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SUMMARY 

Adaptive control is employed in control systems required to 

operate satisfactorily regardless of parameter variations, 

external disturbances and changes in the environment. A concept­

ually simple approach to adaptive control is the model reference 

approach which yields a nonlinear feedback system. In a model 

reference control system the system output is made to follow the 

output of a specified model. 

There are numerous approaches to the design of model reference 

adaptive control systems (MRAC). In this thesis the theory of 

variable structure systems (VSS) is studied and applied in the 

design of MRAC systems. VSS are inherently nonlinear feedback 

systems which exhibit certain adaptive properties including 

insensitivity to a range of parameter variations and certain 

external disturbances when operating in the sliding mode. 

The application of VSS theory to the problem of adaptive 

model-following has demonstrated the simplicity of the design. 

It also ensures the asymptotic stability of the controlled system 

and provides direct control over the error transient. 

The notion of system zeros arises naturally when tackling 

the problem of output model-following control systems. Certain 

interrelations between VSS, system zeros and the output model­

following problem have suggested a new method for computing the 

zeros of linear multivariable square systems. 
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A fundamental operator in VSS is shown to be a projector. 

The employment of projector theory in the study of VSS provides 

further insight into their operation. Furthermore new methods 

for constructing the switching hyperplanes matrix are formulated 

by utilizing projector theory. 

The linear control law ensuring output model-following and 

the necessary order reduction is shown to be identical to the 

equivalent control encountered in VSS. The control law also 

decouples the system, assigns arbitrary poles and possesses certain 

adaptive properties. The extension of VSS theory to output model­

following systems using output information is also discussed. 
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CHAPTER ONE. 

INTRODUCTION. 

The desire and need for improved performance of increasingly 

complex engineering systems with large uncertainties have given 

rise to a special class of feedback control systems known as 

"adaptive control systems". In contrast to the majority of 

conventional feedback control theory, which deals with the control 

of dynamical systems whose mathematical representations are 

completely known, adaptive control theory deals with partially 

known systems. 

Partially known systems encompass those which have time­

varying parameters, those which are amenable to extreme changes 

in the environment and those which are subject to major external 

disturbances. In all of these cases the adaptive control system 

should be able to react or adapt itself to meet the newly evolving 

circumstances. In order that the adaptive system performs 

satisfactorily, the changes in the system and in the environment 

should be considered as a set of conditions which have to be taken 

into account by the designer. Such conditions will obviously 

include the range of parameter variations, the range of the 

external disturbances, the nature of the input signals and any 

other factors to be catered for by the adaptive controller. 

An appealing and successful approach to adaptive control is 

the so-called model reference adaptive control (MRAC). The MRAC 

approach is well documented (see Chapter 2), is conceptually 

simple and easily implemented. 

be the subject of this thesis. 

Continuous time MRAC systems will 
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MRAC was first applied to aerospace problems as early as 

1958 and since then it has been applied to numerous engineering 

problems (see Chapter 2). 

MRAC systems are inherently nonlinear time-varying feedback 

systems. Investigating and ensuring the stability of such 

systems is therefore essential. Global stability is required in 

order to secure an acceptable performance under hostile working 

conditions. This has lead to extensive use of the Liapunov 

and the hyperstability methods in the design of stable MRAC systems 

as discussed in Chapter 2. A new method for the design of MRAC 

systems, which besides guaranteeing stability, also offers direct 

control over the error transient has been proposed by Young (l978b) 

and is based on the theory of variable structure systems. 

Variable structure systems (VSS) are a special class of non-

linear systems. They are characterised by discontinuous control 

which changes structure on reaching a set of switching surfaces 

(hyperplanes). The change in structure is intentional and is 

dictated by a preassigned algorithm or law. 

In VSS different structures are combined giving a fixed 

structure which enforces the subsequent motion of the system known 

as the "sliding motion" or "motion in the sliding mode". During 

sliding the system acts like a linear system and the discontinuous 

control effectively acts like a linear continuous equivalent 

control. 

The characteristic advantageous feature of VSS is that during 

sliding the system has invariance properties yielding motion 

which is independent of certain system parameter variations and 

external disturbances. Thus variable structure systems are 
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usefully employed in systems with uncertain and time-varying 

parameters. 

However, variable structure systems are not isolated from 

linear control systems. Certain unifying aspects exist and 

the sliding mode is found to provide the link between the two. 

The motion of the "slow mode" found in high gain systems is 

identical to sliding motion and the invariance conditions are 

the same as perfect model-following conditions. Methods for 

computing the system zeros have been motivated by the links 

between the switching hyperplanes and the output zeroing problem 

which is associated with the system zeros. Equivalent control 

also arises naturally in decoupling theory and in the output 

model-following problem. The last three topics will be sub-

stantiated later in Chapters 5 and 7. 

A recent application of VSS has been to adaptive model-

following control systems (AMFC). This has been motivated by 

the equivalence of the perfect model-following conditions and the 

VSS disturbance invariance conditions. Previous designs of AMFC 

systems were based on stability theory and as mentioned before al­

though the stability of the overall system is guaranteed no direct 

control over the error transient was possible. Using VSS and 

by organizing sliding on the intersection of the switching hyper­

planes involving the error states, complete control over the 

error transient is achieved. In addition the global asymptotic 

stability of the system is guaranteed. The design of variable 

structure adaptive model-following control systems (VSMFC) is 

systematic and involves inequalities which simplify the calcu­

lations (see Chapter 4). Three design examples are included 
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to demonstrate the basic concepts of variable structure adaptive 

model-following control systems. 

One inevitably encounters system zeros when studying adaptive 

output model-following systems. Certain concepts related to 

system zeros have analogous counterparts in the theory of VSS (see 

Chapter 5). The similarity between the output zeroing problem 

and the switching hyperplanes initiated the employment of VSS in 

the determination of the system zeros. The zeros and the state 

zero directions are found as eigenvalues and eigenvectors of a 

matrix which arise naturally in VSS design. 

A new algorithm for computing the system zeros is proposed in 

Chapter 5. The algorithm is conceptually simple and yields 

insight into the operation of VSS in the sliding mode. The 

algorithm offers the advantage over known techniques of the ability 

to calculate the state and the input zero directions independently 

of each other and without resorting to the determination of the 

null space of the (n+m)th order system matrix. The generaliz-

ation of the algorithm to the case where CB is singular is more 

complex and is discussed in Chapter 5 and Appendix 3. A new 

design method for zero assignment is given utilizing projector 

theory. 

A new treatment of VSS in the sliding mode is developed 

using projector theory (see Chapter 6). The basic operator 

[I-B(CB)-lC] governing VSS during the sliding mode is a projector. 

This observation provides a neat method of analysing VSS. Using 

projector theory certain VSS features are explained and others 

are expanded. A simple explanation of order reduction is given 
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together with a re-examination of the invariance principle of 

Dra~enovi~ (1969) which is extended to the case where CB is 

singular. The physical interpretation of invariance is given. 

The system zeros are demonstrated to be invariant during the 

sliding mode and the perfect model-following conditions are also 

revisited. 

Projector theory is further exploited in formulating new 

methods for the construction of the switching hyperplanes 

matrix C. Systematic design methods are proposed which offer 

two design options in addition to the arbitrary assignment of 

eigenvalues; namely (i) the ability to specify CB arbitrarily 

and (ii) the ability to excercise partial control over the 

selection of the closed-loop eigenvectors. 

Output model-following with full state feedback is studied 

in Chapter 7. It is shown that the equivalent control exists 

naturally and that it decouples the closed-loop system. The 

importance of system zeros are highlighted when matching the 

plant outputs with the desired outputs of a lower order model. 

A particular error equation is synthesized and the resulting control 

law is found to exhibit certain advantageous features. 

include 

(i) Automatic order reduction and decoupling. 

These 

(ii) Arbitrary eigenvalue assignment to the observable 

part of the plant. 

However, since this control law cancels all of the plant zeros by 

pole-zero cancellation the plant will be unstable if any zero has 

a positive real part. 
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Adaptive VSS output model-following systems using only 

output information are also tackled and the limitations and diffi­

culties are pOinted out. The applicability of variable structure 

adaptive output model-following seems to be restricted and 

compromises may be needed. The linear synthesized control, 

however, is shown to exhibit adaptive properties subject to certain 

conditions (see Chapter 7). 

The thesis is organised as follows. Chapter 2 introduces 

continuous time model reference adaptive systems. The theory of 

variable structure systems is introduced in Chapter 3. Variable 

structure adaptive model-following are introduced and developed in 

detail in Chapter 4. The determination of system zeros using 

VSS theory is presented in Chapter 5. The analysis and design 

of VSS using projector theory is detailed in Chapter 6. Adaptive 

output model following control systems are discussed in Chapter 7. 

Chapter 8 concludes this study by briefly reviewing the contents 

and proposing further areas which need to be studied in the future. 

Three appendices are included. Appendix 1 concerns hyper-

stability theory, Appendix 2 explains some concepts of Linear 

algebra and generalized inverses of matrices, while Appendix 3 

presents the proofs to the theorems presented in Chapter 5. 

- 6 -



CHAPTER TWO 

MODEL REFERENCE ADAPTIVE CONTROL SYSTEMS. 

2.1 Introduction. 

Adaptive control continues to attract considerable research 

interest ever since it was introduced some 25 years ago. This is 

testified by the amount of literature available on the subject. 

In 1976, Asher, Andrisani and Dorato compiled more than 700 

references on adaptive control and in a recent introduction to the 

subject by Jacobs (1981) it was indicated that well over 1000 papers 

have appeared on this topic over the past 10 years. Recently, 

adaptive control has been the subject of four books by Landau 

(1979), Narendra and Monopoli (1980), Unbehauen (1980) and Harris 

and Billings (1981). 

Among the various adaptive schemes the model reference approach 

proves to be the most successful. It is conceptually simple, fast 

and easily implemented. However, model reference adaptive systems 

(MRAS) are non-linear and therefore, the stability of such systems 

is of paramount importance. This has lead to extensive use of 

stability methods in the design of stable adaptive schemes as 

indicated by the techniques reviewed in the following sections. 

2.2 The Need for Adaptive Controllers. 

While conventional feedback systems are oriented towards the 

elimination of state perturbations, adaptive control systems are 

oriented towards the elimination of structural perturbations. 

Such structural perturbations are caused by variations in the 

dynamic parameters of the controlled system or by variations in 

the system operational conditions. Three examples will be cited 

below as potential situations where adaptive control is needed 

(Landau, 1979). 
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i) Aeronautical Situations: The dynamic behaviour of an 

aircraft depends on altitude, speed and configuration of the 

craft. Some parameters may vary by a multiplication factor of 

up to fifty. 

ii) Nautical Situations: The dynamic characteristics of an 

oil tanker, because of its large dimensions, vary drastically 

from deep water to shallow water where the depth and volume of the 

ship become comparable with those of the water basin in which it 

navigates. Its dynamic characteristics also vary with the load. 

iii) Electromechanical Systems: The dynamic behaviour of a 

dc motor varies with the moment of inertia and the friction of 

the load. The maximum to minimum ratio of parameter variations 

ranges from about 3 to 100. The thyristor bridges which are now 

used almost exclusively for motor control introduce structural 

perturbations in the control system when the firing angle varies. 

This affects both the equivalent gain and the time constant of 

the process. 

Further examples are referenced in Unbehauen (1980). 

2.3 Formulation of Model Reference Adaptive Control Systems. 

Landau (1974, 1979) defines an adaptive system as a system 

that measures a certain performance index (PI) using the inputs, 

the states and the outputs of the adjustable system. By 

comparing the measured performance index with a desired set of 

indices, the adaptive mechanism modifies the parameters of the 

adjustable system or generates auxiliary inputs in order to 

maintain the performance index close to the desired set of indices. 

This definition is depicted in Fig.2.3.1a. 
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An important type of adaptive system is the model reference 

adaptive control (MRAC) system. This has the advantage of easy 

implementation and high speed adaptation. In model reference 

adaptive systems (MRAC) the set of (PI's) appearing in Fig. 

2.3.la are replaced by one dynamic performance index which becomes 

the reference (PI). To generate the reference (PI) one uses an 

auxiliary dynamic system called the reference model which is 

excited by the same external inputs as the adjustable system. The 

reference model, therefore, specifies in terms of inputs and model 

states a given performance index. The comparison between the 

given (PI) and the measured (PI) in this case is achieved directly 

by comparing the states (or outputs) of the adjustable system 

with those of the model using a subtractor. The difference between 

the two (PI's), i.e., the error, is used by the adaptation mechan­

ism either to modify the parameters of the adjustable system or 

to generate auxiliary input signals. In either case, the 

adaptive mechanism chosen should drive the error signal to zero 

at least in the steady state. A typical parallel adaptive model 

reference system is shown in Fig.2.3.1b. 

An extensive study of model reference adaptive systems has 

been conducted by Landau (1979). Prior to that Landau presented 

a survey paper with 253 references on the theory and applications 

of model reference adaptive techniques (Landau,l974). 

An important class of model reference adaptive systems is 

the adaptive model following control system (AMFC). The treat­

ment and applications of such systems will be deferred until 

Chapter 4. 
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2.4 Mathematical Description of Model Reference Adaptive Control 

Systems. 

The basic idea of model reference adaptive systems (MRAS) is 

to synthesize a controller that is capable of driving the error 

between the model and plant outputs to zero irrespective of para-

meter variations and external disturbances. 

The linear plant and model to be considered are those 

described by the differential equations. 

= A (t) x + B (t) u 
p p p p (2.4.1) 

and 

= A x + B u 
mm mm 

(2.4.2) 

where x
p

' xm are the plant and the model states and up'Um are 

the plant and model control inputs, respectively, x £ Rn, 
p 

xm £ Rn, up £ Rm, urn £ R~. The pair and (Am' Bm) is 

assumed to be controllable. 

The error between the model and plant states is given by 

e = x - x m p 

The derivative of the error (e) is given by 

= Am xm + BU - A (t) x - B (t) u m m p p p p 

Adding and subtracting Am xp yields 

= A (x -x ) + (A -A (t» x 
m m p m p p 

(2.4.3) 

= A e + (A -A (t»x + B u - B (t) u (2.4.4) 
m m p p mm p p 

In systems with time-varying parameters the matrices Ap(t), 

B (t) can be decomposed into two matrices; one with fixed para­
p 

meters and the other with parameters dependent on the error and 

time. 
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A (t) 
P 

B (t) 
p 

= 

= 

A + F(e,t) 
p 

B + G(e,t) 
p 

(2.4.5) 

(2.4.6) 

where A , B are time invariant matrices and F,G are time varying p p 

error-dependent matrices of dimension nxn and nxm respectively.l~~ 
rC\.,·r (A~ ? Sf) \ ':> nSS\A.YY\ed \0 bp Con \IO\\C\.o \e 

Therefore 

e = A e+(A -A -F(e,t))x +B u .. -(B +G(e,t)) u m m ppm m p p (2.4.7) 

This shows that the error dynamics are described by a time 

varying nonlinear differential equation. 

2.5 Design of Model Reference Adaptive System Using Stability 

Theory. 

Model reference adaptive control systems are inherently non-

linear time-varying feedback systems. This is because the error 

between even a linear plant and model is governed by non-linear 

time-varying differential equations. Therefore, investigating 

and ensuring the stability of the whole system is essential. 

This has been recognised and the extensive use of Liapunov 

functions in the design of stable adaptive schemes is reviewed in 

sections 2.5.2 and 2.5.4. 

Another stability criterion which lends itself naturally to 

the design of stable MRAS is the hyperstability method proposed 

by Popov (1963,1973). This was adopted by Landau (1969) in his 

design of MRAS. A brief exposition of this method is given in 

section 2.5.3. 

A new design method of asymptotically stable MRAC systems 

has been proposed by Young (1978b). This method utilizes the 

theory of variable structure systems and will be detailed in this 

thesis. 
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2.5.1 The MIT Rule. 

The model reference adaptive control (MRAC) approach was 

first suggested by Witaker et ale (1958) at the Massachusetts 

Institute of Technology. The adaptive scheme was applied to 

aerospace problems and was developed further by Osburn et ale 

(1961) becoming known as the MIT rule. 

The MIT rule is based upon the minimization of the integral 

of the squared error between the model and the adjustable system 

outputs. The'mechanization of the adaptive law was implemented 

through sensitivity functions. However, as pointed out by 

~utchart et ale (1965) and Parks (1966) the stability of 

adaptive systems based on the MIT rule is not guaranteed even for 

simple systems and inputs. This drawback limits the applic­

ability of the scheme. 

2.5.2 Liapunov Design Methods. 

Since 1961 considerable attention has been given to the 

design of model reference adaptive systems from a stability view­

point. The early design of adaptive model reference controllers 

utilized Liapunov's second method almost exclusively. The 

Liapunov based design philosophy relies on the choice of a 

controller that will ensure at least a negative semidefinite 

first order derivative of the Liapunov function chosen. Besides 

guaranteeing stability for all kinds of inputs, the Liapunov 

method allows high gains in the adaptive loops, thus speeding up 

the adaptation and it often leads to considerable simplifications 

of such loops. 

The utilization of Liapunov functions in the design of stable 

adaptive controllers seems to have been first proposed by Grayson 
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(196l). Since then many authors have used Liapunov functions 

in the design of MRAC systems (Hiza et aI, 1963), (Butchart 

et al., 1965), (Grayson, 1965), (Parks, 1966), (Shackcloth,1967) , 

(Winsor et al., 1968), (Phillipson, 1969), (Gilbart et al., 1970), 

and (Hang, 1974). The difference between the design approaches 

mentioned above lies in the particular choice of the Liapunov 

function. In a simulation study, Hang and Parks (1973) 

compared five different adaptive schemes; the MIT rule: 

Dressler's (1967); Price's (1970); Monopoli's (1968) and the 

Liapunov design scheme proposed by Gilbart et ale (1970). The 

last two schemes based on Liapunov functions were found to exhibit 

superior performance over the other designs. A survey paper on 

the use of Liapunov functions in the design of MRAC systems was 

presented by Lindorff and Carroll (1973). 

references. 

The survey listed 40 

Derivatives of the errors are sometimes required but may be 

avoided in gain adjustment schemes if the system transfer 

function is positive real (Parks, 1966). Derivatives of the 

outputs can also be avoided by employing the augmented error 

scheme proposed by Monopoli (1974). Another feature of Monopoli's 

design method is that the plant inputs and outputs are only needed 

and that the adaptive system is asymptotically stable. 

2.5.3 Hyperstability Design Methods. 

The natural decomposition of the adaptive error eq~On... 

(2. 4.-7) into a linear feedforward part and a nonlinear time­

varying feedback part lead to the introduction of hyperstability 

theory in the design of adaptive model reference control systems. 

The hyperstability concept concerns the stability properties of 
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a class of feedback systems which can be split into two blocks; 

a linear feed forward block and a nonlinear time-varying feed­

back block as shown in Fig.2.S.1a. The adaptive error equation 

(2.4.7) belongs to this class of feedback systems (see Fig. 

2.S.1b). 

The definitions of hyperstability and asymptotic hyper-

stability are discussed in Appendix 1. Suffice to mention here 

that a necessary and sufficient condition for a system to be 

hyperstable is that the transfer function matrix of the linear 

feedforward part should be positive real. This seems to be a 

result common to hyperstability and some Liapunov based design 

methods. The hyperstability approach, however, offers a more 

systematic design procedure. 

The application of hyperstability theory in the design of 

model reference adaptive control systems was first described by 

Landau (1969) and Laundau and Courtiol (1972), (1974). The 

papers considered the design procedure of adaptive model following 

control systems using hyperstability theory together with simul­

ations of an aircraft control problem which showed the feasibility 

of the hyperstable design and the improved performance over the 

linear model following design. The design of an adaptive model 

reference electromechanical system utilizing hyperstability theory 

was reported by Courtiol and Landau (1975). This is discussed in 

section 2.6, together with the method of Irving et ale (1979) 

who implemented a hyperstable adaptive controller to power plants. 

Many papers have appeared on the design and applications of hyper­

stable adaptive schemes (see Landau, 1979). 
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2.5.4 Narendra's Error Models. 

A different approach to the design of adaptive model reference 

control systems has been undertaken by Narendra. His scheme is 

centered on matching the plant transfer function with that of the 

model. Narendra and Kudva (1974) presented a two part paper for 

the design of stable adaptive controllers based on Liapunov 

functions. In part I, techniques were developed for the identi-

fication and control of unknown plants when the state variables 

are accessible for measurement. In part II, the results of 

part I were extended to the case when only the plant outputs are 

available for measurement, in which case stable adaptive 

observers were used to synthesize the adaptive controller. 

Further employment of adaptive observers in the design of stable 

MRAC systems has been considered by Narendra and Valavani (1976). 

The global asymptotic uniform stability of the adaptive loop for 

the case where the plant has n poles and (n-l) or (n-2) zeros 

has been demonstrated by Narendra and Valavani (1978). A 

unified approach to direct control, where no identification is 

involved but a reference model is used, and indirect control 

where identification of the plant parameters is achieved using an 

adaptive observer has been given by Narendra and Valavani (1979). 

Using a very specific choice of observer and controller structure 

in the indirect control problem the two approaches were shown 

to be equivalent and the stability questions that arise in the 

two cases were identical. 

In an attempt to unify the two stability approaches to the 

design of model reference adaptive control systems, Narendra and 

Valavani (1980) presented a comparative study of the Liapunov and 
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the hyperstability methods. The two authors concluded that 

when the input to the error model is uniformly bounded 

stability and asymptotic stability are achieved under exactly the 

same conditions as hyperstability and asymptotic hyperstability. 

When the input to the error model cannot be assumed to be 

uniformly bounded the problem is not completely resolved using 

either method. 

Parks (1981) has illustrated the three design approaches 

described in sections 2.5.2-2.5.4 by means of simple examples. 

2.5.5 In Search of Global Stability. 

Although various adaptive schemes have been proposed, no 

study dedicated to the question of global stability had been 

attempted till 1978. Globally stable adaptive schemes are 

important since they are more likely to perform satisfactorily 

under practical conditions involving noise, nonlinearities and 

time-varying plant parameters. 

Feuer and Morse (1978) and Morse (1980) seem to be the first 

workers who have tackled the problem of global stability for 

continuous time model reference adaptive systems. The treatment 

was restricted to single-input single output systems and although 

the controller is complex, it is differentiator-free and achieves 

global stability without making unnecessarily restrictive process 

-model assumptions. Another proof of global stability has been 

provided by Narendra, Lin and Valavani (1980) and Egardt (1978). 

