
Towards Scalable Model Indexing

Konstantinos Barmpis

Engineering Doctorate

University of York

Computer Science

March 2016

Abstract

Model-Driven Engineering (MDE) is a software engineering discipline promoting models

as first-class artefacts of the software lifecycle. It offers increased productivity, con-

sistency, maintainability and reuse by using these models to generate other necessary

products, such as program code or documentation. As such, persisting, accessing, ma-

nipulating, transforming and querying such models needs to be efficient, for maintaining

the various benefits MDE can offer. Scalability is often identified to be a bottleneck for

potential adapters of MDE, as large-scale models need to be handled seamlessly, without

causing disproportionate losses in performance or limiting the ability of multiple stake-

holders to work simultaneously on the same collection of large models. This work iden-

tifies the primary scalability concerns of MDE and tackles those related to the querying

of large collections of models in collaborative modeling environments; it presents a novel

approach whereby information contained in such models can be efficiently retrieved, or-

thogonally to the formats in which models are persisted. This approach, coined model

indexing leverages the use of file-based version control systems for storing models, while

allowing developers to efficiently query models without needing to retrieve them from

remote locations or load them into memory beforehand. Empirical evidence gathered

during the course of the research project is then detailed, which provides confidence

that such novel tools and technologies can mitigate these specific scalability concerns;

the results obtained are promising, offering large improvements in the execution time of

certain classes of queries, which can be further optimized by use of caching and data-

base indexing techniques. The architecture of the approach is also empirically validated,

by virtue of integration with various state-of-the-art modeling and model management

tools, and so is the correctness of the various algorithms used in this approach.

3

For my grandfather Costas

5

Contents

Abstract 3

Contents 7

List of Figures 13

List of Tables 17

List of Algorithms 19

Listings 21

Author Declaration 25

1. Introduction 27

1.1. Overview of Model-Driven Engineering . 27

1.2. Overview of Versioning Systems . 28

1.3. Motivation and Research Hypothesis . 28

1.4. Research Results . 30

1.5. Thesis Structure . 30

2. Background 33

2.1. Model-Driven Engineering . 33

2.1.1. Modeling and Automated Model Management 34

2.1.1.1. Modeling Languages . 34

2.1.1.2. Metamodeling Architectures 34

2.1.1.3. Model Querying and Modification 38

2.1.1.4. Model Transformation . 39

7

CONTENTS

2.1.2. MDE with Large-Scale Models . 41

2.1.2.1. Scalability . 41

2.1.3. Running Example . 43

2.2. Model Persistence and Versioning . 48

2.2.1. Model Persistence Formats . 48

2.2.1.1. XML Metadata Interchange (XMI) 48

2.2.1.2. Relational Database Persistence – Teneo/Hibernate . . . 50

2.2.1.3. Document-based Persistence – Morsa 53

2.2.1.4. Document-based Persistence – MongoEMF 56

2.2.1.5. Graph-based Persistence – NeoEMF (Graph) 57

2.2.1.6. Key-value-based Persistence – NeoEMF (Map) 59

2.2.2. Model Versioning . 62

2.2.2.1. File-based Versioning . 63

2.2.2.2. Model-based Versioning 67

2.2.3. Model Querying . 79

2.2.3.1. Querying Technologies . 80

2.2.3.2. Repository Querying . 84

2.2.4. Summary . 85

3. Analysis and Hypothesis 87

3.1. Analysis . 87

3.1.1. Model Indexing . 88

3.2. Research Hypothesis . 89

3.3. Research Objectives . 90

3.4. Scope . 91

4. Hawk: Scalable Model Indexing Framework 93

4.1. System Capabilities . 93

4.2. System Architecture . 94

4.2.1. System Components . 95

4.3. System Design . 98

4.3.1. Hawk Model Index Structure . 98

4.3.1.1. Back-end Persistence . 99

4.3.1.2. Background: Neo4J . 100

8

CONTENTS

4.3.2. Hawk Mapping Layers . 101

4.3.2.1. Model Layer . 101

4.3.2.2. Graph Layer . 103

4.3.3. Version Control Managers . 106

4.3.3.1. SVN Manager . 106

4.3.3.2. LocalFolder Manager . 106

4.3.3.3. Git Manager . 107

4.3.3.4. Workspace Manager . 107

4.3.4. Metamodel/Model Resource Factories 107

4.3.4.1. EMF Resource Factories 108

4.3.4.2. Other Resource Factories 109

4.3.5. Metamodel/Model Updaters . 112

4.3.5.1. Metamodel Updater . 112

4.3.5.2. Model Updater . 113

4.3.6. Querying Hawk . 121

4.3.6.1. Native Querying . 121

4.3.6.2. Back-end Independent Navigation and Querying 121

4.3.7. System Lifecycle . 128

4.3.7.1. Synchronization Procedure 130

4.3.8. Advanced Features and Optimizations 133

4.3.8.1. Derived Attributes . 133

4.3.8.2. Derived Attributes: Incremental Updating 135

4.3.8.3. Database Indexing . 137

4.3.8.4. Querying an optimized Hawk Model Index 138

4.3.9. Summary . 142

4.4. Implementation . 143

4.4.1. Eclipse Plugins . 143

5. Evaluation 149

5.1. Evaluation Strategy . 149

5.1.1. Correctness . 149

5.1.1.1. Index Content Correctness 150

5.1.1.2. Hawk Validation Listener 151

5.1.1.3. Query Correctness . 152

9

CONTENTS

5.1.2. Performance . 152

5.1.2.1. Query Performance . 152

5.1.2.2. Update Performance . 154

5.1.3. Tool Integration . 154

5.1.4. Architecture Evaluation . 154

5.2. Evaluation Benchmarks . 154

5.2.1. Grabats 2009 Case-Study . 155

5.2.1.1. Grabats Query . 156

5.2.2. The BPMN MIWG Test Suite Repository 158

5.3. Evaluation Results . 159

5.3.1. Benchmarking of Model Insertion and Querying Using Native Java

and EOL . 159

5.3.1.1. Model Insertion . 160

5.3.1.2. Query Execution Time and Memory Footprint 160

5.3.1.3. Disc Space . 164

5.3.2. Benchmarking of Incremental Updating in Hawk 167

5.3.2.1. Model Update Execution Time 168

5.3.2.2. Derived Attribute Update Execution Time 169

5.3.2.3. Threats to Validity . 170

5.3.3. Benchmarking of Derived and Indexed Attributes in Hawk 171

5.3.3.1. Derived Attribute Definition 171

5.3.3.2. Query Definition and Execution Time 172

5.3.4. Benchmarking of Continuous Model Updates in Hawk 175

5.3.4.1. Update Performance Results 177

5.3.4.2. Update Validation Results 178

5.4. Hawk Tool Integration . 181

5.4.1. Epsilon Integration . 181

5.4.2. Exposing Hawk as an EMF Resource 181

5.4.3. Remote Query API (using Apache Thrift) 182

5.4.4. EMF IncQuery Integration . 183

5.4.4.1. EMF IncQuery . 183

5.4.4.2. The Train Benchmark . 184

5.5. Additional Drivers for Hawk . 185

5.5.1. Alternate Version Control Managers 186

10

CONTENTS

5.5.2. Alternate Model Factories . 186

5.5.3. Alternate Persistence Technologies 186

5.6. Research Hypothesis Evaluation . 186

6. Conclusions 189

6.1. Summary . 189

6.2. Contributions of the Thesis Research . 189

6.2.1. Novel Tools and Techniques . 190

6.2.1.1. Heterogeneous Model Indexing Platform 190

6.2.1.2. Incremental Updating of Model Indexes 190

6.2.1.3. Incremental Updating of Derived Attributes 191

6.2.2. Notable side-products . 191

6.2.2.1. Evaluation of Model Persistence Technologies 191

6.2.2.2. Use of Derived and Indexed Attributes in Model Indexes 191

6.2.2.3. Scalable Model Querying 192

6.3. Applications . 192

6.4. Future Work . 194

Appendices 197

A. Details on Hawk Interfaces 199

B. Model Mutation Operations 205

C. User Guide 209

Bibliography 219

11

List of Figures

2.1. The four layers of model abstraction, based on [10] 35

2.2. The GOPRR metamodel, from [13] . 36

2.3. The Ecore Metamodeling Language . 37

2.4. High-level overview of various types of model transformation 39

2.5. Scalability issues in MDE, from [31] . 42

2.6. Running example – (simplified) BPMN metamodel 44

2.7. Running example – BPMN model diagram 46

2.8. Running example – BPMN model . 47

2.9. XMI persistence of the BPMN Loan model (partial) 49

2.10. The Teneo Runtime Layer, from [32] . 50

2.11. Relational database persistence of the BPMN Loan model (partial) 52

2.12. Conceptual organization of data stored in a document store 53

2.13. Persistence back-end structure excerpt for Morsa, from [35] 54

2.14. NoSQL database persistence of the BPMN Loan model in Morsa (partial) 55

2.15. Conceptual organization of data stored in a graph store 58

2.16. Persistence back-end structure excerpt for NeoEMF Graph, from [42] . . . 60

2.17. NoSQL database persistence of the BPMN Loan model in NeoEMF Graph

(partial) . 61

2.18. Conceptual organization of data stored in a key-value store 61

2.19. Persistence back-end structure excerpt for NeoEMF Graph, from [44] . . . 63

2.20. NoSQL database persistence of the BPMN Loan model in NeoEMF Map

(partial) . 64

2.21. CDO Client high-level architecture, from [61] 69

2.22. The CDO-Teneo/Hibernate Runtime layer 70

2.23. Permitted changes for EMFStore . 71

2.24. Directory structure of a Modelio project [for a Zoo model] 74

13

LIST OF FIGURES

2.25. The abstract syntax of the Morsa Query Language, from [63] 82

3.1. Performing global queries on model fragments stored in a remote VCS

repository, adapted from [31] . 88

3.2. Performing global queries on model fragments stored in a local VCS repos-

itory . 89

3.3. Performing global queries on model fragments stored in a remote VCS

repository, using a model indexing system, adapted from [31] 90

4.1. Components of the model indexing system (Hawk) 95

4.2. Interfaces of Hawk . 97

4.3. The BPMN Loan model index – stored as a property graph (partial) . . . 98

4.4. The Hawk Model Layer . 102

4.5. The Hawk Graph Layer . 104

4.6. Running example – altered version of the BPMN Loan model 119

4.7. The Epsilon Model Connectivity Layer . 123

4.8. Important Hawk EMC layer classes and their EOL parents 125

4.9. Fragmented BPMN loan model . 127

4.10. Pre-computing whether parallel gateways are validated 134

4.11. Example of database indexing in Hawk . 138

5.1. Small subset of the Java JDTAST metamodel 155

5.2. Ratios of relative disk space used for the different persistence mechanisms 164

5.3. Performance comparison for executing the Grabats Query from XMI through

Hawk’s chosen persistence mechanism using native and EMC querying . . 166

5.4. BPMN benchmark model change results 176

5.5. BPMN benchmark execution time (Hawk synchronizing with each commit)177

5.6. Memory graph of full BPMN benchmark execution (Hawk[Neo4J]) 179

5.7. Memory graph of full BPMN benchmark execution (Hawk[OrientDB]) . . . 180

5.8. Architecture of Hawk’s remote EMF API 183

5.9. The train benchmark metamodel . 184

5.10. ConnectedSegments inject and repair transformations 185

C.1. Initial Hawk View . 209

C.2. Creating a new Hawk . 210

14

LIST OF FIGURES

C.3. Metamodel configuration . 211

C.4. JDTAST Metamodels added to Hawk . 211

C.5. Indexed folder configuration . 212

C.6. Folder added to Hawk . 212

C.7. Setting the source EOL file . 213

C.8. Adding a Hawk Index . 214

C.9. Configuring the Hawk Index . 215

C.10.Running the EOL query . 215

C.11.Configuring Derived Attributes . 216

C.12.Adding a new Derived Attribute . 216

C.13.Viewing current Derived Attributes . 217

C.14.Adding a new Indexed Attribute . 217

C.15.Viewing current Indexed Attributes . 218

15

List of Tables

2.1. Overview of state-of-the-art model persistence and versioning mechanisms 79

4.1. Traceability of System Capabilities . 94

4.2. Interesting methods in the IModel interface 124

5.1. Configuration options for benchmarks . 160

5.2. Model insertion (persistent to database) size results 161

5.3. Model insertion (persistent to database) execution time results 161

5.4. Grabats Query results (in seconds and MB) 162

5.5. Update execution time results . 168

5.6. Grabats Query execution time results . 173

6.1. Categorization of state-of-the-art model persistence and versioning tools . 194

17

List of Algorithms

1. Hawk update overview . 114

2. Insertion algorithm . 115

3. Incremental update algorithm . 117

3. Incremental update algorithm (cont.) . 118

4. Synchronization procedure . 131

5. Derived attribute incremental update algorithm 137

6. Validation algorithm . 153

19

Listings

4.1. EOL program used to calculate whether a parallel gateway is validated . . 135

5.1. Code excerpt for the Grabats query implemented in Java for Neo4J 156

5.2. Code excerpt for the Grabats query implemented in Cypher for Neo4J . . 157

5.3. The Grabats 2009 query expressed in EOL 157

B.1. EOL model mutation operations . 205

21

Acknowledgments

I would like to thank my supervisor Dr. Dimitrios Kolovos for his continuous guidance

and support throughout my degree. I am grateful to Prof. Richard Paige and Dr. Radu

Calinescu for their encouragement as well as to Dr. Louis Rose for his feedback on my

work.

I thank my colleagues and friends in the Enterprise Systems group and the department,

especially Ran Wei, Dr. James Williams, Adolfo Sanchez-Barbudo Herrera, Athanasios

Zolotas, Septavera Sharvia, Frank Burton and Dr. Antonio Garcia Dominguez for en-

gaging in interesting discussions, for providing valuable insights and for their endless

support. I thank the various MONDO project partners, particularly Gábor Szárnyas,

for being exceptional collaborators and for helping integrate various technologies with

my work.

Finally, to my parents and grandparents, thank you for always being there and for

tirelessly encouraging me to achieve my goals.

23

Author Declaration

Except where stated, all of the work contained in this thesis represents the original

contribution of the author. This work has not been submitted for any other award at

this or any other institution.

This work was partially funded by the MONDO EU project and contributed to its

various written deliverables of workpackage 5, specifically to all of the deliverables D5.1

through D5.6. The core ideas of this work, including the architecture and design of the

system presented here, have not been a product of any collaborations within the MONDO

project. Sections 4.3.4.2 and 5.4 detail collaborative work performed for integrating this

work with other MDE tools and technologies in the form of additional drivers that can

be used alongside the core system presented in this work.

Parts of the work described in this thesis have been previously published by the author:

• Hawk: towards a scalable model indexing architecture. Konstantinos

Barmpis and Dimitrios S. Kolovos. In Proceedings of the Workshop on Scalability

in Model Driven Engineering, BigMDE ’13, pages 6:10–6:9, New York, NY, USA,

June 2013. ACM.

• Evaluation of contemporary graph databases for efficient persistence of

large-scale models. Konstantinos Barmpis and Dimitrios S. Kolovos. Journal

of Object Technology, 13-3:3:1–26, July 2014.

• Towards scalable querying of large-scale models. Konstantinos Barmpis

and Dimitrios S. Kolovos. In Proceedings of the 10th European Conference on

Modelling Foundations and Applications. ECMFA’14, July 2014.

• Towards incremental updates in large-scale model indexes. Konstantinos

Barmpis, Seyyed Shah, and Dimitrios S. Kolovos. In Proceedings of the 11th

European Conference on Modelling Foundations and Applications. ECMFA’15,

July 2015.

25

1. Introduction

In today’s fast-paced competitive world, software engineers are pushed to create larger

and more complex distributed systems every day, often with a very small time to market.

This introduces the requirement for rapid iterations over quickly developed prototypes

which creates the need for more efficient tools and techniques for developing, testing and

deploying such systems in a systematic manner.

For achieving this goal, the discipline of Model-Driven Engineering offers increased

productivity by automating or semi-automating effort-intensive and error-prone steps of

the software engineering process by the use of models as first-class citizens.

1.1. Overview of Model-Driven Engineering

MDE allows for the rapid creation and management of software systems by using models

that can be transformed to generate lower level necessary artefacts such as code and

documentation. As such systems and their models grow in size, concerns regarding

scalability and collaborative development emerge. Many widely-used modeling tools

and technologies tend to rapidly reach their limits as they exhaust their resources when

trying to manage very large models, either taking extensive periods of time to perform

even the most basic tasks, or not being able to perform them at all. Furthermore, as

multiple developers need to collaborate on the creation and use of such models, reliable

forms of distribution and versioning of these models need to be available and integrated

into the development process. This thesis focuses on identifying these limitations and

investigating solutions for tackling such very large models, with Section 2.1 providing

an initial review of the field.

27

1. Introduction

1.2. Overview of Versioning Systems

In software engineering, it is common practice to maintain a record of previous revisions

of the software; this facilitates the collaboration on any artefacts as well as providing a

reliable form of recovery and change management. When versioning models, there are

two primary approaches that can be taken:

The first is to use one of the most popular forms of version control, which is based

around versioning text files (commonly used for files comprising program source code).

Such systems offer the ability to efficiently store large collections of rapidly evolving

files by only storing changes (deltas) between revisions, which is effective for assisting

in the collaborative development of large numbers of text files, managed by multiple

developers. This approach works well with text-based model persistence formats like

XML as they lend themselves to this paradigm; on the other hand, many other model

persistence formats, such as any database-based persistence, which use binary files, do

not. When binary files are used, the version control system will likely need to store the

entire contents of each file even for minor changes.

The second approach is to use dedicated model-specific version control systems. This

approach has the advantage that it is built with a semantic understanding of MDE

(knows about the concepts of metamodels and models, as opposed to files and lines) and

can hence store model-based deltas that will usually be more fine-grained than text-based

file deltas, which allows for the appropriate model-level fragmentation of the commits.

The downside is that such systems require a tight integration between themselves and the

modeling technology used (in order to be provided with the necessary semantics), which

is in contrast to the file-based paradigm, where the concerns are orthogonal. Section

2.2.2 reviews such systems in the context of MDE.

1.3. Motivation and Research Hypothesis

The need for tackling scalability in a collaborative MDE context introduces the need

for researching ways to improve this area. From a theoretical standpoint, there is the

need for offering a way to handle very large models (with respect to the various model

management operations commonly required in MDE) without running into resource

starvation issues, as well as being able to facilitate the collaborative development of

such models from multiple developers. From a practical standpoint, various industrial

28

1.3. Motivation and Research Hypothesis

collaborators of the MONDO project1 used to host this work (Ikerlan2, Softeam3, Soft-

Maint (subsidiary of Sodifrance4), Uninova5) have expressed the need for their models

to be handled in a more scalable way in their respective domains.

Today, if models are versioned using classical file-based version control systems they

will either have to be stored as a single monolithic file (which may often cause issues

with loading such a large file into memory) or as a collection of interconnected smaller

model fragment files. Each developer will commonly only store and manipulate their

own subset of the model fragments and in order to query information about the entire

model would need to fetch all other model fragments (if they are not stored locally) and

then load all of the fragments into memory in order to ensure that a complete result is

returned. This returns to the original problem of having to load a large model in its

entirety, or risks causing a loss in the big picture when only some of the fragments are

loaded (as global information regarding other model fragments cannot be obtained). On

the other hand if model-specific version control is used, the development process will

likely have to be altered in order to be aligned with the procedures and techniques used

by the specific versioning tool (as it will have to be tightly integrated with the modeling

technology in order to function).

The focus of this work is on providing a solution which does not attempt to radically

alter the techniques used in managing large models in MDE, but attempts at offering a

medium between currently used state-of-the-art technologies and novel ones which may

take little account of current practice and norms in the field. The proposed approach

introduces the concept of model indexing, whereby a separate system (a model index)

is introduced that holds a read-only representation of the models stored in file-based

version control systems. The model index can be used as an efficient way to query large

(collections of) models without incurring the cost of having to load them locally or losing

the big picture if only some of them are loaded. As such, the research hypothesis of this

thesis is as follows:

1 This project is partially funded by the MONDO FP7 STREP European Union research project

(#611125) which brings together various universities and businesses for tackling scalability in MDE:

http://www.mondo-project.org/
2 http://www.ikerlan.es/en/
3 http://rd.softeam.com/
4 http://www.sodifrance.fr/
5 http://www.uninova.pt/

29

http://www.mondo-project.org/
http://www.ikerlan.es/en/
http://rd.softeam.com/
http://www.sodifrance.fr/
http://www.uninova.pt/

1. Introduction

The overhead of computing model-element-level queries over large (collections

of) models stored in a file-based VCS can be significantly reduced using a

non-invasive model-indexing system orthogonal to the specific VCS or model

representation format.

