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Abstract

This thesis is concerned with the major transitions view of evolution; the idea

that general principles operate in the evolution of each new level of the biological hi-

erarchy (Bourke, 2011). We discuss the theoretical background of this field, focussing

on inclusive fitness theory and multi-level selection theory, different approaches to

analysing the selection of traits. Many of the commonalities between different tran-

sitions are dependent on whether they occur within or between species, and whether

relatedness is absent (‘egalitarian’) or present (‘fraternal’) (Queller, 1997). Altruism

underpins fraternal transitions, and mutually beneficial behaviour underpins egali-

tarian transitions (Bourke, 2011). We focus on several different models relating to

this four-way decomposition.

Firstly, we focus on arguments that between-species donation may amount to

between-species altruism; this has been a point of contention within the literature

(Fletcher and Doebeli, 2009; Gardner et al., 2011; Wyatt et al., 2013). We dis-

cuss both deterministic (resting on an assumption of quasi-linkage equilibrium) and

stochastic approaches to a simple model of between-species donation, finding that

stable donation behaviour can evolve in the presence of assortment across all loci,

but is vulnerable to unassorted modifiers. We argue that this behaviour can be in-

terpreted as within-species altruism, using the other species as a vector for altruism,

and, further, consider our models in relation to the current literature on greenbeards.

Our second model concerns maternally-transmitted sex-distorting endosymbionts.

Many species, particularly insect populations, are infected by sex-distorting parasites

such as the bacteria Wolbachia, which are maternally-transmitted; thus, distortion of

sex ratios towards the production of females may be beneficial to the symbiont. We

investigate the potential for a reproductive parasite to transition towards mutualism,

laying the foundation for an egalitarian transition between species; in particular, we

find that population structure is key to this transition.

Finally, we discuss several potential avenues for future research; in particular,

we note that the social group transformation phase of a major transition involves a

number of open questions, or ideas open to further investigation.
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Chapter 1

Introduction

1.1 Chapter Overview

The aim of this thesis is to explore the ‘major transitions’ view of evolution through

computational modelling; this requires some understanding of inclusive fitness the-

ory and multi-level selection theory. Fundamentally, the major transitions view

of evolution is concerned with the evolution of the biological hierarchy, and com-

mon principles that operate during the evolution of each transition in individuality

(Bourke, 2011). Both inclusive fitness theory and multi-level selection theory can

be used to analyse the spread of social traits relevant to a major transition, though

the two approaches have to be used carefully to provide appropriate causal explana-

tions of evolutionary phenomena (Okasha, 2006, 2015). This chapter is concerned

with the introduction of inclusive fitness theory, multi-level selection theory, and the

major transitions view of evolution.

1.2 Applications of Social Evolution Theory

Darwin’s original proposal of the theory of evolution (Darwin, 1859) introduced

the idea of natural selection. There have been many applications since, includ-

ing (but not limited to) medical science (Williams and Nesse, 1991; Foster, 2005;

Aktipis et al., 2015), psychology (Crawford and Krebs, 2013), computation (Fogel

et al., 1966), and economics (Friedman, 1998) through game theory, as formalised

by Maynard Smith and Price (1973).

The greatest theoretical extension to Darwinian evolutionary theory is inclusive

13



fitness theory, proposed by Hamilton (1963, 1964a,b). Hamilton’s revolutionary idea

was that individuals gain fitness through their contribution to the increased repro-

duction of genetically related individuals, due to shared genes. This is referred to as

kin selection theory and shall be discussed in greater depth in Section 1.4. Section

1.5 shall introduce Grafen’s ‘formal Darwinism project’, a philosophical argument

that attempts to justify fitness maximisation approaches, such as Hamilton’s rule

and the Price equation.

Inclusive fitness theory has led to further additions to the application of evolu-

tionary theory to medical science - a development that Foster (2005) refers to as

‘Hamiltonian medicine’. For example, a knowledge of genetic relatedness (see Sec-

tion 1.4.3) in relation to virulence of pathogens can lead to the development of new

medical strategies to tackle them. Another important example would be of cancers

- these represent conflict between two different levels in the biological hierarchy;

the cells within an organism, and the organism itself (Pepper et al., 2007). Cancer

cells optimise their own reproduction to the cost of the multicellular host (Aktipis

et al., 2015), resulting in what can be understood as a ‘tragedy of the commons’

scenario (Hardin, 1968); the host dies due to overexploitation by a selfish cell lin-

eage. These simple examples illustrate the importance of understanding multi-level

selection, which will be discussed in Section 1.6; this subject is closely tied to our

understanding of the major transitions view of evolution (Okasha, 2006). This shall

be discussed in Section 1.8. Finally, in Section 1.9, we shall discuss the structure of

the thesis in further detail, and we shall also detail how each question tackled fits

in with the major transitions view of evolution.

1.3 Semantics

Social Evolution Theory is concerned with understanding the evolution of social be-

haviours. Intuitively, you would expect that if an individual displays a given social

behaviour, the behaviour will have an effect on the individual, and an effect on a

set of other individuals. The measurement of an effect of a social behaviour is given

by the lifetime consequences of the behaviour, in terms of absolute fitness (West

et al., 2007). Fitness can be described, informally, as fecundity, or the reproductive

success of an individual (Marshall, 2015). Fitness effects of social behaviours are

14



often analysed in the context of a social interaction between a focal individual and a

social partner, known as a pairwise interaction; examples of such interactions shall

be described over the course of this chapter. The fitness effects of a social behaviour

can be either negative or positive for both the focal individual and social partners;

consequently, Hamilton created a four-way classification of social behaviours accord-

ing to the signs of the fitness effects (Hamilton, 1964a).

We shall classify social behaviours in pairwise interactions according to West

et al. (2007), in which a social action providing a fitness benefit to both a focal

individual and their social partner is referred to as ‘mutually beneficial’; if the effect

on the social partner is instead costly, this social behaviour is classified as ‘selfish-

ness’. The other social behaviours, by contrast, involve a fitness cost to the focal

individual; if a benefit is conferred to the social partner, this is referred to as ‘al-

truism’, and if there is a fitness cost to the social partner, this is instead referred

to as ‘spite’. These classifications are standard in any discussion of social evolution

theory, having been introduced alongside Hamilton’s initial discussion of inclusive

fitness, and are displayed in Table 1.1, adapted from a similar table by Hamilton

(1964a).

Table 1.1: Classification of Social Actions

Effect on Partner’s Fitness

Benefit Cost

Effect on Focal
Individual’s Fitness

Benefit Mutual Benefit Selfishness

Cost Altruism Spite

There is some confusion with regards to the exact terms given in the literature;

however, we choose the scheme advocated by West et al. (2007), in an attempt at

as much consistency with the literature as possible. The term ‘cooperation’ in par-

ticular has been used to mean a variety of different things; for example, it has often

been used to refer to any social behaviour which confers a benefit (i.e. altruistic or

mutually beneficial). We shall use the definition of cooperation provided by Birch

(2016), a refinement of the definition West et al. (2007). provide in their paper on

semantics; ‘a cooperative behaviour is one which, in its recent selection history, has
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been favoured by selection by virtue of its beneficial effect on the recipient’. The

reason for this adjustment to the standard definition is that it fits more closely with

our intuition for cooperation, by filtering out any beneficial behaviour which does

not result in feedback. Birch’s addition to the definition (‘in its recent selection

history’) allows behaviours that have evolved due to feedback from the provided

benefit to be part of the definition, even if the behaviour is not currently under

selection due to the provided benefit (Birch, 2016).

Many definitions and ideas rely on our intuitive notion of the individual; how-

ever, there is no straightforward definition of the ‘biological individual’. There have

been many proposals, but closer examination of many of these notions can lead to

widely varying conclusions on exactly what constitutes an organism, that do not

necessarily chime with our intuition (Clarke, 2010). In the following work, we shall

talk about individuals as biological units on which natural selection can act, thus

attempting to circumvent the debate by avoiding referring to exact properties of

‘individuals’. Lewontin proposed that there are three properties of units of selec-

tion; phenotypic variation, differential fitness between phenotypes, and heritability

of fitness (Lewontin, 1970). The final condition should be adjusted to heritability of

phenotypes, since we are concerned with evolutionary changes in phenotype rather

than fitness (Okasha, 2006); this corresponds to Darwin’s (1859) original vision. For

example, assume that there are two different phenotypes, labelled A and B, which

yield the same expected fitness. If we simply assume that there is heritability in

fitness, A parents could always produce B offspring in our scenario, and the Lewon-

tin conditions would still be satisfied; this scenario violates our understanding of

natural selection, showing that including a condition on heritability in fitness does

not lead to an equivalency between the Lewontin conditions and biological reality.

Thus, heritability in phenotype is the stronger condition, but is necessary for the

three conditions to correspond to our intuition.

Further terms shall be introduced in the next section, which describes Hamilton’s

innovations and the inception of inclusive fitness theory.
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1.4 Inclusive Fitness Theory

1.4.1 Game Theory and the Donation Game

One method of formalising social interactions is game theory (Von Neumann and

Morgenstern, 1944; Maynard Smith, 1982); whilst this is an expansive field with

applications far beyond the study of evolution alone, we briefly introduce one spe-

cific game, the donation game, which is central to the study of social behaviour,

and Chapter 3 in particular. Evolutionary game theory involves modeling social

interactions as a game, involving a number of players (or social partners) to whom a

selection of actions are available; actions are chosen according to players’ strategies,

resulting in fitness payoffs on the basis of actions chosen (Marshall, 2015).

In the specific terms of the pairwise donation game, two players choose from a set

of two actions; donation or non-donation. If a player donates, their social partner

receives a fitness benefit b′, while the donating player incurs some fitness cost c′; it

is assumed that b′ > c′ > 0. This a standard assumption given the common practice

of studying this game in the context of the evolution of altruism (costly helping

behaviour). If a player does not donate, neither their fitness, nor that of the social

partner, changes. Individuals maximise their own fitness payoffs by not donating;

however, each players’ fitness would be maximised if both players donated, since

b′ − c′ > 0 (hence the assumption that b′ > c′; were this not the case, there would

be no incentive for mutual donation). Note the use of primes on benefits and costs

in this section; this is to ensure distinction between these quantities and the more

used and mathematically rigorous versions of fitness benefits and costs introduced

and discussed in the subsequent sections.

Donation in the most basic form of this game can be considered altruism, accord-

ing to the four-way decomposition of social behaviours introduced in the previous

section. Many variations of this basic game have been considered in the literature,

along with many proposed mechanisms that encourage donation behaviour, allowing

the two players to jointly obtain the fitness benefits of mutual donation (Trivers,

1971; Maynard Smith, 1982; Marshall, 2015). However, it does not follow that do-

nation in every variation of this basic game is altruistic; in the next sections, we

discuss Hamilton’s rule, which can be used to both provide an explanation for the
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problem of altruism, and leads to methods for analysing the true classification of

social behaviours, such as donation in the donation game.

1.4.2 Hamilton’s Rule and Relatedness

One of the significant problems facing evolutionary theory is to explain the evolution

of individually costly social traits; to be precise, altruism and spite, as defined

in Section 1.3. Hamilton’s first foray into answering this problem came in 1963,

highlighting the importance of shared genes, and the relative benefits and costs

associated with a social behaviour (Hamilton, 1963). Hamilton’s rule for the spread

of a gene is now written most commonly as:

rb > c (1.1)

Here, using informal language relating to a single, altruistic, pairwise interaction,

r is the coefficient of relatedness between two individuals, b is the fitness benefit con-

ferred to the social partner, and c is the fitness cost incurred by the focal individual.

Note that while Hamilton’s rule is couched in much of the same language as the

donation game, the components of Hamilton’s rule take on different, more precise,

mathematical meanings. The rule states, in other words, that a gene will receive

positive selection if the cost to the focal individual is outweighed by the benefit given

to a social partner, weighted by how closely related the social partner is. Note that

the benefit, cost, and relatedness can be either positive or negative (even though we

use terminology directly pertaining to altruism); thus we can find conditions for sta-

bility of any of the four types of social behaviour as defined in section 1.3 (Bourke,

2011). Formal definitions of the benefit, cost and relatedness involve regression or

partial regression coefficients (depending on the exact variant of Hamilton’s rules

considered) (Marshall, 2015; Birch, 2016), and are thus population-level properties.

1.4.3 Relatedness

Initially, Hamilton used Sewall Wright’s Coefficient of Relatedness in his first formu-

lation of Hamilton’s rule (Wright, 1922; Hamilton, 1963). This is a measure of the

likelihood of two individuals possessing the same gene, but only in terms of genes
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identical by descent. In reality, genetic similarity between individuals may exist

for reasons other than descent (Marshall, 2015). Thus, it has been noted by many

authors, including Hamilton himself, that relatedness should take the form of a re-

gression coefficient (Grafen, 1985; Hamilton, 1972). There are many approaches to

calculating r, and some of them were summarised in 1980 by Michod and Hamilton

(1980). They concluded that each of these formulations of relatedness were equiva-

lent, or deviated from the general case by invoking certain assumptions.

One definition of relatedness, in words, is that it is ‘the probability of sharing

the focal gene relative to the average probability that two organisms share the

gene’ (Bourke, 2011). Mathematically, relatedness can take the following form, the

regression of focal individuals’ genetic value g on social partners’ genetic value g′,

where genetic value is a linear function of underlying genes (Gardner et al., 2011;

Orlove and Wood, 1978; Marshall, 2015; Hamilton, 1972):

r := βg,g′ =
Cov(g, g′)

Var(g)
(1.2)

The numerator measures how the genetic values of paired individuals covary, a

measure of statistical association between two random variables. In other words,

if individuals with relatively high genetic value are more likely to be paired with

social partners with relatively high genetic value, then genetic values between social

partners positively covary. We shall use this formulation of relatedness in deriving

Hamilton’s rule in Section 1.4.4.

Relatedness is a population statistic, which measures the relative probability

of genetically similar individuals being social partners in comparison to randomly

paired members of the reference population (Birch, 2016). As this term measures

the regression of one alike measure on another alike measure, r is always in the

range [-1,1] (Grafen, 1985). Positive relatedness indicates that social partners share

a greater number of genes than two randomly chosen population members. Nega-

tive relatedness is possible, and indicates the opposite. High levels of relatedness

are particularly relevant to the evolution of multicellularity, as shall be discussed in

due course.
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Moving beyond mathematical definitions and technicalities, understanding of re-

latedness and Hamilton’s rule has had numerous impacts on our understanding of

social behaviour. For example, relatedness plays a significant role in the level of vir-

ulence in pathogens (Foster, 2005). Many bacteria have the potential to cooperate

to achieve a common good, such as by releasing enzymes which break down host

tissues; these enzymes would be associated with a higher level of virulence. How-

ever, individuals may act selfishly, and not participate in the production of public

goods; thus, low relatedness is associated with lower virulence in infections, since

low relatedness widens the opportunity for selfish behaviour (Foster, 2005; Bourke,

2011). An example of such a public good is the production of siderophores in the

bacteria Pseudomonas aeruginosa; indeed, underlining the relevance of the theoret-

ical literature on Hamilton’s rule, Griffin et al. (2004) use this system to provide

evidence for a version of Hamilton’s rule which accounts for competition between

kin.

1.4.4 Inclusive and Neighbour-Modulated Fitness

Hamilton’s rule (see equation 1.1) can be conceptualised as involving two compo-

nents of fitness. The first, c, pertaining to the fitness cost to a focal individual,

is called ‘direct fitness’, and can be summarised as the component of reproductive

success of a focal individual for which it is causally responsible (Birch, 2016). The

second, rb, pertaining to the fitness benefit to social partners weighted by related-

ness, is termed ‘indirect fitness’; it is the relatedness-weighted sum of components of

reproductive success of genetic relatives that can be accounted for by the focal in-

dividual’s effect on those relatives. The two quantities summed together constitute

‘inclusive fitness’ (Hamilton, 1964a; Marshall, 2015). Formally, inclusive fitness may

be expressed as a regression analysis (Marshall, 2015). It takes the following form,

where ω refers to relative fitness, ω0 refers to baseline relative fitness, g refers to the

genetic value of focal individuals, and primes denote properties of social partners:

ω = ω0 + gβωg·g′ + g′βg′gβω′g·g′ (1.3)

Since this is a partial regression analysis, residuals as well as intercepts do not
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correlate with either individual’s genetic value, thus they are omitted. The partial

regression terms βAB·C refer to the regression of A on B, holding C constant (i.e.

‘partialling out’), while the simple regression term βAB refers to the regression of A

on B. Here, an individual’s inclusive fitness is the sum of baseline fitness, w0, the

direct component, βωg·g′ , which comprises of fitness effects on the focal individual

caused by the focal individual, and the indirect component, which comprises of fit-

ness on the social partner caused by the focal individual, βω′g·g′ , weighted by the

relatedness term, βg′g.

This approach to fitness entails what Birch (2016) refers to as the ‘indirect repro-

duction’ view of relatedness; high relatedness means that social partners will give a

focal individual’s genes better representation in the next generation. An alternative

viewpoint is the ‘correlated interaction’ view of relatedness; high relatedness means

that a social partner is more likely to return a fitness benefit to the focal individual.

This viewpoint relates to an alternative conception of fitness, known as ‘neighbour-

modulated fitness’. Formally, neighbour-modulated fitness can, like inclusive fitness,

be expressed as a regression analysis (Marshall, 2015):

ω = ω0 + gβωg·g′ + g′βωg′·g (1.4)

Under this viewpoint, an individual’s fitness is simply the sum of fitness effects

on the focal individual caused by the focal individual, and fitness effects on the

focal individual caused by social partners. Indeed, this approach, while generating

equivalent predictions to the inclusive fitness aproach (Hamilton, 1970; Marshall,

2015; Birch, 2016), relaxes assumptions required by the inclusive fitness approach.

Hamilton (1970) spelt out the formal equivalence of the two approaches, which

Birch (2016) expanded, noting that it invoked two assumptions. Firstly, both ap-

proaches rely on the assumption of weak additivity; i.e. that fitness effects are

not determined by focal individual and social partner genotypes do not correlate

with genes. The neighbour-modulated fitness approach is more easily adjusted to

cope with deviations from additivity (Birch, 2016). Secondly, the inclusive fitness

approach makes the assumption of ‘actor’s control’; correlations between the focal
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individual and social partner’s genotypes entirely predict fitness effects. Birch gives

the example of an individual that sends an alarm call, which thus causes any benefit

to that individual of subsequently receiving an alarm call to be diminished. This

would not be accounted for under the inclusive fitness approach since the related-

ness term involves regression on the focal individual’s genotype. Despite spelling out

arguments for the stronger assumptions required by the inclusive fitness approach,

Birch does go on to suggest that it nonetheless retains great relevance, since it can

lead to more powerful conclusions regarding causation and directly costly traits.

Under the inclusive fitness approach, positive selection for an altruistic behaviour

is explained by indirect benefits, whereas under the neighbour-modulated fitness

approach, it is explained by the behaviour correlating with the return of a fitness

benefit (Birch, 2016).

1.4.5 The Price Equation

The Price Equation was introduced by George Price (1970), and allows us to model

the evolution of a given character value on the basis of natural selection and trans-

mission. Although underappreciated at the time, it has since been recognised as

being of immense importance; it makes minimal biological assumptions, and can

be extended to decompose selection at multiple levels of the biological hierarchy

(Price, 1972; Hamilton, 1975; Okasha, 2006). It can take the following form, though

there are alternative decompositions which we shall describe later on (Price, 1970;

Okasha, 2006):

∆z̄ = Cov(ω, z) + Ew(∆z) (1.5)

Here, for the ith member of the population, zi is the measure of the character of

interest, wi is the absolute fitness, ωi is the relative fitness (i.e. ωi := wi/w̄), z′i is

the mean character value of the ith individual’s offspring, and ∆zi is the difference

between the mean character of the ith individual’s offspring, and the ith individual’s

character (i.e. ∆zi = z′i− zi). The lack of a subscript indicates a vector of length n,

where n is the population size, e.g. z = (z1, ..., zn), and means over the population

are denoted with a bar, e.g. z̄ is the mean character value. Note that, following

(Okasha, 2006), we have dropped indices from ωi, zi and wi in equation (1.5) for the
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sake of readibility.

We are interested in the change in mean character value, which is given by ∆z̄

on the left-hand side. Importantly, this formula decomposes change in mean charac-

ter value into two components. The first term, Cov(ω, z) is the covariance between

the relative fitness and character value. In other words, if individuals with greater

character value on average have increased fitness, then this term will be positive.

This makes sense intuitively, since if a trait gives its bearer increased fitness, you

would expect that trait to spread.

The second term, Ew(∆z), can be interpreted as the transmission bias weighted

by relative fitness values of population members. If there is no transmission bias (in

other words a trait is, on average, passed to offspring perfectly), then ∆z = 0, and

this term is zero. However, if a trait has a tendency to be more or less represented

in offspring than their parents, this term will be non-zero (respectively; positive

or negative). Often, transmission bias is assumed to be zero, thus we arrive at a

simplified version of the Price equation:

∆z̄ = Cov(ω, z) (1.6)

We shall now follow Price’s original derivation of the Price equation (Price, 1970).

This requires some further notation in addition to that previously provided; note

that this proof is specific to genic value (Marshall, 2015), though the formulae are

general enough that they apply to genetic value and character value too, provided

that character value is a linear function of genetic value (Okasha, 2006). We consider

two populations, respectively P1 and P2; P2 is the set of offspring of members of

P1. We denote the number of copies of a gene A within an individual i by Ai, and

the total number of copies in their offspring by A′i. The maximum number of A

genes an individual can possess is the gametic ploidy, nG; thus, we label the genic

frequency of A within the ith individual as ai := Ai/nG. We want to consider the

difference in gene frequency between the two populations. Firstly, we note that the

gene frequency in P1 is trivially ā, the mean of the ai genic frequencies for individuals

in the group P1. Next, we calculate the gene frequency in P2, denoted ā′, starting
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by noting that it is the total number of A genes in offspring of P1 members, divided

by the maximum number of A genes they could possess, which is the gametic ploidy

multiplied by the total fitness of P1 individuals:

ā′ =

∑
iA
′
i∑

iwinG

=

∑
iwinGa

′
i∑

iwinG

=

∑
iwia

′
i

nw̄

=

∑
iwiai
nw̄

+

∑
iwi∆ai
nw̄

To obtain the second line, we have used the fact that the total number of copies

of a gene in the offspring of an individual is the product of the gene frequency in

the offspring in that individual, the gametic ploidy, and the fitness of the individual.

We then note that nG is constant, so can be removed, and that the mean fitness

in a population is the sum of the fitnesses of population members, divided by the

population size (i.e. w̄ =
∑

iwi/n). The final expression decomposes the measure

of character in P2 into the original character measure from P1 and the difference in

character measure between the two populations.

We now consider the covariance of w and a, by splitting it up into expectations as

follows; we then use the definition of expectation to obtain the following expression:

Cov(w, a) = E(wa)− E(w)E(a)

=

∑
iwiai
n

− w̄ā

From this, it requires some trivial algebra to plug this into our expression for ā′,

and calculate the change in gene frequency between generations:

ā′ = ā+
Cov(w, a)

w̄
+

∑
iwi∆ai
nw̄

⇒ ∆ā = ā′ − ā =
Cov(w, a)

w̄
+

∑
iwi∆ai
nw̄

⇒ ∆ā = Cov(ω, a) + Ew(∆a)
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Thus, we arrive at the Price Equation. Note that the covariance term now refers

to relative fitness, due to the weighting by w̄. We can derive a useful reformulation

of this expression by multiplying the penultimate expression through by w̄, and

replacing genic value a with the more commonly used character value z:

w̄∆z̄ = Cov(w, z) + E(w∆z) (1.7)

We also note that a reduced version of this equation is regularly used, which

assumes that there is no transmission bias; note that this formulation is an absolute

fitness version of equation (1.6):

w̄∆z̄ = Cov(w, z) (1.8)

Price made some further notes about the nature of these equations. In particular,

he noted the generality of the equation, highlighting only the assumption that gene

A ploidy is the same for all members of P1. He also pointed out that although the

derivation above assumed discrete generations, the equation in fact holds for over-

lapping generations (Price, 1970). One further point that should be made is that

there is much flexibility in our choice of character value (rather than being simply

gene frequency); Okasha (2006) gave the example of defining the character variable

as 1 if an individual has some characteristic of interest, and 0 if not; in this case,

Price’s equation holds. In fact, Price (1970) pointed out that it could be applied to

modelling change more generally; he gave a non-genetical example, in which the dif-

ference between student IQs entering a course, and those completing it, is considered.

One useful application of the Price equation involves the use of ‘breeding values’

(Queller, 1992). These are linear combinations of allelic values which are chosen to

‘best explain phenotypic variation in a trait’. By applying the Price equation to

breeding values, Queller found four equivalent ‘separation conditions’ which must

be satisfied in order to validly decompose selection into components describing the

link between phenotype and genes, and phenotype and fitness. An application of

this is found in the ‘breeder’s equation’, which calculates the response to selection

(R) as the product of a selection differential (S) and heritability (h2) (Birch and
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Marshall, 2014; Marshall, 2015):

R = Sh2 (1.9)

R corresponds to changes in mean breeding value, so, if the separation condition

is satisfied, it is possible to perform a least-squares regression of breeding value on

phenotype (i.e. readily observable information, unlike genotype), thus finding pre-

cise definitions of S and h2 (Marshall, 2015).

One final insight about the Price equation was suggested by Okasha (2006) again;

the equation depicts a statistical decomposition rather than causal one. In other

words, a component being non-zero suggests correlation rather than causation. For

example, suppose increased height in humans caused a gain in fitness, and that the

character of interest is liver size. Then there would be a significant correlation be-

tween liver size and fitness (by virtue of the correlation between height and liver

size), and hence the first component of the Price equation would be positive, but

you would not necessarily expect increased liver size to cause increased fitness.

1.4.6 Derivation and Formulations of Hamilton’s Rule

In this section we shall derive Hamilton’s rule using the Price equation; this work

follows the derivation provided by Queller (1992). It also ties in with the definition

of relatedness provided earlier, though we now choose the character of interest to be

genetic value, g.

Queller starts with the relative fitness form of the Price equation, and assumes

that there is no transmission bias; thus, we start with equation (1.6), using genetic

value:

∆ḡ = Cov(ω, g)

Next, we introduce the regression analysis form of neighbour-modulated fitness
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(equation (1.4)) into the Price equation:

∆ḡ = βωg·g′Var(g) + βωg′·gCov(g′, g)

Note that since ω0 is a constant, and we have already assumed that the residuals

and intercepts are uncorrelated with genetic value, the covariances involving these

terms are zero, so we have omitted them. Thus, we obtain a condition for the

relevant trait to receive positive selection:

βωg·g′ +
Cov(g′, g)

Var(g)
βωg′·g > 0

Now, how can we interpret this equation? The first term on the left-hand side

is βωg·g′ , the effect on the focal individual’s fitness of the genetic value of the focal

individual, assuming independence between the focal individual and social partner’s

genetic values. Thus, this corresponds to the direct fitness component, c of inclu-

sive fitness. We next note that relatedness, as shown in equation (1.2), weights the

second partial regression coefficient, βωg′·g. This describes the effect on the focal in-

dividual’s fitness of the social partner’s genetic value, g′, partialling out g, the focal

individual’s genetic value. Thus, the second component of the equation corresponds

to the indirect fitness component of inclusive fitness, rb. In other words, we have

recovered a neighbour-modulated form of Hamilton’s rule (Queller, 1992).

Queller’s formulation of Hamilton’s rule based on partial regression can be com-

pared and contrasted with a number of other, mathematically equivalent, formula-

tions (Marshall, 2015). They involve different interpretations of costs, benefits and

relatedness; for example, the cost may be calculated by the negative of either the

regression coefficient of genetic value on bearer’s fitness, or of the regression coeffi-

cient of behaviour on bearer’s fitness, in addition to the interpretation already given

(Marshall, 2015). Although each generalisation is mathematically correct, different

interpretations of r, b, and c may consequently lead to different interpretations of

social behaviour; for example, one rule may interpret a ‘greenbeard’ trait (i.e. a gene

which causes the owner to recognise other holders of the ‘greenbeard’ gene and to

donate towards them (Dawkins, 1976)) as a mutually beneficial trait, and another
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may interpret it as an altruistic trait (Marshall, 2015).

We can also introduce our expression for neighbour-modulated fitness (1.4) into

the reduced absolute fitness version of the Price equation (equation (1.8)) to obtain

an expression for the change in mean genetic value, where w̄ is simply a normalising

constant (Okasha, 2006):

w̄∆ḡ = Cov(w, g)

⇒ w̄∆ḡ = βwg·g′Var(g) + βwg′·gCov(g′, g) (1.10)

= (βwg·g′ + βwg′·gβg′g)Var(g)

⇒ w̄∆ḡ = (−c+ rb)Var(g)

This neighbour-modulated decomposition of change in mean genetic value is

useful for comparison with two approaches introduced in Section 1.6, where it shall

be taken to represent the kin selection approach in general, following Okasha’s (2015)

analysis utilising causal graphs. We shall introduce a ‘multi-level’ version of the Price

equation, and the contextual analysis approach, which can be regarded as a hybrid of

the kin selection and Price equation approaches (Okasha, 2004). However, we start

by discussing an important philosophical point underlying the use of Hamilton’s rule

and the Price equation in modelling.