Kreisselmeier (1980b) demonstrated global asymptotic stability by 

incorporating an adaptive observer followed by an adaptive feed­

back matrix. The system is globally stable provided that the 

input to the plant is sufficiently excited by means of an external 
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command signal. Sufficiently excited means that the command 

signal is sufficiently rich in frequencies; this is discussed 

in Kreisselmeier (1980a) For a discussion of stable adaptive 

schemes reference is also made to Narendra and Lin (1980). 

2.6 Practical Applications of Adaptive Controllers. 

Although adaptive control has been studied for well over 

twenty years, relatively few applications have been reported. 

This is due to 

(a) insufficient development of the design methods 

(b) a relative complexity of the adaptive schemes in 

comparison with classical linear time-invariant 

feedback controllers. 

However, the need for high-quality control systems in the 

presence of large and unknown plant parameters variations, the 

development of feasible design methods and the advent of 

economical powerful microprocessors; all open the way for 

numerous practical implementations of MRAC systems in the near 

future. 

One of the early practical applications of adaptive control 

to physical systems was presented by Porter and Tatnall in (1970). 

The adaptive controller was based on a Liapunov stability approach 

devised by Porter and Tatnall (1969) and was implemented on a 

specially constructed hydraulic servo-mechanism. The numerous 

test experiments that have been carried out demonstrated the 

success of the implementation. 

Gilbart and Winston (1974) successfully applied an adaptive 

model reference controller to an optical tracking telescope. 

The control law was based on the Liapunov design technique 
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proposed by Gilbart et ale (1970). The authors demonstrated 

the capability of the adaptive technique to compensate for 

mounting irregularities such as inertial variations and bearing 

friction. Results obtained via field tests on a large tracking 

telescope showed a 6:1 improvement in tracking accuracy for a 

worst case satellite trajectory. 

Courtiol and Landau (1975) implemented a hyperstable based 

adaptive controller to a 5.3 kW d.c electrical drive. The 

adaptive system followed the model very closely and maintained 

good performance in the presence of variations of the moment of 

inertia (ratio 4:1), variations of the field current and 

variations of the gain due to the fluctuation of the firing angles 

of the thyristors used for motor feeding. The adaptive perform­

ance was compared with that obtained using a conventional PID 

controller. A different adaptive controller for the same system 

may be designed utilizing the theory of adaptive variable 

structure systems and will be discussed in Chapter 4. For other 

applications of adaptive control in Germany and France reference 

is made to Landau and Unbehauen (1974). 

Irving, Barret, Charcossey and Monville (1979) implemented 

a hyperstable model reference adaptive controller in order to 

improve the steady state stability of power generators and to 

reduce the unit stress in the generators. Owing to the success 

of the adaptive scheme it will be applied to all future 1300 mW 

units to be installed in France. 

Adaptive autopilots for ships have also been implemented by 

Van Amergon and Udink Ten Gate (1975) and Van Amergon (1980). 

Such autopilots are favoured because of the unpredictable 
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variations in the ship steering characteristics and in order to 

prevent course instability which may occur in very large ships. 

In addition to the practical implementation of the adaptive 

controllers mentioned above, there have been some simulation 

studies of other engineering systems. Such simulated systems 

have involved robotic manipulators (Dubowsky and DesForges, 1979), 

gas turbine engines (Monopoli, 1981) and coal-fired power plants 

(Mabius, 1981). 

Finally, a comprehensive survey of the applications of 

adaptive controllers has been carried out by Parks et ale (1980) • 

The authors presented a table listing some 58 known applications 

drawn from the cement, metallurgy and chemical industries, 

process control, power systems and electromechanical systems. 

other applications appear in Landau (1979), Narendra and 

Monopoli (1980), Unbehauen (1980) and Harris and Billings (1981). 
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CHAPTER THREE 

INTRODUCTION TO VARIABLE STRUCTURE SYSTEMS. 

3.1 Introduction. 

In linear control systems the designer is usually confronted 

with the two opposing requirements; static accuracy (stability, 

zero steady-state error and noise immunity) on one hand and 

dynamic accuracy (high speed of response) on the other. The two 

requirements are usually satisfied by a compromise. However, one 

way to alleviate such conflict is through the introduction of 

decision-making or nonlinearities into the system. 

A special class of nonlinear systems which overcome such 

conflicting requirements is known as variable structure systems 

(VSS). As suggested by the name VSS, the control system under­

goes a change in structure when the system state reaches a set 

of switching hyperplanes in the state space. The change in 

structure is intentional and in accordance with a preassigned 

algorithm or law. The times at which these changes occur are 

determined by the current value of the state and its derivatives. 

This is a fundamental property of VSS which distinguishes it from 

programmed controllers. 

In variable structure systems different structures (sub­

systems) are combined giving a fixed structure which has a 

dynamic behaviour different from the individual structures on 

which the design of the original VSS was based. The fixed struc-

ture is specified by the designer and it enforces the subsequent 

motion of the system which is known as "sliding motion" or the 

"sliding mode". During the sliding mode the state point keeps 
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jumping from one structure to the other crossing the switching 

hyperplane at each transition. Sliding motion is therefore 

identical to the chatter motion well known in relay control 

systems. Effectively, during sliding the state pOint moves 

along a new trajectory which is different from any of the traj­

ectories of the individual constituent structures. 

Variable structure systems resolve the conflict between static 

and dynamic accuracy by splitting the system transient into two 

independent stages. The two stages are: a brief motion up to 

the vicinity of the switching hyperplane known as "hitting" and 

an unlimited sliding motion of infinite frequency (theoretically) 

along the switching hyperplane. 

The sliding mode is the most important feature of VSS as it 

offers many advantages which are discussed in section 3.2. VSS 

design is mainly concerned with satisfying certain conditions 

which enforce hitting and maintain sliding as discussed in 

section 3.5. An important fact about VSS is that they behave 

like linear systems during the sliding mode with an associated 

linear control law termed the "equivalent control". 

Variable structure systems have been developed over the past 

25 years almost exclusively in the USSR. Consequently, most of 

the literature on the subject is in Russian. Nevertheless, 

translations are available and the subject has attracted a wider 

interest in recent years. VSS are the subject of three books 

in English (Barbashin, 1970), (Itkis,1976) and (Utkin, 1978a). 

A recent survey on the subject is presented by Utkin(1977). 

3.2 Advantages of Variable Structure Systems (VSS). 

Although changing the structure introduces additional 

complexity into the system, it also yields a system exhibiting 
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certain advantages unparalleled in systems with fixed structure. 

The advantageous features of VSS are: 

a) High speed of response without loss of stability. This is 

obtained by increasing the gains of the feedback controller and 

by a suitable choice of switching hyperplanes. 

b) straightforward synthesis of asymptotically stable systems 

by combining two or more structures which may be unstable on 

their own. 

c) Simplicity of physical realization. 

d) Insensitivity to parameter variations over a wide range. 

e) Invariance to a certain class of external disturbances. 

3.3 Formulation of VSS. 

Variable structure systems are a special class of nonlinear 

systems which may be considered as relay systems where the output 

signal of the relay element is proportional to the state and its 

derivatives. They are characterized by discontinuous control 

which changes structure on reaching a set~switching surfaces 

(hyperplanes) . For the linear system 

= Ax + Bu (3.3.1) 

where x ERn, u £ Rm, the control u has the form 

+ u i (x) ,si (x) > 0 

u. = (3.3.2) 
1 

u~(x) s. (x) 0 < 
1 

where u. is the ith component of u and s. (x) is the ith 
1 1 

component of the m switching hyperplanes given by 

s(x) = C x = 0 (3.3.3) 

where C is a constant mxn matrix. 
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The above system with discontinuous control is termed a 

variable structure system since the effect of the switching 

hyperplanes is to alter the feedback structure of the system 

whenever the state x reaches a switching hyperplane s. (x) = O. 
~ 

3.4 The Sliding Mode. 

Sliding motion occurs if, at a point on a switching hyper-

plane si(x) = 0, the directions of motions along the state 

trajectories on either side of the hyperplane are directed towards 

the switching hyperplane. The describing point then slides and 

remains on the switching hyperplane. The condition for sliding 

motion to occur on the ith hyperplane may be stated as 

lim s. < 0 
~ 

s.~ 0+ 
~ 

or, equivalently, 

s. s. < 0 
~ ~ 

and lim si > 0 

s.+O 
~ 

Sl ... 0 

(3.4.1) 

(3.4.2) 

In the sliding mode the system satisfies the equations 

s. (x) = 0 
~ 

and s. (x) = 0 
1 

(3.4.3) 

Mathematically, the right hand side of equation (3.3.1) with 

control (3.3.2) does not satisfy the classical theorems on 

existence and uniqueness of solutions of differential equations. 

However, the ambiguity in the system behaviour can be eliminated 

if various types of nonidealities such as time-delay, small time 

constants and hysteresis are considered when deriving the sliding 

mode equations (Utkin, 1971, 1978a). Incorporating such non-

idealities will result in the so-called real sliding in a certain 

small neighbourhood of the discontinuity hyperplane. Ideal 
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sliding results when the nonidealities tend to zero. We shall 

be dealing with this idealized situation throughout this thesis. 

A rigorous mathematical description of sliding has been given 

by Filippov (1960) and is also described in Utkin (1978a). A 

general approach to the investigation of the dynamics of VSS in 

the sliding mode was presented by Bermant, Emel'yanov and Taran 

(1965) . 

The invariance of VSS to parameter variations during sliding 

is due to the fact that the system motion is restricted to lie 

on the switching hyperplane, i.e., the system motion satisfies 

Cx (t) = 0 (3.3.3) 

which is independent of the system parameters and depends only 

on the elements of the switching hyperplane s. Consequently, by 

a suitable choice of C asymptotic stability can be ensured 

during sliding. Furthermore, sliding can be made arbitrarily 

fast by the appropriate selection of C. 

The conditions for sliding to exist and to be maintained along 

the intersection of the switching hyperplanes from any initial 

condition are the conditions of asymptotic stability in the large. 

Stability of VSS is therefore ensured if hitting is guaranteed and 

sliding is sustained. The stability of VSS has been investigated 

by Andre and ~bert (1960), Barbashin (1970) and Weissenberger 

(1966, 1969). Stability of variable structure controllers 

incorporated in model reference systems has also been demonstrated 

by Devaud and Caron (1975) and Young (1977). 

3.5 The Design of VSS. 

The design procedure consists of two independent stages. 

First, the switching hyperplanes are chosen to satisfy the 
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designers objectives (e.g. arbitrary eigenvalues, minimizing a 

quadratic performance index). Secondly, a discontinuous control 

is sought which guarantees the existence of sliding at every 

point on the switching hyperplanes and which steers the state to 

the sliding hyperplanes. The two design stages are systematic 

and furthermore, the second stage involves inequalities which 

ease the design problem. A recent method for the selection of 

the discontinuity hyperplanes has been presented by Utkin and 

Yang (1978). Other procedures for the construction of the 

switching hyperplanes ~ developed and presented in this thesis. 

Assuming the appropriate switching hyperplanes that ensure 

stability of the system during sliding have been chosen, the 

design of the discontinuous control law which enforces sliding 

and maintains it will now be described. The design description 

below is for a scalar system in canonical companion form. The 

design of general systems follows the same lines. Let the 

system be described by 

x. = xi+l i::l/ .. ·,"-\ 
]. 

n 
x = L a. (t)x.-b(t) u (3.5.1) 

n i=l 
]. 1 

where the scalar control u is given by 

n 
u = E I/J i x. (3.5.2) 

i=l 
]. 

where 

<x. if x. s > 0 
]. ]. 

(3.5.3) 
1jJi = 

Si if x. s < 0 
1 

and 
n 

s = E c. x. c n = 1 (3.5.4) 
i=l 

]. ]. 
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The plant parameters ai(t) and gain b(t) are bounded piecewise-

continuous and are given by 

a. . ~ a. (t) ~ a. 1,mln 1 1,max ; b min ~ b(t) ~ b max 

Invoking the condition ss < 0 it can be shown that the 

necessary and sufficient conditions for existence of a sliding 

mode at each point of the switching hyperplane s are: 

> max 1 el. b(t) 1 t 

l3 i < 
min 1 

b(t) t 

A more general 

u = 

where l/J i is the same 

0 = u 

[c. 1 1-

[c. 1 1-

form of 

n 
L: 

i=l 

as in 

[~:o 

a. (t) ] - 1 

a. (t) ] -
1 

the control 

X. 
l. 

+ 0 
U 

(3.5.3) and 

if s > 0 

if s < 0 

(3.5.5) 

i= 1, ... , n 

(3.5.6) 

u is 

(3.5.7) 

~is given by 

(3.5.8) 

The relay component 0 is included to ensure sliding at the 
u 

origin in the presence of disturbances. Relay control alone can 

be used to enforce sliding but does not generally ensure global 

sliding. 

The inequalities in equations (3.5.5) and (3.5.6) provide 

the designer with some freedom when selecting the control law u. 

Larger values of eli and l3 i shorten the time of the state trans­

ition to the switching hyperplane , thus reducing the effect of 

disturbances acting upon the system. Sliding can also be 
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ensured by feeding back k states where k < n. However, the 

freedom in choosing arbitrary ci is lost in this case and some­

times conflicting requirements have to be satisfied (Itkis, 

1976). Various methods have been proposed for the systematic 

selection of the control parameters a., S. for more general 
1. 1. 

systems. These methods are discussed in Utkin (1978a) and 

include the method of control hierarchy which is also systemat-

ically formulated in Young (1978b). 

3.6 The Equivalent Control. 

A precise technique for finding the equations of ideal 

sliding is known as the "equivalent control method". In this 

technique, the time derivative of the switching hyperplanes sex) 

is set to zero and the resulting algebraic equation is solved 

for the control vector u. This equivalent control u (if it 

exists) is then substituted in the original system. The result-

ing equations describe the system behaviour during sliding. The 

equivalent control is a continuous linear control which constrains 

the state x to remain on the intersection of the discontinuity 

hyperplanes. The equivalent control is now derived for the 

system described by (3.3.1) and (3.3.3) 

~(x) = C x = o 

= CAx + CBu = 0 

(3.6.1) 

(3.6.2) 

Assuming ICBI f 0 the equivalent control is the solution of 

equation 3.6.2, i.e. 

u=u = eq 
-1 -(CB) CAx (3.6.3) 

substituting ueq in the original system described by 3.3.1 

yields the equations of ideal sliding 
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= (3.6.4) 

During sliding the order of the system is reduced by m 

degrees. This means that m states of the system are given as 

functions of the remaining n-m states. This is a direct con-

sequence of the solutions of m homogeneous equations (s(x)=O) 

in n unknowns. Further insight into this reduction property 

is developed in this thesis using projector theory and is 

presented in Chapter 6. 

The equivalent control is unique if ICBI i 0 and the exist­

ence of the sliding mode is ensured in this case. Sliding may 

also exist if CB is singular (ICBI = 0) but this is subject to 

satisfying certain conditions on CB and CAx (see Utkin 1972, 

1978a) • 

Recent studies of high gain systems have exposed the relation 

between vss and linear high gain systems. Young, et ale (1977) 

and Utkin (1978b) have shown that the motion before and that 

during sliding is similar to the "fast" and "slow" motion which 

characterises high gain systems. The equivalent control 

therefore, yields the slow motion during sliding. This is consis­

tent with the physical interpretation of the equivalent control 

given by Utkin (1972, 1978a). Utkin demonstrated that the equi-

valent control is the average value of the discontinuous control. 

3.7 The Invariance Principle. 

In addition to being insensitive to parameter variations, 

VSS enjoy another characteristic feature, namely invariance to 

a certain class of disturbances during the sliding mode. The 

"invariance" principle was first introduced by Dralenovi6 

(1969) who showed that during sliding VSS are insensitive to 
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external disturbances which belong to the range space of the 

gain matrix B, R(B). The disturbances need not be incorporated 

in the control law as long as sliding is maintained. This is 

a great advantage especially in the case of unmeasurable dis-

turbances. The effects of the disturbances before the sliding 

mode is attained can be minimized by increasing the system gain 

which decreases the time taken for hitting to occur. To obtain 

the invariance condition consider the system 

= 

s = 

Ax + Bu + Df 

ex 
(3.7.1) 

(3.3.3) 

where f is the disturbance vector, f E R~ and 0 is an (nx~) 

disturbance gain matrix. 

Calculating the equivalent control and substituting back 

in equation (3.7.1) we get 

x = (I-B(CB)-lC) (Ax+Df) (3.7.2) 

Ifcol(&)belongs to the range space of B, i.e. if 

o = BM (3.7.3) 

where M is rnx.e matrix,(3.7.2) then reduces to 

= (3.7.4) 

which is independent of the disturbance vector f. Thus the 

disturbance f has been rejected during the sliding mode. 

The invariance principle will be revisited in Chapter 6 

where an alternative proof is developed together with a general­

ization of the principle to include the case where CB is 

singular. 

3.8 An Example. 

Much of t.~e previous theory can best be demonstrated by 

means of a simple example. The objective is to demonstrate 
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certain variable structure concepts such as sliding, discontinuous 

control, switching hyperplanes, the condition S5<0, and the equiv-

alent control. Consider an unstable double-integrator system 

given by 

= (3.8.1) 

where 

u = -1jJ
I

X
l - \j)2 x 2 (3.8.2) 

[at if x.s>O 
~ 

t/l i = i=1,2 
8i if x.s<O 

~ 

(3.8.3) 

s = clxl + x 2 (3.8.4) 

Satisfying the condition S5<0 yields the values of u i and 8i 

which can be obtained in terms of the inequalities 

Large values of these parameters decrease the time taken 

for hitting to occur since the system gain is increased. 

During sliding 

s = 

i.e. 

= (3.8.5) 

Solving for xl(t) we get 

= 
-clt-ts) 

x e r 
Is 

(3.8.6) 

where xIs is the value xl(ts ) at the time ts the system 

begins sliding. A similar expression can be obtained for x 2 (t) 

from (3.8.5) 
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-c (t-ts) 
x 2 (t) r = -c x ls e 

1 

-c tt- ts) 
= x 2s 

e I (3.8.7) 

One can easily observe that the order of the system is 

reduced since the system dynamics are totally specified by 

(3.8.5) which is a first order differential equation. The rate 

of decay of the states can be seen to increase with c l • 

A simulation study has been conducted with the following 

values 

~T (simulation time step) = 0.02 sec. 

Fig.3.8.la shows the time response of xl and x 2 • Fig.3.8.1b 

demonstrates the sliding motion on the switching hyperplane 

(a line in this case). The describing point for 0 ~ t , ts 

approaches the switching line and then undergoes small damped 

oscillations crossing the switching line every time the sign of 

s changes for t ~ ts (t s = 0.8 sec). The amplitude of these 

oscillations decreases as ~t decreases. As expected xl and x 2 

both maintain zero values in the steady state. This is a con-

sequence of sliding at the origin since s = 0 at every point on 

the switching hyperplane including the origin. 

Fig. 3.8.2a demonstrates how the magnitude of the switching 

function s decreases and how the describing point keeps jumping 

from the positive to the negative half and vice versa. The 

graph also demonstrates that the condition S5 < 0 is always 

satisfied at every point in the phase plane (5 is the slope of 

s and it can be easily seen that 5 < 0 when s > 0 and 5 > 0 
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when s < 0). Fig.3.8.2b shows the discontinuous nature of the 

variable structure controller once sliding has occurred and how 

its magnitude approaches zero as the phase point approaches 

the origin. The continuous nature of the equivalent control 

is shown in Fig.3.8.2c. The equivalent control is calculated 

using (3.6.3) and is represented by the graph on the right hand 

side of the vertical line drawn to indicate the time sliding 

occurs. 

Fig.3.8.3a,b show the effect of increasing the feedback 

gains (a,B) which result in a decrease in the time taken for 

sliding to occur (indicated by the vertical lines). Note 

also the decrease in the slope of s with larger gains (Fig.3.8.3b). 

With u l = 2, u 2 = 3, Bl = -2, B2 = -I, ts decreased to 0.38 sec. 

6t has been decreased to 0.01 sec so as to expand the graph. 

3.9 Applications of VSS. 

Variable structure controllers are useful whenever a system 

is required to perform satisfactorily in a hostile environment 

which entails large parameter variations, external disturbances 

or extreme working conditions. VSS perform well in these cases 

because of their self-adaptive properties. Some practical 

implementations of VSS controllers are mentioned .below. 

Emel'yanov et ale (1969), applied variable structure theory 

to the control of strip-thickness in a continuous hot-rolling 

mill. The industrial implementation of the VSS controller 

showed a marked improvement in the static accuracy and lead to 

an almost time optimal system. 

The insensitivity of VSS to parameter variations together 

with their good static precision have given favourable control 
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of hydroelectric power stations (Erschler et al., 1974). 

The authors implemented a variable structure controller to the 

water-gate system of the station and the experiments conducted 

showed good practical performance. 

Application of variable structure theory to the control 

of position, speed and torque of squirrel cage induction motors 
¥ ~ 

has been investigated by Sabanovic and 11osimov (1981). 

Discussion of the practical realization of the implemented 

controller was presented together with the experimental tests 

conducted. 

Simulation studies have also demonstrated the potential of 

variable structure theory in the control of many engineering 

systems. Such simulated systems have involved robotic mani-

pulators (Young, 1978a), subsonic aircrafts (Young, 1978b), 

overhead cranes (Zinober, 1979) and overspeed protection for 

large steam turbines (Kwatny and Young, 1981). Other simulation 

examples will be presented in this thesis; one of which concerns 

the speed control of gc motors which is also discussed in 

Zinober, EI-Ghezawi and Billings (1981). 

3.10 Links Between the Sliding Mode and Linear Systems. 

Variable structure systems may at first appear to be an 

isolated branch of control theory which has nothing in common 

with conventional linear control systems. This is not the case. 

As has been demonstrated recently, certain unifying aspects 

exist between VSS and linear control systems. The sliding mode 

has been found to provide the link between the two. This is 

justified since VSS behave like linear systems during sliding. 
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Young et ale (1977) and Utkin (1978b) have shown that the 

system motion during sliding is identical to the slow motion 

which exists in high gain systems. The equations governing 

the sliding motion have also lead to a method for computing the 

system zeros (Young et al., 1977), (EI-Ghezawi et al., 1981a, 1982b). 

The condition which satisfies the invariance principle and that 

which guarantees model-following are identical as pointed out by 

Young (1978b). The equivalent control is confined not only to 

VSS but is also found to exist naturally in decoupling theory 

and in output model following. This will be substantiated later 

in this thesis. Furthermore, a geometric approach provides 

additional insight into the analysis and design of VSS. This 

approach is believed to be new and is developed in detail in 

this thesis. 

