2 and the same was obtained in the test. The typical stress-strain

curves were obtained by testing the samples in the existing Amsler loading machine and they are

presented in Fig. 3.10
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I DIA.:6mm I

STRAINSTRAIN

IDIA.:16mm I

Fi2,3,10 H,Y, steel reinforcement bar stress - strain curve

3,1.2,2.2 H,Y, BS4483 square reinforcement mesh

Ready made meshes were found to be much easier to use than built up meshes using

reinforcing bars. So for some of the large scale slabs (LSE3-5 and LS3-5) BS4483 A393 square
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meshes of IOmm diameter plain bars with 200mm x 200mm bar spacing were used. They were

produced by Allied Reinforcement - Sheffield from cold drawn wire complying with BS4482 with

a characteristic strength not less than 460N/mm2. We found that the yield tensile strength was fy

= 550N/mm2 and modulus of elasticity was Es = 220N/mm2. A typical stress-strain curve

obtained by testing a 300mm long piece of the mesh is given in Fig. 3.11.
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Eh:. 3.11 Stress-strain curve for the BS4483 A393 reinforcement mesh

3.1.2.2.3 Heavy Twilweld reinforcement mesh

0.04

These meshes were produced by Rigby Wireworks and Co - Sheffield and were used in

the production of small slabs S9 -19 and SE 10 - 19. The bar diameter was given by the

manufacturer as 10 gauge (3.ISmm) while the spacing was 76.2mm x 76.2mm. The stress-strain

curves were again obtained by testing about a 300mm long piece of mesh in the static Amsler

loading machine. As in previous cases the bar was equipped with the KYOW A type Smm long,

foil type, strain gauges connected into a quarter bridge Wheatstone circuit in the same way as in

the main slab tests.

A typical stress-strain trace is given in Fig. 3.12.
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3.1.3 Fabrication of the specimen

In all phases of the fabrication of the specimen due care was taken to provide specimens

of consistent mechanical and physical characteristics. To achieve that uniformity certain steps and

procedures were followed and they are described on the following pages.

3.1.3.1 Reinforcement mesh

For the specimens of both sizes, two different methods were used, to fabricate the

reinforcement meshes. These were, individual high yield steel reinforcement bars, and already

made welded reinforcement meshes. In the case when the individual H.Y. steel bars were used the

following procedures were followed:

Steel bars were bought in 6m lengths and prior to being used were first brushed and

visually inspected and then cut into 1m lengths using an available steel cutter. Both ends of the

bar were then bent to 900 using an existing bar bender and the excessive lengths of the bar ends

were cut before the bars were used to produce reinforcement meshes. The required number of

lower layer bars was supported by the wooden holders and the positions for the bars of the
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opposite directions were marked. The reinforcement. meshes were then formed by tying

orthogonal bars with wire of 0.75 dia and 1.5mm dia for the small and large scale specimens,

respectively.

In all cases when two layers of mesh were used (tensile zone and compressive zone

reinforcement) the necessary vertical spacing between them was provided by wire spacers that

kept both meshes at the required distance from each other.

In the final phase of the work when only lightly reinforced sections were used, it was

decided to use ready-made welded reinforcement meshes. They were provided in sheets of 2.44 x
;

1.22m for the small scale slabs and 4.8 x 2.4m for the large scale slabs. Both types were then cut

into the right size in such a way that the central bars of the mesh ran through the centre of the slab.

These meshes did not have the ends of the bars bent but the vertical spacing between them was

again provided using wire spacers.

It is worth pointing out that with both types of mesh, their overall size was determined by

allowing side concrete cover identical to that for the faces of the slab, i.e. 4mm and 10mm for

small and large specimens respectively.

3.1.3.2 Preparation of moulds

Test specimens were cast in specially designed steel moulds. They were cast in sets of

two or three for the small scale specimens and one for the large specimens. Before pouring the

concrete, the mould was properly cleaned from the previous casting, carefully assembled and then

a thin film of mould oil was applied on the internal surface of the mould, so that the specimen

could be moved out of the mould more easily. One of the small size moulds used in the research

is shown in Fig. 3.13 and Plate 3.1. The same procedure was followed for preparation of the

moulds for the control specimens.

Reinforcement mesh was then placed into the mould and fixed to the mould by using thin

wire which would not later prevent easy demoulding.

The minimum concrete cover, 4mm for the small specimens and IOmm for the large

specimens, was provided by attaching steel spacers to the bottom bars. The top cover was again

checked once the cage was fixed into the mould.
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Fig. 3.13 and Plate 3.1 Slab mould

3.1.3.3 Concrete mixing, casting and curing

Both coarse and fine aggregates were poured into the mixer and mixed dry for 2 minutes.

Then the cement was added and mixed dry with the aggregates for another 2 minutes. About half

the required amount of water was then poured in and whilst mixing, the rest of the water was

gradually added. During the mixing a small amount of hand mixing was used to ensure no

mix was visible.

pockets of dry materials remained. The contents were then mixed for a few minutes until a good

A non-tilting electrical mixer, capacity 0.25m3 was used for both types of concrete.

The concrete was cast in the moulds in two layers, and each layer was vibrated with the

vibrating poker until no air bubbles appeared on the concrete surface.

An hour after casting, the specimens were finally smooth finished by hand trowelling,

covered with polythene sheets and left for 24 hours. For the next six days they were left under

damp sacking and polythene sheets in an effort to secure almost 100% R.H. The average

temperature in the room was 12 ± SoC.

3.1.3.4 Control specimen

In order to monitor the consistency and characteristics of the concrete that was used for

the manufacturing of the slabs, it was necessary to cast additional cube and cylinder control

specimens together with the main specimens. For the small scale slabs (microconcrete) there were
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three concrete cubes of 50mm sides and three concrete cylinders of 50mm diameter x lOOmm

long. Three cubes of lOOmm sides together with three cylinders of lOOmm diameter x 200mm

long were cast with the large scale specimens (macroconcrete).

These strength specimens were tested later, usually on the same day as the main specimen

and the cube compressive strength and cylinder indirect tensile strengths are given in Table 3.4.

Both kinds of specimen were tested in compliance with BS1881.

3.1.3.5 Preparations prior to testing

Prior to testing every slab specimen was painted white and then grid lines were drawn so

that cracks could be more easily observed and mapped later. In the case of the small slabs the grid

size was 36mm x 36mm whilst for the large slabs it was 90mm x 90mm and for both of them lines

were marked starting from the central line of the slab.

3.2 Test instrumentation

3.2.1 Displacement transducers

The main type of displacement transducers used for the dynamic testing were Penny and

Giles' Hybrid Track Rectilinear Potentiometers. These consist of two basic part, a moving stroke

on which a two-part conductive plastic wiper is attached whose linear movement across the second

main part, a resistive track of infinite resolution, is directly proportional to the voltage difference

in the output of the two. In the case of our tests the rectilinear potentiometer displacement

transducers, RPDT's, were powered by 10 volt DC and produced good results. Special mountings

were provided on both ends of the transducer so enabling good connection between the stiff steel

RPDT holder and the specimen itself.

A 3D-cross section of the transducer is given in Fig. 3.14 and typical static calibration

traces together with some results are shown in Fig. 3.15. All transducers used in the tests were

statically calibrated with the same electrical connections as in the dynamic tests. The RPDT static

calibration rig consisted of a micrometer screw gauge and a dial gauge that together with the
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Digital Voltage Meter gave the relation between the voltage output and the displacement of the

RPDT's stroke.

Fig. 3.14 Displacement transducer
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Fig. 3.15 Displacement transducer test results

3.2.2 Digital Storage Oscilloscopes

These were used in all dynamic tests to record and temporarily store the outputs from the

transducer measuring devices, i.e. electrical resistance strain gauges, RPDTs, opto switches and

pressure gauges before transfer to the personal computer. Five different kinds of oscilloscopes

were used, and the "GOULD" digital storage oscilloscope OS 4020 (Plate 3.2) will be taken as a

typical example. The OS 4020 is a high speed dual channel storage system in which each channel

stores 2047 data points. It can be set for sensitivities from 5mv/cm to 20v/cm vertical resolution

and capture rate of 200J.lS/cmto 0.50s/cm of screen so covering any event lasting from 2ms to 5

sec at a frequency of up to IMHz. Both channels are synchronised on the same time base.
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Triggering to start recording can be done externally or by the pulse from the event itself with

pretrigger varying from 25% to 100% of the record in 25% steps. The system offers post storage

expansion of up to 50 times.

After capturing the event on the oscilloscope it was later transferred to the computer by

using software developed by Sheffield University.

Plate 3.2 Digital storage oscilloscope OS 4020

3.2.3 Strain Gauges

Electrical resistance strain gauges were used to measure the tensile strain in the

reinforcement and pressure bars (load cells) in the static and dynamic tests and to obtain static

stress-strain relations for the materials used in the slabs. The principle of the operation is that the

change in electrical resistance caused by elongation of the specimen due to stresses, is measured.

Since:
S·LR=-
A

where: R - electrical resistance

L - length of wire

S - specific resistance

A - cross-sectional area

then:
Llli. AL
-=K·-R L

where: K - the gauge factor (2 to 2.2)
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The strain gauge length is very important because the strain recorded is the average strain

over its length (Fig.3.16). Generally, the shorter the strain gauge the better.
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Fig.3,J6 Effect of using too long strain gauge

The efficient attaching of strain gauges is vital because all further measurements are very

dependent on the quality of installation and protection from the moisture. For all our tests it was

done as follows:

(a) The reinforcement was cleaned to remove any rust, seale and grease and the surface was

given a smooth finish.

(b) The position for the gauge was marked.

(c) The KYOWA CC-33A strain gauge cement was applied to the back of the gauge and then

positioned carefully.

(d) Pressure was then applied to the gauge through a thin polythene sheet.

(e) The wires from the gauges were connected via terminals to the main twin pair insulated

and shielded signal cables.

(f) After checking their resistance the gauges were moisture sealed using polyurethane

varnish and then covered with adhesive lined heat shrink sleeving.

For our tests we used "KYOW A" foil type strain gauges and terminals with the typical gauge

characteristics being 120 n resistance, Smm and 30mm long and gauge factors K = 2.15 or 2.08.
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3.2.4 DC - Bridge Amplifier - FE359 - TA

Fylde type DC - Bridge amplifiers (Plate 3.3) were used to power and amplify the outputs

from the electrical resistance strain gauge Wheatstone bridge circuits employed on load cells,

pressure gauges and reinforcement bars and so eliminate or reduce disruptions in the output signal

caused by the noise produced by damp and radio interference. Analogue voltage signals can be

amplified up to 10000 times to give up to 10v full scale output. The control facilities consist of

amplification voltage controls (up to 10mv, 100mv, and IV), bridge balancing controls (coarse

and fine balancing), calibration controls and input voltage controls. Each amplifier is connected to

one channel of a storage oscilloscope. In our case the amplification of the signal varied from 250

for circuits on reinforcing bars to 2500 times for some of the pressure gauge measurements.

Circuits were powered from 4 to 10 volts DC.

Plate 3.3 FILDE DC - Bridge Amplifier Plate 3.4 Microswitch

3.2.5 Microswitches

Long lever microswitches (Plate 3.4) were initially used on the small scale impact rig to

trigger the timer for velocity measurements and the flash gun to mark the beginning of impact on

the high speed film. It had a maximum travel of 2.79mm and maximum distance between

triggering points of 1.27mm which made the maximum velocity error O.13mJs or 2.3% of the

average velocity obtained in the tests.

86



3.2.6 Slotted Opto-Switcbes

The infra red light opto switches (Plate 3.5) were used to measure more precisely the

velocity of the drop hammer in both small and large scale impact tests. Both major parts, the

infra-red source and the sensor, were housed in a slotted plastic mounting. When the trigger blade

passes through the slot it produces a sharp edged signal from which velocities were later taken.

This system proved to be much more precise than the microswitches, because the point where it

triggers is constant. The circuits were usually powered with 5 volts DC and each system

contained two sets of emitters and sensors so giving, for certain sizes of passing blade, four

independent results.

Plate 3.5 Slotted opto switch Plate3.6 Universal counter timer 9903

3.2.7 Universal Counter Timer 9903

The counter timer (Plate 3.6) was initially used to measure the hammer velocities for the

small scale impact tests. It has a frequency range from 10 to 50MHz and screen format of seven

digits in-line. Any time interval from lOOnsec to 28 hours can be measured by selecting

appropriate range unit. In our case it measured time intervals of about 20msec (which later gave

us the average velocity between two triggering points). The timer itself was triggered by two

microswitches the first of which starts the timer and the second stops it. The time was then

simply read from the screen.
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3.2.8 D.C. Power Supply

D.C. bench power supplies (Plate 3.7) were mainly used to supply a constant DC voltage

to the displacement transducers. The coarse and fine controls allow output voltage to be varied

between zero and maximum voltage (20 or 30 volts D.C.). The supply stability is about 10,000

times better than the stability of the ordinary mains supply. In most of the cases displacement

transducers used a 10V supply.

Plate 3.7 D.C. Bench Power Supply Plate 3.8 Photec IV - High Speed Camera

3.2.9 Photec IV -16mm High Speed Camera

A rotating prism high speed camera, Plate 3.8, was used to film the damage on some of

the small scale impact and impulse tests. When recording in full frame mode the speed can vary

from 100 to 10,000 pictures per second (Pps) but half frame and quarter frame shutters are also

available and these increase the speed by two and four times respectively. The camera can

accommodate from 30 to 150m of 16mm film. Very importantly the camera has an internal

lighting source that marks the edge of the film with a mark at every millisecond. Two cables are

provided with the camera. The Y-cord is used to connect the camera to the event - synchroniser

and the remote cord is used for starting the camera. The event-synchroniser can be set to start an

electrically controlled event, a blast or impact in our case, at any preselected point on the film. It

was powered by a 15 volt 2A DC power supply and the amount of film set to pass before
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triggering the event is set on the control panel of the camera. Illumination of the specimen

becomes of major importance when the camera runs in the fastest mode so we used 8000W of

light positioned very close to the specimen.

In our case a half frame shutter was used so framing rates of up to 10,000 half frames per

second were used to record the events. Ilford 400ASA HP5-plus Type 782, 30.5m long 16mm

wide high speed films produced images of very high quality. After processing, the high speed

films were analysed with the Vanguard instrumentation motion analyser projector which allows

the freezing of single frames and up to 15 times enlargement of the picture and can run the film at

variable speed.

3.2.10 Reynolds FS-I0 Firing System

The firing system, Plate 3.9, was used to generate and deliver an electrical pulse to fire the

detonator and thus the charge itself It consists of a control unit, which provides low charging

voltage to the firing module and ensures a safe and reliable operation, and a firing module, which

provides an input voltage of 3000 volts to the detonator lasting for about 0.2Ilsec. Peak output

current is about 1000Amps.

All the charges were initiated by the L2Al detonators which had operational time of about

50llsec.

Plate 3.9 F.S.IO - Firing System
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3.2.11 Kulite Pressure Transducer - HKM-375-1000

Kulite miniature pressure transducers of two different types were used for all explosion

overpressure measurement. They are both made as fully active four arm Wheatstone bridges that

utilise either a metal (Kulite HKM-375-1,OOO) or a silicon (Kulite HKS-375-15,OOO) diaphragm

that deforms under the blast pressure and has a piezo resistive sensor as its sensing element. Both

were of a sealed type operational mode with rated pressures of 68.95 bar and 1034.25 bar

respectively. The natural frequency of the metal diaphragm was 275kHz and of the silicon

diaphragm was 700kHz. This were both very satisfactory. The sampling rates used were up to

IMHz. They were both usually powered with 5V DC and infinite resolution output signals were

later amplified from 100 to 2500 times. As can be seen from Plate 3.10, 9.5mm thread allows

very easy installation of the gauge and on all occasions they were mounted in steel holders facing

the blast wave.
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Plate 3.10 HKM-375-1000-Kulite pressure transducer
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Both gauges, were supplied with the calibration factors, but were also statically calibrated

and typical results are given in Fig. 3.17.
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Fh:.3.17 Pressure 2au2e calibration and test results

and some of the typical traces are shown in Fig. 3.17-

The gauge with the metal diaphragm produced much better and more consistent results

3.2.12 Hycam - K 2001 R -16 mm High Speed Camera

This camera, Plate 3.11, was used in the initial phase of the work for filming the small

scale specimens under impact load. It had a film capacity of about 30m and a variable frame rate

of 100 to 8500 full frame pictures per second (Pps). The camera allowed event synchronisation

and the event synchroniser itself provided the triggering of the major event to occur at a

preselected point on the film. The frame rate was controlled by varying the input voltage to the

camera motor by a variable transformer, The timing light was set to give 1,000 marks on the film

per second in order to confirm the set framing rate.

In our case the camera was set for about 4,000 pps (voltage 1l0-150V) and illumination

was provided by 2,000W cine lights which were placed at about 400mm from the specimen.
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Plate 3.1116mm HYCAM camera

3.3 Test arrangements

3.3.1 Support conditions

Most of the specimens tested in these investigations had supports that can be classified as

fully fixed supports but in the initial phase of the research some tests on the small scale specimens

were performed on supports which were free to rotate, but on which all vertical lifting and sliding

of two edges of the slab was prevented. Also during the testing programme it was observed that

the formation of the shear plug in the central region of the specimen had a great influence on the

behaviour of the slabs so it was felt useful to do some tests in which that shear plug region would

be predefined by placing an additional set of inner supports and consequently some of the small

scale specimens were tested in that way, Fig. 3.19.

The widely accepted scaling principles require the support condition for the large scale

specimens to be an enlarged version (in our case 2.5 linear scaling factor) of the small size

supports and this rule was followed.

3.3.1.1 Free supports

This type of support was used in the initial phase of the research when testing the small

slabs SI to S8, S17 and S18 (impact tests) and for SEI to SE4 (impulse tests). As can be seen
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from Fig. 3.18 this kind of support prevents the ends of the specimen from moving vertically in

either direction but allows a certain degree of rotation on all four edges out of which two had a

freedom of horizontal movement in both directions on rollers. The other two edges were placed

on unmovable rollers welded to the frame. In the case of the explosive tests it was felt necessary

to remove the top face rollers and replace them with rubber pads.
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Fh!. 3.18 Free supports

3.3.1.2 Inner supports

••••••••••••••••••••••••

••••••••••••••••••••••••

Inner supports together with fixed outside supports were used in the small slab impulse

tests SE7 and SE8 and in the small slab static tests SS3 to SS5. In all cases they were finely

adjusted before the test so that they were just touching the slabs while the slab itself was still

mostly supported by the outside fixed supports. In both types the touching area of the support was

80mm all around.
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Inner supports are shown in Fig. 3.19 .
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3.3.1.3 Fixed supports

Fh:. 3,J9 Inner supports

This type of support was used for most of the small scale specimens (SE5, SE6, SE 10 to

SE 19 - impulse tests, S9 to S 16 and S19 - impact test and also SS 1 and SS2 - static tests) and for

all large scale specimens. Scaling rules were also carefully fulfilled so that for the small scale

slabs the supported area was 80mm on all sides and for the large size specimens it was 200mm. In

both cases fixity was provided by clamping the upper and lower beams together.

In the case of the small slabs, G-clamps were strongly hand-tightened while for the large

slabs bolts were also hand-tightened with the appropriate size spanner.

The main feature of the fixed supports, Fig. 3.20 is that they prevent almost all rotation of

the slab and vertical and horizontal movement in the support region. All four sides of the slab

were fixed in the same way.
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3.3.2 Loading conditions
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The load vs time relation is of crucial importance in understanding the response of the

structure to dynamic loading. Great attention has been paid to produce uniformity in the

application of both types of dynamic load.

The use of model and prototype specimens requires the application of the scaling laws to

the loading functions applied to the specimens. Available sources indicate that the two

dimensional linear scaling of the load transmitter (pressure bar in the case of impact) and cube

root scaling laws in the case of impulse, represent the minimal scaling requirements that can

provide any consistency between the specimen response from two different sizes. In addition the

impulse testing arenas should have similar features for both scales. The following sections

provide detailed information about the loads to which the slabs were exposed.
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3.3.2.1 Impact test

Impact loads were produced by a free falling cylindrically shaped hammer. Both size

specimens were tested in the same specially designed and built drop hammer rig (Fig. 3.21). It

consists of a steel frame supported on the roof of the laboratory which guides the dolly carrying

the hammer. To operate the system the hammer is first lifted to the required drop height by a

dolly which holds the hammer by its top plate. The dolly has four wheels which ride along two

vertical rails and keep the dolly and the hammer in the vertical position as they are lifted by the

lifting winch, or as they fall. During lifting, the dolly is raised carrying the hammer, until it

engages with a solenoid operated bomb release (opening time about 50msec). Once the dolly is

released, both it and the hammer fall at the same velocity but when the hammer hits the pressure

bar and comes to a halt before rebounding, the dolly continues to fall until it is stopped by a set of

buffers. Since there was no means of stopping the hammer hitting the specimen again after

rebound, the whole impact event actually consists of not one but several impacts with a significant

decrease in power for each successive impact. The frequency of repeat impacts was low enough

for them to be clearly distinguished in the pressure bar records.

The velocities obtained in this rig are up to 99% of free fall velocity. A maximum drop

height of 3.5m is available for the hammer. The impact of the dolly on the frame is transmitted

directly to the roof by the guide rails and the attached buffer plate supported by the roof structure

of the laboratory. Consequently there is no real possibility of any of the stress waves produced in

the frame of the drop hammer reaching the slab or the instrumentation attached to it, since there is

no contact between the two. The slab response to the impact is produced by the hammer

impacting a load cell which rests freely on the slab. Slabs of up to 3.5m x 3.5m can be easily

tested in this drop hammer since the frame is supported on the roof above.

The hammer is restricted in diameter but can easily be changed in mass by simply using

hammers of different lengths. Also the simple cylindrical shape of the hammer means that stress

waves in the hammer can be more easily analysed enabling the impact force to be measured more

accurately by electrical resistance strain gauges bonded to the static load cell.

For the small size slabs, a 33.7kg, 200mm diameter and 131mm long hammer was

employed while for the large slabs a 70kg, 272mm long and 150kg, 583mm long hammers were

used.
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For both types of slab specimen the load from the impacting hammer was transferred to

the specimen through a mild steel 500mm long load cell. In the case of the small slabs its

diameter was 50mm while for the large slab scaling factor of 2.5 was used so the diameter was

125mm. Both bars were equipped with electrical resistance strain gauges which were used to

record the stress waves produced by the impact. Section 3.3.3.1 gives the details of the

instrumentation on the load cell.

Two different types of impact were produced. In the so called hard impact the hammer

struck directly onto the pressure bar (or load cell) while soft impact was obtained by placing a

25mm thick rubber on the top of the pressure bar to serve as a buffer between it and the falling

hammer. For both sizes of slab the diameter of the rubber pad corresponded to the diameter of the

pressure bar.

3.3.2.2 Impulse tests

All explosive tests were performed in blast cells at the laboratories for Civil Engineering

Dynamics, University of Sheffield, CEDUS. Since the main objective of the research was to

determine the behaviour of the slabs to blast from close range explosive charges it was decided

that its standoff distance to the specimen should be in the region of 500mm to 200mm for the

large specimens and from 250mm to 50mm for the small slabs. In all cases standoffs were

measured as a clear spacing between the charge and the specimen. All the tests were, because of

the amount of explosive involved, performed in open blast cells and very strict safety procedures

were adhered to.

3.3.2.2.1 Test arena

Both small and large scale slab specimens were tested outdoors in the open roof test

chambers. The small scale slabs were tested in a chamber built of concrete blocks that was 2m

wide, 5m long and 2.5m high with a concrete floor and no roof. Large scale slabs were tested in

the open space at the rear of one of the R.C. bunkers. The space at ground level, was about 5.43m

long and 2.9m wide with side walls about 3.8m high at the top.

The 1:2.5 scale testing site is shown in Plate 3.12.

98



Plate 3.12 1;2.5 Scale impulse test site

3.3.2.2.2 Explosive charge

The explosive used in the impulse tests was plastic explosive PE4 which had mass density

of 1590kglm3, detonation velocity of 8189mJsec, detonation pressure of 2.68 x l07kN/m2 and

mass specific energy of 5111kJ/kg2 which gives it a TNT equivalent of 1.13.

Apart from a few initial tests on the small scale slabs where the charge was cylindrical in

shape, all charges were of hemispherical shape with the spherical side of the charge facing the

specimen.

They were all hand made from 454g explosive sticks that were compacted in to the

specially made steel moulds, so producing a charge of uniform shape and consistent density. The

L2Al detonators were placed in to a pre-formed lOmm deep hole in the centre of the flat side of
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the charge in all tests and then held in place by insulation tape. In all tests the charges were

initiated from the side furthest from the specimen.

The large scale charge was chosen to be 1300g since the large blast cell has been proved

for that amount of explosive. The diameter of the hemispherical charge was 142.Smm.

The scaling law for explosions is based on geometrical similarity and the explosive

charges and distances from the specimen were scaled according to the cube root scaling laws.

Cube root scaling indicates that a charge of mass Ml = 1300g will produce the same peak

overpressure and shock wave velocity at a distance RI from the charge, as a scaled charge of mass

M2 of the same explosive type and shape at range R2 when:

So the scale factor is:

and for:
R
_1 = 2.5 and M) = 1300g then:
R2

M = 1300 =83
2 2.53 g

For practical reasons (the same size detonator was used for both scales), the model charge

was actually M2 = 78g and it had a diameter of S7mm,. Although the scaled charges gave the

same peak pressure and shock wave velocity at scaled distances, the positive duration and impulse

produced by the larger charge are 2.5 times greater than corresponding values produced by the

smaller charge at scaled distances.

3.3.2.3 Static test

In all five statically tested small scale slabs, loading was done by the displacement control

screw jack type loading machine. Loading rates were kept well within the static region at

lSN/mm2/min. The load was applied to the specimens through the Novotech type SOkN load cell

placed on top of the spherical seat under which there was a SOmm diameter x SOmm long mild

steel cylinder. The purpose of this transmitting cylinder was to provide the same area of loading
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of the specimen as in the impact tests. The static test loading arrangement used for the SS 1 and

SS2 slabs is shown in Fig. 3.22.

E
E

~ 3.

1.TOP FRAME 80mm E.A.
2.BOTTOM FRAME 80mm E.A.
3.VERTICAL STANDS
4.R.P.D.T.s
5.REINFORC.STRAIN GAUGE CABLES
6.LOAD TRANSMITTER (50mm dia)

Fig. 3.22 Static test loading arrangement

3.3.3 Specimen response record

A very important feature of any experimental research is the ability to record the

behaviour of the test specimen in every aspect which can more precisely determine and explain its

response. Testing in the field of dynamic response, particularly under impact and impulse

loading, has been additionally complicated because of the very transient nature of the event which

complicates the problem with additional unknowns.

Measurements of the response of the specimen taken in this investigation can broadly be

separated as measurements prior to the loading (hammer velocity, static concrete characteristics),

during the loading (force-time relations, pressure-time relations, displacement of the specimen,

reinforcement strain and filming of the areas of interest) and post test assessment of the specimen

(crack marking and photographing, overall assessment of the state of the specimen etc.).

Most of the measurements immediately prior to and during loading are, because of the

very short time duration and the nature of the load, very complicated and require great knowledge

of the instrumentation and its features. In addition to this, test settings in most of the cases require
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some prediction not only of the specimen response in physical terms (deflection, strain, force, etc.)

but also of the duration of the event and synchronisation (filming at 10,000 p.p.s. on 30m long

film for example). Obviously none of these parameters can be readjusted during the test itself.

Further problems are caused by the need to safely protect the usually very expensive equipment

which is particularly complicated in the case of blast loading.

Finally the selection of the equipment that can be used, and its usage, is closely related to

the amount of money available, to the amount of already existing equipment and its condition and

usefulness and very importantly to the time available. All measurements and recordings of the

specimens' response taken in this work represent a compromise between all above mentioned

aspects and they are described in the following pages.

3.3.3.1 Impact load measurements

The previous sections and Fig. 3.21 show that the impact load was produced by the falling

drop hammer impacting a stationary mild steel pressure bar with the end in direct contact with the

specimen. The main purpose of the bar was to measure the strain-time relations for the bar

produced by the hammer hitting it which can later give the force applied to the specimen.

The pressure bars used for both large and small specimens were round bars and that used

for the large specimens had a diameter of 12Smm. For the small specimens the diameter was

SOmm. The length of the pressure bar was SOOmm for both scales of specimen. The voltage

output from a Wheatstone bridge with electrical resistance strain gauges, (section 2.2.3, ERSG

Kyowa KFC-S-C1-II, bonded by CC-ISA adhesive), was measured and calibrated to give load.

Both pressure bars were equipped with one strain gauge station consisting of four ERSG

arranged on opposite ends of orthogonal bar diameters in order to cancel bending strains. The

gauges were connected into the active arms of a full Wheatstone Bridge as shown in Fig.3.23.

Dummy gauges were bonded to short steel bars of the same diameter as the pressure bars. The

instrumentation arrangement for both pressure bars is also given in Fig. 3.23.
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1.

o.,....
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E
E

§

o A2

2.

A1

3.

I

A ·ACTIVE
D·DUMMY

, .LOAD CELL CROS SECTION
2.LOADCELL
3.STRAIN GAUGE STATION
4.SPECIMEN
S.wHEATSTONE BRIDGE CIRCUIT
6.AMPLIFIER
7.0SCILLOSCOPE

Fi2.3.23 Pressure bar set-up and strain gau2e station arrangement

A static load cell calibration was done for both bars in an Amsler loading machine. For

the small scale pressure bar the multiplying (calibration) factor is IV = 161.3kN using a bridge

supply of 5V and 500 times amplification.

The results of the static load calibration for the large scale pressure bar are given in

Fig.3.24 The calibration factor is IV = 2067.7 kN using the 5V bridge supply and 250 times

amplification

1300
1200

1100
1000
900
800

C
~ 700
0

9 BOO
500
400
300
200
100
0

·100
·1

LOAD CELL
CALIBRATION

RESULTS OBTAINED FOR:
INPUT VOLTAGE: s volts
AMPLIFICATION: 2500 times

IF AMPLIFICATION: 250 TIMES, THEN:
CALIBRATION FACTOR: 1 volt= 20B7.7 Kn
(107 % of theoretical calibration)

3
VOLTAGE (volt)

Fig.3,24 1:1 Scale pressure bar - static calibration results

5 7
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In addition to the static load calibration, a theoretical calibration has been done for both

pressure bars, using the Wheatstone Bridge equation:

where: dE - output voltage (volts) from the unbalanced bridge

v - supply voltage (volts)

RI = R2 = R~ = R4 - arm resistance (ohms)

M - change to arm resistance as a result of strain E

r =R2 =I
RI

~RI =_~R3 =S -E
RI R) g

Sg - gauge factor (given as 2.08)

~R ~R__ 2 = __ 4 = 0 (because R 2 and R4 are dummy gauges)
R2 R4

Since:
0' P

E=-=--
E AxE

where A = cross-section of the bar and for the large pressure bar:

A = (125)2 X 1t = 12271. 8ml1l2 ,and E = 204,000N/1111112
4

for P = IkN, strain should be:

E= 1000 =0.3994xI0-6
12271. 8 x 204, 000

then:
1

Llli=5x 2 x2x2.08xO.3994xlO-6
(l+ 1)

Llli = 2.07688·10-6 Volt/kN

For amplification 250 times:

Llli = 250 x 2. 07688 X 10-6 = 0.51922 X 10-3 Volt/kN

and IkN = 0.51922 mv or I Volt = 1925, 96kN

For the case of the small bar the theoretical calibration gave a value of IV = 152.63kN

(for the same amplification and voltage).
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All results presented further in the text were calculated using experimentally obtained

calibration factors.

3.3.3.2 Hammer velocity measurements

In the drop-hammer impact tests the velocity measurements were obtained in two different

ways. On the first eight small scale specimens two microswitches (section 3.2.5) were mounted as

shown in Fig. 3.25 and connected to a Racal timer (section 3.2.7) which recorded the period of

time for the hammer to travel between them.

1.HAMMER
2.LOADCELL
3.MICROSWITCHES
4.0UTPUT SIGNALS
S.TIMER

I MICROSWITCH I

Fie.3.25 Arraneement for measurine drop-hammer yelocity by mjcroswitches

For the 11 remaining small scale slabs and for all large scale specimens, a "comb" was

"RACAL"
TIMER

attached to the hammer dolly and this passed through opto switches (section 3.2.6) attached to the

rig as shown in Fig. 3.26.

1.HAMMER
2.LOAD CELL

5.S0FT"BUMPERS"

6.0PTO SWITCH

3.HAMMER CARRIER 7.TRIGGER COMB
4.HAMMER GUIDES a.OSCILLOSCOPE

4.

Fie. 3.26 Arraneement for measurine drop-hammer yelocity by opto-switches
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The velocity was then obtained by measuring the time for the comb teeth to go through

them. The whole event was recorded on a digital oscilloscope and later analysed to give the

velocity.

The velocity of the hammer was found to be well above 90% of the theoretical free fall

velocity in all tests.

3.3.3.3 Blast pressure measurements

In all the tests, Kulite type pressure gauges (section 3.2.11) were employed and usually

powered with 10 volts D.C. and amplified from 100 to 2500 times. The connection circuit is

shown in Fig. 3.27.

• 1.

1.CHARGE

2.STEEL PLATE

3.PRESSURE GAUGE

4.AMPLIFIER

5.OSCILLOSCOPE

I PRESSURE GAUGE DESCRIPTION: I
TYPE: "KULITE" HKS(or HKM) 375 SERIES

PRESSURE RANGE: max.1 0.000 psi", 689.5 bar

ELECTRICAL EXCITATION: 5 volt D.C.

FULL SCALE OUTPUT: 100 m volt (nominal)

IF AMPLIFICATION A=100 times THEN 1 volt = 68.95 bar

Fig.3.27 Instrumentation for pressure measurement

The main problem in the evaluation of the blast pressure imposed onto the slab specimens

was that the blast pressure gauges could not be placed between the charge and the slab but were

placed at 500mm on the other side of the charge and so were exposed to the pressure from the flat

side when the slab was exposed to pressure from the hemispherical side of the charge. For this

reason a series of tests was conducted in which pressure-time histories from the spherical side

were recorded. Two different test set ups were used and they are shown in Fig. 3.28. The

pressure measured from the flat side of the charge during the main tests gave some comparison

between the loadings in order to see if they were consistent.
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1200 mm

•
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::::::::::::::::;:::::::;::::::::;;:

I .. 1200 mm

1.STEEL SLAB (35 mm thick)
2.KULITE PRESSURE GAUGE POSITONS

3.SLAB STANDS

4.78 gr PE4 CHARGE

2400mm
•• explosive charge
•• pressure gauges

2. ~
It-

3. ,

1.

