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Abstract

There are two main parts to this thesis. The first part will deal with some
independence results. In 1979, Lifschitz in [13] introduced a realizability in-
terpretation for Heyting’s arithmetic, HA, that could differentiate between
Church’s thesis with uniqueness condition, CT0!, and the general form of
Church’s thesis, CT0. The objective here is to extend Lifschitz’ realizabil-
ity to intuitionistic Zermelo-Fraenkel set theory with two sorts, IZFN . In
addition to separating Church’s thesis with uniqueness condition from its
general form in intuitionistic set theory, I also obtain several interesting
corollaries. The interpretation repudiates a weak form of countable choice,
ACN2, asserting that every countable family of inhabited subsets of {0, 1}
has a choice function.

The second part will be concerned with Constructive Zermelo-Fraenkel
Set Theory and other intuitionistic set theories augmented by various prin-
ciples, notably choice principles. It will be shown that the addition of these
(choice) principles does not change the stock of provable arithmetical theo-
rems.

This type of conservativity result has its roots in a theorem of Goodman
[9] who showed that Heyting arithmetic in all finite types augmented by
the axiom of choice for all levels is conservative over HA. The technique
I employ here to obtain such results for intuitionistic set theories, however,
owes a lot to a paper by Beeson published in 1979. In [2] he showed how
to construe Goodman’s Theorem as the composition of two interpretations,
namely relativized realizability and forcing. In this thesis, I adopt the same
approach and employ it to a plethora of intuitionistic set theories.
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Chapter 1

Introduction

In this chapter we introduce some background knowledge which is related
to this thesis. In Section 1.1, I will explain how the structures and notations
used in the thesis are treated. Moreover, in Section 1.2, I will informally
introduce various intuitionistic set theories and semi-constructive axioms.

Then in Section 1.3, several versions of realizability interpretations for
Heyting arithmetic are given; while in Section 1.4, we look at realizability
interpretations for intuitionistic set theories.

Furthermore, in Section 1.5, some forcing interpretations for arithmetic
and set theory are presented and the approaches to deriving conservativity
results for arithmetic and set theory are sketched.

Lastly, in Section 1.6, I summarize our independence and conservativity
results and give a sketch how to obtain these results.

There are eight chapters in this thesis.

• Chapter 1: Introduction
Notations will be fixed and basic facts assumed for this thesis will be
introduced. In particular, I will summarize other authors’ work on
realizability semantics and forcing semantics and compare their work
with what is done in this thesis.

• Chapter 2: Formal systems
I will introduce the languages for our foreground and background the-
ories and some (semi-) constructive formal systems.

• Chapter 3: Applicative structure and universes
I will start to introduce the framework of our semantics for the for-
mal systems. This mainly consists of building a realizability universe

1
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from an applicative structure. Variants and consequences of the prin-
ciple of transfinite induction that will be applied in this thesis are also
discussed.

After the introduction, I start to build up the two main parts of this thesis:
independence results and conservativity results. Chapter 4 and Chapter 5
consist mainly of independence results.

• Chapter 4: Lifschitz’ style interpretation
I will extend Lipschitz’ interpretation of Heyting Arithmetic to the
context of intuitionistic set theory. All the fundamental results will
also be included in this chapter.

• Chapter 5: Lifschitz’ style soundness
I will show the soundness of the axioms of intuitionistic set theory
as well as some semi-constructive axioms. Subsequently I will deduce
some important independence results from this.

Chapter 6, Chapter 7 and Chapter 8 consist mainly of conservativity results.

• Chapter 6: Relativized realizability
I will introduce the relativized realizability interpretation for our for-
mal systems and show its soundness.

• Chapter 7: Forcing
I will introduce the forcing interpretation for our formal systems and
show its soundness.

• Chapter 8: Conservativity results
I will derive all the main conservativity results of this thesis.

1.1 Notations

There are two kinds of notations (Global notations and Local notations)
used in this thesis.

Global notations: throughout this thesis, the meaning of these nota-
tions remains fixed:

• “≡ ” denotes “abbreviates”.

• “:=” denotes “defines as”.

• “ iff ” denotes “if and only if ”.
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• ∀x ∈ yϕ(x) ≡ ∀x(x ∈ y → ϕ(x)).

• ∃x ∈ yϕ(x) ≡ ∃x(x ∈ y ∧ ϕ(x)).

• ϕ(x1, x2, ..., xn) signifies the free variables of ϕ are among x1, x2, ..., xn.

• ∅ denotes the empty set.

• ϕ[x/y] denotes the new formula after substituting the free variable x
in ϕ by the new variable y.

• f(x) ↓ means that f(x) is defined and f(x) ↑ means that f(x) is
undefined.

• x 6= ∅ denotes the formula that x is inhabited, i.e., ∃y(y ∈ x).

• Other notations are provided in the index.

Moreover, when stating a result we use (AX) to indicate that the extra
axiom (AX) is to be added to the background theory. If a proof or a
statement is rather lengthy, we will use ♦ to separate some inferences or
statements.

Local notations: The meaning of these notations will be changed.
This kind of notation will be used heavily in proofs. The meaning of these
notations will be understood from the context or the proof itself. We will
not list these notations in the index.

In order to make this thesis as self-contained as possible, we might para-
phrase some content or change some notations from other authors’ papers
or books. This will make it easier for us and our readers to pinpoint the
differences between different semantics.

1.2 Background knowledge

In order to facilitate the presentation of set theory, it is convenient to use
the usual class notations. First of all, let us use S to denote the class of all
sets and N to denote the set of all natural numbers. For classes P and Q we
use P×Q to denote the class of pairs {(x, y) : x ∈ P ∧ y ∈ Q}. A class R is a
(binary) relation if R ⊆ S×S. If R satisfies (x, y) ∈ R ∧ (x, z) ∈ R→ y = z
we call R a class function. A set function (or just function) is a class
function which happens to be a set. We say a binary relation R has domain
a and range b if and only if R ⊆ a× b and for all x ∈ a, there exists y ∈ b
such that (x, y) ∈ R. Moreover, if a, b are both subsets of N, we call R a
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numerical relation. We say that R is a surjective relation with domain
a and range b if and only if R ⊆ a × b and for all x ∈ a there exists y ∈ b
such that (x, y) ∈ R and for all y ∈ b there exists x ∈ a such that (x, y) ∈ R.
For any binary relations H,K we say H is a sub-relation of K if and only
if H,K have the same domain and H ⊆ K.

The most important intuitionistic set theories are Intuitionistic Zermelo-
Fraenkel Set Theory, IZF, and Constructive Zermelo-Fraenkel Set Theory,
CZF. For both, the underlying logic is Intuitionistic Predicate Logic, IPL.
The axioms of IZF are almost the same as those of ZF except that the Foun-
dation Axiom gets replaced by Set Induction and Replacement is swapped
with Collection. CZF differs from IZF in the following ways: the Full Sep-
aration Schema is restricted to Bounded Separation, i.e. one has separation
only for ∆0 formulae (where only quantifiers of the form ∀x ∈ and ∃y ∈
are allowed). Collection is strengthened to Strong Collection whereas the
Powerset Axiom is replaced by Subset Collection.

We will also study systems obtained from IZF and CZF by adding var-
ious other axioms and principles, notably variants of the Axiom of choice,
AC. Since AC conjoined to CZF will make the whole system return to
ZFC, one has to choose strictly weaker versions of AC, one being the Pre-
sentation Axiom PAX . PAX asserts that for every set a, there exists a
surjective set function with a domain b such that f : b → a and b is a
base, where a base is a set for which the axiom of choice holds. Another
familiar choice axiom is Dependent Choice, DC (i.e., for any set relation
R with domain set a, range set a and any set b ∈ a there is a set function
f : N → a such that ∀n ∈ N(f(0) = b ∧ R(f(n), f(n + 1))). If a is N, then
we call this instance DCNN . A further generalization of DC is Relativized
Dependent Choice RDC (i.e., for any class relation R with domain class
K, range class K and any set b ∈ K there is a class function f : N → K
such that ∀n ∈ N(f(0) = b ∧R(f(n), f(n+ 1))). A very useful form of AC
is the Axiom of Countable Choice ACN which postulates that every count-
able family of inhabited sets has a choice function. An even weaker form
of ACN is ACNN (or ACω,ω) where the family consists of subsets of the
natural numbers. A still weaker form is ACN2, where the family consists of
subsets of {0, 1}. (Note that ACNN is provable in ZF.)

On the basis of CZF, the logical implications between the various choice
principles can be summarized as follows:

AC→ PAX → DC→ ACN → ACNN → DCNN ∧ACN2.

Intuitionistic logic allows one to adopt several “exotic” axioms that
would immediately lead to inconsistency on the basis of classical logic. One
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such axiom is the so-called Church’s thesis, CT0, which asserts that every
total numerical relation has a computable sub-function. Further “exotic”
axioms we are going to study include the Uniformity Principle UP and a
principle called Unzerlegbarkeit (or Indecomposability) UZ (c.f. Definition
2.2.7).

A semi-classical axiom we shall consider is Markov’s Principle MP.

1.3 Realizability for Heyting Arithmetic

Heyting Arithmetic HA differs from Peano Arithmetic in the logical axiom.
Instead of using classical predicate logic, HA uses intuitionistic predicate
logic. Realizability for HA was introduced by Stephen C. Kleene and nowa-
days has become a well-known tool for analyzing syntactical systems. There
are many variants of realizability. In this introduction, we will simply list
those relevant to our research topics. One can view realizability as a partic-
ular implementation of the Brouwer-Heyting-Kolmogorov interpretation of
intuitionistic logic.

Kleene’s 1945 realizability uses codes of partial recursive functions as
realizers. His approach lends itself to generalization where one employs
realizers from an arbitrary domain of computation known as Applicative
Structure.

1.3.1 Kleene’s recursive realizability

To describe Kleene’s realizability for HA we need to introduce some no-
tations. Let  be a pairing function with left-unpairing function 0 and
right-unpairing function 1. In the following, we use e0 to denote 0(e) and
e1 to denote 1(e) and e ·n denotes the partial recursive function {e} applied
to n, i.e., e · n denotes {e}(n). In addition, e · n ↓ signifies that {e}(n) is
defined and e K ϕ abbreviates that e realizes the formula ϕ. e K ϕ is
defined inductively as follows:

• e K ϕ iff e = 0 and ϕ is an atomic true formula.

• e K θ ∧ η iff e0 K θ ∧ e1 K η.

• e K θ → η iff ∀n ∈ N[n K θ → e · n ↓ ∧e · n K η].

• e K ∀xθ(x) iff ∀n ∈ N(e · n ↓ ∧e · n K θ[x/n]).

• e K θ ∨ η iff [e0 = 0 ∧ e1 K θ] ∨ [e0 6= 0 ∧ e1 K η].
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• e K ∃xθ(x) iff e1 K θ[x/e0].

With this interpretation (c.f. Section 82 of Chapter 15 in [11]), he proved
that HA is sound.

1.3.2 Kleene’s relativized realizability

Relativized realizability (c.f. p.356 in [3]) is a generalization of Kleene’s
recursive realizability. The only difference is that instead of codes of partial
recursive functions one uses codes of partial functions that are recursive in
a fixed partial function g. All the clauses are then exactly the same as for
Kleene’s recursive realizability.

1.3.3 Lifschitz’ realizability

Dragalin pointed out (c.f. Section 4 of Part 2 in [5]) that there are two formal
versions of Church’s thesis one could consider adding to Heyting arithmetic
HA:

CT0 ∀x∃y A(x, y)→ ∃z∀x [z · x ↓ ∧A(x, z · x)]

CT0! ∀x∃!y A(x, y)→ ∃z∀x [z · x ↓ ∧A(x, z · x)]

(we write z · x for {z}(x)), and he posed the question whether the latter
version is actually weaker than the former. The question was answered af-
firmatively in 1979 by Vladimir Lifschitz [13]. He introduced a modification
of Kleene’s realizability that validates CT0! but falsifies instances of CT0.
The main idea behind separating CT0 from CT0! is to find a property P of
pairs of numbers so that if there is a unique n such that P (e, n) holds then
there is an effective procedure to find n from e, while in general there is no
such procedure if {m | P (e,m)} contains more than one element. Lifschitz
singled out the property n ≤ e1 ∧ ∀m¬T (e0, n,m), where T is Kleene’s
T -predicate. His interpretation differs from Kleene’s in the clause ∃xϕ(x):
(we use L to denote his interpretation for Heyting Arithmetic)

• m L ∃xψ(x) iff Dm 6= ∅ ∧ ∀n ∈ Dm(n1 L ψ(n0)), where Dn :=
{m ∈ N : m ≤ n1 ∧ ∀z¬T (n0,m, z)}.

This type of realizability has been applied in other contexts as well. For
other applications and extensions, the author suggests readers to consult
Jaap van Oosten’s papers and book, in particular, [19].
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1.4 Realizability for set theories

Realizability for set theory is very different from realizability for arithmetic.
The main difference lies in the hierarchical buildup of the universe and the
fact that the equality and elementhood relation are intimately connected
on account of the extensionality axiom. As a result, one has to construct
an iterative internal universe (or realizability universe) which forms the ba-
sis for the realizability interpretation. Interpretations for IZF and CZF
were given in McCarty’s Ph.D. thesis [15] and Michael Rathjen’s paper [20],
respectively. In this section, I will introduce these interpretations.

1.4.1 KTFBM realizability

This abbreviates Kreisel-Troelstra-Friedman-Beeson-McCarty realizability.
McCarty’s realizability interpretation for IZF has its roots in a realizability
interpretation for second order arithmetic by Kreisel and Troelstra [12]. In
his Ph.D. thesis [15] (p. 82) he writes (For the definition of APP, please refer
to p.82 in [15] or Section 3.1): “Our interpretation is the immediate descen-
dant of the interpretations of Friedman (1973a) and Beeson (1979). The idea
of using models of APP came to us from a remark of Solomon Feferman in
his paper A language and axioms for explicit mathematics (1975)...The form
in which our realizability appears was the product of a joint effort expended
in Oxford during Michaelmas term 1980. The effort had at least contin-
gent connection with Dana Scott’s seminar Sheaves and logic. Among the
many individuals who made notable contributions, foremost were Guiseppe
Rosolini, Simon Thompson and Dana Scott.” We will give a rough sketch of
this type of realizability. Suppose A is a model of APP. Suppose |A| is its
carrier. By using the Powerset operation P and transfinite recursion, one
defines the realizability universe V (A) as follows:

V (A)α := ∪
β∈α
P(|A| × V (A)β), V (A) := ∪

α∈On
V (A)α.

Let AtomZF (V (A)) and FormZF (V (A)) be the collection of all the atomic
formulae and the collection of all formulae, respectively, formed in the lan-
guage of a set theory with parameters from V (A). The realizability relation
M⊆ |A| × FormZF (V (A)) is defined inductively as follows: (for m ∈ |A|
and ϕ ∈ FormZF (V (A)))
If ϕ ∈ AtomZF (V (A)), the two clauses are as follows:

• m M a ∈ b iff ∃c ∈ V (A)[(m0, c) ∈ b ∧m1 M a = c],
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• m M a = b iff ∀(f, d) ∈ a(m0 · f ↓ ∧m0 · f M d ∈ b) ∧ ∀(f, d) ∈
b(m1 · f ↓ ∧m1 · f M d ∈ a).

For ϕ a compound formula, the clauses are as follows:

• m M ψ ∧ η iff m0 M ψ ∧m1 M η.

• m M ψ → η iff ∀n ∈ |A|[n M ψ → m · n ↓ ∧m · n M η].

• m M ∀xψ(x) iff ∀a ∈ V (A)(m M ψ[x/a]).

• m M ∃xψ(x) iff ∃a ∈ V (A)(m M ψ[x/a]).

• m M ψ ∨ η iff (m0 = 0 ∧m1 M ψ) ∨ (m0 6= 0 ∧m1 M η).

• m M ¬ψ iff ∀n ∈ |A|¬(n M ψ).

• V (A) |=M ϕ iff ∃e ∈ |A|(e M ψ).

The main results (adapted from his paper) McCarty obtained (in the
following, Kl is defined in Subsection 3.1.3 and V (Kl) is defined pp.30-31
in [15]) are :

• If IZF ` θ, then IZF ` [V (A) |=M θ].

• IZF ` [V (Kl) |=M ACωω ∧CT ∧ECT ∧UP ∧UZ].

• IZF + MP ` [V (Kl) |=M MP] and IZF + IP ` [V (Kl) |=M IP].

• IZF + DC ` [V (Kl) |=M DC] and IZF + RDC ` [V (Kl) |=M RDC]
and IZF + AC ` [V (Kl) |=M PAX ].

1.4.2 Rathjen’s realizability for CZF

In 2003 Michael Rathjen in [20] showed that McCarty’s realizability can be
developed within CZF and provides a self-validating semantics for CZF.
In particular, he introduced bounded formulae into the syntactical system
and came up with an interpretation for the bounded quantifier as follows
(adapted from his paper [20]): for any a ∈ V (A) and any e ∈ |A| (A is a
model of APP and |A| is the carrier and V (A) is the realizability universe
defined above), he added the following clauses (the other clauses are the
same as McCarty’s):

• e MR ∀x ∈ aϕ(x) iff ∀(f, c) ∈ a(e · f MR ϕ[x/c]).

• e MR ∃x ∈ aϕ(x) iff ∃c ∈ V (A)((e0, c) ∈ a ∧ e1 MR ϕ[x/c]).
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There are another two key features worth mentioning here. First of all, he
used a class form of inductive definition to formalize the realizability uni-
verse V (A), to overcome the lack of the Powerset axiom in CZF. Secondly,
he invented an intuitionistic approach to interpreting PAX instead of Mc-
Carty’s approach by using full AC. He also showed that this realizability
works for the regular extension axiom. His main results can be summarized
as follows (adapted from his paper):

• If CZF ` θ, then CZF ` [V (Kl) |=MR θ].

• CZF ` [V (Kl) |=MR ACωω ∧CT ∧ECT ∧UP ∧UZ].

• CZF + MP ` [V (Kl) |=MR MP] and CZF + IP ` [V (Kl) |=MR IP].
For the definition of IP, please refer to Definition 2.2.16.

• CZF + DC ` [V (Kl) |=MR DC] and CZF + RDC ` [V (Kl) |=MR

RDC] and CZF + PAX ` [V (Kl) |=MR PAX ].

1.4.3 Our realizability for CZFN

In this thesis, we will modify the above semantics for CZF to deal with a
version of CZF, dubbed CZFN , that takes the natural numbers as urele-
ments. An important issue here is how to properly set up an interpretation
that can accommodate both numbers and sets. This interpretation (denoted
by R) is tailor-made in a bid to show our conservativity result. The details
will be given in Section 6.1

1.4.4 Our realizability for IZFN

In this thesis, we will extend Lifschitz’ interpretation for Heyting Arithmetic
to the context of intuitionistic set theory. However, there are still some
variations in our approaches. The language we use differs from all other
authors. We incorporate the language of arithmetic in our systems explicitly.
Then we come up with an interpretation and a universe to accommodate
both arithmetic and set theory. For comparison, we call our interpretation
Lifschitz’ style realizability (notated by L). The details will be shown in
Section 4.2.

1.5 Conservativity via realizability and forcing

Though both realizability and forcing semantics interpret intuitionistic set
theories, they represent quite different perspectives. If one views the process
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of interpreting a syntactical system as a process of gaining knowledge, then
there is a distinction between realizability and forcing semantics. Realiz-
ability semantics focuses more on how knowledge is gained while forcing
semantics focuses more on when knowledge is gained. This distinction is
nicely summarized in Goodman’s paper [9] (pp. 25-26): “Kleene’s original
notion of recursive realizability...has the great strength that it emphasizes
the active aspect of constructive mathematics...However, Kleene’s notion
has the weakness that it disregards that aspect of constructive mathematics
which concerns epistemological change...Precisely that aspect of construc-
tive mathematics which Kleene’s notion neglects is emphasized by Kripke’s
semantics for intuitionistic logic.”.

There is a famous result called Goodman’s theorem which states that
Heyting arithmetic with higher types, HAω, augmented by the axiom of
choice for all type levels is conservative over HA. In 1979 Michael Bee-
son published a paper “GOODMAN’S THEOREM AND BEYOND” which
simplified Goodman’s original proof from [8]. Beeson’s proof is in two steps:
one step uses realizability, the other step uses forcing. The combination of
two well-known tools renders the proof particularly transparent. It should
be said, though, that about the same time when Beeson published his paper,
Goodman himself gave another fairly simple proof of his theorem in [9] ; his
proof also combines ideas related to realizability and forcing.

In this thesis we will adopt Beeson’s two-tiered approach–realizability
followed by forcing–to the set-theoretic context in order to obtain conserva-
tivity results for intuitionistic set theories. To give the reader a flavour of
things to come we briefly relate Beeson’s analysis of Goodman’s theorem.

1.5.1 Forcing for arithmetic

In [2] one finds the following forcing interpretation for Heyting Arithmetic.
Let B be the set of all finite function from N to N, where a finite function is
a function whose domain and range are finite subsets of N. Define a partial
order relation ≥ on B: p ≥ q iff p ⊇ q. Let x, y be arbitrary numbers and
let ϕ and θ be arbitrary arithmetical formulae. Beeson then introduced the
following clauses (adapted from his paper [2], pp. 3-4):

• p B x = y iff x = y.

• p B ϕ ∧ θ iff p B ϕ ∧ p B θ.

• p B ϕ ∨ θ iff p B ϕ ∨ p B θ.

• p B ϕ→ θ iff ∀q ≥ p[q B ϕ→ ∃r ≥ q(r B θ)].
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• p B ∃xϕ(x) iff ∃n(p B ϕ[x/n]).

• p B ∀xϕ(x) iff ∀n∀q ≥ p∃r ≥ q(r B ϕ[x/n]).

1.5.2 Forcing for set theories

James Lipton in his paper [14] gave a version of the semantics which inter-
prets IZF. Since his interpretation inspires our version of interpretation,
we introduce his semantics in this section. Let (K,≥) be a partially ordered
structure. Let p ∈ K and a, b ∈ V (K) be arbitrary, where

Vα(K) := ∪
β∈α
P(K× Vβ(K)), V (K) := ∪

α∈On
Vα(K).

Then he inductively defined the following clauses (adapted from his paper):

• p J a = b iff ∀(q, c) ∈ a∀r ≥ p, q(r J c ∈ b) ∧ ∀(q, c) ∈ b∀r ≥
p, q(r J c ∈ a).

• p J a ∈ b iff ∃c ∈ V (K)∃q ≤ p((q, c) ∈ b ∧ p J a = c).

• p J ϕ ∧ θ iff p J ϕ ∧ p J θ.

• p J ϕ ∨ θ iff p J ϕ ∨ p J θ.

• p J ϕ→ θ iff ∀q ≥ p[q J ϕ→ q J θ].

• p J ∃xϕ(x) iff ∃a ∈ V (K)(p J ϕ[a/x]).

• p J ∀xϕ(x) iff ∀a ∈ V (K)∀q ≥ p(q J ϕ[a/x]).

• p J ϕ(x) iff p J ∀xϕ(x).

• V (K) |=J ϕ iff ∀p ∈ K(p J ϕ).

1.5.3 Beeson’s two-tiered approach

To show
HAω + AC ` ϕ then HA ` ϕ

for arithmetical ϕ, [2] combines Kleene’s relativized realizability (e K ϕ)
with forcing as follows:

1. (Theorem 3.1) If HAω + AC ` ϕ then HAω
a ` ∃e(e K ϕ), where

HAω
a has an additional axiom postulating that a is a partial function

from N to N .
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2. (Theorem 2.1)
If HAω

a ` ∃e(e K ϕ) then HAω ` “∃e(e K ϕ) is forced”.

3. (Lemma 4.1) HAω `“(∃e(e K ϕ)→ ϕ) is forced”.

4. (Lemma 2.1) HAω ` ϕ and thus HA ` ϕ.

1.5.4 Our two-tiered approach

We extend Beeson’s two steps to the context of intuitionistic set theories,
by combining the relativized realizability semantics R with the forcing
semantics F . The relativized realizability semantics basically is based on
Kleene’s realizability for arithmetic and KTFBM realizability for set theory,
while the forcing semantics is based on Beeson’s forcing for arithmetic and
Jame’s forcing for set theory. The conservativity results obtained in this
way are sketched in Subsection 1.6.2 and fully explained from Chapter 6 to
Chapter 8.

1.6 Overview of results of this thesis

In the following, I will summarize the main results obtained in the two parts
in this thesis: independence results and conservativity results. Before that,
I should like to point out several differences between the two parts:

1. Formal systems: the first part is concerned with the syntactical system
IZFN , while the second part is concerned with the two syntactical
systems CZFN and IZFN .

2. Realizers: the first part uses recursive realizers while the second uses
relativized realizers.

3. Background theories: The first part can be developed in the back-
ground theory IZF′N , i.e., IZFN +MPpr +BΣ0

2−MP, where BΣ0
2−

MP is the schema

¬¬∃n ≤ m∀kA(n, k, e) → ∃n ≤ m∀kA(n, k, e)

with A being primitive recursive.

The second part uses the background theory CZFN for results con-
cerning the syntactical system CZFN and IZFN for results concerning
the syntactical system IZFN .
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1.6.1 The first part: independence results

Here we extend Lifschitz’ realizability from HA to IZF and arrive at the
following theorem:

IZFN + CT0! 0 CT0.

As a corollary we obtain additional independence results (cf. Theorem
5.6.5):

IZFN + CT0! 0 ACN2 ∨DC ∨RDC ∨PAX . (1.1)

The latter is essentially derived via the following steps.

Step1 One shows that IZFN + CT0! ` θ implies IZF′N ` (V ∗ |=L θ). (cf.
Theorem 5.4.12)

Step2 As Lifschitz’ interpretation L for HA can be embedded into our
interpretation L for IZFN (cf. Theorem 4.4.3), one obtains IZF′N `
(V ∗ |=L ¬CT0).

Thus, in view of the above we have shown that IZFN + CT0! 0 CT0.

Step3 The previous step entails IZFN + CT0! 0 ACN2 (cf. Claim 5.6.2).

Step4 Since PAX → DC → ACN → ACNN → ACN2, (1.1) follows by
the previous steps (cf. Theorem 5.6.5).

Moreover, since Lifschitz’ realizability for IZF also validates the unifor-
mity principle UP and hence Unzerlegbarkeit UZ, (1.1) can be strengthened
to

IZFN + CT0! + UP + UZ 0 ACN2 ∨DC ∨RDC ∨PAX . (1.2)

1.6.2 The second part: conservativity results

In this part, we will extend Beeson’s two-tiered approach (i.e., relativized
realizability and forcing semantics) for HA to the context of intuitionistic
set theories with two sorts. The first challenge is to find a relativized realiz-
ability semantics for intuitionistic set theories with two sorts (numbers and
sets). The second challenge is to find a forcing semantics for intuitionistic
set theories with two sorts.

In order to describe our results, we use the following abbreviations: (Let
T be any of the theories CZFN or IZFN extended by any combination of
the following axioms: {DC,RDC,PAX ,MP})
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1. CZF?
N ≡ CZFN + ACNN + UP + UZ;

2. IZF?
N ≡ IZFN + ACNN + UP + UZ;

3. T ? ≡ T + ACNN + UP + UZ;

4. TA ≡ T + PF (A,N,N), where PF (A,N,N) denotes the axiom: A is a
partial function from N to N.

If one wants to obtain conservativity results, recursive realizability is
rather defective in that recursive realizability of a formula (unless it is an
almost negative arithmetical one) usually does not entail its truth. Observe
that for a disjunctive formula η ∨ δ (or existential formulae ∃xη) there is
no effective way to find a recursive realizer to realize η ∨ δ (or existential
formulae ∃xη). However, if one employs relativized realizability with an
oracle A being a generic partial function from N to N, then this obstacle can
be overcome.

Then next step is to interpret A in the forcing semantics to show that
arithmetical formulae are indeed generic self-realizing (i.e., sound and com-
plete in forcing interpretation). By choosing the proper forcing conditions
that preserve the self-realizing, one has the following conservativity result:
(for any arithmetical sentence θ)

1. (cf. Theorem 8.4.2) If CZF?
N ` θ, then CZFN ` θ ;

2. (cf. Theorem 8.4.2) If IZF?
N ` θ, then IZFN ` θ;

3. (cf. Corollary 8.4.4) If T ? ` θ, then T ` θ;
Indeed (cf. Corollary 8.4.7) these results can be strengthened by replacing

ACNN with AC
N NN

, where AC
N NN

consists of the formulae

∀n∃f ∈ NN ϕ(n, f) → ∃F : N → NN ∀nϕ(n, F (n)) ,

with ϕ arbitrary.
Essentially, to show if T ? ` θ then T ` θ, one needs the following four

steps:

Step1 Show TA ` (V ∗ |=R θ). In this step, one shows all the arithmeti-
cal theorems of T ? are interpretable by the relativized realizability
semantics with the background theory TA.

Step2 Show T ` [V ∗ |=F (V ∗ |=R θ)]. In this step, one shows relativized
realizability semantics with respect to arithmetical formulae is inter-
pretable by the forcing interpretation.
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Step3 Show T ` (V ∗ |=F θ). In this step, one shows relativized realizability
semantics with respect to arithmetical formulae is generic self-realizing
(cf. Lemma 8.3.1).

Step4 Show T ` θ. In this step, one shows forcing is absolute (cf. Lemma
8.1.1) with respect to arithmetical formulae.

Moreover, combing the conservativity results with Lifschitz’ style seman-
tics yields the following independence result (cf. Corollary 8.4.5):

IZFN + ACNN + UP + UZ+ 0 CT0!.

In conclusion, in this chapter, I have informally introduced various in-
tuitionistic set theories and semi-constructive axioms. Furthermore, I have
added some background knowledge for both realizability and forcing for
arithmetic and set theories. I have also summarized the results of the the-
sis.



Chapter 2

Formal systems

In Chapter One, we informally introduced intuitionistic set theories. In
this chapter, we will use first order language to formalize these systems.
There are many ways to set up a formal system. For example, to formalize
the natural numbers and all n-ary primitive recursive functions, one can
add a constant ω and function symbols fn to the language and then give
their defining axioms; or one can add predicate symbols N and Rn+1 to
the language to do the job. For us, adding predicate symbols rather than
constant and function symbols seems to be a more effective approach to
introduce our results. We will introduce this language in Section 2.1 to
accommodate both arithmetic and set theory.

In Section 2.2, we will introduce the intuitionistic formal systems which
include axioms for Heyting arithmetic, intuitionistic set theories and various
semi-constructive axioms. Instead of the usual approach which interprets
arithmetic in set theory, to reduce the burden of interpretations, we adopt
the systems which accommodate both arithmetic and set theory.

2.1 Languages

In addition to our object language L for formalizing a system with both
set theory and arithmetic, we will for the purpose of relativized realizability
also introduce a language L′ which has a relation symbol A for the graph of
a partial function from N to N.

16
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2.1.1 The language L
Languages where numbers and sets are regarded as two different kind of
objects are familiar from the literature (cf. Michael Beeson’s book [3] (p.
164) or Harvey Friedman’s paper [7]). L is defined as follows:
The symbols of the language are:

• Variables (objects): x0, x1, x2, ..., xn, ...

• Constants (number): n̄ for all n ∈ N.

• Predicates: (unary) S,N ; (binary) ∈,=; all other primitive recur-
sive relation symbols: R1, R2, ..., Rn, ..., in particular, we explicitly
use SUC, ADD, MULT for the graph of successor function, addition
function and multiplication function.

The collection of all terms, Term, consists of the Variables and Constants.
The collection of all the atomic formulae, AtForm, consists of all strings of
symbols of the form Pn(t1, t2, ..., tn), where t1, t2, ..., tn ∈ Term and Pn is a
n-ary predicate symbol.

The collection of all formulae, Form, is the smallest class which contains
AtForm and is closed under the logical connectives: ∧,∨,¬,→,∃, ∀.

2.1.2 Relativized realizability interpretation in a language L′

Relativized realizability differs from recursive realizability by using partial
functions recursive in a partial function A from N to N. To capture this
axiomatically, we add an extra constant symbol A to the language L and
denote the resulting language by L′. Then one adds the axiom: A is a partial
function from N to N to the axiomatic system.

2.2 Axioms

In this section, we will introduce the formal axiomatic systems CZF and
IZF.

We also introduce some (semi-) constructive axioms which one might
want to add to these intuitionistic systems.

To facilitate all the descriptions, we use the following abbreviations in
the meta-language:

• ∀nϕ(n) ≡ ∀x(N(x) → ϕ(x)) and ∃nϕ(n) ≡ ∃x(N(x) ∧ ϕ(x)). When
there are more than one quantifiers present, we use n,m, k, l, i, ... for
the corresponding abbreviations.
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• ∀nmϕ(n,m) ≡ ∀n∀mϕ(n,m).

• ∀n∃!mψ(n,m) ≡ ∀n[∃mψ(n,m) ∧ ∀x∀y(ψ(n, x) ∧ ψ(n, y)→ x = y)].

• x /∈ y ≡ ¬(x ∈ y) and x 6= y ≡ ¬(x = y).

• x ⊆ y ≡ ∀z(z ∈ x→ z ∈ y).

• ∀x ∈ yθ(x) ≡ ∀x[x ∈ y → θ(x)] and ∃x ∈ yθ(x) ≡ ∃x[x ∈ y ∧ θ(x)].

2.2.1 A1: Axioms on numbers and sets

Numbers and sets will be treated as two different objects. Each object has
only one identity and only sets contain elements. These are formalized in
this group via the predicates N(x) (x is a number) and S(x) (x is a set) as
follows:

1. ∀x¬(N(x) ∧ S(x)).

2. ∀x∀y[x ∈ y → S(y)].

3. N(n̄) for all natural numbers n.

2.2.2 A2: Number-theoretic axioms

These axioms specify the basic operations of arithmetic; in particular, the
successor function SUC, addition function ADD (axioms 7,8), multiplication
function MULT (axioms 10,11) and mathematical induction.

1. SUC(n̄, n+ 1) for all natural numbers n.

2. ∀n∃!mSUC(n,m).

3. ∀nm(SUC(n,m)→ m 6= 0̄).

4. ∀m(m = 0̄ ∨ ∃nSUC(n,m)).

5. ∀nmk(SUC(m,n) ∧ SUC(k, n)→ m = k).

6. ∀nm∃!kADD(n,m, k).

7. ∀nADD(n, 0̄, n).

8. ∀nkmli[ADD(n, k,m) ∧ SUC(k, l) ∧ SUC(m, i)→ ADD(n, l, i)].

9. ∀nm∃!kMULT(n,m, k).
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10. ∀nMULT(n, 0̄, 0̄).

11. ∀nkmli[MULT(n, k,m) ∧ SUC(k, l) ∧ADD(m,n, i)→ MULT(n, l, i)].

12. A(0̄) ∧ ∀nm[A(n) ∧ SUC(n,m)→ A(m)]→ ∀nA(n).

13. Axioms for all other primitive recursive predicates.

2.2.3 A3: Logical axioms for IPL

Intuitionistic Predicate Logic (IPL) consists of twelve logical axioms (LA),
three inference rules and various Identity Axioms (IA).

For logical axioms (LA):

(IPL1) A→ (B → A).

(IPL2) [A→ (B → C)]→ [(A→ B)→ (A→ C)].

(IPL3) A→ (B → A ∧B).

(IPL4) A ∧B → A.

(IPL5) A ∧B → B.

(IPL6) A→ A ∨B.

(IPL7) B → A ∨B.

(IPL8) (A ∨B)→ [(A→ C)→ ((B → C)→ C)].

(IPL9) (A→ B)→ ((A→ ¬B)→ ¬A).

(IPL10) A→ (¬A→ B).

(IPL11) ∀xA(x)→ A[x/y], where y is free for x in A(x).

(IPL12) A[x/y]→ ∃xA(x), where y is free for x in A(x).

For Inference Rules: (In the following, we use FV (C) to denote the
set of all free variables in C).

(IR1) (Modus Ponens) A, A→B
B .

(IR2) (rule ∀) C→A(x)
C→∀xA(x) , where x /∈ FV (C).

(IR3) (rule ∃) A(x)→C
∃xA(x)→C , where x /∈ FV (C).
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For the Identity Axioms (IA):

For any (m+ 1)-place atomic predicate Pm+1, we use P (j)(k) to denote
P 1(k), if m = 0 and Pm+1(n1, n2, ., ., k, .., nm) (i.e., k is placed at j-th arity),
if m > 0 for all j ∈ {1, 2, ...,m+ 1}.

(IA1) ∀x(x = x).

(IA2) ∀x∀y[x = y → y = x].

(IA3) ∀x∀y∀z[x = y ∧ y = z → x = z].

(IA4) ∀x∀y∀z[x = y ∧ y ∈ z → x ∈ z].

(IA5) ∀x∀y∀z[x = y ∧ z ∈ x→ z ∈ y].

(IA6) ∀n∀k∀l[k = l ∧ SUC(k, n)→ SUC(l, n)].

(IA7) ∀n∀k∀l[k = l ∧ SUC(n, k)→ SUC(n, l)].

(IA8) ∀n1∀n2∀k∀l[k = l ∧ADD(i)(k)→ ADD(i)(l)], for i ∈ {1, 2, 3}.

(IA9) ∀n1∀n2∀k∀l[k = l ∧MULT(i)(k)→ MULT(i)(l)], for i ∈ {1, 2, 3}.

(IA10) For any (m + 1)-place primitive recursive relation Rm+1, if m = 0,
then

k = l ∧R(i)(k)→ R(i)(l);

if m > 0, then

∀n1∀n2...∀nm∀k∀l[k = l∧R(i)(k)→ R(i)(l)], for i ∈ {1, 2, 3, ...,m+1}.

2.2.4 A4.1: Non-logical axioms (CZF with two sorts)

CZF has ∈-induction rather than the Foundation Axiom, it uses Bounded
Separation rather than Full Separation and uses Subset Collection rather
than the Powerset Axiom.

1. (Axiom of Extensionality) ∀x∀y(S(x)∧S(y)→ [∀z(z ∈ x↔ z ∈ y)→
x = y]).

2. (Pairing Axiom)∀x∀y(∃u[S(u) ∧ x ∈ u ∧ y ∈ u]).

3. (Union Axiom) ∀x∃u[S(u) ∧ ∀z(z ∈ u↔ ∃y(y ∈ x ∧ z ∈ y))].
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4. (Bounded Separation Schema)*

∀x∃u[S(u) ∧ ∀z(z ∈ u↔ z ∈ x ∧A(z))],

where u is not free in A(z) and where A(z) is a bounded formula.

A bounded formula is a formula in which all the occurrences of quan-
tifiers are either in the form ∀x ∈ or ∃x ∈. This axiom restricts the
full Separation Schema to avoid impredicativity.

5. (Axiom of Infinity) ∃u(S(u) ∧ ∀z[z ∈ u↔ N(z)]).

6. (Induction Schema)*

∀x[(∀y ∈ xA(y))→ A(x)]→ ∀xA(x).

Classically, the Induction Schema is equivalent to FA. Since FA im-
plies the Principle of Excluded Middle, this axiom becomes an alter-
native.

7. (Strong Collection)* ∀x[∀y ∈ x∃zA(y, z)
→ ∃u(S(u) ∧ ∀y ∈ x∃z ∈ uA(y, z) ∧ ∀z ∈ u∃y ∈ xA(y, z))].

This axiom strengthens Collection and Replacement Schema.

8. (Subset Collection)* ∀a∀b∃u(S(u) ∧ ∀z[∀x ∈ a∃y ∈ bA(x, y, z)→ ∃d ∈
u(∀x ∈ a∃y ∈ dA(x, y, z) ∧ ∀y ∈ d∃x ∈ aA(x, y, z))]).

Since the Powerset Axiom involves impredicativity, this weaker axiom
becomes an alternative.

We will use CZFN to denote the formal system: A1 +A2 +A3 +A4.1.

Remark 2.2.1 * indicates the differences between CZF and Zermelo-Fraenkel
Set Theory ZF.

2.2.5 A4.11: Non-logical axioms (CZF and A with two sorts)

On top of CZFN , we add an extra axiom “A is a partial function from N
to N ”, PF (A,N,N):

∀x ∈ A∃m∃n(x = (n,m)) ∧ ∀x∀y∀z[(x, y) ∈ A ∧ (x, z) ∈ A→ y = z].

This extra axiom is not a part of the usual setting for intuitionistic set
theory. The reason to add this axiom is to formalize relative computation
which will be used in our relativized realizability interpretation. We use
CZFNA to denote the formal system: CZFN + PF (A,N,N).
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2.2.6 A4.2: Non-logical axioms (IZF with two sorts)

IZF has the following axioms:

1. (Axiom of Extensionality) ∀x∀y(S(x)∧S(y)→ [∀z(z ∈ x↔ z ∈ y)→
x = y]).

2. (Pairing Axiom) ∀x∀y∃u[S(u) ∧ x ∈ u ∧ y ∈ u].

3. (Union Axiom) ∀x∃u[S(u) ∧ ∀z(z ∈ u↔ ∃y(y ∈ x ∧ z ∈ y))].

4. (Separation Schema)*

∀x∃u[S(u) ∧ ∀z(z ∈ u↔ z ∈ x ∧A(z))],

where u is not free in A(z).

5. (Powerset Axiom)* ∀x∃u[S(u) ∧ ∀z(z ∈ u↔ (S(z) ∧ z ⊆ x))].

6. (Axiom of Infinity) ∃u(S(u) ∧ ∀z[z ∈ u↔ N(z)]).

7. (Induction Schema) ∀x[∀y(y ∈ x ∧A(y))→ A(x)]→ ∀xA(x).

8. (Collection Schema)*

∀x[∀y ∈ x∃zA(y, z)→ ∃u(S(u) ∧ ∀y ∈ x∃z ∈ uA(y, z))].

This axiom strengthens the Replacement Schema.

We use IZFN to denote the formal system: A1 +A2 +A3 +A4.2.

Remark 2.2.2 * indicates the differences between CZF and IZF.

2.2.7 A5: (Semi-) Constructive axioms

From the constructive point of view, there are some classical axioms, for ex-
ample, the axiom of choice, which are not intuitionistically justified. Hence
we have to consider adding more intuitionistic axioms into our systems and
check their consistency. Some of these axioms even contradict the classi-
cal axioms and some are simply the weaker versions of the classical ax-
ioms. We use n,m, l, p, q to denote meta-variables ranging over naturals
and x, y, z, a, b, c, u, v to denote meta-variables ranging over Variables. We
also use the following abbreviations:

• ∀nA(n) ≡ ∀x[N(x)→ A(x)];
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• ∃nA(n) ≡ ∃x[N(x) ∧A(x)];

• ∃!mA(m) ≡ ∃mA(m) ∧ ∀x∀y[A(x) ∧A(y)→ x = y];

• ∀x ∈ a∃!yA(x, y) ≡ ∀x[x ∈ a→ (∃yA(x, y) ∧ ∀b∀c(A(x, b) ∧ A(x, c)→
b = c))];

• f ⊆ N ×N ≡ ∀x ∈ f∃y∃z[x = (y, z) ∧ (N(y) ∧N(z))];

• f ⊆ N × a ≡ ∀x ∈ f∃y∃z[x = (y, z) ∧ (N(y) ∧ z ∈ a)];

• f ⊆ y × x ≡ ∀a ∈ f∃b∃c[a = (b, c) ∧ (b ∈ y ∧ c ∈ x)];

• Fun(f,N) ≡ ∀x ∈ f [∃y∃z(N(y) ∧ x = (y, z))] ∧ ∀n∃!z(n, z) ∈ f ( i.e.,
f is a function with domain N);

• Fun(f, a) ≡ ∀x ∈ f [∃y∃z(y ∈ a ∧ x = (y, z))] ∧ ∀x ∈ a∃!y(x, y) ∈ f (
i.e., f is a function with domain a);

• Fun(f,N,N) ≡ f ⊆ N ×N ∧ ∀n∃!m(n,m) ∈ f ( i.e., f is a function
with domain N and range N);

• Fun(f,N, a) ≡ f ⊆ N × a ∧ ∀n∃!x ∈ a(n, x) ∈ f ( i.e., f is a function
with domain N and range a);

• SFun(f, y, x) ≡ Fun(f, y, x) ∧ ∀v ∈ x∃u ∈ y(u, v) ∈ f ( i.e., f is a
surjective function from y to x);

• Rel(r, a) ≡ ∀x ∈ r∃u ∈ a∃v[x = (u, v)] ∧ ∀u ∈ a∃v(u, v) ∈ r. ( i.e., r is
a binary relation with domain a);

• Base(y) ≡ ∀r[Rel(r, y)→ ∃g(Fun(g, y) ∧ g ⊆ r)];

• A(f(n)) ≡ ∃y[(n, y) ∈ f ∧A(y)];

• A(f(n), f(n+ 1)) ≡ ∃x∃y[(n, x) ∈ f ∧ (n+ 1, y) ∈ f ∧A(x, y)].

Non-classical axioms:

Definition 2.2.3 (Church’s thesis, CT0)

∀n∃mϕ(n,m)→ ∃l∀n∃p∃q(T (l, n, p) ∧ U(p, q) ∧ ϕ(n, q)),

where T represents Kleene’s T-predicate and U represents result-extraction
predicate. If one takes ϕ(n,m) ≡ (m = 0→ A(n))∧(m 6= 0→ B(n)), where
A(n) ≡ ∀l¬T (a, n, l) and B(n) ≡ ∀l¬T (b, n, l), then we call this instance
CTab

0 .
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Definition 2.2.4 (Church’s thesis, CT0!)

∀n∃!mϕ(n,m)→ ∃l∀n∃p∃q(T (l, n, p) ∧ U(p, q) ∧ ϕ(n, q)).

Definition 2.2.5 (Extended Church’s thesis, ECT0)

∀x[N(x) ∧ η(x)→ ∃y(N(y) ∧ ϕ(x, y))→

∃l[N(l)∧∀n(N(n)∧η(n)→ ∃p, q(N(p)∧N(q)∧T (l, n, p)∧U(p, q)∧ϕ(n, q)))],

where η is any almost negative formula (c.f. [20]).

Definition 2.2.6 (Uniformity Principle, UP)

∀x[S(x)→ ∃nA(x, n)]→ ∃n∀x[S(x)→ A(x, n)].

This axiom basically says that the only possible way to label a class of sets
by numbers is to give each set the same number.

Definition 2.2.7 (Unzerlegbarkeit, UZ)

[∀x(S(x)→ B(x) ∨ C(x))]→ ∀x(S(x)→ B(x)) ∨ ∀x(S(x)→ C(x)).

This axiom indeed is a theorem of UP by setting A(x, n) to be (n = 0 →
B(x)) ∧ (n 6= 0→ C(x)).
classical axioms:

Definition 2.2.8 (Axiom of Choice, ACN )

∀f [(Fun(f,N) ∧ ∀n∃y ∈ f(n))→ ∃g(Fun(g,N) ∧ ∀n(g(n) ∈ f(n)))].

This axiom restricts AC and says every countable family of nonempty sets
has a choice function.

Definition 2.2.9 (Axiom of Choice, ACN2)

∀n∃y ∈ {0, 1}A(n, y)→ ∃g[Fun(g,N, {0, 1})∧∀n∃m((n,m) ∈ g∧A(n,m))].

This axiom says every total numerical relation with range {0, 1} has a
sub-function.

Definition 2.2.10 (Axiom of Choice, ACNN )

∀n∃mA(n,m)→ ∃f [Fun(f,N,N) ∧ ∀n∃m((n,m) ∈ f ∧A(n,m))].

This axiom says every total numerical relation has a sub-function.
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Definition 2.2.11 (Axiom of Choice, ACNN !)

∀n∃!mA(n,m)→ ∃f [Fun(f,N,N) ∧ ∀n∃m((n,m) ∈ f ∧A(n,m))].

Definition 2.2.12 (Dependent Choice, DC)

∀a∀b[b ∈ a ∧ ∀x ∈ a∃y ∈ aA(x, y)→
∃f(Fun(f,N, a) ∧ (0, b) ∈ f ∧ ∀nA(f(n), f(n+ 1)))].

Definition 2.2.13 (Dependent Choice, DCNN )

∀l[∀n∃mA(n,m)→ ∃f(Fun(f,N,N) ∧ (0, l) ∈ f ∧ ∀nA(f(n), f(n+ 1)))].

Definition 2.2.14 (Relativized Dependent Choice, RDC)

∀z[B(z) ∧ ∀x(B(x)→ ∃y(B(y) ∧A(x, y)))

→ ∃f(Fun(f,N) ∧ (0, z) ∈ f ∧ ∀n(B(f(n)) ∧A(f(n), f(n+ 1))))].

Definition 2.2.15 (Presentation Axiom, PAX)

∀x(S(x)→ ∃y∃f [Base(y) ∧ SFun(f, y, x)]).

Definition 2.2.16 (Independence of Premises, IP)

(¬θ → ∃xA(x))→ ∃x(¬θ → A(x)),

where θ is any closed formula.

Definition 2.2.17 (Markov’s Principle, MP)

[∀n(A(n) ∨ ¬A(n)) ∧ ¬¬∃n(A(n))]→ ∃n(A(n)).

Definition 2.2.18 (Weak Markov’s Principle, MPpr)

¬¬∃n(A(n))→ ∃n(A(n)),

where A is a primitive recursive formula.

Definition 2.2.19 (Bounded Markov’s Principle, B
∑0

2 −MP)

¬¬∃n ≤ m∀kA(n, k, e)→ ∃n ≤ m∀kA(n, k, e),

where A is a primitive recursive formula.