1.5 Grafen’s Formal Darwinism Project

We now turn to Grafen’s ‘formal Darwinism’ project, an attempt to reconcile pop-

ulation genetic models with the argument that individuals are designed objects,

and the associated explanatory tool of them being ‘maximising agents’ (otherwise

known as the ‘individual as maximising agent’, or IMA, analogy) (Grafen, 1999,

2014a; Gardner, 2009). Population genetic models are designed according to the

principle that genotype frequencies change over time; as Grafen (2014a) notes, this

is an accurate description of the process of natural selection. Fitness maximisation

principles are represented by the Price equation and Hamilton’s rule. In particular,

inclusive fitness provides a candidate maximand; it is possible to consider a focal

individual’s genotype and ask when it maximises its own fitness. This is in contrast
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to the neighbour-modulated approach, which involves a component not directly de-

pendent on a focal individual’s genes (Birch, 2016). These approaches are widely

used in modelling, invoking the ‘phenotypic gambit’, the assumption that it is pos-

sible to study the selective benefit of a trait in an organism without knowledge of

the precise underlying genetic architecture (Grafen, 1991, 2014a). It is precisely

this assumption which Grafen aims to explore and justify in his formal Darwinism

project.

The IMA approach is not firmly grounded, as fitness maximisation does not al-

ways take place. Grafen (2014a) gives several examples in his 2014 outline of the

project, including the ‘overdominance’ scenario (in which AB heterozygotes have

higher fitness than AA or BB homozygotes, but the equilibrium frequencies include

AA and BB types), the ‘all heterozygotes’ scenario (in which there is a population

of only heterozygotes, in the same scenario - this is not stable, due to Mendelian

genetics), and the ‘separate sexes’ scenario (in which AA and BB homozygotes have

the same fitness, which is strictly greater than that of AB heterozygotes, all females

are AA type, and all males are BB type; in the next generation, all individuals

will be AB). However, application of the fitness-maximisation principle has been

the foundation for much work; in particular, the phenotypic gambit is implicitly in-

voked by field-workers, modellers, and in meta-analyses. Grafen’s aim is to provide

a formal justification for this work, and the original argument by Darwin for the

appearance of design.

Specifically, Grafen’s approach is to establish formal links between population

genetics models, and an optimisation program, which Grafen (2014a) constructs in

order to represent the fitness-maximisation approach. The links he specifies are as

follows:

‘1. If all individuals in the population solve the optimisation program,
then the expected change in every gene frequency equals zero, and there
is no possible phenotype which, if produced by a rare dominant mutant,
would initially invade the population.

2. If all individuals attain the same value of the maximand but do not
solve the optimisation program, then the expected change in every gene
frequency equals zero, but there is a possible phenotype which, if pro-
duced by a rare dominant mutant, would initially invade the population.
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3. If individuals attain different values of the maximand, then the change
in every gene frequency equals its covariance across individuals with
those attained values.

4. If the expected change in every gene frequency equals zero, and if
there is no possible phenotype which, if produced by a rare dominant
mutant, would initially invade the population, then every individual in
the population solves the optimisation program.’

The point of these links is to show that for every population genetic model, a

corresponding optimisation program can be constructed in such a way that satis-

fying the links will ensure that the maximand in the optimisation program will be

uniquely defined, and will represent fitness (Grafen, 2014a). Grafen uses the three

problem scenarios previously introduced as test cases for these links. For example,

consider the ‘separate sexes’ scenario described above. In this case, link one holds,

as gene frequencies will on average not change, even though the genotypes will be-

come suboptimal due to recombination when individuals of the two types breed with

one another. The ‘if’ statement (or antecedents) is not satisfied for link two, as the

entire population is acting optimally, and nor is it satisfied for link three, as every

individual has the same fitness. Thus, Grafen concludes that these two links ‘hold

trivially’. Link four is also satisfied - any rare mutants would be either AA or BB

type and so could not invade.

Grafen’s papers have mathematically proved links between population genetics

and IMA-based optimisation programs under more and more plausible assumptions.

His 2002 paper assumed no social interactions or frequency dependence (Grafen,

2002); however, his subsequent 2006 paper replaces the assumption of no social

interaction with the assumption that social effects are additive (Grafen, 2006).

The central point that Grafen makes in his papers is that while gene frequencies

change according to inclusive fitness, the same does not apply to genotype frequen-

cies (Grafen, 2006).

Grafen’s ‘formal Darwinism’ project was the subject of a special issue of ‘Biol-

ogy and Philosophy’ in 2014, in which he outlined the project. A wide mixture of

responses to his project (Okasha and Paternotte, 2014b) were published, and we

now briefly summarise some of the least technical of the perceived limitations and

criticisms brought up in the responses.
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Firstly, Grafen focuses only on a single level in the biological hierarchy, specif-

ically treating multicellular organisms as an ‘ideal’; this was heavily criticised as

being biased by Shelton and Michod (2014b), while Bourke (2014b) argued that

Grafen’s lack of acknowledgement of the major transitions view (the subject of Sec-

tion 1.6) of evolution is a limitation. Grafen’s (2014b) response was to suggest that

the extension to further levels of the biological hierarchy is too technically challeng-

ing.

Elsewhere, Birch (2014) argued that Grafen’s wish to demonstrate the ‘appear-

ance of design’ is beyond the scope of mathematical equations, since it is not itself

equivalent to the IMA analogy. Grafen’s (2014b) response is to allow that his project

may have been oversold, leaving open the question of how much biological reality is

covered by his project .

Birch (2016) has also noted that Grafen actually aims to link a fitness maximi-

sation program to points in a dynamical system at which there is ‘neither scope nor

potential for selection’. He argues that these points do not necessarily constitute

equilibrium points from the perspective of population genetics; thus Grafen’s argu-

ment is not sufficient to prove legitimate links. Unfortunately, Birch’s work is yet

to be published, so a response from Grafen is unavailable.

However, despite these arguments and reservations, and a number of more de-

tailed points (Grafen, 2014b), some researchers still find value in the aim of the

project, to bridge a gap in Darwin’s argument between natural selection and the

appearance of design (Gardner, 2014; Birch, 2014; Bourke, 2014b; Huneman, 2014;

Okasha and Paternotte, 2014a). Alternatively, it has been suggested that the project

is unnecessary to illustrate the importance of social evolution theory; so long as the

IMA analogy leads to correct conclusions about biological reality, it retains value

(Birch, 2016).
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1.6 Multi-Level Selection Theory

1.6.1 The Levels of Selection Problem

Up until now we have only considered selection at one level. However, in nature,

selection often acts at multiple levels at the same time. In Section 1, we briefly

discussed the example of cancers, in which selection at the level of the cell conflicts

with selection at the level of the organism (Foster, 2005). Thus, we need to con-

sider the effects of selection on multiple levels. For simplicity, in the following, we

shall consider selection at two different levels. Following Okasha (2006), we refer

to individuals at the lower level as ‘particles’, and individuals at the higher level as

‘collectives’. Collectives are assumed to be non-overlapping groups of particles.

We want to consider the selection of characters at both of these levels, but this is

difficult, because we also need to consider the relation between particle and collective

characters. There is a distinction to be made between different types of collective

character. Collective characters which are directly dependent on the characters of

particles within the collective are known as ‘aggregate’ characters. For example,

if the relevant particle character is height, then average particle height within the

collective would be an aggregate character. Collective characters which are indi-

rectly dependent on characters of particles within the collective, instead pertaining

to relations between the characters, are known as ‘emergent’ characters. For exam-

ple, variance in particle height within the collective would be an emergent character

(Okasha, 2006).

We must consider two alternative perspectives of multi-level selection, that differ

in their treatment of the ‘focal’ level of selection - these are referred to as multi-level

selection 1 (MLS1) and multi-level selection 2 (MLS2) (Damuth and Heisler, 1988;

Okasha, 2006). In MLS1, the focal individuals are particles. Particles are organ-

ised into collectives, and any character based on collective membership is referred

to as a ‘contextual’ character of particles within the group. Thus, the examples of

aggregate and emergent character given in the previous paragraph would be con-

sidered contextual characters of particles under the MLS1 perspective. Character

and fitness are properties of particles, and the fitness of collectives is simply defined

to be the mean fitness of the constituent particles. Selection between collectives
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affects particles, but no inferences can be made about frequencies of different types

of collectives within the population.

In MLS2, by contrast, both particles and collectives are the focal individuals; in

other words, they both possess the properties of character and fitness. It follows

then, that collective fitness is treated independently of particle fitness. In this sce-

nario, we are interested in the evolution of different kinds of collectives as opposed

to particles (Damuth and Heisler, 1988; Okasha, 2006).

There are several things to note here. Firstly, the choice between modelling

MLS1 and MLS2 is not a matter of taste, it is a matter of suitability. The question

of when exactly we should apply MLS1 or MLS2 is not always straightforward, and

we shall return to this later on. Secondly, ‘particles’ and ‘collectives’ simply denote

individuals on two levels of the biological hierarchy, with the relations previously

described - they aren’t meant to denote specific levels. Finally, one of the problems

that we face is quantifying selection at different levels; in the next three sections,

we discuss approaches to understanding this problem.

1.6.2 The Price Approach to MLS1

It takes a simple extension to expand the Price Equation from the single-level sce-

nario to the multi-level scenario; this process is described by Okasha (2006), more

rigorously described by Wade (1985), and originally introduced by Price (1972). We

start by considering selection at the level of the particle, and assume that there is no

transmission bias - this can be reintroduced into our final equation if the assumption

does not hold, but for simplicity we start with equation (1.8):

w̄∆z̄ = Cov(w, z)

Corresponding to our previous notation, w̄ refers to mean absolute particle fit-

ness, z̄ refers to mean particle character, w is the vector of absolute particle fitnesses

wi, and z is the vector of particle characters zi. We now make use of the MLS1 ap-

proach, thus taking collective fitness, Wi to be the mean of particle fitness within

the ith particle’s collective, and also taking collective character, Zi to be the mean of
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particle character within the ith particle’s collective; note that this latter assumption

is not necessary under the MLS1 approach, but it allows us to simplify equations. It

also means that the character of interest is an aggregate character. Note also that

we use upper cases to refer to properties of collectives, and lower cases to refer to

properties of particles. In addition, the subscript i denotes the particles to which a

property belongs; since this is an MLS1 perspective, properties of the collective to

which a particle belongs are ascribed to the particle.

Under these assumptions, we can apply a decomposition to the right-hand side

and arrive at the following expression (Wade, 1985; Okasha, 2006), in which we have

included the subscript j to make the point that the second term is the expectation

of the particle-level covariance between character and fitness, calculated across all

collectives j:

Cov(w, z) = Cov(W,Z) + E(Covj(w, z))

We therefore obtain a partition of selection into two different levels:

w̄∆z̄ = E(Covj(w, z)) + Cov(W,Z) (1.11)

The first component of the right-hand side can be interpreted as the particle-level

selection, whereas the second component can be interpreted as the collective-level

selection. Of course, this equation only applies to MLS1 and aggregate characters,

as it relies on the assumptions of collective character being mean particle character,

and collective fitness being mean particle fitness. Under MLS2, we can do little

more than apply the single-level Price equations at the collective level, and also at

the level of the particle, for each collective (Okasha, 2006).

1.6.3 The Contextual Analysis Approach to MLS1

An alternative decomposition of selection on multiple levels is provided by the con-

textual analysis approach; once again, this is relevant only to MLS1. The essential

idea of contextual analysis is simple - to perform a regression of particle fitness

w on both particle character z, and collective character Z, in the simplest case
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(Heisler and Damuth, 1987). In this way, the relative strengths of within-group and

between-group selection are evaluated. The collective character Z could be either

an aggregate or emergent character, but, either way, it is the particles which are

considered to possess both particle and collective character, since this is only rele-

vant to MLS1; this motivated Heisler and Damuth to refer to collective characters

as ‘contextual’ characters.

Thus, the following linear regression model of particle fitness is created; we follow

Okasha (2006) as opposed to the more complex terminology of Heisler and Damuth,

though unlike Okasha we fully display partial correlation coefficients in order to

more explicitly convey their meaning:

w = βwz·Zz + βwZ·zZ (1.12)

In reality, we would need to include an intercept and errors as well as, depend-

ing on our model assumptions, other possible explanatory variables and interaction

terms, but for simplicity they are omitted (Okasha, 2006). Following standard par-

tial regression notation, the coefficient βwz·Z is the effect of particle character on

particle fitness, partialling out collective character. Similarly, βwZ·z is the effect of

collective character on particle fitness, partialling out particle character. It is then

simple to insert this into the reduced form of the Price equation (1.8), giving the

following:

w̄∆z̄ = Cov(βwz·Zz + βwZ·zZ, z)

= βwz·ZVar(z) + βwZ·zVar(Z) (1.13)

As with the Price Equation form of multi-level selection, the first component of

the right-hand side can be interpreted as the particle-level selection, whereas the

second component can be interpreted as the collective-level selection. Note that

the intercept will never covary with z, the errors are assumed not to, and we have

assumed that there are no other possible explanatory variables or interaction terms.

By definition, Var(z) = Cov(z, z), and we also note that Var(Z) = Cov(z, Z), if
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we again make the assumption that Z is an aggregate character. We interpret the

first term in equation (1.10) as accounting for the direct causal influence of particle

character on particle fitness, and the second term as accounting for the by-product

of selection at the level of the collective (Okasha, 2006). This is known as a ‘cross-

level by-product’ in the downwards direction. In other words, this component of

collective-fitness covariance at the level of the particle is detected as being a by-

product of collective-fitness covariance at the level of the collective; this link is not

necessarily causal. Cross-level by-products are also possible in the upwards direction

- this can be easily envisaged, since it is very possible that particle character has a

causal effect on particle fitness, which in turn may have a causal effect on collective

fitness, and collective character; thus there will be a spurious character-fitness co-

variance at the level of the collective (Okasha, 2006).

Thus, under the same assumptions as the Price approach, we have obtained an

alternative decomposition of selection, which is mathematically equivalent, but not

causally equivalent in interpretation.

We can also note the similarity between the contextual analysis and kin selection

approaches (equation (1.10); note that genetic values g and g′ here could be replaced

with phenotypic values, z and z′ (Okasha, 2004)); essentially, the contextual analysis

approach regresses on collective character instead of neighbour character. Indeed,

the two components of the kin selection approach can be considered to be relevant

to particle-level selection and collective-level selection, respectively. Okasha (2004)

derives a simple mathematical relation between social partner character, individual

character, and collective character, and notes that the component of neighbour-

modulated fitness derived from social partners is conceptually similar to the group

selection component of the contextual analysis approach. Thus, the three approaches

to partitioning fitness relevant to multi-level selection, captured by equations (1.10),

(1.11), and (1.13), bear comparison; this is the subject of the next subsection.
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1.6.4 Problems with the Price, Contextual and Kin Selec-

tion Approaches in MLS1

We have established that the Price, contextual, and kin selection approaches are

all mathematically valid, but there can be problems in interpretation, as they do

not provide the same causal explanations. In this section, we shall apply Okasha’s

(2015) causal graph approach to illustrate some examples of when each approach

fails . He describes a model in which possible variables are particle character zi,

average character of social partners is z′i (note that social actions are not necessarily

pairwise), collective character is Zi, particle fitness is wi, average fitness of social

partners is w′i, and collective fitness is Wi. As before, upper cases denote properties

of collectives, lower cases denote properties of particles, and subscripts are used to

denote the particles to which a property is considered to belong.

Okasha (2015) notes that for each analysis to provide a causally valid decompo-

sition of selection, any statistical associations detected must be wholly the result of

direct causal influence between variables. His idea is to make this explicit, display-

ing causal graphs for certain example situations which make clear the applicability

of each approach. For the Price approach to be causally valid, by examination of

equation (1.11), we can see that the only direct causal link to Wi must be from Zi,

and the only direct causal link to wi must be from zi. Likewise, for the contextual

analysis approach to be causally valid, by examination of equation (1.13), we see

that the only direct causal links to wi must be from zi and Zi. Finally, by exam-

ining the kin selection approach, represented by equation (1.10), we see that, after

substituting character values for genetic values, the only direct causal links to wi

must be from zi and z′i.

The much-discussed ‘soft selection’ scenario (Goodnight et al., 1992; Okasha,

2006) is a scenario in which all collectives have the same fitness regardless of their

composition; thus, there is no selection at the level of the collective, according to the

Lewontin conditions (see section 1.2). However, the fitness of a particle is depen-

dent on its relative size (for example, size could be replaced by any other method of

ranking particles on the basis of phenotype) within the collective. To illustrate this

in terms of Okasha’s causal graph approach, we simply note that there are causal

37



links from particle character and partner character to collective character, and that

particle (partner) fitness is determined by particle (partner) character, collective

character, while collective fitness is constant. This causal graph is displayed in Fig-

ure 1.1.

Figure 1.1: Causal links in the ‘soft
selection’ scenario.

In the case of the Price approach, since there

is no causal link from Zi to Wi, no compo-

nent of collective-level selection is detected. This

corroborates with the Lewontin conditions, and

thus the Price approach provides a correct causal

decomposition of selection in this scenario. Next,

we consider the contextual approach. The soft

selection scenario has frequently been touted as

a prime example of a failing of the contextual

approach, and the reason for this can be seen by

observing that both direct and indirect causal

links from zi to wi and z′i to w′i are present. As pointed out by Goodnight et al. (1992)

and Okasha (2006), contextual analysis wrongly detects a component of collective-

level selection, since there are collective effects on particle fitness. The kin selection

approach also fails to reflect causality here, since particle character indirectly affects

particle fitness, and partner character indirectly affects partner fitness.

On the other hand, we can consider an alternative scenario, the ‘non-social trait

case’, in which a particle’s fitness is determined solely by its character. Particles are

sorted into groups at random, independently of character. A correct causal decom-

position of selection here will not attribute any selection to the collective level, since

collectives are entirely arbitrary. However, collectives will have varying mean parti-

cle character and fitness, and thus a spurious covariance between collective character

and fitness will be detected by the Price approach - this is a cross-level by-product,

arising from the covariance between character and fitness at the level of the particle.

This situation is described and discussed by Heisler and Damuth (1987) and Okasha

(2006, 2015); Figure 1.2 depicts the causal graph for this scenario, adapted from a

similar figure in Okasha’s (2015) causal graph paper. It is pointed out by Okasha

that the kin selection approach applies here, since there are only direct causal links
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from zi to wi and z′i to w′i. There is no correlation between partner character and

particle fitness, so no collective-level component of selection is detected. Similarly,

the contextual approach also applies, as noted by Heisler and Damuth (1987) and

Okasha (2006) - this is because the contextual approach correctly accounts for the

cross-level by-product. As shown in Figure 1.2, there are direct causal links from zi

to Zi and from wi to Wi.

Figure 1.2: Causal links in the ‘non-
social trait’ scenario (adapted from
Okasha (2015)).

Elsewhere, Okasha (2004) has noted that the

contrasting results in these two scenarios come

from every decomposition having to balance dif-

ferent types of error. On the one hand, we only

want selection at the level of the collective to

be detected if there is variance in collective fit-

ness. The Price equation makes no mistake here,

since the collective-level selection component is

a product of Cov(W,Z). The kin selection and

contextual analysis approaches fail, as illustrated

by the soft selection scenario.

On the other hand, we also want selection at the level of the collective to only be

detected if individual fitnesses are group-dependent; if this is not satisfied, false pos-

itives are possible in detection of selection at the collective level. The Price approach

does not satisfy this condition, as illustrated by the non-social trait group scenario.

The contextual analysis approach was created to solve this problem (Heisler and

Damuth, 1987; Okasha, 2004), by introducing the partial regression of fitness on

collective character; the kin selection approach satisfies the condition by conducting

a partial regression of particle fitness on social partner character.

Other examples can be found of scenarios in which one or more of the three

approaches to decomposing selection fail to provide an adequate causal explanation,

but the point here is that not every approach is applicable all of the time. Illustrating

where causal links are in a given situation can help to choose one of the three

approaches.
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1.7 The Inclusive Fitness Controversy

Recent debate has erupted over the status of inclusive fitness theory, particularly

in relation to multi-level selection theory (Nowak et al., 2010; Abbot et al., 2011;

Marshall, 2011; Gardner et al., 2011). Charges levelled at inclusive fitness theory

by Nowak et al. (2010) include that it does not extend beyond ‘standard natural

selection theory’, that there is a lack of evidence, that it has not made a meaningful

contribution, and that it requires many assumptions, including weak selection and

additive, pairwise interactions. While inclusive fitness theory underlies specific un-

derstanding of certain systems, such as the evolution of eusociality (social groups of

multicellular organisms in which a major transition - defined in the next section -

has occurred), Nowak et al. (2010) pay particular attention to the haplodiploidy hy-

pothesis, which describes how haplodiploidy (a type of breeding system) predisposes

species to eusociality (Hamilton, 1964b, 1972); they present an alternative theory of

eusociality, based loosely around multi-level selection.

Swift responses were delivered to Nowak et al. (2010); over one hundred aca-

demics co-authored a rebuttal (Abbot et al., 2011) which addressed each of the points

raise by Nowak et al. (2010). Firstly, Abbot et. al. argue that Nowak et. al. misun-

derstand inclusive fitness theory in relation to ‘standard natural selection theory’;

Nowak et. al. seem to view ‘standard natural selection theory’ as simply involv-

ing analysis of neighbour-modulated fitness, incorrectly relabelled as direct fitness,

instead of inclusive fitness (Marshall, 2011). Abbot et. al., by contrast, consider

the role of natural selection differently; rather than involving maximisation of any

quantity, natural selection is the mechanism by which individuals maximise their

inclusive fitness (though this statement rather ignores neighbour-modulated fitness,

and the work of Grafen (1999, 2014a), described in Section 1.5). Abbot et al. (2011)

also state, straightforwardly, that none of the assumptions Nowak et al. (2010) view

as necessary for inclusive fitness are actually required. Further, Abbot et. al. provide

examples of a large number of behavioural phenomena which have been understood

with the aid of inclusive fitness theory, and a further number of examples of be-

haviours within the field of eusocial insects about which ift has made successful

predictions. They regard Nowak et. al.’s targeting of the haplodiploidy hypothe-

sis a straw man argument, since the importance of haplodiploidy to the evolution
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of eusociality has since been understood to be much smaller than initially thought

(Abbot et al., 2011).

More in-depth critiques have been provided of these points, and a number of

other criticisms of inclusive fitness theory in the literature (Marshall, 2011; Bourke,

2011; Gardner et al., 2011; Birch and Okasha, 2014; Birch and Marshall, 2014).

Birch and Marshall (2014) argues that a charitable reading of Nowak et al. (2010)

is that they are in fact arguing against a particular form of Hamilton’s rule, and

that poor presentation and misinterpretation of their argument has led to a contin-

uing debate. However, Birch and Marshall (2014), along with many other authors

(Abbot et al., 2011; Bourke, 2011; Gardner et al., 2011), refute claims against the

generality of inclusive fitness; discussion of the actual level of generality of inclusive

fitness, particularly in comparison to neighbour-modulated fitness, is located in Sec-

tion 1.4.4. Marshall (2011) specifically focuses on Nowak et. al.’s (2010) preference

for a multilevel, or group, selection approach, seeing this as a resurgence of an old

strain of arguments arguing for the primacy of one approach or the other; in fact, as

Marshall (2011) shows and as we have mentioned, the kin selection and multilevel

selection approaches are mathematically equivalent.

In response to the claim by Nowak et al. (2010) that there is a lack of evidence for

inclusive fitness theory, Bourke (2014a) has provided a thorough review of a number

of studies that provide explicit tests of Hamilton’s rule. One such study is that of

Hatchwell et al. (2014); their long-term study of the cooperatively breeding long-

tailed tits Aegithalos caudatus has yielded data which allows individual estimates

of the components of Hamilton’s rule, r, b, and c. This is specifically possible in

this species since complete life-histories of individual birds are easily obtainable due

to short life-spans and there are a limited set of actions within a relatively simple

breeding system; if an individual fails to breed in the breeding season, it helps to

rear offspring of related individuals. Hatchwell et al. (2014) analyse the relatedness

of helping individuals to the breed parents whose offspring they help to rear, the

benefits of helping through increased survival of young and a reduced burden on

the male parent, and the costs of helping in terms of future productivity. Thus,

Hatchwell et al. (2014) obtain values of r and b relating to each benefit, and a single

value of c. Together, these components show that Hamilton’s rule is satisfied for
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the helping behaviour, and that it primarily rests on the benefit of brood produc-

tivity rather than the reduced burden on the male parent. This is, of course, just

one example of a study which aims to quantify and check Hamilton’s rule (Bourke,

2014a).

While Nowak et. al.’s (2010) paper resulted in a great deal of attention, subse-

quent papers criticising inclusive fitness theory have provoked less response. Given

how thoroughly each point has been refuted (Marshall, 2011; Bourke, 2011; Gard-

ner et al., 2011; Birch and Okasha, 2014; Birch and Marshall, 2014), the status of

inclusive fitness theory as being part of the status quo does not remain validly ques-

tioned; thus, this topic remains a side-note, and the rest of this thesis will continue

to use kin selection and inclusive fitness theory unimpeded.

1.8 The Major Transitions

The central idea of the major transitions view of evolution is that all organisms can

be organised into a biological hierarchy, in which individuals at one level evolved

through particles at the lower level cooperating to such an extent that collectives

attain individuality at a higher level (Buss, 1987; Maynard Smith and Szathmáry,

1995; Bourke, 2011; West et al., 2015). The general principles involved in each of

the ‘evolutionary transitions in individuality’ (ETIs) are the subject of the major

transitions view of evolution.

Bourke (2011) defines major transitions as ‘transitions that involve the evolution

of individuality, or at least groupings that are regarded as being candidates for indi-

viduals’. This refers back to the philosophical uncertainty of the exact definition of

an individual. Bourke provides a definition (‘some stable, physically discrete entity

that is composed of interdependent parts acting in a coordinated manner to achieve

common goals and is typified by the very property of lacking a high degree of within-

individual conflict’, with the qualification that ‘physically discrete’ means ‘parts of

the individual are either physically joined or tend to remain in close proximity’),

though recognises that it is not precise, and is possibly wider than that considered

elsewhere in the literature - again, this echoes the problems highlighted elsewhere
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(Clarke, 2010). The concept of individuality, relabelled ‘organismality’ by Queller

and Strassmann (2009) shall be returned to in Chapter 5. Bourke’s definition en-

sures that each of the major transitions considered is structurally similar. Maynard

Smith and Szathmary considered a slightly wider definition of the major transitions,

suggesting that they could involve transitions in ‘the language whereby information

is transmitted’; thus, they considered the evolution of RNA, and human language,

as major transitions. Clearly, these do not fit under Bourke’s definition, as they do

not involve the grouping of individuals (Maynard Smith and Szathmáry, 1995). We

list Bourke’s (2011) more recent classification of six major transitions in table 1.2,

adapting the information from his table 3.1 :

Table 1.2: Classification of Major Transitions

Transition Egalitarian/Fraternal? Between/Within Species?

Separate replicators (genes) ⇒ Cell enclosing genome Both Within

Separate unicells ⇒ Symbiotic unicells Egalitarian Between

Asexual unicells ⇒ Sexual unicells Egalitarian Within

Unicells ⇒ Multicellular organisms Fraternal Within

Multicellular organisms ⇒ Eusocial societies Fraternal Within

Separate species ⇒ Interspecific mutualisms Egalitarian Between

We have included some details about each transition that require further expla-

nation. Two decompositions of types of major transitions shall be identified. The

first of these is the distinction between transitions that occur between or within

species. The second decomposition was suggested by David Queller (1997) when re-

viewing Maynard Smith and Szathmary’s book; he took inspiration from the French

revolutionary motto, ‘Liberté, Egalité, Fraternité’ to propose that there are two

types of major transition; ‘egalitarian’, and ‘fraternal’, alternatives to the ‘libertar-

ian’ way of life. Egalitarian transitions occur when social groups of non-relatives

come together to form an individual at a higher level of the biological heirarchy.

Non-relatives could be conspecifics or non-conspecifics; either way, the only social

behaviours that can occur are mutually beneficial. Thus, during an egalitarian tran-

sition, these individuals must retain their own reproductive capabilities. Fraternal

transitions occur between genetically-related individuals, and thus can only occur

within species. At the end of a fraternal transition, a reproductive division of labour

will occur; this is possible since genetic relatedness allows altruism (Bourke, 2011;
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Queller, 1997, 2000).

Bourke’s (2011) recent work, ‘Principles of Social Evolution’, decomposed the

major transitions into three components - social group formation, maintenance,

and transformation . Social group formation consists of the initial spread of social

behaviours in a population; social group maintenance refers to the stage at which

processes for the control of conflicts are developed, and social group transformation

refers to the processes that transform a stable group into an individual in its own

right. The order of these stages may not be entirely strict; aspects of one stage

may actually occur before or after aspects of another (McShea and Changizi, 2003).

Note that each step in a major transition will not necessarily arise after the previous

step; evolution is not necessarily progressive (Maynard Smith and Szathmáry, 1995;

Bourke, 2011).

1.9 Thesis Structure

The aim of this thesis is to discuss questions relating to the major transitions in evo-

lution, through the lens of social evolution theory. We now briefly discuss the struc-

ture of the thesis, and how each question fit into the major transitions framework.

The models we present involve between-species interactions. Recall, as discussed

in Section 1.8, that fraternal transitions, involving relatedness between interacting

individuals, can involve altruism. Egalitarian transitions, similarly introduced in

Section 1.8, do not involve relatedness between interacting individuals, and require

mutually beneficial social behaviour. The four types of social behaviour, altruism,

mutual benefits, spite, and selfishness, were introduced in Section 1.3.

