
Modulation of the Mitogen Activated Protein Kinase 

Pathway Spatiotemporal Signalling Components: 

Influence on Pathway Activation Behaviour Using an 

Agent Based Model 

 

Aban Shuaib 

A thesis submitted for the degree of Doctor of Philosophy 

 

Department of Cardiovascular Science and Computer 

Science 

School of Medicine and Biomedical Sciences 

University of Sheffield 

March 2016 

Supervisors: Dr Endre Kiss-Toth and Professor Mike 

Holcombe 



Page II of 346 
 

Abstract 
 

Cells use biochemical pathways to interpret their environment and respond 

accordingly. The mitogen activated protein kinase (MAPK) cascade forms a pathway 

central to translating external environmental signals into multiple and diverse 

responses. The mechanisms for decoding the environment by MAPKs and ensuring 

specificity and fidelity of responses are of great interest. Understanding these 

mechanisms will open the door to comprehending the molecular basis of 

dysregulated cellular behaviour, which leads to diseases such as cancer and 

atherosclerosis. Mathematical and computer models of the pathway provide useful 

tools to test and examine how these mechanisms give rise to specificity and fidelity 

where experimental tools cannot. We used an agent-based computational model 

(ABM) to examine MAPK activation behaviour when pathway components are 

present in confined compartments and assessed the impact of altered balance 

between activating and de-activating mechanisms on pathway dynamics, i.e. 

spatiotemporal regulation of the MAPK pathway. We show that multi-compartments 

contribute to the emergence of oscillatory behaviour and play a role in ensuring a 

robust response despite variation in the temporal activating mechanism. The 

emergent behaviour in the model replicated MAPK activation behaviour observed in 

in vitro experimental systems in regard to the levels of pMAPK and the time taken to 

achieve Emax. Thus, ABM shows promise to model, examine and provide novel 

insights into the control of MAPK pathway dynamics. 
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Preface 
 

I. Overview of the mitogen activated protein 

kinase (MAPK) pathway and its signalling behaviour 

The mitogen activated protein kinase (MAPK) signalling pathway is a biochemical 

pathway used by all cells in the body to interpret their environment and respond 

appropriately (Raff et al., 2002). The MAPK pathway mediates multiple and varied 

cellular responses such as proliferation, differentiation and programmed cell death 

(apoptosis) (Chambard et al., 2007, Smith et al., 2004, Sun et al., 2006).  

 

The MAPK pathway is a three tiered biochemical pathway, which relies on 

phosphorylation events to propagate the signal from activated receptors at the cell 

surface into the cell cytoplasm and nucleus, ultimately, leading to a cellular response 

(Rubinfeld and Seger, 2005). The three tiers of the pathway are formed by the MAPK 

kinase kinases (MAPKKK), MAPK kinase (MAPKK) and MAPK proteins in that 

respective order. The activated MAPK protein is primarily responsible for mediating 

the cellular response (Lewis et al., 1998a). The pathway molecular architecture and 

basic biochemical steps which lead to the activation of MAPK proteins are 

evolutionarily conserved between species and between different cell types. 

Nonetheless, the pathway is capable of inducing diverse cellular outcomes (Tian and 

Harding, 2014). These cellular responses vary both within the cell and between 

different cell-types. In addition, there is a high degree of signal fidelity, where a 

ligand induces the same responses downstream of its receptor (Hu et al., 2009). 
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Therefore, given the identical architectural and biochemical similarities, 

understanding the manner in which this biochemical pathway mediates the diverse 

and sometimes opposing, cellular responses within a cell and between different cells 

is of great interest (Kholodenko and Birtwistle, 2009). 

 

Initially, this was attributed to the different MAPK protein families. MAPK is divided 

into four protein families (ERK, JNK, p38 and ERK5). These families were 

discovered in different cellular contexts and were previously shown to be able to 

mediate specific responses. For instance, ERK was discovered to mediate cellular 

response to growth factors, JNK was first shown to be recruited in cellular response 

to stress (such as ultraviolet light and cycloheximide) and p38 was shown to be 

induced in response to inflammatory stimuli. However, further investigation showed 

that a specific cellular response was not linked to a specific MAPK protein family. 

These pieces of evidence include the ability of the different MAPK protein families to 

induce the same response as the other families. For instance, JNK and p38 are both 

capable of mediating responses to stress. Furthermore, in PC12 cells ERK was 

shown to induce two distinct responses when recruited by either NGF or EGF. In 

addition, ERK (and the other MAPK family members) were shown to be able to 

induce cell-specific responses. For instance, ERK activation mediates pro-apoptotic 

effects in tumour cells while in other cell (such as Chinese hamster lung fibroblast 

cell line CC139) it mediates anti-apoptotic effects. These observations were 

explained by crosstalk whereby the different MAPKs share protein targets 

downstream of their cascades (Fey et al., 2012). 
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However, MAPK signalling and signal transduction is additionally complicated by 

crosstalk between the different MAPK family members operating at the three 

different tiers of the pathway (Fey et al., 2012, Ganiatsas et al., 1998, Junttila et al., 

2008). This, as a result, showed that the MAPK signalling family members form a 

signalling network. This was contradictory to the original belief that each MAPK 

family had an independent linear pathway; thereby, further complicating the search 

for how specificity and fidelity to external stimuli, as well as cell-type specific 

responses aris e, though evidence points to regulatory mechanisms imposed on the 

MAPK signalling network. 

 

These regulatory mechanisms, which were shown to affect the MAPK signalling 

network, are spatiotemporal in nature. Spatial regulation of the pathway include the 

compartmentalisation of the proteins involved in the cascades within cellular 

compartments (or domains) (Chiu et al., 2002, Ebisuya et al., 2005), and the 

involvement of regulatory proteins (such as scaffolds and adaptor proteins) and 

binding/interaction partners (Wunderlich et al., 2001, Teis et al., 2002). Temporal 

regulation involves mechanisms that control the duration of MAPK activation and the 

level of active MAPK generated during the response. Temporal regulatory processes 

were shown to be linked to feedback mechanisms, both positive and negative. 

 

Although both spatial and temporal mechanisms were shown to modulate the 

activation behaviour and dynamics of the MAPK pathway both in vitro and in silico, 

their combination and how those influence the MAPK activation dynamics and 

emergence of specificity and fidelity are not investigated widely. 
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II. Research objectives 

The aim of this thesis is to investigate the complex interaction between spatial and 

temporal regulatory components and how they influence MAPK activation dynamics. 

Furthermore, a key motivation was to capture the manner by which the different 

spatiotemporal combinations result into the emergence of specificity and fidelity of 

MAPK-dependent cellular response. Examining these different combinations and 

their influence on the MAPK is very challenging experimentally due to issues of 

protein redundancy, the unavailability of potent inhibitors and network adaptation; 

therefore, an agent based computational model (ABM) was constructed. This model 

will allow the following questions to be addressed: 

 

I. Does the combination of spatiotemporal regulatory components on MAPK 

activation have a substantial effect on the activation dynamics?  How does 

this happen? 

II. What are the important spatiotemporal combinations which result into marked 

change in MAPK activation dynamics? 

III. Does altering and varying spatial components (interactions) give rise to 

different activation dynamics? 

IV. Do localised/compartmentalised MAPK activation responses alter global 

MAPK activation?  

V. What are the mechanisms and processes involved which allow specificity and 

fidelity to develop in the MAPK pathway? 

VI.  
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In order to address these questions the following steps were taken: 

1. Reviewing previously published models of the MAPK pathway to aid building 

a basic ABM  

2. Developing an ABM of the MAPK pathway 

3. Dissecting the important components needed for the model  

4. Comparing the simulation generated from the ABM with both in silico and in 

vitro data, an output for the signalling dynamics has to be determined 

5. Model validation and sensitivity analyses to establish model accuracy 

6. Further optimisation. 

 

III. Contribution to knowledge 

 

This body of work has resulted into a novel ABM which addresses the effect of multi-

compartments on the activation dynamics of the MAPK pathway (See publications 

section and appendix E for further information) (Shuaib et al., 2016).  

 

This work demonstrated that a multi-compartment model provides a better 

alternative to the classical two-compartment model. This is because the emergent 

MAPK activation behaviour  from our multi-compartment ABM  was captured with 

more accuracy than the activation dynamics observed in previously published in vitro 

and in silico data which compared with the two-compartment ABM.  
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The ABM presented here demonstrates the potential effect of combining 

spatiotemporal regulation on diversification of the MAPK activation behaviour and 

the emergence of oscillatory behaviour in the MAPK pathway.   

 

The ABM investigated the contribution of signalling clusters and their dissipation in 

the deactivation of MAPK response and signal turn-off. 

 

This body of work also provides experimental data as a base for building a more 

detailed ABM, which would integrate the inhibitory proteins tribbles. Part of this data 

is now published (see publication section below and appendix E) (Guan et al., 2016).   
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Chapter 1  Cell signalling, and signal 

propagation through the mitogen activated 

protein kinase (MAPK)  

This chapter provides the biological background to cell signalling via the MAPK 

pathway. The pathway’s components and its basic architecture are presented. The 

ability of the pathway to mediate diverse cellular responses is described. 

Additionally, the complex mechanisms which give rise to signal specificity and fidelity 

are presented and discussed. 

 

1.1  A general introduction to cell signalling  

In order for the body to function properly, it must respond to the environment 

proportionally and accurately. As a result the body uses a plethora of mechanisms 

with which it generates a physiological response (Uings and Farrow, 2000). These 

responses occur at different levels of an organism; ranging from the organ systems 

to the molecular level. Many diseases occur due to perturbation of these 

mechanisms. Diseases such as cancer, inflammatory diseases and atherosclerosis 

occur due to disturbance of the mechanisms used to interpret the environment at 

cellular and molecular levels.  Cells are regarded as the building units of the body. 

Cells’ collective response to their micro-environment produces an organ response, 

and different organs’ responses are integrated to generate the bodily response. 

Thus, looking at how cells interpret the environment around them and how they 

respond to it and its changes, provides an insight into how diseases arise when 
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those mechanisms are perturbed. Developing the aforementioned knowledge 

provides the basis for drug discovery and drug development (Lawrence et al., 2008, 

Kumar et al., 2004). To interpret the environment around them, cells employ different 

mechanisms. All of these mechanisms are termed as signal transduction 

mechanisms and/or cell signalling mechanisms.  

 

The general theme for signal transduction begins with the reception of an external 

signal, via receptors. Receptors undergo a three dimensional (3D) conformational 

change when activated by the external stimuli. This is transduced intracellularly into 

a cellular response via biochemical events which recruit intracellular signalling 

pathways. As a result, this allows for the interpretation of the original stimulus to a 

cellular response.  

 

There are several biochemical pathways which are utilised for signal transduction. 

Some signal transduction pathways are heavily used in particular scenarios. For 

instance, during embryonic development and cell differentiation, these include Notch, 

Wnt and retinoic acid pathways (Andersson et al., 2011, Louvi and Artavanis-

Tsakonas, 2006, Rhinn and Dollé, 2012, Sokol, 2011, van Amerongen and Nusse, 

2009)  On the other hand, other cell signalling pathways are widely used to mediate 

diverse cellular responses such as cell motility, cell survival and cell proliferation in 

different cell types. Examples of these include: cAMP, calcium and the MAPK 

signalling pathways. Signalling through calcium and cAMP  is extensively studied 

and is reviewed comprehensively in the literature. Therefore, for more thorough 

description and details regarding these pathways these reviews are recommended 
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(Arora et al., 2013, Billington and Hall, 2012, Clapham, 2007, Fimia and Sassone-

Corsi, 2001, Stewart et al., 2015, Uhlén and Fritz, 2010)  

 

1.2 The MAPK signalling pathway 

The MAPK signalling pathway is an evolutionarily conserved biochemical signalling 

pathway, it is used by most, if not all cells in the body in order to respond to the 

environment around them. Cellular responses include differentiation, proliferation 

and cell survival (Chambard et al., 2007, Smith et al., 2004, Sun et al., 2006, 

Traverse et al., 1992, Xia et al., 1995). Perturbation in the pathway by mutations or 

abnormal activation leads to diseases such as myocardial hypertrophy, cancer 

(McCubrey et al., 2007, Weber et al., 2010, del Barco Barrantes and Nebreda, 2012, 

Shin et al., 2013) and inflammatory diseases (Kyriakis and Avruch, 2001). The 

pathway is composed of three tiers and relies primarily on phosphorylation events for 

signal transduction (Brunet et al., 1999, Khokhlatchev et al., 1998, Seger et al., 

1994). Phosphorylation events are used to propagate the signal downstream of the 

pathway and they are carried out by protein kinases placed at each tier of the 

pathway (Lewis et al., 1998a). These kinases are the mitogen activated protein 

kinase kinase kinase (MAPKKK also known as MAP3K), the mitogen activated 

protein kinase kinase (MAPKK also known as MAP2K) and the mitogen activated 

protein kinase (MAPK). The MAPK pathway was originally discovered and 

characterised as part of the cellular response to mitogenic factors such as nerve 

growth factor (NGF) , epidermal growth (EGF) (Boulton et al., 1991, Gómez et al., 

1990, Gomez and Cohen, 1991, Gotoh et al., 1990, Landreth et al., 1990, Rowland 

et al., 1987) and platelet derived growth factors (PDGF) (L'Allemain et al., 1992). 



Page 4 of 346 
 

These mitogenic growth factors share in common the use of receptor tyrosine 

kinases (RTK), which bind the mitogenic factors at the extracellular interface of the 

plasma membrane (Figure 1. 1) (Lemmon and Schlessinger, 2010, Lenormand et al., 

1993).  

 

 

Figure 1. 1 A schematic representation of the MAPK pathway architecture and its activation during 
response to an external stimulus.  This is a general outline of the cascade encompassing its three tiered 
architecture, sequence of events and the role of phosphorylation in propagating the signal downstream of the 
pathway. Cells receive signals from the external environment where extracellular ligands (L) bind to their 
consecutive receptors found at the plasma membrane. The ligand-receptor interaction causes receptor 
activation and commences signal transduction intracellularly. In the case of the MAPK pathway, RTK are the 
main receptors which transduce external stimuli into cellular mechanisms.  These receptors found in the 
plasma membrane as monomers (light brown receptors) dimerise and autophosphorylate (dark brown 
receptors) allowing them to become docking sites for adaptor proteins GRB2 and SOS, which in return 
activate the Ras family proteins. Ras proteins result into the activation and phosphorylation of MAP3K which 
bind to and activate MAP2K, MAP2K in turn activate MAPK. MAPK activation is pivotal for mediating the 
MAPK cascade action. MAPK phosphorylate both cytoplasmic and nuclear targets. For the former, MAPK has 
direct access while for the latter nuclear translocation is necessary. These nuclear targets are usually 
transcription factors (TF) which bind to DNA at promoter sites, hence controlling gene expression events. 
Cytoplasmic targets such as the actin filament (red line) and phosphatases (light blue shape) are easily 
accessible to activated MAPK and mediate rapid actions.  Phosphorylation events are marked by white 
arrows, curly arrows denote hydrolysis of ATP to ADP and a phosphate group (P) and round grey spheres, 
stands for the phosphate groups attached to proteins as a result of phosphorylation events. Dotted grey 
arrows denote movement of protein. Thick black arrows show activation events. ATP denotes adenosine 
triphosphate and ADP represents denosine diphosphate 

 

 

tyuudgruur 
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The mitogenic ligands bind to two RTKs simultaneously causing their dimerisation 

and, ultimately, their autophosphorylation and activation (Lemmon and Schlessinger, 

2010, Margolis and Skolnik, 1994). The phosphorylated sites allow for the 

recruitment of adaptor proteins, such as the growth factor receptor-bound protein 2 

(GRB2) (Lowenstein et al., 1992, Rozakis-Adcock et al., 1992). GRB2 recruit the 

Guanine-exchange factor (GEF) protein son of sevenless (SOS) to the plasma 

membrane, hence forming a complex with the RTK. SOS in turn recruits the 

membrane bound guanine-trisphosphatase (GTPase) Ras to the receptor complex 

(Cicchetti et al., 1992, Medema and Bos, 1993). SOS allows for the exchange of 

guanine-diphosphate (GDP) molecule bound to Ras with a guanine-trisphosphate 

molecule (GTP). This exchange activates the Ras protein and thus allows for its 

conformational change. The conformational change of Ras allows for the recruitment 

of MAPKKK (MAP3K) (Dent et al., 1992, Van Aelst et al., 1993, Vojtek et al., 1993, 

Howe et al., 1992, Kyriakis et al., 1992). In addition to the Ras family of proteins, 

MAP3K was also shown to be activated by scaffold proteins such as kinase 

suppressor of Ras (KSR) (Nguyen et al., 2002, Xing et al., 1997) and g-protein 

coupled receptors (GPCRs) (Lange-Carter et al., 1993). MAPKKK is serine/threonine 

kinase which binds to MAPKK proteins and phosphorylates them at two sites and 

thus insures their activation (Huang et al., 1993, Johnson et al., 2005, Kyriakis et al., 

1992, Moodie et al., 1993, Van Aelst et al., 1993).  

 

The mitogen protein kinase kinase protein (referred to as MAP2K and/or MAPKK), is 

also a diverse kinases family (Uhlik et al., 2004). The family has the unique ability to 

phosphorylate both threonine and serine residues (Gotoh et al., 1994, Yan and 

Templeton, 1994, Zheng and Guan, 1994). Certain members of the MAPKK family 
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were shown to interact with scaffold proteins which increase their activation and the 

time period during which they remain active (Uhlik et al., 2003, Whitmarsh et al., 

1998). The family specifically phosphorylates the MAPK proteins as they recognise a 

specific amino acid sequence (Matsuda et al., 1992). This allows them to 

phosphorylate the MAPK at two phosphorylation sites (Alvarez et al., 1991, 

Anderson et al., 1990, Boulton et al., 1991). Furthermore, it was demonstrated that 

each MAPKK exhibits a high level of specificity to its MAPK target which allows for 

limited overlap between the different MAPK pathways. This was one of the rationales 

for establishing the linear representation of the pathways (see Figure 1. 2). 

 

 
Figure 1. 2 The different MAPK pathways and their correspondent MAP3K, MAP2K and MAPK.  On the left 
hand side the generic representation of the MAPK pathway and how a stimulus propagates downstream the 
cascade. The MAPK pathway is split into four main families, ERK, JNK, p38 and the atypical MAPK pathway 
ERK5. Each pathway phosphorylates varied and diverse targets both in the cytoplasm and the nucleus. A nuclear 
target for each individual MAPK pathway is shown in the diagram. The pathways were previously thought to be 
exclusively associated with particular stimulus. However, as knowledge of the pathways increased it became 
apparent the pathways respond to varied stimuli leading to crossover between the four pathways and 
consequently adds a layer of complexity to signal processing and interpretation. Furthermore, the different 
pathways are interlinked and crosstalk at the different pathway levels (not shown in the diagram). Thus, the 
MAPK pathways are currently considered as a signalling network rather than individual pathway acting 
independently. 
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Phosphorylation and activation of the MAPK proteins are the focal events in 

the cascade (Alessi et al., 1995, Anderson et al., 1990, Burack, 1997). Once 

activated, MAPK either translocates to the nucleus or resides in the cytoplasm 

(Lenormand et al., 1993, Sanghera et al., 1992, Seth et al., 1992). In both 

intracellular compartments (the cytoplasm and the nucleus) MAPKs phosphorylate a 

diverse array of proteins. Phosphorylating proteins at the two compartments gives 

the MAPK pathway a temporal dimension to execute its effects. Phosphorylation of 

cytoplasmic targets allows for rapid tuning of the signal, therefore mediating short 

term and immediate effects of the signal. Phosphorylating nuclear targets, such as 

transcription factors influence gene-expression events; thus, allowing for a long term 

and delayed signal outcomes. Cytoplasmic targets of the MAPK proteins include the 

MAPK activated protein kinases (MAPKAPK and abbreviated as MK), the Eukaryotic 

Initiation Factor-4E [eIF4E] and the actin cytoskeleton (Stokoe et al., 1992). 

MAPKAPK control gene expression during transcription and post-transcription; 

eIF4E factors play a role in protein synthesis and the translational phase of gene 

expression (Gavin and Schorderet-Slatkine, 1997). Control of the actin cytoskeleton 

affects cellular morphology. Once transolcation to the nucleus takes place, MAPK 

phosphorylates nuclear targets. These include the transcription factors c-FOSs, 

FOXO and CHOP (Efimova et al., 2002, Xu et al., 2004). These transcription factors 

play a role in cellular responses such as proliferation, survival and adaptation to 

cellular stress respectively.  

 

The MAPK proteins are grouped into four families, with each family including several 

members. These families are the extracellular signal-regulated kinase (ERK), p38, 

Jun N-terminal kinases (JNK) and the relatively newly discovered ERK5. The ERK 
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family is composed of two proteins: ERK1 and ERK2. The p38 includes p38 α, β, γ, 

δ. The JNK family is composed of JNK1, JNK2 and JNK3. ERK5 shares a 50% 

sequence homology with the ERK1/2, however ERK5 has diverse and different types 

of substrates compared to ERK1/2. The different MAPKs were discovered separately 

and in different cellular contexts, thus each MAPK had given its name to the cascade 

which leads to its activation.  Below is a summary of each of the families, their 

activation dynamics and the cellular functions they mediate. The aim is to 

demonstrate the complexity of the individual pathways.  

 

1.2.1 Extracellular signal-regulated kinase ERK1/2  

The protein is a 44/42 kDa and is abundantly expressed in all cells. It is found as two 

isoforms ERK1/2 which are simultaneously expressed in cells. However, ERK2 

knock out (KO) mice were embryonically lethal, while ERK1 were viable and only 

 
Figure 1. 3 A schematic representation of the ERK MAPK pathway and its correspondent MAP3K, MAP2K 
and phosphorylation target.  The orange squares represent nuclear targets while the light blue squares 
represent cytoplasmic targets 
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demonstrated a disruption of thymocyte activation. This suggested that ERK2 is 

capable of functionally substituting and replacing ERK1. ERK was the first MAPK to 

be discovered. The discovery was during application of mitogenic stimuli (insulin and 

the nerve growth factor (NGF)) which lead to the phosphorylation and activation of 

the microtubule associated protein 2 (MAP2). ERK is widely established to respond 

and mediate the action of mitogenic signals such as proliferation, growth and survival 

(Boulton et al., 1991). ERK activation is achieved via the MAPKKK RAF family, 

which were then shown to activate the MAPKK, MEK1 leading to ERK activation 

(see Figure 1. 3). This linear sequence is regarded as the ERK MAPK pathway. This 

pathway is the most studied of the MAPK pathways and was shown to be primarily 

responsible for growth induction and regulation of the cell cycle. ERK has 

cytoplasmic and nuclear targets. Cytoplasmic targets include p90 ribosomal protein 

S6 (RSK) (Frödin and Gammeltoft, 1999, Jones et al., 1988) and MAPK interacting 

protein1 (MNK1). These two targets were demonstrated to play a role in the 

regulation gene expression events (De Cesare et al., 1998, Xing et al., 1996), 

UV light, TNF-a & IL-1b

MEKK4 TAK MLK

MEK3 MEK6

MNK1 & 2CHOP ATF1 & 2 MSK1 PRAK

P38 (α, 

β, μ & δ)

MEK4

TAO

 
Figure 1. 4 A schematic representation of the ERK MAPK pathway and its correspondent MAP3K, MAP2K 
and phosphorylation target.  The orange squares represent nuclear targets while the light blue squares 
represent cytoplasmic targets. It was shown that MEKK and MLK MAPKKKs have dual specificity to MEK3, MEK4 
or MEK7. While ASK and TGF β-activated kinase 1 (TAK) activate MEK6, MEK4 and MEK7. On the other hand, 
thousand and one amino acid (TAO) was shown to be able to phosphorylate just MEK6. . It was shown that 
certain MEKs have preference and specificity for certain p38 isoforms. MAPKK3 (MEK3) demonstrated specificity 
to α, γ & δ; MAPKK4 only phosphorylated α; while MEK6 showed no isoform preference (Enslen et al., 2000, 
Enslen et al., 1998, Jiang et al., 1997, Mertens et al., 1996, Stein et al., 1997) 
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therefore, ERK imposes an indirect control of the process (Fukunaga and Hunter, 

1997, Pyronnet et al., 1999, Sonenberg and Gingras, 1998, Waskiewicz et al., 1997). 

Nuclear targets for ERK are primarily transcription factors which are involved in the 

regulation of the cell cycle and growth, these include Elk, c-Myc and the mitogen and 

stress activated protein kinase (MSK) (Gille et al., 1992, Seth et al., 1992).  

 

1.2.2  p38 pathway 

p38 is a 38 kDa protein found in four isoforms: p38α, β, γ and δ. p38 members are 

widely expressed, however their expression levels vary (Cuenda and Rousseau, 

2007). p38 involvement in cellular responses to stress, DNA damage and apoptosis 

was revealed by Cuenda A et al . In addition to the p38 activation via RTKs, it is also 

activated by Toll-like receptors (TLRs) and T-cell receptor (TCR). The pathway 

activation was shown to be elevated in inflammatory diseases such as rheumatoid 

arthritis. The p38 pathway is activated by inflammatory stimuli and stress such as 

exposure to UV light, oxidative stress and osmotic stress (Brewster et al., 1993, 

Hazzalin et al., 1996, Runchel et al., 2010). The pathway regulates the production of 

inflammatory mediators such as interleukin 1 (IL1), DNA repair and apoptosis (Choi 

et al., 2011, Ghatan et al., 2000, Herrera et al., 2005, Hazzalin et al., 1996). 

Therefore, the p38 isoforms were regarded as a valuable drug target. Many 

MAPKKKs are involved in the activation of p38 (Figure 1.4). These include apoptosis 

signal-regulating kinase-1 (ASK), MAPK/ERK kinase kinase (MEKK) and mixed-

lineage kinases (MLK). p38 proteins are activated by either of one of a three MAPKK 

proteins MEK3, MEK6 and MEK4 (Derijard et al., 1995). The linear sequence of the 
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abovementioned MAPKKKs, MAPKKs and p38 constitute the p38 MAPK pathway 

(see Figure 1. 4).  

 

p38 is capable of phosphorylating many proteins in both the cytoplasm and the 

nucleus. Cytoplasmic targets include Phospholipase A2 (PLA2), MNK1/2 and 

MAPKAPK2 (Ghatan et al., 2000, Kim et al., 2006, Kramer et al., 1996, Scheper et 

al., 2001, Waskiewicz et al., 1997). p38 also translocates to the nucleus and 

phosphorylates nuclear targets. These include transcription factors such as C/EBP 

homologous protein (CHOP), Elk, ATF1 and 2. ATF2 has been shown to be 

activated by p38 γ and δ (Efimova et al., 2002, Perdiguero and Muñoz-Cánoves, 

2008). p38 was shown to regulate other transcription factors indirectly by the 

phosphorylation and activation of the MSK family; these transcription factors include 

Max/Myc complex and CREB (Lee et al., 2002, Pierrat et al., 1998). p38 was also 

shown to modulate gene expression by chromatin remodelling by phosphorylation of 

the histone complex thus the accessibility of transcription factors to genes and their 

promoter sites (Drobic et al., 2010). Another nuclear target for p38 is MAPK 

activating protein kinase 2 (MAPKAPK2) which phosphorylates and activates the 

heat shock protein 25/27 (HSP25/27) (Freshney et al., 1994, McLaughlin et al., 

1996). HSP25/27 plays a role in cell migration. (Denouel-Galy et al., 1998, Joneson 

et al., 1998, Rousseau et al., 1997, Sugimoto et al., 1998) It is also involved in 

mediating responses during oxidative stress (Huot et al., 1997, Macario and Conway 

de Macario, 2000) and a role in mouse embryo implantation and progression beyond 

the 16 cell stage (Natale et al., 2004).   
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1.2.3 Jun N-terminal kinases JNK  

JNK (also known as stress-activated protein kinase (SAPK)) is a 46-54 kDa protein 

which exists in three isoforms, JNK1, 2 and 3 (Dérijard et al., 1994, Gupta et al., 

1996, Sluss et al., 1994). These isoforms share >80% sequence homology. JNK1 

and 2 are ubiquitously expressed while JNK3 are expressed in the brain, heart and 

the testis (Gupta et al., 1996, Yang et al., 1997a). JNK was discovered and linked to 

ERK during cycloheximide treatment in liver cells, where it phosphorylates MAP2 

(Mukhopadhyay et al., 1992, Kyriakis and Avruch, 1990).  This was further confirmed 

when JNK was shown to phosphorylate the transcription factor c-Jun during UV 

exposure (Dérijard et al., 1994, Pulverer et al., 1991) . JNK is activated by MEK4 and 

MEK7 which are activated by MEKK, MLK, TAK and ASK (Davis, 2000, Derijard et 

al., 1995, Tournier et al., 1999, Sanchez et al., 1994, Yao et al., 1997). This linear 

sequence constitutes the JNK pathway (see Figure 1. 5). The JNK pathway is the 

Cellular stress (heat shock, gamma 
radiation, ischemia etc)

MEKK1 TAK MLK

MEK4 MEK7

MK2/3 ?
(mapkapk)

p53 ATF2 ELK IRS1

JNK1, 2 
and 3

ASK

 

Figure 1. 5 A schematic representation of the ERK MAPK pathway and its correspondent MAP3K, MAP2K 
and phosphorylation target.  The orange squares represent nuclear targets while the light blue squares represent 
cytoplasmic targets 
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second most studied MAPK pathway because it is highly associated with stress-

induced responses, for instance: ischemia, heat shock and ER stress (Pombo et al., 

1994, Sluss et al., 1994, Tournier et al., 1997). The main effect is that JNK mediates 

apoptosis induced by extracellular stimuli or through the mitochondria (Schroeter et 

al., 2003). The expression of a dominant negative JNK resulted in rescuing cells 

from apoptosis when they were exposed to NGF withdrawal, heat shock or 

irradiation. Cells derived from JNK1 or JNK2 KO mice demonstrate resistance to 

apoptosis via stress stimuli. Knocking down both isoforms in MEF cells resulted into 

an increased resistance to stress induced stimuli compared to wild type cells 

(Tournier et al., 2000). JNK1 and JNK2 KO mice were viable and survived to 

adulthood, however double KO mice were embryonically lethal due to defects of the 

formation of the neural tube and brain regions (Yang et al., 1997b).  

 

 JNK phosphorylates targets both in the cytoplasm and the nucleus. Its nuclear 

targets include ATF2, AP-1, p53 and Elk1 (Devary et al., 1992, Gupta et al., 1995, 

Hibi et al., 1993, Whitmarsh et al., 1995). Some of the cytoplasmic targets include 

the pro-apoptotic Bcl family of proteins Bcl-2 and Bcl-xL.   

 

1.3 The complexity and mystery of the MAPK 

pathway  

Historically the MAPK pathways were identified in different biological contexts; as a 

result, a cellular response was thought to be mediated by a particular MAPK 

pathway. However, continuous research showed that the three pathway crosstalk at 
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different levels of the cascades. The MAPKs share several targets in the cytoplasm 

and the nucleus as demonstrated in Figure 1. 3, Figure 1. 4 and Figure 1. 5 (Gaestel, 

2006). They are also capable of modulating each other’s activation behaviour 

(Kockel et al., 1997). For instance, it was shown that p38 negatively feedbacks back 

onto ERK pathway and active ERK imposes negative feedback onto the JNK 

pathway (Junttila et al., 2008, Monick et al., 2006, Paumelle et al., 2000, 

Westermarck et al., 2001). Therefore, the view of the three main MAPK cascades 

had moved from three independent modules to an interlinking MAPK signalling 

network. Consequently, in order to define and understand the cellular responses 

generated by the activation of the MAPK pathways, they should not be considered in 

isolation.  

 

 

Figure 1. 6 MAPK pathway mediates two distinct cellular outcomes  A schematic representation of a neuronal 
progenitor cell activated by EGF and/or NGF. Both pathways recruit the Erk1/2 MAPK pathway; however, two 
distinct responses are mediated (an example for signal specificity). NGF triggers gene-expression events leading to 
differentiation. On the other hand, Erk1/2 activation NGF induces proliferation of the progenitor. E/EBP and Ets are 
both transcription factors involved in the two different cell decisions. The red dashed line denotes separate fates of 
progenitor cells once Erk1/2 is activated by either EGF or NGF. The irreversible arrow signifies the irreversibility of 
the action and commitment to differentiation while the solid arrow signifies that the cell remains undifferentiated 
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Although signalling through the MAPK pathway is a complex process due to the 

different pathways and the high degree of overlap between them; nonetheless, there 

is a high degree of specificity and fidelity maintained when the signal is transduced 

to a cellular response. For instance, in pheochromocytoma (PC12) cells, stimulation 

with EGF and NGF activate the ERK pathway; however, the former triggers 

proliferation while the latter induces differentiation. This is an example of signal 

specificity. An example of signal fidelity is the perpetual yet unequivocal ability of 

ERK to recruit the same downstream proteins in response to EGF-dependent 

activation from a wide array of targets. Furthermore, the outcome of MAPK 

stimulation is thought to be cell specific. For instance, although ERK pathway 

activation triggers proliferation in PC12 cells, it mediates pro-apoptotic effects in 

tumour cells while in CC139 cell (lung fibroblast cell line) it mediates anti-apoptotic 

effects (Hübner et al., 2008, Javvadi et al., 2008, Ley et al., 2003, Obitsu et al., 2013, 

Weston et al., 2003). Additionally, although the three classical MAPK pathways are 

capable of mediating the same effects in cells, one pathway is more dominant than 

others. For example JNK and p38 are both capable of mediating responses to 

stress; however cells use JNK to undergo apoptosis.  

 

How the MAPK pathways maintain specificity and fidelity to the original signal and 

what mechanisms are employed to insure that, are fundamental questions which the 

field of MAPK signalling is tackling. There are many theories of how those 

behaviours emerge, all of them centre on the tight regulation the MAPK signalling 

network is exposed to. Regulatory mechanisms involve the attenuation of spatial and 

temporal elements of signalling. This is thought to involve regulation of the duration 
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of MAPK activation, the levels of active MAPK produced, and the location of their 

intracellular targets.  

 

1.3.1  Regulation of the MAPK pathway  

There are multiple mechanisms utilised for the regulation of MAPK signalling. The 

majority of these rely on other proteins to regulate the activation behaviour/dynamics 

in the cell; and direct protein-protein interactions. This section underlines the main 

mechanisms involved in the regulation of the MAPK pathway. 

 

1.3.1.1 Regulating the magnitude and duration of 

phosphorylated MAPK levels  

The first work to determine how specificity and fidelity appeared in the MAPK 

pathway came from work with the PC12 cell line (Marshall, 1995, Tombes et al., 

1998, Traverse et al., 1992). PC12 cells responded to both NGF and EGF via the 

recruitment of the MAPK ERK pathway. However, the activation dynamics and 

cellular response generated were different. EGF mediates a transient activation of 

ERK which resulted into proliferation. Conversely, NGF triggered a sustained 

activation of ERK and resulted into the differentiation of PC12 cells into neuronal 

cells. Similarly, Khan et al reported that activation of the fibroblasts by non-mitogenic 

signal had resulted into activation of the ERK pathway lasting for less than 60 

minutes and no proliferation, while the use of growth factors had resulted into a 

sustained ERK activation lasting for 6 hours and causing the cells to enter into the 

cell cycle (Sasagawa et al., 2005a). The same was reported with JNK activation. 
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Mouse embryonic fibroblasts (MEF) cells activated by UV light sustain JNK activation 

and undergo apoptosis. This effect is rescued by the inhibition of JNK sustained 

activation. Conversely, transient JNK activation with TNF-alpha in these cells is 

associated with survival. Inhibition of TNF-alpha dependent JNK activation resulted 

into DNA defragmentation and apoptosis. These further affirmed the hypothesis that 

duration of the MAPK activation was the source of specificity and fidelity (Marshall, 

1995). Further evidence of that was obtained both experimentally and using in silico 

models of the cascade (Albeck et al., 2013).  

 

The magnitude was also shown to be important for specifying cellular response.  The 

magnitude is measured as the maximal level of phosphorylated (active) MAPK 

generated during signal initiation (Emax). Sewing and Woods et al had previously 

shown that high intensity of Raf activation mediated cell cycle arrest while low Raf 

activation intensity triggered proliferation (Sewing et al., 1997, Woods et al., 1997). 

In addition, with high levels of active ERK, cells became resistant to apoptosis 

induced by serum starvation, while low levels of phosphorylated ERK did not (Le Gall 

et al., 2000a). In corneal epithelial cells the magnitude of the MAPK response was 

shown to mediate different cellular outcomes. This was also shown in intestinal 

cancers where high levels of ERK1/2 activity correlate with increased proliferation 

while low and sustained activation was linked with differentiation (Aliaga et al., 1999, 

Le Gall et al., 2000b). Furthermore, the control of duration and magnitude was 

shown to influence immediate early genes (IEG) and thus the protein constitution of 

cells, and ultimately, their proteome and how they respond to stimuli in the future 

(Cook et al., 1999, Sabbagh et al., 2001, Murphy et al., 2004).   
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Some in silico models explained that kinases are responsible for controlling the 

magnitude of the response while phosphatases were the main regulators of 

activation duration (Shin et al., 2013). This was further confirmed by Horinberg et al’s 

experimentally by monitoring the sensitivity of the initial activation peak to MEK 

antagonism and phosphatase inhibition. They also studied the sustained response 

and showed it was more sensitive to inhibition of phosphatases in comparison to 

MEK inhibitors. In addition they also confirmed Heinrich et al findings in silico 

(Hornberg et al., 2005b). It is interesting, however, that in cancer cells where 

sustained MAPK activation is ongoing, differentiation of the cancer cells is not 

induced, but continue to proliferate uncontrollably.  

 

Duration and magnitude determine the cellular response, and play a role in 

specificity and fidelity; nonetheless, both the magnitude and duration are simply 

products of the balance between activating and inhibiting inputs. This balance is 

linked to feedback loops (Santos et al., 2007b).  

 

1.3.1.1.1 Feedback loops 

Some MAPK targets are proteins involved in pathway regulatory mechanisms, which 

either form negative or positive feedback loops. These result into either prolonged 

activation, response reduction or termination. Feedback mechanisms are regarded 

as a temporal regulatory mechanism for the MAPK network.  



Page 19 of 346 
 

 

1.3.1.1.1.1 Negative feedback  

Negative feedback is a process or a mechanism triggered by the activation of the 

MAPKs, leading to the cessation or reduction of phosphorylated MAPK (pMAPK) 

levels intracellularly. This is achieved by phosphorylation of proteins either upstream 

or downstream of MAPK, which ultimately reduce activating inputs into MAPKs. As 

shown in Figure 1. 7, some of the targets are RTKs, SOS and MAPKK (Matsuda et 

al., 1993). In EGF signalling it was shown that activation of ERK resulted in 

phosphorylation of the EGFRs and their internalisation, thus reducing the response 

to EGF ligand. Phosphorylation of SOS by ERK was shown to reduce its recruitment 

of Ras and reduce its GEF activity. It was shown that several MAPKs are capable of 

phosphorylating MAPKKs once they are activated, which is in line with the 

cooperative/competitive inhibition theory (Chickarmane et al., 2007).  

 

Figure 1. 7 The modulation of the MAPK pathway using feedback mechanisms.  MAPK cytoplasmic targets 
also include proteins involved in the regulation of the MAPK pathway and hence induction of negative and 
positive feedback loops. Positive feedback loops include the activation of MAP3K, the inhibition of Raf kinase 
inhibitor (RKIP) and the inhibition of the Src homology-2 protein phosphatase-1 (SHP 1), while negative 
feedback activation involves direct activation of phosphatases such as DUSP7 (light blue cloud), the inhibition of 
the son of sevenless (SOS) of MAP2K. In addition to indirect inhibition by triggering the expression of 
phosphatase genes. 
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Other modulators of the negative feedback mechanism are phosphatase enzymes. 

Phosphatase enzymes are regarded as the primary inducers of negative feedback 

inhibition. Phosphatases are activated by phosphorylation in the cytoplasm and 

mediate their action by the hydrolysis of phosphate groups on MAPKs and MAPKKs. 

This results in an immediate inhibitory response to the signal. Gene expression of 

phosphatases genes are also initiated by transcription factors activated by the MAPK 

proteins. This mediates a long-term regulation of MAPK activation and is considered 

to be the main force to fully curtail the activation of MAPK to base levels.  

 

1.3.1.1.1.1.1 Phosphatases 

Phosphatases play a role in mediating specific MAPK responses via different 

mechanisms. These include differential interaction with the MAPK proteins, 

compartmentalising MAPK proteins into different intracellular locations, and 

determining the MAPK interaction partners.  

 

Phosphatases hydrolyse phosphate groups which were added to proteins exposed 

to kinase activity. Phosphatase proteins are abundant both intracellularly and in all 

tissues as many cellular activities rely on phosphorylation events (60% of total 

cellular proteins are phosphorylated at any given time) (Kondoh and Nishida, 2007, 

Newman et al., 2014). Therefore, regulation of phosphorylation events is important. 

Phosphatases are capable of dephosphorylating many proteins involved in different 

pathways and intracellular mechanisms to modulate cell functionality.  
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As described previously in section  1.3.1.1, the main regulators of the duration of 

MAPK activation are the phosphatase enzymes (Hanada et al., 1998, Takekawa et 

al., 1998). MAPKs are phosphorylated on two sites, both containing tyrosine and 

threonine. Since it is considered that only dually phosphorylated MAPK species are 

fully active, dephosphorylation of either of the phosphorylation sites is thought to be 

sufficient for reducing the MAPK activity. The MAPK pathways are modulated by the 

three phosphatase families, however the Dual-Specificity Phosphatase family 

(DUSP) contains members which have the most affinity to the MAPKs and many of 

these members are implicated in MAPKs’ dephosphorylation. These family members 

are the MAP Kinase Phosphatases (MKPs). Therefore, there is a research focus on 

MKPs and their regulation of the MAPK cascades and consequently this section will 

be focused on this family; nevertheless, other phosphatases families there will be 

cited within the appropriate context.  

 

The MAPK cascades were shown to be modulated by 10 MKPs. Some of MKPs 

were shown to display a differential preference to the different MAPK proteins. 

VHR/DUSP3 and hVH3/DUSP5 are exclusive for ERK, MKP8/DUSP26 exclusively 

dephosphorylates p38 and DUSP18 was shown to only mediate JNK deactivation. 

Nonetheless, there are MKPs with broad, yet varied preference. MKP1/DUSP1 was 

shown to deactivate ERK, JNK and p38, however, it exerted more inhibition on p38 

and JNK. MEFs from MKP1 KO mice showed no altered levels of ERK activation in 

presence of serum, and had hyper-activated p38 and JNK. However, the cells 

exhibited high level of apoptosis. These KO mice also revealed that MKP1 plays an 

important role in immune response modulation. This was also reported in MKP4 and 
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PAC-1 KO mice (Jeffrey et al., 2006, Zhao et al., 2006). MKP-X/DUSP7 was shown 

to dephosphorylate both JNK and ERK but was found to have preference for ERK.  

Further to their substrate preference and structural homology, MKP proteins have 

differential cellular localisation. They were observed to be expressed either in the 

nucleus, the cytoplasm or both compartments (Karlsson et al., 2004, Mandl et al., 

2005, Masuda et al., 2001). An interesting observation was that MKP proteins which 

localise to both compartments targeted p38 and JNK but not ERK. Furthermore, 

nuclear MKPs genes were shown to be inducible by mitogenic and stress stimuli and 

were identified as members of the inducible immediate early genes (IEG). This had 

rendered them important in negatively regulating the MAPK pathways. 

 

MAPKs and phosphatases influence each other’s expression. MAPKs are capable of 

inducing their phosphatases; this is observed with the induction of MKP1 by ERK in 

response to growth factor stimulation as an IEG of ERK (Kucharska et al., 2009). 

MKP1 gene was also shown to be induced in response to oxidative stress via p38 

signalling. MKP3 gene was also induced after FGF stimulation in mammalian and 

yeast cells. The protein serine-threonine phosphatases (PSPs) protein phosphatase 

1 (PP1) and PP2 were also shown to be induced by the activation of the MAPK 

cascades, where PP2A gene was shown to be induced by p38 activation. This is 

linked to the long-term modulation and negative feedback of the MAPK signalling. 

MAPK were shown to phosphorylate MKPs and enhance their activity (Camps et al., 

1998, Castelli et al., 2004, Katagiri et al., 2005). This was established to be due to 

inhibition of phosphatase degradation via the ubiquitin pathway and enhanced 

phosphatase activity due to the addition of the phosphate group (Brondello et al., 
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1999, Marchetti et al., 2005). This protein-protein induced regulation is believed to be 

part of the short-term modulation and regulation of the MAPK signalling. The short-

term regulation is believed to play a part in modulating the magnitude in the initial 

phase of MAPK activation. Phosphatases regulation of MAPKs activity in addition to 

dephosphorylation is by competing with MAPK substrates for the kinase site, thus 

acting as competitive antagonists.  

In addition, it was shown that MKP-X functions as a scaffold for ERK, as a result 

providing a new mechanism with which MKPs modulate the MAPK activity. This is in 

line with work showing that phosphatase enzymes are capable of anchoring MAPKs 

into specific compartments. Mandl et al have shown previously that nuclear MKPs 

anchor ERK protein in the nucleus although ERK had been dephosphorylated 

(Karlsson et al., 2004, Mandl et al., 2005). PP2A was also shown to anchor the 

MAPK in the cytosol and in specific cytosolic locations. Roy et al had shown that the 

interaction of the MEK-ERK scaffold protein IQGAP1 with E-cadherines at cell-cell 

junctions is dependent on its interaction with PP2A (Roy et al., 2005, Takahashi et 

al., 2006). This suggests that phosphatases may play a role in regulating specific 

MAPK responses by fine-tuning MAPK activity inside specific compartments (these 

can be specialised compartments or within the cytoplasm). Additionally, PSP 

phosphatases are capable of forming heterotrimeric complexes with MAPKs. These 

complexes are found to be with different and diverse proteins, including PSP 

regulatory subunits. This might be connected to mediating different MAPK responses 

by dictating the protein targets immediately available for the MAPK. This was shown 

with the ability of PP2A to contain regulatory subunits B56 to inhibit ERK 

phosphorylation in Drosophila S2 cells; however the overexpression of PP2A in 

PC6–3 cell line with the regulatory subunit B55 γ resulted into a sustained activity of 
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ERK. Conversely, the overexpression of the regulatory subunits B55α and δ 

dephosphorylated ERK and reduced its activation. PP2A interaction with hepatocyte 

growth factor (HGF) RTK Met1 results into an increased receptor sensitivity, further 

suggesting that the signal outcome which relies on PP2A is dependent on PP2A 

binding partners. 

 

As shown with Mel, phosphatases are capable of modulating the MAPK signalling 

through the interaction with proteins upstream of MAPK in the cascade (Figure 1. 7). 

Protein tyrosine phosphatases (PTPs) in particular were shown to dephosphorylate 

RTKs and as a result reduce the activating input to MAPK proteins (Haj et al., 2003, 

Mattila et al., 2005). PP2A was shown to dephosphorylate MAPKK3 within the p38 

pathway (creating a negative feedback loop).  The use of transgenic mice expressing 

dominant negative PP2A resulted into enhanced phosphorylation of MEK1, thus 

further demonstrated phosphatase action at the level of MAPKK. Additionally, PP2A 

was shown to complex with Shc protein inhibiting its phosphorylation and thus signal 

propagation. PP2A was also shown to modulate Raf, however it was reported that 

PP2A was activating Raf. This is regarded as one of the positive regulatory 

mechanisms implemented in the cascade. 

 

As demonstrated, the phosphatases play a role in deactivating the MAPK pathway 

and return the cell back to basal conditions. The phosphatases form part of the 

feedback mechanisms which are thought to be important for the regulation of the 

MAPK signalling dynamics. These feedback mechanisms are discussed below. 
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1.3.1.1.1.2 Positive feedback  

Contrary to negative feedback, positive feedback regulation is capable of 

augmenting MAPK activation and thus further enhances MAPK-dependent response. 

This regulation depends on autocatalysis where MAPKs phosphorylate targets which 

ensure the continuation and/or the increase of signalling through the pathway. This 

results in either sustaining a high pMAPK level or its further increase. The first report 

of positive feedback in the pathway came from Gotoh et al, Ferrell et al and 

Bagowski et al (Bagowski and Ferrell Jr, 2001, Gotoh et al., 1995, Ferrell and 

Machleder, 1998). Their work showed that Xenopus oocytes maturation during the 

initial phases of embryogenesis require the activation of both p42/p44 (ERK) and 

JNK pathways. Positive feedback is achieved by different patterns, termed 

collectively as loops (Figure 1. 7). One involves direct activation of upstream 

activators of the pathway. In Xenopus oocyte maturation, ERK was shown to 

phosphorylate the Xenopus MAPKKK protein Mos, which in turn causes further 

phosphorylation and activation of p42/p44. JNK mediation of positive feedback was 

shown to involve the modulation of Ras and Raf interaction, leading to enhanced 

activation of p42/p44 and thus oocyte maturation (Adler et al., 2005). This activation 

of MAPKKK by MAPK was also demonstrated with ERK positive feedback to Raf. 

Balan et al (2006) showed in vitro and in vivo that ERK phosphorylates Raf-1 at 

three phosphorylation sites allowing for augmented ERK activation. Other observed 

direct activation events via MAPK were by inducing RTKs activation (Balan et al., 

2006, Baljuls et al., 2008). This was observed at the gene expression level by either 

inducing the production of growth factors such as ErbB or receptors such as EGFR 

(Santos et al., 2007b, Schulze et al., 2004, Shilo, 2005).  
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Another configuration for positive feedback loops involves the blockade of inhibitory 

mechanism (i.e. a double negative feedback). This is observed in the ability of ERK 

to phosphorylate DUSP1/MKP1 at Ser296 and Ser323 which leads to its 

ubiquitination and therefore degradation (Lin et al., 2003, Lin and Yang, 2006). 

Another example of this type of positive feedback is through the phosphorylation of 

Raf kinase inhibitory protein (RKIP), thus supressing MEK deactivation (Shin et al., 

2009a). Also the inhibition of the RasGAP was demonstrated to contribute to positive 

feedback regulation in the pathway (von Kriegsheim et al., 2009). 

 

1.3.1.2 Direct protein-protein interactions: binding partners  

Specificity and fidelity of the MAPK pathways were shown to be influenced by direct 

interaction of the MAPK with other proteins. These direct interactions are achieved 

using scaffold proteins, regulatory proteins and the use of compartments to facilitate 

specific interactions. 

 

1.3.1.2.1 Scaffold proteins  

Scaffold proteins are regulatory proteins which interact and bind with multiple 

proteins tethering them into complexes, and thus mediate more efficient interaction 

and improve pathway organisation. Scaffolds influence MAPK signalling by 

increasing the efficiency of interaction between the three tiers of the cascade 

(predominantly the interaction between the three kinases). This is achieved by the 

ability of these proteins to bind to two or more of the kinases, provide an interface for 

phosphorylation events to occur and thus increase the probability of interaction 

(Behar et al., 2007, Ferrell, 2000). There is also evidence for scaffolds being capable 
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of linking different MAPK pathways together, thus controlling the dynamics of the 

entire signalling network. In addition, it was shown that these scaffold proteins are 

capable of localising into specific compartments (Teis et al., 2006, Teis et al., 2002) 

within the cell, thus allowing for a local response to MAPK cascade excitation. 

 

 There are many scaffold proteins which were shown to play a role in the MAPK 

signalling pathway; however the most studied members of this family are kinase 

suppressor of Ras (KSR) (Kornfeld et al., 1995, Sundaram and Han, 1995), MEK1-

partner (MP-1) and JNK-interacting protein-1 (JIP). JIP-1 was initially reported as an 

inhibitory scaffold for several components of the JNK pathway (Whitmarsh et al., 

1998), while KSR and MP1 are largely thought of as enhancers of MAPK signal (Ito 

et al., 1999, Kornfeld et al., 1995, Schaeffer et al., 1998). These scaffold proteins 

were shown to influence the specificity of the MAPK in a concentration dependent 

manner (Ferrell, 2000, Levchenko et al., 2000, Locasale et al., 2007b). Their 

influence on the MAPK pathway was demonstrated to be of a bell-shaped curve; 

where optimum influence on the MAPK pathway relies on an intermediate critical 

concentration, while low and high expression cause the opposite effect on the 

cascade. Over-expression of KSR in mammalian cells had caused an inhibition of 

ERK1/2 activation and a reduction in ERK1/2 signal propagation (Denouel-Galy et 

al., 1998, Joneson et al., 1998, Sugimoto et al., 1998). Yet, over-expression in PC12 

cells caused an amplification of EGF and NGF signal (Müller et al., 2001, Nguyen et 

al., 2002). In addition work on PC12 cells has shown that KSR is capable of 

switching the outcome of EGF mediated signal from proliferation to differentiation. 

Further analysis for this discrepancy showed that the concentration of KSR, which 

was inhibitory, was much higher compared to the concentrations generated in the 
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PC12 experiments. Thus, KSR critical concentration was achieved, while in the initial 

experiments KSR was operating outside of the optimum concentration. Related 

observation was reported with JIP-1; when JIP was first discovered, its interaction 

with JNK was shown to antagonise JNK mediated cellular responses, however in 

neurons and during excitotoxicity, JNK-JIP1 complexes were increased which 

resulted into an increase in neuronal apoptosis (Figueroa et al., 2003, Kim et al., 

2002). 

 

Reports of the ability of these scaffolds to fine-tune MAPK signalling via regulation of 

protein-protein interactions have been published. KSR binds Raf, MEK and ERK 

(Cacace et al., 1999, Therrien et al., 1996, Yu et al., 1998), once ERK1/2 is activated 

and translocates to the nucleus, it switches on negative feedback mechanisms which 

reduce the sustainability of the ERK1/2 pathway. In addition, ERK1/2 is capable of 

phosphorylating KSR, causing a conformational change which in turn results in Raf 

release and the diminishing of the signal. Reported mutations in this phosphorylation 

site in KSR caused a sustained activation of the ERK1/2 pathway. In addition, it was 

demonstrated that Raf activation was directly proportional to KSR concentrations 

(Douziech M, 2006) and that was independent from the KSR critical concentration 

theory. JIP-1 interacts with dual leucine zipper-bearing kinase (DLK) and JNK. DLK 

and JNK were shown to compete with each other to bind JIP-1. At cell resting state, 

the dominant complex is JIP-1-DLK, due to JIP-1 high affinity to DLK (Nihalani et al., 

2001, Nihalani et al., 2003). However, once the JNK pathway is recruited, JIP-1’s 

affinity to JNK increased, thus more JIP-1-JNK complexes formed and DLK was 

released from the complexes. This resulted into the DLK dimerisation and the 

mediation of DLK-dependent signals. 
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Another mechanism reported to influence the MAPK signalling by these scaffolds is 

via compartmentalising the MAPK components to cell-specific domains. One of the 

best examples which demonstrated this came from work with the MP-1 scaffold. MP-

1 was shown to interact with ERK1/2 and MEK1. MP-1 interaction with p14 protein 

localises it to the late endosome and lysosomal compartments (Teis et al., 2006, 

Teis et al., 2002, Wunderlich et al., 2001), hence, localising ERK1/2 pathway to 

these compartments once activated. RNAi knockdown experiments for MP-1 had 

caused reduction of the overall EGF dependent response. While work with MP-1 KO 

mice had shown similar effects, with the cytoplasmic response of EGF not affected, 

the endosomal response was demolished. This was shown to be due to lowered 

activation of endosomal ERK1/2 but an intact cytoplasmic ERK1/2 activation.  

 

1.3.1.2.2 Compartmentalisation 

Localising proteins involved in the MAPK pathway in intracellular compartments is 

recognised as a regulatory mechanism of the MAPK pathways (Figure 1. 8). 

Compartments provide spatial regulation for the MAPK signalling and are thought to 

be a source for signal specificity and fidelity. These compartments are usually 

membrane bound and include the Golgi, endosome, caveolae and the mitochondria. 

The Raf-MEK-ERK pathway in particular is reported to reside in many of these 

compartments (Fan et al., 2008, Lee et al., 2011). The ability of the MAPK signalling 

components to reside in these compartments insulates them from exposure to the 

cytoplasmic environment and regulatory processes, such as dephosphorylation by 

phosphatases and/or degradation via ubiquitination. The compartments also provide 
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a localised environment where subsets of the MAPKs target proteins are available 

for phosphorylation. This includes other localised signalling pathways which are 

capable of crosstalking with the MAPK pathways (Arora et al., 2013, Canal et al., 

2011, Kholodenko, 2002, Wunderlich et al., 2001). These additional signalling 

pathways are also subsets/branches of the complete networks found in the cell, thus 

specific and miniature crosstalk networks within the compartment will be established.  

 

Compartmentalisation of the MAPK pathways was shown to provide an element of 

specificity and diversification of the response to the original signal. In cavioline-rich 

compartments, β arrestins were shown to recruit both ERK and JNK and mediate 

their signalling. However, β-arrestin1 was demonstrated to be specialised in 

 

Figure 1. 8 Compartmentalisation and scaffold proteins influence on the MAPK pathway.  A scaffold protein 
has the capability of binding to several proteins in the MAPK pathway, here it binds MAPKKK, MAPKK and MAPK, 
this characteristic was reported for both KSR and the yeast homologue Ste5p. Scaffold proteins are capable of 
bringing the kinases to a very close proximity which allow phosphorylation events (curly green and straight light 
blue arrows) to take place very efficiently and within a shorter time. This assists fidelity to the original signal and 
facilitates a more focused response. They were also shown to protect/isolate the activated proteins from 
dephosphorylation by phosphatases (Locasale et al., 2007a) (shaded semi-circles). In addition, the ability of 
scaffolds to recruit the MAPK to particular cellular compartment, allows for a localised response to the initial 
stimulus. 
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mediating ERK- dependent signalling while β-arrestin2 and 3 bind JNK2 and 3 and 

transmit their signal (Ahn et al., 2004, Luttrell et al., 2001, Shenoy et al., 2006). 

Furthermore, it was shown that altering the localisation of ERK from the plasma 

membrane to caveolae compartments modulates the cellular response. For instance, 

the oxytocin receptor (OXTR) localised to caveolea microdomains was observed to 

mediate ERK-dependent cell growth. However, OXTR localised out of caveolae 

triggered cell proliferation (Guzzi et al., 2002). Contribution of compartmentalised 

MAPK to specific subcellular domains was demonstrated at the endosome. 

Disrupting MAPK compartmentalisation at the endosome revealed the importance of 

this local MAPK population in endosomal function. It was shown that the adaptor 

proteins p18, p14 and the scaffold protein MEK partner 1 (MP-1) are important 

components in localising the MAPK in the endosomal compartment (Brahma and 

Dalby, 2007, Teis et al., 2006, Teis et al., 2002, Wunderlich et al., 2001). Disturbing 

this complex and its formation, both in vitro and in vivo caused malfunction and 

aberrant distribution of both late endosome and lysosomal compartments. The 

cellular phenotypes reported for the p14 knockdown were identical to those reported 

for MEK1 knock down, which showed that the MAPK has a role in the formation and 

function of the endosomal compartment. These defects are also observed in 

mutations of p14 protein in the human population 

 

In addition to adaptor proteins (such as p14 and beta-arrestins), some scaffold 

proteins play a role in localising the MAPK pathway components to specific 

compartments. This tethering of the MAPK signalling apparatus to different cellular 

organelles or locations via scaffolds prompt diversity in the MAPK activation and 

hence its outcome. Connector enhancer of KSR 2 (CNK) was shown to allow 
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neuronal precursors to distinguish between the proliferative and neurotropic signals. 

Difference in response elicited by EGF in neuronal cells at the cell body and distal 

membranes (either axons or the synapse) (Canal et al., 2011) is thought to be due to 

the involvement of KSR and how it isolates both pools of ERK locally. This diversity 

in response due to scaffold tethering was also shown in neuronal cells with the 

scaffold Sur-8. There are reported observations of altered response specificity once 

the scaffold-MAPK-signalling complex was disrupted 

 

The ability of tethering by scaffolds to induce two separate MAPK responses were 

also shown with the scaffold Sef (similar expression to fgf genes) (Torii et al., 2004). 

Sef was shown to localise in the Golgi where it binds to ERK. However, it was shown 

to have preferential affinity to phosphorylated ERK bound to MEK1. Therefore, Sef 

restricted the active ERK to the cytoplasmic compartments by blocking ERK 

translocation to the nucleus, thus confining ERK-mediated phosphorylation to 

cytoplasmic targets. In addition, Sef behaviour demonstrated that scaffolds attenuate 

the activated signal, in addition to anchoring MAPKs at a specific location and their 

substrates.  

 

Furthermore, other mediators of the MAPK pathway were shown to also localise into 

different cellular compartments. Phosphatase protein PP-2B and PKC were shown to 

bind to the A-kinase anchoring proteins AKAP79/150. The AKAP79 were shown to 

localise to the postsynaptic densities on the internal surfaces of excitatory synapses 

and thus influence MAPK activation behaviour there. Furthermore, variation in 

AKAPs amino acid sequence target them to different compartments and potentially 
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therefore localising MAPK proteins to these compartments. For instance, AKAP1/ 

AKAP149 were shown to be anchored at ER, the prenuclear membrane and the 

mitochondria. AKAP1/AKAP149 was shown to complex with Protein Phosphatase 1 

(PP1) and targets it to these compartments. Furthermore, it has been shown that 

AKAP79 is capable of forming diverse complexes with other proteins, therefore, 

adding diversity to how the MAPK activation dynamics are transduced and regulated. 