In conclusion, we have introduced formal systems to accommodate both
Heyting arithmetic, intuitionistic set theories and various semi-constructive
axioms. In the later chapters, we will study the properties of these systems
by some semantical approaches.



Chapter 3

Applicative structure and
universes

This chapter is the preparation for our later chapters. First of all, we men-
tion a theory of computation APP. Any model of APP is called an applica-
tive structure. In Section 3.1, we introduce the language for this theory and
some of its fundamental properties. We then give a model for this theory.

Secondly, in Section 3.2, we study various transfinite inductions and
inductive definitions which overcome the lack of the Powerset Axiom CZFN .
These inductions play important roles in the formalization of our semantics.

Thirdly, in Section 3.3, we define our external universe and construct
the internal universes for both the realizability and forcing interpretations.

3.1 Language for APP

The language describing APP (or LApp) has been used in the literature, in
particular, McCarty’s Ph.D. thesis [15] and Michael Rathjen’s paper [20].
We paraphrase this language as follows: First of all, the symbols (for vari-
ables, constants and predicates) of the language are defined as follows:

• Variables (V ar): x1, x2, x3, ..., xn....

• Constants (Con): 0, k, s, d, , 0, 1

• Predicates: (unary) N , (binary) =, (ternary) App

Now we define the collection of all the terms TermApp to be the collection
of Var and Con and then define the collection of all the atomic formulae
AutoFApp to be {App(t, u, v)|t, u, v ∈ TermApp}∪{u = v|u, v ∈ TermApp}∪

26
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{N(u)|u ∈ TermApp}. Finally, we define the collection of all the formulae
FormApp to be the smallest class which contains AutoFApp and is closed
under the logical connectives: ∧,∨,¬,→,∃,∀.

In order to define applicative axioms in a more economical way, we have
to extend the language at the meta-level and use some abbreviations. First
of all, we inductively define the class of all application terms Appterm as
follows:

• If t ∈ TermApp, then t ∈ Appterm;

• If u, v ∈ Appterm, then (uv) ∈ Appterm.

To simplify notations, we use the following abbreviations:

• t1t2t3...tn ≡ (...((t1t2)t3)...tn), where t1, t2, t3..., tn ∈ Appterm.

• 〈xi, xj〉 ≡ (((xi))xj).

• x0 ≡ (0x) and x1 ≡ (1x).

• xα0 ≡ (0xα), where α is any string of numbers of 0 and 1.

• xα1 ≡ (1xα), where α is any string of numbers of 0 and 1.

Secondly, we have to define a meta-predicate (application equality) '
over Appterm × Appterm and a meta-predicate (defined application) ↓ over
Appterm as follows:

• (application equality) s ' a: If a ∈ V ar, then define s ' a ≡ s = a,
if s ∈ TermApp and if s is a compound term, i.e., in the form of (uv),
then we inductively define s ' a as ∃x∃y[u ' x∧ v ' y∧App(x, y, a)].
If a ∈ Appterm\V ar, then define s ' a ≡ ∀x[s ' x↔ a ' x].

• (defined application) t ↓≡ ∃y(t ' y).

Remark 3.1.1 Observe that each meta-formula corresponds to some formal
formula in LApp as every meta-formula containing ' and ↓ can be defined
by = and App.

Remark 3.1.2 We will use xi, xj , xk, xh, x1, x2, ..., xn, xn+1, y, z to denote
the meta-variables ranging over V ar.
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3.1.1 Applicative axioms (APP)

A standard setting of the Applicative axioms includes IPL with the Identity
Axioms, the arithmetical axioms and the following non-logical Axioms:

(App1) App(xi, xj , xk) ∧App(xi, xj , xh)→ xk = xh.

(App2) kxixj ↓ ∧kxixj ' xi.

(App3) sxixj ↓ ∧sxixjxk ' (xixk)(xjxk).

(App4) 〈xi, xj〉 ↓, x0 ↓, x1 ↓, 〈xi, xj〉0 ' xi and 〈xi, xj〉1 ' xj .

(App5) N(xi) ∧N(xj) ∧ xi = xj → dyzxixj ↓ ∧dyzxixj ' y.

(App6) N(xi) ∧N(xj) ∧ xi 6= xj → dyzxixj ↓ ∧dyzxixj ' z.

3.1.2 Fundamental consequences

Claim 3.1.3 (APP) ' is an equivalence relation.

Proof. (Reflexive) t ' t : This follows immediately from the definition.
(Symmetric) t1 ' t2 ↔ t2 ' t1 : If t2 ∈ V ar, then t1 ' t2 ↔ t2 ' t1

follows immediately from the definition. If t2 ∈ Appterm\Termapp, then t1 '
t2 ↔ t2 ' t1 follows immediately from the definition as well. (Transitive)
t1 ' t2 ' t3 → t1 ' t3 : It also follows immediately from the definitions.

Corollary 3.1.4 (APP) t1 ' t2 → (t3t1) ' (t3t2),
where t1, t2, t3 ∈ Appterm.

Proof. Let x be arbitrary such that (t3t1) ' x. Then by the definition,
∃u∃v(t3 ' u∧ t1 ' v ∧App(u, v, x)). By Claim 3.1.3 and the definition, the
result t3t2 ' x follows immediately.

Claim 3.1.5 (APP) t ' x ∧ t ' y → x = y, where t ∈ Appterm and
x, y ∈ V ar.

Proof. One shows this by induction on the complexity of t. If t ∈ V ar,
then it follows immediately by the definition and the Identity Axiom. Now
assume t = (t1t2) and

t1 ' u ∧ t1 ' v → u = v, t2 ' u ∧ t2 ' v → u = v, (3.1)
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and assume t ' x ∧ t ' y. By the definition we have

∃x1∃x2[t1 ' x1 ∧ t2 ' x2 ∧App(x1, x2, x)],

∃z1∃z2[t1 ' z1 ∧ t2 ' z2 ∧App(z1, z2, y)].

By the assumption (3.1), it follows that x1 = z1∧x2 = z2, i.e., by IPL with
the Identity Axiom, and (App1) x = y.

Definition 3.1.6 For each x ∈ V ar, we define an abstraction operator λx. :
Appterm → Appterm inductively as follows:

• λx.x ≡ (sk)k.

• λx.y ≡ ky, if y 6= x.

• λx.(θη) ≡ s(λx.θ)(λx.η).

Definition 3.1.7 λxn+1.λxn....λx2.λx1.t ≡ λxn+1.(λxn....λx2.λx1.t)

Definition 3.1.8

t[x1/t1, ..., xn/tn, xn+1/tn+1] ≡ (t(x1/t1, ..., xn/tn, xn))[xn+1/tn+1],

where xl/tl means that the variable xl is substituted by the term tl.

Remark 3.1.9 By mathematical induction, λxn+1.λxn....λx2.λx1.t ∈ Appterm
and t[x1/t1, x2/t2, ..., xn/tn] ∈ Appterm for ∀n ∈ N, where t ∈ Appterm.

Theorem 3.1.10 Let x ∈ V ar and t1, t2 ∈ Appterm be arbitrary. Then
λx.t1 ∈ Appterm and APP ` ((λx.t1)t2) ' t1[x/t2].

Proof. This follows immediately from the definitions and the inductive
hypothesis.

Corollary 3.1.11 Let x1, x2, ..., xn ∈ V ar and t, t1, t2, ..., tn ∈ Appterm.
Then

λx1.λx2....λxn.t ∈ Appterm
and

APP ` (λx1.λx2....λxn.t)t1t2...tn ' t[x1/t1, x2/t2, ..., xn/tn].

Proof. It follows from Theorem 3.1.10, the definitions and the inductive
hypothesis.
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Notation 3.1.12 Ω ≡ λx.[(λy.(x(yy)))(λy.(x(yy)))]. It will be called a
fixed-point generator because of the following theorem.

Theorem 3.1.13 (APP) Ω ∈ Appterm ∧ ∀t ∈ Appterm[t(Ωt) ' Ωt].
Proof. It follows immediately from Theorem 3.1.10.

When we do the transfinite recursion, we will encounter the question:
given t ∈ Appterm, what’s the solution for q ∈ Appterm such that (tq) ' q?
Moreover, sometimes we do have to apply mutual transfinite inductions and
which will involve the following question: given t, t̃ ∈ Appterm, what’s the
solution for u, v ∈ Appterm such that (tu)v ' u and (t̃u)v ' v? In the
following we will demonstrate how to find the solutions for these questions.

Corollary 3.1.14 (APP) Let t ∈ Appterm be arbitrary. Then tq ' q,
where q denotes the term (λy.t(yy))(λy.t(yy)).

Proof. This follows immediately from Theorem 3.1.13.

Corollary 3.1.15 Let t, t̃ ∈ Appterm be arbitrary. Then APP ` tuv '
u∧t̃uv ' v, where u ≡ (Ω(λx.〈tx0x1, t̃x0x1〉))0∧v ≡ (Ω(λx.〈tx0x1, t̃x0x1〉))1.

Proof. Let l ≡ λx.〈tx0x1, t̃x0x1〉 ∈ Appterm. Then by Theorem 3.1.13
l(Ωl) ' Ωl, i.e.,

〈t(Ωl)0(Ωl)1, t̃(Ωl)0(Ωl)1〉 ' Ωl,

i.e., by Corollary 3.1.4 and the axiom App4,

t(Ωl)0(Ωl)1 ' (Ωl)0 ∧ t̃(Ωl)0(Ωl)1 ' (Ωl)1.

3.1.3 Kl is a model for APP

Let N be the natural numbers. Each partial recursive function can be ef-
fectively associated with one natural number via Kleene’s Normal Form
Theorem: there exists a primitive recursive predicates T and a primitive
recursive function U ′ such that for any partial recursive function f , there is a
code (or a Gödel number) k such that ∀~x[f(~x) ' U ′(µy(T (k, ~x, y)))], where
µ is the minimization operator. For convenience, we will simply write f# to
denote a code of f . Another important theorem is the S-M-N Theorem:
for every m+n there is a total recursive function smn : Nm+1 → N such that
for any (m+n)-ary partial recursive function {e}, {e}(~x, ~y) ' {smn(e, ~x)}(~y).
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Because of this theorem, it is sufficient to consider only unary partial recur-
sive functions. Another feature of this theory is that recursively enumerable
sets (or r.e. sets) can be identified with Σ0

1-formulae definable sets. The
proofs of these statements can be found in standard textbooks, for exam-
ple, [11] or [4].

Notation 3.1.16 PRF ≡the set of all the partial recursive functions.

Notation 3.1.17 PRF# ≡the set of all the Gödel numbers of members of
PRF .

Notation 3.1.18 {n} ≡ the partial recursive function whose Gödel number
is n and n ·m ≡ {n}(m).

Notation 3.1.19 n ·m ↓≡ ∃zT (n,m, z) and n ·m ↑≡ ∀z¬T (n,m, z).

Notation 3.1.20 n ·m ↓ l ≡ ∃zT (n,m, z) ∧ U(µzT (n,m, z), l).

In order to interpret constants in APP, we single out the following
partial recursive functions:

1. A total recursive function k : N→ N with k(n) := n#, where n : N→
N with n(m) := n for all m ∈ N.

2. A partial recursive function s ≡ s21(s#
21, s

#
21, f

#) , where f(n,m, l) :=
(n · l) · (m · l). Since f is a partial recursive function, by repeatedly
applying the S-M-N theorem, we have

(n · l) · (m · l) ' {s21(f#,m, n)} · l ' {s21(s#
21, f

#,m)} · n · l '
{s21(s#

21, s
#
21, f

#)} ·m · n · l.

3. (disjunction function) d : N×N×N×N→ N where d(x, y, u, v) := x,
if u = v and d(x, y, u, v) := y, if u 6= v.

4. (pairing function) 〈, 〉 : N × N → N, where 〈, 〉 is a bijective primitive
recursive function from N× N to N.

5. (left unpairing) 〈〉0 : N→ N is the left inverse function of 〈, 〉.

6. (right unpairing) 〈〉1 : N→ N is the right inverse function of 〈, 〉.

Notation 3.1.21 We will use e0 to denote 〈〉0(e) and e1 to denote 〈〉1(e).
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Remark 3.1.22 From now on, we will use dxyuv to denote the disjunction
function d(x, y, u, v). However, if the forms of x, y are rather lengthy, then
we will use d[x][y]uv to denote dxyuv.

Definition 3.1.23 Kl ≡ (N, k#, s#, d#, 〈, 〉#, 〈〉#0 , 〈〉#1 , ·), where n ·m is de-
fined to be {n}(m), if {n}(m) ↓ and n ·m ↑, if {n}(m) ↑.
Theorem 3.1.24 (CZFN ) Kl is a model of APP.

Proof. If one interprets k, s, d, , 0, 1 to be k#, s#, d#, 〈, 〉#, 〈〉#0 , 〈〉#1
respectively and interprets N(n), () and App(n,m, l) to be n ∈ N, · and
n ·m ↓ l respectively, then the result follows immediately.

In order to define λ-terms for Kl, first of all, one extends the set Con-
stants to be {0, 1, 2, .., n, ...} and makes the same definitions as in 3.1.6. We
call these extended λ-terms. Then one replaces all the constants in the closed
extended λ-terms (i.e., the terms consisting only of constants) by their in-
terpretations in Kl. For example, the extended λ-term λx.(mx) (i.e., by the
definition, ((s(km))(skk))) is replaced by ((s# · (k# ·m)) · ((s# · k#) · k#)).
Now one defines the set of all the λ-terms for Kl to be the set of all such
replacements of all the closed extended λ-terms. Furthermore, for each λ-
term for Kl, we replace every occurrence of the symbol λ in the λ-term with
Λ to indicate its code.

Then one can apply the results derived in Subsection 3.1.2. For example,
the fixed point generator Ω in PRF# will be denoted by Λx.[(Λy.(x · (y ·
y)) · (Λy.(x · (y · y)))]. From now on, we will use Ω to denote Λx.[(Λy.(x · (y ·
y)) · (Λy.(x · (y · y)))].

Remark 3.1.25 In this thesis we also apply relative computation. All the
results are exactly the same if one replaces T by TA, where TA is a relativized
T-predicate and A is a partial function from N to N.

3.2 Transfinite induction & inductive definition

This section is based on Section 5 in Peter Aczel and Michael Rathjen’s
report [1] and Section 3 in Michael Rathjen’s paper [20]. Since object in-
ductions and some of its instances and variants are heavily applied, we
isolate them in this section to study some of their properties that will be
used throughout this thesis. In order to facilitate the whole argument, let
us define some predicates in advance. Define Tran(x) (x is transitive) as

∀y∀z(y ∈ z ∧ z ∈ x→ y ∈ x).
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Define On(x) (x is an ordinal) as

Tran(x) ∧ ∀y ∈ x(Tran(y)).

Define TransClos(x, y) (y is a transitive closure of x, i.e., y is the least
transitive set that contains x) by

[S(y) ∧ Tran(y) ∧ x ⊆ y] ∧ ∀z([S(z) ∧ Tran(z) ∧ x ⊆ z]→ y ⊆ z).

Later on we will show for any set x, there is a unique set y such that y is
the transitive closure of x and we will use TC(x) to denote this unique y.

Moreover, we use On to denote the class of all the ordinals. Furthermore,
we define a rank function rk as follows: for any set a, rk(a) := ∪{rk(b) + 1 :
b ∈ a}, where rk(b) + 1 ≡ rk(b) ∪ {rk(b)}.

3.2.1 Transfinite inductions

In this thesis, we will apply the following transfinite inductions to construct
functions by transfinite recursion, or to build up internal universes or to do
the reasoning over the whole universe (external or internal). Different names
are assigned to indicate the nature of the inductions. All the quantifiers used
in this section range over the class V ≡ {b : N(b) ∨ S(b)}.

• Object Induction: ∀x[(∀y ∈ xϕ(y))→ ϕ(x)]→ ∀xϕ(x). This provides
a proof when one wants to do reasoning about the whole universe of
objects. Some of its variants and instances turn out to be very useful.

• Transitive Closure (TC) induction: ∀x[(∀y ∈ TC(x)ϕ(y)) → ϕ(x)] →
∀xϕ(x). This is a variant (cf. Lemma 3.2.5) of Object Induction.

• C2-induction: ∀x∀y[(∀u∀v((u, v) C2 (x, y) → A(u, v))) → A(x, y)] →
∀x∀yA(x, y), where (u, v) C2 (x, y) ≡ [(u = x ∨ u ∈ TC(x)) ∧ (v =
y∨v ∈ TC(y))]∧¬(u = x∧v = y). This is a theorem of TC-induction
(cf. Corollary 3.2.7). This induction will be applied when we want to
construct a transfinite recursion function (cf. Claim 3.2.9).

• C3-induction: ∀x∀y∀z[(∀u∀v∀k((u, v, k) C3 (x, y, z) → A(u, v, k))) →
A(x, y, z)] → ∀x∀y∀zA(x, y, z), where (u, v, k) C3 (x, y, z) ≡ [(u =
x∨ u ∈ TC(x))∧ (v = y ∨ v ∈ TC(y))∧ (k = z ∨ k ∈ TC(z))]∧¬(u =
x ∧ v = y ∧ k = z). This is a theorem of TC-induction (cf. Claim
3.2.6). This induction will be applied when we want to interpret IA3
and IA4.
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• Set Induction: ∀x[(∀y ∈ x(S(y) → ϕ(y))) → (S(x) → ϕ(x))] →
∀x(S(x) → ϕ(x)). This is an instance of Object Induction. If one
replaces ∀y ∈ x with ∀y ∈ TC(x), then it becomes an instance of TC
induction.

• Ordinal Induction: ∀x[(∀y ∈ x(On(y)→ ϕ(y)))→ (On(x)→ ϕ(x))]→
∀x(On(x) → ϕ(x)). This is an instance of Object Induction. If one
replaces ∀y ∈ x with ∀y ∈ TC(x), then it becomes an instance of TC
induction. Since we construct our internal set universe along the ordi-
nals, this induction becomes the main tool used in this thesis whenever
we do some reasoning regarding the whole internal set universe.

• Mathematical Induction: ϕ(0̄)∧∀x∀y[N(x)∧N(y)∧ϕ(x)∧SUC(x, y)→
ϕ(y)]→ ∀x[N(x)→ ϕ(x)].

Claim 3.2.1 (CZFN ) ∀x∃!y(TransClos(x, y)).

Proof. If x ∈ N, then TC(x) = ∅. If x is a set, then by Object Induction
and Replacement the result follows.

Remark 3.2.2 For each object k, we use TC(k) (or simply kt∗) to denote
the unique transitive closure of k.

Corollary 3.2.3 (CZFN ) (1) b ∈ a∨b ⊆ a∨b ∈ TC(a)→ TC(b) ⊆ TC(a);
(2) ∀a[S(a)→ TC(a) = a ∪ ( ∪

x∈a
TC(x))].

Proof. (1) Since b ∈ a ⊆ TC(a), it follows b ∈ TC(a), i.e., b ⊆ TC(a)
and that by Claim 3.2.1 and the definition, the results follow. (2) a ∪
( ∪
x∈a

TC(x)) ⊆ TC(a) follows immediately from (1). To show TC(a) ⊆
a ∪ ( ∪

x∈a
TC(x)) it suffices to prove a ∪ ( ∪

x∈a
TC(x)) is a transitive set which

contains a. Let c, b be arbitrary such that c ∈ b ∈ a ∪ ( ∪
x∈a

TC(x)). Then it

follows c ∈ ∪
x∈a

TC(x).

Claim 3.2.4 (CZFN ) [∀x(ϕ[xt∗] → ϕ(x))] → ∀x((∀z ∈ xϕ[zt∗]) → ϕ[xt∗]),
where ϕ[xt∗] ≡ ∀y ∈ TC(x)ϕ(y).

Proof. Assume
[∀x(ϕ[xt∗]→ ϕ(x))]. (3.2)
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We have to show ∀x[(∀z ∈ xϕ[zt∗] → ϕ[xt∗])]. If x is a number, then it
follows that TC(x) = ∅ and ϕ[xt∗] and thus ∀z ∈ xϕ[zt∗] → ϕ[xt∗]. If x is a
set, then we have the following inferences: Assume

∀z ∈ xϕ[zt∗]. (3.3)

Now we have to show ϕ[xt∗]. Assume y ∈ TC(x). By Corollary 3.2.3, it
follows that y ∈ x ∨ y ∈ TC(k) for some k ∈ x. If y ∈ x, then from (3.2)
and (3.3), it follows that ϕ(y). If y ∈ TC(k) for some k ∈ x, then by (3.3)
and the definition, the result ϕ(y) follows immediately.

Lemma 3.2.5 [TC-induction] (CZFN )

[∀x(ϕ[xt∗]→ ϕ(x))]→ ∀xϕ(x),

where ϕ[xt∗] ≡ ∀y ∈ TC(x)ϕ(y).

Proof. Assume ∀x(ϕ[xt∗]→ ϕ(x)). By Claim 3.2.4, it follows that ∀x((∀z ∈
xϕ[zt∗]) → ϕ[xt∗]). Then by Object Induction, one has ∀xϕ[xt∗]. Again by
the assumption, the result ∀xϕ(x) follows.

Claim 3.2.6 TC-induction implies C3-induction.

Proof. Assuming the antecedent of C3, we have to show ∀x∀y∀zA(x, y, z).
Let a ∈ V be arbitrary. By TC-induction, it suffices to prove

∀x ∈ TC(a)B(x)→ B(a),

where B(x) ≡ ∀y∀zA(x, y, z). Assume

∀x ∈ TC(a)B(x). (3.4)

I have to show B(a), i.e., ∀y∀zA(a, y, z). Now let b ∈ V be arbitrary. By
TC-induction, it suffices to prove ∀k ∈ TC(b)∀zA(a, k, z) → ∀zA(a, b, z).
Assume

∀k ∈ TC(b)∀zA(a, k, z). (3.5)

I have to show ∀zA(a, b, z). Let c ∈ V be arbitrary. By TC-induction, it
suffices to prove ∀h ∈ TC(c)A(a, b, h)→ A(a, b, c). Assume

∀h ∈ TC(c)A(a, b, h). (3.6)

Now I have to show A(a, b, c). By the antecedent of C3, it suffices to prove
∀x1, x2, x3[(x1, x2, x3) C3 (a, b, c) → A(x1, x2, x3)]. Now let x1, x2 and x3

be arbitrary such that (x1, x2, x3) C3 (a, b, c). If x1 ∈ TC(a), then by (3.4)
A(x1, x2, x3). If x1 = a and x2 ∈ TC(b), then by (3.5), also A(x1, x2, x3). If
x1 = a, x2 = b and x3 ∈ TC(c), then by (3.6), it follows that A(x1, x2, x3)
as well.
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Corollary 3.2.7 TC-induction implies C2-induction:

Proof. This is the same as above by modifying arity 3 to arity 2.

Claim 3.2.8 C2 is transitive.

Proof. Let a, b, c, d, e, f ∈ V be such that (a, b) C2 (c, d) and (c, d) C2 (e, f).
By the definitions, it follows that (a = e∨a ∈ TC(e))∧ (b = f ∨b ∈ TC(f)).
The only condition that has to be checked is ¬(a = e ∧ b = f). By object
induction ∀x ∈ V ¬(x ∈ x), and thus ∀x ∈ V ¬(x ∈ TC(x)). So if we assumes
a = e ∧ b = f , we have the conclusion e ∈ TC(e) ∨ f ∈ TC(f) which yields
a contradiction.

The following claim will be applied to formalize the informal interpre-
tations (cf. Section 4.3). To this end, it suffices to consider the following
special non-parameterized version:

Claim 3.2.9 (transfinite recursion) (CZFN )
For any CZFN -definable class function H : V 2 × V → V , there exists
uniquely a class function F : V 2 → V such that

∀(y, z) ∈ V 2[F (y, z) = H((y, z), F �(y,z))],

where F �(y,z) denotes

({((y, s), F (y, s)) : s ∈ TC(z)}, {((s, y), F (s, y)) : s ∈ TC(z)},

{((t, z), F (t, z)) : t ∈ TC(y)}),
or (formally) ∀x ⊆ V 2∃!f : x→ V such that

∀(y, z) ∈ x[f(y, z) = H((y, z), f �(y,z))].

Proof. We will show this by C2-induction and Replacement. Define

(a, b)J := {(c, d) : (c, d) C2 (a, b) ∨ (d, c) C2 (a, b)}.

Observe that (c, d) ∈ (a, b)J ↔ (d, c) ∈ (a, b)J, (a, b)J = (b, a)J and

(c, d) C2 (a, b)→ (c, d)J ⊆ (a, b)J.

Let Fun(f, a, b) denote the predicate ‘f is a function with domain a and
range b’. Assume for all (c, d) C2 (a, b)∃!t

Fun(t, (c, d)J, V ) ∧ ∀(u, v) ∈ (c, d)J[(t(u, v) = H((u, v), t �(u,v)))], (3.7)
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where t �(u,v) denotes

({((u, s), t(u, s)) : s ∈ TC(v)}, {((s, u), t(s, u)) : s ∈ TC(v)},

{((k, v), t(k, v)) : k ∈ TC(u)}).
From this, ∀(c, d) ∈ (a, b)J∃!t

Fun(t, (c, d)J, V ) ∧ ∀(u, v) ∈ (c, d)J[(t(u, v) = H((u, v), t �(u,v)))]. (3.8)

Then by Replacement, there is a set function T : (a, b)J → V such that for
all (c, d) ∈ (a, b)J, Fun(T (c, d), (c, d)J, V ) and

∀(u, v) ∈ (c, d)J[(T (c, d))(u, v) = H((u, v), T (c, d) �(u,v))]. (3.9)

With this and the assumption that H is a class function, one has

∀(c, d) ∈ (a, b)J∃!v[H((c, d), T (c, d) �(c,d)) = v],

where T (c, d) �(c,d) denotes

({((c, s), (T (c, d))(c, s)) : s ∈ TC(d)}, {((s, c), (T (c, d))(s, c)) : s ∈ TC(d)},

{((k, d), (T (c, d))(k, d)) : k ∈ TC(c)}).
Then by Replacement, there is a function F : (a, b)J → V such that

∀(c, d) ∈ (a, b)J[F(c, d) = H((c, d), T (c, d) �(c,d))]. (3.10)

Now we claim

∀(c, d) ∈ (a, b)J[F(c, d) = H((c, d),F �(c,d))],

where F �(c,d) denotes

({((c, s),F(c, s)) : s ∈ TC(d)}, {((s, c),F(s, c)) : s ∈ TC(d)},

{((k, d),F(k, d)) : k ∈ TC(c)}).
It suffices to prove that F �(c,d)= T (c, d) �(c,d) . Let s ∈ V be arbitrary such
that s ∈ TC(d). By Claim 3.2.8, it follows that (c, s) ∈ (a, b)J and thus by
(3.10)

F(c, s) = H((c, s), T (c, s) �(c,s)).
By (3.8) one knows T (c, s) ⊆ T (c, d) and thus by (3.9)

F(c, s) = H((c, s), T (c, d) �(c,s)) = (T (c, d))(c, s).
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Following the same arguments, one reaches the result F �(c,d)= T (c, d) �(c,d) .
Hence we have shown that F is a function with domain (a, b)J such that

∀(c, d) ∈ (a, b)JF(c, d) = H((c, d),F �(c,d)).

Now we want to show the uniqueness of F . Let F ′ : (a, b)J → V be another
candidate such that

∀(c, d) ∈ (a, b)J[F ′(c, d) = H((c, d), F ′ �(c,d))]. (3.11)

Then by (3.8), it follows that ∀(u, v) ∈ (c, d)J[F ′(u, v) = F(u, v)] and thus
by the definition, F ′ �(c,d)= F �(c,d), i.e., F ′(c, d) = F(c, d). Hence by C2-
induction, we have shown that ∀x, y ∈ V ∃!f

[Fun(f, (x, y)J, V ) ∧ ∀(u, v) ∈ (x, y)J(f(u, v) = H((u, v), f �(u,v)))]. (3.12)

Now let K be arbitrary such that K ⊆ V 2. Then by the definition it follows
that K ⊆ (π0(K), π1(K))J, where π0(K) = {a ∈ ∪∪K : ∃b ∈ ∪∪K[(a, b) ∈
K]} and π1(K) = {b ∈ ∪ ∪K : ∃a ∈ ∪ ∪K[(a, b) ∈ K]}. Hence the result
follows immediately from (3.12).

3.2.2 Inductive definitions

Definition 3.2.10 K is an inductive definition iff K is a class of ordered
pairs of sets.

Definition 3.2.11 Define K1(a) := {b : (a, b) ∈ K} and K1[a] := ∪
b∈a
K1(b).

This definition indeed is inspired by proof theory. Each (a, b) ∈ K can
be viewed as given the premise a, the theorem b follows; while K1(a) can be
viewed as the collection of all the derivable theorems given the premise a.

Now let’s fix an inductive definition K. For any binary class C we use
C1(a) to denote the class {b : (a, b) ∈ C} and C1[a] to denote the class
∪
b∈a
C1(b).

Definition 3.2.12 ΓK(Y ) := {a : ∃x(x ⊆ Y ∧ (x, a) ∈ K)}. In some
sense this collects all the theorems that are derivable by using only some
premises in Y or all the premises in Y from K (a combination of premises
and theorems).
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Now define the predicate BR(g) (g is a binary relation) by

∀x ∈ g∃y∃z(x = (y, z)).

Define the predicate Good(g) (g is a good set) by

S(g) ∧BR(g) ∧ ∀a[g1(a) ⊆ ΓK(g1[a])].

This says that, in some sense g is already a saturated combination of premises
and theorems, i.e., there are no news theorems given the premises in g. Then
one glues all these saturated combinations together as follows:

Definition 3.2.13 G ≡ ∪{g: Good(g)}.

Definition 3.2.14 A class Y is K-closed iff ΓK(Y ) ⊆ Y , i.e., the premise
Y cannot produce any new theorem (or Y is saturated).

Claim 3.2.15 ΓK is a monotone operator, i.e., X ⊆ Y implies ΓK(X) ⊆
ΓK(Y ).

Proof. This follows immediately from the definition.

Lemma 3.2.16 [Class Inductive Definition] (CZFN ) For every inductive
definition K, one has ∀a[S(a)→ G1(a) = ΓK(G1[a])].

Proof. This is Lemma 5.2 in Peter Aczel and Michael Rathjen’s report [1].

Claim 3.2.17 ∀α, β ∈ On(α ∈ β ∨ α ⊆ β → G1[α] ⊆ G1[β]).

Proof. Let x ∈ G1[α] be arbitrary. Then by the definition, it follows that
∃γ ∈ α(x ∈ G1(γ)), i.e., ∃γ ∈ β(x ∈ G1(γ)), i.e., x ∈ G1[β].

3.3 Definitions of universes

3.3.1 External universe: V

Since we adopt two sorts of objects (sets and numbers) in our external
universe, we have to define some notations to differentiate them. We call a
set in the background set theory “an external set”(or simply a set) and
use S to denote the class of all the external sets. Similarly, any number
constructed by the Infinity Axiom in the background theory will be called
“an external number”(or simply a number). We use N to denote the set
of all the external numbers and V to denote the class of all the external
objects (i.e., V ≡ N ∪ S).
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3.3.2 Internal universe: V ∗

The internal universe will serve as the domain of discourse for quantifiers and
is constructed from the external universe V via ordinals. In this section, we
will mention two internal universes. The first one is the realizability universe
and the second one is the forcing universe. For the realizability part, we
identify either PRF , the set of all the partial recursive functions, or the set
of all the partial A-recursive functions (or Turing machines equipped with
an oracle which provides A(n) if it exists) with N. Then we construct the
realizability universe V ∗ as follows:

V N
α =

⋃

β∈α
P(N× (V N

β ∪ N))

S∗ =
⋃

α∈On
V N
α

V ∗ = N ∪ S∗

where P denotes the Powerset operation.
Since our forcing interpretation is a specific one intended to provide

conservativity results, we have to consider any arbitrary subset E of P, where
P is the set of all the finite partial functions from N to N. We define the
forcing universe V ∗ as follows

V E
α =

⋃

β∈α
P(E× (V E

β ∪ N))

S∗ =
⋃

α∈On
V E
α

V ∗ = N ∪ S∗

where P denotes the Powerset operation. We will call each element in the
universe S∗ an internal set and each element in V ∗ an internal object.
By CZFN in the background theory, one can formalize the informal notions
of universes as follows:

Claim 3.3.1 (CZFN ) S∗ and V ∗ can be formalized in CZFN by the class
∪

α∈On
G1[α] and N∪( ∪

α∈On
G1[α]) respectively, where G1 is defined in Subsection

3.2.2.

Proof. We show this by using an inductive definition. Consider the follow-
ing inductive definition.

K := {(x, a) : S(x) ∧ S(a) ∧ a ⊆ N× (x ∪ N)}.
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Then one has

ΓK(Y ) := {a : ∃x(x ⊆ Y ∧ (x, a) ∈ K)} = P(N× (Y ∪ N)).

Moreover, by Lemma 3.2.16 it follows that

∀a[S(a)→ G1(a) = ΓK(G1[a]) = P(N× (G1[a] ∪ N))],

in particular,

∀α[On(α)→ G1(α) = ΓK(G1[α]) = P(N× (G1[α] ∪ N))]. (3.13)

Now one formalizes V N
α as G1[α]. Since

G1[α] = ∪
β∈α
G1(β) = ∪

β∈α
ΓK(G1[β]),

by (3.13), it follows that

∀α[α ∈ On→ V N
α = ∪

β∈α
P(N× (V N

β ∪ N))].

Though we show the version for the realizability universe, the proof for
the forcing universe is exactly the same by replacing N with E.

Corollary 3.3.2 (CZFN ) (1) a ∈ S∗ → a ∈ S; (2) a ∈ V ∗ → (N(a) ∨
S(a)) ∧ ¬(N(a) ∧ S(a)).

Proof. Both follow immediately from the formalization a ∈ S∗ ≡ a ∈
∪

α∈On
( ∪
β∈α
G1(β)) and its background axiom: ∀x¬(N(x) ∧ S(x)).

Corollary 3.3.3 (CZFN ) N ∩ S∗ = ∅ and a ∈ V ∗ ∧ a ∈ S→a ∈ S∗.

Proof. Since S∗ is represented by the class ∪
α∈On

( ∪
β∈α
G1(β)), each element

of which is a set, by the axiom ∀x¬(N(x) ∧ S(x)), the result follows imme-
diately.

Claim 3.3.4 ∀α, β ∈ On[α ∈ β ∨ α ⊆ β → V N
α ⊆ V N

β ].

Proof. This follows immediately from Claim 3.3.1 and 3.2.17.

The following corollary is useful when one needs a bound to be able to
apply the Separation Scheme.
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Corollary 3.3.5 ∀a ∈ S∗[a ∈ V N
rk(a)+1].

Proof. Let α ∈ On be arbitrary. Assume ∀β ∈ α∀b ∈ V N
β (b ∈ V N

rk(b)+1).

Now let a ∈ V N
α be arbitrary. We have to show a ∈ V N

rk(a)+1. Let f ∈ N
and d ∈ V ∗ be arbitrary such that (f, d) ∈ a. Since d ∈ TC(a), one has
rk(d) + 1 ⊆ rk(a). By Claim 3.3.4 and the assumption, it follows that
d ∈ V N

rk(d)+1, i.e., a ⊆ N× (V N
rk(a) ∪ N) and thus a ∈ V N

rk(a)+1.

The following claim will be used frequently when we want to demonstrate
some classes are indeed internal sets or when we want to construct some
internal sets for the interpretation.

Claim 3.3.6 (CZFN ) If a ∈ S and a ⊆ N× V ∗, then a ∈ S∗.

Proof. The main point is to find an ordinal α that will serve as a rank
for a. This ordinal α is derived via Strong Collection. By the fact that
N× N ∈ V N

∅ ⊆ S∗, one rewrites a ⊆ N× V ∗ explicitly as follows:

∀x ∈ a∃β[β ∈ On ∧ ∃y ∈ V N
β (∃n ∈ N(x = (n, y)) ∨ (y = N× N ∧ x ∈ y))].

By Strong Collection, there exists a set E such that ∀x ∈ a∃β ∈ E

[β ∈ On ∧ ∃y ∈ V N
β (∃n ∈ N(x = (n, y)) ∨ (y = N× N ∧ x ∈ y))], (3.14)

and that ∀β ∈ E∃x ∈ a

[β ∈ On ∧ ∃y ∈ V N
β (∃n ∈ N(x = (n, y)) ∨ (y = N× N ∧ x ∈ y))]. (3.15)

From (3.15) we have E is a set consisting of ordinals. Thus we can define
the ordinal α to be α = ∪{β + 1 : β ∈ E}, where β + 1 abbreviates β ∪ {β}.
Since β ∈ E implies β ∈ α, one rewrites (3.14) as follows: ∀x ∈ a∃β ∈ α

[β ∈ On ∧ ∃y ∈ V N
β (∃n ∈ N(x = (n, y)) ∨ (y = N× N ∧ x ∈ y))],

i.e., by Claim 3.3.4,
a ⊆ N× (V N

α ∪ N),

i.e.,
a ∈ V N

α+1 ⊆ S∗.

Though we have just given the version for the realizability universe, the
statement and its proof for the forcing universe are exactly the same by
replacing N with E.
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In conclusion, we have introduced the concept and a model of an applica-
tive structure, transfinite inductions, inductive definitions and universes for
the formalization and discourse of our realizability and forcing interpreta-
tions. This chapter lays the foundations of our later chapters.



Chapter 4

Lifschitz’ style interpretation

Lifschitz modified Kleene’s recursive realizability and gave an interpretation
to separate CT0 from CT0!. Though he used an informal argument to show
this result, the amount of classical logic needed in his argument was explicitly
pointed out by Jaap van Oosten. Based on Lifschitz’ interpretation for HA,
we extend it to the context of IZFN . In Section 4.1, we introduce Lifschitz’
notion of a realizer which uses a criterion to differentiate CT0 from CT0!
and then we study the basic operations of these realizers.

In Section 4.2, we come up with and introduce an informal definition of a
new interpretation which, in some sense, combines Lifschitz’ interpretation
with McCarty’s interpretation. We call this new interpretation a Lifschitz’
style interpretation. Then, in Section 4.3, we give a formal version of this
interpretation.

In Section 4.4, we then derive some basic properties, in particular, a
faithful extension of Lifschitz’ original interpretation for Heyting arithmetic.
Most of the notations used in this chapter were defined in Section 3.1.3.

4.1 Lifschitz indices

This section is based on Jaap van Oosten’s paper [19] and Lifschitz’ paper
[13]. In order to fit our purposes, we derive the realizers in explicit forms.
Define

Dn ≡ |n| := {m ∈ N : m ≤ n1 ∧ ∀k¬T (n0,m, k)},
or in abbreviation

Dn ≡ {m ∈ N : m ≤ n1 ∧ n0 ·m ↑}.

44
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We call Dn a Lifschitz set and its subscript n a Lifschitz index. These
Lifschitz’ indices will serve a role of realizers. Though Dn is undecidable,
the complement of Dn turns out to be a r.e. (recursively enumerable) set;
moreover, the complement of ∪{Dn|n ∈ De} is also a r.e. set. Other indices
are essentially based on these two properties. The ingenious definition of
Dn relies on that the knowledge of the size of the set Dn eventually decides
the content of Dn. If we know the size of the set Dn (suppose k) in advance,
then we know there are n1 − k elements of the combination which will halt
its operation. Up to this point the remaining ones recover the content of
Dn. For any partial recursive function f , we use f# to indicate its code.
We also use the following abbreviations in this section:

Notation 4.1.1 ||De|| = 1 ≡ ∃n∀m[m ∈ De ↔ m = n].

Notation 4.1.2 Dsg(n) = {n} ≡ ∀m[m ∈ Dsg(n) ↔ m = n].

Notation 4.1.3 DΦ(e,f) = {f · g : g ∈ De} ≡ ∀h[h ∈ DΦ(e,f) ↔ ∃g ∈
De(h = f · g)].

Notation 4.1.4 Dun(e) = ∪
g∈De

Dg ≡ ∀h[h ∈ Dun(e) ↔ ∃g ∈ De(h ∈ Dg)].

Notation 4.1.5 HA′ ≡ HA + MPpr + B
∑0

2 −MP.

Lemma 4.1.6 There is a total recursive function sg such that

HA ` ∀n[Dsg(n) = {n}].

Proof. Define a partial recursive function by g(n,m) := 0, if n 6= m and
g(n,m) ↑, if n = m. Then by the S-M-N theorem and the definition one
has |〈Λm.{s11(g#, n)}(m), n〉| = {n}. Now one defines the total recursive
function sg(n) := 〈Λm.{s11(g#, n)}(m), n〉.

Lemma 4.1.7 There is a partial recursive function ∅ such that HA +
MPpr ` ∀e[||De|| = 1→ ∅(e) ↓ ∧∅(e) ∈ De].

Proof. Let e ∈ N be arbitrary. Let k ∈ N be arbitrary such that k ≤
e1 and k /∈ De, i.e., ¬¬∃mT (e0, k,m). By MPpr, one has ∀k ≤ e1(k /∈
De → ∃mT (e0, k,m)). Now define ∅(e) := µy[y ≤ e1 ∧ ∀l ≤ e1(l 6= y →
∃mT (e0, l,m))] and the result follows.
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Lemma 4.1.8 There is a partial recursive function Φ such that

HA′ ` ∀e∀f [∀g ∈ De(f · g ↓)→ Φ(e, f) ↓ ∧DΦ(e,f) = {f · g : g ∈ De}].

Proof. The proof is exactly the same as Lemma 2.4 in Jaap van Oosten’s
paper [19].

Lemma 4.1.9 There is a total recursive function un such that

HA′ ` ∀e[Dun(e) = ∪
g∈De

Dg].

Proof. The proof is exactly the same as Lemma 2.5 in Jaap van Oosten’s
paper [19].

4.2 Informal definitions

Let R be for any arbitrary primitive recursive relation. Let e ∈ N (the codes
of PRF ) and a, b, c ∈ V ∗ be arbitrary. To facilitate the description we use
the following abbreviations:

• n ·m ↓ v ≡ ∃k[N(k) ∧ T (n,m, k)] ∧ U(µzT (n,m, z), v).

• n ·m L ϕ ≡ ∃v(n ·m ↓ v ∧ v L ϕ).

• ∀(f, c) ∈ aϕ(f, c) ≡ ∀f ∈ N∀c ∈ V ∗((f, c) ∈ a→ ϕ(f, c)).

• ∃x ∈ aϕ(x) ≡ ∃x ∈ V ∗(x ∈ a ∧ ϕ(x)).

• n ∈ De ≡ n ≤ e1 ∧ ∀m¬T (e0, n,m).

• De 6= ∅ ≡ ∃n(n ∈ De).

• ∀q ∈ De[q L ϕ] ≡ De 6= ∅ ∧ ∀q ∈ De[q L ϕ].

• e0 ≡ 0(e), where 0 : N → N is a left unpairing function; e1 ≡ 1(e),
where 1 : N → N is a right unpairing function; 〈c, d〉 ≡ (c, d), where
 is a pairing function.

• ∀~a ∈ V ∗ϕ(~a) ≡ ∀a1, a2, ..., an ∈ V ∗ϕ(a1, a2, ..., an).

Recall L(V ∗) is the language for set theory with constants from the internal
universe V ∗. Let a, a1, a2, ..., an, b, c ∈ V ∗ be arbitrary. Then we inductively
define the following clauses on the complexity of L(V ∗):
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1. e L R(a1, a2, ..., an) iff a1, a2, ..., an ∈ N ∧R(a1, a2, ..., an).

2. e L N(a) iff a ∈ N ∧ e = a.

3. e L S(a) iff a ∈ S∗.

4. e L a ∈ b iff De 6= ∅ ∧ ∀d ∈ De∃c ∈ V ∗[(d0, c) ∈ b ∧ d1 L a = c].

5. e L a = b iff (a, b ∈ N ∧ a = b) ∨ [De 6= ∅ ∧ a ∈ S∗ ∧ b ∈ S∗ ∧ ∀d ∈
De(∀(f, c) ∈ a(d0 · f L c ∈ b) ∧ ∀(f, c) ∈ b(d1 · f L c ∈ a))].

6. e L A ∧B iff e0 L A ∧ e1 L B.

7. e L A∨B iff De 6= ∅∧∀d ∈ De[d0 = 0∧d1 L A]∨ [d0 6= 0∧d1 L B].

8. e L ¬A iff ∀f ∈ N¬(f L A).

9. e L A→ B iff ∀f ∈ N[f L A→ e · f L B].

10. e L ∀xA iff De 6= ∅ ∧ ∀d ∈ De∀c ∈ V ∗(d L A[x/c]).

11. e L ∃xA(x) iff De 6= ∅ ∧ ∀d ∈ De∃c ∈ V ∗(d L A[x/c]).

Furthermore, one defines e L A(x) iff e L ∀xA(x) and V ∗ |=L B iff
∃e[e ∈ N ∧ e L B].

4.3 Formal definitions

In correspondence to the informal definitions in Section 4.2, in this section
we will show how to provably define these informal definitions in the con-
text of CZFN . Though in this part it suffices to use the background theory
IZFN , to formalize relativized realizability and the forcing interpretation in
Chapter 6 and Chapter 7, we work in CZFN . If one is interested at for-
malizing informal interpretations in Section 6.1 and 7.1, then he can consult
this section.

To begin with, we use notations of class functions here. Nonetheless, the
unique existence of these class functions is provably definable in the context
of CZFN . In the following we show how to formalize the informal definitions
for atomic formulae via these class functions.

For each primitive recursive n-ary relation R, by Corollary 3.3.2, one
defines a class function FnR : (V ∗)n → {N, ∅} such that FnR(a1, a2, ..., an) = N,
if a1, a2, ..., an ∈ N ∧ R(a1, a2, ..., an) and FnR(a1, a2, ..., an) = ∅, otherwise.
Then the first clause can be formalized as follows:
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1′. e ∈ FnR(a1, a2, ..., an)↔ a1, a2, ..., an ∈ N ∧R(a1, a2, ..., an).
For the predicate N , one defines a class function FN : V ∗ → {{n} : n ∈

N} ∪ {∅} such that FN (a) = {a}, if a ∈ N and FN (a) = ∅, otherwise. Then
the second clause can be formalized as follows:

2′. e ∈ FN (a)↔ a ∈ N ∧ e = a.
For the predicate S, by Corollary 3.3.2, one defines a class function

FS : V ∗ → {N, ∅} such that FS(a) = N, if a ∈ S∗ and FS(a) = ∅, otherwise.
Then the third clause can be formalized as follows:

3′. e ∈ FS(a)↔ a ∈ S∗.
Now we want to formalize the clauses e L a = b and e L a ∈ b

simultaneously. The idea is to formalize this pair by a class function F with
domain V 2 such that

F (a, b) = ({e ∈ N : e L a ∈ b}, {e ∈ N : e L a = b}).

This definition aims to formalize the interpretations of ∈ and =. In the
following we want to show how to provably define this class function F
via transfinite recursion in the context of CZFN . If a = (b0, b1), then we
use ρi(a) to denote bi and y ∈ ρi(a) to denote the formula ∃b0∃b1[a =
(b0, b1) ∧ y = bi], where i ∈ {0, 1}. Now let us define a class function (based
on the interpretations of the predicates ∈ and =) G : V 3 → V 2 as follows:
(the first component aims to formalize ∈; while the second one, =)

G(x, y, z) := ({e ∈ N : ϕ(x, y, z, e)}, {e ∈ N : θ(x, y, z, e)}),

where ϕ(x, y, z, e) ≡ De 6= ∅ ∧ ∀d ∈ De∃c ∈ V ∗

(d0, c) ∈ y ∧ ∃u ∈ ρ3
0(z)[ρ0(u) = (x, c) ∧ d1 ∈ ρ1(ρ1(u))],

and θ(x, y, z, e) ≡ (N(x) ∧N(y) ∧ x = y)∨

[S(x) ∧ S(y) ∧De 6= ∅ ∧ ∀d ∈ De

∀(f, c) ∈ x∃u ∈ ρ3
2(z)(ρ0(u) = (c, y) ∧ d0 · f ∈ ρ0(ρ1(u)))∧

∀(f, c) ∈ y∃u ∈ ρ3
1(z)(ρ0(u) = (c, x) ∧ d1 · f ∈ ρ0(ρ1(u)))],

where u ∈ ρ3
i (z) denotes ∃x0, x1, x2[z = (x0, x1, x2)∧u ∈ xi] for i ∈ {0, 1, 2}.

Then by Claim 3.2.9, there is a unique class function F : V 2 → V such that

F (a, b) = G(a, b, F �(a,b)),
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where F �(a,b) denotes

({((a, c), F (a, c)) : c ∈ TC(b)}, {((c, a), F (c, a)) : c ∈ TC(b)},
{((d, b), F (d, b)) : d ∈ TC(a)}).

Now one formalizes e L a ∈ b as e ∈ ρ0(F (a, b)) and e L a = b as
e ∈ ρ1(F (a, b)). Then clause 4 and 5 are provably defined as follows:

4′. e ∈ ρ0(F (a, b)) ↔ De 6= ∅ ∧ ∀d ∈ De∃c ∈ V ∗[(d0, c) ∈ b ∧ d1 ∈
ρ1(F (a, c))].