While inclusive fitness theory and multilevel selection theory, discussed in Sec-

tions 1.4-7, are explicitly invoked to varying degrees over the following chapters, they

both underlie a wider understanding of analysis of social behaviours. For example,

relatedness and the categorisation of social behaviours are given particular weight

in Chapter 3, while selection at the level of the group is an important aspect of the

model considered in Chapter 4. Chapter 2 gives more detailed introductions, and

literature reviews, of topics relating to the specific modelling contexts of Chapters 3

and 4, supplementing the theoretical background we have introduced in this chapter.
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Chapter 3 discusses models of pairwise between-species donation, using a mod-

ification of the donation game discussed in Section 1.4.1; under what conditions

does between-species donation behaviour spread, what parallels exist to biological

reality, and how can donation behaviour be classified according to the four-way de-

composition of social behaviours provided in Section 1.3? It has been proposed that

between-species donation amounts to between-species altruism, which would imply

the possibility of the existence of fraternal transitions between species, which are

notably absent from Table 1.2.

In Chapter 4, we discuss a question related to egalitarian transitions between

species, introducing a model of maternally-transmitted symbionts. We are inter-

ested in when reproductive parasites can become mutualists, engaging in mutually-

beneficial behaviour between species. This is a necessary condition for an egalitarian

transition between species.

Finally, in Chapter 5 we discuss further theories regarding the major transi-

tions, focusing in particular on fraternal transitions within species. This is fertile

ground for future research, and in particular relates to Bourke’s (2011) social group

transformation stage of an ETI .
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Chapter 2

Between-Species Interactions:

Donation, Symbiosis, and

Sex-Ratio Distortion

2.1 Introduction

In Chapter 1, we introduced the idea of the major transitions in evolution, and sev-

eral related topics, including inclusive fitness theory and multi-level selection theory.

We now turn to specific areas within this wide field of study, starting with some

discussion of models of between-species donation and proposed between-species al-

truism (Section 2.2) and introducing the concept of greenbeard genes (Section 2.3),

establishing the context for the model we analyse in Chapter 3. In addressing

proposed models of between-species altruism, this chapter focuses on fraternal tran-

sitions between species.

We also introduce some further background relating to endosymbiosis and sex-

distortion, and look at models of sex-distortion in the context of parasite invasions

and transitions from parasitism to mutualism (Section 2.4). This will be relevant

to Chapter 4, in which we discuss a model of maternally-transmitted sex-distorting

symbionts in a host population. Since mutualism is necessary for an egalitarian

major transition, this chapter focuses on egalitarian transitions between species.
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2.2 Between-Species Donation

Fraternal transitions in individuality require altruism; examples of fraternal transi-

tions are those from unicellularity to multicellularity, and from multicellularity to

eusociality (Bourke, 2011). Both of these transitions are within species, since al-

truism requires relatedness. However, there have been attempts to generalise the

concept of relatedness to between-species interactions (Frank, 1994; Fletcher and

Doebeli, 2009), thus allowing the argument that altruism is possible between mem-

bers of different species. Were this possible, theory surrounding major transitions

would require some reconsideration, since fraternal transitions could in principle be

possible between different species. Therefore, claims that between-species altruism

is possible require careful examination; various models have been proposed arguing

this, which are examined in the next section.

Chapter 3 discusses models of between-species donation, intended to test whether

or not stable altruism can occur between species. We now introduce and discuss

aspects of the literature relating to between-species donation.

2.2.1 Previous Models

An early discussion of altruism in the context of between-species interactions was

provided by Trivers (1971), who coined the term ‘reciprocal altruism’ to describe

altruism that occurs without relatedness. He argued that if reciprocal altruists are

non-randomly paired with other reciprocal altruists, their expected fitness may be

greater than non-reciprocal altruists. However, since social behaviours are defined

by expected lifetime fitness, the behaviour Trivers calls ‘reciprocal altruism’ is actu-

ally correctly defined as mutually beneficial rather than altruistic (Hamilton, 1996).

Recall that both altruistic and mutually beneficial behaviour involve social partners

receiving some fitness benefit; however, altruism involves incurring an expected life-

time fitness cost, as opposed to the expected lifetime fitness benefit associated with

mutually beneficial behaviour (see Table 1.1).

Frank (1994) considers a model of donation between groups of hosts and mutual-

ists, using it to show that selection can create positive correlations between donation

alleles in two species. He compares two classifications of social behaviour recognised
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in the literature to the behaviour expressed in this model. He argues that the do-

nation behaviour is not altruism due to kin selection, since donators do not directly

donate to related individuals of the same species. He also argues that it is not what

Trivers terms ‘reciprocal altruism’, since reciprocity here involves correlations rather

than direct return of fitness benefits. Instead, Frank summarises the behaviour as

altruism resting on a genetic correlation between species.

Fletcher and Zwick (2006) also focus on proposed altruism between species, by

attempting to unify Queller’s (1985) formulation of Hamilton’s rule and reciprocal

‘altruism’. They consider an iterated prisoner’s dilemma, a donation game in which

two individuals are repeatedly given the chance to either cooperate, donating some

fitness benefit b to the social partner while incurring a fitness cost c, or defect, in

which case no fitness changes are made. Possible strategies are to always defect,

always cooperate, or act conditionally on the social partner’s behaviour. When Ax-

elrod and Hamilton (1981) considered this game, they discovered that the relatively

simple tit-for-tat strategy (specifying cooperation if the social partner cooperated

last round and defection if not) was an evolutionarily stable strategy (ESS: in a

pairwise scenario, a strategy is an ESS if and only if the ESS yields greater fitness

to an individual than any other strategy, in interactions with other ESS individuals

(Maynard Smith and Price, 1973)). Note that we consider a non-iterated version of

the prisoner’s dilemma in Chapter 3.

Fletcher and Zwick firstly consider an asymmetric version of the iterated pris-

oner’s dilemma; that is, benefits and costs differ across species, though the cost to

a given individual is always less than the benefit gained from a cooperating mem-

ber of the other species. In this case, the tit-for-tat strategy is stable for both

species. They also find that it is possible for cooperative behaviours to be stable

in the symmetric (i.e. benefits and costs relating to cooperation and defection do

not vary across species) version of the iterated prisoner’s dilemma when different

potentially-cooperative strategies are considered across species. However, they note

that the reason for the social behaviour reaching fixation in both populations is in

fact that cooperators have greater expected fitness than defectors. Thus, although

their analysis is framed as a discussion of altruism, in fact, by once again applying

the definitions described in Chapter 1, this social behaviour is instead classified as
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mutually beneficial.

Foster and Wenseleers (2006) analyse two-species interactions with a general

model focusing on the evolution of mutualism. Their model assumes that fitness

benefits donated from an individual in a group to member(s) of an associated group

of another species are returned, and that this feedback has several causes; cooper-

ator association, partner-fidelity feedback, and partner choice. Cooperator associa-

tion refers to the tendency of individuals with genotypes that specify cooperation

to be paired, partner-fidelity feedback refers to cooperation causing passive pheno-

typic effects in the partner species that provide feedback benefits (e.g. increases

in group size or survival), and partner choice refers to cooperation causing active

phenotypic effects in the partner species, such that partners discriminate between

cooperators and non-cooperators. These latter two effects correspond, respectively,

to what Queller (2011) labels ‘kith’ and ‘kind’ selection; he derives an extended

version of Hamilton’s rule that includes terms relating kin, kith and kind selection.

Foster and Wenseleers (2006) derive a condition for the spread of the donation

behaviour, which resembles Hamilton’s rule; however, while the cost and benefit

terms relate to the social behaviour in the model, the relatedness term is replaced

by the sum of three components, each relating to the effects described above.

Each of the three components of fitness feedback are analysed in turn. Co-

operator association is shown to be a form of genotype assortment across species;

the mathematical form found by Foster and Wenseleers (2006) is in fact equivalent

to what Frank (1994) terms between-species relatedness. However, this effect re-

quires that mutualist genotypes remain associated across generations; Foster and

Wenseleers consider this a limiting constraint. They emphasise the importance of

partner-fidelity feedback in relation to cooperator association; indeed, in this model,

partner-fidelity feedback tends to have a greater effect than cooperator association,

since phenotypic changes can occur much more quickly than genetic changes.

Foster and Wenseleers (2006) conclude that cooperator association mechanisms

tends to be disproportionately represented in the literature. Partner-choice mecha-

nisms, on the other hand, are potentially very effectual since they can involve high
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within-species relatedness and between-species fidelity (the tendency of different

species to remain associated over time); however, they are usually found in only one

species in a mutualism, thus are not sufficient to entirely explain the evolution of

a given mutualism. Throughout this model, Foster and Wenseleers identify within-

species relatedness as having particular importance to the evolution of mutualism;

they decompose cooperator assortment in such a way that it is dependent on within-

species relatedness. The importance of within-species relatedness to between-species

donation with cooperator association has been noted by other authors, and may ap-

ply to the model of between-species donation we discuss in Chapter 3.

A contrasting viewpoint is apparent in a more recent paper by Fletcher and

Doebeli (2009); they view altruism between species as possible, with assortment

between species as fundamental to that. They consider a two-locus model, in which

A and B genes encode for donation to a public good, whereas recessive a and b

genes do not; AB individuals are not viable. Assortment is applied such that Ab

and aB individuals are paired up as much as possible; under this assortment, the A

and B alleles go to fixation. They argue that the donation behaviour, which they

label altruism, reaches fixation due to assortment, which they consider to be a more

general form of relatedness. Fletcher and Doebeli also consider an extension to this

model, in which Ab and aB individuals suicidally donate with probability q. They

conclude that this scenario is possible for some parameter values, and take it as

an ultimate example of altruism between non-relatives. Therefore, they conclude,

assortment is a fundamental mechanism, and relatedness is simply a particular case

of this mechanism; thus, altruism can evolve in the absence of genetic relatedness.

Gardner et al. (2011) apply a kin selection analysis to Fletcher and Doebeli’s

thought experiment, specifically focusing on the extension involving suicidal dona-

tion. They use a regression analysis to obtain the cost, benefit and relatedness

according to Hamilton’s rule, recovering Fletcher and Doebeli’s condition for the

spread of donation. However, unlike Fletcher and Doebeli, Gardner et. al. conclude

that the coefficient of relatedness is in fact 1 rather than 0, citing the fact that

relatedness is genetic rather than genotypic (see also Table 7.1 in Marshall (2015)).

Thus, Fletcher and Doebeli’s statement that assortment is more fundamental than

relatedness is unfounded.
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A further discussion of the possibility of altruism between species was carried out

by Wyatt et al. (2013). They consider an infinite one-dimensional stepping-stone

model, in which each patch holds an individual of each species who play a single-shot

prisoner’s dilemma. As before, donators confer b fitness to the social partner, and

incur c loss of fitness. However, under this model all individuals are replaced with

clonal offspring every generation, apart from a proportion of patches in which com-

petition occurs between adjacent individuals of the same species for reproduction in

those patches. Wyatt et. al. consider the invasion of donators into a population of

non-donators, observing that two paired helpers of different species may give rise to

an expanding chain of adjacent helpers. Indeed, they derive a mathematical condi-

tion for donators to receive positive selection.

The most significant aspect of Wyatt et. al.’s work is their analysis of this social

behaviour. Is it truly between-species altruism or not? They consider a regression

analysis of fitness, observing that the choice of predictors is important. For example,

an individual’s fitness is dependent on both their genes, their social partner’s genes,

the genes of the potential competition for reproduction (i.e. same-species individ-

uals two patches away), and the genes in the corresponding two-step neighbours

of the other species. Using these predictors, a regression on fitness concludes that

donation is directly costly, with benefits dependent on the other species; thus, the

behaviour is classified as between-species altruism.

An alternative approach is to consider only genetical predictors from members

of the same species, in which case only genes of same-species individuals of previous

generations are used as predictors, as the genes of members of the other species are

dependent on these. Under this regression analysis, the behaviour is diagnosed as

within-species altruism, since it is directly costly and any indirect fitness benefits are

due to member of the same species. This reflects the work of Foster and Wenseleers

(2006), who considered that within-species relatedness plays an important role in

stable social behaviour between species.

Ultimately, Wyatt et. al. leave an open conclusion, stating only that between-

species altruism is not an exclusive interpretation of a social behaviour, since benefits
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can be traced back to member of the same species.

The model we consider in Chapter 3 is an adaptation of the model that Fletcher

and Doebeli (2009) discuss, which involves a single-shot prisoner’s dilemma between

assorted, but allegedly unrelated, members of the same species. The simplest form

of the model we consider can be considered as analogous to the model of Fletcher

and Doebeli, except that interactions are now specifically between-species; thus, we

avoid the ambiguities of relatedness and assortment which complicate interpretation

of their model. The simplicity of our between-species model allows for considera-

tion of different types of assortment and possible mechanisms which allow between-

species donation to remain stable.

2.3 Greenbeards

An application of the model considered in Chapter 3 is to the study of greenbeard

traits; we briefly introduce and summarise these here. Greenbeard genes are genes

which satisfy several conditions; they cause bearers of the greenbeard gene to recog-

nise other bearers of the greenbeard gene and behave differently towards them. The

idea, and name, for greenbeard genes arose as a result of a thought experiment, in

which the recognition component of the greenberad gene behaviour took the form

of literal green beards (Dawkins, 1976). Greenbeards may be ‘facultative’, in which

case greenbeard individuals adjust their behaviour in response to other greenbeard

individuals, or ‘obligate’, in which case greenbeards individuals perform a fixed

behaviour which differentially affects greenbeard individuals and non-greenbeard in-

dividuals (Gardner and West, 2010).

The social ameoba D. discoideum forage for bacteria in forest soil, but if food

is scarce, some cells will altruistically sacrifice themselves to allow related cells to

form clusters of spores which can relocate to find better food sources. The csA gene

allows the formation of these spores through cellular adhesion, thus qualifying as an

obligate greenbeard gene since non-csA individuals cannot be part of these spores

as they lack the adhesion property (Queller et al., 2003).
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A second example of a greenbeard gene has been identified in the red fire ant

Solenopsis invicta (Keller and Ross, 1998). They find that the Gp-9 b allele causes

workers who possess it to attack queens that initiate reproduction without possess-

ing the allele; said workers identify queens without the allele through odour. Thus,

this is an example of a facultative greenbeard gene.

Greenbeard traits are relevant to our model; they are vulnerable to genes which

suppress the donation behaviour but retain the mark of recognition for receiving

fitness benefits. We investigate genes arising on unassorted loci that undermine

stable donation behaviour in Chapter 3; this is analogous scenario.

2.4 Maternally-Transmitted Symbionts

A symbiosis is a close physical association between two species; symbioses can be

split into three types (Bronstein, 1994). Parasitism involves one species (the para-

site) gaining a fitness benefit to the detriment of the other species (the host); the

cost to the host is often termed ‘virulence’. Commensalism involves one species (the

commensalist) gaining a fitness benefit, while the fitness of the other species (the

host) is unaffected. A mutualism, on the other hand, involves fitness benefits going

to both species. Mutualisms are required for an egalitarian major transition to oc-

cur between species (Bourke, 2011); thus, modelling potential pathways towards the

formation of mutualism is an area of interest. One possible pathway is that from

an established parasitism towards mutualism; other origins may be of enslavement

of a symbiont by a host followed by coevolution towards mutualism, commensal-

ism between two species followed by coevolution towards mutualism, or changes in

ecological conditions resulting in an environment capable of supporting a specific

mutualism (Aanen and Bisseling, 2014)

The method of transmission of a symbiont is also relevant to our understanding

of this field. Transmission of the symbiont from parent to offspring (either paternally

or maternally) is labelled vertical transmission; all other types of between-individual

transmission of symbionts are labelled horizontal (Fine, 1975). Horizontal transmis-

sion often occurs at the expense of a host, depending on the exact mechanism,

whereas vertical transmission requires host reproduction; therefore a trade-off be-
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tween horizontal and vertical transmission is often assumed in modeling, or arises

out of other assumptions, such as positive correlation between horizontal transmis-

sion and virulence (Ferdy and Godelle, 2005).

Chapter 4 discusses a model of maternally-transmitted endosymbionts, partic-

ularly in relation to a potential egalitarian transition in individuality. Specifically,

we focus on a maternally-transmitted symbiont with the potential to distort sex

ratios; we investigate what mechanisms could cause a host and symbiont to peace-

fully coexist without the symbiont distorting sex ratios. In this way, we model the

transition from parasitism to mutualism, which, as noted above, is required for an

egalitarian transition between species.

This section deals with specific aspects of the literature relevant to this model,

both expounding on topics mentioned in passing here, and a summary of previous

models which relate to this topic.

2.4.1 Sex Ratio Theory

Fisher (1930) argued that parents will invest equal resources into male and female

offspring. His argument starts by supposing that males and females require equal

amounts of investment to produce. Suppose also that parents tend to produce more

females. Therefore, males have greater fitness than females as they give rise to more

offspring; thus, parents that produce more males than the average will also have

more grandchildren on average. Genes for greater male-production will then spread;

this effect continues until the mean sex ratio is 0.5. At this point, there is no better

strategy than to give birth to equal numbers of male and female offspring. This

argument has been re-stated in the literature multiple times, since Fisher’s original

formulation was extremely concise (Fisher, 1930; Hamilton, 1967; West, 2009). The

sex ratio of 0.5 is known as the ‘Fisherian’ sex ratio.

However, there are exceptions to this sex ratio being optimal. Hamilton (1967)

gave several examples. One example involves the gene controlling sex ratio being

paternally-inherited, for example due to being located on the Y-chromosome in hu-

mans. In this case, a male-biased sex ratio will be favoured by selection, since

paternal inheritance means that only males contribute directly to the spread of the
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gene, so mutations favouring the production of males will spread. Hamilton discusses

extreme theoretical examples of paternally and maternally inherited sex-distorting

genes, noting the possibility of extinction due to excessive distortion of a popula-

tion’s sex ratio. We shall return to the subject of sex distortion due to maternal

inheritance in Chapter 4.

Another example Hamilton (1967) discusses is that of local mate competition

(LMC). Under LMC, females move between food sources inhabited by males, who

remain. Thus, males compete with related males for reproduction. The ESS here

involves a sex ratio biased towards production of females. There are two reasons for

this; producing fewer males results in less competition between related males, and

more daughters means disproportionately more mates for sons (Taylor, 1981; West,

2009). In general, ESSs can be formulated for sex ratios which depend on the degree

of matings between siblings (‘sibmatings’), for given mating systems (Taylor, 1993;

West, 2009); resulting predictions have been tested and validated in many species

(see West (2009) for a long list).

Trivers and Hare (1976) noted that relatedness asymmetries may also lead to

deviations from Fisher’s theory; for example, in Hymenoptera, workers are three

times more related to sisters than brothers, whereas queens are equally related to

sons and daughters (Trivers and Hare, 1976; Bourke, 2015). Thus, conflict arises

between workers and queens over sex ratio. Trivers and Hare (1976) survey several

other species, outlining how observed sex ratios match with predictions on the basis

of relatedness asymmetries; for example, they test the prediction that sex ratios in

monogynous ants (i.e. those with single queen colonies) will approach a 3:1 female

to male ratio since workers control the rearing of young. They utilised data on

21 species of monogynous ants to test this prediction, finding that it is on average

borne out by the data. While contradictory theories have been proposed, extensions

to Fisher’s sex ratio theory remain consistent with sex ratios based on relatedness

asymmetries (Bourke, 2015).

Trivers and Willard (1973) discuss another mechanism that causes deviations

from the Fisherian sex ratio: conditional sex allocation. They give the example of

a situation in which females vary in condition, and offspring inherit that condition;
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however, the reproductive success of male offspring is more affected by condition

than the reproductive success of female offspring. Females in poor condition will

then have more grandchildren if they have a bias towards production of female off-

spring, while females in good condition will have more grandchildren if they have

a bias towards producing male offspring. This is because the downside of being in

poor condition can be mitigated by producing offspring less affected by that condi-

tion; the converse applies.

Conditional sex allocation may result in a deviation in the population-level sex

ratio from 0.5; since it involves a non-linear relationship between parental invest-

ment and reproductive output, Charnov’s non-linear model applies, which results in

potential deviations from equal sex allocation (Charnov, 1979; Frank, 1987, 1990).

The theory holds more widely than the simple scenario posited above; for example,

an analagous circumstance in parasitoid wasps has been reported, in which sex ra-

tios of offspring, which are laid in batches in different hosts, vary depending on the

size of the host (West, 2009). As with LMC theory, there have been many additions

to this theory, and tests of its predictions (West, 2009).

2.4.2 Endosymbionts

‘Endosymbiosis’ refers to a symbiosis in which one of the two organisms lives inside

the other; the smaller organism is referred to as an ‘endosymbiont’. Endosymbiosis

has played a key role in the biological hierarchy; eukaryotic cells are the result of

the endosymbiosis of prokaryotic cells and ancestral forms of plastids such as mi-

tochondria and chloroplasts (Margulis, 1981; Maynard Smith and Szathmáry, 1995;

Bourke, 2011). In Chapter 1, we noted that one of the major transitions was from

separate unicells to symbiotic unicells; the transition from prokaryotes to eukary-

otes is an instance of this type of between-species egalitarian transition (Bourke,

2011). Such transitions still occur today; Marin et al. (2005) found evidence that

an amoeba has recently obtained photosynthetic organelles through endosymbiosis.

Maynard Smith and Szathmáry (1995) discuss the acquisition of mitochondria

and chloroplasts in some detail. They first note that mitochondria and chloro-

plasts retain properties associated with free-living prokaryotes, but that their genes

have been transferred to the cell nucleus since becoming symbionts. One interest-
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ing hypothesis that they discuss is that of ‘slavery’. Under this alternative idea,

the endosymbionts do not necessarily gain a benefit from the association; the argu-

ment hinges on the fact that the association may not have been initially beneficial

to the endosymbionts. They propose that initially, mitochondria and chloroplasts

were subject to controlled exploitation - in other words, they were forced to remain

within the host cell on the basis that the host could gain a fitness benefit from

their presence. They also discuss details of mechanisms which allowed the host to

reap more elaborate benefits from the endosymbiont, but propose that these could

only have evolved after the association had been established. In reality, it is worth

investigating the possibility of immediate direct fitness benefits to the host, since,

as shall be discussed, it has been shown that they can occur with the endosymbiotic

bacteria Wolbachia; as a result, the ‘slavery’ hypothesis is worthy of investigation.

Endosymbionts are present in many types of organism, including amoebae, flag-

ellates, ciliates, plant cells, and invertebrates (Jeon, 2011). We now focus on those

endosymbionts within sexually-reproducing organisms that cause sex ratio distor-

tion.

2.4.3 Sex-Ratio Distorters

Sex-ratio distorters can be either maternally (through the cytoplasm) or paternally

(through the nucleus) inherited; we focus here only on maternally-inherited sex-

distorters. Maternally-inherited (i.e. cytoplasmically inherited) sex-ratio distorters

can cause various phenotypic effects in their host and have been summarised exten-

sively in the literature (Werren, 1997; Hurst and Werren, 2001; West, 2009); we dis-

cuss four of the most common phenotypes below. However, each phenotype reflects

a general principle; endosymbionts which are maternally transmitted have greater

fitness when they cause female-biased distortion in sex ratios for the host species. If

infected females have more infected female offspring than uninfected females have

uninfected female offspring, selection favours the spread of the endosymbiont. Males

are effectively an evolutionary dead-end for maternally-transmitted endosymbionts.

In addition to benefiting their own spread through sex-ratio distortion, endosym-

bionts may provide fitness benefits to the host, though there may also be inher-

ent fitness costs associated with sex-ratio distortion. Many maternally-transmitted
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symbionts confer resistance against parasites; for example, Spiroplasma protects

Drosophila neotestacea against parasitic nematodes (Jaenike et al., 2010), and a

cytoplasmic-incompatibility-inducing form of Wolbachia can successfully invade a

species of mosquitoes, conferring resistance against RNA viruses such as Dengue

fever (Walker et al., 2011). It has also been proposed that the subsequent devel-

opment of increases in fitness of Drosophila melanogaster as a result of Wolbachia

infection could mean that some parasitic forms of Wolbachia are part-way through

a development in their relationship towards mutualism (Fry and Rand, 2002). Since

genetic changes resulting in reduction of costs are more likely than the addition of

new benefits, a potential pathway towards mutualism would be parasites that cause

a net cost, in spite of conferring fitness benefits such as infection resistance to a

host, reducing the associated fitness costs to the host (Ewald, 1987).

Horizontal transfer of sex-ratio-distorting symbionts can be compared to new

mutations; they result in some change in mean fitness to the new host, and occur

at a certain rate (Jaenike, 2012). It has been hypothesised that the distribution

of fitness changes resulting from a horizontally-transferred symbiont is less biased

towards fitness costs than that of fitness changes resulting from mutations, since

sex-ratio-distorting symbionts are more likely to have been transferred from host

species which they have succesfully invaded, which is more likely to occur when the

symbiont provides a fitness benefit (Jaenike, 2012). However, the exact rate of hor-

izontal transfer is dependent on the biological specifics of the two host species and

the symbiont. Beneficial symbionts may also experience an increasing probability of

transmission as they spread through communities of potential hosts (Jaenike, 2012).

We now discuss the four types of sex-ratio distortion caused by endosymbionts;

while none of these are specifically modelled in Chapter 4, the more general principle

of a symbiont inducing a biased sex ratio in a host is. Each of these types of sex-

distortion can be understood as reflecting this general principle; bias in favour of

female production as a means to spread the maternally-transmitted endosymbiont.

In Chapter 4, we briefly discuss how specific types of sex-distortion can be considered

by our model through reparameterising the general form of sex-distortion that we

model.
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Cytoplasmic Incompatibility

Cytoplasmic incompatibility (CI) refers to the inability of female members of many

insect species to reproduce with males infected with certain strains of Wolbachia

(O’Neill et al., 1992; Rousset et al., 1992; Yen and Barr, 1973; Hoffmann et al., 1996;

Famah Sourassou et al., 2014) or Cardinium bacteria (Gotoh et al., 2007; Famah

Sourassou et al., 2014). CI-inducing bacteria cause sperm to be ‘modified’ in some

way such that only eggs from individuals infected by the same strain of CI-inducing

bacteria can be fertilised by these sperm. This is referred to as a ‘modification-

rescue’ system (Werren, 1997). The result of the modification without rescue is a

haploid zygote due to failed karyogamy (O’Neill et al., 1992), which causes male-

biased sex ratios in hymenoptera (West, 2009; O’Neill et al., 1992).

Thus, aside from the special case of haplodiploidy, there are two types of com-

patibility. Under ‘unidirectional’ compatibility, which occurs when there is one

CI-inducing bacteria present in a population, infected males can not breed with

uninfected females, since the modified sperm are not rescued; however, sperm are

viable in every other pairing. Under ‘bidirectional’ compatibility, which occurs when

there are two CI-inducing bacteria present in a population (we label them types ‘A’

and ‘B’), A-males cannot breed with B-females, and B-males cannot breed with A-

females; every other male-female pairing is compatible (Yen and Barr, 1973).

The advantage of CI to bacterial endosymbionts such as Wolbachia and Car-

dinium is that (speaking in the language of unidirectional incompatibility, though

the same logic holds for the bidirectional case), by ensuring that infected males

cannot mate with uninfected females, they are reducing the fitness of uninfected

females in comparison to infected females. Thus, they aid their own spread, since

they are concerned with the fitness of infected females. This primarily occurs when

CI-inducing bacteria are not rare; however if CI-inducing bacteria are rare, they can

still experience positive selection if there is local resource competition (West, 2009).

Thelytokous Parthenogenesis

Parthenogenesis refers to reproduction in which unfertilised eggs give rise to off-

spring. In haplodiploids such as Hymenoptera, males develop from unfertilised eggs
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(‘arrhenotoky’); however, Wolbachia can induce a form of parthenogenesis in which

females develop from unfertilised eggs (‘thelytoky’) (Hamilton, 1967; Arakaki et al.,

2001; Weeks and Breeuwer, 2001). Thelytokous parthenogenesis (TP) takes two

forms. ‘Apomictic’ TP entails offspring being genetically identical to their mother.

‘Automictic’ TP, by contrast, involves genetic recombination; this covers several

different mechanisms (Rabeling and Kronauer, 2011). Three types of bacteria have

been shown to induce TP; Wolbachia have been found to do so in non-eusocial Hy-

menoptera and species of thrips and mites (Huigens et al., 2000; Arakaki et al., 2001;

Weeks and Breeuwer, 2001; Rabeling and Kronauer, 2011), Cardinium have been

found in spider mites and parasitoid wasps (Zchori-Fein et al., 2001; Gotoh et al.,

2007), and Rickettsia do so in species of eulophids and parasitoid wasps (Hagimori

et al., 2006; Giorgini et al., 2010). All of these species are haplodiploid, though the

mechanism of Wolbachia-induced TP in mites is of an apomictic type, which sug-

gests that it is also possible in non-haplodiploid species, though it may be difficult

to detect (Weeks and Breeuwer, 2001). In addition to being inherited vertically,

parthenogenesis-inducing Wolbachia can also infect new hosts horizontally; this al-

lows another source of genetic variation (Huigens et al., 2000; Watanabe et al., 2013).

TP is not necessarily deleterious to the host species; in fact, it has evolved in

some ants, bees, and termites, in the absence of Wolbachia or Cardinium (Wenseleers

and Van Oystaeyen, 2011). In several cases, it is a successful part of a reproductive

system involving mixed modes of reproduction. For example, queens may reproduce

asexually, while workers reproduce sexually (Wenseleers and Van Oystaeyen, 2011;

Rabeling and Kronauer, 2011).

