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Abstract

The UK Department of Transport (DoT) has recently encouraged the use of externally

post-tensioned structures for bridge construction. This is due to the durability

problems encountered with the conventional internally bonded post-tensioned

structures. However, due to the lack of bond between the concrete and the external

tendons, the ultimate strength of these structures cannot be determined by just

performing a sectional analysis at the section of maximum moment. Although several

recommendations have been made for the ultimate analysis of these structures, none

were considered satisfactory here. Hence the purpose of this investigation is to study

the flexural behaviour of these structures of all stages up to collapse, and to propose a

practical methodology for estimating their ultimate strength.

The study introduces eight non-linear analytical models developed for the prediction

of the moment vs. deflection response of simply supported externally post-tensioned

beams (with and without deviators located along their spans) up to ultimate. The

models employ an iterative procedure that involves the application of loads to the

structure in increments up to the collapse condition, where the curvature distribution

predicted at each loading sequence is used to estimate the stress increase and variation

in eccentricity in the external tendons. Second-order effects due to variation in

eccentricity of external tendons and frictional behaviour of tendons at the deviators

are both taken into account in these models. The eight models were then verified by

comparing the results derived from them with reported experimental data, whereby

good correlation was obtained. An extensive parametric study was subsequently

conducted using the proposed models applied to the various parameters that influence

the ultimate behaviour of externally prestressed structures Finally, the.. e: -,
" ').

recommendations in the codes of practice for the ultimate design of these structures

were also investigated here.
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1'1/;>s change in prestress due to external loads

1'1~)S(maXI change in prestress due to external loads at the maximum moment

conditions

I'1/PSillll!

1'1/~siltmil)

1'1£plastic

I'1Mshear

change in prestress due to external loads at the ultimate condition

change in prestress due to external loads at material limit condition

change in length of unbonded tendons due to external loading

change in length of the prestress steel from point 1 to point 2 (Figure 2.7)

change in length of the plastic hinge

fictitious additional moment on a section due to shear cracking

strain change in prestress steel due to external loading

strain change in concrete at the level of prestress steel due to external

loading

coefficient of friction

In addition to these symbols, a number of other symbols are defined and used locally.
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Chapter 1

Introduction

1.1 General

Conventionally, the post-tensioning of bridges involves the practice of embedding

tendon ducts to straight or draped profiles within the webs and flanges of girder

sections. After the concrete is placed and cured, or, after the precast segments are

assembled, the tendons are pulled through the embedded ducts and stressed. These

ducts are then normally filled with cement grout after the stressing process. This

method of prestressing is known as internal bonded post-tensioning.

Cement grout helps to establish a bond between the concrete and the tendon, hence

full bond is usually assumed for the analysis of these structures. The cement grout

also helps protect the tendons from possible attacks by aggressive agents which may

lead to the corrosion of the tendons. However, it has been found from bridge

inspections that the grouting procedures were often not properly carried out and, in

many cases, voids have been found to exist in the grout, thereby permitting the ingress

of water, chlorides and other aggressive agents to attack the tendons. This occurrence

rarely shows any visual evidence of corrosion, such as spalling, discoloration or local

cracking. As a result it is very difficult to detect or quantify the deterioration of these

structures.

In December 1985, a segmental post-tensioned bridge in Wales, Ynys-y-Gwas,

collapsed without warning due to localised corrosion problems caused by poor

grouting procedures (Woodward and Williams (1988». This event led the

Department of Transport in the United Kingdom to commission several checks on

existing bridges for corrosion problems. These checks were found to be both difficult

and expensive (Winkler and Zenobi (1993». Furthermore, even if the bridges

inspected had been found to be suffering from corrosion problems, the impossibility
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of replacing grouted tendons would have required the structure to be either

demolished or repaired at some considerable cost. In light of these problems, the

Department of Transport (DoT) in the United Kingdom imposed a temporary ban on

the use of internal post-tensioning for the construction of new bridges and encouraged

instead the use of external post-tensioning. Externally post-tensioned bridges are

preferred to internally post-tensioned bridges because they allow easy maintenance

and monitoring of tendons (Raiss (1995)). If defective tendons are found, the

possibility of replacement and re-stressing allows repairs to be made on the structure

with relative ease.

1.2 External Post-tensioning

With externally post-tensioned bridges, the tendons are located within the voids of

box-girders or between webs of non-box girder sections (see Figure 1.1). The tendons

may be straight or draped, where the required profile is maintained by passing tendons

through devices called deviators. The only positive contact between the concrete and

the tendons for these structures occurs at the anchorages and deviators. Because of

this, external tendons are considered to be unbonded and the tendon strains to be

independent of the strains in the adjacent concrete section.

The free lengths of the tendons are usually protected from corrosion by one of the

following methods:

• grouting along the tendon length with cement

• coating the tendons with protective paints

• encasing the tendons with concrete encasement

• enclosing the tendons with HDPE (high-density Polyethylene) sheathings

• galvanising the tendons.

In the United Kingdom, the Department of Transport BA 58/94 (1995) states that the

galvanisation of the tendons in accordance to BS5493 and BS 183 is sufficient for

corrosion protection. Furthermore, the tendons are not to be placed in either empty

ducts or in ducts which are subsequently grouted, greased or filled with wax, in order

to allow ease of inspection and replacement of tendons.
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Externally post-tensioning of bridges has been greatly influenced by the technological

developments in the United States and France. However, the reasons for using this

form of prestressing in bridge construction differs between the two countries

(Virlogeux (1993)). In the United States, the principal objectives for using external

post-tensioning are to reduce the cost and increase the speed of bridge construction.

In France, however, the direction of the technology is centred on improvements in

construction quality. The replacement possibility of tendons is thus of major concern

in France, and as a result higher costs are usually incurred. In the case of the United

Kingdom, the use of external tendons was not encouraged as an alternative for bridge

construction until recently. This may primarily be attributed to the lack of

understanding of the behaviour of these structures at the ultimate limit state.

Although, recent corrosion problems encountered in existing bridges have forced this

technique to be preferred over conventional methods of post-tensioning, there is still a

great need for more research to be conducted to improve the understanding of the

behaviour of these structures at ultimate conditions.

1.3 Components of External Post-tensioning

1.3.1 External Tendons

External tendons are placed outside the concrete section and are usually deviated

along the span so as to resist the flexural bending moments caused by loading the

structure. These external tendons must generally meet the following requirements

(Jungwirth et al (1993)):

• provide reliable transfer for static and dynamic loads

• durability provided by the resistance to chemical and mechanical influence

• damping of the tendon vibration caused by wind and live loads (if necessary)

• possibility for adjustment of tendon forces during the whole life of the structure

• economy with regards to the cost of manufacture as well as maintenance of the

structure.

Steel tendons are commonly used for external post-tensioning and may either be in the

form of high strength bars, wires or strands. Though glass, aramid or carbon fibers

are some of the alternative materials suggested to replace steel, the cost of these
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materials is currently too high for them to be considered for general use. The

advantage of high strength steel bars IS that they are easy to handle. However, they

are only suitable for short length requirements and, if high forces are involved, the

bars must be bundled together and anchored at one anchor plate. Tendon wires and

strands normally consist of three components: the tensile member, filling material and

sheathing, and may be installed either in the form replaceable or non-replaceable

tendons.

Non-replaceable external tendons are more commonly used in the United States,

where the provisions for tendon inspection and replacement are not essential. For this

non-replaceable system, steel pipes are first placed at the deviators. The tendons,

which are normally enclosed in ducts made up of HOPE sheathings, are then installed

along the beam by passing them through these deviators. The sheaths are

subsequently grouted with concrete and this makes replacement of the external

tendons very difficult.

There are several methods suggested for the installation of replaceable tendons in

external post-tensioned structures. One method of design for replaceable external

system is to use galvanised external tendon strands in bunches without enclosing them

in ducts. Galvanised tendons will give adequate protection against corrosion and,

since no ducts are used, easy inspection and replacement of the tendons are also

possible. However, for safety reasons, galvanised tendons have to be attached at close

intervals, and the use of long free strands is generally not allowed.

The injection of grease or wax into ducts with tendons is another method of providing

for the replacement of tendons in external systems. Grease and wax give the required

protection against corrosion for the tendons and also allows them to be replaced

easily. This method is applicable to both external and internal unbonded tendons, and

ducts used must be designed to withstand the relatively high temperatures during

installation; typically 80-90 degree Celsius.

The double tubing method was developed and patented by the French to allow easy

replacement of external tendons. This method involves the injection of cement grout

into HOPE ducts, but with a duplicate tubing system fixed at the deviators to allow for

future replacement of tendons.
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Finally, Freyssinet International developed a replaceable system for external post-

tensioning known as the individually protected system, which involves the use of

individually protected strands. For the purposes of corrosion protection and easy

replacement, grease or wax are applied on the strands used in this method before

extruding them through HDPE ducts. The ducts are then injected with cement grout

along their full length except at the anchorages. After the cement grout injection, the

strands are stressed and the anchorages injected with wax. The advantage of this

installation method lies in the fact that; if one element in the system suffers from

corrosion problem, it will not lead to the complete breakdown of the corrosion

protection of the other tendons.

1.3.2 Deviation Devices

Deviation devices or deviators are required in an external post-tensioning system so as

to deviate the external tendons in order to give the required tendon profile. The

deviator is a critical design detail (Powell et al (1988)) since, other than the

anchorages, it is the only positive contact between unbonded tendons and the

concrete. Deviators vary in shape and size, though the most commonly used forms

are the saddle block (see Figure 1.2) and intermediate cross beam (see Figure 1.3).

The saddle blocks or small deviation blisters usually deviate tendons one at a time at

each deviator. As every tendon can only be deviated near the web, it is necessary to

get the tendons away from the web after deviation, resulting in a complex layout plan

for tendons (Virlogeux (1993)).

The intermediate cross beams are similar to the cross beams located at the supports

but are much lighter in weight. They permit a simplified tendon layout compared to

using deviation blisters and provide a means for tendons to be anchored along the

span should the need arise (Section 1.3.3).

1.3.3 Anchorages

Anchorages for external tendons are usually placed in the diaphragms situated at the

piers. Special attention must be given to the anchorage of external tendons, since

these are responsible for the transmission of prestressing force to the structure
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(Winkler and Zenobi (1993)). Also. as no bond exists between the tendons and the

concrete for externally post-tensioned structures, it is essential that the end anchorages

remain fully effective at all times.

As proposed by the UK Department of Transport, the design of anchorages in the

external system should allow them to be open and inspectable (BA 58/94 (1995)).

The anchorages should also be designed to accommodate detensioning and re-

stressing of the tendons. This may be made possible by including galleries in the

abutments to allow prestressing jacks to be installed at anchorages for the

detensioning and re-stressing process.

For continuous externally post-tensioned beams, tendons typically overlap at the

support cross beams for continuity. Overlapping the tendon anchorages in these

beams by extending tendons over two bays will generally lead to (Virlogeux (1993»:

• reduction in the number of anchorages at the support cross beams

• prevention of geometric congestion due to large numbers of anchorages

• economy.

Since there is a high risk of bimetallic corrosion occurring at the anchorages where the

tendons are gripped at high forces, it has been suggested that anchorages should be of

the same steel as the external tendons to prevent this problem.

1.3.4 Intermediate Blocking Device

The intermediate blocking device, first developed by Freyssinet International (Lacroix

and Jartoux (1994)), was used in the construction of the Second Severn Crossing. A

sketch of the device is reproduced in Figure 1.5. Proposed for continuous externally

post-tensioned structures, the device serves two main purposes. The first is to allow a

more controlled variation of tensile force in tendons between deviators and

anchorages; the second is to help limit slippage of the tendons at supports and

deviators due to adverse loading. Thus improvements in both safety and performance

of externally prestressed structures, especially at the ultimate limit state, are gained

from the use of this device.

The intermediate blocking device is added to the structure by first placing the device

alongside the tendon at contact points along the span and then accurately clamping it
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in position using the clamp incorporated. This clamp is placed perpendicular to the

tendon's direction and facilitates the adjustment of the tensile force in the tendon, F,

according to design requirements. Variation of tensile force, fJF, is thus transmitted to

the structure as shown in Figure 1.4 using the proposed device.

1.4 Design Considerations

1.4.1 Service Limit State

For service limit state design, there is no major difference between structures with

internal and those with external post-tensioning (Virlogeux (1993)). In both cases, the

same specifications may be applied, especially with regards to the limitation of

concrete tensile stresses. However, in the design notes for externally post-tensioned

bridges prepared by the UK Department of Transport BA 58/94 (1995), some

relaxation in the service limit state is permitted. This line of reasoning is based on the

fact that external tendons do not rely on the concrete for corrosion protection, and the

fact that the problem of high stress fluctuations in tendons associated with cracks are

not relevant to external unbonded tendons

The same notes also pointed out that the design rules for shear in beams specified in

BS 5400 Part 4 is not considered appropriate for externally post-tensioned structures.

This is because these rules have been derived empirically from test results obtained

from beams with bonded tendons. The preferred approach for the design of shear

resistance is therefore to treat the unbonded prestressing structure as a reinforced

section with an externally applied load.

1.4.2 Ultimate Limit State

In the case of the ultimate limit state design, there is a great difference between

internal and external tendons (Virlogeux (1993) and Jackson (1994)). For internally

bonded structures, factored loads will produce cracks and plastifications in the cross

section at supports and midspan. Due to the bond with the concrete, the internal

tendons increase in tension in these cracked zones, thus enabling the yielding of the

prestressing steel. This behaviour however does not occur in external tendons,

because no bond exists between the tendons and the concrete. Therefore, for such
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beams. the tension generated in the external tendons during the application of load

will be uniform along their free length and dependent on the deformation of the whole

structure. Stress variations are thus more limited in these tendons and yield does not

occur except when the beam deflections become very high. The strength of the

prestressing steel is thus not usually fully utilised when calculating the ultimate

bending resistance of externally prestressed structures.

It is often advantageous to produce mixed beams by providing some untensioned

bonded reinforcement in the design of externally unbonded post-tensioned structures

(Jungwirth et at (1993)). This is because the passive reinforcement not only helps to

increase the ultimate capacity, but also helps to limit shrinkage and thermal cracking

of the beam. Especially for segmental structures where external tendons are used,

ductility can be provided by convenient placement of untensioned reinforcement

across the joints prone to opening under excessive loading, in a subsequent concreting

operation. Provision of ductility in externally prestressed beams helps to prevent

them from failing in a brittle manner at the ultimate limit state.

For externally post-tensioned structures, failure of one tendon at any point along the

beam will render that tendon ineffective over its entire length, thus causing the

structure to be vulnerable to disproportionate collapse. This is particularly true for

continuous beams where localised failure of one span could result in a progressive

failure of adjacent spans. Such progressive failure of continuous externally

prestressed structures can be prevented by staggering the anchorages in continuous

structures.

1.4.3 Other Design Considerations

In practice, when bonded post-tensioned tendons are cut or broken, they re-anchor and

hence the energy stored in them is not fully released. However, cutting unbonded

tendons will release a large amount of energy, causing problems in the demolition of

such structures. If externally prestressed structures are designed in such a way as to

facilitate re-stressing, the tendons can be easily removed by simply destressing them.

In recognition of this problem, the UK Department of Transport BA 58/94 (1995)
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specified that the designs of all externally post-tensioned bridges must provide

allowance for the detensioning of tendons.

Poor ventilation in enclosed box-girders prestressed with external tendons is known to

cause serious corrosion problems in tendons. Hence. another important design

consideration is that of ensuring proper ventilation in these structures. In addition, the

concrete boxes housing external tendons should ideally have a reasonable working

headroom to allow easy access for the inspection and maintenance of tendons.

1.5 Material Quantities and Cost Comparison

Jungwirth et al (1993) made a comparison between the use of internally bonded and

externally unbonded tendons for post-tensioned bridges in terms of cost and materials

used in construction. Their results revealed that, despite the higher prestressing level

used (i.e. /Pi/PII specified for internally bonded structure was 0.55 while those for

externally prestressed structures was 0.7 in Germany) and the lower weight of the

externally post-tensioned structure, the quantity of prestressing steel used only

differed slightly between the two methods (see Figure: 1.7). This may be due to the

fact that the preferred parabolic profiles corresponding to the required bending

moments can only be approximately achieved for external tendons with the use of

deviators. On the other hand, with internal tendons, these profiles can be easily

acquired. Also, since external tendons usually lie within the void of box-girder

sections near the upper surface of the soffit, the maximum possible eccentricity

attainable is thus reduced.

The cost of external tendons are reported to be about 50% - 100% higher than that of

internal tendons with the same prestressing force (Figure 1.6). This higher cost is due

to the additional system-related cost for the provision of deviators and the use of

special corrosion protection materials (e.g. sheathings, galvanising, etc.). On the other

hand, there is a notable saving with externally post-tensioned structures, due to the

lower maintenance costs involved. This is one of the primary reasons why external

post-tensioning is often preferred to the conventional method of post-tensioning

(Winkler and Zenobi (1993)).
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1.6 Advantages and Disadvantages

The following section will briefly outline the advantages and disadvantages of using

external post-tensioning as discussed by Winkler and Zenobi (1993), Lacroix and

Jartoux (1994), Powell et at (1988) and Hindi et at (1995).

1.6.1 Advantages

• Section free from ducts

For externally post-tensioned structures, since the steel tendons are placed outside

the concrete section, concrete webs and flanges are free from ducts used to contain

these tendons. The absence of ducts in the concrete section allows a possible

reduction in the thickness of the web with a resulting saving in the cost of

construction. Another advantage of having the webs free of ducts is the increased

efficiency of the web area for shear resistance.

• No interference with passive reinforcement

With the ducts outside the section, construction speed of post-tensioned structures

is improved due to the omission of the task of placing, positioning and securing

ducts inside the reinforcement cage.

• Reduced congestion

The absence of ducts within the reinforcing cage relieves congestion, resulting in

better conditions for placement and consolidation of concrete. Incidents of poorly

consolidated concrete occur frequently when ducts are grouped together in closely

spaced bundles, which is often the case for conventional internal post-tensioning.

• Accessibility of tendons

Exposed external tendons allow easy checks and maintenance to be made on them.

Rectification works may then be carried out more easily if ruptured tendons are

detected from these checks. The ease of accessibility also facilitates installation of

the tendons and sheathing during the construction phase.
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• Replaceability of tendons

The replaceabilty of external tendons may not be a major issue in the United

States, but it is the main reason why the method is so attractive in Europe.

Externally post-tensioned structures can be designed to allow defective tendons to

be easily and cheaply replaced. This is an important advantage as it will mean that

bridges found with defective tendons can be repaired without much effort or

disruption to the use of the bridge itself.

• Reduced friction losses

The use of external tendons reduces the overall loss of prestressing during

installation due to friction. Since the tendon is straight between attachment points

and the duct (if used) is unrestrained, the effect of wobble of tendon is effectively

nullified.

• Relaxation of serviceability requirements

Relaxation of service limit state stress criteria are possible because the opening

and the closing of the cracks do not cause high fluctuations of stresses in external

tendons as compared to internally bonded ones. In addition, the tendons do not

depend on the concrete for corrosion protection hence crack width limitations are

relaxed.

• Signs of failure are detectable before collapse

Flexural failures of these structures will always be preceded by extensive cracking

and excessive deflections, thus giving early warning signs before collapse.

1.6.2 Disadvantages

• Vibration of unrestrained tendons

Attachment of external tendons to the concrete section are often spaced far apart,

and problems relating to the vibration of external tendons have been experienced.

Special precautions are thus required to avoid this problem. Most code

specifications give a limiting value for the length of external tendons spanning

between deviators and anchorages, in order to control this vibration problem.
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• Reduced eccentricity

For a box-girder section, the external tendon typically lies inside the void. This

reduces the eccentricity allowed for external tendons as internal tendons normally

extend into the soffit region. This therefore decreases the flexural efficiency of

externally prestressed structures.

• Reduced ductility

A major concern in developing the design criteria for externally prestressed

structures is the possibility of reduced ductility. Tests have shown that the loss of

tendon strength development may result in an explosive (brittle) failure. This

explosive failure occurs due to the crushing of the concrete before the yielding of

the tendons.

• Reduced efficiency at ultimate conditions

Due to the lack of bond between the concrete and unbonded tendons, tendon

strains are averaged out over their free length. This results in a reduction in

efficiency for unbonded tendons at the ultimate limit state, as the stress in the

tendons at this state will only be slightly above the initial stressing level. If the

number of tendons required is based on the ultimate strength considerations, this

loss of potential tension force capacity could be a serious economic problem. A

short study was conducted by the author (Section 2.4) to check if bridges designed

using the present specifications stated by the UK DoT for externally prestressed

structures, is controlled by the service or ultimate limit state design. The

conclusions of the study strongly suggest that the design of externally post-

tensioned structures, following these specifications, is controlled by the ultimate

limit state conditions.

• Concentrated forces acting at the attachments

As deviators and anchorages are the only physical attachment between the external

tendon and the concrete structure, high concentrated forces are experienced at

these points. These elements must thus be carefully designed, as distress or failure

of such elements could be catastrophic.

Page 12



University of Sheffield

• Prone to attacks

As cables are not protected by concrete, they are more susceptible to vandalism,

terrorist attacks and fire.

• Inability to rebond

In the event of tendon failure. the unbonded tendon would not have the capability

to rebond as in the case of internal prestressing and would be ineffective over its

whole length.
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Figure 1.1: External Post-Tensioning in Long Key Bridge

(taken from Powell et al (1988))

I
External Ttndon

Figure 1.2: Deviation blister or saddle block

I
External Ttndon Cross Beam

Figure 1.3: Intermediate Cross Beam
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Tendon SF

F F±SF

Deviator

Figure 1.4: The principle of intermediate blocking device

(taken from Lacroix and Jartoux (1994))

Clamping Frame

Tie Bars

Strands of tendons

Intermediate Anchoring Plate

Figure 1.S: Sketch of arrangement of the intermediate blocking device

(taken from Lacroix and Jartoux (1994))
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Figure 1.6: Cost comparison between internal and external post-tensioning

(adopted from Jungwirth et al (1993))

Wannebach Berbke Wintrop

Span-depth 42.0013.02 45.00/3.30 43.00/3.30

Width (m) 14.85 14.25 15.28

Prestressing Internal External External

/P/fpu 0.55 0.7 0.7

Concrete 0.81 0.66 0.67

Reinforced Steel 69 127 103

(Kg/m2)

Prestressing Steel 27.1 24.1 25.6

(Kglm2)

Figure 1.7: Material comparison between internal and external post-tensioning

(adopted from Jungwirth et al (1993))
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Chapter 2

A Review on the Ultimate Limit State Behaviour

and Problem Definition

2.1 General

This chapter presents the literature review conducted on the ultimate flexural

behaviour of externally post-tensioned structures.

Post-tensioning of structures can generally be classified into three major forms:

• Internally Bonded Post-Tensioning

This is the conventional method of post-tensioning where the tendon ducts are

placed within the concrete section. The ducts are grouted after the stressing

process and full bond is usually assumed between the concrete and the tendons.

• Internally Unbonded Post-Tensioning

The tendon ducts are placed within the concrete section as in the internal bonded

case, but the tendons are not grouted after the stressing process.

• Externally Un bonded Post-Tensioning

The tendons are located outside the concrete section. The required profile for

tendons is maintained by providing deviators along the span of the structure.

The ultimate limit state analysis is performed differently for these three types of post-

tensioned structures because of the different bonding conditions between the concrete

and the prestressing tendons in these structures. For internally bonded structures, the

conventional method adopted to evaluate the ultimate response of these structures is to

conduct a sectional analysis at the section of maximum moments. This method is not

appropriate for prestressed structures with unbonded tendons (Le. internally and

externally unbonded tendons) because of the absence of bond between the concrete
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and the prestressing steel. The analytical procedures commonly adopted for estimating

the ultimate strengths of these post-tensioned structures are presented in Section 2.2.

For internally unbonded post-tensioned structures, the ultimate flexural strengths can

be computed if the increase in stress in the tendons I:l./ps(ult) is known. However,

because of the absence of bond between the concrete and the prestress tendons, I:l./ps(ult)

is not easily predicted for these structures. Several empirical expressions and methods

were thus suggested by various codes of practice and researchers, for the estimation of

I:l./ps(ult) at the ultimate conditions, and these are presented in Section 2.3.1.

Similar to internally unbonded tendons, the stress increase in external tendons is not

easily predicted due to the lack of bond between concrete and prestress tendons.

Furthermore, since the concrete and prestressed tendons are connected only at the

anchorages and deviators; the eccentric distance of the tendons varies as the beams

deform under different loading conditions. Section 2.3.2 describes the various

methods suggested by several researchers to predict the ultimate behaviour of these

structures.

The designs of internally bonded post-tensioned structures are found to be usually

controlled by the service limit state conditions. This however may not be the case for

externally post-tensioned structures because of the small increase in stress and

eccentricity variations in tendons at the ultimate conditions. Section 2.4 presents the

study conducted by the author to find out if the design of externally prestressed

structures are controlled by their ultimate or service limit state behaviour. If these

structures are controlled by their ultimate behaviour, then an accurate method for

performing the ultimate analysis becomes vital. This is to ensure that these structures

are designed both safely and economically.

Finally, after conducting an extensive state-of-the-art review on the ultimate limit

state behaviour of externally post-tensioned concrete structures, several research

objectives were defined for the research investigation. These research objectives are

listed in Section 2.5.
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2.2 Ultimate Limit State Analysis

2.2.1 Internally Bonded Prestressed Structures

The ultimate limit state analysis for internally bonded post-tensioned structures is well

established in many texts and papers (Mosley and Bungey (1990), Lin and Bums

(1982), Naaman (1982)). Since full bond is usually assumed for these structures,

strain compatibility between the concrete and the tendons is maintained at the critical

section. This implies that the strain change in the tendons is equal to the strain change

in the concrete at the section of interest, enabling the ultimate limit state behaviour to

be estimated by performing a sectional analysis at the critical section of the structure.

The assumptions normally made for the analysis are:

1) Plane sections remain plane under loading. Consequently, it is assumed that

strains in the concrete and the reinforcing steel are directly proportional with

the distance from the neutral axis at which the strain is zero, up to the ultimate

load.

2) The ultimate limit state of collapse is reached when the concrete strain at the

extreme fibre (compression) reaches a specific value (BS811 0 states Ecu to be

0.0035).

4) The tensile strength of concrete is often neglected; i.e.f; = O.

5) The stress-strain relationships of the materials are known.

A typical step-by-step description of the sectional analysis for the ultimate moments

of internally bonded structures is shown in Figure 2.1.

2.2.2 Internally Unbonded Prestressed Structures

Due to the lack of bond between concrete and prestress tendons for internally

unbonded post-tensioned structures, the ultimate moments cannot be easily estimated

by just performing a simple sectional analysis at the section of maximum moment.

This is because an increase in prestressing force is not localised at the critical section,

but is instead averaged along the free length of the tendons. Stress in an unbonded

tendon at any load level during the load response history is thus dependent on the total

change in length of the concrete at the level of prestressing steel between the
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anchorages (Harajli (1990)). This makes the deformation of these structures

important for estimating the increase in stress in the prestress tendons.

The moment curvature method (see Figure 2.2) can be used satisfactorily to calculate

the ultimate moment of unbonded structures, provided the stress increase in the

tendons at the ultimate limit state can be predicted with reasonable accuracy (Tao and

Du (1985)). The stress increase in the tendons, I1j~s(lIill' is required to predict the

prestress in tendons at the ultimate conditions using Equation (2.1) .

.fp'(II/I) = Jp" + I1Jp'(II/I) ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• (2.1)

I1/PS(lIit) at the ultimate limit state is assumed to be uniform along the length of the

unbonded tendon and can either be estimated by iterative procedures (Naaman and

Alkhairi (1993) and Harajli and Kanji(l992)) or by empirical formulations suggested

by various researchers (Baker (1949), Warwaruk et al (1962), Mattock et al (1971),

Tao and Du (1985), Tam and Pannell (1976), Harajli (1990), I'vanyi et al (1985) and

Balaguru (1981 )).

The usual assumptions used for the ultimate analysis of internally unbonded post-

tensioned structures are:

1) Plane sections remain plane after loading.

2) Constitutive relationships for the steel and concrete are known.

3) The beam is assumed to be at a cracked state whenever the applied tensile

stress exceeds the modulus ofrupture,j,.

4) Frictional behaviour between the steel and the concrete IS assumed to be

negligible.

Note that for internally unbonded structures, the deflected shape of the tendons follow

the deformation of the beam throughout the entire span, and hence there is no change

in eccentricity at any loading level (see Figure 2.3).

2.2.3 Externally Unbonded Prestressed Structures

The stress increase in an external tendon is generally small and depends on the overall

deformation of the whole structure. At the ultimate limit state, the increase in stress in

the tendons for these structures is not localised at the critical section, but is averaged

along the free length of the tendons between the contact points. Also, if no passive
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reinforcement is provided in these structures, failure is characterised by the formation

of a single wide crack at the section of maximum moment. For these reasons, the

flexural behaviour of externally post-tensioned structures is very similar to that for

internally unbonded post-tensioned structures.

However, unlike internally unbonded tendons which deflect or deform with the

adjacent concrete, external tendons move together with the concrete structure only at

the contact points (i.e. anchorages or deviators). This causes the eccentricity between

the tendons and the centroid of the section to change along the span (Figure 2.4) under

different external loads. This phenomenon is referred to as second-order effect by

Virlogeux (1988).

Furthermore, high frictional forces are produced at the points along the span where

tendons come in contact with the concrete at the deviators. These frictional forces

cause stress variations to occur in the free length of the external tendons between

deviators, whereas, in the case of internally unbonded tendons, the stress in the

tendons is fairly constant between anchorages.

The moment curvature method can also be used to analyse for the ultimate moment of

externally unbonded post-tensioned structures using the following assumptions:

1) Plane sections remain plane after loading.

2) Constitutive relationships for the steel and concrete are known.

3) The beam is assumed to be at a cracked state whenever the applied tensile

stress exceeds the modulus of rupture,/,.

The stress increase in tendons, tl/ps(ult)' at ultimate is also required to be predicted for

the ultimate moment analysis of externally post-tensioned structures. It has been

suggested that the formulations used for stress increase at ultimate for internally

unbonded prestressed structures can also be used for externally prestressed structures

(ACI 318-83 (1983), Naaman (1994)). This might be considered to be inappropriate

because these formulations were derived without considering second-order effect and

frictional behaviour at deviators which are the two crucial factors that distinguish

internally and externally unbonded structures. Hence, new formulations should be

derived exclusively for external tendons.
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2.3 State-of-the-art Review on the Ultimate Limit State

Analysis of Unbonded Post-tensioned Structures

2.3.1 i1fps(ult) for Internally Unbonded Prestressed Structures

Although this research is primarily concerned with the study of the ultimate limit state

response of structures prestressed with external tendons, it is considered beneficial

also to conduct a review on the research developments of internally unbonded

prestressed structures. This is due to the fact that the two types of structure behave

quite similarly to each other at ultimate conditions and that more research effort in the

past has been focused on internally unbonded structures. The aim is to uncover

important information about the ultimate behaviour of internally unbonded structures

and to relate it to externally prestressed structures where relevant.

As described in Section 2.2.2, the prediction of the ultimate moment capacity of

unbonded structures requires the stress increase in the tendons, i1/ps(II/I)' to be

estimated. Numerous methods have been suggested by various codes of practice and

researchers for the prediction of this stress increment.

2.3.1.1 Code Specifications

This section presents a summary of the methods, recommended by different design

codes to predict i1/ps(u/I) at ultimate for internally unbonded tendons.

• AASHTO (1983)

The stress increment i1/ps(II/I) is given a fixed value of 103 Nzmrn", and hence the value

is independent of the span-depth ratio, amount of passive reinforcement, etc.

This fixed value serves as a safe recommendation for the design of bridges with long

spans. However, some researchers regard the method as being extremely conservative

for structures with small span-depth ratios (Sowlat and Rabbat (1987) and Ramos and

Aparicio (1996».
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• ACI 318-83 (1983)

For beams with span/depth ratio s 35

f',ipI(II/1) = I; + 10000 + 100
Pp

For beams with span/depth ratio> 35

psi <ipC' + 60000 psi and il'l (2.2)

psi <ipe + 30000 psi and L; .....(2.3)

ApI
where Pp = --'

bdpI

The equations are based on results reported by Mattock et al (1971) and provide a

lower bound solution to the estimation of the increase in stress at the ultimate limit

state for unbonded tendons.

• 8S8110 (1985)

BS8110 (1985) states that for unbonded tendons, the stress in tendons .!ps(ult) and

distance to neutral axis c at the ultimate conditions, may be determined using

Equations (2.4) and (2.5) respectively based on the studies of Tam and Pannell (1976).

Note that the values Of.!ps(ull) should not be greater than 0.7.!p1/"

-J 7000( _ ipIIAps]NIipI(IIII) - pe + ~ 1 1.7 ,I mm' (2.4)
d iwbdpIps

c ~ 2.47(~:.~;:)(~:Jd" (2.S)

Equation (2.4) is derived by taking the length of the zone of inelasticity (i.e. plastic

hinge length) within the concrete as 10c, and length f. is the length of tendons between

anchorages.

• Canadian Standard Association (1984)

ipI(1I11) = Jpe + 5~00 (d pI - CV )N / mm' (2.6)
e

where

cy = neutral axis depth assuming the tendons have yielded
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Ie = length of tendons between anchors divided by the number of plastic

hinges required to develop a failure mechanism in the span considered.

In order to derive Equation (2.6), the Canadian Standard Association (1984) replaced

the unknown neutral axis depth at ultimate, CII, in the formulation suggested by Tam

and Pannell (1976), with the neutral axis depth when the tendons yield, Cl" Since the

unbonded tendons generally remain within the elastic range, the values of cl' will

always be conservatively larger than the true neutral axis depth, c;

However, Campbell and Chouinard (1991) found that Equation (2.6) under-estimates

the value of l:J./ps(II/I) by approximately 50%. MacGregor and Breen (1989) also

reported that there seemed to be a small conceptual error in Equation (2.6) when used

for continuous structures. In the Canadian Standard Association (1984) the value of Ie

is defined as the length of tendons between anchorages divided by the number of

plastic hinges required to develop a failure mechanism. This definition would imply

that for an interior span, where three hinges are formed in a mechanism, the effective

length would be divided by three. This is considered by MacGregor and Breen (1989)

to be incorrect because support hinges rotate only half the value of mid-span hinges,

and hence the effective length should be divided by two instead.

• Dutch Code (1984)

The Dutch Code (1984) recommends that/ps(lIlt) at ultimate be five percent larger than

/pe·

!PI(IIII) = l.OS!pe (2.7)

• German Code (1980)

Equation (2.8) is recommended in the German Code (1980) for the stress increase in

unbonded tendons at ultimate conditions.

l:J.!pf(lIll) = E Pf( I:J.£ pI J (2.8)
£ pI

Page 24



University of Sheffield

• Swiss Code (1979)

Swiss Code (1979) recommends Equations (2.9) and (2.10) for the ultimate limit state

analysis of slabs with unbonded tendons.

End span:

i,.,,,,q = f""+ 0.075£,,[ ~::) (2.9)

Interior span:

j~'(I1") = r; + E p,[ 0.00125£ P' + 0.1Oh) (2.10)
e;

2.3.1.2 Investigations Related to Ultimate Limit State Analysis

Baker (1949) recommended the following expression for evaluating the strain In

unbonded tendons:

E p'(II/t) = E pe + A~E hp'· (2.11)

where

the effective strain.

maximum strain increase in concrete at the level of prestress beyond

effective prestress, assuming the tendon is bonded.

A= coefficient defined as the ratio of change in the unbonded tendon strain

to the change in the concrete strain adjacent to the tendon at the failure

section assuming the tendon is bonded.

The stress in the tendons, /ps(ull)' can then be evaluated from the calculated strain,

Eps(ull)' using the stress-strain model of the prestress steel. Baker (1951) proposed that

the safe limiting value for A should be equal to 0.1 when used in the ultimate limit

state analysis. Expressions for calculating A were also suggested by Gifford (1954)

and Janney et al (1956), but they were found to be too tedious to be used for practical

design purposes (Mattock et al (1971)).

Warwaruk et al (1962) conducted an investigation on eighty-two simply supported

partially prestressed beams and suggested that the increase in stress in the tendons is
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related to the parameter p/l'c They proposed the following equation for the

prediction of stress in unbonded tendons at the ultimate limit state:

kgfl cm: (2.l2)

Mattock et al (1971) conducted tests on seven simply-supported and three continuous

beams. They reported that the failure of an unbonded post-tensioned beam with no

passive reinforcement is characterised by the development of a single wide crack at

the section of maximum moment, instead of several well distributed cracks along the

span. Thus, after cracking, the beam behaves as a shallow lied arch rather than as a

flexural member, and failure is very sudden and explosive. It was observed that the

cracking behaviour and the ultimate strength of these unbonded structures can be

greatly improved by providing a moderate amount of bonded passive reinforcement in

the prestressed beam. This behaviour was also reported to be true by Warwaruk et al

(1962), Harajli and Kanji (1992), Tao and Du (1985) and Cooke et al (1981). In view

of the advantage to be gained, Mattock et al (1971) suggested that a minimum area of

reinforcement, equal to 0.4 percent of the area of that part of the beam section

between the flexural tension face and the neutral axis of the gross area, should be

provided in the design of unbonded structures.

Mattock et al (1971) also showed that the equation recommended by Warwaruk et al

(1962) was too conservative and proposed Equation (2.13) to replace it:

1.4f'(
fp'(IIII) = fpc + 100 + 700 kg[ / cm' (2.13)

Pp

Equation (2.13) was adopted with slight modifications by the 1971 and 1977 ACI

Building Codes:

fp,( 1111) = fpc + 1to'~p + 10,000 psi (2.14)

where

Mojtahedi and Gamble (1978) reported that the span-depth ratio has a significant

influence on the estimation of stress increase in the unbonded prestressing steel at the
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ultimate limit state. Although they did not recommend any method for estimating the

ultimate resistance of unbonded structures. a simple truss model was introduced

(Figure 2.5) to demonstrate the influence of span-depth ratio on the stress increase in

unbonded tendons.

In the truss model. it was assumed that the tie remained straight and that the strain in

the tie was found by imposing a deflection. ~. at the hinge. Figure 2.6 shows the

graph Eps vs €Id for a deflection of span/200. From Figure 2.6 it can be observed that,

as the span-depth ratio increases, the strain in the tie decreases for the same deflection

at the hinge. Although this work refers only to internally unbonded post-tensioned

structures, it should be noted that other researchers reported that span-depth ratio also

influences the behaviour of externally post-tensioned structures (Yaginuma and

Kitada (1987,1988,1989) and Ramos and Aparicio (1996». Based on the findings by

Mojtahedi and Gamble (1978), Equation (2.14) was modified for ACI 318-83 to

reflect the effect of span-depth ratio (see Equations (2.2) and (2.3»).

Tam and Pannell (1976) performed an extensive experimental and analytical

investigation on the behaviour of beams prestressed with internal unbonded tendons.

They tested a total of eight simply supported beams and proposed the following

equation for estimating the stress in the prestress tendon at the ultimate limit state:

( (dps-CII)]fp,(IIII) =fpe + \jIE(.IIEps fl.PI (2.15)

where

\II was suggested to be 10.5 by Tam and Pannell (1976) from experimental results.

Equation (2.15) was found to give reasonable estimations for the prestress in

unbonded tendons at the ultimate limit state and was adopted with slight alterations in

BS8110 (1985) (see Equations (2.4) and (2.5»). However it should be noted that \jI =

10.5 was suggested based only on tests conducted on simply supported beams that

were loaded with a concentrated point load at mid-span. This value may not be

appropriate for beams with different configurations and loading conditions.

From their experimental tests on nine unbonded and three bonded one-way

prestressed concrete slabs, Cooke et al (1981) proposed that Equation (2.14), used in

ACI 318-77, is not applicable for prestressed structures with high span-depth ratios.
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They also commented that although the equation suggested by Tam and Pannell

(1976) takes span-depth ratio into consideration (Equation (2.15)), the use of the

equation gives a large scatter of results when compared to the experimental data.

Tao and Du (1985) tested twenty-two partially prestressed beams with unbonded

tendons that were loaded under third-point loading. Their main interests in the

investigation were on the effects of the amount of unbonded prestressed steel, and

bonded non-prestressed reinforcement on the stress increase in the unbonded tendons

at ultimate. They concluded that tJ./ps(ult) at ultimate conditions does depend on the

amount of prestressed and non-prestressed steel, and it may be predicted using the

following equation:

2
tJ./ps(ult) = 786 -1920 qo N/mm (2.16)

where

«; = (Ap/bdps) x (/Pl!'c)
qs = (A/bdps) x if/!,c)

Campbell and Chouinard (1991) confirmed that the combined reinforcement ratio q0

introduced by Tao and Du (1985) is a rational parameter for the prediction of the

ultimate stress level in unbonded prestress steel. They conducted tests on six

unbonded beams and found that the stress in the prestressing steel at ultimate

decreases with increasing amounts of bonded non-prestressed reinforcement. The

authors also reported that Equation (2.16), recommended by Tao and Du (1985), gives

reasonably good estimates for the stress increase in tendons at the ultimate limit state

for the beams tested by them.

I'vanyi et al (1985) conducted experimental tests on twenty-eight prestressed slabs to

study the collapse mechanism and the increase in strain in unbonded tendons. They

observed that the cracks achieved at ultimate were nearly horizontal in the

compression zone. These cracks initiate a very high concentration of compressive

strain in the concrete which will eventually lead to crushing at failure condition.