5′. e ∈ ρ1(F (a, b))↔ (N(a) ∧N(b) ∧ a = b)∨
[S(a) ∧ S(b) ∧De 6= ∅ ∧ ∀d ∈ De

(∀(f, c) ∈ a(d0 · f ∈ ρ0(F (c, b))) ∧ ∀(f, c) ∈ b(d1 · f ∈ ρ0(F (c, a))))].
Based on these, the other clauses from 6 to 11 can be defined inductively

via the following classes which are defined on the complexity of L(V ∗):

• FA∧B := {e ∈ N : e0 ∈ FA ∧ e1 ∈ FB}.

• FA∨B := {e ∈ N : De 6= 0∧∀d ∈ De(d0 = 0∧ d1 ∈ FA)∨ (d0 6= 0∧ d1 ∈
FB)}.

• F¬A := {e ∈ N : ∀f ∈ N¬(f ∈ FA)}.

• FA→B := {e ∈ N : ∀f ∈ N[f ∈ FA → e · f ↓ ∧e · f ∈ FB]}.

• F∀xA(x) := {e ∈ N : De 6= 0 ∧ ∀c ∈ V ∗[De ⊆ FA(c)]}.

• F∃xA(x) := {e ∈ N : De 6= 0 ∧ ∀d ∈ De∃c ∈ V ∗[d ∈ FA(c)]}.

Now for each formula ϕ in these clauses, one formalizes e L ϕ as e ∈ Fϕ.
Furthermore, each open formula is formalized as its closure. Finally the
clause V ∗ |=L B is formalized as ∃e ∈ N(e ∈ FB).

4.4 Basic properties

Claim 4.4.1 〈Λg.α(g),Λk.β(k)〉 L A∨B ↔ ∃y[N(y)∧((y = 0→ A)∧(y 6=
0→ B))] for some partial recursive functions α and β.

Proof. Let g ∈ N be arbitrary such that g L A ∨ B. Then by the
definitions, one has ∀q ∈ Dg, if q0 = 0, then

〈Λn.q1, 0〉 L (q0 = 0→ A) ∧ (q0 6= 0→ B);
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if q0 6= 0, then

〈0,Λn.q1〉 L (q0 = 0→ A) ∧ (q0 6= 0→ B).

Hence by Lemma 4.1.8,

α(g) L ∃y[N(y) ∧ ((y = 0→ A) ∧ (y 6= 0→ B))],

where
α(g) := Φ(g,Λq.〈q0,d[〈Λn.q1, 0〉][〈0,Λn.q1〉]q00〉).

On the other hand, let k ∈ N be arbitrary such that

k L ∃y[N(y) ∧ ((y = 0→ A) ∧ (y 6= 0→ B))].

By the definition, it follows that

∀q ∈ Dk[q1  (q0 = 0→ A) ∧ (q0 6= 0→ B)].

Again by the definition, for all q ∈ Dk, if q0 = 0, then

q10 · q0 L A;

if q0 6= 0, then
q11 · q0 L B.

Hence by Lemma 4.1.8,
β(k) L A ∨B,

where β(k) := Φ(k,Λq.〈q0,d[q10 · q0][q11 · q0]q00〉).

Recall that IZF′N is an abbreviation for IZFN + MPpr + BΣ0
2 −MP.

Lemma 4.4.2 For any formula A(~x) in the language of set theory, one can
effectively assign a partial recursive function χA such that IZF′N ` ∀e ∈
N∀~a ∈ V ∗[(De 6= ∅ ∧ ∀d ∈ De(d L A(~a)))→ χA(e) L A(~a)].

Proof. We show this by induction on the complexity of the formulae.
For atomic formulae:
♦ A(~a) ≡ N(a): By the definition, ||De|| = 1 and thus by Lemma 4.1.7 one
assigns χA to be ∅.
♦ A(~a) ≡ S(a): By the definition, one can simply assign χA to be Λn.0.
♦ A(~a) ≡ a ∈ b: By the definition and Lemma 4.1.9 one can simply assign
χA to be Λe.un(e).
♦ A(~a) ≡ a = b: By the definition and Lemma 4.1.9 one can simply assign
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χA to be Λe.un(e).
♦ A(~a) ≡ R(~a): By the definition, one can simply assign χA to be Λn.0.
For compound formulae:
♦ A(~a) ≡ B(~a)∧C(~a): By the definition, one has ∀d ∈ De(d0 L B(~a)) and
∀d ∈ De(d1 L C(~a)). Now by Lemma 4.1.8 and the inductive hypotheses,
one can assign χA to be

Λe.〈χB(Φ(e,Λk.0(k))), χC(Φ(e,Λk.1(k)))〉.

♦ A(~a) ≡ B(~a)→ C(~a): Let f be arbitrary such that f L B(~a). Then by
the assumption,

∀d ∈ De(d · f ↓ ∧d · f L C(~a)).

By Lemma 4.1.8 and the inductive hypothesis, one can assign χA to be

Λf.χC(Φ(e,Λd.(d · f))).

♦ A(~a) ≡ ∀yB(~a, y): By the definition and Lemma 4.1.9 one can simply
assign χA to be Λe.un(e).
♦ A(~a) ≡ ∃yB(~a, y): By the definition and Lemma 4.1.9 one can simply
assign χA to be Λe.un(e).
♦ A(~a) ≡ ¬B(~a): By the definition, one can simply set χA to be Λn.0.
♦ A(~a) ≡ B(~a) ∨ C(~a): By Claim 4.4.1,

∀d ∈ Deα(d) L ∃y[N(y) ∧ (y = 0→ B(~a)) ∧ (y 6= 0→ C(~a))],

i.e., by the above result and Lemma 4.1.8, it follows that

un(Φ(e,Λd.α(d))) L ∃y[N(y) ∧ (y = 0→ B(~a)) ∧ (y 6= 0→ C(~a))]

By Claim 4.4.1 again,

β(un(Φ(e,Λd.α(d)))) L B(~a) ∨ C(~a),

and thus one sets χA to be Λe.β(un(Φ(e,Λd.α(d)))).

We identity each formula η in the language of arithmetic (La) with a
formula η∗ in the extended language of set theory L(V ∗) inductively as
follows: For any primitive recursive relation R(n1, n2, ..., nk) ∈ La, one asso-
ciates R(n1, n2, ..., nk) ∈ L. For the conjunction ϕ ∧ θ ∈ La, one associates
ϕ∗ ∧ θ∗ ∈ L. For the disjunction ϕ ∨ θ ∈ La, one associates ϕ∗ ∨ θ∗ ∈ L.
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For the implication ϕ → θ ∈ La, one associates ϕ∗ → θ∗ ∈ L. For the
universal formula ∀xϕ(x) ∈ La, one associates ∀x[N(x) → ϕ∗(x)] ∈ L. For
the existential formula ∃xϕ(x) ∈ La, one associates ∃x[N(x) ∧ ϕ∗(x)] ∈ L.
For the negation ¬ϕ ∈ La, one associates ¬ϕ∗ ∈ L. Now we want to show
our interpretation faithfully extends Lifschitz’ realizability L (cf. Section
1.3.3) for arithmetic in the following sense:

Theorem 4.4.3 For any formula η in the language of HA, there are partial
recursive functions Ψη and Ξη such that k L η → Ψη(k) ↓ ∧Ψη(k) L η∗
and h L η∗ → Ξη(h) ↓ ∧Ξη(h) L η.

Proof. We will show this by the induction on the complexity of η.
♦ η is a primitive recursive relation: Assume k L R(n,m). Then by

the definitions it follows R(n,m) and thus k L R(n,m). On the other
hand, assume k L R(n,m). By the definition, R(n,m) follows and thus k
L R(n,m).
♦ η ≡ ϕ ∧ θ: Assume k L ϕ ∧ θ and h L ϕ∗ ∧ θ∗. By the definitions

and the inductive hypotheses, it follows that

〈Ψϕ(k0),Ψθ(k1)〉 L ϕ∗ ∧ θ∗ ∧ 〈Ξϕ(h0),Ξθ(h1)〉 L ϕ ∧ θ.

♦ η ≡ ϕ→ θ: Assume k L ϕ→ θ and u L ϕ∗. Then by the inductive
hypothesis, Ξϕ(u) L ϕ, i.e., by the assumption, k · Ξϕ(u) L θ and thus

Ψθ(k · Ξϕ(u)) L θ∗.

Hence we have shown that Λu.Ψθ(k · Ξϕ(u)) L ϕ∗ → θ∗. On the other
hand, assume h L ϕ∗ → θ∗ and v L ϕ. Then by the inductive hypothesis,
Ψϕ(v) L ϕ∗, i.e., by the assumption, h ·Ψϕ(v) L θ∗ and thus

Ξθ(h ·Ψϕ(v)) L θ.

Hence we have shown that Λv.Ξθ(h ·Ψϕ(v)) L ϕ→ θ.
♦ η ≡ ∀xϕ(x): Assume k L ∀xϕ(x). By the definition, ∀n ∈ N[k ·n L

ϕ(n)]. By the inductive hypothesis and the definitions, it follows that

∀n ∈ N[Ψϕ(k · n) L ϕ∗(n)],

and thus by the definition sg(Λn.Ψϕ(k · n)) L ∀x[N(x) → ϕ∗(x)]. On the
other hand, assume h L ∀x[N(x)→ ϕ∗(x)]. By the definition,

∀a ∈ V ∗∀q ∈ Dh[q L N(a)→ ϕ∗(a)].
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Hence it follows that ∀n ∈ N∀q ∈ Dh[q · n L ϕ∗(n)], i.e, by Lemma
4.1.8 and 4.4.2 , ∀n ∈ N[χϕ∗(Φ(h,Λq.q · n)) L ϕ∗(n)]. By the inductive
hypothesis and the definition,

Λn.Ξϕ(χϕ∗(Φ(h,Λq.q · n))) L ∀xϕ(x).

♦ η ≡ ∃xϕ(x): Assume k L ∃xϕ(x). Then, by the definition, ∀q ∈
Dk[q1 L ϕ(q0)]. By the inductive hypothesis and the definition, it follows
that

∀q ∈ Dk[〈q0,Ψ
ϕ(q1)〉 L N(q0) ∧ ϕ∗(q0)].

By Lemma 4.1.8, it follows that

Φ(k,Λq.〈q0,Ψ
ϕ(q1)〉) L ∃x[N(x) ∧ ϕ∗(x)].

On the other hand, assume h L ∃x[N(x)∧ϕ∗(x)]. Then by the definitions,
∀q ∈ Dh[q1 L ϕ∗(q0)]. By the inductive hypothesis, it follows that ∀q ∈
Dh[Ξϕ(q1) L ϕ(q0)]. By Lemma 4.1.8, Φ(h,Λq.〈q0,Ξ

ϕ(q1)〉) L ∃xϕ(x).
♦ η ≡ ¬ϕ: Assume k L ¬ϕ and assume ∃n ∈ N(n L ϕ∗). Then by the

inductive hypothesis and the definition, one has a contradiction and thus
k L ¬ϕ∗ follows. Similarly, if k L ¬ϕ∗, then k L ¬ϕ.

In conclusion, we have introduced a formal and an informal definitions
of Lifschitz’ style interpretation in the context of both arithmetic and set
theory. In the next chapter, we will prove that this definition not only
interprets Heyting arithmetic, intuitionistic Zermelo-Fraenkel set theory and
various semi-constructive axioms, but also differentiates CT0 from CT0!.



Chapter 5

Lifschitz’ style soundness

From Section 5.1 to Section 5.5, we use the interpretation defined in the
last chapter to interpret IZFN and some semi-constructive axioms. Then
we present our main independence results in Section 5.6.

Recall (N, ·, V ∗,L) is the truth structure of our Lifschitz’ style inter-
pretation. (N, ·) is the truth domain in which N is the set of all the codes of
PRF (the set of all the partial recursive functions from N to N) and · is the
application operation. V ∗ is the realizability universe defined in Subsection
3.3.2 as follows:

V N
α =

⋃

β∈α
P(N× (V N

β ∪ N))

S∗ =
⋃

α∈On
V N
α

V ∗ = N ∪ S∗

where P denotes the Powerset operation. L is an interpretation informally
defined in Section 4.2 and formally defined in Section 4.3.

In this chapter, we will show that the Lifschitz’ style interpretation in-
terprets IZFN and some semi-constructive axioms. These will directly give
us some independence results. To begin with, let us define the following
notations:

Notation 5.0.4  : N2 → N is a pairing function and 〈e, f〉 denotes (e, f).

Notation 5.0.5 0 : N → N is a left unpairing function and e0 denotes
0(e).
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Notation 5.0.6 1 : N → N is a right unpairing function and e1 denotes
1(e).

Notation 5.0.7 If h = 〈e, 〈f, g〉〉, we use the notation h0 to denote e and
h10 to denote f and h11 to denote g.

Notation 5.0.8 dabc1c2 (or d[a][b]c1c2, if the form of a and b are rather
lengthy) denotes d is the Gödel number for the partial recursive function
such that whenever the condition c1 = c2 holds, then the code a is executed;
otherwise, the code b is executed.

Notation 5.0.9 IZF′N ≡ IZFN + MPpr + B
∑0

2 −MP.

Notation 5.0.10 ~a ≡ a1, a2, ..., an and ~a ∈ V ∗ ≡ a1, a2, ..., an ∈ V ∗.

Notation 5.0.11 ∀nA(n, ~x) ≡ ∀y[N(y)→ A(y, ~x)].

Notation 5.0.12 ∃nA(n, ~x) ≡ ∃y[N(y) ∧A(y, ~x)].

Notation 5.0.13 We will use Λe.ξ(e) to denote the code of the partial re-
cursive function λe.ξ(e) and Λe.Λd.ξ(e, d) to abbreviate Λe.(Λd.ξ(e, d)).

Notation 5.0.14 ψ2Λn.ξ(n) ≡ ψ2(Λn.ξ(n)).

Notation 5.0.15 ψ2Λn.ψ2Λm.ξ(n,m) ≡ ψ2(Λn.ψ2Λm.ξ(n,m)).

Notation 5.0.16 sg〈n,m〉 ≡ sg(〈n,m〉) and n · 〈n,m〉 ≡ n · (〈n,m〉).

Notation 5.0.17 In some cases, if the form of a realizer ξ is rather lengthy,
we use the notation |ξ| to denote Dξ (cf. Section 4.1) and use ∀t ∈ De as
an abbreviation for De 6= ∅ ∧ ∀t(t ∈ De).

Lemma 5.0.18 For each formula A(u, ~x), there are partial recursive func-
tions ψ1 and ψ2 such that IZF′N proves ∀e ∈ N∀~a ∈ V ∗
(i) e L ∀nA(n,~a)→ ∀n ∈ N[ψ1(e) · n L A(n,~a)],
(ii) ∀n ∈ N[e · n L A(n,~a)]→ ψ2(e) L ∀nA(n,~a),
(iii) e L ∃nA(n,~a)↔ De 6= ∅ ∧ ∀d ∈ De[d1 L A(d0,~a)],
where ψ1(e) ≡ Λn.χA(Φ(e,Λq.q · n)), ψ2(e) ≡ sg(e).



5.1. A1: AXIOMS ON NUMBERS AND SETS 56

Proof. (i) Assume e L ∀nA(n,~a), i.e., e L ∀x[N(x) → A(x,~a)]. By the
definition it follows that ∀n ∈ N∀q ∈ De[q ·n L A(n,~a)]. By Lemmas 4.1.8
and 4.4.2,

∀n ∈ N[χA(Φ(e,Λq.q · n)) L A(n,~a)].

Now set ψ1(e) ≡ Λn.χA(Φ(e,Λq.q · n)) and the result follows. (ii) Assume
∀n ∈ N[e · n L A(n,~a)]. Then by the definition it follows that sg(e) L
∀nA(n,~a). (iii) Assume e L ∃nA(n,~a), i.e., ∀d ∈ De∃c ∈ V ∗[d L N(c) ∧
A(c,~a)]. The result follows immediately from the definition. On the other
hand, assume De 6= ∅ ∧ ∀d ∈ De[d1 L A(d0,~a)]. Then the result follows
immediately from the definition.

In the following we will show that this interpretation is sound with re-
spect to our formal system IZFN and some semi-constructive axioms. We
will not reiterate these formal systems here. The details are all specified in
Chapter Two.

5.1 A1: Axioms on numbers and sets

Claim 5.1.1 [A1 :1] sg(0) L ∀x¬(N(x) ∧ S(x)).

Proof. Let c ∈ V ∗ be arbitrary. Assume ∃n ∈ N such that n L (N(c) ∧
S(c)). Then by the definition, it follows that c ∈ N∩S∗, but this contradicts
Corollary 3.3.3.

Claim 5.1.2 [A1 :2] sg(sg(Λe.0)) L ∀x∀y[x ∈ y → S(y)].

Proof. Let a, b ∈ V ∗ and e ∈ N be arbitrary such that e L a ∈ b. Then by
the definition De 6= ∅∧∀d ∈ De∃c ∈ V ∗(d0, c) ∈ b, i.e., b ∈ S. Hence, b ∈ S∗.

Claim 5.1.3 [A1 :3] n L N(n̄) for every natural number n.

Proof. This follows immediately from the fact that N(x) is an axiom of
the background theory.

5.2 A2: Number-theoretic axioms

Claim 5.2.1 [A2 :1] 0 L SUC(n̄, n+ 1) for every natural number n.
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Proof. This follows immediately from the fact that SUC(n̄, n+ 1) is an
axiom of the background theory.

Claim 5.2.2 [A2 :2] r22 L ∀n∃!mSUC(n,m),
where r22 ≡ ψ2(Λn.〈sg(〈n+ 1, 0〉), sg(sg(Λe.0))〉).

Proof. Let n ∈ N be arbitrary. By A2 :2 in the background theory, there
exists a unique number n + 1 ∈ N such that SUC(n, n + 1). By Lemma
5.0.18 and the definition, it follows that

sg(〈n+ 1, 0〉) L ∃mSUC(n,m). (5.1)

Now let a, b ∈ V ∗ and e ∈ N be arbitrary such that e L SUC(n, a) ∧
SUC(n, b). By A2 :2 again, it follows that a = b and thus

sg(sg(Λe.0)) L ∀x∀y[SUC(n, x) ∧ SUC(n, y)→ x = y]. (5.2)

By (5.1), (5.2) and Lemma 5.0.18, the result follows.

Claim 5.2.3 [A2 :3] r23 L ∀n∀m(SUC(n,m)→ m 6= 0̄),
where r23 ≡ ψ2Λn.ψ2Λm.(Λe.0).

Proof. Let n,m, e ∈ N be arbitrary such that e L SUC(n,m), i.e.,
SUC(n,m). Then by A2 :3 in the background theory, it follows that m 6= 0̄
and thus the result follows from Lemma 5.0.18.

Claim 5.2.4 [A2 :4] r24 L ∀m(m = 0̄ ∨ ∃nSUC(n,m)),
where r24 ≡ ψ2Λm.(sg〈m,d[0][sg(〈m− 1, 0〉)]m0〉).

Proof. Let m ∈ N be arbitrary. Then by A2 :4 in the background theory
m = 0̄ ∨ ∃nSUC(n,m). For the second case, from A2 : 5 in the background
theory, there is a unique number m−1 ∈ N such that SUC(m−1,m). Hence
by Lemma 5.0.18, it follows that sg〈m − 1, 0〉 L ∃nSUC(n,m). Applying
the disjunctive realizer d yields the result.

Claim 5.2.5 [A2 :5] r25 L ∀n∀m∀k(SUC(m,n) ∧ SUC(k, n) → m = k),
where r25 ≡ ψ2Λn.ψ2Λm.ψ2Λk.(Λe.0).

Proof. Let n,m, k, e ∈ N be arbitrary such that e L SUC(m,n)∧SUC(k, n),
i.e, SUC(m,n) ∧ SUC(k, n). By A2 :5 in the background theory, m = k.

Claim 5.2.6 [A2 :6] r26 L ∀n∀m∃!kADD(n,m, k),
where r26 ≡ ψ2Λn.ψ2Λm.〈sg(〈n+m, 0〉), sg(sg(Λe.0))〉.
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Proof. Let n,m ∈ N be arbitrary. Then by A2 :6 in the background theory,
there is a unique number n + m ∈ N such that ADD(n,m, n + m). Hence
by the definitions, 〈sg(〈n+m, 0〉), sg(sg(Λe.0))〉 L ∃!kADD(n,m, k). Then
the result follows immediately from Lemma 5.0.18.

Claim 5.2.7 [A2 :7] ψ2(Λn.0) L ∀nADD(n, 0̄, n).

Proof. Let n ∈ N be arbitrary. Then by A2 :7 in the background theory,
ADD(n, 0̄, n). By the definition the result follows.

Claim 5.2.8 [A2 :8]
r28 L ∀n∀k∀m∀l∀i[ADD(n, k,m)∧ SUC(k, l)∧ SUC(m, i)→ ADD(n, l, i)],
where r28 ≡ ψ2Λn.ψ2Λk.ψ2Λm.ψ2Λl.ψ2Λi.(Λe.0).

Proof. Let n, k,m, l, i, e ∈ N be arbitrary such that

e L ADD(n, k,m) ∧ SUC(k, l) ∧ SUC(m, i).

Applying A2 :8 in the background theory, ADD(n, l, i) and then the result
follows from the definition.

Claim 5.2.9 [A2 :9] r29 L ∀n∀m∃!kMULT(n,m, k),
where r29 ≡ ψ2Λn.ψ2Λm.〈sg(〈n×m, 0〉), sg(sg(Λe.0))〉.

Proof. Let n,m ∈ N be arbitrary. Then by A2 :9 in the background theory,
there is a unique number n×m ∈ N such that MULT(n,m, n×m). By the
definition and Lemma 5.0.18,

〈sg(〈n×m, 0〉), sg(sg(Λe.0))〉 L ∃!kMULT(n,m, k).

Then the result follows.

Claim 5.2.10 [A2 :10] ψ2(Λn.0) L ∀nMULT(n, 0̄, 0̄).

Proof. Let n ∈ N be arbitrary. Then by A2 :10 in the background theory,
MULT(n, 0̄, 0̄). By the definition the result follows.

Claim 5.2.11 [A2 :11] r211 L

∀n∀k∀m∀l∀i[MULT(n, k,m) ∧ SUC(k, l) ∧ADD(m,n, i)→ MULT(n, l, i)],

where r211 ≡ ψ2Λn.ψ2Λk.ψ2Λm.ψ2Λl.ψ2Λi.(Λe.0).
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Proof. Let n, k,m, l, i, e ∈ N be arbitrary such that

e L MULT(n, k,m) ∧ SUC(k, l) ∧ADD(m,n, i).

By A2 :11 in the background theory, MULT(n, l, i). Then the result follows
from the definition.

Claim 5.2.12 [A2 :12]

r212 L A(0̄) ∧ ∀n∀m[A(n) ∧ SUC(n,m)→ A(m)]→ ∀nA(n),

where r212 ≡ Λe.ψ2(f#
e ).

Proof. Let e ∈ N be arbitrary such that

e L A(0̄) ∧ ∀n∀m[A(n) ∧ SUC(n,m)→ A(m)],

i.e., e0 L A(0̄) and

e1 L ∀n∀m[A(n) ∧ SUC(n,m)→ A(m)].

By Lemma 5.0.18, one then has

∀n,m ∈ N[δ(e, n) ·m L A(n) ∧ SUC(n,m)→ A(m)], (5.3)

where δ(e, n) ≡ ψ1(ψ1(e1) · n).
Now define a recursive function fe : N → N such that fe(0) = e0 and

fe(n + 1) = (δ(e, n) · (n + 1)) · 〈fe(n), 0〉 and let f#
e be its Gödel number.

Then by Lemma 5.0.18, the result follows immediately.

5.3 A3: Logical axioms for IPL

We will show only nontrivial ones and write down the realizers for the trivial
ones.
For logical axioms (LA):

(IPL1) Λe.Λd.e L A→ (B → A).

(IPL2) Λe.Λd.Λk.((e·k)·(d·k)) L [A→ (B → C)]→ [(A→ B)→ (A→ C)].

(IPL3) Λe.Λd.〈e, d〉 L A→ (B → A ∧B).

(IPL4) Λe.e0 L A ∧B → A.
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(IPL5) Λe.e1 L A ∧B → B.

(IPL6) Λe.sg〈0, e〉 L A→ A ∨B.

(IPL7) Λe.sg〈1, e〉 L B → A ∨B.

(IPL8) r8 L (A ∨B)→ [(A→ C)→ ((B → C)→ C)],
where r8 ≡ Λe.Λs.Λt.χC(Φ(e,Λq.d[s · q1][t · q1]q00)).

Proof. Let e, s, t ∈ N be arbitrary such that

e L A ∨B, s L A→ C, t L B → C.

Then by the definition

∀q ∈ De[(q0 = 0 ∧ s · q1 L C) ∨ (q0 6= 0 ∧ t · q1 L C)].

By applying the disjunctive realizer d, Lemma 4.1.8 and 4.4.2,

χC(Φ(e,Λq.d[s · q1][t · q1]q00)) L C.

(IPL9) Λe.Λd.0 L (A→ B)→ ((A→ ¬B)→ ¬A).

(IPL10) Λe.0 L A→ (¬A→ B).

(IPL11) Λe.χA(e) L ∀xA(x)→ A[x/a], where a is a constant in V ∗.

(IPL12) Λe.sg(e) L A[x/a]→ ∃xA(x), where a is a constant in V ∗.

For Inference Rules: (In the following, we use FV (C) to denote the
set of all free variables in C).

(IR1) Modus Ponens is preserved, i.e., if e L A and d L A→ B, then one
can effectively associate a realizer for B via realizers e and d.

Proof. This follows immediately from the definition.

(IR2) Rule ∀ is preserved, i.e., if m L C → A(x), then one can find a
partial recursive function ξ such that ξ(m) L C → ∀xA(x), where
x /∈ FV (C).
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Proof. Assume m L ∀x(C → A(x)). Let n ∈ N be arbitrary such that
n L C. Then by the definitions

∀a ∈ V ∗∀q ∈ Dm(q · n L A(a)).

By Lemma 4.1.8 and the definition, it follows Φ(m,Λq.q · n) L ∀xA(x).
Now one sets ξ(m) := Λn.Φ(m,Λq.q · n).

(IR3) Rule ∃ is preserved, i.e., if m L A(x) → C, then one can find a
partial recursive function ξ such that ξ(m) L ∃xA(x) → C, where
x /∈ FV (C).

Proof. Assume m L ∀x(A(x) → C). Let n ∈ N be arbitrary such that
n L ∃xA(x), i.e.,

∀q ∈ Dn∃a ∈ V ∗[q L A(a)].

By the assumption it follows that

∀u ∈ Dm∀q ∈ Dn[u · q L C].

By Lemmas 4.1.8 and 4.1.9 and 4.4.2

χC(un(Φ(m,Λu.δ(u, n)))) L C,

where δ(u, n) ≡ Φ(n,Λq.u · q). Set

ξ(m) := Λn.χC(un(Φ(m,Λu.δ(u, n)))).

For the Identity Axioms (IA): The soundness of IA follows imme-
diately from the following claims. These claims will provide some universal
realizers, that is, these realizers will depend only on the form of a formula
in L(V ∗) (the language L with parameters from V ∗) and are independent
of the parameters. Now let a, b, c ∈ V ∗ be arbitrary. We have the following
claims:

Claim 5.3.1 [IA1] ir L a = a, where ir ≡ Ω(Λy.ξ(y)) and where ξ(y) ≡
sg〈Λf.sg〈f, y〉,Λf.sg〈f, y〉〉.

Proof. It suffices to find a realizer ir such that ∀a ∈ S∗[ir L a = a]. We
show this via ordinal induction and the fixed point theorem. Let α ∈ On
be arbitrary. Assume ∀β ∈ α∀b ∈ V N

β [k L b = b]. Now let a ∈ V N
α be
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arbitrary. Let f ∈ N and d ∈ V ∗ be arbitrary such that (f, d) ∈ a. Then
by the inductive hypothesis and the definition, sg〈f, k〉 L d ∈ a and thus
ξ(k) L a = a, where ξ(k) ≡ sg〈Λf.sg〈f, k〉,Λf.sg〈f, k〉〉. Applying the
fixed point generator Ω, one has the explicit form k ≡ Ω(Λy.ξ(y)).

Claim 5.3.2 [IA2] is L a = b→ b = a, where is ≡ Λe.Φ(e,Λk.〈k1, k0〉).

Proof. Let e ∈ N be arbitrary such that e L a = b. From Lemma
4.1.8, {〈k1, k0〉 : k ∈ De} = |Φ(e,Λk.〈k1, k0〉)| and thus by the definition
Φ(e,Λk.〈k1, k0〉) L b = a.

Claim 5.3.3 [IA3] it L a = b ∧ b = c→ a = c,
where it ≡ (Ω(λx.〈∂x0x1, ∂̃x0x1〉))0.

Claim 5.3.4 [IA4] i0 L a = b ∧ b ∈ c→ a ∈ c,
where i0 ≡ (Ω(λx.〈∂x0x1, ∂̃x0x1〉))1.

Proof. For any formulae θ1, θ2, ..., θn, let
n∧
i=1
θi denote the conjunction θ1 ∧

θ2...∧ θn. We will prove IA3 and IA4 simultaneously via C3-induction (cf.
Subsection 3.2.1):

∀x1, x2, x3[∀(y1, y2, y3) C3 (x1, x2, x3)ϕ(y1, y2, y3)→ ϕ(x1, x2, x3)]

→ ∀x, y, zϕ(x, y, z).

and the fixed point theorem (which will produce universal realizers u and v
for both) by taking ϕ(y1, y2, y3) to be

y1, y2, y3 ∈ V ∗ →
3∧

i,j,k=1
i,j 6=k∧i 6=j

η(yi, yj , yk),

where η(yi, yj , yk) denotes

u L [yi = yj ∧ yj = yk → yi = yk] ∧ v L [yi = yj ∧ yj ∈ yk → yi ∈ yk].

Let a4, a5, a6 ∈ V ∗ and d1, d2, d3 ∈ V ∗ be arbitrary such that
(d1, d2, d3) C3 (a4, a5, a6) and

u L di = dj ∧ dj = dk → di = dk, (5.4)

v L di = dj ∧ dj ∈ dk → di ∈ dk,
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for all i, j, k ∈ {1, 2, 3}, where i, j 6= k and i 6= j. Now we have to find the
forms of the realizers u and v and show that

u L ai = aj ∧ aj = ak → ai = ak,

v L ai = aj ∧ aj ∈ ak → ai ∈ ak,

for all i, j, k ∈ {4, 5, 6}, where i, j 6= k and i 6= j. Now let i, j, k ∈ {4, 5, 6}
be arbitrary such that i, j 6= k and i 6= j. Let g ∈ N be arbitrary such that
g L ai = aj ∧ aj ∈ ak, i.e.,

∀n ∈ Dg1∃q ∈ V ∗[(n0, q) ∈ ak ∧ 〈g0, n1〉 L ai = aj ∧ aj = q].

We want to find a realizer for ai ∈ ak. Since (ai, aj , q) C3 (ai, aj , ak),
(without loss of generality, suppose i = 6, j = 4, k = 5, then (aj , q, ai) C3

(a4, a5, a6)) and by the inductive hypothesis (5.4),

∀n ∈ Dg1∃q ∈ V ∗[u · 〈g0, n1〉 L ai = q].

By Lemma 4.1.8, it follows that

{〈n0, u · 〈g0, n1〉〉 : n ∈ Dg1} = |σ(g, u)|,

where σ(g, u) ≡ Φ(g1,Λn.〈n0, u·〈g0, n1〉〉). Hence by the definition, it follows
that σ(g, u) L ai ∈ ak and thus

Λg.σ(g, u) L ai = aj ∧ aj ∈ ak → ai ∈ ak. (5.5)

Now let h ∈ N be arbitrary such that h L ai = aj∧aj = ak. We want to
find a realizer for ai = ak. Let p, r ∈ N and q, w ∈ V ∗ be arbitrary such that
(p, q) ∈ ai and (r, w) ∈ ak. From the assumption ∀n ∈ Dh0 [n0 · p L q ∈ aj ]
and ∀n ∈ Dh1 [n1 · r L w ∈ aj ], i.e.,

∀n ∈ Dh0∀m ∈ Dn0·p∃s ∈ V ∗[(m0, s) ∈ aj ∧m1 L q = s],

∀n ∈ Dh1∀m ∈ Dn1·r∃s ∈ V ∗[(m0, s) ∈ aj ∧m1 L w = s].

By the assumption again, it follows that

∀n ∈ Dh0∀m ∈ Dn0·p∃s ∈ V ∗∀l ∈ Dh1 [l0 ·m0 L s ∈ ak],
∀n ∈ Dh1∀m ∈ Dn1·r∃s ∈ V ∗∀l ∈ Dh0 [l1 ·m0 L s ∈ ai],

i.e., by Lemmas 4.1.8 and 4.4.2

∀n ∈ Dh0∀m ∈ Dn0·p∃s ∈ V ∗[〈m1, ε(h,m)〉 L q = s ∧ s ∈ ak],
∀n ∈ Dh1∀m ∈ Dn1·r∃s ∈ V ∗[〈m1, ε̃(h,m)〉 L w = s ∧ s ∈ ai],
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where ε(h,m) ≡ χA(Φ(h1,Λl.l0 ·m0)), ε̃(h,m) ≡ χA(Φ(h0,Λl.l1 ·m0)),
and A ≡ x ∈ y. Since

(q, s, ak) C3 (ai, aj , ak), (ai, s, w) C3 (ai, aj , ak),

by the inductive hypothesis (5.4),

∀n ∈ Dh0∀m ∈ Dn0·pρ(h,m, v) L q ∈ ak,
∀n ∈ Dh1∀m ∈ Dn1·rρ̃(h,m, v) L w ∈ ai,

where ρ(h,m, v) ≡ v · 〈m1, ε(h,m)〉, and where ρ̃(h,m, v) ≡ v · 〈m1, ε̃(h,m)〉.
By Lemmas 4.1.8 and 4.1.9,

{n0 · p : n ∈ Dh0} = |Φ(h0,Λn.(n0 · p))|,

{n1 · r : n ∈ Dh1} = |Φ(h1,Λn.(n1 · r))|,
∪{Dn0·p : n ∈ Dh0} = |un(Φ(h0,Λn.(n0 · p)))|,
∪{Dn1·r : n ∈ Dh1} = |un(Φ(h1,Λn.(n1 · r)))|.

Thus by Lemmas 4.1.8 and 4.4.2,

β(p, h, v) L q ∈ ak, τ(r, h, v) L w ∈ ai,

where

β(p, h, v) ≡ χA(Φ(un(Φ(h0,Λn.(n0 · p))),Λm.ρ(h,m, v))),

τ(r, h, v) ≡ χA(Φ(un(Φ(h1,Λn.(n1 · r))),Λm.ρ̃(h,m, v))).

By the definition it follows that

Λh.π(h, v) L ai = aj ∧ aj = ak → ai = ak, (5.6)

where π(h, v) ≡ sg〈Λp.β(p, h, v),Λr.τ(r, h, v)〉. From (5.4), (5.5) and (5.6)
one finds u and v as follows:

u ' Λh.π(h, v) ∧ v ' Λg.σ(g, u).

Now define ∂ ≡ Λu.Λv.Λh.π(h, v) and ∂̃ ≡ Λu.Λv.Λg.σ(g, u). By Corol-
lary 3.1.15, one has the explicit form as follows: u ≡ (Ω(λx.〈∂x0x1, ∂̃x0x1〉))0

and v ≡ (Ω(λx.〈∂x0x1, ∂̃x0x1〉))1.
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Claim 5.3.5 [IA5]

i1 L a = b ∧ c ∈ a→ c ∈ b,

where i1 ≡ Λg.un(Φ(g1,Λe.Φ(g0,Λd.i0 · 〈e1, d0 · e0〉)))

Proof. Let g ∈ N be arbitrary such that g L a = b ∧ c ∈ a. Then by the
definition, g0 L a = b and

∀e ∈ Dg1∃k ∈ V ∗[(e0, k) ∈ a ∧ e1 L c = k].

By the definition and Soundness of IA4, it then follows that

∀e ∈ Dg1∀d ∈ Dg0 [i0 · 〈e1, d0 · e0〉 L c ∈ b]. (5.7)

By Lemmas 4.1.8, 4.1.9 and 4.4.2, it follows that β(g) L c ∈ b, where
β(g) ≡ un(Φ(g1,Λe.Φ(g0,Λd.i0 · 〈e1, d0 · e0〉))).

Theorem 5.3.6 There is a partial recursive function ria such that ria L
IA.

Proof. Since IA6 to IA10 are all realizable from its background theory
and the definition, the result follows immediately from the above claims.

Lemma 5.3.7 [Lif Substitution] For any formula A(x, ~y) in L(V ∗), one
can inductively define a realizer iA ∈ N such that ∀a,~b, c ∈ V ∗[iA L a =
c ∧A(a,~b)→ A(c,~b)].

Proof. For the atomic formulae, this has been shown in the above claims.
For the compound formulae, they all follow immediately via induction over
the their complexity. Here we consider the formulae with quantifiers:
♦ A(a,~b) ≡ ∃zB(a,~b, z):

Let e ∈ N be arbitrary such that e L a = c∧∃zB(a,~b, z). By the definition,
it follows

e0 L a = c ∧ ∀q ∈ De1∃d ∈ V ∗[q L B(a,~b, d)].

By the inductive hypothesis, it follows that

∀q ∈ De1∃d ∈ V ∗[iB · 〈e0, q〉 L B(c,~b, d)].

By Lemma 4.1.8,

Φ(e1,Λq.iB · 〈e0, q〉) L ∃zB(c,~b, z).
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Now one defines iA ≡ Λe.Φ(e1,Λq.iB · 〈e0, q〉) and the result follows.
♦ A(a,~b) ≡ ∀zB(a,~b, z): Let e ∈ N and a, b ∈ V ∗ be arbitrary such that

e L a = c ∧ ∀zB(a,~b, z).

Then by the definition, it follows that

e0 L a = c ∧ ∀q ∈ De1∀d ∈ V ∗[q L B(a,~b, d)].

By the inductive hypothesis, it follows that

∀q ∈ De1∀d ∈ V ∗[iB · 〈e0, q〉 L B(c,~b, d)].

By Lemma 4.1.8,

Φ(e1,Λq.iB · 〈e0, q〉) L ∀zB(c,~b, z),

Now one defines iA ≡ Λe.Φ(e1,Λq.iB · 〈e0, q〉) and the result follows.

5.4 A4.2: Non-logical axioms (IZF with two sorts)

Lemma 5.4.1 [Extensionality] rext
L
L ∀x∀y(S(x) ∧ S(y) → [∀z(z ∈ x ↔

z ∈ y)→ x = y]), where rext
L
≡ sg(sg(Λe.Λt.Φ(t,Λm.〈ξ(m), δ(m)〉))).

Proof. Let a, b ∈ V ∗ and e, t ∈ N be arbitrary such that

e L S(a) ∧ S(b) (5.8)

and t L ∀z(z ∈ a↔ z ∈ b), i.e.,

∀m ∈ Dt∀c ∈ V ∗[m L c ∈ a↔ c ∈ b]. (5.9)

Observe that from (5.8) and the definitions, a, b ∈ S∗. Now we want to find
a realizer to realize a = b. Let f, g ∈ N and d, k ∈ V ∗ be arbitrary such that
(f, d) ∈ a and (g, k) ∈ b. Then by the soundness of IA1, it follows that

sg〈f, ir〉 L d ∈ a ∧ sg〈g, ir〉 L k ∈ b,

i.e., by (5.9)

∀m ∈ Dt[m0 · sg〈f, ir〉 L d ∈ b ∧m1 · sg〈g, ir〉 L k ∈ a]. (5.10)

Define ξ(m) := Λf.m0 · sg〈f, ir〉 and δ(m) := Λg.m1 · sg〈g, ir〉. From Lemma
4.1.8, it then follows that

{〈ξ(m), δ(m)〉 : m ∈ Dt} = |Φ(t,Λm.〈ξ(m), δ(m)〉)|,
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and thus by the definition

Φ(t,Λm.〈ξ(m), δ(m)〉) L a = b.

Then the result follows immediately from the definition.

Lemma 5.4.2 [Pairing] rpair
L

L ∀x∀y∃u[S(u) ∧ (x ∈ u ∧ y ∈ u)], where
rpair
L

≡ sg(sg(sg〈0, 〈sg〈0, ir〉, sg〈1, ir〉〉〉)).

Proof. Let a, b ∈ V ∗ be arbitrary. Now define

c ≡ {a, b}L := {(0, a), (1, b)}.

By the Pairing Axiom in the background theory, c is an external set. By
Claim 3.3.6, c is also an internal set, i.e., c ∈ S∗. Then, by the soundness of
IA1, it follows that

〈sg〈0, ir〉, sg〈1, ir〉〉 L a ∈ c ∧ b ∈ c.

Hence the result follows from the definition.

Furthermore, one can also define the internal Cartesian product.

Definition 5.4.3 For all a and b in V ∗,

(a, b)L := {(0, {a, a}L), (1, {a, b}L)}.

Since {a, a}L, {a, b}L ∈ S∗, by Claim 3.3.6, one has (a, b)L ∈ S∗.

Corollary 5.4.4 [Internal Cartesian Product]

rprd L (a, b)L = (c, d)L → a = c ∧ b = d,

where rprd ≡ Λe.〈α(e), ρ(e)〉.

Proof. Let h ∈ N and a, c, d ∈ V ∗ be arbitrary such that h L {a, a}L =
{c, d}L. Since (0, c) ∈ {c, d}L, by the definitions, Lemma 4.1.8 and the
soundness of IA2, ∀q ∈ Dh[q1 · 0 L c ∈ {a, a}L] and thus

∀q ∈ Dh∀m ∈ |Φ(q1 · 0,Λr.r1)|[is ·m L a = c].

By Lemma 4.1.8, 4.1.9 and 4.4.2, one has the following result:

Λh.ξ(h) L {a, a}L = {c, d}L → a = c, (5.11)
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where ξ(h) ≡ χx=y(Φ(un(Φ(h,Λq.Φ(q1 · 0,Λr.r1))),Λm.is ·m)). Now let us
find a realizer for {a, b}L = {a, c}L → b = c. Let n ∈ N be arbitrary such
that n L {a, b}L = {a, c}L. Since (1, b) ∈ {a, b}L,

∀q ∈ Dn∀p ∈ Dq0·1∃v ∈ V ∗[(p0, v) ∈ {a, c}L ∧ p1 L b = v]. (5.12)

If v = a (i.e., p0 = 0) then by Substitution

η(p, n) L {a, a}L = {a, c}L,

where η(p, n) ≡ iB ·〈p1, n〉 and B ≡ {x, y}L = {x, z}L. Since (1, c) ∈ {a, c}L,
by the definitions, it follows that

∀r ∈ Dη(p,n)∀t ∈ Dr1·1[t1 L c = a].

By Lemmas 4.1.8 and 4.1.9 and 4.4.2, it follows that

δ(p, n) L c = a, (5.13)

where δ(p, n) ≡ χx=y(Φ(un(Φ(η(p, n),Λr.r1 · 1)),Λt.t1)). From (5.12) and
(5.13) and the soundness of IA2, IA3,

∀q ∈ Dn∀p ∈ Dq0·1[p0 = 0→ it · 〈p1, is · δ(p)〉 L b = c].

Furthermore, if v = c (i.e., p0 = 1), then by (5.12) p1 L b = c. By
applying disjunction to both cases, one has the following result:

∀q ∈ Dn∀p ∈ Dq0·1d[it · 〈p1, is · δ(p, n)〉][p1]p00 L b = c,

and thus by Lemmas 4.1.8 and 4.1.9 and 4.4.2 again, it follows that

Λn.β(n) L {a, b}L = {a, c}L → b = c, (5.14)

where β(n) ≡ χx=y(un(Φ(n,Λn.Φ(q0 · 1,Λp.d[it · 〈p1, is · δ(p, n)〉][p1]p00)))).
Let e ∈ N be arbitrary such that e L (a, b)L = (c, d)L. By the definition,

(0, {a, a}L) ∈ (a, b)L and thus it follows that ∀g ∈ De[g0 · 0 L {a, a}L ∈
(c, d)L]. Hence by (5.11), Lemmas 4.1.8, 4.1.9 and 4.4.2,

α(e) L a = c, (5.15)

where α(e) ≡ χx=y(Φ(un(Φ(e,Λg.g0 · 0)),Λr.ξ(r))).
Furthermore, since (1, {c, d}L) ∈ (c, d)L, by the definition it follows that

∀g ∈ De[g1 · 1 L {c, d}L ∈ (a, b)L], i.e.,

∀g ∈ De∀r ∈ Dg0·1∃u ∈ V ∗[(r0, u) ∈ (a, b)L ∧ r1 L {c, d}L = u].
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By the definitions it follows that ∀g ∈ De∀r ∈ Dg0·1. If r0 = 0, then
r1 L {c, d}L = {a, a}L and thus by the assumption and (5.14) one can find a
realizer θ to realize b = d; if r0 = 1, then r1 L {c, d}L = {a, b}L and thus by
(5.15) and (5.14), one can find a realizer π to realize b = d. By applying the
disjunctive realizer d it follows that ∀q ∈ De∀r ∈ Dg0·1d[θ][π]r00 L b = d,
i.e., by Lemmas 4.1.8, 4.1.9 and 4.4.2,

ρ(e) L b = d, (5.16)

where ρ(e) ≡ χx=y(Φ(un(Φ(e,Λg.g0 · 1)),Λr.d[θ][π]r00)). Then the result
follows from (5.15) and (5.16).

Lemma 5.4.5 [Union] runi
L
L ∀x∃u[S(u)∧∀z(z ∈ u↔ ∃y(y ∈ x∧z ∈ y))],

where runi
L
≡ sg(sg〈0, sg〈Λg.Φ(g,Λe.ξ(e)),Λl.σ(l))〉〉).

Proof. Let a ∈ V ∗ be arbitrary. Define

a ≡ {(〈n,m〉, b) : ∃c ∈ V ∗[(n, c) ∈ a ∧ (m, b) ∈ c]}.

Then by Separation, the Union and Pairing Axioms in the background
theory, one has a is an external set. By Claim 3.3.6, a is also an internal
set, i.e., a ∈ S∗. Now we want to find a realizer which realizes ∀z(z ∈ a ↔
∃y(y ∈ a∧ z ∈ y)). Let c ∈ V ∗ and g ∈ N be arbitrary such that g L c ∈ a,
i.e.,

∀e ∈ Dg∃d ∈ V ∗[(e0, d) ∈ a ∧ e1 L c = d].

By the definition, it follows that ∃k ∈ V ∗[(e00, k) ∈ a ∧ (e01, d) ∈ k]. Then
by the soundness of IA1 and IA4,

∀e ∈ Dg∃k ∈ V ∗ξ(e) L k ∈ a ∧ c ∈ k,

where ξ(e) ≡ 〈sg〈e00, ir〉, i0 · 〈e1, sg〈e01, ir〉〉〉. Thus by Lemma 4.1.8 and the
definition,

Φ(g,Λe.ξ(e)) L ∃y(y ∈ a ∧ c ∈ y). (5.17)

On the other hand, let l ∈ N be arbitrary such that

l L ∃y(y ∈ a ∧ c ∈ y),

i.e., ∀t ∈ Dl∃u ∈ V ∗[t L u ∈ a ∧ c ∈ u]. From t0 L u ∈ a,

∀m ∈ Dt0∃h ∈ V ∗(m0, h) ∈ a ∧m1 L u = h. (5.18)
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From t1 L c ∈ u and (5.18) and the soundness of IA5, it then follows that
∀t ∈ Dl∀m ∈ Dt0∃h ∈ V ∗[(m0, h) ∈ a ∧ i1 · 〈m1, t1〉 L c ∈ h], i.e., by the
definition,

∀t ∈ Dl∀m ∈ Dt0∀q ∈ |i1 · 〈m1, t1〉|
∃p ∈ V ∗[(〈m0, q0〉, p) ∈ a ∧ q1 L c = p].

By Lemma 4.1.8 and 4.1.9,

{〈〈m0, q0〉, q1〉 : q ∈ |i1 · 〈m1, t1〉|} = |ρ(m, t)|,
∪{|ρ(m, t)| : m ∈ Dt0} = |un(Φ(t0,Λm.ρ(m, t)))|,
∪{|un(Φ(t0,Λm.ρ(m, t)))| : t ∈ Dl} = |σ(l)|,

where ρ(m, t) ≡ Φ(i1 · 〈m1, t1〉,Λq.〈〈m0, q0〉, q1〉), and
where σ(l) ≡ un(Φ(l,Λt.un(Φ(t0,Λm.ρ(m, t))))), and thus by Lemma 4.1.9

{〈〈u, q0〉, q1〉 : ∃t ∈ Dl∃m ∈ Dt0 [u = m0 ∧ q ∈ |i1 · 〈m1, t1〉|]} = |σ(l)|.

By the definition it follows that

σ(l) L c ∈ a. (5.19)

Then the result follows from (5.17) and (5.19).

Lemma 5.4.6 [Separation] rSep
L
L ∀x∃u[S(u)∧∀z(z ∈ u↔ z ∈ x∧A(z))],

where rSep
L
≡

sg(sg〈0, sg〈Λg.χB(Φ(g,Λe.ξ(e))),Λh.Φ(h0,Λl.〈〈iA · 〈l1, h1〉, l0〉, l1〉)〉〉).

Proof. Let a ∈ V ∗ be arbitrary. Define

a ≡ {(〈f, g〉, k) : f, g ∈ N ∧ [(g, k) ∈ a ∧ f L A(k)]}.

Then by Separation, the Union and Pairing Axioms in the background the-
ory, a is an external set. By Claim 3.3.6 a is also an internal set, i.e., a ∈ S∗.
Now we want to find a realizer which realizes ∀z(z ∈ a↔ z ∈ a ∧A(z)).