Another proposed consequence of TP is that it could work to suppress within-

group conflict; if it is obligate, a group may be composed of genetically identical

individuals (Rabeling and Kronauer, 2011). This could be considered to satisfy the

condition for a major transition to occur illustrated by Boomsma’s (2009) monogamy

hypothesis of individuals being equally related to siblings and offspring; this shall

be introduced and discussed in Chapter 5. However, worker policing may still be

present in obligate-TP groups; whether this is due to existing social conflicts through

multiple clonal lineages or remains due to recent ancestry appears undetermined

(Hartmann et al., 2003; Kellner and Heinze, 2011).
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Feminisation

Wolbachia-induced feminisation involves the development of genetic males into fe-

males; the process is not entirely reliable as it needs to act continuously through

development, sometimes resulting in intersex individuals (Narita et al., 2007; Wer-

ren et al., 2008). This is in contrast to CI and TP, which act at a very early stage

of development. Wolbachia has been found to cause feminisation in species of but-

terfly (Narita et al., 2007) and isopods (Rigaud and Juchault, 1995; Bouchon et al.,

1998), while Cardinium causes feminisation in arthropods (Weeks and Breeuwer,

2001; Zchori-Fein and Perlman, 2004).

Male-killing

Male-killing involves the deaths of males in development (early) or at a later stage

in order to maximise horizontal transmission (late) (Hurst, 1991; West, 2009). It

is caused by Spiroplasma, Rickettsia and Wolbachia, among others (Werren et al.,

1994; Hurst et al., 1999a,b; Hurst and Jiggins, 2000), and primarily occurs in in-

sects (Hurst and Jiggins, 2000; West, 2009); the precise mechanism causing death

varies widely (Duplouy et al., 2013). Of the four commonly recognised methods of

sex distortion by bacterial symbionts, this is the only one which Cardinium have

not been found to exhibit (Martin et al., 2013). It may provide a fitness benefit to

infected females since they face less between-sibling conflict for resources and the

likelihood of inbreeding is decreased; alternatively, defense against parasites may

also be conferred (Xie et al., 2014). In addition, male death may result in horizontal

transmission of the symbiont (Hurst and Majerus, 1993; Hurst and Jiggins, 2000;

Hurst et al., 2000).

An interesting case of co-evolution between a male-killing symbiont and its host

is that of the Wolbachia strain wBol1-b in the butterfly Hypolimnas bolina (Duplouy

et al., 2013; Hornett et al., 2014). The strain wBol1-b has recently emerged, rapidly

diversifying due to horizontal gene transfer from other eukaryotes (Duplouy et al.,

2013). This male-killing symbiont resulted in a 100:1 female to male sex ratio, before

a suppression locus arose in the butterfly which allowed a return to the Fisherian

sex ratio (Hornett et al., 2014).
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2.4.4 Previous Models

While there is a vast literature discussing aspects of symbiosis, in particular regard-

ing parasitism and virulence, we focus instead on models pertinent to the formation

of mutualisms, in keeping with our aim of investigating a potential egalitarian major

transition between species. Mathematical models of symbiosis necessarily simplify

reality; for example, they typically deal only in expected outcomes of between-

species interactions, whereas in reality, conditional outcomes may occur, with host

and symbiont behaviour dependent on changes in environment, population size, or

individual state (Bronstein, 1994).

Early work modelling the evolution of mutualism often focused on vertical trans-

mission, in both the context of the formation of symbioses, and potential changes

in host-symbiont relationships from parasitism to mutualism (Roughgarden, 1975;

Ewald, 1987).

Fine (1975) derived the ‘fundamental equation of vertical transmission’, which

could be used to find the stable equilibrium frequency of a purely vertically-transmitted

symbiont in a sexually-reproducing host population. A sufficient condition for this

kind of symbiosis was derived:

vf(αf + αm) > 1 (2.1)

Here, f is the relative reproductive fitness of infected individuals in comparison

to uninfected individuals (a.k.a. fecundity), v is the relative survival to reproduction

of infected individuals in comparison to uninfected individuals (a.k.a. viability), αf

is the maternal vertical transmission rate, and αm is the paternal vertical transmis-

sion rate.

This equation captures two important forces that determine whether or not a

symbiont will be present in a host population at equilibrium. If the symbiont im-

poses fitness costs on the host through lower fecundity and/or viability, it must be

highly efficient at vertical transmission to remain in the host population; in this

scenario, the symbiont is a parasite. However, if the symbiont does not transmit
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itself well, it can counteract this selective disadvantage by providing fitness benefits

to the host; in this scenario, the symbiont is a mutualist. Note that Fine’s model

involves a host population of constant size, thus the possibility of a parasite driving

a host population to extinction, as may happen if host fitness is decreased by a

parasite, is not considered.

Lipsitch et al. (1995) consider a model of mixed vertical and horizontal transmis-

sion, splitting up the ‘basic reproductive rate’ of a symbiont, R0, into two additive

components, one due to vertical transmission and one due to horizontal transmission.

Thus, a symbiont with inefficient vertical transmission requires horizontal transmis-

sion to persist, and vice versa. When a symbiont is entirely vertically transmitting,

Fine’s condition (2.1) is retrieved. Since the vertical transmission component ac-

counts for fitness effects on the host, Lipsitch et. al.’s condition states that parasites

require some degree of horizontal transmission to persist in a host population; the

more harmful a parasite, the greater the importance of horizontal transmission.

However, Lipsitch et. al. note that once a parasite reaches a high frequency in a

host population, a small increase in vertical transmission will have a relatively much

greater effect on equilibrium prevalence of the symbiont than a small increase in

horizontal transmission, since the number of susceptible hosts decreases as parasite

frequency increases. Mutualists, on the other hand, simply need to have sufficient

vertical transmission to persist in a host population.

However, neither of these models consider selective pressures acting on vertical

transmission, nor how selection on hosts and selection on symbionts may result in

competing selective pressures.

Yamamura (1993) addresses this final point, modeling mixed vertical and hori-

zontal transmission of parasites. He argued that conflict over vertical transmission

will exist, since selection on hosts will favour a decrease in the vertical transmission

rate, as parasites give hosts a fitness disadvantage, whereas selection on parasites

will favour an increase in the vertical transmission rate. Yamamura specifically

wished to investigate the progression of symbioses from parasitism towards mutu-

alism; he argued that if the vertical transmission rate crosses a certain threshold,

host and parasite fitness interests are aligned, leading to mutualism with a high
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vertical transmission rate. This threshold value of the vertical transmission rate is

dependent on baseline parasite and host fitnesses during a symbiosis, and the fitness

effects of further exploitation by the parasite.

None of the models considered so far have invoked sex-ratio distortion. We now

turn to models that include this feature, having established the importance of hor-

izontal transmission to the establishment of parasitism, the importance of vertical

transmission to the evolution of mutualism, and the potential for conflict between

hosts and symbionts over the evolution of vertical transmission.

Werren (1987) created a general model of sex-ratio distortion, considering the

conflict between cytoplasmic sex-ratio genes (CSR) and autosomal sex-ratio genes

(ASRs). While CSRs are maternally-inherited, ASRs are inherited by either gender,

so there may be conflict between the two genes over sex ratio. Werren (1987) looked

at the coevolution of the two genes. Note that the conflict that Werren describes

could manifest itself in conflict in preferred sex ratio between a sex-distorting en-

dosymbiont (with sex-ratio strategy analagous to a CSR) and a host (with sex-ratio

strategy analagous to an ASR).

Under perfect vertical transmission, a CSR will go to fixation if it can invade

initially, which occurs when the product of the relative fitness of CSR individuals

to ASR individuals and the sex-ratio of CSRs is greater than 1/2. This suggests

that a CSR which involves a fitness cost can nonetheless spread if it distorts the

sex-ratio in favour of females to a sufficient extent. In this case, there would be no

compensatory selection on ASRs, for whom the ESS would remain 0.5, since ESR

females will be in a separate subpopulation from ASR females (Werren, 1987).

However, under imperfect vertical transmission, a CSR will invade a population if

the product of its relative fitness, vertical transmission, and sex ratio is greater than

1/2. In the scenario, a polymorphic equilibrium will occur, and ASRs will evolve to

compensate, producing only males (‘monogeny’). Selection on CSRs causes them to

produce only females at equilibrium. Thus, in the absence of selection on vertical

transmission, there is no coincidence of fitness interests between the two genes and

their effects are entirely opposed.
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Both situations have the potential to cause the host population to go extinct.

Werren notes several possible mechanisms that may avoid this possibility: resistance

genes that suppress the CSR phenotype, population structure (an idea explored more

fully in Chapter 4), and frequency dependent changes in parameters.

Hatcher and Dunn (1995) consider a model of feminising symbionts in a host

population, adjusting Werren’s (1987) framework . Under Hatcher and Dunn’s re-

formulation of Werren’s model, feminisation occurs in infected individuals prior to

sex determination of offspring, which is subject to the sex ratio of the host. Thus,

the actual sex ratio of infected individuals is a function of host sex ratio, vertical

transmission, and the degree of feminisation.

Hatcher and Dunn found that feminising symbionts may invade a host popula-

tion even if they are deleterious to host fitness (i.e. parasites), so long as vertical

transmission and feminisation are sufficiently high. As with Werren’s (1987) model,

Hatcher and Dunn found that a successful feminising symbiont could lead to host

monogeny, producing only males in order to compensate for feminisation. An in-

termediate alternative that they discuss is that the feminising symbiont does not

completely invade the population, and the host sex ratio is simply biased in favour

of males; this can occur if feminisation is not perfect. This alternative did not arise

out of Werren’s model; Hatcher and Dunn suggest that it occurs since, if feminisa-

tion fails, infected offspring are subject to host sex ratios.

Hatcher et al. (2000) further considered how population structure affects a fem-

inising parasite. Population structure refers to the organisation of a population

in such a way that certain sets of individuals interact more with one another, or

within themselves, than others. For example, Hatcher et al. (2000) consider a patch

structure, so that the population is arranged into a grid of subpopulations between

which individuals migrate at a certain stage of the life cycle. They use a stochastic

individual-based model to analyse the same system Hatcher and Dunn (1995) pre-

viously discussed, which itself was an adaption of Werren’s (1987) model; Hatcher

et al. (2000) also include patch structure with dispersal each generation. The in-

vading parasite feminises all hosts that inherit the parasite, which occurs according
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to the vertical transmission parameter; uninfected host offspring are subject to the

standard Fisherian sex ratio, 0.5. Distortion of patch sex ratio potentially causes

extinction of hosts in the patch since males are assumed to only be able to mate

with a limited number of females. However, recolonisation allows extinct patches to

recover.

Hatcher and Dunn (1995) found that feminising parasites could not reach the fre-

quency they did in unstructured populations, thus allowing the parasite to persist at

intermediate frequencies; however, with too low or too high dispersal, the patches,

or metapopulation, respectively, acted like single populations and both host and

parasite were driven to extinction.

The model we present in Chapter 4 contains features that reflect those of mod-

els discussed here. Our focus is on how a transition can occurs from parasitism

to mutualism, in the context or maternally-transmitted endosymbionts. Thus, we

consider selection on vertical transmission, since as noted by Yamamura (1993), this

is important in deciding whether there is a coincidence of fitness interests between

the host and symbiont. We also adapt Werren’s (1987) simple model of conflict

between host and symbiont sex ratio; however, we significantly extend his analysis,

considering population structure and evolution of vertical transmission, and focus

on coincidence of fitness interests between hosts and symbionts. Our model also

bears comparison to models of feminising parasites discussed by Hatcher and Dunn

(1995) and Hatcher et al. (1999, 2000). Whereas they focus on compensatory host

sex ratios (Hatcher and Dunn, 1995), and extend their model to focus on extinction

of host populations and its dependence on male mating limit (Hatcher et al., 1999),

and maintenance of parasites in patch-structured populations (Hatcher et al., 2000),

our focus is on the effects of a patch-based population structure on the invasion of

parasites and the development of that relationship towards, ultimately, mutualism.

Specifically, the amount of sex-distortion determines where a symbiont is located on

the parasite-commensalist-mutualist scale; by allowing the strategy to be subject to

selection, we investigate coincidences in fitness interests and the transition towards

mutualism.
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Chapter 3

Modelling Between-Species

Donation

Abstract

In this chapter, we analyse and extend previous models of between-species donation

(Fletcher and Doebeli, 2009). Two primary versions of our basic model are analysed;

in model (a), donation behaviours is determined by two loci, only one of which is

subject to assortment, whereas in model (b), assortment is genome-wide.

A deterministic approach, utilising an assumption of quasi-linkage equilibrium

(Kimura, 1965), is used to carry out an initial analysis. Stochastic simulations, which

drops the assumption of weak selection while simultaneously introducing stochas-

ticity, are used to test the robustness of these results.

We find that stable donation behaviour is possible under genome-wide assort-

ment, but is vulnerable to suppressing modifiers arising on unassorted loci.

We question previous interpretation of the donation behaviour as between-species

altruism, which was previously argued for by Fletcher and Doebeli (2009); we in-

troduce, but do not test, an alternative possibility. We also contextualise our series

of models, arguing that there are direct parallels to greenbeard behaviours, both

within and between species.
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3.1 Introduction

In Chapter 2, we discussed the importance of the question of whether or not al-

truism can evolve between species, specifically highlighting the relevance of this

question to the major transitions view of evolution. Using a simple model (and a

number of slight variations on this model) of between-species donation, we analyse

this question, implementing and discussing deterministic and stochastic approaches.

Ultimately, we conclude that between-species donation is transient due to the poten-

tial for suppressing modifiers to arise at unassorted loci; in addition, in the presence

of assortment acting across all relevant loci, between-species donation may be in-

terpretable as within-species altruism, whereby altruists use the other species as a

vector for fitness benefits provided to genetic relatives. Similar arguments have been

stated elsewhere (Foster, 2009; Bourke, 2011; Wyatt et al., 2013). We also discuss

our models in relation to greenbeard traits, which offer some biological parallels to

out model.

We use two approaches. Firstly, a deterministic approach, which invokes the

assumption of quasi-linkage equilibrium; this approach involves numerically updat-

ing allele and genotype frequencies in an infinite population until an equilibrium is

attained. Secondly, we consider a stochastic simulation, which drops the entailed

assumption of weak selection whilst allowing randomness in mutation, breeding, and

recombination; this approach involves a finite population of individuals, for whom

fitness, breeding, mutation and recombination are individually calculated. We pro-

vide model details and results from the deterministic approach first (Sections 3.2,

3.3), before doing the same for the stochastic approach (Sections 3.4,3.5); finally, we

discuss these results (Section 3.6).

3.2 Deterministic Approach: Specification

We consider a two-locus, biallelic model with two haploid populations of equal size.

The two populations represent two different species; all interactions are interspecific,

and individuals act as both potential donors and potential recipients. The first locus

represents donation and non-donation and is referred to as the donation locus, and

the second locus represents suppression and non-suppression, and is referred to as
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the suppression locus. Individuals donate, and are labelled donators, if and only

if they possess the donation and non-suppression alleles. All other individuals do

not donate. For example, if an individual possesses the donation and suppression

alleles, the individual will not be a donator since the suppression allele will act to

suppress the donation behaviour. The types of individuals present in this model are

summarised in Table 3.1, alongside genotype notation, which shall be introduced in

due course.

Table 3.1: Genotypes and Phenotypes in the Between-Species Donation Model

Genotype Donation or Non-Donation Allele? Suppression or Non-Suppression Allele? Phenotype

(0,0) Non-Donation Allele Suppression Allele Non-Donator

(0,1) Non-Donation Allele Non-Suppression Allele Non-Donator

(1,0) Donation Allele Suppression Allele Non-Donator

(1,1) Donation Allele Non-Suppression Allele Donator

Note our use of the term ‘donator’, as opposed to the more common term ‘donor’;

this is to distinguish between individuals engaged in an act of donation (donors) and

individuals genetically predisposed towards donation, but whose predisposition may

be disrupted by conditionality (Marshall, 2015). For clarity, individuals that only

hold the donation allele shall be referred to as bearers of the donation allele. The

cost associated with the donation behaviour is c, and the benefit conferred to the

social partner is b; we constrain the two so that 0 < c < b and c < w0, where w0 is

the baseline absolute fitness. The former is a standard constraint in any study of the

donation game, as noted in Section 1.4.1; setting the cost so that it is strictly less

than baseline fitness is necessary to avoid individuals being able to have negative

fitness. We set w0 to be 1; we lose no generality, since c and b are both scaled to w0.

The life cycle of individuals within this model may be detailed as follows. Hap-

loid individuals are paired up between species according to assortment. Fitnesses

are calculated on the basis of whether or not an individual and their social part-

ner are donators; each individual donates only once, to their social partner, if they

are donators. A number of breeding partners are then determined at random within

each species, with the probability of breeding directly proportional to fitness. Breed-

ing partners then breed, with recombination taking place since offspring go through
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a diploid stage in their life cycle; this is a simplification for modelling purposes

with some biological and modelling precedent (De Massy et al., 1994; Zeng and

Charlesworth, 2011). The original population of individuals then dies, replaced by

their offspring.

Our deterministic approach, involving an assumption of ‘quasi-linkage equilib-

rium’ (or QLE; this is introduced and explained in Section 3.2.1), uses numerical

methods to calculate changes in allele and genotype frequencies from one generation

to the next, following Kirkpatrick et al. (2002). Each process is initiated with a set

of initial allele and genotype frequencies, and terminated either once convergence

has been detected, or manually if appropriate. The specifics of our model are all

incorporated into ‘selection coefficients’, which measure how selection acts on a par-

ticular set of loci. Mean fitnesses of each genotype, which depend on assortment of

each genotype and the associated phenotype, are used to find expressions for the

selection coefficients.

We explore two primary versions of the basic model, which vary in terms of which

individuals are more likely to be paired with one another; this is termed assortment,

and more fully explained later in this section. In model (a), assortment (represented

by the assortment parameter α) is applied to only the donation locus, whereas in

model (b), it is applied to the whole genome. The main conclusions of this work

come from models (a) and (b), though we briefly discuss four further models which

address additional questions; we avoid precise details for the sake of brevity. In

models (a) and (b), individuals act as both potential donors and potential recipi-

ents; that is, if an individual is a donator, they donate, losing c fitness, and if their

social partner is a donator, they receive b fitness. Model (c) involves genome-wide

assortment, but, in contrast to models (a) and (b), individuals are uniformly at ran-

dom assigned a single role in their lifetime, of potential donor or potential recipient.

If an individual is a potential donor, with probability 0.5, they cannot receive fitness

benefits from a social partner, however, if they are a potential recipient, they cannot

incur the fitness cost of donation.

Model (d) is a single-locus model, in which individuals are donators if and only

if they possess the donation allele; therefore, assortment takes place on the single
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remaining locus. Model (e) considers a single population with genome-wide assort-

ment. Model (f) involves genome-wide assortment, but donators no longer donate

unconditionally; instead they only donate if their social partner is also a donator.

We now discuss the details relevant to the construction of models (a) and (b)

only, with brief notes on how these details extend to cover models (c-f); further

notes on the construction of models (c-f) can be found in the Appendix, along with

sample results relating to each of these additional models, and both deterministic

and stochastic approaches.

First, we define some notation; the subscript i refers to the population index of

the focal individual (or population), and the subscript i′ refers to the index of the

other population; note that necessarily, i 6= i′. We let the frequency of the dona-

tion allele in population i be p1,i, and the frequency of the non-suppression allele in

population i be p2,i. The frequencies of the non-donation and suppression alleles are

q1,i := 1−p1,i and q2,i := 1−p2,i respectively. The allelic value at the donation locus

for an individual is 1 if the individual bears the donation allele, and 0 if they bear

the non-donation allele. Similarly, the allelic value at the suppression locus is 1 if the

individual bears the non-suppression allele, or 0 if the individual bears the suppres-

sion allele. Note that allelic values for each locus are within the set {0,1} since each

locus is biallelic. Thus, the set of genotypes is G={(0,0),(0,1),(1,0),(1,1)}, where

donators are (1,1) individuals. We denote the frequency of individuals of genotype

u ∈ G in population i by fi(u). An individual of arbitrary genotype u has allele

u1 on the donation locus, and allele u2 on the suppression locus. Note that Table

3.1, displayed at the start of this section, clarifies how genotype notation matches

phenotypes, and possession of alleles.

A major aspect of our model is assortment; we require a general method of

pairing up individuals from each population, that can be extended to each of our

models. We begin by constructing a function Pi(u, v) which gives the probability

that a focal individual with genotype u ∈ G from population i will be matched up

with a social partner with genotype v ∈ G from population i′. We need to constrain

function P so that it satisfies the following two conditions:
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∑
v∈G

Pi(u, v) = 1 ∀u ∈ G (3.1)∑
u∈G

fi(u)Pi(u, v) = fi′(v) ∀v ∈ G (3.2)

Condition (3.1) states that the sum of the matching probabilities for a genotype

u is 1. Condition (3.2) states that the sum of the frequencies of each genotype

multiplied by the probability that they are matched with a given genotype, is the

frequency of the given genotype in the other population. This must be true, other-

wise the pairings for each population do not correspond to one another.

We shall construct P in several stages. Firstly, we create a ‘bias’ function, which

measures the overall frequency of pairings due to assortment between individuals

of genotype u in population i with individuals of genotype v in population i′; this

shall be denoted by βi(α, u, v), but since the individuals subject to assortment vary

between the different models, this shall be specified for each model. Assortment is

non-negative, so βi(α, u, v) ≥ 0 for all i ∈ {1, 2} and u, v ∈ G. Alike individuals (i.e.

those with the same alleles on whichever loci are subject to assortment) are paired

up according to the bias function, which is in turn dependent on the assortment

parameter α, before the remaining individuals are paired up uniformly at random.

Therefore, in the following models the expressions for unmatched genotype fre-

quencies after assortment are as follows:

gi(u) = fi(u)−
∑
v∈G

βi(α, u, v). (3.3)

Necessarily,
∑

u∈G g1(u) =
∑

v∈G g2(v), since the population sizes are assumed

to be the same, as are the numbers of individuals paired by assortment. We only

have a proportion
∑

u∈G g1(u) of individuals left to match up after assortment, so

the frequency of pairings of u-types from population i, with v-types from population

i′, due to post-assortment matching, is gi(u)gi′(v)/
∑

u∈G g1(u). Thus, we reach the

final expression for the P function:
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Pi(u, v) =
βi(α, u, v)

fi(u)
+

gi(u)gi′(v)

fi(u)
∑

t∈G g1(t)
(3.4)

We can prove that this choice of P satisfies condition (3.1) for P to be valid as

follows:df

∑
v∈G

Pi(u, v) =

∑
v∈G βi(α, u, v)

fi(u)
+
gi(u)

fi(u)

=
fi(u)− gi(u)

fi(u)
+
gi(u)

fi(u)

= 1

The first step here sums equation (3.4) over all partner genotypes v, and notes

that
∑

v∈G gi′(v) =
∑

t∈G g1(t), thus cancelling out the two expressions where they

occur in the second component. The second step subsititutes equation (3.3), and

the final step is trivial. We can also prove condition (3.2) by substituting equation

(3.4) into the left-hand side of condition (3.2):

∑
u∈G

fi(u)Pi(u, v) =
∑
u∈G

(
βi(α, u, v) +

gi(u)gi′(v)∑
t∈G gi(t)

)
=

∑
u∈G

βi(α, u, v) + gi′(v)

= fi′(v)− gi′(v) + gi′(v)

= fi′(v)

We use similar techniques in this proof, once again noting that
∑

v∈G gi′(v) =∑
t∈G g1(t) to reach the second step, and introducing equation (3.3) to reach the

third step; again, the final step is trivial.

We shall now construct the β functions for the two primary models, and discuss

how it is constructed for the remaining four minor models. Note that the P functions

discussed above are general; differences between each model are mostly subsumed

into different constructions of the bias function, β.
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Model (a): Single-locus Assortment

The construction of the β function in the case where only the donation locus is

subject to assortment starts by noting that the maximum frequency of paired indi-

viduals with allele u1 on the donation locus is:

min

( ∑
t:t1=u1

fi(t),
∑

t:t1=u1

fi′(t)

)
(3.5)

This is because we cannot match more bearers of a given allele with one another

than exist in either population. However, we need to further decompose this ex-

pression to find the maximum frequencies of pairs of individuals of given genotypes

matched by assortment. The proportion of pairings by assortment between individ-

uals of genotype u in population i, and individuals of genotype v in population i′,

of the total matchings by assortment for individuals with allele u1 on the donation

locus is:

fi(u)fi′(v)

(
∑

t:t1=u1
fi(t))(

∑
t:t1=u1

fi′(t))
(3.6)

By taking the product of expressions (3.5) and (3.6), we obtain the maximum

frequency of pairings given focal and partner genotypes; in order to construct the

β function, we weight this linearly by the assortment parameter α, which takes a

value in the range [0,1], and an indicator function, which takes the value 1 if the

focal individual and social partner have the same allele on the donation locus, and

0 otherwise:

βi(α, u, v) = αI{u1=v1}
fi(u)fi′(v)

max
(∑

t:t1=u1
fi(t),

∑
t:t1=u1

fi′(t)
) (3.7)

Model (b): Genome-Wide Assortment

In the case of genome-wide assortment, the β function is as follows:

βi(α, u, v) = αI{u=v}min(fi(u), fi′(u)) (3.8)
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This requires slightly less construction than in model (a); we simply have to

note that the maximum proportion of pairings by assortment for a genotype u is

the minimum frequency of genotype u in either population. This is weighted once

again by α, and the indicator function which only allows assortment between alike

genotypes. This β function is then simply inserted into expressions (3.3) and (3.4) to

obtain our P functions required for the deterministic simulation and mathematical

analysis.

Further Models

We now discuss how assortment works in each of the four minor models (see Ap-

pendix for further details). Models (c) and (f) utilise the same β equation (3.8)

as model (b), and the standard assortment equation (3.4), since they both involve

genome-wide assortment between two species with two loci. Model (d) involves a

single locus, so has a smaller set of genotypes. Model (e) involves a single popula-

tion, so population indices are dropped from the assortment equations (3.3,3.4,3.8)

and the fitness equations.

3.2.1 Quasi-Linkage Equilibrium

The model we consider in this chapter is multi-locus, thus the possibility of linkage

and recombination arises. When offspring inherit genetic information from parents,

they inherit a section of one parent’s chromosome, with random crossover to the

other parent’s chromosome occurring with some probability; this is referred to as

recombination. However, associations between alleles may arise, in such a way that

they are inherited non-randomly, i.e. they are linked. The term ‘linkage disequi-

librium’ describes this occurrence. The state of quasi-linkage equilibrium (QLE)

was originally investigated by Kimura (1965). This states that under certain as-

sumptions, linkage disequilibrium reduces to a low value which depends on allele

frequencies and selection, but not previous values of linkage disequilibrium (Rice,

2004). The utility of QLE is that it allows us to neglect higher orders of selection

coefficients and linkage disequilibrium, meaning that the mathematical recursions

we consider in the deterministic simulation are significantly reduced (Kirkpatrick

et al., 2002).

75



Specifically, the assumptions are of weak selection and weak linkage disequilib-

rium in comparison to selection; these are formulated mathematically as follows.

Firstly, we must have that a� 1, where a is the greatest of the selection coefficients

as defined by Kirkpatrick et al. (2002). Secondly, linkage disequilibrium must always

be of the order a.

Assuming two loci, three selection coefficients are defined for each population i,

which are a1,i, a2,i, and a{1,2},i; we also denote a := max(a1,i, a2,i, a{1,2},i). Kirkpatrick

constructed selection coefficients so that they have a high degree of generality, and

represent selection acting on the relevant loci. They are defined according to the

following equation (adapted from equation (7) in Kirkpatrick et al. (2002)):

Wi(z) = W̄i(1 +
∑
U

aU,i(YU,i,z −DU,i)) (3.9)

Here, W̄i is the mean fitness for population i, the possible sets of loci are

U := {1, 2, {1, 2}}, and YU,i,z is the product of deviations of the allelic value from the

mean allelic value over the set of loci U in population i, for allelic values z = (z1, z2),

where z1 is the allelic value on the donation locus, and z2 is the allelic value on the

non-suppression locus. For example, if U = {1, 2}, i = 1, and z = (0, 1) (i.e. in-

dividuals of genotype z possess the non-donation and non-suppression alleles) then

YU,i,z = −p1,1(1 − p2,1). The measure of linkage disequilibrium in population i will

be labelled as Di := D{1,2},i, since D1,i = D2,i = 0 by definition. Consequently, to

satisfy the second condition of QLE, we must simply show that Di is of order a.

An example of the implementation of equation (3.9) would be as follows, where

we evaluate the fitness of a donator (i.e. a (1,1) individual):

Wi(1, 1) = W̄i(1 + a1(1− p1) + a2(1− p2) + a{1,2}(1− p1)(1− p2))

The first term in the parentheses corresponds to the average fitness, the second

corresponds to the adjustment for possessing the donation allele, the third corre-

sponds to the adjustment for possessing the non-donation-suppression allele, and
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the final term corresponds to the adjustment from possessing both alleles; these are

all weighted by the mean population fitness. Since every single model involves ei-

ther different fitness equations, or different methods of assortment, each model must

be considered individually. As before, we discuss the finer details of the first two

models, and briefly mention the remaining four models.