•
1150 500 650

Fig. 3.28 Pressure test set-up

3.3.3.4 Reinforcement strain measurement

For each of the impact and impulsive tests, the two bottom layer bars, one in each

direction, were equipped with electrical resistance strain gauges placed at the midspan point of the

bars. Before bonding the electrical resistance gauges, the reinforcement was carefully cleaned of

rust and a small area about the size of the gauge was ground smooth. The strain gauges were
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glued to the bars, using gauge adhesive type CC-15A. Wires were then soldered to the gauge

terminals and the leads were covered with an adhesive and lined heat shield which did not allow

any contact between the gauges and the surrounding concrete.

The gauges were type Kyowa KFC-IO-CI-II (section 3.2.3) connected into a Wheatstone

Bridge circuit as shown in Fig. 3.29.

SINGLE AXIAL STRESS
(UNIFORM TENSION AND COMPRESSION)

BENDING STRAIN CANCELED
WHEATSTONE BRIDGE

Fie. 3.29 Wheatstone bridee circuitO' for measurim: the strain in the reinforcement

The gauges were calibrated using the manufacturers gauge factor in the Wheatstone

Bridge equation. For this type of Wheatstone bridge the relation between the output voltage from

the system and the strain £0 is given as:

1
eo =-·Ks·€o·ei·A

4

where: K, - gauge factor (given as 2.15 by the gauge manufacturer)

ei - input voltage

A - amplification of the signal

for: A = 100 times and e = 4 volts

eo 215£0

so: I volt = 0.0046512 strains.

3.3.3.5 Deflection measurements

The deflection measurements were taken by rectilinear potentiometer displacement

transducers (RPDT) (section 3.2.1) which were attached to the specimens at the positions shown

in Fig. 3.30 In the case of the impact and impulse tests they were all placed along one centre line

of the specimen but the positions of the transducers for the static tests SS 112, SS3-SS5, are along

both centre lines and one diagonal as shown in Fig. 3.30.
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Fit:. 3.30 RPDT positions
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The RPDT's were connected to the specimen through special fixings (Plate 3.13) that kept

the contact between the slab and the RPDT in upward and downward movement and allowed

rotational movement of the RPDT. These fixings were screwed onto a threaded rod fixed to the

central reinforcing rod at mid and quarter span. The fixing was simply a nut slipped onto the bar

and the nut had a short length of threaded rod brazed onto it. When ready made welded

reinforcement meshes were used, the fixings were tightened onto the threaded bar which was

strongly wired to the reinforcement.

Plate 3.13 RPDT slab fixing

With this connection, the RPDT measured the deflection of the reinforcement layer, and

not the lower surface of the concrete slab. This was a necessary arrangement because the concrete

usually spalled away beneath the point of dynamic loading.

In all the tests displacement transducers were connected to 10 volt powered circuits as

shown inFig. 3.31
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1.
4. 5.

3.

1.R.C.SLAB
2.R.P.D.T.FIXING
3.R.P.D.T.

4.POWER SUPPLY
5.0SCILLOSCOPE
6.REINFORCEMENT BAR

Fig.3.31 Instrumentation for deflection measurements

3.3.3.6 High speed filming

High speed filming was used on almost all small scale specimens. Two different cameras,

Hycam K-200IR (section 3.2.12) and Photec IV (section 3.2.9) were usually set to run at up to

10,000 p.p.s. As mentioned earlier (section 3.1.3.5) on all small scale slab specimens, meshes

were drawn before the test with squares of 36mm x 36mm, starting from the central line. In all

cases when the Photec IV High speed camera was employed a half frame shutter was used and the

size and position of the area that was filmed is approximately shown in Fig. 3.32.

SUPPORT
AREA ~.-.~--~~~~~--~~~

CENTRELINE

t

,,..

36X36mm : .
mesh ,I:]

t±:-+~..~ -:"'~ '_~:±.",:-4~:=~:±;I.• ~ ~
CENTRE LINE

.......... _ ..... _ .. ","_ ...... _ ...... _ ..... _ ..... :.. ..... :.. .. _.;. .. _0_ ...... '. , ', '
.,

-: ,
"

, ,

I BACKSIDE I
OF THE SLAB I~--~~~--~~~~~~

·H·

,,

: I· abo<rt450mm ·f
.: !
. I~_- .. __ :- , • ~ __ -; ._" _:- __ ,:,...'

640mm ·H·
Fig. 3.32 The area that was filmed by the High Speed Camera

In the case of the impact test, since the specimen had to be kept horizontal, filming was

done through the 450 inclined mirror placed just under the specimen while the camera was at

about 1.5m distance from it securely fixed to the floor. The mirror itself was positioned and held

in such a way that it rested on the floor and did not touch the drop hammer rig and consequently
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did not vibrate during the impact. In the initial phase of the impulse testing of the small scale slabs

the arrangement with the 45° mirror was again employed but it proved to be unreliable since the

mirror was very difficult to protect. To overcome this problem a new rig was designed and built

in which the slab was held vertically and the camera placed at about 2.5m behind the wall filming

through the protected port hole. The camera arrangements are shown in Fig. 3.3.3.

I' :2.5 SCALE SLABS· IMPACT TEST H.S.CAMERA ARRANGEMENT 1
800

4.

1.LOAD CELL
2.R.C.SLAB
3.MIRROR
4.H.S.CAMERA

I,:2.5 SCALE SLABS· IMPULSE TEST H.S.CAMERA ARRANGEMENT I

E
E
o
II;

1.

1 SIDE VIEW I1 FRONT VIEW I

2.

8.

6.

660mm 1220mm

1.R.C.SLAB 3.PORT HOLE PROTECTION 5.H.S.CAMERA 7.BLAST CELL WALL
2.SUPPORT FRAME - E.A.80mm 4.STEEL PLATE 6.STEEL FRAME S.TOP SIDE SUPPORT FRAME

Fi1:.3.33 Hieh speed camera arran1:ements
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3.3.3.7 After test damage assessment

After the test, specimens were carefully removed from the supports and all the visible

cracks were marked by tracing along them. Since the smallest cracks were not visible by the

naked eye a 6 times magnifying glass was used to find and mark these cracks. Specimens were

later photographed and stored.

3.3.4 Test set-up procedure and event synchronisation

The transient nature of the events and extensive usage of electronic instrumentation, made

the whole process of testing very time consuming and complex to set up. Some aspects of these

complexities are described on the following pages and they highlight the need for a properly

designed approach to testing.

3.3.4.1 Impact test

The impact test arrangement for small scale slabs is shown in Plate 3.14.

Plate 3.14 Small scale slab impact test set up
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The test procedures were as follows and will be explained for the more complicated case

of the small scale tests:

1. R.C. slab placed onto the support rig.

2. Top support frame positioned and G clamps tightened.

3. Displacement transducers connected to the threaded bars on the lower surface of

the slab.

4. Load cell positioned at the centre of the slab.

5. Dolly buffers placed on the sides of the load cell.

6. Mirror placed underneath the slab.

7. High speed camera positioned.

8. Electrical resistance of the strain gauges on the reinforcement and load cell

checked.

The next step was to connect the instrumentation and it was done in the following order:

(a) The required number of digital storage oscilloscopes were placed on the

instrumentation bench at a short distance from the rig and properly connected to

the I.E.E.E. socket on the P.C. so the data can later be transferred to the computer.

(b) The required number of D.C. stabilised power supplies, amplifiers, batteries and

dummy strain gauge boxes placed close to the rig.

(c) Displacement transducer output cables were connected into the connection box

and powered by the required voltage (usually 10 volts) from the D.C. power

supply. BNC end output cables were connected to the required number of storage

channels and oscilloscope settings (data capture rate, voltage capacity, trigger

mode, trigger window, position of the traces etc.) adjusted to the required

positions. Finally the RPDT's were checked by moving the stroke to its ultimate

position.

(d) The output cables from the electrical resistance strain gauges on the reinforcing

bars were connected with the inactive "dummy" gauges with which they made a

fully active, four arm Wheatstone bridge. Output cables from the bridge were

then connected to the bridge amplifiers to power the bridge and amplify the

signal. They were then set to the right modes (amplification, power supply, etc.)

114



and lastly the bridge circuits were finely balanced on the amplifier and if more

course adjustment was needed, also on the dummy boxes. The amplifier output

cables were connected to the digital storage oscilloscope and were then set to run

in the required mode.

(e) The electrical resistance strain gauges mounted on the load cell were connected to

the oscilloscopes in the same way as the reinforcement gauges. Activity in the

load cell was checked by tapping the top with a hammer.

(t) The velocity rig opto switches were powered by two D.C. power supplies one of

which powered the infra red emitters and the other the sensors. They were then

connected to the oscilloscope occupying usually two channels (one for each

station). Afterwards the rig was checked by running the trigger "comb" through

the opto switches so causing the breakage of the electric circuitry. The bottom set

of opto switches, which was usually lOmm above the load cell, was also used to

trigger the recording of displacements, load and reinforcement strains.

(g) The High Speed camera was electrically connected to the solenoid that operated

the hammer release so that after the film had accelerated to the required speed, it

would then trigger the solenoid and release the hammer. The camera also had an

electrical input signal from the additional microswitch placed just above the load

cell which operated the special timing light which then marked the beginning of

the event on the film. The camera was then focused and tested with a dummy

film run in the same way as it would operate in the test. Finally the new film was

loaded, the camera speed decided and the trigger length of the film set.

(h) Finally all oscilloscopes were connected into the same triggering circuitry and the

whole triggering process tried again.

(i) The drop hammer was then lifted to the required height in the dolly and before the

8000W lights were switched on, the balancing for the strain gauge circuitry was

checked again. The whole event was triggered by switching the camera on.

Once the camera is set to run the events were synchronised as follows:

After operating the bomb release, the dolly and hammer fell at up to 99% of free fall

velocity. Just above the load cell the dolly comb passes through the opto switches so measuring
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the velocity and triggering the oscilloscopes that record the displacement, strains in the

reinforcement and stress waves through the pressure bar. At almost the same height C10mm above

load cell) the dolly switches the microswitch so operating the timing light of the camera marking

the beginning of the event on the high speed film which by this time runs through the camera at

constant speed. After the hammer hits the load cell and freely rebounds, the dolly continues

downwards until stopped by the set of buffers effectively damping its impact on the rest of the rig.

The 8000W lights were then turned off, the film unloaded and the stored data transferred

to a P.C.

3.3.4.2 Impulse test

The instrumentation of the slabs in the impulse test is in most respects identical to that of

the slabs in the impact tests and the test procedures were very similar. For most of the impulse

tests a pressure gauge was placed 500mm behind the charge so providing a check on blast pressure

consistency between tests.

The impulse test arrangements for both sizes of specimen are shown in Plates 3.15 and

Plate 3.16.

Plate 3.15 Large scale slab impulse test set up
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Plate 3,16 Small scale slab impulse test set up

Triggering of the explosive event is also produced by the high speed camera after the film

had accelerated to the required speed. The same trigger was used for the storage oscilloscopes and

consequently the initial point of the records corresponds to the initiation of the detonator.

3.3.5 Experimental programme and variables

The main experimental program consisted of impact tests on 19 small scale and 5 large

scale slabs and the same number of impulse tests. Static testing was carried out on 5 small scale

slab specimens. Additional tests were carried out on the materials used for the production of the

slabs and to determine blast pressure-time relations at different points on the slab. The whole of

the testing programme is schematically shown in Fig. 3.34.
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In the initial phase of the work the variables for the small scale specimens were: amount

of reinforcement, support conditions and loading function but in later tests the variable was

limited to the loading function only. For the main test series the loading function was varied by

the type of impact (soft and hard) and the height of drop for the impact test and the standoff

distance of the charge for the impulse testing.

For large scale tests the loading function was also the main variable and it was changed in

the same way as for the small scale specimens.

All variables for each individual test are given on test sheets in Appendices - Test Results.
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CHAPTER4

EXPERIMENTAL RESULTS

4.0 Introduction

This chapter gives a more detailed view of the results obtained from the impact and

impulse tests carried out on the specimens described in previous sections and also explains the

way in which certain test variables were used. The chapter should be read in conjuction with

Appendices Al to A3, Bl to B3 and Cl, "Test Results", which contain almost all the results

obtained during the course of the research programme.

As explained in Chapter 3 many parameters, like displacements, reinforcement strains,

loading functions, damage filming and crack patterns, were monitored. Consequently there is a

large database of results, many of which will be presented subsequently.



The static compressive and tensile strength of the concrete used are presented in section

3.1.2.1.2, Table 3.4.

4.1 Impact tests

Two major types of impact test were performed in this research. These can be described as

soft and hard impact (section 3.3.2.1). The hard impact was produced by the falling hammer

hitting the pressure bar that rested on the slab, while in the case of soft impact a rubber pad was

placed on the top of the pressure bar so producing the damping effect.

4.1.1 1:2.5 Scale slabs

In total 19 small scale slabs were tested. In the initial phase of the work the main variable

was the amount of the reinforcement in the tensile zone of the slab while later it was kept constant

at 0.28%. The main variables were the impact energy, rise time and the duration of the load and

the values of all variables are given in Table 4.1.

The reinforcement percentages given in Table 4.1. represent those at the under side of the

slab. Slab No. S7 was the only slab tested twice and the loading conditions were kept identical for

both tests. Slab S 19 was the only one without any central reinforcement. Whilst slabs SI - S8

had only tensile zone reinforcement, slabs S9 to S19 also had compression zone reinforcement in

the area 200mm to the edges (section 3.1.1) On all 19 slabs a steel hammer, of mass 33.7kg was

used.

Two different support types were used and they are given in sections 3.3.1.1 to 3.3.1.3.
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SLAB DROP TYPE OF REINFORCEMENT % SUPPORT
NO. HEIGHT IMPACT UPPER LOWER TYPE

(m) LAYER LAYER
SI 1.85 hard 3.73 2.90 Free
S2 1.85 hard 3.73 2.90 Free

S3 1.85 hard 2.39 2.01 Free

S4 1.85 hard 2.39 2.01 Free

S5 1.85 hard 1.25 1.05 Free

S6 1.85 hard 1.25 1.05 Free

S7 1.85 soft 1.25 1.05 Free

S8 1.85 soft 1.25 1.05 Free

S9 1.50 soft 0.29 0.27 Fixed

SIO 2.00 soft 0.29 0.27 Fixed

Sl1 2.50 soft 0.29 0.27 Fixed

SI2 3.00 soft 0.29 0.27 Fixed

SI3 1.50 hard 0.29 0.27 Fixed

S14 0.50 hard 0.29 0.27 Fixed

SI5 1.00 hard 0.29 0.27 Fixed

SI6 0.75 hard 0.29 0.27 Fixed

SI7 1.85 soft 0.29 0.27 Free

SI8 2.00 soft 0.29 0.27 Free

SI9 1.50 soft none none Fixed

Table 4.1 Small scale impact tests - test yariables

4.1.1.1 Pressure bar records and velocity measurement

The force produced by the impact on the 1:2.5 scale slabs was measured on the pressure

bar (Section 3.3.3.1, Fig. 3.23) using electrical resistance strain gauges placed II0mm from that

end of the bar which rested on the slab. For all the hard impact tests, (Slabs SI - S6 and S 13 -

S16) the peak force of impact was of the same order of magnitude and varied from 105.66kN to

378.39kN but under soft impact, the peak force was much lower and varied between 29.38kN and

50.45kN. Under hard impact, the rise time to the maximum force and the duration of the pulse,

are much shorter than under soft impact. It can be observed that the amount of reinforcement in

the slab did not influence the peak force or the duration of the pulse. The peak forces, hammer

velocities, rise times and the loading rates for all the specimens are given in Table 4.2. Typical

load time records for these two kinds of impact are shown in Fig. 4.1 and Fig 4.2.
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HAMMER PERCENTAGE MAXIMUM RISE LOAD
SLAB VELOCITY OF FREE FALL FORCE TIME RATE
NO. AT IMPACT VELOCITY

m/sec % kN msec kN/msec
SI 5.51 91.47 - 0.10 -
S2 5.94 98.63 105.66 0.10 l.06 x 106

S3 5.67 94.03 166.03 0.146 1.14 x 106

S4 5.76 95.56 140.87 0.146 0.97 x 106

SS 5.73 95.05 133.28 0.097 1.37 x 106

S6 5.63 93.52 169.05 0.146 1.16 x 106

S7 - Two impacts -,(5.96) -,(98.98) 29.1,(3l.2) 2.1,(2.3) 14.2,(13.3)

S8 5.77 95.73 33.21 2.34 14.19

S9 5.19 95.76 37.84 1.63 23.21

S10 5.94 94.89 39.94 1.60 24.96

S11 6.59 94.14 44.15 2.20 20.07

S12 7.21 94.00 50.45 1.80 28.03

S13 5.17 95.39 378.39 0.10 3.78 x 106

S14 2.97 94.89 115.62 0.13 0.89 x 106

SIS 4.30 97.29 119.82 0.10 l.20 x 106

S16 3.73 97.14 140.85 0.15 0.94 x 106

S17 5.85 97.18 - - -
S18 6.06 96.81 34.69 2.15 16.13

S19 5.23 96.49 43.09 2.53 17.03

Table 4.2 Small scale slabs - force time records
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ISMALL SLAB sel
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IMPACT VELOCITY: 5.86 m/sec
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Fh:.4.1 Small scale slab, bard impact test, typical force ys time record
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TO PEAK DEFL.· 8ms : 247.6KNms

ISMALL SLAB S121

DROP HEIGHT: 3000 mm

IMPACT VELOCITY: 7.21 m/sec

SOFT IMPACT
HAMMER WEIGHT: 33.7 kg

2 6 10
TIME(ms)

14 18 22

Fig. 4.2 Small scale slab, soft impact test, typical pressure bar record

The impact velocities were obtained by extrapolation of the velocities measured about 10mm

above the impact point.

4.1.1.2 Displacement record

Under concentrated impact loads two different types of deflection occured. The deflection

just under the point of impact load was the deflection of a local area and consisted of movement of

the punching cone itself, relative to the remainder of the specimen, and of movement of that area

as a part of the subsequent overall flexural response of the slab. Overall deflection of the

remaining part of the slab was caused by the load transfer from the impact zone and was largely

dependent on whether or not local punching failure occurred. In these tests the local deflection

was measured by the RPDT's (section 3.3.3.5) which were attached to the soffit of the slab under

the impact point and close to it. The RPDTs outside the punch zone gave the deflection of the

remainder of the slab. For the first three slabs (S I, S2 and S3) midspan deflections were

measured with RPDTs which were simply glued to the bottom surface of the slab. This proved to

be unreliable as the glued joint did not survive the impact. For the remaining tests the RPDTs

were always attached directly to the reinforcement, as shown in Plate 3.13, section 3.3.3.5 and so

were prevented from falling off the specimen during the tests.

The punching resistance of the small scale slabs SI - S6 was greatly exceeded and the

ratio between midspan and quarter span point deflections was very high. In the Case of small
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scale slabs S7 and S8, exposed to soft impact, that ratio was much lower because the resistance

was either not reached or was only just reached (Slab S8). The slabs with a higher percentage of

reinforcement had the least maximum recorded deflection at midspan under the impact point but

showed no obvious changes in the peak deflection at quarter span point.

In the final phase of the work (slabs S9 to S19) the number ofRPDTs was increased to up

to 4 and consequently the deflection profile of the slab could be estimated more reliable.

A typical result for the deflection vs time record in impact tests is given in Fig. 4.3.
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IMPACT VELOCITY: 5.19 m/sec

HAMMER WEIGHT: 33.7 kg

••••• ,_. ___ •• , ....... ..l.. __ • __ ~ •• " ••••• -

TIME TO DISPLAC.
EAK(ms) RATES(m/s

deflection at midspan point 8.6 0.8 4.88 1.76

deflection at 80 mm off centre 7.8 2.3 5.03 1.55

deflection at 160 mm off centre 4.7 1.6 3.83 1.23

deflection at 240 mm off centre 2.3 0 3.41 0.67

2 4 6 8
TIME(ms)

10 12 14 16

Fie. 4.3 Small scale slab. soft impact test - typical deflection vs time record

4.1.1.3 Reinforcement strain record

The reinforcement strain at the midspan point was monitored for the tensile zone bars in

both directions. Being placed just under the actual impact point of the loading, the electrical

resistance strain gauges (section 3.3.3.4) did not always survive for very long after the load

application, particularly in the cases when punching failure occurred. However, even when the

record was incomplete, it did give the strain rates for the local area of the slab under the impact

loading. Typical strain vs time traces are of two different types. The first type is for gauges

which survived the impact, shown on Fig. 4.4. The other type of record, when gauges did not

survive, is shown in Fig. 4.5.
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Fig. 4.4 Small scale impact test - full reinforcement strain record

- I SMALL SLAB S17 I lSOFT IMPACT I DROP HEIGHT: 1S50 mm
- HAMMER WEIGHT: 33,7 kg IMPACT VELOCITY: 5,85 m/sec

.11

- I top bar J MAX,RECORDED STRAIN: 0,17 %l\. I- TIME TO MAX,RECORDED STRAIN: 1,65 msec

- STRAIN RATE: 1,021/sec

-
-
-
- I bottom bar I MAX.RECORDED STRAIN: 1,OS%

- TIME TO MAX,RECORDED STRAIN: 3,50 msec

- STRAIN RATE: 3,09 t/sec

- \-
I I I I I I I I I I I I I I I I I I I

3 7 9 11
TIME(ms)

17 19135 15

Fi&. 4.5 Small scale impact test - partial reinforcement strain record

All available reinforcement strain records are presented in Table 4.3, Strain rates are given as the

average strain rate to the peak strain or to the failure of the gauge, if the peak was not recorded, In

cases of hard impact, the strain in the reinforcement first showed changes at 125-150~sec after

impact, while in the case of soft impact that time varied between about 275~sec and 600Jlsec,
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TENSILE STRAIN RECORDED
SLAB ZONE BARS RATE TIME ADDITIONAL AVAILABLE INFORMATION

GAUGE (l/sec) (msec)

SI Upper - - Not recorded

Lower - - Not recorded

S2 Upper 0.226 3.80 Gauge broken at 0.1% strain, uniform strain rate

Lower 2.489 3.80 Gauge broken at 1.17% strain, two zones of strain rate

S3 Upper 2.032 3.15 Gauge broken at 0.64% strain, uniform strain rate

Lower 1.787 2.07 Gauge broken at 0.37% strain, uniform strain rate

S4 Upper 0.550 2.88 Gauge broken at 0.16% strain, uniform strain rate

Lower 0.758 1.98 Gauge broken at 0.15% strain, uniform strain rate

S5 Upper 2.050 3.22 Gauge broken at 0.66% strain, two zones of strain rate

Lower 3.004 2.83 Gauge broken at 0.85% strain, two zones of strain rate

S6 Upper 3.208 2.l2 Gauge broken at 0.68% strain, two zones of strain rate

Lower 2.969 2.29 Gauge broken at 0.68% strain, two zones of strain rate

S7 Upper - - Not recorded

Lower - - Not recorded

S8 Upper 0.635 4.88 Gauge broken at 0.31% strain, uniform strain rate

Lower 2.404 3.91 Gauge broken at 1.17% strain, two zones of strain rate

S9 Upper 1.157 12.60 Peak strain was 0.65%

Lower 2.46 12.60 Peak strain was 1.17%, sudden recovery to 0.96%

SlO Upper 1.54 35.92 Peak strain was 0.83%, residual strain about 0.23%

Lower 1.55 35.92 Peak strain was 0.82%, residual strain about 0.23%

Sll Upper 1.71 11.60 Peak strain was 0.78%, two zones of strain rate

Lower 2.46 8.95 Peak strain was 1.18%, two zones of strain rate

SI2 Upper 1.26 8.5 Peak strain was 0.42%

Lower 2.60 7.45 Peak strain was 0.72%

S13 Upper 2.62 3.23 Gauge broken at 0.02% - after recovery

Lower 1.81 2.60 Gauge broken at 0.47%

SI4 Upper l.15 34.25 Peak strain was 0.41%, residual strain about 0.12%

Lower - - Not recorded

SI5 Upper 0.85 2.23 Gauge broken at 0.19%

Lower 1.12 2.58 Gauge broken at 0.29%

S16 Upper 1.26 35.93 Peak strain 0.46%, residual strain about 0.10%

Lower 1.31 35.93 Peak strain 0.52%, residual strain about 0.19%

SI7 Upper 1.02 1.65 Gauge broken at 0.17%

Lower 3.09 3.50 Gauge broken at 1.08%

SI8 Upper 1.57 36.43 Peak strain 0.69%

Lower 2.66 3.88 Gauge broken at 1.03%

SI9 No central reinforcement

Table 4.3 Small scale impact tests - Reinforcement strain record
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4.1.1.4 High speed films

As described in sections 3.3.3.6 the underside of the slabs was photographed at filming rates of up

to 9,000 pictures per second (p.p.s.). Details from the successful trials are given in Table 4.4.

INTER- APPROXIMATE
SLAB FILM FRAME RECORDED TIME CAMERA SHUTTER

NUMBER RATE TIME AFTER IMPACT TYPE SIZE
(p.p.s.) (usee) (msec)

S2 5090 196.46 30 Hycam Full frame

S4 3843 260.21 25 Hycam Full frame

S5 4418 226.35 20 Hycam Full frame

S6 4470 223.74 35 Hycam Full frame

S12 6242 160.21 500 Photec IV Half frame

S13 8739 114.43 400 Photec IV Half frame

S17 6278 159.28 500 Photec IV Half frame

Table 4.4 Small scale impact test - High speed film details

Typical frames taken with the full and half frame shutters are shown and explained in more detail

in Fig. 4.6.

INDIRECT
''THROUGH MIRROR"

FILMING

(USED ON SLABS
S2TOS6)

I FULL FRAME SHUTTER I
36 x 36mm square mesh

drawn on the surface of the slab

(seen through mirror)

CENTRAL LINES

INDIRECT
"THROUGH MIRROR"

FILMING

(USED ON SLABS
S12 TO S17)

I HALF FRAME SHUTTER

36 x 36mm square mesh

drawn on the surface of the slab

CENTRAL LINES

Fig. 4.6 Typical 16mm Frame details - Impact test
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Some typical sequences of failure for both soft and hard impacts are shown bellow; Fig.4.7.

SLAB 512
DROP HEIGHT: 3.0m

I SOFT IMPACT

SLABS13
DROP HEIGHT: 1.5m

HARD IMPACT

APROX. TIME AFTER
IMPACT (msec)

1.0

3.0

5.0

7.0

9.0

11.0

13.0

15.0

17.0

21.0

Fig. 4.7 Failure propagation for hard and soft impact tests
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4.1.1.5 Crack patterns and slab cross-sections

After the test all visible cracks were marked after inspecting the slabs using a 6 X

magnification magnifying glass (section 3.3.3.7). Clear differences between the crack patterns

produced by soft and hard impact tests can be established, the most pronounced difference being

the number of surface cracks.

On some of the specimens the cracks were marked in two phases. In the first phase the

most pronounced cracks were marked whilst the smaller and more difficult to observe were

marked in a more carefuJ inspection during a second phase.

Some typical first and second phase crack patterns for both soft and hard impact are

shown in Fig. 4.8 and 4.9.

/1 S13 - HARD IMPACT II
TOPSIDE BonOMSIDE

FIRST PHASE
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I-r-
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flo, - ~

~
I

.i
·1

I'=i

SECOND PHASE

Fig. 4.8 Small scale slabs - hard impact tests - crack patterns
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II S12· SOFTIMPACT II

FIRST PHASE

TOP SIDE

SECOND PHASE

Fig. 4.9 Small scale slabs - soft impact tests - crack patterns

After the impact tests, some typical cracked slabs were carefully cut along the centre line

in order to monitor cracks on the cross-section. Typical examples are shown in Fig. 4.10 for hard

impact and in Fig. 4.11 for soft impact.

1.Srn FREE DROP ;J ~

33.7kg HAMMER roo
FIXED SUPPORTS L_ ~-___:-----~ p.

ISLAB S141
O.Srn FREE DROP ,

~ ..~,[: $ .
"·133.7kg HAMMER • • " - ... ° ·0

FIXED SUPPORTS

Fig. 4.1Q Small scale slabs - hard impact test - cross-sections
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3.0m FREE DROP
33.7kg HAMMER
FIXEDSUPPORTS

ISLAB s121

----:s---l\. :,

2.0m FREE DROP
33.7kg HAMMER !:
FIXEDSUPPORTS

o o o 0 c \

o

! : ~ :
ISLAB s191, .Sm FREE DROP

33.7kg HAMMER
FIXEDSUPPORTS

NO REINFORCEMENT

Fig.4.11 Small scale slabs - soft impact test - cross-sections

4.1.2 1:1 Scale slabs

The testing programme consisted oftets on five full scale slabs. Slab LS5 was exposed to

soft impact while the remaining four were subjected to hard impacts. In all five tests the same

support conditions were employed (section 3.3.1.3), and the load was always applied through the

125mm dia, 500mm long load cell, (section 3.3.2.1). The reinforcement was as given in Fig. 3.1.

Slab LSI was the only slab to be tested twice (with a 70kg hammer) while the remaining four

slabs were tested with a 150kg hammer. All five slabs were equipped with strain gauges to

monitor midspan reinforcement strains and displacement transducers were placed at up to four

positions. Recording of the stress waves caused by the falling hammer hitting the load cell were

taken from the load cell itself (section 3.3.3.1). Velocity of the hammer was monitored as

explained in section 3.3.3.2. After the tests, cracks were marked and photographs of the crack

patterns taken.

The main test variables were the amount of impact energy and the force duration applied

to the specimens. These were achieved by changing the impact velocity and by placing a rubber

pad in between the hammer and the load cell in order to extend the duration of the load and reduce
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its peaks. The only other variable was the amount of reinforcement, although an effort was made

to keep the bar spacing constant. All the test variables are given in Table 4.S.

REINFORCEMENT DROP HAMMER

SLAB TOP BOTTOM IMPACT HEIGHT SIZE

NO. LAYER LAYER TYPE (m) (kg)

LSI 1.2% each way 1.2% each way Hard 3.22(two impacts) 70

LS2 1.2% each way 1.2% each way Hard 3.22 ISO

LS3 0.41% each way 0.41% each way Hard 2.5 150

LS4 0.41% each way 0.41% each way Hard 3.22 ISO

LSS 0.41% each way 0.41% each way Soft 2.S ISO

Table 4,5 Full scale slabs - impact test - test details

Slabs LS3 to LSS were designed without central region reinforcement (SOOmm x SOOmm)

in the top side of the specimen. Reinforcement percentages were kept the same for both directions

in all five slabs.

The following sections will give an insight into some of the typical results obtained from

the tests. All available test results together with the test details are presented in Appendix AI.

4.1.2.1 Pressure bar and velocity record

In all cases load was applied to the specimen over a 12,26Smm2 circular area defined by

the diameter of the load cell. Impact velocities varied between 6.99 - 7.93m/sec which

represented up to 99.8% of the free fall velocities. The duration of the pulse was in the case of

slab LSS, prolonged by a placing a 2Smm thick 12Smm dia. rubber pad in between the falling

hammer and the load cell and so producing a soft impact. Some of the additional test details are

given in Table 4.6.

As expected there was a clear distinction between soft and hard impact. The peak loads in

the load vs time function for hard impact were up to six times greater and the load duration was

about IS times shorter than in case of soft impact. The differences can easily be seen from the

typical results for both cases presented in Fig.4.12 (hard impact) and Fig.4.13 (soft impact). The

impulse value given in Fig.4.13 is calculated to the time of 13msec. Since the peak displacement

of this slab occurred at about 12msec, the impulse at that time had a value of 1019.2kN msec.
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SLAB IMPACT %OFFREE PEAK TIME TO LOADING
NO. VELOCITY FALL LOAD REACH RATE

VELOCITY PEAK LOAD
mls (%) (kN) (msec) (kN/msec)

LS 1, First impact - - 1090.39 0.005 19818.0

LS 1,Second impact 7.71 97.0 1046.77 0.10 10467.0

LS2 7.79 98.0 3028.86 0.11 27535.0

LS3 6.93 99.0 2059.80 0.06 34330.0

LS4 7.93 99.7 1485.76 0.08 18572.0

LS5 6.99 99.8 256.63 1.66 154.60

2.2

2

1.8

1.6

1.4

~ 1.2
III 11Jc:
III 0.8III
:::J

0.60s:
t::.. 0.4w
0 0.2a:
0 0u,

-0.2

-0.4

-0.6
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Table 4.6 Full scale slab - impact test - load function results

I LARGE SLAB LS31 IMPACT VELOCIlY: 6.93 m/sec

DROP HEIGHT: 2500 mm
PEAK FORCE: 2059.8 kN

HAMMER WEIGHT: 150 kg
TIME TO PEAK FORCE: 0.06 msec

HARD IMPACT
LOADING RATE: 34,330 kN/msec

600

~ 400
w

~
200

3 5 7
TIME(ms)

9 11 13

Fi2.4.12 Full scale slab - hard impact test - typical load-time record

I LARGE SLAB Lssl
DROP HEIGHT: 2500 mm
IMPACT VELOCIlY: 6.99 m/sec
SOFT IMPACT

PEAK FORCE: 256.63 KN

TIME TO PEAK FORCE: 1.66 msec

LOADING RATE: 154.6 KN/msec

DURATION: aprox. 20 msec

IMPULSE: 1062.86 KN msec

-1 133 5 TIME(ms) 7 9 11

Fil:.4.13 Full scale slab - soft impact test - typical load time record
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4.1.2.2 Displacement record

On all five specimens displacement measurements (section 3.3.3.5) were taken at up to

four positions by the RPDTs (section 3.2.1) connected to the bottom reinforcement of the slab.

Displacement transducer positions for each of these tests are given in Fig. 3.30. In the case of

hard impact movement of the slab soffit usually commenced at about 0.25msec after the impact

while in the case of soft impact it comenced later, at 0.80msec. Some typical results for both soft

and hard impact deflections vs time are presented in Fig. 4.14 and Fig. 4.15.
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Full scale slabs - hard impact test - typical displacement ys time record
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- ~ I LARGE SLAB Lssl
DROP HEIGHT: 2500 mm SOFT IMPACT
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Fi2.4.15 Full scale slabs· soft impact test - typical displacement ys time record
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A brief description of the results is given in Table 4.7.