Let c ∈ V ∗ and g ∈ N be arbitrary such that g L c ∈ a, i.e., ∀e ∈
Dg∃d ∈ V ∗[(e0, d) ∈ a ∧ e1 L c = d]. By the definition, it follows that
(e01, d) ∈ a ∧ e00 L A(d) and thus sg〈e01, ir〉 L d ∈ a. Then by the
substitution realizer iA, the soundness of IA1 and IA2, it follows that

∀e ∈ Dg[ξ(e) L c ∈ a ∧A(c)], (5.20)
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where ξ(e) ≡ 〈i0 · 〈e1, sg〈e01, ir〉〉, iA(〈is · e1, e00〉)〉. By Lemmas 4.1.8 and
4.4.2,

χB(Φ(g,Λe.ξ(e))) L c ∈ a ∧A(c), (5.21)

where B ≡ z ∈ x ∧A(z).
On the other hand, let h ∈ N be arbitrary such that h L c ∈ a ∧ A(c).

Then by the definition and the substitution realizer iA, it follows that

∀l ∈ Dh0∃d ∈ V ∗[(l0, d) ∈ a ∧ l1 L c = d ∧ iA · 〈l1, h1〉 L A(d)],

i.e., by the definition ∀l ∈ Dh0∃d ∈ V ∗(〈iA · 〈l1, h1〉, l0〉, d) ∈ a and thus by
Lemma 4.1.8

Φ(h0,Λl.〈〈iA · 〈l1, h1〉, l0〉, l1〉) L c ∈ a. (5.22)

Then the result follows from (5.21) and (5.22).

Claim 5.4.7 If a, b ∈ S∗, then e L b ⊆ a→ ∃b∗ ∈ V N
rk(a)+1[δ(e) L b = b∗],

where
δ(e) ≡ sg〈Λf.χA(σ(e, f)),Λg.i0 · 〈is · g11, sg〈g0, ir〉〉〉.

Proof. Assume e L b ⊆ a. By the definition it follows that ∀q ∈
De∀(f, d) ∈ b[q · sg〈f, ir〉 L d ∈ a], i.e., ∀(f, d) ∈ b∀q ∈ De

∀m ∈ |q · sg〈f, ir〉|∃c ∈ V ∗[(m0, c) ∈ a ∧m1 L d = c]. (5.23)

Define

b∗ ≡ {(〈f,m〉, c) : ∃d ∈ V ∗[(f, d) ∈ b ∧ (m0, c) ∈ a ∧m1 L d = c]}.

By Pairing and Separation in the background theory, b∗ is a set. By
Claim 3.3.6 and Corollary 3.3.5 , b∗ ∈ V N

rk(a)+1. Now we want to find a
realizer which realizes b = b∗. Let f ∈ N and d ∈ V ∗ be arbitrary such that
(f, d) ∈ b. Then by (5.23) and soundness of IA1, it follows that

∀q ∈ De∀m ∈ |q · sg〈f, ir〉|∃c ∈ V ∗sg〈〈f,m〉, ir〉 L c ∈ b∗,m1 L d = c,

i.e., by the soundness of IA4,

∀q ∈ De∀m ∈ |q · sg〈f, ir〉|[ξ(m, f) L d ∈ b∗], (5.24)

where ξ(m, f) ≡ i0 · 〈m1, sg〈〈f,m〉, ir〉〉. By Lemma 4.1.8 and 4.1.9,

{ξ(m, f) : ∃q ∈ De(m ∈ |q · sg〈f, ir〉|)} = |σ(e, f)|,
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where σ(e, f) = Φ(un(Φ(e,Λq.(q · sg〈f, ir〉))),Λm.ξ(m, f)). Thus by Lemma
4.4.2 and (5.24), it follows that

χA(σ(e, f)) L d ∈ b∗, (5.25)

where A ≡ x ∈ y. On the other hand, let g ∈ N and k ∈ V ∗ be arbitrary
such that (g, k) ∈ b∗. Then by the definition and the soundness of IA1 and
IA2 , it follows that

∃d ∈ V ∗[sg〈g0, ir〉 L d ∈ b ∧ is · g11 L k = d],

i.e., by the soundness of IA4

i0 · 〈is · g11, sg〈g0, ir〉〉 L k ∈ b. (5.26)

From (5.25) and (5.26), δ(e) L b = b∗, where

δ(e) ≡ sg〈Λf.χA(σ(e, f)),Λg.i0 · 〈is · g11, sg〈g0, ir〉〉〉.

Lemma 5.4.8 [Power Set] rpw
L
L ∀x∃u[S(u)∧∀z(z ∈ u↔ (S(z)∧z ⊆ x))],

where rpw ≡ sg(sg〈0, sg〈Λg.ε(g),Λh.i0 · 〈δ(h1), ξ(h)〉〉〉).

Proof. Let a ∈ V ∗ be arbitrary. Define

a ≡ {(g, c) : g ∈ N ∧ c ∈ V N
rk(a)+1 ∧ g L c ⊆ a}.

By the Powerset axiom, Pairing and Separation in the background theory, a
is an external set. By Claim 3.3.6 it also follows that a ∈ S∗. Now we want
to find a realizer which realizes ∀z(z ∈ a↔ (S(z) ∧ z ⊆ a)). Let k ∈ V ∗ be
arbitrary. Let g ∈ N be arbitrary such that g L k ∈ a, i.e.,

∀e ∈ Dg∃c ∈ V N
rk(a)+1[e0 L c ⊆ a ∧ e1 L k = c].

Then by Corollary 3.3.2 and the soundness of IA2, it follows that k ∈ S∗
and thus

∀e ∈ Dg[〈0, iA · 〈is · e1, e0〉〉 L S(k) ∧ k ⊆ a],

where A ≡ x ⊆ y. By Lemma 4.1.8 and 4.4.2 one then has

ε(g) L S(k) ∧ k ⊆ a, (5.27)

where ε(g) ≡ χB(Φ(g,Λe.〈0, iA · 〈is · e1, e0〉〉)) and where B ≡ S(y) ∧ y ⊆ x.
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Now let h ∈ N be arbitrary such that h L S(k)∧k ⊆ a. Then by Claim
5.4.7, it follows that ∃k∗ ∈ V N

rk(a)+1 such that δ(h1) L k = k∗, where δ is

defined in Claim 5.4.7, and thus by Substitution iA · 〈δ(h1), h1〉 L k∗ ⊆ a.
By the definition of a, Substitution and the soundness of IA4, it then follows
that

i0 · 〈δ(h1), ξ(h)〉 L k ∈ a, (5.28)

where ξ(h) ≡ sg〈iA · 〈δ(h1), h1〉, ir〉. From (5.27) and (5.28), the result
follows.

Lemma 5.4.9 [Infinity] rinf
L
L ∃u(S(u) ∧ ∀z[z ∈ u↔ N(z)]),

where rinf
L
≡ sg〈0, sg〈Λg.∅(Φ(g,Λe.e0)),Λh.sg〈h, ir〉〉〉.

Proof. Define
u = {(n, n) : n ∈ N}.

Then by the Infinity Axiom and Separation in the background theory, u is
an external set. Moreover, by the definition, u is also an internal set, i.e.,
u ∈ S∗. Now we want to find a realizer which realizes ∀z[z ∈ u ↔ N(z)].
Let c ∈ V ∗ and g ∈ N be arbitrary such that g L c ∈ u. Then by the
definition we have

∀e ∈ Dg∃k ∈ V ∗(e0, k) ∈ u ∧ e1 L c = k.

By the definition, it follows that ∀e ∈ Dg[(e0 = c) ∧ e0 L N(c)]. By
Lemmas 4.1.7 and 4.1.8 it then follows that ∅(Φ(g,Λe.e0)) L N(c). On
the other hand, assume h L N(c). By the definition it follows that h = c,
i.e., (h, c) ∈ u. Hence by the soundness of IA1, it follows that

sg〈h, ir〉 L c ∈ u.

Hence the result follows from the definitions.

Lemma 5.4.10 [Induction] rInd L ∀x[(∀y ∈ xA(y)) → A(x)] → ∀xA(x),
where rInd ≡ Λg.Ω(Λk.χA(Φ(g,Λe.e · sg(Λh.ξ(h, k))))).

Proof. Let g ∈ N be arbitrary such that

g L ∀x[∀y(y ∈ x→ A(y))→ A(x)],

i.e.,
∀e ∈ Dg∀u ∈ V ∗[e L ∀y(y ∈ u→ A(y))→ A(u)]. (5.29)
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Now we want to find a realizer which realizes ∀xA(x). We show this by
ordinal induction. Let α ∈ On be arbitrary. Assume

∀β ∈ α∀b ∈ N ∪ V N
β (k L A(b)). (5.30)

Now one has to find the explicit form of k via the fixed point theorem
such that ∀a ∈ N ∪ V N

α (k L A(a)). Let a ∈ V N
α be arbitrary. We want

to find a realizer which realizes ∀y(y ∈ a → A(y)). Let c ∈ V ∗ and h ∈ N
be arbitrary such that h L c ∈ a. Then by the definition it follows that
∀t ∈ Dh∃d ∈ V ∗(t0, d) ∈ a ∧ t1 L c = d. Since d ∈ N ∪ V N

β for some
β ∈ α, by the inductive hypothesis (5.30) k L A(d). Thus by Substitution,
Lemma 4.1.8, Lemma 4.4.2 and the Soundness of IA2,

ξ(h, k) L A(c),

where ξ(h, k) ≡ χA(Φ(h,Λt.iA〈is · t1, k〉)). By the definition, it follows that

sg(Λh.ξ(h, k)) L ∀y[y ∈ a→ A(y)]. (5.31)

By (5.29) and (5.31)

∀e ∈ Dg[e · sg(Λh.ξ(h, k)) L A(a)].

By Lemmas 4.1.8 and Lemma 4.4.2 , it follows that

χA(Φ(g,Λe.e · sg(Λh.ξ(h, k)))) L A(a).

Let Ω be a fixed point generator. Then one has the explicit form of k:
k ≡ Ω(Λk.χA(Φ(g,Λe.e · sg(Λh.ξ(h, k))))) and this completes the proof.

Lemma 5.4.11 [Collection] rco
L
L ∀x[∀y ∈ x∃zA(y, z) → ∃u(S(u) ∧ ∀y ∈

x∃z ∈ uA(y, z))], where rco ≡ sg(Λe.δ(e)).

Proof. We show this via Collection in the background theory. Let a ∈ V ∗
be arbitrary. Let e ∈ N be arbitrary such that

e L ∀y ∈ a∃zA(y, z). (5.32)

By the definitions and soundness of IA1,

∀v ∈ De∀(f, d) ∈ a∀q ∈ |v · sg〈f, ir〉|∃cη(q, c, d), (5.33)

where η(q, c, d) ≡ c ∈ V ∗ ∧ q L A(d, c). By Collection in the background
theory, it then follows that

∀v ∈ De∀(f, d) ∈ a∃K[S(K) ∧ ∀q ∈ |v · sg〈f, ir〉|∃k ∈ Kη(q, k, d)].
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By Collection again, it follows that

∀v ∈ De∃K[S(K) ∧ ∀(f, d) ∈ a∃K ∈ K
(S(K) ∧ ∀q ∈ |v · sg〈f, ir〉|∃k ∈ Kη(q, k, d))],

i.e.,

∀v ∈ De∃K[S(K) ∧ ∀(f, d) ∈ a∃K ∈ K(S(K)∧ (5.34)

∀q ∈ |v · sg〈f, ir〉|∃k ∈ K(k ∈ V ∗ ∧ q L A(d, k))].

Now define
K̈ := {0} × ((∪K) ∩ V ∗).

By Union, Powerset and Separation in the background theory, K̈ is a set.
By Claim 3.3.6, K̈ is also an internal set, i.e., K̈ ∈ S∗. From (5.34), it then
follows that

∀v ∈ De∃K̈ ∈V ∗[∀(f, d) ∈ a∀q ∈ |v · sg〈f, ir〉| (5.35)

∃k ∈ V ∗((0, k) ∈ K̈ ∧ (q L A(d, k)))].

Now we want to find a realizer which realizes ∃u(S(u) ∧ ∀y ∈ a∃z ∈
uA(y, z)). Let l ∈ N and b ∈ V ∗ be arbitrary such that l L b ∈ a, i.e.,

∀t ∈ Dl∃c ∈ V ∗[(t0, c) ∈ a ∧ t1 L b = c].

By (5.35), it follows that for all v in De, there is K̈ in V ∗ such that

∀t ∈ Dl∃c ∈ V ∗∀q ∈ |v · sg〈t0, ir〉|∃k ∈ V ∗((0, k) ∈ K̈ ∧ (q L A(c, k))).

By the definition and Lemma 4.1.8, it follows that

∀v ∈ De∃K̈ ∈V ∗∀t ∈ Dl∃c ∈ V ∗[σ(v, t) L ∃z(z ∈ K̈ ∧A(c, z))],

where σ(v, t) = Φ(|v.sg〈t0, ir〉|,Λq.〈sg〈0, ir〉, q〉).
By Substitution and the soundness of IA2, it follows that

∀v ∈ De∃K̈ ∈V ∗∀t ∈ Dl[iB · 〈is · t1, σ(v, t)〉 L ∃z(z ∈ K̈ ∧A(b, z))],

where B ≡ ∃z(z ∈ x ∧A(y, z)). Thus by Lemmas 4.1.8 and 4.4.2, it follows
that

ξ(l, v) L ∃z(z ∈ K̈ ∧A(b, z)),

where ξ(l, v) ≡ χB(Φ(l,Λt.iB · 〈is · t1, σ(v, t)〉)). Hence by the definition

∀v ∈ De∃K̈ ∈V ∗sg(Λl.ξ(l, v)) L ∀y ∈ a∃z ∈ K̈A(y, z).
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By Lemma 4.1.8 again, it follows that

δ(e) L ∃u(S(u) ∧ ∀y ∈ a∃z ∈ uA(y, z)),

where δ(e) = Φ(e,Λv.〈0, sg(Λl.ξ(l, v))〉).

Theorem 5.4.12 [Soundness] If IZFN ` θ, then IZF′N ` V ∗ |=L θ.

Proof. Since the logical axioms and non-logical axioms and derivation rules
are all realizable, the result follows immediately.

5.5 A5: (Semi-) Constructive axioms

Some derivations might be simplified if one applies the following claim. Re-
call that ∃!y(N(y)∧A(y)) ≡ ∃y(N(y)∧A(y))∧∀x∀z[A(x)∧A(z)→ x = z].
Other notations used here are defined in Subsection 2.2.7.

Claim 5.5.1 [e L ∃!y(N(y) ∧A(y))]
→ χA(Φ(e0,Λk.k1)) L A(∅(Φ(e0,Λk.k0))).

Proof. By the definition

∀q ∈ De0 [q1 L A(q0)], (5.36)

and
e1 L ∀x∀z[A(x) ∧A(z)→ x = z]. (5.37)

Now let q, q′ ∈ De0 be arbitrary. From (5.36), q1 L A(q0) and q′1 L A(q′0).
Then by (5.37), it follows that q0 = q′0, i.e., the set {q0 : q ∈ De0} has exactly
one element and thus by Lemmas 4.1.8 and 4.1.7

∀q ∈ De0 [q1 L A(∅(Φ(e0,Λk.k0)))].

Then by Lemmas 4.1.8 and 4.4.2, we have

χA(Φ(e0,Λk.k1)) L A(∅(Φ(e0,Λk.k0))).

Lemma 5.5.2 [CT0!]

rct0!
L L ∀n∃!mA(n,m)→ ∃l∀n∃p∃q(T (l, n, p) ∧ U(p, q) ∧A(n, q)),

where the explicit form of rct0!
L will depend on the explicit forms of the pred-

icates T and U .
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Proof. Let e ∈ N be arbitrary such that e L ∀n∃!mA(n,m). By Lemma
5.0.18

∀n ∈ N[ψ1(e) · n L ∃!mA(n,m)].

Then by Claim 5.5.1 it follows that for all n in N

δ(e, n) L A(n,∅(Φ((ψ1(e) · n)0,Λk.k0))),

where δ(e, n) ≡ χA(Φ((ψ1(e) ·n)0,Λk.k1)). Now one defines a total recursive
function fe(n) := ∅(Φ((ψ1(e) ·n)0,Λk.k0)), which can be formalized via the
predicates T and U . Then from Lemma 5.0.18, the definitions and explicit
forms of predicates T and U , one can find an explicit realizer rct0!

L to realize
CT0!.

Lemma 5.5.3 ACNN ! is realizable.

Proof. ACNN ! is a theorem of IZFN .

Lemma 5.5.4 [UP]

rup
L
L ∀x[S(x)→ ∃nA(x, n)]→ ∃n∀x[S(x)→ A(x, n)],

where rup
L
≡ Λe.Φ(un(Φ(e,Λq.q · 0)),Λr.〈r0, sg(Λn.r1)〉).

Proof. Let e ∈ N be arbitrary such that

e L ∀x[S(x)→ ∃nA(x, n)].

By Lemma 5.0.18, it follows that ∀q ∈ De∀r ∈ Dq·0∀a ∈ S∗[r1 L
A(a, r0)], i.e.,

∀q ∈ De∀r ∈ Dq·0[sg(Λn.r1) L ∀x(S(x)→ A(x, r0))]. (5.38)

By Lemma 4.1.8 and 4.1.9,

{〈r0, sg(Λn.r1)〉 : ∃q ∈ De(r ∈ Dq·0)}
= {〈r0, sg(Λn.r1)〉 : r ∈ |un(Φ(e,Λq.q · 0))|}
= |δ(e)|,

where δ(e) ≡ Φ(un(Φ(e,Λq.q · 0)),Λr.〈r0, sg(Λn.r1)〉). Hence by Lemma
5.0.18 and (5.38), it follows that

δ(e) L ∃n∀x[S(x)→ A(x, n)].
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5.6 Independence results

Claim 5.6.1 IZFN 0 CTab
0 , where a and b are the codes for any partial

recursive functions whose domains are disjoint, recursively inseparable.

Proof. By the fact that CTab
0 is not realizable in the language of arithmetic

and by Thorem 4.4.3 and the Soundness Theorem 5.4.12, the result follows
immediately.

Corollary 5.6.2 IZFN 0 ACN2.

Proof. Since CT0! is realized, by Claim 5.6.1, it suffices to prove that
ACN2 with CT0! proves CTab

0 . Assume

∀n∃m[(m = 0→ {a}(n) ↑) ∧ (m 6= 0→ {b}(n) ↑)].

Now define B(n) := {0 : {a}(n) ↑} ∪ {1 : {b}(n) ↑}. Then

∀n∃m ∈ {0, 1}(m ∈ B(n)),

where m ∈ B(n) ≡ ∃z∃x∃y[x = {0 : {a}(n) ↑} ∧ y = {1 : {b}(n) ↑} ∧ z =
x ∪ y ∧ (m ∈ x → {a}(n) ↑) ∧ (m ∈ y → {b}(n) ↑)]. By ACN2, it follows
that there exists a function f : N→ {0, 1} such that

∀n ∈ N[(f(n) = 0→ {a}(n) ↑) ∧ (f(n) 6= 0→ {b}(n) ↑)].

By CT0!, the result follows immediately.

Claim 5.6.3 ACNN → ACN2.

Proof. ACN2 is an instance of ACNN .

Corollary 5.6.4 (IZF′N ) IZFN 0 ACNN .

Proof. This follows immediately from the above claim.

Theorem 5.6.5 [Independence Result] IZFN 0 ECT0 ∨ CTab
0 ∨ACN2 ∨

DC ∨RDC ∨PAX .

Proof.
♦ For CTab

0 , this follows immediately from Claim 5.6.1.
♦ Now we want to show that ECT0 is independent of IZFN . Since ECT0

proves CT0 and CTab
0 is an instance of CT0, the result follows immediately.
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♦ Now we want to show that DC is independent of IZFN . By Claim
5.6.3, it suffices to prove that DC → ACNN . To begin with, let us show
that ACN → ACNN . Assume ∀n∃mA(n,m). Define f(n) := {m ∈ N :
A(n,m)}. By ACN ,

∃g[Fun(g,N,N) ∧ ∀n ∈ N(g(n) ∈ f(n))].

Next, let us show that DC → ACN . Let f be an arbitrary function
with domain N such that ∀n ∈ N∃y ∈ f(n). Since ∀n ∈ N∃!a[a = f(n)],
by Replacement, it follows that there is a set b such that ∀n ∈ N[f(n) ∈ b].
Now define a set

A := {(n,m) : n ∈ N,m ∈ ∪b,m ∈ f(n)}.
Let F 0, F 1 denote the left and right projection functions, respectively. Then

∀x ∈ A∃y ∈ A[F 0(y) = F 0(x) + 1 ∧ F 1(x) ∈ f(F 0(x)) ∧ F 1(y) ∈ f(F 0(y))]

and then by DC it follows that

∃h[Fun(h,N,A) ∧ h(0) = (0, a) ∧ ∀n ∈ N(F 0(h(n)) = n)],

where a ∈ f(0). By defining g(n) := F 1(h(n)), by mathematical induction,
∀n ∈ N[g(n) ∈ f(n)].
♦ Lastly, we want to show that RDC and PAX are all independent of IZFN .
Since RDC proves DC and so does PAX , the result follows immediately.

Theorem 5.6.6 [Independence Result] IZFN +UP+UZ+CT0! 0 PEM,
where PEM denotes the Principle of Excluded Middle.

Proof. Since HA + CT0! ` ¬∀n[{n}(n) ↑ ∨¬{n}(n) ↑], it follows that
V ∗ |=L ¬∀n[{n}(n) ↑ ∨¬{n}(n) ↑]. By the fact that V ∗ |=L IZFN + UP +
UZ + CT0!, the result follows immediately.

Corollary 5.6.7 [Independence Result] IZFN + UP + UZ + CT0! 0 AC.

Proof. Since AC → PEM, by Theorem 5.6.6, the result follows immedi-
ately.

Corollary 5.6.8 [Independence Result] IZFN + UP + UZ + CT0! 0 FA.

Proof. Since FA→ PEM, the result follows immediately.

In conclusion, by our Lifschitz’ style interpretation, we have interpreted
Heyting arithmetic, IZFN and various semi-constructive axioms. We have
also differentiated CT0 from CT0! and proved the independence of a plethora
of AC-related axioms.



Chapter 6

Relativized realizability

In order to derive our conservativity results, we provide a version of rela-
tivized realizability in Section 6.1. We assume that we are given a partial
recursive function A from N to N. The main difference between recursive
realizability and relativized realizability is that the realizers are codes for
partial A-recursive functions (or Turing machines equipped with an ora-
cle which provides A(n) if it exists) rather than codes for partial recursive
functions (or ordinary Turing machines).

In Section 6.2 we use this interpretation to interpret Heyting arithmetic,
intuitionistic set theories CZFN and IZFN and various semi-constructive
axioms.

In this chapter, n ·m is defined to be the value {n}A(m), where we use
{n}A to denote the nth partial A-recursive function.

For relativized realizability, the interpretation structure is (N, ·, V ∗,R).
Here · is the foregoing partial operation and V ∗ is defined as follows:

V N
α =

⋃

β∈α
P(N× (V N

β ∪ N))

S∗ =
⋃

α∈On
V N
α

V ∗ = N ∪ S∗

where P denotes the Powerset operation. R is the realizability relation we
are going to define next.

80
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6.1 Definition of relativized realizability

To be specific and to facilitate the description we will use the following
abbreviations:

• TA ≡ relativized T-predicate; UA ≡ relativized extracting predicate.

• n ·m ' v ≡ ∃k[N(k) ∧ TA(n,m, k)] ∧ UA(µzTA(n,m, z), v)].

• n ·m R ϕ ≡ ∃v(n ·m ' v ∧ v R ϕ).

• n ·m ↓≡ ∃v(TA(n,m, v)).

• ∀(f, c) ∈ aϕ(f, c) ≡ ∀f ∈ N∀c ∈ V ∗((f, c) ∈ a → ϕ(f, c)) and ∃x ∈
aϕ(x) ≡ ∃x ∈ V ∗(x ∈ a ∧ ϕ(x)).

• 〈c, d〉 ≡ (c, d), where  : N2 → N is a pairing function (i.e., a bijective
relativized total recursive function).

• e0 ≡ 0(e), where 0 : N → N is a left unpairing function (i.e., a left
inverse function of ); e1 ≡ 1(e), where 1 : N→ N is a right unpairing
function (i.e., a right inverse function of ).

We can now proceed to define the realizability relation n R A for n ∈ N
and formulae A with parameters from V ∗ by induction on the complexity
of A. Below we assume that a, a1, a2, ..., an, b, c ∈ V ∗. We use e · f to stand
for {e}A(f).

1. e R R(a1, a2, ..., an) iff a1, a2, ..., an ∈ N ∧R(a1, a2, ..., an),

whenever R is a symbol for an n-ary R primitive recursive relation of
the language.

2. e R N(a) iff a ∈ N ∧ e = a.

3. e R S(a) iff a ∈ S∗.

4. e R a ∈ b iff ∃c ∈ V ∗[(e0, c) ∈ b ∧ e1 R a = c].

5. e R a = b iff (a, b ∈ N∧a = b)∨ [a ∈ S∗∧b ∈ S∗∧∀(f, d) ∈ a(e0 ·f R
d ∈ b) ∧ ∀(g, k) ∈ b(e1 · g R k ∈ a)].

6. e R A ∧B iff e0 R A ∧ e1 R B.

7. e R A ∨B iff [e0 = 0 ∧ e1 R A] ∨ [e0 6= 0 ∧ e1 R B].
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8. e R ¬A iff ∀f ∈ N¬(f R A).

9. e R A→ B iff ∀f ∈ N(f R A→ e · f ↓ ∧e · f R B).

10. e R ∀xA(x) iff ∀c ∈ V ∗(e R A[x/c]).

11. e R ∃xA(x) iff ∃c ∈ V ∗(e R A[x/c]).

Furthermore, one defines e R A(x) iff ∀a ∈ V ∗[e R A(a)] and V ∗ |=R A
iff ∃e[e ∈ N ∧ e R A].

6.2 Soundness of relativized realizability

We use the following abbreviations and notations:

• If h = 〈e, 〈f, g〉〉, we use the notation h0 to denote e and h10 to denote
f and h11 to denote g.

• dabc1c2 (or d[a][b]c1c2, if the form of a and b are too lengthy) denotes
d is the Gödel number for the relativized partial recursive function
such that whenever the condition c1 = c2 holds, then the code a is
executed; otherwise, the code b is executed.

Notation 6.2.1 ∀nA(n, ~x) ≡ ∀y[N(y)→ A(y, ~x)].

Notation 6.2.2 ∃nA(n, ~x) ≡ ∃y[N(y) ∧A(y, ~x)].

Notation 6.2.3 We will also use n ∈ N for N(n).

Notation 6.2.4 We will use Λe.ξ(e) to denote the code of the partial re-
cursive function λe.ξ(e).

Notation 6.2.5 ∀~a ∈ V ∗ϕ(~a) ≡ ∀a1, a2, ..., an ∈ V ∗ϕ(a1, a2, ..., an).

Lemma 6.2.6 For each formula A(u, ~x) in the language of set theory, CZFN

proves ∀e ∈ N∀ ~a ∈ V ∗
(i) e R ∀nA(n,~a)↔ ∀n ∈ N[e · n R A(n,~a)],
(ii) e R ∃nA(n,~a)↔ e1 R A(e0,~a).

Proof. Both follow immediately from the definitions.
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6.2.1 A1: Axioms on numbers and sets

Claim 6.2.7 [A1 :1] 0 R ∀x¬(N(x) ∧ S(x)).

Proof. Let c ∈ V ∗ be arbitrary. Assume ∃n ∈ N such that n R (N(c) ∧
S(c)). Then by the definition, it follows that c ∈ N∩S∗, but this contradicts
Corollary 3.3.3.

Claim 6.2.8 [A1 :12] Λe.0 R ∀x∀y[x ∈ y → S(y)].

Proof. Let a, b ∈ V ∗ and e ∈ N be arbitrary such that e R a ∈ b. Then by
the definition ∃c ∈ V ∗(e0, c) ∈ b, i.e., b ∈ S. Hence b ∈ S∗, thus 0 R S(b).

Claim 6.2.9 [A1 :3] n R N(n̄) for all natural numbers n.

Proof. This follows immediately from the fact that N(n̄) is an axiom of
the background theory.

6.2.2 A2: Number-theoretic axioms

Claim 6.2.10 [A2 :1] 0 R SUC(n̄, n+ 1) for all natural numbers n.

Proof. This follows immediately from the fact that SUC(n̄, n+ 1) is an
axiom of the background theory.

Claim 6.2.11 [A2 :2] Λn.〈〈n+ 1, 0〉,Λe.0〉 R ∀n∃!mSUC(n,m).

Proof. Let n ∈ N be arbitrary. By A2 :2 in the background theory, there
exists a unique number n+1 ∈ N such that SUC(n, n+1). Then by Lemma
6.2.6 it follows that 〈n + 1, 0〉 R ∃mSUC(n,m). Thus the result follows
from Lemma 6.2.6.

Claim 6.2.12 [A2 :3] Λn.Λm.Λe.0 R ∀n∀m(SUC(n,m)→ m 6= 0̄).

Proof. Let n,m, e ∈ N be arbitrary such that e R SUC(n,m), i.e.,
SUC(n,m). Then by A2 :3 in the background theory, it follows that m 6= 0̄
and thus the result follows from Lemma 6.2.6.

Claim 6.2.13 [A2 :4] r24 R ∀m(m = 0̄ ∨ ∃nSUC(n,m)),
where r24 ≡ Λm. 〈m,d[0][〈m− 1, 0〉]m0〉.
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Proof. Let m ∈ N be arbitrary. Then by A2 :4 in the background theory
m = 0̄ ∨ ∃nSUC(n,m). For the second case, by A2 :5 in the background
theory, there exists a unique number m− 1 ∈ N such that SUC(m− 1,m).
Hence by Lemma 6.2.6, it follows that 〈m−1, 0〉 R ∃nSUC(n,m). Applying
the disjunctive realizer d yields the result.

Claim 6.2.14 [A2 :5] r25 R ∀n∀m∀k(SUC(m,n) ∧ SUC(k, n)→ m = k),
where r25 ≡ Λn.Λm.Λk.Λe.0

Proof. Let n,m, k, e ∈ N be arbitrary such that e R SUC(m,n)∧SUC(k, n),
i.e., SUC(m,n)∧ SUC(k, n). By A2 :5 in the background theory, m = k.

Claim 6.2.15 [A2 :6] r26 R ∀n∀m∃!kADD(n,m, k),
where r26 ≡ Λn.Λm.〈〈n+m, 0〉,Λe.0〉.

Proof. Let n,m ∈ N be arbitrary. Then by A2 :6 in the background theory,
there is a unique number n+m ∈ N such that ADD(n,m, n+m). Hence by
the definition and Lemma 6.2.6 , 〈〈n+m, 0〉,Λe.0〉 R ∃!kADD(n,m, k).

Claim 6.2.16 [A2 :7] Λn.0 R ∀nADD(n, 0̄, n).

Proof. Let n ∈ N be arbitrary. Then by A2 :7 in the background theory,
ADD(n, 0̄, n). By the definition the result follows.

Claim 6.2.17 [A2 :8]

r28 R ∀n∀k∀m∀l∀i[ADD(n, k,m)∧ SUC(k, l)∧ SUC(m, i)→ ADD(n, l, i)],

where r28 ≡ Λn.Λk.Λm.Λl.Λi.(Λe.0).

Proof. Let n, k,m, l, i, e ∈ N be arbitrary such that e R ADD(n, k,m) ∧
SUC(k, l) ∧ SUC(m, i), i.e.,

ADD(n, k,m) ∧ SUC(k, l) ∧ SUC(m, i).

Applying A2 :8 in the background theory, ADD(n, l, i) and then the result
follows from the definition.

Claim 6.2.18 [A2 :9] r29 R ∀n∀m∃!kMULT(n,m, k),
where r29 ≡ Λn.Λm.〈〈n×m, 0〉,Λe.0〉.

Proof. Let n,m ∈ N be arbitrary. By A2 :9 in the background theory,
there is a unique number n×m ∈ N such that MULT(n,m, n×m). By the
definition and Lemma 6.2.6, 〈〈n×m, 0〉,Λe.0〉 R ∃!kMULT(n,m, k).
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Claim 6.2.19 [A2 :10] Λn.0 R ∀nMULT(n, 0̄, 0̄).

Proof. Let n ∈ N be arbitrary. Then by A2 :10 in the background theory,
MULT(n, 0̄, 0̄). By the definition the result follows.

Claim 6.2.20 [A2 :11] r211 R

∀n∀k∀m∀l∀i[MULT(n, k,m) ∧ SUC(k, l) ∧ADD(m,n, i)→ MULT(n, l, i)],

where r211 ≡ Λn.Λk.Λm.Λl.Λi.(Λe.0).

Proof. Let n, k,m, l, i, e ∈ N be arbitrary such that e R MULT(n, k,m) ∧
SUC(k, l) ∧ADD(m,n, i), i.e.,

MULT(n, k,m) ∧ SUC(k, l) ∧ADD(m,n, i).

By A2 :11 in the background theory, MULT(n, l, i). Then the result follows
from the definition.

Claim 6.2.21 [A2 :12]

r212 R A(0̄) ∧ ∀n∀m[A(n) ∧ SUC(n,m)→ A(m)]→ ∀nA(n),

where r212 ≡ Λe.f#
e .

Proof. Let e ∈ N be arbitrary such that

e R A(0̄) ∧ ∀n∀m[A(n) ∧ SUC(n,m)→ A(m)],

i.e., e0 R A(0̄) and

e1 R ∀n∀m[A(n) ∧ SUC(n,m)→ A(m)].

By Lemma 6.2.6, one then has

∀n,m ∈ N[(e1 · n) ·m R A(n) ∧ SUC(n,m)→ A(m)]. (6.1)

Now define a recursive function fe : N → N such that fe(0) = e0 and

fe(n + 1) = ((e1 · n) · (n + 1)) · 〈fe(n), 0〉 and let f#
e be its Gödel number.

Then the result follows.
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6.2.3 A3: Logical axioms for IPL

We will show only nontrivial ones and write down the realizers for the trivial
ones.

For logical axioms (LA):

(IPL1) Λe.Λd.e R A→ (B → A).

(IPL2) Λe.Λd.Λk.((e·k)·(d·k)) R [A→ (B → C)]→ [(A→ B)→ (A→ C)].

(IPL3) Λe.Λd.〈e, d〉 R A→ (B → A ∧B).

(IPL4) Λe.e0 R A ∧B → A.

(IPL5) Λe.e1 R A ∧B → B.

(IPL6) Λe.〈0, e〉 R A→ A ∨B.

(IPL7) Λe.〈1, e〉 R B → A ∨B.

(IPL8) r8 R (A ∨B)→ [(A→ C)→ ((B → C)→ C)],
where r8 ≡ Λe.Λs.Λt.d[s · e1][t · e1]e00.

Proof. Let e, s, t ∈ N be arbitrary such that

e R A ∨B, s R A→ C, t R B → C.

Then by the definition

(e0 = 0 ∧ s · e1 R C) ∨ (e0 6= 0 ∧ t · e1 R C).

Applying the disjunctive realizer, one has d[s · e1][t · e1]e00 R C.

(IPL9) Λe.Λd.0 R (A→ B)→ ((A→ ¬B)→ ¬A).

(IPL10) Λe.e R A→ (¬A→ B).

(IPL11) Λe.e R ∀xA(x)→ A[x/a], where a is a constant in V ∗.

(IPL12) Λe.e R A[x/a]→ ∃xA(x), where a is a constant in V ∗.

For Inference Rules: (In the following, we use FV (C) to denote the
set of all free variables in C).

(IR1) Modus Ponens is preserved, i.e., if e R A and d R A→ B, then one
can effectively find a realizer for B via realizers e and d.
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Proof. This follows immediately from the definition.

(IR2) Rule ∀ is preserved, i.e., if m R C → A(x), then one can find a
partial recursive function ξ such that ξ(m) R C → ∀xA(x), where
x /∈ FV (C).

Proof. Assume m R ∀x(C → A(x)). Let n ∈ N be arbitrary such that
n R C. Then by the definitions m · n R ∀xA(x). Now one sets ξ(m) :=
Λn.(m · n).

(IR3) Rule ∃ is preserved, i.e., if m R A(x) → C, then one can effectively
find a partial recursive function ξ such that ξ(m) R ∃xA(x) → C,
where x /∈ FV (C).

Proof. Assume m R ∀x(A(x) → C). Let n ∈ N be arbitrary such that
n R ∃xA(x), i.e., ∃a ∈ V ∗[n R A(a)] and thus m · n R C. Now one sets
ξ(m) to be Λn.(m · n).

For the Identity Axioms (IA): The soundness of IA follows imme-
diately from the following claims. There claims will provide some universal
realizers, that is, these realizers will depend only on the form of a formula
in L(V ∗) and are independent of the parameters. Now let a, b, c ∈ V ∗ be
arbitrary. We have the following claims:

Claim 6.2.22 [IA1] ir R a = a, where ir ≡ Ω(Λy.(〈Λf.〈f, y〉,Λf.〈f, y〉〉)).

Proof. It suffices to find a realizer ir such that ∀a ∈ S∗[ir R a = a]. We
show this via ordinal induction and the fixed point theorem. Let α ∈ On
be arbitrary. Assume ∀β ∈ α∀b ∈ V N

β [k R b = b]. Now let a ∈ V N
α

be arbitrary. Let f ∈ N and d ∈ V ∗ be arbitrary such that (f, d) ∈ a.
Then by the inductive hypothesis and the definition, 〈f, k〉 R d ∈ a, i.e.,
〈Λf.〈f, k〉,Λf.〈f, k〉〉 R a = a. Applying the fixed point generator Ω, one
has the explicit form of k ≡ Ω(Λy.(〈Λf.〈f, y〉,Λf.〈f, y〉〉)).

Claim 6.2.23 [IA2] is R a = b→ b = a], where is ≡ Λe.〈e1, e0〉.

Proof. Let a, b ∈ V ∗ and e ∈ N be arbitrary such that e R a = b. Then
the result follows from the symmetry of the definition.

Claim 6.2.24 [IA3]

it R a = b ∧ b = c→ a = c,

where it ≡ (Ω(λx.〈tx0x1, t̃x0x1〉))0.
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Claim 6.2.25 [IA4]

ieb R a = b ∧ b ∈ c→ a ∈ c,

where ieb ≡ (Ω(λx.〈tx0x1, t̃x0x1〉))1.

Proof. For any formulae θ1, θ2, ..., θn, let
n∧
i=1
θi denote the conjunction θ1 ∧

θ2... ∧ θn. We will show IA3 and IA4 simultaneously via C3-induction (cf.
Subsection 3.2.1):

∀x1, x2, x3[∀(y1, y2, y3) C3 (x1, x2, x3)ϕ(y1, y2, y3)→ ϕ(x1, x2, x3)]

→ ∀x, y, zϕ(x, y, z).

and the fixed point theorem (which will produce universal realizers u and v
for both) by taking ϕ(y1, y2, y3) to be

y1, y2, y3 ∈ V ∗ →
3∧

i,j,k=1
i,j 6=k∧i 6=j

η(yi, yj , yk),

where η(yi, yj , yk) denotes

u R [yi = yj ∧ yj = yk → yi = yk] ∧ v R [yi = yj ∧ yj ∈ yk → yi ∈ yk].

Let a4, a5, a6 ∈ V ∗ and d1, d2, d3 ∈ V ∗ be arbitrary such that (d1, d2, d3) C3

(a4, a5, a6) and

u R di = dj ∧ dj = dk → di = dk, (6.2)

v R di = dj ∧ dj ∈ dk → di ∈ dk,

for all i, j, k ∈ {1, 2, 3}, where i, j 6= k and i 6= j. Now we have to find the
forms of the realizers u and v and show that

u R ai = aj ∧ aj = ak → ai = ak,

v R ai = aj ∧ aj ∈ ak → ai ∈ ak,

for all i, j, k ∈ {4, 5, 6}, where i, j 6= k and i 6= j. Now let i, j, k ∈ {4, 5, 6}
be arbitrary such that i, j 6= k and i 6= j. Let n ∈ N be arbitrary such
that n R ai = aj ∧ aj ∈ ak, i.e., ∃q ∈ V ∗[(n10, q) ∈ ak ∧ 〈n0, n11〉 R ai =
aj ∧ aj = q]. We want to find a realizer with ai ∈ ak. Since (ai, aj , q) C3

(ai, aj , ak), (without loss of generality, suppose i = 6, j = 4, k = 5, then
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(aj , q, ai) C3 (a4, a5, a6)) by the inductive hypothesis (6.2), u · 〈n0, n11〉 R
ai = q. Hence by the definition, it follows that σ(n, u) R ai ∈ ak, where
σ(n, u) ≡ 〈n10, u · 〈n0, n11〉〉 and thus

Λn.σ(n, u) R ai = aj ∧ aj ∈ ak → ai ∈ ak. (6.3)

Now let m ∈ N be arbitrary such that m R ai = aj ∧ aj = ak. Let
p, r ∈ N and q, w ∈ V ∗ be arbitrary such that (p, q) ∈ ai and (r, w) ∈ ak.
From the assumption m00 · p R q ∈ aj and m11 · r R w ∈ aj , i.e.,

∃s ∈ V ∗[((m00 · p)0, s) ∈ aj ∧ (m00 · p)1 R q = s],

∃s ∈ V ∗[((m11 · r)0, s) ∈ aj ∧ (m11 · r)1 R w = s].

By the assumption again,

m10 · (m00 · p)0 R s ∈ ak,
m01 · (m11 · r)0 R s ∈ ai.

Since
(q, s, ak), (ai, s, w) C3 (ai, aj , ak),

by the inductive hypothesis (6.2),

ξ(m, p, v) R q ∈ ak,
δ(m, r, v) R w ∈ ai,

where

ξ(m, p, v) ≡ v · 〈(m00 · p)1,m10 · (m00 · p)0〉,
δ(m, r, v) ≡ v · 〈(m11 · r)1,m01 · (m11 · r)0〉.

Hence by the definition, it follows that

Λm.〈Λp.ξ(m, p, v),Λr.δ(m, r, v)〉 (6.4)

R ai = aj ∧ aj = ak → ai = ak.

From (6.3) and (6.4) one finds u and v as follows:

u ' Λm.〈Λp.ξ(m, p, v),Λr.δ(m, r, v)〉,
v ' Λn.〈n10, u · 〈n0, n11〉〉.



6.2. SOUNDNESS OF RELATIVIZED REALIZABILITY 90

Now define

t ≡ Λu.Λv.Λm.〈Λp.ξ(m, p, v),Λr.δ(m, r, v)〉,
t̃ ≡ Λu.Λv.Λn.〈n10, u · 〈n0, n11〉〉.

By Corollary 3.1.15, one has the explicit forms: u ≡ (Ω(λx.〈tx0x1, t̃x0x1〉))0

and v ≡ (Ω(λx.〈tx0x1, t̃x0x1〉))1.

Claim 6.2.26 [IA5]

ibe R a = b ∧ c ∈ a→ c ∈ b,

where ibe ≡ Λe. ieb · 〈e11, e00 · e10〉.

Proof. Let e ∈ N be arbitrary such that e R a = b ∧ c ∈ a, i.e.,

∃k ∈ V ∗[(e10, k) ∈ a ∧ e11 R c = k] ∧ e0 R a = b.

By the definition and IA4, it then follows that ieb · 〈e11, e00 · e10〉 R c ∈ b.

Remark 6.2.27 IA6 to IA10 are all realizable from its background theory
and the definition.

Lemma 6.2.28 [Substitution] For any formula A(x, ~y) in L(V ∗), one can
inductively find a realizer rstuA ∈ N such that ∀a,~b, c ∈ V ∗[rstuA R a =

c ∧A(a,~b)→ A(c,~b)].

Proof. For the atomic formulae, they have been given in the above claims.
For the compound formulae, they all follow immediately via induction over
the complexity of the formulae. Here we show the formulae with quantifiers:
♦ A(a,~b) ≡ ∃zB(a,~b, z): Let e ∈ N be arbitrary such that e R a =
c ∧ ∃zB(a,~b, z). By the definition, it follows that

e0 R a = c ∧ ∃d ∈ V ∗[e1 R B(a,~b, d)],

i.e., ∃d ∈ V ∗[e R (a = c ∧ B(a,~b, d))]. By the inductive hypothesis, it
follows that

rstuB · e R ∃zB(c,~b, z).

Now one defines rstuA ≡ Λe.(rstuB · e) and the result follows.

♦ A(a,~b) ≡ ∀zB(a,~b, z): Let e ∈ N and a, b ∈ V ∗ be arbitrary such that

e R a = c ∧ ∀zB(a,~b, z).
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Then by the definition, it follows that

e0 R a = c ∧ ∀d ∈ V ∗[e1 R B(a,~b, d)],

i.e., ∀d ∈ V ∗[e R a = c∧B(a,~b, d)]. By the inductive hypothesis, it follows
that

rstuB · e R ∀zB(a,~b, z).

Now one defines rstuA ≡ Λe.(rstuB · e) and the result follows.

6.2.4 A4.1: Non-logical axioms (CZF with two sorts)

Lemma 6.2.29 [Extensionality] rext R ∀x∀y(S(x) ∧ S(y)→ [∀z(z ∈ x↔
z ∈ y)→ x = y]), where rext ≡ Λe.Λt.〈Λf.t0 · 〈f, ir〉,Λg.t1 · 〈g, ir〉〉.

Proof. Let a, b ∈ V ∗ and e, t ∈ N be arbitrary such that

e R S(a) ∧ S(b), (6.5)

and t R ∀z(z ∈ a↔ z ∈ b), i.e.,

∀c ∈ V ∗[t R c ∈ a↔ c ∈ b]. (6.6)

From (6.5) and the definitions, a, b ∈ S∗. Now we want to find a realizer
which realizes a = b. Let f, g ∈ N and d, k ∈ V ∗ be arbitrary such that
(f, d) ∈ a and (g, k) ∈ b. Then by the soundness of IA1, it follows that
〈f, ir〉 R d ∈ a and 〈g, ir〉 R k ∈ b, i.e., by (6.6)

t0 · 〈f, ir〉 R d ∈ b ∧ t1 · 〈g, ir〉 R k ∈ a.

From the definition, 〈Λf.(t0 · 〈f, ir〉),Λg.(t1 · 〈g, ir〉)〉 R a = b.

Lemma 6.2.30 [Pairing] rpair R ∀x∀y∃u[S(u) ∧ (x ∈ u ∧ y ∈ u)], where
rpair ≡ 〈0, 〈〈0, ir〉, 〈1, ir〉〉〉.

Proof. Let a, b ∈ V ∗ be arbitrary. Now define

c ≡ {a, b}R ≡ {(0, a), (1, b)}.

By the Pairing Axiom in the background theory, c is an external set. By
Claim 3.3.6, c is also an internal set, i.e., c ∈ S∗. Then, by the soundness of
IA1,

〈0, ir〉 R a ∈ c ∧ 〈1, ir〉 R b ∈ c.
Hence the result follows from the definition.

Furthermore, one can also define the internal Cartesian product.
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Definition 6.2.31 For all a, b in V ∗,

(a, b)R := {(0, {a, a}R), (1, {a, b}R)}.

Since {a, b}R ∈ S∗, by Claim 3.3.6, (a, b)R ∈ S∗.

Corollary 6.2.32 [Internal Cartesian Product]

rprd R (a, b)R = (c, d)R → a = c ∧ b = d,

where rprd ≡ Λg.〈is · (((g0 · 0)11) · 0)1,d[θ][π](g1 · 1)00〉.

Proof. By the soundness of IA1 and IA2,

∀h ∈ N[h R {a, a}R = {c, d}R → is · (h1 · 0)1 R a = c], (6.7)

Now let us find a realizer for {a, b}R = {a, c}R → b = c. Let n ∈ N
be arbitrary such that n R {a, b}R = {a, c}R. Since (1, b) ∈ {a, b}R,
n0 · 1 R b ∈ {a, c}R, i.e.,

∃v ∈ V ∗[((n0 · 1)0, v) ∈ {a, c}R ∧ (n0 · 1)1 R b = v)]. (6.8)

If v = a (i.e., (n0 · 1)0 = 0), then by Substitution

η(n) R {a, a}R = {a, c}R,

where A ≡ {x, y}R = {x, z}R and η(n) ≡ rstuA · 〈(n0 · 1)1, n〉.
Since (1, c) ∈ {a, c}R, by the definitions, it follows that ((η(n))1 · 1)1 R

c = a. With this and (6.8) and the soundness of IA2, IA3,

it · 〈(n0 · 1)1, i
s · ((η(n))1 · 1)1〉 R b = c.

If v = c (i.e., (n0 · 1)0 = 1), then (n0 · 1)1 R b = c. Hence by applying
the disjunctive realizer d, we have found a realizer ξ such that

Λn.β(n) R {a, b}R = {a, c}R → b = c, (6.9)

where β(n) ≡ Λn.d[it · 〈(n0 · 1)1, i
s · ((η(n))1 · 1)1〉][(n0 · 1)1](n0 · 1)00.