Finally, it is to be hoped that cross-fertilization between 

linear and discontinuous control theory will help to enrich our 

understanding of these diverse concepts. 

- 34 -



CHAPTER FOUR 

VARIABLE STRUCTURE ADAPTIVE MODEL-FOLLOWING 

CONTROL SYSTEMS (VSMFC). 

4.1 Introduction. 

The difficulty of selecting weighting matrices for a 

quadratic performance index when specifying a desired transient 

characteristic is a well known problem in optimal control theory. 

An efficient method which avoids such difficulties is known as 

linear model-following control (LMFC). In LMFC the model 

specifies the desired performance of the control system and 

feed forward and feedback matrices or auxiliary inputs are deter­

mined to ensure perfect following of the model evolution. 

However, LMFC systems are inadequate when there are large para-

meter variations or disturbances. This has lead to the develop-

ment of so-called adaptive model-following control systems 

(AMFC) (Landau, 1979). AMFC diffe~from ~WC by incorporating 

an adaptation mechanism which has provisions for modifying the 

parameters of the control matrices. The basic configuration of 

AMFC systems is illustrated in Fig.4.1.1. 

There are two types of model-following systems known as 

implicit model-following and real model-following. In 

implicit model-following, the model is not part of the overall 

system; it is only needed at the design stage when calculating 

the control law. On the other hand, real model-following 

systems require the states of the model and therefore, the 

model is a necessary part of the system (Erzberger, 1968) and 

(Chan,1973). Although real model-following is more complex 

to implement than implicit model following it offers the best 
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performance when uncertainties and disturbances are present 

in the system (Erzberger, 1968). Both implicit and real 

model-following controllers should force the error between the 

model and the plant outputs to zero as time tends to infinity, 

i . e. 1 im e (t) = O. 
t-+oo 

Early designs of LMFC systems have been presented by 

Tyler (1964), Erzberger (1968), Markland (1970) and Newell et 

al. (1972). In these cases the controller was obtained by 

minimizing a quadratic cost function involving the error. Non-

optimal controllers have also been utilized in the design of 

LMFC systems (Chan, 1973), (Morse, 1973), (Kudva et al., 1976) 

and(Shaked, 1977a). The design of AMFC systems, however, is 

more complex because of the external disturbances and the vari-

ations in the plant parameters. The stability of such systems 

also warrants more detailed attention. The design of AMFC 

systems has been approached from a stability viewpoint (LandaU 

et al., 1972, 1974), (Courtiol et al., 1975), (Irving et al, 

1979) and (Monopoli, 1981). Although the stability approach 

guarantees that the error goes to zero as t-+oo it offers no 

direct quantitative control over the error transients. 

A new design method for AMFC systems has been proposed 

by Young (1977, 1978b). His approach utilizes the theory of 

variable structure systems (VSS) in designing asymptotically 

stable systems. The control is discontinuous on a number of 

switching hyperplanes. During the sliding mode which exists 

on the intersection of the hyperplanes the system becomes less 

sensitive to parameter variations and noise disturbances. The 
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advantage of this method is that it provides a systematic and 

effective procedure for specifying the transient response of 

the error. 

4.2 Model-following Control Systems. 

In real model following systems, the plant is controlled 

in such a way that its dynamic behaviour approximates that of 

a specified model. The model is part of the system and it 

specifies the design objectives. The adaptive controller 

should force the error between the model and the plant to zero 

as time tends to infinity i.e., lim e(t) = O. 
t-+oo 

The plant and model are described by 

Xp(t) 

x (t) 
m 

= 

= 

Ap ! ;. X ( t ) + B _: u ( t ) 
p p p 

(4.2.1) 

(4.2.2) 

The error vector is 

e(t) = x (t) - x (t) m p (4.2.3) 

We shall assume that the pairs (A ,B ), (A ,B ) and ppm m 

(Am,Bp) are stabilizable i.e., the uncontrollable modes lie in 

the left half plane. The matrix Am is assumed to be stable. 

The plant matrices Ap '" and Bp·' may be uncertain and time 

varying. The upper and lower bounds of the elements of these 

matrices are assumed to be known to the designer. 

It can be easily shown that 

e(t) = A e (t ) + (A - A \':, ) X ( t ) + Bm u ( t ) - B i' m m ppm p 

(4.2.4) 
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Perfect model-following occurs if, for zero initial 

conditions, the error vector e(t) is null for any u belonging m 

to the class of piecewise-continuous vector functions. 

Erzberger (1968) was the first to provide the necessary conditions 

for perfect following. This was followed by Chan (1973) who 

provided a different version of the same conditions. 

following conditions are those of the equation 

The perfect 

(A -A ) x + B Urn - B u = 0 m ppm p p (4.2.5) 

t@ 
to have a solution up irrespective of xp and urn. This is a 

classical problem in linear algebra in which the necessary and 

sufficients conditions are (as stated by Erzberger, (1968» 

= (I-B B g) B = 0 
ppm 

or, equivalently (Chan, 1973) 

rank Bp = rank (A -A :B ) = rank (B :B ) m ppm p 

(4.2.6) 

(4.2.7) 

* where B g is any generalized inverse of the matrix B 
p P 

We shall assume throughout that the perfect model-following 

conditions hold. Adaptive model-following design allows the 

plant parameters to vary and to be uncertain, but not the 

structure of the plant, unless eqn (4.2.6) or (4.2.7) remains 

satisfied. For brevity, the conditions (4.2.7) will be 

referred to as the perfect following conditions. 

If conditions (4.2.7) are satisfied then perfect following 

control up is obtained from (4.2.5) 

= x + B 
P P 

+ (4.2.8) 

* See Appendix 2 for the definition of the generaliza!inverse. 

1l) Ar ",net Sf ir'\ l4· 2.·5 ) ~I-.e. t.c::U<.en. Cl\.!. t:he. nOW\I"\,o..! vn.lue.s_, 
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where B + is a special class of generalized inverse called 
p 

the Penrose pseudoinverse. The use of the pseudoinverse is 

not necessary as any other generalized inverse will suffice. 

Its main advantage is that it leads to a minimum Euclidian 

norm Ilu II (Chan, 1973). 
p 

Furthermore, the boundedness of the 

pseudo inverse implies that the control u is bounded 
p 

(Erzberger, 1968). Erzberger (1968) has also shown that for 

the cases where conditions (4.2.6) fail zero error is still 

possible by enlarging the class of controls to include delta 

functions. 

So far the discussion of determining the control u has 
p 

been restricted to the problem of non adaptive LMFC, that is, 

systems which are not subject to parameter variations or external 

disturbances. Landau and Courtiol (1972) seem to be the first 

to approach the problem of adaptive model-following (AMFC) using 

the hyperstability model reference adaptive techniques. The two 

authors showed that parameter adaptation and signal synthesis 

adaptation illustrated in Flg.4.l.l are identical. In parameter 

adaptation the control is given by 

= - k (e,t) x + k (e,t) u + km xm p p u m (4.2.9) 

where k ,k are time-varying matrices dependent on the error e. 
p u 

The signal synthesis adaptive controller can be obtained from 

(4.2.9) by expressing kp(e,t), ku(e,t) as 

kp (e r t) = k + ilk (e, t) P p 

ku(e,t) = k + ilk (e,t) 
u u 

(4.2.10) 

(4.2.11) 

where k ,k are constant matrices designed for specific plant 
p u 
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parameter values chosen to satisfy the perfect model-following 

conditions. With this decomposition, (4.2.9) can be written 

as 

u = u + lIu 
p pI pI (4.2.12) 

where 

u = -k x + k u + k x 
pI P P u m m m (4.2.13) 

6u = -lIk (e, t) x + lIk (e, t) u 
pl p P u m (4.2.14) 

u
pl 

is the familiar controller chosen to ensure perfect model­

following while lIUpl is the contribution of the adaptive loop 

which is applied to the system as an auxiliary input. 

In order to ensure strong stability characteristics of the 

adaptive system, Landau et ale (1972) applied the concepts of 

hyperstability to generate the adaptive controller. The 

synthesis of the input lIUpl does not require real time identifi-

cation. computations are only needed at the design stage. 

The controller is implemented using summators, multipliers and 

integrators. 

Although Landau's method guarantees the stability of the 

adaptive system it offers no direct control over the error 

transients. An attractive method which offers direct control 

over the error transients and also guarantees the stability of 

the system has been presented by Young (l978b). This method 

is based on the theory of variable structure systems (VSS) and 

will be discussed in the following section. 

4.3 Variable Structure Adaptive Model-Following Control 

Systems (VSMFC). 

The introduction of variable structure systems into the 

design of adaptive model-following control systems has been 
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motivated by the observation that the peyfect model matching 

conditions (4.2.7) coincide with the invariance condition 

(3.7.3) during the sliding mode (Young, 1978b). Since the 

prime objective of adaptive control is to drive the error 

between the model and the plant to zero, the design of AMFC 

systems is therefore analogous to that of organizing sliding 

in the error state space. By maintaining sliding along the 

intersection of selected switching hyperplanes associated with 

the error equation described by (4.2.4) the error can be 

guaranteed to approach zero as t+ro. The salient feature of 

variable structure adaptive model following control systems 

(VSMFC) is that both xp and urn are considered as disturbances 

and therefore are rejected during sliding owing to the 

invariance principle and the perfect model-following conditions. 

The properties of VSMFC systems during the sliding mode 

when s = S = 0 will now be examined. The variable structure 

system in our case is 

(A -A ) x + B u - B u.. 
m p p mm p p 

(4.3.1) 

with a variable structure control given by 

u = 
p 

(4.3.2) 

where ~e' ~p' ~m are discontinuous functions as will be shown 

later. 

Assuming sliding is organized on all of the switching 

hyperplanes 

s = C e ::0 (4.3.3) 

where C is a full rank rnxn constant matrix. The equivalent 

control can be calculated as described in Chapter 3 and is given 

by 'n 
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= (CB )-1 C[A e + (A -A)x + B u ] 
p m m ppm m (4.3.4) 

The equation governing the error during sliding is therefore 

e = [1-B (CB )-lC] [A e+(A -A )x +B u ] 
ppm m ppm m (4.3.5) 

Due to the coincidence of the perfect model-following conditions 

and the invariance condition eqn. (4.3.5) reduces to 

e = [I B (CB )-lC] A e 
ppm (4.3.6) 

Therefore, given Am,Bp and assuming the pair (Am,Bp) is 

stabilizable a matrix C can be found such that eqn (4.3.6) is 

asymptotically stable, thus ensuring that the error goes to zero 

as t~oo. If the pair (A ,B ) is controllable, then complete m p 

control over the error transient is possible. Fast error decay 

can be ensured by placing n-m e~genvalues deep in the left-half 

of the complex plane. 

The construction of the appropriate switching hyperplanes 

is important in order to guarantee the asymptotic stability of 

the system. Through a comparative study of high-gain systems 

and VSS Young et ale (1977) have shown that the motion during 

sliding is identical to that of the 'slow' subsystem of a high-

gain system. Furthermore the authors presented a design 

procedure for constructing the switching hyperplanes. Using a 

similarity transformation W, eqn (4.3.6) can be transformed 

into (Young, 1978b) 

where e' = 

12 
- A 

m 

= W e 
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W = 

~:] 
such that WIBp = 0 (4.3.9) 

WA w- l = [A~l A~J m 
2 1 22 

A Am m 

(4.3.10) 

Cw- l = [C C ] @ 
1 2 (4.3.11) 

The inverse of C2 always exists since the inverse of CB is assumed 

to exist. By suitable choice of Cl ,C2 arbitrary eigenvalues can 

be assigned to eqn (4.3.7) assuming that (A ,B ) is completely m p 

controllable. Eqn (4.3.7) is associated with the slow subsystem 

in high gain systems. It governs the system behaviour during 

sliding. 

The eigenvalues of eqn (4.3.7) are the transmission zeros 

of the system S(A,B,C) taking the switching hyperplanes as the 

system output. Once matrices Cl and C2 have been selected the 

switching hyperplanes are obtained from eqn (4.3.11) 

C = [C 1 (4.3.12) 

Young (1978b) also studied the effect of parameter pertur-

bation on Bp. 

and 

He showed that if perturbations 6B satisfy p 

B = 
P 

B + 6B 
o P 

(4.3.13) 

then the eigenvalues of (4.3.7) will be unaffected by 6B • 
P 

However, if\(flBJ is independent ofi(Bd' i. e .R(flBJ cj:. R (Bo) then 

system stability can still be assured by placing the eigenvalues 

of (4.3.7) deep in the left half plane. The insensitivity to 

Equation (24) in Young (1978b) is wrong. Equation (4.3.11) is the 
correct one. 
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parameter variations in B is considered as another advant­
p 

ageous feature of VSMF system over hyperstability design where 

variations in B may cause problems (Young 1978b). 
p 

A different procedure for constructing the switching hyper-

planes has been developed by the author and will be discussed in 

Chapter 6. The new method offers two advantages not enjoyed 

by Young's et ale (1977) procedure; namely the ability to impose 

a specification on CB and the ability to exercise partial control 

over the eigenvectors associated with the n-m assigned eigen-

values. 

4.4 The Control up in VSMFC. 

In the previous section it has been shown that VSMFC systems 

possess adaptive properties similar to that of AMFC systems. The 

variable structure control law employed (4.3.2) is similar to 

the"paramater adaptation" control law adopted in AMFC systems 

except that the gain matrices ~e' ~p and ~ are discontinuous. m 

The adaptation mechanism arising from these discontinuities is 

governed by the switching hyperplanes. In other words, the 

discontinuous gain matrices ~ , ~ , ~ may be considered as e p m 

adaptable gains. 

This interpretation of VSMFC systems is illustrated in Fig. 

4.4.1. 

The gains ~e' ~p' ~m in the control law (4.3.2) are given 

by 

i 
~y. 

J 
= 

i 
a 

j 

~~ 
J 

y. s. (e) >0 
J 1. 

y. s. (e)<O 
J 1. 
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where y T = [el,··,e IX l'···x ,u l'···u 1] n p pn m m 

If a control law of the form' I z I IS the (\b~c\u.t-f' vnl:lAE oj- eClch 
Ccryn p"nel1-r of 'Z- ) • 

is used then 

u = p 

the 1./I y . 
J 

1./I
i 
y. 

J 

1./I e 

IS 

= 

Ie I 

are 

i 
a· 

J 

s~ 
J 

+ 1./1 Ix I + 
p p 

given by 

s. (e) 0 > 
1 

s. (e) < 0 
1 

1./Im lu I m (4.4.2) 

(4.4.3) 

Once sliding occurs the error tends to zero asymptotically. 

Furthermore 1./I e ' 1./1 and 1./1 can be considered to be continuous p m 

functions which are identical to those making up the equivalent 

control described by (4.3.4), i.e. 

1./1 eq = -(CB)-lC Am (4.4.4) e 

1./I p 
eq = -(CB)-lC (A -A ) (4.4.5) m p 

1./1 eq = -(CB)-lC B (4.4.6) m m 

Thus, during sliding the discontinuous control law (4.3.2) 

yields the effective continuous equivalent control (4.3.4). 

A successful method for determining the a. and S. values is 
1 1 

the method of control hierarchy which has been formulated in 

detail by Utkin (l978a) and Young (l978b) to ensure sliding 

motion. The advantage of the method is its ability to allow for 

parameter variations and external disturbances. There is ample 

freedom in the choice of a~, 6~ since their values need to 

satisfy certain inequalities. 

4.5 Design Examples. 

The simplicity of the variable structure design technique 

will be illustrated by applying it to the adaptive model-following 
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control of a second-order dc drive, a fourth-order multi-

variable system and to a multivariable batch process. A further 

example is also discussed in Zinober, El-Ghezawi and Billings 

(1982). 

4.Sj The Examples and the Design of the VSMFC Systems 

dc Drive. 

An adaptive controller has been designed by Courtiol and 

Landau (1975) for a dc drive and the same system will be con-

sidered here. 

= o 

o 

The system equations are 

1 x + 
p 

1 --
T 

u 
p 

(4.5.1 

where xpl and xp2 are the speed and acceleration of the motor 

respectively, up is the reference of the armature current control 

loop, A and T are respectively the equivalent gain and time 

constant of the armature current loop, km is the torque and back-

emf constant and J is the moment of inertia of the load. 

A and T are parameters subject to variations. The model is 

given by 

Xm = 0 1 x + 0 u m m 

(l k O AO 
kO AO (4.5.2) 

m 1 a m 
JO 0 

-0 

J
O 0 

T T T 

where the superscript "0" denotes the nominal value of the plant 

parameters. The gain a yields the desired dynamics of the 

speed control loop. The perfect model-following conditions are 

satisfied. The load moment of inertia is considered to vary 

2 
in the range 0.21 to 0.78 Kgm • 
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model are TO = 10 msec, A
O 

= 

and J O = 0.5 Kgm
2

. 

3 A/V, k ° = 
m 

2 Nm/A, a = 0.83 

The switching line and the control u are chosen to be 
p 

and 

u p 

s = c > 0 (4~5.3) 

(4.5.4) 

where the ~. are given by the expressions 
~ 

eli if Yi s > 0 

~i = i=1, ••• ,5 (4.5.5) 

Bi if Yi s < 0 

with Yl 
= xpl ' Y2 = ~2' Y3 = e

l
, etc. To satisfy the reach-

ability and sliding condition S5 < 0 the a. 's should satisfy the 
~ 

inequalities 

fa T'a 
J 

k O 

~l 0.1 < min m (4.5.6) 
J

O 
. ~ m 

kA ° ) 
0. 2 < min (T-~ ) I (4.5.7) 

T ) 

[a A J 
k O 

. T:] 0. 3 < min 
m (4.5.8) 

A
O 

J
O k 

m 

0. 4 < min r JT (l-CTo) ] 

° lk A T m 

(4.5.9) 

[-a A J k ° 0] as < -max 
m T 

A
O 

J
O . k . T 

m 
(4.5.10) 

The S.'s sat1sfy corresponding inequality conditions with the 
~ 

less than signs replaced by greater than signs and the minima by 

maxima. 
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Fourth-order System. 

Consider the fourth-order system with two controls where 

the plant is given by: 

X: = p 
o 1 o o 

o o 1 o 

o o o 1 

-6 -6 -11 -10 

The model is given by 

x = m o 1 

o o 

o o 

o 

1 

o 
-3 -12 -19 

x + 
p 

x + p 

o 

o 

o 

1 

o 

o 

o 
3 

o 

o 

1 

1 

u m 

The switching hyperplanes are chosen to be 

s o o 

1 : ] e 

u 
p 

(4.5.11) 

(4.5.12) 

(4.5.13) 

The initial conditions are zero except for xpl =-1. We 

now follow the control hierarchy method to ensure the sliding 

mode. Sliding on the hyperplane sl = e 4 = 0 is assured at t = O. 

Thus e
4 

= 0 and substitution yields the 3rd-order system. 

~ = 

and 

Q 1 o e + o 

o o 1 o 

o o o o 

o 

o 

o 

o 

o 

o 

x + p 
o 

o 

o 

u m o 

o 

1 

(4.5.14) 

= 3x - 6x , - 8x + 2x - 3e - 12e - 1ge u1eq pI p2 p3 p4 1 2 3 

- 8e + 3u - u 4 m p2 (4.5.15) 
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Choosing 

2n+£ 
u = L tPi Y. p2 i=l ~ 

where 

CI.. if Yi 1 

tPi = 
B. if Yi ~ 

and 

Yl = xpl' Y2 = x p2 '···' 

s2 > 0 

s2 < 0 

(4.5.16) 

(4.5.17) 

u 
m 

Sliding is ensured on the second hyperplane s2 = 0 by satisfying 

the reachability conditions. In the sliding mode s = 0 and 

therefore, the error transient may be specified to be those of 

a desired second-order system. 

(4.5.18) 

by suitably choosing The inequality constraints 

yield 

and the remaining a's need to be negative. Symmetric results 

arise for the SiS, i.e. the SiS are positive. 

A Chemical Reactor. 

Munro (1972) considered the linearized open-loop unstable 

chemical reactor given by 

~ = 1.38 -0.2077 6.715 -5.676 x + 0 0 
p P 

-0.5814 -4.29 0 0.675 5.679 0 

1.067 4.273 -6.654 5.893 1.136 -3.146 

0.048 4.273 1.343 -2.104 1.136 0 

(4.5.19) 
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A model chosen to satisfy the perfect model-following 

conditions and to yield acceptable dynamics is given by 

x.:: 1.38 
m 

-0.2077 

10.1952 -4.29 

1 0 

2.2037 4.273 

6.715 

9.998 

-5 

3.343 

-5.676 

-13.802 

2 

-5 

x + 
m 0 

4.999 

0 

1 

0 

0 

-1 

0 

(4.5.20) 

The new method developed in this thesis will be used for 

u m 

the 

selection of the switching hyperplanes (see Chapter 6). The two 

eigenvalues governing the error dynamics will be placed at -10. 

Applying the design procedure described in Chapter 6 with CB 
p 

specified as* 

= 
[

-1 01 
o -2J 

(4.5.21) 

the switching hyperplanes s=Cx are found to be (the values are 

to four significant digits) 

[0.0751 -0.1128 a -0.3163 J 
C = (4.5.22) 

1.0773 -0.0197 0.6357 -0.5373 

The control law used is 

u j 
2n+~ 

l/J~ = L I Y il 
P i=l l. j=l,m 

(4.5.23) 

K~ if s.{e) > 0 
l. 3 

where l/J~ = 
l. 

-K~ if s.~e) < 0 
l. , 

(4.5.24) 

and 

*The determination of C is developed in Chapter 6 (see Example 
6.9.3). 
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Following the method of control hlerarchy (Young, 1978b) and 

by requiring sliding to commence on the first hyperplane and then 

on the second the values of K~ have been chosen as 
1 

K 

= [ : 
I 2 3 2 I 2 3 I ~ ] (4.5.25) 
2 I I I 2 2 I I 

4.5.2 Simulation Results. 

Second-order de drive. 

Throughout the simulation (unless otherwise indicated) the 

following values have been used 

x (0)= 
PI 

c = 

J = 

2, x (0)=0, x (0)=0, xm (0), u = 
P2 ml 2 m 

50 

J max = 0.78 

{~ t ~ 0.6 sec 

t > 0.6 sec 

= -0.2,a2 = -0.2, a 3 = -0.2, a 4 = -0.2, a 5 = -1.3 

= 1.3, 82 = 0.2, 83 = 1.3, ~4 = 0.2, ~5 = -0.3 

T (simulation time step) = 0.001 

The dynamic behaviour of the plant and model is shown in Fig. 