From their experimental results, the authors developed an analytical model for

calculating the increase in strain in unbonded tendons for different loading stages.

The method proposed is described by them as the single cracked method.
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Harajli and Kanji (1990) conducted an experimental and analytical investigation on

unbonded prestressed structures. They concluded that understanding the development

of the plastic hinge length at ultimate is crucial for the estimation of stress in the

prestressing steel, and that the parameter P,lf'c used in Equations (2.2) and (2.3) is not

a rational design parameter. Harajli (1990) conducted an analytical study on the

ultimate behaviour of internally unbonded structures, and proposed Equation (2.17) to

replace Equations (2.2) and (2.3) in the 1983 ACI Building Codes. It is observed that

the parameter span-depth ratio is actually incorporated into Equation (2.17):

fp'(1I11) =fpe +(10000+ f'c J(O.4++-.] psi (2.17)
lOOpn ftp,

where /ps(ult) shall not be taken greater than /py nor fpe +60000 psi.

Harajli and Hijazi (1991) developed a non-linear analytical model and a span-depth

ratio model to estimate the stress increase in unbonded tendons up to the ultimate

limit state. Both models were used to conduct parametric studies on the parameters

that were believed to influence the strength of these beams. They concluded that

span-depth ratio, loading arrangement, length of plastic hinge at ultimate and amount

of passive reinforcement are the main parameters that influence the ultimate strength

of unbonded beams. They also recommended the following equation for computing

/ps(ult) in bonded and unbonded tendons:

f,,'";,~f,. =(1-P :,J (2.18)

where

e plasticy= -- = 1.0+e

o

---:- __ 1._0__ (n~)
_i_( 0.9}j + 0.05)
a;

no _ ratio of number of loaded spans to total number of spans in the member
n

a = 0.4; ~=0.7 for two equal 1/3 point loads (j= 3)

a = 0.25; ~=0.44 for uniform distributed load (j= 6)

a = 0.1; ~=0.18 for a single concentrated load if = (0)
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Sun (1991) introduced an analytical model for the ultimate analysis of unbonded

structures. The assumptions used for the model were quite similar to those adopted by

Harajli and Hijazi (1991). Harajli and Hijazi however emphasised that the single

crack assumption used by Sun (1991) is only applicable to prestressed structures with

no bonded passive reinforcement. They explained that if some passive reinforcement

is included in the beam, the beam will behave as a flexural member and hence the

assumption of single crack does not apply.

Friction between cable and duct has been listed as one of the parameters that

influences the ultimate behaviour of unbonded tendons (Tam and Pannell (1976),

Balaguru (1981)). However, little information is known about the extent of the effect

in which friction has on the stress increase in unbonded tendons. As Burns et al

(1991) stated, , When unbonded tendons are used in post-tensioned structures, the

question is often raised, 'Does the prestress loss due to friction tend to balance out or

redistribute with repetitious application of service loads?' '. In an attempt to

understand the frictional effects between ducts and tendons in unbonded structures,

Burns et al (1991) tested two continuous unbonded beams with rectangular sections.

From their tests, they observed that application of repeated service level loadings did

not have a significant effect on the redistribution of tendon stress in unbonded

tendons. However at ultimate conditions, when one of the continuous spans was

overloaded whilst leaving the other unloaded, the tendon slipped towards the loaded

span. Subsequently when the overload was removed, the slip caused the tendon stress

to decrease on the loaded span and to increase on the unloaded span.

Alkhairi and Naaman (1991) conducted an extensive analysis on a large number of

reported experimental results and introduced a coefficient, nu, called the strain

reduction coefficient at ultimate, for the prediction of ultimate stress in unbonded

tendons. The strain reduction coefficient, n, was first introduced by Naaman (1990)

for estimating the stress of external or unbonded tendons at the elastic or uncracked

range of the beam behaviour. It represents the ratio of average strain increase in the

unbonded tendon to the strain increase in the equivalent bonded tendon at the section

of maximum moment (Equation (2.19)).
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.6.£ rH IlIIh"II<Ie"011 = (2.19)
.6.£ t» bonded

The new AASHTO LRFD Specification for Bridge Design has used the above

methodology and recommended the following equation for the prediction of stress in

unbonded tendons at the ultimate limit state (Naaman (1994)):

ipI = i; +OIlEpv£CII( d;, -1))12 s O.94ipv (2.20)

where

£ I= length of loaded span or spans affected by the same tendon

£2 = total length of tendon between anchorages

f' = length of span for which computation is carried out

n = 3 for uniform or third point loading

u (~pJ
o, ~ ( /.5 ) for uniform or third point loading

~pv

Note that Equation (2.20) was derived from a rational analysis that takes into account

the effects of the span-depth ratio and the loading condition of the beam.

2.3.2 Ultimate Analysis of Externally Prestressed Structures

2.3.2.1 Code Specifications

To the best of the author's knowledge, no proper formulation strictly for the

estimation of stress increase in external tendons at the ultimate limit state has been

provided in any code or specification to date. It has often been suggested that the

formulae used for the prediction of stress increase in internally unbonded tendons be

used as a guide for externally prestressed structures. However, as discussed earlier,

external tendons behave differently from internal unbonded tendons due to second-

order effects and frictional forces at the deviators.

Adopting a conservative approach, the UK Department of Transport BD 58/94 (1995)

and Eurocode 2 (draft 1994) have recommended that zero increase in stress at the
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ultimate limit state be used by engineers in the design of externally post-tensioned

structures. This crude estimation has been found here to be too conservative and does

not reflect the true behaviour of these structures.

2.3.2.2 Investigations Related to Ultimate Limit State Analysis

Sowlat and Rabbat (1987) conducted tests on three simply supported segmental beams

to failure. Although all three specimens were dry jointed and prestressed with steel

tendons, the method of prestressing was different for each beam. The tendons of the

first beam were embedded within the beam's cross section and grouted after the

prestressing process. The second and third beams were both prestressed with external

tendons, but for the third beam, portions of the external ducts were embedded in a

second stage concrete casting. They reported that the first beam with bonded tendons

failed in a flexural mode, that is with the crushing of concrete in the compression zone

and the yielding of tendons in the tensile zone. On the other hand, for the second and

third beams, failures were observed to be due to shear compression at the top flange.

This mode of failure for external tendons with no bonded reinforcement was also

reported to be the case by MacGregor et al (1989).

Sowlat and Rabbat (1987) also analysed the ultimate flexural strength of the unbonded

test beams, using equations recommended in the ASSHTO (1983) and ACI 318-83

Codes (1983). They concluded that while the ACI code equation gave a reasonably

good estimate for the flexural strength, ASSHTO provisions underestimated it

significantly. However it should be noted that the equations recommended in both

codes are intended for beams with internally unbonded tendons. It is believed that the

ACI code equation was only found to be reasonable because the externally prestressed

test beam had several deviators placed along its span. The presence of closely spaced

deviators reduce the free length-depth ratios, which consequently reduce the second-

order effects; a phenomenon that differentiates the analysis of internal from external

unbonded structures.

Virlogeux (1988) discussed the technical aspects related to the service and ultimate

behaviour of externally prestressed structures. He . identified two important

characteristics that cause the flexural behaviour of externally and internally unbonded
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post-tensioned structures to differ. They are the second-order effects and the frictional

behaviour at the deviators. The second-order effect is defined by Virlogeux (1988) as

'the change in eccentric distance of the tendon for each loading sequence, caused by

the fact that the tendon remains rectilinear between points of contact with concrete

while the structure deforms non-linearly under load' .

Frictional forces are developed at the deviators where tendons come into contact with

the concrete. If the difference in prestress force in the tendon on either side of the

deviator exceeds the generated frictional resistance, then the tendon will slip. These

slippages, which are non-linear and not always reversible on removal of loads, are

responsible for the variation in tendon force along the span between deviators.

VirIogeux (1988) introduced a non-linear analytical model for the evaluation of the

flexural behaviour of external beams up to the ultimate limit state. The model was

described to take into consideration, the second-order effect and frictional slippage at

the deviators. The model uses an iterative procedure for the estimation of the stress

increase in the tendons under a specified loading condition. The procedure first

assumes a value for the stress increase in the prestress tendon, from which the

curvatures and precompression strains of a number of sections defined along the span

are calculated. With the evaluated curvatures and precompression strains, the change

in length of the external tendon is estimated using Equations (2.21) or (2.22):

[\£12 =£12 _J£2 -(el-e2)2 (2.21)

where

If i12 is much greater than eJ & e2, Equation (2.21) is simplified to:

[\42 = U2 - UJ - e2w2 + eJwJ (2.22)

Note: see Figure 2.7 for an explanation of the notation.

The increase in stress in the tendon is then evaluated and compared to the previously

assumed value. If the two stresses do not come within a defmed error of tolerance, the

procedure is repeated. Virlogeux (1988) also described the technique of introducing

frictional behaviour at deviators into the model. It involved the use of a complex
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formulation for estimating the amount of tendon slip required to satisfy the force

equilibrium conditions at the deviators.

Hindi et al (1995) and MacGregor et af (1990) performed studies on the behaviour of

externally prestressed structures by testing a three-span continuous beam. The

principal objectives were to determine if the action of bonding external tendons at the

deviators and the provision of supplementary internal tendons will help increase the

strength and ductility performance of such structures. From the tests results, they

showed that the strength and ductility are greatly improved when tendons are

anchored at closely spaced deviators. The reason for this is because for a given

change in tendon length /1£ps at the ultimate condition, the reduced effective unbonded

tree length I!jree will yield a higher change in strain t':U;ps(ull) in the tendon (i.e. /1f.ps(ull) =

/1£p)£jree). This will consequently give a higher stress increase /1/PS(U/I) in the tendon at

the critical sections, thereby resulting in an increase in the ultimate strength. On the

other hand, when the tendons were not anchored at the deviators it was observed that

slippage of all tendons occurred during the ultimate load cycles, and a lower strength

capacity was achieved. They also confirmed that providing supplementary bonded

internal tendons in the structures improves ultimate behaviour.

MacGregor et al (1989) described a simple rigid body model for the analysis of

externally post-tensioned bridges. He explained that after cracking or joint opening,

the behaviour of externally prestressed structures may be characterised by the

formation of hinges at critical sections. Hence, a simply supported structure can be

modelled by two rigid members connected by a hinge, as shown in Figure 2.8. A

similar model was introduced by Virlogeux (1988).

Assumptions used for the model:

1) When cracking occurs, only a single crack appears at the critical section.

2) The two lengths between the cracked section remains as rigid bodies.

Using the model, MacGregor et af derived Equation (2.23), which provides an

expression for relating applied moments to mid-span deflections for external

structures (see Figure 2.9):
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(/1T,)f free
/1t P' = -'--------'---

Ap,E P'

From mechanism and joint geometry:

ji free ji ( )
/1 = ? M - M" (2.23)

4Ap,Ep,z;
where

/1~s = (shaded area above Te) / Apfips

/1'0 = (M-Md)/Zp

t; =Ap/'pe
See Figure 2.9 for the explanation of the notation.

The model can be used to simulate the ultimate behaviour of externally prestressed

structures by introducing the plastic behaviour into Equation (2.23). This was done

by assuming that concentrated rotations occur in the concrete adjacent to the critical

section over a finite length. This length is defined as the plastic hinge length, and

maximum curvatures over this length are limited by the current capacity of the

concrete structure. Virlogeux (1988) suggested that the concentrated rotations may be

assumed to be distributed over a plastic hinge length of 2zs' where z, is equal to the

distance from the compressive force to the passive reinforcement. This effectively

gives a force diffusion angle of 45°. He also suggested that concrete compressive

strains at the ultimate limit state be limited to Ecu = 0.002 and the tensile strains be

limited in the passive reinforcement to Es=O.Ol. MacGregor et al (1989) however

commented that these limitations suggested by Virlogeux (1988) were too

conservative and needed to be revised for more realistic results. Using Virlogeux's

(1988) assumptions, the tendon elongation occurring in the concrete hinge region is

given by Equation (2.24):

/1f plastic = cl> m X Z p X z, (2.24)

where cl>m is the allowable curvature

A drawback to the simple rigid models suggested by MacGregor (1989) and

Virlogeux (1988) is that the second-order effect is not taken into consideration in the

analysis. This means that changes in tendon eccentricity are ignored, which might not

be a realistic assumption for beams with high span-depth ratio.
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As described in Section 2.3.1.2. Naaman (1990) had introduced a technique for the

stress evaluation of externally and internally unbonded tendons within the elastic

uncracked and elastic cracked ranges. In the proposed method, the strains Eps in the

unbonded tendons are analysed by first assuming that the tendons are bonded. The

evaluated 'bonded' strains are then reduced to the unbonded condition by means of

strain reduction coefficients (i.e. n or ne). Naaman (1990) stated that the coefficients

n and ne depend on only two parameters: (1) the tendon profile, and (2) the loading

condition. Hence the strain reduction coefficients need only to be determined once for

the same loading and tendon configuration.

The general terms for evaluating the strain reduction coefficient at the uncracked state

n is given in Equation (2.25). At the elastic cracked state, Naaman (1990) used an

idealised elastic cracked beam (see Figure 2.11) to derive Equation (2.26), which is

used to evaluate the strain reduction coefficient nco

n= 2 f2 M(x)e(x)dx (2.25)«:«:
n, = n Ie, +~(1-(0'] {i M(x)e(x) dx (2.26)

II{.e Ig «:«:
Solutions for n and ne were derived by Naaman (1990) for various combinations of

loadings and tendon profiles (see Figure 2.10), and are reproduced in Tables 2.1 and

2.2 respectively. The representations of elastic uncracked, elastic cracked and

idealised elastic cracked beam used by Naaman for the derivation of n and ne are also

presented in Figure 2.11.

Although Naaman's methodology is for the service state conditions, he suggested that

the concept of a strain reduction coefficients can also be extended to cover the

ultimate limit state. However, this method assumes that the second-order effect is

negligible. This again might not be a valid assumption for external tendons, because

several researchers (VirIogeux (1988) and Zhang et al (1993)) had reported that the

second-order effects do significantly influence the behaviour of externally prestressed

structures when the free tendon length-depth ratio is relatively high.
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Naaman and Alkhairi (1993) introduced a non-linear analytical model for the

prediction of the complete moment versus deflection response of a concrete beam

prestressed with bonded, unbonded or external tendons. Alkhairi (1991) stated that

the model is able to consider the effects of span-depth ratio, the shear effects on

flexural deformation and second-order effects. The model uses an iterative procedure

for estimating the stress increase in the prestress tendons, tJ./ps' by performing a non-

linear analysis at various locations along the beam.

The assumptions used in the model are:

1) Plane sections remain plane after bending.

2) The constitutive relationships of materials are known.

3) Tension stiffening effects after cracking are neglected.

4) The beam is assumed to be cracked whenever the flexural tensile stress

exceeds the modulus of rupture.

5) The cracked beam is composed of an elastic and/or inelastic cracked region,

and an elastic uncracked region (see Figure 2.12).

6) Concrete within the cracked region is considered effective in resisting diagonal

tensile stresses as long as the applied shear force is less than the cracking

strength.

7) The beam is assumed to be reinforced with a minimum amount of vertical

stirrups necessary to resist shear stresses at all the cracked sections along the

beam.

The first step of the analysis proposed by Alkhairi (1991) is to assume that the stress

in the unbonded tendon is equal to that calculated from the previous loading stage.

The uncracked and cracked regions of the beam are then located (see Figure 2.12).

The cracked region defines the portion of the beam where the external moment

exceeds the cracking moment, Men and the uncracked region marks the portion where

no tensile cracking of the concrete has occurred. The elastic and inelastic cracked

region is then subdivided into a number of integration points.

The second step involves the analysis of the section at the mid-span of the beam. A

strain increment is introduced to the top concrete fiber strain at this section, and a

force equilibrium analysis is then conducted to determine the various forces acting on
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the section. This will lead to an estimation of the nominal internal moment at mid-

span and consequently the external loading which is to be imposed on the structure for

the next loading stage.

In the third step, force and moment equilibrium analyses are conducted at all other

integration points away from the mid-span for the top and bottom concrete stresses

and strains at these points. The process involves nested iteration procedures,

conducted to determine the top concrete fiber strain and neutral axis depth at all

integration points. Note that Equation (2.27) is used in the moment equilibrium

analysis, where tiMshear is a fictitious moment introduced to take shear cracking

effects into consideration. The variable tiMshear is derived from the truss mechanism

introduced by Park and Paulay (1975).

Mexl = Mint + tiMshear (2.27)

The fourth step involves the estimation of the average strain increase in the concrete at

the level of the unbonded tendon between end anchorages and/or deviators. After the

stresses and strains are evaluated from the third step, the strains of the concrete at the

initial eccentricity of the prestress are calculated at all the integration points along the

span. These strains are integrated to provide an estimation of the increase in tendon

length due to the deformation of the structure, from which the average stress and

strain increments in the tendon are subsequently evaluated.

As an additional feature, Alkhairi (1991) incorporated an algorithm that takes into

consideration the variation of eccentricity in the external tendons. The eccentricity

variation is introduced to all the integration points, where force and moment

equilibrium analyses are conducted again for a new estimation of the stress increase in

the tendons. This newly evaluated stress increment in the tendons is then compared to

the previously calculated value and the whole process is repeated until a stable value

for D./ps is obtained.

The model suggested by Alkhairi (1991) appears to have three flaws when used to

analyse externally prestressed structures. Firstly, in the proposed model, the tendon

elongation due to external loading is estimated by integrating the strains in the

concrete at the initial eccentricity of the prestress tendon. The evaluated tendon

elongation is then used to predict the average stress increment in the tendon. This is
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not considered strictly correct for external prestressing because the tendons do not

move together with the concrete when the structure deforms. Hence integrating the

concrete strain at the initial tendon eccentricity of the prestress tendon will not yield

the correct elongation of the tendon length. As such, it may be more practical to

evaluate the stress increase in external tendons by studying the change in position of

the points of contact, as suggested by Virlogeux (1988). Secondly, the method used

to introduce second-order effects appears to be very tedious and, new equations need

to be derived for different tendon profiles used in the beam. Finally, Alkhairi did not

consider the effects of tendon slippage at the deviators placed along the span of the

externally prestressed structures.

Tan and Naaman (1993) presented a model, based on the strut-and-tie method, used to

predict the strength of simply supported, externally prestressed concrete beams

subjected to a mid-span concentrated load. The model involved the derivation of four

inequality equations that define the four anticipated failure modes for external

structures. The four failure modes and their corresponding equations are:

• failure of diagonal compressive strut

Ap - 2A f sinu s 0.8 ~ (1- O.5tan15°) + 0.72 ~ tan IS" (2.28)

• yielding of web reinforcement

Ap - 2A f since s co v ( 1.8 ~ + 1) + 2A ci (2.29)

• yielding of internal longitudinal reinforcement

a 0.9d pS,e+ a sina - a tann de
Ap - - 2A f ~ 1.8ro I - (2.30)

h h h

• yielding of external tendons

Af ~ co e (2.31)

where
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Anfll'
(JJ ,. = .

bsf ',

a = angle of inclination of external tendons on each side of deviator, and

wp = loading platen width.

The four failure inequality equations are linear and create a safe domain which defines

the load and prestress force that can be safely applied on the structure (see Figures

2.13 and 2.14). The actual mode of failure of the beam is obtained by plotting a

loading path defined by Af= g(Ap)where g(Ap) is a function based on load. Using the

strain reduction concept introduced by Naaman (1990) and Naaman and Alkhairi

(1991), the authors suggested the following equations for the definition of the loading

function:

• linear elastic uncracked range of behaviour

A I = A r« .......................................................................................•....•..... (2.32)

where

r;A =--
pe bhf";

• linear elastic cracked range of behaviour

[ ( ) E ps (d ps )] Ap s ,eAI = Ep s ,e Epe +ncEC(' +nc Ec L, -;--1 bhf'c (2.33)

• ultimate flexural strength limit state

)..f = [I,. +a,« "Ea(d%-1)] ::;:< (2.34)
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where for one point loading

Failure of the beam is deemed to occur when the loading path crosses one of the lines

given by the failure equations (see Figure 2.13). However, it was considered that the

method has very limited use in solving practical design problems, and too many

assumptions were used for the derivation of the failure and loading path equations. It

should be further noted that the method is dependent on the authenticity of the

equations introduced by Naaman (1990) and Naaman and Alkhairi (1991).

Ten simply supported externally post-tensioned beams were tested by Zhang et at

(1993), and the parameters that were studied in their investigation included the

amount of reinforcing steel, loading pattern and tendon configuration. From the test

results, they noted that the provision of more reinforcement steel in externally post-

tensioned structures will generally improve the strength performance of these

structures. It was also pointed out that the stress increment of tendons was higher

when the beam was under a two point equidistant loading as compared to a one point

loading system. This indicates that loading patterns do influence the ultimate

behaviour of external structures. As for the tendon configuration, test results showed

that beams with draped profiles can produce higher ultimate moments of resistance

than for those with straight undeviated tendons. According to Zhang et al (1993) the

increased strength is due to the reduced second-order effect experienced by beams

with draped tendon profiles. In fact, the provision of deviators along the span of an

externally prestressed beam will generally not only reduce second-order effect but

also increases the stress in the tendons due to the frictional effects at the deviators

(MacGregor (1989) and Yaginuma (1993». Both these factors help to increase the

strength of the structure at ultimate conditions. It was further observed from the tests

that straight tendons did not reach their yield strength while draped tendons yielded at

ultimate. From this, they concluded that the more rigorous design of such beams

could lead to more efficient use of external tendons.
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Zhang et at (1993) also introduced an analytical model for the prediction of ultimate

moment of resistance of externally prestressed structures. The assumptions used for

their model are:

I) Perfect bond exists between concrete and passive reinforcement.

2) Plane sections remain plane after bending.

3) Concrete in the tension zone is neglected.

4) Stress-strain laws of materials are known.

5) Frictional behaviour between tendons and deviators is conservatively

neglected.

6) Changes in tendon length between two deviators or anchorages is estimated

using the equation recommended by Virlogeux (1988) (Equation 2.22).

Curvature distribution along the span is first evaluated for an assumed ultimate load

using the diagram introduced by Zhang et al (1993) (see Figure 2.15), based on

experimental observations. The angular and vertical deformations for the assumed

load are then calculated using Equations (2.35) and (2.36).

f

2

Wi = f~(x}llx (2.35)

.t, £/2

Vi = fx~(x}llx+Xi f~(x}llx (2.36)
o Xi

The elongation of the tendon is estimated using Equation (2.22) and the moment of

resistance at ultimate is determined by performing a force and moment equilibrium

analysis at the critical section. The calculated ultimate load is checked with the

assumed load, and the procedure is repeated if the two loads are not in reasonable

agreement. Zhang et al (1993) compared the results derived from the analytical

model with the experimental results and reported good correlation. However, two

disadvantages were noted in the analytical model proposed by Zhang et al (1993).

Firstly, frictional effects at the deviators are neglected, which may not be a reasonable

assumption for beams with tendons that have large drape angles (Takebayashi et al

(1994». Secondly, only the curvature distributions for one point and two point

loading systems were presented by the authors, which means that the curvature
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distributions for other loading patterns would need to be investigated before the

analytical model can be extended to more realistic situations.

Yaginuma and Kitada (1987, 1988, 1989) tested a total of twenty-two beams to study

the flexural behaviour of externally prestressed structures at ultimate limit state

conditions. From the experimental tests, they concluded that providing more passive

reinforcement will increase the strength of externally prestressed beams, and that the

ultimate moment of resistance decreases as the span-depth ratio of the structure

increases. However, they found that the ultimate moment of beams with high span-

depth ratios can be increased by providing deviators along the beam spans.

Yaginuma (1993) presented a finite element model for the analysis of these unbonded

structures (shown in Figure 2.16), which he validated by comparing analytical results

with test results .. The assumptions used in his model are:

1) Plane sections remain plane after bending.

2) Axial and flexural rigidity are constant within each element.

3) Forces acting on the centroid of a section do not change their direction after

deformation.

4) Section forces in the element vary linearly in the element.

5) Shear deformations are negligible.

In order to help understand the behaviour of externally post-tensioned structures

beyond the range of design loads, Muller and Gauthier (1990) developed a computer

program (DEFLECT) to analyse the flexural behaviour up to the ultimate limit state.

The program utilises finite-element principles to give the relationship between

rotations and applied loads for each node defined along the span, from which the

ultimate capacity of the beam can be estimated. The computer program was validated

by comparing the results derived from it with those obtained experimentally.

Although the moment-deflection curves obtained from the computer analyses and

experimental tests were consistent at loads within the service range, inconsistencies

were observed at ultimate load. This is because the analyses were conducted

assuming the materials remained in the elastic range up to failure. Another drawback

of the program is its inability to consider slippage of tendons at the deviators.
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Muller and Gauthier (1990) conducted two computer runs on a similar beam with

DEFLECT, one assuming tendons to be external and the second assuming the tendons

to be bonded internally along its full length. It is surprising to note that the moment-

deflection curves obtained from both runs were quite similar to each other.

The construction of the Bangkok Second Stage Expressway in Thailand involved one

of the largest ever applications of external tendons for a viaduct project. The design

and construction of it are described by Takebayashi (1993) and Hewson (1992,1993).

The bridge decks of this viaduct were formed from match-cast, precast segments with

dry joints and external tendons. Due to the poor ground conditions, the decks were

designed to be simply supported in order to overcome high differential settlements

expected at the piers.

Dry jointing refers to the technique of constructing segmental bridge decks without

applying epoxy resin to the joints between the segments. For this bridge, multiple

unreinforced shear keys were used to help transfer the shear forces across the dry

joints at all loading stages. Furthermore, sufficient longitudinal prestressing force was

provided to ensure that the dry joints did not open under normal loading conditions.

Under ultimate loading conditions, the decks were checked for the ultimate moment

of resistance using the same method as that for internally post-tensioned structures,

but with a smaller value for the increase in stress in the external tendons. Whereas a

stress increase of 103 N/mm2 is permitted in the external tendon at ultimate by

AASHTO (1983) specifications, Takebayashi et at (1993) reported that a value of250

N/mm2 was used in the design. They did not explain in detail how this higher value

was derived, but stated that it was found to be reasonable based on 'a study on the

failure mechanism of the simply supported structure which included a full length 3-D

Finite Element Model'.

Wieland (1990) conducted a computer study of the externally prestressed structure

used for the bridge deck in the Bangkok Second Stage Expressway Project. He

designed a two-dimensional finite-element model using the computer program

ANSYS to predict the load versus deformation history and reported that the model is

capable of considering geometric non-linearities, The model is also able to simulate

the opening of the dry joints between the segments. This is done by placing a gap
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element that allows only the transfer of compressive forces but not tensile forces,

between the bottom nodal points at each joint. However, one major drawback about

the model is that it cannot be used to check if the beam has failed due to the crushing

of concrete at the joints. This is important because experimental tests have shown that

the expected mode of failure for external beams is mostly due to the crushing of

concrete and not the yielding of the prestress tendons. Hence if the proposed model is

used, a separate analysis would be required to define the ultimate load which causes

the failure of the beam due to crushing of the concrete.

A full scale loading test was also conducted on a typical segmental beam structure

used in the Bangkok Second Stage Expressway Project (Takebayashi et al (1993)).

The beam tested was made up of fourteen segments with a total span of about 45m.

Figure 2.17 shows the arrangement of the test. The test beam was designed in

accordance to the specifications stated in AASHTO Standard Specifications

(AASHTO (1983)) and the Guide Specifications for Segmental Bridges (AASHTO

(1989)). The main objectives in performing the test were to

• ensure that the diaphragms and deviators were adequately designed to resist the

high post-tensioning forces

• study the behaviour of the span at service load conditions

• verify the safety of the beam at the ultimate load conditions.

The test was divided into two phases: the design load phase (Takebayashi et al

(1993)) and the destructive load phase (Takebayashi et al (1994)). The design load

phase involved loading the test span progressively to the service, decompression,

design ultimate and design ultimate + 7% loads. This is achieved using kentledge of

precast concrete segments and steel rebars. The destructive load phase was conducted

two years later and involved loading the beam to collapse. Note that steel billets were

used as imposed loading in the destructive test phase.

From the full scale test, Takebayashi et al reported that the actual flexural failure of

the beam was 1.8 times higher than the designed ultimate moment. Hence the full

scale test confirmed the adequacy of the design. They also noted that the stress

increases in the external tendons were not uniform over their full length for tendons

with large deviation angles at the deviators. They explained that this was due to the
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large frictional forces generated at the deviators which prevented slippage of the

tendons consequently producing force variations in the tendons between the deviators.

They did not recommend any formulation for the prediction of the increase in stress at

the ultimate limit state.

Ramos and Aparicio (1995,1996) developed a finite element model for the ultimate

limit state analysis of externally prestressed concrete bridges. They introduced three

kinds of elements for their finite element model:

• linear reinforced concrete elements with six degrees of freedom at each node

• prestressing elements (bonded internally and unbonded externally)

• joint elements for segmental bridges.

The following assumptions were made in the proposed model:

1) Shear deformations are neglected.

2) The sections remain plane after deformation.

3) Saint-Venant torsion is assumed, where free warping of the cross section is

permitted

It was recognised that the external tendons may slip at the deviators and cause a

reduction in the ultimate carrying capacity of the beam. This slippage of tendons at

the deviators is dependent on the static frictional coefficient which is influenced by a

large number of variables; for example kind of deviator, duct type, etc. Hence, they

considered that it would be very difficult to obtain a reliable single value for the static

frictional coefficient. Moreover, when friction at deviators is taken into consideration,

the analysis becomes very complicated due to the non-linear and non-reversible nature

of the problem, as described by Virlogeux (1988). For these reasons, they argued that

it would be more practical to consider two extreme behaviours: (1) tendons slipping

freely, and (2) tendons fixed at deviators; producing the lower and upper bounds to

the ultimate load respectively. If the results obtained from the analysis of a beam

using the two extreme assumptions did not vary much, as in the case of short beams, it

would indicate that these beams are not sensitive to the slippage conditions at the

deviators.

The proposed model has the following features

• considers material and geometric nonlinearity
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• able to analyse simply supported or continuous beams

• able to assume that the contact points between tendons and concrete at the

deviators are either fixed or frictionless

• able to model structures with both internal bonded and external unbonded tendons

• able to perform analysis on either monolithic or segmental structures.

Ramos and Aparicio (1996) used the proposed model to perform a parametric study

on the ultimate behaviour of externally post-tensioned structures. The study involved

104 analyses on 74 different bridges and the assumptions used were:

1) Live load centred on the bridge axis.

2) Free slippage of tendons at deviators.

3) Joints of the segmental bridges analysed assumed frictionless.

Based on their parametric studies, they found that the formulations recommended in

AASHTO LRFD Specifications for Bridge Design (Naaman (1994)) and ACI

Committee 318-83 (1983) were too unconservative for normal bridge configurations.

As a result of this, the authors recommended the following guidelines be included in

the Spanish Design Codes, for the estimation of stress increase in external tendons:

• for simply supported box girder bridges, both monolithic and segmental, the

tl/ps(ull) recommended for design is:

2
tl/ps(ull) = 108 Nlmm (2.37)

• for simply supported double T-section monolithic bridges

2
tl/ps(ult) = 122.5 Nlmm (2.38)

• for continuous monolithic box girder bridges, the increment of tendon stress

Il/ps(ull) depends on the span-to-depth ratio and the prestressing layout; and graphs

showing their relationship are presented in Ramos and Aparicio (1996).

• for continuous segmental box girder bridges:

2
tl/ps(uil) = 39 NI mm (2.39)

However, Ramos and Aparicio (1996) stated that the increase in stress in the tendons,

tl/ps(uil)' is not affected by the variation in span-depth ratio or the amount of reinforcing
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steel. This is contradictory to the experimental observations made by Zhang et al

(1993) and Yaginuma and Kitada (1987, 1988 and 1989).

2.4 Ultimate Limit State vs. Service Limit State

The usual practice adopted for designing internally bonded prestressed structures is

first to perform the design based on the service limit state, and then to check for the

ultimate strength. The ultimate limit state checks for these structures are usually

found to be satisfactory, if not, additional unstressed reinforcements can easily be

provided to cover the shortfall without affecting the serviceability design. If the

serviceability limit state is also critical for externally post-tensioned structures, then it

may be sufficient to just introduce a simple and conservative method for estimating

their ultimate strength (e.g. assuming that the stress increase in the prestress tendons is

equal to zero at the ultimate conditions as suggested by UK DoT BD 58/94 (1995)).

However, due to the eccentricity variations and small stress increments in the external

tendons at the ultimate limit state condition, it is possible that serviceability checks

alone might not be enough to yield a safe structure under overload conditions. Hence

for externally post-tensioned structures, the level of accuracy of the ultimate checks

may be important for the purpose of producing safe and reasonably economical

designs.

A study was conducted by the author (Wong, (1994(e))), to check if the designs of

externally post-tensioned structures using the specifications given in the British and

American bridge codes, are controlled by either their service or ultimate limit state

behaviour. The study was divided into three parts:

1) The first part of the study involved comparing two beams (denoted Design 1

and 2 respectively) designed using the British Codes (BS5400 (1985), BD

58/94 and BA 58/94). Design 1 utilised internally bonded tendons while

Design 2 utilised external tendons. In the study, the resulting design cross

sectional areas, tendon eccentricities and required prestressing forces were

compared.

2) The second part of the study compared the two similar beams, denoted Design

3 and 4 respectively, designed using the American codes AASHTO (1985) and

AASHTO (1989).
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3) Finally, the third part of the study examined the analytical approach used to

determine the ultimate strength of the externally prestressed structure used for

the Bangkok Second Stage Expressway (Takebayashi (1993), Hewson (1993)

and Hewson (1992».

In order to allow easy comparison of the designs derived from the study, the design

specification for the Bangkok Second Stage Expressway was adopted for all the

bridge structures: a single box girder 10.7 m wide and 2.4 m deep, simply supported

with a span of 45 m, of segmental construction incorporating dry joints. Only flexural

behaviour was considered in the study.

Tables 2.3 and 2.4 show a summary of the structural properties of the beams derived

from Part 1 and 2 of the study respectively. It may be observed that the structures

obtained from Designs 1 and 2 (using the BS 5400 (1985), BA 58/94 (1995) and BD

58/94 (1995» had higher service and ultimate loadings imposed on them when

compared to those obtained from Designs 3 and 4 (using the AASHTO (1985) and

AASHTO (1989». This is because the HS loading system of the American Code is

much smaller than the HA and HB loadings of the British Code. As a result of this,

larger sections were derived for the structures designed using the British Code.

When Designs 1 and 2 were compared, based on serviceability limit states, the cross

sectional area of Design 2 was smaller and required fewer strands as compared to

Design 1. However, Design 2 failed to satisfy the ultimate strength requirements

given in the specified code and had to be re-designed. The re-designed structure

(denoted. Design 2*) showed an increase in the cross sectional area of approximately

ten percent and an increase in the prestressing force of approximately forty percent.

After this re-design to satisfy the ultimate limit state requirements, Design 2* was

compared to Design 1. The following observations were made:

• the concrete cross sectional area of Design 2* was found to be twenty-three

percent less than Design 1

• the eccentricities of the tendons in Design 2* were reduced

• the amount of prestressing force required for Design 2* was four percent higher

than for Design 1.
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Comparing Designs 3 and 4 based on service limit states alone indicated that the cross

sectional area of Design 4 was twenty-four percent smaller than that of Design 3.

Design 4 however did not satisfy the ultimate limit state checks and was therefore re-

designed (Design 4*). The re-design caused the cross sectional area of Design 4 to

increase by seven percent and the prestressing force of the system to increase by

thirty-three percent. The final Design 4* as compared to Design 3 yielded the

following information:

• the concrete cross sectional area given by Design 4* was about two percent less

than Design 3

• the eccentricities of the tendons for Design 4* were reduced

• the amount of prestressing force required for Design 4* was eleven percent lower

than Design 3.

The re-designed structure using the British Code (Design 2*) showed larger increases

in the concrete section and initial prestressing force when compared to the re-designed

structure using the American Code (Design 4*). This was to be expected, since the

British Code specified a zero increase in stress in the tendons above initial prestress

level at ultimate conditions, whereas the American specification permitted Equations

(2.2) and (2.3) to be used for estimating the stress increase in external tendons at the

ultimate conditions.

Part 1 and 2 of the study showed that designing externally prestressed structures based

on their serviceability limit states (using both British and American bridge codes) may

not always imply a safe structure at the ultimate conditions. In fact, both externally

prestressed beams designed in the study based on service conditions had to be re-

designed to satisfy their ultimate conditions. The degree of change required by the re-

design, depends on the stress increment permitted in the tendons when estimating the

ultimate strength of these structures. Generally, a smaller stress increment in the

tendons permitted at the ultimate conditions will cause a greater change in the cross-

sectional and prestressing force used for the structures.

The third part of the study was performed to evaluate the approach used for the design

of the externally prestressed structure used in the Bangkok Second Stage Expressway.

The structure was first checked for serviceability requirements using AASHTO (1983)
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code and then subsequently for the ultimate limit state conditions using three different

approaches for estimating the stress increase in the tendons at ultimate:

1) the recommendations given by the UK Department of Transport in (BD 58/94,

1995), where the stress increase in the tendons is.recommended to be zero.

2) the recommendations given in ACI (1983) where the equations given by

Equations (2.2) and (2.3) are recommended for the stress increment in

prestressing tendons at the ultimate conditions.

3) a stress increase in tendons at the ultimate limit state of 250 N'mm", as

recommended by the designers of the Bangkok Second Stage Expressway.

From the study, it was found that the structure failed to satisfy the ultimate

requirements when the stress increase in the tendons was estimated using approaches

(1) and (2). On the other hand, when approach (3) was adopted in the ultimate checks,

the structure was found to be satisfactory. However, as mentioned in Section 2.3.2.2,

it was not clear how the value 250 N/mm2 was derived by the designers. Hence, the

third part of the study shows that the stress increment assumed at the ultimate limit

state is very important in the design of these structures. Structures may need to be re-

designed if the assumed increase in tendon stress at ultimate is very small and

conservative, resulting in a relatively uneconomical structure. On the other hand, the

structure may be found to be satisfactory at ultimate conditions when a very high

stress increase in the tendons is assumed, however such an increment will need to be

justified unless the safety of the structure is to be compromised ..

The study showed that the design of externally post-tensioned structures may well be

controlled by their performance at the ultimate limit state. Hence an accurate

estimation of the ultimate strength is essential for the design of these structures.

2.5 Research Objectives

A detailed review of the available literature on the ultimate limit state analysis of post-

tensioned structures has been presented in this chapter. The review reveals that most

studies that have been conducted on the behaviour of unbonded post-tensioned

structures were directed towards structures with internally unbonded tendons. As

such, when externally post-tensioned structures became more commonly used for
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bridge construction, most design codes suggested that the guidelines recommended

for internally unbonded prestressed structures may also be used for externally

prestressed structures. This is erroneous because the flexural behaviour of internally

unbonded structures has been shown to be very different from that of externally

prestressed structures.

From the literature review, it is also evident the behaviour of externally prestressed

structures at the ultimate conditions is influenced by several factors. These factors

include second-order effects, span-depth ratio, and the amounts of prestress and

passive reinforcement. However, not all of these factors have been considered in a

single method to date for estimating the ultimate capacity of these structures.

Although service conditions usually control the design of internally bonded

prestressed structures, this may be quite different for externally prestressed structures.

Since the design of such structures may be controlled by the ultimate limit state, an

accurate estimation of the ultimate strength becomes important for the design of safe

and reasonably economical externally post-tensioned structures.

From the above arguments, the following is a list of objectives that has been defined

for the research programme:

1) There is a need to build a rational analytical model exclusively for externally

post-tensioned structures that is able to predict their flexural response at

various loading stages accurately up to ultimate conditions.

2) The proposed model must be validated by comparing results derived from the

model with those obtained experimentally.

3) It is considered crucial to identify the various factors that influence the

behaviour of externally post-tensioned structures and to use the proposed

model to study the extent of their influence on the flexural behaviour of these

structures.

4) There is also a need to check if the existing recommendations given in the

codes of practice can be used accurately to predict the ultimate strength of

externally prestressed structures for the practical analysis and design of these

structures.
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------+------r----------- I~
u __ : - :c1::~~Lt-- ::...._~~:c~~~~~eub

Prestress tendon

STRAIN STRESS

1) Assume an ultimate strain at top fiber (eg. Cell = 0.0035)
2) Assume depth of neutral axis c and compute internal compressive force Ceo"e
3) Compute total strain in prestressing steel (cps=~Eps+cpe)
4) Check to see if assumed c gives Ceonc=Tpm,; ifnot go to step 1
5) With evaluated c fmd ~ and moment of resistance

Figure 2.1: The ultimate limit state for internally bonded post-tensioned structures

(taken from Lin and Burns (1982))

STRAIN STRESS
Figure 2.2: Stress and strain distribution at the ultimate limit state for unbonded post-

tensioned structures
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Deflected tendon

Figure 2.3: Deflected profile of internally unbonded tendon

Deflected tendon with

reduced eccentricity

Figure 2.4: Deflected profile of externally unbonded tendon

Tie

Hinge

Rigid Bodies

e

Figure 2.5: Truss model taken from Mojtahedi and Gamble (1978»)
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Figure 2.6: Steel strain vs Span-depth ratio for deflection of span/200

(taken from Mojtahedi and Gamble (1978))
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Figure 2.7: Evaluation of length variation of an external tendon between deviators

(taken from Virlogeux (1988))
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Ll2
Hinge

1 Zp

Prestressing tendons i i
Rigid Body

Hinge

8/2

Figure 2.8: Rigid body model for externally post-tensioned structures suggested by

MacGregor et at (1989)

Tendon
Force

erree

Tendon attached
to the concrete at
deviators------+--------\

-------t--------t----------

Figure 2.9: Tendon force variation near the cracked section for unbonded tendons

(adopted from MacGregor et at (1989))
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Loading Tendon Profile

j ~ ~ ~w~ ~ ~ j1
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Figure 2.10: Typical loadings and tendon profiles considered in the computation of

the strain reduction coefficients Q and Qc

(taken from Naaman (1990))

P

P

p

Figure 2.11: Typical representation of elastic uncracked, elastic cracked and idealised

elastic cracked beam

(taken from Naaman (1990))
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Elastic or Inelastic Cracked region

Elastic Uncracked

region
Elastic Uncracked

region

Figure 2.12: Idealization of beam deformation after cracking by

Naaman and Alkhairi (1993)

(1) Failure of compressive strut
(2) Yeilding of stirrups
(3) Yielding of longitudinal reinforcement
(4) Yielding of external tendons

/

/1c) Predicted
( failure

(b)
,
I:~ Loading path

(4),
(a) ,

Figure 2.13: Safe domain and loading path plot

(adopted from Tan and Naaman (1993))
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A

F

\
Failure

Deflection~~--------------------------~
Figure 2.14: Modes of failure for externally prestressed beams

(adopted from Tan and Naaman (1993))
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L3= LJ2
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Lp=Lo+Al20

L, = MdlP.