SLAB DISPLACEMENT RECORD DETAILS

LSI

LS2

LS3

LS4

LS5

Displacement was recorded for the first impact only, at 225mm and 450mm
off centre. At 225mm off centre the peak was 6.8mm and it was reached after
4.2msec giving a deflection rate of 1.63m/sec. At 450mm off centre the peak
was 3.Imm, reached after 1.35msec - deflection rate 2.3m/sec. Almost full
recovery in both cases was reached at 13.Imsec so producing recovery rates of
0.77m/sec and 0.35m/sec for 225 off centre and 450mm off centre positions
respectively. Residual displacements were not very clear and were almost
identical for both positions - about I.5mm.

Displacement was again taken at two positions. At 225mm off centre the peak
deflection was I1.2mm and was reached after 8.9msec, deflection rate
I.26m1sec. About 80msec of the record was obtained so residual displacement
can only be estimated as about 4.5mm. At 450mm off centre, peak
displacement of 4.9mm was reached after 8.9msec giving a displacement rate
ofO.56m1sec. The first natural period appeared to be 22msec and the residual
deflection is estimated as Imm.

This slab failed in the central region and as in the previous cases, RPDTs were
connected to the bottom reinforcement. The initial 3.7msec of the trace was
very noisy and has not been taken into account. Measurements were taken at
midspan, IOOmm and 200mm from the centre. The peak of the midspan
deflection was 42mm reached after I1.8msec producing a deflection rate of
3.56m1sec. It appears that after 19msec the punching resistance of the slab
was reached and another peak deflection appeared at 30msec. After this time
the reinforcement started to recover. The IOOmm offcentre peak displacement
was 38.Imm, it was difficult to distinguish it from the failure point and almost
no elastic recovery of the reinforcement occurred. The 200mm off centre peak
displacement was l3mm, reached after IOmsec implying a deflection rate of
1.3m1sec. The second peak, probably caused by the shear failure, occurred at
29msec. In all three cases residual displacements of the bottom reinforcement
were difficult to estimate.

Although this slab also had a central area punching failure, displacements
were very consistent but peaks generally did not correspond with the natural
period of the slab but to the time of punching failure and the movement of the
bottom reinforcement associated with it. Peak displacement at midspan, 100,
200 and 300mm off centre happen almost at the same time (27msec), and
these were 70.Imm, 63.Imm, 13.0mm and 49.3mm respectively, so implying
the maximum deflection rate of 2.6m1sec. Full recovery occurred at 52msec
and the residual displacements of the reinforcement are estimated as 55mm,
38.9mm, 37.4mm and 34.3mm for the central, IOOmm, 200mm and 300mm
off centre transducers reSj>_ectively.

This was the only slab that was tested in soft impact conditions.
Displacements were measured at the same positions as for the slab LS4.
Peaks were reached at I1.8msec, and these were 17.lmm 15.6mm 14mm and
II.7mm for the central, 100, 200 and 300mm off centre transducers
respectively. Full recovery was reached 26msec after the impact with the
residual deflections being estimated as 3.9mm, 3.lmm, 3mm and 2.3mm
respectively, reached at about 95msec after the impact.

Table 4.' Full scale slabs - Impact test - Displacement record details
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4.1.2.3 Strain record

Reinforcement strains (section 3.3.3.4) were, as in all other cases taken at the midspan

point from the bars in both directions. In all cases strain records closely resembled the

displacement record indicating that most of the reinforcement strain was produced by flexural

displacement of the slab and not by in-plane deformation. Table 4.8 gives some details about

these records.

STRAIN RECORD
TOP BAR BOTTOM BAR

SLAB PEAK TIME STRAIN RESID. PEAK TIME STRAIN RESID.
VALUE TO RATE STRAIN VALUE TO RATE STRAIN
(strain) PEAK (strain) (strain) PEAK (strain)

% (msec) (sec-I) % % (msec) (sec-I) %
LSI-1st 0.07 4.2 0.17 0.01 0.08 4.2 0.19 0.02

LSI-2nd 0.08 5.1 0.15 0.01 0.09 5.5 0.16 -
LS2 0.14 8.0 0.18 0.02 0.16 8.0 0.20 0.04

LS5 0.25 8.8 0.28 0.03 0.29 9.2 0.31 0.09

Table 4.8 Full scale slabs - impact test - strain record

In the case of the hard impact tests straining of the reinforcement usually started at about

400J..lSecafter the impact whilst in the case of the in soft impact tests it started at about 700llsec

after the impact. Fig. 4.16 and Fig. 4.17 represent typical strain vs time results for both hard and

soft impact tests respectively.

0.0004

0

-0.0004

-0.0008

! -0.0012

-0.0016

-0.0020

-0.0024

-0.0028

-10

DROP HEIGHT: 3220 mm, HAMMER WEIGHT: 150 kg
: I LARGE SLAB LS211MPACT VELOCITY: 7.76 m/sec, HARD IMPACT.. .

'----' TIME TO PEAK STRAIN: 8.0 msec
STRAIN RATE:0.1751/sec
RESIDUAL STRAIN:0.0002

TIME TO PEAK STRAIN: 8.0 msec
STRAIN RATE: 0.200 1/sec
RESIDUAL STRAIN: 0.0004

10 30
TIME(ms)

50 70

Fie.4.16 Full Scale slabs - bard impact test - typical strain record
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Fie. 4.17 Full scale slabs - soft impact test - typical strain record

4.1.2.4 Crack pattern

Crack patterns greatly depended on the type of failure that occurred. In cases when the

slabs suffered punching failure (LS3 and LS4) the cracks were few in number, implying that most

of the energy was used in producing the hole. In the three remaining cases it was very obvious

that a flexural response was taking place, so producing much more cracking. The crack pattern

was very much the same as on the small scale slabs. This appears to verify the scaling laws

employed in this research.

Crack patterns of the bottom sides of all five slabs that were tested are shown in Fig. 4.18.
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LS1 - DROP HEIGHTS 3220 mm LS2 - DROP HEIGHT 3220 mm

SOFT IMPACT
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Fig. 4.18 Large scale slabs - impact tests - crack patterns

4.1.3 Conclusions

Soft and hard impact tests on both small and large scale specimens produced results

which were closely related to the main characteristics of the impact loading function. In the small

scale hard impact tests loading rates of up to 3.78-106 kN/msec produced displacement rates of up

to 2.0m/sec and strain rates of up to 3.2sec-1. Large scale slabs were tested at loading rates of up

to 34 x l03kN/msec, reinforcement strain rates of up to O.3sec-1 and deflection rates of up to

3.56m/sec were observed. In most of the slabs punching failure occurred with the formation of a

hole almost equal to the diameter of the pressure bar on the top side of the specimen, followed by
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cratering on the bottom side. Crack patterns indicated that the specimens, apart from absorbing

energy in the punching failure mechanism, absorbed some of the energy flexurally. The main

indicators of the flexural response of the specimens were the cracks that propagated towards the

comers of the slabs, corresponding to the yield lines produced in slabs under static loading.

The soft impact test produced loading rates of 28kN/msec, deflection rates of up to

2.1m/sec and strain rates of up to 3.l/sec-1 for the small scale slabs, and 155kN/msec, 1.45m/sec

and 0.31 sec-l respectively for the large scale slabs The response of the specimens to soft impact

was governed by the combination of the punching (shear) resistance and by the overall flexural

response. The duration of the load was t~e main reason for ensuring that the punching or local

response of the specimen did not have such a dominant role as for the hard impact tests. Instead,

the overall response of the structure was much more pronounced. It was characterised by the

deflection profile of the specimen which clearly indicated a first mode of vibration response, and

by a very dense mesh of diagonal cracks forming a static like yield-line crack pattern.

The overall shape of the damage, the failure mechanisms, the crack patterns, and direct

comparison between the recorded strains and 2.5 times linear scaling between displacements

appear to validate the modelling considerations that were employed.

4.2 Impulse tests

The main test results were obtained from the specimens exposed to the curved side of the

hemispherical charge. In all tests the main variable was the pressure loading function (section

3.3.2.2), altered by changing the standoff distance.

4.2.1 1:2.5 Scale slabs

The testing programme on the small scale slabs consisted of 19 specimens. The main

variables were the amount of tensile zone reinforcement and the blast pressure function. Initially

the reinforcement was varied around the balanced section percentage (section 3.1.1) where as in

later tests (slabs SE9 - SE19) the bottom reinforcement was kept constant at 0.28%. Slabs SEI

and SE2 did not have any top reinforcement whilst slab SE9 did not have any top or bottom
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central zone reinforcement. Slabs SElO to SEl9 had top zone reinforcement only in a 200mm

wide strip around the edges. The loading function was mainly varied by changing the charge

standoff distance, the charge size was kept constant at 78g of PE4. Tests on slabs SE 1 - SE4 used

a cylindrically shaped charge while tests on the remaining 15 slabs used a hemispherical charge.

All the test variables are given in Table 4.9.

SLAB SHAPE SIDE OF THE POSITION STANDOFF BOTTOM SUPPORT
NO OF THE CHARGE OF THE DISTANCE REINFORCE.

CHARGE FACING THE CHARGE
SPECIMEN (mm) Xwav Ywav

SEI cylindrical parallel central 650 and 100 3.73 2.90 Free

SE2 cylindrical parallel central <50 3.73 2.90 Free

SE3 cylindrical parallel central 50 2.39 2.01 Free

SE4 cylindrical parallel central 100 2.39 2.01 Free

SE5 hemispherical spherical central 100 1.25 1.05 Fixed

SE6 hemispherical flat central 100 1.25 1.05 Fixed

SE7 hemispherical spherical central 100 1.25 1.05 Internal

SE8 hemispherical flat central 50 1.25 1.05 Internal

SE9 hemispherical spherical central 100 none none Fixed

SElO hemispherical spherical central 250 0.29 0.27 Fixed

SEll hemispherical spherical central 200 0.29 0.27 Fixed

SEl2 hemispherical spherical central 150 0.29 0.27 Fixed

SEl3 hemispherical spherical central 125 0.29 0.27 Fixed

SE14 hemispherical spherical central 100 0.29 0.27 Fixed

SEIS hemispherical spherical central 75 0.29 0.27 Fixed

SEl6 hemispherical spherical central 60 0.29 0.27 Fixed

SEl7 hemispherical spherical central 50 0.29 0.27 Fixed

SEl8 hemispherical spherical off centre 200 0.29 0.27 Fixed

SEl9 hemispherical spherical off centre 100 0.29 0.27 Fixed

Table 4.9 Small slabs -Impulse tests - Test details
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The charge was centrally placed in all slabs except slabs SE18 and SE19 where the charge

was placed 283mm off centre along a diagonal. In the case of tests on slabs SE6 and SE8 the flat

side of the hemispherical charge was positioned facing the slab.

4.2.1.1 Blast pressure records

The way in which the blast pressure measurements were taken is given in section 3.3.3.3.

The influence of the charge shape and orientation was investigated using 78g-PE4 explosive

charges of three different shapes and orientations to a blast pressure gauge. The cylindrical charge

was placed with its longitudinal axis parallel to the gauge, the hemispherical charge had the

curved or flat side facing the gauge which was always on the axis central and perpendicular to the

flat side. Typical results for all three types are given in Figs. 4.19, 4.20 and 4.21 and in Table

In all of them the zero time has been taken as a time of a charge initiation.

TRACE
GAUGE ANGLE OF

DISTANCE INCIDENCE

a. 800mm 0°

b. 1200 mm 19.48°

c. 1600 mm 18.21°

d. 2400mm 28.63°

o 2 4 6 8

Fig.4.19 Typical pressure-tjme record for the 78g PE4 hemispherical char&e, flat side
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Typical pressure-time record for the 78g PE4 hemispherical charge curved side
facing the gauges
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8. 800mm 0°

b. 1200 mm 19.48°

c. 1600mm 18.21°

d. 2400mm 28.63°
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Fig. 4.21 Typical pressure-time record for the 78g PE4 cylindrical charge

143



CHARGE PULSE PEAK DURATION SPECIFIC
STANDOFF ARRIVAL PRESSURE OF MPULSE

FROM TIME IMPULSE
(m) (msec) (bar) (ms) (bar msec)

0.8 0.56 12.26 0.36 1.14

1.2 1.38 1.54 0.50 0.27
CYLINDRICAL
CHARGE 1.6 2.32 1.07 0.70 0.26

2.4 4.42 0.44 1.53 0.21

0.8 0.52 11.05 0.44 0.95
HEMISPHERICAL

CHARGE 1.2 1.36 3.35 0.50 0.63
CURVED
SIDE 1.6 2.20 1.25 0.76 0.37

FACING
THE GAUGE 2.4 4.34 0.63 0.58 0.13

HEMISPHERICAL 0.8 0.36 29.94 0.28 2.40

CHARGE
1.2 1.04 4.88 0.52 0.64

FLAT
SIDE 1.6 1.90 1.14 0.78 0.30

FACING
THE GAUGE

2.4 4.12 0.37 1.76 0.22

Table 4.10 Blast pressure test results for the cylindrical and
hemispherical '8g PE4 charge

As expected different shapes, orientation and positions of the charge gave different results.

For instance, for a charge standoff of 0.8m when the flat side of the hemispherical charge faced

the gauge, the peak pressure was much higher (29.94 bar) than for a hemispherical charge of the

same mass of explosive but with the spherical side facing the gauge (11.05 bar), or for a

cylindrical charge of the same mass (12.26 bar). The duration of the impulse varied inversely

with the peak pressure so the impulse of the shortest duration was produced when the flat side of

the hemispherical charge faced the gauge.

A hemispherical charge with the curved side facing the specimen was used on 13 out of

19 slabs and additional tests with this type of charge were carried out to establish the spatial

distribution of pressure across the surface of the slab (Fig. 3.28). Some typical results are

presented in Fig. 4.22 and Fig. 4.23.
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Fig. 4.23 Blast pressures taken at 420mm off centre of the plate from the
curved side ofthe 782 PE4 hemispherical charge

4.2.1.2 Displacement record

Peak deflections on the small scale slabs were recorded between 3 and 5msec after the

slab displacement began. Displacement rates were at up to 2.2m/sec and the rates of recovery
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were about half of this value. The slabs containing greater reinforcement percentages, slabs SE5 -

SE9, had peak upward displacements almost identical to the downward displacements which can

be associated with the greater amount of energy being stored in the reinforcement. Slabs with

smaller reinforcement percentages, and of discontinued top reinforcement (slabs SE9 - SE19,

section 3.1.1), had a lower upward displacement above the initial position of the slab, which

indicates that the top reinforcement was storing the energy which caused upward movement in

previous cases. The deflections of the perforated slabs were almost the same under different blast

pressure loading, indicating that as soon as the slab was perforated a constant value of energy

from the blast pulse was transferred to the remainder of the slab.

Slabs with greater reinforcement percentages showed almost no residual deflection but

there was a permanent deformation of the reinforcement in the punching zone. The small scale

slabs, SE7 and SE8, had an inner support 200mm from the centre and showed almost no

downward movement, but there was an upward movement shown on the RPDT records of almost

the same order of magnitude as for the slabs without inner supports. These inner supports were

not designed to hold the slab down.

Some of the displacement vs time traces showed electrical noise in about the first 3msec

of the record which obscured the true displacement record. A typical trace without electrical noise

is shown in Fig. 4.24 and a typical trace with noise is shown in Fig. 4.25.
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PEAK TIME TO PEAK RESIDUAL
DEFLECTION(mm PEAK DISPLAC. DEFLECTION
down up (msec) RATE(m/sec) (mm)

6.1 5.0 3.3 1.848 0.2

deflection at 180 mm off centre

78 gr PE4
HEMISPHERICAL CHARGE
CURVED SIDE FACING THE SLAB
100 mm STAND OFF

5 15
TIME(ms)

25 35

Fis:. 4,24 Small slabs - impulse test - typical deflection ys time record
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10 TIME TO
PEAK
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PEAK
DISPLAC.
RATE(m/sec)

RESIDUAL
DEFLECTION

mm
1.16 8.05 3.11

E
S -10s
~
~u.
~ -20

L deflection at 160 mm off centre

I SMALL SLAB SE111

78 gr PE4
HEMISPHERICAL CHARGE
CURVED SIDE FACING THE SLAB
200 mm STAND OFF

-30
PART OF THE RECORD THAT CAN NOT
BE ASSOCIATED WITH THE SLAB MOVEMENT

-1 3 5 7 9

TIME(ms)

11 13 15 17 19

4.25 Small slabs - Impulse test - Example of deflection record
with electrical disturbance

4.2.1.3 Reinforcement strain record

The typical reinforcement strain vs time record obtained from the small scale slabs tested

by explosive is shown in Fig. 4.26.

0.004

-D.008

78 gr PE4

HEMISPHERICAL CHARGE

CURVED SIDE FACING THE SLAB

150 mm STAND OFF

z

~ -D.004
TIME TO PEAK STRAIN: 0.60 msec
STRAIN RATE: 2.521 1/sec
RESIDUAL STRAIN: 0.0028

I top bad PEAK STRAIN: 0.0061

L------il~b~ott~o~m!!b~a~r I PEAK STRAIN: 0.0080
TIME TO PEAK STRAIN: 2.52 msec
STRAIN RATE: 3.1751/sec
RESIDUAL STRAIN: 0.0022

ISMALL SLAB SE12 I

-1 3 5 7
TIME(ms)

9 11 13 15

Fig. 4.26 Small slab - Impulse test -Typical reinforcement strain record
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The strain rates obtained from the small slabs tested explosively were of the same order of

magnitude as those in the impact tests, varying from 1.53sec-1 to 10.llsec-1

Details of all the test results are shown in Table 4.11. The column labelled "Time to peak

or recorded time" gives either the time when the peak was reached or the overall time of recording

in cases when the peak strain was not recorded. Consequently the column labelled "Peak value or

max recorded strain" gives either real peaks or maximum recorded strain before the failure of the

gauge.

SLAB TENSILE PEAK TIME TO STRAIN RESIDUAL

No ZONE VALUE PEAK OR RATE STRAIN
REINFORCEMENT OR MAX RECORDED

GAUGE RECORDED TIME
STATION STRAIN
POSITION (strain) (msec) (sec"! ) (strain)

SE4 top bar 0.0018 1.20 1.500 0.000

bottom bar 0.0041 2.28 1.798 0.001

SE5 top bar 0.0085 1.95 4.359 -
bottom bar 0.0131 1.90 6.895 -

SE6 top bar 0.0036 2.35 1.532 -
bottom bar 0.0045 2.17 2.074 -

SE7 bottom bar 0.003 0.96 3.125 -
SE9 No central zone reinforcement

SElO top bar 0.0045 2.40 0.185 0.0009

SEll bottom bar 0.0120 2.60 4.615 0.0062

SE12 top bar 0.0061 2.42 2.521 0.0028

bottom bar 0.0080 2.52 3.175 0.0022

SE13 bottom bar 0.0136 1.62 8.395 -
SE14 bottom bar 0.0078 2.32 3.362 0.0024

SE15 top bar 0.0061 0.60 10.117 -
bottom bar 0.0080 0.80 10.000 -

SE16 top bar 0.0201 1.64 12.256 -
SE17 top bar 0.0022 0.12 18.333 -

bottom bar 0.0255 0.32 17.188 -
SE18 top bar 0.0027 1.70 1.588 0.0005

bottom bar 0.0036 1.92 1.875 0.0006

SE19 top bar 0.0035 2.21 1.584 0.0008

bottom bar 0.0054 2.14 2.523 0.0016

Table 4.11 Small slabs - Impulse tests - Strain record
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As in the case of the impact tests sometimes the gauge was broken before the end of the

test and a typical example is shown in Fig. 4.27.

0.004

-0.004

z

~
-0.008

-0.012

-0,016

-0.02

, -0.024

o

ISMALL SLAB SE1S I
78 gr PE4

HEMISPHERICAL CHARGE

CURVED SIDE FACING THE SLAB

75 mm STAND OFF

top bar

MAX RECORDED STRAIN: 0.0061

TIME TO MAXIMUM RECORDED STRAIN: 0.60 msec

STRAIN RATE: 10.1171/sec

-1 3
TIME(ms)

5

Fig. 4.27 Small slabs - Impulse test - Partial strain gauge record

4.2.1.4 High speed films

Small scale explosively tested slabs were filmed with the High Speed Motion Camera

(section 3.2.9) as described in section 3.3.3.6. The soffit of the slab was viewed either directly by

the camera or after reflection in a mirror at 45°. Typical single frames by each method are shown

in Fig. 4.28.

Although all small scale specimens were filmed the very uncertain timing and triggering

of the events meant that only the trials presented in Table 4.12 produced clear films. In all cases a

half frame shutter was used.

Typical frames taken from film No. SEl5 are presented in Fig. 4.29.
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INDIRECT

"THROUGH MIRROR"
FILMING

(USED ON SLABS
SE4 TOSE7)

DIRECT
"NOTHING BETWEEN"

FILMING

(USED ON SLABS
SE13 TO SE18)

R.P.D.T. body

(seen directly)

36 x 36mm square mesh

drawn on the surface of the slab

36 x 36mm square mesh

drawn on the surface of the slab

R.P.D.T. top part
(seen through mirror) steel angle section

part of support rig

R.P.D.T.and its holder

Fig.4.28 16mm Film frame details- Blast impulse tests

FILM
INTER- APPROXIMATESLAB FRAME RECORDED TIME FILMING

NUMBER RATE TIME AFTER THE BLAST MODE
(p.p.s.) (msec)(usee)

SE4 - 6000 -170 -15 MIRROR

SE5 6158 162.38 15 MIRROR

SE6 6200 161.29 5 MIRROR

SE7 8212 121.76 25 MIRROR

SEl3 - 10,000 - 100 -20 DIRECT

SE14 10,437 95.81 25 DIRECT

SE15 10,525 95.01 15 DIRECT

SE17 10,672 93.70 25 DIRECT

SE18 10,500 95.24 20 DIRECT

Table 4.12 Small slabs - Impulse tests - High speed film details
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APROX.TIME AFTER

BLAST (msec)

0.5

1.0

1.5

2.0
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3.0
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4.5

5.0

SLAB SE15

HEMISPHERICAL CHARGE
STAND OFF: 75mm

5.5

6.0

6.5

7.0

7.5

S.O

9.0

10.0

11.0

12.0

Fig. 4.29 Small slab SEtS - Blast Impulse Test - Typical frames taken from the high speed
film
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4.2.1.5 Crack patterns and slab cross sections

The best examples of crack patterns on the soffit or back surface of the slabs are shown in

Fig. 4.30, slabs SElO to SE1?, where the standoff was gradually reduced from 250mm to 50mm.

SMALL SCALE IMPULSE TESTS - CRACK PATTERNS ON BACK FACES
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Fig. 4.30 Small slabs - Impulse test - Crack patterns
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The crack patterns observed in the case of the explosively tested small scale slabs were

remarkably consistent between the tests, with crack patterns changing in an easily identifiable way

as a result of changing the charge standoff distance.

All of the slabs exposed to a centrally placed charge exibited similar crack patterns. The

exceptions were slabs SE7 and SE8 which had an intermediate support and showed a different

crack pattern. The type of damage suffered by the back face or soffit of these slabs was similar to

those slabs exposed to a soft impact. Apart from the diagonal cracks which extended to the slab

comers, there were cracks just under the reinforcement bars and running along the lengths of the

reinforcement bars. These were due to the local stress increase caused by the reduction in area of

concrete.

The local damage produced on the slabs immediately under the charge consisted of

scabbing on the back face, cratering on the front face, and cracks defining a punching cone which

was cracked and partly displaced by the blast pressure, causing some deformation of the

reinforcement within the cone. The area of local damage is mainly dependent on the amount of

energy delivered to the slab; this was determined by the charge shape, orientation and standoff

distance to the slab as well as by the size and spacing of the reinforcement.

As in the case of the impact tests, some typical slabs were carefully cut along the central

line in order to monitor cracks on the cross section. They are all shown in Fig. 4.31.