4.5.la. In order to demonstrate the influence of the switching 

hyperplane gradient (c) on the error transient two values of c 

were considered. As expected, the larger value (c = 50) leads to 

a more rapid decay of the error than the smaller value (c = 20). 

This is depicted in Fig.4.5.1b. Note also that the error 

reduces exponentially to zero. At t = 0.6 (where urn = 0) the 

error vector is zero and sliding commences immediately. The 

error therefore remains zero and the plant and model responses are 

identical. This is not the case for the hyperstability design 

method (see Fig.ll in Courtiol et al., 1975). 
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Fig.4.5.2a demonstrates the adaptive properties of the 

system as the load moment of inertia was perturbed about its 

nominal value (Jo = 0.5). The perturbations are step-wise changing 

randomly every 0.03 sec. The level of these perturbations are 

such that the load moment of inertia assumes different values 

including the minimum (J = 0.21) and the maximum (J = 0.78). 

As compared with the fixed moment of inertia (see Fig.4.5.la) no 

marked difference is seen. This graph also helps to demonstrate 

the invariance principle since the fluctuation of J does not alter 

the range space of B (i.e. R(B )). Fig.4.5.2b shows the effect 
p p 

of an added random disturbance (h(t)) which does not belong to 

Satisfactory response can still be obtained with Ih(t) 1'5. 

It may be impractical to apply the discontinuous control direct-

ly to the plant. The insertion of a 1st-order lowpass filter with 

output uf(t) ahead of the plant yields a smoother control signal 

as shown in Fig.4.5.3c, but during sliding we now have lsi < £ 

with £ not infinitesimally small. The resulting response (see 

Fig.4.5.3a) is close to that of Fig.4.5.la and the discontinuous 

control up(t) is shown in Fig.4.5.3b. 

-1 
is 20 s • 

Fourth-order Multivariable system. 

The filter time constant 

The following values have been used in the simulation 

The values of the a's and S's were -0.4 and 0.4 respectively 

except for a 6 ,7 and 86 ,7 where 

All initial conditions are zero except for xPl which is equal 

to -1 

6T = 0.05 
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As shown in Fig.4.5.4a the plant has a highly oscillatory 

transient response without adaptive control. The choice of 

the model (4.5.12) and of c l and c 2 in (4.5.13) yields a suitable 

model transient and error transient. A typical response is shown 

in Fig.4.5.4b. The response from zero error at t = 25 yields 

identical plant and model transients for t ~ 25. 

The Chemical Reactor 

All initial conditions are zero except for xPl' x p2 where 

xPl (0) = 3, x P2 (0) = 3 

flT = 0.02 

Fig.4.5.5a demonstrates the plant and model behaviour. As 

can be seen rapid following of the model is achieved. Simulation 

with more realistic switching hyperplanes where all the elements 

of c have been rounded to one significant digit have also been 

carried out and no marked difference is noticed. 

Fig.4.5.5b demonstrates sliding on the two hyperplanes. As 

expected sliding begins on the first switching hyperplane and 

then on the second. The time step has been decreased to flT=0.0002. 
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CHAPTER FIVE. 

THE DETERMINATION OF MULTIVARIABLE SYSTEM 

ZEROS USING VARIABLE STRUCTURE SYSTEM THEORY. 

5.1 Introduction. 

Reading through the recent literature dealing with multi-

variable system zeros, zero directions, the output zeroing problem, 

unobservable subspaces and output model-following systems, there 

emerges a close similarity between these concepts and those of 

variable structure systems (VSS). The output zeroing question 

which is associated with system zeros and zero directions provides 

the link between the two. 

The output zeroing problem (defined in section 5.2) of the 

system (S,A,B) 

= Ax + Bu 

y = Cx 

n m ,x£G , u£C 

m y£C , m<n 

(5.1.1) 

(5.1.2) 

seeks the appropriate choice of state "x "and control "u " .... 'hich o 

makes the m outputs of the system identically zero i.e.y(t)~O for 

all t~O. Associated with this notion are the system zeros and the 

zero directions (MacFarlane and Karcanias, 1976). The number of 

system zeros and zero directions is n-m for the case where CB is 

nonsingular and the state zero directions (xo ) are constrained 

to lie in the null space of C i.e. C x o = 0 These ideas have 

analogous counterparts in the theory of variable structure 

systems where 

1) The zero output of the system S(A,B,C) can be associated 

with the zero-valued switching hyperplanes during the sliding 
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mode. In the vss case, Xo and u are such that the state is 

constrained to lie on the intersection of the switching hyper­

planes. 

2) During the sliding mode the state belongs to the Rn - m 

solution space of CXo= O. Consequently n-m independent solutions 

exist. The subsequent motion of the system is dictated by these 

n-m modes as is well known in VSS. 

In addition to the above observations, a recent approach to 

model reduction and model-following systems is based on the 

cancellation of n-m poles of the closed loop system by the n-m 

zeros of the system (Shaked and Karcanias, 1976), (Shaked, 1977a). 

This is achieved through forcing n-m modes of the plant to be 

unobservable. In other words, the corresponding n-m eigen-

vectors are forced to lie in the null space of the output matrix 

C. Again, these concepts tie up with the (n-m)-dimensional 

null space of C in which the state is constrained to lie '. 

during the sliding mode. If the switching hyperplanes are con-

sidered to be the system outputs then the system is unobservable. 

The relationship between model-following systems, VSS and systems 

zeros will be deferred until Chapter 7. 

The above observations suggest the possibility of exploiting 

VSS theory in the sliding mode to yield an algorithm for the 

determination of system zeros and zero directions. Such an idea 

is strengthened by the fact that the equivalent control and the 

control which achieves output model-following of a lower order 

model (consequently order reduction) are similar. For the moment 

it suffices to say that knowledge of the plant zeros is necessary 
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in output model-following systems. The new algorithm proposed 

provides an easy method to do that. Furthermore, the control 

law upon which this algorithm is based appears as part of the 

control law which achieves output model-following. This 

provides a self-sufficient method for tackling the problem of 

output model-following. 

Chapter 7. 

These topics will be explored in 

The importance of the proposed algorithm is not confined to 

the determination of the zeros and the zero directions but goes 

further to provide a design method for specifying system zeros 

and state zero directions. Furthermore, having associated the 

switching hyperplanes with the system output existing methods 

for zero assignment (Kouvaritakis et ale 1976, Part 2) can be used 

for the specification of the switching hyperplanes. 

The calculation of system zeros has been studied by many 

authors and numerous methods have been proposed. The concepts 

underlying such calculations range from the use of high gain outp~t 

feedback (Davison et al., 1974), (Young et al., 1977) and 

generalized eigenvalue QZ algorithms (Laub et al., 1977), (Porter, 

1979) to geometric formulations (Kouvaritakis et al., 1976), (Owens, 

1977) and the use of generalized inverses (Lovass-Nagy et al., 

1980). Other algorithms obtain the zeros as the poles of the 

system minimal order right or left inverse (Patel, 1977) or by 

pole-zero cancellation techniques (Wolovich, 1977). 

In the present study the relationship between variable 

structure systems (VSS) and the zeros of the square linear time­

invariant multivariable system S(A,B,C) described by (5.1.1) and 

(5.1.2) are investigated. It is assumed for the present that B 
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and C have full rank and ICBj f o. The case where CB is 

singular can be considered with suitable modifications and will 

be presented in section 5.10 and in Appendix 3. 

A new method of computing the zeros of S(A,B,C) is derived 

by considering the theory of VSS. It will be shown that the 

system zeros and the state zero directions are eigenvalues and 

eigenvectors of a matrix which arises naturally in VSS design. 

The algorithm is computationally simple and yields insight into 

the operation of VSS in the sliding mode. The algorithm provided 

offers the advantage over known techniques of the ability to 

calculate the state and the input zero directions independently 

of each other and without resorting to the determination of the 

null space of the (n+m)th order system matrix. The relationship 

between the VSS algorithm and the NAM algorithm (Kouvaritakis 

et al., 1976) is discussed together with a new method of zero 

assignment. The generalization of the algorithm to the case 

where CB is singular is more complex and will be presented in 

section 5.10 and Appendix 3. 

This chapter is based on two papers by the author (El­

Ghezawi et al., 1982a, 1982b). 

5.2 system Zeros. 

The use of variable structure systems theory in calculating 

the system zeros is motivated by the observation that variable 

structure systems in the sliding mode are very closely related 

to the output zeroing problem. 

The output zeroing problem 

MacFarlane and Karcanias (1976) state that a necessary and 

sufficient condition for an input 
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u (t) ::; 9 exp (zt) l(t) (5.2.1) 

to yield rectilinear motion in the state space of the form 

x (t) ::; x exp (zt) l(t) (5.2.2) 
0 

such that 

y (t) = 0 for t ;;t 0 (5.2.3) 

is that 

::; o ::; 

(5.2.4) 

where z is a system zero, Xo the related state zero direction, 9 

the input zero direction and l(t) denotes the Heaviside unit step 

function. At the complex frequency s ::; Z the state (x ) and o 

input (g) zero directions satisfy 

[:0] £ NiPiz)) (5.2.5) 

where N(P(z» is the null space or kernel of P(z). 

5.3 Zero calculation using VSS theory. 

Considering the switching functions s to be the system 

outputs y, VSS and the output zeroing problem reduce to the 

selection of a control u and a state vector x such that the output 

y(t) = 0 for t ) O. Calculation of the system zeros using VSS 

theory exploits the fact that if y(t) ::; 0 for t ~ 0 then y(t) ::; 0 

for t ~ O. The algorithm which consists of determining the 

eigenvalues of the matrix A which arises when the feedback 
eq 

control yielding y(t) ::; 0 is applied to S(A,B,C) is summarised 

below. 
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(i) Calculate u using y = Cx = o. This yields 

C(Ax + Bu) = 0 

and 
-1 u = - (CB) CAx 

which is the equivalent control u of VSS theory. eq 

(ii) Substitute in (5.1.1) to yield 

x = [I - B(CB)-lC]Ax = A x. 
eq 

(iii)Determine the eigenvalues and eigenvectors of A eq 

(5.3.1) 

(5.3.2) 

(iv) Any eigenvector x i satisfying Cx i = 0 is a state zero 
o 0 

direction and the corresponding eigenvalue is a system 

zero. 

(v) The corresponding input zero directions are given by 

g = u . i eq 
(5.3.3) 

In practice we need consider only the (n-m) eigenvalues 

Ai E sp(A
eq

) - {O}m in steps (iii) and (iv). This becomes clear 

in section 5.5 (see equations (5.5.13) and (5.5.15)), since it 

is evident that only the eigenvectors associated with the (n-m) 

eigenvalues Ai of Aeq lie in the null space of C and satisfy 

Cxi = O. (see Appendix 2 for the definition of the null space) The 
o 

(n-rn) eigenvalues Ai are not necessarily non-zero valued. 

5.4 Physical Interpretation. 

The (VSS) equivalent control is such that it assigns some 

of the closed loop eigenvalues and the corresponding eigenvectors 

to coincide with the system zeros and state zero directions,thus 
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driving the system to be unobservable. To show this consider 

the observability matrix 

Since 

O(C,A ) = eq 

CA 
eq = 

T T 
[ C, (CA ) eq , ...... , 

C[I - B(CB)-lC]A = 0 

T T 
(Cl'.n-l) ] 

eq 

it follows that 

and 

= 

rank[O(C,A )] = eq 

o i = 1, 2, 3, •.• n-l 

rank (C) = m < n. 

(5.4.1) 

(5.4.2) 

The action of the equivalent control u is therefore to drive eq 

the system to be unobservable through the cancellation of system 

zeros with some closed-loop poles. The system zeros are there-

fore a subset of the eigenvalues of A eq 

5.5 Decomposition of the state space. 

The calculation of the system zeros using the proposed 

method relies on pole-zero cancellation through appropriate 

state feedback using the equivalent control u eq The zeros of 

the system are given by the eigenvalues of a certain matrix 

associated with the (n-m) dimensional unobservable subspace. To 

find this matrix an observabi1ity decomposition is employed 

(Kudva et al., 1976). 

Introduce the similarity transformation 

x = Tx (5.5.1) 

where 

T = [ ~ ] 

}m 

}n-m 
(5.5.2) 
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C is the output matrix which spans the observable subspace, 

and P is a matrix chosen to ensure that T is nonsingular. 

Therefore 

.:. -1-x = TA T x 
eq (5.5.3) 

-1-
y = CT x (5.5.4) 

Define the partitioned inverse of T as 

-1 T = [V : W (5.5.5) 
-...,........ ~. 

m n-m 

and recall that a generalised inverse sg of an rnxn matrix S of 

rank m satisfies (Graybill, 1969), (see also Appendix 2). 

(5.5.6) 

Using these definitions and exploiting the identify TT- l = In 

it can be readily shown that 

CV = I 
m (5.5.7) 

PW = I (5.5.8) n-m 

PV = 0 (5.5.9) 

CW = 0 (5.5.10) 

Therefore V and W can be taken to be generalized inverses 

of C and P such that conditions (5.5.9) and (5.5.10) are 

satisfied, i.e. pcg = 0 and Cp
g = o. From equation (5.S.3) 

.:. [ C ] A [Cg pg]x [CA C
g 

CA pg 1 x (5.5.11) x = = eq eq eq 

P PA c g PA pg 
eq eq 

and 

y = C[Cg pg]x. (5.5.12) 
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From (5.4.2), CA = 0 and therefore eq 

.!. 
x 

y 

= 

= 

o 
m 

[I : O]x. 
m 

o x 

This is the standard observability decomposition. 

are therefore given by the (n-m) eigenvalues of 

(5.5.13) 

(5.5.14) 

The zeros 

(5.5.15) 

Because the eigenvalues are invariant under similarity trans-

formation and because of (5.5.13) and (5.5.15) the n-m zeros 

can also be obtained as 

m 
sp(A ) - {OJ 

eq 
(5.5.16) 

The calculation of the inverse of T yields V and W. However, 

if the computation of the matrix inverse is to be avoided, the 

matrix p should be chosen such that equations (5.5.9) and (5.5.10) 

are satisfied. Furthermore, since~P~ E N(C), a possible choice 

for pg is M wh~ ·R(~')::tJ(C).P is then equal to M
g 

subject to the 

condition MgM = In • The zeros'of the system are therefore equal -m 
to the eigenvalues of MgA M where M is a basis matrix for the eq 

null space of C. 
i 

Since the eigenvectors xo (or state zero directions) lie in 

the null space of C, they can be expressed as a linear combination 

of the basis vectors of M, 

= Ma. 
1 
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Thus 

A Xi = A Ma. = z.Ma. eq 0 eq l l l 

i where z. is the zero associated with x and 
l 0 

MgA Ma. 
eq l 

= g z.M Ma. 
l l 

= z.a. 
l l 

(5.5.18) 

Therefore a. is an eigenvector of MgA M corresponding to the 
l eq 

zero z .. 
1 

To calculate the state zero directions x the eigenvectors 
o 

a
1
. of the (n-m) th order matrix MgA M should be determined and eq 

substituted in (5.5.17). The input zero directions gi are given 

by replacing Xo by Ma i in equation (5.3.3) to yield 

- (CB)-lCAMa. 
l 

g = (5.5.19) 

An alternative derivation of (5.5.15) and (5.5.16) can be 

obtained geometrically (EI-Ghezawi et al., 1982b). This is 

presented in theorem 5.1. 

Theorem 5.1.1 For the system S(A,B,C) with ICB/ ~ 0 

(i) 

or 

( ii) 

and 

the n-m zeros z. of the system are given by 
1 

(a) 
m 

{z .} = sp (A ) - {O} 
1 eq 

(b) are the eigenvalues of the (n-m)th order 

matrix MgA M where M is a basis matrix for eq 

N(C) and Mg is a generalized inverse of M. 

the state zero directions x associated with the o 

zeros z. are 
1 

(a) the corresponding eigenvectors of the ma~rix 

Aeq which belong to N(C). 

(b) satisfy Xo = M a i where the a i are the 

eigenvectors of MgA M. 
eq 
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(iii)the input zero directions are g. 
1 

-1 -1 
= -(CB) CAxo= -(CB) CAMa i . 

Proof: 

* (i) Let v be the maximal (A,B)-invariant subspace in the 

kernel or null space of C (Wonham, 1979). 

and since CB is nonsingular 

Since 

* = v ED R(B) 

CA = CA -(CB) (CB)-lCA = 0 
eq 

* Then v = N(C) 

(5.5.20) 
. 
It therefore follows that the range space (see Appendix 2) 

* of A belongs to N(C) or v • eq 
lrhe range of A Rn 

eq 
. L ....cl-.o n * is the same as that of A ,tne, ... ) .... ~,A R Cv eq eq and in particular 

* v (5.5.21) 

SinCe zeros are invariant under state feedback, the n-m zeros 

of S(A,B,C) and the closed-loop system S(A ,B, C) are eq 

equal and therefore from (5.5.21) the zeros are a subset of 

the eigenvalues of A . The relation A Rnc:V* implies eq eq 

that the other m eigenvalues of A are zero-valued. This eq 

proves (i) (a) • 

Furthermore, if zi is a zero, there exists a non-zero 

eigenvector Xo E N(C) such that 

i = 1,2, ••• , n-m (5.5.22) 

Let M be a basis matrix for N(C) and write x = Ma. then o 1 

A Ma. = Maiz i eq 1 
(5.5.23) 

and 

MgA M a. = g z.M Ma. 
eq 1 1 1 

(5.5.24) 

= z. a. 
1 1 

(5.5.25) 

- 64 -



where Mg is any generalized inverse of M satisfying 

It follows from (5.5.24) that the zeros of 

S(A,B,C) are given by the eigenvalues of M9 A M which eq 

has order n-m. This proves (i) (b). 

(ii) This follows from equations (5.5.22) and (5.5.25). 

(iii) substituting x = x = Ma. in o l 

g. = - (CB)-lCA x 
l 0 

= - (CB)-l CA M a. 
l 

which completes the proof of the theorem. 

(5.5.26) 

Using section (i) (a) in the theorem yields a technique for 

determining the (n-m) zeros by finding the eigenvalues of the 

specified matrix Aeq' without the need for calculating the 

annihilator matrices M and N, c.f. the NAM algorithm of 

Kouvaritakis and MacFarlane (1976). The method of section (i) (b) 

has links with the NAM algorithm (see section 5.8). For both 

cases (a) and (b) the zero-directions are calculated without 

resorting to the determination of the null space of the (n+m)th 

order system matrix as defined in Kouvaritakis and Macfarlane 

(1976). 

For the case where n-m is large, method (a) is computat-

ionally simpler than (b). For n-m small, i.e. n~m, method (b) 

may be a reasonable alternative. 

5.6 Classification of the zeros. 

Since CB is nonsingular, the system S(A,B,C) has the 

maximum number of zeros, i.e. n - m, and the zeros are the 

system zeros (Macfarlane et al., 1976). Since the system is 

square, all the input, output and input-output decoupling zeros 
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are invariant zeros, and therefore the invariant zeros are the 

system zeros. The set of transmission zeros, ZT' is the set 

of invariant zeros, ZI' minus the set of decoupling zeros, ZD' 

Thus 

= (5.6.1) 

An output decoupling zero satisfies (MacFarlane et al., 

1976) 

and 

Cpo 
1 

= 

= 

z.p. 
1 1 

a 

(5.6.2) 

(5.6.3) 

where Pi is a nonzero eigenvector of A associated with the 

zero z .. 
1 

Equation (5.2.4) implies that g. = 0, i.e. the 
1 

input zero direction is zero. 

An input decoupling zero satisfies 

and 

q.B 
1 

= 

= 

z.q. 
1 1 

a 

(5.6.4) 

(5.6.5) 

where qi is a nonzero left eigenvector of A associated with the 

zero z .. 
1 

If (5.6.2)-(5.6.5) are satisfied we have an input-

output decoupling zero. 

Alternatively the output decoupling zeros can be determined 

by noting that for gi = 0 to hold we need from (5.3.3) 

-1 i i 
gi = - (CB) CAxo = 0, and since CB is nonsingular, CAXo = O. 

The transmission zeros are determined by establishing which 

zeros do not satisfy (5.6.2)-(5.6.5). 
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5.7 Zero Assignment. 

The problem of zero assignment for a system with given A 

and B matrices seeks the appropriate selection of an output matrix 

C which will give rise to desired zeros. The method described 

below is simple and furthermore, it offers arbitrary specifi-

cation of CB. This new method relies on finding state zero 

directions (xo ) associated with the desired zeros. The state 

zero directions are not completely arbitrary but have to satisfy 

a certain condition which is formulated in Chapter 6 using 

projector theory. Some freedom may be possible when selecting 

x and this increases with the number of inputs, or equivalently, 
o 

with the range of B as will become apparent in Chapter 6. 

Assuming the x are available then the output matrix C can be 
o 

found as follows (this method is developed in Chapter 6). 

Since cc\(xJ £ N (C) it follows that 

C = (5.7.1) 

where r is an arbitrary nonsingular rnxm matrix and x~ is~\~t 
maJrix.. 

annihilatorAof x o ( i.e. x; Xo = 0). (see Appendix 2). 

If no specification of CB is required then C can be taken as 

C = x.l.. 
o (5.7.2) 

If CB is required to assume a certain value S, i.e. 

CB = s (5.7.3) 

then r is not arbitrary and is found using (5.7.1) and 

(5.7.3) 

r = 
= s 

S(x.L B)-l 
o 
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(x* B)-l always exists since~d are always independent of 

R(B) 0 Eqns (5. 7 .1) and (5. 7 . 4) give 

S(x.l B)-l xi 
o 0 

C = (5.7.5) 

The other methods developed in Chapter 6 for the 

construction of the switching hyperplanes can all be used to 

obtain c. 

5.8 The Relationship with the NAM Algorithm. 

The algorithm presented above resembles that of the NAM 

method of MacFarlane and Kouvaritakis (1976). In both methods 

the zeros are determined as the eigenvalues of an (n-m)-

dimensional matrix. It can be easily shown that the matrix 

g -1 N =M [I - B(CB) C] qualifies for the matrix N in the NAM 
e 

algorithm. 

and 

This is because 

N B e 

N M e 

= 

= 

a 

I n-m 

where the matrix M is the same in both methods. However, the 

approach proposed in this paper offers the advantage of 

calculating the state and input zero directions without resorting 

to the null space of the (n+m)-dimensional system matrix P(l). 

The above technique involves only certain matrix multiplications 

in the calculation of the zero directions. 