 

1.4 Conclusion  

This chapter has outlined the components and processes in the MAPK pathway 

involved in its activation behaviour and ultimately generation of cellular responses. 

The chapter also highlighted how the MAPK activation is regulated in space and time 

via compartmentalisation and modulation of activating inputs. The chapter also 

introduced how combinations of these components and regulatory mechanisms play 

a role in the emergence of specificity and fidelity. 

 

Furthermore, the chapter introduced the perplexing notion that, although the pathway 

is ubiquitously expressed, has a universal architecture and consistent activating 

mechanisms in all cells, signal fidelity and specificity still emerges. Decoding how 

spatiotemporal regulation determines the MAPK activation behaviour and, 

consequently, cellular response, will play a role in drug discovery and combating 

disease. The aim of the thesis was to investigate the influence of spatiotemporal 

modulation of the pathway on activation behaviour. 

 



Page 34 of 346 
 

 Chapter 2 focus on in silico modelling of biological systems and previous models of 

the MAPK pathway. There the methodology for modelling the MAPK pathway in this 

thesis is outlined. Chapter 3 presents the modelling methodology implemented in the 

thesis using an agent-based model (ABM).  Chapter 4 presents the results obtained 

from the MAPK pathway ABM and discusses their implication. 
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Chapter 2  Computational modelling of 

biological systems 

 

This chapter addresses the use of the in silico approach to model biological systems. 

An argument is provided for the need to model biological systems in silico and the 

advantages offered by this approach. An overview of the different modelling 

approaches is presented. A eview of previous models of mitogen activated protein 

kinase (MAPK) cascade along with their contribution to the field are provided. The 

section also introduces our approach for modelling the cascade via the agent based 

modelling (ABM) paradigm, its fundamental characteristics and its contribution to 

understanding biological systems. 

 

2.1  The complexity of the physiological system  

Physiology focuses on studying a living system both in health and disease. This may 

begin at the molecular level with the interaction of small molecules (e.g. nucleic acids 

forming DNA), to the interaction of organisms between themselves and their 

environment. Since the second half of the 20th century, the investigative approach 

has focused on various hierarchical levels in isolation: referred to as the reductionist 

approach (Hess, 1970, Stent, 1968). Consequently, this (at the molecular level) has 

given birth to areas which focus on the genome, transcriptome and proteiome, which 

is collectively referred to as omic data. 
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Though the study of living systems is complex both at the macro and micro scales, 

nevertheless, it is increasingly difficult to study them in isolation via the reductionist 

approach; because it does not account for the interplay between the different system 

scales in addition to environmental factors. Since the beginning of the 21st century, 

and in particular in the past ten years there has been an increase in data which link 

the different system scales (Kitano, 2002b, Kitano, 2002c). These emphasised the 

interplay and connectivity across the scales. Consequently, a better understanding 

and appreciation now exists of physiological phenomena as product of the overall 

interaction across system scales. Thus, a system approach is becoming more 

popular. This systematic and integrative approach is termed Systems Biology (SB).  

 

2.2  The rise of Systems Biology (SB) and increased 

importance of in silico modelling 

The principle that a systemic understanding allows for the betterment of our 

knowledge of the world around us in general and of physiology specifically, was first 

emphasised by Claude Bernard in his Introduction à l'Étude de la Médecine 

Expérimentale . This was further emphasised by Polyani , von Bertallanfy and Weiss 

(Bernard, 1865, Von Bertalanffy, 1950, Von Bertalanffy and Rapoport, 1963, Mostert, 

1974). However, in that period, this approach was restricted due to the inadequacy 

of the available technology and the limited data existing across the system scales. In 

addition, breakthroughs at the molecular scale emphasised the use of the 

reductionist approach (Hogeweg, 2011). Thus, the system-based approach entered 

dormancy (Noble, 2008, Saks et al., 2009). Meanwhile, the reductionist approach 

gained momentum and generated extensive and expansive data (the omic data). 
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Although this data shed light on how genes, proteins and molecules interact leading 

to the construction of genomic and signalling networks;it provided a static knowledge 

as it did not give an account of how the genetic and protein networks collectively 

adapted to extrinsic and intrinsic disruption and modulation (Saks et al., 2009, Scott, 

2004).  

 

The ‘omic data, in combination with major breakthroughs in experimental techniques 

and computational technology, resurrected the systemic approach. Kitano’s 

publication in Nature and Science has highlighted the need for systemic approach in 

biology and the role SB can play to advance our understanding of physiological 

systems and in combating disease (Kitano, 2002b, Kitano, 2002c). After Kitano’s 

publications, SB generated interest and currently the systemic approach is being 

encouraged; evident from the many publications and journals which address 

biological questions using a SB approach as well as the establishment of world class 

SB research institutes worldwide (Institute of Molecular Systems Biology, 2016, 

Institute, 2005-2016).  

 

2.2.1  SB and use of in silico models: aims and benefits  

The use of a systemic approach is not straightforward from a practical aspect. In the 

post-genome research environment the data generated is vast, complex and often 

difficult to interpret (Joyce and Palsson, 2006). Consequently, it is becoming 

gruelling and extremely challenging to audit and integrate this data into the systemic 

understanding using only human comprehension. Computation and the construction 

of in silico models are the main tools used to assist assembly and integration of omic 
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data. These models examine the different mechanisms and configurations which 

connect the system at the macro and micro scales. Thus, the models investigate the 

interplay within and between the different scales. This approach is complementary to 

experimentation, both in vitro and in vivo.  

 

In silico modelling and simulation of natural systems are approaches which have 

been used extensively (Crick, 1970, McDougall et al., 2006, Wolpert, 1969) (Turing, 

1952). A model is an abstract representation of a real system, while simulation refers 

to operating a model under a configuration of interest to reproduce the natural 

system’s behaviour. The objective behind modelling natural systems is to further 

understand the underpinning mechanisms by undertaking hypothesis testing through 

a validated model and to predict system behaviour in response to modulation, which 

assists in exploiting the knowledge (available following the hypothesis testing step). 

The use of in silico models and simulations are beneficial especially when the 

subject under investigation is difficult to solve analytically: in short complex (Kaul and 

Ventikos, 2015). These are due to information (regarding the system or its 

behaviour) that is either not accessible, incomplete, or not precisely determined. 

Furthermore, a model can be used to assess the system’s fundamental components 

which are needed for its functionality and to exhibit its behaviour, either in integration 

with other components or, if desired, in isolation. One example of modelling which 

encompass the abovementioned notions is seen during World War II with the 

development of the nuclear bomb at the Manhattan Project, where knowledge 

regarding subatomic particles and their interactions was relatively unknown. 
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In silico models are either mathematical models or computational models. 

Mathematical models in general describe relationships between quantities by 

describing a process via a set of equations (Murray, 2002). In biology this process 

may be differentiation, proliferation, biochemical reactions, etc. Depending on the 

system, its mathematical representation can be statistical or dynamic. In the former, 

a description of the relationship between observed variables are quantified whereby 

dependencies and correlations are established; however, it does not describe how 

the change occurs (Draghici et al., 2007, Jeong et al., 2000). The dynamic 

representation expresses the mechanisms of change and specifies how 

dependencies and correlations arise with respect to specific variables, such as time. 

In the dynamical representation, the mathematical description of the system is 

derived, then solved or approximated analytically (Anderson et al., 2000, McDougall 

et al., 2006). Mathematical models are simulated via computers to elucidate 

solutions of equations. Furthermore, analytic methods for mathematical models are 

numerous. Conversely, computational models describe interactions between 

identified components in the real world represented using algorithms written in a 

programming language and executed by an abstract machine to simulate real world 

behaviour. A computational model, simplistically, is a set of instructions which 

describe mechanisms and parameters that integrate the identified components of the 

system together. These instructions are executed in a particular sequence by a 

computer. Computational models are used to examine complex problems where 

analytical solutions are difficult to obtain (Fisher and Henzinger, 2007, Hunt et al., 

2008, Kaul and Ventikos, 2015). 
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2.2.1.1 Modelling approaches  

Computational SB employs algorithms and data structures to assemble and 

incorporate the omic data to construct a faithful in silico representation of the 

biological system and its behaviour. This is generally achieved using one of the two 

main paradigms: a top-down or bottom up approach. 

 

2.2.1.1.1 Top-down approach: 

The top-down approach examines biological behaviour at systemic scale and 

correlates observations with interactions occurring at lower scales. Effectively, the 

approach focuses on understanding the systemic behaviour and then disassembles 

it into its quiddity. Once the components and their interactions are identified, these 

are interrogated further, if required, by disassembling and dissecting them into 

smaller interactions and constituents (Bruggeman and Westerhoff, 2007, Katagiri, 

2003). This approach includes traditional statistical models, pattern recognition and 

machine learning. In SB, this approach is utilised to infer mechanistic details from 

omic data, both at the genome and protein level, where cell behaviour is correlated 

to interactions between genes and/or proteins and the networks they form 

(Tenazinha and Vinga, 2011). As such, cell behaviour (such as differentiation or 

proliferation) can be explained. For example, clustering analyses were initially used 

to derive correlation between genes and their activity as seen in microarray data 

(Chu et al., 1998).  Independent Component Analysis (ICA) and Reconstruction of 

Accurate Cellular Networks (ARACNE) are used to build both metabolic and 

transcription control networks by recognising data obtained from high throughput 

technologies (Liao et al., 2003, Margolin et al., 2006).   
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However, there are disadvantages associated with the top-down approach. Relying 

on observations inferred from systemic behaviour to elucidate the interacting 

components often masks important or even fundamental interactions at the lower 

levels (Castiglione et al., 2014). This is sometimes referred to as “unknown 

unknowns” (Logan, 2009, Sadeh et al., 2013). “Unknown-unknowns” are information, 

mechanisms and/or components within the system that are not yet discovered or 

even contemplated. Thus these “unknown unknowns”, once identified, lead to two 

scenarios, either an increase in our understanding of the system, or a fundamental 

change in our perception of the system. In both cases, identification of the “unknown 

unknown” components changes established opinions of the system. “Unknown 

unknowns” are appreciated in retrospect; for instance, the concept of crosstalk within 

the MAPK signalling pathways is currently common knowledge within the field, 

however, this was not true during the early 1990s where the majority of these 

signalling were characterised as separate pathways. Consequently therefore, during 

the 90s, crosstalk between signalling pathways is regarded as an “unknown uknown” 

(Burack and Shaw, 2000, Suderman and Deeds, 2013, Xia et al., 1995).  

  

2.2.1.1.2 Bottom-up approach 

In contrast to the top-down approach, the bottom-up approach investigates how 

components of the system and the interactions between them yield systemic 

behaviour. The approach relies on detailed knowledge and/or understanding of the 

system components and their interactions (Nurse, 2008). In SB, this translates to 

identifying the genes or proteins which compose the system, mapping their 

interactions and examining how the mechanistic properties of the system (such as 
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differentiation or triggering of gene expression events) emerge via computer 

simulations (Scott, 2004). The approach takes advantage of the bountiful high-

throughput data. This methodology includes system dynamic models, kinetic models 

and stochastic methods (Edwards et al., 2011). The approach is also advantageous 

in designing and planning wet-lab experiments as the computational models explore 

modification of specific system components or parameters which can also be 

disrupted in vitro and/or in vivo (Kholodenko, 2002). 

 

The bottom-up approach is not without disadvantages. A detailed knowledge of the 

system’s components and their interactions is required, and such information is not 

always available. Moreover, modelling some components of the system and their 

interactions might not yield the observed system behaviour; though this is insightful 

in its own right as it highlights gaps in our knowledge, thereby leading to expansion 

of the model. Subsequently, however, the models become large and more 

computationally expensive. Furthermore, the recursive process of model 

development and modification can take years (Bianca and Pennisi, 2012, Cakir and 

Khatibipour, 2014, Castiglione et al., 2014, Kaul and Ventikos, 2015).  

 

Regardless of the approach, a better perception is developed of what contributes to 

system behaviour across system scales. This improved understanding of 

connections and interplay within the system results into a better representation of the 

system (Castiglione et al., 2014). This is important to in understanding the transition 

from health to disease and vice versa, and  is evident from the use of computer 

models to elucidate new drug targets, pharmacokinetic and pharmacodynamics 
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computer models, and the use of models to simulate clinical trials (Draghici et al., 

2007, Edwards and Thiele, 2013). These will, ultimately, influence drug discovery 

and development (Kitano, 2002a), thus improving patient treatment and bettering 

health care. It is of no surprise that SB integrative approach is seen to be 

increasingly employed in studies of diseases such as cancer, inflammation and 

infectious diseases (Draghici et al., 2007, Orton et al., 2009).  

 

2.2.2  Modelling intracellular signalling events 

The upsurge in omic data was in part due to the interest in disease development at 

the molecular and cellular levels. Most diseases under investigation (such as cancer, 

immunological diseases and age-related diseases) have molecular and cellular 

roots, with cell signalling processes receiving considerable attention. As mentioned 

in Chapter 1, cell signalling mechanisms are used by cells to interpret their 

environment and their break-down causes many diseases (Krauss, 2004). With the 

prominence of SB and the extensive data available, in silico modelling of cell 

signalling mechanisms and events is increasing. These include models of important 

signalling networks such as the NF-κB, the mitogen activated protein kinase (MAPK), 

PI3K and in some cases signalling networks which encompass crosstalk between 

two signalling pathways  (Grieco et al., 2013, Haack et al., 2015, Orton et al., 2009). 

Said computational models have shed light on the signal transduction mechanisms 

and provided insights into the regulation of several signalling pathways in time and 

space; the influence of feedback mechanisms on signal modulation; and the effect of 

crosstalk between different pathways. One pathway that has been pervasively 

modelled is the MAPK pathway, due to its ubiquitous use by cells to mediate a 
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multitude of cellular responses (Kolch et al., 2005, Orton et al., 2005) . The reader is 

referred to Chapter 1 for a detailed description of the pathway, the cellular responses 

it mediates and its (complex) regulation. The following section will address the in 

silico models of the MAPK pathway, how it is modelled and the advances made in 

understanding the MAPK signalling behaviour. 

 

2.2.2.1 In silico models of the MAPK pathway. 

The increase in MAPK related omic data, which demonstrated a high level of cross 

talk between the three MAPK pathways at the three tiers of the pathway, has meant 

that it is no longer viewed as a linear pathway (Oda et al., 2005, Taniguchi et al., 

2006). Furthermore, the MAPK pathways are known to interact with other signalling 

cascades to modulate cellular responses (Aksamitiene et al., 2010, Aksamitiene et 

al., 2012) (Nakakuki et al., 2010).  Additionally, feedback mechanisms have an 

impact on MAPK activation (Santos et al., 2007a) (Kholodenko, 2000, Ingolia and 

Murray, 2007, Brandman and Meyer, 2008, Shin et al., 2009b, Avraham and Yarden, 

2011). Given this complexity, nonetheless, the MAPK signalling network still exhibits 

specificity and fidelity to the original signal. In silico models of the MAPK pathway 

were constructed in order to explain and discern the underlying mechanisms which 

mediate the emergence of the MAPK global activation behaviour at the molecular 

and cellular levels. The MAPK pathway was modelled using several formalisms; 

these are divided into two mainstream formalisms: continuous (quantitative) and 

discrete (qualitative). 
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2.2.2.1.1 Continuous modelling approach 

The continuum approach is a frequently used approach for modelling biological 

events and the MAPK pathway in particular (EMBL-EBI, 1991-2016, Chylek et al., 

2014). It relies on the continuity of the parameters used in the model such as 

concentrations, reaction rates, and volumes. The approach describes numerical 

changes in parameters that define the system. These parameters are usually 

dependent on specific variables such as time, concentration or space, and therefore, 

this paradigm captures dynamic change in the system with respect to these 

predetermined variables (Hu et al., 2009). Mathematical equations (predominantly 

differential equations) describe the initial conditions, system behaviour and the 

boundary conditions, and therefore define the relation between the system 

parameters and the rate of change. The equations are then discretised and solved 

either numerically or estimated analytically. The mathematical expressions are also 

used to generate numerical algorithms for computational execution. These 

differential equations are either ordinary differential equations (ODEs) or partial 

differential equations (PDEs) (Eungdamrong and Iyengar, 2004). In the former, the 

changes are all in relation to one variable - typically time. While the latter look at the 

dynamic changes in the system with respect to multiple parameters: usually time and 

space. ODEs are more frequently utilised in modelling biological systems. The 

continuum approach assigns time-dependency to both measurable and none-

measurable variables. Changes are then postulated via the sum of rate changes due 

to increases and/or decreases in the variables quantities. 

 

For the MAPK pathway, the first models of the MAPK pathway investigated how the 

ultrasensitive response emerged using (ODEs) of enzyme reaction kinetics and 
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studied change in protein kinases concentration with respect to time (Ferrell, 2000, 

Blüthgen et al., 2009, Levchenko et al., 2000, Huang and Ferrell, 1996, Ferrell, 

1997). The work of Huang and Ferrell, 1996 and Kholodenko et al., 1998 had 

demonstrated that the kinetic mechanism and the three tiered design contribute to 

ultrasensitivity (Kholodenko et al., 1999, Huang and Ferrell, 1996). Ballhalla et al 

1999 identified the essential components of the signalling network (such as feedback 

loops) and how these contribute to emergent behaviour in the network (for instance, 

bistability) (Bhalla and Iyengar, 1999, Markevich et al., 2006, Bhalla et al., 2002, 

Xiong and Ferrell, 2003). Kholedenko et al 2000 had further investigated the role of 

feedback loops on MAPK activation dynamics. They found that inclusion of negative 

feedback resulted into sustained oscillatory behaviour (Hilioti et al., 2008, 

Kholodenko, 2000). Considering that oscillatory activation behaviour was only 

demonstrated in vitro in 2009, predictions by Kholdenko and co-workers are 

momentous and reveal the capabilities of computational simulations in providing 

fundamental insights into system behaviour (Aoki et al., 2013a, Shankaran et al., 

2009). 

 

The complexity around the MAPK pathway is that it is capable of triggering cellular 

responses which are both cell-type specific and ligand specific. This occurs despite 

the architecture of the cascade in all cells being indistinguishable and the proteins 

constituting the cascade being ubiquitously expressed in each cell. Therefore, the 

demonstration of the role feedback loops play in MAPK activation dynamics resulted 

into further investigation into the wiring of these loops. Brightman & Fell (2000) had 

investigated differential feedback loops in the ERK pathway stimulated by either EGF 

or NGF (refer to section  1.3.1.1 in in  Chapter 1 for a detailed description of MAPK 
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signalling in both cascades, (Brightman and Fell, 2000)). They showed that the 

variance in activation behaviour of ERK was due to differential negative feedback 

from ERK to SOS and Grb2. EGF employs a negative feedback loop which causes 

transient ERK activation, while the lack of this feedback loop in NGF-mediated ERK 

activation was suggested to be the cause of the sustained ERK activation. Schoberl 

et al (2002) had built a model to address the link between the original stimulus and 

signal specificity in addition to assaying the efficiency of signal propagation through 

the pathway (Schoeberl, 2002). They built a comprehensive model which elaborated 

on events between EGF receptor (EGFR) and MAPKKK. Their model showed that 

activation dynamics of MAPK and pathway sensitivity was not dramatically 

influenced by the concentration of EGF. However, the model presented did not 

integrate the negative feedback loop from ERK to SOS. Heinrich et al assessed the 

role of phosphatases and kinases in shaping the MAPK response (Heinrich et al., 

2002). They postulated that phosphatases have more influence on the duration of 

MAPK activation, while kinases affect the amplitude of MAPK activation. 

Hatakeyama et al had also looked at the interplay between kinases and 

phosphatases on MAPK activation amplitude (HATAKEYAMA et al., 2003); however, 

their model integrated crosstalk between the MAPK and PI3K pathways. Their work 

showed that kinases demonstrated a higher activation rate in the initial phases of 

MAPK activation while phosphotases reaction rates increased gradually and they 

maintained a high reaction rate at later stages of pathway activation. Altan-Bonnet et 

al 2003 and Honberg et al 2005 examined the interplay between negative and 

positive feedback loops and how those influence the activation behaviour of the 

MAPK (Altan-Bonnet and Germain, 2005, Hornberg et al., 2005a). Altan-Bonnet had 

demonstrated that the balance between the two loops contribute to how T-cell 
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receptors distinguish between activating signals (i.e. a suggestion of how fidelity 

emerges). Honberg et al were interested in the signal flow through the pathway and 

which reactions and protein interactions were critical in determining information flow. 

They examined 148 reactions in the EGF-dependent MAPK pathway and their 

influence on MAPK activation amplitude and duration. They found that only eight 

reactions were crucial for signal flow in the pathway and that these reactions were 

connected to Raf, MEK and ERK. Their work also demonstrated that there were two 

pools of active ERK in the cell, distributed between the cytoplasm and the plasma 

membrane. This suggested that spatial distribution of MAPK affect the activation 

behaviour. In 2004 Bhalla et al had suggested that spatial arrangement of MAPK 

proteins into small volumes play a role in the emergence of bistability in the pathway 

(Bhalla, 2004a). Bistability is a characteristic in the pathway where the proteins in the 

pathway are thought to exist in active and inactive states. Bhalla had suggested that 

this characteristic is responsible for the emergence of the ultrasensitive response. 

Mechanistically, this is thought to be linked to the phosphorylation state of the 

kinases and the mechanisms involved. Markevich et al and Ortega showed that 

distributive phosphorylation of MAPK play a role in the emergence of both bistability 

and the ultrasensitive responses (Bagowski and Ferrell, 2001, Ferrell and 

Machleder, 1998, Markevich et al., 2004, Ortega et al., 2006). Nonetheless, Santos 

et al 2007 had suggested that bistability should emerge in the existence of active 

positive feedback loops (Santos et al., 2007b, Qiao et al., 2007). Ortega argued that 

distributive phosphorylation without any feedback is sufficient for bistability activation 

behaviour to appear. Santos et al 2007 confirmed that EGF-dependent MAPK 

activation behaviour was associated with negative feedback while NGF-dependent 

MAPK activation was connected with positive feedback. They also showed that 
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bistability emerged in NGF-mediated activation which supported the link between 

bistability and positive feedback. The latter was linked to molecular memory, which 

Ortega et al 2006 also alluded to. Santos et al (2007) also demonstrated that ERK 

impose an inhibitory effect on MEK and, thus, created an additional negative 

feedback loop via competitive bidding (Ortega et al., 2006, Santos et al., 2007b). 

They confirmed their findings in vitro by re-wiring the NGF and EGF pathways in 

pheochromocytoma (PC12) where EGF was exposed to positive feedback while 

NGF was connected to negative feedback loops. The outcome was that EGF 

induced PC12 differentiation and NGF mediated cell proliferation. Sturm et al 2010 

demonstrated that negative feedback loops acted as negative feedback amplifiers in 

an attempt to explain how robustness and signal stabilisation emerge at the system 

level (Sturm et al., 2010b, Romano et al., 2014). Their model attempted to explain 

the modest change in MAPK activation amplitude with variation in the ligand 

concentration. Fritsche-Guenther et al 2011 in addition to confirming the role of 

negative feedback loops had further investigated robustness in the pathway and the 

molecular mechanisms which lead to its appearance (Fritsche-Guenther et al., 

2011). They showed that robustness does not rely on dual specificity phosphatases 

(DUSP), or saturation of MEK; but on post-translational modification at the level of 

Raf proteins. Furthermore, their model revealed that concentration of ERK had no 

effect on the emergence of robustness. Sarma et al 2012 showed that robustness in 

the pathway was the product of the interaction between kinases and phosphatases, 

which leads to phosphatase sequestration (Sarma and Ghosh, 2012). Their model 

demonstrated that phosphatase sequestration modulate the duration of MAPK 

activation behaviour. Sarma et al 2012 also investigated the design of coupled 

positive and negative feedback loops. They showed that the characteristics of the 
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oscillatory behaviour (such as amplitude and frequency) were linked to the design of 

the coupled feedback loops.  

 

The aforementioned models had used ODEs with the assumption that the proteins 

were homogenously expressed and well mixed intracellularly. However, this is not 

the case physiologically as heterogeneity in protein distribution is well documented 

for proteins involved in the MAPK pathway (Perlson et al., 2005). In addition, Bhalla 

had shown that small volumes might play a role in the emergence of bistability in the 

pathway (Bhalla, 2004b, Bhalla, 2004a).Therefore, PDEs were used to address the 

effect of the spatial element on the activation behaviour of the pathway. The initial 

models had addressed different localisation of kinases and phosphatases and their 

effect on signalling) (Brown and Kholodenko, 1999, van Albada and ten Wolde, 

2007). Models which investigated the MAPK in particular demonstrated the formation 

of a phospho-protein gradient due to spatial segregation between kinases and 

phosphotases. The gradient was dependent on diffusion when cell diameter was 

more than 1μm (Kholodenko et al., 2000, Naka et al., 2006). Nevertheless, this is 

problematic as the concentration of activated MAPK considerably diminishes 

intracellularly (Kholodenko et al., 1999). Kholodenko et al 2006 demonstrated that 

bistability through dualphosphorylation of MAPK and positive feedback to MAPKK 

(Markevich et al., 2006, Markevich et al., 2004) allow for the signal to be propagated 

deeper into the cell and with high frequency, while others argued that propagation of 

the signal were protected by scaffold proteins and/or residing within the endosomal 

compartment (Ferrell, 2000, Lee et al., 2002). Neves et al 2008 illustrated with their 

model that diffusion did not play a significant role in shaping the activation behaviour 

of MAPK, yet protein heterogeneous distribution did (Neves and Iyengar, 2009). 
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They also determined that cell shape, negative regulatory loops and key reaction 

kinetics contribute to the MAPK activation behaviour. Munoz-Garcia et al 2009 had 

demonstrated that unlike Heinrich’s ODE model, the amplitude of the propagating 

signal was dependent on ratio between activation and deactivation (via kinases and 

phosphatases respectively) (Munoz-Garcia et al., 2009). This also ensured a more 

robust signal compared to those observed in ODE models. Kazmierczak et al 2010 

demonstrated that for a signal to propagate from the receptor at the cell membrane 

intracellularly, the kinase diffusion coefficient must be small (Kazmierczak and 

Lipniacki, 2009, Kazmierczak and Lipniacki, 2010). This also has an effect over 

positive feedback and its potency. Though there is a growing realisation of the 

importance of the spatial element in mediating cell signalling in general and the 

MAPK activation behaviour in particular, however, PDEs addressing the whole 

cascade are not abundant.  

 

In addition to investigating MAPK activation dynamics with respect to time and 

space, the continuum formalism was used to shed light on the role of scaffold 

proteins in modulating pathway activation behaviour and their role in specificity and 

fidelity. The initial models of Levchenko et al 2000 and Heinrich et al 2002 had 

demonstrated that scaffold concentration is important in determining the 

augmentation or antagonism of MAPK activation (Heinrich et al., 2002, Levchenko et 

al., 2000). Levchenko had demonstrated that scaffold works biphasically, promoting 

MAPK activation when they were present within an optimal concentration (OC), while 

concentrations above or below OC reduced MAPK activation. For scaffold 

concentrations above the OC, the inhibitory effect is suggested to be due to the 

distribution of the kinases into incomplete scaffold-kinase complex, thus preventing 
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efficient activation propagation in the pathway. Conversely, concentrations below OC 

result into a smaller number of the complete scaffold-kinase complexes. Chan and 

Tian T et al argue that scaffolds contribute to bistability (Chan et al., 2012) (Tian et 

al., 2007, Tian et al., 2009). Chan Y et al (2012) showed that scaffolds mediate a 

processive phosphorylation of the kinases and that is linked to the emergence of 

bistability within the MAPK pathway. However, Tian et al and Thalhauser T et al 

showed the contrary and that scaffolds are responsible for emergence of graded 

MAPK activation behaviour as opposed to ultrasensitive activation (Thalhauser and 

Komarova, 2010, Tian and Harding, 2014). The latter was demonstrated 

physiologically. Nonetheless, others had shown that this only occurs when certain 

parameters are fulfilled which include the presence of negative feedback and low 

scaffold-kinase binding affinity.   

 

The continuous approach has several advantages. Practically, the quantitative data it 

generates is related to what is measured biologically. For instance, the 

concentrations of protein species in the cell, rate of activation and enzyme kinetics. 

Other advantages of the continuum approach are: (1) the availability of analytical 

and validation methodology to analyse and substantiate the data generated; (2) 

model execution is not computationally expensive and often do not require a long 

time to run; and (3) translation of the theoretical concepts into mathematical 

equations in not highly complex (Murray, 2002, Eungdamrong and Iyengar, 2004). 

 

Nevertheless, the continuous approach has some disadvantages.  One of these is 

the incapability of ODE models to account for the heterogeneity within the system 
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(Costa et al., 2009), which is not accurate physiologically because an inherent 

characteristic of biological systems is their variability and heterogeneity (Li and Xie, 

2011, Eberwine and Kim, 2015).The models usually represent the average 

behaviour of the system as they assume its homogeneity; therefore, contribute to 

understanding the global dynamics and behaviour of the pathway rather than 

localised behaviour where there is variation in concentration, pH, diffusivity and 

porosity (such as activation within a compartment) (Mayer et al., 2009). These 

elements affect protein behaviour and kinetics. The collection of these local 

behaviours give rise to the global behaviour (or ultimately the global activation 

behaviour). Thus the continuum approach is appropriate for a top-down 

representation of the system (Jeon et al., 2010). Furthermore, in order to build 

models with differential equations, quantitative knowledge of the system’s 

parameters is essential. These include dissociation constants, reaction rates and 

concentrations of the different proteins involved in the cascade. However, the 

majority of this quantitative data are either extremely difficult to obtain (both in vitro 

and/or in vivo) or currently impossible due to unavailability of the technology to allow 

for accurate measurements. Subsequently, many of the parameters required to build 

complete and comprehensive ODE/PDE models of the MAPK signalling network are 

unknown, such as the local concentrations within compartments, and hence 

modellers resort to estimating these values to populate the model. Consequently, 

this limits the formalism to modelling small signalling network and limits the 

expansion of models to include the MAPK signalling network in its entirety (Aldridge 

et al., 2006). 
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2.2.2.1.2 Discrete models using logical models 

To overcome the aforementioned caveats of the continuous formalism, other non-

continuous (discrete) approaches were used to model the MAPK pathway (Calder et 

al., 2006a, Singh et al., 2012, Samaga et al., 2009). There has been a growth in the 

application of these models within the last decade. The marked advantage of these 

formalisms is their ability to model the signalling network without the need for 

complete kinetic information and data. These include many paradigms, such models 

utilising graph theory (petri-nets), logical models (Boolean logic) and rule-based 

models (RBM). 

 

The first non-continuous model of the MAPK pathway was a statistical model 

developed by Brown et al.(1999). In this model of ERK activation by EGF and NGF, 

they demonstrated that specific signalling modules are responsible for the differential 

cellular outcome mediated by the two ligands (Brown and Kholodenko, 1999). In 

addition, Brown and colleagues had illustrated for the first time the concept of 

sloppiness in cell signalling and how it is an inherent characteristic for cellular 

function. Their model had shown that discrete modelling of MAPK signalling has the 

potential of improving the understanding of signal transduction, signal dynamics and 

how that is related to signal specificity and fidelity. This resulted into an increase of 

discrete (qualitative) models of the MAPK pathway. Earlier methods took advantage 

of structural models and information flow theory, where the structure and architecture 

of the pathway was taken into consideration, because signalling pathways are 

usually presented (by cell and molecular biologists) as graphical notations. In 

principle; signal transduction is considered a process where information is rallied 

from the external environment intracellularly. This is advantageous, since 
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mathematical models usually do not consider the flow of information. Furthermore, in 

this post-genomic era, there is a prodigious qualitative data from high throughput 

methods, in addition to the representation of signalling networks and the signal flow 

in graphical notations. Petri-nets is a method which takes advantage of this 

representation of signalling networks and it was used to investigate the MAPK 

signalling network (Chaouiya, 2007). Therefore, petri-nets are useful as a top-down 

approach for modelling the MAPK pathway. This formalism has shed light on 

crosstalk between different signalling pathways and its role in modulating MAPK 

activity and vice versa. Ruth et al had studied the MAPK and AKT signalling 

pathways downstream of the EGFR with a petri-net model and confirmed 

experimental findings where inhibition of protein Raptor caused the reduction of 

p70S6K levels in MDA231 breast cancer cell line (Ruths et al., 2008). Although their 

model showed the same effect in the BT549 cell line, this was contradictory to 

previous published data. However, they speculated the observation to arise due to 

the mutation of retinoblastoma protein (p16INK4a/RB) in aforesaid cell line. 

Sackmann et al’s petri-net model of the mating pheromone pathway in the yeast 

S.cerevisiae demonstrated that phosphorylation of MAPK is dependent on MAPKK 

activation, thus, demonstrating, in silico, the role of MAPKK as a bottleneck for 

cascade activation (Sackmann et al., 2006).  

 

Another formalism which does not require prior knowledge of network kinetics is 

Boolean logic. Boolean logic is a branch of algebra where an event (a variable) is 

modelled as true or false with the events assigned numerical values of 1 and 0 

respectively. The logic defines two events (A and B) and mapped to three 

possibilities which are as follows: (1) either both events occur simultaneously 
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(denoted with the operator AND); (2) when either event (A or B) occur designated by 

the operator OR, and (3) when one of the events does not occur (referred to with 

operator NOT). Huang S et al in 2000 had highlighted the potential for use of 

Boolean logic to infer how cells commit to cellular decision making, such as 

proliferation and/or differentiation, using the MAPK pathway as an example (Huang 

and Ingber, 2000). Helikar, T et al used Boolean logic to examine how cellular 

decision making emerges in a signalling network which included the AKT, MAPKs 

(including p38, JNK and ERK), Rac and CDC42 (Helikar et al., 2008). Their work 

showed that for ERK activation via the extracellular matrix receptors (integrins) and 

G-protein coupled receptors is highly dependent on EGFR transactivation. However, 

for integrin and EGFR-dependent ERK activation, ligands levels for both receptors 

have to be high.  Saez-Rodriguez et al using their Boolean model discovered a new 

locus of crosstalk and interplay between the MAPK and the AKT pathway in 

inflammatory signalling at the level of insulin receptor substrate (IRS) (Klamt et al., 

2006, Samaga et al., 2009). Recently, Mori et al had demonstrated with their 

Boolean model that in the S.cervasea MAPK pathway, the appearance of oscillatory 

behaviour depends on the attributes of the negative feedback loop. They 

demonstrated that in a deterministic model of MAPK pathway the oscillatory 

behaviour is sustained, while the introduction of negative feedback results into 

desynchronisation of the oscillatory behaviour (Mori et al., 2015).  

 

Handorf T et al had examined the role of crosstalk between the MAPK pathway and 

Wnt pathway to commit cells to differentiation or proliferation (Handorf and Klipp, 

2012, Haack et al., 2015). Their results showed that both beta-catinin and ERK 

activation exhibited oscillatory activation behaviour in the presence of basal level of 
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Wnt. However, the activation of both proteins become sustained when Wnt levels 

were increased and were maintained at high levels. These outcomes agreed with 

(Kim et al., 2007) model which utilised the continuous paradigm. Samaga et al had 

built a logical model of the EGFR signalling network which included the MAPK 

signalling pathway. Their work showed that the MAPK signalling network contains 

redundant substructures, similar to the postulation by Honberg et al  (Hornberg et al., 

2005a, Samaga et al., 2009). Their work also displayed that in hepatocytes p38 and 

JNK activation is independent of PI3K/AKT pathway activation. Grieco L et al built a 

logical model of the EGFR-FGFR signalling network (which included MAPK pathway 

in addition to AKT pathway), which demonstrated that ERK activation is essential for 

the cell to make a decision between proliferative and non-proliferative responses 

(Grieco et al., 2013). However, this switch positively correlated with the presence of 

AKT. In addition, their model had illustrated that crosstalk between the two cascades 

is vital for cell fate decisions. Recently, petri-nets formalism is being integrated with 

other methods such as Boolean logic or constraint-based analysis in order to take 

advantage of analytical methods and to allow for the exchange between different 

modelling formalisms; thus, maximising our understanding of the MAPK pathway 

(Grieb et al., 2015, Honglin and Shitong, 2009)  

 

The disadvantage of using Boolean logic lies in the inability to model intermediate 

events which determine if an event will occur or not. Therefore, this limits the 

integration of molecular mechanisms such as protein-protein interactions: dynamic 

events where the strength of feedback mechanisms change or events where 

concentrations of proteins change. In addition, conceptually, cells and proteins are 

not logical machines and the emergent behaviours observed (including the wiring of 
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the signalling networks) did not evolve due to logical decisions, but due to 

biochemical rules. However, lately, modelling formalisms incorporating uncertainty 

into Boolean logic models or utilising fuzzy logic have become available to tackle this 

challenge (Grieb et al., 2015, Honglin and Shitong, 2009).  

 

Another disadvantage which applies to both continuous and described qualitative 

paradigms is combinatorial complexity (Mayer et al., 2009, Hlavacek et al., 2003, 

Deeds et al., 2012). Cells are dynamic and heterogeneous; they sense and respond 

to changes in conditions surrounding them (Grinev et al., 2013). Cell signalling is 

characterised by self-organisation and the emergence of behaviour due to the 

interaction between the lower-scale entities which constitute the cell. Protein-protein 

interactions are central to signal propagation, particularly for the MAPK pathway, 

where these interactions include the ability of proteins within the cascade to bind to 

multiple partners (such as the scaffold KSR and the adaptor protein Grb2) and also 

the presence of multiple sites for post-translational modifications. Thus, a given 

protein can assume multiple states depending on its interaction partners (Suderman 

and Deeds, 2013). To represent all these possibilities (i.e. protein states) using 

differential equations requires specifying a reaction per state change per protein 

species. This will also require determining the concentrations of these protein 

species and the kinetic rates for their forward and backward reactions. It is worth 

iterating that if a protein contains eight modifiable domains, it can occupy 256 states 

(Hlavacek et al., 2003). If we consider that two proteins (with the same number of 

modifiable domains) form heterodimers, the heterodimeric complexes can assume 

65,000 possible states (Blinov et al., 2006, Danos et al., 2007, Deeds et al., 2012). 

Consequently, modelling all of these states and the reaction associated with them 
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leads to models which are highly arduous but less informative. Therefore, other 

modelling paradigms had been adapted to model the MAPK pathway where protein-

protein interactions are integrated into the models: this is the rule-based modelling 

paradigm (RBM) (Chylek et al., 2015, Hlavacek et al., 2006). 

 

In this approach a protein is treated as an object (or agent) with defined structure 

and the reactions which govern their behaviour as rules. This is different from kinetic 

models because it is not required to explicitly define and specify all the molecules 

and reactions involved. The rules can also include interactions with partners, post-

translational modification, and the ability to form homo and/or heterodimers etc. The 

proteins are capable of adapting numerous states once the rules that dictate state 

transition are satisfied. Blinov et al 2005 used RBM to investigate early activation 

events of the EGFR with Kholodenko’s as a guideline; nonetheless, their model 

integrated phosphorylation events of specific sites on the EGFR contrary to 

Kholodenko’s model which only modelled this as one step (Blinov et al., 2006, 

Kholodenko et al., 1999). Blinov’s RBM showed that the outcome for mutating 

tyrosine residues in both EGFR and Shc is identical, which is contradictory to 

Knolodenko’s predictions. However, both Blinov’s and Kholodenko’s models showed 

that eliminating Shc-dependent SOS recruitment to the receptor was primarily 

responsible in mediating an increase of overall SOS recruitment. Furthermore, due 

to their expanded model, Blinov and colleagues predicted SOS interaction with more 

partners, thus predicting more diversity in the cellular outcome. Creamer et al 2012 

had reconstructed using a RBM the EGFR receptor signalling model which Chen et 

al and Birtwistle et al had previously built using ODE models (Birtwistle et al., 2007, 

Chen et al., 2009, Creamer et al., 2012). This RBM included ERK and AKT proteins 
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and the crosstalk between them. Their extended model had demonstrated the ability 

of RBM to handle model expansions which will be impossible for ODEs given the 

combinatorial complexity. Suderman et al had used rule-based modelling to build the 

yeast pheromone signalling network in the presence of the scaffold Ste5 (Suderman 

and Deeds, 2013). Their model, although it replicated the responses associated with 

pheromone activation, did not inhibit the activation at high concentration of Ste5, 

contradicting Levchenko’s OC hypothesis (Levchenko et al., 2000). Kocieniewski et 

al 2012, using the RBM, also investigated the role of scaffolds in modulating the 

MAPK activation behaviour and proposed that scaffolds are required to transmit 

activation through the pathway in the presence of low signals (Kocieniewski et al., 

2012). The model illustrated that dual phosphorylation in the presence of scaffolds is 

necessary for signal specificity to emerge in the system. 

 

A disadvantage of RBM currently is the inability to account for the spatial element 

and compartmentalisation of signalling modules, though recent publications have 

attempted to address this issue (Regev et al., 2004, Pedersen et al., 2015). On the 

other hand, the agent-based modelling (ABM) formalism provides a better approach 

to integrating temporal regulation, spatial elements and rules into the model. 

 

2.2.2.2 Our approach, the use of agent-based modelling (ABM) 

to simulate the MAPK pathway  

Behaviour at the cellular scale evolves from interaction between the different 

molecules at the molecular scale, such as nucleic acids, proteins and lipids. For 

instance, the process of gene transcription and translation is a cycle of interaction 

between proteins and nucleic acids. This is parallel to the bottom-up paradigm. 
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Proteins are regarded as the key functional units (or machines) in the cell due to 

their abundance and involvement in the majority of cellular activity, especially cell 

signalling (Kiel and Serrano, 2012, Bray, 1995, Roux, 2011). Each protein has 

biochemical and biophysical properties which allow it to interact with its environment 

and other molecules which reside in the environment (Sikosek and Chan, 2014). 

This intractability gives proteins a social dimension (Wooldridge and Jennings, 1995, 

Bankes, 2002). More importantly, proteins interact with each other and conduct their 

action without a set-goal or consciousness of the objective of the interaction (Bandini 

et al., 2009). Furthermore, each protein in the cell is an autonomous entity in its 

interactions and functionality and, therefore, independently responds to modulation 

and separately follows biochemical and biophysical roles to achieve its function. A 

protein, due to its ability to form multiple interactions, can adopt multiple states, such 

as bound or free, phosphorylated or unphosphorylated, active or inactive, mobile or 

immobile etc. Satisfaction of biochemical and biophysical rules allow the protein to 

circulate between these various and diverse states. All of the above descriptions 

qualify proteins to be molecular machines and/or molecular agents; therefore, an 

ABM paradigm is an appropriate choice to model the MAPK pathway. 

 

ABM is a bottom up, object-oriented, ruled based in silico approach, where the 

essential components of the system are modelled as heterogeneous interacting 

autonomous agents, in order to examine and understand the emergent behaviour(s) 

at the system level from the intractability between the agents (DeAngelis, 1994, 

Robinson et al., 2005, Robinson et al., 2008). The ABM formalism models the 

essential components in the system and their core interactions. This is achieved by 

specifying simplified rules, which are capable of generating complex behaviour(s) 
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and patterns at the global level. Pertinent demonstrations of how simple interaction 

roles are capable of generating complex system patterns and behaviour are the 

Mandelbrot set and The Game of Life invented by John Conway (Gardner, 1970). In 

The Game of Life, a grid is composed of several cells (squares); each cell is 

governed by four basic rules. A cell is “viable” (or on) if it is surrounded by two or 

three “viable” cells. A cell “dies” (turned off) if it is surrounded by fewer than two or 

more than three “viable” cells. A dead cell becomes viable if surrounded by three 

viable cells. Running simulations of these rules results into complex behaviour and 

patterning in the grid.  

 

In order for an agent to adapt a protein-state, it requires several attributes. These 

include memory, intractability and in some cases adaptability or learning capabilities. 

The memory allows a protein-agent to memorise important characteristics such as its 

state, the rules it is governed with and its location within the intracellular 

environment. Intractability is based on the rules governing the execution of these 

rules by the agent. Learning capabilities are related to both memory and rule 

execution. Recollection of current and previous state(s), environmental conditions 

and rules executed allow agents to adapt and improve its response to future inputs. 

 

ABM is effective in capturing the rise of complex behaviour in the systems via 

modelling the interaction of the system’s components with each other and their 

environment. This is demonstrated at both the macro and micro system levels in 

different research fields such as economics, ecology and cell biology. In biology, at 

the macro system level, ABM had shed light on ants foraging behaviour (Jackson et 
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al., 2004, Robinson et al., 2005). At the cellular level, ABM was used to model T-

cells activation in lymph nodes (Bogle and Dunbar, 2009, Bogle and Dunbar, 2010, 

Bogle and Dunbar, 2012)  and epidermis wound-healing and self-organisation. The 

Epithelome project had illustrated the role (TGF-beta) in wound healing and 

illustrated that self-organisation of keratinocytes depended on cell-cell interaction 

and cell-substrate interaction (Adra et al., 2010, Sun et al., 2008). At the molecular 

scale, the work of Chapa J et al had demonstrated for the first time the role of 

RUNX3 in the FLAME is capable of running on various computing systems including 

parallel high performance computers (HPC). The latter feature allows for the 

inclusion the of actin filaments in the regulation of the NF-κB signalling pathway 

(Pogson et al., 2008, Holcombe et al., 2012, Pogson et al., 2006). In addition to the 

aforementioned benefits of the ABM paradigm in comparison to other approaches, 

ABM data demonstrate a robustness in imitating natural systems, which is important 

when correlating findings to biological data (Jeong et al., 2000, Kriete, 2013, Grinev 

et al., 2013, Stelling et al., 2004).  

 

2.2.2.3 Flexible Large Scale Agent Modelling .Environment 

(FLAME) 

FLAME is an off-lattice discrete modelling framework used to simulate agent based 

models (ABMs). The framework is a generic ABM modelling system and therefore it 

is used in numerous research domains such as economics, crowed movement and 

molecular biology. Another distinctive feature is its ability to create models in 3D, an 

important characteristic for the investigation presented in this thesis. Furthermore, 

FLAME is capable of running on various computing systems including parallel high 
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performance computers (HPC) . The latter feature allows for the inclusion of a large 

number of agents (in the magnitude of millions) and thus utilises models which 

incorporate multitudes of interactions and communications between the agents. The 

ability to include millions of agents is a feature unique to FLAME in comparison to 

other ABM platforms such as NetLogo and Biocellion (Kang et al., 2014, Kaul and 

Ventikos, 2015). FLAME provides a robust solution for running large models (Hao 

Bai et al., 2014)  

 

FLAME uses logical communicating extended finite state machines principles in 

particular X-machines. A finite state machine is an abstract state machine which can 

adapt finite number of states. However, these states are achieved asynchronously, 

whereby the state machine must transit between the different states it can potentially 

occupy. In order to achieve this transition, state machines exploit transition functions. 

The transition functions stipulate restrictive conditions and/or events that, when met, 

specify the appropriate state the machine will adapt next. An X-machine is 

analogous to finite state machines,  however, the main difference is that X-machines 

include machine memory. Thus, transition between states incorporate memory 

transition and its modification. A communicating X-machine is a machine which 

communicates with other machines by exchanging messages. These communication 

messages are outputted to a common library (in FLAME this is libmboard), which the 

X-machines can access and read the particular messages as shown in Figure 2. 1. 

The concept of X-machines can be described quantitatively as following (see also 

Figure 2. 1):  
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𝑋=(𝜎,𝛾,𝑆,𝑀, Φ,𝐹,𝑠0,𝑚0) 

where σ are input set, γ are output set, S denotes the infinite set of states a machine 

can adapt, M denotes possible finite memory variables, Φ denotes the set of partial 

functions (φ) that map an input and memory variable to an output and a change in 

the memory variable, which can be represented as follows: φ: σ × M → γ × M), F is 

the next state transition function: whereby F: S × φ  S, s0 is the initial state and m0 

is the initial memory . φ is a state transition function which integrate inputs from the 

environment 𝜎, the current state and memory of the X-machine (s0 and m0) 

(FLAME.co.uk, 2016). In order for the agent to transit from s0 to the next state s1, 

particular conditions needed to be met, which the X-machine read as inputs in 

libmboard. Once the conditions are met, the transition function φ is executed, 

 

Figure 2. 1 A schematic representation of a finite X-machine. An X-machine or agent is capable of assuming 
many states (Sn) to adopt any of these an agent is required to transit from state (Sx) to state (Sy). Transition 
between these different states is achieved using transition functions φn. For Sx to change to Sy the transition 
function φy is employed. For Sx to transfer to another state (Sz) another transition function φz is utilised. To execute 
a transition function the X-machine receives input streams from either other agents or its environment. Once the 
transition is executed, the X-machine memory is updated from m1 to m2. After transition, the state-machine creates 
output stream, in FLAME this is the outputted messages. The diagram was adapted from the FLAME user manual 
available at www.flame.ac.uk 
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consequently, a new state, s1, is achieved and the memory is updated to m1. 

Forthwith communicating X-machines are referred to as agents 

 

FLAME is a template based parallel simulation code generator. The user describes 

the agents’ memory parameters, the model and the environmental conditions using 

the extensible markup language (XML) and utilises C coding language to detail 

transition function algorithms. The XML files which describe the agents are termed 

X-machine markup language XMML. FLAME is composed of two components, the 

 

 

Figure 2. 2 Steps used to construct an agent based model (ABM) using the FLAME framework. Modelling an 
ABM in FLAME involves specifying the agents’ internal memory parameters, inputted and outputted streams 
relevant to the agents and the functions (i.e. roles) appropriate to the agents. These are specified using .xml files. 
The transition functions which control state transitions and agent behaviour and reactivity are specified using .c files 
The Xparser combines and links the xml, .c and template files whereby appropriate transitions are mapped to the 
right agents and its internal memory parameters. The Xparser creates a simulation code to use for ABM simulation 
(the parsing stage). The simulation code is compiled using the GNU Compiler Collection (GCC) in combination with 
object files and the libmboard library during the compiling stage, and ultimately generate an executable file to run 
the ABM. Diagram adapted from www.flame.ac.uk 

 

  

 



Page 67 of 346 
 

Xparser and the libmboard (message board library). The former is the tool that 

parses the XMML files into a simulation source code which can be run in parallel or 

serially; it also generates state diagrams and Make files to allow model execution 

using main.exe. While libmboard supports a library that manage agent messages 

(inputs and outputs), thus it allows the agents to interact efficiently. Furthermore, 

libmboard models can act as Message Passing Interface to run models in parallel on 

multi-node systems. The simulation code, in combination with libmboard and the 

initial conditions file (0.xml) are used to execute the model simulation (see Figure 2. 

2). 

 

There are other numerous ABM platforms available which utilise different 

programming languages (Nikolai and Madey, 2009), use diverse operating systems 

and have the option of coupling the framework to other programmes. The most 

popular ABM framework used are NetLogo, MASON, Repastm and Swarm 

(Railsback et al., 2006). Burkitt M had rigorously evaluated the aforementioned 

frameworks in addition to FLAME and he found that model implementation was 

simplest using FLAME in comparison to the other frameworks mentioned above. 

This allows the modeller to concentrate on writing the algorithms for the transition 

functions and agents specification. This is ideal for investigators who have limited 

expertise in computer science and computational biology, thus making the modelling 

process uncomplicated and accessible. In addition, FLAME automates the 

management of agents’ lists and their operations, in contrast to the other 

frameworks. He also found that FLAME performance was faster when run on the 

Grid using a large number of cores (Burkitt, 2011). However, the caveat of FLAME in 

comparison to the other platforms is the lack of a complete built in analysis library or 
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tools while MASON and Repast contain such tools. Furthermore, FLAME allows the 

incorporation of user defined data sets and the simulating models in 3D.  

 

The aim of this thesis is to investigate the combined effect of spatiotemporal 

modulation of the MAPK pathway on MAPK activation behaviour and its implication 

in fidelity and specificity. Modelling the pathway using ABM formalism provides a 

suitable tool to achieve this objective due to its capability of modulating the 

spatiotemporal elements simultaneously and independently for each agent. In 

addition, the ABM formalism allow for expanding the model to include more protein-

agents, new mechanisms (i.e. rules) and to modify a coarse-grained process to a 

fine-grained process (zooming in) and vice versa.  

 

2.3  Conclusion 

 

This chapter provided an overview of the systemic approach to understand system 

behaviour, and outlined the objectives of Systems Biology (SB). The purpose, aims 

and benefits of in silico modelling of natural systems, in general, and cell biology, in 

particular, were emphasised. The different approaches for modelling in SB were 

introduced. Modelling of the MAPK signalling pathway was outlined and the different 

paradigms utilised for modelling were presented. The agent-based modelling (ABM) 

paradigm was introduced and its suitability to model the MAPK pathway was 

underlined. 
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There is extensive biological evidence for the importance of spatiotemporal 

regulatory mechanisms in modulating the MAPK pathway activation behaviour and 

the emergence of fidelity and specificity. However, there are not many models which 

address spontaneous spatiotemporal regulation of the pathway and none to our 

knowledge which examine the rule of compartmentalisation in modulating MAPK 

activation behaviour and the emergence of specificity and fidelity within the pathway. 

Therefore, the ABM paradigm was used to address these issues. 

 

Chapter three highlights the modelling process and describes the conceptual model 

of the MAPK pathway. Chapter four presents the computational implementation and 

the results obtained from the ABM model of the MAPK pathway. 
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Hypotheses 
Based on the information presented in the introduction, indicates that temporal and 

spatial elements within the MAPK signalling pathway influence activation magnitude, 

duration and ultimately specificity and fidelity of the cellular response, hence, it can 

be hypothesised that concurrent modulations of the pathway temporal and spatial 

elements impact the activation dynamics of the MAPK pathway. Additionally, it can 

also be speculated that different combinations of the spatial and temporal 

modulations lead to the emergence of distinct activation behaviour and thus 

contribute to the emergence of fidelity and specificity of the MAPK-dependent 

cellular responses. Said hypotheses can be dissected and presented as following: 

 

1. Spatially restricting the proteins involved in the MAPK pathway into multi-

compartments impacts MAPK activation behaviours differently compared to a 

homogeneously distributed scheme. 

2. Simultaneous modifications of the spatiotemporal elements can substantially 

affect MAPK activation behaviour. 

3. Using different combinations of spatial and temporal elements cause 

differential activation behaviour in the MAPK pathway. 
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Chapter 3 Characterising the MAPK 

signalling pathway agent-based model 

(ABM) 

 

This chapter aims to provide a link between the biological descriptions of the MAPK 

system described in the introduction (peruse  Chapter 1 ) and computational 

implementation into the MAPK ABMs presented in Chapter 4. The universal 

modelling process was conveyed in section 3. 1, a description of the MAPK pathway 

conceptual model and its components which were utilised to create the MAPK ABMs 

were emphasised in section 3. 2. The processes of transforming the conceptual 

model into the ABM are underlined in the subsequent section 3. 3. 

 

3.1  The Modelling process: universal practice 

To build a reliable model of a particular system or behaviour, a definition process 

takes place. This begins with (i) a conceptual model of the system or the behaviour 

under focus. The conceptual model is a scrutinised aggregation of the literature, thus 

represents current and common knowledge of the system and its behaviour. It is an 

abstract, static and simplified representation of the system, its behaviour and the 

interaction between its components. (ii) The second step involves formulating 

questions for interrogating the identified conceptual model. (iii) Characterising 

components within the conceptual model that are associated with the questions 

imposed in point (ii). (iv) Identifying the modelling paradigm suitable to address and 
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integrate points (ii) and (iii). This definition process identifies fundamental elements 

of the system and its behaviour allowing the elimination of nonessential or trivial 

components, therefore reducing combinatorial complexity. Following said definition 

process, a functional model is constructed to simulate the selected components and 

elements within the identified conceptual model. This functional model translates the 

selected components and elements into a quantitative and dynamic representation 

using mathematical description and computer programme/algorithms (Defranoux et 

al., 2005, Saks et al., 2009). 

 

Computational modelling is generally an iterative process as shown in Figure 3. 1. It 

relies on cycles of model building, experimentation and modification. The model 

construction process starts with the literature which contributes the conceptual model 

(as described in the previous paragraph). Experimentation, both in silico and in the 

lab, provides results which can be used to validate the computational model; thereby 

aid model modification and improvement, and ultimately, lead to a computational 

model that reliably depicts the natural system and its behaviour. Once validated, 

further experimentations using the computational model are conducted to uncover 

mechanistic explanations for the system and its behaviour. It is highly desirable that 

in silico experimentation are coupled with in vitro or in vivo experiments to allow for 

one-to-one validation, amending the developed model and improving its accuracy. 

However, this sometimes is not realistic due to technical/methodological difficulties in 

preforming the laboratory experiments. These Issues arise due to limited resources, 

ethical boundaries and/or due to practical/technical considerations. 
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Figure 3. 1 A flowchart summarising modelling process in silico.  Prior to the construction of a model to represent and examine natural systems a process of abstraction takes 
place. In this process information about the natural system to be modelled is gathered, the objective and questions the model is trying to address are defined and outlined. 
Consequently, the essential information and data required to build a model to address these particular objectives are extracted from the literature. The models usually are simple 
and only contain information and mechanisms which the field consider as the main processes which drive the system. The model is simulated, and the data generated is analysed. 
The analysed data is compared to experimental outcomes, whether obtained in house or published previously in the literature. This step is part of model validation process. The 
data generated from the model either does not match the behaviour of the natural system, which demonstrates a gap in knowledge, perception and/or assumptions about the natural 
system. This requires cycles of model modification and improvement to allow for the model to faithfully mimic the natural system. Once the model reaches that phase, it is utilised to 
formulate, examine and explore hypotheses regarding the natural system and its behaviour, which are impossible or impractical to preform experimentally.  

 



Page 74 of 346 
 

Let us put the universal modelling process in context in relation to the work 

presented in this thesis; in regard to point (i) the state-of-the-art conceptual model of 

the MAPK signalling system was presented in chapter 1 and 2. Considering point (ii) 

questions about the MAPK signalling system were formulated and imposed as 

hypotheses in the hypothesis section on page 71. Characterisation of the 

components and translation into a modelling paradigm (points (iii) and (iv)) are 

presented in this chapter and summarised in table 3. 1 

 

3.2  Model specification 

This section summarises the specifications used to formulate a functional MAPK 

model. It also describes how this functional model was transformed to the MAPK 

pathway ABM. Furthermore, what is being emphasised in this section are the 

common features of the presented ABMs. Within the appropriate result sections the 

adjustments applied to the generic ABM are described in more detail. 

 

3.2.1  Defining the system boundaries 

Firstly, system boundaries were defined to construct the functional model. These are 

the components which define the behaviour or the system to be modelled and 

ultimately distinguishing elements which links the model with actual behaviour. For 

instance, the physical environment, the individuals involved in the behaviour/system 

and identifying the time scales associated with model and actual behaviour.  
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Table 3. 1 Summarises the mapping between the domain model and the model specification step presented in 

section  3.2 and their implementation in the ABMs presents in section  3.3. The literature column provides the 

evidence for both the modelled natural behaviour and previous models which simulated said behaviour  

Domain model Literature ABM 
implementation 

Physical environment 

The cell as site for 
signal transduction  

(Alberts et al. 2002) 
(Karr et al. 2012) 
(Pogson et al. 2006; 
Rhodes et al. 2014) 

Modelled as a 3D spherical 
cell with a radius of 20µm  

The cytoplasm is where 
cell signalling occurs. It is 
a semifluid environment 
with 80% water content 
where micro and 
macromolecules reside 
and move.  

(Alberts et al. 2002) 
(L'Allemain et al. 1992) 
(Luby-Phelps 2000) 
(Shepherd 2006) 

Modelled as a 3D fluid space 
with no macromolecule 
obstacles and where proteins 
move freely by Brownian 
motion. 

Compartments and 
organelles: The cytoplasm 
contains cellular 
organelles which are 
thought to play role in 
signal specificity and 
fidelity 

(Hudder et al. 2003) 
(Takamori et al. 2006) 
(Settembre et al. 2013) 

In the multi-compartment 
ABM, these were modelled as 
10 cubic compartments with a 
length of 1µm, equivalent to 
the length of a mitochondrion. 
The number of compartments 
was arbitrary as compartments 
such as the ER, endosomes 
and Golgi apparatus are 
continuous compartments.  