LJ = L!2

Lz = Ll2-L,-L3
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E POINT
ADING

B.M.D

Yield Curvature

Ultimate Curvature

p.

L, =2rlp.+AlIO

L,=Mc/P.

Lz = U2-Lp-L,

Figure 2.15: Idealised curvature distribution for one and two point loading systems

(adopted from Zhang et al (1993))
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F-
Elements of beam

Elements of
prestressing tendon

Figure 2.16: Model of external prestressed beam by Yaginuma (1993)

A r-f2-2--'-O-'-O---------12-@-,--34-:o-2:-~-4-0-80-0---------=2--=2-;:-;;\-r(} A

I I

Deviator D1 Deviator D2

External tendons

Figure 2.17: Sketch of the arrangement of the segmental beam used in the full-scale

test conducted by Takebayashi et al (1994)
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Loading Type and Strain Reduction Coefficient:

Tendon Profile Uncracked State

Uniform Load and Straight Tendons
O=~

3

Uniform Load and Single Draping Point
0-2_+~-(~)

12 4 em

Uniform Load and Parabolic Tendon
O-~+~( ~)

15 15 em

Concentrated Midspan Load and Straight
O=_!_

Tendons 2

Concentrated Midspan Load and Single
O=_!_+_!_(~)

Draping Point 3 6 em

Concentrated Midspan Load and
o_2_+_1 (~)

Parabolic Tendon 12 12 em

Third Point Loads and Straight Tendons 2O=l-a=-
3

Third Point Loads and Single Draping
0= 23 +~(~)

Point 54 54 em

Third Point Loads and Parabolic Tendons
0= 44 +~(~)

81 81 em

* Refer to figures 2.10 and 2.11 for notation

Table 2.1: Expressions for the Strain Reduction Coefficient 0 for the Uncracked

State.

(taken from Naaman (1990))
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Loading Type and Strain Reduction Coefficient:

Tendon Profile Cracked State

Uniform Loads and Straight Tendons o, =n~+-~J( ~_!( f;)]i, t, £ 3 £

Uniform Load and Single Draping Point n, =r/"+-/"lI_( 2 y;-OR Ig Ig 2 em e
Concentrated Midspan Load and !(~)£: +~--!-(£~)Parabolic Tendon 4 em £ £ 2 £2

_!( e}!( e:)]
3 £3 4 £4

Uniform Load and Parabolic Tendon n, =n1"+-1'12(!( en-Ig Ig em 3 £

!( f:)] +~_~( f;) +!( f:)]
5 £5 e 3 e 5 £s

Concentrated Midspan Load and Straight n, =n 1"+(1_1,,)[~_!( f~)]
Tendons t, Ig e 2 £

Concentrated Midspan Load and Single n, =r/; +- ;J(l;)(I-M';)JDraping Point

+(!_!( ~))(2_1) f;]
2 3 e em f

* Refer to figures 2.10 and 2.11 for notation

Table 2.2: Expressions for the Strain Reduction Coefficient nc for the Cracked State.

(taken from Naaman (1990))
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CRITERIA Beam no.

I 2 2*
Post-tensioning system Internal External External

Loading

Mmi" (KNm) 43,538 30,193 33,564

Mmax(KNm) 87,899 74,554 77,926

Mult (KNm) 113,873 98,533 102,416

Properties of derived structure

Area of concrete (mm') 7.14xI0" 4.97xl0u 5.525xI0°

Weight (KN/m) 172 119 132.6

Z, (mm:') 4.78x1O' 4.3x10 4.37xl0'

Z, (mm') 3.93x10 3.29xl0' 3.74xl0'

eccentricity (mm) 973.5 765 595

No. of strands 456 342 475
2Aps (mm) 63,840 47,880 66,500

Pi (KN) 84,600 63,450 88,125

M, at ultimate (KNm) 161,263 82,107 103,048

Ultimate Checks Pass Fail Pass

Table 2.3: Summary of structures designed with the British bridge code.

(taken from Wong (1994(b)))
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CRITERIA Beam no.

3 4 4*
Post-tensioning system Internal External External

Loading

Mmin(KNm) 37,463 25,758 27,581

Mmax(KNm) 56.814 45,151 46,974

Mult(KNm) 82,575 67,610 69,980

Properties of derived structure

Area of concrete (mm") 5.58x1Ov 4.24xI0° 4.54x 10°

Weight (KN/m) 134 102 109

Zt{mm3
) 2.99x10 2.82xI0~ 2.91x10

Zb (rnm'') 2.47x107 2.06xI0~ 2.48x10

eccentricity (mm) 973 1038.5 848

No. of strands 342 228 304
2 47,880 31,920 42,460Ap. (mm)

Pi (KN) 63,450 42,300 56,400

Mr at ultimate (KNm) 143,830 60,262.5 56,400

Ultimate Checks Pass Fail Pass

Note i " Effective property

Table 2.4: Summary of structures designed with the American bridge codes.

(taken from Wong (l994(b)))
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Chapter 3

Parameters Affecting the Ultimate Behaviour of

Externally Post-Tensioned Structures

3.1 General

An extensive literature review on the ultimate limit state behaviour of externally post-

tensioned structures has been conducted by the author and presented in Chapter Two.

From the literature review, it is evident that externally post-tensioned structures are

slowly gaining world wide acceptance as a solution for many bridge design projects.

The principle reasons for this are that the tendons can be easily inspected for corrosion

problems, re-stressed for any loss in prestressing and replaced if they become faulty.

However, in spite of all these advantages, engineers still use this technique of bridge

construction with reservation. In part this is due to a lack of understanding of the

behaviour of these structures under ultimate limit state conditions.

As explained in Chapter Two, the ultimate behaviour of these structures is very

different from internally bonded post-tensioned structures because of the lack of bond

between concrete and steel, and the loss of eccentricity of the tendons at the ultimate

conditions due to second-order effects. Hence the conventional analytical method

used to predict the ultimate moment capacity of internally bonded prestressed

structures cannot be used directly for externally prestressed structures.

Some researchers however have suggested that the conventional analytical method

can still be used for externally prestressed structures, provided the stress increase in

the tendons at the ultimate conditions can be predicted. This, however, is not an easy

task because the stress increase in the tendons at the ultimate conditions is dependent

on many parameters. As a result, several empirical methods for predicting the stress

increase have been proposed by several codes of practice and researchers with the

common purpose of providing an easy design method.
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However, this analytical method is not considered satisfactory for two main reasons.

Firstly, the loss of eccentricity due to second-order effects is not taken into

consideration, possibly resulting in an over-estimation of the ultimate flexural

strength. Secondly, the empirical methods for stress increase are either in the form of

a single value (making them appropriate for only a small group of externally post-

tensioned structures) or were originally proposed for internally unbonded post-

tensioned structures. Hence, there is a need to propose a more reliable analytical

solution for predicting the ultimate strength of these structures. Before such a method

can be proposed, it is crucial that a preliminary investigation of the parameters that

may influence ultimate behaviour is first carried out.

From the literature review and analytical studies conducted by the author, the

following is a list of parameters that are believed to have an influence on ultimate

behaviour:

1) span-depth ratio,

2) amount of non-prestressed reinforcement,

3) initial prestress force and amount of prestressed reinforcement,

4) loading pattern,

5) frictional effects at deviators,

6) free-length to depth ratio.

Note that parameters (1) - (4) are applicable to all externally post-tensioned structures

while parameters (5) and (6) only apply to those with deviators located along their

span.

This chapter presents an introductory discussion on the influence of each parameter.

Subsequently a detailed parametric study has been conducted on these parameters

using the non-linear models proposed in Chapter Four, the results from which are

presented in Chapter Six.
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3.2 Externally Prestressed Beams with and without any

Deviators

3.2.1 Span-Depth Ratio

Span-depth ratio is defined here as the ratio of the effective depth to the centroid of

the prestressing tendon group to the overall span of the structure between simple

supports. From the literature review, it was found that the span-depth ratio is

indirectly related to two important variables which are used for the ultimate analysis

of externally prestressed structures. These are:

I ) the stress increment in the external tendons !1/ps(ull)' and

2) the variation in tendon eccentricity !1eccen(ull)' at ultimate limit state.

Mojtahedi and Gamble (1978) were the first to propose that there may be a

relationship between the stress increase in internally unbonded prestress tendons at the

ultimate limit state and the span-depth ratio. As discussed in Chapter Two, they

introduced a simple rigid-body model (Figure 2.5) to represent the behaviour of

unbonded prestressed structures. The model was used to show the relationship

between the increase in strain in the tie member (which represented the prestressing

tendon) !1Eps and the span-depth ratio Udps for a fixed deflection value !1 at the hinge

(see Figure 2.6). They found that the strain induced in the tie member decreases as

the span-depth ratio of the structure increases.

Furthermore, HarajIi (1990) and Tam and Pannell (1976) reported that the total

elongation of the internal unbonded tendons between anchorage ends was due mainly

to the lengthening of the tendons occurring at the plastic regions of the beam. Using

Equation (3.1). HarajIi (1990) showed that the lengthening of the tendons at the

plastic region, and consequently the stress increase in the tendons, depended on both

the span-depth ratio and the loading geometry of the beam.

RpI_" = L[ 0;5 +0.05+ raj (3.1)

where fis a load geometry factor defined by Harajli (1990)
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From his studies, Harajli also found that increasing the span-depth ratio of unbonded

structures will generally lead to a significant decrease in the stress increment in the

tendons at ultimate. This is similar to the conclusion made by Mojtahedi and Gamble

( 1978).

However, in the case of external tendons, the tendons do not move together with the

adjacent concrete as the structure deforms. Hence, there is no concentration of tendon

elongation at plastic regions in the structure. In fact, the change in length of the

external tendons under any loading sequence, depends primarily on the overall

deformation of the structure. As a result, the effect which the span-depth ratio has on

the stress increase in internally unbonded tendons, described earlier, cannot be

expected to be the same for external tendons. It is interesting to note that Ramos and

Aparicio (1996) confirmed this by reporting that, from their studies, they found that

the increase of stress in external tendons does not change significantly with a variation

of the span-depth ratio.

Virlogeux (1988) and Zhang et at (1993) considered that the span-depth ratio may

have an influence on the variation in eccentricity occurring in externally prestressed

structures. They explained that when loads are applied to such a structure, only at the

contact points (i.e. deviators or anchorages) will the tendons move together with the

structure. As such, a reduction in the eccentricity will occur at sections away from the

deviators, since the deformation of the tendons are rectilinear between the contact

points and do not conform with those elsewhere along the structure. This reduction in

eccentricity will result in a direct loss of strength at ultimate conditions for such

beams. The phenomenon is referred to as the second-order effect by Virlogeux

(1988), and is described to be one of the primary characteristic that distinguish the

flexural behaviour of externally post-tensioned structures from internally unbonded

post-tensioned structures.

Yaginuma and Kitada (1988) found that structures with low span-depth ratio (less

than or equal to 11) are not significantly affected by the second-order effect. They

also reported that the flexural performance at ultimate for externally prestressed

structures decreases as the span-depth ratio increases.
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As part of a preliminary exercise carried out to study the relationship between the

span-depth ratio and the ultimate behaviour of externally prestressed structures, two

rigid-body models were developed by the author to represent the ultimate mechanism

of internally and externally unbonded post-tensioned structures. Note that both

models were extensions to the original rigid-body model suggested by Mojtahedi and

Gamble (1978). These models assumed that when an unbonded beam reaches its

ultimate capacity, failure is characterised by the formation of a hinge and single wide

crack at the critical section (mid-section for simply supported structures). The

proposed rigid-body models for the internally and externally unbonded post-tensioned

structures are shown in Figures 3.1 and 3.2 respectively.

For the internally unbonded model (Figure 3.1), the following equations were derived

to obtain a relationship between the strain increments in the tendons IlEps and the

deflection Il at mid-span:

4Ildp •.oh = .
L

oh
IlE p.l· =L

41ld p'
IlE p.1 = L2 (3.2)

The deflection Il was fixed at L1200, and Equation (3.2) was rewritten as:

1 1
IlE p.1 = 50 x ~ ps •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• (3.3)

Figure 3.3 shows the relationship between IlEps and Udps' plotted using Equation (3.3).

Note that IlEps was observed to be inversely proportional to Udps•

Equation (3.2) cannot be simply used to represent the relationship between IlEps and

Udps for externally post-tensioned structures since the depth to the centroid of the

external tendons dps is not constant. Studying the model shown in Figure 3.2, the

following equations were derived to express a relationship between the strain

increment in the tendons and the span-depth ratio for externally prestressed structures:
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L'= 2 L coJ a - ~)
2dp, '- 22cos(-)
L

LI=[_L xcoJa-~)l
cosa '- 2

11t= L' - L

11£ = _L_ x coJa _8) - L
cosa '- 2

[
cos(a -8 12) ]11£ = L -1

cosa

~t ~ I!.E p. ~ [ co':o:: /2) -1] (34)

where

a = (2dp)L)

8 = (4I11L)

see Figure 3.2 for explanation of notation.

Again the deflection was fixed at L1200, and Equation (3.4) was used to plot a series

of points to define the relationship between I1Eps and Udps (see Figure 3.3).

It was observed that the trend of the curve representing the behaviour of the externally

prestressed beam (obtained from Equation (3.4)) was very similar to that obtained for

internally unbonded beams (plotted using Equation (3.3)). Figure 3.3 also shows that

the increase in strain for external tendons decreases more rapidly than that for

internally unbonded tendons as the span-depth ratio increases. This was attributed to

the second-order effect.

From the above discussion, it is evident that an investigation needs to be conducted to

find out what effect span-depth ratio has on the increase in stress flJ;,s(ult) and variation

in eccentricity t1eccen(ult) of external tendons at the ultimate conditions. Once the

relationships between span-depth ratio and these variables are established, the

variation of the ultimate moment with the span-depth ratio parameter for these

structures may then be understood more clearly.
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3.2.2 Amount of Non-prestressed Reinforcement

Mattock et al (1971) and Tao and Gu (1985) found that the amount of passive

reinforcement used in the design of internally unbonded post-tensioned structures

influences the strength of these structures at the ultimate limit state conditions. They

performed tests on several completely unbonded post-tensioned beams (i.e. internally

unbonded structures where the unbonded tendons were the only component of flexural

reinforcement), and noted that the failures of these beams were characterised by the

formation of a single crack at the section of maximum moment. They also noted that

after cracking these beams were observed to behave as shallow tied arches rather than

flexural members. The failure of these unbonded teams were described by them to be

brittle and sudden. They found that providing a moderate amount of non-prestressed

reinforcement to these unbonded beams, not only improved their ductility but also the

distribution of cracking at the ultimate conditions.

Sowlat and Rabbat (1987) tested three prestressed beams and reported that the

influences of non-prestressed reinforcement described above for internally unbonded

prestressed structures, were also found to be true for externally prestressed structures.

In fact, Yaginuma and Kitada (1987) performed tests on six unbonded prestressed

beams with varying amounts of passive reinforcement and concluded that the ultimate

flexural behaviour of internally and externally unbonded structures having the same

reinforcement ratios were almost the same, provided the span-depth ratios of these

beams were small (i.e. L/dps less than 11). They further stated that when the span-

depth ratios of these beams were high, greater variations in the flexural behaviour

were observed. They attributed this to the second-order effect (discussed in Section

3.2.l), which causes the tendon eccentricity in external beams to change as the beam

deforms.

Yaginuma and Kitada (1987) and Zhang et al (1993) found that increasing the

reinforcement ratios generally improves the flexural performance of externally

prestressed structures (see Figure 3.4). However, if too much passive reinforcement

was used, failure was found to be brittle. This loss of ductility was considered

undesirable. Yaginuma and Kitada also observed from their tests that the stress

increase in the tendons i1/ps(uil) at the ultimate limit state decreases as the

Page 71



University of Sheffield

reinforcement ratio of the externally prestressed beams increases. This, however, was

contradictory to the observations made by Ramos and Aparicio (1996), who stated

that the increase in stress !!:.J;,S(II/1) at the ultimate limit state for external tendons does

not vary much with different reinforcement ratios. These reported inconsistencies in

the results regarding the influence of reinforcement ratio on externally prestressed

structures are investigated and discussed further in Chapter Six.

3.2.3 Initial Prestress Force and Amount of Prestress Reinforcement

According to MacGregor and Kreger (1989), the initial effective prestress force after

allowance for all the prestress losses, is one of the most important parameters

affecting the ultimate behaviour of externally post-tensioned structures. This, they

explained, is because the stress increase in the external tendons !!:.J;,S(U/I) at ultimate is

usually very small as compared to the effective initial prestress /pe ,and its value at the

ultimate limit state was found to be dependent on /Pe. Hence, the amount of initial

prestress force applied on the structure usually predominates the ultimate strength and

deflection response of these unbonded structures.

Yaginuma and Kitada (1989) found that increasing the initial prestress force will

generally increase the ultimate strength but reduce the deflection capacity of

externally prestressed structures at the ultimate limit state conditions. The reverse is

true for structures with a low initial prestress force. According to Yaginuma (1993),

span-depth ratio plays a vital role on the influence which the initial effective prestress

force has on the ultimate flexural behaviour of externally prestressed structures. He

stated that for beams with low span-depth ratios, the maximum moment increases as

the initial prestress force increases. On the other hand, for beams with high span-

depth ratios, the maximum moment is almost constant as the initial prestress force

increases.

As for the influence of the amount of prestressed reinforcement on ultimate behaviour,

Yaginuma and Kitada (1989) found that the stress increase in tendons decreases as the

reinforcement ratio (qp+qs) increases (see Figure 3.5). However, the ultimate strength

of these beams increases as the prestress reinforcement ratio increases.
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3.2.4 Loading Pattern

Unbonded post-tensioned structures exhibit linear behaviour until they begin to crack

or the joints opens (for segmental beams). After cracking or joint opening, the

structures behave as a mechanism, forming plastic hinges over a finite length (referred

to as the plastic hinge length) at the critical sections. Hence a flexural member may

be divided into two distinct regions: the elastic and plastic region (see Figure 3.6).

According to MacGregor et al (1989), the flexural strength of the beam occurs when

the rotational capacity at the cracks or segmental joints is reached.

Tam and Pannell (1976), Harajli (1990) and Virlogeux (1988) reported that the

lengthening of the concrete at the level of the prestressing steel for unbonded

prestressed structures in the elastic zone is negligible as compared with the

lengthening of the concrete in the plastic region. In fact, test evidence has shown that

strain readings remained fairly constant outside the plastic zone after the first

appearance of cracks. Hence the deformation of an unbonded structure depends

critically on the plastic hinge length development at ultimate load conditions.

Since the loading geometry affects the development of the plastic hinge length

(Harajli (1990» for unbonded structures, it should therefore also have some influence

on the behaviour of these structures at the ultimate limit state. Zhang et al (1993)

performed tests on several externally post-tensioned beams and observed that the

plastic hinge length for the beams under two point equi-distant loading were greater

than those under one-point loading at the mid-span. However, they found that the

maximum curvature achieved at the critical section of the beam under the two-point

loading was much lower than that for the case of one-point loading.

Zhang et al (1993) reported that prior to yielding of the non-prestressed

reinforcement, the deflection and stress increment of the tendons under the two-point

loading system were about the same as those for the one-point loading system.

However, after yielding, the deflections for the two-point loading system were found

to be greater than those under the one-point loading system. The higher deflection

caused a decrease in the eccentricity of the tendons which resulted in a higher stress

increment induced in the tendons for the same external moments. Generally, slightly

higher ultimate strength was observed for beams under the two point loading system.
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Hence, the type of external loading applied to an externally prestressed structure was

shown by Zhang et al (1993) to have a slight influence on the ultimate flexural

behaviour.

3.3 External Beams with Deviators

3.3.1 Frictional Effects at Deviators

Takebayashi et al (1993, 1994) conducted a full scale destructive test on a segmental

externally post-tensioned bridge beam, and found that the stress increase in the

external tendons were not fully transmitted beyond the deviators for tendons with

large deviation angles. They considered that this was due to the large deviation angles

which caused high frictional forces to develop at the deviators preventing the tendons

from slipping at these contact points. Since the tendons were prevented from slipping,

no redistribution of stresses in the tendons between deviators was therefore possible.

This consequently caused the experimental externally prestressed beam to exhibit a

higher ultimate moment capacity. They also found that while slippage at the deviators

for relatively straight tendons were observed to occur at all loading stages, slippage of

draped tendons with large deviation angles occurred only when approaching the true

collapse load.

The redistribution of stresses due to slippage of the tendons is a phenomenon unique

to externally post-tensioned structures and is presently a subject of much interest to

many bridge engineers and researchers (Virlogeux (1988), MacGregor et al (1989)

Ramos and Aparicio (1996) and Takebayashi et al (1993, 1994)). Note that at the

start of this research programme, very little information was available to the author

about the frictional behaviour of external tendons at the deviators. As such the author

had to conduct an extensive study on the phenomenon (Wong (1994(b), 1994(c))) in

order to understand it better. The study included building a numerical model to

simulate the frictional behaviour at the deviators and consideration of the

experimental data obtained from the full scale test conducted by Takebayashi et al

(1993, 1994). This section briefly presents the important information obtained from

the study conducted by the author; about how and why external tendons slip at

deviators and what are the main factors that influence these slippages.
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Deviators are sometimes placed along the span of an externally post-tensioned

structure for the purpose of either deviating the tendons to the required profile along

the beam or limiting the free length of the tendons between the deviators (Figure 3.7).

The slippage of tendons at these deviators is determined by the frictional behaviour

between the two contact materials present at these points. Note that, other than at the

anchorages, these deviators are the only positive contact points which the tendons

have with the concrete structure. Hence, a high concentration of forces acts at these

points (see Figure 3.8) which in tum causes high frictional forces dfto be generated at

the deviators to resist the tendons from slipping. Using the basic laws of friction

given in Chirgwin and Plumpton (1978), the author derived Equations (3.5)and (3.6)

which may be used to estimate the amount of frictional resistance df generated at the

deviators.

N' = F]cosa + F/cosp (3.5)

df= N'fJ. (3.6)

Sf= IF2 -F/I (3.7)

where

a and p: deviation angles at deviators

F/ and F2: amount of prestress force in the tendons on both sides of the deviator

N': the component of concentrated force acting on the deviator

fJ.: the coefficient of friction at the contact points

df the frictional resistance generated at the deviator

Sf: the force difference between the deviators

As the structure deforms due to external loading, the stress increments in the tendons

change between the deviators. Since the tendon stresses are initially prevented from

redistributing between deviators due to the frictional forces, the force difference

between deviators increases steadily. Slippage of tendons will only occur when the

unbalanced force on both sides of the deviator Ilf (see Equation (3.7)), becomes

greater than the frictional resistance df generated there. Slippages of tendons result in

a redistribution of stresses in the tendons between the deviators; and this redistribution

continues until a stable condition is achieved at all the deviators (Le. Ilf:5 dj). Figure
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3.9 shows a sketch of the variation in prestress force in the external tendons due to the

frictional phenomenon.

The redistribution of stresses In the tendons between the deviators, subsequently

causes the ultimate capacities of externally prestressed structures to be reduced. As a

matter of fact, Ramos and Aparicio (1996) found that, at the ultimate limit state, the

slippage of tendons at the deviators may produce a reduction in the ultimate carrying

capacity sufficient to cause collapse.

From Equations (3.5) and (3.6), it is evident that the amount of frictional resistance

generated at the deviator is dependent on the following parameters:

• the coefficient of friction Il at the contact surfaces

• the angles of deviation on both sides of the deviators (i.e. a and ~)

• the prestress forces in the tendons F} and F2.

The coefficient of friction Il at the contact surfaces was found to be dependent on a

large number of variables (Ramos and Aparicio (1996)), and hence cannot be easily

represented by a single reliable value. These variables include the deviation angle, the

kind of deviator, duct type and grout type (if used). As for the influence of deviation

angle on the frictional forces generated, it has already been reported that Takebayashi

et al (1993, 1994) found that larger deviation angles on either side of the deviators

will cause higher frictional forces to be generated at these points. The prestress force

in the tendons directly contributes to the amount of the concentrated direct force

acting on the concrete structure. This concentrated force is in turn directly related to

the amount of frictional force generated at the deviators. Hence the higher the

prestress force in the tendons, the higher the frictional resistance will be at the

deviators.

As explained above, the estimation of a reliable value for the coefficient of friction at

the contact points is a difficult task because of the large number of variables involved.

Also, the analysis of externally prestressed structures with deviators becomes very

complicated when the frictional behaviour at the deviators are included This

complication is due to the fact that the friction-induced behaviour is both non-linear

and non-reversible (Virlogeux, (1988)), which makes the analysis dependent on the

load history of the structure. For these reasons, Ramos and Aparicio (1996) and
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Virlogeux (1988) both suggested that it may be easier just to make two extreme

assumptions about the slippage behaviour of external tendons at the deviators at the

ultimate limit state, either fully fixed (Figure 3.10) or zero friction (Figure 3.11).

For the first assumption, where the tendons are assumed to be fixed at the deviators,

the prestress force in the external tendons varies greatly due to the restriction of stress

redistribution in the tendons between deviators. As such, analyses conducted using

this assumption will always give an upper bound solution for the behaviour of the

externally prestressed structure at the ultimate limit state. The second assumption will

on the other hand produce a constant prestress force in the tendons throughout the

whole span since the contact points are assumed to be frictionless. Hence analyses

conducted using the second assumption will always give the lower bound solution for

the ultimate limit state. The true behaviour of the structure lies between the results

derived from the analyses conducted using these two extreme boundary conditions.

It is clear that very little is presently known about the frictional phenomenon of

external tendons at the deviators. These unknowns include:

• the extent which the frictional response at the deviators has on the ultimate limit

state behaviour

• the influence which the coefficient of friction, the deviation angles of the tendons

at the deviators and the prestress force in the tendons have on the amount of

frictional resistance generated at the deviators

• whether considering the two extreme conditions for slippage of the tendons at the

deviators are sufficient for estimating the actual ultimate behaviour of such

structures.

3.3.2 Free-length to Depth Ratio

The influence of the span-depth ratio on the ultimate limit state behaviour of

externally post-tensioned structures has already been discussed in Section 3.2.1

principally for beams without deviators where the tendons extend freely between the

anchorages. Hence the free length of these tendons f.jree is approximately equal to the

span of the beam. When deviators are placed within the span, the free length of the
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tendons becomes reduced. This may cause the ultimate flexural behaviour of these

structures to change, as observed by Yaginuma and Kitada (1988).

Yaginuma and Kitada (1988) tested several beams to investigate the influence of the

span-depth ratio on the behaviour of partially prestressed concrete beams with

external tendons. The beams were categorised into three main series. The first,

denoted series N beams, were prestressed with internal unbonded tendons; the second

(series 0 beams) consisted of beams which were prestressed with external tendons but

without provision of any deviators; the third were also prestressed with external

tendons, but with several deviators placed along the span of these structures, denoted

series S beams.

Figure 3.12 shows the relationship Mmajbcifcu vs. Ildps for the three series of beams

(0, Sand N) tested by Yaginuma and Kitada (1988). From Figure 3.12, it was

observed that the maximum moment capacity for all the beams tested decreased as the

span-depth ratio increased (as described in Section 3.2.1). It was also observed that

the maximum moment capacities for the external beams with deviators (Series N),

seemed to be higher than those without any deviators (Series 0) for the same span-

depth ratio. This confirms that the ultimate flexural performance of externally

prestressed structures can be increased, by providing a proper arrangement of

deviators along their span.

The increased flexural strength observed above may be due to several reasons, one of

them being that the deviators help to minimise the loss of tendon eccentricity due to

second-order effects (see Section 3.2.1). When deviators are placed along the span of

these structures, the free lengths of the tendons at the critical sections are reduced.

Since the loss of eccentricity due to second-order effects is dependent on the length of

the tendons left unsupported, the change in eccentricity at ultimate for these beams

will consequently be smaller resulting in a higher ultimate flexural strength.

Another reason for the increased strength applies to beams with high frictional forces

developed at their deviators which prevent the tendons from slipping. The strain

increase in the tendons is thus evaluated using the following equation IlEps = Ill/ lfree

instead of I:!.Eps = I:!.RI~s. Since Rfree is less than Rps' the change in strain in tendons IlEps
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will always be greater for those beams with deviators for the same elongation in

tendon length, thereby resulting in a higher flexural strength.

For the above reasons, Zhang et at (1993) recommended that a parameter termed the

free-length to depth ratio Ujree be used to describe the second-order effect and ultimate

behaviour of these beams instead of the conventional span-depth ratio. They defined

the free-length to depth ratio as the ratio of the effective depth of the tendon group dps

to the free length of the tendons £free. Chapter Six presents the results of the

parametric study conducted on this ratio.
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Figure 3.2: Rigid-body model for an externally post-tensioned structure
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Figure 3.4: Moment-deflection curves for externally post-tensioned structures with

different reinforcement ratios

(reproduced from Yaginuma and Kitada (1987))
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Chapter 4

Non-linear Analytical Models

4.1 General

The literature review on the ultimate limit state analysis of externally post-tensioned

structures was presented in Chapter Two. From this, it was evident that the analysis

of these structures cannot be performed in the same manner as that for internally

bonded post-tensioned structures. Due to the lack of bond between the concrete and

the prestressing tendon, the stress increases in the external tendons are not localised at

the cracked concrete sections but 'averaged' along the free-length of the tendons.

Also, the eccentricity of external tendons vary as the beam deforms under different

loading conditions. The stress increase in the tendons ~/ps and the variation in tendon

eccentricity /).eccen for any loading stage can only be determined by studying the

deformation response of the structure. Hence, the ultimate strength of an externally

prestressed structure must be predicted by performing a non-linear analysis to

determine its deflected profile at ultimate conditions. One such approach would be to

use a finite element model which has the potential for including both material and

geometric non-linearities.

The finite element method is essentially a numerical method for the approximate

solution of practical problems arising in engineering and scientific analysis. There are

presently many commercial finite element packages available (i.e. ANSYS,

ABACUS, etc.), which are commonly used by engineers to analyse the behaviour of

irregular structures, i.e. structures having unique geometry or external loading

conditions that cannot be easily analysed by conventional methods. Section 4.2

describes a short study conducted here to check the applicability of using finite

element methods to predict the flexural response of such structures.
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An alternative approach has been proposed by Naaman and Alkhairi (1991) who

introduced a non-linear analytical model that uses the concept of strain compatibility

to simulate the flexural behaviour of internally unbonded beams up to ultimate. They

also stated that their analytical model could be used for externally prestressed

structures. However, as discussed in Chapters Two and Three, the behaviour of

internally unbonded and externally unbonded prestressed structures are very different

and their model may not be entirely appropriate.

Adopting the strain compatibility concept introduced by Naaman and Alkhairi (1991),

eight non-linear analytical models were designed exclusively for investigating the

flexural response of externally post-tensioned structures, denoted EXT3 to EXTIO

respectively. In these non-linear models, loads are placed on the external beams in

increments up to ultimate. The behaviour of these structures are then modelled for

each loading stage, by performing an extensive non-linear analysis on them to

determine their curvature distributions, from which the changes in tendon stress and

eccentricity are then predicted. The basic assumptions used in these models are:

I) Plane sections remain plane after bending.

2) Constitutive relations for the reinforcement, prestressing steel and the concrete

are known.

3) The beam is simply supported.

4) The beam is assumed to be at the cracked state whenever the applied tensile

stress exceeds the modulus of rupture of the concrete.

5) Minimum flexural passive reinforcement is provided and is bonded perfectly

with the concrete.

6) The variation in length of the tendons between two successive anchorages or

deviators may be determined by using Virlogeux's (1988) equation.

7) The beam is assumed to be reinforced with the minimum amount of vertical

stirrups necessary to resist the shear stresses at all cracked sections along the

span.

Although the eight analytical models were programmed into eight separate computer

programmes, the same global algorithm was used in all of them. This is presented in

Section 4.3. The global algorithm is divided into two parts; (1) the analysis of the

structure before cracking (presented in Section 4.4.1); and (2) the analysis of the
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structure after cracking (presented in Section 4.4.2). The effect of diagonal tensile

cracking on the flexural behaviour of these structures was also considered, and is

discussed in Section 4.5.1.

The global algorithm for the eight models had a common structure but was amended

in detail to enable it to perform the unique analysis for each case. The following is a

brief description of the eight non-linear models proposed:

1) EXT3 model

designed to analyse externally post-tensioned structures where the external

tendons span between the anchorages and no deviators are placed along the

span of the structure (see Figure 4.1).

2) EXT 4 model

similar to the EXT3 model except that the effect of tension stiffening is

included. The effect of tension stiffening is discussed further in Section 4.5.2.

3) EXT5 model

designed to analyse externally post-tensioned structures with deviators within

their spans, where the external tendons are assumed to be fixed at the deviators

(see Figure 4.2). The methodology used for building this analytical model is

discussed in Section 4.7.1.

4) EXT6 model

similar to the EXT5 model, except that the effects of tension stiffening were

included.

5) EXT7 model

designed to analyse externally post-tensioned structures with deviators where

. the frictional effects at the deviators are taken into account in the analysis (see

Figure 4.3). The analytical methodology used to evaluate the frictional

behaviour at deviators is presented in Section 4.7.3.

6) EXT8 model

similar to the EXT7 model, except that the tension stiffening effect IS

incorporated.
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7) EXT9 model

designed to analyse externally post-tensioned structures with frictionless

deviators included in their spans (see Figure 4.4). The frictionless behaviour

at the deviators is discussed further in Section 4.7.2.

8) EXTlO model

similar to the EXT9 model but includes the effects of tension stiffening.

4.2 Finite Element Modelling

4.2.1 Test Beam

The viaducts for the Bangkok Second Stage Expressway were constructed using

external tendons and dry joints. Since the number of precast segments amounted to

about 14,500 for the first phase of the project alone, the designers considered it

worthwhile to conduct a full scale loading test on a span of the proposed structure

prior to finalising the design (Takebayashi et al (1993». The test beam was

constructed in a casting yard using piled foundations and short piers. The distance

between the piers for the test beam was approximately forty-four metres and

comprised of 14 segments. Figure 2.17 shows the set-up of the test beam.

The experimental test was conducted in two phases: the Design Load Phase

(Takebayashi et al (1993» and the Destructive Load Phase (Takebayashi et al (1994»

and both phases were briefly described in Section 2.3.2.2. However, only the

technical report for the Design Load Phase was available to the author I. As a result,

the finite element analyses performed here were only conducted up to the stage where

maximum load was placed on the structure at the Design Load Phase.

4.2.2 Finite Element Modelling with ANSYS

A short study was conducted to check the applicability and convenience of using

finite element methods to predict the flexural response of externally post-tensioned

structures. Two finite element models were designed using ANSYS to simulate the

I Report No. SR479, Unpublished report.
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flexural behaviour of the beam tested by Takebayashi et al (1993), denoted VER2 and

VER5 respectively (detailed information of these models are presented elsewhere,

Wong (l994(d))). In both models, the concrete and tendon elements were fixed at the

deviators because the frictional behaviour of the tendons at these points cannot be

easily modelled. Although it is possible to simulate the frictional slippage of tendons

by using gap elements available in ANSYS, the redistribution of stresses as a

consequent of this slippage was however not easily modelled because this would

require the finite element model to be re-structured before the next load sequence can

be analysed.

The VER2 model was a one-dimensional finite element model where linear line

elements were used to represent the beam, tendon and deviator elements (see Figure

4.5). For the deviator elements, line elements with very high levels of rigidity were

used. Although this model was only a simplified representation of the test beam, it

possessed the advantage of being simple thereby reducing the amount of

computational time required for the analysis. However, as the test beam was a

segmental bridge structure, the main disadvantage of the VER2 model was its inability

to simulate the opening of joints when decompression of the structure occurred. Also,

the tendons were assumed to be fixed at the deviators throughout the loading history

of the beam.

Figure 4.6 shows the two-dimensional model VER5 at the design ultimate loading

condition. This model was an improvement on the one-dimensional model since it

consisted of two-dimensional elastic plate elements and contact elements were

incorporated to permit possible gap opening at the segmental joints. However, the

tendons were also assumed to be fixed at the deviators due to reasons given earlier.

4.2.3 Comparison of Results

Figure 4.7 shows the moment-deflection relationships for the test beam derived from

the one-dimensional (VER2) and two-dimensional (VER5) finite element models.

From Figure 4.7, it can be seen that the curve derived from the VER2 model was

linear up to the design ultimate load. Before the joint opening at the critical section,

the VER2 curve was noted to be very closely related with the experimental curve.
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However, after joint opening, the VER2 curve maintained the same stiffness and over-

estimated the gradient of the experimental curve by approximately forty-five percent.

The total computing time taken for analysing this model with ANSYS was only about

two hours on a personal computer of moderate capacity.

The VER5 curve was also found to be in close agreement with the experimental curve

before the occurrence of joint opening but over-estimated the joint opening moment

by about eighteen percent. After the opening of joint at the critical section, the VER5

curve indicated a loss in stiffness, but the reduced stiffness was still higher than the

experimental value and hence the model over-estimated the experimental moments by

about ten percent. The reason for this over-estimation was due to the tendons being

fixed at the deviators in the finite element model and may be avoided by either

considering the frictional slippage at the deviators or assuming that the tendons

slipped freely at the deviators. Another major disadvantage of this model was the

large amount of computing time required since it took approximately twenty-three

hours to evaluate the flexural response of the experimental beam to the design

ultimate load.

The study therefore shows that finite element analysis may be employed to predict the

flexural response of externally prestressed beams reasonably accurately before the

occurrence of cracking or joint opening. However, after cracking or joint opening, the

finite element model must be able to simulate the following factors in order to

produce accurate estimation of the beam behaviour:

• cracking and opening of joint

• slippage of the external tendons at the deviators and consequently re-distribution

of tendon stresses.

Failing to consider either or both of these factors has been shown here to cause an

over-estimation of the beam flexural behaviour.

The computing time required to conduct an analysis on such structures with finite

element analysis was also observed to be dependent on the complexity of the model

used. For simple models, e.g. VER2 model, less time was required but at the expense

of less accurate results. For a more sophisticated model, while more accurate results

were possible, the computing time required was on the other hand very much longer.
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Furthermore, if such an approach is to be extended to predict the flexural behaviour up

to collapse, it will be necessary to use large deflection theory and non-linear material

models. This is likely to extend the time taken for the solution to such an extent as to

make it unattractive as either a research or a design tool. Hence the approach taken in

this investigation was to develop a non-linear analytical model utilising the strain

compatibility method introduced by Naaman and Alkhairi (1991) to estimate the

flexural behaviour of these structures instead.

4.3 Global Algorithm for Models

For externally post-tensioned structures, due to the absence of bond between the

concrete and the external tendons, the force transfer-mechanisms from the tendons to

the beam are limited at the anchorages and the deviators. As such, the flexural

behaviour of these beams is dependent on the deformation of the whole structure and

can therefore be evaluated up to collapse, by modelling the deflections and curvatures

along the span at all stages of loading.

The methodology adopted here in the proposed analytical models involves defining

several nodes along the span of the structure (see Figure 4.9) and determining the

curvature of these nodes separately at each loading sequence. The curvature

distributions are then used to predict the end rotations and deflection profiles along

the beam. Consequently, the deformations are used to estimate the stress increase and

eccentricity variations of the external tendons at each loading sequence. The global

algorithm used for building the non-linear computer programmes is summarised in the

flowchart shown Figure 4.8. This section briefly describes the various steps used in

the global algorithm.

The geometry of the beam to be analysed is first defined in the form of an input file.

The input information required by the programmes includes: the number of equally

spaced nodes to be defined along the beam, the shape of the cross-section, the

properties of the various materials used in the beam, the strain increments to be used

for defining each loading sequence, etc. Details on how the input file should be

prepared for a computer run is discussed in Wong (1997). The sectional properties of
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the structure are then analysed with the information provided in the input file. Note

that transformed properties of the section are used in these models.