5.9 computational Aspects. 

Two techniques for determining zeros have been described. 

In section 5.3 the set of eigenvalues of the nth order matrix 

A i.e. sp(A ) needs to 
eq' eq 

m 
given by sp(Aeq ) - { O} . 

be determined. The n-m zeros are 

In Section 5.5 the zeros are obtained 
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as the eigenvalues of the (n - m)th order matrix MgA M where eq 

M is a basis for the nullspace of C. The choice of method 

depends upon the values of m and n, and the ease of calculation 

of the basis M. The method of Section 5.3 is to be favoured 

for n » m. 

We have assumed throughout the system order to be nand 

that rank B, rank C and rank (CB) are given. Otherwise they 

may be determined using suitable algorithms (Davison et al.,1978). 

Ill-conditioning of (CB), A and ker C may cause difficulties. eq 

A highly accurate method for determining the zeros such as the 

QZ-type algorithms for the solution of non-symmetric generalized 

eigenvalue problems (Laub et al., 1977) (Porter, 1979) should 

then be used. 

5.10 System Zeros for Systems with Singular CB. 

The algorithm (Theorem 5.5.1) for calculating the system 

zeros requires suitable modifications for the case where CB is 

singular. The zeros can be identified as a subset of the eigen-

values of the matrix 

= (5.10.1) 

where K is the smallest integer such that CAK-1B is nonsingular. 

The choice of (5.10.1) is motivated by the CB nonsingular case. 

For K=l eqn (5.10.1) reduces to A (see eqn (5.3.2». eq 

Th~ problem of calculating the zeros and zero directions 

for the case where CB is singular has been tackled using two 

different approaches depending upon the form of CB (El-Ghezawi 

et al., 1982b). The uniform rank case where 

CAi-1B = 0 for all l~i<K (5.10.2) 
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is treated in theorem 5.10.1. The non-uniform rank case is 

treated in theorem 5.10.2. A necessary condition for the 

existence of system zeros when CB is singular is given in 

theorem 5.10.3. Remarks related to theorem 5.10.3 are given 

in Appendix 3. 

Case 1: Uniform Rank. 

A system is said to have uniform rank K (Owens, 1979) if 

CAi-1B = 0 l~i<k 

and 

o . 

Rn is then decomposed as the direct sum 

and 

n k-l * 
R = ~~ ••• teA R,(S)$V 

* v = 
k n N (CA i - l ) 

i=l 

Theorem 5.10.1: Given the feedback control 

and 

then 

(i) 

u = - (CAk-1B)-lCAkX 

A - B(CAk-1B)-lCAk 

the (n-km) zeros z. of S(A,B,C) are given by 
]. 

(5.10.3) 

(5.10.4) 

(5.10.5) 

(5.10.6) 

(5.10.7) 

(5.10.8) 

or (b) the eigenvalues of the matrix Mk
g Ak Mk 

* where ~ is a basis matrix for v • 

(ii) the state zero directions wi associated with the 

zeros zi are 
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(a) the corresponding eigenvectors of the matrix Ak 

and (b) satisfy w. = Mk a. where the a. are eigenvectors of l l l 

M~AkMk 

(iii)the input zero directions are given by gi= -(CAk-1B)-lCAkMkai 

Proof: see Appendix 3. 

Case 2: The Non-Uniform Rank Case. 

The uniform rank case is completely resolved in the preceding 

section. The case of a non-uniform rank system is more complex. 

The following result does however, identify a condition when 

Theorems 5.5.1 and 5.10.1 have a natural generalization. 

Theorem 5.10.2. 

i-I. k-l l Let k~2,ICA BI=O for l=1,2, ••• k-l,ICA ~ 0 and 

* k 
vCn * * Then, ~ vcv and the zeros of S(A,B,C) 

i=l 
are a subset of the eigenvalues of Ak • The zero directions are 

then calculated as in Theorem 5.10.1. 

Proof: see Appendix 3. 

A Necessary Condition for the Existence of System Zeros. 

Theorem 5.10.3. 

A necessary condition for the non-degenerate system 

S(A, B, C) with ICBI = 0 to have zeros is that 

n > m + d max (5.10.9) 

h re d is the maximum of the rank deficiencies d l. of the w e max 

matrices 

i = l, ... ,k. (5.10.10) 

Proof: see Appendix 3. 
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2 -6 

2 0 
p9"=M= 

o 2 

1 3 

the eigenvalues of 

= [

-0.5 

0.5 

i.e., the system has two zeros at -1 and -2. 

The eigenvectors a. of MgA Mare 
~ eq [1

3
] '.[ 11] . 

The state zero directions are given by x~ = Ma i and hence 

6 2 6)T and x 2 = [-4 
o 
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The input zero directions (5.5.19) are 

gl [ -: ] and g2 = [ -: ] 
Example 2: Consider the uniform rank system (see Appendix 3). 

° ° -2 0 ° 1 ° 
1 0 -5 0 ° ° ° C [~ 1 ° ° ~J i = 

A = ° 1 -4 0 ° ; B = ° ° ° 1 ° 
° ° 2 ° -4 ° 1 

° ° 1 1 -4 ° ° 
Since CB is singular the method described in Appendix 3 is used. 

CB == ° and CAB == 
1 -3 1 

o -4 1 -4 ] B == [1 1 ] 
-4 ° 1 

We therefore use Theorem 5.10.1 with k == 2. Using method (a) the 

km 
zeros are given by sp(Ak ) - {a} == {-3,0,0,0,0} - {O,O,O,O} 

== ,~3 

The algorithm (b) yields r l' 10 , r 0' n 
R(~ = v· = N(C) n N(CAb'l"'l ~'i~ ~ 

° lO I -I, 

From (5.10.8) 

1 1 -9 ° ° 1 0 -5 ° ° 
== 0 1 -4 0 ° -1 3 -3 4 -16 

° ° 1 1 -4 

== [0 1 ° ° ° ] Ak·V 
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1 7 ° , 0 
010 

0, ° 1 

== 

2 

1 

1 

-2 

-1 



=[1 o -5 o 0] 

2 

1 

1 

-2 

-1 

= -3 

Therefore the system has a single zero at z = -3. The state 

zero-direction is equal to wl = ~al = [2 1 1 -2 -l)Tal where 

a
1 

is an arbitrary scalar since n-km=l. The input zero-direction 

(CAB) -1 CA2M 
k = 

= -<CAB)-lCAoAM
k 

-2 

[-: 1 1 0 :] -3 [-~ ] = -3 = 
-1 3 -1 

6 

3 

ExamEle 3 : Zero Classification. Consider the system with 

0 1 0 0 

A = 0 0 1 B = 0 C = [10, 7 1] . 
-6 -11 -6 1 

From (5.3.2) 

0 1 0 

Aeq = 0 a 1 

0 -10 -7 

with eigenvalues {O, -2, -5}. The zeros are {O, -2, -5} 

_ {a} = {-2, -5} and the corresponding state zero directions 

are 
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1 

= -2 

4 

and x 2 = o 

1 

-5 

25 

Since -5 is not an eigenvalue of A the zero z2 = -5 is a 

transmission zero. Zl = -2 is an eigenvalue of A. Since 

1 CAx = 0, the input zero direction corresponding to z =-2 
o 1 

is zero. So -2 is an output decoupling zero. The output 

decoupling zero zl = -2 is not an input decoupling zero since 

the left eigenvector q1 = [3 

(eqn 5.6.5) 

4 1] does not satisfy qlB = a 

Example 4: Zero assignment. Consider 

A = a 1 a B = a o C = ? 

1 -1 2 1 2 

a 1 -3 a 1 

It is required to assign a zero at z = -3. Following 

the method described in Chapter 6 a state zero direction can be 

found as 

i) Case 1: 

ii) Case 2: 

= [ -1 3 

no specification on CB is required. 

C = xL 
o = [ ~ a 

1 ~] 

Using (5.7.2) 

CB is required to be equal to 1 2 , i.e. S = 1 2 • 

Using (5. 7 • 5 ) 

C = I (x.l B)-l x..l 
200 
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CHAPTER SIX 

ANALYSIS AND DESIGN OF VARIABLE STRUCTURE 

SYSTEMS USING PROJECTOR THEORY. 

6.1 Introduction. 

Order reduction is a fundamental property of variable structure 

systems (VSS) in the sliding mode. This is due to the motion of 

the state which is constrained to lie on the intersection of the m 

switching hyperplanes. During the sliding mode the order of the 

system is reduced because the motion of the state is governed by 

n-m "slow" modes. The remaining m modes are the "fast" modes (see 

Young et al., 1977). 

A new method of analysing VSS in the sliding mode is developed 

in this chapter. The study has been motivated by the observation 

that the basic operator [I-B(CB)-lC] associated with A qualifies eq 

as a projector. 

Projector theory provides a neat method for the analysis and 

design of VSS. Using projector theory certain VSS features are 

explained and others are expanded. A simple explanation of order 

reduction is given together with a re-examination of the invariance 

principle of Dra~enovic (1969). It is shown that Drazenovic's 

conditions are a special case of a more general condition although 

the two conditions are the same When CB is nonsingular. The 

physical interpretation of invariance is also given. The invariance 

of the system zeros in the sliding mode is investigated. 

model-following is also revisited. 

Perfect 

It is found that certain interrelations exist between the n-m 

closed-loop eige~vectors W (associated with the n-m assigned 
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eigenvalues), A, A ,B, wg , BCJ and P (p = B (CB) -lC) . eq Such inter-

relations are exploited further when formulating new methods for 

constructing the matrix C specifying the switching hyperplanes and 

hence specifying the n-m closed-loop eigenvalues. 

Design methods are proposed for the design of the 

switching hyperplanes. The methods given have the ability to 

assign the matrix CB arbitrarily. This may be useful as a design 

option since it has already been established that a diagonally 

dominant CB matrix ensures the convergence of the fast motion to 

the switching hyperplanes (Utkin, 1978b). Another advantage is 

the ability to excercise partial control over the closed loop 

eigenvectors associated with the n-m assigned eigenvalues. The 

freedom in selecting these eigenvectors increases with the number 

of inputs, or equivalently, with increasing range space of B 

(see El-Ghezawi et ale 1982C). 

Throughout this chapter we consider the time-invariant system 

S (A,B,C) • 

= 

s = 

Ax + Bu 

Cx 

(6.1.1) 

(6.1.2) 

n m m where xER I UER I SER. The matrices Band C are assumed to have 

full rank m and ICBI # O. Define 

P = B(CB)-lC (6.1.3) 

and then from (3.6.4) 

A = eq 
(I-P)A (6.1.4) 

6.2 Projectors. 

6.2.1 Definition: Given a decomposition of space S into 

subspaces Sl and S2 so that for any XES 
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x = (6.2.1) 

the linear operator P that maps x into xl is called a projector 

on Sl along S2' i.e. 

pX 2 = 0 (6.2.2) 

6.2.2 Properties of Projectors. 

Some useful properties of projectors are listed below (Pease, 

1965) : 

1) A linear operator P is a projector if and only if it is 

idempotent, i.e. if 

= P 

2) If P is the projector on Sl along S2 then (I-P) is the 

projector on S2 along Sl 

3) If P is the projector on R(P) (Range of P) along N(P) 

(6.2.3) 

(6.2.4) 

(Null space of P) then (I-P) is the projector on N{P) along 

R{P) 

4) For any x 

and 

5) rank (p) 

and 

rank (I-P) 

6) 
and 

6.2.3 

£ R(P) 

Px = x 

(I-P)x = 0 

= trace (P) 

= n-rank{P) 

R{P) = N{I-P) 

N(P) = R{I-P) 

Relevant examples on Projectors. 

(6.2.5) 

(6.2.6) 

(6.2.7) 

(6.2.8) 

(6.2.9) 

(6.2.l0) 

(6.2.11) 

It is noted that certain matrix operators encountered in 

variable structure systems (VSS) are projectors. 
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1) B(CB)-lC is a projector. 

Proof: Since 

= 

B(CB)-lC is therefore idem?otent and consequently a projector. 

-L n B(CB) Lprojects R on R(B) along N(e) because 

R[B(eB)-le] = R(B) (6.2.12) 

since rank (BK) = rank(B) if Band K are full rank. In our 

case K =(CB)-l C which is full rank since Band CB are full rank 

(see Appendix 2) . Similarly 

N[B(CB)-lCl = N(C) 

Since nullity (HC) = nullity (e) if Hand C are full rank 

where H = B(CB)-l which is full rank. 

2) [I-B(CB)-lC] is a projector. 

proof: Either from (6.2.4) or by expanding [I-B(CB)-lC]2 

and showing that it is equal to [I-B(CB)-lC] 

[I-B(CB)-lCl projects Rn on N(C) along R(B) • 

Since the rank of a matrix is the dimension of its range space 

-1 
then by letting P = B(CB) C and from (6.2.12) 

rank(P) = rank (B) = m (6.2.13) 

From (6.2.9) 

rank (I-P) = n - rank(P) 

= n - m 

Therefore any nxn matrix pre-multiplied by [I-B(CB)-lC] will 

at most have rank n-m. 

Both of the above projectors turn out to be of invaluable help 

in exploring the basic features of Variable Structure Systems. 
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3.1 If A is an mxn matrix and A9 is a generalized inverse of A 

then (see Appendix 2) 

AA9 AgA I -AAg I -AgA , , m ' n 

are all idempotent and therefore projectors (Graybill, 1969). 

The proof follows immediately from the definition of the 

generalized inverse of a matrix, i.e. 

(AA g) 2 = AAg AAg = AAg 

AAg and AgA are projectors on R(A) and R(A
g

) respectively 

and (I -AAg ), (I -AgA) are projectors on N(A
g

) and N(A) m n 
respectively. Further properties of B(CB)-IC and [I -B(CB)-lC] 

n 

include 

a) The matrix B(CB)-l qualifies as a right inverse of C 

proof: 

Since C.B(CB)-l = I 
m 

it follows that 

Cg = B (CB)-l 

-1 Also (CB) C qualifies as a left inverse of B. 

b) CgC projects R
n 

on R(C
g

) or R(B) along N(C) 

c) [I-CgC] projects R
n 

on N(C) along R(B). In other words 

the column space of [I-CgC] is the same as that of N(C). 

6.3 projector Theory and Variable Structure System in the Sliding 

Mode. 

by 

We shall now apply the above theory to VSS. 

6.3.1 Order Reduction. 

In the sliding mode the equation describing the system is given 

x = [I-B(CB)-lC] Ax = 
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Since [I-B (CB)-lC] is a projector it maps all the columns of A 

on N (C) • The order of the system has therefore been reduced 

because the state vector is now constrained to lie in N(C) which 

is an (n-m)th dimensional subspace. 

6.3.2 The Invariance Principle Revisited. 

The invariance principle formulated by Dra~enovic (1969) states 

that for the system given by 

x = Ax + Bu + Df 

s = Cx 

to be invariant to disturbance fER! in the sliding mode; 

D should belong to the range space of B i.e.ruP)cR(B). 

(6.3.2) 

(6.3.3) 
cdl.\mn!> of 

thef,.rnatrix 

This 

principle will now be re-examined and a more general version derived. 

This generalization extends the theory to the case where CB is 

singular (assuming sliding exists) • 

Theorem 6.3.1: The system given by (6.3.2) and (6.3.3) is 

invariant with respect to the disturbance f in the sliding mode if 

col(D)£ R[B(CB)-lC] (6.3.4) 

or 

if CB is singular (6.3.5) 

where col( ) stands for columns of ( ). 

Proof: The system in the sliding mode satisfies 

(6.3.6) 

For the system to be invariant to f, [I-B(CB)-lC]D should be zero. 

Suppose ICBI ~ O. If 

col(D)£ R[B(CB)-lC] 

then,since B(CB)-lC is a projector, the property (6.2.7) gives 

[I-B(CB)-lC1D = 0 

as required. 
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Conversely, if 

[I-B(CB)-lC]D == o 

then 

R(D) c N [I-B (CB) -lC] 

and from (6.2.10) 

R(D) c:. R [B (C B) -1 C ] 

For iCBI == 0 we can replace (CB)-l by (CB)g in the above proof. 

The condition (6.3.4) is identical to that given by Dra~enovic. 

This is so because 

R[B(CB)-lC] == R(B) 

Remark 6.3.1 B(CB)gC can easily be shown to be a projector. 

Remark 6.3.2 When CB is singular the invariancy is weakened since 

R(B(CB)gC) c: R(B) 

Therefore in this case there will be no rejection in the sliding 

mode to any disturbance that belongs to R(B) and not to R(B(CB)gC). 

Remark 6.3.3 It is well known that the scalar system 

x. 
~ 

== x. 1 
~+ 

n 
L a. 

i==l ~ 

i == 1, ... , n-l 

x. + bu 
~ 

is invariant to parameter variations when it is in the sliding mode. 

This is because all the parameter variation A are in the range of v 
T 

B where B == [0,0, ••• , b] . 

6.3.3 Physical Interpretation of Disturbance Invariance. 

Physical insight into the invariance principle is achieved 

using projector theory. Let P == B{CB)-lC in the rest of this 

chapter. 
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From the previous definitions, the projector P decomposes the 

state space X into the direct sum 

X = R(P) ffi N(P) (6.3.7) 

or 

X = R(P) ffi R(I-P) (6.3.8) 

Alternatively 

R(P) n R(I-P) = ~O} (6.3.9) 

Since x £ R(I-P) during sliding, for x not to be affected by 

any disturbance f, the disturbance should lie in the complementary 

subspace of (I-P), i.e. f £ R(P) which is the condition of in variance. 

6.3.4 Effect of Sliding on the System Zeros. 

Young (1977) has shown for scalar variable structure systems 

that the system zeros are unaffected by the sliding mode. This is 

to be expected since the sliding mode results from state feedback, 

and it is well known that state feedback cannot affect the 

system zeros (Kouvaritakis et al., 1976). However, it is instructive 

to demonstrate that this is indeed the case. 

Given a system S(A,B,C) we wish to show that the s~em zeros 

are not affected by the organization of a sliding mode on the inter-

section of the hyperplane 

s = Gx = 0 (6.3.10) 

We note that sliding results from the application of state feedback 

= -(GB)-l GAx ( ueq 6.3.11) 

which yields the closed loop system 

(6.3.12) 
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Let us prove that the zeros of S(AG,B,C) are identical to the 

zeros S(A,B,C). The zeros of S(AG,B,C) are given by the n-m 

eigenvalues of (see Chapter 5) 

Mg[I-B(CB)-lC] AGM 

= Mg[I-B(CB)-lC] [I-B(GB)-lG] AM 

= Mg[I-B(GB)-lG-B(CB)-lC + B(CB)-lCB(GB)-lG]AM 

= Mg[I-B(CB)-lC] AM 

But the eigenvalues of (6.3.14) are the zeros of the systems 

(6.3.13) 

(6.3.14) 

S(A,B,C) and S(AG,B,C). 

system zeros. 

Therefore sliding does not alter the 

6.4 The Perfect Model-Following Conditions Revisited. 

In Chapter 4 the perfect model-following conditions were given 

(see 4.2.7) and it was pointed out that these conditions are the 

necessary and sufficient conditions for a solution of a system of 

linear equations to exist. The same conditions can be obtained 

using projector theory as will be demonstrated below. If the 

control 

= Bg (A -A)x + Bg B P m P ppm urn (6.4.1) 

were obtained without regard to conditions (4.2.7) and then 

substituted in the original system given by (4.2.1) to yield 

• = A x + B (Bg (A -A ) x + Bg B ) xp P P ppm p ppm urn (6.4.2) 

adding and subtracting Am xp 

= A x - (I-B Bg) (A -A)x + B BgB U 
m p ppm p p ppm m (6.4.3) 

but for model-following to result eqn (6.4.3) should assume the 

form 
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x == A x + B u p m p m m 

Comparing (6.4.3) and (6.4.4) yields 

and 

(I-B Bg ) (A -A ) == 0 ppm p 

B BgB == B 
ppm m 

(6.4.4) 

(6.4.5) 

(6.4.6) 

Since B Bg is a projector with range R(B ), it follows that 
p p p 

both~(A -A ») and~ ) should belong to R(B ) in order to satisfy m p m p 

(6.4.5) and (6.4.6). These are the same conditions as those in 

(4.2.7). 

6.5 Further Insight into Variable Structure Systems. 

It is now apparent that projector theory provides a neat 

method of studying many properties of VSS in the sliding mode. 

It also exposes the relationships between recurring themes associated 

with VSS in the sliding mode. Such themes involve the n-m closed-

loop eigenvectors W of A ,the input matrix B and the projector eq 

matrix p(P == B(CB)-lC) together with the generalized inverses of W 

and B. 

The relationships obtained in this section will be of 

invaluable help when formulating the new methods for constructing 

the switching hyperplanes matrix C. 

6.5.1 The Relationship Between B, Wand P. 

Lemma 6.5.1. The closed-loop eigenvectors W of A are eq 

independent of the columns of B,i.e. 

(6.5.1) 

proof: 

The nonsingularity of CB implies that the columns of Bare 
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independent of N(C) and since W ~ N(C) then (6.5.1) is established. 

Q.E.D. 

Theorem 6.5.1 

In VSS the selected generalized inverses of Band W should 

satisfy 

= o (6.5.2) 

and 

= o (6.5.3) 

Proof: 

Since~B) is the range space of the projector P and~)is 

the null space of P then (Hohn, 1973), 

PCB W] = [B 0] (6.5.4) 

From (6.5.1)~~~ =lO~and therefore the inverse of [B W] always 

exists. Thus P 

Let 

and 

then using T-1T = 

and 

such that 

is given by 

P = [B 0] [B W]-l 

T = [B W] 

T -1 

= [~J 
I it can be shown that (c.f. Chapter 5) 

n 

F = Bg 

G = wg 

BgW = 0 

WgB = 0 

Q.E.D. 
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substituting F(6.5.8) and G(6.5.9) in (6.5.7) and then in 

(6.5.5) we get 

P = BBg (6.5.10) 

If the calculation of the inverse of the matrix T is to be avoided, 

P should be obtained either from (6.5.10) subject to condition 

(6.5.2) or from (6.5.4) as the solution of 

PW = 0 (6.5.11) 

The solution of (6.5.11) is (see Appendix 2) 

P = H (I (6.5.12) 

where H is an nxn arbitrary matrix and Wg satisfies (6.5.3). 

