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Abstract

In this study, a new modelling and control framework based on type 2 fuzzy logic
and validated with real-time experiments on human participants experiencing stress
via mental arithmetic cognitive tasks is presented. The ultimate aim of the proposed
modelling and control framework is the management and ultimately the prevention
of performance breakdown in a human-computer interaction system with a special
focus on human performance.

This work starts with a literature-based study of previously successful exper-
imental designs, selecting the mental arithmetic operations cognitive task for its
ease of implementation and validated through a series of statistical tests on 12 par-
ticipants as far as its influence on commonly used psychophysiological markers is
concerned. Additionally, a new marker for mental stress identification is introduced,
the pupil diameter marker; validated with the same series of statistical tests for all
12 participants in the study.

For the validation of the introduced modelling and control techniques, two de-
signed experiments which consist of carrying-out arithmetic operations of varying
difficulty levels were performed by 10 participants (operators) in the study. With
this new technique, effective modelling is achieved through a new adaptive, self-
organising and interpretable modelling framework based on General Type-2 Fuzzy

sets. This framework is able to learn in real-time through the implementation of



a re-structured performance-learning algorithm that identifies important features in
the data without the need for prior training. The information learnt by the model
is later exploited via an Energy Model Based Controller that infers adequate control
actions by changing the difficulty levels of the arithmetic operations in the human-
computer-interaction system; these actions being based on the most current psycho-
physiological state of the subject under study. The successful real-time implementa-
tion of the proposed adaptive modelling and control strategies within the framework
of the human-machine-interaction under study shows superior performance as com-
pared to other forms of modelling and control, with minimal intervention in terms
of model re-training or parameter re-tuning to deal with uncertainties, disturbances

and inter/intra-subject parameter variability.
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Chapter 1

INTRODUCTION

1.1 Psychophysiology, human factors and automa-
tion

1.1.1 Psychophysiology

Psychophysiology first emerged as a separate discipline in the 1950s when a group of
physiological psychologists began referring to themselves as psychophysiologists. The
subject matter of psychophysiology is the interaction of mind and body, which has
been studied for centuries by philosophers, physicians, physicists, and most recently,
psychologists [14].

The relationship between the body and the mind is studied through psycho-
physiological measurements or recordings. Psychophysiological measurements ori-
ginate in the human body through electrochemical changes in neurones, muscles and
gland cells. These signals are transmitted through the body to the skin surface and
can be recorded with the use of electrode transducers [14]. Psychophysiology can be

defined as the study of physical and mental states that respond to stimulation (i.e.,
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mental stress or mental workload; and physical stress). Recorded psychophysiolo-
gical signals may help us understand these underlying physical and mental states

[13].

1.1.2 Human Factors

The application of behavioural and biological sciences for the design of machines
and human-machine systems is named Human Factors (e.g., also known as Human
Engineering or Human Factors Engineering, and Ergonomics). This discipline was
initiated during World War II with the application of direct engineering for the
interactions of modern weapons and their human operators [2].

With regards to behavioural sciences, human factors apply knowledge from cog-
nitive psychology and the broader field of experimental psychology, similarly, bio-
logical sciences for human factors are related to human physiology and the study
of organ functions above the cellular level (i.e., cardiovascular, brain, eye responses,
etc.). It is worth noting that human factors engineering is mostly an empirical activ-
ity and should be interpreted within a practical context [2]. Human Factors make
use of psychophysiology to identify human processes in order to better describe the

interactions between humans and machines.

1.1.3 Human-Machine Interaction Systems

The human observes the environment which produces an effect in his/her body
which in turn affects the environment. Causality operates both ways in the human-
environment relationship. For this reason, and in order to fully describe a human-
environment relationship, it is important to take into consideration the constraints
that operate in both directions, i.e., all the factors that constrain the human from

fully observing the environment, and all the factors that constrain the human in
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his/her influence in the environment exactly as he or she might wish [2]. The study
of human-environment relationship in Human Factors is known as Human-Machine
Interaction.