For each loading stage, the stress increase in the tendons !1/ps and the variation in

eccentricity !1eccen for each node are initially assumed to be zero. Using these

assumptions, the eccentricity of the tendons at each node and the prestressing force

over the free length of the tendons are calculated from Equations (4.1) and (4.2)

respectively:

e( k, i) = e inttial)) + !1eceen(k, i) (4.1 )

F(k) = Aps (/Pe + !1/ps (k, i)) (4.2)

where

k = load sequence

i= the node number

The cracking moment Mer at each of the nodes defined along the span are next

evaluated. The cracking moment Mer is defined as the moment at which the tensile

stress at the extreme fiber of the concrete section reaches a value equal to the modulus

of rupture, f': In the proposed models, the cracking moments are evaluated using

Equations (4.3) and (4.4):

Me"ro" ~ [Fe- F~:, - [,Z,"' ] (4.3)

Mcr(ho() = [FZhOl + Fe + frZhO(] (4.4)
At

Note that for externally prestressed structures, the cracking moment varies along the

span at different loading stages. The variation is due to the continuous change in

prestress force (F) and eccentricity (e) of the externally unbonded tendons throughout

the loading history of the beams.

Each node along the beam is then analysed separately for its curvature. The

computational method used for estimating the curvature at a node depends on the

condition of cracking at that section; that is whether the node is in the pre-crack state

or the post-crack state. Theoretically, a section is described to be at the pre-crack

state when the external moment Mext is lower than the cracking moment Mer. If the
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external moment exceeds the cracking moment, then the section is said to be at the

post-crack state. Hence, the external moments and cracking moments for all the nodes

along the span are first analysed and compared to determine the type of analysis to be

performed at each node for the curvature. The different computational approaches for

calculating the curvature of a section at the pre-crack and post-crack state are

described in Sections 4.4.1 and 4.4.2 respectively.

Once the curvatures along the span have been analysed, the deflection and rotation at

each node are then predicted by integrating the curvatures along the member. The

total rotation occurring at the anchorages or deviators are computed using the first

moment area theorem (or rotation theorem). The first moment area theorem is given

by Naaman (1982) as: 'The change in angle between points i and} on the deflected

elastic curve of a flexural member, or the slope at point} relative to the slope at point

i, is equal to the area under the curvature diagram between points i and}' (see Figure

4.10), that is;

XJ

8" = fq,(x}dx (4.5)

The deflection of the beam is given by the second moment area theorem (or deflection

theorem) expressed by Naaman (1982) as: 'the deflection of point} of a flexural

member measured with respect to the tangent at another point i of the member is

equal to the static moment taken about point } of the area under the curvature

diagrams along the member between points i and}' (see Figure 4.10); that is;

XJ

I'lxjl = fxq,(x}dx (4.6)
x,

See Figure 4.10 for explanation of the notation used in Equations (4.5) and (4.6).

Equations (4.5) and (4.6) are generalisations of the moment area theorems and they

are applicable whether elastic or plastic curvatures are involved (Park and Paulay

(1975}). However, using these two equations ignores the effect of the additional

deformations caused by diagonal tension cracking due to shear and any increase in

stiffness due to tension stiffening. The effects of diagonal tension cracking and

tension stiffening are discussed in Sections 4.5.1 and 4.5.2.
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The stress increase in the tendons f":../psis next predicted by first estimating the total

elongation of the tendons f":..€ I] between the anchorages or deviators using Equation

(2.22) given by Virlogeux (1988).

The change of strain in the prestressing tendon is thus given by:

11£ 12I1E P' = - (4.7)
p 12

The change in stress in the tendons l1/ps is subsequently estimated from the stress-

strain constitutive model of the prestressing steel. The newly calculated l1/ps (denoted

l1/Ps(calculaled)) is compared with the l1/ps assumed earlier (denoted l1/ps(assumed)). If the

two f":../psvalues are within the required tolerance, then the f":../ps(calculaled)value will be

accepted as the stress increase in the tendons for the particular load sequence.

However, if the difference between the two values does not meet the required

tolerance, the l1/ps(calculaled) value will be taken as the newly assumed l1/Ps' and the

analytical procedure described above is repeated from the point where the prestress

force in the tendons is evaluated (see Figure 4.8). This procedure is repeated until a

satisfactory solution is derived for l1/ps.

The next step is to check the variation in eccentricity occurring at each node along the

beam. The eccentricities between the centre of the tendon group and the centroid of

the section ex' are calculated for all the nodes from the deformed shape of the beam

(Figure 4.11) , using Equation (4.8):

ex '(i) = ex(i)-I1(i) (4.8)

where

11(i)=

the eccentricity of the tendons at node i due to the rotations at the

anchorages only

vertical deflection of the beam centroid at node i.

Thus, the change in eccentricity l1eccen is evaluated using Equation (4.9):

deccen(i) = einiliatCi) - ex '(i) (4.9)

where

deccen(i) = the change in eccentricity at node i

einiliatCi) = the initial eccentricity of the tendons at node i.
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The calculated IJ.eccen values (denoted IJ.eccenlcalcliloledJ at all the nodes are compared

with the earlier assumed values (denoted IJ.eccetllosslimed) and are accepted when the

required tolerance is achieved. If the tolerance is exceeded at any node, then the

described procedure is repeated from the point where the eccentricities are calculated

for the beam structure (see Figure 4.8); using the assumption IJ.eccen(asslimed)

IJ.eccen(calculaled)" Again the procedure described for determining the variation In

eccentricity along the span of the beam is repeated until satisfactory values of IJ.eccen

are achieved for all the nodes.

After the values of IJ.eccen and IJ./ps have been calculated within tolerance for loading

sequence k, the whole procedure is repeated for the next loading sequence (k+ 1). This

is done repeatedly until one of the termination conditions listed in Section 4.8 has

been met. Note that the increment of load to be applied to the structure for the next

loading sequence (k+ 1), depends on the state of cracking at the present loading stage

(k).

If the whole beam is uncracked then a calculated increment of load will be added to

the structure for the next loading stage. This calculated additional load is initially

based on a proportion of the loading predicted to cause cracking at the critical section

of the beam. When the critical section approaches the cracked condition, a bisection

algorithm is used to add external loads to the beam until it just cracks at the critical

section.

After cracking, the procedure for adding loads to the structure for the next loading

stage is different from that described earlier. Instead of adding a calculated external

load directly, a pre-set strain increment is added to the extreme compressive fiber of

the concrete at the critical section. A force equilibrium analysis is then conducted

with the new compressive strain at the critical section. The internal moment at the

critical section is subsequently estimated with the forces evaluated from the force

equilibrium analysis. Using the internal moments evaluated and the loading pattern,

the external loads to be applied to the structure for the next loading sequence are thus

estimated. More details regarding the evaluation of load increments to be applied on

the structure at the pre-crack and post-crack states are presented in Sections 4.4.1 and

4.4.2 respectively.

Page 96



University of Sheffield

4.4 Curvature Analysis

4.4.1 Pre-crack Analysis

Prior to cracking, linear elastic laws are used to solve for the stresses and strains over

the depth of the section. During this stage, both the stress and strain distributions over

the section depth under combined bending and axial force are assumed to be linear

(see Figure 4.12).

When a section is found to be at the pre-crack state, i.e. Mer < Mexr , the stresses at the

extreme top and bottom fibers of the concrete are computed using the following

equations:

t.; = ; - Fe + Mexl ......................................................•.................... (4.10)
C Z,OP Z,OP

fhol = _f__ + Fe _ Mexl ••••••••...•.•••••••••••.•••••••••.•••••••..••••••••••••••••••••••••••••••• (4.11)
Ac Z"OI Z""1

The eval uated extreme top and bottom concrete stresses (f,op, hor) are then converted

to strain values (Erop, Ebor) using the Young's modulus for the concrete (see Section

4.6).

Since the curvature of a section ~ is defined as the gradient of the strain profile, and

the strain profile along the depth of the section is assumed to be linear (Figure 4.12),

the curvature of a section is thus given by:

~ E,op -Ehol= d (4.12)

After the curvature for each of the nodes along the beam has been evaluated, the

analysis proceeds as described in Section 4.3.

As mentioned in Section 4.3, the increment of load to be placed on the structure at

every loading sequence is determined differently for the pre-crack and post-crack

states. After analysing the initial loading sequence (i.e. k = 1 for dead load only), the

difference between Mexl and the calculated Mer(bol) at the critical section for the initial

load stage is determined:

Mdifferenee = Mer(bol) - Mexl (4.13)
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This difference. Mdl(ference' is then divided by the minimum number of points required

before cracking in the load deflection curve (xpOInI)' This gives the additional

moments Mudd to be added on the structure at the critical section for each successive

loading stage (see Figure 4.13):

Madd = Mdifferene/xpoin/s" (4.14)

The external moment to be applied at the critical section for the next loading sequence

MextCk+ 1) is computed, by adding the existing moment Mexlk) to the calculated

additional moment Madd :

MextCk+ 1) = Mexlk) + Madd (4.15)

With Mex/(k+ 1) calculated and the loading geometry defined, the amount of external

loading to be placed on the structure for the next loading sequence can then be

determined.

The cracking moment is defined as the applied moment at which cracking occurs at

the critical section of the structure (see Figure 4.13); that is when Mer = Mex/ at the

critical section. It marks the end of the pre-crack state and the beginning of the post-

crack state. The method described above defines a series of points on the load-

deflection curve, before defining the cracking moment. However, because of the

variation in the eccentricities of the external tendons, the cracking moment Mer

calculated at the critical section differs at different loading stages. As a result, the

cracking moment is not usually easily defined. An algorithm that uses the bisection

method was therefore designed to enable the cracking moment to be determined. The

algorithm uses Equation (4.16) to determine the successive external moments to be

applied on the critical section of the structure until the external moment Mex/ is very

close to the cracking moment Mer evaluated. When this occurs, the cracking moment

is defined.

Mext(k+ 1) = MextCk) + (MaCk)-Mex/(k»/2 (4.16)

4.4.2 Post-crack Analysis

When the externally applied moment Mex/ exceeds the cracking moment Mer at the

critical section, cracking occurs and the post-crack analysis is employed. The

computation of the curvature distribution along the span of the structure becomes
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more complicated when this occurs. Firstly, the new load level is found by adding the

concrete strain at the extreme compression fiber at the critical section of the beam

£Ioik) with a pre-set strain increment ~£.

£lOpCk+1) = Elop(k) + ~E ..............................................•...•......•..•................. (4.17)

For the new value of Elop(k+ 1), the neutral axis depth c is found by conducting a force

equilibrium analysis at the critical section (see Figure 4.14). This is performed by

using a bisection routine, that varies the position of the neutral axis until the internal

forces calculated satisfies Equation (4.18). Note that the bisection routine used in the

algorithm for the force equilibrium analysis, is based on Brent's Method introduced

by Press et at (1986).

Cconc - Treinf - Tconc - Tpres = 0 (4.18)

The internal forces and neutral axis so found are then used to determine the internal

moment of resistance MinI and curvature ~ at the critical section using Equations

(4.19) and (4.20) respectively, corresponding to the new strain value Etoik+ 1).

~ = Elop (4.20)
c

The notation used in Equations (4.19) and (4.20) is defined in Figure 4.14.

The external loads to be applied to the structure for the next loading sequence are then

determined by equating the calculated internal moment of resistance Mint to the

external moment Mext' at the critical section. After determining the external loads for

the next loading stage, the external moments Mext to be applied to all the other nodes

are evaluated.

The external moments Mext are next compared to the cracking moments Mer at all the

nodes defined along the span (except at the critical section). If Mext is found to be

lower than Mer at any node, Equations (4.10) to (4.12) for the pre-crack state are used

to calculate the curvature at the node. However, if Mext is found to be greater than

Mm both a force equilibrium and moment equilibrium analysis are conducted at the

node to establish its curvature. This is done by first assuming a value for the concrete

strain at the extreme compression fiber Etop at the section. The force equilibrium
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analysis described earlier is next conducted at the section for the position of the

neutral axis c (iterative level one). When the neutral axis has been determined,

Equation (4.19) is used to calculate the internal moment of resistance MinI"

The moment equilibrium analysis is then performed by comparing the internal

moment of resistance Mint with the external moment applied at the section Mext. If the

two values are not within the required tolerance, the earlier assumed concrete strain at

the compression fiber is changed and the procedure repeated until Equation (4.21) is

satisfied (iterative level two).

I Mint-Mextl < tolerance (4.21)

Note that if the shear deformations described in Section 4.5.1 are to be taken into

account, the moment equilibrium equation is given by:

IMint -u.; -8Mshear I < tolerance (4.22)

where 8Mshear is the apparent increase in moments used to express the additional

stresses acting in the concrete at the level of the flexural steel due to diagonal

tensile cracking (Section 4.5.1)

When force and moment equilibrium have been ensured at all the cracked nodes, the

curvatures for these nodes are then estimated using Equation (4.20). A flowchart

illustrating the procedure adopted for the force and moment equilibrium analyses are

shown in Figures 4.15 and 4.16 respectively.

4.5 Additional Effects on the Deformation of Members

4.5.1 Effects due to Shear Deformation

Principal tensile stresses are developed in a concrete section when the section is

subjected to both flexural and shear stresses. These principal tensile stresses are

usually inclined at an angle to the axis of the beam, the angle of inclination being

dependent on the combination of flexural and shear stresses acting on the section.

When the principle tensile stresses exceed the tensile strength of the concrete, inclined

or diagonal cracks will form which will cause additional deformations to the structure.

These are referred to as shear deformations by Park and Paulay (1975). In the

proposed analytical models, the effect of shear deformation on the flexural behaviour
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of externally prestressed structures is considered by usmg the truss mechanism

described by Park and Paulay (1975) and Alkhairi (1991).

The concept of the displaced bending moment diagram was first introduced by Park

and Paulay (1975) to take account of the effect of shear deformation on flexural

members. They showed that after the formation of diagonal tensile cracks, the tension

force in the flexural steel becomes greater than that required to resist the external

moment of the section. The increase in the tension forces in the flexural steel can be

expressed as an additional moment D.Mshean which is added to the moments due to the

externally applied load Mext" For the proposed models, D.Mshear is derived using the

truss mechanism theorem and added to the external moments Mex/, at the sections

where diagonal tensile cracking occurs.

The truss mechanism adopted here uses the analogy of a truss representing a beam;

with diagonal concrete struts acting as compression members and the stirrups as

tension members.

The following assumptions are used for the truss mechanism model:

• the angle of inclination of all the diagonal struts specified in the truss model were

conservatively assumed to be 45°

• diagonal tensile cracking occurs whenever the applied shear force, Vx, exceeds the

theoretical shear strength provided by the concrete, Vc'

The calculation of the theoretical shear strength of concrete Vc in the proposed

models, are based either on the expressions given by the ACI 318-83 (1983) or the

BS8110 (1985) codes even though they are only empirical and are more applicable for

internally bonded post-tensioned structures. This is because of the lack of other

rational expressions or procedures available in the technical literature. An

unpublished report by Rubakantha and Daly (1994) states that they are presently

studying the applicability of these equations for externally post-tensioned structures.

However, in the absence of any results by them, it is considered sufficiently

conservative to use the expressions from the two codes mentioned above in the

proposed models.

According to the ACI 318-83 (1983) code, Vc for prestressed concrete members is

defined as the lesser of Vc; and Vcw given in Equations (4.23) and (4.24) respectively:
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where

v" = O.0498ffbd + f':, + v: 1\(r (4.23)».:
v'w =[(O.29ff +O.3/",)bd]+V" (4.24)

u, = _!_ (0.498ff + /",," - 1:, ) (4.25)
y/

b = width of rectangular section or web width of flanged section

d = effective depth of the section « O.8dp)

Vd = shear force due to self-weight of member at section considered

Vi = factored shear force due to superimposed dead load plus live load at

section considered under same load as Mmax

stress due to the prestress force at tension level

stress due to self weight at the tension level

compressive stress in the concrete at the centroid of the cross section or

at the junction of web and flange if the centroid is in the flange, due to

effective prestress

Vp = vertical component of prestressing force at section considered

According to BS811 0 (1985) codes, Vc for prestressed concrete members is defined by

the lesser of Vco and Vcr given in Equations (4.26) and (4.27) respectively:

where

V;" = O.037bd.JJ:,+0.37K IV.. + M,,V (4.26)
y,M M

V" = ( ~~) (J' ". +0.8r:hp)'" +Vp (4.27)

I
M" = 0.8/", - (4.28)

y,

/p, =
Ay =

stress due to the prestress force at the level of the prestress tendon

the first moment of area about the centroid of the portion above the

point in the section being considered

/pr, = allowable principal tensile stress (0.24K )
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j~p = compressive stress at the centroid

Park and Paulay (1975) used the truss mechanism theorem to derive equations for

calculating the apparent increase in moments in a cracked section due to shear

deformations; i.e. dMshear' For the truss models introduced by them, the stirrup

reinforcement was assumed to resist only tensile forces while the concrete struts were

assumed to resist only compressive forces. In deriving expressions for ~shean two

types of beam actions were considered; those with web reinforcements and those

without. The force equilibrium diagrams for the truss models with and without web

reinforcements are shown in Figures 4.18 and 4.17 respectively.

Considering the model with web reinforcement shown in Figure 4.18, the vertical

component of the force taken by the stirrups Vs and the spacing of the web

reinforcement s may be expressed as:

Vs = CcJSina = T~in~ (4.29)

s = zp (cola +COI~) (4.30)

See Figure 4.18 for explanation of the notation.

Taking moments about the centroid of the compressive force C':

M'. = M'2 +V,zp cota = T'e ; + ~T, sin~ (4.31)

where

moments at section (l) shown in Figure 4.18

moments at section (2) shown in Figure 4.18

Substituting Equations (4.29) and (4.30) into Equation (4.31), and rearranging the

resulting equation; the force in the tensile reinforcement T' may be expressed as:

T'= M'2 + V, (cota +cot B] (4.32)
«, 2

Studying the model without web reinforcement shown in Figure 4.17, similar

derivations may be performed on the model and the increase in the tensile force in the

tensile reinforcement contributed by the concrete T" is given by:

Mil
T" = __ 2 + Vc cota (4.33)

Zd
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where
\,1"" -
,iVl ,- moments at section (2) shown in Figure 4.17

Combining the two mechanisms shown in Figures 4.17 and 4.18:

V~= Vc + Vs (4.34)

M, = M'] + M"2 (4.35)

T; = T' + T" (4.36)

Hence the total tension force in the flexural reinforcement in section (2) may be

expressed as:

T, = MT +Vccotu+V,(cotu-cotp) (4.37)
zp 2

v V, - V .. d d h . be si lif dIf the term 11= _.I =' < IS mtro uce ,t e equation may e simp 1 le to:
V, V,

I: = M., + ~ v., (4.38)
zp d

From Equation (4.38), it is evident that after the formation of the diagonal tensile

cracks, the tension force T, in the flexural steel is increased and can be expressed as an

apparent additional moment, which is added to the external moment acting on the

section:

Mint = Mex' + llMshear ............................•..•.................•.............................. (4.39)

llMshear = e, Vx (4.40)

Note that Vx, M, and T, are the total shear force, moment and flexural tension force at

the section considered respectively.

4.5.2 Tension Stiffening

When a concrete flexural member is loaded, cracking will occur at sections where the

tensile strength of the concrete has been exceeded. At these cracked sections, all the

tension is usually assumed to be carried by the reinforcement. However, between the
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cracks, some of the tension is transferred from the reinforcement to the concrete

through the action of bond stresses. Billig (1960) reported that, before cracking, the

distributions of stress in the steel and concrete along the line of the reinforcement in

the tensile zone were observed to be uniform; but after cracking both distributions

changed to wave-shaped profiles. For the concrete tensile stress this is characterised

by zero concrete stress at the cracked sections and maximum concrete stress at the

sections lying midway between the cracks. As a consequence of the greater flexural

rigidity in the uncracked concrete between cracks, overall stiffness of the beam will be

enhanced, an effect known as tension stiffening.

The deformation of a structure is usually predicted by integrating the curvatures

evaluated along the span using Equations (4.5) and (4.6). It is common practice to

determine the curvature at cracked sections by assuming that the sections are fully

cracked, and ignoring the tension in the concrete. However since the effects of

tension stiffening are ignored, this will over-estimate the deflection. In order to

incorporate the effects of tension stiffening in the proposed analytical models, the

mean curvature method discussed by Ghali (1993) was adopted.

The mean curvature method uses a smeared crack methodology for considering the

effects of tension stiffening in cracked concrete structures. In the method, two

extreme states of behaviour are assumed for a cracked section termed State I and State

II. State I assumes that the section is uncracked and the curvature CPI of the section is

calculated using Equations (4.10) to (4.12), given in the pre-cracked analysis (Section

4.4.1). In State II, the section is assumed to be fully cracked and the curvature CPII of

the section is calculated by using the procedure described in Section 4.4.2 for the post-

cracked analysis. Note that integrating the curvatures in State I will always under-

estimate the deformation response of the cracked structure while using curvatures in

State II will always over-estimate it. In order to consider the tension stiffening effect

in cracked structures, the mean curvature method uses a variable known as mean

curvature CPm. The mean curvature CPm lies between the values of the two extreme

curvatures CPI and CPII (Equation (4.41)), and may be estimated by using the equation

given in the CEB-FIP model code (1978) shown in Equation (4.42).

CPI < CPm < cpl/ (4.41)
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<1>", =(l-C;)<I>, +~<I>II""'"'''''''''''''''''''''''''''''''''''''''''''''''''''' (4.42)

where

P= PIP2
PI = 1 for high bond bars

P2= 1 and 0.5 for first loading and for loads applied in a sustained manner

or for a large number of cycles respectively

Ghali (1993) showed that the deflection of a flexural concrete member can be

determined quite accurately using the concept of mean curvature <l>m described above.

4.6 Material Constitutive Models

One of the assumptions used for building the non-linear analytical models is that the

material constitutive models are known. Hence, sets of material stress-strain

relationships have been taken from various sources (i.e. BS8110 (1985), Naaman and

Harajli (1985) and Saenz (1964)) and incorporated into the algorithms of the computer

programmes developed here for the analysis of externally post-tensioned structures.

This section describes the various concrete and steel constitutive relationships used in

the investigation, although the facility exists to incorporate other material models in

due course.

4.6.1 Concrete

The stress-strain curves for concrete may be divided into three distinct parts:

• the first part is depicted by a near linear curve, which extends up to about 30% of

maximum compressive strength

• between 30% - 90% of the maximum compressive strength, the gradient of the

stress-strain curve decreases gradually to zero at the peak point

• beyond the peak point, the slope of the stress-strain curve descends until crushing

failure occurs at ultimate strain Ecu'

The profiles of the stress-strain curve for concrete are similar for low, normal and high

strength concrete, although, for higher strength concrete, the initial slope is higher as a
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result of the higher modulus of elasticity for such materials. Also, since higher

strength concrete tends to behave in a more brittle manner; the stress drops off more

sharply after peak than it does for concrete of low strength.

The strength of concrete may either be defined by conducting a cylinder testj", (used

in the United States) or a cube testfcu (used in the UK). According to Lin and Bums

(1982), the strength of concrete obtained from a cylinder test is within 70%-90% of

the strength obtained from a cube test; that is:

1.25 f'e =fcu · (4.43)

The tensile strength of the concrete may be evaluated by means of bending tests

conducted on plain concrete beams. The tensile strength in flexure, known as the

modulus of rupture, f,., is then computed from the flexural formula MlZ, where M is

the bending moment at the failure of the specimen and Z is the section modulus of the

cross section. Approximate relationships for the modulus of rupture are also given by

the following authors:

• Park and Paulay(1975):

I,= kft psi (4.44)

where

k = 7 - 13 (7 often used)

• Naaman (1982):

Normal weight concrete: f, = 75ft psi to 12ftpsi (4.45)

Light weight concrete: f, =5Epsi to 9ft psi (4.46)

• Chen (1982):

I. = 7.5J!:ipsi (4.47)

Due to the low tensile strength of concrete, concrete in tension is usually ignored in

strength calculations of concrete members. However, as it was intended to take the

tensile strength of concrete into account in the proposed models, the stress-strain

curve in tension was idealised by a straight line up to the tensile strength. Within this

range the modulus of elasticity in tension was assumed to be the same as that in

compression.
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The three concrete constitutive models incorporated into the computer programmes

are:

• 8S8110 (1985) model

Figure 4.19 shows the stress-strain curve for concrete, taken from BS811 0 (1985).

Note that the factor 0.67 used in the model takes into account the relationship

between the measured characteristic cube strength Z, (in Nzmm'') and the bending

strength of the flexural member. It is a coefficient and not a safety factor. The

material safety factor, Ym' for flexure and axial force is recommended in BS8110

(1985) to be 1.5.

• Saenz (1964) model

Chen (1982) introduced the concrete constitutive model suggested by Saenz

(1964). In this model, the stress-strain curve for the concrete is divided into two

distinct portions, i.e. the ascending and descending portion (Figure 4.20). The

ascending branch of the stress strain curve is given by

fc_. = E"E 2 ••••••••••••••••••••••••••••••••••••••••••••••••••••••• (4.48)

1+[(%J -2I:J +(:J
where

I': =u

tangent modulus of elasticity at zero stresses

maximum compressive strength (cylinder test)

corresponding strain esf';
crushing strain

E =o

I': =c

E=s

And the falling branch is assumed to be a straight line passing through two points

(fc' Ec) and (O.2/,c' 4I':u)·

• Naaman and Harajli (1985) model

The concrete constitutive model suggested by Naaman and Harajli (1985) was

taken from the works of Wang (1977) and Ahmad (1981). The proposed model

takes the form of a single empirical relationship between stress and strain:
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f= x F, ksi (4.49)

where

Ecm = 0.001648 + 0.000114f'c (ksi)

A.B.C,D = coefficients used and values are given in Table 4.1.

While simple to incorporate within computer models, one of the limitation is that

the coefficients A. B. C and D were only given for a few values oif":

4.6.2 Reinforcing Steel

Typical stress-strain curves for steel reinforcement are usually characterised by an

initial linear elastic portion, a yielding plateau, a strain hardening range in which

stress again increases with strain and finally a range where the stress drops off until

fracture occurs. Two steel constitutive models were incorporated into the non-linear

analytical models:

• 8S8110 (1985) model

BS8110 (1985) recommends a simple elastic perfect plastic curve to represent the

stress-strain relationship of reinforcing steel (Figure 4.21). Though only an

approximation, it has the advantage of being simple and conservative.

• Naaman and Harajli (1985) model

Naaman and Harajli (1985) proposed the following expressions for plotting the

stress-strain curve of steel reinforcement:

Is = E~s············· ····· .. · · .. · .. ·· (4.50)

Is =J;, (4.51)

For s, ~ Esh then;

( )[I-E<II(E,,-E.n)]I. = Iy + E,h E, - E ,<II 4(/.11 _ iy) (4.52)
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where

E, = modulus of rupture

Esh = modulus of elasticity of the strain hardening portion

Esh = hardening strain

Esu = ultimate strain

fsu = ultimate strength

Ey = yielding strain

h = yielding strength.

Note that the recommended values for the variables used in Equation (4.52) for

Grade 60 if;= 413.7 Nlmm2) steel are listed in Table 4.2.

Using the model suggested by Naaman and Harajli (1985) will take strain hardening

into account which is neglected in the model proposed by BS811 0 (1985).

4.6.3 Prestressing Steel

The stress-strain curve of prestressing steel may be represented by three successive

portions; namely, an initial elastic portion up to the proportional limit, a non-linear

portion with gradually decreasing slope and a final almost linear strain-hardening

portion with a small positive slope leading to failure. Because the yielding of

prestressing steel is usually not well defined, the yield strength is determined

according to a strain criterion. Two prestressing steel constitutive models were

included in the non-linear computer programme:

• 8S8110 (1985) model

BS8110 (1985) gives the stress-strain relationships for vanous types of

prestressing steel materials. These relationships are illustrated in Figure 4.22.

• Naaman and Harajli (1985) model

The stress-strain relationship proposed by Naaman and Harajli (1985) is given by:

(1- Q)
ip,=Ep,Ep"Q+ N liN (4.53)

[1+(E~j J
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where:

Eps =

./;.1=
Q,K,N=

modulus of elasticity of the prestressing steel

prestressing steel yield stress

coefficients (values given in Table 4.3)

4.7 External Beamswith Deviators

The global algorithm presented in Section 4.3 was used for all the eight analytical

models proposed in the investigation. However, for the non-linear models, EXT5 to

EXTlO, which were developed for analysing externally prestressed structures with

deviators placed along their spans, additional routines were included into the global

algorithm to reflect the influence of frictional effects at the deviators.

Sections 4.7.1 and 4.7.2 describe the additional analytical procedures used to predict

the flexural behaviour of externally prestressed structures assuming that (1) the

tendons are fixed at deviators, and (2) the contact points are frictionless at deviators,

respectively.

In order to consider the deviator friction in the analysis, the conditions for slippage to

occur must first be defined in the algorithm. In general, slippage will occur whenever

the out of balance force flJ at a deviator is greater than the frictional resistance df
generated. Hence, procedures must be included to enable the frictional resistance dJ
and out of balance force flJ to be determined at each loading stage. Once slippage is

detected at a deviator, the stresses in the tendon on either side of the deviator will be

redistributed. Section 4.7.3 presents the additional routines included into the global

algorithm to take account of these effects.

4.7.1 Tendons Fixed at the Deviators

EXT5 and EXT6 are analytical models developed to analyse externally post-tensioned

structures with deviators, with the assumption that the tendons are fully fixed at the

deviators. The input files for running these analytical models must include

information regarding the number of deviators and their locations. The initial residual

prestress force in the tendons at each spacing between deviators need to be defined
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separately in the input files. Note that the spacing between a pair of deviators IS

referred to as the deviator spacing in this text (see Figure 4.25).

For EXT5 and EXT6, the elongations of the tendons at each deviator spacing are

analysed individually using Equation (2.22). Equation (4.7) is then used to determine

the corresponding strain increases, the stress increases being determined subsequently

from the prestressing steel constitutive model. Since the tendons are assumed to be

fixed at the deviators, no redistribution of stress between the deviators is conducted in

the analysis and any stress increase is dependent only on the movement of the contact

points.

4.7.2 Contact Points Assumed to be Frictionless

The contact surfaces at the deviators are assumed to be frictionless for the analytical

models EXT9 and EXTIO. Similar to the case where tendons are assumed to be fixed

at the deviators (Section 4.7.1), the number of deviators and their locations must be

defined in the input files. However, the initial residual prestress force is now assumed

to be the same throughout the whole span.

The initial total length of the tendons ~s(inilial), spanning between the anchorages, is

first determined. When the beam is loaded, the new total length of the tendons ~s(new)

between the anchorages is evaluated from the deflected profile of the whole beam.

The elongation of the tendons is then calculated using Equation (4.54)

!1fps = ~s(new) - ~S(inilial)·················· ............•.• ··········· ...•..•..••...•••..•...••••.•••... (4.54)

The strain increase in tendons throughout the entire span is next calculated using

Equation (4.7), followed by the stress increase determined from the material stress-

strain relationship.

4.7.3 Frictional Effects at Deviators Considered

EXT7 and EXT8 are analytical models designed to analyse the flexural behaviour of

externally post-tensioned structures with deviators in which the possibility of tendon

slippage at the deviators and the redistribution of stress due to this slippages are taken

into consideration. This is done by incorporating a frictional slippage model,

developed by the author, into the global algorithms of EXT7 and EXT8.
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Due to the extensive procedures involved with the proposed model, it is divided into

three analytical stages:

1) slippage check analysis

2) force equilibrium redistribution analysis

3) tendon slip redistribution analysis.

This section describes briefly, with the help of an example, how each stage of the

frictional slippage model is introduced into the analytical models EXT7 and EXT8.

In the first stage of the frictional slippage model (i.e. slippage check analysis), the

slippage conditions at all the deviators placed along the span of the structure are

determined. This is performed by first assuming that the tendons are fixed at the

deviators (see Section 4.7.1) and no movement is allowed. Using this assumption, the

deflected shape of the beam due to external loading is estimated. A localised force

equilibrium analysis is then conducted at all the deviators using the prestress force in

the tendons evaluated from the deformation of the structure. Figure 4.23 shows the

various forces acting on a typical deviator. The normal force N', frictional resistance

df and out of balance force ~f, shown in Figure 4.23, are determined with Equations

(4.55), (4.56) and (4.57) respectively.

N'=F" . +F" . A (455)(i)slna. (i+/)slnjJ...................................................................... .

df= N'Il (4.56)

~f= IF(i) - F(i+I)I (4.57)

where

F = horizontal component of prestress forces acting at deviator

i = subscript to indicate the deviator spacing number

After evaluating df and 4f at all the deviators, the slippage conditions are defined

using Equations (4.58) and (4.59).

No slippage occurs at the deviator when:

~f:5 dl·····················.····.····.·..· · (4.58)

Slippage occurs at the deviator when:

Ill> df·· ..····· ..··· ..· ···· ..·..·..·..·· (4.59)
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After the slippage conditions for all the deviators have been determined. stage two of

the frictional slippage model involves performing a force equilibrium redistribution

analysis on the structure. The purpose of conducting such an analysis is to obtain a

preliminary estimation of the amount of stress to transfer on either side of the

deviators where slippage has occurred, to satisfy the force equilibrium conditions.

In this analysis, when slippage is detected to occur at a deviator, stresses are

transferred on either sides of the deviator to maintain force equilibrium. However,

redistributing the stresses to maintain force equilibrium at a particular deviator will

often affect the global force equilibrium conditions at other deviator locations. For

this reason, stresses may need to be redistributed again to ensure that the global

equilibrium of forces in the tendons between deviators are satisfied. Conversely,

conducting such a global force redistribution analysis alone to maintain global

equilibrium of forces, may upset the localised equilibrium conditions achieved earlier.

As a result, the localised and the global force equilibrium analyses should both be

conducted simultaneously, since the two analyses are dependent on each other. The

proposed force equilibrium redistribution analysis has been designed to achieve this.

The procedure for the force equilibrium redistribution analysis performed on

structures with only one deviator is different than for those with more than one

deviator. For structures with only one deviator placed along their span, the force

equilibrium redistribution analysis is performed as follows (see Figure 4.23 for

notations used):

If F{i) > F(i+l)' a force F'ransjer is transferred from deviator spacing i to deviator spacing

i+ J to maintain force equilibrium at the deviator; i.e.

Sf= df

(F(i;-F,ransfer) - (F(i+l) + F,ransjer) = df· ...... ·....··.... ································ ....... (4.60)

Rearranging Equation (4.60):

F,ran.f/er = ~(( F(i) + F(i+I») +df) (4.61)

If F(i) < F(i)+l' a similar derivation can be made to derive an equation for F,ransjer in this

condition:
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F;ram(er = - ±((Fi,) - Fi'+I)) +df) (4.62)

Hence Equation (4.61) or (4.62) may be used to estimate the amount of force to be

transferred when only one deviator is present in the external system depending on the

direction of the slip.

If more than one deviator is included in an external structure, the redistribution of

forces must be conducted in such a manner as to ensure that the localised and global

equilibrium of forces at all the deviators are maintained. The methodology adopted in

the model to conduct such a redistribution, can best be explained with an example.

Figure 4.24 shows an externally prestressed structure with four deviators. From the

figure, a set of equations can be derived by studying the localised force equilibrium

conditions at the deviators.

At deviator d.:

(F(2) - Ftrans/er(l) + Ftrans/er(2) - (Ftrans/er(l) + F(/) = dl(/)

-2Ftrans/er(l) + Ftrans/er(2) = (F(I) - F(2) + dl(l) · .. · · · · (4.63)

At deviator d2:

(F(3r Ftrans/er(2) - Ftrans/erm) - (F(2) + Ftrans/er(2) - Ftrans/er(l) = dim

Ftrans/er(/;-2Ftrans/er(2) - Ftrans/er(3) = (Fm - Fm) + dl(2) (4.64)

At deviator d.:

(Fm - Ftrans/er(2) - Ftrans/erm) - (F(4) + Ftrans/er(3) - Ftrans/er(4) = dim

Ftrans/er(2) + 2Ftrans/er(3) - Ftrans/er(4) = (Fm - F(4) - dim (4.65)

At deviator d4:

(F(4) + Ftrans/er(3) - Ftrans/er(4) - (F(5) + Ftrans/er(4) = df(4)

-Ftrans/er(3) + 2Ftrans/er(4) = (F(4) - F(5) - df(4) (4.66)

Equations (4.63) to (4.66) are then grouped into matrices and solved by using the

Gauss-Jordan Elimination Method (Press (1986» for the values of Ftrans/erO)' Where

the subscript j denotes the deviator number. After Ftrans/er(j) for all the deviators are

evaluated, the redistributed horizontal prestress force components F'(i) are determined

using the following equations:
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F'rll = Frll + Frransfer(/I (4.67)

F'rl} = Frl) - Frransfer(/) + Frrans(errll (4.68)

F'(3) = F(3) - F,rans(er{2) + F'rans(er(3I (4.69)
- -

F'r-l) = Fr-l) - Frrans(er(3) + Frransfer(./I (4.70)

F'(5) = F(5) - Frransfer(.l) (4.71)

The new horizontal prestress forces F'(i) are subsequently converted to stresses I'(i).

The new effective prestress I'pe(i) of the tendons in each deviator spacing after

redistribution are then computed using Equation (4.72):

J'pe(i) = J'm - !:l/pS(i)· (4.72)

where:

I'pem =

I'(i)=

4/'pS(i) =

new effective prestress in deviator spacing i due to redistribution.

new stress in deviator spacing i after redistribution of stresses.

change in prestress in deviator spacing i due to deformation of the

structure.

The redistributed effective prestress f'pe in the tendons for each deviator spacing is

next changed to an equivalent strain value E'pe, using the stress-strain model of the

prestressing steel. The slippage strains !:lEsIiPO) for the deviator spacings shown in

Figure 4.25 are consequently computed by solving Equations (4.73) to (4.77).

E 'pe(l) = Epe(/) + !:lEslip(/) (4.73)

E 'pe(2) = Epe(2) - !:lEslip(I) + !:lEslip(2) · (4.74)

E 'pe(3) = Epe(3) - !:lEslip(2) + !:lEslip(3) (4.75)

E 'pe(4) = Epe(4) - !:lEslip(3) + !:lEslip(4) (4.76)

E 'pe(5) = Epe(5) - !:lEslip(4) (4.77)

However, Equations (4.73) to (4.77) are derived based only on satisfying the force

equilibrium conditions at the deviators. When tendons slip at the deviators, the

slippage actually result in a change of tendon length from one deviator spacing to

another, and not just a variation in the stress and strain values. As such, it is necessary

to check the redistribution again, this time considering the change of tendon length,

i.e. tendon slip gO)' from one deviator spacing to another. This redistribution analysis
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is referred to as the tendon slip redistribution analysis, and is conducted at the third

stage of the frictional slippage model.

Figure 4.25 shows a simplified sketch of how the tendon slip redistribution analysis is

conducted and the various variables used in the analysis. Note that two new variables

are used in this analysis, kU) and g(j)' The variable k(j)' which is either +1 or -1, gives

the direction of the slippage movement, i.e.;

If r.,s F(i+I) then

kw = +1 (4.78)

If F{i) > F(i+I) then

kU) = -1 (4.79)

The variable g(j) is the tendon slip occurring at the deviators, that is, the amount of

tendon movement from one deviator segment to another. The tendon slippages g(j) at

deviators d, to d, of the externally prestressed system shown in Figure 4.25, are

calculated using Equations (4.80) to (4.83) respectively. Note that the derivations of

Equations (4.80) to (4.83) are also shown in Figure 4.25.

g(l) = f(/)!1Eslip(l) (4.80)

g", = [8£',p(2) + k(~(~( I) ] :::: (4.81 )

gm = [8£"".) + k(7(~(')] :::: (4.82)

g(4) = f(4)!1Es/ip(4) (4.83)

where

R(i) = length of the deviator spacing i

After evaluating the tendon slippage occurring at all the deviators, a new estimation of

the changes in strain at the deviators !1E'sliP(i) are given by Equations (4.84) to (4.88):

, k(l)g(l)
!1E'IiP(I) = (4.84)

R (I)
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-k(l)g(l) + k(2)g(2)
~E',,,p(2) = (4.85)

€(2)

-k(2)g(2) + k(3)g(J)
~E',/,p('.)= .••••••••••••••••.••••...•...•...•.......•.••••••••••....•.•.•..••• (4.86)

Rp)

-k(3)g(3) + k(4)g(4)
~E' 1/IP.(4) = ji(2) (4.87)

I k(5)g(5)
~E ,/ip(5) = (4.88)

R (5)

The new changes in strain in the tendons ~E 'sliP(i) are then converted to equivalent

stress changes 4f'slip(ij' and added to the initial effective prestress /pe(i) of the tendons,

to provide the redistributed effective prestress i'pe(i) (see Equation (4.89»). The

deformation of the structure is re-analysed with the new effective prestress forces, and

the non-linear procedure continued until a stable solution for the structure is obtained

for the particular load stage being analysed.

f'pe(i) = /peri) - 4f"slip(i) (4.89)

The external system given in Figure 4.25 shows a typical even arrangement beam with

four deviators. The term even arrangement refers to an even number of deviators

placed in the structure; while an odd arrangement refers to an odd number of

deviators used. The procedure for the tendon slip redistribution analysis, described

above, can be adopted for any beam with an even number of deviators. However,

when an odd arrangement of deviators is specified, the tendon slip redistribution

analysis is conducted slightly differently.

Figure 4.26 shows an odd arrangement externally prestressed beam with three

deviators. The procedure for the tendon slip redistribution is conducted as explained

for the even arrangement beam (shown in Figure 4.25), except that at the middle

deviator of the structure, two equations are derived for the tendon slip, g(middle deviator)'

Equations (4.90) and (4.91) gives the two equations obtained for deviator d] shown in

Figure 4.26:
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K, = [ t.E ",,'PI + k;~,1:: ·...H....... ...(4.90)

g2 = [-dE.'''1'(3) + k3g3]!J_ (4.91)e 3 k2

The average of the two values evaluated for the middle deviator is used in the

proposed redistribution analysis.