1.4. Research Results

This research proposes a novel approach for tackling scalability in MDE; a model index-

ing framework is presented alongside a prototype implementation that offers an extensi-

ble way to manage large collections of models developed by multiple stakeholders. The

work is validated through extensive empirical evaluation with the results supporting the

research hypothesis with models of the order of millions of model elements being man-

aged, providing up to 95.1% decrease in execution time for executing certain queries,

offering incrementality for keeping the index up to date (which is shown to provide

an average of 70.7% decrease in execution time when compared to a non-incremental

approach) and suggesting that such a model indexing approach can be likely general-

ized for other modeling technologies as well as other types of persistence back-ends and

version control systems. Finally the work provides a comprehensive review and cate-

gorization of current state-of-the-art tools and technologies used in MDE, presenting

their key benefits and limitations, as the proposed solution does not attempt to replace

such technologies but instead offers an alternative approach suitable for some scenarios

(identified in Section 3.4).

1.5. Thesis Structure

Chapter 2 provides an overview of MDE with Section 2.1 presenting the discipline and

introducing the reader to the observed scalability concerns; Section 2.2 reviews various

widely used state-of-the-art tools and technologies available today and describes their

functionalities and unique characteristics.

Chapter 3 presents the analysis of the problem at hand and states the research hy-

pothesis this research project aims at proving, it defines the research objectives and the

scope the work is limited to, identifying areas to be investigated.

Chapter 4 details the architecture, design and implementation of a prototype tool

developed as a proof-of-concept for managing scalability in MDE. Section 4.1 presents

30

1.5. Thesis Structure

the capabilities such a system is envisioned to have; Section 4.2 presents the system ar-

chitecture including its various components; Section 4.3 details the design, including the

various APIs the tool offers and delves into the specifics of each component individually,

as well as into the various key procedures and algorithms used by the system; lastly

Section 4.4 briefly presents some implementation details and a user guide for the tool.

Chapter 5 analyzes empirical data gathered as part of evaluating the aforementioned

prototype and discusses its significance with respect to various functional and non-

functional properties of the system. Section 5.1 presents the strategy used for evaluating

the system; Section 5.2 presents the benchmarks used; Section 5.3 details the results ob-

tained and discusses their significance; Section 5.4 talks about the various integration

efforts made to allow the system to work with other widely used tools in the field; and

finally Section 5.5 mentions the various alternative drivers developed for the system that

can be used instead of (or alongside) the primary ones developed as part of this work,

as a way to evaluate the architecture of the system.

Finally Chapter 6 synthesizes a summary of all the knowledge gained in this work

and concludes with directions this work can take in the future as well as identifying the

contributions it has offered to the field of model-driven software engineering.

31

2. Background

This chapter provides an introduction to MDE (Section 2.1) and then focuses on existing

work related to model persistence and versioning. Section 2.2.1 provides a discussion on

data persistence back-ends/formats and how they are leveraged to store models, Section

2.2.2 focuses on model versioning, with Section 2.2.2.1 providing a discussion on file-

based version control systems followed by a discussion of model-based version control

(Section 2.2.2.2). Finally, Section 2.2.3 introduces the reader to model querying with

respect to various state-of-the-art technologies used today.

A background in MDE is needed in order to understand the origin of the scalability

problems, as well as for being able to gain insight for coming up with a solution that

addresses some of the challenges in this field of study. Information about various forms

of version control used in MDE is useful for understanding their limitations, when used

in collaborative work on model development, as well as for insight on building a tool

suited for scalable multi-user model management. Finally, detailed knowledge of the

various forms of model persistence, such as file or database serializations, is paramount

for an effective implementation of a scalable solution, as well as for discovering, designing,

implementing, testing and comparing the most suitable back-end store itself.

2.1. Model-Driven Engineering

MDE is an approach to software development, where models are first class artefacts of

the software engineering process. A model, in this context, as described by [1], is “a

description of phenomena of interest”, represented in textual, graphical or other form

(such as tabular or tree-based). In MDE, models are used to describe a system and

(partly) automate its implementation through automated transformation to lower-level

artefacts. In order for models to be amenable to automated processing, they must be

defined in terms of rigorously specified modeling languages (metamodels). This section

will present several key aspects of MDE, give examples of different widely used model

33

2. Background

management approaches taken by the community, and discuss their importance. Fur-

thermore it will present the challenges the current state-of-the-art MDE tools face when

dealing with large (collections of) models in a collaborative environment.

2.1.1. Modeling and Automated Model Management

MDE has several standard processes and activities, the most prominent of which are

presented below.

2.1.1.1. Modeling Languages

Models used in MDE typically adhere to a rigid set of rules that are encapsulated in a

metamodel. This “blueprint” of the model contains all of the allowed syntax, restrictions

and features that models conforming to it can have. Modeling languages (metamodels)

are often separated into two categories (domain-specific and general-purpose), but can

also be seen as a continuum from minimal (domain-focused) to maximal expressiveness.

General-purpose languages include languages such as the Unified Modeling Language

(UML) [2], the Business Process Model and Notation (BPMN) [3], the Systems Modeling

Language (SysML) [4] and the Archimate enterprise architecture modeling language [5]

and allow for a wide variety of models to be created, capturing a broad spectrum of

concerns. A general-purpose language tries to support a wide variety of concepts and

favors portability and maintainability [6] as it is intended to be used and understood by

a wide audience.

Domain-specific languages include WebML [7] or the Systems Biology Markup Lan-

guage (SBML) [8] and are tailored to represent a specific area (domain) of interest.

While limited in their scope, they provide the ability for solutions to be expressed at

the same level of abstraction as the problem domain as well as more concisely, hence

allowing domain experts to work with their area of expertise. They are often optimized

for productivity and are less prone to portability [6].

2.1.1.2. Metamodeling Architectures

Various architectures are available for defining metamodels and constructing models that

conform to them, with different numbers of layers of abstraction used to represent their

34

2.1. Model-Driven Engineering

artefacts. Their main commonality is that they all define at least two layers, one for the

model used to describe a system/process and one for the metamodel used to define such

models.

The MetaObject Facility (MOF1) The Object Management Group (OMG) [9] intro-

duced MDA, in 2001 together with an architecture for defining metamodels (Figure 2.1)

and constraints on models conforming to these metamodels [10].

M3

Metamodeling languages (Meta-metamodels)

(MOF)

M2

Modeling languages (Metamodels)

(UML)

M1

Model instances

(UML Model)

M0

The real world

(A book)

Figure 2.1.: The four layers of model abstraction, based on [10]

In the pyramid seen in Figure 2.1, M0 represents the real-world such as the physical

elements which are to be modeled (a book or a customer) or the software system, if

software is being modeled. M1 then represents the model of the real-world (found in

M0) such as a book being represented by a class with attributes such as ISBN and title.

M2 represents the modeling language (metamodel) used to define elements in M1 (such

as UML [2]). Finally, M3 represents the meta-modeling language (meta-metamodel)

used to define elements in M2; for the OMG’s MDA the only M3 element is MOF [11].

It is worth noting that this type of layering (MOF – UML – UML model – real-

world) can be paralleled to how computer software and programing languages are layered

1 http://www.omg.org/mof/

35

http://www.omg.org/mof/

2. Background

(Backus-Naur Form (BNF) [12] – Java Language – Java Program – real-world). In the

same way that BNF defines the abstract syntax of Java, MOF defines the abstract syntax

of UML.

The MOF architecture is not discussed in more detail as it is very similar in structure

and capabilities to the Eclipse Modeling Framework discussed in detail below.

MetaCase – The MetaEdit+ Tool MetaCase2 offers a graphical metamodeling archi-

tecture whereby custom domain-specific metamodels can be created using an editor (The

MetaEdit+ Workbench Tool3) that uses visual notation (shapes, colors etc.) to define

the various concepts and their features/rules. This metamodel (which would come under

the M3 layer in MDA) is seen in Figure 2.2 from [13].

Figure 2.2.: The GOPRR metamodel, from [13]

In this architecture, a metamodel is defined as a Graph, containing Objects, Relation-

ships and Roles. An Object describes a class of model element, which can be connected

by Relationships to others; the Role specifies how such Objects participate in a Relation-

ship. Bindings connect a Relationship with two or more Roles and one or more Objects

for each Role in a Graph. All these concepts (barring Bindings) can have Properties

which can be of various data types such as Strings, Booleans, numbers etc. [13].

2 http://www.metacase.com/
3 http://www.metacase.com/mwb/

36

http://www.metacase.com/
http://www.metacase.com/mwb/

2.1. Model-Driven Engineering

Using these concepts, and with the help of the MetaEdit+ Workbench editor, users are

able to define their domain-specific concepts from scratch or use one of the pre-defined

metamodels offered; this Workbench editor allows for the creation of symbols for the

various Objects, Relationships and Roles. The metamodel can be used to define instance

models that use these concepts and follow any defined rules, and these models can then

be used to generate further artefacts such as documentation or code.

The Eclipse Modeling Framework (EMF) EMF [14] is a framework that facilitates

the definition and instantiation of metamodels. In EMF, metamodels are defined using

the Ecore metamodeling language, a high level overview of which is illustrated in Figure

2.34. As EMF is the most widely-used metamodeling framework today, we delve into

more detail on its structure and capabilities.

Figure 2.3.: The Ecore Metamodeling Language

Metamodels are expressed in the form of EPackages; these define the unique global

identifier of the metamodel (its nsURI – used as a unique key for retrieving metamodels

from a registry (EPackageRegistry) that stores a map of identifiers to metamodels) and

contain the types found in the metamodel, in the form of EClassifiers. Types can be

4 http://download.eclipse.org/modeling/emf/emf/javadoc/2.8.0/org/eclipse/emf/

ecore/package-summary.html

37

http://download.eclipse.org/modeling/emf/emf/javadoc/2.8.0/org/eclipse/emf/ecore/package-summary.html
http://download.eclipse.org/modeling/emf/emf/javadoc/2.8.0/org/eclipse/emf/ecore/package-summary.html

2. Background

either EClasses or EDataTypes (both of which are ENamedElements); EClasses contain

their features, in the form of EAttributes (that have an EDataType as their value type),

and EReferences (that have an EClass as their value type). Model elements instantiated

from these EClasses contain values for the EAttributes and EReferences defined by their

type (and its supertypes).

EMF uses the concept of a Resource for maintaining an in-memory representation

of metamodels and models. Such Resources can be serialized to disk (in various forms

such as textual or database, discussed in the sequel) and read into memory from their

respective serializations. Contents of a Resource can be iterated through and modified,

with EMF automating the majority of both inter-resource and intra-resource consistency

operations. For example EMF will automatically keep any loaded resources synchronized

with model element deletion (with respect to any other elements referencing them) or

modification.

By default, EMF serializes models in a standard XML5-based representation called the

XML Metadata Interchange (XMI6), an OMG-standardized format that was designed to

enhance tool-interoperability. This form of serialization allows for several optimizations

such as the ability to save a model in multiple physical files and to use lazy reference

resolution to link them together. Due to the nature of the format, models serialized in

XMI are quite verbose and need to be de-serialized in a sequential manner. For example

the default EMF XMI parser (SAX7-based) needs to read the entire model file before it

can create a usable in-memory resource.

2.1.1.3. Model Querying and Modification

Retrieving information from stored models, as well as being able to evolve them by

altering their contents is of paramount importance in MDE. Queries are of great use

for answering complex questions about large models, which may be required by the

stakeholders; furthermore they are required in order to perform model transformations,

described below. Since model queries are used for most other model management

operations, tackling issues such as scalability and collaborative development for querying

can be beneficial for all other operations that require querying capabilities. As such, this

thesis focuses on solving querying concerns, in anticipation that this work will facilitate

5 http://www.omg.org/spec/XML/
6 http://www.omg.org/spec/XMI/
7 http://sax.sourceforge.net/

38

http://www.omg.org/spec/XML/
http://www.omg.org/spec/XMI/
http://sax.sourceforge.net/

2.1. Model-Driven Engineering

more efficient model transformations etc. Model querying is commonly performed

using third generation languages such as Java or model query languages like OCL [15]

or EOL [16]. Modification of stored models should provide a consistent way to add

or remove model elements or to modify their properties, without compromising their

integrity and (if the tool supports it) validity.

2.1.1.4. Model Transformation

Models need to be transformed to other representations, in order to generate useful

artefacts such as runnable code, documentation or models conforming to a different

metamodel. There are two distinguishable types of transformations that can be per-

formed on models – model to model and model to text – a high-level overview of which

is seen in Figure 2.4, and described below.

Meta-
Model
MM1

Meta-
Model
MM2

Transformation
Language

TL

Model
M1

conformsTo

Model
M2

conformsTo

M2M

T1

conformsTo

M2T
T2

M2T
T3

Java
Source
Code

J1

Doc.
D1

Figure 2.4.: High-level overview of various types of model transformation

Model to Model The first form of model transformation is Model to Model (M2M).

In this paradigm, input model M1 adhering to metamodel MM1 is transformed using

39

2. Background

a transformation (or a set of transformations) T1 adhering to transformation language

TL to output model M2 adhering to metamodel MM2. Such transformations allow for

the (partial) mapping of a model onto one of a potentially different metamodel (such as

mapping a model representing UML Classes to one representing a Relational Database,

for example).

There are three types of M2M transformation languages, as presented by [17]:

• Declarative Languages. Declarative approaches focus on what needs to be trans-

formed, by defining a relation between the source and target models. Such ap-

proaches usually automate features like source model traversal, traceability and

bidirectionality. On the other hand such approaches often do not allow for fine-

grained control of the transformation execution (such as rule scheduling), which

may be limiting in some cases. An example of a language using this approach is

QVT-Relations [18] by the Object Management Group (OMG).

• Imperative Languages. Imperative approaches focus on how the transformation

needs to be performed by specifying the steps required to get to the target mod-

els from the source models. Such approaches are beneficial when declarative ap-

proaches do not provide a sufficient level of control; for example when the appli-

cation order of a set of transformations needs to be controlled explicitly (as such

languages understand notions like sequence or selection). Nevertheless issues such

as traceability and bidirectionality have to be manually resolved. An example of

a language using this approach is QVT-Operational [19] by the OMG.

• Hybrid Languages. As both of the above paradigms have benefits and drawbacks,

“hybrid languages provide a declarative rule-based execution scheme as well as im-

perative features for handling complex transformation scenarios” [20]. Neverthe-

less, such languages usually have limited efficiency and lack of optimization, which

has to be manually performed [21]. Examples of languages using this approach

are the ATLAS Transformation Language [21,22] and the Epsilon Transformation

Language [20].

Model to Text The second form is Model to Text (M2T); Here, input model M1

adhering to metamodel MM1 is transformed using transformation T2 adhering to trans-

formation language TL to produce one or more text files as output. Such output can

have two main forms: the first is a plain text output such as a report document file

40

2.1. Model-Driven Engineering

(D1 – in the example of Figure 2.4) and the second is in the form of a grammatically

structured output such as a Java source code file (J1 – in the example of Figure 2.4 –

structured in the Java programming language grammar). Such transformations allow

for the automated (or partially automated) generation of runnable code from a model or

for human-readable documentation to be created. Examples of languages used to per-

form such transformations are the Epsilon Generation Language (EGL) [23], Xpand [24],

Acceleo [25] and Jet [26].

As the aim of this work is not to contribute to the area of modeling and automated model

management, this section presented only a brief overview of some of the topics in this

area; others such as model validation, simulation, comparison, merging and refactoring

are out of the scope of this work.

2.1.2. MDE with Large-Scale Models

The popularity and adoption of MDE in industry has dramatically increased in the

past decade as it provides several benefits compared to traditional software engineering

practices, such as improved productivity and reuse [27], which allow for systems to be

built faster and cheaper. Nevertheless, certain limitations of the current state of the art

tools used in MDE such as scalability concerns are seen to be preventing its wider use

in industry [28, 29] and need to be overcome. Scalability issues arise when large models

(or collections of models – of the order of millions of model elements) are used in MDE

processes. As summarized by [30], “Loading and storing big models is a resource and

time-consuming activity”.

2.1.2.1. Scalability

When referring to scalability issues in MDE, they can be split into the following cate-

gories [31], seen in figure 2.5:

Model persistence Storage of large models and the ability to access and update such

models with low memory footprint and fast execution time can be seen as a bottleneck

in MDE-based tools, when large models, in the order of millions of elements, are used.

Especially in industry, several non-functional properties (performance, availability, se-

curity, etc.) often need to be met in order for adoption of a tool. A detailed description

41

2. Background

Scalable
Queries and

Transformations

Scalable
Domain Specific

Languages

Toolkit for
constructing

scalable DSLs
require

Scalable DSLs
Scalable

Concrete Visual
Syntax Toolkit

Scalable
Model

Persistence

Scalable
Collaborative

Modelling

Collaborative
Modelling

Tools

requires

require

Primitives and
Patterns for

Collaborative
Modelling

requires

defined using

Large-Scale
Models

conform to

Transformation
Benchmarks

require

Reactive and Cloud
based Querying and

Transformation Engines

require

used to measure

query and
transform

Guidelines
and Best
Practices

require
defined following

underpin

used to manage

Efficient Model
Persistence

Format

requires

Model Indexing
Framework

requires

indexes

stored in

used to explore/edit

use for global queries

Figure 2.5.: Scalability issues in MDE, from [31]

of this issue can be found in Section 2.2.1.

Model querying and transformation The ability to perform intensive and complex

queries and transformations on large models with fast execution time is the second issue

MDE faces. Efficient execution of global queries can be of importance when dealing with

large collections of (possibly interconnected8) models. A global query on a collection of

model files is one which requires multiple (commonly all of the) model files to be loaded

in order to be computed. For example a query asking whether a particular model is

referenced by other models needs all other model files to be loaded as well as that of the

8 some modeling technologies such as EMF support the concept of persisting interconnected model

fragments, whereby a model file can reference elements in other model files instead of just elements

found in itself

42

2.1. Model-Driven Engineering

model itself, in order to be calculated. A detailed description of this issue can be found

alongside the various technologies reviewed in Section 2.2.

Collaborative work Multiple developers collaborating (either online or offline), each

with their own part of the model, by querying or editing it in a consistent and synchro-

nized manner, is another aspect of scalability on large projects. A detailed description

of this issue (including the use of model comparison) can be found in Section 2.2.2.

Creation/exploration/visualization of large models Managing large models starts from

model creation; scalable modeling languages need to be developed that allow building

and exploring large models incrementally. Furthermore the ability to visualize such

large models efficiently becomes important when various stakeholders, who may not be

capable of using other techniques such as querying, need to work with the models.

This research primarily focuses on the first three issues mentioned here: model persis-

tence, model querying and collaborative work; as well as touching upon efficient model

comparison, in order to tackle its research objectives presented in Section 3.3.

2.1.3. Running Example

In order to provide context for presenting this work, we will use the metamodel seen

in Figure 2.6 as a running example. This metamodel is a simplified version of BPMN9.

BPMN is a modeling language used to define business processes in a standardized man-

ner, and is widely adopted.

This metamodel was chosen for the following reasons:

• To avoid name clashes between concepts in different meta-levels (in contrast to

UML, for example).

• BPMN provides a high-level set of concepts (Event, Task, Flow, etc.), understand-

able by a wide audience, while lending itself nicely to the field of MDE as it can

be used to realistically model a software system.

• A simplified version allows for readability while still using all of the interesting

concepts found in Ecore, such as inheritance, containment, opposite references etc.,

9 this is a simplified version of the OMG-standardized business process model and notation (BPMN)

specification: http://www.bpmn.org/

43

http://www.bpmn.org/

2. Background

Figure 2.6.: Running example – (simplified) BPMN metamodel

so any discussion on this metamodel is also applicable to any other EMF-based

metamodel.

This metamodel (from now on referred to as the “BPMN metamodel”), defines that

models that conform to it can contain the following elements:

• Tasks. Each Task represents a timed activity the system has to perform and has

an attribute denoting this execution time needed to complete. This simplified

metamodel assumes all other transitions, decisions and states are resolved instan-

taneously (a time of 0 is associated with visiting any of them).