78gr PE4 ISLAB SE10 I
~~~~C~~AAGE I~O~~~O~~~)~-------~~-------~-~b--~..~)

tuRVEDSIDEFACINGTHE SLAB L!...' __ _';:"O __ __:;": __ ~. __ --.!O"~ __ Jf~ 9 .
200mmSTANDOFF -~-_-.5I..__ __!.,.__ -=-__ ~

78gr PE4 ISLAB SE141
HEMISPHERICALCHARGE ~r:~{-=:->r!I/~~(-~-r--::::;::J':c:::J:b:=-----:-<,~\_......o:r----J......---r-\---.,.-,.o I

~DSIDEFACINGTHESLAB L_..t._t_...l.\--:....----~, • ~ __e_. o~_._...;;;o_...._'\ _ _,;....jf
100mmSTANDOFF

78gr PE4 ISLAB SE171

HEMISPHERICALCHARGE l' 1 r ~}
~DSIDEFACINGTHESLAB _. ~ ~\ --. -2 ~~~__....:,_---.~-

50mmSTANDOFF ------'------_...;:...._..., ~-- - - - .. - - - •

Fig.4,31 Small slabs - Impulse tests - cross-sections
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The top surface of the slabs had two main types of crack. These were circumferential

cracks around the centre of the slab and radial cracks running from the centre of the slab. Both

types of crack formed to the edges of the slab in some tests but the circular cracks were dominant

in the case of slabs containing top reinforcement, and the radial cracks were dominant in the case

of slabs without top reinforcement.

4.2.2 1:1 Scale slabs

In total five full scale slabs were blast tested using a standard 1300g PE4 hemispherical

explosive charge with the curved side facing the slab. Slab LSEI was the only slab tested twice

with standoffs of 350mm and 250mm. The main variables were the amount of reinforcement and

the loading function. The loading function was varied by changing the standoff distance only.

All test variables are given in Table 4.13.

REINFORCEMENT CHARGE

SLAB COMPRESSION TENSILE STANDOFF

ZONE LAYER ZONE LAYER DISTANCE
(m)

LSEl 1.2% each way 1.2% each way 350 + 250

LSE2 1.2% each way 1.2% each way 250

LSE3 0.41% each way 0.41% each way 500

LSE4 0.41% each way 0.41% each way 300

LSE5 0.41% each way 0.41% each way 200

Table 4,13 Full scale slabs -Impulse tests - Test details

Slabs LSE3 to LSE5 were designed without top reinforcement in an area of 500 x 500mm

in the centre of the specimen. All the available test results are presented in Appendix B 1 - Test

Results

4.2.2.1 Displacement record

Displacement measurements were taken as explained in section 3.3.3.5. Transducer

positions for each of five tests are given in Fig. 3.30 and a brief description of the results is

presented in Table 4.14.
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SLAB DISPLACEMENT RECORD DETAILS

LSEI

LSE2

LSE3

LSE4

LSE5

The slab was tested twice and deflections were taken at 225mm and 450mm
from the centre in both cases. In the first test, peak displacements of 26.3mm
and 18.8mm for 225mm and 450mm off centre positions respectively were
reached at 6msec after the blast. The average deflection rate for the 225mm
off centre RPDT was 4.4m1sec and the recovery rate was 3.4m/sec. The peak
upward deflection was the same in both positions - 9.8mm. The transient
displacement lasted for 11Omsec after the blast and both residual deflections
were about 3mm. The second test on the same slab produced larger
deflections. The peaks were 33.8mm and 25.6mm for the 225mm and
450mm off centre transducers respectively. The deflection rate at the 225mm
off centre transducer was 5.7m/sec while the peaks were reached at 5.9msec.
Again the peak upward deflection for both positions were almost the same -
19.6mm while the residual displacements could only be estimated as being
about 4mm.

Peak deflections for the 225mm and 450mm off centre transducer were
31.9mm and 20mm respectively. The average deflection rate was 5.7m/sec
while the peaks were reached at 5.6msec after the blast. Upward
displacements were 9.4mm and 7.8mm respectively. Residual deflections
were 6mm and 5mm. Although the final crack pattern indicated the
formation of a shear plug, the deflection record did not show any apparent
brittle failure that could be associated with the plug formation.

Deflections were taken at midspan, IOOmm, 200mm, 300mm and 700mm off
centre and the peaks were 52.2mm, 45.2mm, 38.9mm, 33.5mm and 7.1mm
respectively. The midspan transducer gave an average deflection rate of
7.0m/sec but after 7.4msec the signal ended abruptly and it was not clear
whether a peak was actually reached. As expected the lighter reinforcement
of this slab caused much larger deflections than on the previous two slabs
although the standoff distance was greater.

There was almost no upward deflection above the initial position of the slab.
The maximum average recovery rate was 4.5m/sec. Residual deflections can
only be estimated as IO.9mm, IO.1mm and 9.3mm for IOOmm, 200mm and
300mm from the centre transducers.

No deflection record was taken.

Deflections were taken at 300mm, 400mm and 500mm off centre and the
peaks were 38.2mm, 32.7mm and 23.4mm respectively and they occurred
7.5msec after the detonation. The maximum average deflection rate was
5.1m1sec. The second period peaks were recorded 6.0msec after the blast and
they were 17.9mm, 14.8mm and 9.3mm respectively. The record lasted for
IIOmsec after the blast and residual displacements were estimated as
16.4mm, 13.2mm and 8.6mm respectively.

Table 4,14 - Full scale slabs - Impulse test - Displacement ys time record details

Typical deflection vs time trace is shown in Fig. 4.32.
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Fi2. 4.32 Full scale slab - Impulse test - Typical displacement record

4.2.2.3 Strain record

strain rate measured in these tests was 2.6Isec-l.

Reinforcement strains were measured as explained in section 3.3.3.4. The maximum

slabs.

Table 4.15 gives additional details about the strain records taken from the large scale

BAR RECORDED STRAIN PEAK

SLAB POSITION TIME RATE RECORDED

(msec) (sec-I) STRAIN

LSEI - two shots top 40,(10) 1.43,(2.61) 0.0114,(0.0219)

LSE2 bottom 40 0.58 0.0042

LSE3 top 75 0.29 0.0044

LSE5 top 10 2.18 0.0194

bottom 22 - 0.0225

Table 4.15 Reinforcement strain record details, lan:e scale explosive tests
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It is interesting to note that the peak strains cannot be directly related to the standoff

distance. For example slab LSEI tested with an explosive charge at 350mm standoff, had a

greater peak strain than LSE2 where the standoff was only 250mm. The explanation could be

associated with the spatial distribution of the pressure produced by the hemispherical charge and

by the local straining.

A typical record of the strains in the reinforcement for the large slabs tested by explosive

is given in Fig. 4.33.
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Fh:. 4.33 Full scale slab - Impulse test - Typical reinforcement strain record

4.2.2.4 Crack patterns

The crack patterns closely resemble those obtained in the small scale tests. The density of

cracking is again very high with most of the cracks occurring on the back face of the slabs and

propagating towards the corners of the slab. The front face crack pattern is similar to the back

face pattern although there are additional circular cracks around the centre of the slab.

Back face crack patterns of all five specimens are given in Fig. 4.34.
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Fig. 4.34 Large scale slabs - Impulse tests - Crack patterns

4.2.3 Conclusions

The characteristics of the loading function seem to determine the slab behaviour in both

impulse and impact tests. The main characteristics of the blast pressure-time history are given as

the peak pressure and duration of the positive phase of impulse. Very similar crack patterns were

observed in the case of the large and small scale slabs. The consistency of the change to the crack

'pattern under different pressure functions underline the possibility of establishing exact response

mechanism to cover the behaviour of R.C. slabs under these extreme conditions. The impulse

tests presented here produced reinforcement strain rates of up to 2.61sec-1 and displacement rates
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of up to 8.0m/sec. The shear resistance of the central area of the slab is very important in

determining the mode of response, and it is clear that even close standoff charges, cannot be

represented by a point load but should be represented as a load distributed over a central region

which expands and governs the response not only of the structure as a whole, but also of the local

area directly exposed to the greatest load. The best proof of the above is given in the slab cross-

sections that show cracking much further from the central area than the boundaries of the punch

zone. The most important response characteristics together with the general shape of the damage

justifies the modelling laws employed in the work.
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CHAPTER5

DISCUSSION

5.1 Introduction

Impact loading is a more simple form of dynamic loading which has time variation but

not the spatial variation that occurs with blast loading from close-in explosive charges.

All the impact tests in this work were conducted primarily in order to give a better

understanding of the blast-impulse behaviour ofRC slabs as the ultimate case of dynamic loading.

The following discussion analyses slab behaviour under blast loading and the behaviour under

impact loading is compared with that under blast loading to show the difference in the slab

response due to spatial variation of blast pressure and the rate of loading.

Shear failure planes perpendicular to the plane of the slab have been reported in the

impact and blast literature but these are almost always close to the supports. This type of failure



has been described as direct shear and the failure criteria is determined from a direct shear

resistance to shear slip function, along an actual or potential crack, Ross and Krawinkler,(1985).

It would seem for the present experiments, that the direct shear failure resistance when blast

pressure is applied to a local region of a reinforced concrete slab, is too high for this to be the

dominant shear failure mode. The more critical shear failure mechanism is that likely to be

initiated by diagonal tension cracking which forms a shear plug, but before this plug can be

displaced, the concrete is fragmented by compression forces.

The failure planes observed here were always closer to the epicentre than to the support

and their angle to the slab surface plane was never greater than 35°.

5.1.1 Loading function

In the tests reported in Chapter 4, the blast pressure loading function has been generated

by a close range explosion, but the load distribution can not be approximated as a time varying or

transient point load. There are clear differences in the local response of the slabs exposed to

impact, where the point load is transient at a fixed location, and blast loading where the load is

transient but there is also a spatial distribution of the pressure function as important as its

magnitude and duration. In impulse tests the amount of cracking furthest from the epicentre is

greater than for the impact tests. The most probable reason is that although the charge was close

to the target there was a large amount of distributed pressure over the slab surface.

Explaining and quantifying the blast pressure function is a necessary requirement for

understanding the response of the structure. In most of the tests carried out in this work, the

spherical side of a hemispherical charge faced the specimen and it was initiated from the centre of

the flat side.

5.1.1.1 Calculation of Blast Loading Function

The blast pulse that produces the dynamic pressure on the slab was quantified using both

experimentally obtained measurements, which are described in section 4.2.1.1. and the theoretical

approach of Henrych, (1979).
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The velocity of detonation of the plastic explosive PE4 used in this research, was about

8000mlsec and the shock wave initiated by the explosion will travel at close range distances, at

about 7S00mlsec (Henrych, 1979). Standoff distances used in this research were 2SOmm to

50mm for the 1:2.5 scale and 500mm to 200mm for the 1:1 scale slabs. Consequently the shock

wave reaches the specimen after 7JlSec to 33JlSec in the case of the 1:2.5 scale slabs and after 27Jl

sec to 67JlSec in the case of the 1:1 scale slabs.

The shock front propagates in all directions from the charge but the "shock front vectors"

that produce forces perpendicular to the slab are of greatest importance to the structural response.

For example the shock front vectors from a charge at 500mm standoff will reach the 1:1 scale

slab, at points 1m from the centre of the slab in about lSOJlsec and will act on the structure at an

angle of 26.5°. The vertical component of force will then be much reduced due to obliquity and

travel distance.

When the shock front reaches the structure, the overpressure produces a compressive

stress wave propagating into the structure. Internal reflections of that stress wave will produce

tensile stresses. These can produce some form of local fracture before there is any flexure of the

slab.

If we denote the angle of incidence between the shock front vector and the line

perpendicular to the slab surface as (J.I Fig. 5.1)

E
E

I
E E 0E
[f ..5.:x:

L....-- __ R.C.S!J6.B I-
x(mm)

·1
Fil,!.S.1 Loadjol,! function
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then Henrych,(1979), gives the peak theoretical pressure P,_m) at any point defined by a, as:

( )

AR..., 2
P,_m) = Pdet• Ii .cos a

where Pdel is the detonation pressure of a spherical, flat or cylindrical charge of radius l\.. and
standoff distance R. The parameter A is determined by the shape of the charge and is 2 for a

spherical charge and 3 for a hemispherical charge with the flat side towards the slab.

Transient pressure distribution P(t) is given by:

If we consider a hemispherical charge initiated from the centre of the flat side as being

similar to a spherical charge initiated from the centre of the sphere then the above relations can be

directly implemented using A = 2. Since R: = 28.5mm and 71.25mm for the 1:2.5 scale and

1:1 scale tests respectively and ~.t is 26.8kN/mm2 then the loading function can be written for

the I :2.5 scale 78g PE4 charge as:

where t represents the time measured from the arrival of the blast front at the slab and r is the

positive duration of the pressure pulse. It is clear that r will be dependent on the standoff

distance of the charge and the position on the slab. It was therefore decided to relate r to the

charge inclined distance D(mm), Fig.5.1. The values for r can be obtained experimentally and

theoretically. For charge inclined distances of up to 560mm, which are of the greatest interest,

(1 :2.5 scale slabs), the test results showed that the positive duration of the pulse was an almost

linear function of the distance D. For calculation purposes r has been taken as:

f(rn II sec)=K .DOn mm)

where K = 0.715
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It must be noted from Fig 5.1 that charge inclined distances of up to 560mm correspond to

standoffs of up to 391mm.

It was experimentally established that the positive duration of the blast pressure pulse for

the smaller charge placed at 300mm standoff was about 200J.l.Secand this has been chosen as a

maximum for calculation purposes.

Direct implementation of the Henrych relations gives results which do not compare well

with the experimentally obtained results because no allowance is given for different pressure

arrival times at different slab points. Instead an instantaneous pressure rise is assumed across the

slab. This problem can be resolved by simply calculating pressures for each point taking pressure

arrival time as zero time for that particular point but still relating it to the arrival time of the blast

pulse at the centre of the slab. Peak pressures calculated using Henrych's values for A do not

correspond to the experimentally measured ones. This may be due to the fact that the Henrych

values for A refer to the spherical and cylindrical charges while values for hemispherical charges

are applicable only to the flat side of the charge.

The values measured in these tests are the vertical components of the pressure on the slab

but the Henrych calculations give full pressure values. After corrections the pressure function is:

(R )265 (t L)
P(t) =~el'; -cos' a- 1-~

D-H D-H
where: L = V • V = 7.Smm/J.1sec and V represent the delay which occurs due to

the late arrival of the pressure at different points across the slab. The value of2.65 for A has been

chosen as the best fit to the available experimental results.

The apparent difference in the pressure arrival time can be related to inconsistencies in the

bursting time of the L2A 1 charge detonators which is about 50~sec.

The pressures on the 1:2.5 scale slab, calculated from the equations above, are given in

Figs. 5.2 to 5.7. They compare relatively well with experimentally obtained results when

calculation is done at every 2mm of the slab. A LOTUS 123 spreadsheet has been used to both

calculate and draw the traces in these figures.
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A comparison between the measured and calculated results is given in Table 5.1. Since

the positive duration t of the calculated pressure functions was chosen to more or less equal the

experimentally measured results, it is not given in the table. The arrival time of the pressure pulse

at a point on the slab must not be confused with the time of the pressure pulse arrival at the closest

point on the slab which, if presented in the table, would vary because of the different bursting

times for L2Al detonators.

STANDOFF DISTANCE PEAK PRESSURES
TO THE

EPICENTRE MEASURED VALUE CALCULATED VALUE
(mm) (mm) (bar) (bar)

600 420 26 21.2

500 0 100 to 140 116.14

400 0 180 to 280 202.2

400 350 45 to 55 48.8

300 0 290 to 320 407.9

300 350 35 63.6

200 350 40 to 52 74.2

100 350 55 57.8

Table 5.1 CQmparisQnQfmeasured with calculated pressures

It can be seen in the Table that all the calculated pressures have the same order of

magnitude as the measured pressures and most are within 10% of the measured values. The blast

function is not always so consistent.

5.1.1.2 Attenuation of the loading function and inertia

The loading function characteristics depend on the energy absorption capacity of the slab

and on the dynamic attenuation characteristics of the material causing stress wave attenuation and

vibration damping.

Krauthammer,(l986), approximates that the damping ratio can be up to 40% for a rapidly

applied dynamic load. In the local, stress wave dominated region, damping represents the internal

friction of the material. In flexural response it represents the energy lost from internal damage of

the concrete and dowel action of the bending reinforcement.
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Inertial forces on the specimen oppose the initial slab downward movement and contribute

to the formation of an area of local response and the start of the flexural response of the slab. The

slab inertia also contributes to the establishment of three dimensional stress state which increases

the concrete's apparent strength, section 5.1.2. The inertia of the fractured zone of concrete at the

epicentre at peak displacement causes further damage ofthe scab region of the slab.

5.1.2 Dynamic character of material behaviour

The R.C. slab constitutive material characteristics are sensitive to strain rates. The

quantitative change of mechanical properties of the steel and concrete have been presented in

Chapter 2, and the reasons for the change of these parameters will be discussed here.

It is obvious from the experimental results that the failure pattern at different loading rates

is not exactly the same. In impact and blast loading a great amount of energy is introduced into

the specimen in a very short period of time. Load transfer may not develop under dynamic load

as under static load because the parts of the system that show the lowest resistance to failure may

not have enough time to respond. In the case of concrete the weakest link is the cement aggregate

bond and cracks propagating through these regions would require a lower amount of energy than

crack propagating through the aggregate particles. Static load allows time for the failure paths of

lowest energy requirements to be activated (Zielinsky et al,1981), but the rapid change in stress

under dynamic loading does not allow time for cracks to form preferentially through the weakest

regions of the concrete. This necessarily leads to a greater amount of aggregate particle fracture

Fig. 5.8 and Fig. 5.9 and consequent increase in fracture energy absorbed in failure under dynamic

loading, so increasing the apparent resistance of the material. This indicates that the higher

strength and deformation of concrete under dynamic loading can be explained by crack

development through zones of higher resistance and a much greater amount of micro and macro

cracking in the whole region than under static loading. It is a function therefore, of the

heterogeneous nature of concrete which allows alternative fracture modes to occur.

Steel also exhibits changes of mechanical properties with strain rate but since it is more

homogenous than concrete, the strain rate enhancement cannot be entirely due to the heterogeneity

of the materials.
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Sheridan et ai, (1989),considered the influence of radial inertial confinement introduced

into the specimen by the speed of loading which does not permit the structure to develop lateral

strains. This confinement in a three dimensional stress state ultimately leads to an increase of

compressive strength compared to the uniaxial state. This three dimensional stress state also leads

to a much greater density of internal and external, surface cracks under dynamic loading so

increasing the energy required to produce the failure as discussed above and also reported by

Zielinsky and Reinhardt, (I 982).

Relations that govern the apparent increase in dynamic compressive and tensile strength

of concrete and dynamic tensile strength of steel are given in sections 2.2.1.2, 2.2.1.3 and 2.2.2.

The Hopkinson Pressure Bar tests carried out in this research show up to 2.5 times

increase of concrete dynamic compressive strength compared to static values (section 3.1.2.1).

The increase in tensile strength can be even greater but was not investigated experimentally in this

research. The strain rates used in this research were up to 106 times greater in the dynamic than

in the static tests.

5.1.3 Dual nature of the slab response

In a static test on RC slabs, resistance mechanisms can usually be described as shear or

flexural, and failure follows response of the whole slab. A combination between the two effects
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can also be present but shear-flexure failure occurs often after considerable flexural deflection of

the member. With impact and impulsive load from close range explosive charges, different failure

mechanisms occur in the time scale of events, and evidence of local and overall failure

mechanisms can be found in the shape, location and characteristics of the damage caused to the

specimen. In coupling local and overall failure mechanisms the transfer of energy to the specimen

and the partition of energy between them, becomes a major question. Local response of the

specimen is determined by spalling and scabbing mechanisms and by dynamic shear resistance. It

starts long before the overall response of the structure which is defined as a flexural response and

limited by the specimen's natural period of vibration. The energy absorbed in flexure will depend

on the amount of energy transmitted to the rest of the specimen from the shear plug boundaries of

the local damage and that absorbed by the dynamic shear resistance of the specimen. When

perforation of the slab occurs before the end of the shock pulse, some of the energy will be

removed as the missile or blast pressure exits through the hole in the slab.

Local response is basically characterised by the development of a central "shear plug"

with all damage and deformation being localised, usually around the point on the slab closest to

the explosive charge or impact point. Overall flexural response is a global response whose main

effects are the formation of failure lines similar to the yield lines characteristic of a static failure

mode, and permanent displacement of the rest of the slab.

The following sections of this chapter will mainly deal with these phenomena.

5.2 Local response

When an explosion occurs near to the surface of a R.C. slab, then the blast pressures are

first applied very locally at the point on the slab closest to the charge, the epicentre, and then vary

with distances and time across the slab surface because of the significant curvature of the blast

wave front, section 5.1.1. As a result the response of the slab can usually be separated into a local

and overall response which occur at different times. The local response, often produces a shear

plug around the epicentral axis, but could also produce shear failure at the slab supports. This

response includes, in addition to shear some or all of the following fractures which occur very

shortly after the first application of pressure:
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(i) The formation of radial and circumferential cracks centred on the epicentre of the

blast but with most cracks on the surface of the slab away from the charge.

(ii) The formation of craters on both faces of the slab near the epicentre, with

associated deformation or even fracture of the steel reinforcement within the

boundaries of these craters.

(iii) The perforation of the slab near the epicentre.

The circumferential cracking on the surface of the slab around the epicentre may be

associated with the formation of a spall crater on the front face and a scab crater on the rear face or

may be the surface intersection of through-thickness cracks which form the frustum of a cone

coaxial with the epicentral axis of the blast. This cone has often been described as a local

punching shear failure surface, usually characterised by multiple inclined cracking.

5.2.1 Formation of an area of local response

An area of local response for RC slabs will be formed only for impact and close range

explosive charges where there is a large curvature on the shock front. For far range charges, the

curvature of the shock front will be small when it reaches the surface of the slab. The slab is then

loaded with a uniformly distributed, though time varying pressure and any shear fractures would

be confined to the local region adjacent to the supports.

Rapidly applied high magnitude loads from close range explosive charges or impact, may

result in an area of local response in which the behaviour of the structural element does not

depend upon the distance from the supports unless the epicentre or impact point is close to the

support. The local response of this area has no apparent relation to the overall response of the rest

of the slab because local response starts before there is any overall deflection of the total slab.

Span of the damaged area is relatively small and has a high probability of not overlapping with the

supports. There may be stress wave reflections from the slab boundaries including supports and

this is discussed in later sections and section 2.3.1.

When the duration of the load is much lower than the natural period of specimen vibration

then almost all local response takes place in only a fraction of the time required for the specimen's

full response.
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The main features of local response are localised slab cracking and crushing resulting in

shear failures and in top and bottom slab cratering or even perforation, followed by the local

bending of the reinforcement.

Information about the local response of the slabs to impact and blast loading was obtained

from deflection measurements, high speed films taken during the tests and photographs and cross

sections of the specimens taken after the tests. Some typical results are presented in Chapter 4 and

are commented upon in more detail below.

5.2.1.1 High speed films

The initial stage of local response of slab SEl5 to an explosive charge at 75mm standoff

was characterised by the formation of radial or fan shaped cracks on the underside of the slab,

propagating from the centre of the slab. These cracks start to form by around lOOllsec after

detonation. The visible length of the longest crack after 1901lsec was about 147mm measured

from the centre of the slab.

In addition to these radial cracks, a set of circular cracks was formed around the epicentre

on the underside of the slab early in the response, in a region about 20mm radius from the centre.

This was followed by extensive surface cracking inside that circle.

Another set of circular cracks forming a shear plug, with a radius of about 126mm on the

back face of the slab and close to the future scab region, was completely established by around

860Jlsec after the detonation. In about 1.8msec after detonation the area of local response was

fully defined within the circular cracks. Inside that area extensive fan shaped cracking occurred

and disintegration was starting to take place. New cracks began to propagate, being initiated at the

circular crack that borders the area of a scab.

The process that characterised the formation of the local damage in slab SE17 was very

similar to that one observed on Slab SEI5, the main difference being that slab SE17 was

perforated. Extensive radial cracking on slab S17 first occurred inside the circular crack at about

25mm radius from the epicentre. About 6551lsec later further circular cracks became visible at

about 80mm radius from the epicentre. The establishment of the full circular crack around the

epicentre took another 200llsec and the local scab area was then clearly established.
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Slab SEl3, explosively loaded, did not have any significant scabbing but it was observed

that the initiation of fan shaped cracks was almost 3msec before any visible circular cracks, at

about 125mm from the centre, became obvious. Although the circular cracks closed when the slab

recovered, the fan shaped cracks remained open throughout the event and were combined with the

scabbing that was observed after the test.

Slab SE14 also explosively loaded, had diagonal cracking inside the area of the future

scab before the circular cracks around that area became visible. These fan shaped cracks formed

about 800llsec before the circular cracks and the area of the scab was of square shape with sides

about 250mm long. The boundaries of the square were parallel to the reinforcement.

In soft impact test S 12, the time difference between the initiation of the diagonal and the

circular cracks inside the scab area was about 4.16msec with the diagonal cracks occurring first.

The overall time needed for the formation of the scab area was about 6msec from the impact.

Slab S 13 was exposed to a hard impact and was fully perforated by the impact hammer.

In this case the formation of radial cracks happened much later than the initiation of the first

circular cracks that were formed at a radius of about 100mm from the impact point. The time

difference between the two was approximately 1.6msec. After another 1.6msec the circular crack

was fully developed while the fan shaped ones were still in the process of forming.

Slab S 17 was exposed to a soft impact and had no visible damage associated with local

response of the specimen.

High speed photography was attempted for all the slabs. Those from the impacted Slabs

S2 to S6 were of poor quality, but it could be seen that on Slab S2 circular cracks occurred before

the radial cracks inside the shear plug area. On Slab S5 and Slab S6 the formation of both types

of crack seemed to be almost simultaneous.

The formation of a well defined cracked area of a circular shape can be caused by at least

two different mechanisms. The concentric rings of identical pressures as the blast wave produced

by the explosion of the hemispherical charge, spread across the slab, gave a load function that had

radially varying intensities. This is contributed to further by the curvature of the initial blast front.

The other reason may be related to the rate of loading which necessitates the shortest paths of

stress relaxation. The circle has the smallest length of circumferential line of alI geometrical areas

so the first cracks will most likely be initiated along that line.

174



It is observed from the high speed films, that the boundaries of the local damage are

formed early in time and that most of the further damage then forms within that area. The cracks

that define the local area are then a limit on the size of the punching shear cone and the energy

confined within this area is unable to fracture the surrounding concrete. Typical crack velocities

observed from the high speed films were between 420 and 170m/sec.

5.2.1.2 Stress wave theory approach

Stress wave theory is a useful tool for a qualitative and quantitative understanding of

radial and circumferential tensile cracking, cratering and through-thickness shear cone cracking

near the epicentre, which are all fractures characteristic of the local deformation, Predicting the

fracture pattern from a stress wave analysis of the blast loaded slabs requires a model of the

pressure variation with time and distance on the slab and the rate dependent properties of the

concrete.

The incident pulse imposed on the specimen is of the same shape as the pulse produced by

the blast. The shape of the positive overpressure pulse can be approximated as triangular with an

instantaneous rise to peak pressure and a uniform decay to atmospheric pressure, Fig. 5.10

shown by the dotted line.

P.E.4CHARGEiii REAL BLAST PULSE

..........~.~E~::::::~:~:~:~LSE

Fis:. S,lO Shape Qfthe incident pulse
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The compressive pulse in the concrete slab, initiated at the time of contact of the shock

front with the front of the slab, produces the initial blast shock whose quantitative characteristics

are given by the equations in section 5.1.1. As the compression wave propagates in to the slab, its

characteristic parameters may change as the concrete fractures when the magnitude of the stress is

greater than the compressive strength of the concrete.

The fracturing is a process of disintegration or pulverisation of the concrete with the

destruction of the aggregate/cement matrix bond, leaving only frictional forces between the

particles. This fracturing will absorb considerable energy from that supplied by the shock pulse.

In the case when no damage occurs to the concrete on the front face of the slab, the compressive