An algorithm has been designed to incorporate the frictional slippage model presented

in this section into EXT7 and EXT8.

4.8 Termination Conditions

The analytical models proposed in this investigation have been designed to simulate

the flexural responses of simply supported externally prestressed beams up to the

ultimate conditions. In these models, loads are applied on the externally prestressed

structure in increments, until the structure reaches ultimate limit state. For each

incremental load stage, the stress increase in the tendons and the change in

eccentricity of the tendons are estimated based on the deformed profile of the

structure.

The loading methods used in the proposed algorithm are different for the pre-crack

and the post-crack analyses. Before cracking, load increments are added directly on

the structure until cracking occurs. After cracking, the strains at the extreme

compression fiber of the concrete at the critical section are increased incrementally,

and the amount of load to be placed on structure at each stage are subsequently

determined. Hence, unless some pre-set conditions are specified in the algorithms to

terminate the analysis, the algorithm will continue increasing the external loads and

analysing the structure with the increased loads endlessly.

These pre-set conditions programmed into the proposed models are referred to as the

termination conditions of the models, and they determine whether or not the execution

of the computer analysis should be stopped. The termination conditions include:

I) Termination condition 1: The external moment at the critical section for each

loading stage is analysed by increasing the strain of the concrete at the extreme
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compression fiber. When this moment increase is less than 0.05% from that of

the previous load stage, for a total of five load stages continuously, the

analysis will be terminated.

2) Termination condition 2: The analysis is terminated when the tensile

reinforcement strain exceeds the specified ultimate steel strain.

3) Termination condition 3: The analysis is terminated when the concrete

compressive strain at any node exceeds the specified ultimate concrete strain.

4) Termination condition 4: In the post-crack state, a force equilibrium analysis is

conducted to estimate the position of the neutral axis. When no solution is

derived from this analysis after performing 50 iterative cycles, the programme

will be stopped.

5) Termination condition 5: When no solution is obtained for the stress increase

in the tendons ll./ps in the analysis for the uncracked state after 20 iterative

cycles, the programme will be terminated.

6) Termination condition 6: When no solutions are obtained for the variations in

tendon eccentricity ll.eccen before cracking, after 20 iterative cycles, the

programme will be terminated.

7) Termination condition 7: The analysis is terminated when no solutions are

derived from the bisection method conducted to locate the cracking point in

the load-deflection curve.

8) Termination condition 8: When no solution is obtained for the stress increase

in tendons ll./ps at the post-crack state after 20 iterative cycles, the programme

will be terminated.

9) Termination condition 9: When no solutions are obtained for the variations in

tendon eccentricity ll.eccen after cracking, after 20 iterative cycles, the

programme will be terminated.

10) Termination condition 10: When no solutions are obtained for the change in

tendon stress due to slippage at the deviators 4I'slip before cracking, after 20

iterative cycles, the programme will be terminated.

11) Termination condition 11: When no solutions are obtained for the change in

tendon stress due to slippage at the deviators 4I'slip after cracking, after 20

iterative cycles, the programme will be terminated.
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12) Termination condition 12: When convergence problems are encountered due

to the occurrence of large deflections (see Section 5.4) the analysis will be

stopped.

Not all the termination conditions listed above are applicable for all the proposed

analytical models because the requirements for each individual model are different. In

fact, the algorithms for all the models were designed in such a manner that

termination conditions could easily be removed, added or changed.

4.9 Concluding remarks

A short study was conducted here to determine if the finite element method was the

most appropriate non-linear analytical tool to be used in this research investigation to

simulate the behaviour of externally post-tensioned structures. However, because of

the problems encountered (see Section 4.2) and the large amount of computing time

required for solution, it was therefore not considered an appropriate approach to be

used for this investigation.

As a result, eight non-linear analytical models were developed, denoted EXT3 to

EXTIO respectively, which may be used to analyse the flexural response of simply

supported externally prestressed structures up to the ultimate conditions. These

proposed analytical models take into consideration the second-order effects, shear

deformations, tension stiffening and tendons slippage at the deviators.
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External Tendons

Figure 4.1 : Externally prestressed beam with straight tendons fixed at the anchorages

Fixed

External Tendons

Figure 4.2 : Externally prestressed beam with deviated tendons where tendons are also

fixed at the deviators

Frictional sLippage

External Tendons

Figure 4.3 : Externally prestressed beam with deviated tendons where frictional slip is

permitted
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Friction less

External Tendons

Figure 4.4 : Externally prestressed beam with deviated tendons

where contact points are assumed frictionless

ANSYS 5.0
MAY 25 1994
16:45:59
PLOT NO. 9
DISPLACEMENT

SUB .1
TIME=450
RSYS.O

DSCA=194.405
ZV .1
DIST=24.312
XP .22.076
YF .-1. 401
CENTROID HIDDEN

Figure 4.5 : One-dimensional line element model eVER2)

at design ultimate condition.
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ULTIMATE LOADING

Figure 4.6 : Two-dimensional plane element model (VER5)

at design ultimate condition.

ZV =1
DIST=24.905
XF =22.642
YF =-2.057
CENTROID HID
• -O.201E
• -O.176E
• -0.152E
• -O.127E
• -0.103E

-O.7BIE
D -O.536E

-O.291E
• -466567

O.19BE+

60000 -,------------------------------- ---
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10000 -4- VER5 (Fini1e Element Model)
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o~----+----~----+-----~------+------,_-----~
o 14060

Oeflec1lon (mm)

Figure 4.7 : Moment-deflection curves for beam taken from

full scale test conducted by Takebayashi et al (1993)
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~m"n(k,i) = 0
~hJk)=0

Calculate the eccentricities along the span:
e(k,i) = e,.",oAi) + ~,cc<n(k,i)

Calculate the prestressing force in the tendons:
P(k) =Ap,(he + ~hlk))

Calculate the cracking moment at -ach node: Mc,.{k,i)

Check the conditions for the analysis of curvatures:
if M,(k,i) < Ma(k,i) then conduct Pre-crack Analysis
if Me(k,i) > Mer (k,i) then conduct Post-crack Analysis

Evaluate the rotations and deflections along the span:
8(k,i) = 1 <P(x) dx
~(k,i) =1 x <P(x) dx

Change:
6./ps(anurncd) = 6.J;,.f(cakuialcd)

From the deformation data, calculate the new ~h.,and ~ecc'n

Change:
6.eccen(assumcd) = Lleccen(calculated)

Add load for next loading sequence

Figure 4.8 : Flowchart showing the global algorithm of the proposed models
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QJ ~ r ~ ~ ~ r=J/507 • • •

~

•
7Y77

Node

Figure 4.9 : Definition of nodes along the idealised beam

Xi

<P(X)

Curvature distribution

Ll2

L1.

Deflection profile

Figure 4.10 : Curvature and deflection profiles for the idealised beam
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I

I

- f,(i) - J"
\
\
\

- \
2\
\____ ...l

---

Original tendon prom{

Deflected tendon profile

Where:
«r
e2=
e'>
e.>
8/,8]=
exCi)=

the eccentricity of the tendons at anchorage 1
the eccentricity of the tendons at anchorage 2
the new eccentricity of tendons at anchorage 1
the new eccentricity of tendons at anchorage 2
rotations at anchorages 1 and 2 respectively
the eccentricity of the tendons at point i due to rotations at the
anchorages only
new eccentricity of tendons at point i
vertical deflection at point i

ex '(i)=
~(i)=

Figure 4.11 : Evaluation of the change in eccentricity

NA

Figure 4.12 : Strain distribution along the depth of a section before cracking
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Cracking moment

/ Moments for the next load
stage calcul ated using the
bisection algorithm,

Moment

-.'.
~.'~-- Moments for next load

stage calculated using:
Mex,(k+ 1)= Mer,(k)+M",,"

Detlection

Merl(l) dead loads considered only

Figure 4.13 : Moment-deflection diagram up to the onset of cracking

/

c

Prestressing steel /
/

Reinforcement steel " e" I
___ I/

Idealised strain
distribution

Idealised stress
distribution

Figure 4.14 : Idealised stress and strain distribution over the depth of a typical

cracked section
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The upper and lower bounds for the neutral
axis are first defined.

Change the two bounds
for the position of the
neutral axis according to
Brent's bisection method.

The mid value of the two bounds is assumed as
the neutral axis position
c 'as,\'IImed = (c 'IiPper + C "ower) 12.

For the assumed position of the neutral axis c 'assllmed; the forces
acting on the section are evaluated:
• The concrete compressive force Cconc and tensile force Tconc are

evaluated by integrating the stresses along the depth of the
section.

• The compressive and tensile forces acting on the section due to
the reinforcement and prestress tendon Treinf, Creil!! and Tpm, are
estimated from the strain diagram and stress-strain models.

The sum of the compressive forces Clolal and tensile forces Tlolal

acting on the section is calculated.

Equate:
c ' = C 'assumed

END

Figure 4.15 : Flowchart illustrating the force equilibrium algorithm used in the

computer programmes
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I Start
0' I

...
The upper and lower bounds for Etop are first
defmed.

y~

The mid value of the two bounds is assumed as the concrete strain at
the extreme compressive fiber of the node being analysed
E1up(as.Hlmed) = (E,up(lIpper) + E(op(/ower)) 12.

~
Check if diagonal tensile cracking occurs at the node.

Change the two bounds for If diagonal tensile cracking ooccurs then;

the E,op according to Brent's M,ora' = Me + I1M"hear

bisection method. else
M(()la'= Me

J.
Perform a force equilibrium analysis on the section to determine
the position of the neutral axis and the internal forces (see figure
4.9).

~
Evaluate the internal moment of resistance MinI with the
calculated internal forces from the force equilibrium analysis.

C§
~

~
Equate:

E =Elop toptassumed)

~END

Figure 4.16 : Flowchart illustrating the moment equilibrium algorithm used in the

computer programmes
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2

C"

Figure 4.17 : Shear failure mechanism for a beam without web reinforcement

Stirrup s/2

.'

Diagonal strut

I

CD

C'

T'

Figure 4.18 : Shear failure mechanism for a beam with web reinforcement
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Stress

Parabolic

0.67Iu
y",

I
_ L _

I

I

Strain

2.4 X 10--1 rz:V~ 0.0035

where

s, = 5.5~fc" KN I mm?
Y III

Figure 4.19 : The stress-strain curve for concrete taken from BS811 0 (1985)

Stress

O.2f ----------------------------~~~

4Eu Strain

where

e, = 33wJ5 fflb/in2

Figure 4.20 : The stress-strain model for concrete suggested by Saenz (1964)
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Stress

Strain

Figure 4.21 : The stress-strain model for steel reinforcement recommended

in BS811 0 (1985)

Stress

Strain
0.005

whereE,:
205 KN/mm2 for wire section two ofBS 5896: 1980
195 KN/mm2 for strand section three of BS 5896 : 1980
206 KN/mm2 for rolled or rolled stretched and tempered bars to BS 4486
165 KN/mm2 for rolled and stretched bars to SS 4486

Figure 4.22 : The stress-strain model for prestressing steel recommended

in BS8110 (1985)
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N'

F" ,

.__
df

F;=F";cos a

Figure 4.23 : Forces acting at a deviator

Anchorage 1 d, Anchorage 2

1 F_, ~----F-2----~-----F-3-----I-----F-4-----~
--+

df,

FlramJer'

F;=
dJj=
F,ransftrj =
i=
j=

horizontal prestress force
frictional resistance generated at deviators
horizontal transfer force to maintain equilibrium
Subcript to denote deviator spacing
Subscript to denote deviator

Figure 4.24 : Force redistribution diagram
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Slippage Direction:
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Figure 4.25 Tendon slip redistribution analysis for beams with an

even number of deviators
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Tendon slippage
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Figure 4.26 : Tendon slip redistribution analysis for beams with an

odd number of deviators
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rcCksi) Ascending Portion Descending Portion

AI BI Cl 01 A2 B2 C2 02

5 1.50886 -0.5292 -0.4911 0.47080 0.78813 -0.0503 -1.2118 0.94970

7 1.40631 -0.6998 -0.5936 0.30016 0.37260 -0.0185 -1.6274 0.98141

9 1.35586 -0.7697 -0.6441 0.23024 0.22156 -0.0095 -1.7784 0.99041

Table 4.1: Coefficients for the concrete model adopted by Naaman and Harajli (1985)

Grade fy(ksi) EsCksi) ey Esh(ksi) esh fsu(ksi) esu

60 60.0 29760.0 0.0020 1222.0 0.0091 98.6 0.00730

Table 4.2: Constitutive model values for grade 60 steel recommended by Naaman and

Harajli (1985).

Grade fpu Eps epu fpy N K Q
(ksi) (ksi) (ksi)

270 278.0 27890.0 0.069 243.5 7.344 1.0618 0.01174

235 244.0 29300.0 0.087 222.0 8.060 1.0325 0.00625

160 160.0 28790.0 0.041 141.8 7.100 1.0041 0.01750

Table 4.3: Q,K,N coefficients used in the prestressing tendon constitutive model

recommended by Naaman and Harajli (1985).
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Chapter 5

Verification of Models

5.1 General

The proposed non-linear analytical models designed for simulating the flexural

behaviour of externally post-tensioned structures up to the ultimate limit state have

been presented in Chapter Four. Before these non-linear models can be used for any

practical purpose, they first need to be validated by showing that the results obtained

from them are in close agreement with those from reported experiments. This process

for verifying the authenticity of the computer models was conducted in the

investigation and is presented in this chapter.

A total of seventeen beams tested by Yaginuma and Kitada (1987, 1988, 1989) and

Zhang et al (1993) were used for the verification process. A brief description of these

beams and the reasons why they were used are presented in Section 5.2. Although all

these beams were simply supported and prestressed with external tendons, they had

different cross sectional properties (rectangular or T-shaped), loading patterns (point

load at mid-span or two equi-distant point loads), tendon profiles (straight or

deviated), span-depth ratios (values ranged from 12 - 32) and non-prestressed

reinforcement ratios. These were selected to ensure that the non-linear analytical

models were valid for a wide range of beam parameters.

In Section 5.3, a detailed discussion is presented on the comparison between the

results obtained from the proposed computer models and the experiments. Note that

all analyses conducted here were performed using the Silicon Graphic computer

Challenge XL MIPS 4400 CPU. The relationships used for making this comparison

included the moment-deflection and the moment-change in prestress (A/Ps)

relationships. The ratio of the maximum moment predicted by the non-linear models

to the maximum moment measured in experiments (MpreIMexp) was also used here
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indicate the degree of accuracy obtained from using these non-linear models to predict

the ultimate moment capacities of these externally prestressed beams.

The termination of an analysis conducted with the proposed models is denoted here as

either complete or premature. Complete termination refers to the termination of an

analysis due to one of the following conditions:

• the strain in the concrete fiber at the critical section has reached the specified

ultimate concrete strain (i.e. 0.0035)

• the tensile strength of the steel has reached the specified ultimate strength.

Premature termination on the other hand refers to the termination of an analysis due to

the occurrence of numerical convergence problems. Although complete terminations

were achieved for most of the beams simulated in the verification process, several of

the analyses failed prematurely. The cause and effects of these convergence problems

encountered with the proposed models and the measures employed here to rectify or

minimise them are discussed in Section 5.4.

Tension stiffening refers to the increased stiffness in a flexural member due to tension

being carried by the concrete between cracks. In the proposed models, nodes are

defined along the span of the beam and a sectional analysis is performed at each node

to determine its curvature. In the sectional analysis, it is assumed that the concrete is

fully cracked in the tensile zone whenever the stress exceeds the flexural tensile

strength of the concrete. This, however, is not an accurate assumption if tension

stiffening is to be considered in the analysis. Section 5.5 presents a discussion on the

significance of tension stiffening and whether it should be incorporated into the

algorithm of the proposed non-linear models.

When shear and flexural stresses act simultaneously at a section and the shear forces

applied at the section exceeds the shear strength provided by the concrete, diagonal

tensile cracking occurs. Diagonal tensile cracking causes additional deformation in

the flexural member, referred to as shear deformation. Naaman and Alkhairi (1993)

reported that the effects due to this shear deformation may be significant when

assessing the stress increase in unbonded tendons at the ultimate limit state for beams

with a span-depth ratio less than 24.
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The additional deformations due to the occurrence of diagonal tensile cracking is

modelled in the analytical models using the truss mechanism introduced by Park and

Paulay (1975). However, the truss mechanism was developed mainly for reinforced

concrete structures and the estimated shear strength Vc was based on the empirical

equations suggested in the codes of practice (i.e. either ACI (1983) or BS8110

(1985». Section 5.6 discusses the applicability of using this methodology to reflect

the effects of shear deformation in the analytical models and the significance of

considering it in the flexural analysis of externally prestressed structures.

5.2 Experimental Data

As part of the verification process, it is necessary to show that the results obtained

from the proposed computer models are in close agreement with those given in

experimental tests. However, before such a comparison can be made, an appropriate

set of experimental beams should first be identified from reported research

investigations on externally prestressed beams. These selected beams should

generally satisfy the following conditions:

1) They should be simply supported and prestressed with external tendons.

2) There should be enough information provided in the experimental data to

enable them to be simulated by the proposed computer models.

3) The experimental data should possess clear output results of the beams, e.g.

moment-deflection and moment-change in prestress relationships, to enable a

comparison to be made between them and the computer derived results.

A total of seventeen externally prestressed beams were found suitable for the

verification process. Ten of these beams were reported by Yaginuma and Kitada

(1987, 1988, 1989), the rest by Zhang et al (1993) I. Table 5.1 gives a list of the

beams used for the verification process together with their key parameters. Further

information of these beams may be found in Appendix A. From Table 5.1, it was

observed that the parameters influencing the flexural behaviour of externally

INote that an attempt was made by the author to contact the above researchers for the technical reports

of their experimental works, but without success.
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prestressed beams discussed in Chapter Three, i.e. cross sectional properties, loading

patterns, tendons profiles, span-depth ratios and non-prestressed reinforcement ratios,

were all varied in these beams. This gives an additional advantage of ensuring that

the proposed models were validated with a set of beams that had a wide range of

design parameters.

The beams of Yaginuma and Kitada (1987, 1988, 1989) were all rectangular in shape

and loaded to failure using a single point load applied at the mid-span. For some of

these beams the initial prestress force was not directly reported by Yaginuma and

Kitada but indicated in the following statement: 'the prestress was 8 Nlmm2 at the

bottom of the specimen'. For such beams it nas been assumed that the stress at the

extreme concrete fiber at the mid-span was 8 N/mm2 when prestress was first applied

to the structure. The initial prestress force F was then determined by back-calculating

using Equation (4.11).

Although some details of the material properties (e.g. yield strength, ultimate strength,

etc.) for concrete, passive reinforcement and prestressing steel were reported by

Yaginuma and Kitada, they failed to provide information about the stress-strain

profiles of these materials. Therefore, the constitutive model recommended by Saenz

(1964) was used for concrete and those by Naaman and Harajli (1985) were used for

the prestressing steel and the passive reinforcement.

Yaginuma and Kitada (1987) tested six beams to study the influence of the amount of

passive reinforcement on the flexural behaviour of externally prestressed structures.

Three of the test beams were prestressed externally and had enough information

provided to enable them to be used for the verification process. The three beams were

denoted Beams OA-l, OB-l and OC-l, and were very similar to each other except for

their reinforcement ratios which were 0.57%, 0.98% and 1.92% respectively (see

Table 5.1).

Yaginuma and Kitada (1988) tested six simply supported beams to failure. Only two

of these beams, denoted Beams OS-1 and OL-l were used for the verification process

because they were prestressed with external tendons and sufficient information was

available to simulate their behaviour. Design specifications for Beams OS-l and OL-

I were found to be very similar except for their span-depth ratios, which were 24 and
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42 respectively. Yaginuma and Kitada (1988) intentionally chose such a large

difference because they wanted to study the influence of span-depth ratio on the

flexural behaviour of these structures.

Ten beams were tested by Yaginuma and Kitada (1989), out of which six were

prestressed with external tendons. However, only five of these beams, denoted Beams

OA88-2, OB88-1, OC88-1, OC88-2 and OD88-1 were found to be suitable for use in

the verification process. These beams were all very similar to each other in terms of

span-depth ratios, cross-sectional properties and loading conditions, but had different

combinations of initial prestress force, prestressed and non-prestressed reinforcement

ratios (see Table 5.1).

Some properties of the prestressing steel used for Beams OA88-2, OB88-1, OC88-1,

OC88-2 and OD88-1 were reported by Yaginuma and Kitada (1989). From these

reported values it was found that the behaviour of these tendons was best represented

by Grade 160 (/pu = 1103 N/mm2) prestressing steel. Yaginuma and Kitada (1987,

1988) on the other hand did not give any information about the prestressing steel

properties for Beams OS-I, OL-I, OA-I, OB-l and OC-l, but instead reported that

'PC tendons (SBPR95/JJO)' were used for these beams. The author was however

unable to establish the nature of 'PC tendons (SBPR95/110), described by them and,

therefore had to assume that Grade 160 prestressing steel (/pu = 1103 N/nun2) were

also used for these beams.

Zhang et al (1993) tested a total of ten T-shaped, simply supported, externally

prestressed beams to failure. Two loading patterns were employed on these beams:

• a single point load applied at mid-span (denoted Load Type 1)

• two equal point loads placed equi-distant from the supports (denoted Load Type

2).

Seven of the beams tested by Zhang et al (1993) were considered suitable for use in

the verification process (see Table 5.1). Four of these, denoted Beams AI-2, A2-1,

A2-2 and A3-2, were prestressed with external tendons over their full length without

any deviators; the other three beams, denoted B 1-2, B2-2 and B3-2 were prestressed

with deviated external tendons. The profiles of the tendons used for these beams are

shown in Appendix A. Although all the seven beams had about the same span-depth

Page 142



University of Sheffield

ratio and initial prestress force, they were subjected to different loading conditions

(Load Type 1 or 2) and possessed different non-prestressed reinforcement ratios (see

Table 5.1).

The properties of the concrete, the prestressing steel and passive reinforcement were

also not clearly defined by Zhang et at (1993) and had to be estimated for the

verification process. For the concrete, the stress-strain relationship introduced by

Saenz (1964) was used, since the only property reported about this material was its

actual strengthj", In the case of the prestressing steel, the only information available

about them was that: ~25 mm threaded steel bars with a modulus of elasticity of 175

GPa were used for Beams AI-2, A2-1, A2-2, and A3-2 and, ~5 mm wires with a

modulus of elasticity 200 GPa were used for Beams BI-2, B2-2 and B3-2. For the

cp25mm threaded steel bars, their ultimate strength was taken to be 1030 N/mm2 as

recommended by the Macalloy Bar Systems Design Data and, the model introduced in

BS8110 (1985) was used to represent their constitutive relationship. The stress-strain

relationship recommended by Naaman and Harajli (1985) was used for the cpSmm

prestressing wires and, their ultimate strength was assumed to be 1655 N/mm2

(Naaman (1982). Finally, although the ultimate strength and modulus of elasticity of

the reinforcement steel were given as 340 MPa and 200 GPa respectively by Zhang et

ai, the stress-strain relationship for this material was not reported by them. Hence, the

constitutive relationship for reinforcement steel recommended by Naaman and Harajli

(1985) was used.

5.3 Computer vs. Experimental Results

The flexural behaviour of the beams described in Section 5.2 were simulated to failure

using the proposed non-linear analytical models. All the simulations were performed

by defining twenty nodes along the span of the beams. This number of nodes was

selected because it was generally found that a large number not only produced very

similar results but also increased the computational time required for the analysis to

an unacceptable level, and the use of fewer nodes generally caused the ultimate

moments of the beams to be slightly over-estimated (e.g. as shown in Figures D.l and

D.2 inAppendix D for Beams OA-l and OC88-1 respectively).

Page 143



University of Sheffield

The moment-deflection and moment-change in prestress relationships derived from

these analyses were then used, where appropriate, to validate the non-linear models by

comparing them with the experimental data. Unfortunately, since the technical

reports for the experimental beams were unobtainable, these curves could not be

plotted with the actual values measured in the experiments. As a result, the

experimental curves were reproduced here by employing the 'grid method'. In the

grid method, equally spaced horizontal and vertical lines were first plotted to form a

grid system on the graphs presented by Yaginuma and Kitada (1987,1988,1989) and

Zhang et at (1993). Several grid-points were then defined along the profile of the

experimental curves and, their numerical co-ordinates estimated from the plotted grid.

These co-ordinates enabled the profile of the experimental curves to be re-plotted

together with the analytically derived curves, thus allowing a better visual comparison

to be made between the two curves.

5.3.1 Beams tested by Yaginuma and Kitada (1987,1988,1989)

Figures 5.1 to 5.10 compare the experimental and analytical mid-span deflections.

From these figures, it can be seen that a good level of precision was attained by the

analytical models for these beams, which had different span-depth ratios, initial

prestress force, and non-prestressed and prestressed reinforcement ratios. It was,

however, not possible to make a comparison between the analytical and experimental

moment-change in prestress relationships for these beams because the curves were not

presented clearly by Yaginuma and Kitada.

Figures 5.1 and 5.2 illustrate the experimental and analytical moment-deflection

curves for Beams OS-l and OL-l respectively. The two beams were similar to each

other except for their span depth ratios, which were 24 and 42 for Beams OS-l and

OL-I respectively. It was observed from these figures that the proposed analytical

models can be used accurately to predict the trend of the moment-deflection behaviour

of these beams over their full range. The three distinct stages of behaviour which

were described by Tao and Du (1985) to be present in the moment-deflection response

of unbonded prestressed structures with an adequate amount of non-prestressed

reinforcement were also noted to be exhibited by the analytical curves derived for

Beams OS-l and OL-I. The three stages were namely the uncracked stage, the
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cracked stage and a third stage representing the behaviour of the beam after the

yielding of non-prestressed reinforcement (see Figure 5.1).

From Figure 5.1 it was noted that the analytical curve for Beam OS-1 showed close

agreement with the experimental curve throughout the uncracked stage. However, a

higher cracking moment of about five percent was predicted by the numerical model

and this over-estimation caused the analytical curve to over-estimate the Mlfcubcf

values of the beam (the largest difference being about five percent) in the cracked

stage up to yielding of the reinforcement. After the reinforcement had yielded, the

analytical curve exhibited a sharp drop in stiffness, where the beam deflections were

noted to be relatively high for small increases in external loads. Near the predicted

ultimate condition, the analytical curve was observed to show a small decrease in

strength before terminating at Mlfcubcf = 0.1184. The maximum Mlfcubcf value

estimated by the numerical model for Beam OS-1 was 0.119, which was 0.901 of the

experimental maximum value (Table 5.2 (a)).

A total of forty-five load sequences were analysed for Beam OS-l before the analysis

was terminated due to the concrete compressive fiber at the critical section attaining

the pre-set ultimate strain value (i.e. 0.0035). The whole analysis took approximately

twenty-three hours of computer time (see Table 5.2 (a)). The analysis of this beam

took such a long time to complete because several 'limiting points' (discussed in

Section 5.4) were encountered in the analysis after the non-prestressed reinforcement

had yielded. Whenever a limiting point was encountered in the analysis, the non-

linear model had been programmed to reduce the load increment for the next loading

sequence to prevent numerical convergence problems. This reduction in loads is

cumulative and, since numerous limiting points were encountered for the analysis of

Beam OS-I, the increase in moments predicted for each subsequent loading stage near

ultimate was therefore very small.

The comparison between the analytical and experimental curves for Beam OL-l is

shown in Figure 5.2. The total computer time taken for the analysis was about ten

hours and complete termination was achieved for this beam (i.e. the compressive

strain of the concrete at the critical section had reached the ultimate strain value

specified (0.0035)). The maximum Mlfcubci determined by the analytical model was
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0.99 of the experimentally reported maximum value (Table 5.2 (a)). The trend of the

analytical curve can also be seen to correlate well with the experimental curve for the

three stages of the beam behaviour. At the pre-crack stage, the analytical curve under-

estimates the experimental moment-deflection response by about fifteen percent.

After cracking, although the stiffness of the analytical curve was similar to that shown

for the experimental curve, higher Mlfcubcf values (approximately five percent) were

predicted by the analytical model up to the estimated ultimate limit state. It should be

noted that the cracking moment predicted for this beam was initially over-estimated

by about twenty percent in an earlier non-linear analysis conducted with the numerical

model. The beam was then re-analysed again with a reduced modulus of rupture 1,.

defined for the concrete and, as shown in Figure 5.2, the over-estimation of the

cracking moment was effectively reduced to only about five percent.

The moment-deflection relationships for Beams OA88-2, OB88-1, OC88-1, OC88-2

and 0088-1 are shown in Figures 5.3 to 5.7 respectively, and the results summarised

in Table 5.2 (a). Although these beams had different combinations of prestress force,

prestressed reinforcement ratios and non-prestressed reinforcement ratios, the

deflection responses predicted by the proposed models showed excellent agreement

with the experimental data. The average MprelMexp obtained for these beams with the

numerical models was also found to be about 0.943 with a standard deviation ofO.046

(Table 5.3), which was considered satisfactory here. That such excellent correlations

were possible for these beams was partly due to the provision of adequate information

by Yaginuma and Kitada (1989) about their experimental set-up and test results.

Figure 5.3 shows that the analytical curve predicted for Beam OA88-2 was closely

related to the experimental curve at the uncracked and cracked stages. Although, the

cracking moment for this beam was under-estimated by the analytical model by about

fifteen percent, the stiffness of the analytical curve after cracking was in good

agreement with the experimentally derived curve. Yielding of reinforcement, on the

other hand, was estimated to occur at about Mlfcubcf = 0.10 by the numerical model,

which was about ten percent higher than that shown for the experimental curve. After

yielding of the reinforcement, the analytical curve under-estimated the response of the

experimental curve by about ten percent and indicated a maximum Mlfcub~ value of

0.117, which was about 0.943 of the experimental value. The termination condition
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for the analysis of this beam was complete (i.e. ultimate concrete strain 0.0035 was

attained at the critical section) and the computing time taken for it was about 5.5

hours.

Figure 5.4 shows the comparison between the analytical and experimental curves for

Beam OB88-1. Before the occurrence of cracking, it was noted that the analytical

curve of Beam OB88-1 under-estimated the stiffness of the experimental curve by

about thirty percent (see Figure 5.4). However, after cracking, the numerically

derived curve exhibited a slightly higher stiffness and converged towards the

experimental curve. The yielding of the reinforcement was also noted to occur at a

higher moment (about ten percent) for the analytical curve and after which the

analytical curve was found to be almost horizontal. This large change in beam

deflection without much change in the Mlfcubcf value was also observed for the

experimental curve, but at a Mlfcubcf value approximately ten percent lower. The

maximum moment ratio MprelMexp was 1.017 for this beam and total computing time

taken for the analysis was about 4.5 hours before it terminated due to the concrete

compressive strain at the critical section attaining the ultimate value specified for

concrete (0.0035).

Figure 5.5 shows the experimental and analytical curves for Beam OC88-1 and, both

curves in the figure were observed to be very closely related to each other before and

after the occurrence of cracking. However, the analysis of the beam terminated

immediately after the reinforcement started to yield, due to the concrete compressive

fiber at the critical section attaining the ultimate strain specified (0.0035). The

maximum Mlfcubcf value predicted by the numerical model was 0.259, and this was

about ten percent lower than that observed for the maximum experimental value (see

Table 5.2(a». The total computer time taken for the analysis of this beam was about

5.5 hours and forty-six load sequences were evaluated by the numerical model.

Beam OC88-2 was similar to Beam OC88-1 except for the amount of initial prestress

force applied to the structure. While Beam OC88-1 was initially prestressed with a

force equal to 80 kN, the initial prestress force applied to Beam OC88-2 was about

160 kN (see Table 5.1). It was noted that the overall trend of the experimental

moment-deflection response for Beam OC88-2 was nearly the same as that for Beam
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OC88-1 (see Figures 5.5 and 5.6), but Beam OC88-2 exhibited a higher maximum

M/fcubci value (i.e. 0.293) than Beam OC88-1 (i.e. 0.276). The numerical analysis for

Beam OC88-2 over-estimated the moment-deflection response by about five percent

throughout the uncracked and cracked stages and terminated before the yielding of the

reinforcement. The termination of the analysis was due to the concrete compressive

strain at the critical section reaching 0.0035, which was the specified ultimate strain

for the concrete. The maximum Mllcubci value measured in the experiment was found

to be about fourteen percent higher than the numerically predicted maximum value

(Table 5.2(a».

Beam OD88-1 had the highest amount of non-prestressed reinforcement in this series

of beams tested by Yaginuma and Kitada (1989) and, the analytical and experimental

moment-deflection curves derived for it are shown in Figure 5.7. From the figure, it

was observed that there was no distinct kink along the experimental and analytical

moment-deflection curves to distinguish between the uncracked and cracked stages of

the beam behaviour. This was because of the high non-prestressed reinforcement ratio

which caused the reduction in stiffness for the beam after cracking to be less

profound. It was also observed that the analytical curve over-predicted the profile of

the experimental moment-deflection relationship by approximately twenty percent

over the full range. Since this large over-estimation of the beam response was only

observed for Beam OD88-1 in this series, it was therefore believed that it may be due

to some error in the experimental data reported by Yaginuma and Kitada (1989) about

the beam. The analysis terminated when the concrete strain at the critical section

reached the specified ultimate strain of 0.0035 and, a maximum MlfcubJ value of

0.277 was estimated by the numerical model, which was 0.945 of the experimentally

measured maximum value. Note that the numerical model took about four hours of

computer time to analyse forty-four load sequences for this beam (Table 5.2(a».

Beams OA-l, OB-l and OC-l were all identical except for their non-prestressed

reinforcement ratios which were 0.57%, 0.98% and 1.92% respectively (see Table

5.1). The moment-deflection relationships for these beams are shown in Figures 5.8

to 5.10 and, their results are summarised in Table 5.2 (b). It can be observed from

these figures that the externally prestressed beams with higher reinforcement ratio

generally yield higher flexural strengths but lower deflections at the ultimate limit
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state. The theoretical ultimate condition was successfully predicted by the numerical

model for all these beams, since the analyses conducted on them all terminated due to

the concrete compressive fiber at the critical section reaching the specified ultimate

strain for concrete (0.0035). The average numerically derived maximum moment to

the experimental maximum moment (i.e. MprelMexp) for these beams was found to be

conservative at 0.865 with a standard deviation ofO.030 (see Table 5.3).

The moment-deflection curves for Beam OA-I are shown in Figure 5.8 and, the three

stages described by Tao and Du (1985) were predicted successfully by the numerical

model. Total computer time taken for the analysis was about three hours and, forty-

two load sequences were predicted by the model. Comparing the analytical and

experimental curves plotted in Figure 5.8, it was observed that the two curves showed

very good correlation within the cracked and uncracked stages of the beam behaviour.

However, after yielding of the reinforcement, the stiffness of the analytical curve

decreased resulting in a near horizontal line, while the experimental curve showed a

slow increase in moment up to a maximum value of 17.750 tf.m. As the predicted

maximum moment was 15.508 tf.m., the ratio of the analytical and experimental

maximum moments for this beam was thus found to be 0.874 (Table 5.2(b».

The numerically derived moment-deflection curve for Beam OB-l (Figure 5.9)

showed very close agreement with the experimental curve before and after the

occurrence of cracking. The analysis was terminated after analysing forty-two load

sequences and the termination of the analysis occurred just when the reinforcement

started to yield. It was also observed that a relatively flat contour was first indicated

by the experimental curve at about 20 tf.m., before showing a small increase in

moment up to a maximum value of 21.25 tf.m. This increase in moment may be due

to strain hardening occurring in the reinforcement, which consequently caused the

predicted maximum moment to be under-estimated by about ten percent.

Figure 5.10 shows the numerically predicted and experimentally derived moment-

deflection relationships for Beam OC-l. Although it was observed that the analytical

curve showed close agreement with the experimental results at the uncracked stage,

the occurrence of cracking was under-estimated by approximately twenty percent. It

was further observed that after cracking, the analytical curve under-estimated the

Page 149



University of Sheffield

stiffness of the experimental curve and terminated at lower maximum moment of

23.168 tf.m. From Figure 5.10. it can be seen that, when the numerical model reached

its maximum, the moment measured from the experiment was about eight percent

higher (i.e. about 25 tf.m.). After this, the experimental curve exhibited a sudden

large increase in stiffness and the maximum moment measured for the beam was

28.125 tf.m., which was about twenty percent higher than the numerically predicted

maximum value. It was, however, uncertain what contributed to the large increase in

the stiffness of the deflection response observed for the experimental beam near the

ultimate conditions. The numerical model analysed a total of fifty load sequences for

Beam OC-1 and the whole analysis took about five hours of computer time.

5.3.2 Beams tested by Zhang et al (1993)

Figures 5.11 to 5.14 show the computer predicted and experimentally derived

moment-deflection and moment-change in prestress responses for Beams Al-2, A2-1,

A2-2 and A3-2. All these beams were T-shaped, simply supported and prestressed

with externally prestressed steel bars with no deviators placed along their lengths (see

Appendix A). The key parameters varied in these beams were the loading pattern

(either Load Type 1 or 2) and the non-prestressed reinforcement ratio (see Table 5.1).

The numerically derived moment-deflection curves for Beams AI-2, A2-1, A2-2 and

A3-2 were generally found to be in good agreement with the experimental curves

before cracking. However after cracking, the predicted stiffness of the moment-

deflection curves for these beams were observed to decrease sharply and under-

estimated the experimental moments. It is believed that the discrepancies observed

between the analytical and experimental results may be due to an inaccurate

interpretation of the material properties used for the simulation of these beams caused

by insufficient information provided (see Section 5.2).

Figures 5.l1(a) and 5.11(b) show the moment-deflection and moment-change in

prestress responses for Beam Al-2 respectively. From Figure 5.11(a), it was noted

that the analytical curve was in close agreement with the experimental curve until the

occurrence of cracking. After cracking, the analytical curve indicated a sudden loss in

stiffness and under-estimated the moments of the beam by about twenty percent. The
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stiffness of the analytical curve was observed to be slightly higher than the

experimental curve after the non-prestressed reinforcement yielded and, the under-

estimation of the moment was consequently decreased from twenty percent to about

fifteen percent. It was also observed that even though Beam A1-2 had the lowest

reinforcement ratio for this series (i.e. Beams AI-2, A2-1, A2-2 and A3-2), the

experimental curve exhibited a smooth curve from cracking to ultimate and no kinks

were found along the curve to distinguish the occurrence of first cracking and yielding

of the reinforcement. These points were however observed in the experimental

deflection relationships for Beams A2-1 and A2-2, which had higher reinforcement

ratios. This observation was not consistent with the deflection responses observed for

the beams tested by Yaginuma and Kitada (Section 5.2), where only beams with large

reinforcement ratios exhibited such a smooth transition from the cracking to the

ultimate condition.

The analysis for Beam AI-2 took approximately eight hours of computer time and,

terminated prematurely due to convergence problem encountered in obtaining a stable

solution for the change in prestress (see Table 5.2(c». Despite the convergence

problem encountered, the numerical analysis was still able to predict about 0.863 of

the maximum experimental value. The convergence problem was observed at load

sequence thirty-one where the change in prestress ~hscalculated for each iteration

seemed to diverged from the assumed value instead of converging towards it and, this

convergence problem is discussed further in Section 5.4.

Figure 5.II(b) shows the analytical and experimental moment-change in prestress

curves for Beam AI-2. From the figure, it was observed that the analytical change in

the prestress curve conservatively under-estimated the experimental results by about

thirty percent up to the predicted maximum moment. This under-estimation of the

change in prestress was however insignificant when compared to the large initial

prestress force applied to the structure. Observations made previously about the

trends of the analytical and experimental moment-deflection curves were also noted

for the moment-change in prestress curves, that is, the slope of the analytical moment-

change in prestress curve for Beam AI-2 also decreased sharply after first cracking

and was slightly higher than the experimental curve after the reinforcement had

yielded.
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Figures 5.12 (a) shows the moment-deflection response for Beam A2-1, and from the

figure, it was noted that both the cracking moment and the yielding of the

reinforcement moment was under-estimated by the numerical analysis by as much as

thirty percent. This under-estimation was believed to be due to the low modulus of

rupture Ir assumed for the concrete in the numerical analysis and, the agreement

between the two curves may be improved by using a higher j, value (as performed for

Beam OL-l). However available information was used here for the simulation of the

beams rather than fixing the values to obtain a better correlation with the experimental

results. The analysis terminated prematurely due to convergence problems

encountered in deriving a stable solution for the change in prestress (see Section 5.4).

However, Table 5.2(c) shows that the MprelMexp obtained for Beam A2-1 was found

to be 0.897, which was considered reasonable given the fact that the termination

condition for this beam was premature. The ,analysis of this beam took about two

hours of computer time and forty load sequences were analysed. The moment-change

in prestress relationships for Beam A2-1 are shown in Figure 5.12(b) and, their trends

were found to be very similar to those observed for the moment-deflection responses

shown in Figure 5.12(a).