Model (a): Single-locus Assortment

We begin by noting that in order to calculate selection coefficients, we must have

equations for the average fitness of individuals of each genotype. Given some baseline

fitness w0, we find that the average fitnesses of individuals in the ith population are

as follows:

Wi(0, 0) = w0 + Pi((0, 0), (1, 1))b (3.10)

Wi(0, 1) = w0 + Pi((0, 1), (1, 1))b (3.11)

Wi(1, 0) = w0 + Pi((1, 0), (1, 1))b (3.12)

Wi(1, 1) = w0 + Pi((1, 1), (1, 1))b− c (3.13)

Consequently, using equations (3.3,4,7,9,10-13), we find that the selection coef-

ficients for the ith species in this case are as follows (where we have set c̃ = c/w0

and b̃ = b/w0):

a1,i =
b̃(Pi((1, 0), (1, 1))− Pi((0, 0), (1, 1)))− p2,ic̃

1 + b̃fi′(1, 1)− c̃fi(1, 1)
(3.14)

a2,i =
−p1,ic̃

1 + b̃fi′(1, 1)− c̃fi(1, 1)
(3.15)

a{1,2},i =
−c̃

1 + b̃fi′(1, 1)− c̃fi(1, 1)
(3.16)

The maximum absolute value of the numerator of equation (3.14) is b̃, since, using

equations (3.4) and (3.7), we can show that 1 ≥ (Pi((1, 0), (1, 1))−Pi((0, 0), (1, 1))) ≥

0. This is the highest value any of the numerators can take. The minimum ab-

solute value of each of the denominators is 1 − c̃, since 1 ≥ fi(u) ≥ 0. Since

a := max(a1,i, a2,i, a{1,2},i), and a1,i can take the maximum value of equations (3.14-

16), we find the following expression to be true:
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a <
b̃

1− c̃
(3.17)

Thus, in order to satisfy the first assumption of QLE, that a� 1, it is sufficient

to choose b and c such that b̃/1− c̃� 1, or equivalently:

b̃� 1− c̃ (3.18)

This shall be satisfied by our parameter choices.

We now turn to the second assumption of QLE, that Di is of order a. The

maximum absolute value linkage disequilibrium can take is 0.25 (Lewontin, 1964),

and, since we have already found that a ≤ b̃/1− c̃, we can deduce that:

Di <
4a(1− c̃)

b̃

Here, Di is of order a. Thus, we have satisfied the second requirement of QLE.

By combining the two requirements for the population to be in a state of QLE, we

can ignore higher powers of Di and a, which lets us reduce the original equations

specified in (Kirkpatrick et al., 2002) for the associations Di. We obtain the following

approximation for Di, where xi is the rate of recombination between the two loci in

the ith species:

Di =
a{1,2},ip1ip2iq1iq2i

xi
(3.19)

Now that the conditions for QLE have been satisfied, we can take a closer look

at the selection coefficients themselves. From equation (3.9), we can see that an

individual with genotype z = (z1, z2) will gain the following fitness if they possess

the non-suppression allele (z2 = 1) instead of the suppression allele (z2 = 0):
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Wi(z1, 1)−Wi(z1, 0) = W̄i(a2,i + a{1,2},i(z1 − p1,i))

= W̄i(p1,ia{1,2},i + a{1,2},i(z1 − p1,i))

= W̄ia{1,2},iz1

Here, we have noted in obtaining the second term that, from equations (3.15)

and (3.16), a2,i = p1,ia{1,2},i. The third term is reached through simple cancelling

out. Thus, we obtain a condition for bearers of the non-suppression allele to have

strictly greater fitness than bearers of the suppression allele, given possession of

allele z1 on the donation locus:

W̄ia{1,2},iz1 > 0 (3.20)

Since W̄i is strictly positive, z1 is non-negative, and by examination of equation

(3.16), we can see that a{1,2},i is strictly negative (since the numerator is strictly pos-

itive, and the denominator strictly negative), this term is non-positive. Therefore,

the non-suppression allele will always receive either neutral or negative selection.

We can carry out a similar analysis on the donation locus. Consequently, using

equations (3.9), (3.14), and (3.16), we can see that an individual with genotype

z = (z1, z2) will gain the following fitness if they possess the donation allele (z1 = 1)

instead of the non-donation allele (z1 = 0):

Wi(1, z2)−Wi(0, z2) = W̄i(a1,i + a{1,2},i(z2 − p2))

=
b̃(Pi((1, 0), (1, 1))− Pi((0, 0), (1, 1)))− z2c̃

1 + b̃fi′(1, 1)− c̃fi(1, 1)

In other words, we can see that bearers of the donation allele will have strictly

greater fitness than bearers of the non-donation allele if the following condition is

satisfied:
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Pi((1, 0), (1, 1))− Pi((0, 0), (1, 1)) >
z2c

b
(3.21)

Thus, when an individual possesses the suppression allele (i.e. z2 = 0), we can see

that, since the left-hand side is greater than or equal to 0, they have either greater

or equal fitness when they possess the donation allele. If an individual possesses the

suppression allele, they will never donate; the only difference the donation allele will

make is an increase in the chance of being paired with a donator, in the event that

there are donators present in the other population. If not, then the donation allele

will make no difference. In behavioural terms, individuals that possess the donation

and suppression allele may be considered cheaters under this form of assortment;

they are assorted as if they are donators, but suppress this behaviour, avoiding the

costs of donating themselves.

When an individual possesses the non-suppression allele, (i.e. z2 = 1), then

the condition (3.21) is sometimes satisfied, and sometimes not satisfied. This is

dependent on the c/b ratio, α, and genotype frequencies within the two population.

Unfortunately, the condition is fairly intractable, but we can conclude that the evo-

lution of donation is aided by a low c/b ratio.

Model (b): Genome-Wide Assortment

The fitness equations (3.10-13) utilised in the single-locus assortment apply to the

genome-wide assortment case, since the only difference between the two models is

expressed in terms of the β function (3.8). Thus, using equations (3.3,4,7,8,10-13),

we find the following selection coefficients:
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a1,i =
b̃(Pi((1, 0), (1, 1))− Pi((0, 0), (1, 1)))

1 + b̃fi′(1, 1)− c̃fi(1, 1)
+ p2,ia{1,2},i (3.22)

a2,i =
b̃(Pi((0, 1), (1, 1))− Pi((0, 0), (1, 1)))

1 + b̃fi′(1, 1)− c̃fi(1, 1)
+ p1,ia{1,2},i (3.23)

a{1,2},i =
b̃
(
Pi((1, 1), (1, 1)) + Pi((0, 0), (1, 1))

)
1 + b̃fi′(1, 1)− c̃fi(1, 1)

+

b̃
(
− Pi((1, 0), (1, 1))− Pi((0, 1), (1, 1))

)
− c̃

1 + b̃fi′(1, 1)− c̃fi(1, 1)
(3.24)

We must again check that the two assumptions of QLE are satisfied. Firstly, we

note that max|a1,i| < max|a{1,2},i| and max|a2,i| < max|a{1,2},i|. By noting that each

Pi expression falls between 0 and 1, we find:

|a{1,2},i| ≤
2b̃− c̃
1− c̃

(3.25)

Thus, the first assumption of QLE, that a � 1, is satisfied if b̃ � 1/2. As

before, we shall satisfy this condition through our choices of paramater values in the

modelling section.

We now turn to the second assumption of QLE; that is, that all values of Di are

of order a. Since a < 2b̃− c̃/1− c̃, and necessarily, Di ≤ 1/4, we can see that:

Di <
4a(1− c̃)

2b̃− c̃

We can once again find conditions for positive selection on the donation and non-

suppression alleles, by using equations (3.9) and (3.22-24). Both conditions involve

the donation or non-suppression alleles receiving positive selection if some function

of genotype frequencies and α is greater than c/b. This underlines the importance

of the c/b ratio, and the unimportance of the baseline fitness w0. Unfortunately, the

conditions are so mathematically intractable that they do not allow us to make any

meaningful observations about the genotype frequencies or α. However, we can note

that in the special case in which allele and genotype frequencies are equal between

populations, then α > c/b is the condition for the donation and non-suppression
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alleles to positive selection. This is analogous to Hamilton’s rule for the spread of a

social behaviour within species.

Further Models

The same techniques shown above for calculating selection coefficients and satisfying

the assumptions of QLE can be followed for each of the models (c-f) (see Appendix

for further details and sample numerical examples); thus, for brevity the exact cal-

culations and selection coefficients are omitted. We now discuss the conclusions we

can draw from each set of selection coefficients.

Under model (c), in which each individual is randomly assigned the role of ei-

ther potential donor or potential recipient, fitness equations are altered from those

in model (b), since the model entails a weight on all fitness outcomes due to social

interactions of 1/2. This results in different selection coefficients. By scaling b̃ and

c̃ by 2, we obtain the same selection coefficients, and the same conclusions. Essen-

tially, models (b) and (c) are equivalent, except that model (c) involves one social

interaction per individual per generation rather than two, thus halving the selection

strength.

Under model (d), only a single selection coefficient is calculated, since there is

only a single locus. As with model (b), we reach the conclusion that donation will

evolve if the allele frequencies in each population are the same, and α > c/b; again,

this is analogous to Hamilton’s rule. However, when allele frequencies are unequal

between populations, the selection coefficient is mathematically intractable, and no

further conclusions can be drawn.

Model (e) involves genome-wide assortment within a single population. This

is mathematically equivalent to the scenario briefly mentioned at the end of Sec-

tion 3.2, in which we noted that donation evolves to fixation if allele and genotype

frequencies are equal in both populations. Here, individuals are paired up within

the same population, so frequencies match up as they did in the between-species

scenario, thus we reach the same conclusion that donation will reach fixation when

α > c/b.
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Model (f), in which donators to refuse to donate to non-donators, fitness equa-

tions reflect the fact that social interactions only occur between donators; when do-

nators are paired, they each gain b− c fitness. This results in three strictly positive

selection coefficients, implying that both the donation allele and non-suppression

allele always receive positive selection. Thus, donation always reaches fixation.

3.2.2 Implementing the Deterministic Simulation

We now discuss the implementation of the deterministic analysis, utilising the sim-

plifying equations than QLE permits; note that all of the code used in this chapter

is located online (Quickfall, 2016), and runs in R (R Core Team, 2016).

We start with some initial allele frequencies, p1,1, p1,2, p2,1, and p2,2, which de-

fine the other allele frequencies q1,1 = 1 − p1,1, q1,2 = 1 − p1,2, q2,1 = 1 − p2,1 and

q2,2 = 1 − p2,2. We are interested in whether donators can invade a population

when donation and suppression alleles are initially rare, so we choose p1,1 = p1,2 =

0.1, p2,1 = p2,2 = 0.9. We have examined more extreme initial frequencies (e.g.

0.01 initial donation and suppression), which always resulted in the same endpoints.

However, we present results from the more moderate scenarios as they are more

easily interpretable visually, and are computed more quickly.

The parameters of the system that we choose in every numerical example are

the recombination rate, x (assumed to be the same in both populations, hence the

dropping of the subscript), the baseline fitness w0, and the benefits and costs as-

sociated with donation, respectively, b and c. We vary these initial conditions and

parameters to investigate the system; aspects of the sensitivity analysis which result

in no change to the outcome of a given experiment are mentioned, but not shown.

In every iteration, the selection coefficients a1,i, a2,i and a{1,2},i are calculated.

Selection coefficients, and allele and genotype frequencies are then used to update

allele frequencies in the next iteration, using the following equations, taken from

equation (10) in Kirkpatrick et al. (2002):

∆p1,i = a1,ip1,iq1,i + a2,iDi + a12,i(1− 2p2,i)Di (3.26)

∆p2,i = a2,ip2,iq2,i + a1,iDi + a12,i(1− 2p1,i)Di (3.27)
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Finally, the new values of Di need to be calculated at the end of every generation;

these take into account the effects of selection in the previous generation, and the

new allele frequencies. The following expression finds the new values of Di, derived

using equation (19) in Kirkpatrick et al. (2002):

Di =
a12,ip1,ip2,iq1,iq2,i

xi
(3.28)

The process is terminated once the sum of the absolute changes in genotype

frequencies between two successive generations falls below a certain threshold, or al-

ternatively after a specified number of generations in order to aid visual comparison

of different results.

In the following section, we discuss results of the deterministic simulation for

the models (a) and (b). We omit discussion of models (c-f) (though see Appendix

for further details), since our findings simply confirm the results of the analysis of

selection coefficients that were discussed in Section 3.2.1.

3.3 Deterministic Approach: Results

3.3.1 Model (a): Single-locus Assortment

In Section 3.2.1, an analysis of the selection coefficients revealed that the non-

suppression allele will never receive positive selection, and that a lower c/b ratio

favours the donation allele. We shall now provide numerical examples of these con-

clusions by using the deterministic simulation formulated in Section 3.2.2.

We choose initial parameter values of x = 0.05, c = 0.005, b = 0.01, and w0 = 1.

These are valid parameters given the constraints found in section 3.2.1; preliminary

testing shows that the scale of c and b only affects the number of generations until

convergence, thus we choose these values so that they are small enough to satisfy

the condition of weak selection. Our first analysis focuses on the effect of α, thus

we do not specify a default value of α initially.

We choose initial allele frequencies of p1,1 = p1,2 = 0.1, p2,1 = p2,2 = 0.9. This
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means that both populations contain an initially low frequency of the donation and

non-suppression alleles, and, consequently, a low initial frequency of donators. We

choose these parameters as they reflect the most biologically interesting question,

of whether donation can invade, and if so, whether suppression can then invade in

turn. Since this simulation is deterministic, initial allele frequencies are the same

in each population (as are parameters), and by symmetry of the simulation, allele

and genotype frequencies will remain the same in each population over the course of

the simulation. Thus, we display only one set of allele and genotype frequencies for

each numerical example in which we do not deviate from these default initial allele

frequencies.

Our parameter choices and initial allele frequencies are informed by a prelim-

inary sensitivity analysis. The results are omitted for brevity, but we note some

of the conclusions. Firstly, the amount of recombination makes no difference to

the evolutionary outcomes or dynamics; this is a consequence of very little linkage

disequilibrium arising out of the model. Secondly, we tried different amounts of se-

lection strength (i.e. scaling w0, or alternatively, c and b), while retaining the same

c/b ratio. Under weak selection, an increase in computing time was the only con-

sequence; evolutionary outcomes and dynamics remain the same. Of course, both

c and b must take low values to satisfy condition (3.18), so the values of 0.005 and

0.01 respectively reflect a compromise between satisfying the QLE assumptions and

a desire for swift computation.

We also note that initial allele frequencies make no substantive changes to the

outcome of each analysis; the frequency of donators at equilibrium is always the

same, even if the dynamics are different. This also holds when initial allele frequen-

cies vary between populations.

We now discuss the effects of the remaining parameters, by turn focusing on

assortment α and the c/b ratio.

The Assortment Parameter α

Firstly, we consider the sensitivity of our model to the assortment parameter α;

results are displayed in Figure 3.1. Analytically, we were unable to quantify the
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Figure 3.1: Evolution of allele frequencies (A/C/E/G/I), genotype frequencies (B/D/F/H/J)
(using the deterministic simulation with donation assortment); initial frequencies are p1,1 = p1,2 =
0.1, p2,1 = p2,2 = 0.9, and parameters are x = 0.05, b = 0.01, c = 0.005, w0 = 1. In A/B, C/D,
E/F, G/H and I/J, α is, respectively, 1, 0.75, 0.5, 0.25 and 0. Non-donation and suppression allele
frequencies are not displayed as they can be trivially derived from, respectively, the displayed
donation and non-suppression allele frequencies. The greater the level of assortment, the higher
the frequency of the donation allele at convergence; donation remains transient.
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effects of α due to the intractable nature of our condition for positive selection on

the donation allele; however, we discovered that the suppression allele always receives

positive selection. The latter result is corroborated by our results, though we can

note that the donation allele is more favoured by selection initially as α increases.

These observations reflect a verbal argument as follows; the donation allele receives

positive selection initially when α is high, since donators are more likely to be paired

with other donators. Since there is no assortment on the suppression locus, there

is no penalty to bearers of the donation allele suppressing the donation behaviour;

they still receive the fitness benefits associated with assortment, though they do

not donate themselves, and thus do not lose c fitness. As suppression spreads,

fewer individuals are donators, so the benefit of bearing the donation allele and thus

being more likely to be paired with other bearers of the donation allele decreases.

Meanwhile, the suppression allele reaches fixation, at which point the allele on the

donation locus is irrelevant since no donation occurs, so the donation allele receives

neutral selection. In summary, the donation behaviour is costly when assortment is

independent of alleles on the suppression locus; indeed, in each numerical example

displayed in Figure 3.1, we can see that it is always transient. The effect of an

increase in α appears to be to increase selection for the donation allele, which in

turn increases selection for suppression; the overall effect is that donation reaches a

higher frequency, but remains transient, since the suppression allele always reached

fixation.

The c/b Ratio

Next, we look at the effect of c/b. In Figure 3.2, we provide numerical examples

for three different values of c/b. In every case, donation is transient once again, as

predicted. It appears that a decrease in c/b promotes the evolution of the donation

allele, thus having a similar effect to an increase in α.

This makes sense in light of the findings of Section 3.2.1. In equation (3.21), we

presented a condition for selection for the donation allele; this stated that if some

function of allele and genotype frequencies and α exceeded a linear function of c/b,

then the donation allele would receive positive selection.
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Figure 3.2: Evolution of allele frequencies (A/C) and genotype frequencies (B/D) (using the
deterministic simulation with donation assortment); initial frequencies are p1,1 = p1,2 = 0.9, p2,1 =
p2,2 = 0.9, and parameters are x = 0.05, b = 0.01, w0 = 1, α = 1. In A/B, C/D, and E/F, c
is, respectively, 0.009, 0.005 and 0.001. A smaller c/b ratio causes the transient frequencies of
donators to be higher.
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Conclusion

We have carried out a sensitivity analysis of this model, in particular highlighting

the effects of α and c/b. However, even when both of these parameters are set

in such a way that the donation allele receives significant positive selection, we

can find no case in which the donation behaviour is anything other than transient,

since suppression always receives positive selection. This was also shown by the

mathematical analysis discussed in Section 3.2.1.

3.3.2 Model (b): Genome-Wide Assortment

At the end of Section 3.2.1, which discussed our mathematical analysis of this model,

we concluded that equal allele and genotype frequencies between populations meant

that the donation and non-suppression alleles were tied together in terms of the kind

of selection they received. We discovered that both alleles would receive positive se-

lection if α > c/b; however, we could draw no conclusions when allele and genotype

frequencies were different between populations.

Therefore, in this analysis, we choose the following initial allele frequencies:

p1,1 = 0.101, p1,2 = 0.1, p2,1 = 0.901, and p2,2 = 0.9. The other parameters re-

main the default parameters chosen for model (a), specified in Section 3.3.1. Figure

3.3 depicts results of this approach; the striking result is that frequencies of donation

are cyclic and intermediate in both populations.

We can see from Figure 3.3 that in this case, the non-suppression allele reaches

fixation in the first population, and the donation allele reaches fixation in the sec-

ond population. Thus, whether individuals are donators or not is entirely a result of

the frequency of the donation allele in the first population, and the non-suppression

allele in the second. The frequencies of donators cycle. They increase at similar

rates and frequencies, before the frequency of donators in the population with fewer

donators stops increasing and starts to fall. After a brief period, the frequency of

donators in the other population does the same. They decrease at a similar rate,

but at different frequencies. The population with fewer donators begins to increase

again first, leading to the period of increase in donator frequencies in both popula-

tions.
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Figure 3.3: Evolution of allele frequencies (A/B), and donator frequencies (C) (using the de-
terministic simulation with genome-wide assortment); initial frequencies are p1,1 = 0.101, p1,2 =
0.1, p2,1 = 0.901, p2,2 = 0.9, and parameters are x = 0.05, b = 0.01, c = 0.005, w0 = 1, α = 1.
Maximal assortment leads to cyclic donator frequencies and no stable equilibria.

We can derive a condition for donators to have greater fitness, which can be used

to explain this cyclicity in more mathematical terms. We start by expressing the

fitness of donators compared to the average fitness of non-donators. In the following,

the phenotype of donators is denoted by a 1, and the phenotype of non-donators

is denoted by a 0. Note that in the first population, the only non-donators present

are (0,1) genotypes, and in the second population, the only non-donators present

are (1,0) genotypes. We denote the probability of an individual of phenotype s

in population i being paired with an individual of phenotype t by P ′i (s, t). These

terms could be re-formulated using the P functions found earlier, though this form

is intuitive for our current use. We derive the following condition for donators to

have greater fitness in population i:

bP ′i (1, 1)− c > bP ′i (0, 1) (3.29)
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Assume arbitrarily that population 1 has a lower frequency of donation. Then,

P ′1(1, 1) = 1, and P ′1(0, 1) > 0, since donators will always be paired with donators,

as α = 1, and the unmatched donators from the other population will be paired

with non-donators. However, in population 2, P ′2(1, 1) < 1, and P ′2(0, 1) = 0.

P ′1(0, 1) and P ′2(1, 1) are determined by the ratio of unmatched donators in pop-

ulation 2 to non-donators in population 1. When this ratio is high, which occurs

when there is a large difference in donator frequencies between the two populations,

or when there are few non-donators in population 1, then P ′1(0, 1) is relatively high,

and P ′2(1, 1) relatively low, so non-donators are more likely to have greater fitness.

The converse is true; donators have higher fitness when there is a small difference

in donator frequencies, and when donators themselves are at low frequencies. Each

of these properties is reflected in the dynamics of donator frequencies displayed in

part (c) of figure 3.3.

Further investigation of the c/b parameter under perfect assortment showed that

a decrease in c/b increases the period of the cyclicity; we do not display these

relatively uninformative results here. However, since we have assumed perfect as-

sortment, an unrealistic condition which led to cyclicity due to the frequencies of

certain non-donator genotypes, we now investigate imperfect assortment. Figure 4

shows a comparison of the dynamics of donation frequencies for several different val-

ues of α; the remaining parameters are once again unchanged. Allele and genotype

frequencies are not presented, since they follow the same pattern as in figure 3; the

donation allele goes to fixation in one population, while the non-suppression allele

goes to fixation in the other.

Figure 3.4 shows that intermediate frequencies of α can lead to stable inter-

mediate frequencies of donation. Three types of equilibrium are shown here; with

the lowest level of assortment, α = 0.4, there are no donators at equilibrium. When

α = 0.6, the same frequency of donators is present in each population at equilibrium.

Finally, when α = 0.8, stable frequencies of donators are even higher; however, these

are different between the two populations.

A more complete analysis is required to pick out a general trend; the triangle
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Figure 3.4: Evolution of donation (using the deterministic simulation with genome-wide assort-
ment); initial frequencies are p1,1 = 0.101, p1,2 = 0.1, p2,1 = 0.901, p2,2 = 0.9, and parameters are
x = 0.05, b = 0.01, c = 0.005, w0 = 1, α = 0.4, 0.6 and 0.8 in A, B, and C respectively. Intermediate
values of α result in stable equilibria with intermediate donator frequencies. Note that in 3.4A and
B, donator frequencies are equal in the two populations at equilibrium.

points in Figure 3.5 show the stable frequencies of donation over the entire parame-

ter space of α, except for the cases where there is no assortment (α = 0) or maximal

assortment (α = 1).

We can see that the three distinct types of equilibrium illustrated in Figure 3.4

are shown here. Once again, further numerical examples are omitted, but confirm

that the donation allele is in fixation in one population, and the non-suppression

allele in fixation in the other, at every equiliibrium involving stable frequencies of

donation. We also note that these equilibria are not sensitive to changes in the

initial allele and genotype frequencies, apart from the special case where they are

equal between populations; here, this model reduces to the within-species model (e).

Observations about the types of equilibria can be used to find analytic versions

of these equilibria. We first assume that p1,1 = p2,2 = 1; that is, the donation allele is

in fixation in population 1, and the non-suppression allele is in fixation in population

2. A consequence of this assumption is that p2,1 = f1(1, 1) and p1,2 = f2(1, 1). By
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Figure 3.5: Stable equilibria of donation (using the deterministic simulation with genome-wide
assortment) are shown through triangles; initial frequencies are p1,1 = 0.101, p1,2 = 0.1, p2,1 =
0.901, p2,2 = 0.9, and parameters are x = 0.05, b = 0.01, c = 0.005, and w0 = 1. Stable donation is
present with sufficient α. Non-zero equilibria calculated and presented in equations (3.30-32) are
presented as light red and blue dashed lines.

introducing these assumptions into equations (3.3), (3.4), (3.8), and (3.29), we can

find analytic expressions for each equilibrium involving positive donator frequencies:

p2,1 = p1,2 =
α− c/b
α(1− c/b)

(3.30)

or (a) p2,1 =
c/b

α(1 + c/b)
, (b) p1,2 =

α(1 + c/b)− c/b
α(1 + c/b)

(3.31)

or (a) p1,2 =
c/b

α(1 + c/b)
, (b) p2,1 =

α(1 + c/b)− c/b
α(1 + c/b)

(3.32)

These equilibria have been plotted in Figure 3.5; the blue dotted line shows the

equilibria calculated by equation (3.30), while the red dotted lines show the equilib-

ria represented by equations (3.31a,b) and (3.32a,b).
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For the equilibrium represented by equation (3.30), α > c/b is necessary for there

to be strictly positive frequencies of donation. However, when α > (c/b)/(1+c/b), we

find that the equilibria represented by equations (3.31a,b) and (3.32a,b) are stable,

and (3.30) is unstable. The converse is true: when α < (c/b)/(1 + c/b), we find

that the equilibria represented by equations (3.31a,b) and (3.32a,b) are unstable,

and (3.30) is stable. Equations (3.31a,b) and (3.32a,b) represent the case where

donation is more represented in one population than the other. This may seem

initially counterintuitive, but in fact it is a result of individuals’ fitnesses only being

compared to the fitnesses of others individuals within the same population. In this

model, a population can be at equilibrium even if its members have on average less

fitness than individuals in the other population.

Conclusion

Overall, we conclude that in the deterministic case, donation can evolve to some

intermediate level when there is genome-wide assortment. It always reaches an

evolutionarily stable intermediate level when α ∈ (c/b, 1). However, this raises the

question of what type of behaviour this is - perhaps we have found a case of stable

between-species altruism? We shall return to this question in the discussion.

3.4 Stochastic Approach: Specification

We now turn to the stochastic approach. We consider this approach for two reasons;

firstly, to drop the assumptions of QLE, which entail determinism, infinite popu-

lations, and weak selection, and secondly, to either confirm the results of the QLE

analysis, or understand what causes any differences. Thus, we are able to extend

parameter values beyond those previously tested, and check that previous results

are robust to the joint introduction of both stochasticity and strong selection. Note

that, once again, all of the code used here is located online (Quickfall, 2016), and

runs in R (R Core Team, 2016).

While it would perhaps be preferable to introduce these two changes to our

modelling approach individually, the forces of stochasticity and selection can be ma-

nipulated through parameter choices, allowing us to study the effects of each change

in relative isolation. Thus, we give active consideration to the relative forces of
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stochasticity and selection in the following section.

As shall become clear, it is difficult to consider very low amounts of stochas-

ticity under this approach, since this requires large population sizes, which entail

long computation times. If, on the other hand, the relative force of stochasticity is

large in relation to that of selection strength, then due to mutation on biallelic loci,

stochasticity results in negatively frequency-dependent selection of all alleles, which

outweighs the selection strength. The results we display aim for a balance between

two competing desires; one to study strong selection in relative isolation (i.e. very

low stochasticity), and one to study the robustness of our results to stochasticity

itself.

We start with two randomly generated finite populations, as opposed to the

monomorphic, infinite populations that we were working with previously. We are

interested in the within-population changes in genotype frequency, so the popula-

tions are constrained to have some constant size N .

Individuals are paired up with alike individuals in the other population according

to the assortment parameter α and bias functions β defined in Section 3.2; remaining

unpaired individuals are paired up uniformly at random between populations. Next,

expected fitnesses are evaluated for every individual, and individuals are selected to

be part of N breeding pairs per population, with probability directly proportionate

to their expected fitness. We use stochastic universal sampling (SUS) (Baker, 1987),

which chooses many individuals to breed on the basis of one random number, while

retaining the property that the probability of being part of a breeding pair is pro-

portionate to expected fitness. This technique reduces computational complexity

since it requires less computationally demanding random number generation; it also

reduces sampling variance.

Next, individuals arising from breeding pairs are created through uniformly at

random choosing one parent’s genotype and applying recombination with probabil-

ity x, the recombination rate. Mutations are also applied, with pm being the fixed

probability per locus of a mutation to the other allelic value. Thus, we have cre-

ated two new populations of individuals of size N . This process continues for an
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appropriate number of generations, which is chosen to aid visual analysis of each

test.

3.5 Stochastic Approach: Results

3.5.1 Model (a): Single-locus Assortment

In addition to all of the default parameters we discussed and chose in Section 3.3.1,

we must now specify three extra parameters pertaining to the stochastic approach.

Firstly, the population size, N is set to a default of 10000; the associated SUS

parameter, nSUS, specifies the number of individuals chosen for breeding per random

number generation. This must be constructed so that individuals cannot breed with

themselves. Thus, we calculate the maximum possible ratio of an individual’s fitness

to that of the total of the rest of their population:

w0 + b

Nw0 + b− (N − 1)c
(3.33)

This is the maximum probability of an individual being selected. If 1/nSUS is

smaller than this, an individual could be selected twice by SUS. Thus, nSUS must

be constrained such that:

nSUS <
N(w0 − c) + b+ c

w0 + b
(3.34)

We must also choose nSUS to be even, and a divisor of the population size N .

For consistency, we choose nSUS = 2000; in each analysis, this satisfies the above

constraint. It is desirable for this parameter to be constant since, while this method

of choosing breeding partners means that fecundity reflects expected fitnesses in an

unbiased manner, a decrease in nSUS will result in higher variance, since an indi-

vidual’s maximum number of offspring will be N/nSUS. When N is deviated from

10000, we also adjust nSUS proportionately, such that N/nSUS = 5.

Finally, we choose pm = 0.001; this was settled on through some preliminary

testing, which showed that this value has the desirable quality that mutations are
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rare, whilst still allowing extinct genotypes another chance on occasion.