pulse propagates further into the specimen without causing any local damage and its magnitude

and energy are reduced by the divergence of the expanding wave.

The alteration in the pulse shape produced by divergence and the different impedances of

air voids, cement matrix, aggregates and steel produces attenuation and dispersion that are also the

result of different velocities of propagation for the different frequency components of the

compressive pulse. The plastic portion of the stress wave will always be slower than the elastic

portion which precedes it because of the greater elastic modulus.

The amplitude of the stress wave also decreases as it propagates because of heat energy

losses and because of damping in the material through which it travels (Sheridan, 1987).

The stress wave energy absorbed in deforming the affected areas of the structure will be

small for elastic deformations but plastic deformations and fracture absorb considerably more.

The changes produced by the heterogeneity of the concrete are relatively small.

When the compression pulse reaches the free boundary of the slab, the bottom surface, it

is reflected as a tensile wave (Fig. 5.11 (a) to (cj). The whole of the pulse is reflected and the

boundary regions then experience a period of combination of the incident compressive wave and

the reflected tensile wave. If the pulse has a triangular shape then net tensile stresses occur

immediately and the maximum occurs at a half pulse length from the boundary (Fig. 5.11 (dj).

Tensile failure will start at the point where the net tensile stress exceeds the tensile strength of the

concrete. This is generally about 10% of the compressive strength of concrete but the strain rate

enhancement of tensile strength is greater than that of the compressive strength.
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Fig. 5.11 Stress wave reflection
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For plane waves the tensile failure will occur parallel to the free surface and a certain

amount of energy will be consumed in forming the new free surface. Several cracks can occur as

the residual compressive pulse reflects at the new free surface as a tensile pulse and propagates

into the slab. In the process of forming the crack a certain amount of energy will be trapped

between the crack faces or the crack and the boundary of the slab, and it will trap momentum in

the cracked part of concrete referred to as the scab. The velocity of scab ejection then depends

upon the shape and the magnitude of the reflected stress wave and the velocity of the scab can be

considerable. By observing flying particle velocity, ejected from the back of the R.C.slab,

McVay, (1987), reported velocities in the order of 5 to 53 m/sec. A single crack plane will be

formed when the tensile strength of concrete is greater than 50% but less then 100% of the peak

tensile stress.
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For incident compressive waves of larger amplitudes, tensile failure will be reached

sooner and the scab thickness will be smaller but multiple scabs may occur depending on the

shape of the pulse.

If the rise time of the shock front is assumed to be zero then the thickness of the scabbing

layers, for the triangular incident pulse, will be equal.

Scabbing could also be influenced by the velocity of the slab movement or deflection rate.

Kropatscheck, (1983), predicts that if the deflection velocity becomes greater than 15m/sec, the

momentum will become significant and the concrete layer, or scab will be blown out.

The speed of elastic wave propagation through the concrete is of the order of 3400mlsec

and the compressive pressure pulse will reach the free surface of the small scale slab used in the

research described here in about lJusec, and the top face around the epicentre has already

experienced the full magnitude of the compressive pressure pulse. The duration of the pulse that

reaches the free, bottom surface of the slab depends on the initial shape and size of the pulse and

any attenuation or dispersion that has occurred.

Most of the changes to the stress pulse reaching the free surface are caused by

compressive failure in the top layer of concrete and by divergence of the stress pulse in the slab.

The stress wave produced by the 78gr explosive charge at 50mm standoff exhibits greater changes

due to fracture of the concrete while the stress wave from the charge at 250mm standoff changes

more due to divergence since it causes little damage to the concrete. Estimation of these effects

which distort the pulse is of great importance.

Divergence causes the magnitude of the stresses to decrease as the stress wave expands

since the energy is spread over a greater volume of concrete. Fig. 5.12.

PE4 EXPLOSIVE CHARGE

r1

·1 .1r2

Fi2. S.J2 Djyell!ence of the stress wave
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If we assume that the curved side of the hemispherical charge has a spherically expanding stress

wave then neglecting loses, the sum of the energy of the wave at any distance must be equal, It

can be concluded that the amplitude of the stress wave will be inversely proportional to the surface

area of the sphere whose origin is at the stress wave initiation point. So:

J> _ AI .}'J
02 _- 01

A2

If we take POI to be the peak overpressure at any point on the R.C. slab and AI/2 as the

area to which the stress wave has propagated, then the magnitude of the pressure will decrease at

distance r2 to:

This would imply a dramatic decrease in the magnitude of the stress wave which is not

true because the pressure is not actually applied at one point only and the consequent resultant

stress magnitude represents the sum of the magnitudes of stresses generated across the whole slab.

The solution to the problem lies in numerical integration across the whole slab surface.

It is much more complicated to calculate the losses due to cratering and cracking of

concrete.

If only scabbing takes place, Fig. 5.l3.,

PRESSURE PULSE

FRONT FACE

---,~ - ----- -,wmm----- -:,- --
Ld

Fig. 5.13 Scab thickness
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or in other words, the dynamic compressive strength was not exceeded, then the scabbing

thickness can be easily computed, providing the pressure pulse characteristics and dynamic tensile

strength of concrete are known.

Attenuation due to divergence may be taken as 10%, Kropatscheck, (1983). It can be

seen from Fig. 5.13 that at the scab thickness x the net stress will be equal to the ultimate

dynamic tensile strength of concrete which can be estimated to be about 2.5 times greater than the

static strength at these strain rates.

where: Id' - dynamic tensile strength of concrete, taken as 10N/mm2

~ - peak overpressure (N/mm2) - peak amplitude of stress pulse

P; - corresponding overpressure at distance of scab thickness (Nzrnrn-) - corresponding

amplitude of stress pulse.

If the pressure wave has a triangular shape P, can be calculated as:

where Le represents the length of the pulse:

Ld = Td'V

where T« is the positive duration of the pressure pulse in msec while V is longitudinal velocity of

concrete 3400mmlmsec. Then:

If we consider slab SE 15 under blast loading where the calculated peak pressure at the

epicentre, which was at the midspan point, was 846.31N/mm2 and the positive duration was

0.05362msec then Ld= 182.3mm and after allowing for 10% attenuation due to divergence of the

stress wave, the scabbing thickness x can be calculated as x = 2.39mm. Subsequent layers of

the scab will be formed in the same way and will be of the same thickness since the rise time for

the pressure pulse was assumed to be zero.
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5.2.2 Development of cracking within the area of local response

Once the boundary of local response has been established by the circular crack, there are

limits on the size of the future scab and the length of radial cracking from the centre of the shear

plug since further damage mostly happens inside that boundary.

High Speed photography of Slabs SE 15 and SE 17 show very clearly the pattern of scab

disintegration under explosive blast loading. The circular crack formed at about 20mm radius

from the epicentre, limited the area of the scab that will fail first, Fig. 5.14 (Zone A) and it

appeared to have completely disintegrated randomly and fractured into very small pieces.

r- R.C.SLAB ~ CENTER LINE

----- - -------- ------~
-------- ----------------

ZONE 'A'

ZONE'B' ZONE'B'

Fig. 5.14 Deyelopment of area oflocal response

The outside ring (zone B) cracked and fractured into almost equal ring segments, Fig.

5.15. These two zones approximately correspond to the size of the future scab region.

Radial cracks almost always propagated just to the circular cracks of the shear plug so

giving the impression that the concrete within the circular crack deformed as a dome supported on

the edges of the shear plug in a local flexural deformation. An alternative explanation of these

radial cracks is that they are due to hoop stresses associated with an outwardly propagating

compression pulse. In slab SEI7 with a charge standoff of SOmm, there is more than just one

Zone B ring, indicating larger stresses at greater distances from the epicentre.

In the case of soft impact the cracking inside the circular crack boundary was in many

respects similar to the cracking due to blast loading but a Zone A was not observed, Slab S 12. In
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the case of hard impact slabs, radial cracks from the epicentre were formed after the formation of

an initial circular crack but were not symmetrically arranged. The failure was more characteristic

of a direct shear failure than it was in either soft impact or blast.

R.C,SLAB
BACKSIDE

Fit:.5.15 Symmetrical set:mentation of the outer rint: (rint: B) and
random s~mentatjon of the inner ring (ring A)

The high speed films showed that the cracks did not propagate in a continuous manner

with time but stop and start for microseconds periods. This could be explained by local increases

in cracking resistance due to, for instance, a concentration of aggregate particles, or by the time

needed for the stress to increase following stress relaxation due to the previous cracking.

Flexural strain of the reinforcement in the cases of close range blast loading or impact on

the RC slabs is caused by local or overall bending of the reinforcement, and axial strain caused by

longitudinal stress wave propagation and axial deformation. Bending of the bars occurs in both
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the local and overall deformation modes and in punching shear. When the punch zone is moving

downwards relative to the rest of the slab, there is local stretching of the bars.

In some of the tests the reinforcement strain records can be divided into two regions:

initial response which lasts about 2msec and is characterised by a lower strain rate of values up to

O.8sec-l, and the later response with much higher strain rates of up to 9.1sec-1. It is expected that

these can be related to the movement ofthe punching cone and dowel action of the reinforcement.

5.2.3 Ultimate state conditions in the area of local response and
failure

The ultimate limit state conditions for local response are: cracking and cratering in the

area around the epicentre on both faces of the slab, and possible perforation. In the case of impact

loading penetration might also sometimes occur without perforation. All these phenomena are

mostly the product of the stress wave propagation through the slab but certain local damage may

also occur as the result of overall deflection of the specimen. Consequently the final shape of the

local area occurred very early in the slab response with some further damage occurring much later,

during the overall flexural response of the slab. The total time needed for the slab to completely

respond to the dynamic loads can be estimated from the deflection vs time records and it was

almost equal for both impact and blast tests. For the 1:2.5 scale slabs it was up to 60msec while

for the 1:1 scale slabs it lasted up to 150msec. The deflection vs time traces of the central area of

the slab could have given a good indication of the local failure since any sudden increase in

displacement would have indicated local failure. The deflection transducers were however,

usually connected to the slab reinforcement since connections to the concrete surface often failed

or the concrete scabbed. This meant that the instant of local failure was not always easily

distinguished.

5.2.3.1 Spalling, scabbing and perforation of the slab

The high speed films were used to analyse the formation and initial development of local

response. The ultimate state of local response was obscured on the film by dust and flying

particles of concrete. Consequently the final state of local damage was determined by post test
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inspection and photographs, Appendix Al to B2 and by cross sectioning the slab, sections 4.1.1.5

and 4.1.2.5. Tables 5.2 and 5.3 give the details of the local area damage in impact tests. In these

tables SCAB (cm-) gives the area of the scab and" % OF SLAB" gives the percentage of the slab

surface area covered by the scab. The area of scab on bottom face crater formed by impact on the

1:2.5 scale slabs varied between zero and 11%. The largest scab occurred on the slab that had the

highest percentage of reinforcement and the smallest reinforcement bar spacing, slab SI. This was

probably because the reinforcement formed a plane of weakness in the slab and the cover concrete

was more easily displaced. The slab S2 had a greater impact velocity and this slab had a smaller

size scab than on slab SI.

The scab size could not directly relate to either the amount of reinforcement nor the

impact energy. On slabs SI, S2, S5 and S6 the scab area produced by the impact also included an

area of cover concrete displaced around the edges of the true scab. This cover concrete cracked

and was broken away by extensive bending displacement of the reinforcing bars under the impact

point. Slabs S8, S 11 and S 12 have well formed scab areas produced by impact but the tables give

the area of concrete actually removed from the slab surface.

None of the impact tested slabs suffered top face spalling even when perforation occurred.

The percentage of back face surface area that failed in the I: 1 scale slabs varied between

zero and 7.5%.
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DAMAGE ON THE DAMAGE ON THE DAMAGE ON THE
S SLAB BonOM SIDE

S
SLAB BonOM SIDE

S
SLAB BonOM SIDE

L L L
A LOADING N' CO A LOADING N' CO A LOADING N' CO
B CONDITIONS E :s B CONDITIONS

E :s B CONDITIONS
E :s

~ w 0 w u ~m ...J ~ m ...J -.., m
co u. 0 No CO u. 0

..No CO u. 0
No oct: 0 :r: () 0 :r: oct: 0 :r:

o a~ 'a~ ~ a'-en en
33.7kg hamme ~3.7kg hamme ~3.7kg hammeS1 ''1 S6 S11

soft impacthard Impact h hard impact

~

drop height: t:/) drop height: drop height: ~ ... ,
1.85 m ..~·A 1.85 m 2.5m ~~'ut ~~

mpact velocity: lmpact velocity: mpact velocity:

5.51 m/sec 5.63 m/sec 6.59 m/sec

704.1 11.0 ~ 694.8 10.9 ~ 233.2 ! 3.6 ........

~.7kg hamme 33.7kg hamme 133.7kg ham meS2 57 512
hard Impact soft impact soft impact

drop height: I drop height: drop height: <t::f!]-(l INa SCAB j
1.85 m

,I, 1.85 m 3.0m tt'1~i J..../
mpact velocity: impact velocity: mpact velocity:

5.94 m/sec 5.96 m/sec ~1 m/sec_±514.8 8.0 ~
-_ ....... 292.9 4.6 •___e.

133.7kghammer 33.7kg hammer _- ~3.7kg hamme
S3 hard Impact 58 soft impact 513 hard impact

drop height: ~)
drop height: ..-.....

drop height: /~, j,
~) 1.5m '6..'1.85 m "'-iii 1.85 m /~6'

mpact velocity: impact velocity: mpact velocity:

5.67 m/sec 5.77 m/sec 5.17 m/sec

404.6 6.3 ~ 180.7
1
2.8 1······ 615.6 9.6 ..........

~3.7kg hammer 33.7kg hammer sa7kg hammer
S4 hard impact S9 soft impact S14 hard impact

drop height: .,.".~ drop height:
fOSCAaJ

drop height:
INOSCABjv'. :--"

1.85 m -0,,/ 1.5m O.Sm
'\~

mpact velocity: impact velocity: mpact velocity:

5.76 m/sec 5.19 m/sec 2.97 m/sec

574.7 9.0 ../ ....... _ ....- ..---- --..... _._ .... ....-_.

33.7kg hamme 33.7kg hammer ~3.7kg hammerS10 S15SS hard Impact soft impact hard Impact

drop height: ~/ jt_ drop height: drop height: e/~

ESCAaJ1.85m
::,./:, 2.0m 1.0m
~-

mpact velocity: impact velocity: mpact velocity:

5.73m/sec .- 5.94 m/sec 4.3 m/sec

678.7 10,6 ~
--_ ..-.. ..._.-- .-...-...

391.3 6.1 ....._.

Iabl~ S.2 Details of slab bottom fa~~dama2e - I;~.S s~ah:impa~t t~sts
Slabs SI to SIS
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DAMAGE ON THE
S SLAB BOTTOM SIDE
L
A LOADING @' m
B CONDITIONS E 5 w~ en _J

m u, 0
No (§ 0 I

en o~

S16~.7kg ham me
hard impact

drop height:
INa SCAB I

0.75 m

mpact velocity:
3.73 m/sec

......... - .._ ...._- _ .._---

S17 33.7kg hamme
soft impact

drop height:
INO SCAB I

1.85 m

mpact velocity:
5.85 m/sec

.._ .._ ..-
1······1······

518 ~. 7kg hammer
soft impact

drop height:
INa SCAB I

2.0m

impact velocity:
6.06 m/sec

.......... 1······ _ ..__ ....

i
33.7kg hamme

519 soft impact

drop height: INO SCAB]
1.5 m

impact velocity:
5.23m/sec

..--_.-. I ...... / ......

DAMAGE ON THE
S

SLAB BOTTOM SIDEL
A LOADING @' m
B CONDITIONS E 5 w~ en _J

No m u, 0
(§ 0 I

en ~

70 kg hammerL51
hard Impact
drop height:

~2x3.22m m

tmpact velocity:
7.71 m/sec

110,71(; 1/.1. ...........

150 kg hammed
LS~ hard impact

drop height: W3.22m

impact velocity:
7.79 m/sec-

I
232551 5.B -_ ........

150kg hammerLS3 hard impact

drop height:

~2.5m .

impact velocity:
6.93 m/sec

24791 6.21J

LS4 150 kg hammer
hard impact

drop height: tf0/,}
3.22m '/

impact velocity: ~
7.93 m/sec

30133 7.5 J

LS5 150 kg hamme
soft impact

drop height:
2.5m INOSCAB]

impact velocity:
6.99 m/sec

.._- ....- .....__ . ...._-- ..

Table 5,3 Details of slab bottom face damaee - I :2,5 scale impact tests
Slabs SI6 to SI9 and 1:1 scale slabs LSI to LS5
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On the impact face of slabs SI to S6, S l3 and S 15, the pressure bar had penetrated

leaving a small indentation with vertical walls. The depth of the pressure bar penetration was up

to 10mm and this must have absorbed a significant part of the impact energy. Below the pressure

bar indentation was the shear plug with inclined walls at 10° to 30° and considerable cracking

outside these boundaries, sometimes at up to 45° inclination, Fig 5.16.

In impact tests all of the punched holes had approximately the same size diameter, which

was 10% larger than the hammer diameter i.e.50mm.

D

R.C.SLAB - LOAD CELL

Fi~. 5.16 Typical impact puncbed bole

Tables 5.4 and 5.5 give the details of the shape and the size of front and back face damage

on the blast loaded small scale slabs.

The blast impulse tests usually produced damage on both slab faces. In all cases the

bottom face crater, the scab, is much greater than the front face crater, the spall. In most cases

perforation was followed by the spall (slabs SE2, SE8, SE16 and SEI7) but cylindrical charges

produced perforated holes only and no spall (Slabs SE2 and SE3). Damage produced on the slab

back face by either a cylindrical or a hemispherical charge of the same mass was almost identical,

slabs SE4 and SE5, although slab SE4 had a greater reinforcement percentage. This is consistent

with observations about the peak overpressures from different charge shapes, given in section

4.2.1.1.

Percentages given in Tables 5.2 to 5.5 for the scab and spall areas also include the hole.
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DAMAGE DESCRIPTION DAMAGE DESCRIPTION
S SLAB BOTTOM SIDE

S
L SLAB TOP SIDE L SLAB TOP SIDE SLAB BOTTOM SIDE

A LOADING N m N m C\j' m C\j' m A LOADING N m N m C\j' m sr m
B CONDITIONS E :5 E :5 E :5 E :5 B CONDITIONS E :5 E :5 E :5 E :5~ Cl) ~ Cl) ~ Cl) ~ Cl) ~ Cl) ~ Cl) ~ Cl) ~ Cl)

_J u, w u, m u, w u, _J u, W u, m u, w U-
No _J 0 ...J 0 0 ...J 0 No _J 0 _J 0 0 ...J 0-c 0 -c 0 -c 0 -c 0a, ff. ff. o ff. ff. a, ~ ~ U ~ ~Cl) I Cl) I Cl) I Cl) I

78 grams PE4 78 grams PE4 --
SE1 SE6

cylind~ical hemispherical
charge Q®

charge
INO SPALL I ~~parallel sides It flat side '0'/1

.

acing the slab ~~ acing the slab
. (.,..

stand off: stand off:
650+100 100mm

.------ ....-..- ---_ .._- -_ ..... 571.8 8.9 -- ....-.- ....... ----- ------ ------ ------ 433.4 ~.8 --_ ..- -----
78 grams PE4 ._--- 78 grams PE4 -SE2 cylindrical SE7 hemispherical

charge
~/ charge lli9parallel sides • ./' curved side q~ ~

acing the slab ,I" I,

acing the slab
,

"
stand off: stand off:
< 50mm 100 mm

.._-- .. ------ 100 1.6 718.7 11.2~8.5 1.5 88.9 1.4 -......- ------ 535.4 ~.4 -..--_ _ ...._.

78 grams PE4 78 grams PE4
SE3 cylindrical SEB hemispherical

charge /~~~ charoe
if] [.~parallel sides • I.:.,~ flat side

acing the sial:
v. ,,(
"\:./,{ acing the slat t;:t.LLJ

stand off: stand off:
50mm 50mm

---_ .... ------ 120 1,9 507.3 7.9 ~7.6 1.5 196,1 ~,1 107.0 1.7 531.9 8.3 154.4 ~.4

78 grams PE4 78 grams PE4

SE4 cylindricfll SE9 hemispherical
charge <A charqs

parallel sides curved side J7'A:\) 1 .: ',; .. •.••

acing the slat INO SPALL I
'" ~.,

acing the slab • < .\ •
cl ".~

stand off: I stand off:
100mm 100mm

--_ .....- ....---- ...---- ------ 339.0 ~,3 _ .--. .._- _ ----- ..__ .... ~6.9 0.4 574.8 9,0 51.5 0.8

78 grams PE4 ,1:8 grams PE4
SE5 hemispherical SE10 hemispherical

charge ff!J charce
curved side INO SPALL I curved side INOSPALLj INOSCAB I~'

acing the slabacing the slab

stand Off:] stand off: I
100mm - ~ -;Omm

..... - ...-- ...._ .... .._.--- -.---- 404.8 ~3 _ ....... - ..-...- ------ ------ _.--- .............. ..... ....... .......... ...........

Table 5,4 Details of slabs top and bottom face damaf:e - J :2,5
Scale Impulse tests - Slabs SE) to SEJO
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DAMAGE DESCRIPTION DAMAGE DESCRIPTION
S S
L SLAB TOP SIDE SLAB BOTTOM SIDE L SLAB TOP SIDE SLAB BOTTOM SIDE

A LOADING N CD N CD N Q) N Q) A LOADING N CD N CD N CD N CD
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...J U. W U. CD U. W U. ...J U. W U. CD U. W u,
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----- ------ ----- ---_ .. --_ .... ...._ .... -..--.. --_ ...._
B7.9 0.6 28.4 0.4 482.1 17.5 18.9 0.3
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charge charg_~

"curved side . (l curved side •acing the sial:

I
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............ ....._--- ......_- ---_ ... 17.4 b.s± 42.4 0.7 31.8 ~.5 619.5 9.7 35.1 ~.5
-

78 grams PE4
SE18

78 grams PE4
SE1:l hemispherical ......... hemispherical

charge t ..~ charge
curved side ., : u. curved side INOSPALLI INOSCAB I
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/ acing the sleb10
' ..

stand off: stand off:
125mm 200mm

19.1 0.3 ------ ..--..-- 183.2 ~. 9 [---- 1-= -......- ----- ----- ---_ .. ...... -- ----- -_ ....- -_ ....-
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~
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.

acing the sial: • t1-~
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Table 5,5 Details of slabs top and bottom face damas:e - 1:2,5
Scale Impulse tests - Slabs SEll to SE19
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The greatest area of spall occurred on slabs SE7 (1.4%) and SE8 (3.1 %) which both had

inner supports, section 3.3.1.2. Slab SE5 was identical to slab SE7 but did not have inner supports

and had no spall. The maximum size spall produced on a slab without inner supports where slab

perforation did not occur was 0.3%, slab SEl3. It appears that a slab will have to be perforated to

produce spall greater than this. The maximum size of the hole in a slab exposed to a

hemispherical charge and not supported by inner supports, was obtained in slab SE 17 and was

about 0.5% of the total surface area. It is important to note that slab top side damage, spall and

hole is closely related to the shape of the charge but not so much to the pressure characteristics of

a particular charge. For example, on slabs SE12 to SEl5 which were identical apart from a slight

difference in concrete strength there was no consistency between the peak overpressure

characteristics such as peaks, positive duration and impulse, and the spall size.

The back face damage produced by a cylindrical charge is greater than that produced by a

hemispherical charge of the same mass, as seen from the results on slabs SE3 and SEl7 for

example. The hole is almost 3 times larger in slab SE3 then in slab SEI7. The size of the scab

can not be related to slab perforation as in spalling. For example scabs on slabs SE7 and SE8 are

almost the same size but only SE8 has been perforated. Scabs on these two slabs are almost the

same size as the free surface inside the internal supports.

It appears that the scab size depends on the characteristics of the blast pressure function if

the almost identical slabs SElO to SE17 are compared. The scab size is directly proportional to

peak overpressures and impulse and inversely proportional to duration of the pulse. The

maximum scab area is about 11.2% of the surface area of the slab which is very close to the value

obtained in the impact tests. Both values can be related to the size of the charge and impact

loading area respectively.

As for impact loading, the maximum size of the bottom face cratering on 1:1 scale

explosively tested slabs was relatively smaller than for the 1:2.5 scale slabs and it was 8.3%,

Table 5.6.
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DAMAGE DESCRIPTION
S SLAB TOP SIDE SLAB BOnOM SIDE
L
A LOADING N co N co N co N co
B CONDITIONS E ~ E ~ E ~ E ~

~ Ul ~ Ul ~ Ul ~ Ul
_l U- W U- co U- w U-
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et: 0 et: 0a.. *' *' 0 *' ~
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I fl.
curved side r: I (,~,'!
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1647 OA .....-- ...... - 3279 8.2 -........... _ ........
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~!1ar~

~ ~
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2865 0,7 ....._-_ .. ....._- - 8239 2.1 ......... ..........
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charge_
curved side INO SPALL] INO SCAB I
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--p--- ---_ .. .......... - ---_. ------- ..- ..-- ------ ...........
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300mm ----

_ ...._- .. ---_ .. - .......... - -_ ....- 6999 1.8 ---_ .... .......-
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1789 004 .----- ----- 33333 8.3 ------ -- ..-_

Iable 5,6 Details of slab's top and bottom face damas=e
1:1 Scale Impulse tests - Slabs LSEI to LSE5
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Slab LSEl which was tested twice at standoffs of 350 and 250mm, had a significantly

larger scab than SE2, tested only once at 250mm standoff. This indicates that although slab LSEI

did not appear to have any permanent damage from the first test at 350mm standoff, its resistance

must have been reduced before the second test. Spall sizes were maximum at 0.7% of the slab

area but are not consistent with the pressure function, e.g. LSE2 and LSE5. None of the l: 1 scale

slabs that were tested by explosive were perforated.

In almost all slabs, even the most lightly reinforced, the bottom reinforcing bars were

deformed locally in bending over a length which always exceeded the width of the hole in the

perforated slabs. There was no significant change in the reinforcement curvature across the

deformed length and this indicates that the doming effect which influenced the early local

response had no effect on the final shape of the reinforcement. This means that most of the

dooming was of elastic nature. Before any shear slip took place it was apparent that some of the

concrete above the bottom bar reinforcement had been fragmented by the high compressive stress

applied by the blast pressure.

Those slabs in which the blast pressures perforated the slab, produced a hole with very

steep sides where sometimes the scab and spall intersected.

The shape of the punched hole can be of two different types. Type A, Fig. 5.17 has a

Fie. 5.17 Punched hole Type A Fie. 5.18 Punched hole Type B

hole that consists of cratering from both slab faces which indicates that both the tensile (bottom

side crater) and the compressive (top side crater) dynamic strength of the concrete were exceeded

so the intersection of the failure planes helped in the formation of the hole through the slab. In the

second case, Type B, Fig. 5.18 only the tensile strength of concrete was exceeded or the size of

area where the compression failure (pulverisation) of concrete occurred was smaller than the area

of tensile failure.
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Although TMP-5-855-1, (1986), suggests that type A action occurs when the top side

crater depth, or spall, is approximately equal to one-third of the slab thickness, our tests could not

confirm that prediction because in no case was the front spall so deep.

5.2.3.2 Prediction of the damage

Predictions of the damage to R.C. slabs usually concentrates on the damage in the area of

local response which is related to the characteristics of the charge and the thickness of the slab.

The following predictions are given for the case of blast loading only.

Hader, (1983), gives a relation between the slab thickness t , standoff distance rand

cube root of the TNT equivalent of explosive weight W for bare explosive charges and the type of

damage caused by the combination of those three, Fig. 5.19

1
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Table 5.7 gives the values for r /Wi and the estimated damage category for both the 1: 1

and 1:2.5 scale tests carried out in this research. For 1:2.5 scale slabs t / wi is 0.103 while for 1:1

scale slabs it is 0.101.

All the damage is divided into categories 0, A and B. The categories ° and A represent

minor damage and scabbing, respectively. The category B represents the most severe damage and

all cases of perforations would fall into this category. It is interesting to note that this

classification does not take into account the relative position of the charge to the specimen so

central and off centre blasts are treated equally and support effects are ignored.

In this case the term "spalling" has been used in reference to the back face damage. The

slabs which were perforated in this research are marked with the black circles on Fig 5.19 while

the most severe scabs (slabs SE4 to SE7, SEl3 to SEl5 and LSEI,LSE2,LSE4 and LSE5) are

marked by empty circles. Minor or no damage is marked by empty squares. It can be seen that

the Hader predictions more or less agree with the damage observed on the slab specimens tested in

this research. All the 1:2.5 scale slabs were tested by a 78g charge at different standoff distances.

The energy equivalence of lkg ofPE4 is 1.13kgof TNT, and it can be concluded that any standoff

of up to 173mm should have produced minor or no damage, standoffs between 173 and 52.5mm

would produce considerable scabbing, and standoffs below 52.5mm were expected to produce

perforation of the slab. Tests in this research showed that the perforation prediction is optimistic

while the prediction of the minor damage depends on the subjective estimate of the damage. If all

scabbs of less than 1.7% of the surface area are considered as minor damage then a new relation

can be established to more precisely describe the damage on the slabs tested in this research

project.

Although Hader, (1983), did not give analytical functions for the lines on Fig 5.19 it can

be shown that the boundary between perforation and scabbing was calculated according to:

y = K· x + f3 or:

t r
log- = -K ·log-+ f3wi Wi

where: K = 0.224548 and f3 = -1.522878
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The boundary line between scabbing (or "spalling") and "minor damage" has the same

shape and value for K but f3 = -1.219.

The new boundaries to satisfy the present test results have the same shape but different

values of {3. For the "perforation line" f3 = -1.462274 and for the "minor damage" line {3=-

1.3023.

To find the depth t of an R.C. slab to satisfy any design requirement the following

procedure can be adopted. For example if I is chosen as:

r
0'3 -K.!og----0:33+!3

t~W'" ·10 W

and for {3 = -1.462274 the explosive charge of weight W placed at distance r from the target

slab, will not perforate it. If f3 = -1.3023 then W will cause only minor damage at the back sides

of the target i.e. scabs smaller than 1.TX, of su rface area. Units for t and r are metres while W

is in kgs of TNT.

The new lines are shown in Fig. 5.19 with a thick dotted line. Values in between these

two lines would still indicate substantial scabbing on the back face of a concrete slab with normal

amounts of reinforcement. Fig. 5.19 indicates that slabs with no reinforcement, such as SE9 and

slabs with unusual span to depth ratios, such as SE8 with inner supports, had damage which did

not conform to the Hader or the new lines. These two cases correspond to value r /Wi = 0.234,

Fig.5.19.

Kinney and Graham,(1985), relate the thickness of the concrete wall r (m) and the charge

size W (explosion yield in kilograms TNT) needed for perforation, as:

II' = f3.,3

where {3 is a breaching coefficient. It is thought that this relation is developed for contact charges

only but this will be considered here for the close range charges used in the present research. For

reinforced concrete f3 has a value of 27kg TNT/m3. By applying the 1.13 equivalence factor for

PE4 to TNT (Section 2.5.2) the charge needed to perforate a 1:2.5 scale slab, W is 0.2g of PE4,

since r , the slab thickness, is O.044m. For the 1:1 scale slabs, where r = O.llm, W required is

31.8g ofPE4. Since these present tests had II' = 78g for the 1:2.5 scale slabs and perforation was

achieved only from the 60mm standoff or closer, it can be estimated that this relation greatly

underestimates the breaching resistance of concrete.
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MCVtlY, (1987), predicts that a scab would appear only when the scaled distance was less

than O.6m/kgo.33 but he does not give exact details about the slab thickness and the charge shape.

Kropatscheck, (1983), gave a "damage classification" graph for both cased and uncased

charges. The relation that covers the uncased charges is identical to the one provided by Hader,

(1983), where r represents the standoff distance (m), t is the slab thickness (m) and w is the charge

weight (kg), Fig. 5.20.
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Fig. 5.20 Damage Classification (Kropatscheck,1983)

Pressure needed to pulverise the top face concrete can be estimated from the tests SE 12

which had standoff 150mm and forces were just large enough to produce a small spall. Calculated

epicentre peak pressure for 150mm standoff is about 2300 bar.