Figure 5.13(a) shows the moment-deflection response for Beam A2-2. Before the

occurrence of cracking, the analytical curve was noted to over-estimate the

experimental deflection response by about ten percent. However, the cracking

moment of the beam was under-estimated by the analytical model by about fifteen

percent and, the trend of the analytical curve was in good agreement with the

experimental curve after the occurrence of cracking. It is believed that increasing the

modulus of rupture Ir of the concrete will improve the agreement between the two

curves. Figure S.l3(b) showed that for a given change in prestress in the tendons, the

moment derived was under-estimated by about fifteen to twenty percent throughout

the whole ·loading history. Conversely, the implied change in prestress was over-

estimated by about one hundred percent for a given moment. The complete analysis

of Beam A2-2 terminated prematurely after six hours due to convergence problems

encountered in deriving a stable solution for the change in prestress in the tendons

(Section 5.4). However, the predicted maximum moment was found to be about

0.961 of the maximum experimental moment.
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Figures 5.14(a) and 5.14(b) illustrate the moment-deflection and moment-change in

prestress relationships for Beam A3-2. For the moment-deflection curves, it was

observed that the numerical model estimated the profile of the experimental curve

accurately over its full range, except for a slight under-estimation of the deflection

response after the occurrence of cracking, where the maximum difference between the

two curves was observed to be about ten percent. The analysis of this beam

terminated prematurely due to convergence problems (Section 5.4) and produced a

maximum moment of about 0.942 of the experimental value. Figure S.14(b) showed

that the numerically derived moment-change in prestress relationship under-estimated

the experimental results by about twenty percent after the beam had cracked.

Figures 5.15 to 5.17 show the moment-deflection and moment-change in prestress

relationships for beams B1-2, B2-2 and B3-2. These beams were very similar to

Beams A 1-2, A2-1, A2-2 and A3-2 except that steel wires were used instead of steel

bars for the external tendons and, these steel wires were deflected along their lengths

by two deviators. Three analytical models (i.e. EXTS, EXT7 and EXT9) were used

here to simulate the flexural behaviour of these beams, each with a different

assumption used for the frictional behaviour of the tendons at the deviators. Hence,

the three analytical curves derived from these models for each beams were denoted:

1) EXT5 curve

This curve is derived from the analytical model EXT5 where the tendons were

assumed to be fixed at the deviators. Thus no redistribution of forces due to

tendon slippage was allowed in the analysis.

2) EXT7 curve

Derived from the analytical model EXT7 where the frictional behaviour at the

deviators and the redistribution of stresses due to tendon slippage were taken

into account in the analysis. It was assumed here that steel ducts were placed

at the deviators where tendons come in contact with the structure. Hence, the

friction coefficient at the deviators was assumed to be 0.3, as recommended by

BS8110 (1985) for the contact between lightly rusted strand and lightly rusted

steel.

3) EXT9 curve
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Computed with analytical model EXT9 where the tendons were allowed to slip

freely at the deviators.

From Figures S.IS(a), S.16(a) and S.17(a), some common characteristics about the

numerically derived moment-deflection curves were noted. At the pre-cracked stage,

the three numerically derived moment-deflection curves for these beams were

observed to be nearly equal to each other. After cracking, the EXTS and the EXT9

moment-deflection curves formed the upper and lower bound of the moment-

deflection response respectively. The EXT7 moment-deflection curves lie between

these two bounds and were observed to be very closely related to the EXTS curves

immediately after cracking before converging towards the EXT9 at higher loads. This

indicated that when the beams were analysed with the EXT7 analytical model, the

external tendons did not slip at the deviators until a little after the occurrence of

cracking. Slippage of the tendons at the deviators caused the stresses in the tendons

between the deviators to redistribute, consequently resulting in higher deflections

predicted for these beams near ultimate.

Figure S.IS(b), S.l6(b) and S.17(b) show the moment-change in prestress

relationships for Beams B1-2, B2-2 and B3-2 respectively. It was generally observed

from these figures that the curves obtained from the EXT9 model exhibited a higher

gradient at the pre-cracked stage than the other two analytical curves. This greater

slope was due to the assumption made in the EXT9 model about the tendons slipping

freely at the deviators. For a given moment before cracking, the deflections of these

beams computed with the three numerical models were found to be nearly the same

(see Figures S.IS(a), S.16(a), 5.17(a». Since the stress increase in tendons is

dependent on the deflection of the beam, all three analytical models should therefore

theoretically give the same stress increments. However, because the tendons were

assumed to slip freely at the deviators in the EXT9 model, the redistribution of

stresses caused smaller stress increments to be estimated. The EXT7 moment-change

in prestress curves on the other hand had the same profile as the EXTS curves at the

pre-cracked stage, indicating that no slippage of tendons occurred for these beams at

this stage (as noted in the moment-deflection curves discussed earlier). After

cracking, the EXT9 moment-change in prestress curves exhibited a larger decrease in

the gradient than that shown for the EXT5 curves, due to the larger deflections
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estimated for the beams. This caused the two moment-change in prestress curves to

converge towards each other near the maximum load condition. The EXT7 moment-

change in prestress curves for these beams deviated away from the EXTS curves when

tendon slippage was first predicted to occur and, their slopes were observed to be

nearly the same as that exhibited by the EXT9 curves.

Figure S.lS(a) shows the experimental and the three analytical moment-deflection

responses for Beam B1-2. All three numerically derived curves over-estimated the

deflection response by about twenty percent before the occurrence of cracking. After

cracking, the EXTS curve indicated a loss in stiffness and was thereafter found to be

closely related to the experimental curve. The analysis of the beam with EXTS

analytical model took approximately fifteen hours to complete before terminating due

to the concrete strain at the extreme compressive fiber at the critical section attaining

the ultimate strain specified (0.003S). The theoretical ultimate moment predicted by

this model was 226.438 kNm, which was only about two percent smaller than the

experimentally measured value (Table S.2 (dj). The slopes of the EXT7 and EXT9

curves also decreased after cracking but to a greater degree than that of the EXT5

curve and their moments under-estimated the experimental curve by about twelve and

fifteen percent respectively. The analysis conducted with EXT7 model took about

eight hours and the maximum moment estimated by it was about 0.94 of the

experimental maximum; the EXT9 analysis took about six hours with a maximum

moment representing about 0.92 of the experimental value. Note that the termination

conditions for both analyses were complete (i.e. ultimate concrete strain was attained

at the critical section).

Figure 5.15 (b) shows the moment-change in prestress relationships for Beam BI-2.

The EXT9 curve over-estimated the experimental curve (approximately five percent)

at the uncracked stage, but due to the reduction of its gradient after cracking, it under-

estimated the experimental curve by approximately eighteen percent throughout the

cracked stage. The EXTS moment-change in prestress curve under-estimated the

experimental curve by about twenty percent, twenty-four percent and fifteen percent

before cracking, after cracking and yield of the reinforcement respectively. As for the

EXT7 curve, it under-estimated the experimental curve by about twenty percent

before cracking and about twenty-five to thirty percent after cracking.
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Figures 5.15 (a) and 5.15 (b) reveal that the curve obtained assuming that the tendons

were fixed at the deviators (the EXTS curve) gave the best agreement to the

experimental curve. This indicates that no slippage of the tendons had probably

occurred throughout the entire loading history of Beam B 1-2, therefore implying that

the tendons were fixed at the deviators although this was not explicitly stated by

Zhang et al (1993).

Figures 5.16 (a) and 5.16 (b) show the moment-deflection and moment-change in

prestress curves obtained from the experiment and the three numerical models

mentioned above for Beam B2-2. Their numerically derived results are summarised

in Table 5.2 (d). The analyses conducted with the EXTS, EXT7 and EXT9 models all

terminated completely (i.e. due to the concrete compressive strain at the critical

section reaching the specified ultimate strain value) and the analyses took

approximately nine, twenty-four and three hours respectively (see Table S.2(d)).

From Figure 5.16 (a), it can be seen that the three analytical curves over-estimated the

deflection response of the test beam by about twenty percent before the occurrence of

cracking. After cracking, the EXT7 curve gives the best representation of the

experimental curve up to ultimate at a maximum moment of 223.024 kNm. This

estimated maximum moment was only 0.5 % higher than the measured ultimate

moment. The EXT5 curve was observed to form the upper bound of the solution and

over-estimated the deflection response of the experimental curve by about ten percent.

The maximum moment analysed by the EXT5 analytical model was 233.834 kNm,

which was five percent higher than the experimental maximum moment. The EXT9

curve on the other hand gave the lower bound of the solution and, under-estimated the

experimental moment-deflection response by about three percent.

Figure 5.16 (b) illustrates that the EXT9 curve over-estimated the experimental

moment-change in prestress response by approximately fifteen percent before

cracking and under-estimated it by approximately five percent after the reinforcement

had yielded. The slope of the EXT9 curve was also observed to be slightly higher

than the experimental curve and the two curves converged towards each other near

ultimate. The EXT5 and EXT7 moment-change in prestress curves, however can be

seen to be the same before cracking but under-estimate the experimental curve by
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approximately fifteen percent. These two analytical curves diverge away from each

other just a little after the occurrence of cracking. The slope of the EXT5 moment-

change in prestress response was higher than that for the EXT7 analysis and

converged towards the experimental curve near ultimate (see Figure 5.16 (b)). The

EXT7 curve however under-estimated the experimental curve by about fifteen percent

throughout the rest of the loading history after the occurrence of cracking.

Finally, the experimental and numerical moment-deflection and moment-change in

prestress curves for Beam B3-2 are shown in Figure 5.17 (a) and 5.17 (b) respectively.

The results obtained from the three analytical models are also presented in Table 5.2

(d). All the analyses conducted on this beam (using analytical models EXT5, EXT7

and EXT9) were observed to have terminated prematurely due to convergence

problems encountered in obtaining a stable solution for the change in prestress

(Section 5.4). However, despite these premature terminations, the maximum moment

predicted using the EXT5, EXT7 and EXT9 models were satisfactory at 1.050,0.953

and 0.937 of the experimental maximum value respectively (see Table 5.2 (dj). It was

also noted from Figure 5.17 (a) that the experimental curve indicated a sudden

increase in stiffness when the moment reached about 214 kNm and terminated at a

maximum moment of about 230 kNm. Both EXTS and EXT7 models took a

relatively long time to analyse the flexural behaviour of this beam, about fifteen and

ten hours respectively, while EXT9 took only two hours.

Figure 5.17 (a) shows that the three analytical moment-deflection curves were nearly

coincidental with the experimental curve before cracking. However, after cracking,

all three curves indicated a reduction in stiffness and deviated from each other. The

EXT7 curve is seen to give the best agreement with the experimental curve and,

although the analysis terminated prematurely, the calculated maximum moment was

only about five percent below the measured value. The EXT5 curve over-estimated

the experimental deflection response by about five percent and the numerical EXT9

curve under-estimated it by about seven percent, thus forming the upper and lower

bounds to the experimental curve.

Figure 5.17 (b) shows the moment-change in prestress relationships for Beam B3-2.

The numerical EXT9 curve over-estimated the experimental results by about eight
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percent at the uncracked stage and under-estimated it by about eight percent at the

cracked stage and ten percent at the stage after the reinforcement steel has yielded.

The numerical EXT7 and EXT5 moment-change in prestress curves both under-

estimated the experimental curve by about thirty percent before cracking occurred.

After slippage of the tendons, the EXT7 curve exhibited a lower stiffness and deviated

from the EXT5 curve, thereby under-estimating the experimental curve by about

twenty percent.

5.4 Convergence Problems

Several convergence problems were encountered by the proposed analytical models

when they were used to simulate the flexural behaviour of the beams used for the

verification process. These convergence problems were mainly due to the highly non-

linear nature of the problem and either cause the analysis of these beams to terminate

prematurely or take up an extensive amount of computing time to yield the required

results. Although Alkhairi and Naaman (1993) and Virlogeux (1983) who conducted

numerical studies on externally post-tensioned structures (see Chapter Two) also

reported encountering these numerical problems in their models, they did not propose

any methods to solve them. This section describes the numerical problems

encountered with the proposed non-linear models in the verification process and the

methods employed here to solve these problems.

In the proposed numerical models, the change in prestress tif"s and the eccentricity

variations t!eccen of the tendons are estimated from the deformed shape of the structure.

However, for a given load stage, these two variables must first be known before the

deformation of the beam can be determined. As such, iterative methods involving two

iteration levels, one for each variable, have to be employed to determine the change in

prestress and the eccentricity variations of the tendons. The procedure adopted here is

to first estimate the deformation of the beam for the present load stage, using the t!J;,s

and t!eccen from the previous load stage. With the calculated deflections and end

rotations, t!J;,s and t!eccen are then computed again and compared to the earlier assumed

values. This process is repeated until the assumed and calculated values are within a

specified tolerance. Unfortunately, the calculations for t!J;,s and t!eccen did not always

converge to a solution due to numerical problems which caused premature
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terminations (e.g. accuracy of the computer despite usmg double precision for

analysis, degree of tolerance desired, limiting points, etc.).

In an earlier version of the proposed analytical models, fixed tolerances were used for

both the !:l/ps and !:leccen values to check the closeness of the calculated and assumed

values. However, several beams analysed with these models were observed to

terminate prematurely at early loading stages and only about two-thirds of their whole

moment-deflection responses were predicted. This was found to be due to the large

range of possible change in prestress !:l/ps analysed for these beams near ultimate

(typical change in prestress !:l/ps at the ultimate conditions derived for the beams used

in the verification process ranged from 30 N/mm2 to 800 Nzmm'') which may cause

the use of a fixed value tolerance (e.g. 0.001 Nzmrrr') to be reasonable for the analysis

of some beams but unattainable for others. Hence, percentage tolerances were used

instead for the iteration of !:l/ps in the proposed models to prevent premature

terminations of this nature from occurring. The equation used to check the percentage

tolerance is given in Equation 5.1.

!:llp.,(ca'cu'a,ed) - !:l/p,(u,",umed) x 100 < tolerance% (5.1)
!:llp.>(assumed';

Percentage tolerances were not used for the iteration check of the eccentricity

variation !:leccen because of the small values involved which may cause other numerical

problems in the analysis. It was found that using a fixed value tolerance of 0.000001

m for !:leccen was generally satisfactory for these beams.

Although effective, the use of a percentage tolerance for !:l/ps did not help to extend all

the analyses of the beams simulated in the verification process up to the theoretical

ultimate limit state (i.e. an ultimate concrete strain of 0.0035 at the extreme

compressive fiber of the critical section). This was partly due to the level of the

tolerance used for these analyses. From a study conducted by the author, it was noted

that the success of an analysis performed with the proposed non-linear model was

critically dependent on the percentage tolerance specified for !:l/ps. If the tolerance

specified was too high, erroneous results were produced. On the other hand, if the

tolerance used was too low, no solutions were derived due to convergence problems.

For the beams tested by Yaginuma and Kitada (1987, 1988, 1989), using a percentage
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tolerance of 0.01% for l1/Ps in the models was generally found to yield satisfactory

results. However, for the beams tested by Zhang et al (1993), this tolerance for /ifps
was found to be unattainable for the load stages near ultimate conditions and usually

resulted in premature terminations of the analyses. By relaxing the tolerance to 0.02%

for these beams, better results were obtained closer to the theoretical ultimate limit

state.

However, Beams A 1-2, A2-1, A2-2, A3-2 and B3-2 extracted from Zhang et al (1993)

still terminated prematurely when the percentage tolerance for l1/ps was reduced to

0.02% and, increasing this percentage tolerance further did not yield better results. By

studying the value of l1/ps evaluated for each iteration in the last loading sequence

before the analysis was terminated prematurely, the value computed was found to

oscillate between two extreme values which were slowly diverging instead of

converging to a solution. It was deduced that this numerical problem was caused by

the poor initial estimate of the change in prestress l1/ps in the tendons for the particular

loading sequence. As Virlogeux (1983) stated: 'convergence is not monotonous;

when the stress variation is under-estimated, forces will be over-estimated and from

them deformations; this leads to over-estimating the stress variation of unbonded

tendons at the further step. This will later cause convergence problems (at ultimate

limit state) when the structure response to stress variations is too important, i.e. when

structure has become too flexible, due to plastifications. ' .

Several methods were applied here to solve this convergence problem caused by poor

initial estimate of the change in prestress. These methods included using a routine

that estimated a higher initial change in prestress l1/Ps used for each loading stage, by

linearly extrapolating a value from the two previous loading stages (see Figure 5.18),

instead of using the l1/ps from previous load stage as first initial estimate. Figure 5.18

shows that the change in prestress at Point D can be estimated from a straight line

plotted from Points A and B (denoting two previous loading stages) and, this derived

l1/Ps is closer to the actual value (denoted by Point C) than the change in prestress of

the immediate previous loading stage (i.e. Point B). However, problems were

encountered when a sudden small increase in stiffness is exhibited by the beam near

ultimate, as shown in Figure 5.19, which caused the derived Point D to over-estimate

the actual change in prestress of the beam, thereby causing convergence problems to
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occur in the analysis. Since it is very difficult to make good initial estimates for !1/ps
near the ultimate conditions, and since the average Mpre/Mexp obtained for the five

beams which failed prematurely were 0.923 with a standard deviation of 0.037, the

results derived from these analyses were considered reasonably acceptable here.

Another convergence problem that was encountered in the earlier versions of the

models was that due to the 'limiting points' detected along the moment-deflection

responses of the externally prestressed beams analysed. Crisfield (1991) defined these

limiting points as the points located along the moment-deflection curve where the

curve suddenly becomes horizontal or exhibits a sudden loss in strength. He reported

that these points can cause severe convergence problems to numerical methods if they

are not handled properly. In the proposed numerical models, this is especially true

since the evaluation of the deflection response for a given loading stage depends

critically on the curvatures of the nodes defined along the span of the whole beam.

Hence, if the reinforcement ratio is high, whenever cracking of the concrete or

yielding of the non-prestressed reinforcement occurs at a node away from the critical

section, a sudden reduction in the stiffness of the overall beam will result. This loss in

stiffness near ultimate conditions consequently produces a limiting point in the

moment-deflection curve and, if any of the loading stages falls at one of these limiting

points, convergence problems will occur.

The method employed here to solve the limiting point convergence problem is to

avoid any analysis at these points. If a loading stage is found to be at one of these

limiting points, the analytical models have been programmed to skip this problem by

adding more load to the structure and analyse another moment-deflection point further

up the curve. This method of skipping through the limiting points in the moment-

deflection curve is denoted as the 'skip-through' method.

In the skip-through method, if no solution is obtained for the change in prestress t1/ps
after a pre-set maximum number of iterative cycles (e.g. typically 20 to 40 cycles), the

external loads used for the present loading sequence are first reduced. The reduction

is implemented by reducing the strain increment made at the top concrete fiber of the

critical section by half. This process of reducing the additional external loads is

repeated until a satisfactory solution for t1/ps is derived. However, if the strain

increment imposed at the extreme top concrete fiber of the critical section has been
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reduced four times consecutively without producing a stable solution, the analytical

models assume that a limiting point has been encountered along the moment-

deflection curve. The analysis will then skip through the problem moment-deflection

point by doubling the initial strain increment imposed at the top concrete fiber. This

will consequently increase the extemalloads to be placed on the structure and reduce

the possibility of premature termination from occurring in the analysis.

One major disadvantage of the skip-through method is that it may cause the analysis

to take an exceptionally large amount of computer time to yield the ultimate results.

An example of this would be Beam OS-1 the analysis of which took approximately

twenty-three hours to complete using the EXT3 model due to the numerous limiting

points encountered in the analysis.

5.5 Tension Stiffening

All the beams described above were used to study the significance of considering the

effects of tension stiffening in the proposed non-linear analytical models. These

beams were simulated again with the EXT4 model, where tension stiffening was taken

into account in the analysis using the method recommended by Ghali (1993) and

CEB-FIP Model Code (1978) (see Section 4.5.2), and compared with the results

analysed earlier with the EXT3 model. However, only the results of Beams OS-I,

OL-I, OA-l, OB-I and OC-l are presented here, since observations made on the other

beams were all very similar.

Figures 5.20 to 5.24 show a comparison between the moment-deflection responses

obtained from the non-linear analyses conducted on Beams OS-I, OL-l, OA-l, 08-1

and OC-l respectively, with and without the effects of tensioning stiffening

considered. From these figures, the two numerical curves were observed to be the

same before the occurrence of cracking and, after cracking, the numerical curve

obtained from the analysis with tension stiffening considered exhibited a stiffer

response. The two numerical curves were then observed to converge towards each

other after the yielding of the non-prestressed reinforcement and, nearly the same

maximum moments were estimated by the two analytical models, Le. EXT3 and

EXT4 models (see Table 5.4).
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Figures 5.20 to 5.24 showed that after the cracking of the concrete but before the

yielding of non-prestressed reinforcement, the two numerical curves derived from the

analyses conducted with and without the tension stiffening effects considered, differed

from each other by only about three to four percent. However, the computational time

required for analysing these structures with the tension stiffening effects considered

was in average found to be about two times more than that when these effects were

ignored (Table 5.4). Hence it was considered more desirable to ignore the effects of

tension stiffening in the proposed analytical models because it not only helps to save

the computational time required for the analysis, but also yields slightly more

conservative results (by about three to four percent) for the flexural response of these

structures.

5.6 Shear Deformations

All the beams used in the verification process were re-analysed again with the non-

linear models, but this time with the routine that incorporated the effects of shear

deformations introduced by Park and Paulay (1975) removed. However, only the

curves derived for Beams OS-I, OL-l, OA88-2, OC88-1, OC88-2, B1-2 and B2-2 are

presented here because they indicated some interesting results. Figures 5.25 to 5.31

show the moment-deflection curves derived from analyses conducted with and

without the effects of shear deformations considered for these beams.

Figure 5.25 shows the deflection responses for Beam OS-I, with and without the

shear deformations considered. It can be observed that the two numerical curves are

equal at the uncracked and cracked stages, but deviate from each other near the onset

of yielding of the steel reinforcement, with a maximum difference of about six

percent. Near ultimate, the two curves converge and the ratio of the maximum

moments derived from the two numerical analyses (MIMI) was near unity (see Table

5.5). The time taken for the analysis without considering the shear deformations

decreased greatly from about twenty-three hours (when shear deformations were

considered) to eight hours. This large reduction in time was due to the less

computational work required in the skip-through method when a limiting point was

encountered.
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The two numerically derived curves for Beam OL-I (with a high span-depth ratio of

32) shown in Figure 5.26 were coincident throughout the whole loading history. This

shows that the effects of diagonal tensile cracking due to shear has no influence on the

flexural analysis of externally post-tensioned structures with high span-depth ratios

(also pointed out by Naaman and Alkhairi (1993». The time taken for the analysis

where shear deformation was ignored was approximately nine hours, which was only

about an hour less than when the effects were considered (Table 5.5). Both numerical

analyses conducted on the beam terminated completely due to the concrete

compressive strain at the critical section reaching the specified ultimate strain

(0.0035).

Figure 5.27 shows the experimental and the two analytical moment-deflection

responses (with and without shear deformation) for Beam OA88-2. Similar to the

observations made from Figure 5.25 for Beam OS-I, the two analytical curves were

similar to each other at both the uncracked and cracked stages of the beam behaviour

and deviated from each other when the non-prestressed reinforcement started yielding.

The difference between the two curves after the yielding of the non-prestressed

reinforcement was about two percent. Although the two numerical analyses

terminated completely (concrete strain 0.0035 attained at the critical section) and the

ratio of their maximum moments (M/MI) calculated was near unity, the deflection of

the beam predicted at ultimate when shear deformations were considered was about

forty percent higher at 16 mm.

Figure 5.28 shows the experimental and two numerically derived moment-deflection

curves for Beam Oe88-I. The two numerically derived curves diverged from each

other at about Mllcubci = 0.105 with that neglecting the effects of shear deformations

over-estimating the gradient of the experimental curve by as much as eighteen

percent, the other by only about three percent. The ultimate moments evaluated by

both numerical analyses were found to be nearly the same (about 74 kNm) but at a

deflection some twenty-five percent higher when shear deformation effects were

considered. Time taken by the analysis where diagonal tensile cracking was neglected

was four hours, which was 0.72 of that required by the analysis including shear

deformation (Table 5.5).
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Figure 5.29 shows the moment-deflection responses for Beam OC88-2. From the

figure, similar observations can be made about the trend of the two numerically

derived curves as for those described for Beam OC88-I. The two analytical curves

were in close agreement with each other until M(fcubcf was about 0.103, after which

the two curves deviated from each other. A stiffer response of about twenty percent

was observed for the curve where shear deformations were not taken into account,

while only a slight over-estimation of about three percent was noted for the curve

where shear deformations were considered. Again the ultimate moments derived from

both analyses were approximately equal and the deflections estimated at ultimate for

both analyses differed by about eighteen percent. The time taken to analyse Beam

OC88-2 with the proposed models with the shear deformations neglected was about

four hours (Table 5.5).

Although, Beams OA88-2 and OC88-2 were quite similar to each other, except for

their non-prestressed reinforcement ratio, the two numerically derived curves (with

and without shear deformation considered) derived for these beams differed by about

two and thirteen percent respectively. This indicated that the amount of non-

prestressed reinforcement does influence the degree to which the effects of shear

deformations have on these externally prestressed beams. That is, the higher the

amount of non-prestressed reinforcement, the higher the degree of influence the shear

deformations has on the beams. The reason for this is as follows: the Mlfcubtl value

at which the two beams indicated a loss in stiffness due to shear deformation was

about 0.10 and, the shear near mid-span at this load stage for both beams was about 23

kN. The non-prestressed reinforcement of Beam OA88-1 had already yielded at this

load level and, the Mmalfcubcf value achieved at ultimate was only approximately 0.11

with a maximum computed shear of about 24.67 kN. In the case of Beam OC88-2,

because of the higher non-prestressed reinforcement ratio, the Mmalfcubcf and

maximum shear values were estimated to be about 0.26 and 54.67 kN respectively.

Since the amount of apparent moment to be added to the structure due to shear

deformation (~shear) is directly proportional to the amount of shear acting on a node

in the structure (see Equation 4.40), neglecting shear deformation in the analysis for

Beam OC88-2 will thus greatly under-estimate the deflections of the beam.
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Figures 5.30 and 5.31 show the comparison between the moment-deflection

relationships obtained when considering and neglecting the effects of shear

deformations for Beams BI-2 and B2-2 respectively. Although the span-depth ratios

of these beams were both equal to 11 (which was less than 24, a value given by

Naaman and Alkhairi (1993) in which above this value the shear deformations has not

much influence on the structure), the effects of shear deformation did not seem to

have any influence on their flexural behaviour, since both numerically derived curves

were the same throughout the whole loading history. The reason for this was that

these beams were loaded under Load Type 2 (i.e. two equal point loads placed equi-

distant from supports), which caused the shear forces acting on the structure near the

regions of high bending moments to be relatively low. Hence the effects of shear

deformations were very limited in these beams.

5.7 Concluding Remarks

The purpose of this chapter was to show that the computer models proposed in

Chapter Four can be used accurately to predict the flexural behaviour of externally

prestressed structures up to ultimate. This was carried out by performing simulations

with the proposed analytical models on seventeen experimental beams reported by

Yaginuma and Kitada (1987, 1988, 1989) and Zhang et al (1993) and, showing that

the results derived from these models are in close agreement with the experiments.

Most of the beams simulated in the verification process produced results which were

in good agreement with the experiments. The numerically derived moment-deflection

curves were generally found to be within ten to twenty percent of the experimental

curves over the full load range to failure. The numerically derived moment-change in

prestress relationships for these beams were, on the other hand, found to greatly

under-estimate the experimental values, sometimes by as much as thirty percent.

This, however, was considered to be negligible, since the change in prestress is often

very small compared to the initial prestress applied to the structure. As for the

ultimate moments predicted by the proposed analytical models, the average ratio of

the maximum predicted moment to the maximum experimental moment (MprejMexp)

obtained for all the seventeen beams was satisfactory at 0.927 with a standard

deviation of 0.051 (see Table 5.3). This degree of accuracy obtained was considered
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to be excellent, considering the fact that five of these beams failed prematurely due to

convergence problems (i.e. Beams A 1-2, A2-1, A2-2, A3-2 and B3-2).

The simulations conducted on Beams AI-2, A2-1, A2-2 and A3-2, however, did not

yield very satisfactory results and substantial variations were observed after the

occurrence of cracking between the analytical and experimental moment-deflection

and moment-change in prestress relationships. These variations were believed to be

caused by poor interpretation of the prestressing steel material properties used for the

analyses as a result of insufficient information. Also the simulation of Beam OL-l

conducted with the proposed model was only found to be satisfactory (giving an over-

estimation of five percent instead of twenty percent) after reducing the modulus of

rupture of the concrete specified for the analysis. From these, it was concluded that

the accuracy of the results obtained from the proposed analytical models is dependent

on the properties specified for the concrete, non-prestressed reinforcement and

prestressing steel.

Several convergence problems were initially encountered with the proposed models

when they were used to simulate the complete flexural response of the seventeen

beams used for the verification process. These numerical problems caused some of

the earlier analyses conducted on these beams to terminate prematurely. Most of

these numerical problems were solved by either using the skip-through method (for

limiting point convergence problems) or reducing the degree of tolerance used for

checking the iteration of the change in prestress !lIps' However, the analysis of Beams

A 1-2, A2-I, A2-2, A3-2 and B3-2 still terminated prematurely due to the difficulty in

making good initial estimates of the change in prestress for loading sequences near the

ultimate conditions. Although several numerical methods were employed to solve

this problem, about only eighty-five to ninety percent of the experimental moment-

deflection response was predicted for these beams. This degree of accuracy obtained

for these beams were considered to be acceptable here.

For those beams without any deviators placed along their length, the total time taken

by the proposed models to analyse their flexural behaviour to the ultimate limit state

was found to be between two and five hours. Beams OS-I and OL-I, however, took

longer (twenty-three and ten hours respectively) than the other beams, due to several
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limiting points being encountered during the analysis. As for the beams with

deviators (Beams B1-2, B2-2 and B3-2), different computational times were recorded

for the different analytical models employed (i.e. EXT5, EXT7 or EXT9). The time

taken for analysing these beams ranged from nine to fifteen hours when the EXT5

model was used and, between eight to twenty-four hours for the EXPRE7 model. The

EXT9 model, however, required the least amount of computational time ranging from

two to six hours. Since the average maximum moments for B1-2, B2-2 and B3-2

derived with the EXT9 model was in average found to be 0.947 with a standard

deviation of 0.029, as compared to that obtained with EXT7 which was 0.967 with a

standard of deviation of 0.027; it is therefore considered more desirable to use the

EXT9 model for structures with deviators located along their span.

When the effects of tension stiffening were considered, the analytical time required

was found to be about twice the values mentioned above. Since it was generally

observed that the moments derived from analyses conducted with and without tension

stiffening differed by about only three to four percent after cracking, it was therefore

considered more desirable to neglect the effects of tension stiffening in the proposed

analytical models. This will not only help to save on computational time required, but

will also give slightly more conservative results for the flexural behaviour of these

structures.

It was also found that the effects due to shear deformations should be considered in

the flexural analysis of externally prestressed structures and can be modelled

satisfactorily by using the truss mechanism introduced by Park and Paulay (1975).

This is because shear deformations seemed to have varying degrees of influence on

the flexural behaviour of these beams and, if not considered may sometimes cause the

flexural responses to be greatly over-estimated. The amount of influence in which

shear deformations have on the flexural behaviour was noted to be dependent on the

span-depth ratio, non-prestressed reinforcement ratio and external loading patterns.
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tseam Prottle Load Udpi lotreelaps As As% Api Pe
No. Type· Type·· (mm2) (%) (mm2) (kN)

raqmurna and Krta a tll:ltRI}

IOS-1 1 1 £4.UUI N.A. 56.65 0.94 taz.se 25
IUL-l 1 1 42.UUI N.A. bO.05 U.~4 132.95 28

Yaqmurna and Kitac a (1sss)
IUAtsts-2 1 1 1 (.UU N.A. 101.1U U.44 255.50 160
IUtststH 1 1 1 (.UU N.A. 200.5U U.f1 132.95 4U
10(;88-1 1 1 1 f.UU N.A. 981.70 2.73 265.50 80
IOC88-2 1 1 1 r.uu N.A. 981.fU t.. ts t.O:>.:>U lOU
IUUtstH 1 1 17.UO N.A. 1,jLl.U4 ,j.0( l,jt..l:I:> tsU

Yagrnuma and Krtac a (1987)

IOA-l 1 1 15.00 N.A. 567.06 0.57 830.~5 435

IOB-1 1 1 15.00 N.A. 981.70 0.98 830.95 435

IOC-1 1 1 15.00 N.A. 1924.23 1.92 830.95 43:>
Lnang et et (1 I~;j)

IAhl 1 2 14.00 N.A. 157.08 0.45 981.74 320
IA2-1 1 1 14.UU N.A. t.3:>.0£ U.OI ~tn .f4 3t.U
IAZ-2 1 2 14.uu N.A. t.,j:>.0t. U.OI ~tsl.f4 33U

IA3-2 1 2 14.00 N.A. 358.14 1.02 981.74 330

161-2 t. t. 13.UU 1.2U l:>I.Uts U.42 3~t.. IU 32U

162-2 t. t. 13.UU 1.'l.U t.Ul.UO U.:>4 3~t..fU 33U
1t33-2 2 t. 13.UU 1.t.U 4Ut..l t. 1.UI 3~t..fU ,jt.U

• Refer to Figures A.2(b) and A.2(c) in Appendix A for arrangement of Load Type I and 2 respectively .
•• Refer to Figures A.2(d) and A.2(e) in Appendix A for arrangement of Tendon Profile I and 2 respectively.

Table 5.1: Experimental beams used for verification process

Table 5.2 (a) : Analytical vs. experimental results

(Yaginuma and Kitada (1988,1989»)
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Table 5.2 (b) : Analytical vs. experimental results

(Yaginuma and Kitada (1987))

Table 5.2 (c) : Analytical vs. experimental results Beams AI-2, A2-1, A2-2 and A3-2

(Zhang et al (1993))

Table 5.2 (d) : Analytical vs. experimental results Beams BI-2, B2-2 and 83-2

(Zhang et al (1993))
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Beams:

Table 5.3: Average and standard deviation of MprejMexp

for beams used in verification process

Where
T, = time taken to conduct the analysis neglecting the tension stiffening effects
T] = time taken to conduct the analysis with the tension stiffening effects
M, = Mull analysed neglecting the tension stiffening effects
M! = Mull analysed with the tension stiffening effects.

Table 5.4: Comparing the computer time and Mull derived from analyses conducted

with and without the tension stiffening effects considered
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Where
T, = time taken to conduct the analysis with the shear deformations
T3 = time taken to conduct the analysis neglecting shear deformations
JI, = Mull analysed with the shear deformations
JI3 = Mull analysed neglecting the shear deformations.

Table 5.5: Comparing the computer time and Mull derived from analyses conducted

with and without the shear deformations considered
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Chapter 6

Parametric Study

6.1 General

Several parameters that influence the ultimate behaviour of externally post-tensioned

structures have been discussed in Chapter Three. From the discussion, it is evident

that the influences of these parameters are still not fully understood by many

engineers and researchers. Hence, as part of the investigation, a parametric study was

conducted to examine in more detail the effects which some of these parameters have

on externally prestressed structures. This chapter describes how the parametric study

was conducted and the results and conclusions derived from it.

Six typical externally prestressed structures, denoted Beams TI to T6, were designed

here for the parametric study and are described in Section 6.2. The span-depth ratio,

non-prestressed reinforcement ratio, amount of prestressed reinforcement and initial

prestress force of these beams were then varied and, simulations conducted on them

with the proposed non-linear models for their flexural behaviour up to ultimate. Thus

resulting in over a hundred simulations conducted for the investigation.

Due to the large number of parameters considered in the investigation, the study was

divided into two parts. The first part of the study (Section 6.3) considered the effects

of the following parameters on the flexural behaviour of externally prestressed

structures: the non-prestressed reinforcement ratio (Section 6.3.1), span-depth ratio

(Section 6.3 .2) and the initial prestress force and amount of prestressed reinforcement

(Section 6.3.3). In the second part of the parametric study, the effects of incorporating

deviators along the span of these structures are investigated (Section 6.4). The

difference in flexural behaviour between beams having deflected and straight tendon

profiles is discussed in Section 6.4.1. Finally, the effects of the frictional behaviour at
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the deviators and the free length to depth ratio on the ultimate behaviour of such

structures are investigated in Section 6.4.2 and Section 6.4.3 respectively.

6.2 Beams used for the Parametric Study

Six typical externally prestressed beam configurations were selected for the

parametric study, denoted Beams Tl to T6. Beam Tl was based on the simply

supported externally prestressed structure used in the Bangkok Second Stage

Expressway (Hewson (1993)) and the others were variations of this main design.

These beams were designed in accordance to BS5400 Part 2 and Part 4 (1990), and

the design guidelines for externally prestressed structures by the UK DoT BA 58/94

(1995) and BD 58/94 (1995). The non-prestressed reinforcement ratios, span-depth

ratios, initial prestress force, amount of prestressed reinforcement and properties of

the deviators (if applicable) for these beams were then varied and the appropriate non-

linear analytical models were used to predict their flexural behaviour up to failure.

This resulted in over a hundred simulations which formed the basis for this parametric

study (performed using Silicon Graphic computer Challenge XL MIPS 4400 CPU).

In the design of Beams Tl to T6, the service and ultimate loading conditions were

first evaluated according to the HA and HB loading requirements given in BS 5400

Part 2 (1990). The service limit states of these beams were then checked with the

specifications stated in BS 5400 (Part 4) for Class 2 prestressed structures and their

ultimate moment of resistance were estimated using the following assumptions given

in BA 58/94 (1995) and BD 58/94 (1995) :

• zero stress increase in the tendons, Il/ps(ult) = 0.0 N/mm2

• zero eccentricity variation of the tendons, Ileccen(ult) = 0.0 mm.

All the six beams were simply supported box-girders with a deck width of 10.5 m.

However, since transverse behaviour is not within the scope of this study, the box-

girders were modelled as equivalent I-section beams for simplicity. The first five of

these beams were prestressed with external tendons with a straight profile, while

Beam T6, was prestressed with tendons with a deflected profile.

Beam Tl had an overall length of 45 m and an overall depth of 3 m. A prestress force

of 57,406 kN was initially applied to this structure and the initial eccentricity of the
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tendons was 372 mm from the centroid of the beam cross-section. Beams T2 and T3

were 25m in length with an overall depth of 1.5 m and had identical cross-sections.

Although these two beams were prestressed with a similar amount of initial prestress

force (i.e. 27,233 kN and 24,457 kN respectively), the initial eccentricity of the

tendons were varied, being 380 mm for Beam T2 and 560 mm for Beam T3. The

cross-sections of Beams T4 and T5 were also similar to each other and they both had

an overall length of 25 m and depth of 2.5 m. The initial prestressing force applied to

Beams T4 and T5 were 28,879 kN and 29,093 kN respectively with initial tendon

eccentricities of 600 mm and 300 mm respectively. Finally, the overall span of Beam

T6 was 45 m while its overall depth was 2.4 m. The external tendons were

prestressed with an initial prestress force of 81,450 kN and deflected along the

structure by two deviators (located at 10.7m from both supports). For comprehensive

information on the values of the parameters used in all the parametric studies given in

this chapter refer to Appendix Band C.

6.3 Parametric Study: Straight Tendons

A preliminary discussion of the effects of span-depth ratio, non-prestressed

reinforcement ratio, initial prestress force and amount of prestressed reinforcement on

the flexural behaviour of externally prestressed structures has already been presented

in Chapter Three. From the discussion it was evident that the nature and extent of

influence which these parameters have on the flexural behaviour of such beams are

still not fully understood. Hence, in the flrst part of the parametric study, an

investigation was conducted into these parameters to gain a better understanding on

their effects.

Two terms that are used frequently in the text to describe the ultimate behaviour of

these externally post-tensioned structures need to be defined here first to avoid

confusion, Le. the maximum moment (Mmax) and material limit moment (M(limit)). The

term material limit moment M(limit) is used here to refer to the theoretical ultimate

moment of the beam associated with either a specified concrete strain at the extreme

compressive fiber (Le. 0.0035) or the ultimate strength specified for the non-

prestressed or prestressed reinforcement. The other term Mmax refers to the maximum

moment corresponding to the exhaustion of the bending moment capacity, Le. dMldll.
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= O. For externally prestressed structures, these two moments may sometimes be

coincidental to each other as shown in Figure 6.1, in which case both moments may

be used to describe the ultimate capacity of the beam. However, the maximum

moment Mmax may also sometimes be observed to be higher than the material limit

moment M(limi/) due to the large reduction in the eccentricity of the tendons at higher

load levels caused by second-order effects (see Figure 6.2).

In practice, the maximum moment Mmax is usually the term used to describe the

ultimate carrying capacity of the externally prestressed beams (e.g. Yaginuma and

Kitada (1987, 1988, 1989) and Zhang et al (1993)) and, hence, the value of Mmax for

the various parameters considered here was first determined. However, without the

availability of either finite element software or non-linear analytical models (such as

the proposed models), designers may sometimes be required to use the simplified

approach introduced in the codes of practices (e.g. BS5400, AASHTO, etc.) to

evaluate the ultimate capacity of such beams. This approach normally involves

limiting the extreme top concrete fiber strain at failure to an ultimate strain value (e.g.

0.0035) and performing a sectional analysis at the critical section with the assumption

that the stress increase in the tendons is equal to a recommended value. For internally

bonded prestressed structures, this method will usually yield the ultimate capacity, but

as explained above, they may yield lower results which correspond to the material

limit moment condition for externally prestressed structures (see Figure 6.2). Since

one of the purposes of conducting this study is to investigate if the stress increase and

eccentricity variation of the external tendons recommended in the codes of practices

are acceptable for practical purposes, the variations of the material limit moments

M(limi/)' change in prestress Il./ps(limi/) and eccentricity variations Il.eccen(limil) for the

parameters investigated (e.g. prestressed and non-prestressed reinforcement ratios,

initial prestress force and span-depth ratios) were thus also considered in the

parametric study.