• StartEvents. A StartEvent denotes a possible starting point for the business pro-

cess. There can be more than one such elements in any process, for example one

for an administrator starting the process and one for an unregistered user starting

it.

• EndEvents. An EndEvent denotes a possible termination point for the process.

There can be more than one such elements in any process, for example one for

44

2.1. Model-Driven Engineering

normal and one for abnormal termination.

• SequenceFlows. A SequenceFlow is a link between two BaseElements (ie: any

concrete subclass of BaseElement). It has references to its source element and its

target element (as well as their opposite references); it has a flag denoting whether

it is a data-flow element (data is expected to travel between the elements it is

connecting); finally it may have a condition attribute denoting which conditions

need to be satisfied for this flow to be followed (in this simplified example, such

conditions are written in plain English).

• Gateways. A Gateway breaks the process flow into one or more alternative Se-

quenceFlows, depending on whether the condition attribute of the relevant flow is

satisfied, as well as whether the gateway is inclusive or exclusive (based on the

value of the inclusive attribute flag).

• ParallelGateways. A ParallelGateway breaks the process flow into all of its possible

outcomes, regardless of conditions. If its diverging attribute is False then it is

expected to collect multiple parallel flows into a single one instead of breaking up

a single flow into multiple.

A small model conforming to this metamodel is seen in Figure 2.7, containing a BPMN

process for processing a loan application (from now on referred to as the “BPMN Loan”).

This process starts by recording the relevant application information and checking it.

If the check fails the application is immediately rejected and the process ends, otherwise

it continues to a loan study. If the loan study approves the loan, then the applicant is

given the agreed upon loan, otherwise they are informed about the rejection details; in

both cases the process then ends. Figure 2.8 shows the same model in its full structural

representation (even for such a small example, we can see that it starts getting cluttered

and barely readable).

In the interest of clarity/readability this example has been kept small (using a very

small modified subset of BPMN), but a more complex example using large models can

be found in Chapter 5.2.1.

45

2.
B
ack

g
ro
u
n
d

Figure 2.7.: Running example – BPMN model diagram

46

2.1.
M
o
d
el-D

riven
E
n
gin

eerin
g

Figure 2.8.: Running example – BPMN model

47

2. Background

2.2. Model Persistence and Versioning

This section reviews some of the most prominent tools and techniques used today for

persisting and versioning large models. Whilst each tool offers different functionality,

the commonality found in all is that they either use XMI as a means of storing models,

or they replace it for their own proprietary technology (such as using custom database

or textual persistence). This paradigm of either using XMI or offering a wholesale

replacement brings up the question of whether an approach can lie somewhere in the

middle. Chapter 3 presents such an approach, aimed at leveraging the current use of

XMI whilst still offering a scalable way to query such models.

2.2.1. Model Persistence Formats

Several widely-used modeling frameworks such as EMF serialize their models in XML

form, often using the XMI standard. This format will be used as a baseline for compar-

ison with various other alternatives used today.

2.2.1.1. XML Metadata Interchange (XMI)

XMI is an extension of XML-based documents with each model element being mapped

to an XML element and having a unique identifier. Model element containment is

represented as XML element containment and model references refer to the unique model

element identifiers in the document. Many of today’s MDE tools either directly support

loading models form XMI or at least offer an import/export functionality from XMI to

their own persistence format. This allows for the development of artefacts with a certain

degree of confidence that vendor lock-in is avoided and that porting the model between

various tools is feasible. While this format does partially aid in collaborative work

(as models can be fragmented into multiple interconnected files), several major issues

remain such as the need to load multiple (or all of) the XMI files into memory, should

a global query on the model be needed (one which requires multiple – commonly all –

of the model fragment files to be loaded into memory in order to be calculated), or that

any change on a model element may affect elements in other XMI files (for example the

deletion of an element which is a container of one in another XMI file). Furthermore,

as XMI is an XML-based format, models stored in single XMI files cannot be partially

loaded and as such, loading an XMI-based model requires reading this entire document

48

2.2. Model Persistence and Versioning

using a SAX parser, and converting it into an in-memory object graph that conforms to

the respective metamodel. As such, XMI scales poorly for large models both in terms

of the time needed for upfront parsing and in terms of the resources needed to maintain

the entire object graph in memory.

Finally, as XML is a text-based file format, it lends itself nicely to classical file-based

VCS; many such systems will only have to store the changed part of the file each time it

is updated and can hence perform efficient (albeit non-semantic) comparison between the

versions, or will offer the means to quickly compute it. Many other persistence formats

are binary in nature and cannot be directly compared by the VCS (Section 2.2.2.1).

In the BPMN Loan example, the BPMN metamodel would be commonly stored in an

XMI file (such as one named bpmn.ecore – due to the fact that in EMF metamodels are

models too, this file will have the same structure as a model instance file) and the model

would be stored in another XMI file (such as one named bpmn loan.model, as shown in

Figure 2.9).

Figure 2.9.: XMI persistence of the BPMN Loan model (partial)

One approach in attempting to improve the handling the persistence of large mod-

els is to offer high-performance alternatives to XMI, for storing these models. Such

technologies use a variety of back-end persistence mechanisms to achieve this:

49

2. Background

2.2.1.2. Relational Database Persistence – Teneo/Hibernate

Teneo-Hibernate [32] stores EMF models in a relational database. Databases such as

MySQL and HSQLDB are supported. In this approach, an Ecore metamodel is used to

derive a relational schema as well as an object-oriented API that hides the underlying

database and enables developers to interact with models that conform to the Ecore

metamodel at a high level of abstraction, using Hibernate queries (Figure 2.10).

Figure 2.10.: The Teneo Runtime Layer, from [32]

This process can be automated or customized by the use of Java Persistence API

(JPA) Annotations10 that allow for custom schemas to be produced (which can produce

custom naming of tables or specify the inheritance mapping, for example).

Model-Relational Mapping [32] The default mapping persists model elements by cre-

ating one table for each EClass hierarchy (vertical mapping strategy). Hence instances

of that EClass as well as instances of all of its subclasses are stored in that table; this can

be changed to having each class in its own table (using JPA) if deemed appropriate (hor-

izontal mapping strategy). Multiple inheritance is handled seamlessly, by automatically

choosing one superclass as the one used for insertion (this can be customized through

JPA if necessary). EAttributes are stored as columns in the table and EReferences as

foreign keys. Ordered 1:n relations are handled by Hibernate lists (which require an

additional column with the list order to be kept as well). Teneo-Hibernate also supports

10http://www.oracle.com/technetwork/middleware/ias/toplink-jpa-annotations-

096251.html

50

http://www.oracle.com/technetwork/middleware/ias/toplink-jpa- annotations-096251.html
http://www.oracle.com/technetwork/middleware/ias/toplink-jpa- annotations-096251.html

2.2. Model Persistence and Versioning

unordered 1:n relations, which are specified by JPA and eliminate the need for the extra

column, but will also not guarantee consistency in the return order of reference values, as

expected. Ordered n:m relations are handled by producing two table joins, one for each

side of the relation (as there is no way to guarantee the ordering of such relations with

a single table join). Unordered n:m relations are persisted using a single table join by

using the appropriate JPA annotation. “Contains” relations are supported as columns

in the “contained” class table and store the relevant information about its container;

These relationships are stored in parallel to 1:n relations due to lack of knowledge of

containment state upon generation of the database schema (as one class can be contained

by multiple classes in the metamodel but in the instance level you can only have a single

container for an object). Finally Teneo supports an alternative Entity Attribute Value

Mapping (EVM) that uses only two tables (object / values), which alleviates the need

for changing the database schema every time the metamodel changes. Furthermore it

supports dynamic-EMF but is unsuitable for large models as querying (if EVM is used)

and maintenance11 quickly becomes very inefficient.

Model-relational mapping approaches eliminate the initial overhead of loading the en-

tire model in memory by providing support for partial and on-demand loading of subsets

of model elements as demonstrated by experiments performed and described in the se-

quel. However, due to the nature of relational databases (object-relational impedance

mismatch), such approaches, while better than XMI, are still largely ineffective. As

models often have more references (to other model elements) than elements, complex

queries can end up requiring multiple expensive table joins to be executed (every time

such a reference to another element needs to be navigated) and hence do not scale well

for large models, as demonstrated in Section 5.3.1.2. Even though Teneo-Hibernate

(by default) tries to minimize the number of tables generated, by having all the sub-

classes of an EClass stored in the same table as the EClass itself (resulting in a fraction

of the tables otherwise required if all EClasses made their own table of EObjects), the

fact that the database itself is made up of sparsely populated data (as EAttributes of all

subclasses need to be stored in the schema, even if they are only effectively used by a

small percentage of actual objects stored) results in increased insertion and query time,

as demonstrated by various works such as [33,34].

11http://wiki.eclipse.org/Teneo/Hibernate/Dynamic_EMF_Tutorial

51

http://wiki.eclipse.org/Teneo/Hibernate/Dynamic_EMF_Tutorial

2. Background

As with most database persistence formats, relational databases persist data in the

form of binary files. As discussed in Section 2.2.2.1, versioning binary files in file-based

version control systems is discouraged and will create large overheads for storage and

comparison of versions.

In the BPMN Loan example, the BPMN metamodel would be mapped to the back-

end (database) store as a schema, and then the model would be inserted into the same

back-end as fields in tables; a subset of the resulting database would look as in Figure

2.11.

Figure 2.11.: Relational database persistence of the BPMN Loan model (partial)

52

2.2. Model Persistence and Versioning

2.2.1.3. Document-based Persistence – Morsa

Morsa [35] is a prototype that attempts to address the issue of scalable model persistence

using a document store NoSQL database (MongoDB) to store EMF models as collections

of documents.

NoSQL Document-based stores As the reader cannot be assumed to be familiar with

document stores (in contrast to relational databases for example), a brief background

discussion is provided here. Document databases (seen in Figure 2.12) consist of a set of

documents (possibly nested), each of which contains fields of data serialized in a standard

format like XML or JSON12. They allow for data to be structured in a schema-less way

as heterogeneous collections of such documents. Popular examples are MongoDB [36],

CouchDB [37] and OrientDB [38].

Database

 Collection

 Document

K2

V1

V2

K1

 Document

K2

V1

V2

K1

K3 V3

 Document

K2

V1

V2

K1

K4

V4

V4

K3

Figure 2.12.: Conceptual organization of data stored in a document store

12http://json.org/

53

http://json.org/

2. Background

Model-MongoDB Mapping Morsa stores one model element per document, whereby

their attributes are stored as a key-value pair alongside persistence metadata of the model

element (such as reference to its metaclass). Metamodel elements are stored in a similar

fashion to model elements and are also represented as entries in an index document that

maps each model or metamodel URI (the unique identifier of a model or metamodel

element) in the store to an array of references to the documents that represent its root

objects. An example of this architecture is displayed in Figure 2.13.

Figure 2.13.: Persistence back-end structure excerpt for Morsa, from [35]

Morsa uses a load on demand mechanism that relies on an object cache that holds

loaded model objects. This cache is managed by a configurable cache replacement policy

that chooses which objects must be unloaded from the client memory (should the cache

be deemed full by the current configuration).

Similar to storing models in a relational database, storing them in a document store

will create the same problems when using a file-based version control system to version

them as the resulting binary database files will require inefficient comparison and storage

in the VCS.

54

2.2. Model Persistence and Versioning

In the BPMN Loan example, the BPMN metamodel would be inserted into the Mon-

goDB store, and then the model would be also inserted. The resulting database would

look as in Figure 2.14.

Figure 2.14.: NoSQL database persistence of the BPMN Loan model in Morsa (partial)

55

2. Background

2.2.1.4. Document-based Persistence – MongoEMF

MongoEMF13 also allows EMF models to be stored in MongoDB. This allows the use of

EMF’s API while offering possible scalability benefits by storing the models in a NoSQL

store.

It extends the EMF Resource interface by using custom URIs to identify them. Such

URIs are of the form: “mongodb://host[:port]/database/collection/{id}”.

Individual element ids can be either generated by the tool (as a default) or can be manu-

ally specified when a new object is created. If generated ids are used, the bulk insertion

of objects can be performed (by using a single save call on the resource). Creating,

removing or updating EObjects is done by saving the relevant resource with the objects

in question. Retrieving objects can either be done by identifier or by querying the store.

Querying can either be a native MongoDB query or a query of the proprietary format

provided by MongoEMF (named simple query format).

Model-MongoDB Mapping MongoEMF offers two options for using MongoDB collec-

tions of objects; a collection of objects can either be stored within a parent object or as

top level documents in a MongoDB collection. When an object contained by a parent

is operated upon (modified), the entire collection of objects contained by the parent is

also consequently operated upon. On the other hand if objects are stored separately in

a MongoDB collection, the client will have to handle them individually.

Furthermore, EMF references are treated depending on their type. Non-containment

references are always persisted as proxies to the object in question. For references to

objects in other resources, the object in question will have to be created before the object

referencing it can be created (as the id of the referenced object will have to exist for the

proxy to be valid). Containment references create nested objects in MongoDB unless

the target object is in its own resource (different to the one of the container object) and

also containment proxies is set to true in the Generator model.

The default handling of EDataTypes is to convert the ones which cannot be directly

mapped to MongoDB’s types (such as Boolean, Integer, String etc.) into Strings (based

on the relevant conversion functions in the model). If one wishes to handle such data

types in a different way, for example saving one as an Integer (with some custom mean-

ing), an instance of IValueConverter can define this mapping for MongoEMF.

13https://github.com/BryanHunt/mongo-emf/wiki

56

mongodb://host[:port]/database/collection/{id}
https://github.com/BryanHunt/mongo-emf/wiki

2.2. Model Persistence and Versioning

Finally, various options are available for loading a MongoEMF resource, the most

important ones summarized below:

• OPTION PROXY ATTRIBUTES – This Boolean option allows for cross-document

proxy references to have their attributes populated automatically (without resolv-

ing the actual proxy), when set to true.

• OPTION QUERY CURSOR – This Boolean option allows for a MongoCursor to

be returned by a query, instead of a default Result with proxies to its contents,

when set to true. This permits the subsequent iteration with creation on demand

only of the necessary objects.

• OPTION SERIALIZE DEFAULT ATTRIBUTE VALUES – This Boolean option

allows for the persistence of default values of attributes, when set to true. This

aids in querying by attribute value as the default EMF behavior is to not store

default values.

• OPTION USE ID ATTRIBUTE AS PRIMARY KEY – This Boolean option al-

lows for the automatic use of the ID attribute as the MongoDB id of the object,

when set to true. This only actually sets the ids of new objects which have no id

in their URI and have an ID attribute.

In the BPMN Loan example, the Loan model would be inserted into the MongoDB

store when the “save” method is called on its resource, and any relevant metamodels

the resource used would be inserted if they did not exist already in the store (as these

metamodels are already loaded by EMF in order for the resource to be loaded). While

the exact structure of the resulting store has not been published, it will be similar to

the one presented in Figure 2.14.

2.2.1.5. Graph-based Persistence – NeoEMF (Graph)

NeoEMF14 (formerly known as Neo4EMF and Kyanos) comprises two tools developed

by Inria15; it uses graph databases as its back end.

14https://raweb.inria.fr/rapportsactivite/RA2014/atlanmod/uid49.html
15http://www.inria.fr/

57

https://raweb.inria.fr/rapportsactivite/RA2014/atlanmod/uid49.html
http://www.inria.fr/

2. Background

NoSQL Graph-based stores Graph Databases (seen in Figure 2.15) consist of a set of

graph nodes linked together by edges (hence providing index-free adjacency of nodes).

Each node contains fields of data and querying the store commonly uses efficient graph-

traversal algorithms to achieve performance. As such, these databases are optimized

for traversal of highly interconnected data. Examples of such stores are Neo4J [39],

InfiniteGraph [40] and the graph layer of OrientDB [38].

Database

Node

K2

V1

V2

K1

Node

V1 K1

Node

K3

V2

V3

K2

V1 K1

Node

V1 K1

Figure 2.15.: Conceptual organization of data stored in a graph store

NeoEMF/Graph offers “a backend-agnostic persistence solution for big, complex and

highly interconnected EMF models”14. It uses the Blueprints API16 to connect to a va-

riety of NoSQL graph databases and hence leverages lazy loading and database caching.

Whilst blueprints offers the convenience of abstracting from the actual graph-based back-

end, it has been shown to cause a loss in performance in some cases [41], when compared

to using the raw database API. NeoEMF also allows for custom caches to be added ac-

cording to specific strategies defined in a decorator pattern and also offers a “dirty save”

mechanism to handle the safe splitting of large transactions into smaller ones (while

retaining the ability to revert to a consistent state).

16https://github.com/tinkerpop/blueprints/

58

https://github.com/tinkerpop/blueprints/

2.2. Model Persistence and Versioning

Model-Neo4J Mapping The following strategy is used to persist an in-memory EMF

model resource in Neo4J [42]:

• Model elements are stored as Neo4J nodes with a special node denoting “root”

elements which reference all other elements in the model.

• Element attributes are stored as node properties in the corresponding model ele-

ment node.

• Metamodel elements are stored as nodes. Such nodes only contain two properties,

one for their name and one for the unique identifier (nsURI) of their metamodel.

• Conformance relationships are stored as outgoing Neo4J relationships with type

INSTANCE OF pointing to the node representing the relevant metamodel type of

the model element.

• References between model elements are stored as relationships between the ele-

ments, using a specific naming convention to avoid possible conflicts with other

relationships (such as the conformance relationships described above).

An example of this architecture can be seen in Figure 2.16.

In the BPMN Loan example, the Loan model would be inserted into the Neo4J store

when the “save” method is called on its resource, and any relevant metamodels the

resource used would be inserted if they did not exist already in the store (as these

metamodels are already loaded by EMF in order for the resource to be loaded). The

resulting database would look as in Figure 2.17.

2.2.1.6. Key-value-based Persistence – NeoEMF (Map)

NeoEMF/Map17 is an alternative back-end layer for NeoEMF which uses a MapDB18

NoSQL key-value store. The aim is to work with limited memory and allow for the

common model management operations to be performed on large models stored in a

NeoEMF/Map store. Similarly to NeoEMF/Graph it allows for custom caching to be

added on demand and is extensible so other similar back-ends can be used instead.

17http://www.emn.fr/z-info/atlanmod/index.php/NeoEMF/Map
18https://github.com/jankotek/MapDB

59

http://www.emn.fr/z-info/atlanmod/index.php/NeoEMF/Map
https://github.com/jankotek/MapDB

2. Background

Figure 2.16.: Persistence back-end structure excerpt for NeoEMF Graph, from [42]

NoSQL Key-value Stores Key-value Stores (seen in Figure 2.18) consist of keys and

their corresponding values, which allows for data to be stored in a schema-less way.

Such stores claim that this allows for search of millions of values in a fraction of the time

needed by conventional storage. Inspired by databases such as Amazon’s Dynamo [43],

they are tailored for handling terabytes of distributed key-value data.

Model-MapDB Mapping The following strategy [44] is used to persist an in-memory

EMF model resource in MapDB. Firstly a unique identifier is assigned to every model el-

ement which allows for the subsequent decomposition of the entire model into a collection

of key-value pairs. NeoEMF/Map uses three maps to store this information:

• Property map: This is a map containing the slots (values) for each feature of the

model elements. Each row in this map has the following syntax:

< (id, name), v >

Where the key is made of the pair comprising the unique identifier of the model

element and the name of the feature, and the value is made up of either the literal

containing the value of the feature (either the identifier of another element for a

60

2.2. Model Persistence and Versioning

Figure 2.17.: NoSQL database persistence of the BPMN Loan model in NeoEMF Graph
(partial)

Database

K1

K2

…

KX

V1

V2

…

VX

Figure 2.18.: Conceptual organization of data stored in a key-value store

61

2. Background

reference or the primitive value for attributes) for single-valued or of an array of

such literals for multi-valued features.

• Type map: This is a map containing information about metamodel types. Each

row in this map has the following syntax:

< id, (nsURI, name) >

Where the key is the unique identifier of the model element in the store and the

value is made up of named tuples containing various meta-information about its

type, such as their name and the nsURI of the package they are contained in.

• Containment map: This is a map containing information about containments.