5.2.4 Load transfer from the area of local response to the rest
of tile slab

Not all the energy transmitted by the explosion can be absorbed by the very fast local

response. Part of the remaining energy will be given to the rest of the slab by the load transfer

between these two regions.

Impact load transfer to the rest of the slab depends entirely on the shear strength of the

section, but RC slabs are frequently designed without any shear reinforcement. The displacement
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of the cone of concrete formed on the epicentral axis of a R.C. slab is resisted in shear by

reinforcement dowel action, aggregate interlock and the concrete compression zone shear.

Under static loading inclined shear cracks do not propagate through the full depth of the

slab or form instantaneously but with rapidly applied dynamic loads, punching shear cracks

almost instantly go through the full depth of the section and as a result the compression zone shear

resistance does not exist except possibly at the very beginning of the load transfer.

Once the cracks on the boundary of the shear plug are formed then load transfer to the rest

of the slab depends on aggregate interlock and dowel action. The load transfer plays a dominant

role in the overall flexural response of the slab and also in the continuing response of the local

area.

The mechanisms that resists shear movement of the punching cone and as a result transfer

forces to the rest of the slab are given in Fig. 5.21.

Fie. S.21 Load traosfer from the area of local respoose

In the early stages, when vertical displacements of the shear plug are small, aggregate

interlock may carry about 90% of the overall force as in the case of static loading, and the

remaining 10% would then be carried by the dowel action. When larger displacements occur and

extensive cracking has almost disintegrated the shear plug, the influence of the aggregate interlock

decreases because the gap between the shear faces is much larger and most of the resistance is

through the dowel action of the longitudinal reinforcement. It can be estimated that this change of
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the predominant load transfer mechanism will be completed when the shear gap exceeds the size

of the largest aggregate particle. At this stage there is breaking of the concrete cover, from the

reinforcing bars and the high speed photography indicates that this is a later event. Reinhardt and

Walraven, (1982), report that the crack opening path, the ratio of crack width or shear gap to

shear displacement, for reinforced concrete subjected to static shear loading was not influenced by

a variation of the reinforcement ratio between 0.2 and 3.4%. In the present dynamic tests the

reinforcement ratio was within these limits.

5.3 Overall response of the slab

Overall flexural movement of the slab follows the localised response that was discussed in

section 5.2 for slabs exposed to very localised dynamic loads. Stress waves are of major

importance in determining the local response but are less significant then the inertial forces in the

overall response. The overall flexural response takes place after the local response and is

determined by the peak load or impulse, depending upon the duration relative to the natural period

of oscillation of the specimen. The overall response of a slab is mainly characterised by the

existence of multiple diagonal cracks typical of yield line rotation, reverse yield lines and cracks

formed close to and parallel with the supports and across the comers of two way spanning slabs.

The cracks that appear in the specimen will be analysed in the next section.

The local damage to the slab, the inertia due to high accelerations, the spatial and

temporal variation of the dynamic load and the dynamic enhancement of the material properties,

may all affect the overall flexure of a R.C. slabs under locally applied dynamic loads and produce

results which differ markedly from static loading. All damage produces a change in the mass,

resistance and stiffness parameters of a member. The possible reduction in some of these

parameters before the slab acquires the transient deflection profile, could significantly change the

maximum deflections from those determined for undamaged slab.

Some typical deflection - time profiles of the slabs under explosive blast, impact and static

loading are given in Figs. 5.22 to 5.31 and show the difference in overall deflected shape of the

slabs.
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5.3.1 Crack type analysis

The cracking seen on the high speed films has been discussed in the section on local

response. This section deals in more detail with the cracks and the crack patterns found after the

test on the top and bottom surfaces and central cross sections of the slabs. Although not all the

crack types discussed here appear on every single specimen, most specimens show very similar

crack patterns.

5.3.1.1 Top surface cracks

Slab S12, Plate 5.1, and Slab SES, Plate 5.2, exposed to hemispherical charge, (lOOmm

standoff) are typical of the top surface cracking that occurred from impact and blast loading,

respectively.

Plate 5,1 Top face of Slab S12. 1:2,5 scale - soft impact test. 3,Om drop

Although Slab SES had a much denser crack pattern than Slab S12, both slabs had more

or less the same pattern and types of crack.

The radial cracks (a) that propagate from impact point on Slab S12 and from about SO-

100mm from the blast epicentre on Slab SES, are produced either by flexure or by hoop stress
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perpendicular to radial compression. They are similar to the yield lines that occur on the back of

R.C. slabs in static tests and show some rotation along these lines. They are reverse yield lines

with a multiplicity of cracks as a result of theroscillations of the slab and clamping of the support

area.

Plate S,2 Top face ofSES, 1:2,S scale - hemispherical cbar&e,100mm standoff

The corner cracks (b) that produce a symmetrical pattern in all four comers may be

caused by membrane stress waves or by flexure during the overall deformation of the slab at the

time of maximum downwards movement.

Formation of these comer cracks by concentration and amplification of the radiating

compression wave occurs when the membrane stress waves move into each comer of the slab.

Tensile reflections from the adjacent slab sides interact and so amplify the tensile stresses which

become greater than the tensile resistance of the concrete, Johnson, (1972).
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The maximum downwards movement of the slab happens much later and could also

produce comer cracks.

Some of the comer cracks do not extend completely across the corner, see Plate 5.2 and

since some of them appear to originate from the flexural yield lines, they must have been formed

after the yield lines. Consequently, comer cracks that originate from the yield lines are clearly not

produced by membrane stress waves but by the flexural movement of the slab.

"Reinforcement" cracks (c) propagate along some of the longitudinal reinforcement

bars, and are due to an increase in transverse flexural stress increased by the reduction in the area

of concrete or to bond forces between concrete and reinforcement. These cracks never propagate

deeply into the slab.

Short length cracks (d) appear in the support area of the slab as shown in Plates 5.1 and

5.2 and are very similar to the comer cracks. These are probably caused by multiple reflections of

stress waves from the top and bottom beam support arrangement and by concentrations of stress

due to non uniform fixity of the supports.

Circular cracks (e) around the blast epicentre may be associated with possible spall

formation or may be the surface intersection of through-thickness cracks which form the frustum

of the punching cone coaxial with the epicentral axis of the blast. Those furthest from the

epicentre may be related to the "doming" of the epicentral area on the back face, and so associated

with the flexural response.

Much greater overall density of the front face cracking in impulse than in either type of

impact test is the best indication of the influence of dynamic pressure distribution that follows

even close range explosion.

5.3.1.2 Bottom surface cracks

Slab S12, Plate 5.3 - impact tested and slab SE16 Plate 5.4 - explosively tested at a

standoff distance of 60mm, have bottom surface cracking typical of impact and blast loaded slabs

produced by both flexural and local response of the slab.

202



Plate 5.3 Bottom face of Slab S12 - soft impact test - 3.0m drop

Plate 5.4 Bottom face of Slab SE16 - hemispherical charge - 60mm standoff
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The most obvious cracks are the multiple diagonal cracks (a) typical of yield line

formation, and they are present in all cases of impact and blast test although the absence of

residual deflection after some of the tests might indicate that plastic rotation along the yield lines

did not occur. They are obviously part of the flexural - overall response of the specimen although

the high speed films indicated that their initiation may be closely related to the initial formation of

the area of local response and doming that occurs in that region.

The greater density of yield line cracks that occur in soft impact and impulse tests than in

hard impact tests, clearly indicates that the major part of the impact energy was absorbed in these

parallel cracks. Since the length of the pulse in the soft impact was much longer than in the hard

impact, the energy was used mainly for flexural displacement of the slab instead of in local

punching at the impact point.

In addition there are cracks across the corners (b), along the reinforcement (c) and

short length support cracks (d) which are similar to those appearing on the front surface.

Circular cracks outside the scab zone could be related to the formation of the shear plug

but since they are usually not so close to the epicentre, could also be caused by a plastic hinge as

the centre of the slab "domes". Not all the crack types are present in every test but appear in some

of them and are typical of the deformation mechanisms.

Plates 5.5 and 5.6 show the larger and smaller size cracks on slab SEl?, respectively.

Plate 5.5 Slab SE!' Larger sizecracks Plate 5.6 Slab SE!' Smaller size cracks

Larger size cracks are mainly those in a radial direction from the centre which suggests

that flexural behaviour of the slab is very dominant and that rotations along the diagonal yield
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lines were significant. Smaller size cracks in a radial direction are usually further from the yield

lines region. The "reinforcement" cracks, corner cracks, support cracks and circular cracks are of a

smaller size and do not go deeply into the concrete.

Under static loading the cracks which are first initiated develop to the failure that

represents the ultimate response of the slab. The larger flexural cracks indicate a different pattern

of behaviour for dynamic tests. Local failure in dynamic tests occurs first but does not develop

into the ultimate slab response since it is usually followed by a progressive flexural failure.

5.3.1.3 Cross sectional cracks

Some concrete slabs were sawn along a centre line parallel to the sides to reveal the cracks

on the cross sections and these are shown in Figs. 4.10, 4.11 and 4.31. It can be seen that in the

epicentral region, the shear plug exists in the form of a conical frustum formed by inclined

cracking through the thickness of the slab. These are shear cracks and their inclination is related

to the load rise time, duration, and magnitude as well as the depth of the specimen and material

characteristics.

In the hard impact tests almost all the damage is concentrated in the area close to the

impact point, even in the cases where perforation occurred. The shear planes were almost vertical

in this case, and additional bottom face scabbing was a result of movement of the reinforcement.

Soft impact and particularly blast tests, produced a different pattern of cross sectional cracks.

Apart from the inclined cracks close to the epicentre, additional inclined, through depth cracks are

formed almost all the way to the support region and are produced by flexure. In the case of blast

loading they also result from pressure distribution across the slab.

Horizontal cross sectional cracks are the produced by the scabbing mechanism, and are

explained in section 5.2.1.

5.3.2 Deflection analysis

The initial deflected shape of R.C. slabs when exposed to a very fast locally applied load

is very different from that of slabs under static loading. Because of the inertia forces produced by

the slab acceleration, the deflected shape of the slab is a combination of different modes. Figs.
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5.24 to 5.31 from the impact and blast impulse tests show the deflection profiles that were

measured in the present research. Deflection profiles of the static tested slabs are given in Figs.

5.22 and 5.23.

For soft impact and blast impulse tests the measured deflections show the whole slab

deforming to a continuous shape but in the hard impact the deflection inside the central region is

much greater then in the rest of the slab.

Slabs SES and SE6 had top reinforcement and a higher percentage of bottom

reinforcement than slab SE14 and had a greater flexural resistance and lower displacement under

the same loading. Overall flexural resistance under these extreme load conditions, is closely

related to the static flexural resistance ofthe R.c. slab.

The peak deflection at midspan in static tests SS1 and SS2 were 7mm and 6.7mm which

were about 1% of the span length. Slab SI0 with soft impact did not have a punching or flexural

failure and although there was no residual deflection the peak midspan transient displacement was

up to 22% greater than in static test on identical slab. This indicates greater strain in the dynamic

test than the ultimate strain produced in static test. In the impact test on slab LS11, the peak

flexural displacement coincided with a punching failure but was almost double the peak

displacement in the static test, 12.Smm. Even the displacement at 160mm from the centre was

greater than ultimate midspan displacement in the static test and yet the slab fully recovered and

came to rest with zero residual displacement. Similar effects were also observed in the hard

impact tests. In all impact tests the loaded area was the end of the 50mm diameter pressure bar.

Deflections measured in the blast impulse tests show even greater increases in peak deflection

compared with static and impact ultimate values. Slab SElO had no residual deflection after a

peak deflection of 14.4mm, at 80mm off centre, and in slab SEll the peak deflection was

17.9mm.
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The displacement curve has significant curvature changes at between IOOmmand 280mm,

from the impact point or the epicentre of the slab. These curvature changes indicate higher

vibration modes. Between the points of curvature change, the axis of the slab is almost linear

Third mode deformation was clearly observed on Slab SE12 at the time of the peak upward

movement of the slab, Fig. 5.26.

The restraint to lateral movement at the supports along of the slab induces membrane

forces in the slab. Initially, the membrane action is compressive but later it becomes tensile.

Tankreto, (1991), concludes that the tensile membrane action takes effect "well beyond 12°

support rotation".

5.3.3 Energy considerations due to close range explosion

The total energy E given to the reinforced concrete slab by an explosive charge is given

by: /2
E=-

2M

where / - total impulse from the blast pressure - time record.

M - effective mass of the slab

Some of this energy will be absorbed in plastic work producing permanent damage of the

slab in the form of scabbing, spalling, cracking, residual displacement and perforation, some of

the energy will be absorbed in elastic flexural deformation and reinforcement strains and some

will be absorbed in vibration and stress wave damping.

5.4 Connection between local and flexural response

The local response and the overall flexural movement of the slabs are often separated for

analysis but the damage due to local response may alter the overall response. The timescale

difference associated with local and flexural response is the main reason for employing a

decoupled approach, but inertia and the finite disintegration speed of concrete mean that the two
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forms of response can overlap, not only in the time scale but also in the loading function and in

the reduction of effective flexural mass due to local disintegration at the centre of the slab.

The loading function on the whole slab depends in part on the transfer of load from the

central plug. This depends on aggregate interlock and dowel action and has been discussed in

section 5.2.7. In addition the amount and the nature of the local damage determines the amount of

energy that remains to produce the overall deformation. Slab SEl3 had a greater charge standoff

and the peak flexure shape of that slab, Fig 5.29, indicates that the peak flexural movement

outside the local response region is greater than for Slab SE17. The perforation of Slab SE17

meant that a much greater amount of energy was spent on the production of the hole and the

associated permanent local deformation so leaving very little energy for the overall flexural

response.

The time scale of events indicates that because of the much earlier formation of the local

damage, overall response can be decoupled but the final disintegration of local area, however,

happens significantly later, and it may not be complete at the start of the overall response. The

importance of this can be evaluated by considering static loading response where additional

deformation occurs beyond the peak load but in dynamic loading even the additional load might

still be resisted even after the failure of part of the structure, so causing secondary flexural damage

on a slab that has already failed.

Reduction of the effective flexural mass of the slab due to disintegration of the central

shear plug of concrete is important in the vibration response and in the reduction of inertia but the

loss of mass is only a small percentage. Final disengagement of the concrete from this central

region would complete the localised response and only after this disengagement does the response

of the specimen become fully flexural.

Inertial effects on the slab can be considered to produce effective supports close to the

point of loading at the initial stages of the response when they may be important for the local

response of the slab. At later stages these effective supports move outward from the epicentre and

may become moving plastic hinges as explained by the Symond's analysis,(Watson,1991).

The amount of energy absorbed in local response also influences the overall deformed

shape. The full scale impact tested slabs that did not have punching failure, do have a greater

relative displacement than the 1:2.5 scale tests that were perforated.
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The small scale impulse tests have produced results that show great consistency between

the tests. Tests SElO to SEI2 show mainly flexural response of the slab (standoffs 250mm,

200mm and 150mm), but by moving the charge closer to the specimen the response is both

flexural and localised punching shear with the soffit cracks indicating more steeply inclined walls

to the punch zone, particularly for slabs SEI6 and SEI7, standoffs 60mm and SOmm respectively.

5.5 Time sequence of events in the blast impulse loading
of R.C. slabs

(1) The FS-IO firing system sends a 3000 volt electrical signal to the charge detonator. This

signal lasts for about 0.2~sec and was taken as a reference time for the rest of the event.

(2) The L2AI electrical detonator receives the FS-IO signal and then detonates but detonation

time for this type of detonator is not consistent, so detonation occurred up to SO~sec after

receiving the FS-IO signal.

(3) Detonation of the PE4 explosive charge was at velocity of about 8000m/sec and so the full

scale 1300g charge detonated in about 9.l~sec and the I:2.S scale charge in about 3.6~

sec.

(4) At close ranges the shock wave in air will travel at about 7500m/sec and it will reach the

slab in about 6.7 to 33.3~sec for the 1:2.S scale tests and between 26.6 and 66.6~sec for

the 1:1 scale tests, depending on the standoff distance (section 5.1.1). If the charge is at

7Smm standoff as for slab SEIS, the blast wave arrives at 13.S to 63.S~sec after the FS-IO

signal.

(S) Curvature of the blast pressure front causes a variation in the time of blast arrival for

different parts of the slab. For instance, on slab SEIS, at the furthest part of the slab

S6S.7mm diagonally off the centre, the blast wave arrives about 6S.4~sec later then at the

epicentre and the dynamic pressure loading of this slab will commence between 13.S~sec

and 128.9~sec after initiation of the detonator. If the longitudinal stress pulse velocity in

concrete is taken as 3400m/sec then the stress wave from the epicentre has travelled about

222.36mm through the concrete before all of the slab has been loaded and could have been

reflected about S times from the free surfaces of the slab.
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(6) Once the shock front impacts the slab it will continue to propagate through the concrete,

expanding radially from the point of impact, Fig. 5.32. If the dynamic compressive

strength and forces of cohesion of the concrete on the upper face have been exceeded, then

the concrete will start to pulverise and crater to form a spall on the top surface. This

would reduce the energy of the initial shock and could remove the plastic wave. A plastic

wave travels more slowly then the elastic wave and always has an elastic precursor.

R.C.SLAB POINT OF LOADING

Fii!. 5.32 Radial expansion of the stress wave

The shortest time for the elastic pulse to reach the free boundary immediately below the

epicentre is 12.91lsec for the case of 1:2.5 scale slab. After this time the compressive stress

wave will reflect so becoming a tensile wave (section 5.2.1).

(7) High speed photography first shows radial cracking starting from the epicentre on the

back face of the slab. At about the same time a circular crack was formed at about 20mm

radius from the centre. The mechanism of crack formation was discussed in section 5.2.2.

(8) The front of the compressive stress wave will reflect as tensile stress from the back side of

the slab and travel towards the front surface before the rest of compressive pulse has

reached the back face because of the relatively long overpressure duration time. In

addition, an oblique incidence will cause the compressive pulse to reflect as a shear pulse.

The net stress level between the three pulses will determine the state of the concrete. Net

tensile stresses are important because the initial compressive stress failed to crash the

concrete and all further failure will be tensile.

(9) Displacement of the shear plug begins once the through thickness cracks are formed and

this changes the nature of the load transfer to the rest of the slab through aggregate
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interlock and dowel action (Section 5.2.4). Gradually, the force transfer changes to dowel

action only which can influence the flexural response of the rest of the slab and also

increase the size of the scab.

(10) Deflection of the slab begins at 0.25 to 0.8msec and 0.1 to 0.6msec after the load

application for the I: I scale and I :2.5 scale tests respectively and. The furthest point of

the slab can be loaded by 1.1msec in the case of 1:1 scale slab since the duration of the

pressure pulse increases with distance. Consequently deflection is affected not only by

the load transfer from the epicentral area but also by the vertical components of the blast

pressure function.

The forces causing flexural deflections are shown in Fig. 5.33. Compressive (Fe) and

tensile (FT) membrane action forces act at different times but they both increase the slab

resistance to blast loading.

Fe(t) <F== ==C> Fe(t)

Ft(t)F;:: ~ ~~~~;;~~~~~~~I~Fi~(t):

Fe(t) • COMPRESSIVE MEMBRANE ACTION

Ft(t) •TENSILE MEMBRANE ACTION
Fd.a.(t) • DOWEL ACTION FORCE

Ib.p .• BLAST PRESSURE IMPULSE

Fi(t) • INERTIALFORCES

<l=== Ft(t)

~
~
CL]-

R.C.SLAB

BLAST PRESSURE

INERTIALFORCES

REINFORCEMENT

Fh:. S.33 Flexural mechanism forces

(11) Straining of the reinforcement begins at about the same time as deflections at the centre of

the slab and so the initial strains are entirely due to local flexuring of the specimen and

only later may include effects of overall bending or in-plane straining due to stress waves

and membrane forces.

(12) Times of peak displacement can be seen from displacement - time records, Appendix Bl

and B2. At this time the yield lines and "reinforcement" cracks have been formed, High

deflection rates produce intense inertial forces, particularly near the epicentre, and later,
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the inertial forces may pull concrete off the reinforcement and greatly increase the size of

the scab.

5.6 Modelling

In the scaling laws, the strain-rate effects and gravity effects are assumed negligible. The

following sections make a comparison between damage and displacements on the full and small

scale slabs.

5.6.1 Local damage

The damage is quantitatively very similar at both scales. The same pattern of spall and

scab damage was produced and the quantifiable damage on slabs of two different scales compare

well. In both cases the spalls are very minor and the scabs are extensive and the same kind of

circumferential and radial cracking around the epicentre indicates similar failure mechanisms. The

similarity of loading and cross section characteristics allows comparison between the damage on

the large slab LSE5 and small slab SEI5, both subjected to explosive blast. Neither of them was

perforated, the spall was slightly larger on LSE5 and the scab percentages are within 1.4%. The

top and bottom face local cracking is almost identical. Slab SEl6 had a same charge as SEI5,

only l Smrn closer to the slab but produced a different failure mechanism and perforation.

5.6.2 Overall flexural damage

Yield line patterns dominate the shape of flexurally produced damage at both scales. The

same types of cracks (section 5.3.1) appear on the slab surfaces at both scales indicating the

existence of identical response patterns at both scales.

The scaling of local and overall damage of the slab was more successful then scaling of

slab displacements or reinforcement strains.
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5.6.3 Displacement record

The three dimensional linear scaling used in this research meant that measured

displacements were also scaled at scaled distances, i.e. distances on the smaller scale slab are

multiplied by the scaling factor - in our case 2.5. Table 5.8 gives a comparison between some of

the results.

BLAST IMPULSE TESTS RELATI.
DIFFER.

1: I SCALE RC SLABS 1:2.5 SCALE RC SLABS (%)
LSE - Ist shot S~alcd ~tandQtI di~WlI:C . HOmm
Charge standoff :350mm SEll - standoff distance : 150mm :
Displacement :at 225mm off Displacements: at SOmm off centre: - 21mm
centre: 26.3mm, at 450mm off at 160mm offcentre: - 13mm -
centre: IS.Smm. These positions at 240mm off centre: - 7mm
correspond to 90 and ISOmm off Estimated displacement at 90mm : -20mm
centre on I :2.5 scale slabs, Estimated displacement at 180mm: - 11.5mm
respec,
Reinforcment ratio of slab SE 12 was significantly smaller than on LSE I and the small slab had the
top reinforcement discontinued at the centre. Results are not directly comparable.
LSEl SI:a1cd~tandQff disWll:c ; lOOmm
Charge standoff:250mm ill -standoff distance: 100mm
Displacement : Displacement at 180mm off centre: 6.3mm
at 225mm off centre = 31.9mm Scaled displacement at 180mm off centre: 6.3x2.5 = 15.75mm 21.2%
at 450mm off centre = 20mm RI· difti . di lIS. 7Se ative erence m sp acements R.D. '" -- = 0.788

20

LSE3 S~alcd ~tandQff distanl:c ; 200mm
Charge standoff = 500mm SEll - standoff distance: 200mm
Displacements: Displacement at 80mm off centre: - 19mm 22.1%
at the centre: 52.2mm Displacement at 160mm off centre: - II mm
at IOOmm off centre : 45.2mm 11.9%
at 200mm off centre: 38.9mm Estimated displacement at IIOmm : 15mm
at 300mm off centre: 33.5mm Displacement at 240mm off centre : +Bmm
at 700mm off centre : 7. Imm
These positions correspond to :
centre, 40, SO, 120 and 2S0mm
off centre on I :2.5 scale slabs,
res.
LSES SI:a1cdSlaIldQffdislanl:c; 80mm
Charge standoff = 200mm SE.l.S • standoff distance: 75mm
at 300mm off centre: 3S.2mm Displacements at 80mm off centre : -ISmm 1.9%
at400mm off centre : 32.7mm Estimated displacement at 120mm : 15mm
at 500mm off centre : 23.4mm Displacement at 180mm: - 12mm S.3%
These positions correspond to :
l20mm, 160mm and 200mm off
centre on 1:2.5 scale slabs

Iable 5.8 Blast Impulse Iests.displacement scalins:

These results show that when overall flexural response was dominant, as in slabs LSE5 and SEl5 ,

there was much better scaling then in cases when local response was dominant.
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CHAPTER6

CONCLUSIONS

The following conclusions can be drawn from the work described in this thesis:

6.1 Modelling

(a) Manufacturing and testing problems together with the cost of full scale specimens make

the use of model specimens extremely beneficial providing the results and behaviour can be

compared to real structures.

(b) The modelling laws employed in this research are widely used for structural dynamic

modelling neglecting the existence of gravitational forces. Neglect of strain rate effects is more

important and can affect the final result.



(c) The displacements obtained on small scale specimens are expected to be 2.5 times smaller

than on the full scale specimens for the scaled loading and support conditions. Results from some

of the related specimens are shown in Table 5.8, section 5.6.3. The ratios of displacement on 1:1

scale slabs and on 1:2.5 scale slabs magnified by 2.5, vary between 87.9% and 98.9%.

(d) The local and overall damage was almost identical in appearance for both sizes of slab

which indicates a similarity of the failure mechanisms.

6.2 Instrumentation

(a) Impact hammer velocity measurement using microswitches can give a maximum error of

2.3% of the average velocity obtained in the tests, section 3.2.5. Using opto-schmidts the

maximum error is a function of the capture rate of the oscilloscope and is therefore negligible in

comparison with the hammer velocity.

(b) Limitations on the velocity of the R.P.D.T. stroke, recommended for movements of up to

1m/sec, caused errors in some of the displacement - time results, section 4.2.1.2, particularly for

the early parts of the slab movements that had much greater displacement rates, Appendix B3.

(c) High speed filming is a useful method of assessing failure mechanism. Filming at rates

up to 10,000 pps in the blast loading tests produced a minimum of 150 frames or about 15msec of

the film on which the visibility was very clear.

(d) To precisely measure the crack velocity from the high speed films the magnification has

to be increased and so the film area is reduced. The film speed has to be increased to cover about

Imm of crack extension on every frame i.e. filming rates of up to 1,000,000 pps. This is possible

using a rotating mirror camera but was not tried in these tests.

(e) Direct filming gives much better pictures than filming through a mirror, but this was not

possible with the slabs horizontal so the last 10 slabs at 1:2.5 scale were tested vertically.
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(f) Blast pressure gauges with a metal diaphragm produced much better results than those

with a silicon diaphragm. The amount of electrical noise from the metal diaphragm gauges was

very minor.

(g) The digital storage oscilloscope is a well established device for capturing and storing

electrical output from transducers recording fast events. Only a limited amount of data can be

stored and there is a need to compromise between the frequency of sampling and the length of

record required. Inconsistent and unreliable levels of electrical signal needed to trigger the scopes

sometimes caused premature signalling with a consequent loss of results.

6.3 Dynamic properties of materials and the blast
loading function

(a) The Hopkinson Pressure bar tests gave 2.5-3 times greater compressive strengths for

concrete specimens when the strain rates were up to 109 times greater than in static tests. The

ultimate dynamic compressive strengths varied between 90N/mm2 and 114N/mm2 for 1:1 scale -

macroconcrete and between 103N/mm2 and 142N/mm2 for 1:2.5 scale - microconcrete. The peak

strain rates were up to 1.46 x J03sec-1 and 2.29 x 103sec-l, respectively.

(b) The peak strain rates in the epicentral zone of the slab in impact test varied between

O.3sec-1 and 3.2sec-1 . In explosive blast tests they varied between O.2sec-1 and ts.ssec+.

(c) The much greater amount of cracking observed in dynamic compared to static tests,

Appendices A, Band e, indicates that under dynamic loading the cracks follow shorter paths

requiring higher energies and propagate too fast to benefit from stress relief and there is lateral

confinement of concrete, induced by inertia forces in the dynamic tests, which introduces a three

dimensional state of stress. These factors contribute to the increase in the dynamic strength of the

concrete.

(d) Henrych's,(1979), pressure vs. time vs. distance relations given for spherical and

cylindrical charges were adjusted for hemispherical charges and they then correspond to the
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measurements made from the tests, Table 5.1. All the calculated pressures have the same order of

magnitude and most of them are within 10% of the measured pressures.

The pressure gauges were placed to measure the vertical component of the pressure at various

points across the surface of the slab and the calculated pressure profiles for 78gr hemispherical

charges placed at stand-offs 50 to 500mm are given in Figs.5.2 to 5.7. The blast pressures

exerted on the slab by the curved side of hemispherical charge can be calculated according to:

(R )2.65 (t L)
p(t) = Pc!et' R

W

-cos' e- l-~

which is described further in section 5.1.1.1.

(e) Peak loading rates in explosive tests can be estimated from the calculated values of the