Previously, under the assumptions of QLE, we were forced to set our parame-

ters in such a way that b̃ � 1 − c̃. This ensures that both c and b must be very

low, thus QLE entails weak selection. With the introduction of the stochastic ap-

proach, we are able to drop this constraint since the stochastic approach does not

invoke QLE. However, we start by presenting a comparison of an experiment per-

formed in Figure 3.1A/B using the deterministic simulation (reproduced in Figure

3.6A/B), with the same experiment using the stochastic simulation (Figure 3.6C-F).

Figure 3.6: A comparison of the deterministic (A/B) and stochastic simulations (C-F), using
model (a). Evolution of allele frequencies (A/C/E) and gene frequencies (B/D/F); initial frequen-
cies are p1,1 = p1,2 = 0.1, p2,1 = p2,2 = 0.9, and parameters are x = 0.05, c = 0.005, b = 0.01, w0 =
1, α = 1. Additionally, in (C-F), pm = 0.001, N = 10000, nSUS = 2000. Population 1: C/D;
Population 2: E/F.

Note that the initial allele frequencies are the same for both populations, in

both tests; thus, in the deterministic simulation, allele and genotype frequencies are

the same for both populations for the entirety of the process. By contrast, in the

stochastic simulation, allele and genotype frequencies are not constrained to remain
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the same due to the introduction of stochasticity. Figure 3.6C-F only shows the

results from the first 5000 generations, due to the computational intensity of the

simulation with such a large value of N . However, even after 5000 generations, al-

lele and genotype frequencies have not converged.

The reason for this is likely to be that the effects of stochasticity outweigh the

weak selection strength; this was a requirement of the deterministic approach, given

the QLE assumptions. In addition, mutations have the side-effect of giving a very

small selective benefit to alleles at low frequency. Thus, while it is evident that

the patterns of donation and suppression on average receiving positive selection are

reproduced successfully, suppression has not reached as high a frequency as it did

under the deterministic simulation. This illustrates the hazards of having high levels

of stochasticity relative to selection strength.

In Figure 3.7, we relax the assumption of weak selection for the stochastic sim-

ulation, instead choosing c = 0.5, and b = 1; the two parameters have been scaled

up by a factor of 100, while retaining the same c/b ratio.

Figure 3.7: Results of the stochastic simulation under stronger selection strength. Evolution of
allele frequencies (A/C) and gene frequencies (B/D); initial frequencies are p1,1 = p1,2 = 0.1, p2,1 =
p2,2 = 0.9, and parameters are x = 0.05, c = 0.5, b = 1, w0 = 1, α = 1. Additionally, in (C-F),
pm = 0.001, N = 10000, nSUS = 2000. Population 1: A/B; Population 2: C/D.

In Section 3.3.1, we noted that under the deterministic simulation, the scale of c
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and b changes only the number of generations before convergence. However, we can

see comparison of Figures 3.6 and 3.7 that in this case, the increased scale of c and b

is important to ensure that the effects of selection outweigh the effects of stochastic-

ity. We observe that allele and genotype frequencies have stabilised at equilibrium,

to the point that the suppression allele has almost entirely invaded both populations

and selection on the donation allele has halted, leaving it at intermediate values in

the two populations. Since so many individuals possess the suppression allele, the

frequency of the donation allele makes little difference since possession of the allele

very rarely results in the donator phenotype. Thus, the results of model (a) are

robust to the joint introduction of stochasticity and strong selection; we have repro-

duced the experiment that most favoured the evolution of donation, and found once

again, backing up our analytic results, that the suppression allele will invade both

populations, and that donation is transient.

3.5.2 Model (b): Genome-Wide Assortment

In the experiments investigating assortment on both loci with the deterministic

simulation, we found that when assortment is maximised, there are cyclic fluctu-

ations in allele and genotype frequencies. The reasons for cyclicity were discussed

at length in Section 3.3.2; in summary, the relative fitnesses of donators and non-

donators were dependent on the difference in donator frequencies between the two

populations, which ensured that both populations did not reach equilibrium at the

same time. We also noted that each population only had one type of non-donator

genotype; donator frequencies were determined by the frequency of the donation

allele in one population, and the non-suppression allele in the other. The original

experiment is shown in Figure 3.3; we have replicated this in Figure 3.8, using the

same parameters, slightly different initial frequencies, and introducing the appro-

priate parameters for the stochastic simulation, entailing the introduction of strong

selection and stochasticity. Note that the parameters relating to selection strength

and stochasticity are unchanged from those used for Figure 3.7, which achieves a

reasonable balance of the forces of selection and stochasticity, as noted above. Each

of these changes was motivated and discussed in Section 3.4.

A significant difference between the outcomes using the two approaches is that it
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Figure 3.8: Evolution of allele frequencies (A/B), and donator frequencies (C) (using the stochas-
tic simulation with genome-wide assortment); initial frequencies are p1,1 = p1,2 = 0.1, p2,1 =
p2,2 = 0.9, and parameters are x = 0.05, b = 1, c = 0.5, w0 = 1, α = 1. Additionally,
pm = 0.001, N = 10000, nSUS = 2000. Intermediate frequencies of donation evolve, though cyclic-
ity is moderated by the introduction of stochasticity. Population 1: A; Population 2: B.

is now not the case that the donation allele reaches fixation in one population, and

the non-suppression allele reaches fixation in the other. Here, the non-suppression

allele reaches fixation in population 2, and the donation and non-suppression alleles

are at high levels in population 1. Initially, the cyclicity of genotype frequencies

is once again in evidence, though this breaks down to a certain extent. A sta-

ble equilibrium is never reached, as donator frequencies still cycle between the two

populations. This makes sense, since previously the cyclicity was based on precise

differences in genotype frequencies, whereas in this case, donators may receive pos-

itive selection over a period, but find that, due to randomness, this is interrupted

when the difference in donator frequencies between the two populations deviates

from the expected change.

In fact, even if allele frequencies do not quite act as we expected, donator fre-

quencies do appear to follow the pattern established in Figure 3.5. There, high
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levels of assortment led to a difference in donator frequencies between populations

at equilibrium. We found that two types of stable equilibria involving donation were

possible, if α > c/b. We now extend our replication of previous results to consider a

range of intermediate α. Figure 3.9 displays results using the stochastic simulation

that correspond to results displayed in Figure 3.4.

α
=

0.4
α

=
0.6

α
=

0.8

Figure 3.9: Evolution of donation (using the stochastic simulation with genome-wide as-
sortment); initial frequencies are p1,1 = p1,2 = 0.1, p2,1 = p2,2 = 0.9, and parameters are
x = 0.05, b = 1, c = 0.5, w0 = 1, α = 0.4, 0.6 and 0.8 in A, B, and C respectively. Addition-
ally, pm = 0.001, N = 10000, nSUS = 2000. Once again, intermediate values of α result in stable
equilibria with intermediate donator frequencies; however, a small degree of cyclicity is evident
when α is high.

We can see from Figure 3.9 that the stochastic simulation closely reproduces re-

sults of the deterministic approach. Specifically, we have once again found that when

α is low, donation becomes extinct; when α is intermediate, donation reaches low

equal frequencies in the two populations, and finally, when α is high, the frequencies

of donators in the two populations are separated, while nonetheless remaining stable.

One small difference here is that some degree of cyclicity is evident in Figure 3.9C.

Under the deterministic approach, this settled down; however, with stochasticity,

small deviations can occur. For example, imagine that the frequency of donators

increased in the population 1, which we assume without loss of generality is the
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population with more donators, from the stable equilibrium frequency. Then, using

equation (3.29), we can see that, since there are now more unmatched donators in

population 1, P1(1, 1) will be decreased, and P2(0, 1) will be increased. Thus, in both

populations donators will receive positive selection, encouraging a cycle according

to the dynamics explained in Section 3.3.2.

We now extend the tests we carried out in Figure 3.9, plotting stable equilibria

of donation frequencies against α, essentially replicating the same test shown in Fig-

ure 3.5. One difference is that, due to stochasticity, donator frequencies fluctuate.

Thus, we plot the mean donator frequencies in each population over the final 500

generations of each 1000-generation experiment, omitting the first 500 generations

due to some initial cyclicity, as illustrated by Figure 3.9C. We have checked visually

that for each α, populations do not swap between having the most and having the

least donators in any of the experiments, as this would invalidate our results. Figure

3.10 shows the results of this test.

While Figure 3.10 does show slightly different results in comparison to those

displayed in Figure 3.5, it is not difficult to argue that the effects of stochasticity

account for the changes. Firstly, the two types of stable equilibria are clearly in

evidence. Previously, we discovered that when c/b < α ≤ (c/b)/(1 + c/b), equal but

low frequencies of donators between populations occurred at equilibrium. Note that

in this case, we have chosen c/b = 1/2, so equal but low frequencies of donators

should be present in each population in the interval [1/2,2/3]. We can see that this

is the case, though there appear to be low frequencies of donation in the two pop-

ulations when α = 0.45 and 0.5 too; this occurs since selection against donation at

low frequencies is not strong, so low frequencies of donators in the two populations

that arise through mutation can be temporarily sustained by chance. The second

type of equilibrium is also apparent; this occurs when α > (c/b)/(1 + c/b). As dis-

cussed in relation to Figure 3.9, stochasticity again accounts for fluctuations since

a small deviation from equilibrium can launch a feedback process that exacerbates

this deviation.

Thus, we have concluded that all of the findings related to our deterministic

model are robust to the joint introduction of stochasticity and strong selection.
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Figure 3.10: Stable equilibria of donation (using the stochastic simulation with genome-wide
assortment) are shown through triangles; initial frequencies are p1,1 = p1,2 = 0.1, p2,1 = p2,2 = 0.9,
and parameters are x = 0.05, b = 1, c = 0.5, and w0 = 1. Additionally, pm = 0.001, N =
10000, nSUS = 2000. Stable donation is present with sufficient α. Non-zero equilibria calculated
and presented in equations (3.30-32) are presented as light red and blue dashed lines.

Indeed, this is also the case for the results of each of the minor models, the details

of which are located in the Appendix.

3.6 Discussion

In this chapter, we have presented results for two different models of donation be-

tween species; results relating to a further four can be found in the Appendix. We

have utilised deterministic and stochastic approaches.

In Chapter 2, we discussed the model of Fletcher and Doebeli (2009). Their

model involves two loci; alleles on the first locus are labelled a and A, whereas

alleles on the second locus are labelled b and B. AB individuals are not viable,

Ab and aB individuals are cooperators in a pairwise prisoner’s dilemma game (of
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which the donation game introduced in Section 1.4.1 is a special case, involving

additive interactions (Marshall, 2015)), and ab individuals are defectors. Fletcher

and Doebeli impose assortment in such a way that Ab individuals are always paired

with aB individuals. They then argue that donation is altruistic, on the basis of a

assortment, which they distinguish from relatedness. Responses to this model were

discussed in Section 2.2.

Model (a) is intended as a variation of the model of Fletcher and Doebeli (2009).

The donation locus in the first species corresponds to the aA locus in Fletcher and

Doebeli’s model, while the donation locus in the second species is analogous to the

bB locus. Similarly, we apply assortment on the donation locus. However, where

our model differs from that of Fletcher and Doebeli is our introduction of the sup-

pression locus; individuals that possess the suppression allele do not donate, even if

they possess the donation allele. We find that the suppression allele always receives

positive selection, thus the donation behaviour is vulnerable to suppression by mod-

ifiers. The donation behaviour is analogous to a within-species obligate greenbeard

trait; donators performed a fixed behaviour, which is disproportionately aimed at

other donators. Notably, greenbeard traits are similarly vulnerable to suppression

(Biernaskie et al., 2011).

Model (b) applies genome-wide assortment across both loci, and is intended to

correspond to within-species donation. We find that donation reaches a stable level

when something like Hamilton’s rule applies (α > c/b). However, the donation in

this scenario may also be vulnerable to suppression, if a further unassorted locus

arises to suppress the donation behaviour. For example, model (d) considers dona-

tion determined by a single, assorted locus, which receives positive selection when

α > c/b, but model (a) introduces an unassorted suppression locus which results in

the loss of the donation behaviour; model (d) is a closer analogy to Fletcher and

Doebeli’s (2009) model.

Our model could be used to inform study of greenbeard associations with parallels

to our models. One example is that of between-species plant-pollinator associations,

in which stable associations may be disrupted by ‘nectar-robbing’ species which ben-

efit from receiving nectar without pollinating themselves; this is of course analogous
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to individuals with the donation and suppression alleles in model (a) taking advan-

tage of being assorted with donators, but suppressing their own donation behaviour

(Roubik, 1982; Marshall, 2015). While in general greenbeard genes are vulnerable

to modifier genes which retain the recognition component relating to the green-

beard gene, but suppress costly donation, an example of a greenbeard association

which may not suffer from this vulnerability may be the FLO1 allele in S.cerevisae

(Smukalla et al., 2008), which avoid exploitation by cheating cells through self/non-

self recognition. Thus, this gene is potentially resistant to suppression genes arising

at unassorted loci. Similar behaviour may be exhibited in multi-species associations

such as biofilms (Marshall, 2015).

We also considered a facultative greenbeard scenario; model (f) considered genome-

wide assortment, in which donators only donate to other donators. In this case,

donators are facultative greenbeards since they recognise other donators and behave

differentially towards them, adjusting their own social behaviour to provide help

(Gardner and West, 2010). In effect, these greenbeards account for the suppres-

sion locus as well as the original donation locus, thus these greenbeard genes are

better described as gene complexes (Gardner and West, 2010). In this scenario,

the donation behaviour always receives positive selection, regardless of the level of

assortment. However, once again, these greenbeards may be vulnerable to new mod-

ifiers arising on loci not subject to assortment.

The rule for stable donation being possible in models (d) and (b), α > c/b, also

holds for model (e), in which we considered the evolution of donation under genome-

wide assortment in a single population. This rule reflects Hamilton’s rule, with α

being analogous to relatedness (see Section 1.4.2).

We have also checked that stable donation in these models does not rest on the

dependence of donation on returned benefits, by noting that all results found by

model (b) were insensitive to individuals only being placed in one role (potential

donor or recipient) in a lifetime (model (c)) rather than two (model (b)). Thus,

donators may incur lifetime personal fitness costs. This does not have implications

for the classification of the donation behaviour under an inclusive fitness analysis

(see Table 1.1), since any such classification relies on expected lifetime fitness.
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A final point may be made regarding the interpretation of the donation be-

haviour. Fletcher and Doebeli (2009) regard the behaviour as between-species altru-

ism, arguing that cooperative behaviour in a pairwise prisoner’s dilemma is altruism

by definition. However, cooperative behaviour in a prisoner’s dilemma may be mu-

tually beneficial, if social behaviour leads to an expectation of increased personal

fitness on average. Alternatively, the donation behaviour may be within-species al-

truism; Wyatt et al. (2013) show that fitness can be regressed on genetic predictors

within species, despite interactions occurring between species, leading to potential

diagnoses of donation between species as within-species altruism. Given our lack

of awareness of any evidence of between-species altruism occurring in nature, ar-

guments for social behaviours to be interpreted in such a way while alternative,

credible interpretations are possible should be viewed with scepticism.

We propose a causal link from donated fitness benefits in the two-locus genome-

wide assortment model (b), to received fitness benefits of related individuals in

subsequent generations. There is a causal link between donated fitness benefits and

the likelihood of a social partner being a donator. If an individual is a donator

that receives fitness benefits, that individual is more likely to have more offspring

on the basis of higher fitness, who are more likely to themselves be donators, and

send fitness benefits back to members of the first species. Thus, donated fitness

benefits may be causally linked to received fitness benefits by related members of

subsequent generations, and the donation behaviour may have a valid interpretation

as within-species altruism. For the donation behaviour to be properly analysed, a

formal Hamilton’s rule analysis is necessary, however, beyond the scope of this work.
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Chapter 4

Maternally-transmitted Symbionts

and Egalitarian Transitions

Abstract

In this chapter, we present and analyse a model of hosts infected with maternally-

transmitted symbionts.

We present a deterministic approach, which numerically solves differential equa-

tions to reach a solution, before conducting a bifurcation analysis of this model. We

find that coincidence in fitness interests between a host and symbiont increase with

the level of vertical transmission of the symbiont.

We also present stochastic simulations, which allow for evolution of symbiont

strategies. In the absence of population structure, a sex-distorting symbiont will

force a host to extinction. However, in the presence of population structure, the

symbiont may completely invade a host population, achieving a stable equilibrium

in which it does not distort sex-ratios. This novel finding contrasts with previous

models of sex-distorting symbionts invoking population structure (Hatcher et al.,

2000), and relies on our introduction of the evolution of symbiont strategies. We

propose that this presents a potential pathway from sex-distorting parasitism to

mutualism; consequently, this may be the foundation of an egalitarian major tran-

sition.
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4.1 Introduction

We wish to model, in the simplest way possible, the interactions between maternally-

transmitted, sex-distorting symbionts (such as the endosymbiotic bacteria, Wol-

bachia and Cardinium (Werren, 1997; Gotoh et al., 2007; West, 2009); specific meth-

ods of sex-distortion were discussed in Chapter 2), and their hosts. The aim of this

chapter is to consider how a coincidence of fitness interests between two different

species with a host-symbiont relationship can be achieved; this is necessary for an

‘egalitarian’ transition in individuality (Bourke, 2011). The wider literature relat-

ing to endosymbionts, egalitarian transitions, and sex-ratio theory was discussed in

Chapter 2.

4.2 Model Specification

We start by considering a population of hosts, of which some are infected by a sym-

biont. The symbiont is maternally-transmitted, so it is necessary that we consider

male and female hosts. Consequently, we have four types of hosts; uninfected fe-

males, uninfected males, infected females, and infected males; the absolute numbers

of each are labelled, respectively, Uf , Um, If , and Im.

Since we are interested in modelling the conflict between host and symbiont

sex ratios, we introduce strategies for the host and symbiont, which represent the

proportions of female offspring of uninfected and infected individuals; these are la-

belled ρU and ρI respectively. We have assumed here that the gender of infected

host offspring is under control of the symbiont. However, it may be the case that

transmission of the symbiont from a mother to her offspring is not perfect (Ewald,

1987); thus, we include a vertical transmission parameter, α, which represents the

proportion of infected offspring of an infected mother.

The life cycle of the host in this model is simple: males and females give birth

at certain rates dependent on their status as uninfected or infected, and die at a

constant rate independent of their infection status. Since we are interested in the

maternal inheritance of the symbiont, the status of the offspring as male or female,

and infected or uninfected, are determined by either the sex ratio and vertical trans-
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mission strategies of the symbiont if the mother is infected, or the sex ratio strategy

of the mother if she is uninfected. Host offspring are then immediately able to re-

produce at the rate afforded by their infection status and gender, and die at the

same constant rate. The life cycle of the symbiont simply entails birth into infected

host offspring, and death when their hosts die.

We are primarily interested in the formation of mutualisms, therefore we must

also consider the fitness effects a symbiont will have on a host, such as resistance to

infection (Jaenike et al., 2010; Walker et al., 2011) (see Chapter 2). For simplicity, we

consider only a differential effect in birth rate; we label the birth rate of hosts infected

with the symbiont bI , and the birth rate of hosts uninfected with the symbiont bU .

The death rate is labelled d, and remains unchanged in the presence or absence of

the symbiont. We always choose d = 1, as we are only interested in the relative

values of the birth rates to one another and the death rate. However, d is explicitly

included in the differential equations that describe our system in order to make clear

the causes of gains and losses in the numbers of each host type:

dUf

dt
= B(bf , bm)

(
UfbUρU + IfbIρI(1− α)

)
− dUf (4.1)

dUm

dt
= B(bf , bm)

(
UfbU(1− ρU) + IfbI(1− ρI)(1− α)

)
− dUm (4.2)

dIf
dt

= B(bf , bm)
(
IfbIρIα

)
− dIf (4.3)

dIm
dt

= B(bf , bm)
(
IfbI(1− ρI)α

)
− dIm (4.4)

where bf := UfbU + IfbI

bm := UmbU + ImbI

B(bf , bm) := 2min(bf , bm)/bf (4.5)

We shall now walk through the meaning of the differential equation (4.1); analo-

gous reasoning holds for the construction of equations (4.2-4). Equation (4.1) shows

the change in numbers of uninfected females. Uninfected females are born to either

uninfected or infected females. There are Uf uninfected females at a given point

in time, that give birth at a rate proportional to bU . Offspring of an uninfected

female will be uninfected, and female with probability ρU . Thus, the product of
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these terms, UfbUρU appear in equation (4.1), alongside the term IfbIρI(1 − α).

This latter term arises for similar reasons; there are If infected females, that give

birth at rate proportional to BI , to individuals that are uninfected with probability

1− α, and female with probability ρI .

However, note that the terms described above are only proportional to birth

rates; this is because we need another term to account for the effects of biased sex

ratios and the different birth rates of infected and uninfected individuals. Without

any further weighting, the total birth rate would be bf := UfbU + IfbI . In words,

this is the sum of the number of infected females multiplied by the infected female

birth rate and the number of uninfected females multiplied by the uninfected fe-

male birth rate. A similar term could be derived for males: bm := UmbU + ImbI . We

label these terms the capacity for births according to females and males, respectively.

We now wish to use bf and bm to construct a term that will constrain overall

birth rates on the basis of population sex ratio. We choose to set the total birth

rate as the minimum of bf and bm; in other words, the total birth rate is the lowest

limiting factor out of the capacities for births according to males and females. Since,

as noted above, the total birth rate without weighting would be bf := UfbU + IfbI ,

we divide through by bf , then multiply by min(bf , bm). Since we will later choose

bU and bI in relation a baseline of 1, we must also weight by 2, accounting for the

fact that each offspring has two parents. Thus, we introduce a term multiplying all

of these factors, B(bf , bm) := 2min(bf , bm)/bf , which weights each of the birth rate

terms.

Finally, the death rate term is simply the base death rate per individual, d, mul-

tiplied by the number of uninfected females, Uf .

Unfortunately, the system of equations described above is non-linear, and there-

fore difficult to solve; it is necessary that we consider an alternative approach. Thus,

we initially analyse the model using a deterministic, iterative scheme in order to un-

derstand the dynamics of system and investigate the effects of host and symbiont

strategies on endpoints of the system. We then utilise a bifurcation analysis, us-

ing numerical approaches to focus on the different types of equilibria in the system
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and their stability. Finally, we use an individual-based simulation to investigate

the evolutionary end-points given that symbiont sex ratio and vertical transmission

strategies are allowed to evolve through breeding and mutation.

4.3 Deterministic Model

4.3.1 Method

Here, we use the ‘deSolve’ package (Soetaert et al., 2010) in R (R Core Team,

2016) to program our system of differential equations; relevant code is located on-

line (Quickfall, 2016). We analyse changes in population size and within-population

frequencies of each of the four host types (male or female; symbiont present or ab-

sent). We use time-steps of length 0.1 (note that time is dimensionless in this model,

and rates are defined relative to time), and analyse the population for convergence

every ten time-steps; these are choices that balance the competing needs for com-

putational complexity and accuracy of the process. Convergence is detected when

the absolute change in within-population frequencies falls below a certain threshold.

Evolutionary outcomes tested over a small selection of parameter choices were not

sensitive to changes in the time-step size, convergence test intervals, or the conver-

gence threshold, given reasonable choices of each parameter.

Our remaining parameters are as follows: bU , the birth rate for uninfected hosts;

bI , the birth rate for infected hosts; ρU , the sex ratio strategy of the host; ρI , the

sex ratio strategy of hosts infected with the symbiont; d, the death rate; α, the

probability of successful vertical transmission of the symbiont, and finally, the ini-

tial frequencies of each of the four host types. Some of these we shall not test; Table

4.1 summarises our investigation of model parameters. Initial frequencies are chosen

such that the symbiont is initially rare (1%) in every test, since we are primarily

interested in invasion of the symbiont. We also choose the initial sex ratio to be the

Fisherian sex ratio of 1/2. Birth rates are set by default to 1.2 for infected hosts and

1.1 for uninfected hosts, since, if the symbiont confers a fitness benefit through in-

creased birth rate, it essentially has an ‘option’ to be either parasitic or mutualistic,

depending on the fitness cost associated with any sex ratio distortion. The death

rate is set to 1, as discussed in the previous section. Note that bU > d; this is so
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that there is some leeway in terms of endosymbionts causing detrimental effects on

host fitness; population extinction is detected only if this effect is sufficiently high.

The remaining parameters, ρU , ρI , and α are given no default since we test each of

these extensively.

Parameter Status Interval

bI Constant 1.2

bU Constant 1.1

d Constant 1

ρI Variable [0,1]

ρU Variable [0,1]

α Variable [0,1]

Table 4.1: Investigation of Model Parameters

For each run of the model with a given set of parameters, we analyse certain data

relating to the model. Firstly, we track frequencies of each host type, as these can

help to provide insight into the mechanics of the process. We also look at the average

host fitness at equilibrium, (defined to be the growth rate of the overall population)

and the average symbiont fitness at equilibrium (defined to be the growth rate of the

population of infected hosts). Notably, for every single run using the deterministic

approach, equilibrium of host frequencies was reached, although the population size

was not constant at equilibrium.

4.3.2 Results

We start our analysis with an example, in order to illustrate the dynamics of the

system; this is depicted in Figure 4.1. Along with the above-specified parameters,

we choose α = 0.95; in words, the symbiont is almost perfectly transmitted from

mother to offspring. We also choose the host to have the standard Fisherian sex

ratio, ρU = 0.5, but the symbiont to distort this sex ratio slightly; ρI = 0.55.

Firstly, we note that symbionts infect a significant proportion of the host pop-

ulation at equilibrium. This is because symbionts confer a fitness benefit to their

hosts, and transmit themselves successfully due to a combination of high vertical
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Figure 4.1: Evolution of host-type frequencies and population size. Here, α = 0.95, ρI = 0.55,
ρU = 0.5, bI = 1.2, bU = 1.1, and d = 1. At equilibrium, the population is increasing, symbionts
are present at a high frequency, and there is a biased sex ratio in favour of females.

transmission and sex ratio distortion. They do not have such high sex ratio distor-

tion and frequency within the population that the sex ratio is excessively distorted,

and the host goes extinct.

This is one simple example of the dynamics of this system. We shall now con-

duct a fuller investigation by considering the equilibrium host-type frequencies and

population size status over the entire parameter space of the sex ratio parameters

ρI and ρU . These parameters represent the sex ratios for infected and uninfected

individuals respectively, and thus take values in the range [0,1], where a sex ratio

of 1 entails the production of female offspring only. Once again, we assume that

vertical transmission is nearly complete; α = 0.95. The results of this experiment

are depicted in Figure 4.2.

As shown by the fitness contours in the plot of host fitnesses, Figure 4.2A, the
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Figure 4.2: Equilibrium fitnesses of hosts (top-left) and symbionts (top-right), and frequencies of
females (bottom-left) and symbionts (bottom-right), over the ranges [0,1] for the host and symbiont
sex ratio strategies, ρU and ρI . We also set α = 0.95, bI = 1.2, bU = 1.1, and d = 1. The host
population does not crash (i.e. fitness at equilibrium is 1 or greater) only when ρU ≈ 0.5 or
ρI ≈ 0.5. In the former case, the symbiont is entirely absent, and in the latter, the symbiont is
entirely present. There is a small crossover region with intermediate symbiont frequencies.
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host population is only viable over a small range of the parameter space. The failed

populations come under three categories. If ρU � ρI , then infected females give

birth to less infected females than uninfected females give birth to uninfected fe-

males, since the fitness benefit to infected hosts is not large enough to overcome the

symbiont’s failure to sufficiently distort sex ratios towards production of females.

Thus, at equilibrium, there are no symbionts, and whether or not the population

grows is dependent on the host strategy ρU . If this is biased far enough one way or

the other from the Fisherian sex ratio of 1/2, then the population crashes as a result.

The second type of outcome occurs when ρI � ρU . In this scenario, the sym-

biont successfully transmits itself, and thus at equilibrium the population sex ratio

is entirely dependent on ρI . Therefore, if ρI is significantly distorted away from 0.5,

the population crashes. In this case, there is a little more lee-way in terms of how

much the symbiont can distort the population sex ratio, since it confers a fitness

benefit through increased birth rate to infected hosts.

Finally, if ρI ≈ ρU , then the population crashes if both sex ratios are signifi-

cantly distorted away from 0.5. If both sex ratio strategies are around 0.5, then an

intermediate frequency of symbionts can persist at equilibrium.

A general rule regarding all of these possible equilibria is that a population will

crash if the effects of sex ratio distortion at equilibrium outweigh any excess birth

rate over death rate. This is why we have chosen the birth rates of uninfected and

infected individuals to be strictly greater than 1.

We can also note that if the host deviates too far from the standard Fisherian

sex ratio of 0.5 (see Chapter 2 for further discussion), the population will crash; in

other words, compensatory sex ratios lead to population extinction in our model.

This contrasts with Werren (1987) and Hatcher and Dunn (1995), who, using simi-

lar models, found that compensatory sex ratios could evolve; however, they did not

model population extinction.

We now consider results from the model if we vary both symbiont strategies; the

vertical transmission parameter, α, which was not varied in the previous experiment,
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and the symbiont sex ratio, ρI . As previously discussed, the host sex ratio is taken

to be ρU = 0.5. All other parameters remain unchanged. The results are depicted

in Figure 4.3.

For a large portion of the parameter space, the host fitness is greater than 1,

and so the population is expanding at equilibrium; only when both α and ρI are

sufficiently large do symbionts reach a sufficiently high frequency and distort sex

ratios sufficiently to cause the population to crash. However, by analysing symbiont

fitnesses, we can see that for much of the parameter space in which the host popu-

lation persists, the symbionts do not transmit themselves efficiently enough to gain

a foothold within the population. Only for a narrow band of α and ρI strategies do

the symbionts successfully infiltrate the host population without causing extinction.