Spatial separation: The 
cell contains highly 
specialised domains. 
These are created via 
lipids by layers and/or 
diffusion gradients 

(Arora et al. 2013) 
(Canal et al. 2011) 
(Chiu et al. 2002) 
(Kholodenko 2002) 
(Donovan et al. 2016) 

These were modelled as 
cytoplasm, nucleus and 
cytoplasmic compartments in 
the ABMs. The two-
compartment model was 
designed to emulate classical 
methodology of simulating the 
pathway by assuming a 
homogenous well-mixed cell. 
The multicompartment ABM is 
emulating a physiologically 
accurate representation of the 
cell where extensive evidence 
illustrate distinct heterogeneity 
of biomolecules in the 
cytoplasm 

Physical boundaries by 
membranes 

(Resat et al. 2011) 
(Klann et al. 2011) 
(Sjöstrand 1959) 

The separation was specified 
as roles within the agents 
transitional functions where 
the movement is restricted to 

https://paperpile.com/c/AO6mPe/Ic34
https://paperpile.com/c/AO6mPe/jQ2F
https://paperpile.com/c/AO6mPe/MJ1A+js1X
https://paperpile.com/c/AO6mPe/MJ1A+js1X
https://paperpile.com/c/AO6mPe/Ic34
https://paperpile.com/c/AO6mPe/yrxd
https://paperpile.com/c/AO6mPe/SdsR
https://paperpile.com/c/AO6mPe/9Ory
https://paperpile.com/c/AO6mPe/fMHx
https://paperpile.com/c/AO6mPe/Q9vk
https://paperpile.com/c/AO6mPe/yWLJ
https://paperpile.com/c/AO6mPe/gEw8
https://paperpile.com/c/AO6mPe/YI0v
https://paperpile.com/c/AO6mPe/cgAS
https://paperpile.com/c/AO6mPe/A6N2
https://paperpile.com/c/AO6mPe/SgAM
https://paperpile.com/c/AO6mPe/BCTM
https://paperpile.com/c/AO6mPe/dNq2
https://paperpile.com/c/AO6mPe/aD3E
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within particular compartments 
 

The nucleus as a domain 
for cell signalling and gene 
expression 

(Seth et al. 1992) 
(Volmat et al. 2001) 

The speculation that the 
nucleus is the sight for the 
termination of pMAPK 
signalling was utilised in the 
ABM by the transition of 
pMAPK state to MAPK state 
once it is exported out of the 
nucleus 

Individuals within 
the environment  

(Ferrell and Bhatt 1997) 
(Ferrell 1997) 
(Kholodenko 2000) 
 

The MAPK cascade is a three 
tiered cascade where 
activation commences by 
triggering MAPKKK. This was 
applied in the ABM by 
simulating the cascade 
downstream of MAPKKK 
where MAPKKK were 
assumed to be fully active at t0 

The MAPK cascade: The 
cascade relies on 
phosphorylation events to 
propagate the signal 
downstream. 
Phosphorylation occurs 
when kinases activation 
sites are at close proximity 
to phosphorylation sites 
on their target proteins 

(Ferrell 1997) 
(Widmann et al. 1999) 

In the ABM interacting agents, 
when in close proximity, bind 
together and if they are 
available to form bonds, 
activation ensues. This 
simulates the final outcome of 
the phosphorylation process. 

MAPKKK  pMAPKKK 
process 

(Craig et al. 2008) Was assumed to be fully 
active at t0. 

MAPKK  pMAPKK 
process 

(Matsuda et al. 1993) 
(Takekawa et al. 2005) 

Modelled as two states of a 
communicating x-machine, 
active state (pMAPKK) and 
inactive state (MAPKK). State 
transition occurs when the 
appropriate conditions in the 
transition functions are 
satisfied. 

MAPK  pMAPK (Seger and Krebs 1995) 
(Zhang et al. 2002) 
(Kocieniewski et al. 
2012) 

Modelled as two states of a 
communicating x-machine, 
active state (pMAPK) and 
inactive state (MAPK). As 
conditions within the algorithm 
are met, the agent change 
state using its transition 
function. 
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Temporal 
environment  

 

(Tomida and Taichiro 
2014) 
 

 

Continuous stimulus (Tomida et al. 2012) 
(Macia et al. 2009) 
(Tombes et al. 1998) 

The ABMs simulated 
activation via an acute signal. 
However a continuous signal 
was also applied to examine 
pMAPK response to dynamic 
signalling. Refer to section 
4.4.1.2 

Acute stimulation (Tombes et al. 1998) Received at t0 

Sustained pMAPK 
activation 

(Sasagawa et al. 2005) 
(Tomida et al. 2012) 
(Traverse et al. 1992) 
 

These behaviours were not 
specifically modelled because 
they are emergent behaviours, 
and consequently were 
outputs for detection. 

Transient pMAPK 
activation 

(Sasagawa et al. 2005) 
(Tomida et al. 2012) 

re-establishment of basal 
pMAPK levels 

(Lefkowitz 2005) 
(Traverse et al. 1992) 
 

Full activation at 5-10 min 
(Tomida et al. 2015) 
(Chang and Karin 2001) 

Important behaviour 

MAPK activation dynamics  (Anderson et al. 1990) 
(Kocieniewski et al. 2012) 

Processive 
phosphorylation: The 
process where a protein is 
phosphorylated on 
multiple sites by the same 
kinase. Recent publication 
emphasis processive 
phosphorylation 
dominance, especially in 
the presence of scaffold 
proteins 

(Kocieniewski et al. 
2012) 
(Ouldridge and Rein ten 
Wolde 2014) 
(Heinrich et al. 2002) 
(Levchenko et al. 2000) 
(Burack and Shaw 
2000) 
(Aoki et al. 2011) 

pMAPKK interaction and 
phosphorylation of MAPK to 
was simulated as a processive 
process whereby pMAPKK 
was assumed to dual 
phosphorylate MAPK.  

Distributive 
phosphorylation: The 
process where a protein is 
phosphorylated on two 
sites by two different 
kinases and involves the 
dissociation of the proteins 
from the original complex 

(Markevich et al. 2004) 
(Burack and Sturgill 
1997) 
(Ferrell and Bhatt 1997) 
(Huang and Ferrell 
1996) 

This was not considered in the 
ABMs as evidence suggest 
that phosphorylation within the 
MAPK pathway is a 
processive process 
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to complete 
phosphorylation of the 
second site 

Oscillatory pMAPK 
response 

(Kholodenko 2000) 
(Shankaran et al. 2009) 
(Weber et al. 2010) 
(Tomida et al. 2015) 

As these behaviours are 
products of the formation and 
therefore levels of pMAPK , 
they were not specifically 
modelled in the ABM, but were 
emergent behaviour of the 
models, and therefore were 
assessed as the ABM outputs 

Graded pMAPK response (Ferrell and Machleder 
1998) 
(MacKeigan et al. 2005) 

Ultrasensitive pMAPK 
response 
 
 
 
 

(Ferrell and Bhatt 1997) 
(Ferrell 1997) 

Nuclear translocation: The 
precise mechanism for 
import is debated to be 
either passive, active or a 
combination of both, 

(Horgan and Stork 
2003) 
(Karlsson et al. 2004) 
(Furuno et al. 2001) 
(Khokhlatchev et al. 
1998) 
(Masuda et al. 2001) 
Importin: (Lorenzen et 
al. 2001) 
 (Plotnikov et al. 2011) 

pMAPK import was simulated 
as instantaneous translocation 
of pMAPK into the nucleus 
from the cytoplasm.  

Nuclear translocation: The 
time taken to transolcate 
pMAPK into the nucleus 

(Ahmed et al. 2014) 
(Costa et al. 2006) 
(Volmat et al. 2001) 
(Lenormand 1993) 
(Lenormand et al. 1998) 
 

The time to achieve full 
pMAPK translocation into the 
nucleus is within 5 minutes 
and is shown to be 
instantaneous. Hence, pMAPK 
agents tranlocated into the 
nucleus once they changed 
state. The time to achieve full 
translocation into the nucleus 
was an emergent behaviour 
monitored in the ABM 

Gene expression events: 
Activated pMAPK triggers 
gene expression events in 
the nucleus. Gene 
expression and 
transcription involves 
multimeric protein 
complexes 

(Winkles 1997)  
(Murphy et al. 2002)  
(Matsushita et al. 2009)  
(Funnell and Merlin 2012) 
(Scott and Pawson 
2009)  
(Soufi et al. 2008) 

The ABM modelled the 
interaction with transcription 
factors (TF) to mediate gene 
expression initiation events. 
pMAPK interacted with 
different TF states: 
monomeric-DNA bound, 
monomeric-unbound, 
multimeric-DNA bound and 
multimeric-unbound. Only 
DNA-bound multimericTF 
state mediated gene 
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transcription initiation events. 

Nuclear export of pMAPK 
to the cytoplasm was 
shown to involve protein-
protein interactions with 
various proteins 

(Karlsson et al. 2004) 
(Adachi et al. 2000) 
 (Plotnikov et al. 2011) 
(Adachi et al. 1999) 
(Gaumont-Leclerc et al. 
2004) 

Nuclear export was modelled 
as an active process which 
involved the interaction of 
pMAPK with an exporting 
nuclear receptor (ExR). 
Binding interaction between 
the two agents resulted into 
the export of pMAPK into the 
cytoplasm and/or cytoplasmic 
compartment and change 
state to MAPK 
 
 
 

MAPKK activation dynamics 

The MAPKK is a 
bottleneck where 
activating and deactivating 
inputs coverage. Balance 
between activating and 
deactivating signals 
determine pMAPK 
magnitudes and duration  

(Cuenda 1995) 
(Favata et al. 1998) 
(Haeusgen et al. 2011) 
 

This property was utilised in 
the ABM by the use of 
pMAPKK agent activation 
behaviour to temporally adjust 
pathway activation  

Cooperative inhibition is 
the process where pMAPK 
phosphorylates pMAPKK, 
thus inhibits the latter and 
modifies MAPK activation 
dynamics 

(Kim and Ferrell 2007) 
(Legewie et al. 2007) 
(Eblen et al. 2004) 
(Chickarmane et al. 
2007) 
(Ortega et al. 2006) 

Binding interaction of pMAPKK 
with MAPK resulted into the 
phosphorylation of pMAPK. 
This in turn phosphorylates 
pMAPKK leading to its 
inactivation and formation of a 
dormant MAPKK. The 
dormancy period was 
modelled as re-activation 
delay period (RADP) 

Phosphotases: Inhibition 
of the kinases in the 
MAPK pathway was 
shown to be mediated by 
phosphatase protein 
families which determine 
the time the kinases 
remain in the 
phosphorylated/active 
state 

(Kins et al. 2003) 
(Silverstein et al. 2002) 
(Sontag et al. 1993) 
(Westermarck et al. 
2001) 
 

The inhibitory action of 
phosphatses on MAPK 
signalling was integrated in the 
ABM as a black-box 
parameter within the RADP.  

Ubiquitination: MAPKK 
was shown to be 
regulated by ubiquitination 
which impact the MAPK 
activation behaviour and 

(Hurst and Dohlman 
2013) 
(Wang 2002) 

Irreversible inhibition and 
breakdown of pMAPKK was 
simulated in one experiment in 
the two compartment ABM by 
including algorithm for 
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MAPKK levels in the 
cytoplasm 

MAPKK-agent removal from 
the model 

Deactivation by other 
proteins: MAPKKs activity 
is reported to be 
influenced by several 
binding partners such as 
tribbles, scaffold proteins 
and adaptor proteins. 

(Sung et al. 2007) 
(Kiss-Toth et al. 2004) 

Reversible inhibition of the 
MAPKK by binding partners 
such as the tribbles family 
(TRIB) was modelled in one 
ABM experiment in the two-
compartment ABM by the 
introduction of a TRIB-agent. 
TRIB bound to pMAPKK 
changing its state to a 
MAPKK.  

Protein intracellular movement  

Homogenous distribution 
of molecules in the cell is 
a prevalent representation 
of proteins in in silico 
models. However this 
assumption is becoming 
superannuated as more 
evidence indicate spatial 
separation and 
compartmentalisation of 
molecules within the cell 

(Klann et al. 2009) 
(Arora et al. 2013) 
(Canal et al. 2011) 
(Chiu et al. 2002) 
(Kholodenko 2002) 
(Donovan et al. 2016) 

A two compartment model was 
used where the appropriate 
proteins and kinases were 
homogenously distributed in 
the cell. While in the multi-
compartment ABM the 
proteins and kinases are 
distributed into cytosolic 
compartments 

Brownian motion: Small 
and moderate sized 
molecules such as 
proteins move by 
Brownian motion in 
crowded environment and 
within the cytoplasm 

(Klann et al. 2011) 
(Klann et al. 2009) 
(Neves and Iyengar 
2009) 

Each agent was assigned a 
transition function determining 
movement with a Brownian 
motion 
via an algorithm. The 
algorithm had an element of 
stochasticity where at each 
time step the rotation angles 
were chosen randomly by 
each agent 

Molecular transport: Large 
objects such as 
organelles, chromosomes 
and endosomal vesicles 
are transported across the 
cytoplasm by intracellular 
transport system which 
involves large proteins 
such as kinesin and 
dynein 

(Voelzmann et al. 2016) The ABM did not address the 
movement of organelles or 
their transportation across the 
cytoplasm. Therefore, it was 
not included in the ABMs 

Protein-protein 
interactions:  

Molecular behaviour 
involves chemical 

(Hlavacek et al. 2003) 
(Legewie et al. 2007) 
(Scott and Pawson 
2009) 
(Suderman et al. 2013) 

The ABMs are driven by 
binding interactions between 
agents, whereby they 
determine their activation and 
inhibition status in addition to 
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modifications preceded by 
collision, docking and 
molecular binding of 
molecules. Protein-protein 
interactions, by 
determining the identity of 
proteins in the complex 
and their spatial 
localisation, are driving 
molecular forces which 
were illustrated to 
influence cellular 
response. 

 

their future interactions. This is 
analogous to the the natural 
system. Binding interaction is 
executed via transition 
functions and by message 
input-output exchange 
between agents via libmboard 

Interactome determines 
response: The identity of 
the interacting proteins 
influence the outcome of 
the signal  

(Santos et al. 2007) 
(Ahmed et al. 2014) 
(Romano et al. 2014) 
(Romano et al. 2014; 
Brahma et al. 2007) 

This was utilised in the ABM 
by utilising the binding 
interaction between agents in 
the ABMs and allowing it to be 
the driving force of the ABMs. 
The concept was also utilised 
to facilitate the change of 
protein-agents (such as 
MAPK) to change to different 
states depending on its 
interaction partner. 

Binding/docking and 
phosphorylation 

(Hlavacek et al. 2003) 
(Legewie et al. 2007) 
(Scott and Pawson 
2009) 
(Suderman et al. 2013) 

Binding and docking was 
executed by transition 
functions whereby an agent 
scans the surrounding 
environment for its binding 
partners. When identified, the 
binding partners are notified, 
they confirm their interaction 
availability and consequently a 
bond is formed between the 
two agents 

MAPKK-MAPK: A 
hallmark of the MAPK 
pathway is the interaction 
between the kinases 
especially the third tier 
MAPKK and MAPK 
whereby the main 
molecule MAPK is 
phosphorylated and 
activated. This involves 
their binding and the 
transfer of a phosphate 
group from ATP to MAPK  
 

(Legewie et al. 2007) 
(Seger and Krebs 1995) 
(Zhang et al. 2002) 

Interaction between MAPKK-
MAPK was modelled when the 
two proteins came into close 
proximity. The intricate details 
of the phosphorylation step 
were not included in the ABM 
due to its rapid occurrence in 
relation to the calibrated run 
time in the ABMs. At every 
iteration, MAPK scanned the 
surrounding environment for 
the closest free pMAPKK. 
Once identified, the pMAPKK 
confirms the availability for 
binding and a bond forms 
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between the two agents. 

pMAPK-TF: 
pMAPK mediated gene 
expression events in the 
nucleus by 
phosphorylation of TFs 
that control the expression 
of particular genes. The 
event involves binding and 
phosphorylation of TF by 
pMAPK  

(Efimova 2002) 
(Xu et al. 2004) 
(Volmat et al. 2001) 
(Mebratu et al. 2009) 

pMAPK interaction mechanism 
with TF was identical to its 
interaction with MAPKK. The 
phosphorylation process was 
not included in detail due to 
the short time-scale of its 
occurrence; however, the 
outcome of phosphorylation 
(i.e. TF activation) is part of 
the model. Unlike the natural 
system, pMAPK involved in TF 
activation changed  its state to 
allow to monitor the level of 
pMAPK involved in gene-
expression initiation events 

MAPK-ExR: 
Numerous MAPK nuclear 
export mechanisms are 
demonstrated in the 
literature, all involve 
interaction and binding 
with an exporting protein 
such as Importin 7 

(Adachi et al. 2000) 
(Adachi et al. 1999) 

The exporting mechanisms 
relied on binding interaction 
with a general exporting 
protein which was localised at 
the nuclear membrane. The 
mechanism of interaction are 
identical to those outlined for 
MAPKK-MAPK 

MAPKKK-MAPKK: A 
hallmark of the MAPK 
cascade activation is 
signal propagation from 
first tier to second tier via 
MAPKKK 
phosphorylation and 
activation of MAPKK. 
This occurs by the co-
binding of both proteins 
and the transfer of a 
phosphate group from 
ATP to MAPKK via a 
catalytic reaction 
conducted by MAPKKK 

(Matsuda et al. 1993) 
(Takekawa et al. 2005) 

Successful signal propagation 
from MAPKKK to MAPKK was 
initiated at t0.  MAPKK agents 
were in the dormant state and 
at t0 MAPKKK were assumed 
to be fully active, and thus 
phosphorylated MAPKK 
leading to pMAPKK formation. 
MAPKK re-activation was 
integrated as part of RADP.  

Regulation : feedback 
loops 
The MAPK pathway is 
tightly controlled via 
feedback loops which 
result into the modulation 
of the activation 
magnitude and duration. 
Regulatory loops are 
regarded as temporal 
regulatory mechanism. 

(Brightman and Fell 
2000) 
(Marshall 1995) 
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MAPKK was 
demonstrated to be a 
bottleneck for activating 
and inhibiting inputs 

Negative regulatory 
loops final outcome is to 
reduce levels of pMAPK 
to basal levels. The loops 
modulate the pathway at 
the three tiers. The 
involve the activation of 
phosphotases, inhibition 
of upstream cascade 
proteins such as MAPKK 
and SOS.  

(Lake et al. 2016) 
(Westermarck et al. 
2001) 
Inducible dusp 
expression: (Kucharska 
et al. 2009) 
(Lin et al. 2003) 

Positive and negative 
regulation are both at play at 
any particular time, therefore 
the observed effect on the 
system is the outcome 
between a “tug of war” 
between both actions. Strong 
activation causes a prolonged 
activation of the cascade, 
while substantial inhibition 
result into brief activation and 
return to basal pMAPK levels 
in a short time. In the ABMs 
the net effect of inhibition and 
activation was translated via 
RADP. As MAPKK was 
regarded as the bottleneck for 
the pathway, RADP was 
implemented as a transition 
function rule governing 
MAPKK. 

Positive regulatory loops 
involve enhancing the 
propagation of the signal 
downstream of the 
MAPK pathway. It was 
shown to be mediated 
through kinases and 
double negative loops. 
The final outcome is to 
increase pMAPK levels 
and increase the 
magnitude of the signal  

(Shin et al. 2009) 

Receptor constitutive 
activity: whereby 
receptors are activated 
without the presence of 
their activating ligand 
and therefore 
automatically shift from 
active to inactive state  

(Rang 2006) 
(Bond and IJzerman 
2006) 
(Kleiman et al., 2011) 

This property was used in the 
model to simulate the 
activation of the export 
receptor (ExR) via the memory 
parameter recdelay, where 
ExR automatically shift 
between active and dormant 
states. The former interacts 
with pMAPK to allow its 
nuclear export, while the latter 
does not interact with pMAPK 

 

 

3.2.2  Physical environment 

The process of cell signalling occurs within the internal cell environment (Alberts et 

al., 2002). Therefore, the cell was chosen to be the environment where model events 
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https://paperpile.com/c/AO6mPe/Xbo7
https://paperpile.com/c/AO6mPe/2fYA
https://paperpile.com/c/AO6mPe/iK2z
https://paperpile.com/c/AO6mPe/iK2z
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occur. Signalling through the MAPK pathway predominantly occurs within the 

cytoplasm and the nucleus, and ultimately drives cellular responses (Alberts et al., 

2002, L'Allemain et al., 1992, Seth et al., 1992). Therefore, the cytoplasmic and 

nuclear compartments were chosen to be the site of interactions. 

 

3.2.2.1  Individuals within the environment:  

As highlighted in  Chapter 1 and demonstrated in Figure 1. 1; the MAPK pathway is a 

three tiered cascade with the main proteins involved being MAPKKK, MAPKK and 

MAPK (Brunet et al., 1999). One of the main phenotypes of MAPK activation is its 

interaction and activation of nuclear proteins, predominantly transcription factors (TF) 

(Efimova et al., 2002, Xu et al., 2004). Therefore, TFs were considered in this model. 

Mechanisms to export activated MAPK (pMAPK) out of the nucleus to the cytoplasm 

are complex, however, it is reported that they rely on protein receptors which allow 

for pMAPK species to translocate out of the nucleus (Furuno et al., 2001, Horgan 

and Stork, 2003, Karlsson et al., 2004, Masuda et al., 2001).  

 

3.2.2.2 Temporal environment:  

The model aims to investigate the dynamics of MAPK activation, the influence of 

spatiotemporal changes on activation; and consequently their role in diversifying 

MAPK-dependent cellular responses. If the initial activation was through a temporary 

and abrupt signal, full activation of the pathway and deactivation events at the 

molecular level occurs and persists for minutes (Sasagawa et al., 2005b, Tomida et 

al., 2012). Given a continuous stimulus, the activation of MAPK can last for few 

hours (Macia et al., 2009).  
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3.2.3  Important behaviour 

 Chapter 1 described the complexity of the MAPK signalling network (see 

section  1.3). These include the multiple MAPK pathways, crosstalk and other 

mechanisms which influence MAPK activation dynamics, and ultimately determine 

cellular response. Subsequent sections identify and describe the important 

behaviours observed within the MAPK signalling pathway both at the cellular 

(system) and the protein (individual) levels. 

 

3.2.3.1  Cellular environment and architecture  

A typical cell is simply defined as “solution medium” (the cytoplasm) surrounded by a 

lipid membrane (plasma membrane) (Klann et al., 2011, Neves and Iyengar, 2009, 

Resat et al., 2011).The plasma membrane serves as the boundary which separate 

intracellular and extracellular environments. However, the cytoplasm is a complex 

fluid environment, composed of the fluid phase which dissolves both large and small 

molecules (such as proteins and monosaccharaides respectively) and a network of 

cytoskeletal filaments (Luby-Phelps, 2000). The cytoplasm of eukaryotes 

encompasses several specialised membrane-bound compartments, such as the 

endoplasmic reticulum (ER) (Hudder et al., 2003, Takamori et al., 2006). In addition, 

the cytoplasm contains organelles such as the mitochondoria and the ribosomes. 

Another important characteristic of eukaryotic cells is the presence of the nucleus 

where genetic material is stored and separated from the cytoplasmic environment by 

the nuclear membrane. In the nucleus, expression of genes is primarily controlled 

(Youngson, 2006). Separation between the compartments results in different 

compartments obtaining distinct characteristics and specialised functions, such as 
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the low pH of the lysosomes making it ideal as a site for protein degradation 

(Settembre et al., 2013). The classical assumption that the cytoplasm of eukaryotic 

cells is composed of homogenously distributed proteins is outdated. Accumulating 

evidence demonstrates localised pools of proteins within specific cellular domains 

and within intracellular compartments (Arora et al., 2013, Canal et al., 2011, Chiu et 

al., 2002, Kholodenko, 2002). The separation provided by compartments insulates 

compartmentalised proteins from further enzymatic processing such as 

dephosphorylation and ubiquitination. Compartmentalisation also dictates protein-

protein interaction as specific proteins are targeted into specific compartments. It 

was demonstrated that some compartments contain a 1-100 protein copy number in 

contrast to 1000s in the cytoplasm (Takamori et al., 2006).. Furthermore Takamori et 

al, also illustrated that the proteins stoichiometry within these compartments is 

regulated. 

 

On page 103 the implementation of the cellular environment into the agent based 

model is outlined. 

 

3.2.3.2  MAPK pathway dynamics: ultrasensitivity and 

oscillatory behaviour 

Biologically, activation of the MAPK pathway is primarily characterised by two events 

(Figure 1. 1). The first is the increased phosphorylation of the MAPK proteins by 

MAPKK and hence phosphorylated MAPK (pMAPK) levels. (Seger and Krebs, 

1995). The second event is the translocation of pMAPK proteins and the rapid 

increase of its levels in the nucleus. pMAPK interaction with transcription factors 
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(TFs) in the nucleus mediate gene expression events. MAPK phosphorylation and 

translocation occur almost simultaneously and in under 10 minutes (Ahmed et al., 

2014, Costa et al., 2006, Kholodenko and Birtwistle, 2009).  

 

Activation of MAPK and formation of pMAPK species, with respect to time, is 

characterised as either a digital/binary process (all or nothing), graded (analogue) or 

as an oscillatory process (Figure 3. 2) (Ferrell, 1997, Ferrell and Xiong, 2001, 

Tomida et al., 2012). The former activation behaviour appears as a nearly vertical 

sigmoidal curve, while the second appear as a sigmodial curve where levels of 

pMAPK increase gradually (Ferrell and Machleder, 1998). In both the graded and the 

digital process the sigmoidal curve is composed of three phases. The initial phase is 

short and characterised by low and unchanged pMAPK levels. The second (middle 

phase) is characterised by a relatively short yet rapid increase in pMAPK formation. 

The third phase is characterised by the pMAPK levels reaching their peak and a 

deceleration in pMAPK formation leading to a plateau phase which lasts for few 

minutes. The digital/binary behaviour is termed the ultrasensitive response. 

Conversely, oscillatory activation behaviour exhibits an alternating increase and 

decrease in pMAPK levels (Figure 3. 2,) (Kholodenko, 2000, Wang et al., 2006). This 

behaviour was only recently demonstrated in vitro, although it was predicted by 

Kholdenko et al in silico when they investigated the effect of negative feedback loops 

on MAPK activation dynamics (Kholodenko, 2000, Shankaran et al., 2009). 

 

The final outcome of modulation of gene expression by pMAPK is not immediate 

(Winkles, 1998). This is due to the lengthy period between modulation of 
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transcription and considerable alteration in the cellular protein levels (Matsushita et 

al., 2009). However, the immediate influence of pMAPK on gene expression events 

(A)       (B) 

 
(C)       (D) 

     
(E)  

 
Figure 3. 2 The MAPK activation dynamics observed in vitro and in silico.  (A) and (B) demonstration of the 
ultrasensitive activation behaviour, activation refers to either level of phosphorylated MAPK (pMAPK) or pMAPK 
translocation into the nucleus. (C) –(E) The oscillatory MAPK activation dynamics, (C) and (D) as predicted by 
(Kholodenko, 2000) in their in silico model and (E) as reported physiologically for the first time by (Shankaran et al., 
2009). The images (A) and (B) were adapted from (Avraham and Yarden, 2011), while (C) and (D) were adapted 
from (Kholodenko, 2000) and (E) was adapted from  (Shankaran et al., 2009). 
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can be monitored in vitro by several methods, for instance qPCR or microarrays 

measure mRNA levels of the gene(s) of interest (Murphy et al., 2002).  

 

3.2.3.3 MAPK pathway regulation 

Regulation of the MAPK pathway is either a prolonged response or a rapid 

deactivation (Brightman and Fell, 2000, Marshall, 1995). These are mainly mediated 

through feedback mechanisms and predominantly rely on protein-protein interactions 

(Nakakuki et al., 2010, Santos et al., 2007a), which were described in detail in 

Section  1.3.1. 

3.2.3.4  MAPKK activation dynamics: 

The MAPK pathway relies on propagation of phosphorylation events through the 

cascade (Alessi et al., 1995, Anderson et al., 1990, Burack and Shaw, 2000). 

Activation of MAPKK is believed to be the bottleneck for such a process (Alessi et 

al., 1995, Favata et al., 1998, Haeusgen et al., 2011). Activated MAPKK (pMAPKK) 

levels are elevated with persistent pathway activation due to constant activation of 

upstream cascade components such as the RTKs, or by positive feedback 

mechanisms, including the inhibition of the Raf kinase inhibitor protein (RKIP, Figure 

1. 7) (Shin et al., 2009b). However, pMAPKK levels are reduced via several 

mechanisms including direct inhibition (Kim and Ferrell, 2007, Legewie et al., 2007) 

and dephosphorylation by phosphatase enzymes (Kins et al., 2003, Silverstein et al., 

2002, Sontag et al., 1993). Phosphatase actions are outlined in  Chapter 1 

section  1.3.1.1.1.1.1. Phosphatase proteins are activated either immediately 

(phosphorylation via pMAPK) (Westermarck et al., 2001) or by the increased 

phosphatase gene expression (Kucharska et al., 2009, Lin et al., 2003). Other 
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mechanisms which result in the inhibition of MAPKK activity include protein 

degradation via ubiquitination, or inhibition. Inhibition is accomplished via the pMAPK 

(competitive inhibition, (Eblen et al., 2004)) and/or adaptor proteins such as the 

tribbles family of proteins (Kiss-Toth et al., 2004, Sung et al., 2006). 

 

3.2.3.5  Intracellular movement of the proteins.  

Intracellular protein movements occur within the cytoplasm and the nucleus. 

Physically, the cytoplasm is regarded as a semi-fluid compartment composed of a 

fluid and solid phase (Fels et al., 2009). The solid phase contains macromolecules 

such as polysaccharides, lipids and the cytoskeleton. The cytoplasm is composed of 

large compartments such as the Golgi apparatus and the endoplasmic reticulum 

(ER) (Raff et al., 2002). Smaller molecules such as amino acids, fatty acids and 

carbohydrates exist in the semi fluid phase. They and the macromolecules are 

thought to move through the cytoplasm by simple diffusion over short distances and 

via molecular transport over large distances (for instance from the cell body of 

neurones to the synapses) (Voelzmann et al., 2016). Computer models of cell 

signalling events, for simplicity, usually assume a homogenously distributed and a 

well-mixed cytoplasm where molecules move through the cytoplasm by Brownian 

motion (Burrage, 2003, Burrage et al., 2006, Burrage et al., 2004).  

 

3.2.3.6 Translocation of pMAPK species  

After pMAPK formation, it translocates into the nucleus within few seconds. The 

precise mechanism of import into the nucleus is complex and many mechanistic 

features are proposed to be important (Costa et al., 2006, Liu and Geisbrecht, 2011, 
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Lorenzen et al., 2001). These include a passive translocation process, an importin 

protein-dependent process, or a pMAPK dimerization-dependent process. MAPK 

nuclear export is a rapid process and the precise molecular mechanism has not 

been resolved. However, the mechanisms proposed include the involvement of 

importin7, phosphatases and calcium immobilisation from nuclear stores (Liu and 

Geisbrecht, 2011, Lorenzen et al., 2001). There is also extensive evidence for the 

involvement of exporting proteins which shuttle MAPK out of the nucleus (Plotnikov 

et al., 2011). 

 

3.2.3.7  Protein-protein interactions  

The majority of cellular processes depend on proteins being in very close proximity 

and either binding via weak chemical forces or stronger covalent bonds (Hlavacek et 

al., 2003, Legewie et al., 2007, Scott and Pawson, 2009). These processes include 

transport across membranes, protein synthesis and cell signalling (Kholodenko et al., 

2002, Nicolau et al., 2006, Suderman and Deeds, 2013)  

 

3.2.3.7.1 Interaction of MAPKK and MAPK 

Phosphorylation and activation of MAPK proteins involves MAPKKs binding to MAPK 

(Seger and Krebs, 1995). The kinase active site in MAPKK (with the presence of 

ATP molecule)  catalyses the transfer of a phosphate group from ATP to either a 

threonine or tyrosine amino acids at MAPK activation loop, and consequently the 

formation of ADP molecules (Chang and Karin, 2001, Coulthard et al., 2009, Davies 

and Tournier, 2012). The addition of the phosphate group changes the MAPK tertiary 

conformation, thus stabilising and activating its kinase domain. It is widely believed 
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that the MAPK proteins require dual phosphorylation of the threonine and tyrosine 

residues for full MAPK activation (Ferrell and Bhatt, 1997, Kocieniewski et al., 2012, 

Ortega et al., 2006). However, there is speculation if this is a processive or 

distributive process (Burack and Shaw, 2000, Markevich et al., 2004, Ouldridge and 

Rein ten Wolde, 2014). Interaction of MAPK with MAPKK results in inhibition of 

MAPKK termed as competitive/cooperative inhibition (Chickarmane et al., 2007, 

Legewie et al., 2007, Ortega et al., 2006). 

 

3.2.3.7.2  Interaction of MAPK with TF 

Once pMAPK is imported into the nucleus, it interacts with several nuclear proteins 

to influence nuclear events (Efimova et al., 2002, Perdiguero and Muñoz-Cánoves, 

2008, Xu et al., 2004). These include binding with TFs (such as Elk as c-Myc) to 

regulate gene expression. Gene expression events rely on binding of activated TFs 

to promoter sites in the DNA. Facilitating gene expression requires recruitment of 

RNA polymerases into promoters (Raff et al., 2002). This depends on the presence 

of specific combinations of TFs forming multimeric complexes (Funnell and Crossley, 

2012, Scott and Pawson, 2009, Soufi and Jayaraman, 2008). The formation and 

activation of the right complex allows for mediation of gene expression events. 

pMAPK is capable of binding to monomer TF, or a multimeric complex where MAPK 

phosphorylation activates the complex and thus, ultimately, stimulates gene 

expression (Volmat et al., 2001). 
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3.2.3.7.3  Interaction with exporting receptors (ExR) 

MAPK interaction with exporting proteins is required to allow for its export from the 

nucleus (Adachi et al., 1999, Adachi et al., 2000, Volmat et al., 2001). The process 

plays a role in inhibiting gene expression, because of reduced pMAPK availability to 

interact and activate TF complexes (Mebratu and Tesfaigzi, 2009, Volmat et al., 

2001). The process is thought to involve the binding of the MAPK species with the 

exporting receptors at the internal interface of the nuclear membrane. The binding of 

pMAPK triggers a conformational change in ExR structure, leading to exporting 

pMAPK from the nucleus to the cytoplasmic interface of the nuclear membrane 

 

3.3 Model formulation: Defining the agent based 

model (ABM) of the MAPK pathway  

This section underlines how system specifications outlined in section  3.2 were 

implemented computationally. 

 

A cellular response is dependent on molecular interactions. Molecular interactions 

rely on interaction of individual molecules (Deeds et al., 2012). The main interacting 

molecules in the MAPK pathway are the kinase proteins (Chang and Karin, 2001, 

Johnson and Lapadat, 2002). Every protein in the cascade varies in its activation 

state, interactivity and cellular location (Andreadi et al., 2012, Deeds et al., 2012, 

Harding et al., 2005b, Suderman and Deeds, 2013). These properties are important 

in shaping the activation dynamics of the pathway and the cellular response (refer 

to  Chapter 1, section  1.3). Therefore, a molecular level ABM was used to model the 
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cascade downstream of MAPKKK, where MAPKKK being represented by the 

activation trigger occurring at t0, because MAPKKK activation signifies the initiation 

of MAPK pathway stimulation, which is immediately followed by MAPKK activation, 

consequently, the individuals included in the model were MAPKK and MAPK (Ferrell, 

1997, Kholodenko, 2000). The individual behaviour of MAPKK, MAPK, TFs and ExR 

were defined by roles, which were executed by the agents. These roles (at the level 

of individual proteins) were used to examine spatiotemporal properties of the 

cascade and how they contribute to cellular MAPK activation dynamics.  

Implementing the roles which closely depict the interaction and activation behaviour 

of the proteins involved in the cascade allows for investigating the effects of different 

interaction combinations and activation behaviours in space and time. As a result, 

assessment of the significance of these combinations, and their contribution to the 

complexity of the pathway activation dynamics can be conducted. The model, 

therefore, will allow us to look into molecular interactions, in space and time, which 

lead to emergence of ultrasensitivity and oscillatory activation behaviour. 

Furthermore, the model will allow for characterising the molecular mechanisms 

which return the system back to basal conditions, and exploring the potency of these 

mechanisms to down-regulate activation. 

 

Most cells adhere to somewhat generic behaviour as they implement fundamentally 

identical mechanisms to achieve it. The presented ABMs were designed to emulate 

this and, thus were built as generic models. Furthermore, part of the mystery of the 

MAPK signalling pathway is that it is utilised by different cell types with similar 

activation dynamics, yet, the cellular outcomes differ. This is generally believed to be 
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due to alterations in molecular signalling parameters such as signal intensity and 

feedback mechanisms in space and time. The ultimate and long-term aims from 

using the ABM approach are: (1) examine how cell-specific behaviour develops, 

despite different cell types employing the same elements and generic behaviour; (2) 

identify which molecular parameters (both spatially and temporally) are altered to 

achieve this and (3) how these lead to cell-specific responses. Hence, obtaining the 

generic behaviour of The Cell is key to moving forward with future work and/or 

contributions to the field of MAPK signalling.  

 

3.3.1  Creating the system boundaries: 

This section describes computational translation and implementation of the 

boundaries (identified and described in section  3.2.1). Table 3.1 summarises the 

process. 

 

3.3.1.1  Physical environments  

Signalling through the MAPK pathway takes place intracellularly, predominantly in 

the cytoplasm and the nucleus. Therefore, a three-dimensional (3D) model of the cell 

was used as the global environment. Biologically, the main entities which create 

physical boundaries between these cellular compartments are lipid membranes. 

Therefore, nuclear and plasma membranes were specified as environments and 

their radii were specified as an environmental boundary in the model. The diameter 

of a cell is 10-100µm and the nucleus diameter is 3-10µm with an average of 6µm. In 

FLAME, distance is divided into arbitrary points, thus every distance point was 
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assigned a value of 1nm. The cell size chosen for the ABM was double the size of 

the smallest cell (i.e. 20µm). While the size picked for the nucleus was a middle 

value between the average and the largest size of a nucleus (8µm in diameter). 

 

Figure 3. 3 shows activity diagrams for each agent and the processes leading to its state change.  (A) State 
transition of the MAPKK agent. (B) Schematic representation of MAPK state transition. (C) state transition 
schematic flow of the ExR (D) State transition steps for the transcription factor (TF)  
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Therefore, a moderate cytoplasmic volume is created to accommodate for the 

protein number. The membrane-bound intercellular compartments boundaries were 

also specified. The size selected for an individual compartment was 1µm which is 

equivalent to the size of a small mitochondrion (Raff et al., 2002). The protein agents 

were made to deflect away from the membrane once their 3D coordinates reached 

the membrane boundaries. For simplicity, viscosity and porosity of the cytoplasm 

and the nuclear environment were not considered in the model. 

 

3.3.1.2  Individual agents within the ABMs 

The MAPK pathway incorporate numerous proteins which are involved in pathway 

activation and regulation, Including all mechanisms and the proteins involved in the 

MAPK signalling network (at this stage) adds unnecessary complexity to the model, 

which renders it difficult for implementation, analysis and validation (Deeds et al., 

2012, Suderman and Deeds, 2013). Therefore, using the evidence from the 

literature, only the primary proteins involved in the pathway and the mechanisms 

considered necessary for the MAPK pathway functionality were adapted and 

implemented in the presented ABMs. To overcome this a black-box approach was 

utilised to implement behaviour and components in the pathway such as feedback 

loops. Using the ABM formalism, said components can be improved and expanded 

in consequent models in the future. The individuals which were chosen to represent 

the pathway were predominantly the MAPKK, MAPK and ExR. Any additional agents 

or alteration of agents’ behaviour(s) are highlighted and described in the appropriate 

result chapter. These autonomous agents can attain different states. Interaction 
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between the agents relied on binding events and bond formation between them. A 

summary of the pivotal agents in the ABMs are described below.  

 

          MAPK                  MAPKK                   ExR 

 

Figure 3. 4 Stategraph for the agents in the Agent Based Model (ABM) illustrating the processes of state 
change, communication and message input/out by the three primary agents in the ABM.  The initial state 00 
is the native state at the start of the simulation; agents execute the first transition function (indicated by the brown 
box). The execution of the transition function output messages (denoted by the green arrows). Transition function 
full execution allows the agent to occupy a new state (01). The new state executes a new transition function which 
may require a message input. The agent accesses messages from the libmboard. The process of state change, 
transition function execution and message input-output continue until the last transition function is completed. This 
marks the end of a simulation  
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3.3.1.2.1  MAPKK (total MAPKK (tMAPKK)) 

Intracellularly, MAPKK exists in either a phosphorylated or unphosphorylated states. 

The former is the active state while the latter is the inactive state (Raff et al., 2002).  

Therefore, MAPKK in the ABM was modelled to exist in either an active state 

(pMAPKK) or inactive/dormant state (henceforth referred to as MAPKK). 

Consequently, it is worth noting that tMAPKK (MAPKK in both active and inactive 

state) is referred to henceforward as tMAPKK. pMAPKK only interacts with the 

MAPK agents. tMAPKK was modelled to move by Brownian motion, which is further 

described in section  3.3.2.1.1 below (Klann et al., 2011, Pogson et al., 2006). In the 

two compartments ABM, this movement is restricted to the cytoplasm, where it is 

deflected off the plasma membrane and the nuclear membrane. Movement in the 

multi-compartment ABM is restricted to within the individual compartment 

boundaries. tMAPKK agents contain memory parameters which specify the 3D 

position in Cartesian and polar coordinates (see Appendix A, Table 1  and Appendix 

A, Table 6). The protein activation/phosphorylation state was monitored using the 

memory parameters [state] and [RADP]. To simplify agents’ movement and diffusion, 

each was modelled as a single point. Interaction with MAPK was monitored using the 

memory parameter [boundindex]. pMAPKK interaction with MAPK occurred as the 

former agent reads locations messages of the different MAPK agents; determining 

the closest MAPK available for binding. pMAPKK sends location messages and 

binding status messages to neighbouring MAPK agents. Once binding availability 

confirmation is established between MAPK and pMAPKK, binding occurs. This leads 

to the change in pMAPKK status to MAPKK. MAPKK reverts back into pMAPKK after 

a lag phase (regulated by the parameter re-activation delay period, [RADP]).  
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tMAPKK activity is summarised in Figure 3. 3 (A), while its state transition is shown 

in Figure 3.4 

 

3.3.1.2.2 MAPK 

MAPK move by Brownian motion. Similar to tMAPKK, this is traced via memory 

parameters which record its 3D position in Cartesian and polar coordinates (peruse 

Appendix A, Table 3 and Appendix A, Table 7). However, the movements of the 

different states are distinct. Inactive MAPK is restricted to moving in the cytoplasm or 

within the boundary of its specific compartment, whereas pMAPK is restricted to the 

nucleus. To simplify MAPK agents’ movement, they were considered as points. 

MAPK exists in two states: active (phosphorylated (pMAPK)) or inactive (MAPK). 

These were monitored by the memory parameter [state]. MAPK interaction with its 

binding partners relied on the memory parameter [iradius]. MAPK interacts with a 

several agents in the model. This utilises the memory parameters [iradius] and 

[state]. MAPK sends messages of its location and binding availability to be read by 

its interacting partners. Once binding availability is confirmed, the interaction 

between MAPK and its interaction partner occurs. MAPK interacts with pMAPKK in 

the cytoplasm and with ExR at the internal surface of the nuclear membrane. 

Interaction with pMAPKK leads to MAPK activation, change of status to pMAPK and 

nuclear translocation. In the nucleus, pMAPK interacts with ExR, leading to pMAPKs 

export to the cytoplasm or its specific compartment in the multi-compartment system, 

and subsequently, the re-formation of MAPK. Figure 3. 3 (B) summarises MAPK 

activity, while Figure 3.4 illustrates its state transition. 
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3.3.1.2.3 Exporting receptor (ExR) 

The movement of ExR was restricted to the circumference of the nuclear membrane. 

The movement was modelled as a Brownian motion within the circumference of the 

nuclear membrane (Nicolson, 2014). This was monitored using the memory 

parameters which recorded its 3D position in Cartesian and polar coordinates (found 

in Appendix A, Table 4 and Appendix A, Table 8). Receptors are shifting between 

active and inactive states and vice versa (Bond and IJzerman, 2006, Rang, 2006), 

thus ExR were modelled in two states, active (ExR) and inactive (iExR). These were 

specified by the memory parameter [state]. These two states are interchangeable. 

iExRs shift back to ExR after a lag phase (dormancy period) which is specified by the 

memory parameter [redelay]. ExR interacts with pMAPK, which utilises the memory 

parameters [state], [iradius] and [boundindex]. An activity diagram of ExR is shown in 

Figure 3. 3 (C), and ExR state transition is illustrated in Figure 3.4.  

 

3.3.1.2.4 The MAPKK protein inhibitor tribbles (TRIB) 

Tribbles is a family of pseudokinases which were shown to bind to MAPKK protein 

and induce an inhibitory action on MAPKK proteins in the MAPK pathway (Kiss-Toth 

et al., 2004). In the two compartments ABM TRIB proteins were modelled as a 

generic cytoplasmic protein which moves by Brownian motion. This was monitored 

using the memory parameters which recorded its 3D position in Cartesian and polar 

coordinates (see Appendix A, Table 1 ).TRIBs interact with pMAPKK agents when 

both proteins are within close proximity to each other (Hegedus et al., 2007, Sung et 

al., 2007). Successful binding of TRIB to pMAPK induce both protein agents to 

change state from active to inactive states (MAPKK and dTRIB respectively, see 
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Figure A. 1). Both protein agents revert back to their active state after few 

miliseconds. This interaction behaviour utilises the memory parameters [state], 

[iradius] and [boundindex]. 

3.3.1.3 Temporal environment  

The time to illicit full activation of MAPK i.e. by forming the maximum level of pMAPK 

species (Emax) was determined from the literature and was used in the ABMs. This is 

demonstrated and discussed further in section 3.3.2.2.1 on page 106. Briefly, 80 

graphs from the literature demonstrating the time to achieve pMAPK Emax were 

manually analysed. The analysis illustrated that the representative time to reach 

pMAPK Emax was 7.63 min. 

 

3.3.1.4 Binding interactions time 

Binding of MAPKK and activating MAPK by the addition of phosphate groups is an 

important attribute of the MAPK pathway activation (Anderson et al., 1990, Chang 

and Karin, 2001). Individual chemical interactions and reactions occur within micro 

time-scales. The addition of a single phosphate group as a result of ATP hydrolysis 

occurs within femto-seconds (Perkins et al., 2010). Modelling these reactions 

accurately and within the natural time-frame is possible; nonetheless inclusion of 

these steps requires complex calculations as well as being computationally 

expensive due to model processing of individual binding events and the large data 

produced (Shaw et al., 2014, Stefan et al., 2014). Additionally, inclusion of these 

processes will not assist the ABM in investigating the spatiotemporal elements which 

affect MAPK signalling, as the purpose of the model is to investigate protein 

interactions after the formation of these bonds. Therefore, the precise mechanisms 
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were not included in the model and a simplified bond formation was modelled. 

Consequently, the time assigned for the full binding interaction in the model was 

estimated to be, and set to, 0.91 second per iteration (Daub et al., 2008, Olsen et al., 

2006, Perkins et al., 2010). 

 

3.3.2  Agent behaviour:  

This section describes the behaviour of the agents within the model and the 

computational algorithms (transition functions) used to execute these behaviours. A 

sample of the transition functions that was used for each of the agents is in Appendix 

A, Table 3-Appendix A, Table 4 and Appendix A, Table 9-Appendix A, Table 11. In 

section  3.2.2, the fundamental properties and behaviour in the system were 

highlighted. The computational process by which these behaviours were converted 

into simulation is outlined below. The behaviours were divided into 1) individual 

behaviours, which are specific to an agent species (e.g. MAPKK agents) or 2) 

system level behaviour, where the behaviour applies to all the agent species. 

System level behaviours include agent movement, communication and binding 

interactions. Agent level behaviour includes the activation of MAPKK and MAPK, 

agents’ protein-protein interactions, and MAPK nuclear import and export. Any 

additional or altered agent or system behaviours were mentioned and described in 

the appropriate result section. 
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3.3.2.1 System level behaviour  

3.3.2.1.1 Movement of the agents 

 To be in line with the majority of previously published models of the MAPK pathway, 

the initial MAPK ABM was constructed for a cell with a homogenous distribution of 

proteins moving by Brownian motion. Conversely, the subsequent multi-

compartment ABM had adapted a more biological representation of protein 

distribution by placing the proteins within multiple cytoplasmic compartments, where 

movement of the proteins within the compartment were assumed to occur through 

Brownian motion, as they are located within a very small volume. 

 

All the agents were modelled to move by Brownian motion within the 3D space of the 

cell. This is to mimic simple diffusion of molecules within the cytoplasm. The function 

[[Move]] was designed to execute stochastic Brownian 3D movement using polar 

coordinates. This relied on specifying the polar angles phi and theta ([movephi] and 

[movetheta] respectively) and the radial coordinate [mover]. With each time-step, the 

value of phi and theta are updated and random angle values were chosen. These 

changes transferred into random motion. Once an agent reaches the environmental 

boundaries of either the plasma, nuclear or the intracellular-compartment 

membranes, the agents deflect from the membrane by reversing the value of phi and 

theta and the value of [mover].   

 



Page 105 of 346 
 

3.3.2.1.2 Communication between agents 

This was achieved by the use of messages (see Appendix A, Table 5 and Appendix 

A, Table 12-Appendix A, Table 14). The messages are inputted and outputted using 

the agents functions (refer to Appendix A, Table 4 and Appendix A, Table 9-

Appendix A, Table 11 for the messages inputted by individual functions). The 

messages are stored in FLAME’s message library (libmboard) and individual agents 

accessed particular messages required for interaction with their binding partners. 

Agents went through state transitions and the memory parameters were updated 

once the messages were read and the functions were performed (based on the 

specified algorithm code and the conditions set within it).  

 

3.3.2.1.3 Binding interaction 

Binding interaction was executed by the transition functions [[outputdata]], 

[[inputdata]] and [[checkbodtries]]. In summary, an agent surveys the environment for 

its closest binding partner, once this was located, the agent assesses if the binding 

partner is free for interaction. When the binding availability was confirmed the two 

agents bind, a confirmation for bond-formation is established and consequently both 

agents change state. 

 

3.3.2.2 Agent specific behaviour 

3.3.2.2.1  MAPK phosphorylation process and its activation 

dynamics 

The model addresses the initial short-term MAPK activation phase (within the first 45 

min of activation) and monitors the activation behaviour during that period. 
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Therefore, long-term activation responses, which involve modulation of gene 

expression events, are out of the scope of the model. 

 

Activation/phosphorylation of MAPK agents was modelled as a change in state due 

to binding interactions with pMAPKK agents. The transition functions 

[[MAPK_outputdata]], [[MAPK_inputdata]] and [[MAPK_checkbodtries]] with the 

memory parameter [state] executed such behaviour (Heinrich et al., 2002, 

Kocieniewski et al., 2012, Ouldridge and Rein ten Wolde, 2014). The 

phosphorylation process was modelled as a processive mechanism, whereby a 

pMAPKK undergoes the dual phosphorylation of MAPK in one binding interaction. 

pMAPK levels were measured to monitor the activation dynamics of the pathway. 

Since the ultrasensitive response is a characteristic based on the formation of 

pMAPK species, it was expected to emerge as a result of pMAPKK and MAPK 

agents interaction and pMAPK formation. This was used as the key output 

measurement for ABMs validation by measuring the time required to achieve pMAPK 

Emax and the time required to reach its EC50. Furthermore, pMAPK species were 

modelled to translocate to the nucleus once state change takes place.  Nuclear 

events and interaction with TF to initiate gene expression events were attempted in 

one of the ABMs to mimic the secondary pathway activation characteristic and, 

therefore, act as secondary measurable output for the model. This is to mimic 

biological experiments where levels of gene expression are measured using 

techniques such as microarrays where the levels of mRNA of a target gene are 

monitored with and without the activation of the MAPK pathway (Murphy et al., 

2004).  
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3.3.2.2.2  MAPKK activation dynamics 

MAPKK activation cues start at the beginning of model simulation; mimicking the 

phosphorylation event by the upstream kinase MAPKKK (Balan et al., 2006, Calipel 

et al., 2006, Craig et al., 2008). Transition functions [[MAPKK_inputdata]] and 

[[MAPKK_outputdata]] alongside the memory parameter [state] control the process. 

Biologically, MAPKK proteins are under regulation by positive and negative feedback 

mechanisms and the balance between the two processes determine active MAPKK 

levels (and thus the intensity of signalling through the pathway) (Sturm et al., 2010a, 

Fritsche-Guenther et al., 2011, Tian and Harding, 2014). This was modelled by the 

memory parameter Re-Activation Delay Period [RADP] which controlled the period of 

time MAPKK remained in the dormant phase, thus mimicking the net balance 

between exciting and inhibiting inputs at the level of MAPKK. Thus, [RADP] 

represents the temporal regulatory mechanism for the cascade. pMAPKK interaction 

 

Figure 3. 5 Representation of the re-activation delay period (RADP) stochastic (I) and deterministic (periodic, 
(II)) modelling schemes.  In the stochastic model (ii) RADP took a value X, where X belongs to a set where n is the 
maximum value which can be achieved. The value of RADP = X was randomly selected within the set. This value 
was randomly selected for each agent and was also randomly selected with every MKK and MK interaction and 
dMKK formation event. In the example shown, the set was [[0, 1, 2, 3, 4, 5]], where n = 5. The value of X (thereby 
RADP) can be either of the 5 values within the set. In the deterministic model, RADP was set to a particular value (n) 
where every dMKK agent attained that value with every MKK-MK interaction and the formation of the dMKK state. 
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with MAPK lead to MAPK activation and formation of MAPKK species represented 

biological inhibitory processes such as cooperative/competitive inhibition or due to 

negative feedback (Brunet et al., 1994, Eblen et al., 2004, Ortega et al., 2006). An 

RADP value is assigned to every tMAPKK agent and was updated when MAPKK 

was restored to pMAPKK state. The RADP value was updated either 

deterministically or stochastically (Figure 3. 4). For deterministic update, the value for 

every tMAPKK was identical and predetermined before commencing model 

simulations. For stochastic update, RADP was set (for individual tMAPKK agents) 

randomly between 0 and a pre-determined value.  

 

3.3.2.2.3 MAPK nuclear export and interaction with ExR 

Export of the pMAPK agent species was modelled as dependent on the interaction of 

pMAPK with ExR at nuclear membrane internal surface. Active ExR received 

location messages from pMAPK; the closest pMAPK confirmed availability to bind, 

once bound to ExR, pMAPK translocated out of the nucleus and both agents 

changed state: pMAPK to MAPK and ExR to iExR. MAPK nuclear export is mediated 

by the transition functions [[ExR_inputdata]], [[ExR_outputdata]], [[ExR_move]], 

[[MK_inputdata]], [[MK_outputdata]], [[MK_checkboundtries]] and [[MK_move]].  

 

3.3.2.2.4 ExR automatic activation 

The convention that receptors are in dynamic equilibrium between active and 

inactive states is well established pharmacological concept (Khilnani and Khilnani, 

2011). Furthermore, automatic receptor activation is a well-documented phenomena 

among receptors (Bond and IJzerman, 2006, Vezzi et al., 2013) However, there is no 
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evidence in the literature indicating the exact time frame for this shift between active 

and inactive states for receptors, and specifically for the exporting receptors involved 

in the MAPK translocation. Therefore, this behaviour was approximated in the ABM 

based on Kleiman et al study (Kleiman et al., 2011). First, the ExR was modelled to 

 

Figure 3. 6 A sensitivity analysis of ExR [recdel] value on MAPK activation dynamics.  The magnitude (A) and 
time to achieve Emax (B) and EC50 (C) were not significantly altered with increase in [recdel] value until the [recdel] 
value reached 6 min. Bar values represent mean ± SD. * signifies a statistical significance where p ≤ 0.05. n = 10 
simulation per model. 
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exist in two states, active and inactive, and the agent cycles between the two states 

frequently, mimicking the natural state of constitutive activity of receptors 

demonstrated pharmacologically in vitro (Bond and IJzerman, 2006, Rang, 2006). 

This behaviour was mediated using the transition function [[ExR_inputdata]] where 

[recdelay] was controlled. The [redelay] selected was stochastically modelled; 

however, it was within 3 s as reported by Kleiman et al (Kleiman et al., 2011). A 

sensitivity analysis was conducted for the values of [recdely] and the effect was of no 

statistical significance on the pMAPK Emax, and the time to achieve Emax and EC50 

within the initial 10 min as shown in Figure 3. 6.  

 

3.3.3 Model inputs and outputs. 

The initial inputs of the model were the initial conditions at t0. These included starting 

position and direction of the agents, the compartment they reside in, their initial 

activation state, the predetermined [RADP] value and their identity and availability for 

binding interactions. The output from the model (measured as emergent behaviour) 

included the updated activation state, the number of tMAPKK agents (both in the 

active and dormant state); the number of MAPK agents (both active and inactive), 

the number of pMAPK which interacted with TF; and the number of gene expression 

initiation events. 

 

From the above outputted data, the following measurements were calculated: 

I. The maximum number of pMAPK, MAPK, MAPKK and dMAPK formed (Emax). 
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II. Relative activation (number of pMAPK/total MAPK) 

 

III. The time to achieve Emax. 

 

IV. The half maximum number of pMAPK, MAPK, MAPKK and dMAPK (EC50). 

 

V. The time required to achieve EC50. 

 

VI. Rate of conversion of MAPK to pMAPK during the linear phase (second 

phase) of the ultrasensitive response. 

 

VII. Rate of conversion of pMAPKK to MAPKK. 

 

3.4 Initial conditions and parameters for the agent-

based models (ABMs) 

Below are the conditions which were used to set-up the model at t0. These 

conditions were largely adapted/derived from the literature. When a quantitative 

value was not obtainable from published data, an informed estimation was 

conducted to derive a quantitative value.  
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3.4.1.1  Activation trigger 

The model was designed from the point where the activation signal is transduced to 

MAPKK via phosphorylation of MAPKKK. At t0 it is assumed that MAPKKK bound 

and interacted with MAPKK agents. In addition, to simulate physiological conditions 

of resting cells in this model, at t0 the 99% of MAPKK agents were in an inactive 

state (MAPKK), and 0-50% of MAPK agents were not phosphorylated/activated 

(pMAPK).  

 

3.4.1.2 Total activation time  

Biologically, the highly characteristic ultrasensitive response of the MAPK pathway 

occurs within the first 5-10 minutes following stimulus reception. The peak and 

plateau phase are fully accomplished within 10 minutes. However, the deregulation 

and deactivation phases can be slow and require between 10-40 minutes (or more) 

depending on the balance between activating and deactivating inputs into the 

pathway. Thus, as the focus of this work was to investigate the activation dynamics 

of MAPK, simulations were run to cover 45 minutes from the initial activating cue. 

 

3.4.1.3  Numbers of agents 

The number of kinase agents in the cascade (MAPKK, pMAPKK, MAPK and 

pMAPK) used in the model at t0, was inferred from the concentration values 

calculated using an ODE model based on Huang et al (Huang and Ferrell, 1996). 

These concentrations were converted to moles by adapting the average number of 

mean corpuscular volume of red blood cells (≈90 femtoliter) as the volume these 
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proteins were present in. Moles were then converted into the number of protein 

molecules using Avogadro's number. Table 3. 2 summarises the process and shows 

the numerical values adapted in the model.  

 

Converting the concentration of protein molecules into proteins numbers had 

resulted in protein numbers in the magnitude of millions. Consequently, a full scale 

model will require the total number of agents to be in the magnitude of hundreds of 

millions. This ultimately leads to a substantial time delay in executing the model per 

time step rendering the model computationally expensive, without obvious 

advantages. This is highly undesirable, especially at the model development phase. 

Therefore, to simplify this and to allow for more proficient model runs and 

development, the model was downscaled and the number of proteins were reduced 

to the magnitude of hundreds (Table 3. 2). The intention was to eventually upscale 

the model in future when it was completely validated and has demonstrated 

accuracy in replicating the behaviour of the real biological system.  

 

inactive 
MAPKK 

(dMAPKK) 

active 
MAPKK 

(pMAPKK) 

inactive 
MAPK 

(MAPK) 

active 
MAPK 

(pMAPK) TRB 

Concentration (μM) 1.2 0.0003 1.2 0.6 2 

Number of Moles  1.50E-16 3.75E-20 1.50E-16 7.50E-17 2.50E-16 

Number of protein 
molecules 9.03E+07 2.26E+04 9.03E+07 4.52E+07 1.51E+08 

Ratio between 
number of protein 

molecules 4.00E+03 1.00E+00 4.00E+03 2.00E+03 6.67E+03 

Number of protein 
molecules used in 

the model 5.00E+02 ≈ 0 5.00E+02 2.50E+02 8.33E+02 
Table 3. 2 number of agents used in the agent based models (ABMs) and their derivation.  The numbers of 
agents were stipulated from the concentration of their corresponding proteins as published by (Ferrell and Bhatt, 
1997, Ferrell and Machleder, 1998). The table also demonstrate the number of agents used in the ABMs after 

simplification as referred to in section  3.4.1.3 
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Although the number of individual proteins was downsized, nonetheless, the ratio 

between the different protein species was kept constant. This is to closely emulate 

the cellular environment (as shown in Table 3. 2).  

3.4.1.4  Location and agent distribution 

Previous in silico models of the MAPK pathway assume a homogenous distribution 

of MAPKKK, MAPKK and MAPK in the cytoplasm in a well-mixed cell. To adhere to 

this assumption, MAPKK and MAPK agents were distributed randomly within the 3D 

environment of the cytoplasm and similarly for nuclear agents. However, ExR 

distribution was restricted to the nuclear membrane.  

 

3.4.1.5  The 3D environment 

Two main ABM models were used for simulating the MAPK pathway. Both were 

different in the architecture of the cytoplasmic 3D environment. The first ABM 

followed the conventional in silico models where the kinase proteins were distributed 

over two compartments (the cytoplasm and the nucleus). However, the second ABM 

adapted a more biologically accurate architecture of the cytoplasm and incorporated 

multiple cytoplasmic compartments where the kinase proteins reside. The size of a 

typical animal eukaryotic cell is 10-100µm in diameter and the average size of the 

nucleus is typically 6µm in diameter (with a range of 3-10µm in diameter). In FLAME, 

every arbitrary unit of distance was assigned to 1nm. The diameter of the cell was 

chosen to be 20µm in diameter to match the downscaling of protein content in the 

cell (see Table on page 103) while the chosen nucleus size was 8µm in diameter. In 

regard to the size of the individual compartments, these were modelled as 10 cubic 

compartments with a length of 1µm, equivalent to the length of a mitochondrion. The 
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number of compartments was arbitrary as compartments such as the ER, 

endosomes and Golgi apparatus are continuous compartments. 