6.5.2 

Using 

The Relationship Between P and A eq 

A = (I-P)A eq 

and multiplying both sides by (I-P) gives 

(I-P) A = (I-P) 2A = (I-P) A = A 
eq eq 

(6.1.4) 

(6.5.13) 

Therefore Aeq 

A belong to 
eq 

is (I-P)-invariant or equivalently the columns of 

R(I-P). This implies that 

PA = 0 eq (6.5.14) 

Eqn (6.5.14) can also be obtained by multiplying both sides of 

(6 • 1 • 4) by P. 

From (6.1.4), assuming JAJ 1 0, 

(I-P) = A A-1 
eq 

which establishes that AeqA-1 is a projector since (I-P) 

projector. From (6.5.15) 

P = I - A A- l 
eq 

- 87 -

(6.5.15) 

is a 

(6.5.16) 



By multiplying both sides of (6.1.4) by Bg and noting from 

(6.5.10) that P = BB
g 

we get 

= o (6.5.17) 

6.6 Projector theory and the Design of VSS in the Sliding Mode. 

The utilization of projector theory in the design of VSS in 

the sliding mode appears to be promising as it leads to new 

methods for constructing the switching hyperplanes. 

The problem of selecting the switching hyperplanes with 

desired design objectives can be easily solved using projector 

theory. Desired design objectives may encompass 

(i) Arbitrary eigenvalue assignment. 

(ii) Arbitrary specification of CB. 

(iii) The choice (partially) of the eigenvectors of Aeq. 

The freedom in choosing the assigned eigenvectors is partial 

and the degree of freedom increases with increasing R(B) • 

Existing design methods (Young et al., 1977) and(Utkin et 

1 19 78) cater for case (i) above. a ., All the proposed methods 

require the availability of the closed-loop eigenvectors w. 

The determination of these eigenvectors will be described in 

the following section. 

6.7 The determination of the Eigenvectors W. 

The design methods described in section 6.8 for the construction 

of the switching hyperplanes require the availability of the closed-
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loop eigenvectors W. A well known fact related to linear feedback 

systems eigenvalue-eigenvector assignment question is that 

(A + BK)W = WJ (6.7.1) 

where K is an mxn feedback matrix chosen to yield the desired 

closed-loop poles specified by the eigenvalues of J (Sinswat et al., 

1977) . The matrix J may be diagonal or have Jordan block form. 

If rank (K) = m then eqn (6.7.1) implies that 

R(Aw - WJ) c: R (B) (6.7.2) 

The problem of arbitrary eigenvector assignment has been 

tackled by Shah et ale (1975) where it has been shown that, in 

general, it is impossible to specify all components of anyone 

eigenvector arbitrarily using state feedback. 

(6.7.2) is equivalent to 

AW - WJ = BL 

In matrix form 

(6.7.3) 

where L is an arbitrary mx(n-m) matrix chosen to provide linear 

combinations of the columns of B. This influences the solution of 

Wand provides partial control over the n-m eigenvectors W. The 

eigenvectors should be independent of B, i.e. they satisfy 

(6.7.4) 

The author knows of no general algorithm for obtaining W which 

satisfies both (6.7.3) and (6.7.4). Therefore the solution of 

(6.7.3) which also satisfies (6.7.4) will be determined algebraically 

utilizing the structure of the given system. The solution can be 

obtained by allowing each eigenvector Wi to satisy (6.7.3) 

separately. Two cases are considered. 
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Case 1: J is diagonal. 

The eigenvector W. is found as the solution of 
1. 

(A - A. I) w. = b. 
1. 1. 1. 

(6.7.5) 

where b. is a linear combination of the columns of B. 
1. 

This is 

achieved through the matrix L which is specified by the designer. 

A solution always exists if the assigned eigenvalue A. is not an 
1. 

eigenvalue of A. In this case (A-Ail) is nonsingu1ar and Wi is 

given by 

= (A - A. 1)-1 b. 
1. 1. 

(6.7.6) 

The controllability of the pair (A, B) always guarantees the 

existence of at least one eigenvector Wi obtained from (6.7.6) 

which is independent of B. If n-m>m then at most only m eigen-

vectors independent of B can be obtained. This is to be observed 

when identical A. 's are to be assigned. In this case the A. 's are 
1. 1. 

specified by a Jordan block and the method in Case 2 should be 

used (see Example 1). 

However, if lA-Ail = 0 then Ai is an eigenvalue of A and a 

solution to (6.7.5) exists if 

= rank (A-Ail) (6.7.7) 

If condition (6.7.7) is satisfied then by letting A-Ail = As 

(6.7.8) 

where h is an arbitrary nxl vector which may be utilized to ensure 

Ind to provide additional freedom in the selection of 

Wi. If condition (6.7.7) is not satisfied for a given b i then it 

may be satisfied with another linear combination of the columns of B. 
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Otherwise b. can be taken as zero. 
1 

This is justified since the 

zero vector trivially belongs to R(B). In this case W. will be 
1 

an eigenvector of A corresponding to A .• 
1 

Any control over the 

selection of W. is completely lost in this case. 
1 

Case 2: J is a Jordan block. 

In this case J has the usual Jordan block form. After 

finding the first eigenvector using the procedure described for 

Case 1 the generalized eigenvectors are obtained from 

(A-A.I)W. 1 - w. = b K 1 1+ 1 

or equivalently 

(A-A.I)W. 1 = b K + W. 
1 1+ 1 

i=l, •.• ,d-l (6.7.9) 

where b
K 

is a suitable linear combination of the columns and Band 

d is the total number of the repeated eigenvalues of J. 

The solution of (6.7.9) now follows as in Case 1. 

6.8 The Construction of the Switching Hyperplanes C. 

The problem of constructing the switching hyperplanes 

constitutes a special case in the more general problem of pole-

assignment. The switching hyperplanes matrix C is to be chosen 

such that Aeq will always have m zero-valued eigenvalues and n-m 

eigenvalues specified by the designer. Therefore any eigenvalue 

assigp~ent method can be used. However, a reduction in the 

computational effort involved especially in the case when m~n 

can be obtained using properly adapted eigenvalue placement algo-

rithms (Young et al., 1977 and Utkin et al., 1978). Other 

design methods select the switching hyperplanes which minimize the 

quadratic functionals (Utkin et al., 1978). 
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00 

I T = x Qx dt 

t s 

00 

or 

= f (xTQX + T 
R u

eq
) dt U eq 

t s 

where Q and R are positive semi-definite symmetric matrices and 

ts is the starting time of the sliding mode. 

In addition, methods available for zero assignment given 

matrices A, B can also be used to obtain the matrix C (Kouvaritakis 

et al., 1976, part 2). 

Method I: The "Bg " method. 

Let the matrix C satisfy 

eB = S (6.8.1) 

where S is an arbitrary rnxm nonsingular matrix ~ 

ew = o (6.8.2) 

A solution to (6.8.1) always exists, since B is full rank, giving 

the particular solution 

e = (6.8.3) 

This solution also satisfies (6.8.2) since it is required from 

(6.5.2) that BgW = o. A systematic method of finding Bg which 

will always satisfy BgW = 0 is by constructing the inverse of 

The first m rows of this inverse gives Bg such that 

B gw = 0 ( see ( 6 . 5 . 5) - (6 . 5. 9) ) • 

Remark 6.8.1: It can be shown that the direct calculation of 

p is not necessary for the determination of e as the solution will 

g 
always depend on B . 
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Since 

(6.8.4) 

a solution for C always exists since BS-l and P in (5.8.4) have 

the same range (see (6.2.12)). A particular solution is 

(6.8.5) 

From (6.5.10) P = BBg and therefore 

(6.8.6) 

Since 

(6.8.7) 

it follows that 

(6.8.8) 

which is independent of P. 

Method II: The "w" method. 

Here C is determined directly from the nx(n-m) eigenvector 

matrix W. 

Since 
RlW) ~ N (C) (6.8.9) 

it follows that 

where r is an arbitrary nonsingular rnxrn matrix and wL is the 

. .1 
annihilator of W (l.e. W W = 0). If the value of CB is 

immaterial, r can be chosen arbitrarily. However, if CB is 

required to assume a certain value S, r must be determined. 

CB = S = r J-B (6.8.11) 

r = S n.rB)-l (6.8.12) 

The inverse of (W~B) always exists since~~()a) =loj 
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Therefore 

(6.8.13) 

The C calculated using this method is also equal to SBg. 

This is because (W~B)-l~ qualifies as a generalized inverse of B 

and satisfies 

(6.8.14) 

The matrix (~B)-l~ will always qualify as a Bg that satisfies 

BgW = 0 irrespective of the choice of W~. 

6.9 Examples. 

In all these examples A and B are given. It is required to 

find the switching hyperplanes matrix C which will assign the 

specified eigenvalues of J to A eq 

Example 1. 

A = o 1 o 

o 0 1 

-6 -11 -6 

b = o 

o 

1 

We wish to assign two repeated eigenvalues at -4. Since A.' s 
~ 

are identical and n-m>m we should use the Jordan block form 

J = 
[

-4 1 ] 

o -4 

We next calculate W the eigenvector matrix. Invoking condition 

(6.7.2) for each eigenvector separately, 

= 

where aI' Ct 2 are arbitrary scalars. We solve for ~~l' taking 

the arbitrary Ct l = 1. 
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w = (A + 41)-1 b 1 

1 
3 2 1 0 WI = "6 

-6 -8 -4 0 

24 38 16 1 

1 1 w = 6" 1 
-4 

16 

W = (A + 41)-1 (a2b + WI) 2 

= (A + 41)-1 (a2b + WI) 

taking a 2 =-16 a generalized eigenvector W2 can be found as 

W 
1 3 2 1 1 = b 2 

-6 -8 -4 -4 

24 38 16 0 

W
2 

1 -5 = b 

26 

-128 

Using the W method (method II) wit:1. CB = 1 we get 

C [WI W ]J.. 1 1 -5 -L = = b 2 

-4 26 

16 -128 

= [16 8 1] 

As a check, the resulting eigenvalues of A eq are given by 
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Sp(Aeq ) = Sp o 1 o = {O, -4, -4} 

001 

o -16 -8 

Two eigenvectors associated with the two eigenvalues at -4 

can be easily checked to be equal to W1 and w2 . 

Example 2. 

A = -1 1 1 B = o o 

o -1 1 o 1 

o o -1 1 1 

It is required to assign a single eigenvalue at A = -1 so J = -1. 

Note that A has three eigenvalues at -1 

(A-AI) = o 1 1 

o o 1 

o o o 

= A s 

By choosing tl = [-~] where tl is the first column of L 

the consistency condition (6.7.7) is satisfied and a solution exists 

which is given by (6.7.8). 

w 0 1 1 
g 

= 

0 0 .1 

0 0 0 

= 0 0 0 

1 -1 0 

0 1 0 

W1 
= hl 

-1 

1 

0 

1 

0 

0 

1 

0 
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n s s 

+ 1 o 

o o 

o o 

o 

o 

o 



where h
1
is arbitrary. 

order to satisfy 

Furthermore hl should be non-zero in 

Let hl = 1 

Using method II with CB = 12 = S 

C = 12 (wt B)-l wt 

= [ -: \] [~ 1 :] 1 

= [ -: -~ ~ ] 

Note that if method I has been used then the B
g 

which ensures 

BgW = 0 will be obtained as 

Bg = [ -: -1 ~J 1 

giving 

C = SBg = I Bg = [ -: -1 1 ] 2 

1 0 

Example 3. 

The matrices A and B are the same as A and B used in m p 

example 3 in Chapter 4. 

A = 1.38 -0.2077 6.715 -5.676 B = 0 

10.1952 -4.29 9.998 -13.802 5.679 

1 0 -5 2 1.136 

2.2037 4.273 3.343 -5 1.136 

The solution of (6.7.3) with 

J = [ -1: -1: ] 
and L 

= [ ~ : ] 
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gives w = -0.3235 0.3891 

0.3891 0.3936 

0.3781 -0.6878 

-0.2155 -0.0480 

Since the two eigenvectors Ware independent and~) ()~)=lO~ 

then using (6.5.5) the matrix P can be determined together 

with Bg which is given by the first two rows of the inverse of 

[B W] -1. The matrix CB is assigned the value 

CB = S = [-1 0 ] 
o -2 

Using method I,Bg is found as the first two rows of 

[B W]-l -0.0751 0.1128 o 0.3163 

-0.5386 0.0098 -0.3178 0.2686 

-0.8167 0.5016 o - 2. 5077 

1.8908 0.4171 o - 2. 085 

c = SBg 

= [0.0751 
1.0773 

-0.1128 

-0.0196 

o -0.3163 ] 

-0.5373 0.6357 
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CHAPTER SEVEN 

ADAPTIVE OUTPUT MODEL-FOLLOWING 

CONTROL SYSTEMS. 

7.1 Introduction. 

The adaptive model-following of a plant which has the same 

order as the model has been treated in detail in Chapter 4. 

The output adaptive model-following of a plant to a lower order 

model with full state feedback is more complex and warrants 

detailed attention. Output model-following has been studied 

by Tyler (1964) Erzberger (1968), Markland (1970) and Kudva et 

al (1976). The importance of the system zeros was not 

recognised in the above papers and in some cases unstable systems 

resulted, although the perfect model-following conditions were 

satisfied as was the case in Kudva et ale (1976). This was due 

to the plant having non-minimum phase zeros (i.e. zeros with 

positive real parts). 

A recent approach to the problem which highlights the 

importance of the system zeros in model reduction and model-

following has been presented by Shaked (1977a). The problem 

considered is that of output following, i.e. the plant output 

is required to follow the model output. 

is described by 

x 
p = 

= 

A x + B u 
P P 

The plant S (A,B,C) p 

(7.1.1) 

where xp ~ R
n , u £ R~ and y E Rm. The pairs (A,B) and (C,A) p p 

are respectively assumed to be controllable and observable. 
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The desired behaviour of the plant is provided by the model 

S (M,N,L) m . 
x m = 

= 

M x + N u m m 

L x m 

(7.1.3) 

(7.1.4) 

It is assumed that the 

model is stable and is completely controllable and observable. 

The matrices B, C, Nand L are assumed to have full rank and 

g ~ n. 

The study conducted by Shaked (1977a) has revealed that 

perfect model-fol~owing is impossible in the case where CB is 

rank deficient and the system is non-degenerate (A degenerate 

system has infinite number of zeros). Perfect model-

following is achieved by driving the system to be unobservable 

through pole-zero cancellation. For all of the plant zeros 

Z to be cancelled all of the z. should have negative real 
i 1 

parts to ensure stability of the closed loop system. A necessary 

condition for model-following is that g ~ m + d where d is the 

rank deficiency of CB. Once the plant order has been reduced 

the problem of model-following becomes that of transfer function 

admissibility (Shaked, 1977 a, b) • The model zeros are required 

to be a subset of the plant zeros for perfect model-following. 

The output model-following problem treated in this chapter 

is that of driving the plant output to approach the model output 

using a suitable feedback law. The linear feedback law is 

based upon specially constructed error equation which has been 

motivated by the variable structure adaptive error equations of 

Chapter 4. In the case where CB is square and non-singular 
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the control law exhibits certain structural properties. These 

properties are 

(i) the automatic reduction of the plant order through 

forcing the plant to be unobservable, 

(ii) the straight forward and automatic arbitrary 

assignment of the eigenvalues associated with the 

observable part of the plant, 

(iii) the resulting closed-loop plant is decoupled. 

Since the order reduction is automatic the determination of 

the plant zeros and the associated state and input zero 

directions are not needed as they are in Shaked (1977a) and 

Shaked et ale (1976). We need to know whether the plant is 

minimum phase or not. If this knowledge is not available, 

certain terms in the control can be used to determine the plant 

zeros. This will be clarified later. However, the control 

law achieves cancellation of all of the plant zeros and cannot 

allow for selective cancellation as in Shaked (1977a). 

A review of decoupling theory is presented in section 7.2 

and the equivalent control is shown to provide a special case 

in decoupling theory. A special error equation is then syn-

thesized and each component of the resulting linear feedback 
6) 

control is examined. The stability, order reduction and the 

decoupled properties of the plant are then demonstrated. 

The case where CB is rectangular is tackled and the difficulties 

encountered are pointed out. The above control algorithm 

employs the information of all the states. 

An approach to Output VSS model-following with only output 

information is proposed and the limitations are exposed. The 



control law employed which is a linear time-invariant is shown 

to exhibit adaptive properties subject to certain conditions. 

Design examples are included at the end of the Chapter. 

7.2 Review of Decoupling Theory. 

7.2.1 Definition. 

A linear time invariant system described by 

. 
x = Ax + Bu (7.2.1> 

(7.2.2) 

Y € R
m 

and x(O) = 0 is said to be 

y = Cx 

R
n , Rm where x E u € , 

decoupled or noninteracting if its transfer function matrix 

G(s) is diagonal and nonsingular (Fortmann et al., 1977) (Falb 

et al., 1967) (Power et al., 1978). The definition implies that 

every output is affected only by the corresponding input, i.e. 

if i=j; i=1,2, •• ,m 

if i,ej (7.2.3) 

where gi(s) is the ith diagonal polynomial element of G(s). 

7.2.2 Decoupling by State Feedback. 

A system given by (7.2.1) and (7.2.2) can be decoupled by 

incorporating state feedback. In this case a feedback control 

law of the form 

u = Kx + Hv (7.2.4) 

is sought such that the closed loop system is stable and 

decoupled. Matrices K and Hare rnxn and mxm respectively and 

v is the new input (set point). Matrices K and H are found as 

follows 

For i = 1,2, .•• m , we denote the rows of C by Ci and 

define d. to be the smallest integer such that O~d.~n-l 
~ ~ 
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for which (Falb et al., 1967), (Fortmann, 1977) 

d. 

or, if 

Ci A 1. B 1- ° 

C. A
j 

B = 0 
1. 

for all j = O,l, .••. ,n-l 

(7.2.5) 

(7.2.6) 

then d. is set equal to n-l. 
1. 

We now define the following 

matrices 

d
l 

d l 
d + 1 

C
l 

A Cl A B Cl 
A 1 

d 2 E DB C
2 

d 2 B F 
d 2+ 1 

D = C2 A = = A ; = DA = C2 A 
. d d . d + 1 . 

C· A m C· A m B C· A m 
m m m 

(7.2.7) 

The system S(A,B,C) may be decoupled using the linear 

state variable feedback control law (7.2.4) if and only if the 

rnxm matrix E is nonsingular. If so the choice 

K = - E-1F 

H 
-1 = E 

results in the closed-loop system 

x = 

y = Cx 

(7.2.8) 

(7.2.9) 

(7.2.10} 

(7.2.2) 

which is decoupled. The transfer function matrix G(s) will then 

assume the form 
1 

1 

o 
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and is said to be in integrator decoupled form. Additional 

state variable feedback or output feedback can be applied to 

assign arbitrary poles to the integrator decoupled system while 

maintaining the decoupled properties of the closed loop system. 

Decoupling is achieved through driving the system to be 

unobservable. The control law selected makes some of the closed 

loop poles coincide with the system zeros and thus the corres-

ponding modes become unobservable. This is acceptable as long 

as the system zeros lie in the left half plane, i.e. have 

negative real parts. 

It will now be shown that the VSS linear equivalent control 

is a special case in decoupling theory. 

7.2.3 The Equivalent Control and Decoupling Theory. 

Let us synthesize the control having the form (7.2.4) using 

VSS theory as a motivation. For a unique equivalent control to 

exis t I CB I F 0. This condition immediately implies that all 

the d
i 

are equal to zero since 

C i B = CiAO B t- 0 i=l, .•. ,m 

(by the definition of the decoupling indices). The trivial 

case where A = I is excluded because d i can then take any value 

between 0 and 00. 

If d. = 0 for all i = l' •. l,m then the decoupling matrices 
~ 

E and F (7.2.7) re~uce to 

Cl 
AO B = CB 

E = C2 
AO B 

C· AO B 
m 
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and 

F = Cl 
AO+ l = Cl A = CA 

C2 
AO+ l C2 A 

. 
AO+ l l C· C· A 

m m 

The matrices K and H are from (7.2.8) and (7.2.9) 

K = - E-1F = - (CB)-l CA 

H = (CB) -1 

The matrix K is the same as that found using the equivalent 

control method for the system given by (7.2.1) and (7.2.2) 

i.e. 

It remains to be proved that the equivalent control matrix 

K = -(C3)-lCA and the feedforward matrix H = (CB)-l reduce 
eq 

the transfer function matrix to 

G(s) 
1 = 1 (7.2.12) = 0+1 -

s s 
1 0 1 
0+1 - 0 

s s 

1 1 
0 0+1 0 -

s s 

In order to avoid repetition, this decoupling property of 

the equivalent control will be demonstrated in Section 7. 

7.3 Formulation of Output Model-Following. 

The problem of model-following treated in this chapter is 

that of output matching. The output of the plant is required 

to approach that of a lower order model such that the error 

between them tends to zero as t~oo. A special error equation is 
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synthesized below. The synthesis has been motivated by the 

state error equation encountered in Chapter 4. 

Consider the plant and model given by (7.1.1)-(7.1.4). The 

error e between their outputs is defined as 

e = (7.3.1) 

Therefore 
. 
e = 

= L(Mx +Nu ) - C(Ax +Bu ) m m p p 

= LMx +LNu - CAx -CBu 
m m p p 

Adding and subtracting AYm and Ayp gives 

=A(y -y )-ALx +ACx +LMx +LNu -CAx CBu m p m p m m p p 

= Ae + (LM-AL)x +LNu +(AC-CA)x -CBu m m p p (7.3.2) 

The rnxm matrix A is chosen to be nonsingular and stable i.e. 

Re (Ai) < 0, i=l, ... ,m where Ai are the eigenvalues of A. 

Perfect model-following is achieved if 

eLM-AL) x + LNu + (AC-CA)x - CBu = 0 m m p p 

or 

,CBu = (LM-AL)x + LNu + (AC-CA)x 
p m m p 

A controller up exists if 

rank (CB) = 

= 

= 

rank [LM-AL 

rank LN 

rank [AC-CA 

CB] 

CB] 

CB] 
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The case where CB is rank deficient and Sp(A,B,C) is non-

degenerate is ruled out as perfect following is impossible 

(Shaked, 1977a). Therefore the only cases considered here will 

be CB square and nonsingular and CB rectangular and full rank. 

7.4 Model-following with iCBI f 0 

In this case model-following is always possible as CB is full 

rank and therefore the rank conditions (7.3.4) are always 

satisfied irrespective of A, L, M, Nand A. A contro]jer u p 

therefore exists and is given,from (7.3.3), by 

= (CB)-l [(AC-CA)x + (LM-AL)x + LNu ] 
p m m 

The control u yields from (7.3.2) the error equation. 
p 

e = Ae (7.4.2) 

Since A is stable the error e will asymptotically approach zero 

as t~oo. 