Each row in this map has the following syntax:

< id, (cont id, name) >

Where the key is the unique identifier of the model element in the store and the

value is made up of named tuples containing the unique identifier of the container

object and the name of the feature (reference) that relates the container object

with the child object.

An example of this architecture can be seen in Figure 2.19.

In the BPMN Loan example, the Loan model would be inserted into the MapDB

store when the “save” method is called on its resource, and any relevant metamodels

the resource used would be inserted if they did not exist already in the store (as these

metamodels are already loaded by EMF in order for the resource to be loaded). The

resulting database would look as in Figure 2.20.

2.2.2. Model Versioning

Models, like all other artefacts involved in the software development process need to

be versioned in a systematic and disciplined manner. This section presents two popu-

lar approaches for versioning in MDE: using file-based version control tools, and using

model-specific version control tools.

62

2.2. Model Persistence and Versioning

Figure 2.19.: Persistence back-end structure excerpt for NeoEMF Graph, from [44]

2.2.2.1. File-based Versioning

Version Control (also referred to as Revision Control) is the management of changes

made to a set of files. These files can be textual or binary in nature, and is organized

as a set of ordered (usually numbered) revisions. Such systems perform a line-by-line

comparison of files to discover differences (deltas) between versions; as such, text-based

files lend themselves nicely as small changes will be understood by the VCS and prop-

agated accordingly (with only the small delta being stored); on the other hand binary

files will most likely change in structure throughout, even for small changes, and will

hence have to be fully compared and stored each time, a time and resource consuming

operation that should be avoided if possible (it is widely understood that storing binary

files in file-based VCS is discouraged). Applications which offer this service can be both

stand-alone in nature (such as Subversion [45]) or embedded in programs like as word-

63

2. Background

Property Map

Key Value

〈‘ROOT’, ‘eContents’〉 { ‘bp1’ }

〈‘bp1’, ‘name’〉 ‘Process_One’

〈‘bp1’, ‘startEvents’〉 { ‘sn1’ }

〈‘bp1’, ‘sequenceFlows’〉 { ‘sf1’, ‘sf2’, ‘sf3’ }

〈‘bp1’, ‘tasks’〉 { ‘t1’, ‘t2’ }

〈‘bp1’, ‘gateways’〉 { ‘g1’ }

〈‘sn1’, ‘name’〉 ‘Start Loan Request’

〈‘sn1’, ‘outFlows’〉 { ‘sf1’ }

〈‘sf1’, ‘isDataFlow’〉 False

〈‘sf1’, ‘source’〉 { ‘sn1’ }

〈‘sf1’, ‘target’〉 { ‘t1’ }

〈‘t1’, ‘name’〉 ‘Record Loan App Info’

〈‘t1’, ‘executionTime’〉 300

〈‘t1’, ‘inFlows’〉 { ‘sf1’ }

〈‘t1’, ‘outFlows’〉 { ‘sf2’ }

〈‘sf2’, ‘isDataFlow’〉 False

〈‘sf2’, ‘source’〉 { ‘t1’ }

〈‘sf2’, ‘target’〉 { ‘t2’ }

… …

Type Map

Key Value

‘ROOT’ 〈nsURI=‘http://bpmn_simplified’,class=‘RootEObject’〉

‘bp1’ 〈nsURI=‘http://bpmn_simplified’,class=‘BPMNProcess’〉

‘sn1’ 〈nsURI=‘http://bpmn_simplified’,class=‘StartEvent’〉

‘sf1’ 〈nsURI=‘http://bpmn_simplified’,class=‘SequenceFlow’〉

‘t1’ 〈nsURI=‘http://bpmn_simplified’,class=‘Task’〉

‘sf2’ 〈nsURI=‘http://bpmn_simplified’,class=‘SequenceFlow’〉

‘t2’ 〈nsURI=‘http://bpmn_simplified’,class=‘Task’〉

‘sf3’ 〈nsURI=‘http://bpmn_simplified’,class=‘SequenceFlow’〉

‘g1’ 〈nsURI=‘http://bpmn_simplified’,class=‘Gateway’〉

Containment Map

Key Value

‘sn1’ 〈container=‘bp1’,featureName=‘startEvents’〉

‘sf1’ 〈container=‘bp1’,featureName=‘sequenceFlows’〉

‘t1’ 〈container=‘bp1’,featureName=‘tasks’〉

‘sf2’ 〈container=‘bp1’,featureName=‘sequenceFlows’〉

‘t2’ 〈container=‘bp1’,featureName=‘tasks’〉

‘sf3’ 〈container=‘bp1’,featureName=‘sequenceFlows’〉

‘g1’ 〈container=‘bp1’,featureName=‘gateways’〉

Figure 2.20.: NoSQL database persistence of the BPMN Loan model in NeoEMF Map
(partial)

processors (such as Microsoft Word) and wiki software packages (such as TWiki [46]).

This section presents an overview of state-of-the-art, commonly used version control

systems. It discusses the different types, their benefits and drawbacks and finally their

limitations when used for collaborative model-driven development. There are two types

of file-based version control systems:

Centralized Systems Centralized version control systems use a single server containing

all versions of the files, to which clients connect and retrieve or update revisions. They

64

2.2. Model Persistence and Versioning

vary according to the strategy they use to handle how new revisions are placed:

Pessimistic Locking Systems In this paradigm, also referred to as file locking sys-

tems, one user “checks out” a file and receives write access to it (other users still have

read access). This file is now locked until the user “checks in” a revised version of the file

or cancels their checkout of the file. Benefits of this approach include usability (being

simple to understand and operate) as well as alleviation of merge conflicts (as there are

no merges). Drawbacks include lack of practicality as a user locking the file for too long

may result in unease to the others and could render the revision system ineffective as

users may result to keeping local copies with their changes. Examples of such systems

are the PVCS Version Manager [47] and ClearCase [48].

Optimistic Locking Systems In this paradigm, multiple users may edit the same file

simultaneously. The first developer to “check in” any changes will update the version

number and any further attempts will result in a conflict arising. These can be resolved

in various ways, such as the system providing facilities to merge such files (usually limited

to textual files) or, in the worst case, the user having to update their revision to the

latest one (head revision) before being able to commit their changes. Benefits include

concurrency (multiple users can write to the same file) and, for textual files, automated

or semi-automated merging capabilities to resolve conflicts. Drawbacks include the need

for constant updating to the latest revision to ensure that merge conflicts are limited.

Examples of such systems are Subversion (SVN) [45], which also offers the optional

locking of files (effectively being able to become a pessimistic locking system, on demand)

and the Concurrent Versions System (CVS) [49].

Distributed Systems In distributed version control systems, users have local copies

of the entire repository (files and history). This most notably allows for off-line version

control (updating, checkpointing etc.) of files. Such systems vary in the way they handle

updates:

Open Systems In open systems, updating is primarily done by merging revisions

resulting in extensive branching of the available versions. Benefits include extensive

support for branches, which allows for different paths to always be available for use and

resulting in less (or no) need for resolving conflicts. Drawbacks include complexity in

65

2. Background

the use model as well as the possibility of branching so much that it becomes unusable.

Examples of such systems are Git [50], Mercurial [51] and Bazaar [52].

Replicated Systems Replicated systems use similar principles as replicated data-

bases. Version commits act in the same way as distributed database commits would,

and create a single new revision. Benefits include having a similar use model to lock-

ing centralized systems, while having the benefits of distributed histories and off-line

support. Drawbacks include lack of support for branching and introduction of merge

conflicts. An example of such systems is Code Co-op [53].

File-based Versioning of Models Models persisted as files (both textual or binary in

nature) can be versioned in file-based version control systems. Such systems operate on

the file level; for example optimistic locking systems parse files line by line to detect

changes in order to perform the merge part of their copy-modify-merge strategy [54–56].

This results in graph structures (like models) not having the ability of being handled at

an appropriate level of abstraction but as plain text files instead. This limitation makes

model-level change comparison between different versions of a model difficult, and model

merging even more so, especially if small changes to the underlying model can cause a

large change in the structure of the model file [57].

Model Fragmentation To avoid having to version control large monolithic model

files, models are are physically separated into several smaller interconnected fragments

to avoid transferring large files across the network. With the advent of modeling frame-

works such as EMF which provide first-class support for inter-file references and robust

model comparison tools such as EMF Compare [58] which are able to compare model

fragments, this approach inherits all the advantages of working with robust and widely-

adopted version control systems. However, compared to model-centric repository ap-

proaches discussed below, it demonstrates a significant shortcoming: the visibility of

each developer is limited to the model fragments they have checked out in their local

workspace. As such, using this approach makes it impossible to compute queries of

global nature without fetching and inspecting all the model fragments from the remote

repository every time. Obviously, as the number of model fragments in the repository

grows, this approach becomes increasingly inefficient as the I/O overhead of loading these

separate entities increases (with respect to the relative overhead of the local workspace).

66

2.2. Model Persistence and Versioning

In order to benefit from this technique, when a single monolithic model file is provided,

a way to meaningfully split it into fragments would be required. Tools such as EMF-

Fragments [59] can be used to automate this task.

In the BPMN Loan example, the files containing the Loan model and metamodel

(whether they are in the form of standalone XMI files or in a database structure) would

be versioned in the version control system (VCS). Every time the model needs to be

accessed, the HEAD revision in the VCS will be retrieved and loaded by the relevant

modeling tool used.

2.2.2.2. Model-based Versioning

An alternative to using file-based version control is to leverage model comparison tech-

nologies and live change events in order to enable model-element level comparison and

updating on versioned models. Whether the models themselves are versioned in a clas-

sical file-based VCS or on a custom server using a proprietary storage technology, this

approach allows for collaboration and resolution of conflicts on the model level instead

of delegating it entirely to the client.

ModelCVS ModelCVS19 [60] attempts to introduce interoperability between hetero-

geneous modeling tools. The presented prototype uses EMF and SVN as its proof of

concept. Models (and metamodels) are stored in a repository that can allow different

tools (working with different modeling languages) to check out a version of a model, edit

it and commit. It aims at handling conflicts at the model element level as opposed to

the usual file level that version control software usually works on (referred to as semantic

versioning).

Semantic versioning is achieved by augmenting every commit of a new model ver-

sion into the VCS repository with a computed change summary file. Every time a new

commit is made, if the last revision in the repository is the direct ancestor of the in-

coming working copy then the commit can be directly accepted as there have been no

changes between the commit and the previous version of the model. In every other case,

a semantic comparison is performed by using the accumulated computed change sum-

mary file (created by combining all of the change summary files of all commits which

were performed between the current commit and the latest commit checked out by the

19http://www.modelcvs.org/versioning/index.html

67

http://www.modelcvs.org/versioning/index.html

2. Background

working copy) and the computed change summary file created by comparing the current

commit model to its ancestor in the working copy. When all conflicts are resolved (ei-

ther automatically or manually by the commiter) the tool now allows the version to be

commited.

As the tool does not seem to have scalability as a primary concern, handling large

models is done through the persistence default mechanism of each language (such as

XMI for EMF models) and so will subsequently suffer from the same issues as the ones

described in 2.2.1. Nevertheless, the architecture of this project may be suitable for

gaining insight in integrating a version control system for use in this research project,

as it does use a reliable version control system and integrates it with a repository of

models.

In the BPMN Loan example, the files containing the Loan model and metamodel

would be versioned in the SVN repository. Every time the model needs to be accessed,

the HEAD revision will be retrieved and loaded by the relevant modeling tool used.

The Connected Data Objects Repository (CDO) Another approach is to store the

models on a dedicated remote model repository [61]. CDO allows users to access models

stored on various possible back-end stores that it can use to persist its repository. Its

API is an extension of EMF’s (explained in more detail below) and allows for a seamless

use of a remote store for accessing and manipulating models. CDO supports multiple

different back-ends such as relational databases (for example it can use teneo-hibernate

described in Section 2.2.1.2 to store models into MySQL) and non-relational stores such

as the MongoDB NoSQL store.

Object-Relational Mapping CDO20 handles EObjects as CDOObjects that extend

the EObject class by adding CDO-specific metadata. To store an EMF model on CDO,

there are three main paths to pursue21: The first is to migrate a Resource (for example an

XMIResource) to a CDOResource (by copying all its contents to a new CDOResource).

The second is to use a GenModel (EMF generator model) to create CDOObjectImpl

objects by migrating the .genmodel file using the CDO Model Migrator. The third is to

use DynamicCDOObjectImpl that result from new dynamic model elements added to a

20http://wiki.eclipse.org/CDO/Client
21http://wiki.eclipse.org/Preparing_EMF_Models_for_CDO

68

http://wiki.eclipse.org/CDO/Client
http://wiki.eclipse.org/Preparing_EMF_Models_for_CDO

2.2. Model Persistence and Versioning

CDO session’s package registry. The model files used by CDO can be annotated (such

as with JPA - EAnnotations) in order to provide a tool for customization in the storage

of the model; such annotations are not directly needed by CDO and are only useful if

the back-end store supports them (such as Teneo/Hibernate, for example).

From the client-side, the regular EMF API can be directly used after a connection

(session) has been established, but for using advanced CDO-specific functionality (such

as CDOView that allows queries directly to the CDO store, or CDOTransaction that al-

lows for savepoints and rollbacks), additional dependencies to CDO have to be included.

Furthermore, a built-in CDO User Interface (UI) is provided for accessing, manipulating

and querying models stored in the repository. This client architecture is seen in Figure

2.21.

Figure 2.21.: CDO Client high-level architecture, from [61]

On the server-side, this repository allows any form of storage to be easily plugged

in and is as scalable as the chosen back end but still has several limitations, such as ones

regarding its version control.

Collaborative Development As CDO is a remote (on-line) store of models, it sup-

ports multi-user access and updating to models. The user can work with CDOSession(s).

These can be either automatically or manually refreshed and will allow for consistency

with the latest revision of the model. Elements can either be explicitly locked for updat-

ing or the process can be automated and delegated to the CDO framework. On conflict

detection by the client (with passive updates or after a refresh, for example), the ability

to commit fails, but the CDOConflictResolver interface allows for the ability to manually

69

2. Background

resolve specific conflicts by the user. On the server side the entire transaction is rejected

if a conflict is found (this is mainly to handle network race conditions).

Version control CDO uses Audit Views to handle the ability to access historical

data. This feature allows for an application to have a read-only view of the state of

the model repository at a specific time in the past. As such, CDO has no way to allow

parallel versions (branches) to be stored, should they be needed, as well as no effective

way to handle major conflicts (for example after an off-line copy of the model tries

to be synchronized with a largely changed model in the repository). Even though the

versioning is model-specific and can detect conflicts on a model level, it is limited by the

fact that past versions cannot be checked out as the latest version.

Example Back-end store for CDO An example back-end store is the Teneo/Hiber-

nate back-end. As illustrated in Figure 2.2222, this allows CDO to seamlessly leverage

this technology to perform model storage, updates and queries.

Figure 2.22.: The CDO-Teneo/Hibernate Runtime layer

As can be expected, this back-end will also have the same benefits and suffer from the

same issues as the standalone Teneo/Hibernate store described above.

In the BPMN Loan example, the CDO back-end would contain the Loan model and

metamodel. Refer to the Teneo/Hibernate example found in Section 2.2.1.2 for more

details, as CDO wraps around this technology.

22http://wiki.eclipse.org/CDO/Hibernate_Store/Architecture

70

http://wiki.eclipse.org/CDO/Hibernate_Store/Architecture

2.2. Model Persistence and Versioning

EMFStore EMFStore23 [62] is a tool which uses a MongoEMF-based back-end (de-

scribed in Section 2.2.1.4) to create a model repository for versioned models. It offers

model-element level versioning so multiple developers can manipulate and resolve con-

flicts on EMF models at a model-element level.

Version Control The versioning system provided by EMFStore allows for model-

element level history of versions and differencing of versions, branching and tagging.

Hence any version in the server can be retrieved on demand as well as visualized in a

history browser. EMFStore uses a change-based versioning strategy whereby historic

information is kept as a collection of changes which have been made from the initial

version to the current version; the types of changes can be seen in Figure 2.2324. If a

commit has merge conflicts, a merge editor allows for them to be manually resolved one

at a time.

Figure 2.23.: Permitted changes for EMFStore

Finally, an extensible user interface is offered as a collection of Eclipse views25:

• Model explorer, containing the projects with their model contents

• Selected element, displaying the current model element and its properties (allowing

editable properties to be changed)

• Model repositories, displaying the connected repositories and allowing relevant

operations to be performed: commits will display a detailed model-element level

set of changes to be commited; updates will display a similar set of model-level

23http://eclipsesource.com/blogs/2014/04/17/emfstore-1-2-0-released/
24http://eclipsesource.com/blogs/tutorials/emfstore-versioning-history-and-

branching/
25http://eclipsesource.com/blogs/tutorials/getting-started-with-emfstore/

71

http://eclipsesource.com/blogs/2014/04/17/emfstore-1-2-0-released/
http://eclipsesource.com/blogs/tutorials/emfstore-versioning-history-and-branching/
http://eclipsesource.com/blogs/tutorials/emfstore-versioning-history-and-branching/
http://eclipsesource.com/blogs/tutorials/getting-started-with-emfstore/

2. Background

incoming changes; conflict resolution (merging) offers manual resolution for each

model-level conflict.

• History browser, displaying the time-line of changes in the selected repository

including details of each model-level change and the branching structure

In the BPMN Loan example, the MongoEMF MongoDB back-end would contain the

Loan model and metamodel. The reader can refer to the MongoEMF example found in

Section 2.2.1.4 for more details.

Commercial Tools Various commercial tools offer model repositories for a variety of

modeling technologies:

Modelio – UML modeling environment Modelio26 is an open-source modeling plat-

form for the development of UML models. Various modules have been developed for this

tool, some free and some commercial. One of the commercial modules is called the Mod-

elio Teamwork Manager Module27 (this is part of the (commercial license) Modeliosoft

Modelio distribution as of version 3). This module enables the collaborative development

of Modelio models by integrating an SVN-based model-level versioning and comparison

tool into Modelio.

It offers the usual SVN options for commiting and updating, while also providing model

element level diffing between two versions (and merging them if required). Furthermore

it uses the SVN lock/unlock functionality for model-aware locking of atomic units, which

are either:

• An instance of a UML diagram, such as an Activity diagram or a Class diagram.

• An instance of a UML type, such as a Class, an Interface or a Stereotype.

This is possible as every instance of a diagram or type is stored in its own separate

.exml file in the Modelio project structure of the SVN. As such, a developer can choose

to lock any amount of model elements or diagrams to ensure only they can make changes

to them until the lock is released.

The structure of a Modelio project in an SVN-based repository is as follows:

26https://www.modelio.org/
27https://www.modeliosoft.com/en/modules/teamwork-manager.html

72

https://www.modelio.org/
https://www.modeliosoft.com/en/modules/teamwork-manager.html

2.2. Model Persistence and Versioning

• Top-level folder containing the Modelio project, named after the project (all other

elements mentioned below are inside this folder)

• An “admin” folder containing various metadata items such as the Modelio meta-

model version used in this project

• A “model” folder containing:

A set of folders, one for each UML type and UML diagram defined in the

current version of UML used, each containing:

A set of files, one for each instance of a relevant class/diagram in the project.

For example in the folder named “Actor” there will be a set of files, one for each

Actor instance found in the project; folders with no instances will exist but be

empty.

This structure is seen in Figure 2.24 and is the same whether the Modelio project is

stored locally or versioned in a repository.

Furthermore, it offers a detailed information window depicting the current state of the

repository with respect to:

• Locked elements (by the current user)

• Locked elements (by other users)

• Modified elements (by the current user – with respect to the current repository

version)

• Unversioned elements

• Added elements (elements which have been added to the version but have not yet

been committed in the repository)

• Out of date elements (elements which have been modified by another user – not

yet updated locally)

This architecture offers the advantages of model-element level locking as well as di-

agram level locking operations but will suffer in performance and resource use, when

large models containing millions of fragments (i.e. millions of model elements) are used,

as they will all have to be loaded into memory.

73

2. Background

Figure 2.24.: Directory structure of a Modelio project [for a Zoo model]

In the BPMN Loan example, the BPMN metamodel would be internally stored in

the tool and the model would be stored as a collection of .exml files in their respective

folders, one for each model element and diagram included in the model, as described

above.

MagicDraw – UML modeling tool MagicDraw28 is a commercial UML tool offering

a collaboration module. This functionality allows for model-level versioning and collab-

oration through the Teamwork Server version control system offered. There are three

available version control system alternatives offered by the Teamwork Server: Native,

SVN and ClearCase.