6.3.1 Amount of Non-prestressed Reinforcements

A total of thirty-six simulations were conducted with the proposed analytical models

(described in Chapter four) to study the effects of non-prestressed reinforcement on

the ultimate flexural response of externally prestressed beams. The analytical
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simulations were performed on Beams Tl to T5 (described in Section 6.2), but with

varying non-prestressed reinforcement ratios A/Yo specified in their designs. The

range of reinforcement ratios used for this study varied from 0.15% to 4.00%, which

were the maximum and minimum allowable values given in BS 5400 (1990). It

should be noted that the term reinforcement ratio As% used here is in accordance with

that described in BS5400 Part 4 (1990):

A.O/o = AslOO (6.1)
.1 b d

a

where

b, = the breadth of section or the average breadth excluding the compression

flange for non-rectangular sections

d = the effective depth to the tension reinforcement.

Figures 6.3 to 6.6 show the moment-deflection relationships for Beams TI to T5

respectively with different reinforcement ratios. In Figure 6.3, which illustrates the

deflection response for Beam TI with different As%, it was observed that when low

reinforcement ratios were used (e.g. As% = 0.15%) the moment-deflection response

was characterised by a sudden loss in strength immediately after cracking, followed

by an increase in strength until the maximum moment condition was reached which

was only about two percent higher than the cracking moment. After reaching

maximum moment condition, the curve then showed a steady decrease in moment to

the material limit condition as the beam deflection increased. For higher

reinforcement ratios (e.g. As% = 2.4% and 4%), the moment-deflection responses did

not show a sudden decrease in moment after the occurrence of cracking, but instead

exhibited an increase in moment with reduced stiffness. After the curves reached the

maximum moment condition, they then exhibited a relatively horizontal response

indicating very small changes in moments with large deflections up to the material

limit condition.

Figure 6.4 shows deflection responses for Beam T2 with different As% from which it

can be seen that all the curves indicated a higher maximum moment Mmax than the

material limit moment M(limit) (maximum difference about twenty percent). At lower

reinforcement ratios (e.g. As% = 0.15%, 0.5% and 0.7%), failure was observed to
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occur immediately after the occurrence of cracking for the beam. This was because

after cracking, a single large crack was developed at the critical section, thereby

causing the beam to behave as a shallow tied arch rather than a flexural member.

However, due to the reduction in eccentricity of the tendons caused by second-order

effects, the tied arch mechanism could not support loads which are higher than those

placed on the structure at cracking, thus causing the beam to collapse. This 'snap-

through' failure was observed to be avoided by placing more non-prestressed

reinforcement in the beam. The moment-deflection curves for Beam T2 with higher

reinforcement ratios (As% = 2.4% and 4%) exhibited an increase in moment after

cracking up to the yielding of the non-prestressed reinforcement. After the

reinforcement had yielded, the curves showed a decrease in moment until the material

limit condition was reached.

The design of Beam T3 was very similar to Beam T2, except for the initial position of

the tendons from the centroid of the section. In Figure 6.5, the snap-through failure

described for Beam T2 was also observed for Beam T3 with the lower reinforcement

ratios (i.e. As%= 0.15% and 0.5%). When more non-prestressed reinforcement was

specified, the deflection response was found to be greatly improved. The moment-

deflection relationships for Beam T3 with higher reinforcement ratios (i.e. As% =

2.4% and 4%) showed a reduction in the stiffness after cracking, but the moments

continued to increase up to the maximum condition. When the maximum moment

was attained, the curves then exhibited a slight decrease in strength and produced a

material limit moment which was about five percent lower than the maximum

moment.

The moment-deflection responses for Beam T4 with different reinforcement ratios are

shown in Figure 6.6. From the figure, it can be observed that for lower reinforcement

ratios (i.e. As% = 0.3% and 0.5%), the moment-deflection curves exhibited a sudden

large drop in strength after cracking, indicating the formation of a tied arch

mechanism. The tied arch mechanism caused large deflections to occur in the beam,

to generate the required tensile force in the external tendons, until the beam failed due

to concrete crushing at the critical section. The material limit moments for these

curves were noted to be only slightly higher than the cracking moments (less than two

percent for As% = 0.3% and less than fifteen percent for As% = 0.5%). When higher
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reinforcement ratios were specified in Beam T4, the moment-deflection curve

exhibited an increase in moment up to failure, where reductions in stiffness occurred

after first cracking and after yield of the reinforcement. It was also noted that all the

moment-deflection curves for this beam shown in Figure 6.6 exhibited a maximum

moment which is equal or similar to the material limit moment.

Figure 6.7 shows the deflection responses for Beam T5 with different reinforcement

ratios. The figure shows that snap-through failure will occur in this beam if the

reinforcement ratios are too low (e.g. As% = 0.3%). Increasing the amount non-

prestressed reinforcement for Beam T5 will prevent such failure from occurring and

improve the flexural response of the beam up to failure. The material limit moments

for Beam T5 with different reinforcement ratios were also found to be only slightly

lower than the maximum moments (not more than five percent).

Figure 6.8 shows the variation of the maximum moment Mmax with the reinforcement

ratio As% for Beams Tl to T5. It was observed from the figure that increasing the

amount of reinforcement ratio will generally cause an increase in the maximum

moment capacity of these structures. The relationships between the maximum

moment and the reinforcement ratio were also observed to be near linear. The

gradients (m) which were estimated using the Least Squares Method, were estimated

to be about 22,646 kNm/%, 12,646 kNm/% and 11,961 kNm/% for Beams Tl, T4 and

T5 respectively and these values were considered relatively high as compared to the

gradients evaluated for Beams T2 and T3, which were 2,723 kN/% and 3,395 kN/%

respectively (see Figure 6.8). This shows that although increasing the amount of non-

prestressed reinforcement in externally post-tensioned structures will generally

increase their flexural performance, the rate of maximum moment increase with

reinforcement ratios varies greatly for different beam configurations.

Figure 6.9 shows the material limit moment M(limit) - reinforcement ratio As%

relationships for Beams T2 to T5. It should be noted that the material limit moment -

reinforcement ratio relationship for Beam Tl was not plotted in Figure 6.9 because the

material limit condition could not be predicted by the analytical model for this beam

due to convergence problems encountered in the analysis (see Section 5.4). The

curves shown in Figure 6.9 show that the increase in material limit moment with the
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Increase In reinforcement ratio was relatively small until the reinforcement ratio

reached about 1.2%. From a reinforcement ratio of 1.2% to 4% it was found that

increasing the area of reinforcement generally caused a near linear increase in the

material limit moments.

Figure 6.10 shows the relationships between the change in prestress at the material

limit condition /)./ps(limll) with the reinforcement ratios for Beams T2 to T5. All the

curves show an increase in the change in prestress /)./ps(limit) as the non-prestressed

reinforcement ratio is increased up to about 1.2%, where the change in prestress

remained relatively constant for higher reinforcement ratios. This explains why

Ramos and Aparicio (1996) found that /)./ps at the ultimate limit state does not change

much for different reinforcement ratios, since the As% values used in their parametric

studies were relatively high.

The variation of eccentricity at the material limit condition /).eccen(limit) with the

reinforcement ratios As% for Beams T2 to T5 are shown in Figure 6.11. From the

figure, it can be observed that the overall trends of the /).eccen(limit) - As% relationships

for the four beams were very similar to those described for the /)./ps(limit) - As% curves.

The curves showed an increase in /).eccen(limit) as As% is increased up to about 1.2%,

after which, the increase of reinforcement ratio in these beams does not seem to cause

significant changes to /).eccen(limitj'

The variation of /)./ps(limit} and /).eccen(limit) with reinforcement ratio can be explained by

examining the changes in the profile of the curvature distributions along the span for

beams having different reinforcement ratios. Figure 6.12 illustrates the curvature

distributions for Beam T5 at the material limit condition for three different

reinforcement ratios, i.e. 0.15%, 1.2% and 4%. From the figure, it can be observed

that, when very little non-prestressed reinforcement is placed in the beam (Le. 0.15%),

the curvature distribution of the beam is characterised by a very large curvature

developed at the critical section with a relatively small plastic hinge length. When

more non-prestressed reinforcement is specified in the beam, the plastic hinge length

increases while the curvature at the critical section of the beam decreases (Figure 6.13

shows the curvature - As% relationships at the material limit condition for Beams T2 -

T5). These changes in the shape of the curvature distributions cause the deflection
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estimated at the material limit condition to vary with the As%, as shown in Figure

6.14. Since both 4/"pS(limiO and l1eccen(limll) are dependent on the deflected profile of the

structure, the variation of l1/ps(limlll and l1eccenllimill with the reinforcement ratio will

therefore follow the same trend as the deflection - As% curves shown in Figure 6. J 4,

i.e. an increase in values up to about 1.2% before remaining constant for higher As%.

6.3.2 Span-Depth Ratio

This section describes the investigation conducted on the effects of span-depth ratio

on the ultimate behaviour of externally post-tensioned structures. A total of about

fifty simulations were conducted in this study with the proposed analytical models

applied to Beams T1 to T5, with a range of different overall lengths to produce a

series of beams with different span-depth ratios. It should be noted that the

reinforcement ratios adopted for these beams were relatively small, ranging from

0.15% to 0.5% (see Table 6.1). These analyses were then supplemented with a small

number of beams with higher reinforcement ratio (i.e. As% = 3%) to cover the full

range of reinforcement ratios.

Figure 6.15 shows the change in prestress in the external tendons at the material limit

condition l1/ps(limit) with span-depth ratio L/dps for Beams T1 to T5. From the figure, it

can be observed that l1/ps(limil) does not vary much with the span-depth ratio for all five

beams, since the gradients obtained for these curves using the Least Square Method

were found to be less than 0.53 N/mm2 for Beams TI to TS respectively. The reason

for this lack of influence is due mainly to the low reinforcement ratios used for these

beams. The equilibrium of forces at a section is maintained by satisfying Equation

(6.2).

Cconc - Treinj- Tconc - Tpres = 0 (6.2)

Since the non-prestressed reinforcement ratios for Beams TI to TS are low and the

tensile contribution from concrete is usually negligible, the two forces Treinj and Tconc

in Equation (6.2) do not playa major role in maintaining equilibrium at the critical

section at the material limit condition. The two primary forces used to maintain the

equilibrium of forces at the critical section are thus the compressive force Cconc acting

on the concrete and the prestressing force Tpres. When the top concrete fiber strain
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reaches the ultimate strain value (i.e. taken as 0.0035 in this investigation), the

estimated compressive force Cconc was found to be nearly the same for all beams

irrespective of their span length. As such, the increase in prestress force I::!.Tpres from

the initial stressing level (and thus the change in prestress in the tendons 4/"ps) remains

nearly constant for these beams.

If the amount of reinforcement in these beams is increased, the effect of span-depth

ratio on the change in prestress at the material limit condition will also increase.

Figure 6.16 shows that when the reinforcement ratio of Beam T5 was increased from

0.3% to 3%, the gradient of the I::!./ps(limit) - L/dps relationship reversed from 0.0253

N/mm2 to -6.0358 N/mm2 respectively. This is because increasing the span-depth

ratio in these beams generally caused higher deflections to occur, thereby increasing

the curvature of the sections within the plastic hinge length. With higher

reinforcement area, the increased curvature in these sections will induce higher tensile

forces in the non-prestressed reinforcement Treinf and lower compression force acting

on the concrete Cconc. As a result, the prestress force Tpres (which is the same

throughout the whole span) reduces to maintain equilibrium at these sections.

Figure 6.17 shows that the change in eccentricity of the tendons at the material limit

condition l::!.eccen(limit) increases non-linearly as the span-depth ratio increases for all the

five beams investigated. As explained earlier, the increase in stress at the material

limit condition for all beams with low reinforcement ratio was almost the same

irrespective of span length. This increase in stress l::!./ps(limit) in the tendons is generated

through the lengthening of the external tendons between the anchorages (I::!.fps) as the

beam deforms. Since the strain increase in tendons I::!.Eps is evaluated from Equation

(6.2), a larger elongation (I::!.fps) is therefore required for beams with longer free

spanning tendons Ups) to yield the same amount of strain increase I::!.Eps (and

consequently stress increase I::!./ps) in the tendons. This larger elongation is produced

by the beams through greater deformation, which consequently causes the change in

tendon eccentricity to increase as the span-depth ratio increases.

I::!.Eps = I::!.fp/fps •••• ·••• .. •••••••• •·• .. • (6.2)

Figure 6.18 shows a comparison between the I::!.eccen(limit) - L/dps relationships for Beam

T5 with two extreme reinforcement ratios (i.e. 0.3% and 3%). From the figure, it is
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observed that higher reinforcement ratio causes the rate of change between Ileccen(limil)

and Lfdps to increase as Lfdps is increased.

Figure 6.19 shows the material limit moment M(limit) - span-depth ratio Lldps

relationships for Beams Tl to T5. From the figure, it can be seen that the predicted

M(limitJ decreases non-linearly as the span-depth ratio increases. Since it was shown

earlier that the stress increase at the material limit condition remained fairly constant

when the span-depth ratio was varied, the reduction of M(limil) must therefore be

caused mainly by the eccentricity variations of the tendons. Figure 6.20 shows that

when more non-prestressed reinforcement was incorporated into the beam (i.e. As%

increased to 3%), higher values of M(limit) were obtained and the rate of change of the

M(limit) - L/dps relationship decreases as Lfdps increases.

Figure 6.21 shows the maximum moment Mmax - span-depth ratio Lfdps relationships

for Beams TI to T5. The profiles of the five curves shown in Figure 6.21 were

observed to be nearly similar to the M(limit) - Lfdps curves shown in Figure 6.19, that is,

the moment decreases non-linearly as the span-depth ratio increases. However, the

Mmax - Lldps curves for Beams Tl and T2 seemed to indicate a reduction in the rate of

decrease for values of L/dps above 20. This is because when Lfdps was lower than 20

for Beams Tl and T2, their maximum moments were found to be equal to their

estimated material limit moments. However, when their span-depth ratios were

greater than 20, the maximum moment of the beams was attained before the concrete

strain reached the ultimate value at the critical section, hence the maximum moment

was higher than the material limit moment (see Figure 6.22).

6.3.3 Initial Prestress Force and Amount of Prestressed Reinforcement.

The term initial prestress force used here refers to the initial residual prestress force

applied to the structures after taking all losses into consideration. About thirty-four

simulations were conducted on Beams Tl to TS with the proposed non-linear models

to study the effects of the initial prestress force and amount of prestressed

reinforcement on the flexural performance of externally prestressed structures at

ultimate. This section describes the results obtained from this study.
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Figure 6.23 shows the relationships between the maximum moment Mmax and the

initial prestress force for Beams Tl to T5. Note that the areas of prestressing steel

were kept constant whilst the initial stressing levels were varied for these beams. It

was observed that the maximum moment of these beams increases linearly with the

amount of initial prestress force applied to them. The gradients for the Mmax - initial

prestress force curves, evaluated using the Least Squares Method, ranged from 0.716

kNmIkN to 1.299 kNmIkN as shown in Figure 6.23. The relationships between the

material limit moment M(1imit) and initial prestress force for Beams Tl to T5 were also

found to be increasing linearly in Figure 6.24. The figure also shows that the

gradients obtained for each of the M(limit) - initial prestress force curves corresponded

very closely with those derived for the Mmax - initial prestress force curves, with a

maximum difference of about sixteen percent. The reason for this close relationship is

because as the initial prestress forces in these beams are increased, the increase in the

maximum and material limit moments are found to be almost equal. An example of

this is illustrated in Figure 6.25, which shows the moment-deflection relationships for

Beam Tl with an initial prestress force of 33,255 kN, 57,406 kN and 66,730 kN.

When the initial prestress force was increased from 33,255 kN to 57,408 kN, the

increase in the maximum moment was about fifty-four percent and the increase in the

material limit moment was about fifty percent and, when it was increased from 57,406

kN to 66,730 kN, both maximum and material limit moments were increased by

approximately eighteen percent.

Figures 6.26 and 6.27 show that both the change in prestress ~/ps(1imit) and the

eccentricity variation ~eccen(1imit) at the material limit condition reduce as the initial

prestress forces for the beams are increased. This reduction in ~hs(limit) and ~eccen(limit)

with the increase in initial prestress force is due to the beams attaining the ultimate

concrete strain (0.0035) at the extreme concrete compressive fiber of the critical

section at lower loading levels. This resulted in lower deflections and smaller changes

in prestress and eccentricity for these beams at the material limit condition when a

higher initial prestress force was involved. It was also noted that the reduction of both

Mps(1imit)and Ileccen(limit) with the increase in initial prestress force was very varied for

these beams.
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Figure 6.28 shows the relationship between the maximum moment and the initial

prestress force for Beam Tl with two different span-depth ratios, i.e. 26.615 and

14.786. The two curves shown in Figure 6.28 indicate that the maximum moment

Mmax increases linearly with the initial prestress force, higher maximum moments

being obtained for the curve with the smaller span-depth ratio (Le. 14.786). This is

observed to be consistent with the findings derived from Figure 6.21, where the

maximum moment of the beam was found to decrease as the span-depth ratio is

increased. It can also be seen that the two curves plotted in Figure 6.28 were almost

parallel, where the gradient for the span depth ratio 26.615 and 14.786 curves were

1.163 kNmIkN and 1.299 kNmIkN respectively. This shows that the rate of increase

of the maximum moment with the initial prestress force is quite similar for a beam

with only its span-depth ratio varied. Figure 6.29 shows the M(limit) - initial prestress

force relationship for Beam Tl for the same two span-depth ratios together with their

respective gradients.

For Beam T4, Figure 6.6 shows that the Mmax is coincidental with Miimit' hence, Figure

6.30 shows the MmdMiimit - initial prestress force relationships for Beam T4 with

span-depth ratios of 15.385 and 8.00. Similar to the trends observed in Figure 6.28

for Beam Tl, the MmdMiimit increases linearly with the initial prestress force and the

gradients of the two curves were nearly parallel to each other (Le. 1.063 kNmIkN and

1.135 kNmIkN). Figure 6.31 and 6.32 show the variation of the change in prestress at

the material limit condition with the initial prestress force for Beams Tl and T4

respectively with different span-depth ratios. The change in tendon prestress at the

material limit condition was observed to decrease as the initial prestress force

increased. Also, both the .6.fps(limil) - initial prestress force curves with different span-

depth ratios were nearly coincidental. This is in agreement with the observation made

in Section 6.3.2 about the change in prestress at the material limit condition not

varying much with the span-depth ratio of the beam.

Figures 6.33 and 6.34 show the relationships between the eccentricity variation

.6.eccen(/imit) of the tendons with the initial prestress force applied to the structure for

Beams T'l and T4 respectively with different span-depth ratios. It was noted that

.6.eccen(/imit) decreases as the initial prestress force increases, but at a greater rate for

beams with a larger span-depth ratio.
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When the reinforcement ratio of Beam T5 was increased from 0.3% to 3%, the

variations of the Mma.! Milimll) with the initial prestress force for the two different

reinforcement ratios are compared in Figure 6.35. The ultimate moment capacity was

observed to increase with the initial prestress force for both curves, but the As% = 3%

curve had a lower gradient than the AJ% = 0.3% curve. Hence increasing the initial

prestress force in externally prestressed structures with relatively low reinforcement

ratios (e.g. 0.3%) would yield greater improvement in the strength capacity than when

an equivalent increase was applied on the same structure but containing more

reinforcement (e.g. 3%).

Figure 6.36 shows the relationship between the change in prestress at the material

limit condition for Beam T5 with reinforcement ratios of 3% and 0.3%. Both curves

indicate that the change in prestress at the limit moment condition decreases as the

initial prestress force increases. However for the AJ% = 3% curve, the rate of decrease

in the change in prestress t::.jps(limit) - initial prestress force curve was larger than that

observed for the As% = 0.3% curve.

Figure 6.37 compares the relationships between the change in eccentricity at the

material limit condition and the initial prestress force for Beam T5 with reinforcement

ratios of 0.3% and 3%. Both curves were observed to show a decrease in lleccen(limit) as

the initial prestress force was increased in the beam.

Figure 6.38 shows the moment-deflection relationships derived for Beam Tl with two

prestressing steel areas, i.e. AI's = 53,200 mm' and AI's = 79,800 mm''. Both curves

exhibited similar relationships before the occurrence of cracking; the AI's = 53,200

mm2 curve indicated a cracking moment which was five percent higher than the Aps =
79,800 mm2 curve This small difference in the cracking moments was due to the

slightly different residual initial prestress force applied to the structure due to losses.

After cracking the AI's = 53,200 mm' curve indicated a smaller stiffness and exhibited

a maximum moment of about 59,619 kNm when the mid-span deflection was about

100 mm, after which, the curve showed a loss in strength as the beam deflected further

as it approached the material limit condition. The Aps = 79,800 mm' curve on the

other hand showed a small increase in strength with large deflections after the

occurrence of cracking. It achieved a maximum strength of about 59,844 kNm, which
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was only about 0.3 % higher than the maximum moment exhibited by the other curve,

when the beam mid-span deflection was about 244 mm.

The moment-deflection curves for Beam T2 with two different prestressing steel

areas, i.e. Aps = 26,600 mm' and 53,200 mm'' are shown in Figure 6.39. Both curves

exhibited a similar trend before the occurrence of cracking. The cracking moment of

the Aps = 26,600 mm2 curve was about 19,032 kNm, which was about four percent

higher than the cracking moment of the Aps = 53,200 mm' curve. After cracking, the

Aps = 26,600 mm ' curve indicated a large drop in strength and the maximum moment

achieved after this was only about 18,424 kNm, hence, the maximum moment

capacity of this curve was its cracking moment. The Aps = 53,200 mm2 curve

exhibited a similar large drop in strength after cracking but showed an increase in

strength as the beam deformed to produce a maximum moment of about 19,809 kNm,

which was about four percent higher than the Aps = 26,600 mm2 curve.

Figure 6.40 shows the moment-deflection curve for Beam T3 with two amounts of

prestressing steel reinforcement, 26,600 mm2 and 53,200 mm". Both curves were

found to be nearly identical before the occurrence of cracking but with the cracking

moment of the Aps = 26,600 mm' curve about six percent higher than the other curve.

After cracking, the curve for the lower area of prestressing steel exhibited a loss in

strength before yielding a maximum moment of about 22,604 kNm at a beam mid-

span deflection of about 200 mm. The Aps = 53,200 mm' curve showed a similar

decrease in strength after cracking but the maximum moment for this curve was about

26,545 kNm, which was about fifteen percent higher than the Aps = 26,600 mm2 curve.

The moment-deflection responses for Beam T4 with different areas of prestressing

steel (Aps = 26,600 mm2 and Aps = 53,200 mm'') are shown in Figure 6.41. The

cracking moment for the Aps = 26,600 mm' curve was now only two percent higher

than that for the Aps = 53,200 mm' curve. After cracking, the Aps =26,600 mm2 curve

exhibited a maximum strength (49,210 kNm) which was about seventeen percent

lower than the Aps = 53,200 mm2 curve (59,572 kNm).

Figure 6.42 shows the moment-deflection curves for Beam T5 with the same

prestressing steel areas of 26,600 mrrr' and 53,200 mm", The two curves were

observed to be virtually equal before the occurrence of cracking with their cracking
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moments differing by only about two percent. After cracking, both curves showed a

sudden loss in strength before indicating large deflections as the moments increased to

maximum values. The maximum moment attained for the Aps = 26,600 mm2 curve

was about 35,865 kNm which was about sixteen percent lower than the Aps = 53,200

mm' curve (42,580 kNm).

6.4 Parametric Study: DeflectedTendons

In this section, the effects of incorporating deviators in externally prestressed

structures are investigated and the results obtained from the study are discussed.

6.4.1 Deflected vs Straight Profile

The flexural behaviour of Beam T6 (described in Section 6.2) was simulated to the

ultimate condition using three non-linear models that were developed here for

externally prestressed structures with deviators located along their spans:

1)EXT5:

2) EXT7:

the tendons are assumed to be fixed at the deviators.

3)EXT9:

the frictional behaviour at the deviators is considered in the analytical

model (friction coefficient taken to be 0.3)

the tendons are assumed to slip freely at the deviators.

Figure 6.43 shows the moment-deflection responses for Beam T6 predicted with the

above mentioned non-linear models. From the figure, the three analytical curves were

observed to be nearly equal before the occurrence of cracking. The EXT9 curve

indicated cracking at a marginally lower load than the other two curves and formed

the lower bound to the flexural response of the beam. The EXT5 curve on the other

hand formed the upper bound and yielded a maximum moment which was about four

percent higher than the maximum moment indicated by the EXT9 curve. The EXT7

curve was observed to follow the same line as the EXT5 curve until the occurrence of

tendon slippage at the deviators (when beam deflection reached about 125 mm), after

which it deviated away from the EXT5 curve and moved towards the EXT9 curve.

The maximum moment predicted by the EXT7 model was found to be only

approximately one percent higher than the EXT9 value (see Table 6.2), but the final
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deflection of EXT9 curve was about five and twelve percent greater than the EXT7

curve and EXT5 curve respectively.

Figure 6.44 compares the moment-deflection relationships derived for Beam T6

(predicted with the EXT7 model) and Beam T6(A). Beam T6(A) is identical to Beam

T6 in all respects except that there are no deviators, the external tendons being

anchored at both ends of the beam with a constant eccentricity of 595 mm. Before

cracking, the Beam T6 curve exhibited a stiffness which was about ten percent higher

than the Beam T6(A) and this percentage difference was maintained after cracking

and the yielding of non-prestressed reinforcement. The maximum moment predicted

for Beam T6 was approximately 102,510 kNm (see Table 6.2), which was about nine

percent higher than for Beam T6(A) (92,810 kNm). However, it was noted that the

compressive stress at the extreme bottom fiber of the section near the supports

evaluated for Beam T6(A) before external loadings were placed on the structure (fc; =

27.38 N/mm2) exceeded the allowable stress given in BS5400 (Part 2) (1990) (20

Nzmm'). This indicated that Beam T6(A) failed to satisfy the service limit state

checks given in BS5400 (Part2) (1990) and, in practice, would need to be redesigned.

6.4.2 Frictional Behaviour at Deviators

6.4.2.1 Deviation Angles at Deviators

Two externally prestressed beams, denoted Beam T6(B) and Beam T6(C), were

simulated to failure with the three non-linear models listed in Section 6.4.1. Beams

T6(B) and T6(C) were similar to Beam T6, except for the deviation angles of the

tendons at the deviators which were 5.84° and 0° respectively (see Figures 6.45 and

6.46 for the arrangements of the tendons).

Figure 6.45 shows the moment-deflection responses for Beam T6(B) derived from the

proposed analytical models. From the figure, it can be seen that the two bounding

curves, EXT5 and EXT9, were very closely related to the curves shown for Beam T6

in Figure 6.43. However, the EXT7 curve indicated that slippage of tendons for Beam

T6(B) first occurred when the beam deflection was about 140 mm instead of 125 mm

(see Section 6.4.1). This was because increasing the angle of deviation from 4.25° to

5.84° had caused higher frictional resistance to be generated at the deviators. This
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higher frictional resistance consequently prevented the tendons from slipping until the

deflection of the beam reached a higher value. The difference between the maximum

moments obtained for the EXT5 and EXT9 curves of Beam T6(B) was also found to

be only four percent (similar to that observed for Beam T6). The maximum moment

predicted by the EXT7 model for Beam T6(B) was observed to be 102,710 kNm

which was less than one percent higher than that estimated for Beam T6 (i.e. 102,510

kNm) (see Table 6.2).

The moment-deflection relationships for Beam T6(C) are shown in Figure 6.46 and

again show that the EXT5 and EXT9 curves are very closely related to the curves

shown in Figure 6.43 for Beam T6. The difference between the maximum moments

estimated by the EXT5 and EXT9 curves were also found to be about four percent.

The EXT7 curve however was found to almost exactly follow the EXT9 curve (less

than 0.5% difference) for the entire loading history. This was because the small

deviation angle formed at the deviators due to the deflected profile of the beam did

not generate enough frictional resistance to prevent frictional slippage. Hence

slippage of the tendons at the deviators occurred throughout the whole loading history

of the beam, thereby causing the EXT7 curve to be very closely related to the EXT9

curve (where tendons were assumed to slip freely at the deviators). The maximum

moment predicted by the EXT7 model for Beam T6(C) was about 101,010 kNm (see

Table 6.2), which was about one percent lower that predicted for Beam T6. This

shows that a reduction in the angle of deviation at the deviators will cause the flexural

strength of these beams to reduce, although the reduction was observed to be very

small for this beam.

6.4.2.2 Initial Prestress Force

Figures 6.47 and 6.48 show the moment-deflection relationships for Beams T6(D) and

T6(E) which were similar to Beam T6 except for their initial prestress force which

was changed from 81,450 kN to 95,650 kN and 47,270 kN respectively. In Figure

6.47, where the higher initial prestress force was applied, the EXT5 and EXT7 curves

are seen to be the same throughout the whole loading history. This was because the

high initial prestress force had caused large frictional forces to develop at the

deviators, thus preventing the tendons from slipping at these points. Since the tendons
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do not slip at the deviators, the moment-deflection response will thus be identical to

that predicted by the EXT5 model (where tendons are assumed to be fixed at the

deviators). The trend of the EXT9 curve was also found to be very closely related to

the other two curves (maximum difference in moments not exceeding one percent)

and the maximum moment predicted by the EXT9 model was approximately one

percent smaller than that estimated by the EXT5 and EXT7 models. This shows that

although the high frictional forces generated at the deviators will prevent tendon

slippages from occurring when high initial prestress forces are used, the flexural

behaviour of the beam predicted using the three analytical models (i.e. EXT5, EXT7

and EXT9) did not yield very different results (less than one percent). The maximum

moment predicted for Beam T6(D) with the EXT7 model was found to be thirteen

percent higher than that predicted for Beam T6. This was consistent with the

observations made in Section 6.3.3 where it was found that a higher initial prestress

force applied to the structure will generally yield a higher ultimate strength.

Figure 6.48 shows the deflection responses of Beam T6(E) where the initial prestress

force for the beam was reduced to 47,270 kN. The three analytical curves in Figure

6.48 were again observed to be very similar to each other before the onset of cracking.

However after cracking, the three curves deviated from each other with the EXT5

curve indicating the highest post-cracking stiffness (upper bound) and the EXT9 curve

forming the lower bound. The maximum moments predicted for this beam were

74,810 kNm and 61,730 kNm by the EXT5 and EXT9 models respectively,

representing a range of about seventeen percent. The EXT7 curve was observed to

run almost parallel to the EXT9 curve after the yielding of the non-prestressed

reinforcement and the maximum moment predicted by this model (62,790 kNm) was

about two percent higher than that predicted by the EXT9 model (61,730 kNm). This

indicated that when the initial prestress force applied to the structure is relatively low,

the difference between the flexural behaviour at ultimate using the two extreme

assumptions at the deviators will be very large. However, the flexural strength

predicted when frictional effects (where Il = 0.3) were considered was found to be

only two percent higher than the maximum moment capacity predicted using the

assumption that the tendons slip freely at the deviators (see Table 6.2). Although it

may appear that some benefit may be obtained in fixing the tendons at the deviators,

Page 210



University of Sheffield

the benefit only applies to structures with small initial prestress force which is not

economical for practical purposes. It was also observed that the maximum moment

estimated for Beam T6(E) with the EXT7 model was about forty percent lower than

that predicted for Beam T6.

6.4.2.3 Coefficient of Friction at Deviators

The coefficient of friction at the deviators used for all the analyses conducted so far in

parametric study part two was taken to be 0.3, as recommended in BS8ll 0 (1990) for

the contact between lightly rusted strand and lightly rusted steel. This value was

noted to give close agreement with the experimental beams used for the verification

process in Chapter Five. However, the coefficient of friction is dependent on several

factors (e.g. the type of materials used for the deviators) and, hence, vary greatly for

different beams. This section investigates the variation of the flexural performance of

externally prestressed structures when different coefficients of friction are specified at

the deviators.

Beam T6(E) was used for this study because the difference in the flexural behaviour

estimated using the EXT5 and EXT9 models was sufficiently large to allow a

comparison to be made between the deflection responses derived when different

coefficients of friction were specified at the deviators. Figure 6.49 shows the

moment-deflection responses predicted for Beam T6(E) where the coefficient of

friction was taken to be 0.3, 0.5 and 1.0. It can be seen that the curves derived for

these three different coefficients of friction were approximately parallel to the EXT9

curve after the tendons first slipped at the deviators. The curve for the coefficient of

friction equal to 1.0 indicated the greatest difference with the EXT9 curve and the

maximum moment predicted with this analysis was about seven percent higher than

that predicted by the EXT9 model and fourteen percent lower than that estimated with

the EXTS model.

Beam T6(F) was also used to study the effects of varying the coefficient of friction on

the flexural behaviour of externally prestressed structures. This was because the

difference in the ultimate strengths of this beam predicted with the EXT5 and EXT9

models was also found to be large enough for such a study to be conducted (i.e. about
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eight percent). The tendon arrangement for this beam is shown in Figure 6.51. Figure

6.50 shows the deflection responses predicted for Beam T6(F) using coefficients of

friction equal to 0.3, 0.5 and 1.0. The curves representing coefficients of friction 0.3

and 0.5 were observed to be closer to the EXT9 curve than they were to the EXT5

curve and their moments predicted after the yielding of non-prestressed reinforcement

were noted to be only about one and three percent higher than the EXT9 curve

respectively. The EXT7 curve for I.l = 1.0 lies between the EXT5 and EXT9 curves,

with a maximum moment about five percent higher than the EXT9 value and four

percent lower than the EXT5 value. The performance of both beams discussed in this

section, i.e. Beams T6(E) and T6(F), would seem to indicate that allowing the tendons

to slip freely at the deviators (i.e. EXT9 model) gives a conservative estimate of the

flexural response of these beams (under-estimating the ultimate moment obtained

using values for the coefficient of friction up to 1.0 by not more than seven percent).

6.4.3 Free length to depth ratio

For Beam T6 shown in Figure 6.43, the distance between the two deviators near the

mid-span was about 23,600 mm. This distance was changed to 10,000 mm and

33,600 mm in Beam T6(F) (see Figure 6.51) and Beam T6(G) (see Figure 6.52)

respectively, to study the effects of varying the free length of the tendons near mid-

span on the flexural behaviour of these structures. Figure 6.51 shows the moment-

deflection responses derived for Beam T6(F) which had a smaller free-length to depth

ratio ajree of 5.87. The EXT5 curve and EXT9 curve exhibited a maximum moment

of about 115,710 kNm and 106,910 kNm respectively, thus giving a difference of

about eight percent between the maximum moments predicted by the two extreme

analytical models. The EXT7 curve was observed to deviate from the EXT5 curve

immediately after the occurrence of cracking, and predicted moments which were

approximately one percent higher than that estimated by the EXT9 curve for the same

deflection. The maximum moment predicted by the EXT7 model for this beam was

about 108,400 kNm, which was about five percent higher than that predicted for

Beam T6 (102,510 kNm) (see Table 6.2). The eccentricity variation /).eccen at the

ultimate condition for Beam T6 and Beam T6(F) were calculated to be 89.68 mm and

21.88 mm respectively (see Table 6.2). This indicates that even though the two beams
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were similar and had the same span-depth ratio (i.e. 23.5), Beam T6(F), which had a

lower free length to depth ratio, exhibited a higher strength than Beam T6. This was

because a reduction in the free length to depth ratio reduced the eccentricity variation

in the tendons at the critical section, thereby increasing the flexural strength of the

beam.

Figure 6.52 shows the deflection responses for Beam T6(0) and, from the figure, it

can be seen that the EXT7 curve did not deviate from the EXT5 curve until the beam

deflection was about 180 mm and then only marginally. This was due to the higher

angle of deviation (about 7.2°) at the deviators caused by the greater separation

between the deviators at mid-span (see Figure 6.52). The higher angle of deviation

consequently caused higher frictional forces to be generated at the deviators which

prevented the tendons from slipping. However, because of the higher eccentricity

variations of tendons occurring near mid-span for this beam (142.10 mm) the

maximum flexural capacity predicted using EXT7 model (98,110 kNm) was found to

be nine percent and five percent lower than for Beam T6(F) and Beam T6

respectively. The difference between the maximum moments predicted by the EXT5

and EXT9 models for this beam was found to be only approximately two percent.

6.5 Concluding Remarks

Six externally prestressed beams were selected for the parametric study. Five of these

beams were prestressed with straight external tendons while the last beam was

prestressed with tendons with a deflected profile. The span-depth ratios, non-

prestressed reinforcement ratios, amount of prestressed reinforcement, initial prestress

force and frictional properties of the deviators (if applicable) of these beams were then

varied and non-linear analyses conducted on them with the proposed models to

determine their flexural response up to ultimate.

Two moment conditions were defined in this chapter to describe the ultimate moment

capacity of these externally prestressed beams, they are the maximum moment

condition and the material limit moment condition. In this study, the material limit

moments for externally prestressed structures were shown sometimes to be lower than

the maximum moments (sometimes by as much as twenty percent). The lower
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material limit moment derived was caused by the large reduction in eccentricity of the

external tendons at the material limit condition due to second-order effects.

In practice, the maximum moment should be taken as the ultimate moment capacity of

the externally post-tensioned structure. However, this moment is not always easily

predicted without the use of either a detailed finite element analysis or non-linear

analytical models. An alternative method for estimating the ultimate moment

capacity of these beams would be to adopt the simple sectional analysis recommended

by several codes of practice (e.g. AASHTO, BS5400, etc.), where the top concrete

fiber strain at the critical section is assumed to be equal to an ultimate strain value and

the change in prestress is taken as some recommended value at the ultimate condition.

This method, however, only yields the material limit moment which would often

under-estimate the ultimate moment capacity.

However, it has been argued that the material limit moment can still be used to

represent the ultimate moment capacity, since it is a conservative estimation of the

maximum moment. Hence, the variations of the change in prestress !1/ps(limit) and

eccentricity variation !1eccen(limit) at the material limit condition with the span-depth

ratio, non-prestressed reinforcement, amount of prestressed reinforcement and initial

prestress force were investigated to determine whether these variables can be

represented by a single value or estimated by a simple expression so as to aid the

computation of the material limit moment using the sectional analysis method.

For relatively low reinforcement ratios (e.g. approximately 0.15% - 0.5%), the

moment-deflection responses were found to be characterised by a sudden large drop in

strength immediately after cracking, followed by a slow increase in strength as the

beam deflections increased rapidly up to the maximum moment condition. The

sudden loss in strength after cracking was due to the development of a single crack at

the critical section and the formation of a tied arch mechanism in the structure. In

some beams, failure occurs immediately after the occurrence of first cracking because

the tied arch mechanism developed can not support the external loads placed on the

structure. Increasing the amount of non-prestressed reinforcement in these structures

will not only help to prevent such instability failures from occurring but also improve

their general flexural behaviour.
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The maximum moment capacity Mmax of externally post-tensioned structures was

observed to increase linearly with increase in the non-prestressed reinforcement ratio.

However, the rate at which the maximum moment increases with the amount of non-

prestressed reinforcement was noted to vary for different beams. This indicated that

increasing the amount of reinforcement in externally prestressed structures will not

always produce a commensurate improvement in the flexural strength.

The change in prestress t::./ps(limil) and eccentricity variation t::.eccen(limil) at the material

limit condition were observed to increase as the reinforcement ratio increased up to

1.2%, however these variables remained fairly constant when As% ranged from 1.2%

to 4%. The material limit moment M(limil) was also found to increase as the

reinforcement ratio increased, but at a relatively low rate when As% was less than

1.2%. The changes in prestress ranged from 90 N/mm2 to 600 N/mm2 while the

eccentricity variations ranged from 120 mm to 600 mm for the Beams Tl to T5 using

different reinforcement ratios (ranging from 0.15% to 4%). This illustrates how these

parameters varied with the amount of reinforcement specified in the beams.

The maximum moment Mmax and material limit moment M(limil) decrease non-linearly

with increasing span-depth ratio. For beams with higher levels of reinforcement, the

reduction in strength with the increase in the span-depth ratio was noted to be greater.

It was found that the change in prestress t::./ps(limil) at the material limit condition does

not change significantly with an increase in the span-depth ratio for externally

prestressed beams with low reinforcement ratios (about 0.314%). However,

increasing the amount of reinforcement (to about 3%) causes t::./ps(limil) to decrease with

an increase in the span-depth ratio L/dps• The eccentricity variation t::.eccen(limit) at the

material limit condition was found to increase non-linearly with the span-depth ratio

L/dps and the trend of the relationship between these two variables was found to be

dependent on the amount of non-prestressed reinforcement. The increase in the

eccentricity variation for beams with large span-depth ratios causes the ultimate

strength of these beams to decrease, a phenomenon described by Virlogeux (1988) as

second-order effects. Hence, if long externally prestressed structures are required

(which is common in bridge applications), incorporating deviators along the span will

help reduce the loss of strength due to second-order effects.
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The maximum and material limit moments for these structures were found to increase

linearly as the initial prestress forces applied to the structures are increased. The rate

of increase of flexural strength for increasing levels of initial prestress force was

observed to be lower for beams with higher reinforcement ratios. However, it was

observed earlier that increasing the level of reinforcement also increases their flexural

strength, although at different rates. Hence, it is often difficult to decide upon the best

combination of these parameters to be used. A trial and error analysis is thus

recommended here, where various practical and economic considerations are carefully

reviewed, before deciding on the best combination of reinforcement ratio and initial

prestress force to be used.

Both the change in prestress and the eccentricity variation at the material limit

condition were observed to decrease with an increase in the initial prestress force.