Suitable examples of Human Machine-Interaction (HMI) systems are automated
systems where human operators play some role. In fact, for very complex and/or
safety critical system such as nuclear plants, aircrafts, air traffic control, spacecrafts,
medical surgery, etc., the adaptive capabilities, reasoning and judgement of humans
is often required to play an intrinsic role. These types of systems cannot be fully
automated and thus, the human in the HMI system must be taken into account
[13]. The decision on which tasks to automate and which to leave for the human
operator is indeed concomitantly important and challenging [4], and the mental and
physical state of the operator (e.g., its psychophysiological state) should be given
special consideration [3, 5, 61].

There have been some initiatives in providing rules to guide the allocation of
functions between humans and machines. The Fitts list (see Table 1.1) also known
as the MABA-MABA list, is an example of such an endeavour dating back to 1951
[2].

The rules provided by the ’Fitts list” of Table 1.1 do not apply to current HMI
automation systems. Intelligent adaptive algorithms powered by advances in compu-
tational technology are, for example, capable of perceiving and learning patterns and
storing and recalling information. Additionally, advances in transducer technology
help in the detection of signals that could never been accessed before. Perhaps the
most important difference today between humans and machines is the ability of the
former to exercise judgement and to conduct reasoning inductively, this representing

the ’holy grail” of artificial intelligence.
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Men Are Better At:

Detecting small amounts of visual, auditory, or chemical energy

Perceiving patterns of light or sound

Improvising and using flexible procedures

Storing information for long periods of time and recalling appropriate parts
Reasoning inductively

Exercising judgement

Machines Are Better At:

Responding quickly to control signals

Applying great force smoothly and precisely
Storing information briefly, erasing it completely
Reasoning deductively

Table 1.1: Fitts list for function allocation in HMI systems [2]

1.1.4 Automation for Human-Machine Interaction

Automation refers to the application of mechanical, electronic or computational
devices for the substitution of activities that humans used to perform. This term was
first used in the manufacturing industry [2], but includes nowadays a much broader
meaning.

Automatic systems are a growing feature for most of the previously manually
performed operations in Human Machine Interaction (HMI) systems [61]. However,
the technology behind automation is not fully grasped by the general public, and, as
its sophistication grows, the less likely it is to be understood [2]. This has two main
repercussions on people, some may not trust automatic systems while others may
over-trust these systems by attributing to them intelligence they do not possess [2].

The machines in which automation is present is very broad. Most of the control
techniques used are model-based, since they require some type of interpretation of the
phenomenon they wish to control, and most employ 50-year-old techniques that are
in fact very simple. These techniques (e.g., Proportional-Integral-Derivative control

among others) are usually not adaptive and can only optimally work for restricted
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bandwidths. Despite all these shortcomings, automatic systems quickly replaced
manual labour in industry and many other human activities, although only a few
systems are in actual fact considered to be fully automated. In fact, most systems
have very critical human interactions [2], and here lies the importance of the study
of Human Factors and HMI.

The use of a model for automation is true even for more advanced intelligent con-
trol techniques that are defined as 'model-free’ (e.g., fuzzy logic control), since most
of the time a simple or semi-accurate description of the process under investigation
is needed in the design process. Predictions or anticipation of future outcomes and
interactions with key variables of a system are the way model-based controllers work.
This modelling and control process is not challenging for most systems since these
perform in a mostly-exact way (i.e., for washing machines or electric motors). How-
ever, for biological systems, such as HMI systems, this task becomes very difficult
since their variables and features are normally not fully understood and drift consid-
erably away from their typical’ operating regions under similar conditions because

of their high level of complexity [61].

1.2 The importance of adequate psychophysiolo-
gical markers

The objective in any endeavour towards the automation of a HMI system is to fully
integrate human and machine by taking into account their interdependencies and
interactions. In order to achieve this objective, the issue of adequate psychophysiolo-
gical recordings (e.g., psychophysiological markers) is very important if we wish to
understand the human part of the system. The search for new measurements that

can help one understand the inner processes in the affective state of the human should
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be perceived to stem from an incremental effort [61].

As the tasks humans perform 