A careful look at the control law (7.4.1) shows that it 

consists of three parts 

= -
-1 -1 -1 (CB) CAx +(CB) ACx +(CB) [(LM-AL)x +LNu ] ppm m (7.4.3) 

-1 
The first part -(CB) CAxp has been encountered before and 

it is the familiar equivalent control u . eq It arises naturally 

in the output model-following problem owing to the similarity 

between the error equation and the switching hyperplanes which 

are required to be zero together with their derivatives. The 

equivalent control u eq has already been shown to drive the system 

unobservable thus reducing the system order (see Chapter 5). 

This is achieved by forcing some of the closed-loop poles to 

coincide with the system zeros. The order reduction property of 
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is illustrated further by the observation that another control ueq 
law which achieves order reduction by deliberately driving the 

system to be unobservable through pole-zero cancellation has the 

same structure. This control law is given by Shaked (1977a) 

and is given by 

u s = (7.4.4) 

where K is a given set of input zero directions and Wg is a 
generalized inverse of the associated state zero directions w. 

We will now show that u and u (7.4.4) have the same structure eq s 

when ICBI ~ 0 and the number of zero directions Wand K is n-m. 

Theorem 7.4.1 The two control laws 

u = - (CB) -ICAx = K x 
eq p eq p (7.4.5) 

and 

Us = KWgx = L x 
P s P 

(7.4.4) 

which drive the system given by (7.1.1) and (7.1.2) with m=~ 

to be unobservable have the same structure and achieve the same 

results. 

proof: The control Us (7.4.4) originates from the particular 

solution for the matrix Ls (Shaked et al., 1976), Shaked (1977a) 

where 

= K (7.4.6) 

since it has been shown in Chapter 5 that the input zero 

directionsK are given by (letting Xo = W) 

K = -(CB)-ICAW 

then 

- 108 -

(5.3.3) 

(7.4.7) 



Therefore from (7.4.7), -(CB)-lCA qualifies as a solution for Ls 

and therefore Keq and Ls in (7.4.5) and (7.4.4) have the same 

structure and achieve the same results i.e. order reduction. 

Note that since wg is not unique K and Lsare generally non-eq 

identical. Q.E.D. 

It has been established in Chapter 5 that the equivalent 

control automatically assigns zero values to m eigenvalues of 

the resulting closed loop A matrix where eq 

A = A - B(CB)-lCA 
eq 

The second part of the control law (7.4.3) i.e. 

(7.4.8) 

(CB)-lACx 
P 

reassigns the values of these m eigenvaluesto arbitrary values 

given by the eigenvalues of A. This will become clear in 

Section 7.5. 

The third part of u (CB)-l [(LM-AL)x +LNu ] is independent 
p m m 

of x and provides the new set points of the system. 
p 

This will 

be demonstrated when exploring the decoupling of the system in 

Section 7.7. 

The control up (7.4.3) therefore automatically drives the 

plantu.bservable thus reducing its order, and also decouples 

the system if the matrix A is diagonal. Previous approaches to 

the problem rely on the deliberate reduction of the system order 

(see Shaked, 1977a). Arbitrary pole assignment to the observable 

part is also automatic. This is achieved through the matrix A 

which is chosen to be stable. 

However a drawback to u is that it cancels all of the plant p 

zeros and does not allow selective cancellation as in Shaked (1977a). 
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Therefore, if a plant has a non-minimum phase zero, applying u p 

will result in an unstable closed-loop system. 

requires all the plant states x to be fed back (this is also p 

required by Shaked). Since the plant is assumed to be observable 

an observer may be employed to reconstruct the states. A dynamic 

observer adapted for model reduction has been proposed by Shaked 

and Karcanias (1976). 

The equivalent control in (7.4.3) can be implemented as a 

discontinuous VSS control law. The implementation, however, will 

require all the plant states. The design of VSS output model­

following control systems using only the error information 

between the plant and model outputs is difficult and the difficulties 

encountered are discussed in section 7.9. 

With the control law (7.4.3) only M, N, L and A have to be 

determined to satisfy the requirements. The zeros of the plant 

have to be determined to ensure stability and to check the necessary 

conditions for perfect matching. However, if the plant zeros are 

known a priori to have negative real parts, the determination of 

the zeros is not needed. If the zeros need to be determined 

then as has been shown in Chapter 5, the matrix 

= A-B(CB)-ICA 

can be used to determine the system zeros. 

-1 
(7.4.8) part of Aeq namely -(CB) CA appears 

(7.4.8) 

As can be seen from 

in up (7.4.3). 

This makes the control up self-sufficient (in the sense that the 

computational effort involved is reduced) in tackling the problem 

of output model-following in the case when ICBI t 0 and when 

complete cancellation is required. 
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The next step is to investigate the stability of the closed-

loop system and to show that u reduces the order of the plant, p 

decouples it and assigns arbitrary poles to the observable part. 

7.5 Stability of the Closed-loop System. 

Substituting u (7.4.3) into the original system gives 
p 

= Ax + B(CB)-l [(AC-CA)x + (LM-AL) x + LN u ] xp ppm m 

= [A-B(CB)-lCA + B(CB)-lAC] x +B(CB)-l[(LM-AL)X +LNu ] 
p m m 

(7.5.1) 

This closed-loop system is stable if the matrix Ac is stable. 

In order to investigate the stability of Ac a nonsingular 

similarity transf ormation T is employed. 

Let 

= 

Substituting in (7.5.1) yields 

~ = T Ac T- l x + TB(CB)-l [(LM-AL) xm + LNUm] 

y = p 
CT- l x 

The transformation T is chosen in Chapter 5 to be 

T = , 

where p is chosen such that ITI ~ o. 

Recall that 

= A-B(CB)-lCA 
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= 

It has been 

CAeq = 

CCg = 

Cpg = 

PA pg 
eq 

Therefore 

[A + B(CB)-1 AC ] 
eq 

C(A +B(CB)-lAC)Cg : 
eq I 

- - - - - - - - - -,-
P(A +B(CB)-lAC)Cg , 

eq , 

shown in Chapter 5 that 

C[A-B(CB)-lCA] = 0 

I m 

0 

= Z 

(7.5.4) 

(7.5.5) 

(7.5.6) 

o 

-] (7.5.7) 

The eigenvalues of the matrix Z=PA pg are the sys"i:em zeros. The eq 

stability is therefore determined by A and Z only. Since we 

have no control over Z through state feedback it is a prerequisite 

that the zeros (given by the eigenvalues of Z) have negative real 

parts. It then remains to choose the eigenvalues of A to have 

negative real parts. 

7.6 Order Reduction. 

The plant order is reduced by n-m degrees. This is because 

the control law up has driven the plant unobservable. It will 
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be shown using two approaches that the plant is unobservable 

and that the matrix A does not affect this property. 

1) 

haS been 

.:. 
x = 

and 

y = 

Decomposition of A : c The closed-loop system (7.5.1) 

decomposed into (see 7.5.7) 

[ I -: 1 
-!I. I X 

;(: -+;(;B)--;!I.;);g -: -
- - p 

eq I 

(7.6.1) 

-1 - C[cg pg] -CT x = : x 
p 

Since CC
g = 1m and cPg = 0 y reduces to 

y = (7.6.2) 

Equations (7.6.1) and (7.6.2) show that the system is 

unobservable and therefore the order of the plant is reduced. 

. . 

2) The observability matrix O(C, Ac ). 

Consider the observability matrix 

= 

T T n-l T T 
[ C , (C A c ) , ...., (CA c )] = 

C(A + B(CB)-l!l.C) 
eq = !l.C 

CA 2 = !l.C(A +B(CB)-l!l.C) 
c eq 
. . 

CA n-l 
c 

C 

> !l.C 

= 

= 

= 

(An-lC)T]T 

I 
m 0 

!I. 

0 !l.n-l 

!l.d [ ~ ] 
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Since A is assumed to be nonsingular (see section 7.3) then 

Ad is nonsingular and therefore the rank of O(C,Ac ) is that of 

[CT CT •• CT]T which is equal to the rank of C (equal to m). 

Therefore the plant is unobservable since m < n. 

7.7 Decoupled Output Model-Following Control. 

As has been pointed out the synthesized control law u 
p 

decouples the plant outputs. Consider the transfer function 

matrix G(s) of the closed-loop system (7.5.1). Note from (7.5.1) 

that the equivalent input matrix is B(CB)-l. Therefore 

G(s) = C[s1-A ]-1 B(CB)-l 
c (7.7.1) 

Since the transfer function matrix G(s) is invariant under 

state transformation it follows that 

(7.7.2) 

where T is the previously used similarity transformation. We 

substitute TAcT-l = As (see 7.5.7) into (7.7.2) giving (note that 

Z = PA pg) 
eq 

G (s) = C[Cg pg] 

= [I 0] 
m 

s1 m 

-PA cg 
c 

S1 -A 
m 

-PA Cg 
c 

- A 

o 

s1 -Z n-m 

--1 

ccg I and cPg = because = m o (see section 7.5). 
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A standard identity for the inverse of a partitioned matrix 

(Kailath, 1980) assuming I.,.., I 1.[ l 0 and iGi t-

[: :r _:-lHF-1 
[ -1 G~l ] 

Therefore 

G(s)= [I 0] -1 
0 (51 -A) 

m m 

J 
-1 (sl -Z) 

n-m 

where J = (S1
n

_
m 

- Z)-l PAcPg (S1m-A)-l 

Simplifying (7.7.5) gives 

G(s) = 

O is 

I m 

PB(CB)-l 

PB(CB)-l 

= (s1 - A)-l 
m 

(7.7.4) 

(7.7.5) 

(7.7.6) 

Therefore the plant is decoupled and G(s) assumes the diagonal 

form 

G(s) 
1 0 = s-).. . 
~ 

0 1 
s-).. 

m 

Consider the input matrix to the closed-loop system to be 

-1 
B(CB) . The new inputs to the plant are therefore given by 

We shall now show that these inputs ensure that y p 

From (7.7.7) 

v = [L (M xm + N u ) - A Lx] m m 

= L x - A L x m m 

= 
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Taking the Laplace transform and assuming y (0) m 

v (5) = (5 I - A) Y (5) m m (7.7.8) 

Recall that the input-output relationship of a system is given 

by 

y (5) = G(s) v(s) 
p 

(7.7.9) 

then from (7.7.6) and (7.7.8) 

y ( 5 ) = (51 - A) -1 ( 5 I - A) y ( 5 ) 
P m 

= y (5) 
m 

Remark 7.7.1. If A = 0 then 

and 

u 
p 

= -(CB)-lcAx + (CB)-l [LM x + LN urn] 
p m 

G (5) = (51 )-1 
m 

(7.7.10) 

Since u in (7.7.10) involves the equivalent control and 
p 

-1 
feedforward matrix (CB) and G(s) is diagonal and of the form 

(7.2.12) then the equivalent control decouples the system as 

stated in section 7.2. 

7.8 Output Model-Following with Unequal number of Inputs and 

and Outputs (m # t). 

In the previous sections the problem of output model-

following for the case CB square has been treated in detail. The 

control law which ensures perfect following has been shown to 

possess inherent structural properties which achieve automatic 

order reduction and arbitrary eigenvalue assignment. The 

extension of the theory to the case of rectangular CB (i.e. 

unequal number of inputs and outputs) is rather involved and 
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requires careful attention. In this case, assuming the perfect-

model following conditions are satisfied then 

U : (CB)g [(AC-CA) x + (LM-AL) x + LN urn] 
ppm (7.8.1) 

where (CB)g is the generalized inverse of CB. The resulting 

closed-loop system is given by 

(7.8.2) 

= k x + B(CB)g [(LM-AL) x + LN u ] 
--k P m m (7.8.3) 

The stability and the decoupling properties of the closed-

loop system will now be investigated. 

Case 1 : The number of outputs is less than the number of inputs 

(m < i) 

In this case the decoupling property of the system is 

preserved. The stability of the system, however, is no longer 

dictated by the system zeros alone but also depends upon the 

particular choice of (CB)g. Using the previous similarity trans-

formation T (7.5.2) and noting that (see Appendix 2) 

we have 

where 

(CB) (CB)g = 

Ag : A - B(CB)gCA 

I 
m (7.8.4) 

(7.8.5) 

(7.8.6) 

Following the same procedurefis in(7.5.3)-(7.5.7) noting that 

C Ag = 0 we get 

= [PA> o 1 
PA pg 

9 

(7.8.7) 
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and 

y = 0] (7.8.8) 

Following the same procedure as in section 7.7 the 

decoupling property of the system can be shown to be preserved. 

However, the stability of the system is now governed by the 

eigenvalues of PAgPg giving new zeros in addition to the original 

zeros of the system. These new zeros have been introduced by 

the squaring down of the matrix B. The squaring down of B is 

achieved through (CB)g and therefore a judicious selection of a 

generalized inverse should be sought such that the eigenvalues of 

Ag lie in the left hand half of the complex plane. Whether 

there are enough degrees of freedom in the choice of (CB)g to 

yield desired eigenvalues has yet to be established. 

Case 2 : The number of outputs are greater than the number of 

inputs (m > ~). 

In this case (CB) (CB)g # 1m and therefore (7.8.3) will not 

assume the simple structure of (7.8.7). Instead At (7.8.5) 

will now be 

= 

y = [ 

CA Cg 
k 

PA Cg 
k 

I m 

(7.8.9) 

o (7.8.10) 

Since CA pg # 0 the unobservability of the closed loop system 
k 

cannot be assessed from (7.8.9) and (7.8.10). Also the 

decoupling property 

(7.8.9) since CAkP
g 

of the system can no longer be assessed from 

# 0 and CA
k 

cg is not diagonal. The 

stability is dependent upon the choice of (CB)g because new zeros 

are introduced into the system due to the squaring down of the 
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outputs. Again, whether there are enough degrees of freedom 

in the choice of (CB)g to yield desired eigenvalues has yet to 

be established. 

7.9 Variable Structure Adaptive Output Model-Following Control 

Systems using only the output information. (VSOMF) 

As mentioned before the specially synthesized error equation 

(7.3.3) has been motivated by the error equation related to state 

adaptive model-following and variable structure adaptive model­

following (VSMFC) which have been studied in Chapter 4. The 

attractive features of VSMFC suggest the possibility of extending 

the theory to Output model-following (OMF). However, as will 

be shown below, the usefulness of employing VSS theory to the 

OMF problem appears to be limited, and rather complex, if at all 

possible. This is due to the three forms taken by CB which are 

treated separately. 

In VSOMF it is required to organise sliding at the inter-

section of the switching hyperplanes 

s = G e = a (7.9.1) 

where G is a pxrn full rank matrix. The number p of switching 

hyperplanes will vary according to the form of CB. Consider 

the three cases. 

Case 1 : CB is rectangular with more outputs than inputs (m > t). 

In this case we choose p = £ so that GCB is square of order 

txt. GCB must be nonsingular in order to ensure the uniqueness 

of the equivalent control ueq where from (7.9.1) and (7.3.2) 

u = (GCB)-lG[Ae + (AC-CA) x + (LM-AL) x + LN u ] 
eq p m m 

(7.9.2) 
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which yields 

e = [I-CB (GCB) -lG] [,\e+ (t.C-CA) xp + (LM-AL) xm + LN urn] 

and 

(7.9.3) 

• = [A + B(GCB)-lG(AC-CA)]X +B(GCB)-lG [Ae + Q] xp p (7.9.4) 

with 

Q = [(LM-AL) x + LN u ] m m (7.9.5) 

The term GC effectively squares the outputs down and therefore 

new zeros are introduced in addition to the original ones. Care 

should therefore be exercised when choosing G so that any zeros 

introduced will lie in the left half of the complex plane. G 

should at the same time assign m-£ arbitrary eigenvalues (assuming 

the pair (A,CB) is controllable) to 

as required by vss theory. Whether G has enough degrees of 

freedom to accomplish this and ensuring at the same time that no 

non-minimum phase zeros are introduced remains to be established. 

When the above constraints have been satisfied a discontinuous 

control is sought to enforce sliding and to maintain e on the 

intersection of the switching hyperplanes s = Ge = 0 as has been 

described in Chapters 3 and 4. 

Case 2 : CB is square (m = £). 

The attractiveness of the insensitivity of VSS to parameter 

variations and to external disturbances relies on the exploit-

ation of the null space N(G) of the switching hyperplane matrix G. 

If G is square and nonsingular N(G) will be the zero vector at the 

origin. Therefore G should be either square and singular (and 

- 120 -



~t-n\"I(~1 
have a~null space) or rectangular of order pxm where p < m. 

Cases where G and B are rectangular and GB is singular have been 

studied by Utkin (1978a). Utkin has shown that sliding mayor 

may not result. The case where G and B are square with G 

singular has never been studied before. However, one way round 

~s problem will be discussed below. Let CB be partitioned as 

CB = [K F] (7.9.6) 

where K is mxp and F is mx(m-p). The matrix K is chosen such 

that iGKI f O. This can always be achieved by rearranging the 

columns of CB. The error equation will become 

(7.9.7) 

where Q is given by (7.9.5) and uK and u f are the p and m-p 

components of up. The objective now is to organize sliding on 

the intersection of the switching hyperplanes using the control 

UK only. This gives 

UK = (GK)-l [Ae + (AC-CA) x + F u f + 0] 
eq 

p 
(7.9.8) 

and 
. = [I-K(GK)-lG] [Ae + (AC-CA) x + F u f + 0] 
e p (7.9.10) 

with 

Ge = 0 (7.9.11) 

During sliding the error is invariant to disturbances if 

(AC-CA) xp + F u f + Q = 0 (7.9.12) 

The invariance principle and the model following conditions 

require each of these terms to lie in the range space of K if 

they are to be rejected. Difficulties may arise in satisfying 
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such conditions if (AC-CA) x and Q are full rank. 
p 

Furthermore, 

the requirement of CB being full rank implies that the matrix F 

will always be independent of K and therefore it will not be 

rejected during the sliding mode. Added control elements are 

therefore needed to counteract these disturbances, (see 
, 

Drazenovic,1969), (Itkis,1976) and (Utkin,1978a). The pair (A,K) 

shoul~ be co~~letely controllable for arbitrary eigenvalue assignment. 

Case 3 CB is rectangular with more inputs than outputs (£ > m). 

The best partitioning of CB in this case will be to have K 

of dimension (m-l)xm. This means that the dimension of F is 

mx(£-m+l) which will at least have one column which is independent 

of K. Therefore the invariance principle will never be satisfied. 

Difficulties may also arise if (AC-CA) x and Q do not belong to p 

the range space of K. Added control elements are therefore 

needed to counteract these disturbances. Also the pair (A,K) 

should be controllable for arbitrary eigenvalue assignment. 

7.10 Adaptive Output Model-Following with a Time-Invariant 

Linear Controller. 

In the previous sections 7.5 - 7.7 it has been demonstrated 

that A assigns arbitrary eigenvalues to the observable part of the 

system. It will now be shown that by a suitable choice of the 

eigenvalues of A output model-following may still be possible in 

the presence of disturbances using the fixed linear control up 

(7.4.3) designed for disturbance free systems. In this sense 

the control u exhibits adaptive properties subject to the p 

conditions 

(i) the parameter variations Av do not make the system 

non-minimum phase. 
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(ii) the eigenvalues of A have sufficiently large negative 

real parts. 

Condition (i) is obvious since we have no control over the 

system zeros using state feedback. However a certain class of 

disturbances which do not affect the zeros of the system can be 

identified. Let the new matrix representing the system be 

= A + A 
v (7.10.1) 

where A is the same as in (7.1.1) and A is the parameter v 

variations in A due to the disturbance. The new zeros of the 

system are given by the (n-m) eigenvalues of (see Chapter 5 and 

(7.5.7) letting M = pg) 

Mg [I-B(CB)-lC] (A + Av) M (7.10.2) 

where M is a basis for the null space of the output matrix C. 

Since the original zeros of the system are given by 

then for the zeros of (7.10.1) not to be affected by the 

parameter variations Av it is sufficient that 

(7.10.3) 

Since [I-B(CB)-lC] is a projector (see Chapter 6) it is then 

required that 

col (A ) £ R (B) v (7.10.4) 

Condition (7.10.4) is the same as that provided by the invariance 

principle (see Chapter 3 section 3.7 and Chapter 6 section 6.3). 

The closed-loop system after substituting u which is given p 

by (7.4.3) is (see ( 7 .5. 1) ) 
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x = 
p 

= A x + A x + B(CB)-l [(LM-AL)x +LNu ] 
c P v P m m (7.10.5) 

To investigate the stability of (7.10.5) we use the same 

similarity transformation T (see 7.5.2). The stability of the 

closed-loop system is dictated by the eigenvalues of (c.f. 7.5.7) 

T (A + A ) T-1 
c v (7.10.6) 

Following (7.5.2)-(7.5.7) it can be shown that (note that 

Z = PA pg in (7.5.7» 
c 

-1 
T(A +A )T c v 

Also from (7.6.2) 

It can be seen 

of the closed-loop 

i.e. if R (Av)cN (C) 

y = 

from 

system 

C Av 

since 

[ I 
m 

(7.10.7) 

(7.10.5) 

pg = C A v 

R(A pg) = v 

(7.10.7) 

0] (7.10.8) 

that the decoup1ing property 

is preserved if 

Cg = 0 (7.10.9) 

R(A Cg ) v = R(Av )' (see Appendix 2) • 

However, from (7.10.7) and (7.10.8) the system zeros are now given 

by 

sp (7.10.10) 

i.e. unless the eigenvalues of (7.10.10) have negative real parts 

the system will be unstable. The variations in the zeros of the 

system depend on Av alone and cannot be influenced by A. 

If CAy 1 0 the decoupling and unobservabi1ity of the system 

is lost. In this case 
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T(A +A )T-1 = ,\ +CA Cg CA pg 
c v v v 

(7.10.11) 
PA Cg+PA Cg Z+PA pg 

c v v 

y = [ I 0] m (7.10.8) 

From (7.10.11) and (7.10.8) the system is no longer decoupled. 

Equation (7.10.11) however, is influenced by A and therefore by 

choosing A with eigenvalues whose real parts are sufficiently 

negative the eigenvalues of (7.10.11) may be ensured to have 

negative real parts, thus ensuring the stability of the closed-

loop systems provided that Av does not make the system zeros non­

minimum phase. 