 

3.5 ABMs calibration, rule validation and analysis 

This subsection is dedicated to the ABMs construction, validation and sensitivity 

analysis. Calibration of simulation time and its derivation from the literature is 

presented. Implementation of the models is then reviewed. These include (1) 

validating the application of the roles assigned to the agents; (2) sensitivity analysis 

conducted on the ABMs and (3) a comparison between the different spatial ABMs for 

the MAPK pathway. 

 

3.5.1  Model rule validation and optimisation 

Agent Based computational Modelling (ABM) is a bottom up modelling approach. It 

relies on modelling the essential components of the system and how these 

components interact with each other. The interaction of these components together 

defines the behaviour of the whole system. This modelling approach highlights the 

low level roles, which are critical contributors to system behaviour. The ABM 

approach has been successfully used in different fields such as ecology, economics 

and cell biology to explain and show how low level interactions play an important role 

in the emergence of behaviour at the system level. To our knowledge, a molecular 

ABM of the MAPK pathway was never attempted before, thus it was necessary 

during the model building process to validate and insure accuracy and efficiency of 

agent interactions, state transition and role execution. This section is devoted to 
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examining essential agent properties such as interaction with partners, state 

transitions and changes in internal memory parameters. The following sub-sections 

( 4.1.2.1- 4.1.2.5) demonstrate model assessment and validation methods at the initial 

stage of ABM construction. The properties examined and validated therein (such as 

agents’ movements) were chosen as they are essential characteristics for the 

performance of the ABMs. The process of assessment, validation and improvement 

were performed at every stage of ABM development. 

 

3.5.1.1 Validation of agents auto-state transition 

Although the ABMs incorporated regulatory mechanisms to modulate the MAPK 

pathway, it was not possible to include all the regulatory mechanisms in these 

models. Therefore, in order for some agents to return to their initial state, they were 

modelled to cycle between active and inactive/dormant states. The agents 

concerned and the validation of the process is described below. 

 

3.5.1.1.1 MAPKK cycling between active (pMAPKK) and inactive 

(MAPKK) states 

Availability of pMAPKK to interact with MAPK agents is important to sustain MAPK 

pathway activation and signal propagation. Thus, it was necessary to allow for 

MAPKK to cycle between the two states. This was achieved via the re-activation 

delay period [RADP] parameter. Cycling between the two states was validated, and 

the successful cycling between the two states is demonstrated in video 4.1. 
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3.5.1.1.2 Exporting nuclear receptors (ExR) cycling between 

active (aExR) and dormant/inactive (iExR) states 

Receptors are reported to cycle between active and inactive states (Kenakin and 

Miller, 2010, Rang, 2006, Yarden and Schlessinger, 1987).  This characteristic was 

modelled by allowing ExR to cycle between the two states. [Recdelay] parameter 

was responsible for the execution of the cycling process. The oscillation and 

reciprocal levels between the two states demonstrated in Figure 3. 7 (A) illustrate a 

successful cycling process. 

 

3.5.1.1.3  Transcription factors (TFs) cycle between different 

states  

As shown in Figure 3. 3 (D), the TF agents were modelled to cycle between DNA-

bound and unbound states. Validation of this process was conducted and shown in 

Figure 3. 7 (B) and Appendix B, Figure 1). The Figure illustrates continuous cycling 

(A)            (B)       

 

Figure 3. 7 Agent based-model (ABM) simulations to validate agents’ interaction, behaviour and state 
change.  (A) Graphical representation of ExR cycling between active and dormant states. ExR receptor agents 
can exist in both states and to cycle between them. Cycling between the two states was controlled by the 
memory parameter [Recdelay]. Here, ExR were modelled not to interact with pMAPK, thus the number of ExR 
and dExR did not change substantially over time. (B) A graphical representation of the cycling of nuclear 
transcription factors (TFs) between DNA bound and unbound states. Monomeric TFs cycle between DNA 
unbound (SF-TF) and bound (SB-TF) states. The oscillation and reciprocal states demonstrate the successful 
cycling process. Multimeric TFs also exist in DNA unbound (MF-TF) and bound (MB-TF) states. The two states 
oscillate and reciprocate each other even while MB-TFs interact with pMAPK species. (A) and (B) are 
visualisations obtained using the FLAME visualiser from one ABM simulation run (n = 1). 
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of monomeric TF states between bound and unbound states (SF-TF and SB-TF 

respectively) without a change in their total levels. Conversely, the multimeric TF 

states (MF-TF and MB-TF), although continuing to cycle between DNA bound and 

unbound states, decreased their levels in total. This is due to the incorporation of 

pMAPK binding to MB-TF and changing its state to an active MB-TF.  

 

3.5.1.2 Validation of agents movement 

Agent movement was monitored during simulation to ensure all agents adhered to 

the movement roles specified. 

 

3.5.1.2.1 MAPKK and MAPK movement restriction 

Both agents were restricted to moving within the cytoplasm. In the two-compartment 

model, their movement algorithm restricted them to the cytoplasmic boundaries (the 

plasma and nuclear membranes). This is demonstrated in video 4.2. While in the 

multi-compartment model, the algorithm restricted their movement to the 

compartments the agents resided in. This is illustrated in video 4.3.  

 

3.5.1.2.2 Active MAPK (pMAPK) import and export 

pMAPK movement into, within and out of the nucleus was  confirmed. Interaction of 

pMAPKK and MAPK results in an activation of MAPK and its translocation to the 

nucleus. Figure 3. 8 (A) and (B) demonstrate the translocation of the pMAPK 

species into the nucleus. This interaction is also displayed in video 3.4. Once 

pMAPK resides in the nucleus, it moves by a Brownian motion in order to interact 
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with other nuclear agents (TFs and ExRs). This is demonstrated in video 3.6. Export 

of the pMAPK back to the cytoplasm is a result of its interaction with the active ExR. 

This is shown in Figure 3.7 (C) and (D). The process is also shown in videos 3.4 and 

3.6.  

 

(A)                                                                                          (B) 

           (I)                             (II) 

    

(C)                                                                                          (D) 

   

Figure 3. 8 Successful interactions between agents results in their state change and consequently alteration 
of their number in the ABM.  (A) Shows a sequence of 3D still images demonstrating the interaction between a 
MAPK agent (green cuboidal) and pMAPKK agent (red spheres) leading to the formation of pMAPK (brown spheres) 
and its translocation to the nucleus (light red semicircle). The interaction area is highlighted by the red circle. In (I) 
both pMAPKK and MAPK are in close proximity, this leads to a binding interaction between them, thus both change 
state to MAPKK and pMAPK, respectively. (II) pMAPK (black arrow) translocates into the nucleus while, MAPKK 
remains in the cytoplasm and reverts to pMAPKK state after milliseconds. The interactions were captured in videos 
4.1 and 4.4. (B) A graphical representation of the global interaction between MAPK and pMAPKK ( i.e. the graph 
illustrate the interaction between the two agents throughout the cell with respect to time). The graph shows levels of 
pMAPKK, MAPKK, pMAPK and MAPK over time. (C) 3D still images illustrating interaction between an active ExR 
agent (aExR, brown cuboids) and a pMAPK agent (white sphere, black arrow) as a sequence of events and the 
outcome of their binding. (I) Nuclear pMAPK approaches aExR at the nuclear membrane until the distance between 
them is within the aExR interaction radius. This allows for binding interaction between the two agents (II) A bond 
between pMAPK and aExR is established. (III) pMAPK translocates to the cytoplasm, (IV) pMAPK changes its state 
back to MAPK (dark blue sphere, black arrow) while ExR changes its state to dExR (not shown). This sequence of 
events was captured in video 4.4 (D) Graphical representation of the global interaction between pMAPK and ExR 
over time. The graph illustrates the changes in the levels of MAPK and ExR agents and their state. Graphs (B) and 
(D) were obtained from one model simulation run (n = 1).  
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3.5.1.2.3 Nuclear Exporting receptor (ExR) movement restriction 

within the nuclear membrane 

ExRs movement was modelled to be within the circumference of the nuclear 

membrane. Appendix B, Figure 1 demonstrates the distribution of the ExR agents 

within the nuclear membrane. Video 3.7 illustrates that movement clearly.  

 

3.5.1.3 Validation of agent interactions and state transition 

Agents binding interaction and the ensuing state change are an integral part of the 

model presented here. They are also fundamental for the MAPK pathway ABM 

simulation and its signalling behaviour; therefore, it was essential to validate these 

interactions. These are described below. 

 

3.5.1.3.1 Active MAPKK (pMAPKK)-MAPK interaction 

The interaction between the two agents is essential for the activation of the pathway, 

both biologically and in silico. The binding interaction was described 

comprehensively in  Chapter 1 (section  3.2.3.7.1). The binding of pMAPKK with 

MAPK induced MAPK activation, its state change to pMAPK and its translocation to 

the nucleus (Figure 3. 7 (A) and (B)). The interaction also leads to pMAPKK state 

change to MAPKK. Figure 3. 7 (B) displays agent levels during a model simulation 

and the change in their number with respect to time. As expected the levels of 

pMAPKK and MAPK decreased while levels of pMAPK increased with respect to 

time. This is further demonstrated in video 3.8. Interaction of MAPKK and MAPK and 
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their state changes occur rapidly, therefore, for confirmation and validation the global 

change in their levels were monitored for the first 90 s of simulation.  

 

3.5.1.3.2 pMAPK-exporting receptor (ExR) interaction 

pMAPK nuclear export is an important process to sustain pMAPKK-MAPK interaction 

and thus MAPK activation. Therefore, the interaction between the active ExR (aExR) 

(A) 

 

(B)       

 

Figure 3. 9 Nuclear events, interaction of activated MAPK (pMAPK) with its nuclear binding partners.  (A) A 
schematic representation of the interaction processes taking place in the nucleus using SBGN. Translocated 
pMAPK interacts with active ExR (aExR) and four transcription factor (TF) species. pMAPK interaction with aExR 
lead to pMAPK nuclear export while interaction with TFs lead to initiation of gene expression. Detailed description 

of the interaction of pMAPK with both agents was outlined in section  4.1.2.3.3 (B) Global change in the level of the 
MAPK species and the levels of multimeric bound TFs (MB-TF) due to the interaction between the two agents. 
pMK (pMAPK), MK (MAPK), transcription factor (TF), Monomeric free TF (SF-TF), monomeric bound TF (SB-TF), 
multimeric free TF (MF-TF), multimeric bound TF (MB-TF) and dormant gene expression activator pMAPK (DGEA-
pMAPK). The graph in (B) was obtained from one ABM simulation run. 
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and pMAPK and their state change was monitored and validated. Figure 3. 7 (C) 

demonstrates the interaction between the two agents interacting at the inner nuclear 

membrane. This interaction causes pMAPK translocatioin to the cytoplasm and its 

state change. Figure 3. 7 (D) illustrates the global change in the level of pMAPK and 

aExR due to their interaction and state change. The levels of aExR and pMAPK 

decrease with time while levels of MAPK and dExR increase. Video 3.6 displays the 

full interaction process between the two agents during simulation.  

 

3.5.1.3.3 pMAPK- transcription factors (TF) interaction 

When in the nucleus, pMAPK interacts with TFs. Biologically, pMAPK interaction with 

TFs facilitates modulation and control of gene expression. This interaction was 

modelled as outlined in the Figure 3. 2 (B) and in Figure 3. 9 (A). pMAPK interacts 

with four TF species, free monomeric TF (FS-TF) DNA-bound monomeric TF (BS-

TF), free multimeric TF (FM-TF) and DNA-bound multimeric TF (BM-TF). As shown 

in Figure 3. 8 (A), only the interaction with BM-TF corresponds to the initiation of 

gene expression, mimicking the biological process where gene expression is 

triggered by specific multimeric TF complexes bound to DNA promoter sequences. 

The binding of pMAPK to BM-TF results into pMAPK changing state briefly to a 

dormant state (DGEA-pMAPK). In the two-compartment model the levels of DGEA-

pMAPK and active MB-TF were used as a secondary output to measure MAPK 

activation behaviour.  

 

As pMAPK agents accumulate in the nucleus its interaction with the TF species 

ensues. Figure 3. 8 (B) demonstrates that as the pMAPK levels increase, DGEA-



Page 123 of 346 
 

pMAPK levels increase while MB-TF levels are reduced. Figure 3. 8 (B) illustrates 

the global change in the levels of TF species due to cycling between free and DNA-

bound states. Reduction of the number of MB-TF coincides with an increase in the 

number of DEGA-pMAPK (DEGA-pMK).  

 

3.5.1.3.4 MAPKK-TRIB interaction 

The interaction between pMAPKK and one of its intracellular inhibitory proteins 

tribbles (TRIB) was modelled and validated (see Appendix A, Figure 1). The 

biological interaction between MAPKK and TRIB was comprehensively outlined in 

section appendix D. Figure 3. 10 shows the successful interaction between the two 

agents. When both agents are in close proximity, binding interaction ensues and 

subsequently they change state; pMAPKK to MAPKK and TRIB to the dormant TRIB 

state MT3.  

(A)                  (B) 

    

Figure 3. 10 Validation of interaction of pMAPKK and the inhibitor protein TRIB.  (A) shows a 3D still image for 
the interaction of MAPKK agents (red spheres, red arrow) and TRIB agents (black cuboidal, grey arrow) to form their 
new state (area of interaction highlighted by the grey circle). In (I), the pMAPKK move into close proximity of TRIB, 
once both agents are within a specified proximity, the binding interaction takes place and consequently a state 
transition occurs as shown in (II). pMAPKK change state to dormant MAPKK (MAPKK, purple sphere and red arrow) 
and TRIB changes state to the dormant TRIB (dTRIB/MT3) (grey sphere, grey arrow). (B) Demonstrates the 
formation of MT3 (dTRIB) agents over time and how the global levels of MAPKK, TRIB and MT3 changed in respect 
to time. The graph in (B) was obtained from one ABM simulation run. 
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3.5.1.4  Optimisation, multi-state ABM Vs multi-agent ABM 

In order to optimise simulation run times and so obtain an efficient ABM, the ABMs 

were constructed using two schemes. The first composition/scheme was a multi-

state ABM and the second was a multi-agent ABM. The former included two agent 

types in the system; these were the protein-agents and receptor-agents. In the latter 

scheme every protein was modelled as an independent agent. 

 

In the multi-state ABM, protein-agents encompassed all the proteins in the cell (the 

MAPKK, MAPK and TRIB). However, the different proteins were specified as 

different states of the protein agent. This was specified by the memory parameter 

[state] (see Appendix A, Table 1 ). For instance, a protein-agent could be MAPKK, 

MAPK or TRIB proteins; however, the protein-agent memory parameter [state] 

determines which protein it is and thus dictated its behaviour. Activation and 

deactivation of these different protein states resulted in them obtaining a new state. 

 

Figure 3. 11 Comparison between the multi-state and the multi-agent agent based models (ABMs) run 
times.  A multi-agent ABM run time was significantly shorter, with run time 58.9 ± 1.5 (s), while multi-state ABMs 
run time was 10.42 ± 0.97 (min). The data shown represent mean ± standard error of the mean (SEM), n = 10, 
each ABM was run for 250 iterations and the run time taken to complete the simulation was taken as run-time for 
the model. A student t-test was used for statistical analysis which showed a significant difference between the 
multi-state and multi-agent ABM schemes whereby p < 0.0001, indicated by **** in the figure.  
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Receptor-agents were exclusive for the exporting receptors (ExR) and they cycled 

between active and inactive states. This was specified by the memory parameter 

[state] (see Appendix A, Table 2). All protein-agents in the model were able to 

access all the messages from FLAME libmboard with no discrimination between the 

different protein states. Agent states were annotated using numerical values, and 

state change was monitored by the alteration of these values. 

 

In the multi-agent ABM, every protein was designated as an independent agent. The 

change from active to inactive state was assigned to the memory parameter [state] 

(see Appendix A, Table 6-Appendix A, Table 8). For instance, MAPKK is an agent 

with two states, an active (pMAPKK) and inactive (MAPKK). The MAPKK states 

were specified by the memory parameter [state]. Every agent accessed messages 

that are produced by its binding partners and executed their transition functions 

separately.  

 

The run time of the different ABM schemes was measured and Figure 3. 11 

demonstrates that a multi-agent model is noticeably quicker to run and thus better 

and more appropriate to use for the MAPK pathway ABM construction and 

development from the conceptual model. Therefore, this approach was adopted for 

subsequent ABMs.  
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This section aimed to demonstrate that the fundamental roles deduced from the 

conceptual model (see section  3.2), such as state transition and binding behaviour, 

were modelled and executed accurately, and that the execution was computationally 

efficient. 

 

It was indispensable to have confidence in the ABMs developed, how they are 

executed and their accurate simulation of the real-world behaviour. Therefore, model 

validation was an essential component for ABM construction and their further 

development. In this section it was demonstrated that the ABM roles (identified in 

section  3.3) were satisfactorily implemented and executed during model simulations, 

and consequently provided a level of confidence in the constructed ABMs. 

 

3.6  Conclusion 

The aim of this chapter was to provide a detailed description of a conceptual model 

for the MAPK pathway the main components of the system and its behaviour. The 

chapter also provided an outline of how the conceptual model was transformed into 

roles used in the ABMs.  Chapter 4 is dedicated to the computational implementation 

of the MAPK pathway ABMs and the data which has been generated from these 

models 
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Chapter 4  Results 

This chapter is dedicated to the construction of agent-based models (ABMs) and the 

results generated from them. The chapter is divided into four sections. Section  4.1 

describes the time calibration of simulation times in the ABM. Sections  4.2 to  4.4 are 

dedicated to in silico experimentation to investigate spatiotemporal regulatory 

mechanisms in the MAPK pathway and the modulatory role they play in shaping 

MAPK activation behaviour. 

 

4.1  ABMs time calibration 

This subsection discusses the calibration of simulation time and its derivation from 

the literature. The activation of the MAPK pathway is measured over time. The time 

to elicit the maximal level (Emax) of pMAPK species is the commonly used 

measurement in silico, in vitro and in vivo experiments. Accumulation of the pMAPK 

species in the nucleus over time is also used. Therefore, in order to compare the 

output from the ABMs with the literature, the simulation time was calibrated. 

Subsequently, 80 graphs displaying MAPK activation were obtained from the 

literature and analysed (Figure 4.1 and appendix C). The time to achieve Emax was 

manually determined from these graphs and plotted as shown in Figure 4.1 (A). 

These graphs had demonstrated that the average activation time to reach Emax was 

(9.46 min). Nevertheless, normality analysis of all data points showed that the 

experimental data is not normally distributed (Figure 4. 1 (A) and (B)); therefore, the 

use of the mean activation time to reach Emax is not an appropriate value to use for 
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model calibration. Hence the median time to achieve Emax value (7.63 min) was used 

to calibrate simulation time. 

 

4.1.1  Sensitivity analysis of the agent based models 

Sensitivity analysis was conducted on the models when necessary. These were to 

confirm the robustness of the models to large variations in agent numbers. These 

analyses are presented in detail below, in section  4.2 

 

 

Figure 4. 1: Data distribution and analysis of MAPK activation and the time-scale to achieve maximal 
pMAPK levels. (A) A Whisker plot showing the distribution of the analysed data with the median value. Normality 
analysis of the data with D'Agostino & Pearson omnibus normality test showed that the in vitro data for MAPK 
activation dynamics were not normally distributed (N = 80). Mean = 9.46 min and median = 7.63 min (B) Portion of 
the MAPK activation data in (A), where only data points obtained from published in silico models were used for 
blotting (N = 21). The normality analysis of these data had demonstrated that the data is normally distributed. ** 
demonstrate a statistical significance with p ≤ 0.01. 
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4.2 Examination of the spatial regulatory element 

on MAPK activation dynamics. 

After validation and optimisation of the core ABMs, two models were constructed to 

investigate the effect of spatial modulation on the activation behaviour of the MAPK 

pathway. These were: a two-compartment ABM and multi-compartment ABM. This 

section is devoted to the experimentation conducted with the two models which 

include sensitivity analysis and validation.  

 

In regard to the validation of the ABMs, as described in sections  3.3.2.2.1 (page 105) 

and section  4.1 (page 127), the magnitude of pMAPK generated (Emax), the time to 

achieve Emax and EC50 are commonly used to describe the MAPK activation 

behaviour of the pathway both in vitro and in silico (Aoki et al., 2013a, Aoki et al., 

2013b, Tomida et al., 2015). Thus said behaviours were used to compare the results 

obtained from the ABMs with previous published in vitro data (presented in Figure 

4.1).  

 

As described in section  3.4.1.5, the two-compartment model was constructed to 

emulate previously published in silico models of the MAPK pathway, while the multi-

compartment model aimed to also incorporate the physiological three dimensional 

(3D) structure of the cell, where the proteins involved in the MAPK cascade reside in 

different cellular compartments. The null hypothesis for this section is the following: 

localising the proteins involved in the MAPK pathway into multi-compartments has 
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(A)        

 

(B) 

 

Figure 4. 2 Different spatial ABMs used to investigate the significance of MAPKK and MAPK spatial 
arrangement on the MAPK  activation behaviour. (A) A SBGN graphical representation of the two compartments 
ABM. The main feature of the model is the homogenous distribution of MAPKK and MAPK within the cytoplasm. (B) 
A SBGN graphical representation of the multi-compartment ABM. The main feature of this model is the spatial 
restriction of MAPKK and MAPK within the cytosolic compartments. Lipid membranes are represented by the yellow 
quadrilaterala. SBGN simplifies the model and represent every protein and entity once  For further description of the 

two models peruse section  3.3 
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no significant effect on MAPK activation behaviour compared to a homogenously 

distributed two compartment ABM. 

 

MAPK pathway mediates responses with a high level of fidelity and specificity, and 

there is a growing realisation that these outcomes rely on the spatial distribution of 

the MAPK cascade components within the cell. The first observation of variant 

cellular outcomes from different MAPK spatial pools came from studies with 

fibroblast and embryonic carcinomas (Gaumont-Leclerc et al., 2004, Smith et al., 

2004). In these cells, when ERK had translocated into the nucleus the cells had 

proliferated. However, prevention of ERK translocation to the nucleus resulted into 

the differentiation of the carcinoma cells and their senescence. It was also shown 

that MAPK responses are composed of two phases; the first phase relies on the 

presence of the MAPK components in the cytoplasm. This was initially shown with 

beta-adrenergic GPCRs, where they mediated a rapid and short ERK activation. 

However, when the caveolin-dependent pathway was knocked out (KO), ERK 

activation dynamics had switched to sustained and slow activation dynamics. This 

was also confirmed in other GPCR systems where the beta-arrestin components 

were knocked out using siRNA (Shenoy et al., 2006). In these experiments the ERK 

response only included the rapid activation phase. On the other hand, inhibition of 

protein kinase C (PKC)-dependent activation of ERK demolished the rapid activation 

phase while the slow and sustained ERK activation was maintained (Wei et al., 

2003, Lefkowitz and Shenoy, 2005). Furthermore, it was also demonstrated in 

Chinese Hamster Ovary cells (CHO) that anchoring MEK2 (ERK kinase) into the 

endosomal compartment led to a sustained activation of ERK, while normally MEK2 

causes a transient ERK activation. Moreover, the work of Ties et al had illustrated 
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that ERK was distributed into two cellular pools, one of which was endosomal 

(Brahma and Dalby, 2007, Teis et al., 2006, Teis et al., 2002, Wunderlich et al., 

2001). These two pools had mediated two separate actions of the MAPK response. 

Depletion of the endosomal pools had resulted in the loss of the endosomal 

dependent response and only returned by the re-introduction of these endosomal 

pools. In addition, scaffolds and adaptor proteins were shown to anchor the proteins 

involved in the MAPK cascade in different cellular localisations and limit their action 

in these compartments (Roy et al., 2005, Takahashi et al., 2006).  

 

All of the above literature shows that compartmentalisation is playing an important 

role in determining and influencing MAPK activation behaviour and thus controlling of 

cellular responses. Therefore, the ABM addressed the issue of compartmentalisation 

and investigated the difference compartmentalisation of the MAPK components 

made on MAPK activation behaviour and pMAPK levels in comparison to those 

observed in the classical, two-compartment system model. 

 

The structures of the two ABMs are demonstrated in Figure 4. 2 and Appendix B, 

Figure 2. Briefly, the two-compartment model had assumed a homogenous 

distribution of total MAPKK (both pMAPKK and MAPKK, henceforth referred to as 

tMAPKK) and MAPK proteins in the cytoplasm, while the multi-compartment model 

was composed of randomly localised cytoplasmic compartments where tMAPKK and 

MAPK proteins resided. Takamori et al demonstrated that a small cytoplasmic 

compartment such as an endoplamic vesicle contains a small number of proteins 

(50- 100 protiens) (Takamori et al., 2006). Furthermore, Ortega et al illustrated that 
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the ratio between MAPKK: MAPK to which produces an ultrasensitive response is 

1:10 (Eblen et al., 2004, Ortega et al., 2006). Thus, the total number of proteins in a 

compartment in the multi-compartment ABM was approximated to 60, whereby the 

1:10 MAPKK: MAPK ratio was maintained. Both models were simulated from the 

point where the MAPK pathway-activating signal had been transduced from 

MAPKKK to MAPKK. In both models, the activating cue was assumed to be intense, 

with negligible negative feedback mechanisms. Therefore, pMAPKK was assumed to 

 

Figure 4. 3: Spatial modulation of the MAPK pathway using the ABM combined with models sensitivity 
analysis.  (A) MAPK pathway activation behaviour as it emerged in the two-compartment ABM. The model 
contained a constitutively active pMAPKK which contributed to a graded MAPK activation behaviour. (B) The 
activation behaviour of MAPK as emerged from the multi-compartment ABM (C) Sensitivity analysis to assess the 
effect of manipulating the levels of MAPK and MAPKK in the multi-compartment ABM on levels of MAPK (D) 
Sensitivity analysis to assess the effect of manipulating the levels of MAPK and MAPKK in the multi-compartment 
ABM on pMAPK formation. Each ABM configuration was run ten times (n = 10). Points plotted show ± mean SEM. 
The 20% alteration in agents’ levels is in comparison to the levels determined to be used in the ABMs, refer to 

Table 3. 1 and section  3.4.1.3. 
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remain in the active state for an extended period. This was analogous to irreversible 

pathway activation in oocytes, investigated by Ferrell et al in the first in silico model 

of the MAPK pathway. The Flexible Large-scale Agent Modelling Environment 

(FLAME) was used for simulation and the results were visualised via the FLAME 

visualiser.  

 

4.2.1  Results  

4.2.1.1  Sensitivity analysis 

Both ABMs were run multiple times (up to n = 30) to test their robustness and 

reproducibility. The levels of the agent species were plotted at every three minutes 

for each individual model run. The levels of pMAPKK, MAPKK, MAPK and pMAPK in 

both ABMs were plotted to assess the activation behaviour and the effect of 

compartmentalisation on the global MAPK activation (Figure 4. 3 (A) and (B)). The 

models were simulated in for 3, 5, 10 and 30 runs and demonstrated low standard 

error of the mean (SEM) for all protein levels at every time point. SEM between runs 

did not exceeded 3.3% at any of the time points in either of the models, even under 

conditions where SEM for pMAPKK was significantly greater. In addition, that 

increasing number of runs only reduced the value of SEM. Appendix B Figure 4 

illustrates that the increase in the number of runs had no considerable effect on the 

activation behaviour. Therefore, simulating the model for 10 or 30 runs was 

sufficient, as there will be neither additional information nor knowledge gained if the 

run numbers were increased. 
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Subsequently, the number of MAPKK and MAPK agents were altered by 20% in the 

multi-compartment model and the effect of this alteration on pMAPK formation and 

MAPKK levels were examined in multiple model runs (Figure 4. 3 (C) and (D)). The 

levels of both pMAPK and MAPKK were plotted at set time points (every three 

minutes). Analysis showed that the variance value at each time point was between ± 

0.58- 22.07. Thus it was concluded that the models are robust (Appendix B, Figure 

3-Appendix B, Figure 6 and Appendix B, Table 1-Appendix B, Table 4). The impact 

of the agents’ numbers variation on MAPK activation behaviour and dynamics in the 

multi-compartment model was further analysed. This was via the analysis of the time 

pMAPK and MAPKK reached Emax and EC50 under the different model conditions 

(Figure 4. 4 (A)-(D)). One way ANOVA had verified that the 20% alteration in agent 

species number had no marked effect on MAPK activation dynamics and the time to 

achieve Emax and EC50 were not considerably different. Furthermore, analysing the 

effect of said alterations on pMAPKK and MAPKK levels during the simulation also 

demonstrated no noticeable difference, apart from when MAPKK was increased by 

20% (Figure 4. 4 (E) and (F) and Appendix B, Figure 7). Nonetheless, increasing 

MAPKK levels by 20% caused a marked change in the level of pMAPKK during the 

simulation (Figure 4. 4 (F) and Appendix B, Figure 7). 

 

4.2.1.2  Compartmentalisation contributes to the rapid 

responsiveness of the MAPK pathway and ultrasensitivity. 

Figure 4. 4 (A) vs. (B), highlights the effect of compartmentalising the kinases on 

formation of pMAPK species (a component of the MAPK activation dynamics). In the 

two compartment ABM (Figure 4. 4 (A)) the ratio between the kinases used was 1:1, 
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Figure 4. 4 Multi-compartment ABM sensitivity analyses assessing the effect of agent levels alteration on 
MAPK and MAPKK activation.  (A) The time taken pMAPK to reach Emax under varied starting levels of MAPKK 
and MAPK agents were measured and plotted. (B) Time taken for EC50 of to be established for the pMAPK 
species. (C) Comparison of the time taken for pMAPKK to reach Emax when levels of MAPKK and MAPK were 
varied. (D) A comparison between the time taken to establish pMAPKK EC50 when levels of agents were altered in 
the ABM.  (E) Sensitivity analysis to examine the effect of altering MAPKK and MAPK levels on MAPKK formation 
during ABM simulation (F) Area under the curve of the MAPKK levels  to determine if varying MAPKK and MAPK 
levels effect the pMAPKK formation during simulation. Simulations were repeated ten times (n = 10). Statistical 
analysis using one way ANOVA showed altering the numbers of MAPKK and MAPK had no significant effect on the 
time to establish Emax and EC50 for both pMAPK and pMAPKK. Bar values represent mean ± SD. ** signifies a 
statistical significance where p ≤ 0.01  
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in line with previously published in silico models (Table 3. 2). In this set-up, MAPKK 

activation was constitutively active and where 99% of tMAPKK species were 

assumed to be activated by MAPKKK at t0, consequent levels of MAPKK did not 

change over time. This resulted in a sharp formation of pMAPK and equilibrium was 

reached rapidly. However, a short lag-phase was observed prior to the global 

increase in pMAPK (~94 sec, Appendix B, Figure 8), this was an emergent behaviour 

from the model because the ABMs contained no algorithms specifying this activation 

behaviour. 

 

The data obtained from both ABMs was validated against in vitro data from the 

literature as shown in Figure 4.5. The time to achieve Emax (A) and EC50 (B) were 

compared. Statistical analysis with nonparametric one-way ANOVA had shown that 

there is a significant difference between the in vitro data and the two compartment 

model, while the data obtained from the multi-compartment ABM showed no 

statistical difference with the in vitro data.  

 

The multi-compartment model (Figure 4. 6 (B)), was highly sensitive to activation 

with a rapid rate of pMAPK formation (≈ 176.86 ± 0.18% MAPK were converted to 

pMAPK/min (see Appendix B, Figure 9), allowing for almost instantaneous full 

activation of MAPK and establishment of equilibrium (Emax =  5.89 ± 2.13 min, Figure 

4. 6). Nonetheless, a short lag-phase was observed (~ 1.5 s, see Appendix B, Figure 

8 (B)). Furthermore, in this model design, when Emax was achieved, 98 ± 0.1% of 

MAPK were converted to pMAPK species and were translocated to the nucleus. In 

contrast, in the two compartment model configuration, only 85.5 ± 0.6% MAPK were 
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(A) 

 

(B) 

 

Figure 4. 5 Validation of the ABM models via comparison with published literature.  (A) The time taken to 
achieve Emax obtained from both the two and multi-compartment ABMs were compared to those analysed from 
the literature (see figure 4.1). The data are presented using Box whisker blots with the median presented as the 
horizontal line. (B) The time taken to achieve EC50 was analysed from in vitro data and plotted against the time 
for EC50 in both ABMs. The blot illustrates that there is a significant difference between the two-compartment 
ABM values, while said values obtained from the multi-compartment ABM showed no significant difference 
between in vitro data and the ABM. The data is presented as a box and whisker blots with the median value 
presented as the horizontal line. For the ABMs n = 10, and n = 64 for in vitro data and n  
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converted to pMAPK when Emax was achieved, reflecting a system with lower 

activation potency. Furthermore, in the two compartment model, only 70.3 ± 2.2% of 

cytoplasmic MAPK were converted to pMAPK within the first 5 minutes, while in the 

multi-compartment ABM, 98% of MAPK were converted to pMAPK species.  

 

4.2.1.3 Downscaling the cytoplasmic volume did not alter the 

MAPK activation dynamics in either ABMs 

The impact of downscaling the cytoplasmic volume was investigated, as increasing 

molecular crowding is shown to influence biochemical behaviour in addition to 

(A)       (B) 

 

(C)       (D) 

 

Figure 4. 6 Significant difference in MAPK activation behaviour between two and multi-compartment 
models.  Illustration of significant differences between the two ABMs when magnitude of pMAPK generated at 
Emax (A) and (B) and the time Emax was achieved were compared (C) and (D). The diagrams represent mean ± 
SEM, statistical was conducted using student t-test with n = 10 simulations per model. 
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Figure 4. 7 The effect of reducing the cytoplasmic volume on the MAPK activation dynamics in a two-
compartment model.  (A) The time to achieve Emax was measured after the modification of the total cellular 
volume. Reducing the cellular volume by 10 and 100 did not demonstrate any significant effect on time to reach 
Emax, however a significant effect emerged when the volume was reduced by 1000 fold. (B) The same effect 
was observed with the time to achieve EC50. (C) Conversely, total volume reduction did not have an impact on 
the magnitude of pMAPK. The diagrams represent mean ± SD, statistical was conducted using one way ANOVA 
with n = 10 simulations per model. **** indicate a p value where p < 0.0001, *** indicate a p value where p < 
0.001, * indicate a p value where p < 0.05, 
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assessing if the downscaling of the number of proteins from magnitudes of millions 

to thousands influences the MAPK activation dynamics.  

 

The chosen radius of the cell in both ABM was 10000 arbitrary unites of distance, 

with a total cytoplasmic volume of 4.19 x 1012 arbitrary unites of volume. The 

cytoplasmic volume was altered by two methods. The first was to downscale the total 

volume from 4.19 x 1012 to 4.19 x 1011 arbitrary unites of volume (i.e. reduction of 

total volume by 10 fold) to adjust to the 8 fold downscaling factor which was applied 

to the number of agents (see table 3.2 page 112). The second method was 

downscaling the radius of the cytoplasm by 10 fold, thus the final volume of the 

cytoplasm became 4.19 x 109 arbitrary unites of volume. Only at this cytoplasmic 

volume, a statistically significant increase in the time to achieve EC50 and Emax were 

achieved (see Figure 4.7). An indistinguishable approach was applied to downscale 

the cytoplasmic volume in the multicompartment ABM. There was no statistically 

significant impact on the magnitude of pMAPK generated, the time to achieve both 

Emax and EC50 (see Figure 4.8). Furthermore, reducing the volume of each individual 

compartment to 1 x 106 arbitrary unites of volume, did not significantly shorten the 

time to achieve Emax and EC50 nor the magnitude of pMAPK at Emax (see Figure 4.8).  

 

In relation to the multi-compartment model, the scaling process applied in the ABM 

could not have affected the activation dynamics of MAPK because each 

compartment occupied a volume of 1 x 109 arbitrary units of volume, while the 

cytoplasm occupied a 4.19 x 1012 arbitrary unites of volume and downscaling the 

volume of the cytoplasm will unlikely change the dynamics of activation, as the 
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Figure 4. 8 The effect of reducing the cytoplasmic volume on the MAPK activation dynamics in a multi-
compartment ABM.  (A) The time to achieve Emax was measured after the modification of the total cellular 
volume. Reducing the cellular volume by 10, 100 and 1000 fold did not demonstrate any significant effect on time 
to reach Emax. (B) Identical effect was established with the time to achieve EC50. (C) The pMAPK magnitude 
was not altered with changes in total volume. The diagrams represent mean ± SD, statistical was conducted 
using one way ANOVA with n = 10 simulations per model. 
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Figure 4. 9 The effect of reducing individual compartments volume on the MAPK activation dynamics in a 
multi-compartment ABM.  (A) The time to achieve Emax was measured in two multi-compartment ABMs where 
the volume of each compartment was reduced by 1000 fold; however there was no significant effect noted. (B) 
No significant effect was observed with said alteration when the time to achieve EC50 was considered. (C) The 
pMAPK magnitude was not altered significantly with the changes in compartmental volume. The diagrams 
represent mean ± SD, statistical was conducted using student t-test with n = 10 simulations per model. 
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agents are already present and compacted in small volume. This is further 

emphasised with the reduction of the volume of each compartment to 1 x 106 

arbitrary units of volume, which did not statistically improve the MAPK activation 

dynamics (Figure 4. 9). With respect to the two compartments model, only the 

reduction of the total cytoplasmic volume to 4.19 x 109 illustrated a reduction in the 

time to achieve Emax and EC50. Considering that this volume is equivalent to the 

volume of 4 cytoplasmic compartments in the multi-compartment model, this 

improvement in pMAPK activation dynamics is not surprising. Furthermore, the 

abovementioned points are supported by the work of Rhodes et al. They have 

recently published an investigation to examine the effect of modulating the spatial 

parameter and cell volume in an ABM comprised of two agents, A and B, interacting 

to form a molecule C utilising FLAME (Rhodes et al., 2016). They conclude that the 

overall system behaviour remained largely unchanged, and that only when they 

changed the cell volume 2000 fold, that they have observed a significant change in 

the behaviour.  

 

4.2.1.4  Further investigation of MAPK activation dynamics in 

the two compartment agent based model (ABM) 

The majority of in silico literature investigating the MAPK dynamics (especially with 

ODEs) assume a two compartmental distribution of the kinases involved in the 

pathway. The two compartment ABM was further scrutinised to ensure that it 

captured the fundamental activation behaviour (outlined in section  3.2) prior to its 

expansion and refinement.  
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This was done through examining the activation behaviour inside the nucleus and 

the effect blockade of signal propagation has on cytoplasmic and nuclear events. 

Thus, the formation of the pMAPK species and gene expression events were 

evaluated. As shown in Figure 3. 9 (A), pMAPK species interact with transcription 

factors (TFs) in the nucleus. This interaction reflects MAPK-dependent initiation of 

gene expression events (Figure 4. 10 (A) and (B)). Furthermore, the signal 

(A)       (B) 

 

(C)       (D) 

 

Figure 4. 10 A two-compartment ABM simulating of pMAPK-dependent nuclear events and the effect of 
modulating MAPK activation by tribbles protein agents (TRIB). In reference to figure 3. 9, pMAPK interacts 
with two transcription factor (TF) species, namely SB-TF and MB-TF. Interaction with the latter signals the initiation 
of the of pMAPK-dependent gene expression. (A) The interaction dynamics between pMAPK and MB-TFs in a two 
compartment model in the presence of constitutively active pMAPKK. The initial phase sees a rapid increase in the 
number of DGEA-pMAPK and a moderate increase in active MB-TF, thus an increase in the initiation of gene 
expression events. However, the rapid increase in DGEA-pMAPK levels declines and reaches low levels within “8 
minutes]”. However, the levels of MB-TF do not diminish overtime (B) The effect of the TRIBprotein-agent 
introduction on the dynamics of gene-expression imitation within the constitutively active MAPK pathway ABM. The 
introduction of TRIB does not significantly (using a student t-test) alter the gene-expression initiation dynamics and 
levels of either DGEA-pMAPK or MB-TF. These conflicts with in vitro observations with the strong inhibitory effects 
tribbles have on MAPK-dependent gene-expression events. The presence of the MAPKK inhibitor proteins TRIB 
has no significant effect on nuclear MAPK activation events in a two-compartment ABM. (C) levels of Dormant 
Gene Expression Activation pMAPK (DGEA-pMAPK) in the nucleus with and without the presence of TRIB protein-
agent. The presence of TRIB does not significantly reduce the levels of DGEA-pMAPK formed. (D) Examination of 
the time DGEA-pMAPK reach their maximal level (Emax)in the presence and absence of TRIB agents demonstrate 
no significant change in the time taken to achieve Emax. The model was simulated ten times (n = 10) The bars 
represent mean ± SD. Student t-test was performed for statistical analysis to assess significance where p > 0.05 
was considered insignificant effect. 
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propagation was blocked via the introduction of the MAPKK inhibitory proteins 

tribbles (TRIB). TRIB inhibitory protein agents were homogenously distributed within 

the cytoplasm and their levels were as shown in Table 3. 2. The introduction of the 

tribbles protein, contrary to results obtained in vitro (Kiss-Toth et al., 2004, Sung et 

al., 2006, Sung et al., 2007), did not alter the initiation of gene expression events, 

and the levels of both DEGA-pMAPK and active MB-TF did not extensively change. 

This was also observed in the cytoplasmic events were pMAPK levels were not 

notably altered with the introduction of TRIB, although (as shown in Table 3. 2) the 

quantity of TRIB agents was more when compared to both tMAPKK and MAPK 

(Appendix B, Figure 10 (A), (B) and (C)).  

 

To further investigate the level of MAPKK inhibition required to show a considerable 

alteration in MAPK activation dynamics, TRIB levels in the model were increased by 

90%. This resulted in a substantial reduction in pMAPK levels and levels of DGEA-

pMAPK and activated MB-TF (i.e. gene expression initiation events) were also 

altered. However, although the MAPK activation was inhibited both at the 

cytoplasmic and nuclear level, these alterations are not biologically sound. In vitro 

 

 

Figure 4. 11 in vitro data demonstrating the ability of TRIB to significantly modulate the MAPK pathway  
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experiments demonstrated that in order to inhibit gene-expression events via the 

introduction of TRIB proteins, TRIB concentration was only increased by ~2% in 

order to see a marked reduction in the MAPK-dependent gene expression event 

(Figure 4. 11 (A) and (B)). The effect of signal propagation blockade was further 

investigated in the ABM via a different approach. MAPKK species were modelled to 

(A)  

 

  (B)   

 

Figure 4. 12 Assessment of the disruption of MAPK activation dynamics at the level of MAPKK in the two-
compartment model.  (A).An irreversible MAPKK deactivation ABM (B) The same graph where pMAPK and 
MAPKK levels when pMAPK reaches Emax (A and A’, respictivly) and EC50 (B and B’ respectively). These were 
used to deduce the time taken to achieve both Emax (tA) and EC50 (tB). The figure illustrates that only when MAPKK 
levels are reduced to ≤ 10% levels of total MAPKK levels, pMAPK levels begin be reduced irreversibly. When 
MAPKK levels reach 2.4% of total MAPKK, pMAPK are reduced substantially and reaches EC50.  
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undergo irreversible deactivation once they activated MAPK proteins; this is akin to 

MAPKK degradation events intracellularly (Hurst and Dohlman, 2013). Therefore, the 

MAPKK activation was not sustained and MAPK levels returned to the levels at t0  

(Figure 4. 12). However, it was observed that when 85 ± 2% pMAPKK was 

degraded, pMAPK levels began to reduce irreversibly and continued to decrease 

until beyond those at basal levels at t0. This was also contradictory to previous 

findings, where a small reduction of MAPKK levels was demonstrated to have 

statistically significant effects on MAPK activation behaviour in yeast cells (Hurst and 

Dohlman, 2013). 

 

4.2.2  Discussion and conclusion  

The MAPK pathway was investigated thoroughly using in silico models, which 

contributed to the understanding of pathway behaviour (Brightman and Fell, 2000, 

Ferrell and Machleder, 1998, Ferrell and Xiong, 2001, Huang and Ferrell, 1996, 

Kholodenko, 2000, Kholodenko et al., 1999, Levchenko et al., 2000, Schoeberl, 

2002). These models vary from statistical approaches, probabilistic models to 

deterministic models using differential equations. The majority of models of the 

MAPK pathway are deterministic and written using ordinary differential equations 

(ODEs). Some of the notable breakthroughs from ODE models came from the work 

of Ferrell et al, (Ferrell and Machleder, 1998, Huang and Ferrell, 1996), Kholodenko 

et al, (Kholodenko, 2000, Kholodenko, 2002) and Levchenko et al. (Levchenko et al., 

2000). Levchenko had explained the contradictions observed experimentally 

regarding the concentrations of KSR1 scaffold protein. He showed that scaffolds 

have to be within an optimal concentration in order to enhance MAPK activation 
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behaviour Ferrell’s model was one of the first for the MAPK pathway and it shed light 

on the pathway architecture and how that influences pathway dynamics. Models of 

the pathway which followed Ferrell’s study had expanded to include feedback 

mechanisms. In these models positive and negative feedback loops were shown to 

be important, where their presence lead to the appearance of bistable and 

ultrasensitive activation behaviour in the pathway (Shin et al., 2009b, Tian et al., 

2009, Tsai et al., 2008). Additionally, models that investigated the architecture of the 

feedback loops showed that two circuit designs of coupled positive and negative 

feedback-networks result in oscillatory behaviour (Sarma and Ghosh, 2012). The 

oscillatory behaviour of the MAPK pathway was only experimentally demonstrated 

recently (Shankaran et al., 2011, Shankaran et al., 2009, Weber et al., 2010). 

 

However, investigating the spatial and temporal regulatory elements and their effect 

on pathway activations simultaneously, using ODEs is difficult, because ODEs do 

not have the capability to include spatial parameters (Angermann et al., 2012, Calder 

et al., 2006b, Klann et al., 2011, Mallavarapu et al., 2009). Furthermore, model 

amendments and improvements require the writing de novo equations. As a result, 

the most common representation of the MAPK pathway in the literature using ODEs 

is using the assumption of two compartments. This is understandable due to the 

continuum concept, which relies on representing the proteins as a population; and 

considering that, biologically, the majority of the kinases in the cell are distributed 

between the two compartments. However, there is strong evidence that the 

functional location of these kinases resides in subcellular compartments such as the 

endosome, Golgi or other cellular locations (Fan et al., 2008, Lee et al., 2011, Teis et 

al., 2002, Torii et al., 2004, Wunderlich et al., 2001). Since ABMs are able to 
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incorporate spatial parameters into the simulation, they are an excellent tool to use 

to meet the need for refined modelling. Furthermore, the ability of ABMs to model the 

interaction between proteins and with their environment, and its capability of giving 

autonomy to each component, provides a further advantage. 

 

In this section, the effect of compartmentalisation on the MAPK pathway was 

investigated via the construction of two ABMs with two different 3D intracellular 

environments. The first contained only the cytoplasmic and nuclear compartments 

while the second model also included 10 cytosolic compartments. The ABMs reveal 

that homogeneous distribution of the MAPK kinases in a two compartment model did 

not lead to the emergence of MAPK activation dynamics, which are usually observed 

in vitro and in silico. Although the two compartment-ABM had demonstrated an 

activation pattern and pMAPK accumulation while MAPKK interacted with MAPK, the 

dynamics observed demonstrated an incremental increase in pMAPK levels (i.e. a 

graded/analogue activation behaviour) compared to the normally reported 

ultrasensitive response (Figure 4. 3 (A)). This occurred although the construction of 

the ABM was based on previous ODE models. These models implemented a one- or 

two-compartment architacture with well mixed MAPK components that are 

“assumed” to be moving randomly within the cytoplasm. Homogeneous expression 

of proteins coupled to their random movement caused the increase in their diffusion 

parameters and reduction in their probability to encounter and interact with other 

proteins (Bhalla, 2004a, Kholodenko et al., 2000, Kholodenko et al., 1999, Klann et 

al., 2011, Zhao et al., 2011). Therefore, this graded response in the ABM is due to 

the homogeneity and the Brownian motion of the kinases implemented in the model. 

An increase in diffusion parameters was shown to cause a reduction in reaction 
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order, and followed Michaelis–Menten kinetics. Reduction of the diffusion 

parameters showed an increase in the reaction order and the emergence of reaction 

behaviour with a sigmoidal activation curve. This is well documented in reactions 

involving scaffold proteins, such as KSR and MP-1, where the pathway kinases are 

brought together into closer proximity, thus reducing their diffusion coefficient, and 

therefore the probability of their interaction. Furthermore, this causes an increase in 

the level of phosphorylated MAPK species (Bray and Lay, 1997, Calder et al., 2006b, 

Ferrell, 2000, Klann et al., 2011, Levchenko et al., 2000). 

 

In the real world, homogeneous distribution of the kinases intracellularly renders 

them accessible to regulatory proteins such as phosphatases (Bhalla, 2004a, 

Kholodenko, 2003, Kholodenko, 2009, Kholodenko et al., 2000, Klann et al., 2011). 

This counterbalances the activation of the kinases, and thus further reduces the level 

of accumulated kinases, particularly the pMAPK species, thus slowing down or 

stopping signal propagation (Bhalla et al., 2002, Takekawa et al., 1998). 

Nonetheless, once a MAPK pathway is activated at the plasma membrane, the 

signal is propagated through the cytoplasm into the nucleus, the despite presence of 

phosphatases in the cytoplasm, and also their activation by MAPK phosphorylation 

(Brondello et al., 1999, Katagiri et al., 2005, Kucharska et al., 2009, Lewis et al., 

1998b, Marchetti et al., 2005). In silico models had demonstrated that to allow for 

signal spread, phosphatases and kinases are arranged in intracellular protein 

complexes leading to formation of active phospho-kinase species pools 

(Kholodenko, 2009, Mugler et al., 2012, Munoz-Garcia et al., 2009, Shvartsman et 

al., 2009, van Albada and ten Wolde, 2007). As a result, the signal either becomes 

localised to the regions that harbour these complexes or propagated into more 
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interior parts of the cell via waves of phosphorylation. These mechanisms for 

spreading the signal are thought to be active in neurons where excitation at the post-

synaptic junctions has to be propagated through the axon to the nucleus, or to pre-

synaptic junctions (Canal et al., 2011). This suggests that compartmentalising the 

MAPK components in intracellular domains is a crucial factor in shaping pathway 

activation behaviour, and consequently determining cell response.  

 

All of the above arguments and ideas suggest that the integration of multi-

compartments into the ABM will be a better model to investigate the MAPK activation 

dynamics. Biologically, intracellular compartmentalisation of the MAPK components 

is emerging as a fundamental mechanism in pathway regulation and mediating 

specificity and fidelity. Scaffold proteins such as KSR1, paxillian and p14, were also 

shown to be localised in special cellular compartments (for instance, Golgi, the 

endosome and the plasma membrane) (Canal et al., 2011, Ishibe et al., 2003, 

Schaeffer et al., 1998, Wunderlich et al., 2001). Thus, anchoring the kinases in these 

compartments and allowing them to be in close proximity while reducing diffusion 

parameters (van Albada and ten Wolde, 2007). The multi-compartment ABM 

presented here further supports the major role of intracellular compartments in 

influencing the pathway activation behaviour. In this ABM, the multi-compartments 

strengthened the ultrasensitive response and caused a more rapid activation of 

MAPK (Figure 4. 3 (B) and Figure 4.6). This is reflected quantitatively by the shorter 

time to achieve both Emax and the EC50; the higher rate of activation (i.e. MAPK 

conversion to pMAPK) and higher levels of pMAPK achieved at Emax (Figure 4. 6 (A) 

and Appendix B, Figure 9). Qualitatively, this is reflected by the emergence of the 

ultrasensitive activation behaviour in the model. It is worth highlighting that in the 
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multi-compartment ABM the total number of MAPKK in the model was only 10% of 

the two-compartment ABM. This was achieved through restricting MAPK and 

MAPKK to the compartments, which reduced their ability to diffuse into the 

cytoplasm. In addition, multi-compartments provided an interaction volume which 

brought the kinases into a closer proximity and increased the probability for 

interaction. This is analogous to the mechanisms proposed for the action of scaffold 

proteins to increase the efficiency of MAPK activation (Bhalla, 2004a, Klann et al., 

2011, Neves and Iyengar, 2009). 

 

In summary, the investigation presented here revealed that the use of a two-

compartment model of the MAPK pathway with homogeneously distributed kinases, 

in addition to its physiological inaccuracy, leads to a graded and irreversible pathway 

activation behaviour, and does not produce the commonly biologically observed 

pathway activation behaviour that is the ultrasensitive response. Thus, this is a 

misrepresentation of the pathway. This is strengthened by the emergence of the 

expected pathway activation dynamics (rapid activation and an ultrasensitive 

response) when multi-compartmentalisation had been implemented in the model. 

This reinforces the notion that the ABM approach is capable of producing robust 

models that faithfully re-create pathway behaviours observed experimentally. 

Consequently, the multi-compartment model was taken forward to inspect temporal 

regulation, and how the combination of spatial and temporal elements impact on the 

activation dynamics of the pathway.  
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4.3  The combination of spatiotemporal regulations 

play a role in shaping pathway activation behaviour 

In this subsection, both the temporal and spatial regulatory elements were combined 

in the ABM to assess how their combination and modification impact the activation 

behaviour of the pathway. This was achieved by implementing a temporal 

component in the multi-compartment ABM, which controlled the activation of 

MAPKK. This temporal component was the memory parameter re-activation delay 

period [[RADP]]. The null hypothesis is as follows: modification of the temporal 

element in a multi-compartment ABM has no substantial effect on the activation 

behaviour of MAPK. 

 

 

Figure 4. 13 MAPK pathway regulation through feedback loops.  pMAPK cytoplasmic targets include proteins 
involved in the regulation of the MAPK pathway, this leads to the formation of negative and positive feedback loops. 
Positive feedback loops include the activation of MAPKKK, the inhibition of Raf kinase inhibitor (RKIP) and the 
inhibition of the Src homology-2 protein phosphatase-1 (SHP 1), while negative feedback activation involves the 
activation of phosphatases such as DUSP7, the inhibition of the son of sevenless (SOS) and direct inhibition of 
MAPKK. 
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The MAPK pathway is highly regulated (Figure 4. 13). These regulatory mechanisms 

either enhance or abate the original response, and are highly specific to the cellular 

and signalling state. As a result, the outcome from the pathway (output) is reliant on 

the balance between activating inputs and deactivating inputs (Bhalla et al., 2002, 

Cirit et al., 2010, Haj et al., 2003, James E, 1996, Jeffrey et al., 2006, Sewing et al., 

1997, Shalom-Feuerstein et al., 2008). These include phosphorylation and 

dephosphorylation events mediated by kinases and phosphatase enzymes, 

respectively, as well as chemical and/or biological inhibitors.  

 

Furthermore, MAPKK was shown previously to act as a bottleneck for the JNK 

pathway and by the use of chemical inhibitors such as U0126 and PD-098059 

(Duesbery et al., 1998) (Alessi et al., 1995, Favata et al., 1998, Haeusgen et al., 

2011). Thus, MAPKK was considered in the ABM as the point of convergence for 

these activating and deactivating inputs, which influence the pathway output. Given 

that the level of active MAPK generated (hence the strength of the output) relies on 

the balance between the activating inputs against the deactivating inputs at the level 

of MAPKK, the signalling output is proportional to the number of active MAPKK 

molecules present in the system.  

 

As described in section  3.3.2.2.2, and shown in Figure 3. 5 (page 107), RADP 

exerted a control over the temporal element by dictating the time MAPKK remained 

in a dormant state. Thus, RADP regulates the number of active MAPKKs available in 

the cell. RADP was designed to represent the balance between activating and 

inhibiting inputs at the level of MAPKK. A strong activating signal, coupled with weak 
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inhibition results in a sustained propagation of the signal and high level of activated 

MAPKK. Conversely, a weak activating signal coupled with a strong inhibition results 

in a reduced number of active MAPKK species in the system, and ultimately 

inhibition of MAPK activation and signal propagation. This was implemented by 

varying RADP, whereby short RADPs result in high levels of active MAPKK, while 

long time periods cause the population of dormant MAPKK to increase. The time 

periods of 90 s, 4.5 min, 7.55 min and 22.6 min were chosen, as they associate with 

relevant time points in MAPK activation. This was based on the deduction made in 

section 4.1 that the median time for pMAPK to reach their Emax was 7.63 (see Figure 

4. 1). Therefore, the model opted to assess the significance of modulating the 

temporal activation behaviour on global MAPK activation at the chosen time-points. 

An activation cue is strongest at the initial phase, where activation is instantaneous 

and inhibitory inputs are minimal; at this time point the majority of MAPKKK has been 

activated and, therefore, pMAPKK proteins are also activated (Hornberg et al., 

2005b, Santos et al., 2007c, Shin et al., 2013, Shin et al., 2009b) (Hanada et al., 

1998, Takekawa et al., 1998). Hence, the initial 90 s of activation was chosen to 

investigate modulation of the temporal activation behaviour at that stage. The 4.5 

min time point was chosen as it was within the linear and intermediate phase of the 

ultrasensitive response. This signifies the rapid activation of MAPK and its 

accumulation into the nucleus. Therefore, this provides a good assessment of the 

significance of altering the temporal activation dynamics at that stage. The 7.56 min 

time point was chosen as it is immediately before the median time to reach Emax. 

This allowed for examining the significance of modifying the temporal activation 

dynamics at that stage. Biologically, the activation response elicited by a transient 

activating signal receded after 20 minutes, where levels of activated MAPKK and 
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MAPK reached basal levels. Therefore, the 22.6 min time point was chosen to 

assess the effect of modifying the temporal activation dynamics at this stage.  

 

Biologically, a cell is exposed to two forms of stimulation environment; a 

sustained/periodic activation environment or a dynamic activating environment 

(Alberts et al., 2002). In a periodic activating environment, the cell is initially exposed 

to a high intensity yet transient stimulus, which is followed by strong inhibitory 

feedback. These include the exposure to growth factors (for instance FGF and 

growth hormone) or to neurotransmitters (acetylcholine and serotonin) (Atherton et 

al., 2015, Spiegel et al., 2000). For a dynamic activating environment, a tug-of-war is 

occurring between activating and inhibitory inputs. This is where positive and 

negative feedback loops are both activated, corresponding to a cell exposed 

simultaneously to pro-survival and pro-apoptotic signals; for instance, glioblastomas 

treated with the cannabinoid Δ9-Tetrahydrocannabinol (THC) (Aguado et al., 2007, 

Aksamitiene et al., 2010, Wong et al., 2007). To accommodate for this, the RADP 

was modelled either deterministically or stochastically (Figure 3. 4). A deterministic 

RADP mimics the periodic and sustained activation environment. RADP was defined 

as a particular time point where every MAPKK species become re-activated. The 

time points are what were specified above. The stochastic RADP was to imitate the 

dynamic activation environment. Comparable to the real-world scenario, the 

activation state of a MAPKK molecule depends on the proteins which are in close 

proximity to it (for instance a MAPKKK, a phosphatase or MAPK), and hence the 

feedback apparatus in its environment. Therefore, a single MAPKK protein becomes 

activated and deactivated depending on which protein is in close proximity to it. 

Thus, molecularly, in such an environment, is the time a MAPKK molecule stays in 
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an active or inactive/dormant state, and will vary within the course of the stimulation. 

Furthermore, this time will also differ between the individual proteins in the 

population. RADP was modelled where the time point chosen (see above) 

represented a set of time which a MAPKK agent can adopt one of them with equal 

probability.  

The simulations were run using the FLAME environment; visualisation and graph 

plotting were done using the FLAME visualiser. The following subsections outline the 

results obtained from the combination of the spatiotemporal regulatory elements and 

modification of the temporal activating behaviour in a multi-compartment 

environment.   

 

4.3.1  Results 

4.3.1.1 Validating MAPKK Reactivation delay period (RADP) 

stochasticity 

RADP was modelled stochastically as described on page 138. Briefly, RADP was 

modelled to assume particular time intervals which maintain MAPKK in an inactive 

state. These time intervals were 90s, 4.5 min, 7.55 min and 22.6 min. A stochastic 

RADP with a time interval of 3 min, for instance, could adapt any time value from 0 to 

3 min. The probability of each time point to be generated was equal i.e. modelled 

using a uniform distribution. Figure 4. 14 demonstrates this point. Within one model 

run the RADP value of 5 agents were monitored (Figure 4. 14 (A)), statistical 

analysis illustrates that there is no significant difference between the distributions, 

and when a normality test was conducted using a nonparametric test, and using 
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Kruskal-Wallis test of Distribution, the distribution was not Gussian. RADP was also 

tested by monitoring the RADP value generated by one MAPKK agent in 5 ABM 

simulations. The distributions of RADP values were plotted as shown in Figure 4.14 

(B). The Kruskal-Wallis test of Distribution confirmed that RADP values were 

stochastically generated.  