A repository using the Native version control system uses a proprietary format to

store versioned models as well as user credentials and access rights. On the other hand

28http://www.nomagic.com/products/magicdraw.html#Collaboration

74

http://www.nomagic.com/products/magicdraw.html#Collaboration

2.2. Model Persistence and Versioning

a repository using a SVN or ClearCase VCS only stores user login names and actual

authentication is performed directly with the respective VCS used, upon user a logging

into the system.

To the user, the choice of the actual version control used is seamless, as they are

offered the same functionality in all cases:

• Server administration – offering overview of users, projects and logs as well as

options to change the type of repository or its location

• Client visualizations – various views are offered or affected by working on a project

hosted on a Teamwork Server version control system:

Lock View – displays the currently locked elements such as classes, relations

and diagrams (these are the three types of data items MagicDraw distinguishes)

Diagrams View and Containment View – both these views display current

privileges of the user with respect to their contents. For example if the user has

locked a diagram for editing, its link in the view is black and the name is next to

it displaying they have locked it; any element not locked by the user is displayed

in gray (denoting they cannot edit it)

Editing windows – any window offering edit operations on elements will have

the various add/remove/edit operations only enabled if the current element is

locked by the user for editing

The structure of a Native repository is as follows:

• Top-level folder containing the entire repository, named after the repository itself

(all other elements mentioned below are inside this folder)

• A projects.xml file containing information on the projects present in this repository

• A users.xml file containing information on the users registered to this repository –

all information except the password is in plaintext

• A .properties file containing global repository properties, such as its unique iden-

tifier

• A .log file containing the server logs

75

2. Background

• Folders for each project in this repository, containing:

A folder containing project-related user information with:

A folder for each registered user, containing a collection of .zip archives

with the user’s permissions, one archive for each version, containing various files,

including a personal project options file containing a (non-human readable) seri-

alized form of the user’s preferences

A versions.xml file containing information on the versions present in the project

A checkout.xml file containing information on elements currently checked out

(locked) by users

A collection of .zip archives with the contents of each version of the project

(complete copies of the entire project are kept in each version), each containing

various (xml-based) files, including:

A file with the contents of the entire model the project uses

Various files with metadata about element versions, dependencies, project

information etc.

The structure of an SVN-based repository is very similar to a native one, with the

main difference being that instead of storing a .zip archive for each version of the project,

only the latest version is stored (as it is versioned by the SVN repository itself, and hence

all previous versions can be accessed).

In the BPMN Loan example, the BPMN metamodel would be internally stored in the

tool and the model would be stored in MagicDraw’s proprietary .mdxml format files.

MetaEdit+ – Domain-Specific Modeling environment MetaEdit+ is made up of

two separate tools29, one for creating domain-specific languages (DSL’s) and one for using

a DSL for defining models conforming to that DSL. Using the MetaEdit+ Workbench

the developer can create their custom DSL and generate a MetaEdit+ Modeler to be

used to instantiate this DSL. The MetaEdit+ Modeler can be customized depending on

the needs of the DSL creator to better suit the specific use-case. MetaEdit also offers a

collection of over 50 default languages which can be used if needed without the need for

any metamodeling.

29http://www.metacase.com/products.html

76

http://www.metacase.com/products.html

2.2. Model Persistence and Versioning

MetaEdit+ offers an object database-based model server for storing models30. The

back-end used is a proprietary version of the ArtBASE database system originally de-

veloped by ArtinApples Ltd.

The structure of such a server is as follows31:

• Top-level folder containing the entire repository, commonly named after the tool,

such as “MetaEdit+ 5.1” (all other elements mentioned below are inside this folder)

• An artbase.roo file containing the names and paths of all repositories present on

this server

• A set of folders, one for each repository, containing:

A manager.ab file containing names and paths of the areas in the repository

as well as the usernames and (encoded) passwords of users as well as any other

information needed such as disk mappings. An area is the persistence-layer name

for the project concept in the tool.

An areas folder, containing:

A set of folders, one for each area, each containing a set of files which make

up the disk storage of the database used to store the model and any relevant project

information

A users folder, containing a folder for each user in the repository, each with a

set of files with relevant user information

A backup folder containing the last successfully commited version of the entire

repository with:

An areas folder with all the backup areas (with the same structure as the

original areas folder)

A manager.ab file containing the backup of the access control of the reposi-

tory

Change propagation is performed using an ACID transaction system. Changes are

only propagated to the repository (and to other users) when a transaction is commited.

30http://www.metacase.com/papers/Mature_Model_Management.html
31http://www.metacase.com/support/51/manuals/sysadmin/sa.html

77

http://www.metacase.com/papers/Mature_Model_Management.html
http://www.metacase.com/support/51/manuals/sysadmin/sa.html

2. Background

Hence any user working in a transaction will not see any changes made to the repository

until they open a new transaction by ending their current one.

Collaboration is supported when a multi-user repository is used. On the metamodel

level, the entire metamodel is locked when a user is working on it and cannot be altered

until the lock is released32. On the model level, each user will automatically be given

locks on items they are working on, based on the data model of MetaEdit+:

• Conceptual Graphs – these represent the actual model data in the project

• Representational Graphs/elements – these represent the visual representation of

various subsets of the actual data in the project (editors contain these views)

• Conceptual objects/relationships/roles/properties – these represent the various

model objects and their interactions or attributes

More specifically, when a user opens an editor on a representational graph they will

attempt to get both locks on the representational graph itself as well as the conceptual

graph underlying it. If the user gets both locks they will be able to change the layout

as well as the contents of this graph. If they only get the lock for the representational

graph, they will only be able to change the layout of the graph or add/remove represen-

tational elements of currently existing conceptual elements. Similarly if they only get

the conceptual lock, they will not be able to change the layout in the editor but will

be able to alter the data in the elements. These locks are kept until released (e.g. the

editor is closed), possibly through multiple transaction commits, should the user want

to keep them.

On the other hand single element locks, such as ones needed for dialogs used in editing

object properties, only hold temporary locks for as long as they are open, to facilitate

multi-user editing. Similarly to other locks, failure to obtain one will simply offer a

read-only editor graying out any “OK” option for applying changes.

The proposed approach for versioning models stored in this repository is to use classical

file-based version control systems and store a zipped version of the entire repository every

time a new version should be saved33; MetaEdit+ offers scripts to aid in incorporating

this strategy into the tool’s normal workflow but no integrated versioning system or way

32http://www.metacase.com/faq/showfaq.asp?cate=MWB
33http://www.metacase.com/support/45/documentation/versioning.html

78

http://www.metacase.com/faq/showfaq.asp?cate=MWB
http://www.metacase.com/support/45/documentation/versioning.html

2.2. Model Persistence and Versioning

to view any changes made in the repository, other than displaying the latest commited

version.

In the BPMN Loan example, the MetaEdit+ back-end database (ArtBASE) would

contain the Loan model and metamodel represented in its own proprietary format.

Table 2.1 overviews the capabilities of all the model persistence and versioning tools

reviewed in this section.

Table 2.1.: Overview of state-of-the-art model persistence and versioning mechanisms

Tool
Persistence Persistence

VCS
Fragmen-

Format Type tation

EMF XMI text 7 3

Teneo/Hibernate Relational DB binary 7 7

Morsa Document DB binary 7 7

MongoEMF Document DB binary 7 7

NeoEMF[Graph] Graph DB binary 7 7

NeoEMF[Map] Key/Value DB binary 7 7

ModelCVS XMI text 3 3

CDO Various DBs binary 3 7

EMFStore Document DB binary 3 7

Modelio XML text 3 3

MagicDraw XML text 3 7

MetaEdit+ Object DB binary 3 7

2.2.3. Model Querying

As model querying provides the primary means for retrieving information from models,

all modeling technologies presented here need to support it in some form. Any modeling

tool which needs to build upon one of these technologies will have to support querying

the models in order to perform any operations on them, such as transformations into

lower level artefacts.

79

2. Background

2.2.3.1. Querying Technologies

Model querying is often reliant on the technology used to manage the model and its

in-memory representation, or on tools built upon this technology offering additional

functionality.

EMF-based models Persistence and versioning technologies relying on EMF for their

in-memory model representation (EMF-XMI, Teneo/Hibernate, Morsa, MongoEMF,

NeoEMF, ModelCVS, CDO and EMFStore) can all use the EMF Resource API to per-

form model traversal and retain the results they need in order to answer queries about

models. This API allows for:

• retrieval of all the direct contents of a resource (i.e. only the root model elements)

• retrieval of all contents of the resource (as an iterator over all model elements in

the resource)

• retrieval of the value of a specific feature of a model element (i.e. an attribute or

reference value)

• retrieval of the meta-type of each model element

Furthermore it offers automatic resolution of inter-resource references and dependencies.

While this API offers a complete capability for navigating a model/metamodel and

retrieving all of the information stored within the model, it can be seen as inefficient in

various cases:

• In order to retrieve a single model element one has to either retrieve it by identifier,

iterate the containment hierarchy of the resource or iterate the flattened collection

of all model elements within the resource. In the worst case, one would have to

iterate through the entire contents of the resource if the model element in question

is the last one just to retrieve this one model element.

• In order to find all elements of a specific type, one would have to iterate through

the resource and collect all model elements of interest by retrieving the type of

each one and comparing it to the required type.

• In order to perform multiple such operations, it is to the discretion of the client code

to use caching and avoid multiple traversals. Furthermore there is no support for

80

2.2. Model Persistence and Versioning

indexing facilities which could support complex queries (such as the one presented

below).

For example in EMF, a query requesting all Tasks in the BPMN Loan model presented

in Section 2.1.3, which have executionTime greater than 10 minutes (600 seconds) [from

now on referred to as the “slow task query”] would be written in Java as follows:

//create the file resource from the bpmn loan model

Resource resource = resourceSet.getResource(URI.createFileURI(

"bpmn_loan.model"));

//get the root of the resource, i.e. the BPMNProcess instance

EObject process = resource.getContents().get(0);

//get the BPMNProcess type

EPackage bpmn = EPackage.Registry.INSTANCE.getEPackage(

"http://bpmn_simplified");

EClass bpmnProcessEClass = (EClass) bpmn.getEClassifier(

"BPMNProcess");

//get the Tasks in this BPMNProcess

List<EObject> tasks = process.eGet(bpmnProcessEClass.

getEStructuralFeature("tasks"));

//get the Task type

EClass taskEClass = (EClass) bpmn.getEClassifier("Task");

//only keep the slow tasks

for(EObject task : tasks)

if(task.eGet(taskEClass.getEStructuralFeature(

"executionTime")) <= 600)

tasks.remove(task);

//tasks now contains the appropriate model elements for the query

Various technologies extend this API in order to provide more performant querying

solutions. For example Morsa has introduced the Morsa Query Language [63]. The

abstract syntax of this language is seen in Figure 2.25 from [63].

The goal is to provide a language consistent with SQL (using SELECT – FROM –

WHERE clauses) while providing constructs for EMF-based concepts (EClass – EObject

etc.). For example the slow task query in the Morsa Query Language in Java would look

like:

//get the root of the BPMN Loan EMF resource exposed by Morsa, i.e.

the BPMNProcess instance

81

2. Background

EObject bpmnProcess = (EObject)resource.getContents().get(0);

//create the query (‘GT("attr",y)’ represents the value of attribute

"attr" is greater than ‘y’)

MorsaQuery query = SELECT("http://bpmn_simplified/Task")

.FROM(bpmnProcess)

.WHERE(GT("executionTime",600)).done();

//retrieve the results from the resource connected to the Morsa back-

end

Collection<EObject> result = morsaResource.query(query);

Figure 2.25.: The abstract syntax of the Morsa Query Language, from [63]

82

2.2. Model Persistence and Versioning

MongoEMF34 supports the MongoDB native query language35, that can be used to

query its underlying store. This simple language allows retrieval of documents (in this

case model elements) from a MongoDB collection (i.e. of a specific model Type in

MongoEMF) by filtering on feature values; it also allows for limiting the number and

sorting the results, as well as choosing which features are included or excluded from the

resulting elements.

For example the slow task query for MongoEMF would be presented in Java as follows

(this assumes that all instances of Task are stored in a MongoDB collection named

“tasks”):

//create the query to the store (‘$gt’ represents ‘>’)

String query = "{ filter: { executionTime: { $gt: 600 } } }";

//create the resource set

ResourceSet resourceSet = resourceSetFactory.createResourceSet();

//create the resource keeping the results, passing it the query

Resource resource = resourceSet.getResource(URI.createURI(

"mongodb://localhost/app/tasks/?" +query), true);

//retrieve the results (located at the root of the query resource)

EReferenceCollection users = (EReferenceCollection) resource.

getContents().get(0);

UML-based models Technologies using UML (Modelio and MagicDraw) can leverage

the Object Constraint Language (OCL36) as an abstraction over the actual technology

used to persist and read their models.

The original purpose of OCL was to offer a side-effect free way of providing constraints

on UML models in order to help describe them and to validate their correctness but the

expression language can be used for creating any read-only query on model. As such

OCL is being used as a more natural way of expressing queries on UML models [15].

MagicDraw directly supports use of OCL constraints and even though Modelio does

not directly support OCL, the PyAlaOCL Modelio Integration tool37 uses Modelio’s

Jython38 scripting capabilities for supporting OCL expressions.

34https://github.com/BryanHunt/mongo-emf/wiki/User-Guide
35https://docs.mongodb.org/manual/core/read-operations-introduction/#query-

interface
36http://www.omg.org/spec/OCL/
37pyalaocl.readthedocs.org/en/latest/modelioIntegration.html
38http://www.jython.org/

83

https://github.com/BryanHunt/mongo-emf/wiki/User-Guide
https://docs.mongodb.org/manual/core/read-operations-introduction/#query-interface
https://docs.mongodb.org/manual/core/read-operations-introduction/#query-interface
http://www.omg.org/spec/OCL/
pyalaocl.readthedocs.org/en/latest/modelioIntegration.html
http://www.jython.org/

2. Background

For example, the diverging gateway query in OCL would be written as follows:

BPMN::Task.allInstances() -> select(st | st.executionTime > 600)

MetaEdit+ models MetaEdit+ does not offer a dedicated querying facility as it’s de-

velopers did not deem it useful in its 20 year review39. It relies on its various visual

editors for allowing users to navigate through their models and finding the informa-

tion they need; furthermore users can leverage the generation capabilities of the tool to

produce reports or code with the contents of their intended query. Finally MetaEdit+

models can be exported to XML and prototype work is available for their loading by

other tools such as EMF [64] and hence queried using their capabilities.

2.2.3.2. Repository Querying

Querying of model repositories is more complex than that of models loaded into memory.

Concerns such as network overhead and server availability/resource use need to be taken

into account when developing a query interface for a model repository.

EMF-based repositories expose their contents as an EMF Resource, often using a lazy

loading approach and caching strategies, for retrieving contents on demand, in order to

avoid network overload.

Similarly to various persistence technologies, many EMF-based repositories offer com-

plementary querying capabilities to the basic EMF resource paradigm. For example CDO

offers an in-built execution engine for evaluating OCL expressions (using the Eclipse

MDT OCL engine40); hence users are able to write OCL expressions to run against

models stored in CDO with the query being evaluated on the server side and the results

returned to the client.

For example running the diverging gateway query in OCL for CDO in Java would be

presented as follows:

//get the session and view hosting the query

CDOSession = getSession();

CDOView view = session.openView();

//get the BPMNProcess instance

BPMNProcess process = (BPMNProcess)resource.getContents().get(0);

39http://www.metacase.com/papers/MetaEdit+_at_the_Age_of_20.pdf
40http://www.eclipse.org/modeling/mdt/?project=ocl

84

http://www.metacase.com/papers/MetaEdit+_at_the_Age_of_20.pdf
http://www.eclipse.org/modeling/mdt/?project=ocl

2.2. Model Persistence and Versioning

//create the OCL query on this BPMNProcess

CDOQuery query = view.createQuery("ocl", "self.tasks -> select(

st | st.executionTime > 600)" , process);

//retrieve the results

List<ParallelGateway> result = query.getResult();

MagicDraw offers the ability to query both on the metamodel and the instance level

using Java, scripting languages such as Jython and the Velocity Template Language41.

Modelio offers a QueryDefinition API42 for extending the tool by offering a querying

facility (compatible with EMF).

As mentioned above, MetaEdit+ does not directly offer a textual query functionality

but uses its extensive diagram editors to facilitate this process43.

2.2.4. Summary

This section presented the current state-of-the-art tools and technologies used for model

persistence and versioning, discussing their different features and capabilities; it also

introduced model querying and how it is handled by the various persistence technologies

and repositories presented in this section. The next chapter synthesizes the findings of

this review and identifies the challenges related to collaborative development of large

(collections) of models that the rest of the work will target.

41http://www.nomagic.com/files/manuals/MagicDraw%20ReportWizard%20Template%

20Creation%20Tutorial.pdf
42https://www.modelio.org/documentation/javadoc-3.4/org/modelio/metamodel/

uml/infrastructure/matrix/QueryDefinition.html
43http://metaphor.it.jyu.fi/loppurap/mearch.html

85

http://www.nomagic.com/files/manuals/MagicDraw%20ReportWizard%20Template%20Creation%20Tutorial.pdf
http://www.nomagic.com/files/manuals/MagicDraw%20ReportWizard%20Template%20Creation%20Tutorial.pdf
https://www.modelio.org/documentation/javadoc-3.4/org/modelio/metamodel/uml/infrastructure/matrix/QueryDefinition.html
https://www.modelio.org/documentation/javadoc-3.4/org/modelio/metamodel/uml/infrastructure/matrix/QueryDefinition.html
http://metaphor.it.jyu.fi/loppurap/mearch.html

3. Analysis and Hypothesis

Summarizing the discussion in Chapter 2, this chapter identifies the limitations of today’s

state-of-the-art modeling tools, identifies an approach which can be used to tackle some

of the scalability issues described in Section 2.1.2.1 and presents the research hypothesis

of this work. It then lists the proposed research objectives for assessing the validity of

this hypothesis and discusses the scope of the research.

3.1. Analysis

In a collaborative environment, models need to be version-controlled and shared among

many developers. As discussed in Section 2.2.2 there are two primary approaches taken

for versioning models. The first is using file-based version control systems such as Git or

SVN, which has certain advantages as such version control systems are robust, widely-

used and orthogonal to modeling tools, the vast majority of which persist models as

files. On the downside, since such version control systems are unaware of the contents

of model files, performing queries on models stored in them requires developers to check

these models out locally first. As seen in Figure 3.1, this can be particularly inefficient

for queries extending to a large number of models (global queries). For example in order

to find out how many models in the repository reference the developer’s model A, all

other models will have to be checked out from the repository (in this case models B and

C), and they would subsequently have to be loaded into memory (alongside model A),

in order to be amenable to querying. Even if all the fragments are maintained locally

(for example if a version control system such as Git is used, as show in Figure 3.2), the

issue of having to load them all into memory in order to answer the query remains; for

large enough models (or collections of fragments) this will commonly require too many

resources to be done. Also, file-based version control systems do not provide support

for model-element level operations such as locking or change notifications. To address

these limitations, model-specific version control systems such as CDO, EMFStore and

87

3. Analysis and Hypothesis

MagicDraw’s TeamServer have been proposed. While such systems address some of

the limitations above, they require tight coupling with modeling tools, they impose an

administration overhead, and they lack the maturity, robustness and wide adoption of

file-based version-control systems.

A

X

Developer
Workspace

VCS Server

B
Y

W
A

C
Z

X

needs to
check out
and load

needs to
check out
and load

Figure 3.1.: Performing global queries on model fragments stored in a remote VCS repos-
itory, adapted from [31]

3.1.1. Model Indexing

In what can be seen as a happy medium between the two approaches to model version

control, we introduce the concept of model indexing. This is an approach that enables

efficient global model-element-level queries on collections of models stored in file-based

version control systems. To achieve this, a separate system is introduced (a model

index), which monitors file-based repositories and maintains a fine-grained read-only

representation (graph) of models of interest, which is amenable to model-element-level

querying. As seen in Figure 3.3, the developer queries the model indexer directly and

does not have to check out or load any additional files.