pressure function and they are of the order of 17,OOObar/microsec.

(t) The peak impact loading rates were 3.8 x 106KN/msec for 1:2.5 scale slabs and 34 x

103KN/msec for 1:1 scale slabs.

6.4 Local response

(a) As soon as the shock front from an explosion reaches the structure, some of the top face

concrete in the epicentral zone of the slab may be cratered. Later the back face may scab and the

slab may be perforated.

(b) None of the impact tested slabs had top face cratering even when there was full

penetration.

(c) In the explosive tests the cratering producing a spall is produced by the compressive and

shear stress on the top face of the concrete but unlike hemispherical charges, none of the

cylindrical PE4 charges produced a spall even when the slab was perforated.

(d) Slabs SE7 and SE8 had inner supports, and this appeared to influence the spall formation

since they both had larger spall sizes with a surface area up to 3.1% of the slab surface, than other
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slabs without the inner supports where the maximum spall size was 0.3% for no perforation and

0.5% when there was perforation.

(e) The spalls produced by charge stand-offs of ISO to 7Smm were almost identical in surface

area.

(f) A scab is produced by a compressive stress wave reflected as tension and the trapped

momentum which depends on particle velocity. Additional scab damage is produced by the

displacement rate of the concrete at the time of peak deflection. Hence the scab size depends on

both local response and on overall flexural response, which influences displacement rate.

(g) The scab size was related to the reinforcement percentages as shown in Figs. 5.4 and 5.5,

slabs SE5 and SEI4. This is due in part to the fact that greater amounts of reinforcement reduce

the area of concrete connecting the cover to the core concrete.

(h) In the case of impact loading, the scab covered up to II % of the slab area.

(i) In the case of explosive blast loading the scab size was directly related to peak

overpressures or impulse for stand-offs of up to 100mm but for the closer placed charges that was

not the case.

(j) The maximum scab produced in the explosive blast tests was also about II% of the slab

area.

(k) Given the scaled stand off distance and scaled slab thickness, scab size and perforation

can be predicted, as shown in section 5.2.1.2.

(I) If the slab thickness:

-K')og_!_+f!

t> f0 .10 wi

where: W - explosive weight in kgs of TNT

r - charge standoff in m

K = 0.224548 and

13= -1.462274
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then perforation will not occur. If {j= -1.3023, then a minor scab will be produced.

(m) Kinney and Graham's ,(1985), relation for breaching resistance of concrete greatly

underestimates its actual breaching resistance, section 5.2.3.2.

(n) A way of calculating the scab layer thickness on a slab under explosive tests is presented

in section 5.2.1.2., Fig. 5.13 and is based on a comparison between the ultimate dynamic strength

of concrete and the peak amplitude of the attenuated stress pulse.

(0) The impact hammer produced an indentation in the slabs about 10% larger than the area of

the impact hammer and about 10mm deep. The inclination of the shear plug was up to 30° to the

vertical.

(P) Whether the slab will be perforated or not depends on the peak load and rise time and not

on the impulse delivered to the R.C. slab. For example slab SI2 received an impulse larger than

slab SIS but unlike SEI5 was not perforated.

(q) Cylindrical charges produced no top face cratering and a Type B hole, but hemispherical

charges produced both top and bottom face cratering and Type A holes, Figs. 5.17 and 5.18.

(r) The maximum size of the punched hole in the blast tests was 0.5% of the surface area.

(s) The bottom reinforcing bars in slabs tested with an explosive charge were always

deformed locally in bending over a length which slightly exceeded the size of the hole.

(t) In both impact and blast tests the first cracks become visible 2 to lOO microsec after the

load application.

(u) The visible cracks on blast tested slabs occured in the following order:

(I) Radial cracks were initiated at the epicentre of the slab immediately after the

blast, in less than 100 J..L sec and had a length after 190 JJ sec of about 147mm.

(2) The inner circular crack formed at about 10mm radius from the centre of the slab

appeared at the same time as the radial crack.
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(3) The outer circular crack formed at about 80 to 130mm radius was established by

up to 800 f.J sec after the blast.

(v) The area that was limited by the inner circular crack disintegrated randomly, while the

area inside the outer circular crack fractured into almost symmetrical ring segments, Fig.S.IS.

(w) Typical crack velocities observed from the high speed films were between 420m/sec and

770m/sec.

(x) The visible cracks on slabs under soft impact were similar to those on blast loaded slabs

but the outer circular crack happened much later, at up to Smsec after the radial cracks.

(y) The hard impacts produced radial cracks up to l.6msec after the initiation of the first

circular crack.

6.5. Overall flexural response

(a) The overall flexural response began after the beginning but, often before the end of the

local response, as can be seen from the high speed films, Appendices A3 and B3.

(b) Overall flexural response is influenced by continuing externally applied pressure and by

the mechanism of load transfer from the edges of the area of local response.

(c) Load transfers from the area of local response to the rest of the slab mainly by aggregate

interlock and dowel action.

(d) The overall flexural displacement depends on the amount of energy remaining after local

response but can not be related to the amount of local damage since greater local damage does not

necessarily mean greater flexural movement in overall response.

(e) The main indicators of overall flexural response are yield lines that propagate towards the

comers of the slab.

(f) Deflection histories under static and dynamic loading are very different. Under the blast

and impact loading ultimate deflections are much greater but the slab showed considerable

recovery of deflection even in the case of full perforation of the slab, Figs 5.22 to 5.3l.
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(g) The soft impact and blast loading produced significant deflections across the whole slab

span but hard impact only produced deflection with in the local response zone.

(h) The beginning of the local response is governed by the stress waves but, at the time of the

peak overall displacement, momentum is dominant and combines with scab formation and

displacement produced by stress waves earlier in time.

(i) The peak deflection rates in explosion tests were 7.0m/sec and 8.0m/sec for the 1:2.5 and

1:1 scale tests, respectively. In impact tests they were 2.0m/sec and 3.6m/sec, respectively.
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CHAPTER 7

FUTUREWORK

Most of the tests reported here were conducted with the hemispherical charge and only a

few slabs were exposed to a cylindrical charge. Even the small number of these tests showed the

great differences that occur in specimen behaviour due to different shape of the charge. It is

suggested that more of the future tests be conducted with the spherical and cylindrical charge

which would assist in understanding the influence of the charge shape on the response of the

structure. A comprehensive charge test programme would also contribute in further validation of

the pressure vs time vs distance relations for the hemispherical charge that are presented in section

5.1.1. Further attempts to measure blast pressure spatial and transient distribution for

hemispherical charges placed at 50 - 250mm (small scale) and 500 - 200mm (full scale) standoffs

should constitute a part of that programme. Also testing of charges of other shapes that can be

initiated either from the top or from the centre and observing the differences, and comparison to

the results observed from the hemispherical charge initiated either from the flat or spherical side

would provide further information on the nature of both local and overall R.C. slab response.



Displacement records reported here do not fully cover displacements of the slab,

particularly in the area of the local response. An attempt should be made to measure reinforcement

displacement immediately under that area in order to get better deflection vs time profile of the

whole slab. This should be tried even in cases when perforation of the slab is expected.

Tensile strength of concrete is much more strain rate sensitive than compressive strength.

Ratio of static values of these two parameters does not apply in cases of dynamic loading. The

Hopkinson Bar techniques has been successfully used to get dynamic compressive strengths of

concrete. The same approach can also be used for obtaining values for the dynamic tensile

strength.

Three dimensional confinement, which is introduced into concrete as a result of the high

speed loading, can significantly change the apparent dynamic strength of the structure. The stress

histories at different places can be monitored by using stress gauges. They should be embedded

into concrete during the casting in a way which will not affect the resistance of the slab.

Fixed support arrangement used for the present investigation can not fully represent the

fixity provided in real structures. Fixity of the support I sections was applied through the high

strength bolts so producing non uniform spread of forces across the support area. Surface areas of

support and slab that are in contact are not ideally flat and smooth. Problems related to fully fixed

support conditions could partly be overcome by casting them together with the specimen, Fig. 7.1,

so providing contact as in a real structure. The size of support should be such so as not to

interfere with the response of the slab. The whole element can then be clamped by using the

similar support arrangement to that which was used in this investigation.

R.C.SLAB CAN BE CAST TOGETHER
WITH ITS SUPPORTS ----.

Fh!. '.1 Fixed supports
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Almost the whole of the testing programme was conducted on slabs that had the same

reinforcement bar spacing. Reinforcement spacing may play an important role, particularly in

local response and it was decided to keep it constant in order to avoid introducing additional

parameters into the study. Testing of the specimens with different reinforcement spacing might

establish its possible influence on both local and overall response ofR.C. slabs.

Dynamic force transfer from the area of local response to the rest of the slab plays an

important role in slab response to impulsive loading. Aggregate interlock mechanism transfers

most of the force before the shear slip becomes too great. Towards the end of force transfer the

dowel action will playa much greater role than at the beginning of the process. Dynamic tests on

aggregate interlock/dowel action test specimens would be useful to establish a better transferred

force-time relation. They can be performed on the same kind of specimens as in the case of static

loading or on specimens that more resemble R.C. slab configuration.

High speed filming of the soffit of the slab proved to be very reliable for accessing the

damage mechanism in the area of local response. High speed filming of the diagonal-yield line

zones of the specimen would help to get a better relation between the formation of the area of

local response and overall flexural R.C. slab response. In order to prove that the time sequence of

the failure mechanism is identical in both 1: I and 1:2.5 scale it would be useful to film full scale

specimens with the High Speed camera.
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IMPACT TEST
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IMPACTTEST

LARGE SLAB LS4
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IMPACT VELOCITY : 7.93m1sec

THEORETICAL VELOCITY V = ~2gh : 7.95m1sec

AREA OF THE PRESSURE BAR CROSS-SECTION : 12,265mm2

II

..

R.C.SLAB

~~======r I - BEAMS

SPECIMEN

A1·8



IMPACT TEST - LARGE SLAB - LS4
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f2~ 0.4

0.2
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A1-9



IMPACTTEST

LARGE SLAB LS5

DA1E: 18.8.92

AGE OF SPECIMEN: 8 days

Cube compressive N/mm2 41.9
Cylinder tensile

N/mm2 3.32 Age
8strength strength (days)

REINFORCEMENT;

LOADING CONDITIONS

SUPPORTS

2000mm

COVER: 10mm

TOP LAVER REINFORCEMENT:

R.MESH : B.S.4483 A3Q3101200n00 nvn

(WITHOUT CENTRAl REGION 1.0 X 1.0 m)

BOTTOM LAVER REINFORCEMENT

R.MESH: B.S4483 A3Q3101200n00 nvn

·1

TYPE OF IMP ACT .

HAMMER WEIGHT .

HEIGHT OF DROP (ABOVE CENTRE OF SPECIMEN)

IMPACT VELOCITY .

THEORETICAL VELOCITY V = ~2gh ..

AREA OF THE PRESSURE BAR CROSS·SECTION

T
j

R.C.SLAB

1- BEAMS

SPECIMEN

A1·10

: SOFT

150kg

2500mm

6.99m1sec

: 7.00mlsec

: 12,265mm2



IMPACT TEST - LARGE SLAB - LS5

top side bottom side
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0.2
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TIME(ms)
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-10 0
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F
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en

~
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LL -50w
0 -0.002
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-70
-0.0025
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A1 - 11



IMPACT TEST
RESULTS

1:2.5 SCALE SLABS

APPENDIXA2



IMPACT TEST

SMALL SLAB SI

DAlE: 22.05.90

AGE OF SPECIMEN: 8 days

Cube compressive N/mm2 35.70
Cylinder tensile N/mm2 3.90

Age
9strength strength (days)

REINFORCEMENT:

1m Q Q Q Q Q ' Q Q 0 Q Q Q Q Q Q 0 0 0 0 0?1 ~

T
I

bonom side top side

I !

I

BOOmm

LOADING CONDITIONS

SUPPORTS

TOP LAYER REINFORCEMENT: ••----

E
E

~
EACH WAY

BOTTOM LAYER REINFORCEMENT:

11No B mm H.Y. and 10 No 6 mm H.Y.

1 COVER: 4mm

TYPE OF IMPACT : HARD

HAMMER WEIGHT : 33.7kg

HEIGHT OF DROP (ABOVE CENTRE OF SPECIMEN) : 1850mm

IMPACT VELOCITY : 5.51m1sec

THEORETICAL VELOCITY V = ~2gh : 6.02m1sec

AREA OF THE PRESSURE BAR CROSS-SECTION : 1962.5mm2

G-clamp

rubber

slab
SPECIMEN

80x80x10 EA

A2-1



IMPACT TEST - SMALL SLAB - S1
-~
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-1 3 5 7 9 11 13 15 17 19 21
TIME(ms)

A2-2



IMPACT TEST

SMALL SLAB S2

DATE: 24.05.90

AGE OF SPECIMEN: 10 days

Cube compressive N/mm2 35.7
Cylinder tensile N/mm2 3.90

Age
9strength strength (days)

REINFORCEMENT:

I", . . . . , . . . . Q , • 0 0 • 0 • • 0 .?I ~
bottom side top side

800mm

LOADING CONDITIONS

SUPPORTS

EACH WAY

TOP LAYER REINFORCEMENT: •••...

BOTTOM LAYER REINFORCEMENT:
E
E

~
11 No 8 mm H.Y. and 10 No 6 mm H.Y.

I

I
I-+-

COVER: 4mm

~I

TYPE OF IMPACT : HARD

HAMMER WEIGHT : 33.7kg

HEIGHT OF DROP (ABOVE CENTRE OF SPECIMEN) : 1850mm

IMPACT VELOCITY : 5.94m1sec

THEORETICAL VELOCITY V = J2ih : 6.02m1sec

AREA OF THE PRESSURE BAR CROSS-SECTION : 1962.5mm2

G-clamp

rubber
slab

SPECIMEN

80x80x10 EA

A2-3



IMPACT TEST - SMALL SLAB - S2

le;
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0.002

0
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-0.01
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IMPACT TEST

SMALL SLAB S3

DAlE: 1.06.90

AGE OF SPECIMEN: 7 days

Cube compressive N/mm2 37.7
Cylinder tensile N/mm2 4.12 Age

9strength strength (days)

REINFORCEMENT:

1m 0 0 0 0 0 0 0 0 ' 0 0 0 0 0 0 0 • 0 0 MI 1=
boHomside lop side

I

I

I

I
I
I

,

!

800mm

LOADING CONDITIONS

SUPPORTS

E
E

~

TOP LAYER REINFORCEMENT: ----.-

BOTTOM LAYER REINFORCEMENT:

21 No 6 mm HY ..EACH WAY

COVER: 4 mm

TYPE OF IMPACT : HARD

HAMMER WEIGHT : 33.7kg

HEIGHT OF DROP (ABOVE CENTRE OF SPECIMEN) : 1850mm

IMPACT VELOCITY : 5.67m1sec

THEORETICAL VELOCITY V =.J2ih : 6.02m1sec

AREA OF THE PRESSURE BAR CROSS-SECTION : 1962.5mm2

80x80x10 EA

G-clamp

rubber
slab

A2-5

SPECIMEN



IMPACT TEST - SMALL SLAB - S3

top side bottom side

180

160

140
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100

80- 602- 40
W
0 20II:
0 0u,
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-80
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TIME(ms)
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0.002

0

-0.002
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~ -0.004
~en
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-0.008

-0.01

-0.012
-1

- top bar
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3
TIME(ms)
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A2-6



IMPACT TEST

SMALL SLAB S4

DAlE: 5.06.90

AGE OF SPECIMEN: 11 days

Cube compressi ve N/mm2 37.7
Cylinder tensile N/mm2 4.12 Age

9strength strength (days)

REINFORCEMENT:

IT 0 0 0 0 0 0 0 0 0 0 ' 0 0 0 0 0 0 0 0 0.1 t
bottomside top side

LOADING CONDITIONS

SUPPORTS

2t No 6 mm H.Y.,EACH WAY

TOP LAYER REINFORCEMENT: ......

BOTTOM LAYER REINFORCEMENT:

COVER: 4mm

TYPE OF IMPACT : HARD

HAMMER WEIGHT : 33.7kg

HEIGHT OF DROP (ABOVE CENTRE OF SPECIMEN) : 1850mm

IMPACT VELOCITY : 5.76m1sec

THEORETICAL VELOCITY V = ,J2gh : 6.02m1sec

AREA OF THE PRESSURE BAR CROSS-SECTION : 1962.5mm2

r=: g-- G-clamp

~

rubber SPECIMEN
slab

~ 80x80x10 EA

A2·7



IMPACT TEST - SMALL SLAB - S4

top side
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A2-8



IMPACT TEST DATE: 12.06.90

SMALL SLAB S5 AGE OF SPECIMEN: 7 days

Cube compressive N/mm2 37.6
Cylinder tensile N/mm2 4.33 Age

9
strength strength (days)

REINFORCEMENT;

" No 6 mm H.Y ..EACH WAY

TOP LAYER REINFORCEMENT .

BOTTOM LAYER REINFORCEMENT

COVER: 4 mm

800mm

LOADING CONDITIONS

SUPPORTS

TYPE OF IMPACT HARD

HAMMER WEIGHT 33.7kg

HEIGHT OF DROP (ABOVE CENTRE OF SPECIMEN) 1850mm

IMPACT VELOCITY : 5.73rn1sec

THEORETICAL VELOCITY V = ~2gh 6.02rn1sec

AREA OF THE PRESSURE BAR CROSS-SECTION 1962.5mm2

G-clamp

rubber
slab

SPECIMEN

80x80x10 EA

A2·9



IMPACT TEST - SMALL SLAB - S5

top side bottom side

180

160

140

120

100

80- 60
~- 40
W
0 20a:
0 0u,

-20

-40

-60

-80
-1 3 5 7 9 11 13 15 17 19 21

TIME(ms)

20 0.004
deflection at LJ2

10 deflection at LJ4 0.002-E 0
E 0-Z -0.0020 Z
i= -10

~0 -0.004W I-_J
-20 Cl}u.

W -0.006
0

-30 -0.008

-40 -0.01

-0.012
-50

10 20 30 40 -1
0

TIME(ms)

A2·10

- top bar
- bottom bar

3
TIME(ms)

5



IMPACT TEST

SMALL SLAB S6

DATE: 13.06.90

AGE OF SPECIMEN: 9 days

Cube compressive N/mm2 37.6
Cylinder tensile N/mm2 4.33 Age

9strength strength (days)

REINFORCEMENT:

ls!;;;;;lm~~~~~"?I t

T
bottom side top side

I
i ,

i

II
I

II
I

BOOmm

LOADING CONDITIONS

SUPPORTS

E
E

~

TOP LAYER REINFORCEMENT: .....•

BOTTOM LAYER REINFORCEMENT

11 No 6 mm H.Y.,EACH WAY

COVEA: 4mm

TYPE OF IMPACT : HARD

HAMMER WEIGHT .. : 33.7kg

HEIGHT OF DROP (ABOVE CENTRE OF SPECIMEN) : 1850mm

IMPACT VELOCITY : 5.63m1sec

THEORETICAL VELOCITY V =.J2ih : 6.02m1sec

AREA OF THE PRESSURE BAR CROSS-SECTION : 1962.5mm2

G-clamp

rubber
slab

80x80x10 EA

A2-11

SPECIMEN



IMPACT TEST - SMALL SLAB - S6

top side bottom side
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.-
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A2·12

- top bar
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IMPACTTEST

SMALL SLAB S7

DATE: 21.06.90

AGE OF SPECIMEN: 7 days

Cube compressive N/mm2 36.6
Cylinder tensile

N/mm2 4.02 Age 11
strength strength (days)

REINFORCEMENT:

bottom side top Bide

SOOmm -I

TOP LAYER REINFORCEMENT: ......

BOTTOM LAYER REINFORCEMENT:

11 No6mmH.Y.,EACHWAY

COVER: Cmm

LOADING CONDITIONS (2nd impact)

SUPPORTS

TYPE OF IMP ACT : SOn"

HAMMER WEIGHT : 33.7kg

HEIGHT OF DROP (ABOVE CENTRE OF SPECIMEN) : 1850mm

IMPACT VELOCITY : 5.96m1sec

THEORETICAL VELOCITY V = ~2gh : 6.02m1sec

AREA OF THE PRESSURE BAR CROSS-SECTION : 1962.5mm2

G-clamp
rubber
slab

80x80x10 EA

A2-13

SPECIMEN



IMPACT TEST - SMALL SLAB - S7

top side bottom side
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Wo 20a:
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E 0-Z
0

-10~o
W
_oJ

-20LL
W
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-40

-50
0 10 20 30 40

TIME(ms)

A2-14



IMPACTTEST

SMALL SLAB S8

DATE: 22.06.90

AGE OF SPECIMEN: 8days

Cube compressive N/mm2 36.6 Cylinder tensile N/mm2 4.02 Age 11
strength strength (days)

REINFORCEMENT;

bottom aide top aide

BOOmm

LOADING CONDITIONS

E
E

~

TOP LAYER REINFORCEMENT: ••••••

BOTTOM LAYER REINFORCEMENT:

tl No6mmH.Y.,EACHWAY

COVER: 4mm

SUPPORTS

·1

TYPE OF IMPACT : SOFT

HAMMER WEIGHT : 33.7kg

HEIGHT OF DROP (ABOVE CENTRE OF SPECIMEN) : 1850mm

IMPACT VELOCITY : 5.77m1sec

THEORETICAL VELOCITY V = ~2gh : 6.02m1sec

AREA OF THE PRESSURE BAR CROSS-SECTION : 1962.5mm2

G-clamp
rubber
slab

80x80x10 EA

A2·15

SPECIMEN



IMPACT TEST - SMALL SLAB - S8

top side bottom side

180

160

140

120

100

80- 602- 40
Wo 20a:
0 0u,

-20

-40

-60

-80
11-1 3 5 7 9 13 15 17 19 21

TIME(ms)

20 0.004
deflection at l/2

10 deflection at LJ4 0.002

-E 0
E 0-Z -0.0020

-10 Z
1=

~0 -0.004
W r-
...J

-20 enu,
w -0.006
0

-30 -0.008

-40 -0.01

-0.012
-50

10 20 30 40 -1
0

TIME(ms)

A2-16

- top bar
- bottom bar

3
TIME(ms)

5



IMPACTTEST

SMALL SLAB S9

DAlE: 32.01.93

AGE OF SPECIMEN: 15 days

Cube compressive N/mm2 40.0
Cylinder tensile

N/mm2 4.03 Age
8strength strength (days)

REINFORCEMENT;

bottom ,ide lop side

BOOmm

LOADING CONDITIONS

SUPPORTS

COVER: 4mm

TOP LAYER REINFORCEMENT:

R.MESH: 3.15 mm OIAM./78.2 mm CENTRES

(WITHOUT CENTRAl REGION 400 X 400 mm)

BOTTOM LAYER REINFORCEMENT:

R.MESH : 3.15 mm OIAM. /78.2 mm CENTRES

"I

TYPE OF IMP ACT .

HAMMER WEIGHT .

HEIGHT OF DROP (ABOVE CENTRE OF SPECIMEN)

IMPACT VELOCITY .

THEORETICAL VELOCITY V = ~2gh .

AREA OF THE PRESSURE BAR CROSS-SECTION

G-clamp

slab

SPECIMEN

80x80x10 EA

A2-17

SOFT

33.7kg

1500mm

5.19mJsec

: 5.42mJsec

: 1962.5mm2



IMPACT TEST - SMALL SLAB - S9

top side bottom side

180
160
140
120
100

- 80
~ 60-w 40oa: 200
LL

0
-20
-40
-60

-2 2 6 10 14 18 22
TIME(ms)

20 0.004

deflection at 160 mm off centre 0.002
- top bar

10 deflection at 240 mm off centre
- bottom bar

E 0
E 0-Z Z -0.0020
F -10

~ -0.004o
~ deflection at 80 mm off centre fJ)tb -20

deflection at midspan point -0.006
0

-30 -0.008

-40 -0.01

-501-.--,-----,--.-,.-,-,---'--'-'-'-"'--'-'-'-"'--'-'---'-' -0.012 t-t.,,---.-r-.---.,....,....--r-r-r-...,....,-,-...,..-,.~~~~
o 2 4 6 8 10 12 14 16 18 20 -1 1 3 5 7 9 11 13 15 17 19

TIME(ms) TIME(ms)

A2-18



IMPACTTEST

SMALL SLAB S10

DATE: 2.02.93

AGE OF SPECIMEN: 12 days

Cube compressive N/mm2 40.0
Cylinder tensile N/mm2 4.03

Age
8strength strength (days)

REINFORCEMENT:

bottom aide top aide

COVER: 4mm

R.MESH : 3. IS mm DlAM./7I.2 mm CENTRES

I-
BOOmm -I

TOP LAYER REINFORCEMENT:

(WITHOUT CENTRAl REGION 400 X 400 mm)

BOTTOM LAYER REINFORCEMENT:

R.MESH : 3.15 mm ClAM. /71.2 mm CENTRES

LOADING CONDITIONS

TYPE OF IMP ACT .

HAMMER WEIGHT .

HEIGHT OF DROP (ABOVE CENTRE OF SPECIMEN)

IMPACT VELOCITY .

THEORETICAL VELOCITY V = ~2gh .

AREA OF THE PRESSURE BAR CROSS-SECTION

SUPPORTS

G-clamp
SPECIMEN

slab

80x80x10 EA

A2-19

SOFT

33.7kg

2000mm

: 5.94m1sec

6.26m1sec

1962.5mm2



IMPACT TEST - SMALL SLAB - S10

top side bottom side

180
160
140
120
100

- 80
2 60-w 400a:
0 20
u,

0
-20
-40
-60

-2 2 6 10 14 18 22
TIME(ms)

20 0.004

deflection at 160 mm off centre 0.002 - top bar
10 - - bottom bar

deflection at 240 mm off centre- 0E
E 0

I~-Z z -0.0020 j I

F-10 g -0.004
I \
I '0 \

~ deflection at midspan point
u..-20 en
w deflection at 80 mm off centre -0.0060

-30 -0.008

-40 -0.01

-50 -0.012
0 2 4 6 8 10 12 14 16 18 20 -1 1 3 5 7 9 11 13 15 17 19

TIME(ms) TIME(ms)

A2-2Q



IMPACTTEST DATE: 18.02.93

SMALL SLAB SII AGE OF SPECIMEN: 9 days

Cube compressive N/mm2 43.3
Cylinder tensile

N/mm2 4.58 Age
10strength strength (days)

REINFORCEMENT:

boItom aide top aide

COVER: 4mm

I"
SOOmm -I

LOADING CONDITIONS

TOP LAYER REINFORCEMENT:

R.IoIESH : 3.15 mm DIAM. /76.2 mm CENTRES
E
E (WITHOUT CENTRAL REGION 400 X 400 mm)
I

BOTTOM LAYER REINFORCEMENT:

R.IoIESH : 3.15 mm DtAM./7e.2 mm CENTRES

TYPE OF IMP ACT ..

HAMMER WEIGHT .

HEIGHT OF DROP (ABOVE CENTRE OF SPECIMEN)

IMPACT VELOCITY ..

THEORETICAL VELOCITY V = .J2gh .

AREA OF THE PRESSURE BAR CROSS-SECTION

SUPPORTS

G-clamp
SPECIMEN

slab

80x80x10 EA

A2-21

SOFT

33.7kg

2500mm

6.59m/sec

7.00m/sec

1962.5mm2



IMPACT TEST - SMALL SLAB - 511

top side

180
160
140
120
100

- 80z
60~-w 40Ua:

0 20
u,

0
-20
40
-60

-2 2 10
TIME(ms)

20

10

0-E
E
Z-10
0
1=
0-20w
...Ju,
~-30

40

-50
0 2

deflection at midspan point

deflection at 80 mm off centre

bottom side

14 18 22

0.004

zg -0.004
(J)

- top bar

- bottom bar
0.002

-0.002

-0.006

-0.008

-0.01

4 6
-0.012t-t-,-rr,-'-r-r...--,---,-r--r--r-'--r--T--'--"--,-",

8 10 12 14 16 18 20 -1 1 3 5 7 9 11 13 15 17 19
TIME(ms) TIME(ms)

A2·22



IMPACTTEST

SMALL SLAB S12

DATE: 19.02.93

AGE OF SPECIMEN: 10 days

Cube compressive N/mm2 43.3
Cylinder tensile N/mm2 4.58

Age
10

strength strength (days)

REINFORCEMENT:

bottom .id. top .id.

TOP LAYER REINFORCEMENT:

R.MESH: 3.15 mm ClAM. 176.2 mm CENTRES

(W1Tl-IOUT CENTRAL REGION 400 X 400 mm)

BOTIOM LAYER REINFORCEMENT:

R.MESH : 3.15 mm DlAM./76.2 mm CENTRES

COVER: 4mm

LOADING CONDITIONS

TYPE OF IMPACT .

HAMMER WEIGHT .

HEIGHT OF DROP (ABOVE CENTRE OF SPECIMEN)

IMPACT VELOCITY .

THEORETICAL VELOCITY V = ~2gh .

AREA OF THE PRESSURE BAR CROSS-SECTION

SUPPORTS

800mm

G-clamp

slab

80x80x10 EA

SPECIMEN

A2-23

SOFT

33.7kg

3000mm

: 7.21mlsec

: 7.67m1sec

: 1962.5mm2



IMPACT TEST - SMALL SLAB - S12

top side

180
160
140
120
100

- 80z
~ 60-w
0 40a::
0 20LL

0
-20
-40
-60

6-2 2

bottom side

TIME(rris~ 22

20
deflection at 160 mm off centre

deflection at 240 mm off centre

z -0.002

~ -0.004
Cl)

-40
deflection at midspan point

deflection at 80 mm off centre

14 18

0.004

- top bar

- bottom bar

-0.006

0.002

-0.008

-0.01

-50 -!--.--,-----,---r---,----,---,-----c -0.012 -t-+-r--r-r-,-,-,-,---.--.--r--,--,-,-.,--,--,-...,.--.--.,......,
o 10 20 30 40 -1 1 3 5 7 9 11 13 15 17 19

TIME(ms) TIME(ms)

A2-24



IMPACTTEST

SMALL SLAB S13

DATE: 19.02.93

AGE OF SPECIMEN: 10 days

Cube compressive N/mm2 43.3 Cylinder tensile
N/mm2 4.58 Age

10
strength strength (days)

REINFORCEMENT:

800mm

LOADING CONDITIONS

COVER: 4mm

SUPPORTS

TOP LAYER REINFORCEMENT

R.MESH : 3.15 mm ClAM. 176.2 mm CENTRES

(WITHOUT CENTRAl. REGION 400 X 400 mm)

BOTTOM LAYER REINFORCEMENT:

R.MESH : 3.15 mm ClAM. 178.2 mm CENTRES

-I

TYPE OF IMPACT ..

HAMMER WEIGHT .

HEIGHT OF DROP (ABOVE CENTRE OF SPECIMEN)

IMPACT VELOCITY .

THEORETICAL VELOCITY V = ~2gh .

AREA OF THE PRESSURE BAR CROSS-SECTION

G-clamp

slab

80x80x10 EA

SPECIMEN

A2-25

HARD

33.7kg

1500mm

: 5.17m1sec

: 5.42m1sec

: 1962.5mm2



IMPACT TEST - SMALL SLAB - S13

top side

400

350

300

250

- 200
~-w 150oa:
0 100
LL

50

0

-50
-2 2

20

10

E
E -10
ZoF -20
o
~ -30
LLw
c -40

-50

bottom side

z -0.002

deflection at 80 mm off centre g -0.004
deflection at midspan point Cl)

6 10
TIME(ms)

14 18 22

o

0.004

0.002
- top bar

- bottom bar- deflection at 160 mm off centre

-0.006

-0.008

-0.01

-60 4.---.--,---,---r---.----,-------,,-----, -0.012 i-+,---,r-r-r-r--r-1---r-.-r--r-1--r-r-r...,--r-r-r--l
o 10 20 30 40 -1 1 3 5 7 9 11 13 15 17 19

TIME(ms) TIME(ms)

A2·26



IMPACTTEST DATE: 3.03.93

SMALL SLAB S14 AGE OF SPECIMEN: 14 days

Cube compressive N/mm2 45.3
Cylinder tensile N/mm2 4.88 Age

10
strength strength (days)

REINFORCEMENT:

bottom side lop side

COVER: 4mm

TOP LAYER REINFORCEMENT:

R.MESH : 3.15 mm DlAM. 1 76.2 mm CENTRES

(WITHOUT CENTRAL REGION 400 X 400 mm)

BOTTOM LAYER REINFORCEMENT:

R.MESH: 3.15 mm OIAM./76.2 mm CENTRES

SOOmm -I

LOADING CONDITIONS

TYPE OF IMP ACT ..

HAMMER WEIGHT .

HEIGHT OF DROP (ABOVE CENTRE OF SPECIMEN)

IMPACT VELOCITY .

THEORETICAL VELOCITY V = J2gh ..

AREA OF THE PRESSURE BAR CROSS-SECTION

SUPPORTS

SPECIMEN
G-clamp

slab

80x80x10 EA

: SOFT

: 33.7kg
: 500mm

: 2.97m1sec

: 3.13m1sec

: 1962.5mm2

A2-27



IMPACT TEST - SMALL SLAB - 514

top side bottom side

180
160
140
120
100

- 80
~ 60-w

400a:
0 20u..

0
-20
-40
-60

-2 2 6 10 14 18 22TIME(ms)

20 0.004

0.002 - top bar

10
deflection at 160 mm off centre 0-E -0.002E 0- zz

0 g -0.004~ deflection at midspan point
010 deflection at 80 mm off centre en -0.006~u,
UJ

-0.0080
-20

-0.01

-0.012-30
20 30 40 -1 1 3 5 7 9 11 13 15 17 190 10

TIME(ms) TIME(ms)

A2-28



IMPACTTEST

SMALL SLAB S15

DATE: 3.03.93

AGE OF SPECIMEN: 14days

Cube compressive N/mm2 45.3
Cylinder tensile

N/mm2 4.88 Age
10strength strength (days)

REINFORCEMENT:

boIIom aid. lOp eid.

·1

TOP LAYER REINFORCEMENT:

R.MESH : 3.15 mm ClAM. 178.2 mm CENTRES

(WITHOUT CENTRAl. REGION 400 X 400 mm)

BOTTOM LAYER REINFORCEMENT:

R.MESH 3.15 mm ClAM. 178.2 mm CENTRES

COVER: 4mm

800mm

LOADING CONDITIONS

TYPE OF IMP ACT .

HAMMER WEIGHT ..

HEIGHT OF DROP (ABOVE CENTRE OF SPECIMEN)

IMPACT VELOCITY .

THEORETICAL VELOCITY V = ~2gh ..

AREA OF THE PRESSURE BAR CROSS-SECTION

G-clamp

slab

80x80x10 EA

: HARD

: 33.7kg

: l000mm

: 4.30mlsec

: 4.42m1sec

: 1962.5mm2

SPECIMEN

SUPPORTS

A2-29



IMPACT TEST - SMALL SLAB - S15

top side bottom side

180
160
140
120
100

- 80
~ 60-w

400a:
0 20
LL

0
-20
-40
-60

6 10 14-2 2 18 22
TIME(ms)

20 0.004

0.002 - top bar
10 deflection at 160 mm off centre - bottom bar

0- 0E
-0.002E-z -10

0 -0.004~
0 -20 z
~ ~ -0.006u.w ~0 -30 CIJ -0.008

-40 -0.01

-0.012-50
6 8 10 12 14 16 18 20 -1 1 3 5 7 9 11 13 15 17 190 2 4

TIME(ms) TIME(ms)

A2-30



IMPACTTEST

SMALL SLAB S16

DATE: 4.03.93

AGE OF SPECIMEN: 15 days

Cube compressive N/mm2 45.3
Cylinder tensile

N/mm2 4.88 Age
10

strength strength (days)

REINFORCEMENT:

COVER: 4mm

I-
800mm

LOADING CONDITIONS

TOP LAYER REINFORCEMENT

R.MESH : 3.15 mm OIAM./78.2 mm CENTRES

(WITHOUT CENTRAl REGION 400 X 400 mm)

BOTTOM LAYER REINFORCEMENT·

R.MESH 3 15 mm OIAM 178.2 mm CENTRES

·1

TYPE OF IMPACT ..

HAMMER WEIGHT .

HEIGHT OF DROP (ABOVE CENTRE OF SPECIMEN)

IMPACT VELOCIIT ..

THEORETICAL VELOCIIT V = ,J2gh ..

AREA OF THE PRESSURE BAR CROSS-SECTION

G-clamp

slab

80x80x10 EA

SPECIMEN

SUPPORTS

A2-31

: HARD

: 33.7kg

: 750mm

: 3.73m/sec

: 3.84m/sec

: 1962.5mm2



IMPACT TEST - SMALL SLAB - S16

top side bottom side

180
160
140
120
100

- 80z
60::.::-w 400

a:
200

u,
0

-20
-40
-60

6 10 14 18-2 2 22
TIME(ms)

20 0.004

deflection at 160 mm off centre 0.002 - top bar
10 - bottom bar

0- 0E
E -0.002-z -10 deflection at midspan point0
F

deflection at 80 mm off centre
Z -0.0040 g -0.006~ -20

u, enw
0 -30 -0.008

-40 -0.01

I -,--r---r-.---r----r--,---I"T-,-.---r----r-,---,r-r:-,-~~ -0.012 +-+--.-r-r,-,--.-~...,..,--,--r-r...,....,r--r-.,....,.-,--50 + 20o 2 4 6 8 10 12 14 16 18 -1 1 3 5 7 9 11 13 15 17 19
TIME(ms) TIME(ms)

A2·32



IMPACTTEST

SMALL SLAB S17

DAlE: 6.03.93

AGE OF SPECIMEN: 9days

Cube compressive N/mm2 48.4 Cylinder tensile N/mm2 4.62 Age
10

strength strength (days)

REINFORCEMENT:

_.id. top_

I"
Boomm

LOADING CONDITIONS

SUPPORTS

COVER: 4mm

TOP LAVER REINFORCEMENT:

RMESH : 3.15 mm DIAM. 171.2 mm CENTRES

(WITHOUT CENTRAL REGION 400 X 400 mm)

BOTTOM LAVER REINFORCEMENT:

R.MESH : 3.15 mm DIAM. 171.2 mm CENTRES

-I

TYPE OF IMP ACT .

HAMMER WEIGHT ..

HEIGHT OF DROP (ABOVE CENTRE OF SPECIMEN)

IMP ACT VELOCITY .

THEORETICAL VELOCITY V = ~2gh .

AREA OF THE PRESSURE BAR CROSS-SECTION

G-clamp

rubber
slab

SPECIMEN

80x80x10 EA

: SOFf

: 33.7kg

: 1850mm

: 5.85m/sec

: 6.02m/sec

: 1962.5mm2

A2-33



IMPACT TEST - SMALL SLAB - S17

top side

20

deflection at 160 mm off centre 0.002-10

deflection at 80 mm off centre

deflection at midspan point

-40

-50 +-'--.-,---,-,-,---,r-r,--'--'-"'--'-'-"'-'--'--,-------r--,o 2 4 6 8 10 12 14 16 18 20
TIME(ms)

bottom side

0.004-

-0.006

- top bar
- bottom bar

~ -0.002-

~en -0.004

-0.008-

-0.01-

-0. 012 -r--r-r-r-;--;----r-r-r---r--r--r-r-r-r-,---r--r-...-....-..---.

-1 1 3 5 7 9 11 13 15 17 19
TIME(ms)

A2·34



IMPACTTEST

SMALL SLAB S18

DA1E: 6.03.93

AGE OF SPECIMEN: 9days

Cube compressive N/mm2 48.4
Cylinder tensile

N/mm2 4.62 Age
10strength strength (days)

REINFORCEMENT:

BOOmm

LOADING CONDITIONS

-I

TOP LAYER REINFORCE ...ENT:

R. ...ESH : 3.15 mm DIAM. /78.2 mm CENTRES

(WITHOUT CENTRAL REGION 400 X 400 mm)

BOTTOIoILA YER REINFORCE ...ENT:

R. ...ESH: 3.15 mm DIAM./71.2 mmCENTRES

COVER: 4mm

SUPPORTS

TYPE OF IMP ACT ..

HAMMER WEIGHT .

HEIGHT OF DROP (ABOVE CENTRE OF SPECIMEN)

IMPACT VELOCITY .

THEORETICAL VELOCITY V = ~2gh .

AREA OF THE PRESSURE BAR CROSS· SECTION

G-clamp

rubber
slab

SPECIMEN

80x80x10 EA

: SOFf

33.7kg

2000mm

6.06m1sec

: 6.26m1sec

: 1962.5mm2

A2·35



180-
160-
140-
120-
100-
80 -

~ 60-
W
~ou,

40 -

IMPACT TEST - SMALL SLAB - S18

top side bottom side

-20-
-40 -
-604----+---,----,---,----,---,----,---,---,----,---,,---,

-2 2 6 10
TIME(ms)

20

10

E
E 0
Zo
~ -10

~It -20
o

-30

14 18 22

0.004

-0.01

- top bar
- bottom bar

0.002

deflection at 160 mm off centre 0~c---------- _
deflection at 240 mm off centre

-0.002
Zg -0.004
Cl)

deflection at midspan point -0.006
deflection at 80 mm off centre

-0.008

-40

-l-,~_r_,_,..,-_,_,_,..,--,-,--,--.-,--.,.--r-,~ -0.012+-t-"---~,,-r-r-r-'---'~.,..,...-,-.,r-..-~~
-SO0 2 4 6 8 10 12 14 16 18 20 -1 1 3 5 7 9 11 13 15 17 19

TIME(ms) TIME(ms)

A2.·36



IMPACTTEST DATE: 7.03.93

SMALL SLAB S19 AGE OF SPECIMEN: 10 days

Cube compressive N/mm2 48.4
Cylinder tensile

N/mm2 4.62 Age
10strength strength (days)

REINFORCEMENT;

boIIom'" lOp'"

COVER: 4mm

TOP LAYER REINFORCEMENT:

RMESH : 3.15 mm OIAM. 171.2 mm CENTRES

(WITHOUT CENTRAL REGION 400 X 400 mm)

BOTTOM LAYER REINFORCEMENT:

R.MESH : 3.15 mm OIAM. 171.2 mm CENTRES

(WITHOUT CENTRAL REGION 400 X 400 mm)

800mm -I

LOADING CONDITIONS

TYPE OF IMP ACT ..

HAMMER WEIGHT .

HEIGHT OF DROP (ABOVE CENTRE OF SPECIMEN)

IMPACT VELOCITY .

THEORETICAL VELOCITY V = .J2gh .

AREA OF THE PRESSURE BAR CROSS-SECTION

SUPPORTS

: SOFf

: 33.7kg

: 1500mm

: 5.23m1sec

: 5.42m1sec

: 1962.5mm2

SPECIMEN
G-clamp

slab

80x80x10 EA

A2·37



IMPACT TEST - SMALL SLAB - S19

top side bottom side

180
160
140
120
100

- 80
~ 60-w 40
~
0 20
u,

0
-20
-40
-60

-2 2 6 10 14 18 22
TIME(ms)

20

10 deflection at 160 mm off centre- deflection at 240 mm off centreE
E 0-Z
0
I- -10 deflection at 80 mm off centreo
~u, -20w
0

-30

-40

-50
0 2 4 6 8 10 12 14 16 18 20

TIME(ms)

A2·38



IMPACT TESTS

HIGH SPEED FILMS

APPENDIXA3



A3 -1





A3-3



INTERFRAME TIME 196.461"sec \!-3.5MSEC AFTER IMPA

A3-4





I IMPACT TEST s41 INTERFRAME TIME 260.21r= \!-2.SMSEC AFTER IMPAC

A3-6



A3-7



1IMPACT TEST s41

A3-B



A3·9



INTERFRAME TIME 226.35 rsec \j ·2.0MSEC AFTER IMPAC

A3-10



A3 -11



IMPACT TEST S6

A3-12



A3-13



A3 -14



A3-15





IMPACT TEST S12

A3 ·17



INTERFRAME TIME 160.21rsec \J -IMPACT TIME

A3-18





A3·20



IMPACT TEST S12

A3·21



IMPACT TEST S13

A3-22



A3-23



IMPACT TEST S13 INTERFRAME TIME 114.43rsec \J ·IMPACT TIME

A3-24



IMPACT TEST S13

A3·25