 

4.3.1.2  MAPKK re-activation delay influences the dynamics of 

pMAPK formation in a multi-compartment model  

The significance of modifying MAPKK re-activation delay period (RADP) on MAPK 

activation dynamics was investigated. This was done by comparing system 

(A)      (B) 

  

Figure 4. 14 Analysis of the re-activation delay period (RADP) to confirm its stochasticity.  (A) RADP values 
were monitored for five MAPKK agents during one ABM simulation run, whenever the agent RADP value was re-
set it was recorded and the accumulation of the values throughout the run were plotted as shown. Kruskal-Wallis 
test of Distribution shows that none of the RADP values followed a normal distribution and thus confirm the 
stochastic nature of RADP, RADP € (0, …, 200 s) and n = 1 (B) To further confirm the stochastic nature of RADP 
through multiple model runs, the RADP value of a specific MAPKK agent was followed in 5 simulation runs of the 
model. The distribution of the re-generated RADP values with the statistical analysis using Kruskal-Wallis test of 
Distribution verified RADP stochasticity across model runs. The data was plotted using a Box and whisker plot with 
the line representing the median value. RADP € (0, …, 100 s) and n = 5. 
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Figure 4. 15 The effect of altering spatiotemporal regulatory elements on the MAPK activation dynamics.  
Once MAPKK agents bind and activate MAPKs to pMAPKs, MAPKKs change their state to a dormant MAPKKs 
(MAPKKs). The length of time for MAPKK to re-activate is the re-activation delay period (RADP). RADP was set-
up into either a stochastic ((A), (C), (E) and (G)) or deterministic configurations ((B), (D), (F) and (H)). (A) and (B) 
RADP was set at a short period (0  ≤ RADP ≤  90 s), while in (C) and (D) RADP was set to an intermediate period 
(0  ≤ RADP ≤  4.5 min); in (E) and (F) RADP was set to a the highest range of the intermediate period (0  ≤ RADP 
≤  7.55 min); while in (G) and (H) RADP was set to long periods (0  ≤ RADP ≤  22.63 min).  
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behaviour in stochastic vs. deterministic RADP configuration (Figure 4. 15). When 

short RADPs were investigated, the system maintained robust and rapid MAPK 

activation in both the stochastic (0 ≤ RADP < 90 s) and deterministic models of 

RADP (RADP=90 s) (Figure 4. 15 (A) and (B)). When the RADP value was switched 

to 4.55 min, although the stochastic model (0 ≤ RADP < 4.55 min) had maintained 

the robust and rapid MAPK activation behaviour signified by the pMAPK magnitude, 

and the time to reach Emax and EC50 (Figure 4. 15 (C) and Figure 4. 16 (a)-(c)), in the 

deterministic models (RADP = 4.55 min) an oscillatory behaviour started to emerge 

(Figure 4. 15 (D)). This behaviour was also visible in the stochastic model, when 

stochasticity was minimal (for instance, 4.38 ≤ RADP < 4.53 min, Figure 4. 17). The 

data obtained from these experimentations were validated as following. Where the 

sustained oscillatory behaviour first emerged in the ABM, the wavelength between 

the pMAPK peaks and the deactivation phase of the oscillatory behaviour were 

validated against the data observed by Shankaran et al, (Shankaran et al., 2009). 

For the stochastic RADP model, due to the lack of technology which allows 

modulation of feedback loops at precise and exact time-points, the data were only 

validated against the specifications mentioned above (i.e. the time to achieve Emax 

and EC50 in addition to the magnitude of the pMAPK produced).  

 

Next, longer RADP values were investigated (0 ≤ RADP < 7.56 min). Stochastic 

RADP models had maintained their ability to generate high levels of pMAPK species 

(MAPK levels were reduced to 93.9 ± 1.7% at Emax; Figure 4. 16 (a)). Nonetheless, 

the rate of activation had been reduced and the time to achieve Emax increased by 

4.3 fold (Figure 4. 16 (b)). However, when the stochasticity of the RADP 

configuration was at its minimal (7.53 ≤ RADP < 7.55 min), or the RADP value was 
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Figure 4. 16  The effect of spatiotemporal modulation on the MAPK activation dynamics.  The level of 
pMAPK and MAPKK agents generated at Emax and the time taken to achieve Emax and EC50 for both agents 
were compared between multi-compartment ABMs with different stochastic RADP configurations. (A) The level of 
pMAPK agents generated with each RADP configuration was examined, when RADP was less than 7.55 min, there 
was no significant difference in the number of pMAPK generated in the simulations (compared to the control run, 0 
≤. RADP ≤ 90 s. However, when RADP value was ≤ 7.55 min, the level of pMAPK started to become significantly 
lower compared to the control run, with 0 ≤ RADP ≤ 22.65 min, demonstrating a substantial change. (B) 
Conversely, the time to achieve Emax appeared to be significantly different when RADP was less than 22.63 min 
(compared to control run, 0 ≤ RADP ≤  90 s) and showed no significant difference when it was 0 ≤ RADP ≤ 22.65 
min. (C) When the time to achieve EC50 was considered, only 0 ≤ RADP ≤ 22.63 min configuration illustrated a 
significantly different time to achieve EC50 compared to the control run. Using x configuration the time to achieve 
Emax was significantly shorter compared to control. That was mainly due to the substantially low Emax achieved 
using that configuration. (D) When the effect of the RADP configuration was examined in relation to MAPKK, 
increasing RADP had resulted into the significant reduction in the level of active MAPKK. (E) When the time to 
achieve Emax was assessed the time was significantly longer when RADP configuration was less than 22.63 min. 
(F) Examining the time to achieve EC50, when RADP range was increased the time to achieve EC was significantly 
longer. However, when RADP range was within 22.63 min the time to achieve EC was significantly shorter. This is 
due to the significantly E generated in comparison to the control run. 
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fixed to create a deterministic mode (RADP = 7.55 min), the minor oscillatory 

behaviour observed in earlier models (Figure 4. 15 (D)) evolved into complete 

oscillatory behaviour (shown in Figure 4. 15 (F)). 

 

RADP was set at 22.64 min and this was modelled stochastically and 

deterministically (Figure 4. 15 (G) and (H)). The stochastic model of RADP had 

resulted in reduced MAPK activation. This was signified by a reduction of MAPK to 

47.4 ± 3.9% from 100% levels at t0 (Figure 4. 16 (a)). This is in contrast to a 95% 

reduction observed when 0 < RADP ≤ 90s (Figure 4. 15 (A) and Figure 4. 16 (a)). 

This reduction in MAPK level magnitude at Emax is statistically different from the 

control (when 0 < RADP ≤ 90s); however, the MAPK levels were five times higher 

than EC50 values in the control. This was unexpected, as inhibiting MAPKK activation 

within 20-30 minutes was anticipated to cause insignificant change in MAPK values 

and the return of pMAPK levels to baseline at t0. Yet, when RADP was set to RADP 

= 22.64 min, MAPK and pMAPK levels approached their basal levels, and levels 

lower than their EC50 as seen in Figure 4. 15 (G).  

 

Nevertheless, using this configuration, the model retained a degree of 

responsiveness to the initial stimulus. This appears to have emerged due to the 

ability of low levels of activated MAPKK to maintain a high level of pMAPK in the 

model. Conversely, in the deterministic configuration (i.e. RADP = 22.6 min), the 

MAPK activation dynamic evolved into a sustained oscillatory behaviour (Figure 4. 

15 (H)).  
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Figure 4. 17 The effect of minimal stochasticity of RADP on the MAPK activation.  Stochastic models of RADP 
were tested with several ranges, as the ranges were lowered, the stochasticity of RADP reduced, this was evident 
as these models with minimal stochasticity demonstrated MAPK activation dynamics identical to those of the 
deterministic RADP models in regard to the magnitude of pMAPK and time to achieve EC50 and Emax. (A) RADP 
was set into this range 3.77 ≤ RADP < 4.53 min, the figure illustrates the beginning of the emergence of the minor 
oscillatory responses at the initial activation phase. (B) shows the model with 4.15 ≤ RADP < 4.53 min, the initial 
phase of MAPK activation demonstrate sharper miniature oscillatory activity at the initial activation stage. (C) 
demonstrates a model with 4.38 ≤ RADP < 4.53 min.  
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Figure 4. 18: (Fig 4.16) The effect of spatiotemporal modulation on the MAPK activation dynamics using 
deterministic re-activation delay periods.  The multi-compartment ABM utilising deterministic RADP 
configurations were analysed. (A) Time to achieve pMAPK Emax. (B) Time to achieve Emax for active MAPKK 
(pMAPKK). Only the times for RADP =90 s and RADP = 4.5 min are shown due to the low levels of pMAPKK 
generated when RADP was set at 7.55 min and 22.6 min. Thus, it was difficult to deduce the true Emax values.  (C) 
There was no significant difference in the time to achieve EC50 for pMAPK with the different RADP configurations. 
Due to difficulty to achieve a true EC50 for pMAPKK, the time to achieve EC50 for was not postulated for pMAPKK 
(D) The levels of pMAPK at Emax for are significantly lower as RADP is increased. (E) The levels of pMAPKK at 
Emax with the different RADP configurations. Increasing RADP value significantly lowers the levels of pMAPKK at 
Emax.  
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4.3.1.3  Global MAPK activation dynamics depend on 

simultaneous spatiotemporal regulation and the mode of MAPKK 

activation  

To confirm that the emergent behaviours observed in the spatiotemporal models 

outlined above were due to the simultaneous modulation of spatiotemporal 

regulatory elements of the MAPK pathway at the level of MAPKK, the RADP models 

outlined previously were implemented in a two compartment model (Figure 4. 19). 

The time points chosen for this assessment were 90s and 22.6 min, as these two 

time points represent two extremes. The former is the time point where the model 

demonstrated the least difference in MAPK activation behaviour, when RADP 

assumed both stochastic and deterministic configurations, while the contrary was 

observed when 22.6 min were used (see Figure 4.16). The stochastic and 

deterministic models for these time points were used in the two compartment model. 

In these configurations neither an ultrasensitive response nor oscillatory behaviour 

emerged with either stochastic (Figure 4. 19 (A) and (C)) or deterministic 

configurations (Figure 4. 19 (B) and (D)) of RADP. Statistical analysis shows that 

there was no significant difference between these models in regard to pMAPK 

formation, MAPKK activation or re-establishment of MAPK levels (Appendix B, 

Figure 11). Nevertheless, in these RADP models, the characteristic graded MAPK 

activation response emerged, albeit, the level of pMAPK generated in these models 

were lower in comparison to those in the multi-compartment models with a statistical 

significance of p<0.01% (see Appendix B, Figure 11 (A)). Additionally, the graded 

MAPK response observed in these two-compartment models was at least 1.5 fold 
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slower in comparison to those observed in the multi-compartment ABMs (see 

Appendix B, Figure 11 (B)). 

 

4.3.2  Discussion and conclusion 

Negative and positive feedback loops play a role in the dynamics of the MAPK 

pathway. These mechanisms modulate the intensity and the duration of MAPK 

activation. As shown in Figure 4. 13, the pathway is heavily regulated by feedback 

loops.  The inclusion of RADP in the ABM was to introduce a temporal regulatory 

element into the MAPK pathway, and to integrate feedback mechanisms into the 

 

Figure 4. 19 Modulation of the re-activation delay period (RADP) in a two compartment model of MAPK 
pathway.  The re-activation delay characteristics of MAPKK (red) were introduced to a two-compartment ABM of 
the MAPK pathway and the effects were monitored. RADP was set up in a stochastic ((A) and (C)) and 
deterministic ((B) and (D)) configurations. In (A) and (B) short RADPs were used. in (A) 0 ≤ RADP ≤ 90 s while in 
(B) RADP = 90 s. Both of the models had generated lower activation rate and formation of MAPK and MAPKK in 
comparison to the multi-compartment ABM. The graphs in (C) and (D) were generated with long RADPs, where in 
(C) 0 ≤ RADP ≤ 22.63 min) and in (D) RADP = 22.6 min. pMAPK formation, MAPKK and MAPK activations patterns 
were analogous to those with short RADP seen in (A) and (B). Unlike multi-compartment models, 
deterministic/periodic models with intermediate or long RADPs did not generate any oscillatory pattern. 
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multi-compartment ABM. This introduction revealed several characteristics of the 

activation behaviour. The first is that activating and inhibiting inputs at the level of 

MAPKK plays an important part in the activation dynamics. The second is that 

distinctive activation dynamic behaviour emerges from variation in the nature of input 

at this level of the cascade. Finally, compartmentalisation and periodic RADP 

together were necessary for the emergence of oscillatory MAPK activation 

behaviour. These results are in line with the theories that negative and positive 

feedback loops are important in controlling the activation dynamics of the pathway, 

especially ultrasensitivity and bistability (Butcher et al., 2003, Cai et al., 2008, Ferrell 

Jr, 2002, Hayashi et al., 2001, Neves and Iyengar, 2009). The emergent oscillatory 

behaviour in the ABM was validated against Shanakran et al, where the oscillatory 

behaviour in the MAPK pathway was demonstrated for the first time (Figure 4. 20).  

 

At short RADPs no distinct differences in the activation dynamics were observed 

between deterministic and stochastic configurations of RADP in the ABMs (Figure 4. 

15 (A) and (B)). This suggests that once the pathway is activated, and the balance of 

inputs is shifted towards activating inputs, the manner of feedback is irrelevant, as 

the priority is to respond to the signal. Consider that at basal level, activating and 

inactivating inputs are balanced (i.e. at equilibrium). When an intense signal initiates 

MAPK pathway activation, the balance is tipped towards the activating inputs. As the 

median Emax value is achieved within 7.73 min, any shift in the balance between 

activating and deactivating inputs prior to that time is overcome by the strength of the 

activating signal. In addition any periodicity in deactivating inputs which is shorter 

than that median time is incapable of overcoming the initial activating input. 
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ABM with intermediate and stochastic RADP (4 ≤ RADP ≤ 10 min) were still capable 

of generating an ultrasensitive response (Figure 4. 15 (C), (E) & (G)). However, this 

became graded as the time to achieve Emax increased to 30 min and thus the 

sigmoidal curve shifted to the right. A stochastic model of the RADP was designed to 

model a continuous and dynamic activating signal (Macia et al., 2009, Tomida, 

 

Figure 4. 20 Validation of the emergent pMAPK oscillatory behaviour in the multi-compartment ABM 
against the oscillatory behaviour in the MAPK pathway first demonstrated by Shankaran et al.  (A) The time 
between peak and trough pMAPK levels were manually analysed from the publication of Shankaran et al and 
compared to the oscillatory behaviour first observed in the ABM multi-compartment (0 ≤ RADP ≤ 7.55 min) model. 
The data show no statistical significance between the two data sets (B) The time between every pMAPK peak was 
analysed in both Shankaran’s data and the ABM and conducting statistical analysis with nonparametric analysis 
illustrate no significant difference between them. 
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2015). The degree of balance (i.e. equilibrium) between activating and deactivating 

inputs and the shift between them were taken into consideration with the length of 

RADP. With long RADP (RADP ≤ 15 min), the deactivating inputs are more dominant 

than activating inputs, leading to substantial reduction in MAPK activating behaviour. 

Though the deactivating inputs are more dominant, the aptitude to generate the 

response was not completely lost in the presence of multi-compartments. The 

activation behaviour was lost when strong deactivating inputs are present (RADP ≥ 

15 min, Figure 4. 15 (G)).  

 

Therefore, considering that the MAPK pathway is under dynamic stimulation, and the 

emergent activation behaviour is robust and exhibits a degree of resistance to 

modulation of temporal the regulatory element, it can be postulated that 

compartmentalisation is linked to signal memory and so signal fidelity. The emergent 

behaviour of this dynamic system suggests that the system is set up to remember 

the original activating signal and the initial conditions. This ensures that once the 

balance shifts back to the activating inputs, re-establishment of the activation 

dynamics can be facilitated with ease. This is in line with the mechanisms proposed 

of how MAPK play a role in long term potentiation and development of neuronal 

plasticity. (Gao et al., 2011, Mayford et al., 2012, Miyamoto, 2006, Schrick et al., 

2007) 

 

Previous in silico models argue that oscillation in the MAPK pathway emerge 

randomly and it does not rely on regulatory mechanisms (Legewie et al., 2007, 

Ortega et al., 2006, Qiao et al., 2007). Oscillation also emerged in the ABM. 
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However, contradictorily, the ABM suggests that in order for oscillatory behaviour to 

appear, three conditions are needed. These conditions are: compartmentalisation; 

MAPKK as the bottleneck for activating-deactivating inputs; and a shift in activation-

deactivation balance with periodicity ≥ 4.5 min. The time restriction appears to be 

essential for determining if the oscillatory behaviour is sustained or transient.  

Oscillatory activation dynamics in the MAPK system have been reported both in 

silico (Kholodenko, 2000, Sarma and Ghosh, 2012, Shin et al., 2009b, Tian et al., 

2009, Wang et al., 2006) and recently in vitro (Hilioti et al., 2008, Nakayama et al., 

2008, Shankaran et al., 2009, Weber et al., 2010). In in silico models, oscillation was 

initially thought to be solely reliant on negative feedback. Models with strong 

feedback loops generate oscillatory behaviour (Cirit et al., 2010, Kholodenko, 2000, 

Lim et al., 2009, Novak and Tyson, 2008).This support the outcome of the model 

presented here with long deterministic RADPs (simulating a system where 

deactivating inputs are dominant). However, this idea is changing, as the interaction 

between positive and negative feedback loops are considered to play a part in the 

emergence of oscillation in the cascade. This was shown by several investigators in 

silico (Ferrell et al., 2009, Ingolia and Murray, 2007, Sarma and Ghosh, 2012, Tsai et 

al., 2008). Our model strengthens this idea, as RADP integrates negative and 

positive feedbacks at the level of MAPKK. Furthermore, although the ABM designed 

only included the fundamental behaviour and individuals of the MAPK pathway, 

oscillation still emerged. All of the above strongly suggests that in order for oscillation 

to occur in the real-world system a few conditions have to be met. The ABM revealed 

that these conditions are purely intracellular settings, and thus suggest an 

explanation as to why oscillatory behaviour is visible at in vitro single-cell 
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experiments, while being difficult to detect in in vitro experiments which assess 

populations of cells. 

We looked at formation of pMAPK in the ABM model and compared it to published 

data. We compared the ABM data to the recently published results by Shankaran et 

al. where they demonstrated the oscillation of pMAPK levels experimentally 

(Shankaran et al., 2009). Our ABM models statistically show parallelism with their in 

vitro data in terms of MAPK activation dynamics (Figure 4. 20). Their stimulation of 

cells with EGF showed a temporal dynamics of pMAPK formation similar to that of 

the periodic RADP ABM model (RADP = 7.55 min). Furthermore, when comparing 

the oscillatory behaviour shown by Shankaran and colleagues, the ABM model 

matches several features in the pMAPK response. Both Shankaran’s data and the 

ABM model show similar “turn off” dynamics for all the oscillatory waves and the 

maintenance of the oscillatory behaviour past the first response trigger. This is 

evident in Figure 4.20 (A) where the time between pMAPK peak levels and troughs 

was not statistically different between Shankran’s data and those observed in the 

ABM. The time between pMAPK peaks was also not statistically different (Figure 4. 

20 (B)). The ABM (with 4.5 ≤ RADP ≤ 7.5 min) and some of the oscillatory behaviour 

in Shankaran’s paper demonstrated graded responses, while continuing oscillate 

until the levels of pMAPK were close to Emax. We also noted similarities at the phase 

between the turn-on and turn-off phase in the oscillatory waves. Both the ABM (when 

6 ≤ RADP ≤ 23 min) and some of the in vitro data at the initial response show some 

fluctuations in pMAPK levels before the “turn off” phase. In our model, we observed 

that this was due to a second wave of MAPKK activation which were either dormant 

or not in a close enough proximity to bind to MAPK during the initial wave of 
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activation. However, the small number of available active MAPKK agents, and their 

lengthy RADP, hindered further activation of the recently available MAPKs. 

The amplitude and frequency of MAPK activation dynamics are thought to play a role 

in signal specificity and fidelity (Hancock and Parton, 2005, Murphy et al., 2004, 

Sewing et al., 1997). This is shown with how amplitude of phosphorylated ERK 

influences the expressions of genes such as c-Fos (Cai et al., 2008, Lim et al., 2009, 

Murphy et al., 2004, Murphy et al., 2002). This is intriguing as the multi-compartment 

ABM presented demonstrated that shifting the balance between activating and 

deactivating inputs has a major effect on levels of pMAPK. Alteration of the balance 

through RADP in a two-compartment system did not generate such differences in 

amplitude (Appendix B, Figure 12) This further supports the idea that a multi-

compartment model of the MAPK pathway is a more appropriate model compared to 

a two-compartment model (Figure 4. 3, Figure 4. 6 and Figure 4. 15). Oscillation in 

the MAPK pathway has been proposed as a mechanism to regulate MAPK-mediated 

events in the cytoplasm (Murphy et al., 2004), where oscillation frequency and 

amplitude encodes the appropriate response; similar to what has been demonstrated 

in calcium signalling with calcium oscillation (Ullah et al., 2007). The model 

represented here further supports this concept because the presence of cytoplasmic 

multi-compartments was necessary for the emergence of oscillation. We propose 

that within these cytoplasmic compartments periodic shifts in the activation and 

deactivation inputs at the level of MAPKK can act as filters and signal modulators for 

local responses.  MAPKs are present in the compartment and have direct access to 

their targets in these compartments. If there are multiple targets available, the 

frequency and the amplitude of the oscillatory behaviour can be differentially 

decoded by the different targets. This also suggests an interaction hierarchy where 
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some MAPK phosphorylation targets are more sensitive to MAPK activation 

compared to others. 

 

4.4  Variation of the spatiotemporal regulatory 

elements and their effect on the MAPK global 

activation.  

In the previous sections, the attempt was made to modulate either the spatial or 

temporal regulatory elements separately, while maintaining the second element 

unchanged. In this section the attempt was made to modulate both the 

 

Figure 4. 21 Modulation of the spatial regulatory element of the MAPK pathway results into emergence of 
two phase MAPK  activation behaviour, irrespective of the temporal regulatory element. (A)  The MAPKK-
MAPK signalosome-cluster ABM assessed the effect of disassembly of the MAPKK-MAPK complex in tandem with 
modulation of the re-activation delay period (RADP). The ABM utilised stochastic ((A) and (C)) and deterministic 
((B) and (D)) configurations. These were using short RADP values (where in (A) 0 ≤ RADP ≤ 90 s for the stochastic 
configuration and in (B) RADP = 90 s for the deterministic configuration) and long RADP values (where in (C) 0 ≤ 
RADP ≤ 22.6 min for the stochastic configuration and in (D) RADP = 22.6 min for the deterministic configuration).  
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spatiotemporal elements simultaneously. The null hypothesis for this section is that 

concurrent modulation of the spatiotemporal parameters results in no significant 

effect on the MAPK activation behaviour. This was done using a signalosome cluster 

ABM and a multi-compartment ABM which interchanged between dynamic and 

periodic stimulation.  

 

4.4.1  Results 

4.4.1.1  Spatiotemporal elements modification using a MAPKK-

MAPK signalosome cluster model. 

Signalosome clusters have been reported previously to modulate cell signalling. 

These include plasma membrane clusters, such as lipid rafts, and the nanoclusters 

of rapidly accelerated fibrosarcoma1 [RAF1] and rat sarcoma (Ras) (Lingwood and 

Simons, 2010). In these signalling apparatus RAF-1 and Ras are brought together 

into close proximity and randomly assemble and disassemble (Harding et al., 2005a, 

Shalom-Feuerstein et al., 2008). This concept was applied to the ABM by altering the 

multi-compartment model to a model with assembled MAPKK-MAPK signalosome 

clusters at the arrival of the activating signal; these clusters then disassemble and 

the signalosome components diffused into the cytoplasm by Brownian motion. The 

temporal element was altered by using either a stochastic or deterministic RADP 

models. The RADP values that were chosen to be applied were 90 s and 22.6 min. 

The null hypothesis is altering the spatial element by modification of cluster 

assembly and disassembly, in conjunction with modulating the temporal element by 

using stochastic and deterministic time points, has no substantial effect on the MAPK 

activation behaviour. These models had resulted in the emergence of a biphasic 



Page 176 of 346 
 

MAPK activation response composed of an activation (“turn on”) phase and a 

deactivation (“turn off”) phase (Figure 4. 21). The model results were validated 

against the in vitro data obtained from Lefkowitz et al, investigating the MAPK 

activation dynamics within the endosomal compartment, as their system examines 

MAPK-GPCR-β-arrestin signalosome clusters within the endosomal compartment. 

 

Considering that the pMAPK formation is a proxy for MAPK activation, there was a 

statistically significant difference between the stochastic (Figure 4. 21 (A) and (C)) 

and deterministic RADP (Figure 4. 21 (B) and (D)) signalosome cluster models. A 

statistically significant difference in MAPK activation behaviour was also observed 

when RADP value was increased. These observations were at the level of pMAPK 

generated at Emax, the time to achieve both Emax and EC50. All models exhibited a 

rapid MAPK activation and pMAPK accumulation in the initial phase, followed by a 

slow deactivation phase. The use of different RADP configurations (i.e. stochastic 

and deterministic) had primarily impacted pMAPK levels generated at Emax (Figure 4. 

22 and Appendix B, Figure 13). When RADP was at 90 s, the stochastic 

configuration resulted in statistically significant lower pMAPK levels. Alternatively, 

when RADP was 22.64 min, deterministic configuration generated considerably 

higher pMAPK levels (Figure 4. 22 (A) and (B)). Furthermore, although there was no 

considerable difference statistically in the time to reach EC50 between stochastic and 

deterministic configurations of RADP, when RADP was set up at 90 s (Figure 4. 22 

(C)), when RADP was set-up at 22.64 min, the time to reach Emax markedly 

increased in the deterministic RADP configuration, in comparison to the stochastic 

(Figure 4. 22 (D)). Nonetheless, the time to reach EC50 had been extensively 

reduced in ABMs adopting deterministic RADP, in comparison to the stochastic 
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Figure 4. 22. The activation dynamics of MAPK in a MAPKK-MAPK signlosome cluster ABM.  An 
assessment of the effect of using RADP stochastic and deterministic configurations on the level of MAPK at Emax 
(A) and (B), the time to achieve Emax (C) and (D) and the time to achieve EC50 (E) and (F). Values represent 
mean ± standard error of the mean (SEM) and student t-test statistical analysis was performed to find statistically 
significant difference. *, ** and *** illustrate p < 0.05, p < 0.01 and p < 0.001 respectively. 
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configuration using both 90 s and 22.64 min (Figure 4. 22 (E) and (F)). Furthermore, 

when the effect of increasing RADP values on MAPK activation behaviour was 

assessed, it was observed that pMAPK levels were greatly reduced, regardless of 

the RADP configuration used (Appendix B, Figure 13 (A) and (B)). Nonetheless, 

RADP stochastic configurations illustrated more substantial reductions at Emax 

(Appendix B, Figure 13 (A) and (B)). Notably, however, when RADP was set at the 

stochastic configuration, increasing its value resulted in a statistically significant 

reduction in the time to achieve both Emax and EC50 (Appendix B, Figure 13 (C) and 

(E)). Conversely, when RADP was set up into a deterministic configuration, there 

was no noticeable change in the time to achieve Emax and EC50 (Appendix B, Figure 

13 (D) and (F)).  

 

Considering the activation of MAPKK, in this MAPKK-MAPK signolsome cluster 

ABM, the RADP configuration did not influence the level of MAPKK at Emax (Figure 4. 

23 (A) and (B)). However, when the RADP value assumed 90s, the time to achieve 

Emax increased substantially in deterministic configuration, coupled with no observed 

change in the time to achieve EC50 (Figure 4. 23 (C) and (E). Yet, when RADP was 

set-up to 22.64 min the observed change in the time to achieve Emax was statistically 

insignificant when stochastic and deterministic configurations were compared (Figure 

4. 23 (D)), even though there was a statistical difference in the time to achieve EC50 

(Figure 4. 23 (F)). Increasing RADP value resulted in a statistically significant 

reduction in the level of MAPKK at Emax using the stochastic configuration (Appendix 

B, Figure 14 (A)). However, in the deterministic configuration, increasing RADP from 

90 s to 22.64 min did not change MAPKK levels at Emax(Appendix B, Figure 14 (B)). 

Additionally, in a stochastic configuration, increasing RADP from 90 s to 22.64 
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Figure 4. 23 The activation dynamics of MAPKK in a MAPKK-MAPK signlosome cluster ABM.  An 
assessment of the effect of using RADP stochastic and deterministic configurations on the level of MAPK at Emax 
(A) and (B), the time to achieve Emax (C) and (D) and the time to ahcieve EC50 (E) and (F). Values represent 
mean ± standard error of the mean (SEM) and student t-test statistical analysis was performed to find differences of 
statistical significance. *, ** and *** illustrate p < 0.05, p < 0.01 and p < 0.001 respectively. 
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caused an increase in the time to achieve both Emax and EC50 (Appendix B, Figure 

14 (C) and (E)). This increase was also observed in the RADP deterministic 

configuration (Appendix B, Figure 14 (D) and (F)). It is of interest that in this model, 

in contrast to what was reported in the prior multi-compartment ABMs, the levels of 

pMAPKK, MAPKK, MAPK and pMAPK returned to levels close to baseline at t0. 

 

4.4.1.2  Investigating alteration of the spatiotemporal regulatory 

elements via diversification of feedback mechanisms. 

In this ABM, a few RADP configurations were used during one model simulation. The 

null hypothesis here is that change in feedback behaviour, via the use of different 

RADP configurations, results in the same MAPK activation dynamics.  

 

Cells are exposed to ever-changing signalling conditions. These take the form of 

different extracellular ligands, different stimulation modes (dynamic Vs periodic), 

and/or the initiation of different feedback mechanisms. The collective of these 

conditions ultimately influences cellular responses and behaviour. Dynamic 

signalling conditions are present during embryonic development and cell 

differentiation. An extensively studied example of these signalling conditions is 

during somatogenesis in vertebrate animals. Somitogenesis involves the sequential 

transition of paraxial mesoderm into somites, as the primitive streak regresses along 

the embryo anterior-posterior axis (Christ and Ordahl, 1995, Palmeirim et al., 1997). 

The process is periodic and occurs at regular intervals. The behaviour is believed to 

emerge due to molecular oscillatory clock, where cells are exposed to vigorous 

activating signals and potent feedback control mechanisms, which are also periodic 
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and oscillatory in nature. Where certain developmental genes are exposed to cycles 

of activation and inhibition (Kageyama et al., 2012, Kicheva et al., 2012, Le Dreau 

and Marti, 2012). This oscillatory behaviour is observed at the gene expression level 

(Palmeirim et al., 1997). The genes which exhibit this oscillatory behaviour express 

components of signalling pathways, such as fibroblast growth factor (FGF) (Dubrulle 

et al., 2001, Dubrulle and Pourquie, 2004), Wnt (Aulehla et al., 2003), Notch (Jiang 

et al., 1997) and MAPK  phosphatases (Dequéant et al., 2006, Niwa et al., 2007, 

Niwa et al., 2011). It is believed that negative feedback mechanisms are the prime 

contributors to the appearance of oscillatory behaviour. The MAPK pathway is 

thought to be triggered during somatogenesis by fibroblast growth factor (FGF) with 

ERK and dual specificity phosphatase gene Dusp4 both playing a role in this process 

(Niwa et al., 2011, Niwa et al., 2007). However, it is still not understood in great 

detail how this oscillatory signalling behaviour influences the signalling pathways 

involved in somatogenesis either individually or globally (i.e. as a signalling network). 

 

Considering that in somatogenesis the oscillatory behaviour is believed to develop 

due to signal modulation via negative feedback loops (i.e. the modulation of the 

temporal regulatory element), the multi-compartment ABM was used to test the 

effect of ongoing modulation of the temporal regulatory element on MAPK activation 

dynamics. This was undertaken by emulating the dynamic changes in external 

signals that have previously been reported experimentally in the literature 

(Kageyama et al., 2012, Niwa et al., 2011). However, due to the lack of experimental 

techniques permitting varying stimulating inputs within the same experiment, in 

addition to monitoring their effects on MAPK activation in real-time, this ABM 
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experiment was not validated against in vitro data due to the lack of biological data, 

and a methodology which can be mapped to the ABM. 

To model a cellular environment where diverse and flexible signalling dynamics are 

at action, this model implemented three different RADP models in one simulation. 

During somatogenesis, the balance between activating and inhibitory inputs is 

thought to be mediating the observed oscillatory behaviour. When the initial stimulus 

arrives, activating inputs are more dominant in comparison to inhibitory inputs. 

Therefore, a model which implemented a short-stochastic RADP (0 ≤ RADP < 90 s, 

Figure 4. 24, solid green line) was used. Once the system stabilised and reached 

equilibrium, RADP was re-set to an intermediate-deterministic RADP model (RADP = 

7.55 min, Figure 4. 24, solid blue line). Biologically, after the arrival of the initial 

stimulus, negative feedback mechanisms are triggered and they become 

increasingly more dominant, yet the activating inputs are still present and continue to 

impose activation. Therefore, in this ABM the intermediate-deterministic RADP 

configuration (RADP = 7.55 min) mimicked that biological scenario. Once equilibrium 

was achieved, RADP was re-sat to an intermediate-stochastic RADP configuration (0 

≤ RADP < 7.55 min, Figure 4. 24, with the solid dark lines). A cell is exposed to 

strong and sustained activating inputs in addition to strong inhibitory inputs where 

the latter is capable of substantial inhibition of activating inputs. This was also run 

until equilibrium was achieved. The only difference between the models applied here 

were within the transition function [[MKK_outputdata]] which controlled the mode of 

RADP. 
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Initiating the response by using a short-stochastic RADP (0 ≤ RADP < 90 s, Figure 4. 

24, solid green line) resulted in an ultrasensitive response for both MAPKK and 

MAPK and establishment of Emax at 4.92 min and 4.55 respectively. When the RADP 

was re-set to the intermediate-deterministic configuration (RADP = 7.55 min, bold 

blue line) levels of pMAPK and MAPK had rapidly been reduced, with the lowest 

level of pMAPK reached at 121.73 min from t0 (and within 56.88 min from the switch 

to deterministic RADP configuration). However, the levels of pMAPK were only 

reduced by 46.81% compared to those when RADP was set at 0 ≤ RADP < 90 s. 

These levels were 53.13% higher compared to basal levels. Alternatively, MAPKK 

levels were reduced by (98.7%) within 12.86 min of re-setting RADP to the 

intermediate-deterministic configuration. Once the RADP was switched to an 

intermediate-stochastic RADP configuration, (0 ≤ RADP < 7.55 min, bold black line), 

pMAPK activation increased by 90.08%, compared to levels at t0 (57.88% increase 

compared to when the configuration was RADP = 7.55 min) and the pMAPK 

ultrasensitive response re-emerged within the system. Simultaneously, a graded 

ultrasensitive response of active MAPK was produced with the levels only reaching 

11.85% of total active MAPKK, which can be generated in the system.  

 

4.4.2   Discussion and conclusion:  

This section was dedicated to investigating the effects of manipulating the 

spatiotemporal elements on MAPK activation dynamics. Firstly, the spatial element 

was modified using the signalosome-cluster ABM. In this ABM, the spatial element 

modification was in tandem with manipulation of the temporal element (Figure 4. 21). 

The second attempt was to look at continuous alterations in temporal components, 
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with the spatial element intact, to emulate a dynamic signalling environment. In both 

configurations, the ABMs generated insightful data which shed light on the interplay 

between the spatiotemporal regulatory element and the effect their modulation have 

on the MAPK activation behaviour. The key finding with these ABMs is the 

emergence of the inactivation dynamics of the pMAPK, and the re-establishment of 

agents levels close to basal levels. 

 

The deactivation of the MAPK signal is thought to involve a spatial regulatory 

element. This was argued for by Kholodenko et al, and shown for the first time 

experimentally by Lekowitz et al. When the spatial element was modified using the 

signalosome-cluster ABM, the emergent behaviour observed was biphasic, whereby 

it comprised an activation and deactivation phase. The pMAPK dynamics seen in 

these models incorporating MAPKK-MAPK signalosome cluster assembly and 

disassembly were similar to the results obtained with compartmentalised MAPK 

signalling at the endosome (Figure 4. 21 and Figure 4. 24). Lefkowitz (and others 

after him) had shown in vitro that a typical response of MAPK, involving the 

endosome and G protein-coupled receptors (GPCRs), was divided into two phases; 

a GPCR phase and a β-arrestin-dependent phase (Figure 4. 25 (A)). The GPCR-

dependent phase was characterised by an initial ultrasensitive MAPK activation, 

followed by a rapid secondary “turn-off” phase (Ahn et al., 2004, Luttrell et al., 2001, 

Shenoy et al., 2006, Wei et al., 2003). Conversely, the secondary phase is 

endosomal and β-arrestin-dependent, and is characterised by slow deactivation 

phases and a continuous reduction of the pMAPK magnitude. The activation 

dynamics of the MAPK ERK (a target of the GPCR induced signalling) incorporated 

both the GPCR- and β-arrestin-dependent responses. In Figure 4. 21 and Figure 4. 
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24 the ABM produced a biphasic MAPK activation response: a rapid activation at the 

initial phase followed by a slow deactivation phase. The deactivation phase was 

capable of lowering the levels of pMAPK to levels closer to basal conditions. These 

qualitative characteristics produced by the ABM are similar to the endosomal MAPK 

activation dynamics demonstrated in vitro by Lefkowitz (Lefkowitz and Shenoy, 

2005). This suggests that the formation of signalosome clusters at subcellular 

compartments generate signals comparable to those triggered at membrane 

clusters.  

 

MAPKK-MAPK-signalosme ABM also proposed a role for clustered signalosome and 

their disassembly play a role in shaping the activation dynamics of the MAPK 

pathway (Figure 4. 22 and Figure 4. 23). The ABM showed that the integrity of 

signalosome clusters plays a role in the generation of the initial MAPK activation 

phase, and that when MAPKK-MAPK clusters defragment/disassemble dominate, 

MAPK deactivation preponderates. Signalosome clusters are widely reported to have 

a role in mediating MAPK activation and signal initiation. These mainly include lipid 

rafts and Ras nanoclusters, which are commonly present at cell membranes 

(Harding and Hancock, 2008, Lingwood and Simons, 2010, Murakoshi et al., 2004, 

Plowman et al., 2008).  As aforementioned, endosomal MAPK activation is 

composed of two phases. The slow deactivating phase was shown to be mediated 

through the endocytic population of MAPK, as pharmacological inhibition, or the 

knocking down of β-arrestin shows a complete repression of the second phase 

(Figure 4.25 (A)). The abatement is thought to be due to the internalisation of the 

MAPKK-MAPK signalosome, and their diffusion into the cytoplasm, thus halting 

MAPK signalling propagation via restricting activation of cytoplasmic targets. The  
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Figure 4. 24 Modulation of the temporal regulatory element continuously and its impact on the dynamics of MAPK activation.  The A multi-compartment ABM was used 
with different re-activation delay period (RADP) configurations. In a single simulation of the ABM, the RADP configurations were modulated in order to emulate dynamic signalling 
environment such as those observed during development and differentiation. These where a cell is initially faced with a strong, yet short activating signal, followed by the take-over 
of the inhibitory mechanisms and then followed by a moderate and persistent signal. Biologically, the temporal element is control via feedback loops. The ABM implemented this by 
the use of a highly stochastic model of MAPKK re-activation delay with a short delay period (0 ≤ RADP ≤ 90 s, [green solid line]), once pMAPK level reached its maximum and was 
at equilibrium, the simulation was switched to deterministic-intermediate RADP model (RADP = 7.54 min [solid blue lines]). Once the level of pMAPK reached its lowest and was at 
equilibrium, the re-activation delay was switched to a model with stochastic-intermediate RADP (0 ≤ RADP ≤ 7.54 min; [solid black line]). This combination of the different modes of 
the MAPKK re-activation suggests that when strong activation inputs of MAPKK are substantially reduced, prolonged deactivating inputs at MAPKK are capable of rapidly reducing 
the levels of pMAPK. However, they are still not capable of re-establishing the initial levels of MAPK seen at t0 (only 58.7% of t0 MAPK level was re-established). The final stage of 
the simulation (solid blue lines), reflects that in a multi-compartment system, even with a high stochasticity for MAPKK activation, a low number of active MAPKK is sufficient to 
fundamentally increase and maintain high pMAPK levels.   
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ABM model which incorporated MAPKK-MAPK signalsome cluster formation and 

dissociation had resulted in the appearance of the second slow deactivation phase 

(Figure 4. 21). However, the model shows that this behaviour appeared due to the 

increased dissociation and disassembly of the MAPK’s signalsome clusters inside 

the multi-compartments, and not just due to the alleviation of the global MAPK 

 

Figure 4. 25 MAPK activation dynamics in endosomal compartments and in an agent-based model (ABM) 
containing cytosolic signolsome cluster.  (A) In vitro data demonstrating the two phase activation dynamics of 
ERK. This had demonstrated that intracellular pools of MAPK are responsible for mediating slow ERK1/2 
deactivation and maintaining pERK at high level over time. The data was adapted from Lefkowitz RJ, Shenoy SK 
(2005) Transduction of Receptor Signals by ß-Arrestins. Science 308: 512-517. (B) Data from the ABM which 
integrated intracellular clusters, where the MAPK activation dynamics replicates the in vitro data in (A). 



Page 188 of 346 
 

activation, and maintenance of local activation. On the contrary, the ABMs in 

section  4.3 demonstrated that a localised (i.e. compartmentalised) signal was able to 

generate a large Emax magnitude (Figure 4. 15, Figure 4. 16 and Figure 4. 18). 

Consequently, this outcome further supports the notion that compartmentalisation of 

the MAPK components can be important in mediating specific cellular responses. In 

these compartments there is a need for rapid mechanisms to curb and/or inhibit the 

expeditious activation, and reduce the magnitude of pMAPK generated; dissociation 

of the signalosme components in the compartments provides a rapid and efficient 

mechanism to perform this.  

 

Previously, Tian et al, and others had shown that plasma membrane Ras 

nanoclusters are the central components for the generation of the initial MAPK 

activation phase (Harding et al., 2005a, Shalom-Feuerstein et al., 2008, Tian et al., 

2007). This was in line with work which showed that the initial activation dynamics 

were β-arrestin independent. The signalosme-cluster ABM shows that the initial 

activation phase is also dependent on MAPKK-MAPK interaction inside the multi-

compartments. However, others (such as (Chiu et al., 2002, Markevich et al., 2004)) 

have shown that Ras nanoclusters are not exclusively located at the plasma 

membrane, and they do exist in other membrane bound organelles, such as Golgi 

and the endosomal compartment (Chiu et al., 2002, Murakoshi et al., 2004, Plowman 

et al., 2008, Shalom-Feuerstein et al., 2008). Considering that the maximum pMAPK 

amplitude (Emax) generated using the signalosme cluster ABM was only ~55% of the 

Emax observed in the initial multi-compartment ABM, this implies that the initial phase 

of activation recruits compartmentalised Ras nanoclusters, in addition to the plasma 

membrane Ras nanoclusters. This is plausible, considering that ERK and other 
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MAPK compartmentalisation in the endosome can occur without requiring β-arrestin 

(Inder et al., 2008, Schaeffer et al., 1998, Teis et al., 2006, Wunderlich et al., 2001). 

Furthermore, the assumption is also valid given that cytoplasmic Ras nanoclusters 

were shown to be activated by the plasma membrane compartmentalised MAPKKK 

Raf1 (Fan et al., 2008, Inder et al., 2008, Lee et al., 2011).   

 

Considering that in order to trigger the downstream components of the MAPK 

cascade plasma membrane Ras nanoclusters will still rely on diffusion into the 

cytoplasm, or the recruitment of the downstream proteins into the plasma membrane 

(Brown and Kholodenko, 1999, Eblen et al., 2004, Kholodenko et al., 2000, Mugler et 

al., 2012, Murakoshi et al., 2004), the shift between the coming activating inputs and 

these robust deactivating mechanisms provides an additional obstacle to signal 

propagation, it can be postulated that cytoplasmic nanoclusters are needed to 

overcome the obstacle diffusion present for the propagation of the signal. Videlicet, 

compartmentalised Ras nanoclusters can be regarded as amplifiers of an activation 

signal which was depleted due to diffusion from the plasma membrane to the cell 

interior.  

 

Biologically, assuming these conditions are all in force, the MAPK pathway is fully 

activated, both plasma membrane and compartmentalised Ras nanoclusters were 

triggered simultaneously and with equal potency; and that negative feedback is 

minimal, it is expected that pMAPK generation is to be very potent. Hence, the initial 

activation phase (levels of pMAPK) should be propagated for an extended time 

period before the deactivation phase commences. Additionally, or alternatively, the 
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secondary phase should demonstrate a slower decay behaviour. Nonetheless, this is 

not what is observed in vitro.  

 

Another interpretation for the in vitro observed endosomal MAPK activation 

behaviour is the deployment of efficient negative feedback mechanisms. These can 

be through insulation and/or disassembly of the signalosome clusters. This 

perception is supported with the concurrent modulation of the spatiotemporal 

regulatory elements shown with the signalosome-cluster ABM, namely with long 

RADPs (i.e. where deactivating inputs are dominant, (Figure 4. 21 (C) & (D)). With 

these configurations of RADP, pMAPK were characterised with a lower Emax 

compared to those of the same signalosome cluster model with shorter RADPs 

(Appendix B, Figure 13 (A) & (B)). To allow for rapid and efficient modulation of 

MAPK activation within the compartment, negative feedback mechanisms must be 

employed at amplification points (such as the MAPKK protein) within the cascade. 

The ABMs tested thus far reveal that imposing short bursts of negative feedback at 

the level of MAPKK is sufficient to reduce pMAPK levels considerably. 

Consequently, this provides an element of periodicity in the shift between the coming 

activating inputs and these robust deactivating mechanisms, subsequently, providing 

a mechanism for the generation of oscillatory behaviour in MAPK activation 

dynamics. 

 

Therefore, the following ABM addressed the effect of dynamic modulation of 

negative feedback regulations by modulating the temporal regulatory element 

(RADP) in the multi-compartment ABM (Figure 4. 15). From that ABM, a dynamic 
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MAPK activation response was generated, implying that the ABM is capable of 

modelling dynamic signalling conditions. These conditions included the variation of 

the temporal element and the constant alterations in the number of protein-agent 

species in the simulation. The model had revealed that periodic RADP is capable of 

reducing the levels of pMAPK in the system in a relatively short period, thus 

providing a strong de-activating mechanism. Biologically, this will mean that 

employing periodic and efficacious phases of inhibitory mechanisms results in more 

potent deactivating behaviour. Nonetheless, this is not adequate by itself to get the 

system back to t0. Stochastic models with RADP, though with similar periods as the 

deterministic model, produced an activating response, although rationally it would 

lead one to believe that a model which is more stochastic and with long RADPs will 

generate an inhibitory system which reduces the pMAPK number to basal levels (i.e. 

at t0). The model demonstrated further that MAPK deactivating is more optimal when 

utilised deterministically. Still, the model suggested that activating mechanisms 

exhibit a level of periodicity to ensure no complete superiority of the deactivating 

mechanisms while the activating stimuli/input is present to allow the system not to 

fully deactivate. 
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Chapter 5  Conclusions and Future work 

This chapter is dedicated to summarising the findings from the MAPK agent based 

model (ABM), and how these findings contribute to the field of cell signalling and 

MAPK activation dynamics. The objective of this thesis was to investigate how 

spatiotemporal regulatory elements affect the MAPK pathway activation, and how 

these elements promote specificity and fidelity of cellular response. This chapter 

commences by reviewing the research objectives outlined in the preface section and 

how they were achieved. That review is followed up by an outline of future work 

needed to further refine and develop the ABM. These improvements provide the 

progression of the model to allow for more thorough and detailed investigations of 

MAPK activation dynamics, and how the modulation of spatiotemporal regulatory 

mechanisms determine the final cellular outcome. 

 

5.1 Conclusions 

The objectives of the study were summarised in the preface as follows: 

 

1. To build an agent-based model (ABM) of the MAPK pathway 

2. A survey of previously published models of the MAPK pathway to aid building 

of a basic ABM model and integrating the essential components 

3. Dissect the important components needed for the model 

4. To be able to compare the simulation generated from the ABM with both in 

silico and in vitro data, an output for the signalling dynamics has to be 

determined 
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5. Model validation and sensitivity analysis to be conducted to certify the model 

accuracy 

6. Once a complete model is established, whereby it is fully validated both in 

regard to the algorithms accuracy and functionality, in addition to the model’s 

reproducibility of biological behaviour, experimental “wet” data are used to 

further improve and allow the modelling to address more specific questions 

related to spatiotemporal regulation of the MAPK pathway. 

 

These objectives were achieved, as summarised below. 

Objective (1): In this thesis and in chapter 4, a basic ABM model for MAPK pathway 

was constructed. Section 4.1 assessed the “construction” process and demonstrated 

that the agents adhered to the behaviour assigned to them within the algorithms. 

Building on that, an ABM was constructed to investigate modulating the pathway’s 

spatial element (peruse, section  4.2) by using two models, a two-compartment and a 

multi-compartment ABM. Once it was concluded that the multi-compartment model 

provided a better ABM to investigate the MAPK activation dynamics, the model was 

used to examine the effect of altering both spatial and temporal regulatory elements 

simultaneously (review section  4.3 and  4.4). 

 

Objective (2): The literature was surveyed comprehensively to assess previously 

modelled MAPK pathways, and the essential components required to build a basic 

molecular model of the pathway were identified. This was included in chapter one, 

where the computational and biological background to the thesis were reviewed and 
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described. A practical application of this process is shown in the ABM collaboration 

of activation time, which is shown in section  4.4.1. 

 

Objective (3): This objective was addressed in Chapter 3 where the important 

components required for the model construction were described and analysed. This 

included the definition of the conceptual model of the MAPK pathway, and specifying 

the essential behaviour and individual properties, which are thought to play an 

important role in the emergence of real-world system behaviour, or dynamics. The 

following section was devoted to the transition of the conceptual model into an ABM.  

 

Objective (4): This objective was achieved in section  3.3.3 where the measurable 

outputs from the ABM were specified. These outputs were used for comparison 

between the data generated using the ABM approach and previously published data. 

This objective is also addressed in section  4.1.1 where time calibration of the ABM 

was implemented. The data generated using the multi-compartment model was 

compared to previously published data from in vitro and in silico experimentation 

(refer to section  4.3). 

 

Objective (5): This was achieved by the multiple model runs, statistical analysis and 

comparison with previously published data, as reviewed and discussed in 

section  4.2.1 and  4.4. 
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Objective (6): This was demonstrated in the Appendix, where in vitro experiments 

were performed to investigate how cellular responses to stressful stimuli were 

altered by the modulation of the MAPKK inhibitory proteins tribbles (TRIBs). These 

experiments will provide the basis for further examination of the regulation of the 

spatiotemporal modulation of the MAPK pathway using the multi-compartment ABM. 

The in vitro data presented illustrate that the TRIBs are capable of mediating cell 

death in response to external stimuli differentially, with TRIB3 being important in 

driving cells towards a cell death pathway.  The data also suggested that this 

differential mediation of stress-induced cell death may be due to the change in the 

MAPK signalosome cluster, in addition to change in the balance of the signalling 

within the ERK-JNK-p38-AKT signalling network.  

 

5.2 Limitations and future work 

 

5.2.1  In silico modelling, future work 

Though the models presented in this thesis have provided novel insights which will 

be of interest to the field, nonetheless, I do recognise limitations in the model and the 

requirement for its further development and improvements. These improvements are 

divided into limited/minor modifications and extensive modifications.  

 

The auxiliary modifications require minimal improvements of the multi-compartment 

ABM components and/or the addition of few agents to it. These 

modifications/improvements represent a continuation of the recursive process of 
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model development. Thus, in these circumstances the use of the current ABM will 

continue, because these improvements are complementary and do not result in a 

complete renovation of the current model and its configuration. These include the 

following:  

 

 The effect of distributive or processive phosphorylation on the activation 

dynamics of the MAPK pathway 

 Different compartmental conditions 

 Investigating the effects of the reported emergent MAPK activation behaviour 

observed on gene expression events. 

 Introduction of inhibitory components such as TRIBs 

 An agent based model (ABM) combining compartmentalised and 

homogeneously distributed MAPKK and MAPK agents in the cytoplasm 

 

 

Figure 5. 1 A summary of future improvements and modifications process required for the ABM.  The 
diagram shows a flow chart which link minor and major changes to the current ABM created in this thesis to make it 
more reliable and fine grained 
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Extensive modifications require the introduction of a new computational algorithm, 

multiple new agents and introduction of mathematical equations within the model. 

Introducing the later changes mean the development of new ABMs built on the 

insights generated from the auxiliary ABMs (Figure 5. 1). This is similar to the 

movement from a two compartment model to the multi-compartment model. These 

extensive changes are not immediately necessary as the current multi-compartment 

ABM is sufficient to provide a level of understanding of the MAPK activation 

dynamics. Therefore, these changes will be conducted once the smaller changes 

were introduced into the available ABM, and the effects of the changes were 

assessed (Figure 5. 1). 

 

5.2.1.1  Auxiliary modifications and adjustments to the current 

multi-compartment ABM. 

 

5.2.1.1.1  The effect of distributive or processive phosphorylation 

on the activation dynamics of the MAPK pathway. 

For MAPK proteins to become fully active, they are dually phosphorylated at two 

phosphorylation sites by pMAPKKs. There are two mechanisms by which MAPKK 

achieve this. The first is the processive process whereby a pMAPKK phosphorylates 

MAPK at one site and releases it into the cytoplasm where it interacts with a second 

pMAPKK which phosphorylates the other site, while the distributive process is when 

pMAPKK interacts with a MAPK and phosphorylates both phosphorylation sites, and 

a fully active MAPK is released into the cytoplasm. The current model relies on 

processive phosphorylation mechanisms for full activation of the MAPK proteins. We 
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would like to modify the multi compartment ABM slightly by allowing the MAPK to 

become fully activated via distributive process, and monitor how it affects the 

activation dynamics observed. This will be achieved by the introduction of a basic 

double phosphorylation model, where in order for MAPK agent to become fully 

activated, it goes through two state transitions (from inactive MAPK to a mono-

phosphorylated MAPK (pMAPK), to a double phosphorylated MAPK (ppMAPK). This 

modified model will also be used in combination with the stochastic and periodic 

RADP models to monitor if distributive MAPK phosphorylation influences the 

emergence of oscillatory behaviour observed in the multi-compartment model.  

 

5.2.1.1.2  Different compartmental conditions 

Given that in the natural system compartmentalisation influences the MAPK pathway 

activation dynamics, and that the current ABM presented proposes some of the 

mechanisms by which this is achieved, a model which models variability in the 

conditions inside these compartments will be insightful. Given the assumption that 

compartments are sources for the emergence of specificity and fidelity in the natural 

system (Ferrell et al., 2009, Burack, 1997), it will be interesting to monitor if variation 

of the conditions inside these compartments influences the global dynamics of 

MAPK activation. In addition, it will be interesting to monitor the local activation 

dynamics within each compartment. The conditions which can be changed are the 

variation in the numbers of MAPKK and MAPK agents per compartment, and 

changes in the ratio between MAPKK and MAPK per compartment as well as 

variation in the number of mono and non-phosphorylated MAPK species, and how 

that influences activation dynamics. 
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5.2.1.1.3  Investigating the effects of the emergent MAPK 

activation behaviour observed on gene expression events. 

Using the established multi-compartment ABM with the various RADP models, it will 

be interesting to reintroduce the TF agents into the nucleus and monitor the nuclear 

events during activation of the MAPK pathway within the multi-compartment model. 

Will there be different MAPK-dependent gene expression initiation dynamics 

observed in comparison to those observed with the two compartmental model? 

Additionally, it will be interesting to see how the nuclear events change with the 

change of the mode of activation at the MAPKK level. What impact an oscillatory 

versus a robust system have on the outcome of the gene expression events?  

 

5.2.1.1.4  Introduction of inhibitory components such as TRIBs 

The tribbles proteins were shown to have an inhibitory action on MAPK signalling at 

the level of MAPKK, which the ABM showed to be important in facilitating the 

emergence of oscillatory behaviour in the model. Therefore, investigating how 

inhibitory components such as tribbles (TRIB) affect the dynamics of MAPK 

activation, by modulating MAPKK interaction with MAPK, will be insightful. This 

modification is interesting in the context of global activation dynamics, and the 

MAPK-dependent gene expression events, once the TF agents were introduced into 

the model. This modified model will make use of the in vitro experimental data where 

TRIBs were shown to modulate the MAPK pathway and its activation dynamics (see 

appendix A). Furthermore, this introduction of the TRIB agents is complementary to 

the signalosome cluster ABM (peruse section  4.4.1.1), because the results 
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demonstrated in appendix A illustrate that the identity of proteins which compose the 

MAPK signalosome cluster influence the final cellular outcome.  

 

5.2.1.1.5  An agent based model (ABM) combining 

compartmentalised and homogeneously distributed MAPKK and 

MAPK agents in the cytoplasm  

Biologically, only a fraction of the overall MAPK signalling components reside inside 

the intracellular compartments. The multi-compartment ABM demonstrated that a 

fraction of active MAPKK species (~20% of proposed levels see Table 3. 1) are 

capable of eliciting full MAPK activation, and also sustaining a high level of pMAPK 

species. This is in line with observations in vitro/in silico that show levels of active 

MAPKK are lower than the total number of inactive MAPKK species (see Table 3. 1). 

therefore, suggesting that there is a residual number of MAPKKs within the cell 

which does not contribute to the activation process.  Consequently, we would like to 

test a hybrid model of the multi compartment and the homogeneously distributed 

MAPKK and MAPK (two compartment) ABM and monitor the activation dynamics 

and how such a model influences activation dynamics and responds to temporal 

activation. 

 

5.2.1.2  Extensive changes and additions to the ABM 

The extensive changes to the model will include the following: 
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5.2.1.2.1  Introduction of new agents upstream and downstream 

of the current model. 

The current ABM included components of the MAPK pathway downstream of 

MAPKKK with the integration of activating and inactivating inputs at the level of the 

MAPKK. That was sufficient to generate the MAPK activation dynamics observed in 

the literature and yielded insightful data. However, in order to further increase 

confidence in the model and its ability to better simulate the natural system, 

maintaining a degree of faithfulness to the MAPK pathway natural is desirable. 

These include the addition of upstream components/proteins such as MAPKKK, Ras 

and the RTKs as independent agents to the model and hence substitute their 

abstract representation in the model.  

 

Furthermore, RADP presented an output of the final outcome between a "tug of war" 

between activating and inactivating inputs (positive and negative feedback loops), 

which ultimately feeds into MAPKK. The next step will be to integrate negative and 

positive feedback mechanisms by including protein agents responsible for mediating 

these processes such as phosphatase agents and RKIP agents (refer to Figure 4. 

14). Furthermore, it was previously shown in vitro that phosphatases are found in the 

nucleus and they dephosphorylate translocated pERK within few minutes from their 

arrival. Nevertheless, the accumulation of ERK continued with the ERK levels higher 

in the nucleus compared to the cytoplasm. Inhibition of phosphatase activity allowed 

for the reappearance of pERK staining in the nucleus (Volmat et al., 2001, Brondello 

et al., 1999, Keyse, 2000). This shows that the phosphatase activity in the nucleus is 

important. Therefore, phosphatase agents will be introduced to the cytoplasm and 
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the nucleus to investigate their effect on MAPK dynamics both at the cytoplasm and 

nucleus.  

 

Additionally, in the nucleus, the multimeric transcription factor complex (BM-TF) will 

be substituted with individual proteins which form the BM-TF complex. These 

proteins will be the transcription factors which are influenced by the MAPK proteins 

in the nucleus (such as elk, chop and creb). Furthermore, the mechanisms involved 

for the formation of the MB-TF complex (from a single TF to the complex) will be 

simulated in the ABM by incorporating binding kinetics, probability roles and Boolean 

logic.  

 

5.2.1.2.2  MAPK translocation and export to the nucleus 

To simulate the rapid translocation of MAPK proteins to the nucleus, translocation 

was automatic and immediate in the current implementations of the ABM. To 

improve this, the modified model will include better nuclear translocation and export 

mechanisms. The design will allow pMAPK to move towards the nucleus as a linear 

vector with high trajectory/displacement. In a similar fashion, the movement of the 

exported MAPK will be in a straight line into its compartment of origin.  

 

5.2.1.2.3  Move from a generic MAPK agent-based model (ABM) to 

a multiple MAPK pathways. 

The ultimate desire is to move from the generic MAPK pathway into an ABM which 

include ERK, p38 and JNK as different MAPK states or, preferably, as independent 

agents. Consequently, these independent agents interact with the different nuclear 
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and cytoplasmic targets. Using the same approach, the different MAPKK proteins 

can be introduced as independent entities into the ABM. Subsequently, introduction 

of different binding partners and signalosome clusters will follow. These examine the 

effects of altering the cluster composition on MAPK activation dynamics. This will be 

monitored for both the MAPK species (p38, JNK and ERK) globally in the cell and 

within the specific compartments. The last will allow validation of the data we 

obtained experimentally (peruse appendix D) 

 

5.2.1.2.4 Improvements of binding kinetics and linking the ABM to 

ODE and probabilistic models 

Integrating the binding kinetics between MAPK, MAPKK and MAPKKK by including 

the calculation of binding coefficients and affinity of one agent to another will be of 

benefit. That is because it will allow for an additional level of realism into the model 

and consequently, a further increase in confidence of the model and its ability to 

adhere to and simulate cell physiology.  

 

The addition of binding kinetics will allow for modulating protein-protein binding. This 

is important as it is believed that affinity of tribbles proteins (TRIBs) to their binding 

partners (the MAPKK proteins) play an important role in the differential regulation of 

MAPKKs by TRIBs. For The incorporation of binding kinetics equations will also be 

applied when modelling the interaction of transcription factors (TFs) with activated 

MAPKs and with DNA to facilitate gene expression events. This is will be of benefit 

to the model because TFs in different phosphorylation states demonstrate differential 

affinity and binding behaviour to both the pMAPK and DNA, thus this might affect the 

emergent gene expression behaviour. 
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5.2.1.2.5  Modification of the nuclear events 

The two compartment model contained TFs to model MAPK-dependent gene 

expression events and in that configuration, the model relied on MAPK activation of 

multimeric TF species bound to the DNA (MB-TF). The activation of the multimeric 

TF (MB-TF) initiates gene expression. This is a limitation in the model because 

activation and binding of the active multimeric TFs to DNA marks initiation of gene 

expression event but not its final outcome. Considering that the binding of one MB-

TF to DNA is a single event, nonetheless this binding event mediate an "n" number 

of gene transcription events as MB-TF continue to bind to DNA and recruit the gene 

transcription machinery. Thus, it is complicated to correlate a gene expression 

initiation event with biological data which rely on transcribed mRNA levels as reading 

outputs for gene expression. This may explain the observations in the two 

compartmental ABM with the inhibitory protein agent TRIB showing no notable effect 

on the gene expression events in comparison with an ABM without (review 

section  4.2.1.4 and Figure 4. 14) Thus, future models should incorporate DNA, DNA 

polymerase agents and mRNA agents to monitor the dynamics of gene expression 

appropriately. 
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Appendices  

  Appendix A.