Such a model index is not aimed at replacing the current model persistence formats

(such as XMI, database or model repository) but offer an up-to-date proxy to the model

88

3.2. Research Hypothesis

Local Git
Repository

B
Y

W
A

C
Z

X

Developer
Workspace

 needs to
 load

 needs to
 load

Figure 3.2.: Performing global queries on model fragments stored in a local VCS repos-
itory

data. Paralleled with database indexing, the goal of a model index is to offer the ability

to retrieve a subset of information in a model, more efficiently than using iteration.

As such, in principle, the contents of a model index are determined by the use-case in

question and can range from including as much as all of the model features (offering an

almost mirrored copy of the model that can be queried much more efficiently – a use-case

we use in the evaluation of this work), to as little as no actual information contained

in the model but instead only containing other interesting “metadata” items such as

timestamps of commits, number of model element-level changes found in each commit

or number of model files changed in each commit.

3.2. Research Hypothesis

Such a model indexing system can be used to investigate the following research hypoth-

esis:

The overhead of computing model-element-level queries over large (collections

of) models stored in a file-based VCS can be significantly reduced using a

non-invasive model-indexing system orthogonal to the specific VCS or model

representation format.

89

3. Analysis and Hypothesis

Model Index

A

X

Developer
Workspace

VCS Server

Model
Indexing Server

B
Y

W
A

C
Z

X

needs to query

maintains monitors

indexes

Figure 3.3.: Performing global queries on model fragments stored in a remote VCS repos-
itory, using a model indexing system, adapted from [31]

Section 3.3 presents the research objectives used to assess the validity of this research

hypothesis and Chapter 4 delves into the details of designing such a model indexing

system, with Chapter 5 evaluating its effectiveness and efficiency.

3.3. Research Objectives

In order to assess the validity of the research hypothesis, the following research objectives

were defined:

(i) Development of a model indexing system prototype; work presented in [65].

(ii) As a model indexing system has to be performant and scalable to be of use, the

back-end used to store the data needs to be appropriately chosen. As such, an

evaluation of various appropriate data persistence technologies will be performed,

in order to identify the one most fitting for a model indexing system. This work

has been presented in [34] as well as Section 5.3.1.

(iii) For a model indexing system to be useful to a variety of tools and domains, it

has to be able to support multiple model persistence formats as well as offering

an API for the addition of new formats on demand. As such, an extensibility

90

3.4. Scope

mechanism to support multiple model persistence formats will be offered. The

extensible architecture supporting this, as well as example drivers for alternative

technologies, are presented in Section 4.3.4.

(iv) To ensure breadth of coverage, an extension of the model indexing system to sup-

port multiple file-based VCS will be offered. Details can be found in Section 4.3.3.

(v) In order to gain confidence in the usefulness of the system when non-trivial mod-

els are being used, it will be extended to support indexing and querying large

(collections of) models.

(vi) An evaluation of index creation and updating in terms of correctness and perfor-

mance will be performed using models conforming to research objective (v); work

presented in [66].

(vii) An evaluation of typical forms of model queries in terms of performance, when

compared to querying performed by current state-of-the-art modeling tools, will

be performed using models conforming to research objective (v). Work presented

in [67].

Chapter 4 addresses objectives (i), (iii), (iv) & (v) and Chapter 5 objectives (ii), (vi)

& (vii).

3.4. Scope

In the interest of feasibility, the research (and consequent tackling of the research objec-

tives) is scoped as follows:

• To address research objective (ii), an appropriate back-end will be selected after

empirical study comparing various appropriate alternatives. As all possible alter-

natives cannot be investigated, the study will be limited to some of the technologies

prominently used in today’s state-of-the-art modeling tools (identified in Section

2.2.1) such as XMI, relational databases and NoSQL graph stores like Neo4J and

OrientDB.

• To address research objective (iii), the framework will support the indexing of three

91

3. Analysis and Hypothesis

independently-implemented model persistence formats comprising EMF-based mod-

els as well as BIM1 IFC2 and Modelio UML models.

• To address research objective (iv), the models will be stored in file-based version

control systems like SVN and Git and will be updated through the built-in facilities

of these systems.

• To address research objective (v), large models, of the order of millions of model

elements, will be indexed by the model indexing system; also, large collections of

(hundreds) of smaller models will also be indexed. This aims at covering the cases

where a few large monolithic models are present as well as when many (possibly

fragmented) smaller models are used instead.

• To address the querying aspect of research objective (v), the framework will sup-

port EOL as a query language (as a representative of a wide array of OCL-like

languages and variants of OCL embedded in languages such as ATL and Acceleo).

Alternative querying methods such as use of native Java or back-end specific lan-

guages will be investigated in order to contrast their relative expressiveness, us-

ability, maintainability and performance.

• To address research objectives (vi) and (vii), empirical studies will be performed

regarding model insertion, model updating and model querying in terms of cor-

rectness and performance. The scope of these studies will be limited to the above-

mentioned formats, systems and sizes, as well as an appropriate class of queries,

representative of ones commonly performed in MDE.

1 Building Information Modeling: http://www.iso.org/iso/home/store/catalogue_tc/

catalogue_detail.htm?csnumber=52155
2 Industry Foundation Classes: http://www.iso.org/iso/catalogue_detail.htm?csnumber=

51622

92

http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=52155
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=52155
http://www.iso.org/iso/catalogue_detail.htm?csnumber=51622
http://www.iso.org/iso/catalogue_detail.htm?csnumber=51622

4. Hawk: Scalable Model Indexing

Framework

This chapter presents Hawk, a model indexing framework and proof of concept imple-

mentation used to assess the validity of the research hypothesis. Hawk monitors locations

where file-based models are stored and it then parses these models in order to maintain

a unified read-only representation of the contents of the models in its model index. This

index is consistent with the state of the model files and is amenable to efficient querying

of its contents. In this chapter, the functionality and architecture of the framework are

outlined followed by the design and implementation details of the prototype, including

details of the various key processes, procedures and algorithms used.

4.1. System Capabilities

In order to address the research objectives identified in Section 3.3, the proposed frame-

work aims at delivering the following capabilities:

1. Use a scalable back-end so that it can accommodate large collections of models in

the order of millions of model elements or large collections of (possibly fragmented)

models;

2. Provide an efficient internal representation of the models it indexes, amenable to

efficient querying;

3. Support modeling technologies which use cross-file references to store fragmented

models;

4. Support incremental approaches for updating its contents in order to avoid unnec-

essary overheads when making small updates on large collections of models;

93

4. Hawk: Scalable Model Indexing Framework

5. Work with diverse file-based version control systems (e.g. SVN, Git) and modeling

technologies (e.g. EMF, IFC);

6. Offer a facility through which modeling & model management tools can query it;

7. Support use of database indexing and attribute caching to improve the performance

of certain classes of queries;

8. Provide extensibility mechanisms for accommodating new types of Back-ends,

VCSs and model representation formats;

9. Be orthogonal: the VCS repositories should not need to be modified or configured

in any way. This tackles the need for orthogonality of the research hypothesis;

Table 4.1 links the system capabilities to their relevant research objectives, found in

Section 3.3.

Table 4.1.: Traceability of System Capabilities

System Capability Research Objective(s)

1 (ii)

2 (v)

3 (v)

4 (v)

5 (iv)

6 (v)

7 (v)

8 (iii), (iv)

4.2. System Architecture

To satisfy the requirements outlined above, Hawk can be configured to monitor a set

of VCS servers for model-related events (e.g. creation of new models, modification of

existing models) and maintain a copy of the latest version of all interesting (based on

its configuration) models in these servers in a scalable model index (defined in Section

3.1.1), the details of which are discussed in the sequel. Such an architecture avoids the

problem of having to fully load the models every time it needs to answer a query by

94

4.2. System Architecture

front-loading this effort (into its persisted model index) and only having to propagate

any changes to the models (into the model index) as they happen. Modeling and model

management tools can then perform global queries through Hawk, exploiting its fast,

scalable and synchronized model index. With regard to the VCS servers, Hawk acts as

a standard read-only client to satisfy the requirement of non-invasiveness.

4.2.1. System Components

Figure 4.1 illustrates the components that comprise Hawk, and which are discussed

below. Figure 4.2 shows the related API provided by Hawk for these components. These

interfaces are discussed in detail throughout this section (Section 4.3). The detailed API

of each interface element can be found in Appendix A.

Hawk Core

Metamodel / Model
Parsers

Model Index
back-ends

User Interface
(Eclipse)

Neo4J

OrientDB

MongoDB

Ecore XMI

BIM IFC

UML Modelio

File Storage Systems

Local File Store

Eclipse Local Workspace

Query Engines Version Control
Systems

OCL

EOL
SVN

Git

Figure 4.1.: Components of the model indexing system (Hawk)

• Model parser components: these components provide parsers for specific model

persistence formats, such as EMF models persisted in XMI or Modelio models in

XML. These parsers take as input the contents of a file stored in version control

systems and produce as output a uniform in-memory representation (“resource”)

95

4. Hawk: Scalable Model Indexing Framework

of the model.

• Model indexing components: these components, specific for each back-end

used (such as a Neo4J NoSQL database), receive a resource created by the ap-

propriate model parser, and insert/update it into the database. The structure of

the store assumes that the back-end provides a mechanism for rapidly accessing

specific elements using a key (for example by using embedded database indexes,

such as the Apache Lucene1 Index)2.

• File Storage/VCS components: specific for each system, these components

compute the set of changed files (added, removed or updated) with respect to the

current local model index revision (and the current latest version of the files in the

system/repository).

• Core component: is responsible for initializing, managing and gracefully termi-

nating Hawk. It is responsible for synchronizing the model index with its relevant

version control system(s), either at time intervals defined by some heuristic or

when instructed to do so through its interface. This comprises querying the VCS

for changed files (with respect to the current local model indexer revision), pro-

viding these files to the appropriate model parser (in order to create in-memory

resources) and finally passing the returned resources to the appropriate model in-

dex(es) so that they can be synchronized with the current contents of the model

indexer.

• GUI component: provides a front-end to Hawk, thus allowing for model indexes

to be added/removed and managed. It can also be used to perform queries on

the model indexes using any of the currently active query engines. Hawk can

also be used without its graphical user interface should the user want to manage

Hawk programmatically or even without depending on external frameworks (such

as Eclipse’s3 implementation of the OSGI4 framework).

• Query API: this component provides a bridge between Hawk and modeling and

model management tools that need to query its model indexes.

1 http://lucene.apache.org/core/
2 this assumption is made as most popular relational/NoSQL stores (such as MySQL, MongoDB and

Neo4J) include database indexes
3 https://eclipse.org/
4 http://www.osgi.org/Main/HomePage

96

http://lucene.apache.org/core/
https://eclipse.org/
http://www.osgi.org/Main/HomePage

4.2.
S
y
stem

A
rch

itectu
re

Figure 4.2.: Interfaces of Hawk

97

4. Hawk: Scalable Model Indexing Framework

4.3. System Design

This section details the design of Hawk, presenting how the various API elements it

offers are used, as well as its core algorithms and procedures for indexing updating

and querying. It then describes the various optimizations performed to enhance the

performance of Hawk in various ways, such as for model updates or model queries.

4.3.1. Hawk Model Index Structure

Hawk persists information extracted from models as a global property graph. In Figure

4.3 we can see how storing the BPMN Loan model in this manner looks like (as the

whole model would not fit in a single page, only a representative subset of the model is

shown).

Figure 4.3.: The BPMN Loan model index – stored as a property graph (partial)

In general, a Hawk model index typically contains the following entities:

• File nodes. These represent files in a repository and contain information on the

file such as the repository path, file name, current revision and type. They are

98

4.3. System Design

linked with relationships to the Elements they contain. For example, in Figure 4.3

node with id:f1 is a file node.

• Metamodel nodes. These represent metamodels and contain their names and

their unique namespace URIs (in EMF, these would be EPackages5). They are

linked with relationships to the (metamodel) Types they contain. For example, in

Figure 4.3 node with id:BSI is a metamodel node.

• Type nodes. These represent metamodel types (EClasses in EMF terminology)

and contain their name. They are linked with relationships to their (model) Ele-

ment instances. For example, in Figure 4.3 node with id:T is a type node.

• Element nodes. These represent model elements (EObjects in EMF terminology)

and can contain their attributes (as properties) and their references (to other model

elements) as relationships to them. For example, in Figure 4.3 node with id:t1 is

an element node.

• Database Indexes. Metamodel nodes and File nodes are indexed6 in the store,

so that their nodes can be efficiently accessed for querying (commonly used as

starting points for complex graph traversal queries). For example, on the left hand

side in Figure 4.3, the two indexes can be seen.

4.3.1.1. Back-end Persistence

As mentioned above, Hawk focuses on the use of Graph-based NoSQL databases for its

back-end as they were identified to be the most performant [41], when dealing with large

collections of models identified in Section 2.1.2. Initial evaluation of these stores was per-

formed between two largely used graph databases – Neo4J and OrientDB. Even though

both stores expose a graph API with nodes and relationships, the actual core persistence

of OrientDB is as a document store and this seemed to degrade its performance in all of

the benchmarks performed; detailed analysis of this evaluation is presented in Section

5.3.1. As such it was decided to focus on the more performant Neo4J store for creating

the proof of concept back-end for Hawk. The OrientDB back-end has also been kept up

to date in order to provide an alternative back-end for Hawk, but will not be focused

upon in this work.

5 we choose to draw parallels with concepts from EMF as they are well-understood and unambiguous
6 http://components.neo4j.org/neo4j-lucene-index/snapshot/

99

http://components.neo4j.org/neo4j-lucene-index/snapshot/

4. Hawk: Scalable Model Indexing Framework

4.3.1.2. Background: Neo4J

Neo4J is a Java-based graph database; it was one of the first such technologies and has

matured to enterprise standards in the past years7. It claims to be one of the fastest and

most scalable native graph databases available and has positive feedback from multiple

companies which use it. It offers ACID transaction support and a proprietary query

language – Cypher8, which enables querying a graph-like structure in a simple and

efficient way; an example of a query written in Cypher can be found in Section 5.2.1.1.

It stores its data in multiple files on disk, each with specific content, some of which

are listed below:

1. a file with the nodes of the graph

2. a file with the relations between the nodes of the graph

3. an index file of the node properties

4. a file with the node property values (that are Strings)

5. a file with the node property values (that are Arrays)

6. a set of files storing (Lucene9) index information

7. a set of files containing the latest logical logs (the latest transactions commited to

the store)

As such, should a non-cached (in memory) element be required, it is retrieved from

its relevant file. For example if a node with ID X is needed, the node file is searched

to retrieve it; if subsequently the value of the property with name Y is needed for node

X, the relevant property file is searched. Empirical tests have shown that these files

are searched from their beginning to their end (or until the process using them has

retrieved all it needs and breaks) and are ordered by ascending order of ID values (that

are – Java Long – integers). The tests accessed nodes of varying internal IDs (which

are known beforehand) and showed that the time it took to retrieve the relevant node

7 http://neo4j.com/
8 http://neo4j.com/docs/stable/cypher-query-lang.html
9 Neo4J supports the use of a customly configured embedded Lucene index implementation for indexing

commonly accessed node properties (either automatically or manually). In section 4.3.8.3 we discuss

how the use of such custom manual indexes can be used to greatly increase the performance of various

types of queries on Hawk

100

http://neo4j.com/
http://neo4j.com/docs/stable/cypher-query-lang.html

4.3. System Design

was proportional to the relative positioning of the node in the file (the larger the id the

longer it took). Furthermore, this process took a constant time when running in Cypher,

regardless of the IDs of the nodes being retrieved, as the whole file was read in each run

(as there is no way to forcefully end the run after the needed results are found such as

using a break statement in Java).

It is worth noting that this interaction is only relevant for nodes not cached in memory

by the database, something which will happen automatically after the first time a node is

accessed and until the database decides to remove it (for example if it reaches a memory

threshold) or the machine is restarted (as simply shutting down the JVM is not sufficient

to clear the memory mapped file from the operating system – at least for a Windows

machine).

4.3.2. Hawk Mapping Layers

In order for a collection of heterogeneous model files (stored on VCSs) to be stored as a

global property graph (such as the one presented above), two mapping layers had to be

introduced by Hawk.

4.3.2.1. Model Layer

This layer provides a set of abstractions for representing heterogeneous models and

metamodels in memory. Inspired by EMF’s respective abstractions (and following the

structure seen in Figure 2.3), metamodel resources contain types/meta-classes (that are

grouped in packages), which have typed attributes and references, as well as annotations.

Model resources contain objects representing model elements, which have values for the

attributes and references of their type. The requirements of this layer are to provide a

minimal interface for such elements so that wrapping current modeling technologies to

them (so that they can be indexed in Hawk) is made as simple as possible.

The important interfaces in this layer are described below (and seen in Figure 4.4):

• IHawkMetaModelResource This interface provides the in-memory representation of

a metamodel. It can contain:

IHawkPackage This interface represents a uniquely identifiable collection of

metamodel type. It has a namespace URI to be identified by as well as a name; it

offers methods for retrieval of any specific IHawkClassifier (IHawkClass or IHawk-

DataType) it contains (by name), or all of them.

101

4. Hawk: Scalable Model Indexing Framework

Figure 4.4.: The Hawk Model Layer

IHawkClass This interface represents a metamodel class (a type). It has a

name, unique within its IHawkPackage; it offers methods for retrieval of any specific

structural feature (attribute or reference) it contains, all attributes it contains, all

references it contains and all of its supertypes (other IHawkClasses it is a subclass

of); it can be marked as abstract or interface.

IHawkDataType This interface represents a metamodel data type. This clas-

sifier only has a name, unique within its IHawkPackage; all other implementation

details are left to the implementer.

102

4.3. System Design

IHawkAttribute This interface represents an attribute of an IHawkClass. It

has a name, unique within its IHawkClass; it can be marked as derived, unique,

ordered or with multiplicity greater than 1 (i.e. isMany()).

IHawkReference This interface represents a reference of an IHawkClass. It has

a name, unique within its IHawkClass; it can be marked as containment, unique,

ordered or with multiplicity greater than 1 (i.e. isMany()).

• IHawkModelResource This interface provides the in-memory representation of a

model. It contains:

IHawkObject This interface represents a model element. It has a URI, unique

within the IHawkModelResource; it has a type (an IHawkClassifier); it has methods

for retrieval of a specific attribute or reference value as well as to indicate whether

a structural feature (attribute/reference) is currently set for this element; it has

a signature (proxy to its current state); the value of this proxy should be unique

every time any model-level change happens to this object (such as an attribute

value being edited or a reference added/removed – more information on this can

be found in Section 4.3.5.2).

4.3.2.2. Graph Layer

Extensive benchmarking showed that graph databases such as Neo4J and OrientDB per-

form significantly better than other technologies (e.g. relational databases) [34, 41] for

the types of queries that are of interest to a system like Hawk; model queries are com-

monly comparable to graph traversal operations in contrast to being largely comprised

numeric comparisons or other operations which would be amenable to other forms of

storage. To avoid coupling with a specific graph database, this layer (the IGraphData-

base API) aims at providing a uniform interface for querying and manipulating graph

databases in an implementation-independent manner. For example, key methods allow

retrieving the persisted object (graph node) with a specific id in the store, creating a new

node in the store, linking two nodes with a relationship between them and creating and

accessing database indexes (used to enhance the query performance of certain classes of

queries). It is worth noting that implementations of this layer can conceptually be used

to connect to any back-end technology, but will suffer in performance if the data model

is not similar with the graph model used here.

This layer consists of the following interfaces (seen in Figure 4.5):

103

4. Hawk: Scalable Model Indexing Framework

Figure 4.5.: The Hawk Graph Layer

• IGraphDatabase This interface represents the back-end persistence store used for

Hawk. It offers methods for creating and getting nodes, relationships and database

indexes.

• IGraphNode This interface represents a single graph node in an IGraphDatabase.

It has a unique identifier and offers accessor methods for its properties and rela-

tionships (edges). Implementations should as much as possible keep these objects

as lightweight as possible, with lazy loading of any features, as large quantities of

them are meant to be passed around during program execution.

104

4.3. System Design

• IGraphEdge This interface represents a single relationship (edge) between two

IGraphNodes. It has a unique identifier and offers methods for getting the nodes it

is connected to (referred to as the start node and the end node) as well as accessor

methods for its properties.