Let g ∈ N be arbitrary such that g R (a, b)R = (c, d)R. By the defini-
tion, (0, {a, a}R) ∈ (a, b)R and thus it follows that g0 · 0  {a, a}R ∈ (c, d)R.
Hence by (6.7)

is · (((g0 · 0)11) · 0)1 R a = c. (6.10)
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Furthermore, since (1, {c, d}R) ∈ (c, d)R, by the assumption it follows that
g1 · 1 R {c, d}R ∈ (a, b)R, i.e.,

∃u ∈ V ∗[((g1 · 1)0, u) ∈ (a, b)R] ∧ [(g1 · 1)1 R {c, d}R = u].

If (g1·1)0 = 0, then (g1·1)1 R {c, d}R = {a, a}R and thus by the assumption
and (6.9) one can find a realizer θ to realize b = d; if (g1 · 1)0 = 1, then
(g1 · 1)1 R {c, d}R = {a, b}R and thus by (6.10) and (6.9), one can find a
realizer π to realize b = d. By applying the disjunctive realizer d, it follows
that

d[θ][π](g1 · 1)00 R b = d. (6.11)

From (6.10) and (6.11), the result follows immediately.

Lemma 6.2.33 [Union] runi R ∀x∃u[S(u) ∧ ∀z(z ∈ u ↔ ∃y(y ∈ x ∧ z ∈
y))], where runi ≡ 〈0, 〈Λe.ξ(e),Λt.τ(t)〉〉.

Proof. Let a ∈ V ∗ be arbitrary. Define

a ≡ {(〈n,m〉, b) : ∃c ∈ V ∗[(n, c) ∈ a ∧ (m, b) ∈ c]}.

Then by Bounded Separation, the Union and Pairing Axioms in the back-
ground theory, a is an external set. By Claim 3.3.6 , a is also an in-
ternal set, i.e., a ∈ S∗. Now we want to find a realizer which realizes
∀z(z ∈ a ↔ ∃y(y ∈ a ∧ z ∈ y)). Let c ∈ V ∗ and e ∈ N be arbitrary
such that e R c ∈ a, i.e., ∃d ∈ V ∗[(e0, d) ∈ a ∧ e1 R c = d]. By the
definition, it follows that ∃k ∈ V ∗[(e00, k) ∈ a ∧ (e01, d) ∈ k]. Hence by the
soundness of IA1 and IA4,

ξ(e) R ∃y(y ∈ a ∧ c ∈ y), (6.12)

where ξ(e) ≡ 〈〈e00, i
r〉, ieb · 〈e1, 〈e01, i

r〉〉〉. On the other hand, let t ∈ N be
arbitrary such that

t R ∃y(y ∈ a ∧ c ∈ y), (6.13)

i.e., ∃q ∈ V ∗[t R q ∈ a ∧ c ∈ q]. From t0 R q ∈ a,

∃h ∈ V ∗(t00, h) ∈ a ∧ t01 R q = h. (6.14)

From t1 R c ∈ q and (6.14) and the soundness of IA5, it follows that
ε(t) ≡ ibe · 〈t01, t1〉 R c ∈ h, i.e.,

∃p ∈ V ∗[((ε(t))0, p) ∈ h ∧ (ε(t))1 R c = p]. (6.15)
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Since (t00, h) ∈ a and ((ε(t))0, p) ∈ h, it follows that (〈t00, (ε(t))0〉, p) ∈ a
and thus

〈〈t00, (ε(t))0〉, ir〉 R p ∈ a. (6.16)

From (6.15) and (6.16) and the soundness of IA1, IA4, it follows that

τ(t) R c ∈ a, (6.17)

where τ(t) ≡ ieb · 〈(ε(t))1, 〈〈t00, (ε(t))0〉, ir〉〉. From (6.12) and (6.17), it
follows that

〈Λe.ξ(e),Λt.τ(t)〉 R ∀z(z ∈ a↔ ∃y(y ∈ a ∧ z ∈ y)).

In order to show the soundness of Bounded Separation, we have the following
definitions and claims.

Definition 6.2.34 We define the collection of the bounded formulae (or
∆0-formulae), Form∆0, with constants from V ∗ as follows: It consists of
the Atomic formulae: t1 ∈ t2 and t1 = t2, and is closed under ∧,∨,¬,→
, ∀x ∈ t (an abbreviation for ∀x[x ∈ t →]) and ∃x ∈ t (an abbreviation
for ∃x[x ∈ t∧]), where t, t1, t2 ∈ V ar ∪ V ∗. Let Form∆0

c be the collection
of the closed ∆0-formulae and let A(b) denote a closed ∆0-formulae with a
constant b from V ∗.

Definition 6.2.35 We define a relation 0
R over N× Form∆0

c as follows:

• e 0
R a ∈ b iff e R a ∈ b.

• e 0
R B(a) ∧ C(a) iff e0 0

R B(a) ∧ e1 0
R C(a).

• e 0
R B(a) ∨ C(a) iff (e0 = 0 ∧ e1 0

R B(a)) ∨ (e0 6= 0 ∧ e1 0
R C(a)).

• e 0
R B(a)→ C(a) iff n 0

R B(a)→ e · n ↓ ∧e · n 0
R C(a).

• e 0
R ¬B(a) iff ∀n ∈ N¬n 0

R B(a).

• e 0
R ∀x ∈ aB(x) iff ∀(f, d) ∈ a[e · f ↓ ∧e · f 0

R B(d)].

• e 0
R ∃x ∈ aB(x) iff ∃d ∈ V ∗[(e0, d) ∈ a ∧ e1 0

R B(d)].

Claim 6.2.36 For all A(a) ∈ Form∆0
c , {e ∈ N : e 0

R A(a)} is a set.
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Proof. We show by the induction on the complexity of A(a). Let ZB(b) be

the class {e ∈ N : e 0
R B(b)} for all B(b) ∈ Form∆0

c . For the closed atomic
formula, it can be easily seen to be true. For the compound formulae, by
the induction, ZA(a) is a set is validated by the following settings:
♦ {e ∈ N : e 0

R B(a) ∧ C(a)} = {e ∈ N : e0 ∈ ZB(a) ∧ e1 ∈ ZC(a)};
♦ {e ∈ N : e 0

R B(a)∨C(a)} = {(e0 ∧ e1 ∈ ZB(a))∨ (e0 6= 0∧ e1 ∈ ZC(a))};
♦ {e ∈ N : e 0

R B(a) → C(a)} = {e ∈ N : ∀n ∈ N[n ∈ ZB(a) → e · n ↓
∧e · n ∈ ZC(a)]};
♦ {e ∈ N : e 0

R ¬B(a)} = {e ∈ N : ∀n ∈ N¬n ∈ ZB(a)};
♦ {e ∈ N : e 0

R ∀x ∈ aB(x)} = {e ∈ N : ∀(f, d) ∈ a[e · f ↓ ∧e · f ∈ ZB(d)]};
♦ {e ∈ N : e 0

R ∃x ∈ aB(x)} = {e ∈ N : ∃d ∈ V ∗[(e0, d) ∈ a ∧ e1 ∈ ZB(d)]}.

Claim 6.2.37 For each closed ∆0-formula A(a) in Form∆0
c , there exist

partial recursive functions fA and gA such that [e R A(a) → fA(e) 0
R

A(a)] and [e 0
R A(a)→ gA(e) R A(a)].

Proof. By the (mutual) induction on the complexity of A(a), we have the
following settings (we show only the nontrivial ones in details):
♦ e R B(a)∧C(a)→ 〈fB(e0), fC(e1)〉 0

R B(a)∧C(a), e 0
R B(a)∧C(a)→

〈gB(e0), gC(e1)〉 R B(a) ∧ C(a);
♦ e R B(a) ∨ C(a) → 〈e0, 〈d[fB(e1)][fC(e1)]e00〉〉 0

R B(a) ∨ C(a), e 0
R

B(a) ∨ C(a)→ 〈e0, 〈d[gB(e1)][gC(e1)]e00〉〉 R B(a) ∨ C(a);
♦ Assume e R B(a) → C(a). Assume n 0

R B(a). By the inductive
hypothesis, it follows that gB(n) R B(a) and thus by the assumption
e · gB(n) R C(a). Again by the inductive hypothesis, it follows that fC(e ·
gB(n)) 0

R C(a). Hence we have shown that [e R B(a) → C(a)] →
Λn.fC(e · gB(n)) 0

R B(a)→ C(a). By the same argument, one also shows
[e 0

R B(a)→ C(a)]→ Λn.gC(e · fB(n)) R B(a)→ C(a).
♦ e R ¬B(a)→ e 0

R ¬B(a), e 0
R ¬B(a)→ e R ¬B(a);

♦ Assume e R ∀x ∈ aB(x). Let (h, d) ∈ a be arbitrary. Then by the
soundness of IA1 and the assumption, it follows that e · 〈h, ir〉 R B(d) and
thus by the inductive hypothesis, fB(e · 〈h, ir〉) 0

R B(d). Hence we have
shown that Λh.fB(e · 〈h, ir〉) 0

R ∀x ∈ aB(x). On the other hand, assume
e 0

R ∀x ∈ aB(x). Let n R b ∈ a be arbitrary, i.e., ∃c ∈ V ∗[(n0, c) ∈
a ∧ n1 R b = c]. By the assumption, e · n0 0

R B(c), which by inductive
hypothesis yields gB(e ·n0) R B(c). By the soundness of IA2, Substitution
and the definition, we have shown that Λn.rstuB · 〈is · n1, g

B(e · n0)〉 R ∀x ∈
aB(x).
♦ Assume e R ∃x ∈ aB(x), i.e., ∃d, c ∈ V ∗[((e00, c) ∈ a ∧ e01 R d =
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c) ∧ e1 R B(d)]. By Substitution, it follows that rstuB · 〈e01, e1〉 R B(c),
which by the inductive hypothesis yields fB(rstuB · 〈e01, e1〉) 0

R B(c). Hence
we have shown that 〈e00, f

B(rstuB · 〈e01, e1〉)〉 0
R ∃x ∈ aB(x). On the other

hand, assume e 0
R ∃x ∈ aB(x), i.e., by the definition and the soundness of

IA1, ∃d ∈ V ∗[〈e0, i
r〉 R d ∈ a∧e1 0

R B(d)]. Then by inductive hypothesis
and the definition, it follows that 〈〈e0, i

r〉, gB(e1)〉 R ∃x ∈ aB(x).

Lemma 6.2.38 [Bounded Separation]

rSep
∈ R ∀x∃u[S(u) ∧ ∀z(z ∈ u↔ z ∈ x ∧A(z))],

where A(z) is a bounded formula and where rSep
∈ ≡ 〈0, 〈Λe.〈ξ(e), η(e)〉,Λl.ε(l)〉〉.

Proof. Let a ∈ V ∗ be arbitrary. Define

a ≡ {(〈f, g〉, k) : f, g ∈ N ∧ [(g, k) ∈ a ∧ f 0
R A(k)]}.

Then by Claim 6.2.36, Bounded Separation, the Union and Pairing Axioms
in the background theory, one has a is an external set. By Claim 3.3.6 , a
is also an internal set, i.e., a ∈ S∗. Now we want to find a realizer which
realizes ∀z(z ∈ a ↔ z ∈ a ∧ A(z)). Let c ∈ V ∗ and e ∈ N be arbitrary
such that e R c ∈ a, i.e., ∃d ∈ V ∗[(e0, d) ∈ a ∧ e1 R c = d]. By the
definition, it follows that (e01, d) ∈ a ∧ e00 0

R A(d), i.e., by Claim 6.2.37,
gA(e00) R A(d). Hence by the soundness of IA and IA4, ξ(e) R c ∈ a
and, by the soundness of IA2 and Substitution, η(e) R A(c), where

ξ(e) ≡ ieb · 〈e1, 〈e01, i
r〉〉,

η(e) ≡ rstuA · 〈is · e1, g
A(e00)〉.

On the other hand, let l ∈ N be arbitrary such that l R c ∈ a ∧ A(c).
Then by the definition and Substitution, it follows that

∃d ∈ V ∗[(l00, d) ∈ a ∧ l01 R c = d ∧ δ(l) R A(d)],

where δ(l) ≡ rstuA · 〈l01, l1〉. By the inductive hypothesis, fA(δ(l)) 0
R A(d).

Thus by the definition (〈fA(δ(l)), l00〉, d) ∈ a, which by the soundness of
IA1 and IA4 yields ε(l) R c ∈ a, where ε(l) ≡ ieb ·〈l01, 〈〈fA(δ(l)), l00〉, ir〉〉.
Hence we have shown that

〈Λe.〈ξ(e), η(e)〉,Λl.ε(l)〉 R ∀z[z ∈ a↔ z ∈ a ∧A(z)].



6.2. SOUNDNESS OF RELATIVIZED REALIZABILITY 97

Lemma 6.2.39 [Infinity]

rInf R ∃u(S(u) ∧ ∀z[z ∈ u↔ N(z)]),

where rInf ≡ 〈0, 〈Λe.e0,Λg.〈g, ir〉〉〉.

Proof. Define
u = {(n, n) : n ∈ N}. (6.18)

Then by the Infinity Axiom and Bounded Separation in the background
theory, u is an external set. Moreover, by the definition, u is also an internal
set, i.e., u ∈ S∗. Now we want to find a realizer which realizes ∀z[z ∈ u ↔
N(z)]. Let c ∈ V ∗ be arbitrary. Let e ∈ N be arbitrary such that e R c ∈ u.
Then by the definition we have

∃k ∈ V ∗(e0, k) ∈ u, (6.19)

and
e1 R c = k. (6.20)

From (6.18), (6.19) and (6.20), it follows that k = c = e0 ∈ N and thus

e0 R N(c). (6.21)

On the other hand, let g ∈ N be arbitrary such that g R N(c). Then by
the definition it follows that g = c, i.e., (g, c) ∈ u. Hence by the soundness
of IA1, it follows that

〈g, ir〉 R c ∈ u. (6.22)

From (6.21) and (6.22), it follows that

〈Λe.e0,Λg.〈g, ir〉〉 R ∀z[z ∈ u↔ N(z)].

Lemma 6.2.40 [Induction] rInd R ∀x[(∀y ∈ xA(y)) → A(x)] → ∀xA(x),
where rInd ≡ Ω(Λk.(e · Λt.rstuA 〈is · t1, k〉)).

Proof. Let e ∈ N be arbitrary such that

e R ∀x[∀y(y ∈ x→ A(y))→ A(x)],

i.e.,
∀u ∈ V ∗[e R (∀y(y ∈ u→ A(y))→ A(u))]. (6.23)
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Now we want to find a realizer which realizes ∀xA(x). We construct this by
ordinal induction. Let α ∈ On be arbitrary. Assume

∀β ∈ α∀b ∈ N ∪ V N
β (k R A(b)). (6.24)

Now one has to find the explicit form of k via the fixed point theorem such
that ∀a ∈ N ∪ V N

α (k L A(a)). Let a ∈ N ∪ V N
α be arbitrary. We want

to find a realizer which realizes ∀y(y ∈ a → A(y)). Let t ∈ N and c ∈ V ∗
be arbitrary such that t R c ∈ a. Then by the definition it follows that
∃d ∈ V ∗(t0, d) ∈ a ∧ t1 R c = d. Since d ∈ N ∪ V N

β for some β ∈ α,
i.e., by the inductive hypothesis (6.24) k R A(d), and thus by IA2 and
Substitution rstuA · 〈is · t1, k〉 R A(c). By the definition it follows that

Λt.rstuA · 〈is · t1, k〉 R ∀y[y ∈ a→ A(y)]. (6.25)

By (6.23) and (6.25)

e · (Λt.rstuA · 〈is · t1, k〉) R A(a). (6.26)

Let Ω be a fixed point generator. Then one has the explicit form of k:
k = Ω(Λk.(e · Λt.rstuA · 〈is · t1, k〉)) and this completes the proof.

Lemma 6.2.41 [Strong Collection] rsc R

∀x[∀y ∈ x∃zA(y, z)→ ∃u(S(u)∧∀y ∈ x∃z ∈ uA(y, z)∧∀z ∈ u∃y ∈ xA(y, z))],

where rsc ≡ Λe.〈0, 〈Λn.ξ(n, e),Λm.δ(m, e)〉〉.

Proof. We show this via Strong Collection in the background theory. Let
a ∈ S∗ and e ∈ N be arbitrary such that a is inhabited and e R ∀y[y ∈ a→
∃zA(y, z)], i.e.,

∀b ∈ V ∗∀n ∈ N[(n R b ∈ a)→ ∃c ∈ V ∗(e · n R A(b, c))].

Then one has ∀x ∈ a∃zη(x, z), where

η(x, z) ≡ ∃f ∈ N∃d, c ∈ V ∗[x = (f, d) ∧ z = (f, c) ∧ e · 〈f, ir〉 R A(d, c)].

By Strong Collection in the background theory, there exists a set D such
that

∀x ∈ a∃z ∈ Dη(x, z), (6.27)

and
∀z ∈ D∃x ∈ aη(x, z). (6.28)
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From (6.28) D ⊆ N×V ∗, i.e., by Claim 3.3.6, D ∈ S∗. Now we want to find
realizer which realizes

∀y[y ∈ a→ ∃z ∈ DA(y, z)] ∧ ∀z[z ∈ D→∃y ∈ aA(y, z)].

Let b ∈ V ∗ be arbitrary. Let n ∈ N be arbitrary such that n R b ∈ a. Then
by the definition it follows that ∃k ∈ V ∗[(n0, k) ∈ a ∧ n1 R b = k]. Hence
by (6.27), the soundness of IA1, IA2 and Substitution,

∃c ∈ V ∗[ξ(n, e) R c ∈ D ∧A(b, c)],

where ξ(n, e) ≡ 〈〈n0, i
r〉, rstuA · (〈is · n1, e · 〈n0, i

r〉〉)〉. Hence by the definition
it follows that

Λn.ξ(n, e) R ∀y[y ∈ a→ ∃z(z ∈ D∧A(y, z))]. (6.29)

Now let c ∈ V ∗ be arbitrary. Let m ∈ N be arbitrary such that m R c ∈ D.
Then by the definition it follows that ∃v ∈ V ∗[(m0, v) ∈ D ∧m1 R c = v].
By (6.28)

∃d ∈ V ∗[(m0, d) ∈ a ∧ e · 〈m0, i
r〉 R A(d, v)],

and thus by the soundness of IA1, IA2 and Substitution,

∃d ∈ V ∗[δ(m, e) R d ∈ a ∧A(d, c)],

where δ(m, e) ≡ 〈〈m0, i
r〉, rstuA ·(〈is ·m1, e·〈m0, i

r〉〉)〉. Hence by the definition
it follows that

Λm.δ(m, e) R ∀z[z ∈ D→∃y ∈ aA(y, z)]. (6.30)

From (6.29) and (6.30), it follows that

〈Λn.ξ(n, e),Λm.δ(m, e)〉 R ∀y ∈ a∃z ∈ DA(y, z) ∧ ∀z ∈ D∃y ∈ aA(y, z).

For the case a ∈ N or a is an empty set, the same realizer also works as
follows:

〈Λn.ξ(n, e),Λm.δ(m, e)〉 R ∀y ∈ a∃z ∈ ∅A(y, z) ∧ ∀z ∈ ∅∃y ∈ aA(y, z).

Lemma 6.2.42 [Subset Collection] rsbc R ∀a∀b∃u(S(u) ∧ ∀z[∀x ∈ a∃y ∈
bA(x, y, z) → ∃d ∈ u(∀x ∈ a∃y ∈ dA(x, y, z) ∧ ∀y ∈ d∃x ∈ aA(x, y, z))]),
where rsbc ≡ 〈0,Λe.〈〈0, ir〉, 〈Λm.δ(m, e),Λn.ε(n, e)〉〉〉.
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Proof. We show this via Subset Collection in the background theory. Let
a ∈ V ∗ be arbitrary such that a is inhabited (i.e., there is at least one
element in a). Let b ∈ V ∗ be arbitrary. Let c ∈ V ∗ and e ∈ N be arbitrary
such that

e R ∀x ∈ a∃y ∈ bA(x, y, c). (6.31)

Now we want to find u, d ∈ V ∗ and a realizer which realizes d ∈ u∧ [∀x ∈
a∃y ∈ dA(x, y, c)∧ ∀y ∈ d∃x ∈ aA(x, y, c)]. Unravelling (6.31) and applying
Substitution yields

∀(f, d) ∈ a∃v ∈ V ∗[((e · 〈f, ir〉)00, v) ∈ b ∧ ξ(f, e) R A(d, v, c)], (6.32)

where ξ(f, e) ≡ rstuA · 〈(e · 〈f, ir〉)01, (e · 〈f, ir〉)1〉. Now define a set

b ≡ {(〈e, f〉, v) : e, f ∈ N ∧ ((e · 〈f, ir〉)00, v) ∈ b}.

By Bounded Separation, the Pairing and Union Axioms in the background
theory, b is an external sets. Moreover, by Claim 3.3.6, also b ∈ S∗. Now
one can rewrite (6.32) as follows:

∀u ∈ a∃l ∈ bη(u, l, c),

where η(u, l, c) ≡ ∃f ∈ N∃d, v ∈ V ∗[u = (f, d) ∧ l = (〈e, f〉, v) ∧ ((e ·
〈f, ir〉)00, v) ∈ b ∧ ξ(f, e) R A(d, v, c)]. Invoking Subset Collection in the
background theory yields that there is an external set D such that ∃C ∈ D

∀u ∈ a∃l ∈ Cη(u, l, c), (6.33)

and
∀l ∈ C∃u ∈ aη(u, l, c). (6.34)

Define D∗ = {q ∩ b : q ∈ D}. By Bounded Separation and Replacement
in the background theory, D∗ is an external set. Let q∩ b ∈ D∗ be arbitrary.
Then we have q ∩ b ⊆ b ⊆ N× V ∗ and thus by Claim 3.3.6 , q ∩ b ∈ S∗, i.e.,
D∗ ⊆ S∗. Furthermore, by the fact that C ∈ D, it follows C ∩ b ∈ D∗ and
thus C ∩ b ∈ S∗. Now define

u := {(0, d) : d ∈ D∗}.

Since D∗ ⊆ S∗, by Claim 3.3.6 , also u ∈ S∗. Moreover, by the soundness of
IA1, also

〈0, ir〉 R C ∩ b ∈ u. (6.35)
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Now we want to find a realizer which realizes

∀x ∈ a∃y ∈ C ∩ bA(x, y, c).

Let m ∈ N and x ∈ V ∗ be arbitrary such that m R x ∈ a, i.e., ∃k ∈
V ∗[(m0, k) ∈ a ∧ m1 R x = k]. By (6.33), the soundness of IA2 and
Substitution, it follows that

∃v ∈ V ∗[(〈e,m0〉, v) ∈ C ∩ b ∧ rstuA · (〈is ·m1, ξ(m0, e)〉) R A(x, v, c)].

By the soundness of IA1, it then follows that

δ(m, e) R v ∈ C ∩ b ∧A(x, v, c),

where δ(m, e) ≡ 〈〈〈e,m0〉, ir〉, rstuA · (〈is · m1, ξ(m0, e)〉)〉. Hence we have
shown that

Λm.δ(m, e) R ∀x ∈ a∃y ∈ C ∩ bA(x, y, c). (6.36)

Now we want to find a realizer which realizes

∀y ∈ C ∩ b∃x ∈ aA(x, y, c).

Let n ∈ N and y ∈ V ∗ be arbitrary such that n R y ∈ C ∩ b, i.e.,

∃h ∈ V ∗[(n0, h) ∈ C ∩ b ∧ n1 R y = h].

By (6.34), Substitution and the soundness of IA2, it follows that

∃d ∈ V ∗[(n01, d) ∈ a ∧ rstuA · 〈is · n1, ξ(n01, e)〉 R A(d, y, c)].

By the soundness of IA1, it then follows that

ε(n, e) R d ∈ a ∧A(d, y, c),

where ε(n, e) ≡ 〈〈n01, i
r〉, rstuA · 〈is ·n1, ξ(n01, e)〉〉. Hence we have shown that

Λn.ε(n, e) R ∀y ∈ C ∩ b∃x ∈ aA(x, y, c). (6.37)

From (6.35) and (6.36) and (6.37),

〈〈0, ir〉, 〈Λm.δ(m, e),Λn.ε(n, e)〉〉 R
∃d ∈ u[∀x ∈ a∃y ∈ dA(x, y, c) ∧ ∀y ∈ d∃x ∈ aA(x, y, c)].

As for the case in which a is the empty set or a is a number, the same
realizer also works as follows:

〈〈0, ir〉, 〈Λm.δ(m, e),Λn.ε(n, e)〉〉 R
∅ ∈ {(0, ∅)} ∧ [∀x ∈ a∃y ∈ ∅A(x, y, c) ∧ ∀y ∈ ∅∃x ∈ aA(x, y, c)].
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Theorem 6.2.43 [Soundness Theorem]

CZFN ` ϕ =⇒ CZFNA ` ∃x(N(x) ∧ x R ϕ),

for all formulae ϕ ∈ L(V ∗).

Proof. Since the logical axioms, inference rules and non-logical axioms have
shown to be sound, the result follows immediately.

6.2.5 A4.2: Non-logical axioms (IZF with two sorts)

Since IZFN and CZFN share most of the axioms, there are only a couple
left to be checked.

Lemma 6.2.44 [Separation] rSep R ∀x∃u[S(u) ∧ ∀z(z ∈ u ↔ z ∈ x ∧
A(z))], where rSep ≡ 〈0, 〈Λe.ξ(e),Λl.ε(l)〉〉.

Proof. Let a ∈ V ∗ be arbitrary. Define

a ≡ {(〈f, g〉, k) : f, g ∈ N ∧ [(g, k) ∈ a ∧ f R A(k)]}.
Then by Separation, the Union and Pairing Axioms in the background the-
ory, a is an external set. By Claim 3.3.6 , a is also an internal set, i.e.,
a ∈ S∗. Now we want to find a realizer which realizes ∀z(z ∈ a ↔ z ∈
a ∧ A(z)). Let c ∈ V ∗ and e ∈ N be arbitrary such that e R c ∈ a,
i.e., ∃d ∈ V ∗[(e0, d) ∈ a ∧ e1 R c = d]. By the definition, it follows that
(e01, d) ∈ a ∧ e00 R A(d) and thus 〈e01, i

r〉 R d ∈ a. By the soundness of
IA2, IA4 and Substitution, it follows that

ξ(e) R c ∈ a ∧A(c), (6.38)

where ξ(e) ≡ 〈ieb · 〈e1, 〈e01, i
r〉〉, rstuA · 〈is · e1, e00〉〉. On the other hand, let

l ∈ N be arbitrary such that l R c ∈ a ∧ A(c). Then by the definition and
Substitution, it follows that

∃d ∈ V ∗[(l00, d) ∈ a ∧ l01 R c = d ∧ δ(l) R A(d)],

where δ(l) ≡ rstuA · 〈l01, l1〉. By the definition (〈δ(l), l00〉, d) ∈ a and thus, by
the soundness of IA1 and IA4,

ε(l) R c ∈ a, (6.39)

where ε(l) ≡ ieb · 〈l01, 〈〈δ(l), l00〉, ir〉〉. From (6.38) and (6.39),

〈Λe.ξ(e),Λl.ε(l)〉 R ∀z[z ∈ a↔ z ∈ a ∧A(z)].
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Claim 6.2.45 If a, b ∈ S∗, then e R b ⊆ a → ∃b∗ ∈ V N
rk(a)+1[δ(e) R b =

b∗], where δ(e) ≡ 〈Λf.ξ(f, e),Λg.σ(g, e)〉.

Proof. Assume e R b ⊆ a, i.e., by the definition ∀(f, d) ∈ b[e · 〈f, ir〉 R
d ∈ a], i.e.,

∀(f, d) ∈ b∃c ∈ V ∗[((e · 〈f, ir〉)0, c) ∈ a (6.40)

∧(e · 〈f, ir〉)1 R d = c].

Define

b∗ ≡ {(f, c) : ∃d ∈ V ∗[(f, d) ∈ b∧
((e · 〈f, ir〉)0, c) ∈ a ∧ (e · 〈f, ir〉)1 R d = c]}.

By Pairing and Separation in the background theory, b∗ is a set. By Claim
3.3.6 and Corollary 3.3.5, b∗ ∈ V N

rk(a)+1. Now we want to find a realizer which

realizes b = b∗. Let f ∈ N and d ∈ V ∗ be arbitrary such that (f, d) ∈ b.
Then by (6.40) it follows that

∃c ∈ V ∗[〈f, ir〉 R c ∈ b∗] ∧ [(e · 〈f, ir〉)1 R d = c],

i.e., by the soundness of IA4, ξ(f, e) R d ∈ b∗, where

ξ(f, e) ≡ ieb · 〈(e · 〈f, ir〉)1, 〈f, ir〉〉.

On the other hand, let g ∈ N and k ∈ V ∗ be arbitrary such that (g, k) ∈ b∗,
i.e., by the definition and the soundness of IA1 and IA2, there is d ∈ V ∗
such that 〈g, ir〉 R d ∈ b and is · (e · 〈g, ir〉)1 R k = d. By the soundness
of IA4, it follows that σ(g, e) R k ∈ b, where

σ(g, e) ≡ ieb · 〈is · (e · 〈g, ir〉)1, 〈g, ir〉〉.

Hence, by the definition, 〈Λf.ξ(f, e),Λg.σ(g, e)〉 R b = b∗.

Lemma 6.2.46 [Power Set]

rpw R ∀x∃u[S(u) ∧ ∀z(z ∈ u↔ (S(z) ∧ z ⊆ x))],

where rpw ≡ 〈0, 〈Λe.〈0, rstuA · 〈is · e1, e0〉〉,Λh.ξ(h)〉〉.

Proof. Let a ∈ V ∗ be arbitrary. Define

a ≡ {(g, c) : g ∈ N ∧ c ∈ V N
rk(a)+1 ∧ g R c ⊆ a}.
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By the Powerset axiom, Pairing and Separation in the background theory,
a is an external set. By Claim 3.3.6 it also follows that a ∈ S∗. Let k ∈ V ∗
be arbitrary. It suffices to find a realizer to realize k ∈ a↔ (S(k) ∧ k ⊆ a).
Let e ∈ N be arbitrary such that e R k ∈ a, i.e.,

∃c ∈ V N
rk(a)+1[e0 R c ⊆ a ∧ e1 R k = c].

Then by Corollary 3.3.2 and the soundness of IA2, it follows that k ∈ S∗
and thus

〈0, rstuA · 〈is · e1, e0〉〉 R S(k) ∧ k ⊆ a, (6.41)

where A ≡ x ⊆ y.
Now let h ∈ N be arbitrary such that h R S(k) ∧ k ⊆ a. Then by

Claim 6.2.45 and Substitution, it follows that ∃k∗ ∈ V N
rk(a)+1 such that

δ(h1) R k = k∗, where δ(h1) ≡ 〈Λf.ξ(f, h1),Λg.σ(g, h1)〉, and thus rstuA ·
〈δ(h1), h1〉 R k∗ ⊆ a. By the definition of a and Substitution, it then
follows that 〈rstuA · 〈δ(h1), h1〉, ir〉 R k∗ ∈ a and thus by the soundness of
IA4

ξ(h) R k ∈ a, (6.42)

where ξ(h) ≡ ieb · 〈δ(h1), 〈rstuA · 〈δ(h1), h1〉, ir〉〉. From (6.41) and (6.42), the
result follows.

Lemma 6.2.47 [Collection]

rco R ∀x[∀y ∈ x∃zA(y, z)→ ∃u(S(u) ∧ ∀y ∈ x∃z ∈ uA(y, z))],

where rco ≡ Λe.〈0,Λn.ξ(n, e)〉.

Proof. We show this via Collection in the background theory. Let a ∈ S∗
and e ∈ N be arbitrary such that a is inhabited (i.e., there is an element in
a) and e R ∀y[y ∈ a→ ∃zA(y, z)], i.e.,

∀b ∈ V ∗∀n ∈ N[(n R b ∈ a)→ ∃c ∈ V ∗(e · n R A(b, c))].

Then one has ∀x ∈ a∃zη(x, z), where

η(x, z) ≡ ∃f ∈ N∃d, c ∈ V ∗[x = (f, d) ∧ z = (f, c) ∧ e · 〈f, ir〉 R A(d, c)].

By Collection in the background theory, there exists a set C such that

∀x ∈ a∃z ∈ Cη(x, z). (6.43)
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Now define
D = C ∩ (N× V ∗).

Since D ⊆ N × V ∗, by Separation and Claim 3.3.6, D ∈ S∗. Now we want
to find realizer which realizes ∀y[y ∈ a → ∃z ∈ DA(y, z)]. Let b ∈ V ∗ and
n ∈ N be arbitrary such that n R b ∈ a. Then by the definition it follows
that ∃k ∈ V ∗[(n0, k) ∈ a∧n1 R b = k]. Hence by (6.43) and the soundness
of IA1, IA2 and Substitution,

∃c ∈ V ∗[ξ(n, e) R c ∈ D ∧A(b, c)],

where ξ(n, e) ≡ 〈〈n0, i
r〉, rstuA · (〈is · n1, e · 〈n0, i

r〉〉)〉. Hence by the definition
it follows that

Λn.ξ(n, e) R ∀y[y ∈ a→ ∃z(z ∈ D∧A(y, z))].

As for the case in which a is the empty set or a is a number, by default, the
same realizer also works and this completes our proof.

Theorem 6.2.48 [Soundness Theorem]

IZFN ` ϕ =⇒ IZFNA ` ∃x(N(x) ∧ x R ϕ),

for all formulae ϕ ∈ L(V ∗).

Proof. This follows immediately from the above lemmata.

6.2.6 A5: (Semi-) Constructive axioms of choice

Recall that we use the notation ∀nA(n) to denote ∀x[N(x) → A(x)] and
∃nA(n) to denote ∃x[N(x)∧A(x)]. Other notations used here were defined
in Subsection 2.2.7.

In addition, each realizer used here denotes a relativized realizer and the
background theory in this section is CZFNA.

Lemma 6.2.49 [ACNN ] rACNN R

∀n∃mA(n,m)→ ∃f [Fun(f,N,N) ∧ ∀n∃m((n,m) ∈ f ∧A(n,m))],

where rACNN ≡ Λe.〈〈σ(e), ρ(e)〉,Λn.ξ(n, e)〉.
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Proof. Let e ∈ N be arbitrary such that e R ∀n∃mA(n,m). Then by
Lemma 6.2.6, it follows that

∀n ∈ N[(e · n)1 R A(n, (e · n)0)]. (6.44)

Now define
f ≡ {(n, (n, (e · n)0)R) : n ∈ N}.

By the Infinity Axiom, Bounded Separation, Pairing and Replacement, f is
a set. By Claim 3.3.6, also f ∈ S∗. With Lemma 6.2.6, Corollary 6.2.32,

σ(e) R f ⊆ N ×N,
ρ(e) R ∀n∃!m(n,m) ∈ f,

where

σ(e) ≡ Λg.〈g1, 〈g0, (e · g0)0〉〉, ρ(e) ≡ Λn.〈〈(e · n)0, 〈n, ir〉〉,Λk.0〉.
By the definition, it follows that

〈σ(e), ρ(e)〉 R Fun(f,N,N).

Let n ∈ N be arbitrary. By the soundness of IA1 and (6.44), it follows that

〈〈n, ir〉, (e · n)1〉 R (n, (e · n)0)R ∈ f ∧A(n, (e · n)0),

and thus
ξ(n, e) R ∃m((n,m) ∈ f ∧A(n,m)),

where ξ(n, e) ≡ 〈(e · n)0, 〈〈n, ir〉, (e · n)1〉〉 and this completes the proof.

Lemma 6.2.50 [UP]

rup
R
R ∀x[S(x)→ ∃nA(x, n)]→ ∃n∀x[S(x)→ A(x, n)],

where rup
R
≡ Λe.〈(e · 0)0,Λd.(e · 0)1〉.

Proof. Let e ∈ N be arbitrary such that

e R ∀x[S(x)→ ∃nA(x, n)].

By Lemma 6.2.6, it follows that

∀a ∈ S∗[(e · 0)1 R A(a, (e · 0)0)],

i.e.,
〈(e · 0)0,Λd.(e · 0)1〉 R ∃n∀x[S(x)→ A(x, n)].
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Lemma 6.2.51 [UZ]

ruz
R
R [∀x(S(x)→ A(x) ∨B(x))]→ ∀x(S(x)→ A(x)) ∨ ∀x(S(x)→ B(x)),

where ruz
R
≡ Λe.〈(e · 0)0,Λd.(e · 0)1〉.

Proof. Since UZ follows from UP by taking an instance of A(x, n) to be
(n = 0 ∧ A(x)) ∨ (n 6= 0 ∧ B(x)), it is also realizable. Its explicit realizer is
found as follows: Let e ∈ N be arbitrary such that

e R ∀x(S(x)→ A(x) ∨B(x)),

i.e., by the definition

∀a ∈ S∗[(e ·0)0 = 0∧(e ·0)1 R A(a)]∨∀a ∈ S∗[(e ·0)0 6= 0∧(e ·0)1 R B(a)].

By the definition, this gives the realizer.

Lemma 6.2.52 (DC)

rdc
R
R ∀a∀b[b ∈ a ∧ ∀x ∈ a∃y ∈ aA(x, y)

→ ∃f(Fun(f,N, a) ∧ f(0) = b ∧ ∀nA(f(n), f(n+ 1))],

where rdc
R
≡ Λe.〈〈γ(e), β(e)〉,Λn.δ(n, e)〉.

Proof. We show this via Dependent Choice in the background theory. Let
a, b ∈ V ∗ and e ∈ N be arbitrary such that

e R b ∈ a ∧ ∀x ∈ a∃y ∈ aA(x, y),

i.e., ∃c ∈ V ∗(e00, c) ∈ a ∧ e01 R b = c and

e1 R ∀x ∈ a∃y ∈ aA(x, y). (6.45)

Define a ≡ {(l, k) : (l00, k) ∈ a}. Unravelling (6.45) and applying Substitu-
tion, it follows that ∀x ∈ a∃y ∈ aB(x, y), where

B(x, y) ≡ ∃l,m ∈ N∃k, d ∈ V ∗[x = (l, k) ∧ (l00, k) ∈ a∧
y = (m, d) ∧m = e1 · 〈l00, i

r〉 ∧ rstuA · 〈m01,m1〉 R A(k, d)].

Now by DC, it follows that there is a function F : N→ a such that

F (0) = (e, c) ∧ ∀n ∈ N[B(F (n), F (n+ 1))],
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i.e.,

∀n ∈ N[F 0(n+ 1) = e1 · 〈(F 0(n))00, i
r〉∧ (6.46)

rstuA ·〈(F 0(n+ 1))01, (F
0(n+ 1))1〉 R A(F 1(n), F 1(n+ 1))],

where F 0 and F 1 denote the left and right projection function of F , respec-
tively. Since F 0(0) = e and F 0(n+ 1) = e1 · 〈(F 0(n))00, i

r〉, one has that F 0

is a total recursive function. Let F#
e be its code. Now define

f ≡ {(n, (n, F 1(n))R) : n ∈ N}.

By Claim 3.3.6, f ∈ S∗. Now we want to find a realizer which realizes

Fun(f,N, a) ∧ f(0) = b ∧ ∀nA(f(n), f(n+ 1)).

♦ First of all, let us find a realizer for Fun(f,N, a). Let t ∈ N and k ∈ V ∗
be arbitrary such that t R k ∈ f . Then by the definition,

t1 R k = (t0, F
1(t0))R. (6.47)

Since ((F 0(t0))00, F
1(t0)) ∈ a, by the definitions and the soundness of IA1,

it follows that
ξ(t, e) R N(t0) ∧ F 1(t0) ∈ a, (6.48)

where ξ(t, e) ≡ 〈t0, 〈(F#
e (t0))00, i

r〉〉. From (6.47) and (6.48)

Λt.〈t1, ξ(t, e)〉 R f ⊆ N × a. (6.49)

In the meantime, we want to find a realizer for ∀n∃!x(n, x) ∈ f . Let n, l ∈ N
and a, b ∈ V ∗ be arbitrary such that

l R (n, a)R ∈ f ∧ (n, b)R ∈ f.

By the definitions, it follows that

l01 R (n, a)R = (l00, F
1(l00))R, l11 R (n, b)R = (l10, F

1(l10))R.

From Corollary 6.2.32 and the definition, l00 = l10 and thus by the soundness
of IA2, IA3

σ(l) R a = b, (6.50)

where σ(l) ≡ it〈(rprd · l01)1, i
s · (rprd · l11)1〉. Moreover, by the definition,

〈n, ir〉 R ∃x(n, x) ∈ f. (6.51)



6.2. SOUNDNESS OF RELATIVIZED REALIZABILITY 109

By (6.50) and (6.51) and Lemma 6.2.6, we have shown that

Λn.〈〈n, ir〉,Λl.σ(l)〉 R ∀n∃!x(n, x) ∈ f. (6.52)

Thus by (6.49) and (6.51), it follows that

γ(e) R Fun(f,N, a), (6.53)

where γ(e) ≡ 〈Λt.〈t1, ξ(t, e)〉,Λn.〈〈n, ir〉,Λl.σ(l)〉〉.
♦ Secondly, since e01 R b = F 1(0) and 〈0, ir〉 R (0, F 1(0))R ∈ f , by the
soundness of IA2 and Substitution

β(e) R (0, b)R ∈ f, (6.54)

where β(e) ≡ rstuC · 〈is · e01, 〈0, ir〉〉, and C ≡ (0, x)R ∈ f .
♦ Lastly, by Lemma 6.2.6 and (6.46), also

Λn.δ(n, e) R ∀n∃x∃y[x = F 1(n) ∧ y = F 1(n+ 1) ∧A(x, y)], (6.55)

where δ(n, e) ≡ 〈〈ir, ir〉, rstuA · 〈(F#
e (n + 1))01, (F

#
e (n + 1))1〉〉. Hence the

result follows immediately from (6.53), (6.54) and (6.55).

Lemma 6.2.53 (RDC)

rrdc
R
R ∀z[A(z) ∧ ∀x(A(x)→ ∃y(A(y) ∧B(x, y)))→

∃f(Fun(f,N) ∧ f(0) = z ∧ ∀n(A(f(n)) ∧B(f(n), f(n+ 1))))],

where rrdc
R
≡ Λe.〈〈η, 〈0, ir〉〉, ξ(e)〉 and where η ≡ 〈Λg.g,Λn.〈〈n, ir〉,Λl.σ(l)〉〉.

Proof. We show this via Relativized Dependent Choice in the background
theory. Let c ∈ V ∗ and e ∈ N be arbitrary such that

e R A(c) ∧ ∀x(A(x)→ ∃y(A(y) ∧B(x, y))). (6.56)

Let us use the following class notation

A ≡ {(s, d) : s ∈ N ∧ d ∈ V ∗ ∧ s R A(d)}.

Define ϕ(z) ≡ z ∈ A, i.e.,

ϕ(z) ≡ ∃s ∈ N∃d ∈ V ∗[z = (s, d) ∧ s R A(d)].

By (6.56), it then follows that

ϕ((e0, c)) ∧ ∀x(ϕ(x)→ ∃y(ϕ(y) ∧ θ(x, y))),
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where θ(x, y) ≡ ∃s ∈ N∃d, b ∈ V ∗[x = (s, d) ∧ y = ((e1 · s)0, b) ∧ (e1 · s)1 R
B(d, b)]. By RDC, it follows that there is a function F with domain N such
that F (0) = (e0, c) and ∀n ∈ N[ϕ(F (n)) ∧ θ(F (n), F (n + 1))], i.e., for all n
in N

F 0(n) R A(F 1(n)) ∧ F 0(n+ 1) = (e1 · F 0(n))0 (6.57)

∧(e1 · F 0(n))1 R B(F 1(n), F 1(n+ 1)),

where F 0 and F 1 denote the left and right projection functions of F , re-
spectively. Since F 0(0) = e0 and F 0(n+ 1) = (e1 ·F 0(n))0, one has that F 0

is a total recursive function. Let F#
e be its code. Now define

f ≡ {(n, (n, F 1(n))R) : n ∈ N}.

By Claim 3.3.6, f ∈ S∗. Now we want to find a realizer which realizes

Fun(f,N) ∧ f(0) = c ∧ ∀n(A(f(n)) ∧B(f(n), f(n+ 1))).

♦ First of all, let us find a realizer for Fun(f,N). Let g ∈ N and a ∈ V ∗ be
arbitrary such that g R a ∈ f . By the definition, it follows that g1 R a =
(g0, F

1(g0))R and g R ∃n∃z[a = (n, z)]; thus,

Λg.g R ∀x ∈ f [∃n∃z(x = (n, z))]. (6.58)

Moreover, from (6.52) in the proof of DC, one knows that

Λn.〈〈n, ir〉,Λl.σ(l)〉 R ∀n∃!z(n, z) ∈ f. (6.59)

where σ(l) is defined in that proof. Hence from (6.58) and (6.59), we have
shown that

η R Fun(f,N), (6.60)

where η ≡ 〈Λg.g,Λn.〈〈n, ir〉,Λl.σ(l)〉〉.
♦ Secondly, since (0, (0, c)R) ∈ f , by the soundness of IA1 it follows that

〈0, ir〉 R (0, c)R ∈ f. (6.61)

♦ Lastly, by (6.57) and the soundness of IA1, also

δ(n, e) R ∃y(n, y) ∈ f ∧A(y),

ε(n, e) R ∃x∃y[(n, x) ∈ f ∧ (n+ 1, y) ∈ f ∧B(x, y)],
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where δ(n, e) ≡ 〈〈n, ir〉, F#
e (n)〉, ε(n, e) ≡ 〈〈〈n, ir〉, 〈n+1, ir〉〉, (e1 ·F#

e (n))1〉.
By Lemma 6.2.6, it then follows that

ξ(e) R ∀n[A(f(n)) ∧B(f(n), f(n+ 1)))], (6.62)

where ξ(e) ≡ Λn.〈δ(n, e), ε(n, e)〉. Hence the result follows immediately from
(6.60), (6.61) and (6.62).

Now we want to show that the Presentation Axiom is realizable. The
following intuitionistic proof is based on Theorem 10.1 in Michael Rathjen’s
paper [20]. For any function F with range D ⊆ V 2, we will use F 0 to denote
the left projection function and F 1 to denote the right projection function
of F . We also use x0 to denote F 0(x) and x1 to denote F 1(x). Recall that
SFun(f, y, x) is the predicate denoting Fun(f, y, x)∧∀v ∈ x∃u ∈ y(u, v) ∈ f
( i.e., f is a surjective function from y to x) and Base(y) is the predicate
denoting ∀r[Rel(r, y) → ∃g(Fun(g, y) ∧ g ⊆ r)] (i.e., every relation with
domain y has a sub-function).

Lemma 6.2.54 (PAX)

rpa
R
R ∀x(S(x)→ ∃y∃f [Base(y) ∧ SFun(f, y, x)]),

where rpa
R
≡ Λn.〈Λe.ε(e), π〉.

Proof. We show this via the Presentation Axiom in the background theory.
Let a ∈ S∗ be arbitrary. If a is empty, then by default, any code will realize
Base(∅) ∧ SFun(∅, ∅, ∅). Now let a be any arbitrary inhabited internal set.
We want to show that there is a realizer that will realize

∃y∃f [Base(y) ∧ SFun(f, y, a)].

By PAX in the background theory, externally, there exist a base B and a sur-
jective function FB : B → a. Now we have to give the internal counterpart
for such a base, say, B∗ and such a surjective function, say, F ∗. The whole
idea is to internalize (V,=,∈) and yield an (internal) isomorphic structure
(V †,=,∈), where V † ≡ {u† : u ∈ V } and u† ≡ {(0, k†) : k ∈ u}. By Claim
3.3.6 and set induction, V † ⊆ V ∗. Furthermore, from this definition, also

u = v ↔ u† = v†, (6.63)

and (by mutual C2-induction)

u = v ↔ V ∗ |=R u
† = v†, (6.64)

u ∈ v ↔ V ∗ |=R u
† ∈ v†.
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Define u∗ ≡ (F 0
B(u), (F 0

B(u), u†)R) and B∗ ≡ {u∗ : u ∈ B}. By Claim 3.3.6,
B∗ ∈ S∗. From (6.63), u = v ↔ u∗ = v∗ and this creates a bijective function
between B and B∗.
♦ Now we want to show that, externally, B∗ is also a base. Let R∗ ∈
V be any arbitrary binary relation such Rel(R∗, B∗). Then one finds a
new relation R := {(u, v) : u ∈ B ∧ (u∗, v) ∈ R∗}. Since Rel(R,B) and
B is a base, one finds a function FR with domain B such that FR ⊆ R.
Correspondingly, one finds a new function FR∗ with domain B∗ such that

FR∗ := {(u∗, v) : (u, v) ∈ FR} ⊆ R∗.

Hence we have shown that, externally, B∗ is also a base.
♦ Now we want to show that, internally, B∗ is also a base, i.e., V ∗ |=R

Base(B∗). Let r ∈ V ∗ and e ∈ N be arbitrary such that e R Rel(r,B∗).
By the definition, it follows that

e1 R ∀u ∈ B∗∃v(u, v) ∈ r.

Hence one has
∀x ∈ B∗∃yθ(x, y), (6.65)

where θ(x, y) ≡ ∃f, g ∈ N∃c, d ∈ V ∗[x = (f, d)∧ y = (g, c)∧ g = e1 · 〈f, ir〉 ∧
g R (d, c)R ∈ r]. Now define a new relation

K ≡ {(x, y) : x ∈ B∗ ∧ θ(x, y)}. (6.66)

Since K is total in B∗ and externally B∗ is a base, one finds a function FK
(it is total in B∗) such that FK ⊆ K. Moreover, one defines

FK ≡ {(x0, (x1, F 1
K(x))R) : x ∈ B∗}.