A3-26



IMPACT TEST S17 INTERFRAME TIME 159.28 rsec \I -IMPACT TIME

A3·27



A3·28



IMPACT TEST S17 INTERFRAME TIME 159.28 !"sec

A3-29



A3-30



IMPACT TEST S17

A3 - 31



IMPULSE TEST
RESULTS

1:1 SCALE SLABS

APPENDIX B1



IMPULSE TEST

LARGE SLAB LSE!

DATE: 15.01.91

AGE OF SPECIMEN: 7 days

Cube compressi ve N/mm2 47.8
Cylinder tensile N/mm2 3.78

Age
8strength strength (days)

REINFORCEMENT:

: : : j ¢
lop lid.

t TOP LAYER REINFORCEMENT:

11 No le mm H.Y.EACH WAY

BO'ITOM LAYER REINFORCEMENT:

~
~

11 No 16 mm H.Y.EACH WAY

COVER: 10 mm

+

·1

(1st shot)

I: : : :
bottom ltd.

I- 2000mm

LOADING CONDITIONS:

CHARGE WEIGHT

CHARGE SHAPE

1300g, PE4

Hemispherical

CHARGE DIRECTION . Spherical side facing the specimen

CHARGE POSITION .. Central

CLEAR DISTANCE TO THE CHARGE : 350mm

SUPPORTS

II R.C.SLAB

SPECIMEN

B1-1



IMPULSE TEST - LARGE SLAB - LSE1
SHOT1.

20

10

-E 0E-z
0

-10f5
~u, -20w
0

-30

-40
-10

deflection at 225 mm off centre

deflection at 450 mm off centre

10 30 50
TIME(ms)

70 90 110

0.004
0.002o 4---~~------------------------------------------
-0.002
-0.004

z -0.006
S -0.008
~ -0.01

-0.012
-0.014
-0.016
-0.018
-0.02
-O.O~ ~_5----~--~5~--~----15~--~----25~--~----3~5----~--~45

TIME(ms)

91-2



IMPULSE TEST

LARGE SLAB LSE!

DATE: 16.01.91

AGE OF SPECIMEN: 7 days

Cube compressive N/mm2 47.8
Cylinder tensile N/mm2 3.78 Age

9strength strength (days)

REINFORCEMENT:

bottom.id. lOp aid.

I

II ,

I

2000 mm

TOP LAYER REINFORCEMENT,

11 No 16 mm H.Y.EACH WAY

BOTTOM LAYER REINFORCEMENT

11 No 16 mm H.Y EACH WAY

COVER 10mm

LOADING CONDITIONS: (2nd shot)

CHARGE WEIGHT

CHARGE SHAPE

1300g, PE4

Hemispherical

CHARGE DIRECTION .. Spherical side facing the specimen

CHARGE POSITION . Central

CLEAR DISTANCE TO THE CHARGE : 250mm

SUPPORTS

R.C.SLAB

SPECIMEN

81 ·3



SHOT2.

IMPULSE TEST - LARGE SLAB - LSE1

bottom side

deflection at 225 mm off centre

deflection at 450 mm off centre

top side

20

10

-E 0E-z
0
r- -10
0w_.
u,

-20w
0

-30

-40
-10 10 30 50

TIME(ms)
70 90 110

0.004
0.002o ~--~~---------------------------------------------
-0.002
-0.004
-0~006

Z
~ -0.008
r- -0.01
Cl)

-0.012
-0.014
-0.016
-0.018
-0.02

-0.022 _j_-----l------r--~~---1-,5--.---2,-5---r---,----,----,
~ 5 ~ ~

TIME(ms)

81·4



IMPULSE TEST

LARGE SLAB LSE2

DATE: 6.03.91

AGE OF SPECIMEN: 7 days

Cube compressi ve N/mm2 46.8
Cylinder tensile N/mm2 3.86

Age
8

strength strength (days)

REINFORCEMENT:

bottom_de lop lie»

,

I

I : I
i !!

"

, I, I"
I I I

I ,
I I
, I

I il

2000 ITm

LOADING CONDITIONS:

CHARGE WEIGHT

CHARGE SHAPE

TOP LAYER REINFORCEMENT

"No ,8mmH Y.EACH WAY

BOTTOM LAYER REINFORCEMENT

" No'8 mm H Y eACH WAY

coveR ,0".,.,

1300g,PE4

Hemispherical

CHARGE DIRECTION Spherical side facing the specimen

CHARGE POSITION Central

CLEAR DISTANCE TO THE CHARGE

SUPPORTS

T R.C.SLAB

1- BEAMS

81-5

: 250mm

SPECIMEN

I
I
I
I

J



IMPULSE TEST - LARGE SLAB - LSE2
. -------11

bottom side

deflection at 225 mm off centre

deflection at 450 mm off centre

70 90

top side

20

10

-E 0E.........z
0
t; -10
w
...J
IL -20w
0

-30

-40 30 50-10 10
TIME(ms)

110

0.004
0.002 -o ~--~~------------------------------------
-0.002
-0.004

z -0.006g -0.008
en -0.01

-0.012 -
-0.014
-0.016
-0.018 -
-0,02

-0.022 _J_--+-----r
S
---r---

1
'S---.----2r-

S
--,---3'S --,------,

~ ~
TIME(ms)

B1 - 6



IMPULSE TEST

LARGE SLAB LSE3

DATE: 8.09.92

AGE OF SPECIMEN: 7 days

Cube compressive N/mm2 39.06
Cylinder tensile N/mm2 3.61

Age
7

strength strength (days)

REINFORCEMENT:

bottom.id. lop tid.

2000 mm

LOADING CONDITIONS:

CHARGE WEIGHT

CHARGE SHAPE

TOP LAVER REINFORCEMENT

RMESH B S .'83 A3g3 1012001200 mm

(WITHOUT CENTRAL REGION 1 0 X 1 Cm)

BOTTOM LAVER REINFORCEMENT

R MESH B.S •• 83 A3G3 1012001200 mm

COVER 10mm

CHARGE DIRECTION .

+

CHARGE POSITION .

CLEAR DISTANCE TO THE CHARGE

SUPPORTS

T

/

R.C.SLAB

1- BEAMS

81·7

1300g, PE4

Hemispherical

Spherical side facing the specimen

Central

: 500mm

SPECIMEN



10

0

-10-E
E -20-z
0
t- -300w
...Ju.. -40w
0

-50

-60
-10

IMPULSE TEST - LARGE SLAB - LSE3

top side

deflection at 700 mm off centre
deflection at 300 mm off centre

deflection at 100 mm off centre

deflection at 200 mm off centre

l
\.

bottom side

deflection at midspan point

10 30 50
TIME(ms)

70 90 110

0.004
0.002

o~~~~~~-------------------------------------------
-0.002
-0.004

z -0.006
~ -0.008
t5 -0.01

-0.012
-0.014
-0.016
-0.018
-0.02

-0.022 --\.------+------.-----.----'30--------.--------.----r-----r-----
-10 10 50 70

TIME(ms)

- top bar

B1-8



IMPULSE TEST

LARGE SLAB LSE4

DATE: 23.09.92

AGE OF SPECIMEN: 7 days

Cube compressive N/mm2 38.7
Cylinder tensile N/mm2 3.54 Age

7strength strength (days)

REINFORCEMENT:

2000 nvn

LOADING CONDITIONS:

CHARGE WEIGHT

CHARGE SHAPE

~+
r

!
i

TOP LAYER REINFORCEMENT

R MESH B S 4483 A383 1012001200 mm

(WITHOUT CENTRAL REGION 1 0 x 10m)

BOTTOM LAYER REINFORCEMENT

A.MESH 85 .....83 A3e3 '01200/200 nYn

COVE R 10 mm

1300g, PE4

Hemispherical

CHARGE DIRECTION................................................... Spherical side facing the specimen

~I
~i

I

1

CHARGE POSITION Centra)

CLEAR DISTANCE TO THE CHARGE

SUPPORTS

T R.C.SLAB

: 300mm

SPECIMEN

B1·9



IMPULSE TEST - LARGE SLAB - LSE4

top side bottom side

** THE STRAIN AND DISPLACEMENT HAVE NOT BEEN RECORDED

B1 -10



IMPULSE TEST DATE: 6.10.92

LARGE SLAB LSE5 AGE OF SPECIMEN: 8 days

Cube compressive N/mm2 36.4
Cylinder tensile N/mm2 3.24 Age

8strength strength (days)

REINFORCEMENT:

bottom_de lop lido

2000nvn

LOADING CONDITIONS:

CHARGE WEIGHT

CHARGE SHAPE

~+
r

!
TOP LAYER REINFORCEMENT

RMESH B S."83 A3Q3 ,0/200/200 llYn

(WITHOUT CENTRAL REGION' 0 X 'Om)

BOTTOM LAYER REINFORCEMENT

R.MESH BS "83 A3Q3 ,0/2001200 llYn

COVER. 'Omm
,

+

1300g. PE4

Hemispherical

CHARGE DIRECTION . Spherical side facing the specimen

CHARGE POSITION . Central

CLEAR DISTANCE TO THE CHARGE

SUPPORTS

,~
1 R.C.SLAB

1- BEAMS

: 200mm

SPECIMEN

L__ .. _.__ __ .__ ~_J

81·11



IMPULSE TEST - LARGE SLAB - LSE5

top side

10 - deflection at 500 mm off centre

0

- -10
E.s -20z
0
I- -300
w
_Ju..
w -40
0 deflection at 400 mm off centre

-50 deflection at 300 mm off centre

-60
10 30 50 70 90 110-10

TIME(ms)

0.004
0.002

o ~--~~-+~-------------------------------------------
-0.002
-0.004
-0.006z

~ -0.008
I- -0.01
(/) -0.012

-0.014
-0.016
-0.018
-0.02
-0.022
-0.024 -1---+----'10--------.------,-30-----.------5'0------,---------.70--------,

-10
TIME(ms)

81 -12

- top bar
- bottom bar



IMPULSE TEST
RESULTS

1:2.5 SCALE SLABS

APPENDIX B2



IMPULSE TEST

SMALL SLAB SEl

DATE: 26.07.90

AGE OF SPECIMEN: 8 days

Cube compressive N/mm2 47.7
Cylinder tensile N/mm2 4.55 Age

14strength strength (days)

REINFORCEMENT:

" .. " . " " .... , , , .. " , .... ,
bonom lido top lido

800 nYT\

LOADING CONDITIONS:

CHARGE WEIGHT

CHARGE SHAPE

:t

r
I BOTTOM LAYER REINFORCEMENT

TOP LAYER REINFORCEMENT ••••••

11 No 8 rrrn H.Y_ and 10 No e nYTI H.V

EACH WAY

COVER: • nvn

1

78g,PE4

Cylindrical

CHARGE DIRECTION .. Parallel to the specimen

CHARGE POSITION . Central

CLEAR DISTANCE TO THE CHARGE.......................... : 650mm 1st and l00mm 2nd shot

SUPPORTS:

G-clamp
rubber
slab

SPECIMEN

80x80x10 EA

82-1



IMPULSE TEST DATE: 27.07.90

SMALL SLAB SE2 AGE OF SPECIMEN: 9 days

Cube compressive N/mm2 47.7
Cylinder tensile N/mm2 4.55

Age
14

strength strength (days)

REINFORCEMENT:

13' eo' ne? 9 Q 0 ? ' 2 ' 9 pes n e *,1

TOP LAYER REINFORCEMENT: ---

bottom .. de top .. de

BOTTOM LAYER REINFORCEMENT

" Noamm H.Y. and 10 No8mm MY

EACH WAY

COVER .• mm

1
800mm

LOADING CONDITIONS:

................................................... 78g.PE4CHARGE WEIGHT

CylindricalCHARGE SHAPE ...................................................

Parallel to the specimenCHARGE DIRECTION .

CentralCHARGE POSITION .

CLEAR DISTANCE TO THE CHARGE................. : < 50mm

SUPPORTS:

SPECIMENG-clamp
rubber
slab

80x80x10 EA

82-2



IMPULSE TEST

SMALL SLAB SE3

DATE: 13.09.90

AGE OF SPECIMEN: 7 days

Cube compressive N/mm2 43.3
Cylinder tensile

N/mm2 3.69 Age
11

strength strength (days)

REINFORCEMENT:

I.." e e' e" ee 3" rr? 3' 2' ,.1 t

800nYTI

LOADING CONDITIONS:

CHARGE WEIGHT

CHARGE SHAPE

COVER. rrrn

TOP LAVER REINFORCEMENT _ ••_

BOTTOM LAYER REINFORCEMENT

21 No e mm H_Y _.EACH WAY

I

I

+-

78g,PE4

Cylindrical

CHARGE DIRECTION . Parallel to the specimen

CHARGE POSITION .. Centra]

CLEAR DISTANCE TO THE CHARGE.......................... : 50mm

SUPPORTS;

G-clamp
rubber
slab

SPECIMEN

80xBOx10 EA

B2-3



SE1

SE2

SE3

IMPULSE TEST - SMALL SLABS

top side

top side

top side

82-4

bottom side

bottom side

bottom side



IMPULSE TEST

SMALL SLAB SE4

DATE: 14.09.90

AGE OF SPECIMEN: 11 days

Cube compressive N/mm2 43.3
Cylinder tensile N/mm2 3.69

Age
II

strength strength (days)

REINFORCEMENT:

1:;,:,:· :,:.:, :,:.:.:,:~ t
bonom "de lop lide

II

LOADING CONDITIONS:

BOO mm

CHARGE WEIGHT

CHARGE SHAPE

2' No e mm HY.E~CH W~Y

TOP LAYER REINFORCEMENT

"Hoe mm H_Y ..EACHWAV

BOTTOM LAYER REINFORCEMENT

COVER .mm

................................................... 78g, PE4

................................................... Cylindrical

G-clamp

rubber
slab

80x80x10 EA

CHARGE DIRECTION... Parallel to the specimen

CHARGE POSITION Central

CLEAR DISTANCE TO THE CHARGE.......................... : lOOmm

SUPPORTS:

SPECIMEN

82-5



IMPULSE TEST - SMALL SLAB - SE4

top side bottom side

8 -
7 -
6 -
5
4 - - deflection at l/4- 3E

E 2 --Z 1 -0
i= 0
0 -1 -
~ -2 -u,w -3 -
0 -4

-5 -
-6 -
-7 -
-8

-5 5 15 25 35

TIME(ms)

0.004
0.003

top bar

0.002
bottom bar

0.001
0

-0.001
-0.002

Z -0.003
~ -0.004
I- -0.005
(/) -0.006

-0.007
-0.008
-0.009
-0.01

-0.011
-0.012
-0.013
-0.014 1 3 5 7 9 11 13 15 17

-1 TIME(ms)

82·6



IMPULSE TEST

SMALL SLAB SE5

DAlE: 18.09.90

AGE OF SPECIMEN: 7 days

Cube compressive N/mm2 38.4
Cylinder tensile

N/mm2 4.12 Age
8strength strength (days)

REINFORCEMENT:

1..:l!.1::~~~~~~~~;;;;l!£J:~ 1=

r
bottom side top side

i
I

! I

I
,
I

I

eOOmm

LOADING CONDITIONS:

CHARGE WEIGHT

CHARGE SHAPE

I

1

TOP LAYER REINFORCEMENT:

t 1 No 6 mm H.Y.EACH WAY

80DOM LAYER REINFORCEMENT

11 No 6 mm H.Y.EACH WAY

COVER: ~ mm

78g.PE4

Hemispherical

CHARGE DIRECTION . Spherical side facing the specimen

CHARGE POSITION . Central

CLEAR DISTANCE TO THE CHARGE : l00mm

SUPPORTS:

G-clamp

slab

80x80x10 EA

82-7
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IMPULSE TEST - SMALL SLAB - SE5

top side bottom side

8
7
6
5
4 - deflection at LJ4- 3E

E 2-Z 10
i= 0
0 -1
~ -2LLw -30 -4

-5
-6
-7
-8

-5 5 15 25 35
TIME(ms)

0.004
0.003 top bar

0.002 bottom bar

0.001
0

-0.001
-0.002
-0.003

Z -0.004
~ -0.005
~ -0.006

-0.007
-0.008
-0.009
-0.01
-0.011
-0.012
-0.013
-0.014 3 5 7 9 11 13

-1 1 15 17
TIME(ms)

82·8



IMPULSE TEST

SMALL SLAB SE6

DAlE: 18.09.90

AGE OF SPECIMEN: 7 days

Cube compressive N/mm2 38.4
Cylinder tensile N/mm2 4.12 Age

8strength strength (days)

REINFORCEMENT:

~I;~:~:~~~~~~~~j ~

r
bottom ,id. top.ld.

I 1 P
I

I I

II I

I I

I

I.
1

I

1
I I

I I

II i II I

il: II I
I

BOOmm

LOADING CONDITIONS:

CHARGE WEIGHT

CHARGE SHAPE

TOP LAYER REINFORCEMENT

11 No6mmHY.EACHWAY

BonOM LAYER REINFORCEMENT

11 No6mmHY.EACHWAV

COVER 4mm

78g,PE4

Hemispherical

CHARGE DIRECTION . Flat side facing the specimen

CHARGE POSITION . Central

CLEAR DISTANCE TO THE CHARGE : lOOmm

SUPPORTS:

G-clamp

slab

80x80x10 EA

SPECIMEN

B2-9



IMPULSE TEST - SMALL SLAB - SE6

top side bottom side

8
7
6
5
4 - deflection at L/4- 3E

E 2-z 10
F 0
0 -1w_. -2LLw -30 -4

-5
-6
-7
-8 15 25 35-5 5

TIME(ms)

0.004
0.003
0.002
0.001

0
-0.001
-0.002
-0.003

Z -0.004
~ -0.005 top baren -0.006

-0.007 bottom bar

-0.008
-0.009
-0.01

-0.011
-0.012
-0.013
-0.014

1 3 5 7 9 11 13 15 17-1
TIME(ms)
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IMPULSE TEST DATE: 27.09.90

SMALL SLAB SE7 AGE OF SPECIMEN: 7 days

Cube compressi ve N/mm2 36.8
Cylinder tensile N/mm2 4.41 Age

7strength strength (days)

REINFORCEMENT:

: : : ;j 1=
""'-

TOP LAYER REINFORCEMENT

., No .... H.Y.EACHWAY

BOTTOM LAYER REINFORCEMENT
E
E "No'mm H.Y.EACHWAY§

I
COVER: ~mm

1

1* : : :

800mm

LOADING CONDITIONS:

CHARGE WEIGHT

CHARGE SHAPE

78g,PE4

Hemispherical

CHARGE DIRECTION . Spherical side facing the specimen

CentralCHARGE POSITION .

CLEAR DISTANCE TO THE CHARGE : lOOmm

SUPPORTS:

G-clamp J I'.. ,

I--- ~ f--
, 1.1:

240 2.1
EA 3.in

IIIII , ///1/1/ u ill/Ill/If,

slab 2.5 scale R.C.slab
op steel frame
nersupports30x80x10

B2-11



IMPULSE TEST - SMALL SLAB - SE7

top side

0.004 -
0.003 -
0.002 -
0.001 -o 4-~-------------------------------------------------
-0.001 - \
-0.002 -
-0.003 -

Z -0.004 -
~ -0.005 -tn -0.006 -

-0.007 -
-0.008 -
-0.009 -
-0.01 -

-0.011 -
-0.012 -
-0.013 -
-0.014 --+--+__ -r---,---,---,-----.-----r--,--,--,--r----r--r--r---,---,---,--r-----1

-1 1 3 5 7 9
TIME(ms)

_ bottom bar

11 13 15 17
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IMPULSE TEST

SMALL SLAB SE8

DATE: 27.09.90

AGE OF SPECIMEN: 7 days

Cube compressive N/mm2 36.8 Cylinder tensile N/mm2 4.41 Age
7strength strength (days)

REINFORCEMENT:

bonomlldo top lido

~I,
i I I

I

I

,

I !

I"

Ii , I

800 own

LOADING CONDITIONS:

CHARGE WEIGHT

CHARGE SHAPE

TOP LAYER REINFORCEMENT

11 No.".", H.Y.EACH WAY

8OTTOM LAVER REINFORCEMENT

"No,mm H,V,EACH WAY

COVER. 4 mm

1

78g. PE4

Hemispherical

CHARGE DIRECTION .. Flat side facing the specimen

CHARGE POSITION . Central

CLEAR DISTANCE TO THE CHARGE.......................... : SOmm

SUPPORTS;

1.1:2.5 scale R.C.slab
2.top steel frame
3.inner supports

G-clamp t:J~~:=;!~~~_O_
t---slab

,////;;/ /1/ //, 1,/////:///// / /,,'////1, ,'/1, '////

~
240

80x80x10 EA

leiI I ,

I t I

82-13



IMPULSE TEST - SMALL SLAB - SEa

top side bottom side

3

2.5
- deflection at l/4

2-~ 1.5-Z 1
0
f-a 0.5
W
.J
LL 0
W
0 -0.5

-1
-1.5
-2

-5 5 15 25 35
TIME(ms)

82-14



IMPULSE TEST

SMALL SLAB SE9

DATE: 27.09.91

AGE OF SPECIMEN: 7 days

Cube compressive N/mm2 30.4
Cylinder tensile N/mm2 2.99 Age

7strength strength (days)

REINFORCEMENT:

bottom.ide top .id.
!il

i I I
I I I

Ii
IIi

! II
II Ii

II
II

,III
I!
I~

,
I! II

I

:1I

BOOmm

LOADING CONDITIONS:

CHARGE WEIGHT

CHARGE SHAPE

TOP LAYER REINFORCEMENT

6 No 6 mm H YEACH WAY

BOTTOM LAYER REINFORCEMENT

6 No 6 mm H VEACH WAY

COVER 4mm

78g. PE4

Hemispherical

CHARGE DIRECTION . Spherical side facing the specimen

CentralCHARGE POSITION ..

CLEAR DISTANCE TO THE CHARGE : lOOmm

SUPPORTS:

G-clamp

slab

80x80x10 EA

82-15
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IMPULSE TEST - SMALL SLAB - SE9

2
o ~----~---------------------------------------------
-2
-4

E -6
E -8Z-10o
i= -12
frl -14_.
tt -16
o -18

-20
-22
-24-26~----~----~----'---~----~----~----~----~--~

-5 5 15 25
TIME(ms)

top side

- deflection at L!4

,,
~,,

MOST LIKELY THE FAILURE POINT

bottom side

35
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DISRUPTION OF THE SIGNAL FOR THE DEFLECTION - TIME TRACES ON

SLABS SEIO TO SE19

Deflection - time records on slabs SEIO to SEl9 have shown unexpected shock peaks

in the first couple of milliseconds of the record. A typical example is given in Fig AI. It

seems unlikely that these shock peaks represent real slab movement and were probably

caused by electrical noise or disruption. When the polarity of the electrical supply to the

R.P.D.T. circuitry was changed, Fig Al, the shock peaks were reversed in direction. The

results presented in this appendix, for slabs SElO to SEI9, have the traces actually recorded,

but the shock peacks are shown with the dotted line, as in Fig A3.

40

·20

.1 1 3 5 7 91113151719
TIME(ms)

Fig.A 1. Positive polarisation of
the Instrumentation circuitry

Electrical disruption of
the signal

Electrical disruption of
the signal

I I I I I I I I I I I

·1 3 5 7 9 11 13 15 17 19
TIME(ms)

·1
, ,

3 5 7 9 11 13 15 17 19
TIME(ms)

Fig.A2.Negative polarisation of
the instrumentation circuitry

Fig A3.Format of pr... ntatlon
for the a'abe SE10 to SE19
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IMPULSE TEST DAlE: 27.11.92

SMALL SLAB SEIO AGE OF SPECIMEN: 17 days

Cube compressive N/mm2 37.33
Cylinder tensile N/mm2 3.52 Age

17strength strength (days)

REINFORCEMENT:

(WITHOUT CENTRAL REGION 400 X 400 mm)

boltomoide topside

TOP LAYER REINFORCEMENT·

RMESH 3.15 mm OIAM. 178.2 mm CENTRES

BOTTOM LAYER REINFORCEMENT

RMESH 315 mm OIAM 178.2 mm CENTRES

1COVER .mm

BODmm

LOADING CONDITIONS:

CHARGE WEIGHT 78g. PE4

CHARGE SHAPE

CHARGE DIRECTION .

Hemispherical

Spherical side facing the specimen

CentralCHARGE POSITION .

CLEAR DISTANCE TO THE CHARGE.......................... : 250mm

SUPPORTS:

SPECIMEN
G-clamp

slab

80x80x10 EA

B2-18



IMPULSE TEST - SMALL SLAB - SE1 0

top side bottom side

10
deflection at 240 mm off centre

0

- -10E
E........z
0 -20

flii= deflection at 80 mm off centreo
W

deflection at 160 mm off centre_.J
-30u,

w
0

-40

-50
5 7 9 11 13 15 17 19-1 1 3

TIME(ms)

0.004

0

-0.004
- top bar

Z
-0.008

~
I-en -0.012

-0.016

-0.02

-0.024
3 5 7 9 11 13 15 17-1

TIME(ms)

~ I" l' ,
k';' IS I:. , I" 11
"

t:>

1.1
I'--

,11

lt~
t<
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IMPULSE TEST DATE: 1.12.92

SMALL SLAB SEll AGE OF SPECIMEN: 21 days

Cube compressive N/mm2 37.33
Cylinder tensile N/mm2 3.52

Age
17

strength strength (days)

REINFORCEMENT:

bonomSicMI top lido

TOP LAYER REINFORCEMENT

RMESH: 3.1~ rrm OIA'" 17& 2 rrm CENTRES

(WITHOUT CENTRAL REGION 400 X 400 rrm)

BOTTOM LAYER REINFORCEMENT

R MESH: 3.1~ rrm OIAM. 17&.2 rrm CENTRES

i
+-

COVER 4 rrm

800 IM1

LOADING CONDITIONS:

CHARGE WEIGHT 78g. PE4

CHARGE SHAPE Hemispherical

CHARGE DIRECTION . Spherical side facing the specimen

CHARGE POSITION . Central

CLEAR DISTANCE TO THE CHARGE.......................... : 200mm

SUPPORTS:

slab

SPECIMENG-clamp

BOxBOx10 EA

82·20



IMPULSE TEST - SMALL SLAB - SE11

top side

10
deflection at 240 mm off centre

E -10
E
Zo -20o
~
u, -30
wo

-40

1:S~ Pl "'r::~ t--P: t~-\ r"'Ef; r--t""t-, t~-r:..~tj'" r-

r.: f,-,_p
~r-.~- - r-r- 1- r- i_ ~~ r~~~r ~-I- 1- I~

~
!'" '-

1-+1f-::;L'"' L'I ~ :::::

S ~ t~ f;; f- ~f<:!,;t- 1"\ I~
~ 9 fo;r .0-

II- r- tt
~t"1 1- r~I'~t--~

r- [J

~ vD'rl~ I-t--

!;;;r~~
~~( r'ol. .oroM

~~f' ~.•1

~
'r L

c

bottom side

-1 1
-50~-+--'-'--'-'--'--'-'--'-'--'-''-'--'-'--.-,,-.--r-,,-.

3 5 7 9 11 13 15 17
TfME(ms)

19

0.004

0

-0.004

~ -0.008

I--en -0.012

-0.016

-0.02

-0.024
1-1

- bottom bar

3 579
TfME(ms)

17

82·21
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IMPULSE TEST DATE: 2.12.92

SMALL SLAB SE12 AGE OF SPECIMEN: 22 days

Cube compressive N/mm2 37.33
Cylinder tensile N/mm2 3.52 Age

17
strength strength (days)

REINFORCEMENT:

bonomoido top lido

TOP LAVER REINFORCEMENT,

R.MESH , 3 15 mm DIAM 178.2 mm CENTRES

(WITHOUT CENTRAL REGION ..00 X "00 mm)

BOTTOM LAVER REINFORCEMENT

R.MESH: 3.15 mm DIAM./78.2mm CENTRES

I

I
I+-

COVER .. rrm

800 nvn

LOADING CONDITIONS:

CHARGE WEIGHT 78g, PE4

CHARGE SHAPE Hemispherical

CHARGE DIRECTION Spherical side facing the specimen

CHARGE POSITION Central

CLEAR DISTANCE TO THE CHARGE.......................... 150mm

SUPPORTS:

slab

SPECIMENG-clamp

80x80x10 EA

B2·22



10

0

- -10E
E-z
0 -20i=
0w
__J

-30LLw
0

-40

-50
-1

IMPULSE TEST - SMALL SLAB - SE12

top side

deflection at 240 mm off centre

\.
i

\\
\, ! \" ;~
.~ : \ :
v : 'J

deflection at 80 mm off centre

deflection at 160 mm off centre

ro::~~1$~ ~~h ~~i I;:j: ~(I ~~
i<l:-r- ~-~I.·r f- f-v~ ~~f~k-~k r- ~vl~~~~ ~

~",r-tt~~tr ~1' Itt; ~y-/
l\ t- IT fll': t+
~"" r--~ ~ ~ f~.v.: l1 I~ t"-

~~ f-~~ r.~t'r~~· t~~~
~ I~ !~~~~~~ ~" ~,t~f' ~~~~ ~fJ k ~ I) b-~~ ~ ~\ ~~ .~ ~

(~ ).~~~i~ ~~

'"v"71_ 11 - ". IIii'" ./ \ r-
r-:::: If' I:-'i\;~

r- "1~~

bottom side

0.004

0

-0.004

Z -0.008
~t-en -0.012

-0.016

-0.02

-0.024
1-1

1 3 5 7 9
TIME(ms)

11 13 15 17 19

- top bar

- bottom bar

3 5 7 9
TIME(ms)
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IMPULSE TEST DATE: 18.12.92

SMALL SLAB SEt3 AGE OF SPECIMEN: 7 days

Cube compressive N/mm2 40.7 Cylinder tensile N/mm2 4.65 Age
10strength strength (days)

REINFORCEMENT:

BOTTOM LAYER REINFORCEMENT

bonom ~ct. "",aide

TOP LAYER REINFORCEMENT

R.MESH, 31 S mm ClAM. I 78.2 mm CENTRES

(WITHOl/T CENTRAL REGION 400 X 400 mm)

R.MESH 3 1S mm ClAM I 78.2 mm CENTRES

COVER 4 mm

800mm

LOADING CONDITIONS:

CHARGE WEIGHT 78g, PE4

CHARGE SHAPE Hemispherical

CHARGE DIRECTION . Spherical side facing the specimen

CentralCHARGE POSITION .

CLEAR DISTANCE TO THE CHARGE.................. : 125mm

SUPPORTS:

SPECIMEN
G-clamp

slab

80x80x10 EA

B2-24



10

0

-10-E
5 20z-
0
F -30ow
_j
LLw -400

-50

-60
-1

IMPULSE TEST - SMALL SLAB - SE13

H~ [if .ll
,'\

~rL
V ~~ 1/ 11

~~
~I-

:r
t-L ~ ~,." 1I I>"~TT :s::

~.fL 1 ~I

;". \r.- ~ ~
t-- ~-'I 1-''''

p.., /
r--~,~

~ :.., :...\r;I- ::s
~ tf N :SI- ~O<<~

r ~ 'i
~

top side bottom side

deflection at 240 mm off centre

. i \\\

~1W/'·

\\i\,J 1 !i1~ deflection et 80 mm off centre

'.[ I: deflection at 160 mm off centre

0.004 -
-

0
-

-0.004 -
-

z -0.008 -
~ -
l-
(/) -0.012 -

-

-0.016 -
-

-0.02 -
-

-0.024
-1 1

1 3 5 7 9 11
TIME(ms)

1913 15 17

- bottom bar

3 5 7 9
TIME(ms)

11 13 15 17
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IMPULSE TEST DATE: 21.12.92

SMALL SLAB SE14 AGE OF SPECIMEN: 10 days

Cube compressi ve N/mm2 40.7
Cylinder tensile N/mm2 4.65 Age

10
strength strength (days)

REINFORCEMENT:

(WITHOUT CENTRAL REGION 400 X 400 "'"'I

bonomside topside

TOP LAYER REINFORCEMENT

R MESH 3'5 mm DIAM 178.2 mm CENTRES

BOTTOM LAYER REINFORCEMENT

R.MESH 3.'5 mm DIAM./78.2 mm CENTRES

1 COVER 4mm

800 nvn

LOADING CONDITIONS:

CHARGE WEIGHT 78g, PE4

CHARGE SHAPE Hemispherical

CHARGE DIRECTION . Spherical side facing the specimen

CentralCHARGE POSITION .

CLEAR DISTANCE TO THE CHARGE.......................... : lOOmm

SUPPORTS:

SPECIMEN
G-clamp

slab

80x80x10 EA

82·26



IMPULSE TEST - SMALL SLAB - SE14

top side bottom side

10

0

........ -10E
E-z
0 -20
i=
0
W
...J -30 deflection at 160 mm off centreu..
W
0

-40

-50
5 7 9 11 13 15 17 19-1 3

TIME(ms)

0.004

0

-0.004

Z -0.008
~
~en -0.012

- bottom bar
-0.016

-0.02

-0.024
3 5 7 9 11 13 15 17-1

TIME(ms)
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IMPULSE TEST DATE: 21.12.92

SMALL SLAB SEt5 AGE OF SPECIMEN: 10 days

Cube compressive N/mm2 40.7 Cylinder tensile N/mm2 4.65 Age
10strength strength (days)

REINFORCEMENT:

bottomsidt top.do

TOP LAYER REINFORCEMENT

FUAESH: 3.15 rrrn OIAM./78 2 rrrn CENTRES

(WITHOUT CENTRAL REGION 400 X 400 mm)

BOTTOM LAYER REINFORCEMENT

R.MESH 3.15rrrnOIAM 17'.2mmCENTRES

COVER 4"""

800 mm

LOADING CONDITIONS:

CHARGE WEIGHT 78g. PE4

CHARGE SHAPE

CHARGE DIRECTION .

Hemispherical

Spherical side facing the specimen

CHARGE POSITION .

CLEAR DISTANCE TO THE CHARGE.......................... : 75mm

Central

SUPPORTS:

slab

SPECIMEN
G-clamp

80x80x10 EA

B2·28



60
50

40
30-E 20E---z 10

0
i= 00w -10....J
LLw -20Cl

-30

-40
-50

-1

0.004 -
-

IMPULSE TEST - SMALL SLAB - SE15

-.. : ,e----J' ."

I

'. J

.IQ! I ~
f,II;ll:;:i'!f

K1'
Ill-- f'\~ .x\: x . .', l:j

",f..'x,," ~ Lt I-t:>~I4.~~P' J..: fr

s- Tfr ~ [1 Iv

f--t->-I";;!;J i-
F-] V p~ !.... ~~y
;-; ~- ~~

fSl~ ~1-<1--
~(-7 ~ i\ ~ b~~

l- f'\,)l.,.. ff ~-~r-.~

top side bottom side

defleqtion at 240 mm off centre

deflection at 80 mm off centre

deflection at 160 mm off centre

117 9
TIME(ms)

13 17 19151 3 5

-O.~ :-l---II~~il·------------------------

- ~~..~

cn
~ -0.008 =
-0.012 -

-0.016 -
-

-0.02 -
-

-
- top bar
-- bottom bar

-0.024 -I_
1
--t---r

1
-.--

3
,---,---,S--r---.7-,---9r----,---,-11--.--1T"3-.--1'S-r-'1 '7---"

TIME(ms)
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IMPULSE TEST

SMALL SLAB SE16

DATE: 15.01.93

AGE OF SPECIMEN: 8 days

Cube compressive N/mm2 39.33
Cylinder tensile N/mm2 5.05 Age

8
strength strength (days)

REINFORCEMENT:

~

r
I
I
I

:1

TOP LAYER REINFORCEMENT,

RMESH 3.,5 rMI DIAM. 178.2 rMI CENTRES

(WITHOUT CENTRAL REGION '00 X '00 rMI)

BOTTOM LAYER REINFORCEMENT

bohomtide top tide

COVER • ....,

R.MESH: 3.15 rMI DIAM.ln.2 ..... CENTRES

900 nvn

LOADING CONDITIONS:

CHARGE WEIGHT

CHARGE SHAPE

CHARGE DIRECTION .

CHARGE POSITION .

78g. PE4

Hemispherical

Spherical side facing the specimen

Central

CLEAR DISTANCE TO THE CHARGE.......................... : 60mm

SUPPORTS:

G-clamp

slab

80x80x10 EA

82-30
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IMPULSE TEST - SMALL SLAB - SE16

top side

deflection at 160 mm off centre

deflection at 240 mm off centre

bottom side

1 3 5 7 9 11
TIME(ms)

13 15

0.004 -
-

0
-

-0.004 -
-

Z -0.008 -g -
en -0.012 -

-

-0.016 -
-

-0.02 -
-

-0.024
-1 1

17 19

- top bar

3 579
TIME(ms)
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IMPULSE TEST DATE: 18.01.93

SMALL SLAB SEt7 AGE OF SPECIMEN: 11 days

Cube compressive N/mm2 39.33
Cylinder tensile N/mm2 5.05

Age
8

strength strength (days)

REINFORCEMENT:

bOttom lide

CHARGE WEIGHT

eOOmm

LOADING CONDITIONS:

CHARGE SHAPE

~

T
I,
j RMESH , 3.15 mm DIAM. / 78.2 mm CENTRES

TOP LAYER REINFORCEMENT·

il
I
I+-

(WITHOUT CENTRAL REGION '00 X .. 00 mm)

BOTTOM LAYER REINFORCEMENT

RMESH, 3.15 mm DIAM./782 mm CENTRES

COvER: .. mm

78g. PE4

Hemispherical

Spherical side facing the specimenCHARGE DIRECTION .

CentralCHARGE POSITION .

CLEAR DISTANCE TO THE CHARGE.......................... : 50mm

SUPPORTS:

n
G-clamp

slab

80x80x10 EA

SPECIMEN

82-32
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-50
-1

IMPULSE TEST - SMALL SLAB - SE17

top side

deflection at 160 mm off centre

bottom side

deflection at 240 mm off centre

1 3 5 7 9
TIME(ms)

0.004 -
-

0
-

-0.004 -
-

Z -0.008 -
~ -
I-en -0.012 -

-

-0.016 -
-

-0.02 -
-

-0.024
-1 1

11 13 15 17 19

- top bar
--_..- bottom bar

3 579
TIME(ms)

82-33

11 13 15 17



IMPULSE TEST DATE: 18.01.93

SMALL SLAB SE18 AGE OF SPECIMEN: 11 days

Cube compressive N/mm2 39.33
Cylinder tensile N/mm2 5.05 Age

8
strength strength (days)

REINFORCEMENT:

bottomsicM lop lido

~

T
I
I

rl
§i

I

1

TOP LAYER REINFORCEMENT

R MES>< 3.'5...." OIAM 1782 mm CENTRES

(WITHOUT CENTRAL REGION 400 X 400 mm)

BOTTOM LAYER REINFORCEMENT

RMES>< 3'S...."OIAM 1782mmCENTRES

COVER 4mm

800 nvn

LOADING CONDITIONS:

CHARGE WEIGHT 78g,PE4

CHARGE SHAPE

CHARGE DIRECTION ..

Hemispherical

Spherical side facing the specimen

CHARGE POSITION . 200mm off centre, each direction

CLEAR DISTANCE TO THE CHARGE................ .......... : 200mm

SUPPORTS:

slab

SPECIMEN
G-clamp

80x80x10 EA

B2-34



IMPULSE TEST - SMALL SLAB - SE18

B2-35



IMPULSE TEST DATE: 1.02.93

SMALL SLAB SE19 AGE OF SPECIMEN: II days

Cube compressi ve N/mm2 40.0
Cylinder tensile N/mm2 4.03 Age

11strength strength (days)

REINFORCEMENT:

bonom_do top_do

1=

T
I

TOP LAYER REINFORCEMENT

RMESH 315nvnOIAM./7I.2mmCENTRES

~
§

I
i

1

(WITHOUT CENTRAL REGION 400 X 400 mm)

BOTTOM LAYER REINFORCEMENT

R.MESH 315nvnOlAM/762nvnCENTRES

COVER 4 rTrn

BOOmm

LOADING CONDITIONS:

CHARGE WEIGHT 78g, PE4

CHARGE SHAPE Hemispherical

CHARGE DIRECTION .. Spherical sidc facing the specimen

CHARGE POSITION . 200mm off centre, each direction

CLEAR DISTANCE TO THE CHARGE : lOOmm

SUPPORTS:

slab

SPECIMEN
n

t )r I !-14-
:;.~

G-clamp

80x80x10 EA

82-36
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IMPULSE TEST - SMALL SLAB - SE19

top side bottom side

deflection at 240 mm off centre

deflection at 160 mm off centre

10 30
TIME(ms)

0.004

0

-0.004

Z -0.008
~t-en -0.012

-0.016

-0.02

-0.024
1-1

50 70

- top bar
- bottom bar

3 579
TIME(ms)

11 13 15 17

82-37



IMPULSE TESTS

HIGH SPEED FILMS

APPENDIX B3



I IMPULSE TEST SE4 I

83 ·1





I IMPULSE TEST SE5

83-3



INTERFRAME TIME 162.38!"sec V -D~ONATION TIME

83 - <1
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IIMPULSE TEST SE7

83·6
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IIMPULSE TEST SE7

R'l _Q



I IMPULSE TEST SE131

83 -10



[IMPULSE TEST SE13] INTERFRAME TIME not available DETONATION TIME n.

83 -11



I IMPULSE TEST SE13]

83 ·12
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IIMPULSE TEST SE14]

83 - 14



I IMPULSE TEST SE141

B3 -15
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I IMPULSE TEST SE141

83-17



I IMPULSE TEST SE141

83-18



I IMPULSE TEST SE1S1

83 -19



93·20
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IIMPULSE TEST SE1S1

83-22



I IMPULSE TEST SE171

83-23
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83·25
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IIMPULSE TEST SE171

83-27



IIMPULSE TEST SE1S1 INTERFRAME TIME 95.24/" sec \/-2.7MSEC AFTER 0

83-28



STATIC TEST
RESULTS

1:2.5 SCALE SLABS

APPENDIX C1



STATIC TEST

SMALL SLAB SSt

DATE: 24.03.92

AGE OF SPECIMEN: 11 days

Cube compressive N/mm2 49.5 Cylinder tensile N/mm2 4.08 Age
12

strength strength (days)

REINFORCEMENT;

bottom side lop aide

SOOmm

SUPPORTS;

G-clamp

slab

-I

80x80x10 EA

TOP LAVER REINFORCEMENT:

R.MESH : 3.15 mm DIAM. /76.2 mm CENTRES

(WITHOUT CENTRAL REGION 400 X 400 mm)

BOTTOM LAVER REINFORCEMENT:

R.MESH :3.15mm DIAM./76.2 mm CENTRES

COVER: .. mm

SPECIMEN

C1·1
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STATIC TEST - SMALL SLAB - SS1

: I

Y'
I 1 ,
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top side

(positions 1.2.3 and 4)

1Ft r/~fo-1\ ss - -+ if- fo-

,..t. r~
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'- ) T fo-

l- n I-
I ,~I-IC Zlr' l>'1fo- f0-
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bottom side
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0
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positions 3.13 and 14.160 mm off centre
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20
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\,,,,,,,,,

2 4
DEFLECTION (mm)
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2 4

DEFLECTION (rrm)
8

18

16

14

4
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.:
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DEFLECTION (mm)
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0 12
LL

10

4

0
·0.1 0.1

polltiom 4 and 11.270 "." 0" centro
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.'

0.3 0.5 0.7 o.a
DEFLECTION (rnn)

C1 - 2
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STATIC TEST

SMALL SLAB SS2

DATE: 25.03.92

AGE OF SPECIMEN: 12 days

Cube compressive N/mm2 49.5
Cylinder tensile N/mm2 4.08

Age
12

strength strength (days)

REINFORCEMENT:

bottom side top side

800mm

SUPPORTS;

G-clamp

slab

80x80x10 EA

-I

TOP LAYER REINFORCEMENT:

R.MESH : 3.15 mm DIAM./78.2 mm CENTRES

E
E (WITHOUT CENTAAl REGION ~ X ~ mm)

~ ecrroa LAYER REINFORCEMENT:

R.MESH : 3.15 mm DIAM./7e.2 mm CENTRES

COVER: 4mm

SPECIMEN

C1-3



STATIC TEST - SMALL SLAB - SS2

I- l-
i-

\: ..

top side

positions (1,2,3 and 4)
30
28
26
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g 18
16

w 14
rf 12!2 10

8
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0
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28
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w 14
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"- 10

8

6
4
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0
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" .~
-'---"',_0

'\0

---

2 4 6

DEFLECTION (rTVT1)

positions 3.13 and 14,1eo mm ott centre

2 3
DEFLECTION (mm)

I .. 'n r.:>, T 'l'1
-: II p

lJ

p;wo- :->f'

bottom side

politiono (1,8 and 10)
30
28 ..... ,--
26

'. ---
24

.. '..",
22 .'
20 ',

18
',

g 16 ....~ "-..0
w 14

~ 12 '.
u, 10

8 '.
B "

"

2
0
-2

0 2 4 a
DEFLECTION (rTVT1)

position. 2 and 5,90 I1YT1oft contra
30
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6
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2
0
-2

4 0 2 4 a
DEFLEC'!1ON (mm)

politiono 4 and 11,270I1YT1oft contr.
30
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g 18
+e

w 14rf 120u, 10
8
8
4
2
0
-2
-0,1 0,1 0.3 0.5 0.7 o.s 1.1

DEFLECTION (rTm)
1,3 1.5 1.7

C1-4



STATIC TEST DATE: 15.04.93

SMALL SLAB SS3 AGE OF SPECIMEN: 9 days

Cube compressive N/mm2 51.6
Cylinder tensile N/mm2 4.33

Age
10

strength strength (days)

REINFORCEMENT:

bOttom .Ide top aide

E
E

§

TOP LAYER REINFORCEMENT:

R.MESH: 3.tS mm DIAM./76.2 mm CENTRES

(WITHOUT CENTRAL REGION 400 X 400 mm)

BOTTOM LAYER REINFORCEMENT:

R.MESH: 3.15 mm DIAM./76.2 mm CENTRES

COVER: 4mm

800mm -I

SUPPORTS:

G-clamp

slab

80x80x10 EA

1.1:2.5 serle R.C.slab
2.top stee frame
3.lnher supports

C1·!5



STATIC TEST - SMALL SLAB - SS3

pos.1 and 2 (inner crcle)
32 32

30 30

28 28

2B 2B

24 24

22 22

20 g 20g 18 18

UJ 16
UJ 18

~ 14
~ 14

0 0... 12
...

12

10 10

8 8

8 8

4 4

2 2

0 0
-0.5 0.5 1.5 2.5 3.5 -0.4 0 0.4 0.8 1.2 1.8 2 2.4

DEFLECTION (mm) DEFLECnON (rrrn)

poS.4 and 11 (270 mm oft centr.) poo.2 ond 5 (90 mm oft c__ )

32 32

30 30

28 28 .........0
28 28

24 24

22 22

20 g 20g 18 18

UJ 18
UJ 18

~ 14
&! 14e ®12 12

10 10

8 8

8 8

4 4

2 2
0

0 0.04 0.08 0.12 0.18 0.2 0.24 -0.5 0.5 1.5 2S H
DEFLECTION (mm) DEFLECnON (mm)

~ ,...
g

II

~I

~ r,,:

I'..

•I!IIi
top side

I _ _ I-

f--f-- T, I I L
f- -1-++-+-1 L+-l . f f-

H-l-I-If--I-I ~f-I- -, -. L-'17.~~"""":&
, f- ~ ,..1». I ./.
H-+-H-I- E ~ I~:-

, H-+-+--I-II--r-:

bottom side

C1-6



STATIC TEST DATE: 16.04.93

SMALL SLAB SS4 AGE OF SPECIMEN: 10 days

Cube compressive N/mm2 51.6
Cylinder tensile N/mm2 4.33

Age
10

strength strength (days)

REINFORCEMENT;

bottom Bide lop side

TOP LAYER REINFORCEMENT:

R.MESH: 3.15 mm OIAM./7S.2 mm CENTRES

(WITHOUT CENTRAL REGION 400 X 400 mm)

BOTTOM LAYER REINFORCEMENT:

R.MESH : 3.15 mm OIAM. 178.2 mm CENTRES

COVER: 4mm

I- 800mm -I

SUPPORTS:

slab 1.1:2.5 serle R.C.slab
2.lop stee frame
3.lnher supports

G-clamp

80x80x10 EA

C1-7



STATIC TEST - SMALL SLAB - SS4

)

top side

pas.1 and 2 (lmer circle)

3S

30

g 2S

w 20It
0
u.. 15

10

S

0
3 7 g

DEFLECTION (mm)

po •. 4 W'ld 11 (270mm 0" centre)

............ : .

11 13 1S

:", .
: ":':

3S

............. ,;-....

30

25

20

1S

10

5

0.2 0.4
DEFLECTION (mm)

,
~\ - .. Ell~

.i
I

.~

...... 1\

.-,~... J ~
I' r-b~ ,

I-

~
, ./ 1\.

1I_ -i'J;

bottom side

po •. 1 W'ld 10

3S

30

2S

20 .,~."'"
....

15
<.....

......._ .10

S

DEFLECTION (mm)

poo.2 W'ld 5 (g() mm off _)

0.8

C1-a

..:. ..



STATIC TEST

SMALL SLAB SS5

DATE: 16.04.93

AGE OF SPECIMEN: 10 days

Cube compressive N/mm2 51.6
Cylinder tensile N/mm2 4.33

Age
10

strength strength (days)

REINFORCEMENT;

bottom side lop aide

I- BOOmm

SUPPORTS;

_j
~If·'

I- -"......___
3- 1.1

200 2.l
OEA 3.m

(fff//ff7/1. i/I. !77lf. If. 1/////// /// 1/////// f//I

G-clamp

slab

80x80x1

COVER: 4mm

TOP LAYER REINFORCEMENT:

R.MESH: 3.15 mm DIAM./7fJ.2 mm CENTRES

(WITHOUT CENTRAl REGION 400 X 400 mm)

BOTIOM LAYER REINFORCEMENT:

R.MESH : 3.15 mm DIAM./78.2 mm CENTRES

-I

:2.5 serle R.C.slab
op stee frame
her supports

C1·9



STATIC TEST - SMALL SLAB - SS5

s
~

~\ ~-
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50

~ ~
1

«l 40 I'.

Ig 30 g 30 i 0w UJ I!i! !f0 20 0u, u, 20
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C1·10