• IGraphTransaction This interface represents a transaction operation on the data-

base. If supported, it should ensure that the usual ACID operations are enforced

and that no read/write operations can be performed on the store outside trans-

actions. Implementations that do not natively support transactions should create

pseudo-transactions (not using the native store’s API but a Java-based algorithm)

as failure to encapsulate change in atomic events may cause irreversible inconsis-

tency in the store. It is worth noting that for various NoSQL stores (such as Neo4J),

their API can provide a batch mode whereby the database is rendered unavailable

while some computationally demanding insert operation is taking place (in order

to greatly speed up the execution time of this operation). In this mode, even

though transactions are not supported, consistency is maintained as the database

is only available before or after this mode is used so to a user it can be abstracted

as a single “transaction” taking place (whereby no queries can be made while this

“transaction” is being processed).

• IGraphNodeIndex This interface represents a database index consisting of a collec-

tion of nodes. The primary use of such a database index would be to be able to

retrieve a certain class of nodes (such as types or files) without having to navigate

the entire store using a blind search. It offers accessor methods for indexed nodes

as well as query methods for retrieval.

• IGraphChangeListener This interface allows the forwarding of any changes made

to the contents of Hawk to anyone listening, for example all the changes performed

during a single synchronization process can be propagated to a client interested in

them. This (simple yet effective) notification framework’s goals are twofold: firstly

it allows for implementation-specific handling of changes, allowing each listener

the autonomy it may require; secondly it does not add any inherent overhead to

Hawk if no one is listening as the update events will just be lost without having

to be managed/stored in any way.

105

4. Hawk: Scalable Model Indexing Framework

4.3.3. Version Control Managers

In order for Hawk to obtain the models it needs to index, as well as the updated model

files every time a model is changed, it requires managers for the various version control

systems it can monitor. As Hawk aims to be an orthogonal system to current versioning

technologies used, it is not given any special privileges when communicating with the

version control system (VCS) in which the original model files are stored. It is not able

to configure or change the VCS in any way or have any different access privileges than

the ones of the user connecting to the VCS directly.

As such, we assume that only the basic monitoring and fetching operations provided

by file-based version control systems are available. As Hawk locally stores the current

version of the files it is monitoring, it can easily retrieve only changed files from the VCS

and analyze them for propagating changes. Hawk will poll its registered VCS repositories

for changes according to its current update strategy heuristic (default settings as well

as the synchronization strategy Hawk uses are found in Section 4.3.7) and can also be

prompted to synchronize on demand through its interface.

4.3.3.1. SVN Manager

This component allows Apache Subversion (SVN) repositories to be monitored by Hawk.

Every time Hawk performs a poll of an SVN manager the relevant SVN operations are

called to retrieve all files which have changed between the current version stored in Hawk

(possibly none if the model is not yet in Hawk) and the current HEAD version on the

SVN. When the file identifiers of these changed files are obtained, Hawk then discards

any files it does not need (non-model files or files of models Hawk cannot parse – this is

achieved by comparing each file path to the accepted file extensions of each registered

model resource factory) and passes the rest of them to their relevant model resource

factories to be converted to in-memory resources and updated in Hawk, one at a time

(to avoid using an unnecessarily large amount of memory).

4.3.3.2. LocalFolder Manager

A folder stored on the local disk of the Hawk server can be used as a bare-bone VCS,

whereby a version of a file is defined by its numeric “last modified date”, all major

operating systems expose, with the obvious limitation that only the latest version of

a file is available for retrieval. As version control systems commonly have a top-level

106

4.3. System Design

repository version as well as individual file versions, we work under the assumption that

the repository version (of a LocalFolder) changes if any of its contents change (any file

has been added, deleted or edited).

This manager is of use if Hawk runs on a local computer with models not stored

in a version control system as well as providing an easy way to test the other Hawk

components (as manipulating files on a local folder requires very little effort).

4.3.3.3. Git Manager

As Git is a distributed version control system, it works under the assumption that

each user is working with a clone of the repository available locally. As such, using a

minor extension of the abovementioned LocalFolder driver, Hawk can monitor a local

Git repository. This driver is optimized to ignore various paths in the repository (ie:

the .git folder) to avoid any unnecessary overhead when crawling the file structure for

discovering any new/changed/deleted files.

4.3.3.4. Workspace Manager

Hawk supports indexing models located in a local Eclipse Workspace. This driver is

an extension of the LocalFolder driver (presented in Section 4.3.3.2) that can also use

Eclipse’s notifications10 to inform Hawk whenever a model file has changed, instead of

only relying on Hawk’s periodic updates (presented in Section 4.3.7). As such, not only

will Hawk be instantly notified whenever a model change has occurred (instead of waiting

for its periodic update to occur), but it can also have the option of totally turning off

its periodic updates and only rely on these notifications, improving its efficiency.

4.3.4. Metamodel/Model Resource Factories

Knowing which version control systems to monitor, Hawk now needs to know about

which metamodels/models it is interested in so that it can index them. Resource factories

are used to create in-memory representations (resources) for metamodels and models

persisted on disk. The file(s) in question will have to either be parsed into Hawk resources

directly, or parsed into their native in-memory representations and then converted into

Hawk resources. These files need to be able to be loaded into memory in order to extract

10http://help.eclipse.org/mars/index.jsp?topic=%2Forg.eclipse.platform.doc.

isv%2Fguide%2FresAdv_events.htm

107

http://help.eclipse.org/mars/index.jsp?topic=%2Forg.eclipse.platform.doc.isv%2Fguide%2FresAdv_events.htm
http://help.eclipse.org/mars/index.jsp?topic=%2Forg.eclipse.platform.doc.isv%2Fguide%2FresAdv_events.htm

4. Hawk: Scalable Model Indexing Framework

the necessary model information to be indexed, and it is assumed that each file can be

loaded separately (either as an entire model or as a fragment of a larger model). Below

we detail the various factories currently implemented.

4.3.4.1. EMF Resource Factories

These components allow for the parsing of EMF XMI-based metamodel and model files

into in-memory Hawk resources.

Metamodel Resource Factory A metamodel in Hawk is defined as a uniquely identifi-

able collection of metaclasses. In the model layer of Hawk (Section 4.3.2.1) a metamodel

is an IHawkPackage which has a unique global namespace identifier and contains a col-

lection of IHawkClasses. As such, any metamodel file added to Hawk needs to first be

converted into this in-memory representation before it can be registered to Hawk; all

IHawkPackages (and their contents) will be contained in an IHawkMetaModelResource

which will then be used by Hawk to register the metamodel.

For EMF this conversion is relatively straightforward as it already offers an in-memory

metamodel resource representation, containing EPackages with EClasses. As such, the

implementation of this component comprises producing wrappers around the EMF re-

source and its contents and exposing the relevant information needed, all of which is

already contained in the resource. More specifically:

• EMFPackage (lightweight wrapper around EPackage) implements IHawkPackage

– representing in-memory uniquely identifiable metamodels

• EMFClass (lightweight wrapper around EClass) implements IHawkClass – repre-

senting in-memory classes

• EMFReference (lightweight wrapper around EReference) implements IHawkRefer-

ence – representing in-memory references

• EMFAttribute (lightweight wrapper around EAttribute) implements IHawkAt-

tribute – representing in-memory attributes

• EMFDataType (lightweight wrapper around EDataType) implements IHawkData-

Type – representing in-memory data types

108

4.3. System Design

Model Resource Factory A model index in Hawk is defined as comprising information

extracted from a collection of model elements, possibly originating in multiple files,

that are defined by (instances of) a metamodel. An in-memory representation of a

model is through IHawkModelResources created by parsing the file-based persistence, and

containing a collection of IHawkObjects. Each such object has a type (the IHawkClass it

is an instance of) as well as values (possibly unset) for each feature (attribute/reference)

of its type (and supertypes).

For EMF this conversion is relatively straightforward as it already offers an in-memory

model resource representation, containing EObjects with values for their relevant fea-

tures. As such, the implementation of this component comprises producing wrappers

around the EMF resource and its contents (the EObjects).

It is worth noting that due to the fact that Hawk does not need any external infor-

mation other than the XMI model file (and its respective metamodel – identified by its

unique namespace – to be registered beforehand), it does not matter which modeling en-

vironment the models come from as the resulting models files should be indistinguishable

to Hawk.

BPMN Resource Factories A plugin for allowing BPMN models using the Eclipse

BPMN Modeler Tool11 to be indexed into Hawk was created, using the abovementioned

EMF resource factories and adding the relevant BPMN metamodels using the getStat-

icMetamodels() method provided by Hawk’s IMetaModelResourceFactory API (Figure

4.2).

4.3.4.2. Other Resource Factories

Two other resource factories were created for Hawk, in order to allow it to index other

technologies than basic EMF. This work uses the aforementioned EMF factories as a

blueprint and was done in collaboration with Dr. Seyyed Shah (research associate of

the MONDO project) and Dr. Antonio Garcia Dominguez (also a research associate of

MONDO). The drivers have since then been kept up to date in order to maintain their

architectural alignment with Hawk (as the tool evolved), as part of this work.

Modelio Resource Factories These factories are used to parse UML models created

and maintained using the Modelio tool presented in Section 2.2.2.2. These factories

11https://www.eclipse.org/bpmn2-modeler/

109

https://www.eclipse.org/bpmn2-modeler/

4. Hawk: Scalable Model Indexing Framework

assume that only the freely available open-source modules of Modelio are used, and does

not depend on any of the commercial modules.

Metamodel Resource Factory This factory is a minor extension of Hawk’s EMF

metamodel resource factory as Modelio uses EMF as its in-memory metamodel and

model representation format.

As Modelio is a tool that only works on specific languages like UML and BPMN, it

uses only specific metamodels (such as that of a specific version of UML – currently

using the UML 2.2 specification). Such metamodels are provided to Hawk through

the getStaticMetamodels() method provided by Hawk’s IMetaModelResourceFactory API

(Figure 4.2).

Model Resource Factory This factory is used to create IHawkModelResources from

projects created by the Modelio tool. Such projects are similar in structure to the ones

presented in the Modelio SVN-based repository with folders for each UML type (and

files inside them for each instance of this type in the model), as well as a variety of other

metadata items Modelio needs for its various components.

In order to parse a persisted Modelio UML model project into an in-memory resource

the Modelio tool parser is used. This parser requires that all files in the model project

are available and consequently uses them to load the entire model into memory as an

EMF resource. Hawk then uses this resource to create an IHawkModelResource, similarly

to how the Hawk EMF model resource factory handles other EMF model resources.

As Hawk usually assumes models are collections of independent files that can be loaded

separately while the Modelio parser requires all files to be loaded into memory before

providing a model resource, each Modelio model project is assumed to be converted into

a single (.zip) archive before being versioned in a VCS, to be then indexed by Hawk12.

This approach to versioning non-file-based model persistence formats (such as database

persistence or Modelio projects or any other form of persistence which requires a specific

file structure) is recommended by various tools such as Modelio and MagicDraw13 as it

ensures that any version of the model can be read with no errors and is self-contained.

On the other hand this results in the whole model structure needing to be retrieved

12 in principle, a driver which loads each Modelio model file separately can be developed in order to

overcome this limitation, as the various files are structured similarly to fragmented XMI EMF models

discussed in Section 2.2.1.1
13http://www.metacase.com/support/45/documentation/versioning.html

110

http://www.metacase.com/support/45/documentation/versioning.html

4.3. System Design

every time any change happens inside it; this is not detrimental to the performance of

Modelio models as the parser Modelio uses reads all its model fragments each time it

loads it into memory (similar to reading a single XMI file in EMF) so a lazy-loading

approach is not possible out-of-the-box.

Finally, due to various limitations in how Modelio treats the in-memory models, in

order for the plugin to work, we require that one of the Modelio plugins exports one of

its packages (that it does not normally export). Specifically we require that the plugin

org.modelio.xmi exports the org.modelio.xmi.generation package (by adding “Export-

Package: org.modelio.xmi.generation” to its manifest).

It is worth noting that a Modelio plugin using the commercial version of Modelio would

be able to leverage the native Teamwork Manager Module Modelio offers (presented in

Section 2.2.2.2) and its resulting repository. In such a case, creating a custom lazy-

loading parser could be more performant as it would be able to parse the model one

fragment at a time and hence only load changed fragments upon model evolution.

IFC Resource Factories This factory is used to create IHawkModelResources from mod-

els using the IFC BIM metamodel. An EMF-based parser for IFC models is available

from the OpenBIM14 project. OpenBIM is an open-source toolkit for developing IFC-

based BIM models; such models represent “physical and functional characteristics of a

facility”15.

Metamodel Resource Factory The metamodels required to load such IFC models

are currently Ifc2x3tc1 and Ifc416 that represent the latest two versions of the EXPRESS

schema used to define IFC models. These metamodels are provided to Hawk through

the getStaticMetamodels() method provided by Hawk’s IMetaModelResourceFactory API

(Figure 4.2)).

Model Resource Factory IFC models are stored in either an XML (ISO10303-28

XML representation of EXPRESS schemas and data) or a STEP (ISO10303-21 physical

file structure) format. The OpenBIM parser can use either of these formats to create an

in-memory EMF model resource out of an IFC model file. Hawk then uses this resource

14http://www.buildingsmart-tech.org/
15http://www.buildingsmart.org/standards/technical-vision/
16http://www.buildingsmart-tech.org/specifications/ifc-releases/summary

111

http://www.buildingsmart-tech.org/
http://www.buildingsmart.org/standards/technical-vision/
http://www.buildingsmart-tech.org/specifications/ifc-releases/summary

4. Hawk: Scalable Model Indexing Framework

to create an IHawkModelResource, similarly to how the Hawk EMF model resource

factory handles other EMF model resources.

4.3.5. Metamodel/Model Updaters

Now that Hawk knows where to find file changes and can convert relevant model files

into in-memory resources, it needs to be able to efficiently update its model index every

time a file is changed (added/removed/edited). In order to achieve this it uses updaters

to propagate changes and achieve synchronization.

4.3.5.1. Metamodel Updater

Every time a new metamodel file (or collection of metamodel files) is added to Hawk,

they are firstly converted into resources through their appropriate factory, and then

these resources are processed by Hawk to be registered to the model index. Every

IHawkPackage in the resource(s) is a unique metamodel in Hawk, identified by its unique

namespace URI, and containing its IHawkClasses. Hawk’s Graph Layer (Section 4.3.2.2)

is used to insert this into Hawk’s back-end, which then exposes its knowledge of the new

metamodel.

Before this operation is finalized, a consistency check is performed to ensure that the

metamodel insertion is self-contained. This check succeeds only if every IHawkClass

in every IHawkPackage in the current metamodel insertion does not have any proxy

dependencies. A proxy dependency in this context is any reference the IHawkClass

may have to another file (such as a superclass/attribute/reference/datatype being only

a proxy to another file), which has not already been inserted into Hawk.

This ensures that any metamodel insertion is complete, to avoid partial insertion of

metamodels, which would potentially cause failures when attempting to insert models

conforming to these (incomplete) metamodels. For example if a collection of intercon-

nected metamodels is found in multiple files, all of the files will have to be inserted into

Hawk simultaneously and not one at a time, in order to allow Hawk to ensure a complete

metamodel exists in its model index.

This strategy is in contrast to model insertion and updating whereby references to

proxy elements are not an issue (as nothing will directly depend on the models) and can

be maintained on the fly as new files are added/removed/updated for the models. An

important factor to consider is that metamodels are very commonly of negligible size

112

4.3. System Design

(when compared to the size of models this tool aims at handling), hence the possible

performance loss of this extra constraint is seen as very minor when compared to the

benefits it provides.

4.3.5.2. Model Updater

When using the default model updater17, Hawk performs Algorithm 1 every time it finds

a changed (added, removed, updated) model file in any of its monitored repositories.

This algorithm inserts new models to the index and uses a threshold value (defaulting to

accepting up to 50% model element changes – additions/removals/updates) to determine

whether it should use a naive or incremental strategy for updating currently indexed

models to their new versions. This threshold aims at compromising the memory overhead

of an incremental update (on a very large number of changes) with the execution time

overhead of a batch update (on a very small number of changes); hence a developer

aiming to adjust this to a different value should raise the value if the memory use of

Hawk is less important than the execution time of an update and vice versa.

As demonstrated in the Section 5.3.2, using this incremental updating when a model

file is already indexed often provides a large performance gain when compared to naively

deleting and re-indexing it every time it is modified.

Insertion For the insertion of a model file into Hawk, a process outlined in Algorithm 2

is followed. In this process, the elements of the model file are firstly loaded into memory

as a model resource. Then, for each such element a node is created in the model index

graph with its attributes as properties, and linked (using relationships) to its file and

type/supertypes. Finally, for each element its references are used to link the node with

other nodes in the graph.

As this process often requires intense resource consumption, the batch mode of Hawk’s

back-end is used (if the specific back-end used supports it). This mode makes the

database unavailable until the process is completed, but using Hawk’s Neo4J driver

has around an order of magnitude better performance in terms of execution time when

17as Hawk’s architecture allows for pluggable updaters to be used, this discussion is based on using the

one constructed in the context of this work
18as an incremental update of a large number of elements can potentially be resource consuming, a

threshold can be provided to direct any update with too many changes to use naive insertion instead

in order to lower the required memory and potentially improve its execution time

113

4. Hawk: Scalable Model Indexing Framework

Algorithm 1: Hawk update overview

1 if model file already indexed then

2 if change of type added/updated then

3 if model change size less than threshold18 then

4 incremental update

5 else

6 naive update

7 end

8 else if change of type removed then

9 delete indexed elements of file, keeping cross-file reference proxies

10 end

11 else

12 if change of type added/updated then

13 insertion (indexing of model elements)

14 end

15 end

compared to on-line (transactional) updating, and using the OrientDB driver is around

two times as fast.

Naive Updating A naive update strategy for Hawk simply removes the current indexed

version of the model and the re-inserts it from scratch. While this approach can be seen

as ineffective (especially if the back-end is not optimized for large numbers of deletions

of elements), mainly when dealing with very small numbers of changes, it avoids any

overhead needed to perform an incremental update and is thusly suitable when a large

numbers of changes is found in the model.

Signature Calculation In order to update a model, an efficient way to determine

whether a model element has changed is needed. A signature of a model element is

a lightweight proxy to its current state. In order to calculate a meaningful signature for

model elements indexed in Hawk (in order to enable support for incremental updates of

the model index, as models in it evolve), every mutable feature of the element needs to

be accounted for. As such, the following features are used to calculate the signature of

114

4.3. System Design

Algorithm 2: Insertion algorithm

1 use relevant factory to parse the file into a model resource

2 foreach element in the model resource do

3 create model element node in graph and set its attributes

4 create signature attribute in node

5 create a relationship from this node to its file node

6 create a relationship from this node to its type node (and relationships to

all its supertype nodes)

7 end

8 foreach element in the model resource do

9 foreach reference in the references of the element do

10 if reference of element is set then

11 foreach referenced element do

12 if referenced element is not a proxy then

13 create relationship from this node to the node of the referenced

element
14 else

15 add new proxy reference

16 end

17 end

18 end

19 end

20 end

each element:

• all of the names and values of its attributes

• all of the names and the IDs (of the target elements) of its references

This works under the assumption that model elements cannot be re-typed during model

evolution, which is the case for the popular modeling technologies such as EMF, as well

as that model elements have immutable and unique IDs.

115

4. Hawk: Scalable Model Indexing Framework

A signature can be represented as either a String containing the concatenation of the

values listed above or as a message digest (also known as a hash)19 of this String. The

String representation ensures that a unique signature exists for any model state, but

suffers in terms of comparison performance as potentially very long Strings will have to

be compared. On the other hand, a digest representation allows for rapid comparisons

but has a chance (albeit small) for clashes, which show different model states as having

the same signature. We decided to use the a SHA-120 digest representation as this

identifier, to allow rapid comparisons. This signature is used to efficiently find changes

in model elements, as detailed below.

Incremental Updating For incremental updating of a model file into Hawk, the process

outlined in Algorithm 3 is followed. In this process the signatures of each element

are used to efficiently determine which elements have changed. Then, for each new

element a node is created, for each changed element its properties and relevant references

are updated (keeping dangling cross-file references as proxies in Hawk for consistency),

and for each removed element its node is deleted. The complexity of this algorithm is

O(m + n + c× avgR) where m is the number of model elements in the updated model

file, n is the number of model nodes in the model index linked to the (previous version of

the) updated file, c is the number of changed elements and avgR is the average number

of target elements referenced by all of the changed elements.