 

a. Agents’ descriptions: 

Below are tables which summarise the description of agent’ memory parameters, 

agent functions and agents’ messages which are exported to the libmboard.  

 

i. The multi-state models. 

As aforementioned in section 3.5.1.4 (page 124), during the construction of the 

ABMs, an assessment between multi-agent and multi-state ABMs was conducted. 

The information related to the multi-state ABM is summarised below in table form. 

 

1. Agent memory parameters 

Here the parameters which constituted agent memory in the ABM and their attributes 

are illustrated and described in tabular form. 
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PROTEIN agent Memory 

Name type Description 

ID int Identity tag for the agent 

Postheta double Agent position in the spherical coordinate system (θ is the angle rotating about the y-
axis, where y coordinates is  expressed as the function SinθSinφ 

Posphi double Agent position in the spherical coordinate system (φ is the angle rotating about the Z-
axis, where Z coordinate is  expressed as the function Cosφ 

Posr double The position of the agent expressed in radians 

Posx double The position of the agent on the X-axis 

Posy double The position of the agent on the Y-axis 

Posz double The position of the agent on the Z-axis 

Movetheta double Movement angle in the spherical coordinate system (θ is the angle between z-axis 
and r) 

Movephi double Movement angle in the spherical coordinate system (φ is the angle between x-axis 
and r.cosθ) 

Mover double The displacement of the agent in the spherical coordinate system (~r or p) 

State int Agent state (e.g. MKK, MK, pMK, etc) 

RADP int The Re-Activation Delay Period defines the number of iterations and or time period a 
protein state lasts before it changes to or reverts back to another state 

Iradius double Distance between two agents which allow them to interact 

Disval int The rate at which molecules such as MKK breakdown to their essential components 

Appendix A, Table 1 Summary descriptions of the memory parameters used for the protein-agent.  Parameters 
written in bold font are updated after the end of each time-step and model run. Underlined parameters written in red font 
are not updated or modified throughout model runs. 
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RECEPTOR agent Memory 

Name type description 

Id int ID for the agent 

Posteta double Agent position in the spherical coordinate system (θ is the angle rotating about the y-
axis, where y coordinate is  expressed as the function SinθSinφ 

Posphi double Agent position in the spherical coordinate system (φ is the angle rotating about the Z-
axis, where Z coordinates are expressed as the function Cosφ 

Posr double the position of the agent expressed in radians 

Posx double the position of the agent on the X-axis 

Posy double the position of the agent on the Y-axis 

Posz double the position of the agent on the Z-axis 

Movetheta double Movement angle in the spherical coordinate system (θ is the angle between z-axis 
and r) 

Movephi double Movement angle in the spherical coordinate system (φ is the angle between x-axis 
and r.cosθ) 

Mover double The displacement of the agent in the spherical coordinate system (~r or p) 

State int Agent state (e.g. active and inactive ExR)  

Recdelay int  The delay with which the receptor can hold the bound pMK to it before it releases it to 
the cytoplasm 

boundindex int The id of the agent that the receptor is bound to 

Iradius double Distance between two agents which allow them to interact 

Disval int The rate at which molecules such as MKK breakdown to their essential components 

Appendix A, Table 2 Table outlining memory parameters for the receptor agent with descriptions of each 
parameter and its classification.  Parameters written in bold font are updated after the end of each time-step and 
model run. Underlined parameters written in red font are not updated or modified throughout model runs.Agents’ 
functions: 
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PROTEIN agent FUNCTIONS) 

Name Protein_outputdata 

Description Outputs location message 

Current state 0 

Next state 1 

Inputs 

Message name Filter/Operation From agent 

n/a n/a n/a 

Outputs 

Message name To agent 

Location All agents 

Name Protein_move 

Description Controls protein movement  

Current state 3 

Next state 4 

Inputs 

Message name Filter/Operation From agent 

finalbond n/a All agents 

Outputs 

Message name To agent 

n/a n/a 

FUNCTIONS (for PROTEIN agent) 

Name Protein_inputdata 

Description Read all messages from other agents 

Current state 1 

Next state 2 

Inputs 

Message name Filter/Operation From agent 

startbond n/a Receptor agents 

location n/a All agents 

Outputs 

Message name To agent 

newbond All protein agents 

Name Protein_checkbondtries 

Description Check bond tries 

Current state 2 

Next state 3 

Inputs 

Message name Filter/Operation From agent 

newbond n/a All agents 

Outputs 

Message name To agent 

finalbond All agents 

Appendix A, Table 3 Outline and description of the transition functions used by the protein-agents needed for 
executing movement and specifying the three dimensional coordinates of the agent. 
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RECEPTOR agent FUNCTIONS 

Name Receptor_outputdata 

Description Output location message and check nuclear receptor timers 

Current state 0 

Next state 1 

Inputs 

Message name Filter/Operation From agent 

n/a n/a n/a 

Outputs 

Message name To agent 

location All  agents 

startbond All protein agents 

Name Receptor_inputdata 

Description Read all messages from other agents 

Current state 1 

Next state 2 

Inputs 

Message name Filter/Operation From agent 

location n/a All agents 

Outputs 

Message name To agent 

newbond All protein agents 

Name Receptor_move 

Description movement and check bond messages 

Current state 2 

Next state 3 

Inputs 

Message name Filter/Operation From agent 

finalbond n/a All protein agents 

Outputs 

Message name To agent 

n/a n/a 

Appendix A, Table 4 Table displaying the transition function of receptor-agent with description of their flow and 
messages inputted and outputted to them. 



Page 247 of 346 
 

Agent messages:  
 

MESSAGES 

Name Location 

Description Check location of agent 

Elements 

Name Type Description 

Id int id of the agent 

X double x coordinates 

Y double y coordinates 

Z double z coordinates 

State int agent state 

Range double the agent's message range 

Name Startbond 

Description To make bonds 

Elements 

Name Type Description 

idfrom int From agent id 

statefrom int From agent state 

idto int To agent id 

bindunbind int Whether to bind or not 

distance double Distance between agents 

range double The agent's message range 

x double x coordinates 

y double y coordinates 

z double z coordinates 

Name Newbond 

Description To make bonds (after assessing which is the best bond to form) 

Elements 

Name Type Description 

idfrom int From agent id 

statefrom int From agent state 

Idto int To agent id 

bindunbind int Whether to bind or not 

distance double Distance between agents 

range double The agent's message range 

X double x coordinates 

Y double y coordinates 

Z double z coordinates 

Name Finalbond 

Description To make bonds (the final bond formed) 

Elements 

Name Type Description 

idfrom int From agent id 

statefrom int From agent state 

idto int To agent id 

bindunbind int Whether to bind or not 

distance double Distance between agents 

range double The agent's message range 

X double x coordinates 

Y double y coordinates 

Z double z coordinates 

Appendix A, Table 5 Illustration of the message outputted by agents to finalise the binding interaction and 
bond formation.  
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b. The multi-agent ABM  

 

i. Agent memory parameters 

  MAPKK   

Name Type Description 

Id int ID for agent 

Comptag double Tag to identify which compartment MAPKK  resides in 

Postheta double 
Agent position in the spherical coordinate system (θ is the angle rotating about the y-
axis, where y coordinates is  expressed as the function SinθSinφ 

Posphi double 
Agent position in the spherical coordinate system (φ is the angle rotating about the Z-
axis, where Z coordinate is  expressed as the function Cosφ 

Posr double the position of the agent expressed in radians 

Posx double the position of the agent on the X-axis 

Posy double the position of the agent on the Y-axis 

Posz double the position of the agent on the Z-axis 

movetheta double 
Movement angle in the spherical coordinate system (θ is the angle between z-axis and 
r) 

movephi double 
Movement angle in the spherical coordinate system (φ is the angle between x-axis 
and r.cosθ) 

mover double The displacement of the agent in the spherical coordinate system (~r or p) 

State int MAPKK  state (e.g. MAPKK  or dMAPKK ) 

RADP int 
The re-activation delay periods which defines the time period which dMAPKK  stays 
dormant before it reverts back to MAPKK  

boundindex int Determines the bound state of MAPKK  to MK 

Iradius Double 
which defines the number of iterations a protein state lasts before it changes to or 
reverts back to another state 

Appendix A, Table 6 The parameters which constitute the memory of MAPKK (MAPKK) agents which are 
updated every time-step 
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  MAPK  

Name Type Description 

Id int ID for agent 

comptag double Tag to identify which compartment MAPK resides in 

postheta double 
Agent position in the spherical coordinate system (θ is the angle rotating about the y-
axis, where y coordinates is  expressed as the function SinθSinφ 

posphi double 
Agent position in the spherical coordinate system (φ is the angle rotating about the Z-
axis, where Z coordinate is  expressed as the function Cosφ 

Posr double the position of the agent expressed in radians 

Posx double the position of the agent on the X-axis 

Posy double the position of the agent on the Y-axis 

Posz double the position of the agent on the Z-axis 

movetheta double 
Movement angle in the spherical coordinate system (θ is the angle between z-axis and 
r) 

movephi double 
Movement angle in the spherical coordinate system (φ is the angle between x-axis 
and r.cosθ) 

mover double The displacement of the agent in the spherical coordinate system (~r or p) 

State int MAPK state (e.g. MAPK or phosphor-MK) 

iradius double 
which defines the number of iterations a protein state lasts before it changes to or 
reverts back to another state 

Appendix A, Table 7 Shows the parameters which constitute the memory of MAPK (MK) agents which are 
updated every time-step 

 

  ExR  

Name Type Description 

Id int ID for agent 

postheta double 
Agent position in the spherical coordinate system (θ is the angle rotating about the y-

axis, where y coordinates is  expressed as the function SinθSinφ 

posphi double 
Agent position in the spherical coordinate system (φ is the angle rotating about the Z-

axis, where Z coordinate is  expressed as the function Cosφ 

Posr double the position of the agent expressed in radians 

Posx double the position of the agent on the X-axis 

Posy double the position of the agent on the Y-axis 

Posz double the position of the agent on the Z-axis 

movetheta double 
Movement angle in the spherical coordinate system (θ is the angle between z-axis 

and r) 

movephi double 
Movement angle in the spherical coordinate system (φ is the angle between x-axis 

and r.cosθ) 

Mover double The displacement of the agent in the spherical coordinate system (~r or p) 

State int ExR state (e.g. ExR or dExR) 

recdelay int 

The re-activation delay periods which defines the time period which ExR stays active 

before it changes to dExR and the time period dExR state exist before it it reverts 

back to ExR 

boundindex int Determines the bound state of ExR to phospho-MK 

Iradius double 
which defines the number of iterations a protein state lasts before it changes to or 

reverts back to another state 

Appendix A, Table 8 Parameters constituting the memory of exporting receptor (ExR) agents which are updated 
every time-step 
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Agent functions  
 

MAPKK  FUNCTIONS 

Function Name MAPKK _outputdata 

Description Outputs location message 

Current state 0 

Next state 1 

Inputs 

n/a 

Outputs 

Message name To agent 

MAPKK Location MAPK agents 

Function Name MAPKK _inputdata  

Description Read all messages from other agents 

Current state 1 

Next state 2 

Inputs 

Message name Filter/Operation From agent 

MAPK location n/a MAPK agents 

Outputs 

Message name To agent 

MAPKK newbond MAPK agents 

Function Name MAPKK _move 

Description Controls protein movement  and checks binding status of MAPKK  

Current state 2 

Next state 3 

Inputs 

Message name Filter/Operation From agent 

MKfinalbond n/a MAPK agents 

Outputs 

n/a 

Appendix A, Table 9 Summary of the transition functions used to control MAPKK generic protein behaviour or 
specialised MAPKK behaviour.  MAPKK behaviours are controlled by three transition functions, namely 
MAPKK_outputdata, MAPKK_inputdata and MAPKK_move. MAPKK_outputdata and MAPKK_inputdata are agent 
specific functions while MAPKK_move is a system level transition function. Each of these agents is associated with 
either the reading/importing or exporting of messages to limboard. MAPKK_outputdata controls the calculation of re-
activation delay period (RADP) timer, thus the transition from dormant state to active state. This function also outputs 
the location of the MAPKK agents as MAPKK_location. MAPKK_inputdata controls the reading of messages from 
MAPK agents to the closest binding partner and the possibility of interaction. This function outputs MAPKK_newbond 
message to signal to the MAPK agent in close proximity to its binding availability and is an “invitation” for interaction.



Page 251 of 346 
 

 

MAPK FUNCTIONS 

Function Name MK_outputdata 

Description Outputs location message 

Current state 0 

Next state 1 

Inputs 

n/a 

Outputs 

Message name To agent 

MKLocation MAPKK  agents 

Function Name MK_inputdata 

Description Read all messages from other agents 

Current state 1 

Next state 2 

Inputs 

Message name Filter/Operation From agent 

MAPKK location n/a MAPKK  agents 

ExRlocation n/a ExR  agents 

Outputs 

n/a 

Function Name MK_checkbondtries 

Description Check if there were any binding attempts between MAPK and MAPKK or ExR 

Current state 2 

Next state 3 

Inputs 

Message name Filter/Operation From agent 

MAPKK newbond n/a MAPKK  agents 

ExRnewbond n/a ExR agents 

Outputs 

Message name To agent 

MAPK finalbond All agents 

Function Name MK_move 

Description Controls protein movement  and checks binding status of MAPKK 

Current state 3 

Next state 4 

Inputs 

n/a 

Outputs 

n/a 

Appendix A, Table 10 Summary of the transition functions used to control MAPK behaviour. . MAPK behaviours 
are controlled by three transition functions, namely MAPK_outputdata, MAPK_inputdata and MAPK_move. 
MAPK_outputdata and MAPK_inputdata are agent specific functions while MAPK_move is a system level transition 
function. Each of these agents is associated with either the reading/importing or exporting of messages to limboard. 
MAPK_outputdata outputs the location of MAPK as MAPK_location. MAPK_inputdata controls the reading of messages 
from MAPKK and ExR agents to the closest binding partner and the possibility of their interaction with MAPK. 
MK_checkbondtries assesses the interaction between MAPKK and its interaction partners and outputs its binding status 
and binding availability to other agents. MK_move controls MK movement and assesses the bond status with MAPKK 
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ExR FUNCTIONS  

Function Name ExR_outputdata 

Description Output location message and check nuclear receptor timers 

Current state 0 

Next state 1 

Inputs 

n/a 

Outputs 

Message name To agent 

ExRlocation MAPK  agents 

Function Name ExR_inputdata  

Description Read all messages from other agents 

Current state 1 

Next state 2 

Inputs 

Message name Filter/Operation From agent 

MKlocation n/a MAPK agents 

Outputs 

Message name To agent 

ExRnewbond MAPK agents 

Function Name ExR_move 

Description movement and check bond messages 

Current state 2 

Next state 3 

Inputs 

Message name Filter/Operation From agent 

MKfinalbond n/a MAPK agents 

Outputs 

Message name To agent 

n/a 

Appendix A, Table 11 Summary of the transition functions used to control the exporting receptor behaviour.  
Function name is provided with a breif discription, and the messages outputted and inputted into the transition function. 
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ii. Agent messages 

  

MAPKK MESSAGES 

Message 

Name 

MKKlocation 

Description Details the location of MKK in the 3D coordinates and its state 

Elements 

Name Type Description 

Id int id of the agent (i.e. MAPKK) 

X double x coordinates 

Y double y coordinates 

Z double z coordinates 

State int agent state 

Range double the agent's message range 

Message 

Name 

MKKnewbond 

Description Message to signifies the formation of a bond between pMAPKK and MAPK  

Elements 

Name Type Description 

idfrom int The id of the agent which released the message (i.e. pMAPKK) 

statefrom int The stare  of the agent which released the message (i.e. pMAPKK) 

Idto int The id of the agent the message is targeted to (i.e. MAPK ) 

bindunbind int Whether to bind or not 

distance double Distance between agents 

range double The agent's message range 

X double x coordinates 

Y double y coordinates 

Z double z coordinates 

Appendix A, Table 12 Messages outputted by MAPKK into libmboard. MAPKK (MKK) outputs two messages, The 
first, MKKlocation, specifies the location of MAPKK within the cytoplasm with Cartesian and polar coordinates and if 
MAPKK is in an active or dormant state. This message is important for the interaction of MAPKK and MAPK as both 
agents seek to find their closest binding partners and their activation state. The second MKKnewbond specifies is 
important for the formation of the binding interaction between MAPK and MAPKK and the state transition. This message 
allows for the definition of the binding state and if it is occurring. This allows the two interacting agents to stop other 
agents from communicating with them while the process of bond-formation is occurring. 
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MAPK  MESSAGES 

Message 

Name 

MKlocation 

Description Specifies the agent’s location 

Elements 

Name Type Description 

Id int identity of the agent (i.e. MAPK ) 

X double x coordinates 

Y double y coordinates 

Z double z coordinates 

State int agent state 

Range double the agent's message range 

Message 

Name 

MKfinalbond 

Description Confirmation for the establishment of a bond between MAPK  and either MKK or ExR 

Elements 

Name Type Description 

idfrom int The id of the agent which released the message (i.e. MAPK ) 

statefrom int The stare  of the agent which released the message (i.e. MAPK ) 

Idto int The id of the agent the message is targeted to (i.e. MAPK K or ExR) 

bindunbind int Whether to bind or not 

distance double Distance between agents 

range double The agent's message range 

x double x coordinates 

y double y coordinates 

z double z coordinates 

Appendix A, Table 13 Messages outputted by MAPK agents into the libmboard to allow for communication 
between the agent and its interacting partners.  MKlocation is the message outputted by MAPK in order to specify its 
3D coordinates both in the cytoplasm and the nucleus. This is done both in Cartesian and polar coordinates. 
MKfinalbond is produced when a bond is formed between MAPK and its interacting partners. This signifies no 
availability of MAPK for interaction with other partners. The message stores several parameters including the identity of 
the interacting partner, the interaction distance and the interaction state.  
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ExR MESSAGES 

Message 

Name 

ExRlocation 

Description Check location of agent 

Elements 

Name Type Description 

Id int id of the agent (i.e. ExR) 

X double x coordinates 

Y double y coordinates 

Z double z coordinates 

State int agent state 

Range double the agent's message range 

Message 

Name 

ExRnewbond 

Description Message to signifies the formation of a bond between ExR and pMAPK  

Elements 

Name Type Description 

idfrom int The id of the agent which released the message (i.e. ExR) 

statefrom int The stare  of the agent which released the message (i.e. ExR) 

Idto int The id of the agent the message is targeted to (i.e. MAPK ) 

bindunbind int Whether to bind or not 

distance double Distance between agents 

range double The agent's message range 

X double x coordinates 

Y double y coordinates 

Z double z coordinates 

Appendix A, Table 14 Messages outputted by exporting receptor agents (ExR).   ExR outputs two messages into 
libmboard namely ExRlocation and ExRnewbond. The former message specifies the 3D location of the receptors within 
the nuclear membrane and if it is in an active or dormaint state. This message is essential for the interaction between 
pMAPK species and the ExR and thus for the translocation of the pMAPK out of the nucleus. The ExRnewbond 
message is essential for the binding interaction between ExR and pMAPK, The message specifies if the bond had been 
formed, thus declares the availability of the ExR to bind with pMAPK species. Furthermore, the message identifies the 
interacting pMAPK ID and the distance between the two agents. This allows for the regulation of the binding interaction 
between interaction partners and stops any further interaction of ExR with other pMAPK agents which are in close 
proximity. 
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Appendix A, Figure 1 Introduction of the tribbles protein agent into the two compartment agent based model 
(ABM).  A schematic representation using SBGN illustrating the interaction between pMAPKK and TRIB to form a 
complex MT3. This results in both agents changing state, whereby both become dormant (MAPKK and dTRIB). Both 
agents remain in this dormant state for milliseconds followed by their automatic re-activation. dTRIB is also referred to 
as MT3 
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  Appendix B.

 

Appendix B, Figure 1 An agent based-model (ABM) simulation to validate agent interaction, behaviour and state 
change.  A three dimensional (3D) representation illustrating the distribution of nuclear exporting receptors (ExR; blue 
cuboids and large red sphere) agents within the nuclear membrane (red sphere). Both ExR agent states are shown; 
whereby black arrows point to active ExR agents (dark blue cuboids) and blue arrows indicate dormant ExR agents 
(dExR, light blue cuboids). The receptors move randomly within the nuclear membrane in accordance with the fluid 
mosaic theory of receptor movement. The cytoplasm is the white background surrounding the nucleus. 

 

(A)       (B) 

 

Appendix B, Figure 2 A 3D visualisation of the ABMs. The red sphere in the middle represents the nucleus and 
marks the nuclear membrane.  In the multi compartment model, the clusters represent the cytosolic compartments. 
Small red spheres are MAPKK agents, green spheres are MAPK agents, purple spheres are inactive MAPKK agents 
and dark brown spheres (in the nucleus) are pMAPK agents. At the nuclear membrane, dark and light blue bodies are 
active and inactive ExR agents respectively.  
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Appendix B, Figure 3 Multiple runs of the two compartment agent based mode (ABM) illustrating low variance 
for each time point. ( A) the model was run for three times ( n = 3), (B) the model was run for 5 times ( n = 5). (C) The 
model was run for 10 times ( n = 10). (D) The model was run for 30 times (n = 30). Each time point represents mean ± 
standard variation (SEM). 
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Appendix B, Figure 4 Low variability between multiple and different two compartment ABM runs demonstrating 
no statistical significant difference between ABM models run for 3, 5, 10 or 30 times.  (A) Demonstrates the low 
variation in pMAPK levels at each time point when the two-compartment ABM was simulated for 3, 5, 10 and 30 times 
(n =3, n = 5, n =10 and n = 20 respectively) . (B) Showing the low variation between the levels of pMAPKK in the same 
model runs. Each data point represents mean ± SED.  
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Appendix B, Figure 5 Multiple runs of the multi-compartment ABM showing low variance for each time point 
and the visual similarities between the different simulations.  (A) The model was run for three times (n = 3), (B) the 
model was run for 5 times (n = 5). (C) The model was run for 10 times (n = 10). (D) The model was run for 30 times (n = 
30). Each time point represents mean ± SEM. 
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Appendix B, Figure 6 low variability between multiple and different multi-compartment ABM rsuns 
demonstrating no statistical difference between ABM models run for 3, 5, 10 or 30 times.  (A) Demonstrate the 
low variation in pMAPK levels at each time point when the two-compartment ABM was simulated for 3, 5, 10 and 30 
times (n =3, n = 5, n =10 and n = 20 respectively) . (B) Showing the low variation between the levels of pMAPKK in the 
same model runs. Each data point represents mean ± SEM.  model was mean. At time = o min the levels of both agents 
was close to 0. 
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Time 
(min) 

n = 3 n = 5 n = 10 n = 30 

0 0 ± 0.0 0 ± 0.0 0 ± 0.0 0 ± 0.0 

3 485.3333 ± 12.34 481.00 ± 11.81 481.60 ± 8.53 482.90 ± 7.78 

6 501.6667 ± 1.15 500.40 ± 2.61 498.10 ± 3.38 497.23 ± 3.50 

9 499.3333 ± 2.08 497.60 ± 2.79 496.50 ± 3.06 496.70 ± 3.44 

12 504.33 ± 3.06 502.80 ± 4.38 500.40 ± 4.72 499.77 ± 4.01 

15 502.33 ± 7.23 501.00 ± 5.83 500.20 ± 4.66 499.53 ± 3.44 

18 500.00 ± 3.46 499.40 ± 2.61 498.90 ± 2.23 499.37 ± 3.60 

21 504.00 ± 2.65 504.00 ± 1.87 502.00 ± 2.94 500.80 ± 2.33 

24 502.67 ± 5.13 501.00 ± 4.30 501.30 ± 3.30 500.67 ± 2.48 

27 500.00 ± 5.20 500.20 ± 3.70 501.40 ± 3.53 500.83 ± 3.02 

30 503.00 ± 2.65 500.80 ± 4.32 499.90 ± 3.21 499.63 ± 2.58 

33 502.33 ± 7.23 501.40 ± 5.32 500.90 ± 4.25 500.43 ± 3.52 

36 498.33 ± 8.14 498.40 ± 5.77 500.30 ± 4.69 500.83 ± 3.40 

39 501.67 ± 8.08 501.80 ± 5.89 500.80 ± 4.42 500.40 ± 3.89 

42 495.33 ± 9.29 497.40 ± 7.57 498.90 ±5.99  500.17 ± 4.07 

45 501.33 ± 8.08 502.40 ± 6.07 502.60 ± 4.25 501.70 ± 3.57 
Appendix B, Table 1 pMAPK levels in multi-compartment ABMs showing the values demonstrated in figure B6 
and B7 in tabular form.  Values show mean ± SEM. 

Time 
(min) 

n = 3 n = 5 n = 10 n = 30 

0 0 ± 0.00 0 ± 0.00 0 ± 0.00 0 ± 0.00 

3 69.00 ± 25.53 67.6 ±22.64 65.8 ±20.01 65.8 ±18.80 

6 117.67 ± 13.87 112.4 ±13.04 112.2 ±10.07 112.8 ±9.07 

9 108.00 ± 7.00 109.8 ±7.51 109 ±6.77 108.2 ±6.503 

12 110.33 ± 2.52 109.2 ±2.44 108.8 ±5.40 107.93 ±3.04 

15 101.67 ± 9.02 104.6 ±8.79 105.3 ±7.57 107.5 ±6.44 

18 110.00 ± 5.29 107.8 ±5.13 109.1 ±4.04 108.83 ±3.65 

21 112.33 ± 6.03 113.2 ±5.20 112.8 ±4.42 114.27 ±4.01 

24 110.67 ± 4.04 113.2 ±3.70 114.9 ±2.65 114.37 ±1.53 

27 107.00 ± 7.00 108.8 ±6.68 109.6 ±5.20 110.27 ± 3.38 

30 101.33 ± 6.43 101 ±5.99 102.7 ±4.07 104.9 ±3.03 

33 99.67 ± 5.03 102.4 ±4.38 101.8 ±3.03 102 ±2.40 

36 96.67 ± 4.04 97 ±3.60 98.2 ±2.77 99.83 ±1.55 

39 98.33 ± 1.53 99 ±1.53 97.5 ±1.48 98.5 ±1.14 

42 95.00 ± 3.46 97.6 ±2.25 98.7 ±1.53 99.83 ±0.84 

45 98.33 ± 2.08 99.2 ±1.70 99.9 ±1.48 99.37 ±1.00 

Appendix B, Table 2 pMAPKK levels in multi-compartment ABM showing the values demonstrated in figure B6 
and B7 in tabular form.  Values show mean ± SEM. 
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Time (min) n = 3 n = 5 n = 10 n = 30 

0 247.00 ± 0.00 247.00 ± 0.00 247.00 ± 0.00 247.00 ± 0.00 
3 447.00 ± 10.39 447.40 ±4.04  448.60 ± 4.50 450.23 ± 5.20 
6 548.67 ± 13.80 546.02± 10.50 542.75 ± 9.38 541.66 ± 8.51 
9 593.33 ± 10.69 595.40± 10.32 591.37 ± 8.79 587.28 ± 8.86 

12 599.67± 11.15 598.02 ± 10.36 598.15 ± 7.23 597.13 ± 5.16 
15 608.67 ± 5.13 606.60 ± 6.50 606.69 ± 5.86 605.93 ± 5.07 
18 619.00 ± 2.00 619.16 ± 2.44 619.42 ± 2.13 618.95 ± 2.72 
21 620.67 ± 9.87 618.16 ± 8.08 618.27 ± 6.32 617.48 ± 6.43 
24 618.67 ± 6.03 620.48 ± 5.95 621.27 ± 5.54 621.43 ± 7.93 
27 630.00 ± 7.81 627.90 ± 6.44 627.89 ± 6.08 629.27 ± 5.85 
30 622.67 ± 12.06 623.28 ± 8.61 619.25 ± 9.04 619.25 ± 8.46 
33 621.67 ± 9.07 622.56 ± 7.06 621.99 ± 9.77 621.41 ± 10.69 
36 613.00 ± 17.58 615.72 ± 13.04 620.92 ± 10.77 620.86 ± 10.07 
39 625.67 ± 7.51 624.38 ± 6.25 626.09 ± 6.77 624.53 ± 7.19 
42 619.67 ± 7.23 623.12 ± 7.63 622.87 ± 6.68 623.82 ± 5.40 
45 616.67 ± 20.01 629.00 ± 22.06 626.50 ± 20.18 632.81 ± 20.64 

Appendix B, Table 3 pMAPK levels in two compartment ABM with multiple model runs.  Values illustrated are 
mean ± SEM. 

 

Time (min) n = 3 n = 5 n = 10 n = 30 

0 468.00 ± 0.00 468.00 ± 0.00 468.00 ± 0.00 468.00 ± 0.00 
3 489.33 ± 8.96 495.60 ± 1.14 496.30 ± 1.70 495.13 ± 2.37 
6 496.33 ± 2.08 496.80 ± 1.64 496.00 ± 1.49 494.73 ± 2.65 
9 497.00 ± 2.00 496.80 ± 2.86 495.60 ± 3.20 495.07 ± 2.42 

12 497.33 ± 0.58 497.20 ± 0.84 494.80 ± 2.86 495.20 ± 2.67 
15 498.67 ± 1.15 496.80 ± 3.03 495.70 ± 2.87 495.00 ± 3.04 
18 497.33 ± 0.58 495.20 ± 3.03 495.40 ± 2.63 494.40 ± 3.08 
21 497.67 ± 1.53 497.20 ± 1.64 496.20 ± 2.25 496.07 ± 1.93 
24 497.67 ± 2.31 496.80 ± 2.68 495.90 ± 2.81 495.50 ± 2.78 
27 497.67 ± 0.58 497.80 ± 0.84 496.60 ± 2.27 495.60 ± 2.84 
30 497.33 ± 0.58 496.60 ± 1.14 496.00 ± 1.76 495.13 ± 2.40 
33 496.00 ± 2.65 494.80 ± 3.27 493.90 ± 3.48 494.67 ± 2.78 
36 498.00 ± 1.00 496.40 ± 3.65 495.90 ± 2.85 494.73 ± 2.68 
39 497.67 ± 0.58 496.80 ± 2.77 496.20 ± 2.86 494.87 ± 2.86 
42 496.33 ± 1.53 495.80 ± 1.48 495.40 ± 1.84 494.57 ± 2.57 
45 499.33 ± 1.15 496.80 ± 3.63 495.50 ± 2.84 495.20 ± 2.68 

Appendix B, Table 4 pMAPKK levels in two compartment ABM with multiple model runs.  Values illustrated are 
mean ± SD 
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(A)                                                            (B) 

 

 (C)                                                             (D) 

 

Appendix B, Figure 7 Sensitivity analysis to examine the effect MAPKK and MAPK level variation on the 
activation behaviour in multi-compartment models.  (A) Levels of pMAPK were monitored in different ABMs where 
the total number of MAPKK and MAPK were varied by 20% at t0. (B) Levels of pMAPKK were monitored in different 
ABMs which contained varied MAPKK and MAPK levels at t0. (C) Levels of pMAPK were normalised to total MAPK 
present in the ABM, demonstrating that variation in the initial levels of MAPKK and MAPK agents had no statistical 
significant effect on pMAPK levels formed. (D) ) Levels of MAPKK were normalised to total MAPK present in the ABM, 
demonstrating that variation in the initial levels of MAPKK and MAPK agents had no statistically significant effect on 
pMAPKK levels formed. The model was simulated ten times (n = 10) The bars represent mean ± SED. Control refers to 
the initial multi-compartment ABM used simulation and the agent numbers were specified in Table 3. 1(see 

section  3.4.1.3). 
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(A) 

 

(B) 

 

Appendix B, Figure 8  The initial plateau phase which characterises the ultrasensitive activation behaviour of MAPK 
was observed in both the two compartment ABM (A) and the multi-compartment model (B) . The two graphs were drawn 
on different scales to allow for the visualisation of the plateau phase in (B) which appears initially with a duration of 1.5 s 
compared to (A) where it appears after 45 s with a duration of 45 s. 

.
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Appendix B, Figure 9 Significant difference in the rate of pMAPK formation between the two and multi-
compartment ABMs.  This was measured at the linear phase of pMAPK activation/formation. The model was simulated 
ten times (n = 10). The bars represent mean ± SD. 

 

 

Appendix B, Figure 10 Introduction of the tribbles (TRIB) protein agent has no marked effect on the MAPK 
activation behaviour in the two compartment agent based model (ABM).  (A) the magnitude of pMAPK generated 
in a two compartment ABM with and without TRIB. There was no significant statistical difference between the 
magnitudes generated from both models (B) This was also observed with the times taken to generate both Emax (B) and 
the EC50 (C). The values represented are mean ± standard deviation (SD), and the models were run 10 times (n = 10) 
student t-test was used to analyse the statistical significance. 
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(A) 

 

(B) 

 

Appendix B, Figure 11 Comparison of temporal modulation effect between a multi-compartment and a two-
compartment ABMs.  (A) Comparison between the levels of pMAPK generated in the two ABMs where the re-
activation delay period (RADP) was modelled stochastically (0 ≤ RADP ≤ 90 s and 0 ≤ RADP ≤ 22.6) and 
deterministically (RADP = 90 s and RADP = 22.6 min). The diagram illustrates that the multi-compartment ABM 
generates substantially more pMAPK compared to a two compartment model in both stochastic and deterministic RADP 
configurations. (B) Demonstrates that a multi-compartment ABM reaches Emax in a notably shorter time compared to a 
two-compartment ABM using both stochastic and deterministic configurations of RADP. For each RADP configuration, a 
student t-test was performed to show statistical significance where **** corresponds to (p) < 0.001. The graphs show. 
The model was simulated ten times (n = 10) The bars represent mean ± SD. 
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Appendix B, Figure 12 no extensive variation in pMAPK magnitude generated in a two compartment model 
where stochastic and deterministic configurations of re-activation delay period (RADP) were investigated.  The 
bars illustrate mean ± SD and n = 10 simulation runs. 
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Appendix B, Figure 13 Short and long (0 < RADP < 90 s and 0 < RADP <  22.64 min, respectively ) MAPKK re-
activation delay periods (RADP) configurations modulate MAPK activation behaviour.  Simultaneous modulation 
of the spatiotemporal regulatory elements in the MAPK pathway impact MAPK activation behaviour. In stochastic RADP 
configurations (A), (C) and (E), increasing the RADP causes a significant reduction in the levels of pMAPK generated at 
Emax and the time to achieve both Emax and EC50. Conversely, using a deterministic RADP configuration, increasing 
RADP resulted in a significant reduction in the magnitude of pMAPK generated at Emax, yet there was no significant 
difference in the time to achieve Emax and EC50. For each RADP configuration, a student t-test was performed to show 
statistical significance. *, ** and *** equate to (p) > 0.05, (p) > 0.01 and (p) > 0.001 respectively. The model was simulated ten 
times (n = 10). The bars represent mean ± SD. 
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Appendix B, Figure 14 Simultaneous modulation of the spatiotemporal regulatory elements in the MAPK 
pathway impact MAPK activation behaviour.  Simultaneous modulation of the spatiotemporal regulatory elements in 
the MAPK pathway impact MAPKK activation behaviour. In stochastic RADP configurations (A), (C) and (E), increasing 
the RADP caused a significant reduction in the levels of pMAPK generated at Emax and the time to achieve both Emax 
and EC50. Conversely, using a deterministic RADP configuration, increasing RADP resulted in a significant reduction in 
the magnitude of pMAPK generated at Emax, yet there was no significant difference in the time to achieve Emax and EC50. 
For each RADP configuration, a student t-test was performed to show statistical significance. *, ** and *** equate to (p) > 0.05, 
(p) > 0.01 and (p) > 0.001 respectively. The model was simulated ten times (n = 10). The bars represent mean ± SD. 
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 Tribbles mediate a Appendix D.

differential response to THC-dependent 

cell death through alteration in protein-

protein interaction with different 

binding partners 

 

This appendix chapter presents preliminary biological data which were performed to further 

develop and optimise the agent based model of the MAPK pathway in the future. The aspect 

of interest is the temporal regulation of the pathway at the level of the MAPKK proteins via 

the Tribbles protein family (TRIBs). The biological background was outlined, the 

methodology undertaken during the investigation was described and the results from these 

in vitro experiments were presented and discussed. Some of the data presented here were 

published recently (Guan et al., 2016), see appendix E, page 277 

 

a. Introduction 

The hallmarks of cancer development include cells’ uncontrolled proliferation, growth 

and resistance to apoptosis. These processes are regulated by multiple signalling 

cascades, and perturbation of signal transduction mechanisms lead to loss of control 

over the aforementioned processes, and ultimately to tumorgenesis (Hill and 

Hemmings, 2002, Kucab et al., 2005, Lim et al., 2015, Mitsiades et al., 2004). Of 

said processes, resistance to pro-apoptotic signals is a major hallmark, and a 

challenge for drug development.  Recently, it was demonstrated that experimentation 
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with cannabinoid compounds triggers anti-tumoral effects via inhibition of cell 

proliferation, angiogenesis and cell growth (Blazquez et al., 2003, Blazquez et al., 

2004) (Guzman, 2003). Furthermore, there is growing evidence, both in vivo and in 

vitro, illustrating cannabinoids’ induction of cell death in a variety of cancerous cell-

lines   via overriding the developed pro-apoptotic-resistant mechanisms exhibited by 

cancer cells (Vara et al., 2011) (Galve-Roperh et al., 2000, Sanchez et al., 1998). 

(Carracedo et al., 2006a, Carracedo et al., 2006b, Herrera et al., 2005, Lorente et 

al., 2009, McAllister et al., 2005, Salazar et al., 2009). Investigation of the 

mechanisms with which cannabinoids (in particular Δ9-Tetrahydrocannabinol (THC)) 

trigger cell cycle inhibition and cell death in cancer cells showed the involvement of 

both phosphatidylinositide 3-kinases (PI3K) and the mitogen activated protein kinase 

(MAPK) pathway (Gaoni and Mechoulam, 1964, Pertwee, 2008) (Carracedo et al., 

2006a, Carracedo et al., 2006b, Greenhough et al., 2007, Herrera et al., 2005, 

Sanchez et al., 2003). Both pathways play a role in the regulation of cell growth, 

apoptosis, and proliferation. However, though both pathways are implicated in the 

anti-tumoral effects of THC, the precise mechanisms are still under investigation. 

 

The PI3K pathway is regarded as a pro-survival pathway by the inhibition of the 

mitochodoria-dependent apoptotic pathway, and through phosphorylation of the 

transcription factor Forkhead box protein O (FOXO). In the former, AKT 

phosphorylates BAX protein, and inhibits its binding to the mitochondria, and the 

release of “death factors”, which activate caspase enzymes and trigger apoptosis. 

FOXO transcription factors mediate the expression of pro-apoptotic genes (such as 

BIM and Fas ligand). They also inhibit the expression of pro-survival genes such as 

BclxL.  FOXO phosphorylation by AKT mediates their nuclear export. Export into the 
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cytoplasm allows for the regulation of FOXO proteins levels via ubiquitination (Huang 

and Tindall, 2011). Furthermore, AKT was shown to mediate pro-survival effect by 

phosphorylation of other protein targets such as Glycogen synthase kinase 3β (GSK-

3β) and NF-kappaB (NF-κB). In cannabinoid mediated signalling, Sanches et al. 

(1998) illustrated the involvement of PI3K/AKT in transducing the cannabinoid action 

intracellularly. Pulgar et al. demonstrated that THC induces an activation of the PI3K 

pathway at the level of AKT (a downstream protein of PI3K. Further investigation had 

shown that cannabinoid receptor B (CB1) induced apoptosis through the activation of 

AKT, which in turn modulates the mTOR system, and consequently cell survival. 

Recently, treating cells with the cannabinoid ligand KM-233 has demonstrated a 

change in AKT phosphorylation status. The apoptotic effect through the PI3K/AKT 

pathway was shown to involve recruitment of eukaryotic translation initiation factors 

4E (eIF4E) - binding proteins (4E-BP) and p8 proteins. P8 was shown to play a role 

in inducing endoplasmic reticulum-stress associated proteins such as CHOP, ATF4 

and TRB3.  This is of interest, as these proteins are involved in the MAPK signalling 

pathway. Furthermore, it was shown that THC treatment causes the upregulation of 

MAPK phosphatase MKP3 and extensively down-regulates the expression of MEK2. 

It is also worth noting that it was illustrated that TRB3 acts as inhibitor for MAPKKs, 

and initially the Drosophila homologue of TRIB was demonstrated to associate with 

phosphatase enzymes during Drosophila development. The induction of MAPK-

dependent genes such as c-Fos and BDNF were demonstrated with THC treatment 

in the hippocampus of murine models. This expression was blocked with the use of 

the MEK inhibitor SL327. Furthermore, use of the PI3K inhibitor wortmannin resulted 

in inhibition of cannabinoid-dependent extracellular signal-regulated kinase (ERK) 

activation. This is in line with the observations which show that cannabinoids such as 
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THC and WIN-55,212-2 trigger simultaneous effects on both MAPK pathways (ERK, 

c-Jun N-terminal kinases (JNK) and p38) and PI3K/AKT pathway. They also share 

several protein targets; and in the context of cell death, they were both shown to 

regulate FOXO family members, p90RSK, p70S6K and the BAD. These protein 

targets were also shown to be modulated during cannabinoid treatment in cancer 

cells. BAD protein activation, and mediating of apoptosis, were illustrated to be 

activated via THC-dependent ceramide formation. This intracellular accumulation of 

ceramide is also thought to play a part in inducing cell death through two 

mechanisms. These involve the inhibition of AKT and prolonged activation of Raf 

(therefore prolonged ERK activation). Additionally, caspase proteins recruitment by 

p38, and ERK activation, and AKT inhibition via ceramide accumulation, was blocked 

via treatment with ceramide synthesis antagonists.  P38 recruitment as part of THC-

induced apoptosis is reported to occur as a result of stimulation of the CB2 

receptors. This stems from the observation that blocking p38 with its inhibitors 

resulted in the attenuation of caspase activation and CB2-mediated apoptotic 

response. However, this CB2-mediated activation was only reported in leukaemia 

cell lines, whereas in glioma cell lines the use of CB1 also recruited p38 and 

mediated apoptosis. JNK activation was also reported as part of the cannabinoid-

dependent cell death. PC12 cell treatment with anandmide caused the 

phosphorylation of JNK, p38 and ERK1/2. This response was shown to be blocked 

with the use of the JNK inhibitor dn-JNK.  

 

It is widely reported that PI3K and the MAPK pathway crosstalk at multiple levels of 

both cascades. The PI3K/AKT pathway imposes both direct and indirect regulation of 

the MAPK pathways. The indirect activation-loop involves PI3K activation of protein 
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kinase C (PKC), protein kinase D1 (PKD1) and PLD which were shown to activate 

the ERK pathway at the three tiers of the pathway. The direct route involves 

recruitment of Grb2-RasGEF complexes, the ability of AKT to inhibit Raf and p38 

activation. However, the inactivation of p38 results in the activation of ERK proteins 

due to reduced gene expression of the phosphatase MKP2. ERK was shown to 

inhibit GSK-3β activation, a substrate of AKT which is part of the positive-feedback 

loop for PI3K/AKT pathway, and hence causes PI3K/AKT deactivation. It was also 

observed that ERK1/2 is capable of inducing this inhibitory effect on GSK-3β 

indirectly through activation of p90RSK. The induction of Sprouty expression by ERK 

results in the inhibition of the PI3K/AKT pathway, and induction of apoptosis. PI3K 

was demonstrated to impose a positive activation of ERK at low concentrations of 

growth factors, while it was demonstrated that within high concentrations of growth 

factor ERK induces an inhibitory effect on PI3K/AKT activation. Considering that 

PI3K/AKT action is mediated close to membranes, this suggests that PI3K regulates 

the activation of a localised pool of MAPK proteins. This pool can be responsible for 

eliciting the observed PI3K/AKT-dependent MAPK activation. However, with high 

growth factor concentrations, all MAPK populations are activated. This global 

activation imposes a negative feedback loop on PI3K/AKT. This hints at a spatial as 

well as temporal regulatory element at play. Feedback mechanisms (and thus 

crosstalk) are an integral part of the temporal regulatory element of signal 

transduction. Our multi-compartment agent based models (ABMs) of the MAPK 

pathway demonstrated that altering the temporal-spatial elements of MAPKK and 

MAPK resulted in the emergence of differential MAPK activation behaviour. Given 

the previous points, and considering that a population of the CB1 receptors were 
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 illustrated to reside in the endosomal compartment, cannabioned-dependent 

signalling with the PI3K/AKT-MAPK crosstalk presented an ideal system to 

investigate the temporal and possible spatial modulation of the MAPK pathway in 

vitro to expand, optimise and improve the current ABM. Thusly, we attempted to 

examine the important protein-protein interactions, and protein-complexes, involved 

in PI3K/AKT-MAPK crosstalk, which mediate THC-dependent cell death. 

b. Materials and methods. 

 

i. Cell culture and transfection 

HeLa cells were used for the transfection and Luciferase assay. HeLa cells were 

maintained in growth media (Dulbecco’s modified Eagle’s medium (DMEM) 

supplemented with 10% Fetal Bovine Serum (FBS), penicillin streptomycin and non-

essential amino acids). Cells were seeded into 96 well plates at a density of 5 x 103 

cells per well, and were incubated overnight at 37°C, and 5% O2, to reach 40-80%

  
Transfection 
condition 1 

 
Transfection 
condition 2 

 
Transfection 
condition 3 

 
Transfection 
condition 4 

 
Transfection 
condition 5 

 
Transfection 
condition 6 

pTK-RLuc + 
Renila 

construct 

+ + + + + + 

 
pFA-CHOP 

- + + + + + 

 
pFC-MEK3 

- - + + + + 

 
Trb1 

- - - ++ - + 

 
Trb2 

- - - - + + + 

Appendix D, Table 1 TRIB trnasfection conditions using the PathDetect System  HeLa cells were co-
transfected with the DNA plasmids shown on the first column on the right. Each column shows a transfection 
condition a triplicate of wells was exposed to. The plus sign (+ ) signifies the presence of the plasmid in the 
transfection mix, the minus sign (-) signifies the absence of that plasmid from the transfection mix; while ++ signifies 
double transfection of the plasmid.  
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confluency prior to transfection. Transfection was carried out using PolyFect 

following the manufacturer’s instruction. Wells were transfected with Renilla plasmids 

(pTK-RLuc or EF1), pFR-Luc plasmid, pFA-CHOP plasmid, pFC-MEK3 plasmid and 

Trb1 and/or Trb2 plasmids. When it was necessary, a sufficient amount of pcDNA3.1 

empty vector was also used to allow a constant amount of DNA (100ng) to be 

transfected per well. The transfection was carried out as shown in Table 1. After 3 

hours of transfection, the transfection media was discarded and replaced with growth 

media. The cells were then incubated overnight at 37°C and 5% O2, then assayed 

using the Luciferase assay. For a quantitative measurement of transfection 

efficiency, wells were also transfected with a green fluorescent protein (pEGFP-N1) 

7
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Appendix D, Figure 1 A schematic representation of the PathDetect system in the presence of 
constitutively active MEK3 mutant  Activation of membrane receptors such as TLR results into the activation 
and recruitment of the p38 pathway. p38 is phosphorylated by the MAPKK MEK3(represented here as the red 
rectangle) and once it is activated it translocates to the nucleus and activates a number of transcription factors 
including Pfa-CHOP. Activation of CHOP allows it to bind to its DNA binding site at a promoter region, and thus 
initiate gene expression. In the PathDetect system, these characteristics are used, with plasmid DNA coding for 
luciferase enzyme driven by the yeast CHOP promoter, CHOP construct codes for a fusion protein with a yeast 
DNA binding domain and a mammalian activation site. The cells are also transfected with a pFC-MEK3 construct 
coding for a constitutively active MEK3 mutant (represented here as the red cloud). Thus luciferase will only be 
expressed if the chimerical CHOP binds to its promoter site and once constitutively active MEK3 is transfected 
p38-mediated luciferase expression will be at maximum level. 
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construct. Appendix D, Figure 1 shows the design and the mechanism of action of 

the system. 

ii. Tribbles siRNA Knock Down (K.D) 

Hela and U87 cells were plated on 150 mm and/or 100 mm dishes. HeLa cells were 

seeded at 6 x 106 cells per 150 mm, and 3 x 106 cells per 10 mm dish, and U87 cells 

were seeded at 1 x 106 cell per 100 mm dish. Cells were left overnight at 37°C and 

5% O2. siRNA for Trib1, Trib2, TRIB 3, and scrambled siRNA, were prepared at 

stock concentration of 20µM.  For each HeLa 150 mm dish a 0.267 µM solution of 

the appropriate siRNA primer solution was prepared in DMEM, while 90ul of 

DARMAFECT was added to DMEM. Both DMEM mixes were left to incubate for 5 

minutes at room temperature (RT). DARMAFECT-DMEM solution and siRNA-DMEM 

solutions were mixed thoroughly and left to incubate for 20 minutes at RT. Culture 

media was aspirated from the cultured 150 mm dishes and replaced with 4ml 

antibiotic-free complete media. This was “topped up” with 6ml of siRNA transfection 

solution. The cells were left to incubate overnight at 37°C in 5 % CO2. The siRNA 

transfection-media was replaced with complete media after an overnight incubation. 

Cells were left in the complete media for 4-6 hours (h) and then were prepared for 

the following step.   

 

1. RNA isolation and Real-time quantitative PCR (RT-

qPCR) 

2. RNA isolation:  

siRNA K.D. was measured with qPCR. HeLa cells were seeded into 100mm dishes 

at a density of 8 x 105 cell/dish. For siRNA transfection 0.267 µM of the appropriate 
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siRNA primers were dissolved in DMEM and left to incubate at RT for 5 minutes. 

45ul of DARMAFECT was mixed thoroughly with 1.44 ml of DMEM, and was left to 

incubate for 5 minutes at RT. siRNA-DMEM solution was mixed with the 

DARMAFECT-DEMEM solution thoroughly, and was left at RT for 20 minutes to 

incubate. Culture media was replaced with fresh antibiotic-free complete media (7ml 

per 100 mm dish). The siRNA transfection solution was added to the cells. The cells 

were left to incubate for 24 hours at 37⁰C in 5 % CO2. The media was replaced with 

complete media after 24 hours, and cells were left for 4-6 hours then lysed for RNA 

isolation. RNA isolation was carried out at RT according to standard protocol. Briefly; 

Cells were washed with ice cold PBS twice, and then lysed by the addition of 500ul 

of TRIZOL reagent/ 100 mm dish. The cells were scraped from the dishes using cell 

scrappers. The cell lysates were then transferred to the appropriate eppendorfs. 

100ul chloroform was added per eppendorf and was mixed thoroughly with the cell 

lysates. The eppendorfs were centrifuged at 12000 rpm for ten minutes at 4⁰C. This 

was to allow for phase separation between RNA, DNA and proteins. Following 

centrifugation the top RNA phase was delicately collected into new eppendorfs. 

100ul of isopropanol per sample was added to precipitate the RNA. The samples 

were then incubated at -20⁰C for 20 minutes, and afterwards centrifuged at 12000 

rpm for ten minutes.  The supernatant was carefully collected and the RNA pellet 

was washed by the addition of 70% ethanol (500µl/eppendorf).  The samples were 

mixed thoroughly, and then centrifuged for ten minutes at 12000 rpm and 4⁰C. 

Afterwards, the supernatant was removed, and the residual ethanol was air-dried 

(inside a vacuum hood) for 5 minutes.  The RNA samples were suspended in 40µl 

MiliQ water per sample. 3µl of each RNA sample was aliquated to be used for qPCR 

analysis, while the remaining volume was stored at -80⁰C for future analysis. 
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Real-time quantitative PCR (RT-qPCR):  

cDNA was obtained using Transcriptor (Roche Applied Science). Real-time 

quantitative PCR assays were performed using the FastStart Universal Probe 

Mastermix with Rox (Roche Applied Science), and probes were obtained from the 

Universal ProbeLibrary Set (Roche Applied Science). Amplifications were run in a 

7900 HT-Fast Real-Time PCR System (Applied Biosystems). Each value was 

adjusted by using 18S RNA levels as a reference. 

 

iii. Tetrahydrocannabinol (THC) survival assay 

HeLa cells and U87 cell lines were transfected with control and Trib1, 2 and 3 

siRNAs after seeding them on 100 mm dishes, as described above. After changing 

the media to complete media, the cells were left for 6-24 h, then were re-plated into 

12 well plates at a density of 2 x 105 cell per well for U87 cells, and 1 x 105 for HeLa 

cells. The plates were left overnight, and then the media was changed to 0.1% FBS. 

This was left on for 3-4 hours, then the cells were treated with THC at the following 

concentrations: 0, 1 µM, 3, µM, 4 µM, 5 µM and 6 µM . THC treatment was left for 72 

h. The cell’s survivability was then assayed using the MTT survival assay. 

 

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 

bromide (MTT) Tetrazolium survival assay 

MTT solution was heated to 37⁰C prior to aspiration of THC containing media from 

cells. Once THC media was aspirated from the cells, 1ml of MTT solution was added 
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per well. The plates were incubated at RT for 3-4 hours. The MTT solution was 

aspirated and 1ml of Isopropanol was added per well. The cells were put on a plate 

shaker for 1-2 minutes. 200µl from the wells were aliquoted into 96 well-plate. Cell 

viability was measured by microplate at 570 nm. 

 

iv. Co-Immunoprecipitation (CO-IP) 

1. Covalent coupling Trib3 antibody to protein G-

sepharose 

The protein G-sepharose was equilibrated by washing the beads five times with 

PBS. Trib3 antibody (Trib3-ab) was mixed with G-seph at a ratio of 1ug antibody: 2µl 

Gseph up to 4 ml. This was left to mix overnight at 4⁰C on a rotating wheel. Trib3-ab-

Gsaph conjugate was washed three times with 0.1 M Na-Boarate pH 9.3. Trb3-ab-

Gsaph conjugate was left to sediment, and then the supernatant was aspirated. The 

conjugated beads were then re-suspended in 10 volumes of 0.1 Na-Borate pH 9.3, 

and freshly added dimethyl pimelimidate dihydrochloride (DMP), to a concentration 

of 20 mM. The Trib3-ab conjugated beads were then put in a rotating wheel to mix 

for 30-60 minutes at RT. The beads were then spun down, the supernatant was 

removed carefully, and then re-suspended in another 10 volumes of 0.1 M NaBorate 

pH 9.3 containing 20 mM DMP. The Trib3-antibody-bead conjugate was put on the 

rotating wheel for mixing for 30 minutes at RT. The beads were spun gently and then 

washed four times with 50 mM Glycine at pH 2.5. The conjugated-beads were 

neutralised by washing them twice with 0.2 M Tris-HCl at pH 8.0. The Trib3-

antibody-bead conjugates were re-suspended in 10 volumes of 0.2 M Tris-HCl at pH 
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8.0, and then mixed gently using the rotating wheel for 2 hours at RT. The antibody-

bead conjugates were then re-suspended in PBS and were stored at 4⁰C. This 

results in a solution with a 1:1 ratio between Trib3-ab conjugated beads and PBS 

 

2. Covalent coupling Trib3 antibody to protein G-

sepharose 

< HeLa cells were seeded on 150 mm dishes, and transfected with siRNA as 

described above. However, for CO-IP to ensure a high level of protein, two dishes 

were used per treatment. After transfection the media was aspirated from the 

cultures and washed twice with 20 ml of ice-cold 1 X PBS. PBS was aspirated 

thoroughly and 100µl of ice-cold lysis buffer per culture dish. Lysis buffer was 

prepared as described above. The cells were then methodically scraped using cell 

scrapers, and the cell lysates were collected into eppendorfs. The lysates were 

sonicated, then the samples were centrifuged at 14000 rpm at 4⁰C for 25 minutes, 

and then the supernatant was collected and the samples were placed on ice. 10µl 

per sample was used to measure the levels of protein collected using a Bradford 

assay. After the calculation of protein levels 1mg of the cell lysates were incubated 

with 10µl of the antibody-free bead slurry at 4⁰C for 30-60 minutes on a rotating 

wheel. The samples were then centrifuged for 1 minute at 4000 rpm and the 

supernatant was collected. 30µl of the supernatant was incubated with 80ug: 80µl of 

the Trib3-ab conjugated beads (160µl of the Trib3-ab conjugated beads in PBS). The 

rest of the supernatant was stored at -80⁰C. The incubated samples were incubated 

overnight at 4⁰C on a rotating wheel. The samples were centrifuged for 1 minute at 

4000 rpm at 4⁰C. The supernatants were delicately aspirated and discarded. The 
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bead palette was washed four times with 500 µl of lysis buffer. This was followed by 

two washes with the kinase buffer (25 mM HEPES with pH 7.5 and 50 mM KCl). 20µl 

of 1 x β-mecapthaethanol-free loading buffer was added per sample. The samples 

were then collected by spinning through SpinX columns for 3 minutes at 14000 rpm 

at 4⁰C. To each sample 5µl of 5 X loading buffer (containing β-mecapthaethanol) 

was added. The samples were heated to 95⁰C for three minutes. The samples were 

either loaded onto SDS-PAGE gels or stored at -80 ⁰C. The volume of samples 

loaded into the wells was 25µl. Protein ladder was also loaded on to the gel. Gels 

were run at 90 volts (V) for 1 h, or until the dye front reached the bottom of the gel. 

The electrophoresis buffer was discarded and gels were obtained by opening the 

glass casts. The proteins were then transformed from gels to Polyvinylidene 

Difluoride (PVDF) membranes using the wet transfer method. The PDVF 

membranes were activated by immersion in methanol for approximately a minute. A 

transfer cassette was used to create a transfer stack. The transformation stack was 

composed of the SDS-PAGE gel and the PDVF membrane sandwiched between 

layers of filter papers and fibre-pads, all soaked in transfer buffer (25 mM Tris, 192 

mM glycine, pH 8.3, 20% (v/v) methanol and 0.1% (w/v) SDS).  The structure of the 

sandwich is as shown in Figure 2. 3.  The sandwich was compressed with rollers to 

ensure there were no bubbles present. The cassette was closed tightly and placed in 

the transfer tank, which contained an ice cooling unite, and was filled with fresh 

transfer buffer. The transfer was done by running the current through at 90-100 V for 

60-90 minutes. After transfer, the membrane was washed with TBST buffer and 

stained with ponceau red, 1 minute with agitation. The membrane was washed with 

undistilled water extensively to view the protein bands on the membrane. Once the 

bands were visible, the membrane was washed extensively with undistilled water 
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until ponceau S red dye disappeared (to ensure the complete transfer of proteins to 

the membrane). The membrane was then blocked for 1 h at RT with blocking 

solution (5% of fat-free milk) with gentle rocking on an orbital shaker. For protein 

detection, the blocking solution was discarded and the membrane was washed five 

times with TBST (3 minutes per wash). The membrane was left to incubate with the 

primary antibody solution at 4⁰C for 24-72 hours, while rocking gently on an orbital 

shaker. The primary antibody solution was discarded and the membrane was 

washed three times with TBST (3-5 minutes per wash). After the washes, the 

membrane was incubated with the secondary antibody solution for 60-90 minutes on 

the shaker at RT. After the secondary antibody incubation, the membrane was 

washed with TBST twice for 5 minutes and then was prepared for development. For 

the development of the membrane, the Bio-Rad ECL kit was used according to the 

manufacturer’s instructions at RT. Briefly; horseradish peroxidase (HRP) substrate 

solution was prepared by the addition of kit components 1:1 to make a 7 ml solution. 