However, the rates of decrease of these variables with the initial prestress force were

found to be very varied for different beam configurations. For externally prestressed

beams with different span-depth ratios, similar trends were obtained between the

change in prestress ll/ps(limifj at the material limit condition with the initial prestress

force applied to the structure. As for the eccentricity variation Ileccen(limitj' the rate of

decrease in lleccen(limif) with the initial prestress force was found to be greater in beams

with larger span-depth ratios. For beams with higher reinforcement ratios, the rate of

decrease in the ll/ps(limif) with the initial prestress force was also noted to be higher.

Increasing the prestressing steel area while maintaining the same amount of initial

prestress force will generally increase the maximum moment capacity. However, this

method of increasing flexural performance was found to be uneconomical here, since

the study showed that increasing the prestressing steel area by approximately fifty

percent only yielded a relatively modest increase in the ultimate strength (not more

than seventeen percent).

Hence from the first part of the parametric study, it was shown that the variables

ll/ps(limif) and lleccen(limif) vary greatly with parameters such as the span-depth ratio, non-

prestressed reinforcement ratio, prestressed reinforcement ratio and initial prestress

force. Moreover, it was observed that the influence of the above parameters on these

two variables are also inter-dependent on each other. Thus, it will be very difficult (if
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not impossible) to derive a single value or simple expression to represent these

variables accurately for every beam considered.

Using a deflected tendon profile not only increases the ultimate flexural strength of

these structures, but also enables the eccentricity of the prestress force at the ends of

the member to be reduced, so as to produce acceptable final stress levels throughout

the length of the beam at the service conditions. When deviators are placed in an

externally prestressed structure, the frictional forces generated at the deviators may

prevent the external tendons from slipping at these points. This consequently prevents

the stresses in the tendons from re-distributing across the deviators and, hence,

increases the flexural strength of these structures. The frictional force generated at the

deviators is dependent on three factors, i.e. the angle of deviation of the tendons at the

deviators, the coefficient of friction at the deviators and the initial prestress force

applied to the structure. It was found from this study that increasing any of these

factors will generally increase the frictional resistance generated at the deviators and

consequently the maximum moment capacity. However, for all the beams considered

with deflected tendons, except for Beams T6(E) and T6(F), the differences between

the maximum moments analysed with the upper and lower bound models, i.e. EXT5

and EXT9, were all found to be less than about four percent. For Beams T6(E) and

T6(F), although the differences of the maximum moment predicted by the EXT5 and

EXT9 models were considerably greater than four percent, the maximum moments

estimated with the EXT? model using a high coefficient of friction (i.e. f.l = 1) was

found to yield a maximum difference of only seven percent with the moments

predicted by EXT9 model. Hence, assuming that the tendons slip freely at the

deviators (e.g. the EXT9 model) when analysing the behaviour of these structures,

should conservatively predict their ultimate response to an acceptable level of

accuracy for design purposes. This assumption also simplifies the analysis of these

structures, since frictional slippage and redistribution of stresses in the tendons across

deviators are neglected.

Finally, the provision of deviators in externally prestressed structures helps to reduce

the free length of the tendons and hence the free length to depth ratio. It was found

that reducing the free length to depth ratio increases the flexural performance of these

beams, even though the span-depth ratio is maintained constant. This is because a
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reduction in the free length to depth ratio reduces the eccentricity variations near the

critical sections, thereby increasing flexural strength.
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with two different values of Aps
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Figure 6.47: Moment-deflection curves for Beam T6(D)

(Initial prestress force = 95650 kN)

70000

--.--..-.-.-....----..-..---.-.-.---..-.-----.----.--.-···-·---·-·--------·------·--·---·---·--l
-0-- Analytical EXT5 curve (fixed at de;;ators)

-0- Analytical EXT? CU"", (frictional effects considered)

Analytical EXT9 curve (fnctionless at de;;ators) I--
80000

10700 23600 10700

60000

50000

Ez~
1: 40000

"E
0
::Ii

30000

20000

10000

0
0

200
Residual Initial Prestress Force = 47270 KN

.-~1108 -!__

1292~~~'

Tendons arrangement for Beam T6(E)

50 100 150 200 250

Deflection (mm)

300 350 400 450 500
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* Refer to Figures B.l(b) and B.l(c) in Appendix B for the arrangement of Ten don Profile I and 2 respectively

Table 6.1: Key parameters of Beams Tl to T6

EXT3:

EXT5:

non-linear analytical model for beams with no deviators

non-linear analytical model for beams with deviators where tendons are assumed to be fixed at

the deviators

non-linear analytical model for beams with deviators and the friction coefficient at the

deviators are assumed to be 0.3

non-linear analytical model for beams with deviators where the tendons are assumed to slip

freely at the deviators.

EXT7:

EXT9:

Table 6.2 : Maximum moments and eccentricity variations

predicted using the various proposed non-linear models
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Chapter 7

Design Implementations

7.1 General

The purpose of this chapter is to check the applicability and accuracy of using

different analytical methods to estimate the flexural behaviour of externally

prestressed structures. The analytical methods considered in this investigation are:

• the sectional analysis method (as recommended in BD 58/94 (1995), ASSHTO

(1989) and ACI (1983»

• the proposed non-linear models introduced in Chapter Four.

In Chapters One and Two, it was pointed out that the use of external post-tensioning

in bridge construction was only recently encouraged in the United Kingdom by the

Department of Transport. Since design rules for externally prestressed structures were

not included in BS 5400 Part 4 (1990), the UK DoT commissioned Gifford and

Partners to establish new design guidelines for these structures. The new rules

published in BD 58/94 (1995) recommended that the ultimate strength of these beams

can be estimated by performing a sectional analysis at the section of maximum

moment where the stress increase in the tendons /)./ps(ult) required for the ultimate load

analysis be either assumed to be zero or calculated from a non-linear analysis. In the

United States, although external post-tensioning is used commonly in many bridge

construction, no formal recommendations are given exclusively for the estimation of

the ultimate behaviour of these structures. Instead, the design rules given in ASSHTO

(1989) and ACI (1983) for internally unbonded prestressed structures were deemed

also to be applicable for externally prestressed structures. Both codes recommended

that the sectional analysis method may be used for predicting the ultimate flexural

behaviour of these unbonded structures, provided the stress increase in the tendons is

either assumed to be 103 N/mm2 (as recommended by AASHTO (1989» or evaluated
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by USing Equations (2.2) and (2.3) (as recommended by ACI (1983)). Since the

recommendations given in the two codes were directed for internally unbonded

prestressed structures, no reference was given about the change in eccentricity of the

tendons due to second-order effects. Section 7.2 compares the ultimate moments

derived from sectional analyses conducted using the guidelines given in BD 58/94

(1995), AASHTO (1989) and ACI (1983) and the proposed non-linear models and

discusses the applicability of using these given guidelines for estimating the ultimate

strength of externally post-tensioned structures.

7.2 Sectional Analysis

For reinforced and internally bonded prestressed concrete structures, the ultimate

moment capacity can be easily determined by conducting a sectional analysis at the

section of maximum moment. In the sectional analysis, the strain at the extreme

compressive fiber of the concrete is assumed to be at an ultimate value (e.g. SS811 0

(1985) recommends 0.0035) and the following assumptions are usually used to

evaluate the various forces acting at the critical section (i.e. Ceone' Teone' Tpres' Treinj):

1) Plane section remains plane after bending.

2) The concrete will crack whenever the tensile strains in the concrete exceeds

the modulus of rupture and, after cracking, the tensile force is carried by the

reinforcement and the prestressing steel.

3) The constitutive relationships of the materials are known.

The evaluated forces are then balanced by adjusting the depth of the neutral axis, until

force equilibrium is achieved at the critical section (i.e. Equation (5.1) is satisfied).

Once equilibrium of forces is ensured, the ultimate moment capacity is then evaluated

using Equation (5.2).

Ceone - Treinf- Teone - Tpres = 0 (5.1)

Mull = Ceoned'eone + Teonedeone + Treinj1reinj+ Tpre~pres (5.2)

However, problems are encountered when the sectional analysis method described

above is used to evaluate the flexural behaviour of externally prestressed structures.

This is because the change in prestress 4/'ps(ull) above the initial stressing level (which

determines the amount of prestress force in the tendons Tpres) and, the eccentricity

Page 247



University of Sheffield

variations /).eccenlllll) of the tendons due to second-order effects (which determines the

position of the tendons dpres) are both not easily estimated by just considering the

stress and strain distribution across the critical section. In fact. due to the lack of bond

between the concrete and the external tendons. these two variables are found to be

dependent on the deformation response of the whole beam and can only be accurately

estimated if the deflected profile of the beam at the ultimate condition is known.

A study was conducted here to investigate the accuracy of using the recommendations

given in BD 58/94 (1995), AASHTO (1989) and ACI (1983) for estimating the

ultimate moment capacities of externally prestressed structures. In the study, the

flexural strengths of the beams used in the verification process (described in Chapter

Five) were first analysed with the proposed non-linear models (introduced in Chapter

Four) and then with the specifications given by the three selected design codes. The

evaluated ultimate moments Mull and their ratio with the experimental results

(Mpre/Mexp) are all tabulated in Table 7.1.

Beams OS-1 and OL-l were nearly identical beams except for their span-depth ratios,

which were 24 and 40 respectively. When these beams were analysed with the

proposed non-linear models, the predicted maximum moments were found to be 0.902

and 0.990 of the experimental beams respectively. For Beam OS-1 the maximum

moment evaluated using BD 58/94 was under-estimated by about ten percent and,

over-estimated by AASHTO and ACI by approximately fifteen and twelve percent

respectively. AASHTO and ACI over-estimated the maximum moments because they

did not take into account the large loss in lever arm caused by eccentricity variations

of the tendons due to the relatively high span-depth ratio of Beam OS-1 (i.e. 24).

Although eccentricity variation was also neglected in BD 58/94, the over-conservative

assumption of using zero stress increase in tendons at ultimate caused the derived

ultimate moments to be under-estimated instead. In the case of Beam OL-l because

the span-depth ratio was further increased, the ultimate capacity was over-estimated

by twenty-five percent, sixty-three percent and fifty-six percent by BD 58/94,

AASHTO and ACI respectively. This shows that despite the extremely conservative

assumption used in BD 58/94, the ultimate capacity can also sometimes be over-

estimated.
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Beams OA88-2, OB88-1, OC88-1, OC88-2 and 0088-1 all had the same cross-

section, loading pattern, non-prestressed reinforcement ratio and span-depth ratio but

different amounts of prestressing steel and initial prestress force. The ultimate

moment capacities were found to be under-estimated by approximately twenty-five to

thirty-five percent when BD 58/94 was used to predict their flexural strength.

AASHTO and ACI both gave better estimations of the flexural strength of these

beams, under-estimating them by only approximately ten to twenty percent.

However, when the proposed non-linear models were used, the flexural strengths of

all these beams were only under-estimated by approximately five to thirteen percent

except for Beam OB88-1 which was slightly over-estimated by two percent.

Beams OA-l, OB-l and OC-l were similar to each other except for the amount of

non-prestressed reinforcement ratios. The proposed non-linear analytical models

under-estimated the flexural strength of these beams by about thirteen, ten and

eighteen percent respectively. Such a large under-estimation was predicted for Beam

OC-I because its estimated maximum flexural strength was limited by the theoretical

value of ultimate compressive strain assumed for the concrete (i.e. assumed here to be

0.0035). When the stress increase in tendons was assumed to be zero (i.e. BD 58/94),

the derived ultimate moment capacities for Beams OA-I, OB-l and OC-l were found

to be under-estimated by about thirteen, eleven and twenty percent respectively which

were very close to the percentages obtained for the non-linear models. The

reasonably close estimation of the ultimate strengths with BD 58/94 was again due to

the conservative assumption made in the analysis, that is, zero stress increase in the

tendons at the ultimate condition. This assumption compensated for the over-

estimation of the flexural strength due to neglecting the eccentricity variation of the

tendons. Both AASHTO and ACI on the other hand over-estimated the ultimate

strengths of these beams by approximately three to seven percent. This was because

the eccentricity variations of the tendons at ultimate were not taken into account by

these codes and the recommended values for ~/ps(ull) were not small enough to

compensate for the over-estimation of the flexural strength. It was also noted that the

over-estimation of the flexural strength increases as the non-prestressed reinforcement

ratios increases. This is because higher reinforcement ratios generally cause higher

deflections at ultimate for these beams (see Chapter Six), and this consequently causes
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larger changes in the eccentricity of the tendons. Since the eccentricity variations

were neglected by these codes, higher flexural strengths were thus predicted.

Beams AI-2, A2-1, A2-2 and A3-2 were tested by Zhang et al (1993) and although

they were quite similar to each other, they had different loading patterns and non-

prestressed reinforcement ratios (see Appendix A). When zero stress increase was

assumed for the estimation of the ultimate strength of these beams (i.e. BD 58/94) ,

the maximum moment predicted was on average found to be 0.74 of the

experimentally determined maximum value. Using the /)./ps(ult) values recommended

by AASHTO and ACI, the maximum moment estimated was found to be

approximately 0.89 and 0.86 of the experimentally measured values respectively. As

for the maximum moments estimated by the non-linear models, despite the premature

terminations encountered due to convergence problems, they were on average found

to be 0.92 of the experimentally measured values.

Beams Bl-2, B2-2 and B3-2 were also tested by Zhang et al (1993) and had deflected

tendon profiles. The maximum moments predicted for these beams using the EXT9

model (where tendons were assumed to slip freely) are shown in Table 7.1. The

average MprejMexp obtained for these beams using the EXT9 model was found to be

0.95 with a standard deviation ofO.03. When a fixed value of 103 N/mm2 (ASSHTO)

and the ACI equations were used to predict the ultimate moments of these beams, the

average MprejMexp obtained were approximately 0.83 and 0.81 of the experimental

results with standard deviations of 0.08 and 0.09 respectively. BD 58/94 under-

estimated the experimentally derived ultimate moments of these beams greatly by

about fifteen percent to thirty-five percent.

The maximum moments derived with the proposed non-linear models gave the best

representation of the experimental results, predicting an average MpreJ Mexp of

approximately 0.924 with a standard deviation of only 0.050 for all seventeen beams

(see Table 7.1). The non-linear models were also seen to be able to predict accurately

the flexural strengths of beams with large span-depth ratios and high reinforcement

ratios. It should also be noted that the experimentally determined strengths of all

seventeen beams were under-estimated by the proposed non-linear models, except for

Beam OB88-1 which was over-estimated by only two percent. The analytical models
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therefore constantly provided accurate yet conservative values, hence safe and

efficient design solutions.

The average ratio of the ultimate moment predicted with BD 58/94 to the

experimental moment (Mpre/Mexp) for all the seventeen beams was found to be 0.788

with a large standard deviation of 0.141. The high variation in Mprej Mexp values

derived with BD 58/94 was due mainly to the assumptions made for /)./ps(ult) and

/).eccen(ult) at ultimate. Firstly, assuming zero stress increase in the external tendons

/)./ps(ult) at ultimate is a very conservative assumption, since it has been shown in

previous chapters that the increase in prestress at ultimate is dependent on the

deformation response of the structure and may sometimes be a value considerably

higher than zero. Hence, this assumption will greatly under-estimate the flexural

strength of externally prestressed structures. Secondly, the variations in eccentricity

/).eccen(ult) due to second-order effects were neglected in the analysis. Conversely, this

will cause the ultimate strength of the beams to be over-estimated especially for

beams with large span-depth ratios or non-prestressed reinforcement ratios. Thus

solutions of varying accuracy are derived when the recommendations given by BD

58/94 (1995) are used to predict the ultimate flexural strength of these beams.

When a fixed value 103 N/mm2 was used as the stress increase in tendons at ultimate,

as recommended by AASHTO, the average Mpretl Mexp was found to be a

commendable 0.951 but with a large standard deviation of 0.202. Such a large

variation in results was again due to the assumptions made for the values of !1/ps(ult)

and /).eccen(ult). Firstly, although a stress increase in tendons of 103 N/mm2 was

considered to be conservative by AASHTO for internally unbonded prestressed

structures, it has been shown earlier in Chapter Six that the stress increase in tendons

at ultimate for externally prestressed structures is dependent on several parameters and

is too variable to be accurately represented by a single value. Secondly, the

eccentricity variations /).eccen(ult) were again neglected in the analysis which may cause

the ultimate flexural strength of these beams to be sometimes greatly over-estimated

(e.g. the ultimate moment capacity of Beam OL-l was over-estimated by about sixty-

three percent). Although ACI proposed two equations (i.e. Equations (2.2) and (2.3))

for estimating the prestress change in tendons at ultimate, the results obtained from

using these recommendations were also found to be very varied. The average
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Ml're)Mexp derived with ACI was found to be 0.936 with a standard of deviation of

0.190. The reasons for the large variation in results obtained with the ACI codes are

similar to those for the ASSHTO recommendations.

Beams T 1 to T6 described in Section 6.2 were also used to check the reliability of

applying the sectional analysis method for predicting the ultimate moment capacities

of externally post-tensioned structures. Beams Tl to T5 had straight external tendons

with no deviators placed along their span, while Beam T6 had external tendons which

were deflected by two deviators placed within the span. In the parametric study (see

Chapter Six), the flexural behaviour for all the six beams were simulated up to failure

with the appropriate non-linear computer models. Since it was shown earlier that

these analytical models can accurately predict the maximum flexural response of

externally prestressed structures (within eight percent), it was thus assumed here that

the results obtained from these analytical models reflected the actual behaviour of

Beams Tl to T6.

The ultimate moment capacities of these beams were then estimated using the

recommendations given by BD 58/94 (1995), AASHTO (1989) and ACI (1983), and

compared to the ultimate moments obtained from the analytical models. The ultimate

moments derived from these analyses Mull and their ratios with the moments derived

from the non-linear models (Mull(code/Mull(analylical)) are presented in Table 7.2. From

Table 7.2, it can be seen that the average Mull(code/ Mull(anaIYlical) derived from BD 58/94,

ASSHTO and ACI were 0.817, 0.888 and 0.873 respectively with large standard

deviations of 0.096,0.109 and 0.105 respectively.

The ultimate strengths of Beams TI to T6 were then calculated using three different

analytical approaches, denoted Method J to 3 respectively. All three methods

involved conducting a sectional analysis at the section of maximum moment, but with

different assumptions used to define !l./ps(ull) and !l.eccen(ull)'

• Method 1

The ultimate flexural strength of the beams was estimated assuming zero values

for the stress increase in the tendons and the eccentricity variation due to second-

order effects. This method simulated the case in which the ultimate moment
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capacity of externally prestressed structures are estimated based on the

recommendations given in BD 58/94 (1995).

• Method 2

In Method 2, the stress increase in tendons at the ultimate conditions was taken to

be equal to !J./psllimit) derived from the proposed analytical models, but the change

in eccentricity of the tendons was neglected in the sectional analysis. This method

simulated the case in which the !J./ps at the limit moment condition (where the top

compressive strain of the concrete at the critical section is equal to 0.0035) can be

accurately predicted using some recommended equation but not the eccentricity

variations of the tendons.

• Method 3

Finally, the third method assumed that !J./pS(u/t) and !J.eccen(u/tj at the ultimate

conditions were equal to tJ./pS(Jimit) and !J.eccen(/imit) respectively, obtained from

analyses conducted with the proposed analytical models. This method simulated

the case where both the stress increase and eccentricity variations of the tendons at

the material limit condition can be estimated accurately and used in the sectional

analysis to predict flexural strength.

Table 7.3 shows the ultimate moments computed from these three analytical

approaches.

In Method 1, the Mu/t(method/ Mu//(ana/yticai) derived for Beams T 1 to T6 ranged from 0.67

to 0.932, with an average value of 0.817 and a standard deviation of 0.096. Since

Method 1 employed the same assumptions as those given by BD 58/94 (1995), the

average value and standard deviation of Mu/t(method/ Mu//(ana/ytica/) computed was

therefore equal to the Mu//(model/ Mu1t(ana/yticai) derived for BD 58/94 in Table 7.2. The

reasons for the large variations in results obtained with this method of analysis were

the same as those explained earlier for the BD 58/94 method.

Method 2 used the tJ./PS(/imit) predicted by the proposed non-linear models but neglected

the variations in eccentricity of the tendons to estimate the ultimate flexural strength

of Beams T 1 to T6. This analytical approach is typical of the methods proposed by

several codes of practices (e.g. ACI (1983), AASHTO (1989» and researchers (e.g.

Naaman (1994», where the expressions for estimating tifps(u/t) are stated but no

guidelines are given for the variations in eccentricity of the tendons caused by second-
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order effects. From Table 7.3, it was noted that Alull(method/Alultlanall/lcal) obtained for

the six beams using Method 2 were relatively high with an average value of 1.008 and

a standard deviation of 0.094. In some cases, the moment capacity of the beams were

noted to be over-estimated by up to thirteen percent (i.e. Beam T3). This indicated

that the ultimate strength of an externally post-tensioned structure may be non-

conservative when more accurate estimates for the stress increases in tendons are

considered while the eccentricity variations of the external tendons are neglected in

the sectional analysis.

In Method 3, both t1/ps(ult) and t1eccen(ull) were taken to be equal to t1/ps(limil) and

t1eccen(/imil) which were derived from analyses conducted with the proposed non-linear

models. The average Mull(melhod/ Mull(analYlical) obtained from this method was about

0.795 with a standard deviation of 0.044. The ultimate moments were under-

estimated by about twenty percent when this approach was used because Method 3

produced estimations for the material limit moment Mlimil instead of the maximum

moment capacity Mmax (explained in Chapter Six). However, the results obtained

from this method produced the least variation. This therefore indicated that, even

though t1/ps{limil) and t1eccen{limil) can be accurately estimated, the maximum moment

capacity predicted using sectional analysis may still be under-estimated if the material

limit moment is lower than the maximum moment.

7.3 Concluding Remarks

In this chapter, the applicability and relative accuracy of using sectional analysis (BD

58/94 (1995), AASHTO (1989) and ACI (1983)) and non-linear analysis (proposed

analytical model) to predict the ultimate flexural behaviour of externally prestressed

structures were investigated.

When sectional analysis is used to determine the ultimate flexural response of

externally prestressed structures, the change in prestress 4/'ps(ult) and eccentricity

variations t1eccen{ull) of the tendons at ultimate need to be estimated first. BD 58/94

(1995) recommends a zero stress increase, but gives no guidelines for the estimation

of the eccentricity variations t1eccen{ull)' It was found that using the specifications given

by BD 58/94 (1995) generally under-estimated the flexural strength of these beams
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(often by as much as twenty percent). However, because /).eccen(lI/tI was not considered

in the analysis, it was found that the flexural strength can still be sometimes over-

estimated, despite the use of the conservative assumption /)../ps(lI/1! = O.

Great variations in the accuracy of the results were observed when the American

codes of practice, i.e. AASHTO (1989) and ACI (1983), were used to estimate the

flexural strength of externally prestressed structures. For AASHTO (1989), tJ../pS(lI/t)

was recommended to be of a fixed value, i.e. 103 N/mm2 while, ACI (1983) suggested

two equations (i.e. Equations (2.2) and (2.3» for the estimation of 4/"ps(u/t). However,

as shown in Chapter Six, because tJ../ps(u/t) varies greatly for different externally

prestressed beams and is dependent on several parameters which are inter-dependent

on each other, it could not realistically be represented by a single value or a simple

expression for all cases considered. It should be noted that the flexural response of

externally prestressed beams can be greatly over-estimated by these two codes of

practice, especially for beams with high span-depth ratio and non-prestressed

reinforcement, because they do not take into account the loss of lever arm in the

analysis due to second-order effects.

It was also shown here that even if the stress increase tJ./ps(ult) and eccentricity

variations tJ.eccen(ult) can be accurately estimated and used for the sectional analysis, the

derived ultimate moment capacity of the beam can still be greatly under-estimated.

This is because the calculated moment derived from such an analysis is actually the

material limit moment and, as shown in Chapter Six, there is a possibility for the

material limit moment to be very much smaller than the maximum moment capacity

of the beam. Hence it is concluded here that, although the sectional analysis

suggested in the codes of practice is easy to apply, it does not always give an accurate

estimation for the ultimate strength of externally prestressed structures.

The proposed non-linear model was shown here to give the best estimation for the

ultimate strength of these externally prestressed beams (under-estimating it by less

than eight percent with the least variation). Hence, it is proposed here that non-linear

models of the type introduced in Chapter Four be used for the prediction of ultimate

flexural behaviour in order to ensure safe yet economical design of externally

prestressed structures.
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Table 7.1: The ultimate moments derived for beams used in verification process.

earn
no.

Table 7.2: Comparing the ultimate moments derived for Beams Tl to T6.
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Note:

Method I: Conducted with 1'11;,'(1111) = 0 and l'1ec'cen(u/1) not considered.

Method 2: Conducted with 1'11;,'(11/1) = evaluated from proposed models and l'1eccen(II/1) not considered.

Method 3: Conducted with 1'11;,'(11/1) and l'1eccen(II/1) evaluated from proposed models.

Table 7.3: Comparing moments derived for Beams TI to T6 using

different method of analysis.
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Chapter 8

Conclusions and Recommendations for Future

Work

8.1 Conclusions

Due to the corrosion problems encountered with conventional internally bonded post-

tensioned structures, the Department of Transport in the United Kingdom has, until

very recently, discouraged the use of these structures for the construction of new

bridges. As a preferred alternative, the UK DoT has suggested that externally post-

tensioned structures be used instead, the principal reasons for this being that they

allow easy maintenance and monitoring of tendons for corrosion problems. The

flexural behaviour of externally prestressed structures is however very different from

internally bonded ones due to the lack of bond between the tendons and the concrete.

As such, this research investigation is concerned with the ultimate flexural response of

externally prestressed structures and the following are the principal conclusions

derived from the study:

1) The study revealed that the design of externally prestressed beams is often

controlled by the ultimate limit state behaviour, hence an accurate method

used to predict the ultimate strength is essential for deriving safe and

economical design of such structures.

2) The finite element method was found to be unattractive for use as a design or

research tool for the estimation of the ultimate behaviour of externally

prestressed structures. Large amounts of computing power and time were

found to be required to derive reasonably good solutions for relatively simple

elastic models. The problem is likely to be exacerbated by the introduction of

non-linear material models and the need to consider concrete cracking,
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opemng of joints, large deflections and redistribution of prestress due to

slippage at the deviators.

3) The eight non-linear analytical models utilising the strain compatibility

concept proposed here were found to show excellent correlation to the

experimental results in terms of moment-deflection and moment-change in

prestress relationships over the full range. They also predicted the maximum

flexural strength of externally prestressed beams conservatively with an

average error of only eight percent and with very small variations. Hence they

are recommended to be used for the estimation of the flexural response of

these structures to collapse.

4) Using the recommendations given by BD 58/94 (1995) to predict the ultimate

flexural strength of externally prestressed beams would generally under-

estimate the ultimate strength by about twenty percent, although it is also

possible in some cases (e.g. beams with very high span depth ratio) to over-

estimate the ultimate strength because second-order effects are not considered.

5) The design recommendations given by AASHTO (1989) and ACI (1983) were

found to give reasonably good estimation for the flexural strength of such

beams. However, large variations in the results were noted as the methods

tended to over-estimate the ultimate behaviour for beams with large span-

depth ratios and reinforcement ratios.

6) The ultimate moment capacity derived for an externally post-tensioned beam

using sectional analysis method can still be under-estimated even when

accurate values for the change in prestress and the eccentricity variation at the

material limit conditions are used. This is because the derived material limit

moment is sometimes lower than the maximum capacity of the beam.

7) The effect of shear deformation was found to have varying degrees of

influence on the flexural performance of externally prestressed structures and

can be satisfactorily considered in the analytical models by using the displaced

moment concept introduced by Park and Paulay (1975).
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8) Tension stiffening effects can be neglected in the proposed analytical models

because an improvement in accuracies of approximately three to four percent

is not justified by an increase in the computing time by a factor of two.

9) The frictional slippage model introduced here provides a rational method for

considering slippage of tendons and re-distribution of stresses between

deviators in the analytical models.

10) For beams with deviators incorporated along their span, the assumption that

the tendons are slipping freely at the deviators would produce a conservative

estimate for the flexural strength of externally prestressed structures with

minimum variations in the results, and require very little additional computing

time to produce the solutions.

11) For externally prestressed beams with low reinforcement ratios (e.g. 0.15% to

0.5%), a tied arch mechanism forms immediately after the occurrence of first

cracking. In some beams, the formation of such a mechanism may lead to

instantaneous collapse. Increasing the amount of reinforcement in these

beams will improve their overall flexural performance and prevent this type of

failure from occurring.

12) Although increasing the amount of non-prestressed reinforcement will

generally lead to an increase in the flexural strength of externally prestressed

structures, the rate of increase was noted to be different for different beam

configurations.

13) The maximum moment decreases with increases in the span-depth ratio for

structures with no deviators placed in their span. The rate of decrease of the

maximum moment with the increase of span-depth ratio was found to be

greater for beams with higher non-prestressed reinforcement ratios.

Incorporating deviators along the span of these structures would reduce the

loss of flexural strength by controlling the high changes in the eccentricity of

the tendons.

14) It was also observed that structures having lower free length to depth ratios at

their critical sections exhibited higher moment capacities.
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15) Higher levels of initial prestress force were generally found to increase the

strength of externally prestressed structures. The increase in flexural strength

with an increase in initial prestress force is, however, dependent on the amount

of non-prestressed reinforcement specified in the structure, being lower for

beams with higher reinforcement ratios. Hence it is usually very difficult to

decide on the most efficient combination of prestressing force and non-

prestressed reinforcement ratio to be used.

16) Increasing the prestressing steel area in externally prestressed structures

without changing the initial prestress force applied to the structure causes an

increase in the flexural strength. However, the improvement was found here

to be too small to be considered economical for practical purposes.

17) It was observed that the values of change in prestress and eccentricity variation

at the material limit condition vary too greatly with parameters such as span-

depth ratio, non-prestressed reinforcement ratio, prestressed reinforcement and

initial prestressing force. The influence of these parameters was also found to

be inter-dependent on each other. Hence it is very difficult (if not impossible)

to introduce a single value or simple expression to estimate these variables

accurately for all the cases considered.

8.2 Recommendations for FutureWork

The following investigations are recommended as a useful extension to this

investigation:

1) As continuous structures are more commonly used for bridge construction than

simply supported structures, the proposed non-linear models described in

Chapter Four should be extended to evaluate continuous externally post-

tensioned structures. The derived analytical model would need to be verified

by comparing its results with those obtained from experimental investigations.

2) In the present investigation, it was found that premature termination of the

analysis was possible when the proposed non-linear models were used to

estimate the flexural response of some externally prestressed structures (see

Section 5.4). This premature termination was due mainly to the large beam
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deflections occurnng near ultimate conditions which makes estimating the

stress increment in the external tendons very difficult. Hence further study is

required to understand more about this numerical problem and to suggest a

more robust algorithm to be included into the proposed models.

3) The non-linear models should be extended to allow segmental concrete

elements with dry or epoxy coated joints to be analysed. This will require the

development of additional routines to model crack formation and the opening

of joints between the segments. Such a study is considered to be useful

because this method of bridge construction is used extensively in modem

bridge construction.

4) In the present investigation, it was found that the change in prestress and the

eccentricity variation at the material limit state cannot be accurately

represented by a single value or estimated by a simple equation for all cases of

beam configuration considered. However, since the values of these variables

were found to be related to the deflection response of these structures, it may

be possible to produce some design charts that allow these values to be

predicted accurately. This would involve extensive simulations of many

externally prestressed beams with different beam configurations using the

proposed non-linear models. Such a development would permit the simple

sectional analyses currently favoured by design codes to be used to provide

more cost effective solutions.
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Test Beams taken from Yaginuma and Kitada (1987,1988,1989)

Cross-sectional properties, span detail and concrete properties:

cross-secuonat properties span aetall concrete t'ropertJes
Beam Ow a a, a', emid l fload leu T, Cc

(mm) (mm) (mm) (mm) (m) (m) (N/mm2) (N/mm2) (KN/mm2)
IYagmuma ana I\ltaaa (11:100)

1°5-1 501 1001 901 UI 11 1.oUI U.OU 'ILl UI 'I ..j~ ~
IUL-l 501 lUU, ~UI UI 11 L.tlUI lAU 'IL.1U1 4.jU jL.OO

agmuma ana I\ltaaa \I '"0'")

IOA88-2 1~0 240 L1U .jU 4U L.IU l ..j:> 'I.j.lU ".1:10 .j.j.UI
IUtl88-1 150 24u 210 30 40 LIO 130 43.1i.) 3.98 33.01
IOC88-1 10U 240 210 30 40 2.70 1.35 43.10 3.98 33.07
IOC88-2 150 240 L10 30 40 2.10 13:>. 43.10 ~8 33~
IUUIHI-l loU L4U L1U 3U 4U L.IU l.jo 'Ij.1U j.~tl .j.j.Uf

ITagmuma ana I'\ltaaa \1:10/1

IUA-l I L:>U 4UU 300[ 00 _tl_f_ ~ ~ .jl~ 2!_!_ Ltl~
IUtI-1 20u 40u 3501 501 57 4.UO z.oo 319tll 3.lf ~40
IOC-1 250 'IUU .j:>UL ou Of 'I.UU L.UU ",,-.:>fl ".Cl:> co.t c

* See figures A.I (a) and A.I (b) for explaination of notation.

Reinforcement properties and prestress properties:

Typical cross section and beam layout:

d~

• • -rd',

f-- - -L d,
I--~ emid

• •

~
bw

~

--i---------------------------i
~ e~ad)1 )1

Figure A.l (a): Typical cross-section Figure A.l Cb): Typical beam layout
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Test Beams taken from Zhang et al (1993)

Cross-sectional properties, span detail and concrete properties:

crcss-secuonar properties span oetau \.,;oncre~ ~ropertles
Beam x e, c, emid Loall Tenllon f feu r, t:c

(mm) (mm) (mm) (mm) type" profile'" (m) (N/mm2) (N/mm2) (KN/mm2)
znanq er a ll::lll')}

A1-L Ll;j1.~,j 41U.UU 4U.UU 1l;j1.~,j L 1 ~.UU ~L.JU 4.~U 36.3!:1
A2-1 290.23 370.00 40.00 190.23 1 1 5.00 49.80 4.39 35.51
A2-2 290.23 370.00 40.00 190.23 2 1 5.00 49.80 4.39 as.s-
AJ-L 1!Hl.JJ JIjJ. (U 4u.00 101.6 ( 2 1 !l.UU ~2.00 4.52 36.50
81-2 291.27 390.00 40.00 216.27 2 2 5.00 52.70 4.52 36.53
82-2 290.34 410.00 40.00 210.34 2 2 s.oo 02. (U 4.02 36.03
,B3-2 28(.!l9 390.00 40.00 212.59 2 2 5.00 49.30 4.37 ,j~.,j,j

* See figure A.2(a) for explaination of notation.

** Figures A.2(b) and A.2(c) show the arrangement of Load Type I and 2 respectively.

*** Figures A.2(d) and A.2(e) show the arrangement of Tendon Profile I and 2 respectively.

Reinforcement properties and prestress properties:

Typical cross section and beam layout:

d,

_ ____:-J.,!....,_ 47

iD 23

380

H
100

Figure A.2(a): Typical cross-section
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p

2500

5000

Figure A.2(b): Load Type I

·1·········m. n •••••••••••• ••••••• ·1
2000 1 1000 I 2000

~< ) ( :1
5000

r r
Figure A.2(c): Load Type 2

·1n n. n.························ ·1
Figure A.2(d): Tendon Profile 1

100.J;';.. ??1~ "5

+ I1SO ~: 1150 2700

5000

Figure A.2(e): Tendon Profile 2
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Sample Input File 1
PROJECT EXTERNAL 3
YAGINl'MA TEST MODEL SERIAL OS-)
NO. OF COORDINATE POINTS FOR INPUT (MAX. 50)
4
COORDINATES OF SECTION (ANTICLOCKWISE FROM A REFERENCE. MM)
0.0
30.0
30.100
0.100
INPUT IF VOID EXISTS (OINO.lfYES)
o
IF EXTREME POINTS IN SECTION ARE TO BE DEFINED (OINO,lfYES)
o
CONCRETE MATERIAL PROPERTIES MODEL DESIRED (1,2,3)
3
ULTIMATE STRAIN OF CONCRETE
0.0035
CONCRETE COMPRESSIVE STRENGTH (CUBE STRJCYLINDER STR.,N/MM"2)
42.1
MODULUS OF RUPTURE FOR CONCRETE (N/MM"2)(+VE INPUT)
4.3
STEEL MATERIAL PROPERTIES MODEL DESIRED (1,2)
2
STEEL STRENGTH (N/MM"2)
460
PRESTRESS STEEL PROPERTIES MODEL DESIRED (1,2)
2
TYPE OF PRESTRESS TYPE DESIRED (1,2,3)
3
PROPERTIES OF SPAN
SPAN (M)
1.6
NO. OF SEGMENTS FOR BEAM TO BE DIVIDED
20
CONCRETE DENSITY (KG/M"3)
2400
AUTOMATIC CALCULATION OF DEAD LOAD (YES!I ,NOlO)
I
EXTERNAL LOAD TYPE (1,2,3)
2
PRESTRESS AREA (MM"2)
132.9
% JACKING FORCE (%)
17.13
PRESTRESS LOSSES (%)
o
ECCENTRICITY AT LHS ANCHORAGE (MM)
17
ECCENTRICITY AT RHS ANCHORAGE (MM)
17
DEPTH TO TENSILE REINFORCEMENT FROM TOP (MM)
90
AREA OF TENSILE STEEL (MM"2)
56.55
DEPTH TO COMPRESSIVE REINFORCEMENT FROM THE TOP (MM)
0.0
AREA OF COMPRESSIVE STEEL (MM"2)
0.0
MODULAR RATIO (ES/EC)
6.28
STRAIN INCREMENT AT POST-CRACK STATE (0.0001)
0.0001
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Appendix B

Generic Beams used in Parametric Study
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Typical Beams used in Parametric Study

Cross-sectional properties:

Beam x em1d

(mm)

* See figures B.I (a) for explaination of notation.

Concrete and reinforcement properties:

Prestress properties and span detail:

** Figures B.I(b) and B.I(c) show the arrangement of Tendon Profile I and 2 respectively.
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Typical cross section and beam layout:

10500

d' s
200

d
ds

Figure B.l (a): Typical Cross-section

--Ji ---- ---- ---------------n - - - - -2
Figure 8.1 Cb): Tendon Profile I

__~__mm_n 4~1702.'
~

10700 23600 ~ 10700:
45000

Figure B.I(c): Tendon Profile 2
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Appendix C

Details of Beams referred to in Chapter Six
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Beams used in Parametric Study

Notes:

1) Cross-sectional and material properties for the following beams are as given in

Appendix B for typical beams unless otherwise stated.

2) All beams were analysed using the following constitutive models:
• concrete Saenz (1964)
• reinforcing steel Naaman and Harajli (1985)
• prestressing steel Naaman and Harajli (1985).

Amount of Non-prestressed Reinforcement
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Span-Depth Ratio
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Initial Prestress Force

Amount of Prestressed Reinforcement
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Appendix D

Comparison on the number of nodes and

tolerance used for analysis
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Number of nodes used for analysis

Beam OA-1

16.40,----- ,

Nodes used for analysis

16.20

16.00

? 15.80
~
"EO..
E
~ 15.60 :/

15.40

15.20

15.00+---+----+----+----I-----j---->---l-----+-----+-----j
o 5 10 15 20 25

Number or nodes

30 35 40 45 50

nodes Moments Time
(tf.m.) (hrs)

6 16.2973 1.00
8 15.8944 1.20

10 15.7216 1.50
12 15.5868 1.50
14 15.5245 2.40
16 15.5173 3.00
18 15.5080 4.00
20 15.5080 4.50
40 15.5080 14.00
50 15.5080 21.00

Figure D.l: Ultimate moment derived from model vs. number of nodes curve

for Beam OA-l
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Beam OC88-1

0.266 -

0.265 --

0.264

0.263

'".c 0.262of
::ii

0.261

0260

0.259

0.258
0

I

:/
Nodes used for analysis

5 10 15 25

Number of nodes
30 4535 4020

Figure D.2: Ultimate moment derived from model vs. number of nodes curve

for Beam Oe88-!

50
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Tolerance used for analysis

Beam OA-1

18.00 ,--------------------------------,

17.00

16.00

Ii!
!!.
C 15.00•I

14.00

13.00

12.00 l------;----t----+----+---+-----;----t----+----+------'
0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

Tolennce (%I

Tolerance Moments Time
(%) (tf.m.) (hrs)
0.0001 * 1.2
0.0005 ** 6
0.0010 15.4479 7
0.0050 15.4479 5
0.0100 15.4479 3
0.0200 15.4479 3
0.0300 15.4479 2.5
0.0500 15.4490 4
0.1000 16.8900 2.8

Note
*
**

premature termination at 10.5079 tfm.
premature termination at 15.3779 tfm.

Figure D.3: Ultimate moment derived from model vs. % Tolerance curve

for Beam OA-l
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0.270

0.265

~J 0.260
::Ii

0.255

0.250 +----+----+---+-----+-----+-----i----+----+-----+--___j
0.00 0.01 0.02 0.03 0.04 0.05

Tolerance (0/"

0.06 0.07 0.08 0.09 0.10

Note
* premature termination at MI/c"bci = 0.05872
** premature termination at MI/c"bci = 0.25883

Figure D.4: Ultimate moment derived from model vs. % Tolerance curve

for Beam OC88-1
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