By Claim 3.3.6, FK ∈ S∗.
♦ Now we want to find a realizer for Fun(FK , B

∗). Let k ∈ N and a ∈ V ∗
be arbitrary such that k R a ∈ FK . Then by the definitions, it follows that

δ R ∀x ∈ FK∃u ∈ B∗∃v[x = (u, v)], (6.67)

where δ ≡ Λk.〈〈k0, i
r〉, k1〉. Now let a ∈ V ∗ and t ∈ N be arbitrary such

that t R a ∈ B∗. Then by the definitions, the soundness of IA2 and
Substitution,

η(t) R ∃y(a, y) ∈ FK , (6.68)
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where η(t) ≡ rstuA · 〈is · t1, 〈t0, ir〉〉 and where A ≡ ∃y(x, y) ∈ z. Now let
h ∈ N and b, c ∈ V ∗ be arbitrary such that

h R (a, b)R ∈ FK ∧ (a, c)R ∈ FK .

By the definitions, there exist x, y ∈ B∗ such that x0 = h00, y
0 = h10 and

h01 R (a, b)R = (x1, F 1
K(x))R, h11 R (a, c)R = (y1, F 1

K(y))R.

By Corollary 6.2.32, it follows that

(rprd · h01)0 R a = x1, (rprd · h11)0 R a = y1, (6.69)

(rprd · h01)1 R b = F 1
K(x), (rprd · h11)1 R c = F 1

K(y). (6.70)

Since
x, y ∈ B∗, x0 = h00, y

0 = h10,

by the definition, x1 = (h00, u
†)R, y1 = (h10, v

†)R for some u, v ∈ V . Hence
by (6.69), Corollary 6.2.32 and (6.64), x = y and thus by (6.70) and the
soundness of IA2, IA3

δ(h) R b = c,

where δ(h) ≡ it · 〈(rprd · h01)1, i
s · (rprd · h11)1〉. With this and (6.68), we

have shown that

〈Λt.η(t),Λh.δ(h)〉 R Fun(FK , B
∗) (6.71)

♦ Now we want to find a realizer for FK ⊆ r. Let s ∈ N and c ∈ V ∗ be
arbitrary such that s R c ∈ FK , i.e.,

∃y ∈ B∗[y0 = s0 ∧ (s0, (y
1, F 1

K(y))R) ∈ FK∧
s1 R c = (y1, F 1

K(y))R].

By the definition of FK , (6.65), (6.66) and the fact that (y, FK(y)) ∈ FK ⊆
K, it then follows that θ(y, FK(y)), i.e.,

e1 · 〈s0, i
r〉 R (y1, F 1

K(y))R ∈ r.

Hence by the soundness of IA4 one can find a partial recursive function σ
such that σ(s, e) R c ∈ r, where σ(s, e) ≡ ieb · 〈s1, e1 · 〈s0, i

r〉〉. Therefore,
we have shown that

Λs.σ(s, e) R FK ⊆ r (6.72)
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From (6.71) and (6.72), it follows that

Λe.ε(e) R Base(B∗), (6.73)

where ε(e) ≡ 〈〈Λt.η(t),Λh.δ(h)〉,Λs.σ(s, e)〉.
Now define

F ∗ ≡ {(F 0
B(u), ((F 0

B(u), u†)R, F 1
B(u))R) : u ∈ B}.

We want to show that V ∗ |=R SFun(F ∗, B∗, a), where

SFun(F ∗, B∗, a) ≡ F ∗ ⊆ B∗ × a ∧ ∀x ∈ B∗∃!y ∈ a(x, y) ∈ F ∗∧
∀y ∈ a∃x ∈ B∗(x, y) ∈ F ∗.

Let d ∈ V ∗ and k ∈ N be arbitrary such that k R d ∈ F ∗. We have to
find a partial recursive function ρ such that ρ(k) R ∃x∃y[d = (x, y) ∧ x ∈
B∗ ∧ y ∈ a]. From k R d ∈ F ∗,

∃u ∈ B[F 0
B(u) = k0 ∧ k1 R d = ((F 0

B(u), u†)R, F 1
B(u))R)].

By the definition of B∗ and FB, it then follows that

〈〈k0, i
r〉, 〈k0, i

r〉〉 R (F 0
B(u), u†)R ∈ B∗ ∧ F 1

B(u) ∈ a.

Hence we have shown that

Λk.ρ(k) R F ∗ ⊆ B∗ × a, (6.74)

where ρ(k) ≡ 〈k1, 〈〈k0, i
r〉, 〈k0, i

r〉〉〉.
Now let q ∈ V ∗ and m ∈ N be arbitrary such that m R q ∈ B∗, i.e., by

the definitions, there exists u ∈ B such that m0 = F 0
B(u) and m1 R q =

(F 0
B(u), u†)R, and thus by the soundness of IA2 and Substitution,

〈〈m0, i
r〉, rstuE · 〈is ·m1, 〈m0, i

r〉〉〉 R
F 1
B(u) ∈ a ∧ (q, F 1

B(u))R ∈ F ∗,

where E ≡ (x, y)R ∈ z. Moreover, let a, b, c ∈ V ∗ and t ∈ N be arbitrary
such that t R (a, b)R ∈ F ∗ ∧ (a, c)R ∈ F ∗. By the definitions, it follows
that there exists u, v ∈ B such that F 0

B(u) = t00, F
0
B(v) = t10 and that

t01 R (a, b)R = ((F 0
B(u), u†)R, F 1

B(u))R, (6.75)

t11 R (a, c)R = ((F 0
B(v), v†)R, F 1

B(v))R. (6.76)



6.2. SOUNDNESS OF RELATIVIZED REALIZABILITY 115

With this and Corollary 6.2.32, (6.64) and the soundness of IA2, IA3, u = v
and thus θ(t) R b = c, where θ(t) ≡ it · 〈(rprd · t01)1, i

s · (rprd · t11)1〉. Hence
we have shown that

Λm.〈〈〈m0, i
r〉, rstuE · 〈is ·m1, 〈m0, i

r〉〉〉,Λt.θ(t)〉 (6.77)

R ∀x ∈ B∗∃!y ∈ a(x, y) ∈ F ∗.

This shows that, internally, F ∗ is a function with domain B∗ and range a.
♦ Now we want to show that, internally, F ∗ is also surjective. Let b ∈ V ∗
and h ∈ N be arbitrary such that h R b ∈ a, i.e., by the fact that F is a
surjective function from B to a, there is a set u such that u ∈ B and

F 0
B(u) = h0 ∧ (F 0

B(u), F 1
B(u)) ∈ a ∧ h1 R b = F 1

B(u).

By the definition of B∗ and F ∗, it follows that

(h0, (h0, u
†)R) ∈ B∗ ∧ (h0, ((h0, u

†)R, F 1
B(u))R) ∈ F ∗,

and thus by Substitution and the soundness of IA2,

〈〈h0, i
r〉, rstuE · 〈is · h1, 〈h0, i

r〉〉〉 R
(h0, u

†)R ∈ B∗ ∧ ((h0, u
†)R, b)R ∈ F ∗.

Thus we have shown that

Λh.〈〈h0, i
r〉, rstuE · 〈is · h1, 〈h0, i

r〉〉〉 R (6.78)

∀y ∈ a∃x ∈ B∗(x, y) ∈ F ∗

From (6.74) and (6.77) and (6.78), one finds a realizer π such that π R
SFun(F ∗, B∗, a). With this and (6.73), the result follows immediately.

Lemma 6.2.55 (MP)

rmp
R
R [∀n(A(n) ∨ ¬A(n)) ∧ ¬¬∃n(A(n))]→ ∃n(A(n)),

where rmp
R
≡ Λe.〈f#(e), (e0 · f#(e))1〉.

Proof. Let e ∈ N be arbitrary such that

e R [∀n(A(n) ∨ ¬A(n)) ∧ ¬¬∃n(A(n)].

Since e1 R ¬¬∃nA(n), by the definition, it follows that

¬¬∃m(m R ∃nA(n)). (6.79)
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Since e0 R ∀n(A(n) ∨ ¬A(n)), by Lemma 6.2.6, also

∀n ∈ N[e0 · n ↓ ∧e0 · n R A(n) ∨ ¬A(n)],

i.e., for all n in N

[(e0 · n)0 = 0 ∧ (e0 · n)1 R A(n)]∨ (6.80)

[(e0 · n)0 6= 0 ∧ (e0 · n)1 R ¬A(n)],

and thus by the definition

∀n ∈ N[B(n) ∨ ¬B(n)], (6.81)

where B(n) ≡ ∃m(m R A(n)). Now we want to show that ¬¬∃nB(n).
Assume ¬∃nB(n), i.e., ∀n¬∃m(m R A(n)), i.e., by Lemma 6.2.6

∀n¬∃m(〈n,m〉 R ∃lA(l)). (6.82)

But ∃k(k R ∃nA(n)) clearly contradicts (6.82), so we deduce that ¬∃k(k R
∃nA(n)), contrary to (6.79) and thus ¬¬∃nB(n). With this and (6.81),

∀n[B(n) ∨ ¬B(n)] ∧ ¬¬∃nB(n)

and thus, by MP in the background theory, ∃n∃m(m R A(n)), i.e., by
(6.80) ∃n(e0 · n)0 = 0. With this and ∀n ∈ N[(e0 · n)0 = 0 ∨ (e0 · n)0 6= 0],
one defines a partial recursive function f(e) := µn[(e0 · n)0 = 0]. Let f# be
the Gödel number of f . Then by (6.80),

〈f#(e), (e0 · f#(e))1〉 R ∃n(A(n)).

In conclusion, we have invented a version of relativized realizability
which interprets Heyting arithmetic, CZFN , IZFN and a plethora of semi-
constructive axioms. These results play an important role in the inferences
of our conservativity results in Chapter 8.



Chapter 7

Forcing

In order to derive our conservativity results, in Section 7.1 we provide a
version of a forcing interpretation. Then in Section 7.2 we use this interpre-
tation to interpret Heyting arithmetic, CZFN and IZFN . Let P be the set
of all the finite partial functions from N to N, i.e.,

P ≡ {p : p is a finite function ∧ dom(p), ran(p) ⊂ N}.

The usual order for P is defined as p � q iff p ⊇ q. We also use f � g to
denote g � f and use 0 to denote the empty function (i.e., its domain is the
empty set).

To obtain our conservativity results, we shall consider various subsets E
of P as sets of forcing conditions. We will always assume that 0 ∈ E. In
other words, the actual form of E can be anything from {0} to P.

The interpretation structure for forcing with E is (E,�, V ∗,F ), where
V ∗ is defined as follows (cf. Section 3.3.2):

V E
α =

⋃

β∈α
P(E× (V E

β ∪ N))

S∗ =
⋃

α∈On
V E
α

V ∗ = N ∪ S∗

where P denotes the Powerset operation. F is an interpretation that will
be defined next.

We will use variables f, g, h, p, q, k, n,m to range over E. Though there
is a danger that k, n,m might be mistaken for members of N, we think that
it will always be sufficiently clear from the context whether we are talking
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about partial functions or whether we are talking about natural numbers.
Besides, we can also view E as a subset of N as the members of E can be
coded as naturals.

7.1 Definition of forcing

In what follows we use the abbreviations ∀f � g ϕ(f) and ∃f � g ϕ(f) for
∀f∈E[f � g → ϕ(f)] and ∃f∈E [f � g ∧ ϕ(f)], respectively. In connection
with elements a from S∗, ∀(f, d)∈ a ψ(f, d) and ∃(f, d)∈ a ψ(f, d) are short
for ∀f∈ E ∀d∈V ∗ [(f, d) ∈ a → ψ(f, d)] and ∃f∈E ∃d∈V ∗ [(f, d) ∈ a ∧
ψ(f, d)], respectively.

The relation h F ϕ with h ∈ E and ϕ being a sentence with parameters
from V ∗ is defined inductively as follows:

• h F R(a1, a2, ..., an) iff a1, a2, ..., an ∈ N ∧R(a1, a2, ..., an).

• h F N(a) iff a ∈ N.

• h F S(a) iff a ∈ S∗.

• h F a ∈ b iff ∃n ∈ E∃c ∈ V ∗[n � h ∧ (n, c) ∈ b ∧ h F a = c].

• h F a = b iff a, b ∈ N ∧ a = b or

a, b ∈ S∗ ∧ ∀(f, d) ∈ a ∀n � h, f ∃m � n(m F d ∈ b)
∧ ∀(g, k) ∈ b∀s � h, g ∃t � s(t F k ∈ a).

• h F A ∧B iff h F A ∧ h F B.

• h F A ∨B iff h F A ∨ h F B.

• h F ¬A iff ∀n � h¬(n F A).

• h F A→ B iff ∀n � h[n F A→ ∃m � n(m F B)].

• h F ∀xA(x) iff ∀n � h∀c ∈ V ∗∃m � n(m F A[x/c]).

• h F ∃xA(x) iff ∃c ∈ V ∗(h F A[x/c]).

Furthermore, one defines h F A(x) iff h F ∀xA(x) and V ∗ |=F A
iff ∀h ∈ E∃h′ � h[h′ F A].

The following Monotonicity Lemma is a key feature of forcing interpre-
tations.
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Lemma 7.1.1 [Monotonicity] for any formulae ϕ ∈ L(V ∗)

∀h, k ∈ E[(h F ϕ ∧ k � h)→ k F ϕ].

Proof. Let h ∈ E be arbitrary such that h F ϕ. Let k ∈ E be arbitrary
such that k � h.
♦ ϕ ≡ a = b: If a = b ∈ N, then by definition, ∀n ∈ E(n F a = b). If
a, b ∈ S∗, then h F a = b iff for all (f, d) ∈ a and (g, v) ∈ b,

∀r � h, f∃r′ � r[r′ F d ∈ b] ∧ ∀s � h, g∃s′ � s[s′ F v ∈ a].

Now let f ∈ E and d ∈ V ∗ be arbitrary such that (f, d) ∈ a. Let p ∈ E be
arbitrary such that p � k, f . Since p � h, f , by the assumption we have

∃p′ � p[p′ F d ∈ b];
similarly, we have

∀(g, v) ∈ b∀q � k, g∃q′ � q[q′ F v ∈ a].

Hence we have shown that

(h F a = b) ∧ k � h→ k F a = b. (7.1)

♦ ϕ ≡ a ∈ b: By the definition we have h F a ∈ b if and only if

∃n ∈ E∃c ∈ V ∗[n � h ∧ (n, c) ∈ b ∧ h F a = c].

By (7.1), the result follows from the definition immediately.
As for the compound formulae, we deal with the following clauses. Oth-

ers follow immediately from the inductive hypotheses and the definitions.
♦ ϕ ≡ ∀xη(x): By the definition, h F ∀xη(x) iff ∀q � h∀a ∈ V ∗∃q′ �
q[q′ F η(a)]. Now we want to show that k F ∀xη(x). Let q ∈ E be
arbitrary such that q � k. Let a ∈ V ∗ be arbitrary. Since q � k � h, by the
assumption, one has ∃q′ � q[q′ F η(a)].
♦ ϕ ≡ ζ → η: By the definition h F ζ → η iff ∀q � h[q F ζ → ∃r(r �
q ∧ r F η)]. Let s ∈ E be arbitrary such that s � k � h∧ s F ζ. By the
assumption ∃r(r � s ∧ r F η).

7.2 Soundness of forcing

In this section we will show that the structure (E,�, V ∗,F ) interprets all
axioms of CZFN , if one assumes CZFN in the background theory. More-
over, it also interprets all axioms of IZFN , if one assumes IZFN in the
background theory. In what follows we always argue in one of these back-
ground theories.
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Notation 7.2.1 ~a ∈ V ∗ ≡ a1, a2, ..., an ∈ V ∗.

Notation 7.2.2 ∀nA(n, ~x) ≡ ∀y[N(y)→ A(y, ~x)].

Notation 7.2.3 ∃nA(n, ~x) ≡ ∃y[N(y) ∧A(y, ~x)].

Notation 7.2.4 We will also use n ∈ N for N(n).

Lemma 7.2.5 ∀n [∀k � h∃k′ � k(k′ F A(n,~a))] ↔ h F ∀nA(n,~a), for
all h ∈ E.

Proof. To show h F ∀nA(n,~a), it suffices to prove that

∀c ∈ V ∗∀k � h[k F N(c)→ A(c,~a)].

Let k ∈ E be arbitrary such that k � h. Let c ∈ V ∗ and t ∈ E be arbitrary
such that t � k and t F N(c), i.e., c ∈ N. Then by the assumption
and the definition, ∃t′ � t � k[t′ F A(c,~a)]. On the other hand, assume
h F ∀nA(n,~a), i.e.,

∀c ∈ V ∗∀k � h∃v � k[v F (N(c)→ A(c,~a))].

Let n ∈ N be arbitrary. Let k ∈ E be arbitrary such that k � h. Then
∃v � k[v F (N(n)→ A(n,~a))]. Since v F N(n), it follows that ∃v′ � v �
k[v′ F A(n,~a)].

Corollary 7.2.6 ∀n ∈ N[h F A(n,~a))]→ h F ∀nA(n,~a), for all h ∈ E.

Proof. This follows immediately from the above result and the Monotonic-
ity Lemma.

This corollary will be used in the following A2:2 to A2:11 without ex-
plicitly mentioning it.

7.2.1 A1: Axioms on numbers and sets

Claim 7.2.7 [A1 :1] V ∗ |=F ∀x¬(N(x) ∧ S(x)).

Proof. Let c ∈ V ∗ be arbitrary. It suffices to prove that 0 F ¬(N(c) ∧
S(c)). Assume ∃n ∈ E such that n F (N(c)∧S(c)). Then by the definition,
it follows that c ∈ N ∩ S∗, but this contradicts Corollary 3.3.3.

Claim 7.2.8 [A1 :2] V ∗ |=F ∀x∀y[x ∈ y → S(y)].
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Proof. Let a, b ∈ V ∗ be arbitrary. It suffices to prove that 0 F a ∈ b →
S(b). Let n ∈ E be arbitrary such that n F a ∈ b, i.e., ∃m � n∃c ∈
V ∗(m, c) ∈ b, i.e., b ∈ S. Hence b ∈ S∗, thus 0 F S(b).

Claim 7.2.9 [A1 :3] V ∗ |=F N(n̄) for all natural number n.

Proof. This is obvious as N(n̄) is an axiom of the background theory.

7.2.2 A2: Number-theoretic axioms

Claim 7.2.10 [A2 :1] V ∗ |=F SUC(n̄, n+ 1) for all natural number n.

Proof. Again this follows immediately from the fact that SUC(n̄, n+ 1) is
an axiom of the background theory.

In the following proofs from A2:2 to A2:11, we will use Corollary 7.2.6
implicitly.

Claim 7.2.11 [A2 :2] V ∗ |=F ∀n∃!mSUC(n,m).

Proof. Let n ∈ N be arbitrary. Then (in our background theory) there
exists a unique number n + 1 ∈ N such that SUC(n, n + 1). Then by
unravelling the definition of F it follows that 0 F ∃!mSUC(n,m).

Claim 7.2.12 [A2 :3] V ∗ |=F ∀n∀m(SUC(n,m)→ m 6= 0̄).

Proof. Let n,m ∈ N be arbitrary. It suffices to prove that 0 F SUC(n,m)→
m 6= 0̄. Again this is obvious.

Claim 7.2.13 [A2 :4] V ∗ |=F ∀m(m = 0̄ ∨ ∃nSUC(n,m)).

Proof. Let m ∈ N be arbitrary. Then 0 F m = 0̄ ∨ ∃nSUC(n,m), so that
0 F ∀m (m = 0̄ ∨ ∃nSUC(n,m)).

Claim 7.2.14 [A2 :5] V ∗ |=F ∀n∀m∀k(SUC(m,n) ∧ SUC(k, n)→ m = k).

Proof. Let n,m, k ∈ N and e ∈ E be arbitrary such that e F SUC(m,n)∧
SUC(k, n). Then SUC(m,n) ∧ SUC(k, n), and hence m = k, thus 0 |=F
∀n∀m∀k(SUC(m,n) ∧ SUC(k, n)→ m = k).

Claim 7.2.15 [A2 :6] V ∗ |=F ∀n∀m∃!kADD(n,m, k).
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Proof. Let n,m ∈ N be arbitrary. Then there is a unique number n+m ∈ N
such that ADD(n,m, n+m). Hence 0 F ∃!kADD(n,m, k).

Claim 7.2.16 [A2 :7] V ∗ |=F ∀nADD(n, 0̄, n).

Proof. Let n ∈ N be arbitrary. In the background theory ADD(n, 0̄, n).
Hence 0 F ADD(n, 0̄, n) from which the claim follows.

Claim 7.2.17 [A2 :8] V ∗ |=F

∀n∀k∀m∀l∀i[ADD(n, k,m) ∧ SUC(k, l) ∧ SUC(m, i) → ADD(n, l, i)].

Proof. Let n, k,m, l, i ∈ N and e ∈ E be arbitrary such that e F
ADD(n, k,m)∧SUC(k, l)∧SUC(m, i). The latter entails that ADD(n, k,m),
SUC(k, l), and SUC(m, i). Whence ADD(n, l, i) from which the claim can
be easily inferred.

Claim 7.2.18 [A2 :9] V ∗ |=F ∀n∀m∃!kMULT(n,m, k).

Proof. Let n,m ∈ N be arbitrary. Then there is a unique number n ×
m ∈ N such that MULT(n,m, n × m). Hence by the definition of F ,
0 F ∃!kMULT(n,m, k).

Claim 7.2.19 [A2 :10] V ∗ |=F ∀nMULT(n, 0̄, 0̄).

Proof. Let n ∈ N be arbitrary. Since MULT(n, 0̄, 0̄) one immediately gets
0 F MULT(n, 0̄, 0̄) from which the desired result follows.

Claim 7.2.20 [A2 :11] V ∗ |=F ∀n∀k∀m∀l∀i[MULT(n, k,m) ∧ SUC(k, l)
∧ADD(m,n, i)→ MULT(n, l, i)].

Proof. Let n, k,m, l, i ∈ N and e ∈ E be arbitrary such that

e F MULT(n, k,m) ∧ SUC(k, l) ∧ADD(m,n, i) .

Then [MULT(n, k,m) ∧ SUC(k, l) ∧ ADD(m,n, i)], whence MULT(n, l, i),
from which the desired conclusion follows.

Claim 7.2.21 [A2 :12] V ∗ |=F A(0̄)∧∀n∀m[A(n)∧SUC(n,m)→ A(m)]→
∀nA(n).
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Proof. Let e ∈ E be arbitrary such that

e F A(0̄) ∧ ∀n∀m[A(n) ∧ SUC(n,m)→ A(m)]. (7.2)

It suffices to prove that e F ∀nA(n). Now let t ∈ E be arbitrary such
that t � e. Then by Lemma 7.2.5, it suffices to prove that ∀n ∈ N∃t′ �
t[t′ F A(n)]. We do this by induction on n ∈ N. If n = 0, then by (7.2)
t F A(0̄). Let n ∈ N be arbitrary such that ∃k � t[k F A(n)]. By the
definition it follows that

k F A(n) ∧ SUC(n, n+ 1),

and thus by (7.2)
∃k′ � k � t[k′ F A(n+ 1)].

7.2.3 A3: Logical axioms for IPL

For logical axioms (LA): 0 F LA. Most of them follow immediately from
the definition and the Monotonicity Lemma. We just prove the nontrivial
ones.

(IPL1) 0 F A→ (B → A).

(IPL2) 0 F [A→ (B → C)]→ [(A→ B)→ (A→ C)].

Proof. Let m ∈ E be arbitrary such that

m F A→ (B → C). (7.3)

It suffices to prove that m F (A→ B)→ (A→ C). Let n ∈ E be arbitrary
such that n � m and

n F (A→ B). (7.4)

We want to show that n F (A → C). Let l ∈ E be arbitrary such that
l � n and l F A. Then by (7.3) ∃l′ � l[l′ F (B → C)]. Furthermore, by
(7.4), ∃v � l′[v F B] and thus ∃v′ � v � l′ � l[v′ F C].

(IPL3) 0 F A→ (B → A ∧B).

(IPL4) 0 F A ∧B → A.

(IPL5) 0 F A ∧B → B.
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(IPL6) 0 F A→ A ∨B.

(IPL7) 0 F B → A ∨B.

(IPL8) 0 F (A ∨B)→ [(A→ C)→ ((B → C)→ C)].

Proof. Let h, i, j ∈ E be arbitrary such that

h � i � j ∧ h F A ∨B ∧ i F A→ C ∧ j F B → C.

If h F A, then by the Monotonicity Lemma, j F A ∧ (A → C) and thus
∃j′ � j(j′ F C), i.e., by the definitions

i F [(B → C)→ C] ∧ h F (A→ C)→ ((B → C)→ C).

If h F B, again by the Monotonicity Lemma j F B and thus ∃j′ � j(
j′ F C), i.e., by the definitions,

i F [(B → C)→ C] ∧ h F (A→ C)→ ((B → C)→ C).

Hence we have shown that

0 F (A ∨B)→ [(A→ C)→ ((B → C)→ C)].

(IPL9) 0 F (A→ B)→ ((A→ ¬B)→ ¬A).

(IPL10) 0 F A→ (¬A→ B).

(IPL11) 0 F ∀xA(x)→ A[x/y], where y is free for x in A(x).

(IPL12) 0 F A[x/y]→ ∃xA(x), where y is free for x in A(x).

For Inference Rules: (In the following, we use FV (C) to denote the
set of all free variables in C).

(IR1) Modus Ponens is preserved, i.e., [V ∗ |=F A ∧ V ∗ |=F (A → B)] →
V ∗ |=F B.

Proof. Let h ∈ E be arbitrary. Then by the definitions we have

∃h′ � h[h′ F A] ∧ ∃h′′ � h′[h′′ F (A→ B)].

By the Monotonicity Lemma, the result follows.
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(IR2) Rule ∀ is preserved, i.e., V ∗ |=F (C → A(x)) → V ∗ |=F (C →
∀xA(x)), where x /∈ FV (C).

Proof. It suffices to prove that 0 F C → ∀xA(x). Let h ∈ E be arbitrary
such that h F C. We want to show that h F ∀xA(x). Let a ∈ V ∗ be
arbitrary. Let n ∈ E be arbitrary such that n � h. By the assumption,
∃n′ � n[n′ F ∀x(C → A(x))] and thus ∃n′′ � n′[n′′ F C → A(a)]. Hence
it follows that ∃m � n′′ � n[m F A(a)].

(IR3) Rule ∃ is preserved, i.e., V ∗ |=F (A(x) → C) → V ∗ |=F (∃xA(x) →
C), where x /∈ FV (C).

Proof. It suffices to prove that 0 F ∃xA(x)→ C. Let h ∈ E be arbitrary
such that h F ∃xA(x), i.e., ∃a ∈ V ∗[h F A(a)]. By the assumption

∃h′ � h[h′ F ∀x(A(x)→ C)],

and thus by the Monotonicity Lemma, ∃h′′ � h′ � h(h′′ F C).

For the Identity Axioms (IA):

The soundness of IA follows immediately from the following claims. Let
a, b, c ∈ V ∗ be arbitrary.

Claim 7.2.22 [IA1] V ∗ |=F a = a.

Proof. Let a ∈ V ∗ be arbitrary. It suffices to prove that 0 F a = a for
all a ∈ S∗. We show this via Ordinal Induction. Let α ∈ On be arbitrary.
Assume

∀β ∈ α∀b ∈ V E
β [0 F b = b]. (7.5)

Let a ∈ V E
α be arbitrary. Now we have to show that 0 F a = a, i.e., it

is sufficient to show that ∀(f, d) ∈ a∀r � f [r F d ∈ a]. Let f, r ∈ E and
d ∈ V ∗ be arbitrary such that

(f, d) ∈ a ∧ r � f. (7.6)

By the definition and (7.5), 0 F d = d. Then by (7.6) and the Monotonicity
Lemma, r F d = d and thus r F d ∈ a.

Claim 7.2.23 [IA2] V ∗ |=F a = b→ b = a.

Proof. It suffices to prove that 0 F (a = b → b = a) and this follows
immediately from the symmetry of the definition.
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Claim 7.2.24 [IA3] V ∗ |=F a = b ∧ b = c→ a = c.

Claim 7.2.25 [IA4] V ∗ |=F a = b ∧ b ∈ c→ a ∈ c.

Proof. For any formulae θ1, θ2, ..., θn, let
n∧
i=1
θi denote the conjunction θ1 ∧

θ2... ∧ θn. We will prove (IA3) and (IA4) simultaneously via C3-induction
(cf. Subsection 3.2.1):

∀x1, x2, x3[∀(y1, y2, y3) C3 (x1, x2, x3)ϕ(y1, y2, y3)→ ϕ(x1, x2, x3)]

→ ∀x, y, zϕ(x, y, z).

by taking ϕ(y1, y2, y3) to be

y1, y2, y3 ∈ V ∗ →
3∧

i,j,k=1
i,j 6=k∧i 6=j

η(yi, yj , yk),

where η(yi, yj , yk) denotes

0 F [yi = yj ∧ yj = yk → yi = yk] ∧ 0 F [yi = yj ∧ yj ∈ yk → yi ∈ yk].

Let a4, a5, a6 ∈ V ∗ and d1, d2, d3 ∈ V ∗ be arbitrary such that (d1, d2, d3) C3

(a4, a5, a6) and

0 F di = dj ∧ dj = dk → di = dk, (7.7)

0 F di = dj ∧ dj ∈ dk → di ∈ dk,

for all i, j, k ∈ {1, 2, 3}, where i, j 6= k and i 6= j. Now we have to show that

0 F ai = aj ∧ aj = ak → ai = ak,

0 F ai = aj ∧ aj ∈ ak → ai ∈ ak,

for all i, j, k ∈ {4, 5, 6}, where i, j 6= k and i 6= j. Now let i, j, k ∈ {4, 5, 6}
be arbitrary such that i, j 6= k and i 6= j. Let n ∈ E be arbitrary such that
n F ai = aj ∧ aj ∈ ak. Then by the definition it follows that

∃m � n∃q ∈ V ∗[(m, q) ∈ ak ∧ n F ai = aj ∧ aj = q].

Since (ai, aj , q) C3 (ai, aj , ak), (without loss of generality, suppose i = 6, j =
4, k = 5, then (aj , q, ai) C3 (a4, a5, a6)) by the inductive hypothesis (7.7),
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∃n′ � n[n′ F ai = q] and thus n′ F ai ∈ ak. Now let p ∈ E be arbitrary
such that

p F ai = aj ∧ aj = ak. (7.8)

We want to show that p F ai = ak. Let u, h ∈ E and v ∈ V ∗ be arbitrary
such that (u, v) ∈ ai and h � u, p. By assumption (7.8), it follows that
∃h′ � h[h′ F v ∈ aj ], i.e.,

∃s � h′∃t ∈ V ∗[(s, t) ∈ aj ∧ h′ F v = t].

Furthermore, let q ∈ E be arbitrary such that q � h′. Then by the assump-
tion (7.8) again, ∃q′ � q[q′ F t ∈ ak]. Since (v, t, ak) C3 (ai, aj , ak), by
the inductive hypothesis (7.7), it follows that ∃q′′ � q′ � h[q′′ F v ∈ ak].
Following the same procedure for the other part of the definition, one has
the result p F ai = ak.

Claim 7.2.26 [IA5] V ∗ |=F a = b ∧ c ∈ a→ c ∈ b.

Proof. It suffices to prove that 0 F [a = b ∧ c ∈ a→ c ∈ b]. Let h ∈ E be
arbitrary such that h F a = b ∧ c ∈ a. By the definition it follows that

∃u � h∃q ∈ V ∗[(u, q) ∈ a ∧ h F c = q].

Hence by the definition it follows that ∃h′ � h[h′ F q ∈ b] and thus by
(IA4), ∃h′′ � h′ � h[h′′ F c ∈ b].

Remark 7.2.27 IA6 to IA10 are all realizable from its background theory
and the definition.

Lemma 7.2.28 [Forcing Substitution] For any formula A(x, ~y) in L(V ∗),
∀a,~b, c ∈ V ∗[V ∗ |=F (a = c ∧A(a,~b))→ A(c,~b)].

Proof. For the atomic formulae, this has been shown in the above claims.
For the compound formulae, this is shown by induction over the complexity
of the formulae. Here we consider the formulae with quantifiers:
♦ A(a,~b) ≡ ∃zB(a,~b, z): Let e ∈ E be arbitrary such that e F a =
c ∧ ∃zB(a,~b, z). By the definition, it follows that

∃d ∈ V ∗[e F a = c ∧B(a,~b, d)].

By the inductive hypothesis, it follows that ∃e′ � e[e′ F ∃zB(c,~b, z)].
♦ A(a,~b) ≡ ∀zB(a,~b, z): Let e ∈ E be arbitrary such that e F [a =
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c ∧ ∀zB(a,~b, z)]. Then by the definition and the Monotonicity Lemma, it
follows that

∀d ∈ V ∗∀h � e∃q � h[q F a = c ∧B(a,~b, d)].

By the inductive hypothesis,

∀d ∈ V ∗∀h � e∃q′ � q � h[q′ F B(c,~b, d)],

i.e., e F ∀zB(c,~b, z).

7.2.4 A4.1: Non-logical axioms (CZF with two sorts)

Lemma 7.2.29 [Extensionality] V ∗ |=F ∀x∀y(S(x) ∧ S(y) → [∀z(z ∈ x ↔
z ∈ y)→ x = y]).

Proof. Let a, b ∈ V ∗ be arbitrary. It suffices to prove that

0 F S(a) ∧ S(b)→ (∀z(z ∈ a↔ z ∈ b)→ a = b).

Let k ∈ E be arbitrary such that

k F S(a) ∧ S(b). (7.9)

Then it suffices to prove that

k F [∀z(z ∈ a↔ z ∈ b)→ a = b].

Let t ∈ E be arbitrary such that t � k and t F ∀z(z ∈ a↔ z ∈ b), i.e.,

∀c ∈ V ∗∀l � t∃m � l(m F c ∈ a↔ c ∈ b). (7.10)

It suffices to prove that t F a = b. From (7.9) and the definition, one has
a, b ∈ S∗. Now let f, g ∈ E and d, v ∈ V ∗ be arbitrary such that (f, d) ∈ a
and (g, v) ∈ b. Let n, p ∈ E be arbitrary such that n � t, f and p � t, g.
Then by the definitions, n F d ∈ a and p F v ∈ b, i.e., by (7.10) and the
Monotonicity Lemma

∃n′ � n(n′ F d ∈ b) ∧ ∃p′ � p(p′ F v ∈ a). (7.11)

Hence by the definition, t F a = b.

Lemma 7.2.30 [Pairing] V ∗ |=F ∀x∀y∃u[S(u) ∧ (x ∈ u ∧ y ∈ u)].
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Proof. Let a, b ∈ V ∗ be arbitrary. It suffices to prove that there exists
u ∈ S∗ such that 0 F a ∈ u ∧ b ∈ u. Define

u ≡ {a, b}F ≡ {(0, a), (0, b)}.

By Pairing in the background theory, u is an external set. By Claim 3.3.6,
u is also an internal set, i.e., u ∈ S∗. By the proof of the soundness of IA1,
0 F a = a ∧ b = b and thus by the definition, 0 F a ∈ u ∧ b ∈ u.

Furthermore, one can also define the internal Cartesian product.

Definition 7.2.31 For ∀a, b ∈ V ∗,

(a, b)F = {(0, {a, a}F ), (0, {a, b}F )}.

Since {a, b}F ∈ S∗, by Claim 3.3.6, (a, b)F ∈ S∗.

Corollary 7.2.32 [Internal Cartesian Product]

0 F (a, b)F = (c, d)F → a = c ∧ b = d.

Proof. By the definitions and the soundness of IA2,

0 F {a, a}F = {c, d}F → a = c ∧ b = d. (7.12)

Let g ∈ E be arbitrary such that g F (a, b)F = (c, d)F . Since (0, {a, a}F ) ∈
(a, b)F , by the definition, it follows that ∃g′ � g[g′ F {a, a}F = {c, d}F ],
i.e., by (7.12) ∃g′′ � g′ � g[g′′ F a = c]. The other cases also follow via the
similar arguments.

Lemma 7.2.33 [Union] V ∗ |=F ∀x∃u[S(u) ∧ ∀z(z ∈ u ↔ ∃y(y ∈ x ∧ z ∈
y))].

Proof. Let a ∈ V ∗ be arbitrary. It suffices to prove that there exists a ∈ S∗
such that

∀c ∈ V ∗[0 F (c ∈ a↔ ∃y(y ∈ a ∧ c ∈ y))].

Define

a ≡ {(j, k) : j ∈ E ∧ ∃(f, d) ∈ a∃g ∈ E[(g, k) ∈ d ∧ (j � f, g)]}.

By Bounded Separation, the Union and Pairing Axioms in the background
theory, a is an external set. By Claim 3.3.6, a is also an internal set, i.e.,
a ∈ S∗. Let c ∈ V ∗ be arbitrary. We want to show that

0 F c ∈ a↔ ∃y(y ∈ a ∧ c ∈ y).
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Let e ∈ E be arbitrary such that e F c ∈ a, i.e.,

∃k ∈ V ∗∃j � e[(j, k) ∈ a ∧ e F c = k].

By the definition, it follows that ∃(f, d) ∈ a∃g ∈ E[(g, k) ∈ d ∧ (j � f, g)]
and thus j F d ∈ a ∧ k ∈ d, i.e., by the soundness of IA4 ∃e′ � e(e′ F
d ∈ a ∧ c ∈ d). On the other hand, let h ∈ E be arbitrary such that
h F ∃y(y ∈ a ∧ c ∈ y), i.e., ∃b ∈ V ∗(h F b ∈ a ∧ c ∈ b). By the definition
it follows that

∃s � h∃p ∈ V ∗[(s, p) ∈ a ∧ h F (b = p ∧ c ∈ b)],

i.e., by the soundness of IA5 ∃h′ � h(h′ F c ∈ p), i.e.,

∃r � h′∃u ∈ V ∗[(r, u) ∈ p ∧ h′ F c = u].

Since (s, p) ∈ a and (r, u) ∈ p and h′ � s, r, by the definition it follows that
(h′, u) ∈ a, i.e., h′ F u ∈ a. By the soundness of IA4, ∃h′′ � h′ � h(h′′ F
c ∈ a).

In order to the soundness of Bounded Separation, we find a new relation
over E× Form∆0

c (cf. 6.2.34) as follows:

Definition 7.2.34 We define a relation 0
F over E× Form∆0

c as follows:

• h 0
F a ∈ b iff h F a ∈ b.

• h 0
F B(a) ∧ C(a) iff h 0

F B(a) ∧ h 0
F C(a).

• h 0
F B(a) ∨ C(a) iff h 0

F B(a) ∨ h 0
F C(a).

• h 0
F B(a)→ C(a) iff ∀k � h[k 0

F B(a)→ ∃k′ � k(k′ 0
F C(a))].

• h 0
F ¬B(a) iff ∀k � h¬[k 0

F B(a)].

• h 0
F ∀x ∈ aB(x) iff ∀(f, d) ∈ a∀k � f, h∃k′ � k[k′ 0

F B(d)].

• h 0
F ∃x ∈ aB(x) iff ∃s � h∃d ∈ V ∗[(s, d) ∈ a ∧ h 0

F B(d)].

Claim 7.2.35 For all A(a) ∈ Form∆0
c , {h ∈ E : h 0

F A(a)} is a set.

Proof. We show by the induction on the complexity of A(a). Let ZB(b) be

the class {h ∈ E : h 0
F B(b)} for all B(b) ∈ Form∆0

c . For the closed atomic
formula, it can be easily seen to be true. For the compound formulae, by
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the induction, ZA(a) is a set is validated by the following settings:
♦ {h ∈ E : h 0

F B(a) ∧ C(a)} = {h ∈ E : h ∈ ZB(a) ∧ h ∈ ZC(a)};
♦ {h ∈ E : h 0

F B(a) ∨ C(a)} = {h ∈ E : h ∈ ZB(a) ∨ h ∈ ZC(a)};
♦ {h ∈ E : h 0

F B(a) → C(a)} = {h ∈ E : ∀k � h[k ∈ ZB(a) → ∃k′ �
k(k′ ∈ ZC(a))]};
♦ {h ∈ E : h 0

F ¬B(a)} = {h ∈ E : ∀k � h¬k ∈ ZB(a)};
♦ {h ∈ E : h 0

F ∀x ∈ aB(x)} = {h ∈ E : ∀(f, d) ∈ a∀k � h, f∃k′ � k[k′ ∈
ZB(d)]};
♦ {h ∈ E : h 0

F ∃x ∈ aB(x)} = {h ∈ E : ∃s � h∃d ∈ V ∗[(s, d) ∈ a ∧ h ∈
ZB(d)]}.

Claim 7.2.36 For each closed ∆0-formula A(a) in Form∆0
c , h F A(a)→

∃h′ � h[h′ 0
F A(a)] and h 0

F A(a)→ ∃h′ � h[h′ F A(a)].

Proof. This is shown via the (mutual) induction on the complexity of A(a).
We demonstrate the formulae with quantifiers.
♦ Assume h F ∀x ∈ aB(x). Let (u, d) ∈ a and k � h, u be arbitrary.
Then by the soundness of IA1 and the assumption, it follows that ∃k′ �
k[k′ F B(d)], which by the inductive hypothesis yields ∃k′′ � k′[k′′ 0

F
B(d)]. On the other hand, assume h 0

F ∀x ∈ aB(x). We show h F
∀x ∈ aB(x). Let k � h and b ∈ V ∗ be arbitrary such that k F b ∈ a,
i.e., ∃s � k∃d ∈ V ∗[(s, d) ∈ a ∧ k F b = d]. Then by the assumption
it follows that ∃k′ � k[k′ 0

F B(d)], which by the inductive hypothesis
yields ∃k′′ � k′[k′′ F B(d)]. Hence by Monotonicity and Substitution,
∃k′′′ � k′′[k′′′ F B(b)].
♦ Assume h F ∃x ∈ aB(x), i.e., ∃b ∈ V ∗[h F (b ∈ a ∧ B(b))], i.e.,
∃d ∈ V ∗∃s � h[(s, d) ∈ a ∧ h F b = d ∧ B(b)]. Then by Substitution it
follows that ∃h′ � h[h′ F B(d)], which by the inductive hypothesis yields
∃h′′ � h′[h′′ 0

F B(d)] and thus h′′ 0
F ∃x ∈ aB(x). On the other hand,

assume h 0
F ∃x ∈ aB(x), i.e., ∃s � h∃d ∈ V ∗[(s, d) ∈ a∧h 0

F B(d)]. Then
by the inductive hypothesis, ∃h′ � h[h′ F B(d)]. Hence by Monotonicity
and the soundness of IA1, we have shown that h′ F d ∈ a ∧B(d).

Lemma 7.2.37 [Bounded Separation] V ∗ |=F ∀x∃u[S(u) ∧ ∀z(z ∈ u↔ z ∈
x ∧A(z))], where A(z) is a bounded formula.

Proof. Let a ∈ V ∗ be arbitrary. It suffices to prove that there exists a ∈ S∗
such that

∀c ∈ V ∗[0 F (c ∈ a↔ c ∈ a ∧A(c))].
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Define

a ≡ {(j, k) : j ∈ E ∧ ∃f, g ∈ E[j � f, g ∧ (g, k) ∈ a ∧ f 0
F A(k)]}.

By Claim 7.2.35, Bounded Separation, the Union and Pairing Axioms in
the background theory, a is an external set. By Claim 3.3.6 , a is also an
internal set, i.e., a ∈ S∗. Now let c ∈ V ∗ be arbitrary. We want to show
that

0 F c ∈ a↔ c ∈ a ∧A(c).

Let e ∈ E be arbitrary such that e F c ∈ a, i.e.,

∃d ∈ V ∗∃j � e[(j, d) ∈ a ∧ e F c = d].

By the definition, it follows that

∃f, g ∈ E[j � f, g ∧ (g, d) ∈ a ∧ f 0
F A(d) ∧ e F c = d].

Hence by Monotonicity and the Claim 7.2.36, it follows that ∃e′ � e[e′ F
d ∈ a ∧ A(d)] and thus by the soundness of IA2 and Substitution, ∃e′′ �
e′[e′′ F (c ∈ a ∧A(c))].

On the other hand, let k ∈ E be arbitrary such that k F c ∈ a ∧ A(c),
i.e.,

∃t � k∃b ∈ V ∗[(t, b) ∈ a ∧ k F c = b ∧ k F A(c)].

Hence by Substitution and Claim 7.2.36, it follows that ∃k′ � k[k′ 0
F A(b)]

and thus (k′, b) ∈ a, i.e., k′ F b ∈ a. By the soundness of IA4, ∃k′′ �
k[k′′ F c ∈ a].

Lemma 7.2.38 [Infinity] V ∗ |=F ∃u(S(u) ∧ ∀z[z ∈ u↔ N(z)]).

Proof. It suffices to prove that there exists u ∈ S∗ such that ∀c ∈ V ∗[0 F
c ∈ u↔ N(c)]. Define

u = {(0, n) : n ∈ N}. (7.13)

By the Infinity Axiom and Bounded Separation in the background theory,
u is an external set. By Claim 3.3.6 , u is also an internal set, i.e., u ∈ S∗.
Now let c ∈ V ∗. We want to show that 0 F c ∈ u ↔ N(c). Let e ∈ E be
arbitrary such that e F c ∈ u. Then by the definition,

∃k ∈ V ∗∃t � e[(t, k) ∈ u], (7.14)

and e F c = k. From (7.13) and (7.14) it follows that k = c ∈ N. Hence
by the definition,

e F N(c).
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On the other hand, let g ∈ E be arbitrary such that g F N(c). Then by
the definition it follows that c ∈ N, i.e., (0, c) ∈ u. Hence by the soundness
of IA1, it follows that

g F c ∈ u.

Lemma 7.2.39 [Induction] V ∗ |=F ∀x[(∀y ∈ xA(y))→ A(x)]→ ∀xA(x).

Proof. Let e ∈ E be arbitrary such that

e F ∀x[∀y(y ∈ x→ A(y))→ A(x)],

i.e.,

∀b ∈ V ∗∀l � e∃l′ � l[l′ F ∀y(y ∈ b→ A(y))→ A(b))]. (7.15)

It suffices to prove that e F ∀xA(x), i.e., ∀a ∈ V ∗∀l � e∃l′ � l[l′ F A(a)].
We show this by ordinal induction. Let α ∈ On be arbitrary. Assume

∀β ∈ α∀b ∈ N ∪ V E
β ∀l � e∃l′ � l[l′ F A(b)]. (7.16)

Now we have to show that

∀a ∈ N ∪ V E
α ∀l � e∃l′ � l[l′ F A(a)].

Let a ∈ N ∪ V E
α be arbitrary and l ∈ E be arbitrary such that l � e. We

want to show that l F ∀y(y ∈ a → A(y)). Let c ∈ V ∗ be arbitrary. It
suffices to prove that l F c ∈ a → A(c). Let t � l be arbitrary such that
t F c ∈ a. Then by the definition it follows that ∃d ∈ V ∗∃v � t such that
t F c = d and (v, d) ∈ a, i.e., d ∈ N ∪ V E

β for some β ∈ α. Hence, by the
inductive hypothesis (7.16), it follows that ∃t′ � t[t′ F A(d)] and thus by
Substitution, ∃t′′ � t′ � t[t′′ F A(c)]. By the definition,

l F ∀y[y ∈ a→ A(y)]. (7.17)

By (7.15) and (7.17), ∃l′ � l [l′ F A(a)] and this completes the proof.

Lemma 7.2.40 [Strong Collection]

V ∗ |=F ∀x[∀y ∈ x∃zA(y, z)→

∃u(S(u) ∧ ∀y ∈ x∃z ∈ uA(y, z) ∧ ∀z ∈ u∃y ∈ xA(y, z))].
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Proof. We show this via Strong Collection in the background theory. Let
a ∈ V ∗ and e ∈ E be arbitrary such that e F ∀y[y ∈ a→ ∃zA(y, z)], i.e.,

∀b ∈ V ∗∀n � e∃n′ � n[n′ F (b ∈ a→ ∃zA(b, z))]. (7.18)

It suffices to prove that there exists D ∈ S∗ such that

e F ∀y ∈ a∃z ∈ DA(y, z) ∧ ∀z ∈ D∃y ∈ aA(y, z).

Define
a ≡ {(r, (l, b)) : r, l ∈ E ∧ r � l, e ∧ (l, b) ∈ a}.

By the Pairing Axiom and Bounded Separation, a is a set. Unravelling
(7.18), ∀x ∈ a∃zη(x, z), where η(x, z) ≡

∃l, r, p ∈ E∃b, c ∈ V ∗[x = (r, (l, b)) ∧ z = (p, c) ∧ p � r ∧ p F A(b, c)].

By Strong Collection in the background theory, there exists a set D such
that

∀x ∈ a∃z ∈ Dη(x, z), (7.19)

and
∀z ∈ D∃x ∈ aη(x, z). (7.20)

From (7.20), D ⊆ E × V ∗, i.e., by Claim 3.3.6 , D ∈ S∗. Now we want to
show that

e F ∀y[y ∈ a→ ∃z ∈ DA(y, z)].

Let b ∈ V ∗ be arbitrary. It suffices to prove that e F b ∈ a → ∃z ∈
DA(b, z). Let n ∈ E be arbitrary such that n � e and n F b ∈ a. Then by
the definition it follows that (n, (t, d)) ∈ a and n F b = d for some t � n
and for some d ∈ V ∗. Hence by (7.19)

∃c ∈ V ∗∃p � n[(p, c) ∈ D∧p F A(d, c)].