This was vortexed. The membrane was transferred to the developing cassette fac-

up, and the HRP solution was immediately poured to completely cover the 

membrane. The membrane was covered with a plastic film, and bubbles were 

removed by passing a roller on top, and the cassette was closed. 3-5 minutes of 

incubation was allowed and then the development was carried out inside a dark 

room at RT. An X-ray film was briefly placed on top of the membrane for exposure, 

and then the film was imaged using digital imager.  
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Western blotting 

Western blotting was performed on HeLa cells after they were seeded on 10 mm 

dishes, and were transfected with TRIB family siRNA, as described above. The 

media was aspirated from the cultures and washed twice with 3ml of ice-cold 1 X 

PBS. PBS was aspirated thoroughly and 150µl of ice-cold lysis buffer per culture 

dish. Lysis buffer was prepared as mentioned in the methods section. The cells were 

then methodically scraped using cell scrapers,  and the cell lysates were collected 

into eppendorfs and were then sonicated. The samples were centrifuged at 14500 

rpm at 4⁰C for 25 minutes, and then the supernatant was collected and the samples 

were placed on ice. 10µl per sample was used to measure the levels of protein 

collected, and the rest of the samples were stored at -80⁰C. An equal volume of 

Laemmli sample buffer was added per sample (140µl/sample). The samples in the 

Laemmli sample buffer were then boiled to 100⁰C for 5 minutes and aliquoted, and 

were then stored at -20⁰C. After the calculation of protein levels using the Bradford 

assay, equal amounts of protein-samples were loaded into the wells of the SDS-

PAGE gel. The gel running procedure, gel to membrane transfer, membrane 

blocking and incubation with primary and secondary antibodies were similar to the 

description above at the co-IP section. Dilution from all primary antibodies was 

normally 1:1000, except for B-actin (1:100000). Secondary antibodies rabbit or 

mouse (GE Healthcare) dilution (1:5000) 
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v. Luciferase assay preparation  

1. Plasmids (Bacterial transformation and plasmid 

isolation): 

Subcloning efficiency™ DH5α™ competent bacteria cells were transformed with the 

following plasmids: pTK-RLuc, pFA-CHOP, pFC-MEK3 (part of the PathDetect 

System (Stratagene)), Trb1 and Trb2 constructs following the supplier’s instruction, 

but briefly: the bacteria were thawed on ice, 3 μl of bacteria were mixed with 2 μl of 

either of the plasmid constructs, the mixture was left on ice for 30 minutes followed 

by a heat-shock at 42°C for 40 seconds. The mixture was left to cool for 5 minutes 

on ice, then was added to 1ml of antibiotic-free LB-broth in a 50 ml Falcon tube, and 

was left to grow 30-40 minutes at 37°C. 100 μl of the (bacterial mixture in LB-broth) 

was used to cover the surface of an LB plate containing 100 μg/ml ampicillin. The 

dish was incubated overnight at 37°C. For plasmid purification, transformed bacterial 

colonies were selected to be grown in 50 ml LB-broth containing 100 μg/ml ampicillin 

for 18 hours, the bacteria were then palleted using the centrifuge. The plasmid 

isolation was performed using Invitrogen midi-kits using the vacuum method, 

according to the manufacturer’s instruction. The concentration of the isolated 

plasmid was measured using the NanoDrop spectrophotometers (Thermo Scientific). 

 

2. Restriction enzyme digests and gel electrophoresis  

< After plasmid isolation, to confirm that the transformation and isolation procedures 

were successful, restriction enzyme digests were carried out. For pTK-RLuc Hid III 

and Xba I with enzyme buffer 2 were used,  pFA-CHOP was digested using BamH I 
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and Acc65 I restriction enzymes with buffer 3, pFC-MEK3 digestion was using Acc65 

I restriction enzymes with buffer 3, while Hind III enzyme with enzyme buffer 2 was 

used to digest the Trb1 construct. Briefly, a 30 μl mix containing 2 μl of DNA, 2 μl of 

restriction enzyme buffer, 1 μl of restriction enzyme and an appropriate volume of 

dH2O was used. The mixes were left in the incubator at 37°C for 1 hour for complete 

digestion. 2 μl of loading buffer was added to the digested mix and then loaded onto 

a 1% agrose gel and run for 40 minutes at 100V. 

 

3. Fluorescence microscopy 

Transfection efficiency was determined via transfection of HeLa cells with 100ng/well 

of pEGFP-N1 construct, using the same transfection protocol mentioned above. 

Transfected cells were viewed overnight at room temperature using a laser-scanning 

microscope (Molecular Dynamics, CLSM 2010). Laser power was set to 10 mW. 

pEGFP-N1 was excited at 488 nm with an argon laser, and fluorescence was 

collected using a band pass filter set at 530nm. The cells were viewed using a x40 

objective lens. 

 

4. Luciferase assay: Fluorescence microscopy: 

Transfected HeLa cells were prepared as follows: the growth media was discarded 

from the wells and then washed once with 150 μl/well of Phosphate Buffered Saline 

(PBS), PBS was aspirated out, and 25 μl of passive lysis buffer (PLB) was added per 

well. The PLB was left on the cells for 10-15 minutes. 5 μl of cell lysate was 

transferred to a 384 well reading plate, and 10 μl/well of luciferase assays reagent II 
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solution was added, and the Firefly luciferase activity was measured. This was 

followed by the addition of 10 μl/well of Stop & Glo® reagent solution and Renilla 

luciferase activity was measured. The plate was read using a Thermo Fisher 

Scientific Varioskan® Flash plate reader. 

 

c. Results 

i. Altering TRIB proteins levels cause a differential 

response to apoptosis 

. < The differential effects of the TRB protein family was investigated in the context of 

cellular response to stress. This was done by assessing cellular responses while 

different TRB members were knocked down (KD). The ability of cells to undergo cell 

death due to exposure to THC was used as the measured output. It was shown 

previously that glioma cell treatment with THC caused an enhancement of cell death. 

This was reduced with the KD of TRB3 from these cells. In Figure 3. 6. 1 (A), Trib3 

KD cells replicated the previous pattern of increased survival after treatment with 

THC in comparison to the negative control. On the other hand, the survival of Trib1 

KD cells exposed to THC was level, and largely lower compared to THC untreated 

cells. Yet, the low survival of TRB1 KD cells was not markedly different from the 

levels with the control siRNA treatment exposed to THC.  Also Trib2 KDed cells 

show a moderate apoptotic response to THC in comparison to the scrambled control. 

However, they demonstrate a better survival rate when they are not treated with 

THC. However, there is no statistical difference between the survival of cells with 

TRB2 and TRB1 KD exposed to THC. This differential apoptotic response observed 
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with the KD of different TRIB family members was also observed in the same 

experiments done on HeLa cells.  

 

ii. Altering TRIB proteins levels cause a differential 

response to apoptosis 

< The differential effects of the TRIB protein family was investigated in the context of 

cellular response to stress. This was done by assessing cellular responses while 

different TRIB members were knocked down (KD). The ability of cells to undergo cell 

death due to exposure to THC was used as the measured output. It was shown 

previously that glioma cell treatment with THC caused and enhanced cell death 

(Aguado et al., 2007, Blazquez et al., 2008a, Blazquez et al., 2008b) which is 

rescued 

(A)       (B) 

 

Appendix D, Figure 2 Modulating TRIB levels impact survival in U87 cell line. (A) THC-dependent survival 
assay was performed using glioma cell lines which were treated with siRNA for the different TRIB family members. 
Cells were exposed to THC for 72 h, cells not exposed to THC demonstrated a high level of survival. THC 
treatment resulted in a reduced cell viability. Cell viability was different depending on the TRIB family member 
which was knocked out. (B) qPCR assessment of the success of siRNA treatment to knock down the expression 
of the different TRIB family members. The siRNA treatment resulted into about 50% expression knock down. 
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with TRIB3 KD from these cells. These observations were replicated in Appendix D, 

Figure 1 (A). On the other hand, the survival of TRIB1 KD cells exposed to THC was 

notably lower compared to THC untreated cells, yet it was not greatly different from 

the positive control (scrambled siRNA with THC exposure). Also TRIB2 KDed cells 

show a moderate survivability when treated with THC, in comparison to the 

scrambled siRNA treatment. Nonetheless, they demonstrate a better survival when 

not treated with THC. There is no statistical difference between the survival of cells 

with TRIB2 and TRIB1 KD exposed to THC. This differential apoptotic response 

observed with the KD of different TRIB family members was also observed in the 

same experiments done on HeLa cells. 

 

Appendix D, Figure 3 Altering TRIB 1 and TRIB2 levels have differential impact on activation of the MAPK 
pathways and TRIB3 interaction with MEK4 and MEK7.  (A) CO-IP preformed on the cell lysate, where Trib3 
protein was pulled and then protein-protein interactions with MEK7 and MEK4 were assayed. Knocking down the 
expression of Trib1 resulted in an enhanced protein-protein interaction of Trib3 with MEK7, while reducing Trib2 
expression caused a loss of Trib3-MEK7 interaction, and a reduction in Trib3-MEK4 interaction. (B) Western blotting 
to assay the effect of TRIB family knocked down the phosphorylation profile of downstream proteins in both the AKT 
and the MAPK pathway. AKT phosphorylation has not significantly changed compared to control. Knocking down of 
TRIB family members alters the phosphorylation of ERK. Reduction of Trib1 expression results in the loss of 
phosphorylated ERK species (pERK), while Trib2 K.D. caused a moderate reduction in pERK levels while Trib3 
K.D. had no effect. JNK pathway was also differentially regulated by the siRNA treatment. Trib3 KD resulted in a 
loss of pJNK, while KD of Trib1 and Trib2 did not significantly reduce the level of pJNK levels. 
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iii. Knock down (KD) of tribbles family members’ 

expression levels influence protein-protein interaction 

between TRIB3 and its interaction partners. 

< To elucidate how knocking down the expression of the different TRIB members 

resulted in a differential cellular response to THC treatment, their ability to form 

partnerships with other proteins was investigated. This was done using western 

blotting and CO-IP. As TRIB3 was shown to play a role in mediating THC-dependent 

cell death (Salazar et al., 2013), the focus was on protein complexes containing 

TRIB3. Consequently, TRIB3 antibody conjugated beads were used to pull the 

protein complexes, and interactions of TRIB3 with ERK, AKT, JNK, MEK4 or MEK7 

were assessed while other TRIB family members were knocked down (KDed). 

Appendix D, Figure 2 (A) and Appendix D, Table 1 show a differential binding pattern 

of TRIB3 with binding partners as a result of knocking out the other TRIB members. 

Cells treated with scrambled siRNA demonstrate low levels of AKT, JNK2 and p38 

activation, while ERK activation was moderate. Additionally, TRIB3 formed 

complexes with MEK7 and MEK4, with a stronger MEK7 signal observed. 

Kinases 
activated Trib1 K.D Trib2 K.D Trib3 K.D 

AKT + + + 

ERK2 - = + 

JNK2 + + = 

P38 + = + 
Appendix D, Table 2 Effects of knocking down (KD) tribbles family members on the activation of AKT and 
MAPKs.  These were postulated from the western blots shown in Appendix D, Figure 2 (B). The activation was 
compared to control siRNA treatment. + indicates and enhancement in activation, = imply no change in activity in 
comparison to the control and – show a reduction in activity. 
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 (Appendix D, Figure 3) Knocking down TRIBs resulted in the activation of AKT, 

nonetheless, variation was observed between all KD treatments (Appendix D, Figure 

4 (B) and (C)). With TRIB2 and TRIB3 causing a notable increase in AKT activation, 

while TRIB2 induced a moderate activation. Simultaneously, TRIB1 KD caused a 

(A)       (B) 

 

(C)       (D) 

 

Appendix D, Figure 4 Analysis of CO-IP shown in Appendix D, Figure 2.(A). (A) The intensity of protein bands 
were measured and analysed. The intensity of each protein band is displayed and grouped with respect to the 
siRNA treatment. The graph demonstrate that knocking down TRIB family members alter TRIB3 interaction with 
other proteins. (B) The band intensities were normalised to the siRNA control treatment. It illustrates a modulating 
TRIB1 and TRIB 2 induce different effects on TRIB3 interactions with MEK7 and MEK4. (C) Graph (A) was altered 
to show the effect of siRNA treatment with respect to TRIB3 interaction partner, whereas (D) .is a modification of 
normalised data displayed in (B). The data displayed are from one experiment. 
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reduction in phosphorylation and activation of ERK compared to siRNA control. In 

contrast, TRIB1 KD caused an increase in p38 and JNK2 activation  (Appendix D, 

Figure 4) Knocking down TRIB2 did not alter levels of phosphorylated ERK 

(A)       (B) 

(C)       (D) 

 

Appendix D, Figure 5 Analysis of protein levels observed in Western blots in Appendix D, Figure 2 (B).. (A) 
The intensity of protein bands were determined and inferred. The intensity of each protein band is displayed and 
grouped with respect to the siRNA treatment. The phosphorylated proteins were normalised to their corresponding 
total protein (e.g. AKT, ERK1/2 etc). The graph demonstrates disruption in AKT, ERK, JNK2 and p38 proteins when 
tribbles were knocked down. The graph also demonstrate a differential effect of altering the expression of each 
TRIB family member. (B) The normalisation of the data in (A) to the siRNA control. (C) The data in (A) was modified 
to display the effect of siRNA treatment with respect to each of the assayed proteins. (D) The data in (C) was 
normalised to the siRNA control. 
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compared to controls, while in comparison to TRIB1 KD there was an increase in 

ERK phosphorylation and activation. Furthermore, similar to TRIB1 KD, JNK2 

activation were increased compared to control, while phosphorylated p38 levels were 

not affected. TRIB3 interaction with MEK7 and MEK4 were reduced in comparison to 

control. Furthermore, when MEK7 interaction was assessed, only TRIB1 KD 

enhanced MEK7 protein-protein interaction compared to control, while other KDs 

showed a reduction in relation to siRNA control (Appendix D, Figure 3)  

 

iv. Over expression of TRIB1 and TRIB2 are capable of 

considerable reduction of p38 and ERK mediated gene 

expression events but with no notable difference 

between homo and heterodimer species. 

 

TRIB 1 and TRIB 2 plasmids were overexpressed in HeLa cells to investigate if 

shifting the balance in favour of one family member results in a shift towards 

mediating an ERK or p38 mediated signalling response. The results in Appendix D, 

Figure 5 (A) show that the MEK3-CHOP system was sensitive to the presence of 

both TRIB1 and TRIB2 in both the hetero- and homo-dimer combination. Statistically, 

the heterodimer induced a more significant inhibitory effect on CHOP-dependent 

gene expression events compared to the two homodimers. The observations 

suggest an element of redundancy between TRIB1 and TRIB2. 

 

When TRIB1 and TRIB were overexpressed in the MEK1-Elk system, MEK1-

dependent gene expression events by 76.6% for the TRIB1 homodimer, 53.5% for 
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the TRIB2 homodimer and 67.4% for the heterodimer. However, the inhibition of 

MEK1 mediated gene expression was stronger with the over expression of TRIB1 

homodimers to that of TRIB2 homodimer overexpression (Appendix D, Figure 5). In 

MEK1-Elk system, the heterodimer also showed a stronger inhibition compared to 

that of TRIB2.  

 

d. Discussion  

< The experimental data presented shows that altering the expression of the different 

tribbles family members in both U87 and HeLa cells led to a different survivability in 

response to THC treatment. Cannabinoid mediated apoptosis and cell death in 

cancer cells is well documented. Some cannabinoids are capable of inducing 

apoptosis exclusively in cancer cells while inducing no effect, or achieving low 

potency in normal cells [R]. Cannabinoids (THC in particular) were shown to mediate 

antitumor effects both in vitro and in vivo. The mechanisms cannabinoids are thought 

to use are thought to be through interference with proliferation and apoptosis 

 

Appendix D, Figure 6  The effect of overexpression of Trib1 and Trib2 on the CHOP-MEK3 system. 
Overexpression resulted in a significant inhibition of MEK3 mediated gene expression events, with either the homo 
or heterio-dimers of Trib1 and Trib2. (F) Overexpression of Trib1 and Trib2 results in an inhibition of MEK1 
mediated gene expression events, with Trib2 over expression having less significant effect on the inhibition 
compared to the Trib1-Trib2 heteriodimer and the Trib1 homodimer. 
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signalling. It is widely established that the Akt-mTOR  axis and the MAPK pathways 

are the main signalling networks which mediate the cannabinoid antitumor effects. 

Activation of the p38 and ERK pathways, and inhibition of the AKT-mTOR axis, are 

believed to be the main players which promote cell death. TRIB3 was recently shown 

to play a part in mediating THC induced apoptosis in glioma cell carcinomas and 

hepatocellular carcinoma (HCC) HepG2 cells (Örd and Örd, 2005, Vara et al., 2011).   

 

There is a reported overlap between AKT and the MAPK network in mediating the 

cannabinoid induced proapoptotic effects. In addition TRIBs inhibits ERK. p38 and 

JNK pathways differentially (EKT). The results presented in this section show that 

TRIB1 and TRIB2 knock down in cells treated with THC for 72 hours demonstrated 

similar low survivability compared to scrambled siRNA cells (Appendix D, Figure 1). 

In glioma carcinomas and HepG2 cells THC reduced cell survivability by inhibition of 

the AKT-mTOR axis (Greenhough et al., 2007, Preet et al., 2008, Salazar et al., 

2009, Salazar et al., 2013), and this process involved the participation of TRIB3. 

(A)       (B) 

 

Appendix D, Figure 7  AssessingTRIB3 protein-protein interaction with MEK7 and MEK4 in HepG2 cells (A) using 
CO-IP. (B) Shows the efficiency of siRNA treatment against TRIB3 and TRIB1. 
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TRIB3 inhibition of AKT activation was demonstrated in liver cells exposed to insulin. 

The data presented here with the U87 glioma cells are in line with previous findings. 

Knocking down TRIB3 expression rescued U87 cells from THC induced cell death. 

This rescue was substantially higher to those observed with TRIB1 and TRIB2 KDed 

cells. In glioma cells, treatment with THC was coupled with reduced AKT 

phosphorylation compared to control. However THC treatment in the presence of 

constitutive active AKT did not affect cell viability and the level of AKT 

phosphorylation. 

 

Conversely, Ramer et al. showed that HeLa cell viability was not altered after 

exposure to different THC concentrations (Ramer and Hinz, 2008). Thus, it was 

concluded that  THC had no toxic effects on HeLa cells. They also demonstrated that 

treatment with THC levels increased activated p38 and ERK levels. Our experiments 

with THC treated HeLa cells showed the same effect. However, when TRIB 

members were differentially expressed, cell survivability was reduced. TRIB3 KD 

caused increases in survivability compared to TRIB1 and TRIB2 KD treatment. To 

determine how the tribbles family mediate these effects assessment of TRIB3 

protein-protein interactions with its binding partners was conducted via CO-IP and 

Western blotting. These alterations also examined the impact on activation of AKT 

and the MAPK network. 

 

For both the CO-IP and Western blots, TRIB1, 2 and 3 were KDed in HeLa cells, and 

were not treated with THC (Appendix D, Figure 2, Appendix D, Figure 3 and 

Appendix D, Figure 4). This was to determine the influence of KD tribbles on protein-
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protein interaction partnerships in the absence of THC, therefore reducing a layer of 

complexity, and therefore assessing the native interaction partnership. Since AKT 

and MAPK pathways are the main pathways regulating proliferation, apoptosis and 

survival, we looked at the level of activated proteins of these pathways. The data 

shows that without THC treatment, knocking down tribbles expression increased the 

activation of AKT. However, knocking down different TRIB proteins did not have a 

differential effect on AKT activation. This is consistent with previous observations in 

HeLa and cancerous cells. The most interesting activation variation observed was of 

MAPK proteins. The findings strongly support that the main targets of the TRIB 

protein family are within the MAPK network (Appendix D, Figure 4). With TRIB1 KD, 

there was a considerable increase in the activation of the AKT and p38 activation, 

while JNK2 activation was moderate compared to that of the control. Alternatively, 

ERK1/2 activation was substantially reduced. Compared to the control, knocking 

down the expression of TRIB2 moderately increased p38 and AKT activation, yet 

ERK1/2 activation was moderately reduced. Contrariwise, JNK2 activation was 

enhanced substantially compared to control. This substantial increase in JNK2 

activation and the moderate increase in p38 activation were unexpected, as TRIB2 

was reported to influence p38 activation (Wei et al., 2012), thus the expectation was 

that p38 activation will be increased extensively while negligible changes in ERK1/2 

JNK2 activation is observed. TRIB3 KD results in a moderate increase in ERK1/2 

and AKT activation compared to control, whereas there is an extensive increase in 

p38 activation. Conversely,, JNK2 activation did not change. This was also 

unanticipated, considering that TRIB3 has been shown to be an important 

component for the activation of the JNK2. Thus, the envisaged outcome of the KD 

was an enhanced activation of JNK2 while p38 and ERK1/2 activation is minimal. 
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The data suggests that each member of the TRIB family modulate two MAPKs 

negatively, while mediating the activation of another. 

 

TRIB1 KD resulted in considerable inhibition of ERK, and strong activation of p38, 

while no marked effect was observed with JNK2 activation. The CO-IP conducted on 

the lysed control cells showed TRIB3 interacts with MEK4 and MEK7 MAPKKs 

(Appendix D, Figure 2 (A) and Appendix D, Figure 3). However, with TRIB1 KD the 

interaction with MEK7 increased, while interaction with MEK4 was reduced. Previous 

work had shown that MEK4 interacts mainly with TRIB1 while MEK7 interacts 

specifically with TRIB3 (Eder et al., 2008, Kiss-Toth et al., 2004, Kiss-Toth et al., 

2006, Sung et al., 2006). This was in over-expression experiments of both proteins in 

HeLa cells. Considering that in over-expression experiments uneasiness usually 

stems from unspecific binding interactions and false positives. However, EKT et al. 

show high level of specificity in TRIB interactions with their MAPKK targets. The CO-

IP data show that there is alteration in binding specificity with TRIB1 KD. 

Additionally, EKT et al. had shown that tribbles are capable of forming homo- and 

hetero-dimers. Considering the EKT results and the CO-IP results, it can be 

speculated that TRIB1 and TRIB3 form a dimer, and so are part of the MEK4 

signalling complex/cluster. TRIB1 can also be part of the MEK7 signalling 

complex/cluster, as knocking it down increased MEK7-TRIB3 interaction. This 

increase in MEK7-TRIB3 interaction due to reduced levels of TRIB1 was confirmed 

in HEPG2 cells (Appendix D, Figure 6). This establishes a direct cause-effect link, as 

HepG2 cells lack TRIB2 proteins and do not express MEK4. In addition, in HepG2 

cells TRIB1 knockdown increased the level of AKT-TRIB3 interaction. 

Correspondingly, knocking down TRIB2 caused a substantial reduction in MEK4 and 
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MEK7 interaction with TRIB3. Yet, in TRIB1 KD there was a considerable reduction 

in the level of activated ERK1/2 and an evident increase in JNK2 activation. These 

might be attributed to increased numbers of free uninhibited MEK4, due to the 

absence of TRIB1 in TRIB1 KD, and reduced binding to TRIB3 proteins. In regard to 

TRIB2 KD, the extensive reduction in TRIB3 interaction with MEK7 and MEK4 result 

in increased numbers of free and uninhibited MEK4 and MEK7, and consequently 

increased activation of JNK2 and p38. Also TRIB2 KD causes an increase in active 

MEK3/6, and ultimately, p38 activation.  

  

In order to collectively explain the outcome of these knockdown experiments, and 

the effects on cellular response, the MAPK-AKT signalling network as a whole must 

be considered. Fey et al. had modelled the interaction of the three MAPK pathways 

and in the presence and absence of activated AKT pathways (Fey et al., 2012). They 

reported the effects alterations in the dynamic network behaviour had on apoptosis 

and proliferation. In their model they addressed activating and deactivating inputs 

involving feedback loops. Since the tribbles family play a role in regulating activity of 

both pathways, Fey’s model is of relevance. Their model suggests that when the 

AKT pathway is not activated, JNK activation acts as a necessary switch to trigger 

apoptosis. This switch is modulated by the activity of both ERK and p38 pathways. 

AKT activation blocked JNK activation via positive feedback, and thus enhanced 

survival. They showed that under stressful conditions both JNK and p38 activation is 

enhanced considerably, while ERK activation is substantially reduced. This is in line 

with what the western blotting data here shows in the event of TRIB1 knock down. 

Furthermore, their model show that under weak AKT signalling ERK activation 
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dominates; JNK shows a moderate activation while p38 show minimal activation. 

This is similar to what the siRNA control data show.  

 

This AKT-MAPK pathway network model by Fey et al. and our HeLa results provide 

a platform to explain the observation in the THC-induced cell death seen in the U87 

glioma cells. In the negative control treatment, p38 and JNK pathways are not 

activated, while the ERK pathway is active, thus cells survival is high. THC is 

documented to induce cell death in cancer cells through the inhibition of the AKT 

pathway via the induction of TRIB3. THC in these cases is regarded as a stress 

inducing signal. In both the control and TRIB1 knockdowns, cell death is observed 

the most. This might be due to an increase in the activation of the JNK and p38 

pathways (both of which are linked to stress responses), and the inhibition of ERK 

activation which is responsible for mediating survival . Though there is an increase in 

AKT activation, TRIB3 is still mediating its inhibitory actions on AKT pathway. Fey‘s 

model shows that the output from the crosstalk between p38 and ERK pathways is 

important for the regulation of JNK and its influence on pro-cell death response. 

Their model showed that increasing p38 activity reduced ERK activation and that in 

turn allowed for JNK to mediate cell death. This is what has been observed with 

TRIB1 KD experiments. With TRIB2 KD, here was a moderate increase in p38 

activation coupled with a substantial reduction of ERK activation compared to siRNA 

control. This was also shown in the Fey et al. model where disruption of p38-ERK 

cross talk resulted in prevention of JNK mediated apoptosis. The cell survival assay 

shows that TRIB2 KD cells underwent cell death and their response to THC 

treatment was markedly different from those with TRIB1 KD with THC exposure. Due 

to the presence of TRIB3 in the system, and its inhibition of the AKT pro-survival 
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signal, cell death still prevailed. When the TRIB3 expression was KDed, as reported 

previously, THC did not induce cell death in both the U87 glioma and HeLa cells, as 

the TRIB3-dependent inhibition of the AKT pathway was rescinded. However 

contrary to Fey’s model, though p38 was active, ERK activation was not hindered. 

This suggests that in order for the crosstalk between the p38 and ERK pathways to 

be efficient TRIB3 is required. Therefore, with no TRIB3 the crosstalk between p38 

and ERK pathways is disrupted, and as a result the output into the JNK pathway is 

affected. Although JNK2 activity was as high in the TRIB3 KD experiment as the 

control, cell survival overcame cell death induction. In addition to blocking THC-

induced cell death via blocking AKT pathway inhibition with TRIB3 KD, it was shown 

with Fey’s model that AKT activation has an inhibitory influence on JNK activation, 

and thus mediation of apoptotic cell death. That might be what is being observed in 

the system as a whole when TRIB3 is KDed. What is being observed in glioma cell 

lines is that THC induces cell death by the regulation of the AKT-mTOR axis via 

TRIB3. What we show here experimentally is that the AKT-MAPK pathway 

network/crosstalk should also be considered. This point is valid when it is taken into 

account that gliomas which are resistant to cannabinoid-induced cell death rely on 

ampiregulin signalling through the activation of the ERK pathway. In addition they 

showed that TRIB3 and p8 (another effector in the cannabinoid-induced cell death) 

expression depend on ERK activation. The important role of the MAPK pathway 

induction of glioma cell death was further asserted by the development of the small 

molecule drug Vacquinol-1 as a treatment for glioblastoma multiform, where the 

authors believe that MAPKK 4 is a critical signalling node in this (Kitambi et al., 

2014). 
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The data presented here suggest that protein-protein interactions within a signalling 

complex/cluster, in addition to the identity of the proteins in the complex, influence 

the activation behaviour of the MAPK signalling network. This data provides bases 

for constructing an ABM model which addresses these issues and their effect on 

MAPK activation behaviour in time and space.  
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Abstract
Signal transduction through the Mitogen Activated Protein Kinase (MAPK) pathways is evo-

lutionarily highly conserved. Many cells use these pathways to interpret changes to their

environment and respond accordingly. The pathways are central to triggering diverse cellu-

lar responses such as survival, apoptosis, differentiation and proliferation. Though the inter-

actions between the different MAPK pathways are complex, nevertheless, they maintain a

high level of fidelity and specificity to the original signal. There are numerous theories

explaining how fidelity and specificity arise within this complex context; spatio-temporal reg-

ulation of the pathways and feedback loops are thought to be very important. This paper

presents an agent based computational model addressing multi-compartmentalisation and

how this influences the dynamics of MAPK cascade activation. The model suggests that

multi-compartmentalisation coupled with periodic MAPK kinase (MAPKK) activation may be

critical factors for the emergence of oscillation and ultrasensitivity in the system. Finally, the

model also establishes a link between the spatial arrangements of the cascade components

and temporal activation mechanisms, and how both contribute to fidelity and specificity of

MAPK mediated signalling.

Introduction
Cells constantly receive external signals reflecting changes in their environment, which they
should respond to accordingly. An array of signal transduction pathways and signalling mech-
anisms have evolved that translate these external cues into specific cellular responses. One of

PLOSONE | DOI:10.1371/journal.pone.0156139 May 31, 2016 1 / 25

a11111

OPEN ACCESS

Citation: Shuaib A, Hartwell A, Kiss-Toth E,
Holcombe M (2016) Multi-Compartmentalisation in
the MAPK Signalling Pathway Contributes to the
Emergence of Oscillatory Behaviour and to
Ultrasensitivity. PLoS ONE 11(5): e0156139.
doi:10.1371/journal.pone.0156139

Editor: Lisa Carlson Lyons, Florida State University,
UNITED STATES

Received: April 19, 2016

Accepted: May 10, 2016

Published: May 31, 2016

Copyright: © 2016 Shuaib et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: Data are available from
https://github.com/MadinaJNR/Multi-Compartment-
ABM-source-code-in-C-programming-language-.

Funding: Funded by Biotechnology and Biological
Sciences Research Council BBSRC Doctoral
Training Grant BB/F016840/1 (www.bbsrc.ac.uk).

Competing Interests: The authors have declared
that no competing interests exist.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0156139&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://github.com/MadinaJNR/Multi-Compartment-ABM-source-code-in-C-programming-language-
https://github.com/MadinaJNR/Multi-Compartment-ABM-source-code-in-C-programming-language-
http://www.bbsrc.ac.uk


these central intracellular signalling pathways is known as the mitogen activated protein kinase
(MAPK) pathway [1].

The pathway is a three-tiered cascade involving three enzymes, the MAPK kinase kinase
(MAPKKK), the MAPK kinase (MAPKK) and the MAPK. Mechanistically, pathway activation
relies on the propagation of phosphorylation events downstream of the cascade [2, 3] as shown
in Fig 1. The MAPK pathway plays a critical role in cells as it regulates numerous and diverse
cellular responses [4–6], including regulation of the cell cycle, influencing differentiation, sur-
vival and apoptosis. Historically, these responses were attributed to distinct MAPK pathways,
mediating a specific response [7–10]. Three groups of MAPKs have been characterised and
were initially thought to respond to distinct signals. These include the ERK, JNK and p38
kinases; each of these is a “common name” for groups of highly similar proteins, encoded by
small gene families. However, as the interest and knowledge in the molecular mechanisms that
control these pathways grew, two issues have emerged: (i) a single pathway is capable of medi-
ating opposing effects as seen with extracellular signal-regulated kinase (ERK) mediating either
the differentiation or the division of PC12 cells [11, 12] (ii) Some of the responses the pathways
triggered can overlap, with different MAPKs converging to mediate the same cellular responses
in the same cell [13–15]. Furthermore, accumulating evidence showed that the MAPK path-
ways function as a network connected at different levels of the kinase cascade. Nonetheless,
given this complexity, cells maintain high fidelity to the initial signal and respond efficiently. It
is believed that properties arise from the activation behaviour of the pathway such as the signal
magnitude, ultrasensitivity and oscillation. These thought to be influenced by the spatial and
temporal aspects of MAPK pathway activation.

Temporal regulation of the MAPK pathway affects the cascade’s dynamics. It is also thought
that the signal dynamics such as the magnitude of the response, duration and oscillation play a
role in specifying the cellular outcome. For instance, it was long reported that sustained and
transient activation of ERK caused quiescence and proliferation, respectively in Swiss 3T3 cells
[16], PC12 and yeast cells [17]. In addition, high response magnitude enabled cell arrest while
moderate magnitude had facilitated proliferation as seen in mouse embryonic fibroblasts

Fig 1. A schematic representation of the MAPK cascade and its activationmechanisms. The MAPK
pathway is composed of three levels. The signal is transduced through phosphorylation events where
mitogen activated protein kinase kinase kinase (MAP3K, also known as MAPKKK) phosphorylates mitogen
activated protein kinase kinase (MAP2K, also known as MAPKK) leading to its activation and thus the
phosphorylation and activation of the mitogen activated protein kinase (MAPK). Active MAPK phosphorylates
protein targets in the cytoplasm and the nucleus. For mediating nuclear events MAPK translocates to the
nucleus where it phosphorylates many proteins, which control gene expression.

doi:10.1371/journal.pone.0156139.g001

Multi-Compartmentalisation of MAPK Signalling and the Emergence of Oscillatory Behaviour

PLOS ONE | DOI:10.1371/journal.pone.0156139 May 31, 2016 2 / 25



(MEFs) [18, 19]. Oscillation in particular is thought to play a significant role in facilitating the
specificity of the signal as the frequency and amplitude of the waves could encode for specific
aspects of both gene transcription and translational changes. Oscillation is thought to emerge
from regulatory mechanisms, which modulate the cascade input and output. Oscillations were
observed previously in calcium signalling and in the NF-κB pathway; however, this was only
recently reported in the MAPK pathway [20, 21]. Nevertheless, oscillation in the MAPK path-
way was predicted and demonstrated before using in silicomodels [22]. These models had pro-
posed that regulatory machineries may involve feedback loops. The majority of the models had
shown that negative feedback loops are chiefly responsible for the emergence of the oscillatory
behaviour. Some models also propose that the interplay between positive and negative feedback
is fundamental to generate signals that code for specific responses [23–26]. These oscillatory
behaviours are suggested to be responsible for allowing the cell to choose to proliferate, go into
senescence or differentiate. Some suggest that they may play a role in synchronising the
responses of multiple cells to a signal mirroring the circadian rhythm [27].

The spatial distribution of the MAPK pathway is critical to generating specific responses.
The first indications for this were coming from contrasting responses observed between
nuclear and cytoplasmic ERKs triggered by the same stimulus. In fibroblasts and embryonic
carcinoma cells, ERK activation and nuclear translocation caused proliferation. However, by
preventing ERK translocation these cells became senescent and differentiated, respectively [28,
29]. An impact of spatial distribution was also seen during the activation of the beta-adrenergic
receptors, which transiently activated ERK upon stimulation, which then translocated to the
nucleus to regulate gene-expression. However, with the internalisation of receptors to the
endosomal compartment, ERK activation becomes sustained and its action is confined to the
cytosol. Also, Teis et al. have shown that there are separate pools of ERK in the plasma mem-
brane and the endoplasmic reticulum and both of them mediate distinct actions. Depleting the
endoplasmic reticulum (ER)-ERK pool led to an altered activation/inactivation dynamics of
the pathway. Once the endoplasmic reticulum (ER)-ERK pool was demolished/decreased the
effect disappeared and only returned with the re-introduction of the ER-ERK pool [30, 31].
Furthermore, in neuronal cells, the discrimination between the epidermal growth factor (EGF)
and nerve growth factor (NGF) signalling is also thought to be due to the different compart-
ments ERK resides in. Distinctive cellular responses were also observed when MAPKKs were
localised in different cellular compartments [32]. All of the above examples point to the critical
role of compartments and spatial separation in mediating specific responses of the MAPK
pathway.

In the work reported here, we were interested in characterising the interaction between spa-
tial and temporal parameters in the MAPK cascade and how these influence pathway activity.
We approached this by using an agent-based computer modelling approach, whereby every
key molecule and compartment were explicitly modelled. This high level of detailed modelling
provided an innovative basis for examining the role that compartmentalisation plays in MAPK
activation. The main purpose of the model was to explain why compartmentalisation is neces-
sary in order to achieve the various behaviours seen in biology. Less detailed modelling
approaches are unlikely to be as informative.

We characterised the effect of compartmentalisation on MAPK activation and how it influ-
ences the formation of phosphorylated MAPK, thereby providing a novel insight as the issue of
multi-compartmentalisation has not previously been highly addressed by in silicomodels of
the cascade. We compared two types of models; a two-compartment model (which commonly
used to study the cascade) and a novel, multi-compartment model. Our model shows that
multi-compartments play an important role in the emergence of oscillatory behaviour in the
MAPK cascade. In addition, we infer from the data that the balance between inhibitory and

Multi-Compartmentalisation of MAPK Signalling and the Emergence of Oscillatory Behaviour

PLOS ONE | DOI:10.1371/journal.pone.0156139 May 31, 2016 3 / 25



activating inputs at the level of the MAPKK is critical for the appearance of oscillation in the
system. Our ABMmodel suggests a fruitful strategy of integrating spatial and temporal regula-
tion of the MAPK pathway and their influence on oscillation, and thus on signal specificity and
efficiency.

Results

Agent Based Models of MAPK Activation
We have constructed two models of the MAPK pathway in order to address the effect of com-
partmentalisation of the MAPK components on pathway activation (Fig 1). The first model
mimicked a two-compartment system, including the cytoplasm and the nucleus. The second
model incorporated a multi-compartment system including the nucleus (with identical proper-
ties as compared to the two compartment model), cytoplasm, and ten randomly located cyto-
plasmic compartments. The two models share a number of common features. They both rely
on binding events as the key factor to drive them. Agents move spontaneously and follow
Brownian motions with few restrictions (read the agents descriptions in Methods). Both mod-
els are set and constructed in a three dimensional spherical cell as shown in Fig 2C. All agents
cycle between activated and deactivated states, all the MAPKK are subjected to deactivating
inputs (mainly RADP) and there is no loss of agents or re-creation of agents in the system. The
working mechanisms of both models are equivalent. Briefly, pMAPKK activates MAPK leading
to the formation of pMAPK, which translocates to the nucleus. Once translocated to the
nucleus, MAPK could interact with active exporting receptors (ExR) and removed from the
nucleus (Fig 2A and 2B). Alternatively, pMAPK can interact with an active transcription factor,
which triggers MAPK-dependent gene expression.

Simple rules were assigned to the agents in both models (S1 File). These rules specified the
agents’movement and the manner in which they interacted amongst themselves and with their
environment. The execution of the rules depends on the functions assigned to the agents and
the agents’memory. Agents’memories are stored and regularly updated with every state transi-
tion of the agents and with every model iteration. A list of the memory components, messages
and functions of each agent are listed in S1 File.

Communication between the agents was achieved by the use of messages. The messages
were inputted and outputted using the agents’ functions. The messages were stored in the mes-
sage board (Libmboard) and each agent accessed and read messages needed for the interaction
with its interacting partner. Agents went through state transitions and the memory parameters
were updated once the messages were read and the functions were performed. The physical
interaction between the agents and the different agent states (DAS) were determined by assign-
ing an interaction value. Once the interacting agents and the DAS were within the specified
proximity, interaction between the agents and/or DAS occurred.

We also examined the effect of pMAPKK availability for the interaction with MAPK and
how these also influence the dynamics of pathway activation. Two scenarios were modelled by
introducing the parameter re-activation delay period (RADP, Fig 2D): an activation by strong
stimulus vs weak inhibition of the signal at the level of MAPKK (when RADP< 15 min) and
activation by a weak stimulus vs a strong signal inhibition at the level of MAPKK (when
RADP> 15 min). Further details on RADP will be discussed below.

Calibration of the ABM
A critical parameter of pathway activation dynamics is the time to elicit Emax of MAPK activa-
tion. In order to calibrate our ABMmodel, 63 experimental data points from 34 publications
reported on MAPK activation time (Emax) were extracted from the published literature (S1 File)
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and analysed as shown in Fig 3A. The statistical analysis of this data revealed that the values
were not normally distributed Fig 3A. In contrast, 21 Emax values from in silicomodels within
these studies were normally distributed (Fig 3B). Therefore, the median time for maximal acti-
vation (7.63 min) was calculated from the experimental dataset and used to calibrate our model
and to convert the time-step in the ABM into time values.

Sensitivity Analysis of the ABM
We tested the robustness of our models similar to approaches reported in previous studies of
modelling MAPK signalling [33]. First, the two-compartment and multi-compartment models

Fig 2. Graphical representation of cytoplasmic and nuclear events in the two-compartment andmulti-
compartment agent-basedmodels (ABMs). The basic two dimensional design of the two and multi-
compartment models of the two tier MAPK pathway represented using Systems Biology Graphical Notation
(SBGN) standard annotations. (A) Illustrates the design of the two-compartment ABM whilst (B) describes the
design of the multi-compartment ABM. Details of the two model design, structure and functionality are
provided in the Materials and Methods section. (C) A three-dimensional (3D) visualisation of both the two-
compartment vs. the multi-compartment model. The right hand side of both 3D representations is a 3D cross
section of the “cell”. The cytoplasm is represented by the grey space around the nucleus. Inside the
cytoplasm green spheres are MAPK, red spheres are pMAPKK, violet spheres are MAPKK, within the
nuclear space, black spheres are pMAPK agents, dark blue are ExRs and light blue are dExRs. (D) Modelling
the Re-Activation Delay Period (RADP) in the ABM: once pMAPKK agents change state into MAPKKs, they
become dormant for period of time, and once this dormancy period is passed MAPKKs are re-activated.
RADP was modelled either stochastically (I) or deterministically/periodically (II). In the stochastic model (I),
RADP (X) was generated randomly for every individual pMAPKK agent, where X was a value between 0 and
the chosen maximum value n (X ~ N ([0, n])). Periodic RADP was always identical for every MAPKK formed
(RADP = n).

doi:10.1371/journal.pone.0156139.g002
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were run multiple times (n = 3) and the number of each species of agents were plotted at set
time points for the individual runs (Fig 4A and 4B). Analysis of the standard deviation of the
active MAPK species (pMAPK and pMAPKK) demonstrated that the models were robust.
Whilst SD in the two-compartment model was low for both pMAPKK and pMAPK (SD
pMAPK<3.3%, SD MAPKK<2%), SD for pMAPKK in the multi-compartment model were
greater (1.5–37%). However, SD for pMAPK was<2.5% at every time point, suggesting that
such variation in pMAPKK levels is “tolerated” by the system, leading to a highly robust path-
way activation. Next, the number of initial MAPKK and MAPK agents have been altered by
20% in the multi-compartment model, and MAPK and pMAPK agent numbers were plotted at
set time points in three consecutive runs (Fig 4C and 4D). Variation between runs at each time
point was< 5%, further suggesting that our models were robust. Finally, the impact of altered
MAPK or MAPKK levels on the dynamics of MAPK activation was analysed. Time to achieve
pMAPK Emax and EC50 were determined in each of the models and conditions in Fig 4A–4D
and one-way ANOVA was used to establish the impact of altered initial MAPK and MAPKK
levels on the generation of pMAPK and pMAPKK (Fig 4E–4H). In short, alteration of MAPKK
and MAPK levels did not affect MAPK and MAPKK activation dynamics, further supporting
that our model was robust and insensitive to up-to 40% in initial agent numbers.

Compartmentalisation Is Responsible for the Rapid Responsiveness of
the MAPK System
We implemented two models to investigate the effect of compartmentalisation on MAPK path-
way activation. In the initial, two-compartment model (as described in the Methods), the
MAPK and MAPKK agents were moving freely in the cytoplasm. We investigated the

Fig 3. Analysis of MAPK activation dynamics observed in vitro in the published literature. 84 MAPK
activation dynamics values were collected from published literature and the time to achieve Emax were
plotted. A whisker plot with the median values are presented. (A) 63 in vitro data points from the analysed
data were selected, plotted and analysis for normality was conducted. D'Agostino & Pearson omnibus
normality test showed that the in vitro data for MAPK activation dynamics were not normally distributed
(**: p<0.01). (B) 21 In silico data-points were extracted from the above literature and normality analysis was
performed as for (A), demonstrating that the in silico data was normally distributed.

doi:10.1371/journal.pone.0156139.g003
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Fig 4. Robustness and sensitivity analysis of the ABMmodels. The basic two compartment (A) and multi-compartment models (B) were run multiple
times (n = 3). (A) The graph shows a run of the complete two compartment model in the presence of constitutively active MAPKK agents and the
emergent kinetic behaviour of pMAPK and MAPK agents. The graph shows the interaction between pMAPKKs and MAPKs until the level of pMAPKs
and MAPKs plateau as the interaction reaches equilibrium. The pattern emerging is a graded ultrasensitive response (whereby Emax� 10 min). The
model shows rapid activation of MAPK and formation of pMAPK but does not show ultrasensitive behaviour. (B) A graph generated from the multi-
compartment model without a constitutively active MAPKK, this model shows that the multi-compartment system is capable of generating high level of
pMAPK within a short period of time and with a gradual activation of MAPKK agents in addition to demonstrating an ultrasensitive behaviour. Individual
data points for each run and the mean of the values are plotted. (C-H) Sensitivity analysis of the multi-compartment ABM to examine model sensitivity to
manipulation of initial agent numbers. The number of each agent was altered by ±20%, compared to the control model. The number of pMAPK (E, F) and
pMAPKK (G, H) agents were plotted. Time to achieve both Emax and EC50 were determined under each condition and the analysis of variance (ANOVA)
was used to test for statistically significant changes. The analyses showed no significant difference between the different ABM conditions.

doi:10.1371/journal.pone.0156139.g004
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dynamics of the formation of the pMAPK in this model with the ratio between MAPKK and
MAPK set at 1:1 and MAPKK being in a constitutively active state; this was to reflect a strong
and sustained activation signal, similar to the oocyte system Ferrel investigated as a model of
irreversible pathway activation [34]. As shown in Fig 4A, the levels of activated MAPKK in the
system hardly changed over time in this configuration, resulting in a sharp formation of
pMAPK and a rapid achievement of equilibrium. However, an initial lag-period of pMAPK
accumulation (�94 seconds (s)) was observed. Interestingly, an equilibrium of 1:2 MAPK to
pMAPK ratio was established in the two-compartment model, different from ordinary differ-
ential equation (ODE) models that are based on Ferrel’s original MAPK pathway model.

Next, a multi-compartment model was constructed to elucidate the impact of spatially
restricted MAPKK/MAPK complexes on the dynamics of pMAPK formation. To simulate
physiological conditions of resting cells in this model, the majority (95%) of the MAPKK
agents were not active and the majority of the MAPK agents were not phosphorylated/acti-
vated initially. A model included an activation signal at 0 time point with MAPKK remaining
active; this resulted in a system which was highly sensitive to activation with a rapid rate of
pMAPK formation (� 11.5 ± 0.4% of MAPK was converted to pMAPK per min), and thus a
rapidly reaching equilibrium. In addition, in the multi-compartment model 98 ± 0.2% of
MAPK was converted into pMAPK and translocated to the nucleus (Fig 4B). In contrast, the
two-compartment model had generated a less sensitive system, where only� 82.4% ± 0.2% of
MAPK molecules were converted to pMAPK per min. Furthermore, levels of pMAPK gener-
ated were lower in the two compartment model and only a 70.3 ± 2.2% reduction in cyto-
plasmic MAPK levels once the system had fully triggered (Fig 4A).

However, due to the constitutive activity of MAPKK, particularly in the multi-compartment
model, the levels of MAPK did not return to the initial values. Thus we modified our model to
address this and describe its results below.

MAPKK Re-Activation Delay Influence Dynamics of pMAPK Formation
in a Multi-Compartment Model
In cells, activated MAPKK is deactivated by phosphatases [35, 36]. Thus the balance between
activation and inactivation relies on the number of active pMAPKK molecules versus inactive
MAPKKs, which is influenced by the rate of phosphatase activity. To address this issue in the
ABM model, a re-activation delay for MAPKK was introduced. Once pMAPKK interacts
with MAPK it enters a dormant state where it is not capable of activating MAPK and this
period of inactivity is defined as the re-activation delay period (RADP). The effect of re-acti-
vation delay was modelled deterministically and stochastically. Initially, different RADPs
were investigated and systems behaviour in stochastic vs. deterministic models were com-
pared. Stochasticity of RADP values were analysed, employing one-sample runs test. First,
RADP values were collected for five independent MAPKK agents during a model run. Sec-
ondly, RADP values were collected for the same MAPKK agent during four independent
runs of the model (individual RADP values are presented in S3 File). In both scenarios, the
one-sample runs test yielded p>0.05 for every agent/run, demonstrating that RADP values
were stochastic.

At lower RADPs (0� RADP< 90 (s)) the MAPK system retained its rapid activation rate
and high level of pMAPK formed in both deterministic and stochastic models (Fig 5A vs. 5B).
In contrast, at slightly longer RADPs, the deterministic model showed graded responses during
the initial activation phase (Fig 5B vs. 5D). These graded responses were also observed in the
stochastic models with minimum stochasticity (for instance, 4.38� RADP< 4.53 min, S1
Fig); hence the models closely resembled the deterministic models.
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Models with longer RADPs and at maximum stochasticity (0� RADP< 7.55 min) gener-
ally retained their ability to generate high levels of pMAPK (93.9 ± 1.7% reduction of MAPK
levels at Emax compared to t0, S2A Fig), though the rate of activation decreased and the time to
achieve Emax increased from 6.24 ± 1.3 min to 26.7 ± 6.9 min (Fig 5E and S2B Fig). However, if
the RADP was fixed to create a deterministic model (RADP = 7.55 min) or one with minimal
stochasticity (7.53� RADP< 7.55 min), the graded responses observed earlier evolved into an
oscillatory behaviour (Fig 5F).

In a stochastic model of RADP, when the RADP was>15 min and when Emax was reached,
the levels of inactivated MAPK had fallen by 47.4 ± 3.9% (from 100% at t0 and compared to
~95% reduction in MAPK levels observed in the other models we presented here, S2A Fig).
Although this is a significant reduction, the levels of MAPK were still higher than the EC50,
and did not reach 5% of MAPK levels at t0 (Fig 5G). Nonetheless, this model still demonstrated
a level of responsiveness, which had arisen from the ability of extremely low levels of MAPKK
agents to maintain a high level of pMAPK in the model. In contrast, the deterministic models

Fig 5. The effect of delaying MAPKK re-activation on the dynamics of MAPK activation and MAPKK
levels.Once pMAPKK agents bind and activate MAPKs to pMAPKs, pMAPKKs convert to a dormant state
(MAPKK). The length of this dormancy period was set and its effects on the levels of pMAPK, MAPK,
pMAPKK and MAPKK were monitored. In (A) and (B) the re-activation delay period (RADP) was set at a short
period (0�RADP� 90 s), while in (C) and (D) RADP was set to an intermediate period (0� RADP� 4.53
min); in (E) and (F) RADP was set to a the highest range of the intermediate period (0�RADP� 7.55 min);
while in (G) and (H) RADP was set to long periods (0�RADP� 22.6 min). The figures on the left hand side
were stochastic (where the RADP was set stochastically within the specified delay period every time
pMAPKK switched state to MAPKK); while models on the right hand side were deterministic (where MAPKK
returns to the active pMAPKK state after a fixed period.

doi:10.1371/journal.pone.0156139.g005
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with RADPs higher than 15 min, the graded dynamics of pMAPK formation evolve into sus-
tained oscillatory behaviour (Fig 5H).

In these multi-compartment models of re-activation delay, although increasing the RADP
led to lower steady state pMAPK levels (Fig 5F–5H) and reduced MAPK: pMAPK ratio, neither
of them were capable of re-establishing the levels of MAPK and pMAPK at t0. Nonetheless, in
deterministic models, t0 MAPKK levels were re-established once RADP was set at> 7.55 min.
On the other hand, this behaviour was only seen at long RADP in the highly stochastic models
(data not shown).

Alterations in RADP Fail to Display an Oscillatory Behaviour and to
Regulate pMAPK Formation Dynamics in a Two-Compartment Model of
the MAPK Cascade
Next, the re-activation delay characteristics of MAPKK were tested in the two-compartmental
model. In these, neither stochastic nor deterministic models of MAPKK RADP (Fig 6A, 6C
and 6B, 6D respectively) produced an oscillatory behaviour for pMAPK formation dynamics
and there was no significant difference between the two models with regards to pMAPK forma-
tion, MAPKK activation and re-established MAPK levels. This was seen both at RADPs� 5
min (Fig 6A and 6B) and RADPs� 15 min (Fig 6C and 6D). Furthermore, whilst introducing
the RADP into the two compartment model did not induce oscillation, the model still main-
tained the characteristic graded MAPK activation dynamics for both MAPK and pMAPKK
(�60 min to reach Emax).

Signalosome clusters have been reported previously, including lipid rafts and Ras nanoclus-
ters [37]. In these signalling apparatus at the plasma membrane (such as rapidly accelerated
fibrosarcoma1 [RAF1] and rat sarcoma [Ras]) are brought together into a very close proximity

Fig 6. The effect of MAPKK re-activation delays on the dynamics of pMAPK formation and pMAPKK
levels in two-compartment system. The re-activation delay characteristics of pMAPKK (red) were applied
to the two-compartment ABM and the effects were monitored. Initially the effect of a deterministic versus a
stochastic model were looked at. In (A) and (B) short RADPs (0�RADP� 90 s) were tested, (A) was the
model with stochastic RADP while (B) was the model with deterministic/periodic RADP. There was no
significant difference between the graphs generated by either ABMs when the analysis of variance (ANOVA)
was used. However, both of the models had generated lower activation rate and formation of pMAPK (brown)
and pMAPKK (violet) in comparison to the multi-compartment system. The graphs in (C) and (D) were
generated with long RADPs (0�RADP� 22.6 min), pMAPK formation, pMAPKK and MAPK (green)
activations patterns were similar to those with short RADP seen in (A) and (B). Unlike multi-compartment
models, deterministic models with intermediate or long RADPs did not generate any oscillatory pattern.

doi:10.1371/journal.pone.0156139.g006
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and randomly assemble and disassemble [38, 39]. This concept was applied by changing the
multi-compartment model to a model with assembled signalosome clusters at the arrival of the
activating signal; these clusters then disassembled and the signalosome components diffused
into the cytoplasm by Brownian motion. The impact of signalosome cluster model was tested
with both the deterministic and stochastic models and with long and short RADPs. This led to
a two-phase response, an activation “turn on” phase and a tailing-off “shut-down” phase.

Looking at pMAPK formation dynamics as a surrogate of pathway activation, there was lit-
tle difference between the stochastic (Fig 7A and 7C) and deterministic models (Fig 7B and
7D) as well as between the models using short or long RADPs (Fig 7A and 7B vs. Fig 7C and
7D, respectively). MAPKK-MAPK cluster formation led to a rapid accumulation of pMAPK,
however, this was short lasting as MAPK levels were gradually reduced with cluster disassem-
bly. The four models demonstrated a strong ultrasensitive response in the initial phase of acti-
vation of MAPK. However, ultrasensitive response for MAPKK was only seen in the short
RADP models, while appearing to be graded in the long RADP models.

The primary differences observed between the different MAPKK-MAPK cluster models
included the magnitude of pMAPK generated within the initial phase of MAPK activation. At
Emax of the stochastic RADP model (RADP< 90 s) 60% of MAPK were activated in the initial
phase. Long RADPs did not show high responsiveness and thus resulted into lower pMAPK

Fig 7. pMAPKK and pMAPK levels and rate of activation are significantly enhanced in the two
compartmental model in the presence of signalosome clusters though with no significant difference
between deterministic and stochastic re-activation delay (RADP) models.Deterministic and stochastic
models of MAPKK RADPs were tested again in the two-compartment ABM, in the context of assembly and
disassembly of pMAPKK-MAPK signalsome clusters. In both models the presence of the clusters caused a
rapid rate for pMAPKK (red) activation and pMAPK formation (green). This observation shares similarity with
the multi-compartment system; however, only at the initial MAPK activation stage. Yet, these cluster models
differ with the multi-compartment model in three aspects; (1) the cluster model exhibits a two phase response
(activation [turn on] and deactivation [turn off/recovery] phases); (2) the recovery of MAPK (seen in the post-
activation phase of the signalosome cluster model) and (3) that high levels of active pMAPKK are incapable
of re-establishing high levels of pMAPK. In (A) and (B) short RADPs (0�RADP� 90 s) were tested, (A) was
the model with stochastic RADP while (B) was the model with deterministic RADP (RADP = 90 s). The graphs
in (C) and (D) were generated with long RADPs (0� RADP� 22.6 min), where (C) stochastic RADP was
employed while (D) deterministic RADP was utilised (RADP = 22.6 min). The dynamics of pMAPK formation,
MAPKK and MAPK activations in the long RADPmodels were similar to those noted in the short RADP
models. Student t-test no significant difference in the responses generated by stochastic and deterministic
models of RADPs at long periods, except for the slightly higher pMAPKK levels in the deterministic model
once the steady state was reached. This also applies to the models with short RADPs, though the stochastic
models generate higher levels of pMAPK in the initial phase.

doi:10.1371/journal.pone.0156139.g007
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levels and low rate for MAPK activation/pMAPK formation (33% reduction for the stochastic
model and 40% for the deterministic model), though the stochastic model had shown a faster
rate of pMAPK accumulation.

When assessing MAPKK activation, all models applied to this compartmental setup estab-
lished maximum or near maximum pMAPKK levels at steady state, with short RADP models
generating slightly higher MAPKK levels. Deterministic models of RADP, however, showed
some graded responses in the initial phase of MAPKK activation (Fig 7(B) and 7(D)). Nonethe-
less, unlike the multi-compartment model, high levels of active MAPKK were not able to sus-
tain high levels of pMAPK.

The pMAPK Dynamics Obtained from the ABM Are Comparable to
MAPK Dynamics Observed In Vitro
We looked at formation of pMAPK in the ABMmodel and compared it to recently published
results by Shankaran et al. where they demonstrated the oscillation of pMAPK levels
experimentally [21]. Our ABM models show a good level of correlation with their in vitro
data, as demonstrated by statistical analysis of the dynamics of MAPK activation in the
experimental vs. ABM data. Their stimulation of cells with EGF showed a temporal dynam-
ics of pMAPK formation similar to that of the periodic RADP ABMmodel (RADP = 22.6
min). Furthermore, when comparing the oscillatory behaviour shown by Shankaran and col-
leagues, the ABM model matches several features in the pMAPK response. Both Shankaran’s
data and the ABM model show similar “turn off” dynamics for all the oscillatory waves and
the maintenance of the oscillatory behaviour past the first response trigger. The ABM
(with 4.5� RADP � 7.5 min) and some of the oscillatory behaviour in Shankaran’s paper
demonstrated graded responses while continuing to oscillate until the levels of pMAPK
were close to Emax. We also noted similarities at the phase between the turn-on and turn-off
phase in the oscillatory waves. Both the ABM (when 6 � RADP � 23 min) and some of the
in vitro data at the initial response show some fluctuations in pMAPK levels before the
“turn off” phase. In our model, we observed that this was due to a second wave of MAPKK
activation which were either dormant or not in close proximity to bind to MAPK during
the initial wave of activation (Fig 5F and 5H). However, the small number of available
pMAPKK agents and their lengthy RADP hindered further activation of the recently avail-
able MAPKs.

The pMAPK dynamics seen in models including cluster assembly and disassembly were
also similar to the results obtained with compartmentalised MAPK signalling at the endosome
(S3 Fig). Lefkowitz had shown that a typical response of MAPK involving the endosome and G
protein-coupled receptors (GPCRs) are divided into two phases; a GPCR- and β-arrestin-
dependent phases. The GPCR-dependent phase was characterised by a rapid initial MAPK
activation followed by a rapid “turn-off” phase. In contrast, the second phase is endosomal and
β-arrestin-dependent and is characterised by slow activation and deactivation phases [40].
Activation dynamics of ERK (a target of the GPCR induced signalling) incorporated both the
GPCR- and β-arrestin-dependent responses. In Fig 7 and S3 Fig, the ABM produced two phase
MAPK activation response (a rapid activation at the initial phase followed by a slow deactiva-
tion phase). The deactivation phase was capable of lowering the levels of activated MAPK.
These characteristics produced by the ABM are similar to the endosomal MAPK activation
dynamics demonstrated in vitro by Lekowitz. This might suggest that the formation of signalo-
some clusters at subcellular compartments could generate signals comparable to those trig-
gered at membrane clusters.
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AMulti-Compartment Model Combined with Multiple MAPKK Re-
Activation Delay Periods (RADPs) Reveals that the Rate and Level of
pMAPK Formation is Influenced by MAPKK RADPs
Cells reside in a dynamically changing environment. A highly studied example of such
dynamic environments is development and/or differentiation. During somatogenesis, cells are
exposed to strong signals and potent feedback control mechanisms; both of which are periodic
and oscillatory in nature [41, 42].

The MAPK pathway is thought to be triggered during somatogenesis by fibroblast growth
factor (FGF) with ERK and dual specificity phosphatase gene Dusp4 both playing a role in this
process [43]. ABM was used to test system recovery and the reversibility of pMAPK levels once
Emax had been reached by replicating the dynamic changes in external signals that have previ-
ously been reported experimentally. This was implemented by employing a combined multi-
compartment model. In this model, a strong initial signal was applied which was then suc-
ceeded with a strong inhibitory response, followed by a model with a periodic activation of
MAPKK. This was achieved by combining three RADP configurations and merging them into
the multi-compartment ABM. Activation of the multi-compartment model was initiated with
a highly stochastic-short RADP model (0� RADP< 90 s); this led to an accelerated rate of
pMAPK formation and a rapid reduction in MAPK levels (Fig 8, solid green line). Once the
steady state levels of pMAPK were reached, deterministic-intermediate RADP (RADP = 7.55
min) was switched on (Fig 8, solid blue line). This was to mimic a strong inhibitory signal capa-
ble of dephosphorylating and thus deactivating MAPKK. Once the lowest steady state levels of
both MAPKK and pMAPK were established, the model was switched to a stochastic-intermedi-
ate RADP model (0� RADP< 7.55 min; Fig 8 with the solid dark lines). Switching to a deter-
ministic model with an intermediate RADP (strong and sustained inhibitory feedback) led to
reduced levels of pMAPK (ca. 50% of the maximum), while showing a very rapid inhibition of
MAPKK (ca. 95.9%). Behaviour of the stochastic model with an intermediate RADP demon-
strates that low levels of pMAPKK and a slow rate of conversion of MAPKK to pMAPKK were
capable of rapidly establishing high pMAPK levels and producing an ultrasensitive activation
behaviour.