As α increases past 0.5, the required ρI strategy for symbionts to both reach a high

frequency and not cause extinction decreases to 0.5. In other words, higher trans-

mission fidelity causes fitness interests of the symbiont and host to align, as shown

by the optimal ρI converging to ρU .

This is an important result, since a confluence of fitness interests is required for

an egalitarian transition in individuality (Bourke, 2011). However, similar results

have been reached in the past. Notably, Hatcher and Dunn (1995) have created a

similar model, of host sex ratio, and symbiont transmission and feminisation, and

analysed a host’s response to the presence of a symbiont. They found that equilib-

rium presence of infection increases with transmission, and that high transmission

and feminisation can lead to overexploitation of the host population, corroborating

our findings. However, they also found that compensatory sex ratio evolution in the

host is possible, contrasting the results of our model.

Given fixed host sex ratio, we can choose ρI and α such that our model and

Hatcher and Dunn’s (1995) model are equivalent. However, their host sex ratio

acts in a slightly different way, since it can influence the gender of infected offspring.

Thus, while many of their results are similar to ours, it makes sense that their model

results differ from ours when they consider changes in the host sex ratio parameter.

A further, very significant, similarity between our analysis and that of Hatcher
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Figure 4.3: Equilibrium fitnesses of hosts (top-left) and symbionts (top-right), and frequencies of
females (bottom-left) and symbionts (bottom-right), over the ranges [0,1] for the symbiont’s vertical
transmission and sex ratio strategies, α and ρI . We also set ρU = 0.5, bI = 1.2, bU = 1.1, and d = 1.
The host population survives (i.e. fitness at equilibrium is 1 or greater) if the symbiont does not
over-exploit the population; as α increases, fitness interests, and therefore sex ratio strategies,
align.
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and Dunn so far is that the feminisation and transmission parameters which can lead

to an intermediate frequency of symbionts at equilibrium in Hatcher and Dunn’s

(1995) model is very similar to the set of ρI and α parameters that lead to inter-

mediate symbiont frequencies in our analysis, given that f = 0 in their model (no

feminisation) is analogous to ρI = 0.5 in our model (unbiased symbiont sex ratios),

when ρU = 0.5 (see Figure 5, Hatcher and Dunn (1995)).

In Section 2.3.4, we discussed Hatcher and Dunn’s (1995) analysis of feminising

symbionts in a host population; they found that the degree of feminisation of an

invading symbiont could drive a host population to develop compensatory sex ratios,

possibly producing only males. This reflected Werren’s (1987) model, which reached

a similar conclusion, though in the absence of host sex ratios determining some in-

fected offspring’s gender, intermediate compensatory sex ratios were not detected .

Our model has shown that in developing compensatory sex ratios, a population may

be destabilised; in the absence of frequency-dependent fitness effects, the growth

rate at equilibrium is shown to be less than 1, since there is an overall bias in sex-

ratios. A limitation of these analyses was that they did not consider how symbiont

strategies may evolve; this shall be considered in Section 4.5.

However, the next section considers the same model, utilising an alternative

numerical approach. This allows us to check the robustness of our results, explore

the potential for alternative equilibria, and investigate the stability of the equilibria

detected in the deterministic model.

4.4 Bifurcation Analysis

We now use the MATLAB (The Mathworks Inc., 2010) package MatCont (Dhooge

et al., 2003) to analyse the stable and unstable equilibria of this system. The model

itself can be located online (Quickfall, 2016). This uses numerical methods to obtain

equilibria; numerical continuation can then be used to find how a given equilibrium

changes with a certain parameter. Unfortunately, our system is four-dimensional,

so plotting every equilibrium for all four types of individual is unwieldy; thus, we

focus only on the numbers of infected females at equilibrium, and report verbally

the other components of the host population where informative.
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Equilibria detected using the deterministic approach were only equilibria in terms

of within-population frequencies of host types. We now apply population regulation,

adjusting birth rates according to how far the population size is from 100. The

birth rate discounting function is labelled R; for a given population size N , every

individual’s birth rate is adjusted by the following factor:

R :=
200−N

100
(4.6)

When the population size is 100, no fitness adjustment occurs; fitness adjust-

ment linearly decreases with N , from a factor of 2 when the population size is 0 (of

course, this factor is never used) to a factor of 0 when the population size reaches

200 (likewise, this factor is never reached). Note that any population smaller than

100 is comparable to populations decreasing in size in the previous analysis, so the

detection of extinction is mitigated here by negatively-frequency-dependent fitness

effects. Due to the numerical methods used, we were forced to avoid any population

regulation function which invoked use of exponential functions; this explains why

there is deviation from the method of population regulation used in the individual-

based model presented in Section 4.5.

We were also forced to consider an alternative version of the birth discounting

function, since MatCont could not handle a discontinuous version; this remains

symmetrical, with mode 0.5 and maximum value 1:

B(bf , bm) := 4
bfbm
bf + bm

(4.7)

We begin by investigating how equilibria change with the vertical transmission

rate, α; these results are displayed in Figure 4.4. We use the same parameters used

in Figure 4.1, choosing the symbiont to confer some fitness benefit (bI > bU), while

distorting sex ratio (ρI = 0.55) away from that of the host (ρU = 0.5).

For low α, symbionts are not present at the only equilibrium, which is stable and

involves equal numbers of uninfected males and uninfected females. However, once
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α crosses a certain threshold, a bifurcation point occurs, and two types of equilib-

rium are present. Firstly, there is an unstable equilibrium entailing equal number

of uninfected males and uninfected females, and a total absence of symbionts. Sec-

ondly, there is a stable equilibrium, polymorphic for infection. Symbionts overcome

their inefficient transmission by providing fitness benefits to hosts and distorting

sex ratios. As vertical transmission increases even higher, the amount of infected

hosts further increases. Note that there is no population crash here, since symbionts

do not distort sex ratios to a great extent. This corroborates with results found in

Figures 4.3A-D.

Figure 4.4: Equilibria given changes in vertical transmission. Here, ρI = 0.55, ρU = 0.5,
bI = 1.2, bU = 1.1, and d = 1. Stable equilibrium (undashed line) frequencies of infected females
are possible once α crosses a threshold value, and increase with α from then on. A trivial unstable
equilibrium (dashed line) is possible in which no infection is present, for all α.

We now investigate how equilibria change with the symbiont sex ratio strategy,

ρI ; these results are displayed in Figure 4.5. When symbionts distort sex ratios

in favour of males, they do not aid their own spread, and the stable equilibrium

involves equal numbers of uninfected males and females. Since vertical transmission

is perfect and the symbiont provides a fitness benefit, the symbiont spreads through

the population when ρI reaches close to 0.5. Here, expected numbers of infected
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Figure 4.5: Equilibria given changes in symbiont sex ratio. Here, α = 1, ρU = 0.5, bI = 1.2, bU =
1.1, and d = 1. Infected females persist at a stable equilibrium so long as they do not exhibit
significantly male-biased sex-ratios; the bifurcation point (BP) occurs at the point where infected
hosts transmit more efficiently than uninfected hosts. At the stable equilibria past this level of
ρI , no uninfected individuals are present in the population. Too high ρI causes the population to
crash. A trivial unstable equilibrium (dashed line) is possible in which no infection is present, for
all ρI . Neutral saddles (H) are detected but do not entail bifurcations.

females offspring have eclipsed expected numbers of uninfected female offspring, so

the symbiont spreads through the entire population. Since vertical transmission is

perfect, this is not a polymorphic equilibrium. Females increase in number with

ρI , until the sex-ratio distortion has such a negative effect on birth rates that the

population begins to fall, going extinct with high enough distortion. Note that the

introduction of population regulation has maintained the population far beyond the

point at which it crashes in the previous analysis (see Figure 4.3). We can also note

the presence of unstable equilibria; due to complete vertical transmission, there is

an unstable equilibrium in which only infected individuals are present, which occurs

when the symbiont sex ratio is female-biased enough, in addition to the unstable

equilibrium in which only uninfected individuals are present, which occurs when

symbiont sex ratio is intermediate to significantly female-biased.

The results of this figure can be contrasted to the case where α = 0.9; these

results are displayed in Figure 4.6. Stable equilibria remain similar to the previous
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Figure 4.6: Equilibria given changes in symbiont sex ratio. Here, α = 0.9, ρU = 0.5, bI =
1.2, bU = 1.1, and d = 1. Infected females persist at a stable equilibrium so long as they exhibit
sufficiently female-biased sex-ratios; the bifurcation point occurs where infected hosts begin to
transmit more efficiently than uninfected hosts with increasing ρI . At the stable equilibria past
this level of ρI , uninfected individuals are present in the population but fall in number with ρI .
Too high ρI causes the population to crash. A trivial unstable equilibrium (dashed line) is possible
in which no infection is present, for all ρI .

case; however, note that the bifurcation point occurs at a slightly greater value of ρI .

This is because the symbiont sex ratio must be higher for the symbionts to invade,

in order to make up for inefficient vertical transmission. Since vertical transmission

is not complete, the stable equilibria are polymorphic for infection. In contrast to

Figure 4.5, we can see that the only unstable equilibria involve uninfected individ-

uals; a wholly infected population with male-biased sex ratio is impossible because

uninfected individuals arise out of incomplete vertical transmission. Once again,

these results can be compared with Figure 4.3. A more complete analysis of how

the bifurcation point shown in Figures 4.5 and 4.6 responds to α would be desirable;

unfortunately, this was not possible for numerical reasons.

We also consider, but do not display here, alternative versions of the birth dis-

counting function B(bf , bm), which model how a population copes with distorted sex

ratios. We considered two additional functions which, while retaining the properties

of having a mode of 0.5 and maximum value of 1, modelled differential effects on
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birth rates when males or females had lower birth capacities. Results derived from

this work showed little qualitative difference from those displayed in the case of a

symmetric birth discounting function, thus are not displayed here; code is provided

online (Quickfall, 2016).

We now turn to the extension of this model promised at the end of Section 4.3,

using an individual-based model to understand the evolution of symbiont strategies.

4.5 Individual-based Model

4.5.1 Method

We now consider an individual-based model, returning to use of R (R Core Team,

2016); our code is once again found online (Quickfall, 2016). We are interested in

the potential invasion of a population of hosts by symbionts, thus we once again

choose 1% of the host population to possess symbionts at the start of the process.

These symbionts are randomly allocated starting strategies, using a truncated nor-

mal distribution (across the possible set of α and ρI strategies, [0,1]); the initial

mean strategies will be a parameter of the system under investigation. The host

sex ratio, ρU , is not under selection, and is chosen to be 0.5 for every individual.

Life cycles remain mostly the same as those in Section 4.2, though this approach

involves discrete generations, so instead of individuals breeding and dying randomly,

the entire population is replaced every generation.

Since male hosts do not pass on any information to offspring, as the symbiont

is maternally-transmitted, we consider only reproduction from the perspective of

females. Fitnesses are determined by whether or not an individual possesses the

symbiont, and discounting of the birth rate according to the sex ratio. This is calcu-

lated in line with the differential equations discussed in Section 4.2, with one slight

alteration in the form of population regulation.

We introduce an exponential function as an alternative to the linear discount-

ing of population fitness with sex-ratio distortion that was forced by the use of a

numerical approach. Here, we use the following population regulation function:
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R := exp{−2log(r)
N − 10000

10000
} (4.8)

In words, this function states that for every 5000 individuals over or below the

neutral group size of 10000, every individual’s fitness will be, respectively, divided or

multiplied by the regulation parameter r. This shall be set to 1.5 initially; however,

this will be subject to investigation later on. This function is plotted in Figure 4.7

in order to illustrate how it works more clearly.

Figure 4.7: Frequency-Dependent Population Regulation: for every 5000 extra members of a
population, fitness is discounted by a further 1/3.

Once every female’s fitness has been evaluated, their fecundity is determined

randomly, using the Poisson distribution with parameter chosen to be fitness; thus

fecundity is expected to match fitness. Gender and infection status of offspring is

randomly chosen according to the sex ratio strategy of the mother, and the vertical

transmission strategy of the mother if they are infected. Infected offspring’s sym-

bionts inherit the mother’s symbiont’s strategies, with mutations occurring on both

loci according to a truncated normal distribution, with means being the mother’s

strategies and variance being 0.01.

Convergence is determined to have occurred when the mean ρI and α strategies

have registered little absolute change in comparison to the previous five generation

of mean ρI and α strategies. Alternatively, the process ends in either the symbiont
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going extinct, or the host population size falls by a factor of 10.

We initially consider an unstructured population. This shall be contrasted to a

population which include a patch-structure; this choice shall be briefly motivated

and discussed at the start of Section 4.4.3.

4.5.2 Unstructured Population Results

First, we consider a population initiated with optimal symbiont strategies accord-

ing to the previous analysis. Can a perfectly vertically-transmitting, non-sex-ratio-

distorting symbiont invade a host population if the symbiont strategies ρI and α are

allowed to evolve? Figure 4.8 shows an experiment which starts with ρI = 0.5 and

α = 1.

Figure 4.8: Evolution of host-type frequencies and population size (A), and symbiont strategies
(B). Initially, symbionts are rare and possess strategies α = 1 and ρI = 0.5. We also set ρU =
0.5, bI = 1.2, bU = 1.1, and d = 1. Symbionts invade the population, then evolve more and more
exploitative sex ratio strategies, causing the host population to crash due to an excessively biased
sex ratio.

Initially, the population increases in size and maintains a size above 10000, since

symbionts are rare and not distorting the sex ratio, and bU > d. Symbionts increase

in frequency, since they are close to perfectly vertically-transmitting (due to the

mutation scheme, the mean strategy drifts away from 1), and bI > bU . However,
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the mean ρI strategy of the symbiont is always increasing, since an increase in the

proportion of female offspring for infected hosts will ensure that more infected fe-

male offspring are produced. As the symbiont frequency and mean ρI increase, the

overall sex ratio of the host population becomes more and more distorted, meaning

average host fitness linearly decreases as the symbiont sex ratio increases.

Figure 4.8 is just one example of this process; we can repeat this experiment for

the entire parameter space of initial ρI and α, with 100 repeats of each experiment,

and plot the trajectories of mean symbiont strategies. These results are depicted in

Figure 4.9.

Firstly, we can note from Figure 4.9 that when α and ρI are both initially small,

the symbiont goes extinct very swiftly, since the symbiont is rarely transmitted to

offspring, who are mostly male and thus cannot transmit the symbiont any further

in any case; this scenario is illustrated by blue crosses at the ends of evolution-

ary trajectories in Figure 4.9. However, if α and ρI are sufficiently high that the

symbiont does not go extinct within the first few generations, there is scope for sym-

biont strategies to evolve. This typically occurs when both strategies are greater

than 0.5, with the chances of the symbiont persisting increasing as α and ρI increase

further. When the symbiont persists, both α and ρI receive positive selection, since

symbionts that vertically transmit more efficiently will have greater fitness as more

offspring will be infected, and symbionts that bias sex ratios in favour of females will

also have greater fitness since males are evolutionary dead ends for the symbiont.

However, when α and ρI increase too far, they bring about a population crash, sym-

bolised by red crosses in Figure 4.9, and discussed in relation to Figure 4.8.

These results can be compared to the host and symbiont fitnesses depicted in

Figure 4.3 (A and B respectively); note that the two experiments utilise the same

parameter values. When the symbiont starts with strategies far away from the

lower fitness isocline, the symbiont goes extinct, whereas the host persists, since

host fitness is on average greater than 1. Both the host and symbiont persist when

symbiont strategies are such that symbiont and host fitnesses are greater than 1;

however, when symbiont strategies evolve to the space outside the upper fitness

isocline, the host and symbiont fitnesses are aligned, but smaller than 1, so the pop-
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Figure 4.9: Trajectories of symbiont strategies, α and ρI , with 100 repeats for parameter values
over the entire parameter space of ρI and α. Once again, we set ρU = 0.5, bI = 1.2, bU = 1.1,
and d = 1. Red points indicate extinction of the host population, blue points indicate extinction
of the symbiont, and green circles indicate initial conditions; no population reaches equilibrium,
since either the symbiont dies out due to starting with too unexploitative strategies, or the host
population dies out since the symbiont becomes too exploitative.
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ulation crashes. Thus, the results of our stochastic and deterministic approaches

corroborate with one another.

Therefore, we reach the conclusion that when symbiont strategies are allowed to

evolve in an unstructured host population, they will either fail to invade the host

population or they will exploit the host, distorting sex ratios to the extent that the

host will go extinct. In the next section, we introduce population structure and

dispersal to the model, and discuss further results.

4.5.3 Structured Population Results

As demonstrated by our simulation in an unstructured population, an invading

symbiont will evolve to overexploit its host; this is an example of the tragedy of

the commons. We hypothesise that introducing population structure and dispersal

to our model will add a component of between-group selection which may favour

less exploitative symbionts, or, conversely, increase within-group relatedness. The

population is now organised into a 5x5 grid, holding 25 demes (or patches) with sub-

population size 100. Every DN generations, a proportion DP of each deme is chosen

and distributed uniformly at random amongst the eight neighbouring demes. We

now adapt population regulation to act on each deme within the metapopulation,

retaining the same method as before (see equation 4.8), but altering sub-population

sizes. Specifically, members of the deme at position {i, j}, with sub-population size

N{i,j}, will have their fitness discounted by the fitness discounting function R{i,j}:

R{i,j} = exp{−2log(r)
N{i,j} − 100

100
} (4.9)

In words, this function states that for every 50 individuals over or below the

neutral deme size of 100, every individual’s fitness will be, respectively, divided or

multiplied by the regulation parameter r. This shall be set to 1.5 for the first test,

then subject to investigation.

We also now limit the strategy set for symbionts, to ρI ∈ {0.5, 0.75} and α ∈

{0.75, 1}. Thus, symbionts are either sex-ratio-disorting or not sex-ratio-distorting,

and vertically transmit either perfectly or imperfectly. This is computationally more
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Figure 4.10: Probabilities of stable symbiont invasion given the number of generations between
dispersal of a given proportion of each patch; the mutation rates considered in A, B, C, and D
are, respectively, 10−3, 10−4, 10−5, and 10−6. We also set ρU = 0.5, bI = 1.1, bU = 1, d = 1, and
start with 1% infected hosts with symbionts equally likely to have ρI set to 0.5 or 0.75, and α set
to 0.75 or 1. Equilibria involving stable frequencies of symbionts are reached with sufficiently low
mutation, and sufficiently high numbers of generations between dispersal and dispersal proportions.
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efficient, and simplifies our analysis, but will be relaxed in subsequent analyses. Mu-

tations occur with rate pM on each locus; when hosts are born that have vertically

inherited a symbiont, the symbiont’s α and ρI strategies each mutate with proba-

bility pM ..

We start by investigating the effects of the mutation rate pM , the time between

dispersal DN , and the proportion of demes dispersed, DP , choosing 100 repeats of

each experiment given the choices of dispersal parameters, and evaluating the prob-

ability that the population survives to 1000 iterations with unexploitative symbionts

present. Figure 4.10 shows these results. When pM is too high, no choice of the

dispersal parameters can allow the population to survive. By further investigation

of specific experiments, we can see that every deme faces a problem in this scenario;

mutation happens so often that symbionts that distort sex ratios and perfectly ver-

tically transmit arise too often. These then proliferate, increasing in frequency to

the extent that they bias the sex ratio so much that the deme dies out.

However, as the mutation rate decreases, exploitative symbionts become rarer;

in populations where they are absent, it on average takes longer for them to arise.

Non-exploitative symbionts, with ρI = 0.5 and α = 1, are able to invade demes

and persist because they provide a fitness benefit in the form of a higher birth rate.

When dispersal occurs, they are given the opportunity to re-seed empty patches

where exploitative symbionts have caused a host population to go extinct. However,

this can only occur if DN is sufficiently high; if it is not, then there may not be time

for exploitative symbionts to increase in frequency and destabilise the host popu-

lation before dispersal occurs, thus they are able to spread to nearby demes. This

opportunity is smaller when DP is low, which explains why the symbiont and host

can coexist when DN and DP are both low.

Therefore, we choose DN = 50, DP = 0.15, and pM = 10−4.5 for the following

experiments; the mutation parameter is chosen to be low enough that the symbiont

can invade, yet high enough to test robustness of equilibria to mutations. Next, we

consider how successful invasion of the symbiont is dependent on the infected birth

rate, bI , and the regulation parameter, r; these results are depicted in Figure 4.11.

We also extend the set of possible strategies for symbionts to ρI ∈ {0.5, 0.75, 1},
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and α ∈ {1/3, 2/3, 1}, in order to test that results are robust to even greater sex-

distorting symbiont possibilities, and poorer vertical transmission possibilities.

Figure 4.11: Probabilities of stable symbiont invasion given the regulation parameter, r, and the
infected birth rate, bI . Initially, symbionts are rare, vertically transmit infrequently, and rarely
distort sex ratios. We also choose bU = 1, d = 1, pM = 10−4.5, DN = 50, and DP = 0.15. Symbionts
are more likely to invade with higher birth rate, so long as the regulation parameter r is chosen
such that demes of sex-distorters cannot survive.

Firstly, we note that a higher birth rate in general aids the stable presence of

an unexploitative symbiont. This is hardly surprising; bI essentially corresponds to

a fitness benefit to infected individuals. However, there is still the risk of exploita-

tive symbionts arising, and this is reflected by the fact that the symbiont is never

present at equilibrium when the birth rate is less than 1.05; here, the symbiont dies

out because it starts at such a low frequency; for it to proliferate within a given

patch, it takes far more generations, and so the risk of an exploitative symbiont

arising is greater. We can also note that the regulation parameter r must match bI

somehow; if both parameters are high, for example, then an exploitative symbiont

can arise, invade a deme, and not kill the deme off because the combined benefit

of an increased birth rate and fitness gains through the fitness discounting function

are enough for the exploitative symbiont to remain, and infect other patches.
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However, we have found many cases here where an unexploitative symbiont suc-

cessfully invaded a population. Figure 4.12 provides one such example, taken from

the wider analysis of Figure 4.11.

In Figure 4.12, we can see that the dynamics previously discussed are in evi-

dence. Symbionts are initially rare, but the exploitative types usually invade and

kill off patches where they are initially present. By the first round of dispersal, the

mean α strategy is 1, and the mean ρI strategy is 0.5. Each successive round of

dispersal is followed by an increase in the overall size of the population, until every

patch has been re-seeded. Occasionally, exploitative symbionts arise, as shown by

the mean symbiont ρI strategy occasionally increasing above 0.5, but each mutation

does not successfully invade.

Thus, we have found a scenario in which unexploitative symbionts can invade a

host population, and remain in an equilibrium stable to the invasion of sex-ratio-

distorting symbionts.

4.5.4 Discussion

We have considered a simple system of maternally-transmitted symbionts in a sexual

host population, in which the symbionts can manipulate sex ratios of the hosts, and

vertically transmit to offspring of infected hosts. Our aim in modelling maternally-

transmitted symbionts in such a way was to investigate a possible pathway for the

evolution of mutualism, itself a necessary condition for an egalitarian major transi-

tion between species.

We started by considering a deterministic model, in which symbiont strategies

cannot evolve. We found that excessive sex-ratio distortion by the symbiont leads

to a host population crash, and that the coincidence of fitness interests between the

host and symbiont increases as vertical transmission of the symbiont approaches 1.

Next, we introduced a stochastic model, which allowed symbiont strategies to

evolve; we found that in the absence of population structure, symbionts evolve to be

more and more exploitative until the host population goes extinct. However, when
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Figure 4.12: Evolution of host-type frequencies and population size (A), and symbiont strategies
(B); results are displayed for 500 generations of a 1000-generation simulation, for reasons of legi-
bility. Initially, symbionts are rare, vertically transmit infrequently, and rarely distort sex ratios.
In this example, r = 1.14, bI = 1.36, bU = 1, d = 1, pM = 10−4.5, DN = 50, and DP = 0.15. There
are 50 generations between dispersal (marked by vertical dotted lines) of proportion 0.15 of each
population. However, they successfully reach fixation within the host population.
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population structure and dispersal are introduced, between-group selection favours

unexploitative symbionts, which under many circumstances can persist in a stable

equilibrium.

This is an important finding; it suggests that with host population structure,

a symbiont which provides a fitness benefit can successfully invade, since between-

group selection can select against symbiont exploitation of the host. Thus, we have

modelled a potential pathway to mutualism.

We now focus on comparisons between our model and those already existing in

the literature, summarised in Chapter 2. Specifically, we discuss how our model

adds to the current literature.

Like Yamamura (1993), we wanted to consider alignment of fitness interests

between a host and symbiont. The context of our model is significantly different

from that of Yamamura, who modelled mixed vertical and horizontal transmission,

without sex-ratio distortion. Therefore, the host-symbiont relationship considered

by Yamamura focuses on a less established host-parasite relationship; indeed, he

argues that horizontal transmission is important to the initial spread of a parasite.

The result that a coincidence of fitness interests between a host and symbiont can be

achieved with high vertical transmission is similar to that of Yamamura, who found

a threshold level of vertical transmission above which fitness interests between a

host and parasite are aligned. However, our similar result comes about in a model

which includes sex-ratio distortion, an additional means of symbiont exploitation of

a host; thus, we have shown that the possibility of a coincidence in fitness interests

between a host and symbiont is robust to the addition of even greater potential for

host exploitation.

Another model which ours bears comparison to is that of Werren (1987). Wer-

ren focussed on the conflict between a maternally-transmitted sex-ratio gene, and a

sex-ratio gene transmitted by both genders. This is analogous to the conflict over

sex-ratio between host and symbiont in our model, as discussed in Section 2.3.4.

Werren’s analysis focuses on the evolution of compensatory sex-ratios; our model,

which accounts for fitness costs associated with population-wide sex-ratio distortion,
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differs in its results from both Werren’s model, and that of Hatcher and Dunn (1995).

By including the possibility for symbiont strategies to mutate in our stochastic

simulation, we have shown that a structured host population may survive in the

presence of a potentially sex-distorting symbiont. This differs from results obtained

by Hatcher et al. (2000), in which survival of the host population was solely depen-

dent on patch turnover, with the symbiont invading and then perpetuating itself to

other patches before killing off individuals in that patch; meanwhile, the host repop-

ulates empty patches. Our model, by contrast, allows complete penetration of the

symbiont in the host population and peaceful coexistence, with any sex-distorting

symbionts that arise failing to perpetuate themselves either through randomness, or

eventually killing off the population in their home patch. This is the primary result

of our work, since it illustrates a potential pathway from initial parasitism based on

sex-distortion to mutualism.

Our model is intended to involve a general form of sex-distortion, so should

reflect the biological reality of each form of sex-distortion considered in Chapter 2

(cytoplasmic incompatibility, thelyokonous parthenogenesis, feminisation, and male-

killing). For example, male-killing may be reflected in our model through parameter

choices of high sex-ratio distortion, and fitness adjustments that account for the

benefit to females of less kin competition, and the loss of offspring through male-

killing itself. Cytoplasmic incompatibility may be an exception here, since it involves

a mechanism which may more subtly affect host population dynamics. However, our

analysis has focused only on the case in which symbionts provide a fitness benefit to

a symbiont; as noted in Chapter 2, various strains of the bacterial endosymbionts

Spiroplasma, Wolbachia, and Cardinium have all been known, or suspected, to confer

such fitness benefits, for example through conferring parasite resistance to hosts

(West, 2009; Walker et al., 2011; Xie et al., 2014).
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Chapter 5

Conclusions and Future Directions

5.1 Conclusions

The original work we have presented in the modelling chapters in this thesis has

focussed on major transitions between species; specifically, we have tackled the ques-

tion of whether or not altruism can evolve between species (Chapter 3), and set out

a potential pathway towards mutualism between a host species and a sex-distorting

endosymbiont (Chapter 4).

In Chapter 3, we introduced a general model of between-species donation, and

applied deterministic and stochastic approaches to analysing it. The determin-

istic approach involves an assumption of quasi-linkage equilibrium, which entails

weak selection, while the stochastic approach relaxes this assumption and intro-

duces stochasticity. Results found using the deterministic approach were confirmed

through the stochastic approach, with some minor discrepancies discussed; largely,

results were robust to the simultaneous introduction of strong selection and stochas-

ticity.

We found that the donation behaviour was vulnerable to modifiers suppressing

such behaviour arising on unassorted loci, presenting a similarity with greenbeard

traits. In addition, we argued that the donation behaviour in fact amounts to

within-species altruism, with donated fitness benefits travelling to members of the

same species, using the other species as a vector for this altruism.

Within the context of the literature, as surveyed in Chapter 2, our conclusions
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reflect those of Wyatt et. al., who contrasted the different conclusions provided

by regression analyses of fitness in their model of between-species donation Wyatt

et al. (2013). They showed that solely using same-species genetical predictors diag-

nosed the social behaviour as within-species altruism, whereas using mixed-species

genetical predictors led to the social behaviour being identified as between-species

altruism. A causal path from donated benefits to donation received by related indi-

viduals exists, suggesting that our model may fit with the first of these conclusions;

however, we do not provide a rigorous test of this idea. We consider it arbitrary to

terminate the path of received benefits before it reaches genetically related members

of the same species.

We can also note the link between our model and that of Fletcher and Doebeli;

while theirs is analysed as within-species without relatedness, it can be compared

to the model (d) in Chapter 3, in which donation is determined by a single locus

in each species. As shown by comparison with model (a) in Chapter 3, suppression

modifiers could arise to render any potential between-species altruism transient.

In Chapter 4, we introduced a general model of maternally-transmitted sex-

distorting endosymbionts, specifically focusing on the potential transition of an in-

vading parasite towards mutualism with a host species. We initially found that the

evolution of sex-distortion and vertical transmission led to a tragedy of the com-

mons, with the symbiont driving the host population towards extinction. However,

by introducing a patch-structure to the population, we found that a complete coinci-

dence in fitness interests was possible, with non-sex-distorting symbionts at fixation

at equilibrium, leading to increased fitness for the host population.