Thus by the soundness of IA1, IA2, Substitution, and the Monotonicity
Lemma, ∃p′ � p[p′ F c ∈ D∧A(b, c)], i.e.,

e F ∀y[y ∈ a→ ∃z(z ∈ D∧A(y, z))].

Now we want to show that

e F ∀z[z ∈ D→∃y ∈ aA(y, z)].

Let c ∈ V ∗ be arbitrary. It suffices to prove that e F c ∈ D→∃y ∈ aA(y, c).
Let m ∈ E be arbitrary such that m � e ∧ m F c ∈ D. Then by the
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definition it follows that ∃v ∈ V ∗∃q � m[(q, v) ∈ D ∧ m F c = v]. By
(7.20),

∃r, l ∈ E∃b ∈ V ∗[(r, (l, b)) ∈ a ∧ q � r ∧ q F A(b, v)].

Since l � r � q � m, by the soundness of IA1 and the Monotonicity Lemma,
it follows that

m F [b ∈ a ∧A(b, v)].

Since m F c = v, applying the soundness of IA2 and Substitution,

∃m′ � m[m′ F ∃y(y ∈ a ∧A(y, c))],

and thus
e F ∀z[z ∈ D→∃y ∈ aA(y, z)].

Lemma 7.2.41 [Subset Collection] V ∗ |=F ∀a∀b∃u(S(u) ∧ ∀z[∀x ∈ a∃y ∈
bA(x, y, z)→ ∃d ∈ u(∀x ∈ a∃y ∈ dA(x, y, z) ∧ ∀y ∈ d∃x ∈ aA(x, y, z))]).

Proof. Let a, b ∈ V ∗ be arbitrary. It suffices to prove that there exists
U ∈ S∗ such that for all c in V ∗

0 F ∀x ∈ a∃y ∈ bA(x, y, c)→ ∃d ∈ U
(∀x ∈ a∃y ∈ dA(x, y, c) ∧ ∀y ∈ d∃x ∈ aA(x, y, c)).

Let c ∈ V ∗ be arbitrary. Let e ∈ E be arbitrary such that

e F ∀x ∈ a∃y ∈ bA(x, y, c). (7.21)

It suffices to prove that there exists D ∈ V ∗ such that e F D ∈ U and

e F ∀x ∈ a∃y ∈ DA(x, y, c) ∧ ∀y ∈ D∃x ∈ aA(x, y, c).

Define
a := {((f, d), j) : f, j ∈ E, (f, d) ∈ a ∧ j � e, f},

b := {(i, v) : i ∈ E ∧ ∃k � i[(k, v) ∈ b]}.
By Bounded Separation, the Pairing and Union Axioms in the background
theory, both a and b are external sets. By Claim 3.3.6, also b ∈ S∗. Unrav-
elling (7.21) and applying Substitution yields

∀u ∈ a∃l ∈ bη(u, l, c),
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where η(u, l, c) ≡ ∃f, j ∈ E∃d, v ∈ V ∗[u = ((f, d), j)∧ l = (i, v)∧i � j∧∃k �
i(k, v) ∈ b ∧ i F A(d, v, c)]. Invoking Subset Collection in the background
theory yields that there is an external set D such that ∃C ∈ D

∀u ∈ a∃l ∈ Cη(u, l, c), (7.22)

and
∀l ∈ C∃u ∈ aη(u, l, c). (7.23)

Now define
D∗ = {q ∩ b : q ∈ D}. (7.24)

By Bounded Separation and Replacement in the background theory, D∗ is
an external set. Let q∩b ∈ D∗ be arbitrary. Then we have q∩b ⊆ b ⊆ E×V ∗
and thus by Claim 3.3.6, q ∩ b ∈ S∗, i.e., D∗ ⊆ S∗. Furthermore, by the fact
that C ∈ D, it follows that C ∩ b ∈ D∗ and thus C ∩ b ∈ S∗. Now define U
:= {(0, d) : d ∈ D∗}. Since D∗ ⊆ S∗, by Claim 3.3.6, also U ∈ S∗. Moreover,
by the soundness of IA1, also

e F C ∩ b ∈ U. (7.25)

Now we want to show that

e F ∀x ∈ a∃y ∈ C ∩ bA(x, y, c) ∧ ∀y ∈ C ∩ b∃x ∈ aA(x, y, c).

It suffices to prove that for all x, y in V ∗

e F x ∈ a→ ∃y(y ∈ C ∩ b ∧A(x, y, c)), (7.26)

and
e F y ∈ C ∩ b→ ∃x(x ∈ a ∧A(x, y, c)). (7.27)

Let m ∈ E and x ∈ V ∗ be arbitrary such that m � e and m F x ∈ a, i.e.,

∃p � m∃x′ ∈ V ∗[(p, x′) ∈ a ∧m F x = x′].

By the definition it follows that ((p, x′),m) ∈ a. From (7.22), it follows that

∃i � m∃v ∈ V ∗[(i, v) ∈ C ∩ b ∧ i F A(x′, v, c)].

By the Monotonicity Lemma, the soundness of IA1, IA2 and Substitution,
∃i′ � i � m[i′ F v ∈ C ∩ b ∧ A(x, v, c)]. Hence by the definition we
have shown that (7.26). Now let n � e and y ∈ V ∗ be arbitrary such that
n F y ∈ C ∩ b, i.e.,

∃q � n∃y′ ∈ V ∗[(q, y′) ∈ C ∩ b ∧ n F y = y′].
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From (7.23), it follows that

∃f, j ∈ E∃d ∈ V ∗[((f, d), j) ∈ a ∧ q � j ∧ q F A(d, y′, c)].

By the definition it then follows that q F d ∈ a ∧ A(d, y′, c). By the
Monotonicity Lemma and Substitution, ∃n′ � n � q[n′ F d ∈ a∧A(d, y, c)].
Hence by the definition we have shown that (7.27) and this completes the
proof.

Theorem 7.2.42 [Soundness Theorem]

CZFN ` ϕ =⇒ CZFN ` (V ∗ |=F ϕ).

Proof. Since the logical axioms, inference rules and non-logical axioms have
shown to be sound, the result follows immediately.

7.2.5 A4.2: Non-logical axioms (IZF with two sorts)

The background theory in this section is IZFN . Since CZFN and IZFN

share most of the axioms, we only have to check the following:

Lemma 7.2.43 [Separation] V ∗ |=F ∀x∃u[S(u)∧∀z(z ∈ u↔ z ∈ x∧A(z))].

Proof. Let a ∈ V ∗ be arbitrary. It suffices to prove that there exists a ∈ S∗
such that for all c in V ∗

0 F [c ∈ a↔ c ∈ a ∧A(c)].

Define

a ≡ {(j, k) : j ∈ E ∧ ∃f, g ∈ E[j � f, g ∧ (g, k) ∈ a ∧ f F A(k)]}.

By Separation, the Union and Pairing Axioms in the background theory, a
is an external set. By Claim 3.3.6, a is also an internal set, i.e., a ∈ S∗. Now
let c ∈ V ∗ be arbitrary. We want to show that

0 F c ∈ a↔ c ∈ a ∧A(c).

Let e ∈ E be arbitrary such that e F c ∈ a, i.e.,

∃d ∈ V ∗∃j � e[(j, d) ∈ a ∧ e F c = d].

By the definition, it follows that

∃f, g ∈ E[j � f, g ∧ (g, d) ∈ a ∧ f F A(d) ∧ e F c = d].
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Hence by the definition it follows that j F d ∈ a ∧ A(d) and thus by
Substitution ∃e′ � e[e′ F c ∈ a ∧A(c)].

On the other hand, let k ∈ E be arbitrary such that k F c ∈ a ∧ A(c),
i.e., ∃t � k∃b ∈ V ∗[(t, b) ∈ a ∧ k F c = b]. Hence by Substitution, it
follows that ∃k′ � k[k′ F A(b)] and thus (k′, b) ∈ a, i.e., k′ F b ∈ a. By
Substitution, ∃k′′ � k[k′′ F c ∈ a].

Claim 7.2.44 If a, b ∈ S∗, then e F b ⊆ a→ ∃b∗ ∈ V E
rk(a)+1(e F b = b∗).

Proof. Assume e F b ⊆ a. By the definition it follows that ∀(f, d) ∈
b∀r � f, e∃r′ � r[r′ F d ∈ a], i.e., ∀(f, d) ∈ b∀r � f, e

∃r′ � r∃s � r′∃c ∈ V ∗[(s, c) ∈ a ∧ r′ F d = c]. (7.28)

Define

b∗ ≡ {(h, c) : h ∈ E, ∃f, s � h∃d ∈ V ∗(f, d) ∈ b
∧(s, c) ∈ a ∧ h F d = c]}.

By Pairing and Separation in the background theory, b∗ is a set. By Claim
3.3.6 and Corollary 3.3.5, b∗ ∈ V E

rk(a)+1. Now we want to show that e F b =

b∗. Let f, r ∈ E and d ∈ V ∗ be arbitrary such that (f, d) ∈ b and r � f, e.
Then by (7.28) it follows that there is r′ � r and there is c ∈ V ∗ such that
r′ F c ∈ b∗ and r′ F d = c, i.e., by the soundness of IA4,

∃r′′ � r′ � r[r′′ F d ∈ b∗].

On the other hand, let g, r ∈ E and u ∈ V ∗ be arbitrary such that
(g, u) ∈ b∗ and r � g, e. By the definition and the soundness of IA1, IA2
and the Monotonicity Lemma, ∃d ∈ V ∗∃r′ � r such that r′ F d ∈ b∧u = d.
By the soundness of IA4, it follows that

∃r′′ � r′ � r[r′′ F u ∈ b].

Lemma 7.2.45 [Power set] V ∗ |=F ∀x∃u[S(u) ∧ ∀z(z ∈ u ↔ (S(z) ∧ z ⊆
x))].

Proof. Let a ∈ V ∗ be arbitrary. Define

a ≡ {(g, c) : g ∈ E ∧ c ∈ V E
rk(a)+1 ∧ g F c ⊆ a}.
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By the Powerset Axiom, Pairing and Separation in the background theory,
a is an external set. By Claim 3.3.6 it also follows that a ∈ S∗. Let k ∈ V ∗
be arbitrary. It suffices to prove that 0 F k ∈ a↔ S(k)∧ k ⊆ a. Let e ∈ E
be arbitrary such that e F k ∈ a, i.e.,

∃c ∈ V E
rk(a)+1[e F c ⊆ a ∧ e F k = c].

Then by the definition and Substitution, it follows that k ∈ S∗ and thus

∃e′ � e[e′ F S(k) ∧ k ⊆ a]. (7.29)

Now let h ∈ E be arbitrary such that h F S(k) ∧ k ⊆ a. Then by Claim
7.2.44, it follows that ∃k∗ ∈ V E

rk(a)+1 such that h F k = k∗. By the

definition of a and Substitution, it then follows that ∃h′ � h[h′ F k∗ ∈ a]
and thus by the soundness of IA4

∃h′′ � h′ � h[h′′ F k ∈ a]. (7.30)

From (7.29) and (7.30), the result follows.

Lemma 7.2.46 [Collection] V ∗ |=F ∀x[∀y ∈ x∃zA(y, z)→ ∃u(S(u) ∧ ∀y ∈
x∃z ∈ uA(y, z))].

Proof. We show this via Collection in the background theory. Let a ∈ V ∗
and e ∈ E be arbitrary such that e F ∀y[y ∈ a→ ∃zA(y, z)], i.e.,

∀b ∈ V ∗∀n � e∃n′ � n[n′ F (b ∈ a→ ∃zA(b, z))]. (7.31)

It suffices to prove that there exists D ∈ S∗ such that

e F ∀y ∈ a∃z ∈ DA(y, z).

Define
a ≡ {(r, (l, b)) : r, l ∈ E ∧ r � l, e ∧ (l, b) ∈ a}.

By the Pairing axiom and Separation, a is a set. Unravelling (7.31), one has
∀x ∈ a∃zη(x, z), where η(x, z) ≡

∃l, r, p ∈ E∃b, c ∈ V ∗[x = (r, (l, b)) ∧ z = (p, c) ∧ p � r ∧ p F A(b, c)].

By Collection in the background theory, there exists a set C such that

∀x ∈ a∃z ∈ Cη(x, z). (7.32)
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Now define
D = C ∩ (E× V ∗).

Since D ⊆ E × V ∗, by Separation and Claim 3.3.6, D ∈ S∗. Now we want
to show that

e F ∀y[y ∈ a→ ∃z ∈ DA(y, z)].

Let b ∈ V ∗ be arbitrary. It suffices to prove that e F b ∈ a → ∃z ∈
DA(b, z). Let n ∈ E be arbitrary such that n � e and n F b ∈ a. Then by
the definition it follows that (n, (t, d)) ∈ a and n F b = d for some t � n
and some d ∈ V ∗. Hence by (7.32) and Substitution,

∃c ∈ V ∗∃p � n∃p′ � p[(p, c) ∈ D∧p′ F A(b, c)]

and thus p′ F [c ∈ D∧A(b, c)], i.e.,

e F ∀y[y ∈ a→ ∃z(z ∈ D∧A(y, z))].

Theorem 7.2.47 [Soundness Theorem]

IZFN ` ϕ =⇒ IZFN ` (V ∗ |=F ϕ),

for all formulae ϕ ∈ L(V ∗).

Proof. This follows immediately from the above lemmas.

In conclusion, we have invented a version of a forcing interpretation
to interpret Heyting arithmetic, CZFN and IZFN . These results play an
important role in the inferences of our conservativity results in Chapter 8.



Chapter 8

Conservativity results

In this chapter, we present the main derivations of our conservativity results.
In Section 8.1, we prove that arithmetical formulae are absolute with respect
to our forcing interpretation and then in Section 8.2 we construct an internal
oracle which is a partial function from N and N. In Section 8.3 we prove that,
by our forcing interpretation, arithmetical formulae are absolute with respect
to our relativized realizability. With these and the results from Chapter 6
and Chapter 7, we present several conservativity results in Section 8.4.

Let C be a collection of closed formulae. For any theory T and any axiom
AX, if T + AX ` ϕ implies T ` ϕ for all ϕ ∈ C, then we say T + AX is
conservative over T with respect to C. In this chapter we will show for several
axioms AX that when T is IZFN or CZFN , then T + AX is conservative
over T with respect to all arithmetical formulae.

To begin with, we show that forcing is absolute with respect to arith-
metical formulae. In a second step we show that relativized realizability is
generically self-realizing.

8.1 Absoluteness of forcing for arithmetical for-
mulae

Let us single out the arithmetical formulae in the language of set theory.
This collection will be denoted by Form#. It is the smallest collection of
formulae containing the atoms of the form R(t1, t2, ..., tk) with R being a
symbol of a k-ary primitive recursive relation, closed under ∧,∨,¬,→ and
quantifiers ∀n and ∃n (i.e., if ϕ(x) ∈ Form#, then ∃x(N(x) ∧ ϕ(x)) ∈
Form# and ∀x(N(x)→ ϕ(x)) ∈ Form#).

141



8.1. ABSOLUTENESS OF FORCING FOR ARITHMETICAL
FORMULAE 142

Lemma 8.1.1 [Forcing Absoluteness] (CZFN ) Let θ be any arithmetical
formula whose free variables are among x1, . . . , xn. Then for all h ∈ E,

N(x1) ∧N(x2)... ∧N(xn)→
[(h F θ(x1, x2, ..., xn))↔ θ(x1, x2, ..., xn)].

Proof. We will show this by induction on the complexity of θ. If θ is an
atomic formula, the result follows immediately from the definition. If θ is
a compound formula involving logical connectives ∧ and ∨, then the result
also follows immediately from the inductive hypotheses and the definitions.
The remaining logical connectives, we inspect one by one:
♦ θ(x1, x2, ..., xn) ≡ η(x1, x2, ..., xn) → δ(x1, x2, ..., xn) : Let h ∈ E

be arbitrary such that h F η(x1, x2, ..., xn) → δ(x1, x2, ..., xn). Assume
η(x1, x2, ..., xn). By the inductive hypothesis h F η(x1, x2, ..., xn) and thus
∃h′ � h[h′ F δ(x1, x2, ..., xn)]. Again, by the inductive hypothesis, the re-
sult δ(x1, x2, ..., xn) follows. On the other hand, assume η(x1, x2, ..., xn) →
δ(x1, x2, ..., xn). Let q ∈ E be arbitrary such that q � h and q F η(x1, x2, ..., xn).
As a result of the inductive hypothesis, η(x1, x2, ..., xn) and thus δ(x1, x2, ..., xn)
and q F δ(x1, x2, ..., xn).
♦ θ(x1, x2, ..., xn) ≡ ¬η(x1, x2, ..., xn) : Let h ∈ E be arbitrary such that

h F ¬η(x1, x2, ..., xn), i.e., by the definition ∀q � h¬[q F η(x1, x2, ..., xn)],
in particular, ¬[h F η(x1, x2, ..., xn)], i.e., by the inductive hypothesis,
¬η(x1, x2, ..., xn). On the other hand, assume ¬η(x1, x2, ..., xn). Assume
that there exists q ∈ E such that q F η(x1, x2, ..., xn). From the assump-
tion and the inductive hypothesis, η(x1, x2, ..., xn) and this contradicts our
assumption.
♦ θ(x1, x2, ..., xn) ≡ ∃x[N(x) ∧ η(x, x1, x2, ..., xn)] : Let h ∈ E be arbi-

trary such that h F ∃x[N(x) ∧ η(x, x1, x2, ..., xn)]. By the definition, ∃a ∈
V ∗[h F (N(a)∧η(a, x1, x2, ..., xn))], i.e., by the inductive hypothesis N(a)∧
η(a, x1, x2, ..., xn). On the other hand, assume ∃x[N(x)∧η(x, x1, x2, ..., xn)].
Then by the inductive hypothesis, it follows immediately that h F ∃x[N(x)∧
η(x, x1, x2, ..., xn)].
♦ θ(x1, x2, ..., xn) ≡ ∀x[N(x) → η(x, x1, x2, ..., xn)] : Let h ∈ E be ar-

bitrary such that h F ∀x[N(x) → η(x, x1, x2, ..., xn)], i.e., ∀a ∈ V ∗[h F
(N(a) → η(a, x1, x2, ..., xn))], i.e., ∀n ∈ N∃h′ � h[h′ F η(n, x1, x2, ..., xn)],
i.e., by the inductive hypothesis ∀x[N(x) → η(x, x1, x2, ..., xn)]. On the
other hand, assume ∀x(N(x) → η(x, x1, x2, ..., xn)). Let a ∈ V ∗ be ar-
bitrary. Let e ∈ E be arbitrary such that e � h and e F N(a), i.e.,
N(a). By the assumption, it then follows that η(a, x1, x2, ..., xn) and thus
by the inductive hypothesis e F η(a, x1, x2, ..., xn), i.e., by the definition
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h F ∀x[N(x)→ η(x, x1, x2, ..., xn)].

8.2 Forcing models for CZFNA

Recall that CZFNA is the formal system CZFN with an extra set constant
A and corresponding axiom (cf. Subsection 2.2.5) PF (A,N,N) (i.e., “A is
a partial function from N to N”):

∀x ∈ A∃m∃n(x = (n,m)) ∧ ∀x∀y∀z[(x, y) ∈ A ∧ (x, z) ∈ A→ y = z].

In the Soundness Theorem 7.2.42, we have already shown that CZFN is
sound with respect to forcing, i.e. using the definitions in Section 7.1. To
extend this to CZFNA we need to assign a meaning to the constant A in
every forcing universe V ∗.

Recall that {a, b}F ≡ {(0, a), (0, b)} and (a, b)F = {(0, {a, a}F ), (0, {a, b}F )}.
We will interpret A via the following set:

Definition 8.2.1 A∗F ≡ {(f, (m,n)F ) : f ∈ E ∧m,n ∈ N ∧ f(m) = n}.

Observe that A∗F is a set and, by Claim 3.3.6, A∗F ∈ S∗. Let ϕ(A) be any
any formula that contains A as a constant. Forcing for formulae containing
A is defined as follows:

p F ϕ(A) :⇔ p F ϕ[A/A∗F ]. (8.1)

Claim 8.2.2 ∀f ∈ E∀m,n ∈ N[f(m) = n↔ f F (m,n)F ∈ A∗F ].

Proof. Let f ∈ E and m,n ∈ N such that f(m) = n. From the definition
and the soundness of IA1, it follows that f F (m,n)F ∈ A∗F . On the other
hand, assume f F (m,n)F ∈ A∗F . By the definition,

∃g � f∃(u, v)F ∈ V ∗[(g, (u, v)F ) ∈ A∗F ∧ f F (m,n)F = (u, v)F ].

By Corollary 7.2.32, the soundness of CZFN and the definition, it then
follows that

g(u) = v ∧m = u ∧ n = v.

Since g � f , i.e., g ⊆ f ,

f(m) = f(u) = g(u) = v = n.
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Lemma 8.2.3 (CZFN ) 0 F PF (A∗F , N,N).

Proof. It suffices to prove that

0 F ∀a ∈ A∗F∃b∃c[N(b) ∧N(c) ∧ a = (b, c)F ], (8.2)

and
0 F ∀x∀y∀z[(x, y)F ∈ A∗F ∧ (x, z)F ∈ A∗F → y = z]. (8.3)

Firstly, let us prove (8.2). Let e ∈ E and d ∈ V ∗ be arbitrary such that
e F d ∈ A∗F . Then by the definition it follows that

∃k � e∃(u, v)F ∈ V ∗[(k, (u, v)F ) ∈ A∗F ∧ e F d = (u, v)F ].

Secondly, let us show (8.3). Let a, b, c ∈ V ∗ and h ∈ E be arbitrary such
that

h F [(a, b)F ∈ A∗F ∧ (a, c)F ∈ A∗F ]. (8.4)

Then, by Lemma 8.2.2, h(a) = b = c.

Theorem 8.2.4 [Soundness Theorem] For any closed formula ϕ(A) of the
language of CZFNA,

CZFNA ` ϕ(A) =⇒ CZFN ` [V ∗ |=F ϕ(A∗F )].

Proof. This follows from Lemma 8.2.3 and Soundness Theorem 7.2.42.

8.3 Generic self-realizability

We say that a sentence θ is generically self-realizing (or internally self-
realizing) with respect to a notion of forcing, if

V ∗ |=F [θ ↔ ∃e e R θ)],

where realizability means that the oracle A is to be interpreted as A∗F .
In this section we will show that for every arithmetical sentence θ, there

is a notion of forcing such that θ is generically self-realizing. This can be
shown by induction over the complexity of the arithmetical formulae.

In the following we will assume that we have a primitive recursive in-
jective pairing function  and define tuple coding 〈n1, . . . , nr〉 of tuples of
natural numbers n1, . . . , nr for r ≥ 2 recursively by 〈n1, n2〉 = (n1, n2) and
〈n1, . . . , nr+1〉 = (〈n1, . . . , nr〉, nr+1) for r ≥ 2.

We will assume that we have a way of assigning Gödel numbers to for-
mulae of set theory. For a formula ϑ we let pϑq denote its Gödel number.
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Lemma 8.3.1 Fix an arithmetical sentence θ. Then there is a set of forcing
conditions P∗ ⊆ P (definable in CZFN ) such that

CZFN ` ∀e ∈ N ∀p ∈ P∗ ∃q ∈ P∗ [q � p ∧ q F [(e R θ)→ θ] ,

where we force with the set P∗ and the realizability inside the forcing uni-
verse, henceforth called generic realizability, means again that the oracle
constant A is to be interpreted as A∗F .

Proof. Let V ar = {v0, . . . , vr} be the variables occurring in θ. For an
assignment s : V ar → N we denote by 〈s〉 the number 〈s(v0), . . . , s(vr)〉. If
u ∈ V ar and n ∈ N we denote by s(u|n) the assignment τ : V ar → N with
τ(v) = s(v) whenever v ∈ V ar is a variable different from u and τ(v) = n if
v is u.

If ϕ is a subformula of θ and s : V ar → N we use ϕ[s] to denote the
statement resulting from ϕ by interpreting every free occurrence of vi in ϕ
by the number s(vi).

We use the abbreviations ∀v ∈ N(. . .) and ∃v ∈ N(. . .) for ∀v(N(v) →
. . .) and ∃v(N(v)∧. . .), respectively. The set P∗ consists of all finite functions
f ∈ P such that for all subformulae ψ, ϑ and ∃v ∈ N χ of θ (including θ as
a subformula of itself) and all assignments s : V ar → N we have with
m0 := 〈p∃v ∈ N χq, 〈s〉〉 and m1 := 〈pψ ∨ ϑq, 〈s〉〉 that

(∃v ∈ N χ)[s] ∧ f(m0) ↓ → χ[s(v|f(m0))] (8.5)

(ψ[s] ∨ ϑ[s]) ∧ f(m1) ↓ → (f(m1) = 0 ∧ ψ[s]) ∨ (8.6)

(f(m1) = 1 ∧ ϑ[s]) .

Note that the collection of functions s : V ar → N forms a set in our back-
ground theory and that there are only finitely many subformulae of θ. The
conditions on f spelled out in (8.5) and (8.6) are expressed via bounded
formulae. Thus by bounded separation P∗ is a set in our background theory.

Next we define for each subformula ϕ of θ a number Rϕ such that the
following statements are provable in CZFN : for all s : V ar → N,

∀p ∈ P∗ ∃q ∈ P∗(q � p ∧ q F (ϕ[s]→ {Rϕ}A(〈s〉) R ϕ[s])) (8.7)

∀p ∈ P∗ ∃q ∈ P∗[q � p ∧ q F ((∃e e R ϕ[s])→ ϕ[s])] . (8.8)

The numbers Rϕ are defined by induction on the buildup of the subfor-
mula ϕ of θ:

(D0) For atomic ϕ let Rϕ be an index of the identically zero function.
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(D1) Choose Rη∧δ such that {Rη∧δ}A(n) := 〈{Rη}A(n), {Rδ}A(n)〉.
(D2) Choose Rη→δ such that {Rη→δ}A(n) := Λt.({Rδ}A(n)).

(D3) Choose R∀v∈N η such that

{R∀v∈N η}A(〈s〉) = Λe.{Rη}A(〈s(v|e)〉).

(D4) Choose Rη∨ϑ such that

{Rη∨ϑ}A(〈s〉) =

{
〈0, {Rη}A(〈s〉)〉 if A(〈pη ∨ ϑq, 〈s〉〉) = 0
〈1, {Rϑ}A(〈s〉)〉 if A(〈pη ∨ ϑq, 〈s〉〉) = 1 .

(D5) Choose R∃v∈N χ such that

{R∃v∈N χ}A(〈s〉) = 〈ms,χ,v, {Rχ}A(〈s(v|ms,χ,v)〉)〉 ,

where ms,χ,v := A(〈p∃v ∈ N χq, 〈s〉〉).
After this definition, we can prove (8.7) and (8.8) by a simultaneous

induction on the buildup of ϕ. If ϕ is an atom, both are obvious.

Case 1: Let ϕ be η ∧ δ. To show (8.7), let h ∈ P∗ be arbitrary such that
h F η[s] ∧ δ[s]. By the definition and inductive hypotheses, it follows that

∃h′ � h (h′ F {Rη}A(〈s〉) R η[s]),

∃h′′ � h′ (h′′ F {Rδ}A(〈s〉) R δ[s]).

Hence by the definition of R, (D1) and the Monotonicity Lemma, it
follows that there exists h′′′ � h′′ such that

h′′′ F ({Rη∧δ}A(〈s〉) R (η ∧ δ)[s]) .

To show (8.8), let p ∈ P∗ be arbitrary. By the inductive hypotheses, we can
successively pick k, q ∈ P∗ such that q � k � p and

k F ((∃e e R η[s])→ η[s]) , (8.9)

q F ((∃e e R δ[s])→ δ[s]) . (8.10)

Now let k′ � q be such that

k′ F (∃e e R η[s] ∧ δ[s]) .

Then k′ F (∃e e R η[s]) and k′ F (∃e e R δ[s]). By (8.9), we find
k′′ � k′ such k′′ F η[s]. Since by monotonicity we also have k′′ F (∃e e R
δ[s]) and k′′ F ((∃e e R δ[s]) → δ[s]), there exists k′′′ � k′′ such that
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k′′′ F δ[s]. Hence k′′′ F (η ∧ δ)[s]. The above chain of arguments shows
that q F ((∃e e R ϕ[s])→ ϕ[s]), confirming (8.8).

Case 2: Let ϕ be of the form η → δ. Let p ∈ P∗ be arbitrary. To show (8.7),
let q � p and suppose that q F ϕ[s]. Let h � q such that h F (t R η[s])
for some t ∈ N. Then, by the induction hypothesis for (8.8) applied to η,
there exists h′′ � h such that h′′ F η[s]. Hence there exists h′′′ � h′′ such
that h′′′ F δ[s]. By the induction hypothesis for (8.7) applied to δ, we find
h∗ � h′′′ such that h∗ F ({Rδ}A(〈s〉) R δ[s]). As a result, for all t ∈ N,

q F (t R η[s]→ {Rδ}A(〈s〉) R δ[s]) .

Therefore we have q F ({Rη→δ}A(〈s〉) R ϕ[s]), and consequently

p F (ϕ[s]→ {Rη→δ}A(〈s〉) R ϕ[s]) .

To show (8.8), let h � p satisfy h F (V ∗ |=R ϕ[s]). Suppose h′ � h
and h′ F η[s]. Then, by the induction hypothesis for (8.7) applied to η, we
have h′′ F (V ∗ |=R η[s]) for some h′′ � h′, and thus h′′′ F (V ∗ |=R δ[s])
for some h′′′ � h′′ as h F (V ∗ |=R ϕ[s]). Consequently, by the induction
hypothesis for (8.8) applied to δ, there exists h∗ � h′′′ such that h∗ F δ[s].
As a result, we have shown that h F ϕ[s]. So the upshot is that p F
((∃e e R ϕ[s])→ ϕ[s]), as required.

Case 3: ϕ is of the form ¬ψ. This follows immediately from the fact that
¬ψ is logically equivalent to ψ → 0̄ = 1̄ and the result of previous case.

Case 4: ϕ is of the form ∀v ∈ N η. Let p ∈ P∗ be arbitrary. To show (8.7),
let h ∈ P∗ be arbitrary such that h � p and

h F ∀v(N(v)→ η)[s]. (8.11)

Then, for all h′ � h and n ∈ N there exists h′′ � h′ such that h′′ F η[s(v|n)].
Hence, by the inductive assumption for (8.7) applied to η, for all n ∈ N there
exists h′′′ � h′′ such that

h′′′ F {Rη}A(〈s(v|n)〉) R η[s(v|n)] .

The latter yields

h F ∀n ∈ N {Rη}A(〈s(v|n)〉) R η[s(v|n)]

and hence h F {R∀v∈N η}A R (∀v ∈ N η)[s], by definition of {R∀v∈N η}A.
As a result,

p F (∀v(N(v)→ η)[s]→ {R∀v∈N η}A R (∀v ∈ N η)[s]) .
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To verify (8.8) let h � p and h F ∃e e R (∀v ∈ N η)[s]. This implies that
for all n ∈ N there exists h′ � h such that

h′ F (∃e e R η[s(v|n)])

so that by the inductive hypothesis for (8.7) applied to η, there exists h′′ � h′
satisfying h′′ F η[s(v|n)]. Therefore we obtain

h F (∀v ∈ N η)[s] ,

and thus p F ((∃e e R (∀v ∈ N η)[s])→ (∀v ∈ N η)[s]).

Case 5: Let ϕ be of the form η ∨ δ. Let p ∈ P∗. To prove (8.7) let f ∈ P∗,
f � p, and f F ϕ[s]. By the Forcing Absoluteness Lemma 8.1.1, we also
know that ϕ[s]. We have to distinguish cases as to whether f is defined at
m1 := 〈pϕq, (〈s〉)〉 or not.

Let us first assume that f(m1) ↓. Then, since f ∈ P∗, f satisfies (8.6),
and thus f(m1) = 0 ∧ η[s] or f(m1) = 1 ∧ δ[s]. In the first case, f F η[s]
(by Lemma 8.1.1) and also f F A(m1) = 0 using Claim 8.2.2 and Lemma
8.2.3. By the induction hypothesis for (8.7) applied to η, there exists f ′ � f
such that f ′ F ({Rη}A(〈s〉) R η[s]). Hence, by definition of {Rϕ}A,
f ′ F ({Rϕ}A(〈s〉) R ϕ[s]). In the second case we proceed similarly and
also find f ′ � f such that f ′ F {Rϕ}A(〈s〉) R ϕ[s]. Now let us look at
the case when f(m1) is not defined. If η[s] holds we can easily extend f to a
function f∗ ∈ P∗ such that f∗(m1) = 0. Likewise, if δ[s] holds we can easily
extend f to a function f∗∗ ∈ P∗ such that f∗(m1) = 1. Subsequently we can
proceed as before, so that we find f ′ � f such that f ′ F ({Rϕ}A R ϕ[s]).

The upshot of the foregoing is that

p F (ϕ[s]→ {Rϕ}A(〈s〉) R ϕ[s]) .

To prove (8.8), let f � p and f F ∃e e R ϕ[s]. Then f F ∃e e R η[s] or
f F ∃e e R δ[s], and thus the induction hypothesis for (8.8) supplies us
with an f ′′ � f such that f ′′ F ϕ[s]. Hence

p F ((∃e e R ϕ[s])→ ϕ[s]) .

Case 6: Let ϕ be of the form ∃v ∈ Nη. Let p ∈ P∗. To prove (8.7) let
f ∈ P∗, f � p, and f F ϕ[s]. By the Forcing Absoluteness Lemma 8.1.1,
we know that ϕ[s] is true, and thus there exists n ∈ N such that η[s(v|n)]
holds.

If f is defined at m0 := 〈pϕq, 〈s〉〉 we also know, since f satisfies condition
(8.5), that η[s(v|f(m0))] holds and thus f F η[s(v|f(m0))] by absoluteness.
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If f is not defined at m0 we can extend f to a function f ′ by letting f ′(m0) =
n for some n ∈ N satisfying η[s(v|n)]. At any rate, we find an extension f ′

of f in P∗ such that

f ′(m0) ↓ ∧ f ′ F η[s(v|f(m0))] .

By the induction hypothesis for (8.7) applied to η, there exists f ′′ � f ′ in
P∗ such that

f ′′ F ({Rη}A〈s(v|f(m0))〉 R η[s(v|f(m0))]) .

As f ′′ F A(m0) = f ′′(m0), the latter implies that f ′′ F ({Rϕ}A(〈s〉) R
ϕ[s]), and hence

p F (ϕ[s]→ (∃e e R ϕ[s])) .

To show (8.8), assume f � p and f F (∃e e R ϕ[s]). Then f F (e R
η[s(v|n)]) for some e, n ∈ N and hence by the inductive assumption for
(8.8) applied to η, there exists f ′ � f such that f ′ F η[s(v|n)], so that
f ′ F ϕ[s]. As a result,

p F ((∃e e R ϕ[s])→ ϕ[s]) .

8.4 Conservativity results

Lemma 8.4.1 Let θ be an arithmetical sentence. Then

CZFN + ACNN + UP + UZ ` θ

implies
CZFNA ` ∃e e R θ ,

and
IZFN + ACNN + UP + UZ ` θ

implies
IZFNA ` ∃e e R θ .

Proof. This follows by combining Lemmas 6.2.49, 6.2.50, 6.2.51, and the
Soundness Theorem 6.2.43.
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Theorem 8.4.2 Let θ be an arithmetical sentence. If

CZFN + ACNN + UP + UZ ` θ,

then
CZFN ` θ .

If
IZFN + ACNN + UP + UZ ` θ,

then
IZFN ` θ .

Proof. By the previous Lemma 8.4.1, from CZFN +ACNN +UP+UZ ` θ
we infer that CZFNA ` ∃e e R θ. Letting P∗ be the set of forcing conditions
associated with θ as defined in Lemma 8.3.1, we obtain from the Soundness
Theorem 8.2.4 that

CZFN ` ∃p ∈ P∗ p F (∃e e R θ) .

It follows thus from Lemma 8.3.1 that

CZFN ` ∃p ∈ P∗ p F θ ,

and hence, by the Forcing Absoluteness Lemma 8.1.1,

CZFN ` θ .

The proof for IZFN is similar.

Corollary 8.4.3 Let T be CZFN or IZFN . Let MP be Markov’s principle.
For any arithmetical sentence θ, if

T + ACNN + UP + UZ + MP ` θ ,

then
T + MP ` θ .

Proof. From Lemma 6.2.55 we know that MP is realizable if assumed in
the background universe. Hence the results follow by the same inference
steps as in the proofs of Lemma 8.4.1 and Theorem 8.4.2.
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Corollary 8.4.4 For any arithmetical sentence θ, if

T + UP + UZ ` θ ,

then
T ` θ ,

where T is any of the theories CZFN or IZFN extended by any combination
of the following axioms: {DC,RDC,PAX ,MP}.

Proof. From Theorem 6.2.48 we know that IZFN is sound with respect to
relativized realizability semantics. We also know that UP,UZ are realiz-
able, and, moreover, that any of the axioms DC,RDC,PAX and MP is
realizable if assumed in the background universe. Hence the results follow
by the inference steps employed in the proof of Lemma 8.4.2.

If one combines Lifschitz’ style semantics (i.e., L) with these conserva-
tivity results, we get the following independence result:

Corollary 8.4.5

IZFN + ACNN + UP + UZ 0 CT0!.

Proof. Assume

IZFN + ACNN + UP + UZ ` CT0!.

Since ACNN + CT0! ` CT0 and thus

IZFN + ACNN + UP + UZ + CT0! ` CT0,

i.e., by the assumption, it follows that

IZFN + ACNN + UP + UZ ` CTab
0 .

By Theorem 8.4.2 IZFN ` CTab
0 , but this contradicts the fact that all

axioms of IZFN are Lifschitz realizable while CTab
0 is not.

As pointed out by Michael Rathjen, we could have actually strengthened
the foregoing conservativity results by including a choice principle stronger
than ACNN in the statements of Lemma 8.4.1, Theorem 8.4.2, and Corollary

8.4.4, namely AC
N NN

. Here AC
N NN

consists of the formulae

∀n∃f ∈ NN ϕ(n, f) → ∃F : N → NN ∀nϕ(n, F (n)) ,
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with ϕ arbitrary. The reason for this is that the proof of Lemma 6.2.49
shows more than is stated in the lemma. The proof actually proves that a
relativized version of Church’s thesis is realized, i.e., the schema

(CTA) ∀n∃mϕ(n,m) → ∃e ∈ N ∀nϕ(n, {e}A(n))

holds in the realizability structure. The combination of ACNN and CTA

implies AC
N NN

. As a result, we have the following corollaries:

Corollary 8.4.6 Let θ be an arithmetical sentence. Let T be any of the
theories CZFN , CZFN + MP, IZFN , or IZFN + MP. Then

T + AC
N NN

+ UP + UZ ` θ
implies

T ` ∃e e R θ .

Corollary 8.4.7 Let θ be an arithmetical sentence. Let T be any of the
theories CZFN , CZFN + MP, IZFN , or IZFN + MP. If

T + AC
N NN

+ UP + UZ ` θ,
then

T ` θ .

In conclusion, we have proved that internally (by the forcing interpre-
tation) arithmetical formulae are absolute with respect to our relativized
realizability. Moreover, we have shown that arithmetical formulae are abso-
lute with respect to the forcing interpretation. These results and the results
from Chapter 6 and Chapter 7 have led to several interesting conservativity
results.

8.5 Conclusion and future work

In this thesis, we have successfully extended independence results and con-
servativity results from Heyting arithmetic to various intuitionistic set the-
ories. In the future works, we might try to come up with a version that uses
only IZFN as a background theory for the independence results. Moreover,
we will try to include other axioms, for example, the Regular Extension
Axiom, into our system. Another question is whether it is possible to ex-
tend our conservativity results regarding arithmetical formula to other sets
of formulae.
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Abstract

A variant of realizability for Heyting arithmetic which validates Church’s thesis
with uniqueness condition, but not the general form of Church’s thesis, was intro-
duced by V. Lifschitz in [11]. A Lifschitz counterpart to Kleene’s realizability for
functions (in Baire space) was developed by van Oosten [15]. In that paper he also
extended Lifschitz’ realizability to second order arithmetic. The objective here is to
extend Lifschitz’ realizability to intuitionistic Zermelo-Fraenkel set theory, IZF. The
machinery would also work for extensions of IZF with large set axioms. In addition
to separating Church’s thesis with uniqueness condition from its general form in intu-
itionistic set theory, we also obtain several interesting corollaries. The interpretation
repudiates a weak form of countable choice, ACω,ω, asserting that a countable family
of inhabited sets of natural numbers has a choice function. ACω,ω is validated by
ordinary Kleene realizability and is of course provable in ZF. On the other hand, a
pivotal consequence of ACω,ω, namely that the sets of Cauchy reals and Dedekind
reals are isomorphic, remains valid in this interpretation.

MSC:03F50, 03F35
Keywords: Intuitionistic set theory, Lifschitz’ realizability, Church’s thesis, count-

able axiom of choice

1 Introduction

In the constructive context, Church’s thesis refers to the viewpoint that quantifier com-
binations ∀x∃y can be replaced by recursive functions getting y from x. Dragalin pointed
out that there are two formal versions of Church’s thesis one could consider adding to
Heyting arithmetic HA:

CT0 ∀x∃y A(x, y)→ ∃z∀x [z • x ↓ ∧A(x, z • x)]

CT0! ∀x∃!y A(x, y)→ ∃z∀x [z • x ↓ ∧A(x, z • x)]
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(we write z•x for {z}(x)), and he posed the question whether the latter version is actually
weaker than the former. The question was answered affirmatively in 1979 by Vladimir Lif-
schitz [11]. He introduced a modification of Kleene’s realizability that validates CT0! but
falsifies instances of CT0. A Lifschitz counterpart to Kleene’s realizability for functions (in
Baire space) was developed by van Oosten [15]. In that paper he also extended Lifschitz’
realizability to second order arithmetic. The objective here is to extend Lifschitz’ realiz-
ability to full intuitionistic Zermelo-Fraenkel set theory, IZF. In addition to separating
Church’s thesis with uniqueness condition from its general form in intuitionistic set theory,
we also obtain several interesting corollaries. The interpretation repudiates a weak form
of countable choice, ACω,ω, asserting that a countable family of inhabited sets of natural
numbers has a choice function. ACω,ω is validated by ordinary Kleene realizability and is
of course provable in ZF.

Definition: 1.1 Before we can describe the pivotal features of Lifschitz’ notion of realiz-
ability we need to introduce some terminology. Variables n,m, l, i, j, k, l, e, d, f, g, p, q range
over numbers. We assume a bijective primitive recursive pairing function  : N × N → N
and inverses 1 and 2. The symbol • denotes partial recursive application, T is Kleene’s
predicate (so n • k ↓ iff ∃mT(n, k,m), read n • k is defined), and U the result-extracting
function. e • k ' l stands for ∃mT(e, k,m) and l = U(µm.T(n, k,m)), where µ is the
minimalization operator. If X is a set we write e•k ∈ X instead of ∃ l (e•k ' l ∧ l ∈ X).

If f is an n+ 1-ary partial recursive function, we use λx.f(x, k1, . . . , kn) to denote an
index (usually provided by the S-m-n theorem) of the function m 7→ f(m, k1, . . . , kn).

The main idea behind separating CT0 from CT0! is to find a property P of pairs of num-
bers so that if there is a unique n such that P (e, n) holds then there is an effective procedure
to find n from e, while in general there is no such procedure if {m | P (e,m)} contains
more than one element. Lifschitz singled out the property n ≤ 2e ∧ ∀m¬T(1e, n,m).

Lemma: 1.2 Letting

De := {n ≤ 2e | ∀m¬T(1e, n,m)} (1)

there is no code g such that, for all e,

De 6= ∅ ⇒ g • e ∈ De. (2)

Proof: This can be seen as follows. LetWf andWh be two disjoint, recursively inseparable
r.e. sets. (2) would yield the existence of a recursive function F such that

∀n[F (n) • 0 ' f • n ∧ F (n) • 1 ' h • n].

Then always D(F (x),1) 6= ∅, so g • (F (x), 1) ∈ D(F (x),1) and g would provide a recursive
separation of Wf and Wh. If, on the other hand, we know that De is a singleton, then we
can try to compute (1e) • 0, (1e) • 1, . . . , (1e) • (2e) simultaneously and as soon as the
(2e) − 1 many (guaranteed) successes have been recorded we know that the remaining
one failure is the unique element of De. 2
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1.1 Realizability for set theories

Realizability semantics for intuitionistic theories were first proposed by Kleene in 1945
[9]. Inspired by Kreisel’s and Troelstra’s [10] definition of realizability for higher order
Heyting arithmetic, realizability was first applied to systems of set theory by Myhill [14]
and Friedman [6]. More recently, realizability models of set theory were investigated by
Beeson [2, 3] (for non-extensional set theories) and McCarty [12] (directly for extensional
set theories). Rathjen [18] adapted realizability to the context of constructive Zermelo-
Fraenkel set theory, CZF, and developed hybrids [19, 20] which combine realizability
for extensional set theory with truth in order to prove metamathematical properties of
intuitionistic set theories such as the disjunction and the numerical existence property.

The authors of the present paper had problems making up their mind as to whether
to present IZF as a pure system of set theory or to opt for a language with urelements as
it is done in Friedman’s and Beeson’s work (cf. [7, 3]). Both approaches have advantages
and disadvantages. The disadvantage of pure set theory is that the natural numbers
have to be encoded as finite ordinals, rendering the presentation of the basic parts of
Lifschitz’ realizability for atomic formulas, which are trivial in the arithmetic context,
very cumbersome. The disadvantage of having a sorted language with numbers and sets is
that realizability for those theories has never been worked out properly in the extensional
cases. In the end we went for the latter choice.

1.2 IZF with urelements

We will formalize IZF in a similar manner as in [3, chap.viii] by having two unary predi-
cates for natural numbers and for sets. We shall however eschew terms other than variables
and constants by avoiding symbols for primitive recursive functions. Instead we will have
symbols for primitive recursive relations. This makes the axiomatization of the arithmetic
part a bit awkward (albeit still a straightforward affair) but relieves us from the burden
of having to deal with complex terms in the realizability interpretation.

1.3 Logic Language

IZF is based on first-order intuitionistic predicate calculus with equality =. The language
consists of the following. A binary predicate ∈; unary predicates N and S (for numbers
and sets); for each natural number n a constant n̄ (but we omit the bar when n = 0);
a 2-place relation symbol SUC (for the successor relation), two 3-place relation symbols
ADD,MULT (for the graphs of addition and multiplication), and further relation symbols
for all primitive recursive relations.

To alleviate the burden of syntax we shall use variables n,m, k, l, i, j to range over nat-
ural numbers, so ∃n . . . and ∀n . . . will be abbreviations for ∃x(N(x) ∧ . . .) and ∀x(N(x)→
. . .), respectively. ∃ !nA(n) stands for ∃x[N(x) ∧ A(x)] ∧ ∀x∀y[A(x) ∧ A(y) → x = y].
x /∈ y stands for ¬(x ∈ y). x ⊆ y abbreviates ∀z(z ∈ x → z ∈ y). We use ∀x ∈ y . . . and
∃x ∈ y . . . for ∀x(x ∈ y → . . .) and ∃x(x ∈ y ∧ . . .), respectively.

Definition: 1.3 We list the axioms of IZF in groups:
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A. Axioms on Numbers and Sets

1. ∀x¬(N(x) ∧ S(x))

2. ∀x∀y(x ∈ y → S(y))

3. N(n̄) for all natural numbers n.

B. Number-Theoretic Axioms

1. SUC(n̄, n+ 1) for all naturals n.

2. ∀n ∃ !mSUC(n,m)

3. ∀n∀m[SUC(n,m)→ m 6= 0]

4. ∀m [m = 0 ∨ ∃n SUC(n,m)]

5. ∀n∀m∀k (SUC(m,n) ∧ SUC(k, n)→ m = k)

6. ∀n∀m ∃ !kADD(n,m, k)

7. ∀nADD(n, 0, n)

8. ∀n∀k∀m∀l∀i [ADD(n, k,m) ∧ SUC(k, l) ∧ SUC(m, i) → ADD(n, l, i)]

9. ∀n∀m ∃ !kMULT(n,m, k)

10. ∀nMULT(n, 0, 0)

11. ∀n∀k∀m∀l∀i [MULT(n, k,m) ∧ SUC(k, l) ∧ ADD(m,n, i) → MULT(n, l, i)]

12. Defining axioms for all symbols of primitive recursive relations R. These are similar
to the above. We spare the reader the details.