Discussion
The dynamics of the MAPK pathway has been investigated widely using in silicomodels [33].
Since the publication of Ferrell’s first model of the pathway, many more models have been
reported. The majority of these papers predicted patterns and mechanisms in the pathway
which explained experimental observation(s) [44]. Some of the most influential studies include
the works of Levchenko who explained the contradictory experimental observations scaffold
proteins have on the activation of signalling systems and the work of Ferrell et al and Kholo-
denko which explored the effect of negative and positive feedback loops on system behaviour
[22, 45]. Levchenko’s model showed that scaffold concentrations in the cell are responsible for
these contradictions and that scaffolds have to be within a critical concentration in order to
enhance MAPK signalling [46]. Other models revealed that negative and positive feedback
loops are needed for the emergence of bistability and ultrasensitivity [24, 25, 47]. Furthermore,
the works of Sarma et al had predicted that based on the architecture and feedback mechanisms
of the MAPK pathway, the formation of phosphorylated species of ERK should exhibit oscil-
latory behaviour [23]. This was prediction was confirmed experimentally only recently
[21, 48].

The most commonly used approach to model the MAPK pathway is to use ODEs to
describe the pathway and the reactions, which lead to the formation of the phosphorylated
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species at the three tiers. In our study, we used an agent based model (ABM) approach as it
enabled us to investigate system behaviour whilst also gaining an insight into the faith of indi-
vidual proteins, the physical interaction between them and their environment in addition to
the spatial parameters of the model. The latter is something unfortunately ODEs cannot
address [49–51]. In this ABM approach, a generalised model of the MAPK pathway had been
used. This was done for a few reasons. First, a generalised model would be able to investigate
effects, which could then be applied to specific MAPK pathways and thus more transferable
and testable in a number of experimental settings. Secondly, there is limited experimental
information regarding to MAPK compartment numbers, the physical interactions occurring in
them or the number of individual MAPKs in each compartment and their impact on signalling.
Furthermore, a generalised MAPK pathway model integrates, to some extent, the influence of
other pathways into the MAPK signalling network (such as feedback loops).

Our ABM, as shown in Fig 2A is composed of the second and third tiers of the MAPK path-
ways. It allows MAPKK to become activated by an upstream stimulus, which in biological sys-
tems is transmitted via the first tier (MAPKKK) of the cascade. The model primarily relied on

Fig 8. The effect of changeable input-output dynamics at the level of MAPKK on phosphorylated MAPK
(pMAPK) formation characteristics in a multi-compartment system.Using the multi-compartment model, the
MAPK pathway was run with different re-activation delay period (RADP) configurations to assess how switching
between different MAPKK dormancy periods affect the formation of pMAPK. This was done to resemble a cellular
system where a cell is initially faced with a strong, yet short activating signal, followed by the take-over of the
inhibitory mechanisms, which is subsequently succeeded by a moderate and persistent activating signal. This
simulation is similar to what cells are exposed to during somatogenesis. In the initial phase, a highly stochastic
model of MAPKK RADP (0� RADP� 90 s) was used (green solid line), once pMAPK level reached its maximum
and was at equilibrium, the simulation was switched to deterministic-intermediate RADPmodel (RADP = 7.55
min, solid blue line). Once the level of pMAPK reached its lowest and was at equilibrium, the re-activation delay
was switched to a model with stochastic-intermediate RADP (0�RADP� 7.55 min; solid black line). This
combination of the different modes of the MAPKK re-activation shows that once strong activation inputs of
MAPKK are substantially reduced, inhibitory inputs which cause the deactivation of pMAPKK for long periods are
capable of rapidly reducing the levels of pMAPK. However, they are still not capable of re-establishing the initial
levels of MAPK seen at t0 as only 58.7% of t0 MAPK level was re-established. The final stage of the simulation
(solid blue lines), reflects that in a multi-compartment system, even with a high stochasticity for MAPKK activation,
a low number of active pMAPKK is sufficient to fundamentally increase and maintain high pMAPK levels.

doi:10.1371/journal.pone.0156139.g008
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the physical interactions and binding properties between MAPKK and MAPK and was used to
study the impact of compartmentalisation and the inputs into the cascade (both inhibitory and
activating inputs) at the MAPKK level. The model implemented competitive inhibition and
sequestration interactions between MAPKK and MAPK, as described previously in several
experimental studies [52–54]. This was achieved by the change of state of pMAPKK to a dor-
mant state once it activated MAPK. It has previously been suggested that competitive inhibi-
tion and sequestration-based-feedback between pMAPKK and MAPK play a role in the
dynamics of MAPK pathway and they are capable of producing ultrasensitivity and bistability
in the system and thus influence the cellular outcome [55].

The initial design of the model employed a system that contained very low competitive
cooperative inhibition and sequestration of the MAPKK. Similar to the majority of previously
published MAPK models, it involved two-compartments with the interacting species moving
around the “cytoplasm” in Brownian motion. However, this implementation of the ABM only
produced a graded activation response for the pathway. Increasing diffusion parameters in
ODE models has previously been shown to be responsible for decreasing reaction orders and
thus MAPK activation following Michaelis–Menten kinetics [56, 57]. Once diffusion parame-
ters are reduced, such as when seen in the presence of scaffold proteins, the reaction order had
increased, increasing the rate of phosphorylation and led to ultrasensitive MAPK response [46,
58]. In cells, if phosphorylated species were to rely only on diffusion to propagate the signal
downstream, an increased probability of phosphatase action would lead to the reduction of the
reaction rate [50, 59, 60]. However, in silicomodels show that this could be overcome by spa-
tially restricting phosphatases and kinases in the cell and consequently, the formation of local
pools leading to the localisation of the signal [61]. In the ABM, relying solely on Brownian
motion lowers the probability of direct interactions between MAPKK and MAPK species, and
even in the absence of phosphatases or inhibitory enzymes, pathway activation does not lead to
strong ultrasensitivity. This behaviour matches well with findings reported in the ODE-based
and experimental studies discussed above.

The introduction of multi-compartmentalisation in previous studies led to ultrasensitive
response as well as oscillatory behaviour in the system. Legewie et al, Ortega et al and Qiao et al
demonstrate that variations of parameters have an effect on the final response of the system
and their variation might be responsible for distinct outputs [53, 56, 62]. They also show that
only few of these parameters are capable of generating bistability and/or oscillation. However,
they highlight that all of this hinges on phosphorylation cycles, and that the main contributors
to these effects are the small numbers of regulatory molecules in the pathway. Our ABM shows
that varying the input parameters at the level of MAPKK is capable of producing two distinct
responses to a signal; nonetheless, it also demonstrates that compartmentalisation as well as
mode of the output at the level of the MAPKK could play an important role for the generation
of ultrasensitivity and oscillation.

In the ABM that included multi-compartments, a prominent ultrasensitive response
emerged. This occurred in the presence of competitive inhibition and even when sequestration
interaction between the pMAPKK and MAPK species was high (when RADPs> 15 min, Fig
5G). In a model where the RADP was stochastic, the rate of the phosphorylated MAPK species
formation and thus the magnitude of the MAPK response had only significantly decreased
when RADP� 8 min (S2A Fig). This is interesting as it was shown experimentally that
pMAPK magnitude play a role in the specificity and fidelity of the MAPK pathway [38, 55].
This also implies that compartmentalisation could play a role in allowing for fidelity to a
response regardless of the strength of input at the level of the MAPKK.

Oscillation in the MAPK pathway is strongly linked to negative feedback loops; though
there is also a realisation that balance between positive and negative feedback is fundamental
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as these are being shown both in vitro and in silico [21, 24, 63]. Several modelling approaches
showed that the outcome of feedback loops differ depending on the mode of the feedback
applied. Moreover, the position of these feedback loops within the cascade’s three tier architec-
ture influence the output and hence the behaviour of the cascade [23–25]. In the model pre-
sented here, balance between negative and positive feedback loops were taken into account by
relying on the final output of inhibitory versus activating inputs from feedback loops at the
level of MAPKK. This was implemented by the introduction of the re-activation delay periods
(RADP). The model shows that when RADPs were deterministic (i.e. periodic), oscillatory
behaviour emerged; in-line with previous observations which illustrate that once strong nega-
tive feedback loops were applied, oscillation was generated. In the ABM, the frequency of the
oscillation and the amplitude were both influenced by RADPs. This is interesting as it was
shown experimentally that frequency and amplitude of phosphorylated ERK influence the
expression of specific genes such as c-Fos [20, 64]. It has also been proposed that oscillation
might be a mechanism by which MAPK signalling is restricted to the cytoplasm as the fre-
quency and amplitude would affect the MAPK targets in the cytoplasm [16]. The appearance
of oscillation within the multi-compartment model strengthens this argument. Compartmen-
talisation and the periodicity of input at the MAPKK level could act as a filter and/or modula-
tor for localised responses. Compartmentalised MAPK targets would be directly available to
interact with phosphorylated species of MAPK, however, if there are multiple targets, their
ability to react differentially to the same input signal (i.e. de-coding capabilities) would specify
a hierarchy of interactions within the compartment and therefore control the development of
the specific response.

Our results presented above demonstrated that with long periodic RADPs, oscillation
becomes sustained; this is consistent with previous observations that sustained oscillation
appear in models which also exhibit ultrasensitivity and strong negative feedback inhibition.
However, the ABM also shows that periodic MAPKK activation and multi-compartmentalisa-
tion are essential for sustained oscillation to appear. Previously, oscillation was described as a
random process, which could emerge in the absence of regulatory mechanisms, yet the ABM
demonstrated that altering the periodicity of RADP at the level of MAPKK in a multi-compart-
ment model is integral for oscillation to appear. This was confirmed when the ABM was con-
verted to a two-compartment model and the effects of RADPs were re-tested (Fig 6). In
addition, oscillation emerged in a relatively simple model suggesting that for oscillation to
appear specific parameters need to be met [56, 57]. This might be plausible considering that
oscillation does not appear experimentally when a population of cells is monitored, yet, it can
be observed at the level of individual cells. This could suggest that the conditions required for
oscillation are more easily met at the single-cell level, compared to cell populations [21, 48].

Signalosome clustering at the plasma membrane has been reported previously [37, 65] and
was shown to contribute to MAPK cascade’s specificity and efficacy [66]. Chiu et al demon-
strated that Ras-nanoclusters could also be formed in cytoplasmic membranes [67]. However,
Tian et al and others proposed that plasma membrane Ras nanoclusters are essential for
MAPK activation and are major contributors to the rapid activation observed at the initial
phase of global MAPK activation response [39, 68, 69]. In addition, Inder et al suggested that
endoplasmic reticulum and Golgi Ras nanoclusters play a role in the differentiation of the
incoming signal and thus determining the response output [70]. On the other hand, the off
phase of MAPK activation is attributed to the disassembly of signalosome clusters, followed by
diffusion into the cytoplasm [60, 68, 71]. The ABM described here (Fig 7) demonstrates,
indeed, clustering of MAPKK and MAPK is responsible for the initial, robust activation of
MAPK and that the disassembly of these components is responsible for the characteristics of
the off phase.
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Considering that compartmentalisation is a fundamental property of the cell and compo-
nents of the signalosome are found inside of the compartments, the ABM reported here
strengthens the argument that plasma membrane clustering might not be the sole contributor
to signal efficiency and specificity and that compartments within the cytoplasm may be capa-
ble of mediating similar effects. Additionally, if both plasma membrane and cytoplasmic
membrane clusters contribute to MAPK activation, their combined effects should be syner-
gistic. This might be a valid postulation considering that Ras clusters at the ER and Golgi
were experimentally shown to be triggered by Raf1, which could be triggered at the plasma
membrane [70]. Such combination of plasma membrane-originated and cytoplasm-origi-
nated activation of MAPK might also be a source for generating oscillation as cytoplasmic
clusters would re-trigger MAPK activation. Alternatively, if both plasma and cytosolic clus-
ters were simultaneously activated as reported in some MAPK systems [72, 73], in order to
generate the usually observed global MAPK response, strong negative feedback loops, insula-
tion and isolation mechanisms should be present at amplification points within the MAPK
system.

The ABM also showed similarities with other in silicomodels. As mentioned previously, in
silicomodels in general and ODEs in particular have been very insightful in explaining and
improving our understanding of signal transduction and signal processing. However, ODEs
are limited in modelling spatial constraints, and with them it is challenging to model individual
protein-protein interactions in multi-protein complexes. For partial differential equations
(PDEs) the limitation lies in the complexity of writing several mathematical expressions and
equations for every compartment and the corresponding equations, which allow those to
change over time. We choose to use the ABM as it overcomes these limitations and we have
validated our approach with previously published data obtained from ODEs and PDEs. Fur-
thermore, the ABM with periodic and long RADP shared similarities with the oscillatory pat-
tern of pMAPK vs. MAPK in a models published by Kholodenko et al, employing negative
feedback and competitive inhibition [22]; the latter is also an important characteristics of the
ABM. The periodicity of oscillations was also very similar between the two models. The graded
response, combined with oscillation seen at the initial activation phase generated by the ABM
with RADP = 4.5 min (Fig 5D); is similar to the dynamics of MAPK activation as demonstrated
by a Zhao et al in a model of the MAPK pathway using PDEs [74]. However, there were also
differences between the ABM and PDE models in the time frame of achieving Emax. Addition-
ally, Zhao’s model had achieved a higher frequency and continuous oscillation at Emax, while
we did not see maintenance of high frequency in our ABM implementations.

The presented model contributes to a mechanistic analysis of the dual effects of spatio-tem-
poral regulation of MAPK pathways and suggests that ultrasensitivity and oscillation emerge in
the pathway as a product of coupled spatiotemporal modulation and that multi-compartmen-
talisation might be an important and integral factor for these behaviours to occur.

Concluding Remarks
In this study, we investigated the dynamics of MAPK pathway activation in both a two com-
partment- and a multi compartment-model. We showed that compartmentalisation has an
important effect on three aspects of pathway activation. The first is the magnitude of response
once the pathway is turned on, the rate by which the system reaches equilibrium and recovers
from the initial activation and finally how oscillation at the level of MAPK/pMAPK could arise
by periodic activation of MAPKK coupled with compartmentalisation of pathway components.
Our models also demonstrated that in order to achieve levels of MAPK close to those at t0, the
MAPKK should be under moderate to high inhibitory feedback regulation. Additionally, the
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dynamics of MAPK activation obtained from the ABMmodel share many parallels with
observed MAPK dynamics both in vitro and in silico.

Methods
For the construction of the model, the agents were modelled as stream X-machines. There are
four components fundamental to X-machines, these are inputs, outputs, state memory and
functions. Inputs and state memory get processed by the X-machine using finite-functions.
Subsequently, the X-machine transition occurs. Transition functions map to a new X-machine
state and to an output. As a result, a new X-machine state is achieved with new sets of func-
tions. These new functions dictate the input accepted by the X-machine, the states the X-
machine could transform to, the functions and outputs associated with the X-machine.

To implement this, descriptions of the agents were written in Extensible Markup Language
(XML) while for the execution of the model the source code was written with C language. To
create the agents and run the model, Flexible Large-scale Agent Modelling Environment
(FLAME) framework was used with iterated time-steps [75–77].

Iterated time-steps were converted to minutes by first analysing MAPK activation patterns
reported in the literature from in vitro data. The times taken to generate Emax response of acti-
vated MAPK species were calculated and the mean and mode values were determined from all
the graphs (Fig 2). The average time was 8.98 (min) ± 5.08 (mean ± SD) and the median was
7.73 (min). We opted for the median as statistical analysis shown that the data was not nor-
mally distributed. This time value was used to convert time-steps taken to generate the maxi-
mum response in the ABMmodel into minutes.

Initial Conditions and Basic Model Structure
Agent numbers. The number of the different components of the MAPK cascade

(MAPKK and MAPK) in the model at t = 0 was determined from protein concentrations
described by Huang et al and Chickarmane V et al [45, 78]. These concentrations were con-
verted to moles by adapting the average number of mean corpuselar volume of red blood cells
(�90 femtoliter) as the volume these proteins were present in (as they are mainly cytoplasmic).
Moles were then converted into number of protein molecules using Avogadro's number. See
Table 1 below.

This is where MAPKK activates MAPK leading to the formation of pMAPK, which translo-
cates to the nucleus. Once translocated to the nucleus MAPK could interact with active export-
ing receptors (ExR) in order to translocate out of the nucleus. This scheme is represented in
Fig 2A.

Table 1.

Agent name Number of protein agent molecules in the two
compartment model

Number of protein agent molecules in the multi-
compartment model

MAPKK (MAPKK) 0 100

phosph-MAPKK
(pMAPKK)

500 20

MAPK (MAPK) 500 0

phosph-MAPK (pMAPK) 250 500

ExR (active) 180 180

ExR (dormant) 180 180

doi:10.1371/journal.pone.0156139.t001
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Rules Governing Agents’ Behaviour
Simple rules were assigned to the agents in both models. These rules specified the agents’
movement and the manner with which they interacted with their interaction partners.

Agents’ Description
Both models contained the same agents were. The agents were separated into cytoplasmic and
nuclear species:

Cytoplasmic agents
MAPKK (MKK). MAPKK agent is found in two states, pMAPKK and MAPKK.

pMAPKK only interacts with MAPK agent. It reads locations messages of the different MAPK
agents, this allows it to determine the closest MAPK available for binding. pMAPKK sends
location messages and binding status messages to close by MAPK agents. Once confirmation
of binding availability is established between MAPK and MAPKK, binding occurs. This leads
to the change in pMAPKK state to the dormant MAPKK (MAPKK). MAPKK reverts back into
pMAPKK after a lag phase (the re-activation delay period, RADP). A RADP value assigned to
individual MAPKKs and it becomes updated once MAPKK returns back to pMAPKK. RADP
value was updated either deterministically or stochastically (Fig 2E). For the deterministic
update, the value (for every MAPKK agent) was identical and it was the upper limit chosen for
any particular simulation. For the stochastic updating, RADP was set (for individual MAPKK
agent) randomly at a value between 0 and the chosen RADP upper limit. MAPKK moves by
Brownian motion. In the two compartments model, this movement is restricted to the cyto-
plasm, where MAPKK deflects off the plasma membrane and the nuclear membrane. While in
the multi-compartment model this movement is restricted to the individual compartment
boundaries.

MAPK (MAPK). MAPK interacts with a number of agents in the model. It sends messages
of its location and binding availability which are read by these agents. Once the binding avail-
ability become confirmed MAPK interact with the given agent. MAPK interacts with MAPKK
in the cytoplasm, and with ExR at the internal surface of the nuclear membrane. MAPK inter-
acts with pMAPKK leads to MAPK activation, change of status to pMAPK and the transloca-
tion to the nucleus. Once in the nucleus, pMAPK also interacts with ExR, this interaction leads
to the translocation of pMAPK back to the cytoplasm and/or its specific compartment in them
multi-compartment system; and the reformation of MAPK.

MAPK move by Brownian motion. However, the movements of the different states are dis-
similar. MAPK is restricted to move in the cytoplasm or within the boundary of its specific
compartment only. On the other hand, pMAPK are restricted to move within the cytoplasm.

Nuclear agents
Exporting Receptor (ExR). There are two states for ExR, an active (ExR) and inactive

(dExR). These two states are interchangeable. Exporting receptors are shifting between active
and inactive states and vice versa. Both receptors move around by Brownian motion, however
within the nuclear membrane. dExRs shift back to ExR after a lag phase (dormancy period).
ExR interacts with pMAPK. The ExR receives location messages from pMAPK, close ExR
respond by sending messages to closest pMAPK confirming the availability to bind. Once ExR
binds to pMAPK it changes state to dExR and triggers pMAPK translocation out of the nucleus
and status change to MAPK.
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ABM codes. The complete code of the ABMs presented in this study has been uploaded
on GitHub: https://github.com/MadinaJNR/Multi-Compartment-ABM-source-code-in-C-
programming-language-

Supporting Information
S1 Fig. RADP stochasticity modulation and its effects on MAPK activation dynamics. Sto-
chastic RADP configurations were tested by varying the RADP ranges in the multi-compart-
ment ABM. (A) RADP value was set to be generated within the following range 3.77� RADP
< 4.55 min. At the initial activation phase minor oscillatory responses emerge. (B) Illustrates
the RADP configuration when the range was set at 4.15� RADP< 4.55 min, whereby at the
initial MAPK activation phase sharper miniature oscillatory activity appears. (C) Demonstrates
a RADP configuration when the range was set at 4.38� RADP< 4.55 min, there the miniature
oscillatory activity become more visible. This last RADP configuration is the least stochastic
due to its limited range for RADP re-setting value, thus the MAPK activation behaviour is anal-
ogous to the deterministic configuration where RADP = 4.55 min.
(TIF)

S2 Fig. Effects of stochastic RADP on pMAPK and MAPKK activation dynamics. (A) The
pMAPK levels with each RADP configuration were examined, when RADP was less than 7.55
min, there was no significant difference between pMAPK levels compared to the control run.
However, when RADP value was� 7.55 min, the level of pMAPK started to become signifi-
cantly lower compared to the control run, with 0� RADP� 22.65 min, demonstrating a sub-
stantial significance. (B) Conversely, the time to achieve Emax appeared to be significantly
different when RADP was less than 22.63 min. (C) When the time to achieve EC50 was con-
sidered, only 0� RADP� 22.63 min configuration illustrated a significant difference com-
pared to control run. (D) When the effect of the RADP configuration was examined in
relation to MAPKK, increasing RADP caused a significant reduction in the level of active
MAPKK. (E) The increasing RADP value prompted an increase in the time to achieve Emax
when RADP configuration was RADP� 22.65 min. (F) This was also reflected with significant
increase in the time to achieve EC50, yet, when RADP range was within 22.63 min the time to
achieve EC50 was significantly. This is due to the significantly small magnitude of MAPKK
generated in comparison to the contro. N = 3, one way ANOVA test was conducted to demon-
strate significance with �, �� and ��� corresponding to p< 0.05, p< 0.001 and p< 0.0001
respectively.
(TIF)

S3 Fig. MAPK activation dynamics; AMB vs. experimental data. Relative pMAPK levels
were compared between experimental data, reported by Lefkowitz RJ et al. [40] vs. our ABM.
Multiple t-tests were performed with Holm-Sidak corrections for multiple comparisons. No
significant differences were observed.
(TIFF)

S1 File. Detailed description of agent memory, messages and functions.
(DOCX)

S2 File. List of references used for calibration of MAPK activation in the ABM.
(DOCX)

S3 File. Examples of RADP values generated in the stochastic ABMs.
(XLSX)
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Competition between members of 
the tribbles pseudokinase protein 
family shapes their interactions 
with mitogen activated protein 
kinase pathways
Hongtao Guan1, Aban Shuaib1,†, David Davila De Leon2, Adrienn Angyal1, Maria Salazar2, 
Guillermo Velasco2,3, Mike Holcombe4, Steven K. Dower1,5,6 & Endre Kiss-Toth1

Spatio-temporal regulation of intracellular signalling networks is key to normal cellular physiology; 
dysregulation of which leads to disease. The family of three mammalian tribbles proteins has emerged 
as an important controller of signalling via regulating the activity of mitogen activated protein kinases 
(MAPK), the PI3-kinase induced signalling network and E3 ubiquitin ligases. However, the importance 
of potential redundancy in the action of tribbles and how the differences in affinities for the various 
binding partners may influence signalling control is currently unclear. We report that tribbles proteins 
can bind to an overlapping set of MAPK-kinases (MAPKK) in live cells and dictate the localisation of the 
complexes. Binding studies in transfected cells reveal common regulatory mechanisms and suggest 
that tribbles and MAPKs may interact with MAPKKs in a competitive manner. Computational modelling 
of the impact of tribbles on MAPK activation suggests a high sensitivity of this system to changes in 
tribbles levels, highlighting that these proteins are ideally placed to control the dynamics and balance 
of activation of concurrent signalling pathways.

Spatio-temporal control of intracellular signal transduction pathways is achieved by a range of mechanisms, 
including regulation of receptor expression, post-translational modifications of pathway components, expres-
sion of scaffolds that bring together critical components of the signalling pathway at specific locations, as well as 
the action of regulatory proteins, which can augment or inhibit pathway activation. However, most intracellular 
signalling proteins form families with high sequence homology and often share binding partners and targets. It 
is generally accepted that differences in binding affinities between homologous proteins and their partners are 
fundamentally important in shaping signalling responses. Yet, characterising these aspects of signalling control 
remain technically challenging. We have investigated the interaction between MAP kinase kinases (MAPKK) 
and the family of tribbles (TRIB) pseudokinases, using in vitro systems, to exemplify such signalling control 
mechanisms. These data provide a semi-quantitative insight into how altered relative expression of specific TRIB 
proteins may lead to the enrichment (or reduction) of distinct signalling complexes.

Tribbles (TRIB) form an evolutionally ancient family of pseudokinases1,2 and have been shown to interact 
with MAP kinase kinases (MAPKK)3,4, signalling molecules in the PI3K pathway5–7 and E3 ubiquitin ligases8–10, 
thereby regulating the activity of these pathways. It has been proposed that these interactions may be mechanisti-
cally important in the development of cancer11–13 as well as in the control of inflammation14–16.
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Also, it has been shown that both TRIB1 and TRIB2 may be oncogenes in the development of acute myeloid 
leukaemia via similar mechanisms17, raising questions about potential functional redundancy between these pro-
teins. Similarly, there is no consensus in the current literature about the oncogenic vs. tumour suppressor role of 
tribbles proteins12,18–20, suggesting that an important aspect of their activity may be context or cell type depend-
ent. We believe that many of the currently conflicting published studies might be explained and reconciled if we 
understood the molecular basis of specificity and redundancy between tribbles proteins. Thus, we carried out a 
systematic analysis of TRIB/MAPKK interactions in mammalian cells and performed computational modelling 
to quantitatively assess the impact of tribbles on MAPK activation.

We report that tribbles and MAPKK proteins form inducible intermolecular complexes in live cells, medi-
ated via the kinase-like domain of TRIBs and the N-terminus of MAPKKs. Estimation of the relative strength of 
TRIB-MKK4 binding revealed an up-to twenty fold differences between distinct tribbles, thereby suggesting that 
intracellular concentration (and trafficking) may be an important controller of TRIB action. In line with these 
experimental data, computational modelling of TRIB-mediated control of MAPK activation demonstrated that 
a ten-fold increase or decrease of TRIB concentration (or a similar change in TRIB/MAPKK affinity) is sufficient 
to switch the MAPK pathway between ON and OFF states.

Uncovering mechanistic details of signal transduction circuits is essential to understand how ubiquitously 
expressed proteins process a range of incoming signals to achieve cell-type and stimulus-specific cellular 
responses. Our current analysis provides experimental and computational evidence that the functional outcome 
from regulatory interactions between signalling kinases and TRIB proteins may be heavily influenced by the rel-
ative local abundance of both TRIBs and MAPKs.

Results
Tribbles subcellular localisation determines the intracellular distribution of trib/mapkk com-
plexes. We and others have demonstrated previously that tribbles proteins exert their regulatory roles, at least 
in part, by shaping MAPK activation at the level of MAPKKs13,21–23 (Fig. 1A). However, we have also shown that 
tribbles action in inhibiting AP-1 activation is cell-type specific22, suggesting that the expression of additional, 
yet unknown binding partners or tissue specific modification of tribbles may also be key to their functioning. In 
order to gain a further mechanistic insight into tribbles action, here we undertook a systematic study, investigat-
ing the intracellular localisation of TRIB/MAPKK complexes. Interactions between the three tribbles and MEK1, 
MKK6, MKK4 and MKK7 (activators of ERK, p38 and JNK MAPKs, respectively) were tested in HeLa cells, 
where all three tribbles are endogenously expressed and both TRIB-1 and -3 were shown to inhibit MAPK acti-
vation23. In order to visualise the subcellular localisation of TRIB/MAPKK complexes, we used protein fragment 
complementation (PCA) assay, as described previously15,24. The technique is based on the ability of YFP to re-fold 
and form a functional fluorophore when two truncated versions of the protein (encoding the N- and C-terminal 
regions, respectively) come to close proximity to each other. YFP was split into two fragments and each was fused 
to a protein of interest (TRIB or MAPKK).

First, the distribution of the overexpressed MKKs or TRIBs as EYFP fusion proteins (MAPKK/TRIB-EYFP) 
was studied. In order to minimise overexpression artefacts, we have selected and analysed cells with low fluores-
cence levels, which have previously been shown to be close to physiological levels for inflammatory signalling 
molecules25. In agreement with previous findings, fluorescent microscopy results of TRIBs (1–3)-EYFP single 
transfected cells demonstrated that full-length TRIB1 and TRIB3 proteins are located in the nucleus, whereas 
TRIB2 protein is also expressed in the cytoplasm (Fig. 1B). Localisation of overexpressed MKKs (MEK-1, MKK6, 
MKK7 and -4) was examined in the same way. Full length MEK1 shows exclusive cytoplasmic expression, 
whereas the full length MKK6, MKK4 and MKK7 are all expressed over the whole cell (Fig. 1B). Broadly, these 
findings are in agreement with previous reports in the literature26,27.

Building on these data, the interaction between TRIBs and MKKs and the localisation of the TRIBs-MKKs 
complexes were examined. A systematic survey was carried out to detect MAPKK/TRIB complexes for MEK-
1, MKK6, MKK7 and -4. Representative, high magnification images are shown in Fig. 1C, low power images 
and nuclear counter staining of selected complexes are also shown as additional controls (Suppl. Fig. 1A,B). 
All tested combinations of the TRIBs-MKKs pairs formed a detectable fluorescent complex; consistent with the 
hypothesis that tribbles are generic regulators of MAPKK activity. As additional controls, the interaction between 
endogenously expressed TRIB3 and MKKs was examined by co-immunoprecipitation (Suppl. Fig. 2). Complexes 
between all four MKKs and either TRIB1 or TRIB3 showed nuclear localisation, whereas complexes composed of 
the MKKs and TRIB2 showed both cytoplasmic and nuclear localisation, with the exception of the MEK1/TRIB2 
complex, which is excluded from the nucleus (Fig. 1C).

The tribbles kinase-like domain and the n-terminal region of mapkks are necessary for trib/
mapkk interaction. Based on sequence homology, it is predicted that the structure of the MAPKKs and 
TRIBs are similar, in that both contain a kinase domain at the centre of the protein and an N- and a C-terminal 
domain with less understood function. The recently reported crystal structure for TRIB1 confirms these pre-
dictions28. However, the kinase domain in tribbles is thought to be catalytically inactive29, with the exception 
of TRIB2, which has recently been shown to carry a small auto-phosphorylating activity, in vitro30. In order to 
characterise the protein domains necessary for the formation and localisation of TRIB/MAPKK complexes, a 
series of deletion mutants were generated, expressing truncated versions of MKKs and Tribbles (Suppl. Table 1). 
We combined wild type TRIB with the deletion mutants of MKKs, or vice versa to perform the PCA experiments, 
similar to the above.

The results demonstrate that all truncated mutants of tribbles form complexes with wild type MKKs (Fig. 2A). 
However, altered cellular localisation was seen for TRIB1 and TRIB3/MAPKK complexes when N-terminal, or 
both N- and C-terminal tribbles domains were deleted. In particular, MEK1 - TRIB1/3Δ N complexes showed 
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Figure 1. Members of the tribbles family interact with activators of all three groups of MAPKs. (A) A 
schematic diagram of TRIB mediated control of MAPK activation. (B) Plasmids expressing YFP tagged full 
length TRIBs or MKKs were transfected into HeLa cells. 24 hrs after transfection, intracellular TRIB expression 
profile was examined by fluorescent microscopy. Representative images are shown. (C) MKKs (MEK1, MKK4, 
6, 7) and TRIB1-3 were fused to the V1 or V2 fragments of YFP, respectively, and co-transfected to HeLa cells. 
Localisation of fluorescent complexes was investigated by fluorescent microscopy. YFP fluorescent images and 
the corresponding phase contrast image are shown in panels B,C.
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only cytoplasmic localisation, whilst MKK6/7 - TRIB1/3Δ N complexes were seen both in the cytoplasm and in 
the nucleus. These data are in line with the expression patterns of the various MKKs as shown on Fig. 1C (MEK1 
cytoplasm only and MKK4, 6, 7 in the whole cell) and indicate that the N-termini of the TRIB1 and TRIB3 are 
important for localising the TRIB/MAPKK complexes in the nucleus. In contrast to TRIB1 and TRIB3, delet-
ing the N-terminus of TRIB2 did not alter the localisation of MKKs-TRIB2 complexes (both cytoplasmic and 
nuclear). However, deleting the C-terminus of TRIB2 altered the localisation of the complex with MKK4/6/7, 
which were observed in the cytoplasm.

To complement the above experiments, the impact of deletion of N- or C-terminal domains of MKKs on 
TRIB/MAPKK complex formation was tested. For MKK7, both N- and C- termini were essential for interact-
ing with tribbles as deletions of either domains eliminated the interaction with TRIB1-3. In contrast, only the 
N-terminal but not the C-terminal domains of MEK1 and MKK6 were essential for complex formation with 
TRIB1-3 (Fig. 2A). As a control, western blotting was undertaken to confirm the expression of the N-terminal 
truncated MAPKK proteins (Suppl. Fig. 3). As expected, these were expressed at levels similar to that of the 
full-length constructs. Therefore, we conclude that the loss of PCA signal is not due to lack of expression of the 
MAPKKΔ N mutants.

In summary, we conclude that MKKs of all three MAPK pathways can interact with TRIBs and that TRIBs 
determine the localisation of the MAPKK/TRIB complex. Further, the N-termini of the MKKs and the central 
kinase-like domain of tribbles are indispensable for this interaction, with the exception of MKK7, where the 

Figure 2. The central kinase-like domain of tribbles and the N-terminal region of MKKs are required for 
the formation of the TRIB/MAPKK complex. (A) PCA constructs, using full length or truncated versions of 
TRIBs or MKKs (as indicated in the Figure) were transfected to HeLa cells to map the regions of both binding 
partners required for the formation of TRIB/MAPKK complex. The intracellular localisation of complexes 
were examined by fluorescent microscopy and listed in the Figure. (B) Schematic representation of the 
regions (highlighted in grey) of both TRIB and MKKs, required for complex formation. (C) Full length (w.t.) 
or truncated versions of TRIB2 were expressed in HeLa cells and the ability of these TRIB proteins to inhibit 
MEKK1 driven activation of JNK- >  AP-1, as measured by an AP-1 responsive luciferase reporter, was assessed. 
Bar graph shows Mean ±  S.D. N =  4.
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C-terminus is also necessary (Fig. 2B). In line with our previous findings, N-termini of TRIB1 and TRIB3 but 
not of TRIB2 appear to be responsible for the nuclear localisation. However, we showed here that the C-terminal 
domain of TRIB2 may have a unique function as, unlike in other tribbles, its deletion leads to the exclusion of 
TRIB2/MAPKK complexes from the nucleus. Next, we confirmed that the kinase-like domain of TRIB2 not only 
is necessary for the interaction with MKKs, but it is sufficient for inhibiting MEKK1 driven AP-1 activation in 
HeLa cells (Fig. 2C). However, we note that some of these interactions may only take place in a cell type specific 
manner, as we observed TRIB2/MKK7 but not TRIB2/MKK4 complexes in monocytes previously, using PCA15.

Formation of the tribbles/mapkk complex is inducible; trib and mapk proteins compete for 
mapkk binding. Tribbles have previously been shown to regulate inflammatory signalling, one of the molec-
ular mechanisms being via their interaction with MAPKKs14,15,23,24,31,32. However, the dynamics of TRIB/MAPKK 
complex formation and the relationship between TRIBs and MAPKs is currently unclear. Thus, we tested the 
impact of IL-1β  stimulation on TRIB/MEK1 and TRIB/MK7 complexes, using the PCA assay, as above. As a 
validation of the PCA method’s suitability for intervention studies, we tested this system using a well character-
ised protein-protein interaction pair, NF-κ B/RelA and Iκ B; the  complex is disrupted by IL-1 mediated cellular 
activation. FACS analysis showed that RelA-v1 and Iκ Bα -v2 formed a fluorescent complex, the intensity of which 
decreased significantly after 60 min of IL-1 stimulation, due to the degradation of Iκ Bα  (Fig. 3A). These results are 
in line with previous reports, where the dynamics of RelA/Iκ B complex was investigated using GFP-FRET33 and 
validate the use of PCA in investigations of the dynamics of formation/disruption of multi-protein complexes. 
Serum starved HeLa cells, transfected with MEK-1/TRIB or MKK7/TRIB PCA construct pairs were stimulated by 

Figure 3. TRIB/MAPKK complex formation is induced by inflammatory activation and MAPKs compete 
with tribbles for MAPKK binding. (A) The ability of PCA to detect changes in protein complexes was verified 
by RelA-V1 and Iκ Bα -V2 cotransfected HeLa cells, which were stimulated by IL-1α  (0.1 nM, 60 min), 24 hrs 
after transfection. (*p <  0.05). (B) The impact of IL-1α  (0.1 nM, 60 min) stimulation on MEK1-TRIB and 
MKK7-TRIB complexes was examined using flow cytometry, 24 hrs. post-transfection (*p <  0.05). (C) The 
relative intensity of the MEK1-TRIB1 PCA complex was analysed in the presence of an increasing dose of 
unlabelled ERK vs. p38 expression. N ≥  3 (■ : increasing ERK dose, ▲ : increasing p38 dose). (D) The relative 
intensity of MEK1-TRIB PCA complexes were analysed in the presence of an increasing dose of unlabelled ERK 
(■ : TRIB1, ▲ : TRIB2, ▼ : TRIB3).
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a non-saturating dose of IL-1 (0.1 nM) for 60 min. The intensity of the PCA signal was quantified by flow cytome-
try. Data shown in Fig. 3B demonstrate that the formation of these complexes is induced by IL-1 treatment.

Next we wanted to characterise the relationship between TRIB and MAPK proteins, in the context of complex 
formation with MAPKKs. First, we used the MEK1/TRIB1 PCA complex and added increasing doses of untagged 
ERK (MEK1 binding MAPK) vs. p38 (non-MEK1 interacting MAPK) and shown that co-expression of equal 
dose of ERK vs. TRIB1 leads to a ~50% reduction in the intensity of the MEK1/TRIB1 PCA signal (Fig. 3C). In 
contrast, co-expression of p38 had no detectable impact at this dose, suggesting that there was a competitive rela-
tionship between TRIB and MAPK proteins for interacting with their MAPKK partner. Finally, we tested whether 
ERK disrupts MEK1/TRIB1-3 complexes with equal efficiency. Our data demonstrates that the MEK1/TRIB3 
complex is most sensitive to co-expressed ERK (~50% of the MEK1/TRIB3 complex disrupted, in the presence of 
0.5x the dose of TRIB3), followed by TRIB1 and TRIB2 (Fig. 3D). Interestingly, about 50% of the MEK1/TRIB2 
PCA signal was preserved, even when 20 fold excess of ERK was co-expressed.

Tribbles family members compete for binding with mapkks. Since members of the tribbles family 
interact with an overlapping set of MAPKKs, the interactome between TRIBs-MAPKKs may be a continuously 
balanced, dynamic system, with tribbles turnover and expression levels being tightly regulated34–36. Given the 
data presented in Fig. 3C,D, we hypothesised that TRIB proteins may not only compete with MAPKs but they 
themselves bind to MAPKKs cross-competitively. However, in addition to differing expression levels, the binding 
affinities between distinct TRIBs and MAPKKs may also vary, resulting in an additional layer of complexity for 
pathway control. To address these questions in live cells, we have used the PCA assay as above and tested the 
binding of tribbles to MKK4. MKK4-V1 was co-transfected with a tribbles-V2 expression plasmid (Fig. 4A). We 
have then co-transfected an increasing dose of untagged tribbles expression plasmid, encoding TRIB-1, -2 or 
-3, respectively. Each MKK4/TRIB complex behaved similarly in that the level of fluorescent signal reduced as 
an increasing dose of untagged tribbles was co-expressed. In addition, TRIB-3 was substantially more potent in 
inhibiting fluorescent complex formation. Next, we confirmed that the three recombinant tribbles proteins are 
expressed at similar levels, when an identical dose of the expression plasmids is transfected, thus enabling com-
parison of relative binding affinity in live cells (Fig. 4B, left panel). In addition, transfection of an increasing dose 
of tribbles expression plasmid resulted in a parallel increase of tribbles expression levels (Fig. 4B). Data presented 
above led us to hypothesise that distinct TRIBs may have differential effects on signalling, in part due to their dif-
ferent “affinities” to their binding partners. This was addressed by using siRNA knockdown of individual tribbles 
in monocytes and showed that whilst knockdown of any of the three tribbles led to an increase in basal p-p38 lev-
els, the impact on IL-1 induced p38 activation was distinct; siTrib-2 substantially augmented p-p38 levels, whilst 
siTrib-3 rendered monocyte p-p38 non-inducible by IL-1 (Fig. 4C).

The above competitive PCA assay demonstrated that TRIB-3 could titrate out the MKK4-TRIB binding most 
efficiently (Fig. 4A), indicating that the affinity of MKK4/TRIB-3 may be the highest among the three. Next, we 
quantitatively analysed the data by applying a reversible competition-binding model (Fig. 5A). Unlabelled TRIB 
protein binds MKK4-V1 as a competitor (“B” in equations, Fig. 5A), whilst fusion protein TRIB-V2 being the 
binding agent (“A”, Fig. 5A). In our experiment setting, equal amount (ng) of TRIB-V2 was added into each sam-
ple mix, and 0 to 10x competitor TRIB (relative to the TRIB-V2 dose) was added. We introduced an “f ” coefficient 
in the equation so that [B] =  f*[A] for fitting the optimal curves. This competition binding model assumes that 1)  
the interactions are reversible; 2) The binding agents already reached equilibrium when the FACS analysis was 
undertaken, 3) The degree of AR complex formation is proportional to the mean fluorescent intensity, and 4) 
Dose (μ g) of plasmids transfected into the cells are proportional to the expression of the protein.

Based on these results, we conclude that of the three tribbles, TRIB-3 has ca 15 fold greater affinity to MKK4, 
compared to TRIB2, thus being the most efficient in competing with other tribbles in the formation of TRIB/
MKK4 complex; with TRIB1 having an intermediate affinity (Fig. 5B).

Putting the above data together raises the possibility that altering the expression levels of specific tribbles may 
have an indirect impact on cell signalling and function by “liberating binding partners” for interaction with other 
TRIB proteins. We have explored this by knocking down TRIB1, TRIB2 or TRIB3 in HepG2 cells and measuring 
the level of interactions between TRIB3 and MKK7 under these conditions by co-immunoprecipitation (Fig. 5C 
and Suppl. Fig. 4). Our results demonstrate that reducing TRIB1 or TRIB2 levels leads to an enhanced TRIB3/
MKK7 interaction, supporting the notion that TRIBs form a protein family which controls cell signalling in an 
integrated fashion.

Model for inhibition of map kinase activity by tribbles proteins. In our original report on the char-
acterisation of tribbles proteins23, we showed that when TRIB3 expression plasmid was titered in HeLa cells, 
all 3 MAPK cascades were maximally inhibited to the same extent (ca. 60–70%), but the mid points of the dose 
responses differed in the rank order p38 <  JNK <  ERK, and approximately at relative levels of 1:3:10, possibly 
reflecting differing affinities of TRIB3 for specific MKKs. This data fits well with results presented in Fig. 3D, 
demonstrating that ERK was most efficient in disrupting (and probably replacing) TRIB3 in its complex with 
MEK1. Data presented above (Fig. 4A) indicate that specific tribbles may also bind to the same MAPKK with 
varying affinity. Taken these results together, we wished to use a computational model and test the hypothesis that 
10–20 fold change in the binding affinity of tribbles to its binding partner, or a similar change in TRIB expression 
levels is able to control the activation of MAPK cascades. Modelling was based on a 3 step map kinase cascade:

→ → →E1 MKKK MAPKK MK (1)

with each protein kinase requiring two sequential phosphorylation steps for activation. The properties of this type 
of model have been analysed elsewhere; for example taking Km values in the range 60–1500 nM for the individual 
protein kinase reactions yields ultrasensitive input/output characteristics for the system, with Hill coefficients for 
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the MKPP output in the range of 3–6 and 50% maximal output as a function of E1 concentration ca 1000–10,000 
lower than the Km values used for the individual kinase reactions37.

Our previous data suggest that tribbles proteins interact specifically with MKKs, and act as inhibitors of 
MAPK signalling23. We approached this problem by adopting the MAPK signalling model, originally described 
by Ferrell et al.38 and incorporated tribbles action into this system. Based on this (but vide infra), the full model 
for this analysis is shown in Suppl. Fig. 5, and the ODE system is presented in Appendix 1. Parameter values for 
enzyme concentrations and rate constants were taken from refs 37,38.

Figure 4. TRIB proteins compete with each other for MAPKK binding. (A) The relative intensity of the 
MKK4-TRIB PCA complexes were analysed in the presence of an increasing dose of unlabelled tribbles.  
N ≥  3 (▼ : TRIB1, ■ : TRIB2, ▲ : TRIB3) (B). Left panel: 400 ng expression plasmids, encoding for individual 
tribbles-V2 fusion proteins were transfected into HeLa cells and expression levels were detected by an anti-GFP 
western blot. Middle and right panels: Tribbles expression levels in HeLa cells increase in a dose dependent 
manner. Transfected doses of untagged tribbles, relative to the TRIB-PCA dose used in panel A are indicated 
above the individual panels. Representative western blots are shown (N =  3). (C) The differential impact of 
knockdown of specific tribbles on p38 MAPK activation was assessed in THP-1 cells. Cells transfected with 
non-targeting control or si-Trib constructs were stimulated by LPS for the stated length of time and the 
activation of p38 was detected by a phospho-p38 specific western blot. As loading control, the membrane was 
re-probed for β -actin. Upper panel: a representative result, Lower panel: quantitative assessment of p-p38 from 
three independent experiments. Data is expressed relative to the β -actin signal.
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To model the transient responses typically observed in immune and inflammatory mediator action, in con-
trast to differentiation or cell cycle progression which are switch like and irreversible, we simulated a receptor 
generated signal rapidly attenuated for example by ligand-receptor complex internalisation and degradation, by 
replacing the E1 activator enzyme input concentration with the piecewise linear function:

= < <E1(t) if t t1 then E else (if t t2 E1 else E ) (2)0 max 0

where t is time in minutes, such that t2 >  t1, defining a square wave pulse at t1, width t2-t1 and amplitude E1max 
above a constant background of E0. Using this input we tested a model based on that described by Ferrell and 
Machleder38, which incorporates an MK to MKKK positive feedback loop, and found, as expected, that this 
showed bistability in the response to the square wave input as either t2-t1 or E1max were varied, and hence the 
system once ON, it did not return to baseline as t →  infinity. This was not therefore useful for transient response 
modelling. Consequently, we did not incorporate positive feedback loops in the model.

We designated the specific locus of tribbles action, based on our and others findings. Specifically:

(a) Tribbles proteins act by binding to MKKs as above15,23,24.
(b) Tribbles proteins attenuate MK phosphorylation/activity as above23,24.
(c) Tribbles proteins do not attenuate MAPKK phosphorylation24.
(d) Tribbles are phosphoproteins and phosphorylation is induced by similar inputs to those that activate MKs39.

These observations suggest that a minimal plausible mechanism for tribbles action is competitive inhibition 
of MK phosphorylation by active MKKs; (MKKPP in the model used here). Thus either TRIBs do not bind to 
non-phospho- and mono-phospho-MAPKK, or if so then these complexes are also substrates for E1.MKKK, and 
the interaction has no functional impact on system behaviour. Finally, given (d) above, we examined whether 
requiring that tribbles be phosphorylated to be active, i.e. to bind to MKKPP, significantly modified TRIB effects 
when compared to a model where TRIB is intrinsically active (binding to MKKPP) without phosphorylation. We 
tested this experimentally by PCA and measured the effect of inhibiting MAPK activity on the capacity of all three 

Figure 5. An ODE model to characterise the impact of tribbles mediated inhibition of MAPK activation. 
(A) A reversible competitive binding model was used to analyse FACS data presented on panel A by MLAB 
(Civilized Software Inc). (B) The EC50 values (f, fold to ng amount of TRIB-v2 transfected) indicate the amount 
of the untagged TRIB protein required to interrupt half of the MKK4V1-TRIBV2 complexes. (C) HepG2 cells 
were transfected with the indicated siRNA, followed by an IP for TRIB3. The level of MKK7 interacting with 
TRIB3 was measured by Western blot. (D) The effect of varying KTRIB on the integrated response to the E1 pulse 
was calculated using the ODE system. TRIB concentrations were varied over ca 105 range; time courses were 
simulated and integrated. (E) The integrated output dose responses were fitted with a cooperative inhibition 
model, the results are shown here.
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TRIB proteins to bind to MKKs. IL1 treatment induced complex formation between TRIBs and MKKs (Fig. 3B). 
These data suggest that MK or elements downstream of MK act on the MAPKK step to potentiate MAPKK/TRIB 
interactions. To model this, given (d) we assumed that the tribbles kinase is MKPP and that it is the phospho-
rylation of TRIBs that activates binding to MKKPP, thus creating a negative feedback loop. While the evidence 
for this is circumstantial, it is a minimal assumption, avoiding arbitrarily introducing additional tribbles kinases 
into the system. In the parameter range close to that previously reported by Ferrel et al., sensitivity analysis over 
a wide range of values for TRIB interactions with both MKPP and MKKPP, suggested that introduction of the 
phosphorylation mediated negative feedback loop did not give rise to system behaviour qualitatively different 
from that produced by the simpler model in which unmodified TRIB was the active form. A credible biological 
explanation for this observation may be that TRIB phosphorylation impacts on its intracellular distribution, thus 
only the phospho form may be co-localised with MKPP. Nevertheless, given earlier reports in the literature and 
the data in Figs 2 and 3, we used the more complex model for further analysis.

To examine the predicted quantitative impact of varying TRIB/MAPKK affinity on the inhibition dose 
response curve (Fig. 5D), KTRIB was set at 1.5, 0.15, 0.015 and 0.0015 μ M and initial TRIB (t =  0) varied from 100 
to 0.001 μ M, with all other initials and constants fixed (Fig. 4G). Again, a square wave E1 input was used. The 
simulations show that once KTRIB <  0.1 Km, little further effect on the inhibition dose response is found. However 
in the 0.1 to 10 range of the KTRIB/Km ratio, and at TRIB concentrations in the range 1 to 10 μ M, selective inhibi-
tion of parallel MAPK pathways would be predicted to occur. Thus, as the arrow in Fig. 3F indicates, when TRIB 
is 1 μ M, if KTRIB for 3 different MKKs were in the ratio 0.1:1:10 – the relative pathway activities would be 0:0.4:1. 
Further, the relative mid points in the inhibition dose response curves are 1:2:8.5, similar to those observed exper-
imentally (ref. 23 and Fig. 4). Thus, a 100-fold range of KTRIB could produce selective responses from the 3 MAPK 
cascades even if they all were intrinsically equally responsive to an input, provided that TRIB concentration was 
in slight (< 1.5–2x) excess over MAPKK.

Discussion
Since the original description of tribbles as regulators of morphogenesis and several signalling pathways, this 
family of proteins have increasingly been recognised as an important controller of cellular processes; dysregula-
tion of tribbles expression/function has been implicated in a number of diseases, including hyperlipidaemia and 
myocardial infarction (reviewed in refs 14,40,41). One significant aspect of tribbles action, still ill defined, is the 
specificity and redundancy between the three mammalian proteins. Whilst TRIB1 and TRIB2 but not TRIB3 have 
been suggested to play a role in the development of acute myeloid leukemia (AML)42, TRIB2 and TRIB3 have 
both been shown to interact with PI3K and Akt6,12,19. On the other hand, the action of tribbles has been proposed 
to be cell type specific, the molecular basis for which is still not well understood. Whilst it is tempting to speculate 
that differences in intracellular localisation of distinct tribbles, their affinity to their binding partners as well as 
their expression levels may vary in a cell type specific manner, thus ultimately leading to specificity in tribbles 
action, most of these parameters have not been assessed systematically.

In the current study, we attempted to carry out a comprehensive study to ask the question: how does tribbles 
binding to MAPKK translate into specific signalling responses? We addressed this question by investigating the 
localisation of TRIB/MAPKK complexes, the requirement of specific protein domains for these interactions, the 
control of complex formation and by studying the impact of tribbles on MAPK activation, using a combined 
experimental and computational approach.

In line with previous data43, we show in here that TRIB1 and TRIB3 are expressed in the nucleus, whilst TRIB2 
is predominantly expressed in the cytoplasm. In agreement with historical reports26,27, expression of MKKs, how-
ever, (with the exception of MEK1) appears to be less specific with respect to cellular compartmentalisation. The 
importance of TRIB localisation is reflected in the specific intracellular localisation pattern of their complexes 
with MKKs (Fig. 1C), raising the possibility that distinct pools of MKKs may interact with specific tribbles, and 
these complexes may be coupled to responses to specific stimuli. Whilst we have no direct evidence to support 
this hypothesis, it is tempting to speculate that distinct intracellular pools of signalling molecules, such as MKKs, 
with specific signalling functions may exist. Given these considerations, the relative “affinity” between TRIBs and 
MKK4 measured in live cells in our PCA system may not be comparable directly to values that would be obtained 
in a system using purified proteins, bearing in mind that most proteins with cells are likely not in free solution. 
Rather, it reflects a more complex “measure” of interactions by taking the physical availability of binding partners 
into account. However, it is clear from our data (Fig. 3D) that intracellular localisation may not be the sole deter-
minant of the effectiveness by which distinct tribbles “compete” for MKKs. There is a notable difference in relative 
binding “affinity” between TRIB1 and TRIB3, despite the fact that both of these proteins appear to be expressed 
in the nuclear compartment (Fig. 1B).

The technique we chose to use here to investigate the binding between tribbles and MKKs has some limita-
tions. Once a fluorescent complex forms, it “locks” the binding partners together, thus quantification of dynamic 
disruption of complexes with reversible binding is not possible. However, induction of complex formation can 
be followed (Fig. 3B). It has also been demonstrated previously that that dynamics of protein complexes can 
be studied in the limited cases of formation of new complexes, prevention of formation of new complexes or 
changes in localization of constitutive complexes with the YFP PCA44,45. Additionally, degradation mediated dis-
ruption of complexes may also be detected via the loss of fluorescent signal, as we show for the NFκ B/Iκ Bα  com-
plex (Fig. 3A). These limitations were taken into consideration in the design and interpretation of experiments 
presented here by investigating the impact of “competition” between PCA tagged and untagged TRIBs 24 hrs 
post-transfection, when the system reached a steady state. Thus, prevention of complex formation, rather than an 
impact on existing complexes were measured in the experiments, results of which were used for the modelling.

Finally, we and others have shown previously that expression level of specific tribbles varies substantially in a 
tissue23 and differentiation34 specific manner. This provides experimental support for the hypothesis that tribbles 
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levels may be important in regulating qualitative, dynamic aspects of signalling. Using our experimental data, 
we have simulated the impact of altered tribbles concentration/affinity on the activation of MAPKs, utilising an 
ODE model initially developed by Ferrell and his colleagues to analyse MAPK signalling in oocytes37,38. Output 
from this analysis predicts that a ten-fold change in tribbles “affinity” (or in expression levels), a range observed 
experimentally, is sufficient to alter signalling outcome in the MAPK system.

However, ODE models have clear limitations when used for modelling of signalling events. For instance, they 
treat the cell as a homogeneous solution. Whilst they are undoubtedly useful to probe the impact of altered avail-
ability of certain components (in this case tribbles) on signal propagation, quantitative conclusions from these 
studies need to be interpreted with some caution. It is well established that MAPK activation (and other signalling 
events) take place in a specialised intracellular microenvironment, in scaffolded multi-protein complexes. Our 
data suggest that TRIBs may only interact with a small proportion of MAPKKs. For instance, whilst most MEK1 
is seen in the cytoplasm (Fig. 1B), the TRIB1/MEK1 complex is located in the nucleus. This may explain (at least 
in part), why TRIBs that are often expressed at relatively low levels are still able to regulate signalling effectively. In 
these scaffolded complexes, local concentrations of components may be vastly different from those that is usually 
measured by most traditional biochemical analyses, using whole cell lysates. Consequently, the ratios between the 
components of the ODE modelled pathway are best interpreted to reflect local protein concentrations required 
within signalling complexes, rather than cell-wide expression levels.

Lately, novel modelling approaches are being developed and utilised to study signalling, that have the ability to 
account for spatio-temporal aspects of signal propagation. We have recently published the first agent-based model 
for MAPK signalling and demonstrated that the presence of scaffolded complexes may explain the ultrasensitiv-
ity of MAPK activation, as observed experimentally46. Current work in our group includes the incorporation of 
TRIB proteins into this framework to further our understanding of the molecular mechanisms of TRIB mediated 
signalling control.

Of note, our modelling analysis here have focussed on the inhibitory action of TRIB proteins in signalling. 
However, we have previously reported a concentration dependent, bi-phasic regulatory role for these proteins23 
and potentiation of TRIB mediated potentiation of MEK1/ERK signalling has also been reported13,47. Whilst it is 
possible that complex alterations between specific MAPK complexes due to changes in specific TRIB levels could 
explain these results, such hypothesis is yet to be tested, both experimentally and theoretically, via computational 
models.

Whilst the experiments reported here have focussed on the interactions between TRIBs and MKKs, we believe 
that the same paradigm could also be applied for their molecular interactions with other partners, such as mem-
bers of the PI3K signalling network and E3 Ub ligases. Therefore, we believe that lessons learned in this system 
and our main conclusions are generalizable and thus provide a holistic model that contributes a better under-
standing of how TRIB pseudokinases function at the molecular level.

Materials and Methods
Protein-fragment Complementation Assay (PCA). In order to examine the physical interactions 
between tribbles and MAP kinase kinases, MEK1, MKK6, MKK4 and MKK7 in live cells, we used the yellow flu-
orescent protein (YFP) based protein fragment complementation assay (PCA). This strategy was developed and 
previously described by Michnick and his colleagues48,49. We have validated this approach to study interactions 
between tribbles-1 and MKKs15,24,50. The Venus variant of YFP was used in this study, since it provides a greater 
signal than EYFP (Venus variant YFP fragments were termed as V1 and V2 throughout this study). Full length 
GFP or YFP fragments were fused to the C-terminus of TRIB and MAPKK proteins, respectively.

Plasmids. The plasmids encoding for full length TRIB and MAPKK in fusion with GFP or the Venus frag-
ment have been generated as described before15,24.

Cell culture and transfection. HeLa, THP1 and HepG2 cells were purchased from ATCC and main-
tained according to the supplier’s recommendations. siRNA SmartPools against human TRIBs -1, -2 and -3, and 
non-targeting siRNA (siNC) were purchased from Dharmacon and used as recommended by the manufacturer. 
Polyfect (Qiagen, Crawley, UK) was used for transfection into HeLa and HepG2 cells, according to the manufac-
turer’s instructions. THP-1 cells were transfected using Nucleofector (Amaxa).

Fluorescence microscopy. Fluorescence images were taken by a Leica DMI4000B Inverted microscope 
(Leica Geosystems Ltd., Milton Keynes, UK). Representative fluorescent and phase contrast images were taken 
at 40x objective lens.

FACS analysis. 24 h after transfection, the cells were collected and flow cytometric analysis (FACS) was per-
formed on a FACSCalibure (Becton Dickson, USA) following the general guidelines from the manufacturer. 
Data were analysed using Cell Quest Pro software (Becton Dickinson, USA). The fluorescent intensity values 
were normalised by subtracting the background fluorescent values for mock-transfected cells. 20,000 cells were 
analysed for each sample.

Western blotting. Anti MKK4 and MKK7 antibodies was purchased from Cell Signalling Technology 
(Beverly, USA). Rabbit polyclonal GFP (ab290, 1/2500 dilution) and anti-TRIB3 (ab50516) were purchased from 
Abcam (Cambridge, UK). Anti-actin (c-11) antibody was purchased from Santa Cruz Biotechnology, Inc.

Immunoprecipitation. HepG2 cells were lysed in HEPES lysis buffer (40 mM HEPES, pH 7.5; 120 mM 
NaCl, 1 mM EDTA, 10 mM sodium pyrophosphate, 10 mM sodium glycerophosphate, 50 mM NaFl, 0.5 mM 
sodium orthovanadate; 0.3% CHAPS). Lysate (1–4 mg) was precleared by incubating with 5–20 μ l of protein 
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G–Sepharose conjugated to pre-immune IgG. The lysate extracts were then incubated with 5–20 μ l of protein  
G–Sepharose conjugated to 5–20 μ g of the anti-TRIB3 antibody (ab50516) or pre-immune IgG. TRIB3 antibody 
was covalently conjugated to protein G–Sepharose using dimethyl pimelimidate. Immunoprecipitations were car-
ried out for 1 h at 4 °C on a rotatory wheel. The immunoprecipitates were washed 4 times with HEPES lysis buffer, 
followed by 2 washes with HEPES kinase buffer. The immunoprecipitates were resuspended in 30 μ l of sample 
buffer (not containing 2-mercaptoethanol) and filtered through a 0.22-μ m Spin-X filter, and 2-mercaptoethanol 
was added to a concentration of 1% (vol/vol). Samples were subjected to electrophoresis and immunoblot 
analysis.

Luciferase assay. The dual luciferase reporter assay system (Promega, Madison, WI) was used following the 
manufacturer’s instructions. Normalised relative luciferase activity was calculated as a ratio of firefly to Renilla 
luciferase activity for each sample.

IL-1α treatment. IL-1α  was a kind gift from Immunex Inc., USA.

Statistical Analysis. All the experiments were repeated a minimum of three times, all graphs show a 
mean ±  S.D. One-way ANOVA (followed by Tukey’s Multiple Comparison Test) or two-way ANOVA (followed 
by Bonferroni post-tests) were used to assess statistical significance, as appropriate.
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