The above procedure can be extended to study the effect & 
parameter variations in the input matrix where B can now be 

represented as 

= B + B v (7.10.12) 

The closed-loop system after substituting u (7.4.3) is given p 

by (see 7.5.1) 

X• = AcXp + B (CB)-l(AC-CA)X +Bd(CB)-l[(LM-AL)X +LNu ] 
p v p m m 

(7.10.13) 

To avoid repetition and since the matrix B (CB)-l(AC-CA) v 

is square of order nxn with range belonging to R(Bv ) (see 

Appendix 2) then Bv(CB)-l(AC-CA) can be represented as 

= (7.10.14) 

where ai' i=l, •• ,n belongs to R(B). The same conditions 

b 
previously imposed on Av will now apply to Av and consequently to 

B . v 
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The effect of parameter variations on B has also been 

studied by Young (1978b) using VSS theory. The system has been 

shown to be insensitive to parameter variations in B if the 

eigenvalues corresponding to the "slow" modes are sufficiently 

deep in the left half of the complex plane (see also Chapter 4 

section 4.3) . 

7.11 Examples. 

Two examples are presented to demonstrate output model-

following, decoup1ing and the adaptive property of u (4.7.3) 
p 

Example 1: This is the same chemical reactor considered in 

Chapter 4. It is now required to control this unstable plant 

such that its outputs match those of a lower order model. 

Consider the plant 

. 1.38 -0.2077 6.715 -5.676 x + 0 0 x = 
F P 

-0.5814 -4.29 0 0.675 5.679 0 

1.067 4.273 -6.654 5.893 1.136 -3.146 

0.048 4.273 1. 343 -2.104 1.136 0 

(7.11.1) 

Yp = [ 1 0 1 -1 ] x 
P 

0 1 0 0 (7 .11. 2) 

The model is given by 

. [ 0 1 ] x + [ 0 

J 
u x = m m m 

-6 -5 6 (7 .11 • 3) . 

Ym = [ 1 0 ] xm 
(7.11.4) 

0 1 

Since CB is nonsingu1ar the rank deficiency d=O and the 

necessary condition for model-following i. e. g ~ m+d is satisfied. 
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Also since it is known a priori that the plant has no non-

minimum phase zeros (Munro, 1972) ; the control law (7.4.3) 

will be employed without the need to calculate these zeros. 

(7.4.3) 

wi th 1\ chosen as 

= r -5 0 ] l 0 -5 (7.11.5) 

To achieve order reduction, there is no need to determine 

the system zeros, the state and input zero directions as in 

Shaked (1977a). Order reduction is achieved automatically 

through the employment of up (7.4.3). 

The following values have been used in the simulation. 

all initial conditions are zero except x (0) = - 0.5 and 
PI 

x = - 0.5. 
P2 

The dynamic behaviour of the plant and model outputs is 

shown in Fig.7.ll.1 a and perfect matching is achieved. As 

shown in Fig.7.ll.1 a output model-following can be speeded 

up by increasing the absolute value of the eigenvalues of A. 

Each eigenvalue has been increased to -10. Fig.7.ll.lb 

shows the error decay corresponding to the two sets of eigen-

values of A. 

The decoupling property of the controlled plant is shown 

in Fig.7.ll.2a-d. Perfect model-following is achieved 

and the plant and model responses are identical (in this case 

x (0) = x (0) = 0), see Fig. 7.ll.2a,c. 
PI P2 

shows the response of the plant output y 
PI 

associated with y is excited by y only. 
PI ffi1 
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6y in the second unexcited output y is depicted in Fig. 
P2 P2 

7.ll.lb and can be seen to be very small. Note that the 

maximum of 6y = ± 0.0005. 
P2 

Fig.7.l1.2C shows the response 

of y when the input associated with it is excited by y only. 
P2 m2 

The interaction Ly can be seen to be very small as shown in 
Pl 

Fig.7.11.2d The maximum of 6y = ± 0.005. Therefore 
Pl 

from 7.1l.2a-c the closed-loop plant is decoupled. 

Example 2: 

This example demonstrates the adaptive properties 

(discussed in section 7.10) of the linear control law u (7.4.3). p 

Consider the plant 

= o 

1 

o 

and the model 

1 

-1 

1 

1 

o 

o 

2 

-3 

= [_~ -n xm 

= [~ _~ J xm 

+ u 
m 

o 

1 

o 

a 

2 

1 

u 
p 

(7.11.6) 

(7.11.7) 

(7.11.8) 

(7.11.9) 

The necessary condition for model-following is satisfied 

. g ~ m+d where the rank deficiency d = O. l..e. Model-following 

is possible with this plant since it has a minimum phase zero 

at -3,see (patel, 1977), (El-Ghezawi et al., 1982b). 

The simulation study of this example demonstrates the good 

performance of the plant when it is subject to constant 
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perturbations (disturbances) in A and B. The added pertur-

bations in A and B (see section 7.10) are given by 

A :;;; -1 0 0 B :;;; 1 0 
v v 

0 -1 0 0 1 (7.11.9) 

0 0 1 0 1 

The idea is to demonstrate that the control law (7.4.3) 

calculated with the known values of A, B as in (7.11.6) and 

then implemented as a feedback control law exhibits adaptive 

properties. It will now be demonstrated that by choosing the 

eigenvalues of A with sufficiently large negative real parts 

good model-following is achieved despite the perturbations in 

A and B. 

Fig.7.11.3(a) shows the plant response when affected by 

the perturbation Av (7.11.9). A is given by 

A :;;; 

[-20 0] 
o -20 

(7.11.10) 

The closed-loop system is stable but has steady-state error. 

This error can be reduced as shown in Fig.7.ll.3(b) by 

choosing 

A = 

(7.11.11) 

The stability of the system suggests that the perturbation A v 

has not made the zero of the system non-minimum phase. 

Fig.7.ll.4(a) shows the plant response with perturbation 

Bv (7.11.9). Good model-following is achieved. The steady 

state error shown in Fig.7.ll.4(a) with A given by (7.11.10) 

is reduced by choosing ~ as in (7.11.11). This is depicted in 

Fig. 7 . 1l . 4 (b). 
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CHAPTER EIGHT 

CONCLUSION. 

Variable structure control of linear multivariable adaptive 

model-following systems has been described. The design technique 

is systematic, straightforward and requires little computional 

effort. Most designs can be carried out without any computer 

assistance. By ensuring sliding motion on the switching hyper­

planes, insensitivity to parameter variations and disturbances 

is achieved. Design studies have been conducted and simulation 

studies of three examples have been carried out. The examples 

include a de drive, a fourth order multivariable system and 

a chemical batch process. 

The analogy between variable structure systems (VSS) in the 

sliding mode, and the output zeroing problem and the output model­

following problem have suggested a new method of computing the 

system zeros and zero directions of linear multivariable square 

systems. The calculation of the system zeros is straightforward 

and offers the advantage of the ability to calculate the state 

and the input zero directions independently of each other and 

without resorting to the determination of the null space of the 

(n+m)th order system matrix. A design procedure for zero 

assignment has been presented and four examples are given. 

The employment of projector theory in the study of VSS in 

the sliding mode has been shown to provide further insight into 

their operation. Furthermore new methods for constructing the 

switching hyperplanes have been formulated utilizing projector 

theory. In addition to solving the eigenvalue placement problem 
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these methods allow CB to be specified arbitrarily and allow 

partial control over the choice of the closed-loop eigenvectors. 

The examples included illustrate the feasibility of the proposed 

methods. 

The output model-following problem is shown to be rather 

complex and the system zeros play a major role in the design of 

such systems. A specially constructed control law has been 

shown to reduce the order of the plant, to assign arbitrary poles 

to the observable part and to decouple the plant. All of the 

above is achieved automatically. However, this control law is 

unsuitable if the plant has a non-minimum phase zero. Other 

techniques may be used in this case. The case where CB is 

rectangular is shown to be dependent upon the particular general-

ized inverse chosen. The examples included demonstrate the 

ease of the design of output model-following control systems 

using the theory presented. Variable structure adaptive output 

model-following using output information only is shown to be a 

difficult problem and the limitations of the results given are 

pointed out. The linear synthesized control is shown to exhibit 

adaptive properties subject to certain conditions. 

Future research into variable structure systems and adaptive 

model-following systems should involve 

(i) utilizing VSS in the calculation of system zeros in 

the case of unequal number of inputs and outputs. 

(ii) obtaining a general solution W of the system of 

equations 

R(AW-WJ)e: R(B) 

r;(~) = [01 
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where BE~m, WE~-m)and A, W, J, B are as defined in Chapter 6. 

(iii) investigating the degrees of freedom available in the 

generalized inverse of CB when assigning the eigen­

values of the matrix 

A-B(CB)gCA 

which is encountered in section 7.8 

(iv) developing an adaptive variable structure observer 

to estimate unmeasured states. 

(v) investigating model-following variable structure 

systems with output information only and mismatched 

plant and model order. 

(vi) comparing VSS design with other methods of adaptive 

control based on Liapunov and hyperstability theory. 

(vii) evaluating VSS designs by applying the techniques to 

industrial processes using microprocessors. 
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APPENDIX 1. 

HYPERSTABILITY. 

The hyperstability concept concerns the stability properties 

of a class of feedback systems which can be split into two blocks; 

a linear feedforward block and a nonlinear time-var .ying feed-

back block as shown in Fig.2.5.la. See also (Landau, 1974, 

1979), (Landau and Courtiol, 1974). 

Consider a non-linear time-varying feedback system 

consisting of two parts • The linear part is described by 

. 
x = Ax + Bu = Ax - Bw (A.l.l) 

v = Cx + Ju = Cx - Jw CA.l.2) 

n m m m 
where XER , UER I vER , WER • The pair (A,B) and (C,A) are 

assumed to be completely controllable and observable respectively. 

The nonlinear time varying part is described by 

u = -w (A.l.3) 

w = f(v(T),t) (A.I.4) 

where f denotes a functional dependence in the interval 

O~T~t between wand v. 

Consider the subset of feedback blocks of the type (A.I.4) 

which satisfies the following integral inequality 

n(O,t} = 
o 

O~ T~t (A.I.5) 

where Yo~O 

Definition: Hyperstability. 

The feedback system (A.l.I)-(A.l.4) is hyperstable if there 

exists constants O~O and y~O such that all the solutions x(t) 
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of eqn (A.l.l) and (A.l.2) satisfy the inequality 

Ilx(t)ll< 8 (1Ix(O)11 + y) t~O (A.l.6) 

for all feedback blocks w = f(v(t) ,t) satisfying the 

inequality (A.l.S) 

Definition : Asymptotic hyperstability. 

The feedback system (A.l.l)-(A.l.4) is asymptotically 

hyperstable if it is hyperstable and in addition 

lim x(t) = 0 
t~oo 

(A.l.7) 

for all feedback blocks w = f(v(t), t) satisfying the inequality 

(A.l.S) • 

The necessary and sufficient condition for the feedback 

system described by (A.l.l)-(A.l.4) to be asymptotically hyper-

stable is that the transfer function matrix 

-1 
Z(s) = C(sI-A) B + J (A.l.B) 

be strictly positive real, i.e. 

i) the poles of Z(s) lie in the left half of the complex 

plane. 

ii) Z(jw) + ZT(_jwJ should be positive definite hermitian 

for all real w. 

As an illustration of the hyperstability design of MRAC 

systems Landau (1974) considered the simple plant-model equations 

given by 
. 
xp = A (t)x + B (t) u p p p 

= x m 
+ B 

m 
u 

(A.1. 9) 

(A.l.lO) 

where x and x are the plant and model states (n dimensional) p m 

u is the input vector (m dimensional), ~ Bm are constant 
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matrices and Ap(t), Bp(t) are adjustable time-varying matrices. 

The error equation e (e=x -x ) can be arranged in the form m p 

e = A e+[A -A (t)] x + [B -B (tUu m m ppm p (A.l.ll) 

In the hyperstability approach one requires a linear compensator 

D which generates the vector v 

v = D e (A.l.12) 

where D is a square matrix. The second and third term in 

(A.l.ll) are replaced by 

[A - A (t)] x + [B - B (t)] u = - w m ppm p 

and w is defined as a function of V(t,T) 

t 
w=[J ¢(V(T) ,t)d~ -

o 

t 
A +A (O)]x +[J \jJ(v(T),t)d1:-B +B (O}l u m ppm p 

o 

(A.l.13) 

(A.I.14) 

Equations (A.l.ll}-(A.I.14) define a nonlinear time-varying 

feedback system. The linear part with input -wand output v 

and transfer function matrix Z(s) = D(Sr-Am,1 is given by 

(A.I.II) and (A.I.12). The nonlinear time-varying part is 

given by (A.I.14). 

In the hyperstability design ¢ and \jJ are chosen such that 

2 w d1: ~ - y 
o 

(A.I.IS) 

Particular solutions for ¢ and \jJ satisfying (A.I.IS) are 

A (t) ¢(v(t) ,t} R 'r (A.I.16) = = v x p p 

B (t) \jJ(v(t) ,t) Q v T (A.I.17) = = u p 

where Rand Q are positive definite matrices. If asymptotic 

stability is required then D should be chosen to ensure a strictly 

positive real transfer function matrix Z(~.The hyperstable adapt-

ation law is given by (A.I.16) and (A.l.17). 
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APPENDIX 2. 

SOME CONCEPTS OF LINEAR ALGEBRA AND GENERALIZED 

INVERSES OF MATRICES. 

This appendix contains a collection of definitions of 

certain matrix algebra concepts used in this thesis together 

with some properties of these concepts. 

i) Range and null spaces (Grossman, 

a) The range space of an rnxn matrix 

R(A) = {y E: Rm 
: Ax = y for some 

R(A) is a subspace of Rm. The rank 

rank (A) = dim R(A) 

where dim stands for dimension of. 

then 

R(AB) c::: R(A) 

If rank (A) = rank (B) then 

R(AB) = R(A) 

1980) , (Graham, 1979) 

A is defined as 

x E: Rn} (A. 2 • 1) 

of A is 

(A.2.2) 

If B is an nxk matrix 

(A.2.3) 

(A.2.4) 

b) The null space or kernel of an mxn matrix A is 

defined as 

N(A) = {x E: Rn : Ax = O} 

N(A) is a subspace of Rn. 

veAl = dim N(A) 

If A has full rank m then 

veAl = n-rank(A) = n-m 

If a matrix H is kxm then 

N (A) c: N (HA) 
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The nullity v of A is 

(A.2.S) 

(A.2.6) 

(A.2.7) 

(A.2.8) 



If veAl = V(H) then 

N(A) = N(HA) (A.2.9) 

Remark A.2.l If A is square and nonsingular then 

rank (A) = nand veAl = 0 (A.2.10) 

ii) Annihilators (Nering, 1970) 

The annihilator W
L 

of a subset W of a space V is the set 

of all linear functionak 0 such that 0a = 0 for all asW. 

If W is a subspace of dimension m then wL 
is of dimension 

n-m and 

= w (A.2.11) 

.l.. 
A matrix A has a left annihilator AL if m>n, i.e. 

= o (A.2.12) 

and a right annihilator if m4n i.e. 

= o (A.2.13) 

Note that the annihilators of A are non-unique. 

iii) The generalized inverse of matrices (Graybill, 1969), 

( Rao, 1971). 

The generalized inverse of an mxn matrix A is an nxm matrix 

Ag satisfying 

AAgA = A CA.2.14) 

Some properties of Ag are listed below 

i) Ag is non-unique 

ii) If A has full rank In and In < n then 

AAg 
= I 

m (A.2.1S) 
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iii) AAg,AgA, Im-AAg,In-AgA are idempotent (an idempotent 

matrix P satisfies P2=P) 

iv) The equation 

Ax = Y (A.2.l6) 

where A is mxn and y is an mxl vector is consistent iff 

(A.2.l7) 

If (A.2.l7) is satisfied then the solution of (A.2.l6) is 

given by 

(A.2.l8) 

where h is an arbitrary nxl vector. If x and yare matrices (X,Y)of 

dimension nxq and mxq respectively then h is an arbitrary nxq 

matrix (H). 

v) If A is square and nonsingular then 

Ag = A-I 

i.e. Ag is the usual inverse. 

vi) If A has full rank then Ag may be computed as 

if m < n 

if m > n 

where AT is the transpose of A. 

(A.2.l9) 

(A.2.20) 

(A.2.2l) 

vii) A particular generalized inverse is the Penrose pseudo-

. A+ lnverse which satisfies four conditions 

(a) AA+A = A 

(b) A+A A+ + 
= A 

(c) (AA +) T + 
= AA 

(d) (A+A)T + 
(A.2.22) = A A 

The Penrose inverse is unique. 
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APPENDIX 3. 

THE PROOF OF THEOREMS 5.10.1-5.10.3 

In this appendix the proof of theorems 5.10.1 - 5.10.3 

is given. 

'l'heorem 5.10.1 

Proof: (i) The zeros of S(A,B,C) are invariant under state 

feedback and are therefore equal to the zeros of S(~,B,C). 

Noting that 

and therefore, from (A.3.1) and (5.10.6) 

* v = 0 

1 ::: i < k 

i = k 
(A.3.1) 

(A.3.2) 

i. e. * Ak v belongs to n N(C~-l ) which is equal to v*.Therefore 
i=l 

(A.3.3) 

and hence from (5.10.6) n-km eigenvalues of ~ are the zeros of 

S(A,B,C) . The remaining km eigenvalues will now be shown to be 

equal to zero. 

the system 

Let 
T = 

is 

C 

CA 

x 

now 

.:. 
x 

y 

CAk - l 

p 

Using a similarity transformation T where 

= Tx 

given 

= 

= 

T 

C 

-1 
T 

by 

~ 

T 
-1 

(A.3.4) 

-1 
T x (A.3.5) 

-x (A.3.6) 

(A.3.7) 

where Cg is the generalized inverse of C. 
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The 

. 
x = 

y = 

condition T'1'-l = I implies that 

( CA i) (CA i ) g 

(CAi)Pg 

Ppg 

P(CAi)g 

C -----
CA 

. -----

P 

n 

= I i = j ; i = O, ••• ,K-l m 

= 0 i 1- j 

= 0 i = O, ••• ,K-l 

= I 
n-krn 

= 0 i = 0, .•• K-l 

(A.3.8) 

[A - B (CA K -1 B) -1 CA K] [C g : (CA) g : ••• : (CA K -1) g : P g ] x 

(A.3.9) 

(A.3.l0) 

From (A.3.l) 

. 
x = 

. 
CAK 

PAK 

-= Om . I . m - - - ° • • •••• t 0 : __ _ • m,n-Km x (A.3.ll) 
. 

Om ° m • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
. . . lm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 

• 
Om Om ° ° .0 

m/n-K~ m m • ,., 

PA Cg PAK(CA)g: . . . . 
K 

PA pg 
K 

} n-Km 
.. 

'" 
J_, ... -I 

Km n-Km 
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and y = [1m: 0 o : .... : 0 ] x (A.3.12) 

This is the standard observability decomposition. Therefore 

the n-km eigenvalues of PAkPg are the zeros of S(A,B,C). 

Furthermore, km eigenvalues of the matrix ~ are zero-valued. 

The system zeros are therefore given by 

sp (A ) _ {O}km 
k 

This proves (i) (a). For an alternative 

To prove (i) (b) let Mk 

w. = 
~ 

and 

be a basis 

Mka i 

= M.. a.z. --k ~ ~ 

for 

proof (see 

* 'V . Then 

a. t- O 
~ 

where Mf is any matrix satisfying MfMk = I n - km . 

the system zeros are given by the eigenvalues of 

(A.3.13) 

EI-Ghezawi et 
1982b) . 

(A.3.14) 

(A.3.1S) 

Therefore, 

(A.3.16) 

(ii) From (A.3.13) (A.3.lS) (ii) (a) and (ii) (b) are proved 
respectively 

(iii) Substituting in (5.10.7) with x replaced by wi = Mk a i 

yields 

(A.3.17) 

This proves (iii) 

Theorem 5.10.2 

* p.roof: Let 'V be a basis matrix for 'V then (Wonham, 1979) 

A 

AV = 'VJ + B (A.3.18) 

* By the definition of \) there exists an m x n matrix F such that 

B = BF'V. (A.3.19) 
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From (A.3. 18) 

CAi\) = CAi - l \) J + CAi-lB 

If i < k then CAi - l i3 = 0 

If i = k then CAk\) = CAk-lB 

CAk-lBF\) 

i.e. a valid solution for F is 

F = (CAk-lB)-lCAk • 

Also, 

= Av 

= AV - BF\) 

= (A - BF)v 

* * * which has range in v • This proves that Ak v C \) and the 

remainder of the theorem follows in a similar manner to theorem 

5.10.1. 

This result has a similar interpretation to Theorems 5.5.1 

and 5.10.1 but may be difficult to apply in practice as k is 

not necessarily known and, although the zeros are a subset of the 

eigenvalues of A
k

, we have not identified which subset. 

sense the result is primarily of theoretical interest. 

Theorem 5.10.3. 

In this 

Proof: The defining relations in Theorems 5.10.1 and 5.10.2 

are needed to establish the proof. Since the existence of zeros 

assures the existence of the state zero directions we shall 

here establish the conditions for the state zero directions to 

exist. 
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The state zero directions are given by 

k 
w c: n 

i=l 

Since 
k-l n N(CAi - 1 ) may at most contain d linear independ-max i=l 
that belong to R(B) and since N(CAk - l ) is always ent vectors 

independent of R(B) because of (5.10.4), then for w to be nonempty 

it is necessary (but not sufficient) that every 

i = 1,2, ••• , k 

should be large enough so as to contain vectors which are 

independent of R(B). This is guaranteed only if 

min(dim(N(CAi - l ») > d 
max i=l, 2, ••• ,k (A.3.20) 

or 

i.e. 

n - m > d max 

n > m + d max (A.3.2l) 

This is only a necessary condition since w may be empty even if 

Remark 

n > m + d • max 

If d
l 

< d we can use the condition n > m + d l as a max 

first check whether zeros may exist. (If n ~ m + d l no zeros 

exist) • At successive stages of the algorithms in Theorems 2 

and 3 the matrices CAi-lB (i = l,2, •.. k) are determined and 

the check n > m + d. should be repeated. 
~ 

Failure of this 

condition to hold at any stage indicates the non-existence of 

zeros and the algorithm should be terminated. 
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Even if n > m + d. 
~ 

Vi = 1, 2, ••• , k we still require 

k 
w c: n N (CA

k
-

l
) 'f ~ 

i=l 

for zeros to exist. 

Corollary: 

A necessary condition for a uniform rank system to have 

zeros is that 

n > 2m. 

Proof: 

This follows from Theorem 5.10.3 since in this case 

d ~ m 
max 

and 

n > m + m = 2m. 
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