13. A(0) ∧ ∀n∀m[A(n) ∧ SUC(n,m)→ A(m)]→ ∀nA(n)

C. Set-Theoretic Axioms

1. Extensionality. ∀x∀y(S(x) ∧ S(y)→ [∀z(z ∈ x ↔ z ∈ y)→ x = y])

2. Pairing. ∀x∀y(∃u[S(u) ∧ x ∈ u ∧ y ∈ u])

3. Union. ∀x∃u[S(u) ∧ ∀z(z ∈ u ↔ ∃y(y ∈ x ∧ z ∈ y))]

4. Separation. ∀x∃u[S(u) ∧ ∀z(z ∈ u ↔ z ∈ x ∧ A(z))]
(u not free in A(z))

5. Power set. ∀x∃u[S(u) ∧ ∀z(z ∈ u ↔ (S(z) ∧ z ⊆ x))]

6. Infinity. ∃u(S(u) ∧ ∀z[z ∈ u ↔ N(u)]).

7. ∈-induction. ∀x[∀y(y ∈ x→ A(y))→ A(x)]→ ∀xA(x).
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8. Collection. ∀y ∈ x∃z A(x, z)→ ∃u[S(u) ∧ ∀y ∈ x ∃z ∈ uA(y, z)]

Remark 1.4 The theory IZF in [3] comes with the additional axiom ∀x[N(x) ∨ S(x)].
We could have adopted this axiom as well. The reason for not including it is that on the
one hand this axioms does not make the theory stronger but on the other hand it would
force us to define a more complicated realizability structure in which all objects carry a
label which tells one whether it denotes a set or a number. This would have to be done in
a hereditary way and would thus burden us with an extra layer of coding. A proof that
IZF+∀x[N(x)∨S(x)] can be interpreted in IZF using hereditarily labelled sets is sketched
in [3, VIII.1]. Moreover, the same techniques can also be used to interpret IZF in pure
IZF without urelements, IZF0 (cf. [3, VIII.1]). IZF0 has only the binary predicate ∈
(no N, no S and no symbols for primitive recursive relations). In IZF we define the pure
sets as those whose transitive closure contains only sets. Let Pure be the class of pure
sets. To every formula A of IZF0 we assign a formula APure of IZF which is obtained by
relativizing all quantifiers to Pure. Then the exact relationship between the two theories
is that

IZF0 ` A⇔ IZF ` APure.

2 The realizability structure

In what follows we shall be arguing informally in a classical set theory with urelements
where the urlements are the natural numbers (e.g. IZF plus classical logic). The unique
set of natural numbers provided by the Infinity axiom will be denoted by N.

Definition: 2.1 Ordinals are transitive sets whose elements are transitive also. We use
lower case Greek letters to range over ordinals. By recursion on α define

Vset
α =

⋃

β∈α
P(N× (Vset

β ∪ N)). (3)

Vset =
⋃

α

Vset
α . (4)

V(L) = N ∪ Vset (5)

where P(x) denotes the power set of x.

Lemma: 2.2 (i) The hierarchy Vset is cumulative: if α ≤ β then Vset
α ⊆ Vset

β .

(ii) If x ⊆ V(L) and S(x) then x ∈ Vset.

(iii) Every x ∈ Vset is a set, i.e. S(x) holds.

(iv) ∀x ∈ V(L) [N(x) ∨ S(x)].

Proof: (i) is immediate by (3). For (iii) note that if x ∈ Vset then x ∈ P(N× (Vset
β ∪N))

for some β. So the claim follows from our rendering of the power set axiom which ensures
that P(y) consists only of sets. (iv) follows from (iii).
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(ii): If x ⊆ N × V(L) then, using strong collection and (i), there is an α such that
x ⊆ N× Vset

α ∪ N, so x ∈ Vset
α+1, thus x ∈ Vset. For a more detailed proof see [18, Lemma

3.5]. 2

3 Defining Lifschitz’ realizability for set theory

We adopt the conventions and notations from Definition 1.1.

Definition: 3.1 Let a, ai, b ∈ V(L) and e ∈ N. Below R is a symbol for an n-ary primitive
recursive relation. Recall that De = {n ≤ 2e | ∀m¬T(1e, n,m)}.

We define a relation e L B between naturals e and sentences of IZF with parameters
from V(L). ef L B will be an abbreviation for ∃k[e • f ' k ∧ k L B].

e L R(a1, . . . , an) iff a1, . . . , an ∈ N ∧ R(a1, . . . , an)

e L N(a) iff a ∈ N ∧ e = a

e L S(a) iff S(a) (iff a ∈ Vset)

e L a ∈ b iff De 6= ∅ ∧ (∀d ∈ De)∃c [〈1d, c〉 ∈ b ∧ 2d L a = c]

e L a = b iff (a, b ∈ N ∧ a = b) or (De 6= ∅ ∧ S(a) ∧ S(b) ∧
(∀d ∈ De)∀f, c [〈f, c〉 ∈ a → (1d) • f L c ∈ b] ∧
(∀d ∈ De)∀f, c [〈f, c〉 ∈ b → (2d) • f L c ∈ a])

e L A ∧B iff 1e L A ∧ 2e L B
e L A ∨B iff De 6= ∅ ∧ (∀d ∈ De)([1d = 0 ∧ 2d L A] ∨

[1d 6= 0 ∧ 2d L B])

e  ¬A iff (∀f ∈ N) ¬f L A
e L A→ B iff (∀f ∈ N) [f L A → e • f L B]

e L ∀xA iff De 6= ∅ ∧ (∀d ∈ De)(∀c ∈ V(L)) d L A[x/c]

e L ∃xA iff De 6= ∅ ∧ (∀d ∈ De)(∃c ∈ V(L)) d L A[x/c]

V(L) |= B iff (∃e ∈ N) e L B.

Notice that the definitions of e  a ∈ b and e L a = b fall under the scope of definition
by transfinite recursion.

4 Recursion-theoretic preliminaries

Before we can prove the soundness of Lifschitz’ realizability for IZF we need to recall
some recursion-theoretic facts, mainly Lemmata 1–5 from Lifschitz’ paper [11]. Jaap van
Oosten has carried out a detailed analysis of these results by singling out the extra amount
of classical logic one has to add to intuitionistic first-order arithmetic HA to prove them.
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MPpr is Markov’s principle for primitive recursive formulas A:

¬¬∃nA(n)→ ∃nA(n).

BΣ0
2-MP is Markov’s principle for bounded Σ0

2-formulae:

¬¬∃n ≤ m∀k A(n, k, e)→ ∃n ≤ m ∀k A(n, k, e)

for A primitive recursive.

Lemma: 4.1 There is a total recursive function sg such that

HA ` ∀n∀m(m ∈ Dsg(n) ↔ m = n).

Proof: [11, Lemma 2] and [15, Lemma 2.2]. 2

Lemma: 4.2 There is a partial recursive function φ such that

HA + MPpr ` ∀e[∃n∀m(m ∈ De ↔ m = n)→ φ(e) ↓ ∧φ(e) ∈ De].

Proof: [11, Lemma 1] and [15, Lemma 2.3]. 2

Lemma: 4.3 There is a partial recursive function Φ such that HA + MPpr + BΣ0
2-MP

proves that for all e and f whenever (∀g ∈ De) f • g ↓ then Φ(e, f) ↓ and

∀h[h ∈ DΦ(e,f) ↔ (∃g ∈ De)h = f • g].

Proof: [11, Lemma 4] and [15, Lemma 2.4]. 2

Lemma: 4.4 There is a total recursive function un such that HA + MPpr + BΣ0
2-MP

proves that
∀e∀h[h ∈ Dun(e) ↔ (∃g ∈ De)(h ∈ Dg)].

In other words, Dun(e) =
⋃
g∈De

Dg.

Proof: [11, Lemma 3] and [15, Lemma 2.5]. 2

Lemma: 4.5 Let ~x = x1, . . . , xr and ~a = a1, . . . , ar. To each formula A(~x) of IZF (with
all free variables among ~x) we can effectively assign (a code of) a partial recursive function
χA such that, letting IZF′ := IZF + MPpr + BΣ0

2-MP,

IZF′ ` (∀e ∈ N)(∀~a ∈ V(L))[De 6= ∅ ∧ ((∀d ∈ De) d L A(~a))→ χA(e) L A(~a)].
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Proof: This is similar to [11, Lemma 5] and [15, Lemma 2.6]. However, due to the
vastly more complicated setting we are dealing with here we provide a detailed proof. We
use induction on the build-up of A.

If A(~x) is of the form N(xi), define χA(e) := φ(e), where φ is from Lemma 4.2. To see
that this works note that De 6= ∅ and for all (∀d ∈ De) d L N(ai) entails that N(ai) and
De = {ai}, thus φ(e) = ai and φ(e) L N(ai) follow by Lemma 4.2.

If A(~x) is of either form S(xj) or R(~t) let χA(e) := 0.
If A(~x) is of the form xi = xj let χA(e) := un(e), where un stems from Lemma 4.4.

Note that un is a total recursive function. To see that this works assume that De 6= ∅
and for all (∀d ∈ De) d L ai = aj . Now, either ai, aj ∈ N or ai and aj are both sets. In
the former case we then have ai = aj and for any n ∈ N, n L ai = aj , so in particular
un(e) L ai = aj . If both ai and aj are sets, then un(e) L ai = aj holds owing to Lemma
4.4 and the definition of realizability in this case.

Let A(~x) be B(~x) ∧C(~x) and χB and χC be already defined. Let ∗1 and ∗2 be indices
for 1 and 2, respectively. Consider the set DΦ(∗1,e)

= {1n | n ∈ De} with Φ as in
Lemma 4.3. If De is non-empty then so is DΦ(∗1,e)

. If every element of De realizes A(~a)
then every element of DΦ(∗1,e)

realizes B(~a). Hence under these assumptions χB(Φ(∗1, e))
realizes B(~a). Similarly, χC(Φ(∗2, e)) realizes C(~a). Hence the claim follows with χA(e) :=
(χB(Φ(∗1, e)), χC(Φ(∗2, e))).

Let A(~x) be B(~x) → C(~x) and χB and χC be already defined. Let θ be a partial
recursive function such that {θ(m)}(k) ' k • m. Assume that De 6= ∅. Suppose m L
B(~a). Then d • m ↓ and d • m L C(~a) for all d ∈ De. Thus, by Lemma 4.5, we have
DΦ(θ(m),e) = {d•m | d ∈ De}. Moreover, DΦ(θ(m),e) is non-empty and every of its elements
realizes C(~a), hence, by the inductive assumption, χC(Φ(θ(m), e)) realizes C(~a). Thus we
may define χA(e) := λm.χC(Φ(θ(m), e)).

In all the remaining cases χA(e) := un(e) will work owing to Lemma 4.4 and the defi-
nition of realizability in these cases. 2

The next result shows that our definition of realizability for arithmetic formulae coin-
cides with the one given by Lifschitz [11].

Lemma: 4.6 For every formula A(u, ~x) there are partial recursive functions ψ1 and ψ2

such that provably in IZF′ we have for all e ∈ N and ~a ∈ V(L):

(i) e L ∀x[N(x)→ A(x,~a)] → ∀nψ1(e) • n L A(n,~a),

(ii) ∀n e • n L A(n,~a) → ψ2(e) L ∀x[N(x)→ A(x,~a)].

(iii) e L ∃x[N(x) ∧ A(x,~a)] ↔ De 6= ∅ ∧ (∀d ∈ De)2d L A(1d,~a).

Proof: (i). Suppose e L ∀x[N(x) → A(x,~a)]. Then De 6= ∅ and for all d ∈ De and
n ∈ N, d • n L A(n,~a). Thus, if we define fn such that fn • d ' d • n, we conclude
with the aid of Lemma 4.3 that for all n ∈ N and h ∈ DΦ(e,fn), h L A(n,~a). Hence, by
Lemma 4.5, (∀n ∈ N)χA(Φ(e, fn)) L A(n,~a). So we can define ψ1 by letting ψ1(e) :=
λn.χA(Φ(e, fn)).
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(ii). Suppose ∀n e • n L A(n,~a). Then e L N(x) → A(x,~a) for all x ∈ V(L), hence
sg(e) L ∀x[N(x)→ A(x,~a)], so ψ2(n) := sg(n) will work.

(iii). Suppose e L ∃x[N(x) ∧ A(x,~a)]. Then De 6= ∅ and for all d ∈ De there exists
c ∈ V(L) such that 1d L N(c) and 2d L A(c,~a). But 1d L N(c) entails that c = 1d,
thus 2d L A(1d,~a). The converse is obvious. 2

4.1 The soundness theorem for intuitionistic predicate logic with equal-
ity

Lemma: 4.7 There are ir, is, it, i0, i1 ∈ N such that for all x, y, z ∈ V(L),

1. ir L x = x.

2. is L x = y → y = x.

3. it L (x = y ∧ y = z) → x = z.

4. i0 L (x = y ∧ y ∈ z) → x ∈ z.

5. i1 L (x = y ∧ z ∈ x) → z ∈ y.

6. Moreover, for each formula A(v, u1, . . . , ur) of IZF all of whose free variables are
among v, u1, . . . , ur there exists iA ∈ N such that for all x, y, z1, . . . , zr ∈ V(L),

iA L x = y ∧ A(x, ~z) → A(y, ~z),

where ~z = z1, . . . , zr.

Proof: (1) Note that n L x = x holds for all n, x ∈ N. Let x ∈ N and a ∈ Vset
α .

Suppose e • 0 ↓ and e • 0 L b = b holds for all b ∈ N ∪ ⋃β∈α Vset
β . Then we have

(∀〈f, b〉 ∈ a) sg((f, e•0)) L b ∈ a. There is a recursive function ` such that (`(e•0))•f '
sg((f, e • 0)), and hence, by the foregoing,

(∀〈f, b〉 ∈ a) (1d) • f L b ∈ a

with d = (`(e•0), `(e•0)). As a result, sg((`(e•0), `(e•0))) L a = a. By the recursion
theorem there exists an e∗ such that

e∗ • 0 ' sg((`(e∗ • 0), `(e∗ • 0))).

By induction on α it therefore follows that e∗ • 0 L a = a holds for all a ∈ Vset. So we
may put ir := e∗ •0. As ir L n = n (trivially) holds for all n ∈ N, too, we get ir L z = z
for all z ∈ V(L).

(2): It is routine to check that

is := λe.Φ(e, λd.(2d, 1d)) L x = y → y = x,
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with Φ from Lemma 4.3.

(3) and (4): We prove these simultaneously. Let TC(a) denote the transitive closure of
a. We employ (transfinite) induction on the ordering � which is the transitive closure of
the ordering �1 on ordered triples:

〈x, y, z〉�1 〈a, b, c〉 iff (x = a ∧ y = b ∧ z ∈ TC(c)) ∨ (x = a ∧ y ∈ TC(b) ∧ z = c)

∨ (x ∈ TC(a) ∧ y = b ∧ z = c).

�-induction follows from the usual ∈-induction.
Now suppose a, b, c ∈ V(L) and inductively assume that for all 〈x, y, z〉� 〈a, b, c〉,

e# • 0 L (x = y ∧ y = z)→ x = z (6)

e# • 1 L (x = y ∧ y ∈ z)→ x ∈ z. (7)

Suppose e L a = b ∧ b = c. Then 1e L a = b and 2e L b = c. Then either a, b, c ∈ N
and for any n ∈ N we have n L b = c, or a, b, c ∈ Vset

α . So let’s assume a, b, c ∈ Vset. Let
d ∈ D1e and d′ ∈ D2e. If 〈f, u〉 ∈ a, then (1d)•f L u ∈ b, and hence, for all g ∈ D(1d)•f
there exists v such that 〈1g, v〉 ∈ b and 2g L u = v. Moreover, (1d

′) • (1g) L v ∈ c.
As 〈u, v, c〉� 〈a, b, c〉 we can employ (7) to conclude that

`1(e#, g, d′) := (e# • 1) • (2g, (1d′) • (1g)) L u ∈ c.

Using Lemmata 4.3 and 4.5 repeatedly we get

`2(e#, f, d, d′) := χ1(Φ((1d) • f, λg.`1(e#, g, d′))) L u ∈ c
`3(e#, f, d) := χ2(Φ(2e, λd

′.`2(e#, f, d, d′))) L u ∈ c
`∗(e#, e, f) := χ3(Φ(2e, λd.`3(e#, f, d))) L u ∈ c (8)

for appropriate partial recursive functions χi.
Similarly one distills a partial recursive function `∗∗ such that for 〈f, u〉 ∈ c,

`∗∗(e#, e, f) := χ3(Φ(2e, λd.`3(e#, f, d))) L u ∈ a. (9)

As a result of (8) and (9) we have with

℘1(e#) := (λe.sg((λf.`∗(e#, e, f), λf.`∗∗(e#, e, f))),

℘1(e#) L a = b ∧ b = c→ a = c. (10)

Next suppose e L a = b ∧ b ∈ c. Then 1e L a = b and 2e L b ∈ c. Hence
D2e 6= ∅ and for all d ∈ D2e there exists v such that 〈1d, v〉 ∈ c and 2d L b = v, thus
(1e, 2d) L a = b ∧ b = v. As 〈a, b, v〉� 〈a, b, c〉 we can employ (6) to conclude

`4(e#, e, d) := (e# • 0) • (1e, 2d) L a = v.

Letting `4(e#, e, d) := (1d, (e
# • 0) • (1e, 2d)), we thus have 〈1(`4(e#, e, d)), v〉 ∈ c and

2(`4(e#, e, d)) L a = v. Hence, by Lemma 4.3, Φ(1e, λd.`4(e#, e, d)) L a ∈ c. So the
upshot is that

℘2(e#) := Φ(1e, λd.`4(e#, e, d)) L a = b ∧ b ∈ c→ a ∈ c. (11)
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Finally we use the recursion theorem to find an index e# such that

e# • 0 ' ℘1(e#)

e# • 1 ' ℘2(e#).

With it := e# • 0 and i0 := e# • 1 the above shows that (3) and (4) are satisfied.

(5). Suppose e L a = b ∧ c ∈ a. Then 1e L a = b and 2e L c ∈ a. From the
latter we get that D2e 6= ∅ and for all d ∈ D2e there exists v such that 〈1d, v〉 ∈ a and
2d L c = v. Thus, D1e 6= ∅ and since 1e L a = b, it follows that for all h ∈ D1e,
(1h) • (1d) L v ∈ b, so that by (4),

`5(d, h) := i0((2d, (1h) • (1d)) L c ∈ b.

Using Lemmata 4.3 and 4.5 repeatedly we get

`6(e, d) := χ3(Φ(1e, λh.`5(d, h)) L c ∈ b
`7(e) := χ4(Φ(2e, λd.`6(e, d))) L c ∈ b

for appropriate partial recursive functions χi. So we may put i1 := λe.`7(e).

(6). This is shown by a routine induction on the complexity of A, the non-trivial atomic
cases being provided (2)-(5). 2

Corollary: 4.8 There is a total recursive function θ such that for all a ∈ V(L),

(∀〈f, u〉 ∈ a) θ(f) L u ∈ a.

Proof: Let

θ(f) := sg((f, ir)). (12)

2

Theorem: 4.9 Let D be a proof in intuitionistic predicate logic with equality of a formula
A(u1, . . . , ur) of IZF all of whose free variables are among u1, . . . , ur. Then there is eD ∈ N
such that IZF′ proves

eD L ∀u1 . . . ∀ur A(u1, . . . , ur).

Proof: We use a standard Hilbert-type systems for intuitionistic predicate logic. The
proof proceeds by induction on the derivation. The correctness of axioms and rules per-
taining to the connectives ∧,¬,→ is exactly the same as for Kleene’s realizability. We have
also shown realizability of the equality axioms in Lemma 4.7. So it remains to address the
axioms and rules for ∨,∀,∃.
Axioms for ∨:
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A→ A ∨ B or A→ B ∨ A. Suppose e L A. As Dsg((0,e)) = {(0, e)} by Lemma 4.1,
it follows that sg((0, e)) L A ∨ B and hence λe.sg((0, e)) L A → A ∨ B. Similarly,
λe.sg((1, e)) L A→ B ∨A.

A ∨ B → ((A → C) → ((B → C) → C)). Suppose e L A ∨ B. Then De 6= ∅. Let
d ∈ De. Then 1d = 0 ∧ 2d L A or 1d 6= 0 ∧ 2d L B. Suppose f L A → C and
g L B → C. Define a partial recursive function f by

f(d, f ′, g′) =

{
f ′ • (2d) if 1d = 0
g′ • (2d) if 1d 6= 0

Then f(d, f, g) L C and hence λf.λg.f(d, f, g) L (A → C) → ((B → C) → C). With
the aid of Lemma 4.3 we can thus conclude that DΦ(e,λd.λf.λg.f(d,f,g)) 6= ∅ and for all
p ∈ DΦ(e,λd.λf.λg.f(d,f,g)) we have

p L (A→ C)→ ((B → C)→ C).

Let E := (A→ C)→ ((B → C)→ C). By Lemma 4.5 we can therefore conclude that

χE(Φ(e, λd.λf.λg.f(d, f, g))) L E.

As a result, λe.χE(Φ(e, λd.λf.λg.f(d, f, g))) L A ∨B → E.

Axioms and Rules for ∀:
If e L ∀xA(x,~a), then De 6= ∅ and (∀b ∈ V(L))(∀d ∈ De) d L A(b,~a), and hence, by

Lemma 4.5, χA(e) L A(b,~a) for all b ∈ V(L). Consequently,

λe.χA(e) L ∀xA(x,~a)→ A(b,~a)

for all b,~a ∈ V(L).
We also have the rule from B(~u)→ A(x, ~u) infer B(~u)→ ∀xA(x, ~u) if x is not free in

B(~u). Inductively we have a realizer h such that for all b,~a ∈ V(L),

h L B(~a)→ A(b,~a).

Suppose d L B(~a). then h • d L A(b,~a) holds for all b ∈ V(L), whence sg(h • d) L
∀xA(x,~a). As a result,

λd.sg(h • d) L B(~a)→ ∀xA(x,~a)

for all ~a ∈ V(L).

Axioms and Rules for ∃:
If e L A(a) then sg(e) L ∃xA(x), thus λe.sg(e) L A(a)→ ∃xA(x) for all a ∈ V(L).
Finally we have the rule, from A(x, ~u)→ B(~u) infer ∃xA(x, ~u)→ B(~u) if x is not free

in B(~u). Inductively we have a realizer g such that for all b,~a ∈ V(L),

g L A(b,~a)→ B(~a).

Suppose e L ∃xA(x,~a). Then De 6= ∅ and for all d ∈ De exists c ∈ V(L) such that d L
A(c,~a). Consequently, (∀d ∈ De) g • d L B(~a). By Lemma 4.3 we then have DΦ(e,g) 6= ∅
and (∀g ∈ DΦ(e,g)) g L B(~a). Using Lemma 4.5 we arrive at χB(Φ(e, g)) L B(~a); whence
λe.χB(Φ(e, g)) L ∃xA(x,~a)→ B(~a). 2

165



5 The soundness theorem for IZF

Lemma: 5.1 There is a partial recursive function sub such that for all α, a ∈ Vset
α and

b ∈ Vset,
e L b ⊆ a→ ∃b∗ ∈ Vset

α sub(e) L b = b∗.

Proof: Suppose a ∈ Vset
α , b ∈ Vset, and e L b ⊆ a. Then De 6= ∅. Let

b∗ := {〈(f ′, g′), u〉 | (∃〈f ′, x〉 ∈ b)[〈1g′, u〉 ∈ a ∧ 2g′ L x = u]}.

Clearly, b∗ ∈ Vset
α . We have

〈f, x〉 ∈ b → θ(f) L x ∈ b
→ (∀d ∈ De) d • θ(f) L x ∈ a
→ (∀d ∈ De) (Dd•θ(f) 6= ∅ ∧

(∀d′ ∈ Dd•θ(f)) ∃u [〈1d′, u〉 ∈ a ∧ 2d′ L x = u])

→ (∀d ∈ De) (∀d′ ∈ Dd•θ(f)) ∃u [〈(f, d′), u〉 ∈ b∗ ∧ 2d′ L x = u]

→ (∀d ∈ De)(∀h ∈ DΦ(d•θ(f),λd′.((f,d′),2d′)))

∃u [〈1h, u〉 ∈ b∗ ∧ 2h L x = u]

→ (∀d ∈ De) Φ(d • θ(f), λd′.((f, d′), 2d′)) L x ∈ b∗
→ (∀g ∈ DΦ(e,λd.Φ(d•θ(f),λd′.((f,d′),2d′)))) g L x ∈ b∗
→ χA(Φ(e, λd.Φ(d • θ(f), λd′.((f, d′), 2d′)))) L x ∈ b∗

where the fifth and seventh arrow are justified by Lemma 4.3 and the last arrow follows
by Lemma 4.5 with A ≡ x1 ∈ x2.

Conversely, we have

〈h, u〉 ∈ b∗ → ∃x [〈1h, x〉 ∈ b ∧ 〈1(2h), u〉 ∈ a ∧ is((2(2h))) L u = x]

→ sg((1h, is((2(2h))))) L u ∈ b.

with is from Lemma 4.7. The upshot of the foregoing is that with

ν(e, f) := χA(Φ(e, λd.Φ(d • θ(f), λd′.((f, d′), 2d′)))) ,

µ(h) := sg((1h, is((2(2h))))) ,

sub(e) := sg(j(λf.ν(e, f), λh.µ(h)))

we have sub(e) L b = b∗. 2

Theorem: 5.2 For every axiom A of IZF, one can effectively construct an index e such
that

IZF′ ` (ē L A).
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Proof: We treat the axioms one after the other.

(Arithmetic axioms): There are several and they are very boring to validate. In view of
Lemma 4.6 it’s also obvious how to realize them. We do one case study. 0 L SUC(n, n+1)
holds for all n ∈ N. Hence (n+ 1, 0) L N(n+ 1) ∧ SUC(n, n+ 1), thus

sg((n+ 1, 0)) L ∃k SUC(n, k),

so ∀n e∗ • n L ∃k SUC(n, k) with e∗ is chosen such that e∗ • n = sg((n + 1, 0)). By
Lemma 4.6 we then have

ψ2(e∗) L ∀n∃k SUC(n, k). (13)

Now suppose e L SUC(c, a) ∧ SUC(c, b). Then c, a, b ∈ N and c + 1 = a = b, thus
0 L a = b and hence

sg(sg(sg(λu.0))) L ∀x∀y∀z [SUC(x, y) ∧ SUC(x, z)→ y = z]. (14)

From (13) and (14) we obtain a realizer for the first number-theoretic axiom.

(Induction on N): Suppose

e L A(0) ∧ ∀x∀y[N(x) ∧ N(y) ∧ A(x) ∧ SUC(x, y)→ A(y)].

Then D2e 6= ∅ and (∀d ∈ D2e) Dd 6= ∅. Moreover, if d ∈ D2e then for all h ∈ Dd,
h L N(x) ∧ N(y) ∧ A(x) ∧ SUC(x, y)→ A(y) for all x, y ∈ V(L). Thus for all h ∈ Dun(2e)

(with un from Lemma 4.4) and all x, y ∈ V(L) we have

h L N(x) ∧ N(y) ∧ A(x) ∧ SUC(x, y)→ A(y). (15)

Clearly, 1e L A(0). Now suppose n ∈ N and SUC(n,m) and we have an index e∗ such
that

(∀h ∈ Dun(2e) e
∗ • (h, n) L A(n).

Then (n,m) L N(n) ∧ N(m), so ((n,m), e∗ • (h, n) L (N(n) ∧ N(m)) ∧ A(n), and
finally (((n,m), e∗ • (h, n), 0) L ((N(n) ∧ N(m)) ∧ A(n)) ∧ SUC(n,m). From the
latter we get

l#(e∗, n, h) := h • (((n,m), e∗ • (h, n)), 0) L A(m).

We suppressed m in l# since m is computable from n (m = n+ 1). Now choose e∗ by the
recursion theorem in such a way that e∗ • (h, 0) = 1e and

e∗ • (h, k + 1) ' l#(e∗, k, h).

If we inductively assume that e∗ • (h, n) ↓ for all h ∈ Dun(e) then the foregoing showed
that e∗ • (h,m) ↓ for all h ∈ Dun(e). Hence (∀g ∈ DΦ(un(e),λh.e∗•(h,m))) g L A(m) by
Lemma 4.3 and thus with

l�(e,m) =

{
1e if m = 0
χA(Φ(un(e), λh.e∗ • (h,m))) if m 6= 0
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(using Lemma 4.5) we have l�(e,m) L A(m) for all m ∈ N. As a result,

λm.l�(e,m) L N(a)→ A(a)

holds for all a ∈ V(L) since d L N(a) implies d = a. Thus

sg(λm.l�(e,m)) L ∀x(N(x)→ A(x)),

and hence

λe.sg(λm.l�(e,m)) L A(0) ∧ ∀n∀m[A(n) ∧ SUC(n,m)→ A(m)]→ ∀nA(n).

(Extensionality): Let a, b ∈ V(L). Also suppose that S(a) ∧ S(b) and

e L ∀x(x ∈ a ↔ x ∈ b).

Then (∀d ∈ De)(∀u ∈ V(L)) d L (u ∈ a ↔ u ∈ b). Thus for all d ∈ De we have

(∀〈f, y〉 ∈ a) (1d) • θ(f) L y ∈ b
(∀〈f, y〉 ∈ b) (2d) • θ(f) L y ∈ a

with θ defined as in Corollary 4.8. Letting ψ(d) := (λf.(1d) • θ(f), λf.(2d) • θ(f)) we
therefore have

(∀〈f, y〉 ∈ a) (1(ψ(d))) • f L y ∈ b
(∀〈f, y〉 ∈ b) (2(ψ(d))) • f L y ∈ a.

Thus, by Lemma 4.3, Φ(e, λx.ψ(x))↓, DΦ(e,λx.ψ(x)) 6= ∅ and every h ∈ DΦ(e,λx.ψ(x)) is of the
form (λx.ψ(x)) • d = ψ(d) for some d ∈ De. Thus Φ(e, λx.ψ(x)) L a = b. Furthermore,

λf.λe.Φ(e, λx.ψ(x)) L S(a) ∧ S(b)→ (∀x(x ∈ a ↔ x ∈ b)→ a = b)

and hence

sg(sg(λf.λe.Φ(e, λx.ψ(x)))) L ∀u∀y[S(u) ∧ S(y)→ (∀x(x ∈ u ↔ x ∈ y)→ u = y)].

(Pair): Let u, v ∈ V(L). Put a = {〈0, u〉, 〈0, v〉}. Then a ∈ Vset and θ(0) L u ∈ a and
θ(0) L v ∈ a, whence (0, (θ(0), θ(0))) L S(a)∧u ∈ a∧ v ∈ a, so sg((0, (θ(0), θ(0)))) L
∃y[S(y) ∧ u ∈ y ∧ v ∈ y].

(Union): For each u ∈ V(L), put

Un(u) = {〈(f, h), y〉 | ∃x(〈f, x〉 ∈ u ∧ 〈h, y〉 ∈ x)}.

Then Un(u) ∈ Vset. Suppose

e L ∃x(x ∈ u ∧ z ∈ x).
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Then
(∀d ∈ De)(∃x ∈ V(L)) [1d L x ∈ u ∧ 2d L z ∈ x].

Fix d ∈ De and x ∈ V(L) such that 1d L x ∈ u ∧ 2d L z ∈ x. Then (∀f ∈
D1d)∃w [〈1f, w〉 ∈ u ∧ 2f L x = w]. Letting q(f, d) := i1 • (2f, 2d) with i1 from
Lemma 4.7 we get

(∀f ∈ D1d)∃w [〈1f, w〉 ∈ u ∧ q(f, d) L z ∈ w]

and hence

(∀f ∈ D1d)∃w [〈1f, w〉 ∈ u ∧ ∃v(〈1(q(f, d)), v〉 ∈ w∧ L 2(q(f, d))z = v].

Since 〈(1f, 2(q(f, d))), v〉 ∈ Un(u), we arrive at

(∀f ∈ V1d) l(f, d) L z ∈ Un(u),

where l(f, d) := sg(((1f, 1(q(f, d))), 2(q(f, d)))). As a result,

(∀h ∈ DΦ(1d,λf.l(f,d)) L z ∈ Un(u),

hence
χA(Φ(1d, λf.l(f, d))) L z ∈ Un(u)

where A is the formula x0 ∈ x1. Since the latter holds for all d ∈ De we get

(∀g ∈ DΦ(e,λd.χA(Φ(1d,λf.l(f,d))))) L z ∈ Un(u)

so
χA(Φ(e, λd.χA(Φ(1d, λf.l(f, d))))) L z ∈ Un(u).

The upshot is that sg((0, sg(λe.χA(Φ(e, λd.χA(Φ(1d, λf.l(f, d)))))))) realizes ∃w[S(w) ∧
∀z(∃x(x ∈ u ∧ z ∈ x) → z ∈ w)] from which one gets a realizer for the union axiom via
realizers for the separation axioms.

(Infinity): Let M := {〈n, n〉 | n ∈ N}. Then M ∈ Vset and S(M). Suppose e L z ∈ M .
Then De 6= ∅ and

(∀d ∈ De)∃n[〈1d, n〉 ∈M ∧ 2d L z = n].

Note that 〈1d, n〉 ∈ M and 2d L z = n with n ∈ N entail that 1d = z = n. We then
also (trivially) have 1d L N(z). Invoking Lemma 4.3 we have DΦ(e,λd.1d) = {n}. Thus,
by Lemma 4.2, φ(Φ(e, λd.1d)) ↓ and φ(Φ(e, λd.1d)) L N(z).

Conversely, if e L N(z), then e = z ∧ 〈z, z〉 ∈M , so θ(e) L z ∈M .
The upshot is that sg((λx.φ(Φ(x, λd.1d)), λx.θ(x))) L ∀u(u ∈M ↔ N(u)). Hence

sg((0, sg((λx.φ(Φ(x, λd.1d)), λx.θ(x))))) L ∃z[S(z) ∧ ∀u(u ∈ z ↔ N(u))].

(Powerset): Let a ∈ Vset
α . It suffices to find a realizer for the formula

∃y[S(y) ∧ ∀x(S(x) ∧ x ⊆ a→ x ∈ y)]
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since realizability of the power set axiom follows then with the help of Separation. Define

Vα := {〈q, b〉 | b ∈ Vset
α ∧ q ∈ N ∧ q L ∀x(x ∈ b→ x ∈ a)}.

Then Vα ∈ Vset. Suppose b ∈ Vset and e L b ⊆ a. Then sub(e) L b = b∗ for some
b∗ ∈ Vset

α by Lemma 5.1. Thus, as 〈sub(e), b∗〉 ∈ Vα, we have

sg((sub(e), sub(e))) L b ∈ Vα.

Thus sg(λf.sg((sub(2f), sub(2f)))) L ∀x(S(x) ∧ x ⊆ a→ x ∈ y) and consequently

sg((0, sg(λf.sg((sub(2f), sub(2f)))))) L ∃y[S(y) ∧ ∀x(S(x) ∧ x ⊆ a→ x ∈ y)].

(Set Induction): Suppose ē L ∀x[∀y(y ∈ x→ A(y))→ A(x)]. Then Dē 6= ∅ and

(∀d ∈ Dē)(∀x ∈ V(L)) d L ∀y(y ∈ x→ A(y))→ A(x). (16)

Let a ∈ V(L). Suppose we have an index e∗ such that for all d ∈ Dē, e
∗ • d ↓ and for all

〈f ′, b〉 ∈ a, e∗ • d L A(b). Assume f L y ∈ b. Then there exists b such that 〈1f, b〉 ∈ a
and 2f L y = b. Hence, by Lemma 4.5, iA′((e

∗ • d, 2f)) L A(y) for an appropriate
formula A′. As a consequence we have

λf.iA′((e
∗ • d, 2f)) L y ∈ a→ A(y),

so
l∗(e∗, d) := sg(λf.iA′((e

∗ • d, 2f))) L ∀y[y ∈ a→ A(y)],

so

(∀d ∈ Vē) d • l∗(e∗, d) L A(a). (17)

By the recursion theorem there exists an index e∗ such that

e∗ • n ' l∗(e∗, n)

for all n ∈ N. In view of the foregoing, it follows by set induction on a ∈ V(L) that for
all d ∈ De, e

∗ • d↓ and e∗ • d L A(a). Hence, by Lemma 4.3, VΦ(e,λd.e∗•d) 6= ∅ and for all
h ∈ VΦ(e,λd.e∗•d) and all a ∈ V(L) we have h L A(a). Thus Φ(e, λd.e∗ • d) L ∀xA(x).
Hence

λe.Φ(e, λd.e∗ • d) L ∀x[∀y(y ∈ x→ A(y))→ A(x)]→ ∀xA(x).

(Separation): Given a ∈ V(L) we seek a realizer e such that

e L ∃z[S(z) ∧ ∀u(u ∈ z → u ∈ a ∧ A(a)) ∧ ∀u(u ∈ a ∧ A(u)→ u ∈ z)]. (18)

e will not depend on a nor on other parameters occurring in A. Let

b = {〈(f, g), x〉 | 〈f, x〉 ∈ a ∧ g L A(x)}. (19)
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Then b is a set by separation in the background universe, and also b ∈ Vset.
Assume e L u ∈ b. Then De 6= ∅ and for every d ∈ De there exists x such that

〈1d, x〉 ∈ b ∧ 2d L u = x. By definition of b, 1d = (f, g) for some f, g ∈ N such
that 〈f, x〉 ∈ a and g L A(x). From 2d L u = x and θ(f) L x ∈ a we deduce
q(d, f) := i0((2d, θ(f))) L u ∈ a with the help of Corollary 12 and Lemma 4.7(4). As
g L A(x) we get p(d, g) := iA′((2d, g)) L A(u) from Lemma 4.7, where A′ is obtained
from A by replacing parameters from V(L) with free variables. Thus, from the above we
conclude that

(q(d, f), p(d, g)) L u ∈ a ∧ A(u). (20)

We can write l(d) := (q(d, f), p(d, g)) solely as a partial recursive function of d since
f = 1(1d)) and g = 2(1d)). Thus (20) yields (∀d ∈ De) l(d) L u ∈ a ∧ A(u), whence
(∀h ∈ DΦ(e,λd.l(d))) L u ∈ a ∧ A(u) by Lemma 4.3, so

χB(Φ(e, λd.l(d))) L u ∈ a ∧ A(u) (21)

by Lemma 4.5 for an appropriate formula B. (21) yields

e∗ := sg(λe.χB(Φ(e, λd.l(d)))) L ∀u(u ∈ b→ u ∈ a ∧ A(u)). (22)

Conversely, assume e L u ∈ a ∧ A(u). Then 1e L u ∈ a and 2e L A(u). Thus, for
all d ∈ D1e there exists x such that 〈1d, x〉 ∈ and 2d L u = x. Then, by Lemma 4.7,
l1(d, e) := iA0((2d, 2e)) L A(x) for a suitable formula A0. So 〈(1d, lf1(d, e)), x〉 ∈ b,
which together with 2(d) L u = x yields

l2(d, e) := ((1d, lf1(d, e)), 2d) L u ∈ b.

Consequently, by Lemma 4.3,

(∀h ∈ DΦ(1e,λd.l2(d,e)))h L u ∈ b,

thus χC(Φ(1e, λd.l2(d, e))) L u ∈ b by Lemma 4.5, where C ≡ x1 ∈ x2. Hence

e∗∗ := sg(λe.χC(Φ(1e, λd.l2(d, e)))) L ∀u[u ∈ a ∧ A(u)→ u ∈ b]. (23)

Finally, by (22) and (23), we arrive at (18) with e := sg((0, (e∗, e∗∗))).

(Collection): Suppose

e L ∀u(u ∈ a→ ∃y B(u, y)). (24)

Then De 6= ∅ and

(∀d ∈ De)(∀u ∈ V(L)) d L (u ∈ a→ ∃y B(u, y)). (25)

Fix d ∈ De. If 〈f, x〉 ∈ a then θ(f) L x ∈ a, so d • θ(f) L ∃yB(x, y). Consequently,
(∀h ∈ Dd•θ(f))(∃y∈V(L))h L B(x, y). Therefore, using Collection in the background
universe, there exists a set C ⊆ V(L) such that

(∀d ∈ De)(∀〈f, x〉 ∈ a)(∀h ∈ Dd•θ(f))(∃y ∈ C)h L B(x, y). (26)
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Let

C∗ = {〈((d, f), h), y〉 | d ∈ De ∧ y ∈ C ∧ ∃x(〈f, x〉 ∈ a ∧ h L B(x, y))}. (27)

C∗ is a set by Separation. Also C∗ ∈ Vset. Now assume that d ∈ De and e′ L u ∈
a. Then, for all d′ ∈ De′ there exists x such that 〈1d′, x〉 ∈ a and 2d

′ L u = x.
Moreover, by (25), for all h ∈ Dd•θ(1d′) there exists y ∈ C such that h L B(x, y).
Whence 〈l3(d, d′, h), y〉 ∈ C∗, where l3(d, d′, h) := ((d, 1d

′), h). From 2d
′ L u = x and

h L B(x, y) we also obtain iB′((2d
′, h)) L B(u, y) by Lemma 4.7 for an appropriate

formula B′. Since θ(l3(d, d′, h)) L y ∈ C∗, we have

l4(d, d′, h) := (θ(l3(d, d′, h)), iB′((2d
′, h))) L y ∈ C∗ ∧ B(u, y), (28)

so sg(l4(d, d′, h)) L ∃y(y ∈ C∗ ∧ B(u, y)), hence, using Lemmata 4.3, 4.4 and 4.5 repeat-
edly with appropriate formulas D and E,

l5(d, d′) := χD(Φ(d • θ(1d′), λh.sg(l4(d, d′, h)))) L ∃y(y ∈ C∗ ∧ B(u, y)),

l6(d, e′) := χE(Φ(e′, λd′.l5(d, d′))) L ∃y(y ∈ C∗ ∧ B(u, y)). (29)

As we established (29) under the assumption e′ L u ∈ a, we get

λe′.l6(d, e′) L u ∈ a→ ∃y(y ∈ C∗ ∧ B(u, y)).

Thus, by Lemmata 4.3 and 4.5, we have

l7(e) := χF (Φ(e, λd.λe′.l6(d, e′))) L u ∈ a→ ∃y(y ∈ C∗ ∧ B(u, y)) (30)

for an appropriate formula F . Finally, by repeatedly applying Lemma 4.1, we see that

sg(l7(e)) L ∀u[u ∈ a→ ∃y(y ∈ C∗ ∧ B(u, y))]

sg((0, sg(l7(e)))) L ∃z(S(z) ∧ ∀u[u ∈ a→ ∃y(y ∈ z ∧ B(u, y))])

λe.sg((0, sg(l7(e)))) L ∀u[u ∈ a→ ∃y B(u, y)]→
∃z(S(z) ∧ ∀u[u ∈ a→ ∃y(y ∈ C∗ ∧ B(u, y))]).

2

6 Church’s thesis in V(L)

Lemma: 6.1 (IZF′) V(L) |= CT0!.

Proof: Note that according to Lemma 4.6 our realizability for arithmetic formulae is the
same as in [11]. As a result, the same proof as in [11, Lemma 3] will do. 2
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Lemma: 6.2 V(L) 6|= CT0. More precisely, let ē, ẽ ∈ N be indices of two disjoint recur-
sively inseparable r.e. sets, i.e. X = {m | ∃mT(ē, n,m)} and Y = {m | ∃mT(ẽ, n,m)} are
disjoint and recursively inseparable. Let A(n) := ∀m¬T(ē, n,m), B(n) := ∀m¬T(ẽ, n,m)
and C(n, k) := (A(n) ∧ k = 0) ∨ (B(n) ∧ k = 1). Then

V(L) 6|= ∀n∃k C(n, k)→ ∃d∀nC(n, d • n).

Proof: The proof is the same as in [11, section 4]. First one shows that V(L) |=
∀n∃k C(n, k). Next one shows that from e∗ L ∃d∀nC(n, d • n) one would be able to
engineer a recursive separation of X and Y above, which is impossible. 2

The foregoing Lemmata also show that a “binary” version of number choice is not
provable in IZF. Let ACω,2 be the statement that whenever (Ai)i∈N is family of inhabited
sets Ai with Ai ⊆ {0, 1}, then there exists a function F : N→ ⋃

i∈NAi such that ∀i F (i) ∈
Ai.

Corollary: 6.3 V(L) 6|= ACω,2. In particular, IZF does not prove ACω,2.

Proof: We argue in V(L). We have ∀n∃k C(n, k) with C as in the proof of Lemma 6.2.
Then with An := {k ∈ {0, 1} | C(n, k)}, An ⊆ {0, 1} and An is inhabited. Thus if ACω,2

were to hold in V(L) we would get a function F : N→ ⋃
n∈NAn such that ∀nF (n) ∈ An.

Since ∀n∃!kF (n) = k, CT0! implies the existence of an index d such that ∀nF (n) = d •n,
and hence ∃d∀nC(n, d • n). This contradicts Lemma 6.2. 2

7 Some classical and non-classical principles that hold in
V(L)

The next definitions lists several interesting principles that are validated in V(L).

Definition: 7.1 1. UP, the Uniformity Principle, is expressed by the schema:

∀x [S(x)→ ∃nA(x, n)] → ∃n ∀x[S(x)→ A(n, x)].

2. Unzerlegbarkeit, UZ, is the schema

∀x[S(x)→ (A(x) ∨ B(x))] → ∀x(S(x)→ A(x)) ∨ ∀x(S(x)→ B(x))

for all formulas A,B.

Lemma: 7.2 UP and UZ are Lifschitz realizable.
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Proof: Suppose e L ∀x [S(x)→ ∃nA(x, n)]. Then De 6= ∅. Since 0 L S(a) holds for all
a ∈ Vset, we have

(∀d ∈ De)(∀a ∈ Vset)1d • 0 L ∃y[N(y) ∧ A(a, y)].

Let d ∈ De and a ∈ Vset. If f ∈ D1d then there exists y∈V(L) such that f L N(y) ∧
A(a, y), thus 1f = y and so 2f L A(a, 1f). Hence

(∀f ∈ D1d)(∀a ∈ Vset)2f L A(a, 1f),

and so

(∀f ∈ D1d)λx.2f L ∀x[S(x)→ A(x, 1f)]

(∀f ∈ D1d)(1f, λx.2f) L N(1f) ∧ ∀x(S(x)→ A(x, 1f)),

l(d) := Φ(1d, λf.(1f, λx.2f)) L ∃y[N(y) ∧ ∀x(S(x)→ A(x, y))],

where we used Lemma 4.3 in the last step. Finally, by applying Lemmata 4.3 and 4.5 we
arrive at

χA′(Φ(e, λd.l(d))) L ∃y[N(y) ∧ ∀x(S(x)→ A(x, y))]

for an appropriate formula A′. Hence, with e∗ := λe.χA′(Φ(e, λd.l(d))),

e∗ L ∀x [S(x)→ ∃nA(x, n)]→ ∃y[N(y) ∧ ∀x(S(x)→ A(x, y))].

As to Lifschitz realizability of UZ, note that ∀x[S(x) → (A(x) ∨ B(x))] implies
∀x[S(x)→ ∃n[(n = 0 ∧ A(x)) ∨ (n 6= 0 ∧ B(x))]. The latter yields

∃n ∀x[S(x)→ [(n = 0 ∧ A(x)) ∨ (n 6= 0 ∧ B(x))]

via UP, and hence ∀x(S(x) → A(x)) ∨ ∀x(S(x) → B(x)). Thus UZ is a consequence of
UP. Therefore V(L) |= UZ. 2

The principle MPpr holds in V(L). Another classically valid principle considered in
connection with intuitionistic theories is the Principle of Independence of Premisses, IP,
which is expressed by the schema

(¬A→ ∃xB(x)) → ∃x(¬A→ B(x)),

where A is assumed to be closed.

Theorem: 7.3 1. (IZF′) V(L) |= MPpr.

2. Assuming classical logic in V , V(L) |= IP.

Proof: (1). Assume e L ¬¬∃nA(n) where A(n) is of the form R(n,~k) with R primitive
recursive and ~k ∈ N. Then ¬¬∃f f L ∃nA(n), and thus by Lemma 4.6, ¬¬∃f L A(1f),
thus ¬¬∃f A(1f). Using MPpr in the background universe we have ∃nA(n). Then, with
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r := µn.A(n), we have sg((r, 0)) L ∃nA(n). Whence λe.sg((r, 0)) realizes this instance
of MPpr.

(2). Assume that e L ¬A→ ∃xB(x). Then, if g L ¬A, 0 L ¬A and e • 0 L ∃xB(x).
Therefore, De•0 6= ∅ and for all d ∈ De•0 there is an a ∈ V(L) such that d L B(a), and
therefore λu.d L ¬A→ B(a). Hence, if A is not realized,

Φ(e • 0, λd.λu.d) L ∃x(¬A→ B(x)).

On the other hand, should A be realized, then ¬A is never realized, so λu.u would realize
this instance of IP. 2

8 The reals in V(L)

By Lemma 6.1 the Cauchy reals in V(L) are the recursive reals. A well-known consequence
of ACω,2 is that the sets of Cauchy reals and Dedekind reals are isomorphic. As it turns
out, in V(L) the notions of Cauchy real and Dedekind real coincide in V(L) despite the
failure of ACω,2.

Lemma: 8.1 In V(L) the set of Cauchy reals is order-isomorphic to the set of Dedekind
reals.

Proof: This was proved by van Oosten to hold in the Lifschitz topos [16, IV. Proposition
2.5]. The proof utilizes [21, Ch.5 Proposition 5.10] saying that the collection of strong
Dedekind reals is order-isomorphic to the collection of Cauchy reals. It is shown in [16,
IV. Proposition 2.5] that in the Lifschitz topos every Dedekind real is a strong Dedekind
real. As the proof carries over to V(L), we do not repeat it here. 2
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Ax: Extensionality, 22, 66, 91, 128
Ax: Induction, 22, 73, 97, 133
Ax: Infinity, 22, 73, 97, 132
Ax: Pairing, 22, 67, 91, 128
Ax: Power Set, 22, 72, 103, 138
Ax: Separation, 22, 70, 102, 137
Ax: Strong Collection, 21, 98, 133
Ax: Subset Collection, 21, 99, 135
Ax: Union, 22, 69, 93, 129

SUC,ADD,MULT, 17, 18
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