We introduced several previous models of symbiosis in the context of sex-distortion

in Chapter 2. Our model successfully incorporates the feature arising in Yamamura’s

model, of a coincidence in fitness interests with high vertical transmission Yama-

mura (1993); at equilibrium, potential sex-ratio distorters are selected not to distort

sex-ratio. We have significantly extended Werren’s model of general sex-ratio dis-

tortion, focussing on the evolution of the symbiont rather than coevolution with the

host Werren (1987). Like Hatcher et. al., who were analysing feminisation in an

adapted version of Werren’s model, we have utilised population structure Hatcher

137



et al. (2000); unlike Hatcher et. al., we have shown that by considering evolution of a

symbiont’s sex ratio strategy, a parasite can invade a host population, transitioning

towards mutualism and reaching 100% prevalence.

5.2 Future Directions

As noted in Chapter 1, the process of a major transition can be split, broadly

speaking, into three components; social group formation, maintenance, and trans-

formation Bourke (2011). Current research tends to focus on social group formation

(indeed, our two modelling chapters focus on the spread of social behaviours) or

social group maintenance; less research has focussed on social group transformation

Bourke (2011). We now briefly discuss several ideas relating to this area which are

worthy of future research.

5.2.1 The Size-Complexity Hypothesis

The final stage in an evolutionary transition involves the emergence of a social

group as an individual in its own right. One theory of how this occurs in the con-

text of fraternal transitions is the ‘size-complexity’ hypothesis Bourke (2011). The

size-complexity hypothesis states that there are feedback loops between group size

and various characteristics known as ‘complex’ group features, which are associated

with the completion of a major transition. External drivers may act to select for

increased group size, launching a feedback loop, resulting in further increases to

group size and complexity. Complex group features include those associated with

reproductive division of labour, i.e. a lack of reproductive potential for certain ele-

ments (i.e. soma/worker) of a group (the labelling here applies, specifically, to the

multicellularity and eusocial transitions, respectively), segregation of reproductive

particles (i.e. germline/developing queens), and earlier divergence in the develop-

ment of reproductive and non-reproductive particles. Greater numbers of particle

types (i.e. cells/worker castes), and a greater number of particles themselves are also

complex group features.

Many positive feedback effects have been established from increased collective

size to the set of complex traits, both forwards and backwards Bourke (2011). For

example, Bourke notes that increased group size increases the chances of deleteri-
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ous mutations, so there will be selection for traits which suppress the potential for

these mutations. A segregated, early-diverging germline is one such trait, since this

decreases the number of cell divisions, thus decreasing the potential for mutation

Bourke (2011).

While Bourke focusses on the increase in complexity of groups, Birch suggests

that emphasis should also be given to an associated decrease in social complexity

at the level of the particle Birch (2016). Birch suggests that in order for groups to

cope with more complex tasks, particles specialise further; this reflects the idea of an

increase in the number of particle types that Bourke notes is an aspect of complexity

Bourke (2011). Indeed, Birch details an expanded feedback loop involving increased

group size, loss of complexity at the lower level and increases in complexity at the

higher level Birch (2016). Specifically, Birch invokes ideas about task structure,

suggesting that, in the context of a eusocial society, a pool of reserve workers can

be used to replace versatility of workers as a means of retaining robustness in task

completion. Greater specialisation then allows for greater efficiency, the ability to

complete more complex tasks, and a reduction in complexity at the lower level. Each

of these links is argued for in terms of task structure.

Birch’s verbal argument suggests that further investigation of each of the specific

feedback loops involved in the social-complexity hypothesis remains an avenue for

future research. Indeed, to take one example left open by Birch’s approach, formal

modelling of task structure in relation to a major transition could be useful; in

general, mathematical models relating to social group transformation have been

rare Birch (2012).

5.2.2 Fitness Decoupling

One aspect of the size-complexity hypothesis which has received attention through

modelling work is that of the separation of the germ and soma, which Michod and

Nedelcu (2003) have studied in Volvox (commonly known as volvocine).

Michod and Nedelcu argue that during the initial stages of a major transition

involving volvocine, two fitness components, fecundity and viability, are ‘coupled’

at the level of the cell; in other words, they are such that cell fitness is maximised.
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However, they then suggest that if the reproductive potential of some cells is sup-

pressed, then those cells can focus more on group survival, through survival-related

functions which arise from the nature of the group. Though not directly repro-

ducing, these survival-focussed cells can contribute to reproduction indirectly, by

improving quality of offspring. Similarly, this allows the germline cells to focus

more on increasing reproductive output. Once germ/soma distinction is complete,

then fitness has been ‘decoupled’. That is, the two fitness components that make

up the MLS2 (see Chapter 1 for more detailed discussion of this term) fitness of the

group are quasi-independent of one another, so can, to some extent, be maximised

independently. Elsewhere, Michod has proposed that at the end of a major tran-

sition, germ/soma specialisation must be complete to the extent that every cell is

either totally specialised in fecundity or viability, and thus that every cell has zero

fitness Michod (2006). Thus, fitness has been completely exported to the higher

level.

Figure 5.1: A convex fitness trade-off be-
tween viabililty and fecundity. Reproduced
(with edits) from Michod (2007).

Implicit in this argument is the idea

that there is convexity in the via-

bility/fecundity trade-off, which Michod

demonstrates in volvocines Michod (2007).

This means that the second derivative of

fecundity as a function of viability is posi-

tive, and, necessarily, the same holds for vi-

ability as a function of fecundity; the first

derivative of both functions must also be

negative. These properties are present in

figure 6.1, demonstrating a convex viability-fecundity trade-off graphically. In this

case, maximising one of these components will yield a greater total contribution to

viability and fecundity of the group than maximising both components simultane-

ously in a single cell (in the case of volvocines, it is noted that the product of the

two components is an accurate reflection of fitness). Michod characterises this with

the following equation Michod (2007):

W = w̄ − Cov(v, f) (5.1)
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Here, W is the collective fitness in the MLS2 sense, w̄ is the mean cell fitness,

v is the measure of viability in a single cell, and f is the measure of fecundity in

a single cell. If collective members specialise to either contribute to viability or

fecundity, then the covariance between v and f becomes negative and group fitness

in the MLS2 sense increases.

Michod’s work on germ-soma segregation has provided a mathematical condi-

tion for it to be beneficial, in the context of volvocine algae. This work appears

to reflect Birch’s idea of task specialisation, with the number of tasks in this case

being two. Further work on other species may be necessary to assess the extent to

which Michod’s principles of fitness decoupling and the importance of convex fitness

trade-offs can be extended.

5.2.3 An Alternative Decomposition of Collective and Particle-

Level Selection

Shelton and Michod have investigated social group transformation with an alter-

native decomposition of selection; see Chapter 1 for discussion of the Price and

contextual analysis approaches. Note that we retain the collective and particle ter-

minology here Shelton and Michod (2014a). They introduce ‘counterfactual’ fitness

to refer to collective fitness in the absence of collective-dependent effects, and use this

to divide selection into two components, one dependent on collective membership

and one independent of collective membership. They note that this decomposition is

only appropriate when there is no within-collective selection on particles, as opposed

to global selection on particles. Identifying global selection on particles is important

in their discussion of a model of a simple cross-level by-product scenario, in which

collective-level properties are simply aggregrate properties of particles.

Using their new decomposition of selection, Shelton and Michod compare a trait

determining investment in fecundity or viability (a trade-off is assumed) across three

models of dependence of individual fitness on emergent collective properties. Their

analysis detects that the greater the dependence, the further equilibrium values of

this trait deviate from a simple cross-level by-product scenario (i.e. no dependence

141



of individual fitness on emergent group properties). Using the model of volvocine

algae, they demonstrate how this decomposition can be used to elaborate on how

a group life-cycle can emerge; however, this model is not general. As a relatively

new method of analysing selection in the context of social group transformation,

the potential use of Shelton and Michod’s decomposition in relation to contextual

analysis and the Price equation should be subject to further investigation.

5.2.4 Monogamy hypothesis

Boosma hypothesised Boomsma (2009) that every eusocial lineage arose due to life-

time monogamy of ancestors, which ensured that parents are equally related to

siblings and offspring. This favours the evolution of altruism towards siblings rather

than offspring under certain conditions; altruism towards siblings could take the

form of somatic functions, and hence encourage a reproductive division of labour.

An analogue of this condition for a fraternal major transition towards eusociality

can be considered in terms of multicellularity; here, relatedness between siblings

and offspring is equal in clonal societies; the condition of clonality has been shown

to be important for the transition towards obligate multicellularity, as opposed to

facultative multicellularity Fisher et al. (2013). Thus, a ‘monogamy window’, or a

functional equivalent such as clonality among a group of cells, is a necessary (though

not sufficient) condition for a fraternal ETI.

Boomsma notes that formal computational modelling may be required to inves-

tigate whether the monogamy hypothesis is oversimplistic, and could be extended to

include low frequencies of double-mating or foundress association; thus, this remains

an open topic within the major transitions view of evolution. However, it has been

surveyed in the context of eusociality and found consistent with the data Hughes

et al. (2008).

5.2.5 Organismality

Queller and Strassmann argue that ‘organismality’, an idea closely related to that

of individuality (indeed, Queller and Strassmann refer to organismality in an at-

tempt to avoid any implication of indivisibility), is characterised by low levels of

within-organism conflict and high levels of within-organism cooperation Queller and
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Strassmann (2009). While high cooperation and low conflict are linked, one is possi-

ble in the absence of the other; Queller and Strassmann give the example of human

societies, which involve both high cooperation and conflict, while clones of non-social

aphids show neither cooperation nor conflict Queller and Strassmann (2009). This

definition subsumes all of the characteristics associated with the completion of the so-

cial group transformation phase of a major transition into two related features; it also

suggests that organismality is defined by degree. This contrasts with the usual no-

tions of individuality, which usually invoke specific assumptions of form or function,

for example, spatial contiguity or germ-soma separation; intuitive counterexamples

to these candidate conditions for individuality are often easily found Clarke (2010).

As with the concept of the major transitions, Queller and Strassmann’s framework

is very general and not biased towards certain taxa West and Kiers (2009). This is

another framework which could conceivably be useful in analysing future models of

social group transformation.
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Appendix A

Details of Further Models of

Between-Species Donation

A.1 Introduction

In this section, we discuss details of further models of between-species donation,

introduced in Chapter 3. The primary models we discuss in the main body of

Chapter 3 are labelled (a) and (b), and refer to the basic model of between-species

donation, with assortment covering only the donation locus in model (a), and the

entire genome in model (b). Brief mention is made of four further models, which we

now cover in greater detail. We start by providing a recap of models (c-f).

Model (c) involves genome-wide assortment, but, in contrast to models (a) and

(b), individuals are uniformly at random assigned a single role in their lifetime, of

potential donor or potential recipient. Individuals are either potential donors, with

probability 0.5, or potential recipients, with probability 0.5. If they are potential

donors, there are two possibilities; they either donate to the social partner of the

other species, incurring a cost of c fitness if they are donators, or, if they are non-

donators, they do not donate, in which case there is no fitness adjustment. If an

individual is a potential recipient, they either receive b fitness if their social partner

is a donator, or, if their partner is a non-donator, there is no fitness adjustment.

Model (d) is a single-locus model, in which individuals are donators if and only

if they possess the donation allele; the suppression locus is entirely absent. Accord-

ingly, assortment takes place only on the donation locus.
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Model (e) considers a single population with genome-wide assortment; this is

similar to model (b), with the exception that individuals are now paired up within

the same species.

Model (f) involves genome-wide assortment, but donators no longer donate un-

conditionally; instead they only donate if their social partner is also a donator. This

is similar to model (b), but the donation behaviour is now conditional on social

partner phenotype.

A.2 Model Details

In Chapter 3, we use a deterministic approach; as described there, the details of as-

sortment and donation are captured in the selection coefficients. Thus, to describe

how the deterministic approach is implemented with regards to these four additional

models, we run through construction of the selection coefficients; all general details

relating to the four models are located in Chapter 3. Note that all notation used

here follows from that used in Chapter 3.

A.2.1 Model (c): The Single-Role Model

For model (c), assortment parameters will be the same as those for model (b); in

other words, they are described by equations (3.3,3.4,3.8). This is because, simi-

larly, there is genome-wide assortment across two populations. However, since the

donation behaviour now occurs on average half the time it would have occurred in

model (b), fitness equations are now as follows:

Wi(0, 0) = w0 +
Pi((0, 0), (1, 1))b

2
(A.1)

Wi(0, 1) = w0 +
Pi((0, 1), (1, 1))b

2
(A.2)

Wi(1, 0) = w0 +
Pi((1, 0), (1, 1))b

2
(A.3)

Wi(1, 1) = w0 +
Pi((1, 1), (1, 1))b− c

2
(A.4)
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Consequently, selection coefficients are calculated as follows:

a1,i =
b̃(Pi((1, 0), (1, 1))− Pi((0, 0), (1, 1)))

2 + b̃fi′(1, 1)− c̃fi(1, 1)
+ p2,ia{1,2},i (A.5)

a2,i =
b̃(Pi((0, 1), (1, 1))− Pi((0, 0), (1, 1)))

2 + b̃fi′(1, 1)− c̃fi(1, 1)
+ p1,ia{1,2},i (A.6)

a{1,2},i =
b̃
(
Pi((1, 1), (1, 1)) + Pi((0, 0), (1, 1))

)
2 + b̃fi′(1, 1)− c̃fi(1, 1)

+

b̃
(
− Pi((1, 0), (1, 1))− Pi((0, 1), (1, 1))

)
− c̃

2 + b̃fi′(1, 1)− c̃fi(1, 1)
(A.7)

The expressions describing the maximum values of b̃ and c̃ required to satisfy the

first requirement of QLE turn out to be similarly scaled; our conditions are b̃ � 1

and c̃� (2− b̃)/2. Since a ≤ max(2b̃−c̃
2−c̃ ,

b̃+c̃
2−c̃) and Di ≤ 1/4, we have that:

Di <
4a

max(2b̃−c̃
2−c̃ ,

b̃+c̃
2−c̃)

Thus, the second condition for QLE is satisfied. As before, we can find a con-

dition for donation or non-suppression to be selected for which depends on some

function of α and genotype frequencies being larger than c/b, but it is not tractable.

The only thing that we can conclude from it is that the c/b ratio is crucial once again.

A.2.2 Model (d): The Single-Locus Model

In this case, we can simply use the equations (3.3,3.4,3.8) for our assortment equa-

tions; the notation used to carry out genome-wide assortment also applies when

there is only one locus. However, the set of genotype here is simply G = {0, 1}.

This does change exactly how we specify equations for fitnesses of individuals:

Wi(0) = w0 + Pi(0, 1)b (A.8)

Wi(1) = w0 + Pi(1, 1)b− c (A.9)

As there is only one locus in this model, there is no linkage disequilibrium. Thus,

146



the assumptions of QLE do not need to be made; the same approach based on the

Kirkpatrick et al. (2002) method may be followed. Since there is a single locus, we

must adapt notation; here, ai relates to the selection coefficient on the donation

locus in the ith population, and pi refers to the donation allele frequency in the ith

population. Using equations (3.9,A.8,A.9), we find the single selection coefficient

for each population i, relating to the only locus present, as follows:

ai =
b̃(Pi(1, 1)− Pi(0, 1))− c̃

1 + pi′ b̃− pic̃
(A.10)

Firstly, we can see that if pi = p′i, then ai > 0 is equivalent to α > c/b. In

other words, if the two allele frequencies are equal, then the donation allele, and,

consequently, donators, will receive positive selection if α is sufficiently high. Since

0 < c < b, we know that this is always satisfied when α = 1, i.e. when there

is maximum association. When pi 6= p′i, we can once again find a condition for

donators to receive positive selection which is dependent on a boundary c/b; as

before, the other side of the expression is intractable and does not lead to any

further conclusions.

A.2.3 Model (e): The Single-Species Model

Since this model entails a single population, the frequencies of genotypes will

be the same in the two interacting groups of donors and recipients. Thus, we can

essentially take the equations (3.3,3.4,3.8), but remove the i subscripts where they

occur, since we do not have to account for two populations. As a result, we obtain

the following equations describing associations in model (e):

β(α, u, v) = αI{u=v}f(u) (A.11)

g(u) = (1− α)f(u) (A.12)

P (u, v) = αI{u=v} + (1− α)f(v) (A.13)

Expressions for average fitnesses remain similar to those for model (b), though

once again we remove subscripts:

147



W (0, 0) = w0 + P ((0, 0), (1, 1))b (A.14)

W (0, 1) = w0 + P ((0, 1), (1, 1))b (A.15)

W (1, 0) = w0 + P ((1, 0), (1, 1))b (A.16)

W (1, 1) = w0 + P ((1, 1), (1, 1))b− c (A.17)

We can then calculate the selection coefficients using equations (3.9,A.11-17);

note that we denote the frequency of the donation allele as p1, and the frequency of

the non-suppression allele as p2, since there is only one population:

a1 = p2a{1,2} (A.18)

a2 = p1a{1,2} (A.19)

a{1,2} =
αb̃− c̃

1 + (b̃− c̃)f(1, 1)
(A.20)

To satisfy the first requirement of QLE, we must have that a � 1. We can see

that a = max|a{1,2}|, since p1 and p2 are between 0 and 1. We can also see that

a is at a maximum when f(1, 1) = 0. Thus, we must have that αb̃ − c̃ � 1 and

c̃ − αb̃ � 1. These expressions can be reduced to the conditions b̃ � 1 and c < b.

Since a ≤ (αb̃− c̃), we can deduce that D ≤ 4a/(αb̃− c̃), thus satisfying the second

requirement for QLE.

We can analytically find a condition for the evolution of donation by using equa-

tions (3.9,A.18,A.20). Using, once again, z2 to denote the value of the allele on

the suppression/non-suppression locus, we find the following condition for positive

selection on the donation allele:

W̄a1,i + a{1,2},i(z2 − p2) > 0

⇐⇒ W̄a{1,2},iz2 > 0

For an individual with z2 = 0, the allele on the donation locus does not change

the individual’s fitness, but when z2 = 1, we find the condition α > c/b for the
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donation allele to be beneficial. We can similarly deduce the same condition (using

equations (3.9,A.19,A.20)) for the evolution of non-suppression, since the two loci

have the same role in the system. Thus, the condition for donators to receive positive

selection in the absence of stochasticity is α > c/b. Note that this is equivalent to

the same condition for positive selection of non-suppression found for model (a).

A.2.4 Model (f): The Partner Rejection Model

This model involves genome-wide assortment, thus we start with the same equa-

tions relating to assortment as model (b): equations (3.3,3.4,3.8). However, the

introduction of partner rejections changes the fitness equations. Now, no matter

what genotype non-donators are partnered with, they will not receive any benefit

from the donation behaviour; nor will they pay any cost, by virtue of them not being

donators. Donators, on the other hand, will only donate when paired with other

donators; thus, when paired with another donator they gain b fitness from receiving

donated benefits, and lose c fitness from donating themselves.

Wi(0, 0) = w0 (A.21)

Wi(0, 1) = w0 (A.22)

Wi(1, 0) = w0 (A.23)

Wi(1, 1) = w0 + Pi((1, 1), (1, 1))(b− c) (A.24)

Therefore, the selection coefficients are as follows:

a1,i = p2,ia{1,2},i (A.25)

a2,i = p1,ia{1,2},i (A.26)

a{1,2},i =
(b̃− c̃)Pi((1, 1), (1, 1))

1 + (b̃− c̃)fi(1, 1)Pi((1, 1), (1, 1))
(A.27)

Thus, a ≤ (b̃ − c̃), and so for a � 1, we must have b̃ � 1 + c̃. Recall that we

also have c < b, so b̃ � 1 is sufficient to satisfy the first condition of QLE. Since

Di ≤ 1/4, we satisfy the second condition of QLE, since:
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Di ≤
4a

b̃− c̃

Using equations (3.9,A.25,A.27), a condition for donation to receive positive

selection in population i is:

a{1,2},iz2 > 0

⇐⇒ z2(b̃− c̃)Pi((1, 1), (1, 1)) > 0

This is always positive so long as z2 = 1 and the frequency of donators in the

other population is non-zero (which is always the case in the deterministic approach

unless they are initially set to 0). Note that b̃− c̃ > 0 necessarily since b > c. The

same condition applies for non-suppression with z1 replacing z2. Thus, the donation

and non-suppression alleles will always be equal or beneficial to individuals in a

population, so will always be selected for so long as the frequency of donators in the

other population is non-zero.

A.3 Results

We now display numerical examples of each model; these are designed to be com-

pared to similar figures in Chapter 3. We display results for both the deterministic

and stochastic approaches within each subsection. The stochastic approaches to each

model require no further set-up than that given for models (a) and (b) in Chapter

3; however, note that we use smaller values of N and nSUS than those seen in the

main body of the thesis. This is because of the long computation times entailed

by higher N and nSUS. The primary motivation for the stochastic approach is to

check the robustness of the results in Chapter 3 to the simultaneous introduction of

stochasticity and strong selection.

A.3.1 Model (c): The Single-Role Model

Figure A.1 shows a numerical example of this model, using the same initial condi-

tions and parameters as Figure 3.3 in the main body of the thesis. The clear result
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Figure A.1: Evolution of allele frequencies (A/B), and donator frequencies (C) (using the de-
terministic approach with model (c), in which assortment is genome-wide and individuals have
single lifetimes roles); initial frequencies are p1,1 = 0.101, p1,2 = 0.1, p2,1 = 0.901, p2,2 = 0.9, and
parameters are x = 0.05, b = 0.01, c = 0.005, w0 = 1, and α = 1. Individuals being assigned a
single role has no effect on the evolutionary outcomes (see Fig. 3.3) beyond halving the selection
strength.

here is that selection strength is halved.

Figure A.2 shows a corresponding example utilising the stochastic approach.

There are superficial differences between Figure A.2 and both Figures A.1 and 3.8.

However, the primary finding that donator frequencies fluctuate remains evident.

The difference between allele frequencies in Figure 3.8 and those displayed here are

pronounced; rather than donation behaviour being under the control of one locus

in each species, changes in the frequencies of alleles on both loci have an effect

on the frequencies of donators in population 1 in Figure A.2. One possible reason

for this is the smaller population size than that used in Figure 3.8, resulting in

greater stochasticity. The selection strength being halved may also contribute to

stochasticity having a greater effect. However, the primary result of this figure is

that donator frequencies fluctuate, following a similar pattern to that evident in

Figures 3.3, 3.8, and A.1. Thus, these results are robust to the introduction of
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Figure A.2: Evolution of allele frequencies (A/B), and donator frequencies (C) (using the stochas-
tic approach with model (c), in which assortment is genome-wide and individuals have single life-
times roles); initial frequencies are p1,1 = 0.101, p1,2 = 0.1, p2,1 = 0.901, p2,2 = 0.9, and parameters
are x = 0.05, b = 1, c = 0.5, w0 = 1, and α = 1. In addition, pm = 0.001, N = 1000, nSUS = 200.
This figure bears comparison to Fig.s A.1 and 3.8; we can see that the selection strength appears
halved, and stochasticity has not significantly altered the outcome from that of A.1.

stochasticity, strong selection, and single lifetime roles, which in fact simply the

adjust the strength of stochasticity and selection further.

A.3.2 Model (d): The Single-Locus Model

Figure A.3 shows three examples of changes in donator frequencies in the single-

locus model. Note that donators here are simply bearers of the donation allele.

The mathematical analysis of this model showed that the donation allele receives

positive selection when donator frequencies are the same between populations and

α > c/b; these examples illustrate that donator frequencies may converge to one

another when initial donator frequencies are equal, then receive solely positive se-

lection. Thus, the condition that α > c/b is required for donators to increase in

frequency may apply more than initially thought. This reflects the results of model

(b), where genome-wide assortment in the two-locus model led to intermediate levels
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Figure A.3: Evolution of donation allele frequencies (using the deterministic approach with model
(d), in which donation is governed by a single locus); initial frequencies are p1 = 0.2, 0.5, and 0.8
in A, B and C respectively, p2 = 0.1, and parameters are x = 0.05, b = 0.01, c = 0.005, w0 = 1,
and α = 1. Donation reaches fixation when α > c/b, even when initial donator frequencies differ
between populations.

of donation when α > c/b; both of these results resemble Hamilton’s rule.

Figure A.4 shows the same example as Figure A.3, with the introduction of

stochasticity; notably, results are different between the two models, with cyclic dy-

namics much more akin to those found in the two-locus case being present. It may

be illustrative here to consider equation (3.29), and the insight that fitnesses of

donation and non-donation need only be equal within species for there to be no

selection on either trait; thus, there may be equilibria, like those in the two-locus

model (b), which entail different frequencies of donation between species. The equi-

libria shown in Figure A.3 appear to correspond to the type 2 equilibrium shown

in Figure 3.5, which entail equal donation between species, whereas the cyclic dy-

namics that appear in Figure A.4 may reflect stochasticity interrupting the type 1

equilibrium shown in Figure 3.5.
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Figure A.4: Evolution of donation allele frequencies (using the stochastic approach with model
(d), in which donation is governed by a single locus); initial frequencies are p1 = 0.2, 0.5, and 0.8
in A, B and C respectively, p2 = 0.1, and parameters are x = 0.05, b = 1, c = 0.5, w0 = 1, and
α = 1. In addition, pm = 0.001, N = 1000, nSUS = 200. Donation is present in both species when
α > c/b, however stochasticity acts to destabilise the equilibria found in the deterministic case,
which entailed equal frequencies of donators between species.

A.3.3 Model (e): The Single-Species Model

Figure A.5 shows an example of the single-species model. Mathematical analysis

predicted that donators would reach fixation if α > c/b; this is shown to be the

case here. Similarly, Figure A.6 introduces stochasticity and strong selection, and

depicts very similar results.

A.3.4 Model (f): The Partner Rejection Model

Figure A.7 shows an example of the dynamics of the partner rejection model. Since

the donation behaviour is now conditional on both being a donator and having a

social partner who is a donator, and since b − c > 0, the mathematical analysis

showed that the donation and non-suppression alleles will always receive positive

selection. These results are borne out by the numerical example; indeed, even if α
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Figure A.5: Evolution of allele frequencies (A) and genotype frequencies (B) (using the determin-
istic approach with model (d), in which genome-wide assortment occurs within a single species); ini-
tial frequencies are p1 = 0.1 and p2 = 0.9, and parameters are x = 0.05, b = 0.01, c = 0.005, w0 = 1,
and α = 1. Donators reach fixation since α > c/b.

Figure A.6: Evolution of allele frequencies (A) and genotype frequencies (B) (using the determin-
istic approach with model (d), in which genome-wide assortment occurs within a single species);
initial frequencies are p1 = 0.1 and p2 = 0.9, and parameters are x = 0.05, b = 1, c = 0.5, w0 = 1,
and α = 1. In addition, pm = 0.001, N = 1000, nSUS = 200. These results are very similar to
those shown if figure A.5.
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is set to 0, both the donation and non-suppression alleles will reach fixation. Once

again, the example shown by Figure A.8 of the stochastic approach to analysing this

model gives the same results as the deterministic approach.

Figure A.7: Evolution of allele frequencies (A) and genotype frequencies (B) (using the de-
terministic approach with model (d), in which genome-wide assortment occurs within a single
species); initial frequencies arep1,1 = 0.101, p1,2 = 0.1, p2,1 = 0.901, p2,2 = 0.9, and parameters
are x = 0.05, b = 0.01, c = 0.005, w0 = 1, and α = 1. Note firstly that donator frequencies in
the two populations are close enough to equal throughout the process that donator frequencies in
population 1 are hidden behind those of population 2 in A.7C.

A.4 Conclusions

We briefly summarise the conclusions of each of the models (c-f); for a full discus-

sion, see Section 3.6.

Model (c) is a variation of model (b); it involves genome-wide assortment, but

individuals are either potential donors or potential recipients, with roles chosen uni-

formly at random. The outcome of this alteration is that the selection strength is

halved; otherwise, results remain identical to those found for model (b). The point

of including this model is to emphasise the simple point that the important quantity
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Figure A.8: Evolution of allele frequencies (A) and genotype frequencies (B) (using the de-
terministic approach with model (d), in which genome-wide assortment occurs within a single
species); initial frequencies are p1,1 = 0.101, p1,2 = 0.1, p2,1 = 0.901, p2,2 = 0.9, and parameters are
x = 0.05, b = 1, c = 0.5, w0 = 1, and α = 1. In addition, pm = 0.001, N = 1000, nSUS = 200.

for selection on traits is mean lifetime fitness.

The single-locus model (d) relates to both models (a) and (b). A progression

can be formulated: model (d) involves donation determined by a single locus, with

assortment based on that locus, while model (a) considers what changes when a new

locus arises to suppress the donation behaviour which is not subject to assortment.

Finally, model (b) considers what happens if this suppression locus becomes subject

to assortment. Model (d) shows that in the simple single-locus case, something like

Hamilton’s rule is in operation: if α > c/b, then donation reaches either fixation,

or, in the present of stochasticity, intermediate frequencies, if allele frequencies are

the same between the two populations.

Model (e) is another variation of model (b); this considers donation within a

single species, when it is determined by donation and suppression loci; both loci are

subject to assortment. This is essentially equivalent to considering model (b) with
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equal allele and genotype frequencies between the two populations. Once again,

donators reach fixation if α > c/b.

Finally, model (f) consider rejection of interactions. This is essentially a facul-

tative greenbeard scenario (Gardner and West, 2010), since donators adjust their

behaviour in response to the phenotype of social partners. Here, the donation and

non-suppression alleles always receive positive selection given the assumption of the

model.
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