This process only alters the part of the model index which has actually changed and

as such, it does not need to use more resources than required by the magnitude of the

change, potentially saving on memory and execution time.

Incremental Update Example In order to clearly demonstrate how incremental up-

dating works, a simple example is presented here using the BPMN loan running example.

In this scenario, assume that the following changes have been made to the original BPMN

loan model in Figure 2.7 (the new model is seen in Figure 4.6):

1. The attribute name of Task with id t2 is changed from “Check Applicant Info” to

“Verify Applicant Information Authenticity”

2. A new Task with name “Notify Authorities of Fraud” is introduced

19one-way hash function that takes arbitrary-sized data and outputs a fixed-length hash value
20a cryptographic hash function designed by the United States National Security Agency; it produces a

20 byte value

116

4.3. System Design

Algorithm 3: Incremental update algorithm

1 let nodes be the set containing the ids and pointers to all the nodes (in the model

index – linked with the updated file)

2 let signatures be the set containing the ids and signatures of the nodes

3 let delta be the set containing changed elements

4 let added be the set containing new elements (to be added to the model index)

5 let unchanged be the set containing elements which are the same

6 foreach node from all nodes in the model index linked with the updated file do

7 add node to nodes

8 add signature of node to signatures

9 end

10 foreach element in elements of model resource do

11 if element id exists in signatures then

12 if element signature not equal to current signature then

13 add element to delta

14 else

15 add element to unchanged

16 end

17 else

18 add element to added

19 end

20 end

/* add new nodes to model index */

21 foreach element in added do

22 add this new element in model file to model index

23 end

/* delete obsolete nodes and change node attributes */

24 foreach node in nodes do

25 if node id exists in delta then

26 retrieve element in delta represented by the node

27 foreach model attribute in element do

28 if attribute value is different to node property value then

29 update property value

30 end

31 end

32 else if node id does not exist in unchanged then

33 de-reference node (keeping dangling incoming cross-file reference proxies)

34 delete node

35 end

36 end

117

4. Hawk: Scalable Model Indexing Framework

Algorithm 3(cont.): Incremental update algorithm (cont.)

/* change altered references */

37 foreach element in delta do

38 foreach reference in references of element do

39 if reference is set then

40 foreach referenced element in referenced elements of reference do

41 if referenced element is not proxy then

42 add id of referenced element to targetIds

43 else

44 add new proxy reference to model index

45 end

46 end

47 foreach relationship in relationships of node linked with the element

do

48 if relationship target has id which exists in targetIds then

49 remove target from targetIds

50 else

51 delete relationship as new model does not have it

52 end

53 end

54 foreach id in targetIds do

55 add new relationship to model index

56 end

57 else

58 foreach relationship in relationships of node, with the same name as

the reference name do

59 delete this relationship

60 end

61 end

62 end

63 end

3. The reject branch of the Gateway with name “Result of Verification” now points

to the new Task with name “Notify Authorities of Fraud”. This is achieved by

deleting the old SequenceFlow it had to the EndEvent and introducing a new one

to this new Task.

4. A new SequenceFlow is introduced from the new Task with name “Notify Author-

118

4.3. System Design

Figure 4.6.: Running example – altered version of the BPMN Loan model

ities of Fraud” to the EndEvent of the model.

In order to synchronize Hawk with the new version of the model the following would

occur (all line references are to the incremental update Algorithm 3):

• Line 7 – nodes would include the nodes representing the old version of the model

indexed in Hawk

• Line 13 – delta would include the Task whose name was changed from “Check

Applicant Info” to “Verify Applicant Information Authenticity”, as its signature

has changed. It would also include the Gateway named “Result of Verification” as

well as the EndEvent named “End Loan Request” as in both cases their references

have changed and hence so has their signature.

• Line 15 – unchanged would include the remaining model elements that are found

in both versions of the model, as their features are the same and hence so is their

signature.

• Line 18 – added would include the new Task named “Notify Authorities of Fraud”

as well as the two new SequenceFlows introduced, one between the Gateway named

119

4. Hawk: Scalable Model Indexing Framework

“Result of Verification” and the new Task, and one between the new Task and the

EndEvent.

• Line 22 – the three aforementioned added nodes would be created

• Line 29 – the property “name” of the Task in delta will be updated to its new

value

• Line 34 – the SequenceFlow which used to join the Gateway named “Result of

Verification” and the EndEvent named “End Loan Request” is deleted as it is not

found in the new model

• Line 51 – the reference outFlows of the Gateway named “Result of Verification”

is updated to not include the deleted SequenceFlow. Furthermore the reference

inFlows of the EndEvent will be updated to not include the deleted SequenceFlow.

• Line 55 – the reference outFlows of the Gateway named “Result of Verification” is

updated to include the new SequenceFlow between the Gateway and the new Task.

Furthermore the reference inFlows of the EndEvent will be updated to include the

new SequenceFlow between the new Task and the EndEvent.

Proxy Reference Resolution A reference to a model element located in another file

(or location) is referred to as a proxy reference, whereby only the location of the target

object(s) is recorded as opposed to the objects themselves. As Hawk indexes models that

can be potentially fragmented (i.e. use proxy cross-file references), it uses the following

procedure to manage any cross-file references:

• Proxy reference addition. Whenever a model element (either during insertion or

update) has a proxy reference, this information is stored in a proxy reference

database index. This reference contains its name and the location (file path and

identifier) of the model element(s) it is referencing.

• Proxy reference resolution. During Hawk’s synchronization procedure, after each

changed model file is handled, any resolvable proxy references are resolved. A

proxy is resolvable if its target element is found in Hawk.

• Proxy reference update. During each update of a model element, any previous

proxies it had are purged, so that only proxies of the latest version of this element

are recorded.

120

4.3. System Design

• Reference proxification. Any time an element of Hawk is deleted, any incoming ref-

erences to that element from elements originating in a file different than the file the

element itself originated from, are proxified21. Instead of deleting these references

and (incorrectly) losing all information about them, instead Hawk keeps them as

proxies, using the method described above. As such, consistency is maintained

should the deleted element be re-inserted into Hawk at a later time.

4.3.6. Querying Hawk

As Hawk now contains an up-to-date global index of all relevant models in its monitored

VCSs, for it to be of practical value, Hawk needs to be able to provide correct and

efficient responses to queries made on its model indexes. There are two principal ways

of querying a model index:

4.3.6.1. Native Querying

The most straightforward, and arguably the most performant, ways of querying a model

index is using the native API of its persistence back-end, or the data-level query lan-

guage (such as SQL if a relational database is used or Java/Cypher if a Neo4J NoSQL

database is used). Nevertheless, it also demonstrates certain shortcomings which should

be considered:

• Query Conciseness Native queries can be particularly verbose and, consequently,

difficult to write, understand and maintain. Examples of such queries can be found

in Section 5.2.1.1.

• Query Abstraction Level Native queries are bound to the specific technology used;

they have to be engineered for that technology and cannot be used for a different

back-end without substantial alteration in most cases.

4.3.6.2. Back-end Independent Navigation and Querying

An alternative way to access and query models is through higher-level query languages

that are independent of the persistence mechanism. Examples of such languages include

21 a new proxy reference is added for each such element and stored in the proxy reference database index

(as mentioned above in proxy reference addition).

121

4. Hawk: Scalable Model Indexing Framework

the Object Constraint Language (OCL), the Epsilon Object Language (EOL – from the

Epsilon [68] platform) and the Atlas Transformation Language (ATL), which abstract

over concrete model representation and persistence technologies using intermediate layers

such as the OCL pivot metamodel [69] and Epsilon Model Connectivity [70] layer.

In terms of execution, queries expressed in such high-level languages can be executed

on an in-memory representation of the model, or translated into queries expressed in

persistence-level query languages such as SQL and XQuery22, at compile-time or at run-

time. Full translation is only feasible in cases where the high-level and the lower-level

query languages are isomorphic in terms of capabilities. This is not always the case: for

example, EOL supports dynamic dispatch which is not supported in SQL. Even when

full compile-time translation is not feasible, partial translation at run-time has been

shown to deliver significant performance improvements as seen in [71].

EOL Query Engine – Epsilon and The Epsilon Model Connectivity Layer (EMC) The

Epsilon platform [68] is an extensible family of languages for common model manage-

ment tasks and includes tailored languages for tasks such as model-to-text transforma-

tion (EGL), model-to-model transformation (ETL), model refactoring (EWL), compari-

son (ECL), validation (EVL), migration (Flock), merging (EML) and pattern matching

(EPL). All task-specific languages in Epsilon build on top of a core expression language –

the Epsilon Object Language (EOL) – to eliminate duplication and enhance consistency.

As Epsilon provides a back-end independent language (EOL), we decided to use it in

this work.

As seen in Figure 4.7, EOL – and as such all languages that build on top of it – is

not bound to a particular metamodeling architecture or model persistence technology.

Instead, an intermediate layer – the Epsilon Model Connectivity layer – was introduced

to allow for seamless integration of any modeling back-end.

Epsilon uses a driver-based approach for its EMC layer, where integration with a

particular modeling technology is achieved by implementing a driver that conforms to a

Java interface (IModel) provided by EMC. For a more detailed discussion on EMC and

the IModel interface, the reader can refer to Chapter 3 of [70].

Hawk provides an EMC driver (implementation of the IModel interface) to allow

Epsilon to use it as a model provider (and consequently query it using EOL expressions).

A simplified class diagram of the relevant classes in Epsilon and Hawk is seen in Figure

22http://journal.ub.tu-berlin.de/eceasst/article/viewFile/108/103

122

http://journal.ub.tu-berlin.de/eceasst/article/viewFile/108/103

4.3. System Design

Ta
sk

-s
p

ec
if

ic

la
n

gu
ag

es
 Model Refactoring (EWL) Pattern Matching (EPL) Model Validation (EVL) …

Model Comparison (ECL) Model-to-model Transformation (ETL)

Model Merging (EML) Code Generation (EGL) Model Migration (Flock)

Te
ch

n
o

lo
gy

-s
p

ec
if

ic

d
ri

ve
rs

Eclipse Modeling Framework (EMF) Schema-less XML Hawk Model Index

Meta Data Repository (MDR) CSV Bibtex MetaEdit+ …

Epsilon Object Language (EOL) ≈ JavaScript + OCL

Epsilon Model Connectivity (EMC)

extend

implement

Figure 4.7.: The Epsilon Model Connectivity Layer

4.8. Below we detail the additions made to this driver in order to incorporate the use of

custom database indexes for improving query performance.

IModel interface method implementations In order to use Epsilon’s EOL to query

model indexes stored in Hawk, an implementation of the IModel interface is required. In

Table 4.2 we present a description of various methods of interest in the IModel interface

and a summary of their implementation details in Hawk. Note that any model element

loaded into memory is of Java class GraphNodeWrapper. This is a lightweight object

which contains only the location of the relevant model element in the store (its ‘id’

value for example in a Neo4J NoSQL Graph database) as well as a reference to the

Epsilon model it is part of; this object can be used to load the element’s attributes and

relationships on demand.

Reverse reference navigation In the spirit of EMF’s eContainer() method which allows

an EObject to get access to its container object, Hawk provides a mechanism for reverse-

navigating a containment reference in order to access the container. This feature is

embedded into the parser by means of prefixing the relevant reference with “revRefNav ”.

123

4. Hawk: Scalable Model Indexing Framework

Table 4.2.: Interesting methods in the IModel interface

Method Return Type Description

allContents() Collection<?> Returns a collection containing all of the nodes

contained in the model index in the form of

GraphNodeWrappers

hasType(String

type)

boolean Returns whether the type type exists in the

model index by trying to find it through the

Metamodel (database) index of the store.

getAllOfType(

String type)

Collection<?> Returns a collection containing all of the objects

of type type in the model index by first invok-

ing hasType(type) and, if successful, finding the

type using the Metamodel (database) index and

then creating a collection of GraphNodeWrappers

containing every element which has an ofType re-

lationship to type.

getTypeOf(Object

instance)

Object Returns the type node of the element instance

in the model index by directly accessing the

node instance (as this method is always passed

a GraphNodeWrapper as the instance) and nav-

igating its ofType relationship to get the type

node. The returned object is a GraphNodeWrap-

per.

isOfType(Object

instance, String

type)

boolean Returns whether the node instance in this model

is of type type by first invoking hasType(type)

and, if successful, invoking getTypeOf(instance)

and performing a String comparison on the re-

sulting names. The type can be either fully qual-

ified, including the unique identifier of the meta-

model it is contained in, or only the type name.

getPropertyGetter() IPropertyGetter Returns the GraphPropertyGetter associated

with the Hawk repository. The GraphProper-

tyGetter uses Hawk’s IGraphDatabase API to re-

trieve properties from objects in Hawk.

124

4.3. System Design

Figure 4.8.: Important Hawk EMC layer classes and their EOL parents

For example, say one has an object ‘A’ with a containment reference called ‘contain’ to

an object ‘B’. Then, by typing “B.revRefNav contain” in EOL, we get as a result object

A. To increase usability of this feature the keyword “eContainer” is also reserved, so

that references of this name return the container object as well (if one exists).

Scoped Queries Hawk supports the use of scoped queries with respect to the file of

origin of the model elements involved. As discussed in Appendix C and demonstrated in

Figure C.9, should the modeler want to limit the query to elements found in a specific

file or set of files, this can be done by providing a relevant file inclusion pattern to Hawk.

This allows Hawk to limit its search to elements contained in only a specific subset of

its contents. The syntax used is that of a regular expression inclusion pattern for the

files the developer wishes to include (or empty for performing a global query).

This allows queries to be performed, as if the rest of the contents of the contents of

125

4. Hawk: Scalable Model Indexing Framework

the model index was not present, for example to obtain results from:

• A specific or a set of specific files, say “model1.xmi, model2.xmi”.

• One type of file, such as “*.xmi” or “class diagram *.uml”.

• A specific directory in the monitored version control system, say “/london bridge/

schematics/*.xmi”.

This provides flexibility in the way we can query Hawk, providing a way to expose

the file path itself as a way to manipulate retrieving information from Hawk. Similarly,

repository locations can also be scoped in the same way to the one presented above,

allowing for results originating in one or more repositories to be returned.

It is worth noting that for EOL, Hawk offers two alternative approaches to scoping

queries: The first one limits the initial search terms of the query to contain only elements

originating in repositories/files within the defined scope; this does not necessarily limit

the traversal paths the query takes to get to the results. More specifically, for the

EOLQueryEngine implementation, the filtering to scoped elements is performed for each

global API call in IModel (such as allContents(), getAllOfType(...) or getAllOfKind(...));

as EOL allows for various logical operations to be performed (such as collect – that may

result in navigating to elements originating in other files) as well as permitting imperative

code to be run, this approach does not guarantee that the query will only traverse scoped

elements during its execution. This approach allows a modeler to query Hawk scoping

only the initial terms of the query, with the overhead and its subsequent impact on

query performance being very small as the scoping is only done initially (and not at

every single element or feature access).

The second approach limits the entire traversal path of the query to the scope provided.

This introduces the overhead of having to check that every feature call to a target model

element is restricted to the scope but guarantees that the query is truly scoped within

the parameters provided from start to finish.

For example, assume that instead of being in a single file, the BPMN loan example is

split into two files, as shown in Figure 4.9 (the dotted lines represent a proxy reference to

a model element in another file – in this case to the three SequenceFlow model elements

in file “loan end.xmi”). Here, running an EOL query for finding out how many outgoing

SequenceFlows there are in the BaseElements of the loan model:

126

4.3. System Design

Figure 4.9.: Fragmented BPMN loan model

return BaseElement.all.outFlows.flatten.size();

Scoped under file “loan start.xmi”, will produce different results depending on whether

scoped querying is set to initial term or to full traversal scoping23 (returning 8 for initial

term and 5 for full traversal, detailed below):

• Whether full traversal scoping is enabled or not, the initial terms of the query

(BaseElement.all) will match the 6 BaseElements in file “loan start.xmi” (labeled

BE1–BE6 in Figure 4.9).

• If full traversal scoping is not enabled, the next part of the query (.outflows)

will match all target elements of the .outflows reference of the abovementioned

BaseElements (i.e. SequenceFlows labeled SF1–SF8 in Figure 4.9). As such the

query will return 8 (after flattening and counting the results).

• If full traversal scoping is enabled, the next part of the query (.outflows) will not

match SequenceFlows labeled SF4, SF6 and SF8 as they are proxies to model

23 initial term scoping will only limit model elements found in the scoped files for the first collection call

(.all / .allOfType / .allOfKind) of the query, full traversal scoping will only include model elements in

the scoped files regardless of when they are accessed in the query (omitting any other model element).

127

4. Hawk: Scalable Model Indexing Framework

elements in file “loan end.xmi” and hence are outside the scope provided. As such

the query will return 5 (after flattening and counting the results).

4.3.7. System Lifecycle

For Hawk to be able to operate over a continuous period of time, its lifecycle needs to

be managed. Hawk provides the following functionality during its normal execution:

• Initialization and Addition/Removal of Model Indexes.

– Upon initialization of Hawk, any previously created (saved) model indexes are

loaded and synchronized with any changes made to their relevant repositories.

– A model index can be added at any time, and linked to a set of version control

systems. This will create the model index and populate it with any relevant

model files found in the VCS(s) linked to it.

– A model index can be removed; there are two types of removal: temporary

and permanent. Temporary removal only disables updates to the model index

from the VCS (equivalent to disconnecting a folder from a VCS) and can be

used if the model index may be of use again in the future. A permanent

deletion removes the model index itself from the hard disk as well as any

metadata kept about it.

• Scheduling / Maintenance operations.

– Hawk will periodically synchronize any model indexes with their VCS(s).

Timers are used to initiate synchronization requests for each model index

and the algorithm used to determine the frequency of these updates is con-

figurable. The default uses the following algorithm (time is in seconds):

if (changes == false)

if (timeToUpdate < 512)

timeToUpdate = timeToUpdate× 2

else

timeToUpdate = 1

Where changes is a boolean returned by the synchronize method informing

the server if there are any changes to the versioned files with respect to the

128

4.3. System Design

versions in the model index. As shown, the time between checks increases as

long as there are no changes and resets to 1 when there is a change.

– If changes are found in files of interest (i.e. models Hawk can parse), the

contents of these files are retrieved and parsed, and the model index is updated

accordingly. Further details of the different events that can occur during an

update are provided below.

– If an update results in a model being inconsistent (for example by having

references to unresolvable proxies introduced to it due to the deletion of a

model fragment file in the VCS), the model index is updated, keeping any

unresolved proxies flagged and attempting to resolve them in future updates.

• Other runtime operations.

– Metamodels can be added to a Hawk model index, which will allow more

types of models to be indexed by Hawk. Metamodels are provided as one or

more files.

– Derived attributes can be added to a Hawk model index and any existing at-

tribute can be marked as (database) indexed for enhancing query performance

on operations needing to traverse them.

– Any running Hawk model index can be queried. Depending on the query

engine used, the results may be returned to the engine as objects the engine

itself understands, or simply as console output.

• Shutdown operations.

– Under normal shutdown, Hawk finishes any currently running tasks (such as

pending updates), saves the meta information of the model indexes currently

running (such as the paths to their relevant VCS), and then terminates.

– The responsibility for coping with abnormal shutdowns (for example power

failure in the middle of an update in one of the model indexes in the indexer)

is delegated to the back-end used to persist the model index (such as the

NoSQL database). The indexer itself will not lose any critical information in

case of an abnormal shutdown as it does not keep any volatile critical data in

memory; any actions being performed during the failure will be re-initialized

129

4. Hawk: Scalable Model Indexing Framework

upon the next startup of the system (as the model index will not be updated

so will provide the same metadata as previously to the indexer).

4.3.7.1. Synchronization Procedure

If a set of files have changed in a VCS linked to a model index in Hawk (updat-

ed/added/removed/renamed/moved), it will perform Algorithm 4 in order to ensure

synchronization, where:

• existsInteresting(): Returns true if at least one of the changed files is interesting

to Hawk. Being interested in a file denotes that this file should be parsed and

indexed.

• modelFiles(): This method returns a set of file-revision tuples of model files from

the changed file set.

• added(X): Returns true iff file X was added to the VCS.

• removed(X): Returns true iff file X was removed from the VCS.

• updated(X): Returns true iff file X was updated in the VCS.

• renamed(X): Returns true iff file X was renamed in the VCS.

• moved(X): Returns true iff file X was moved in the VCS from one folder to another.

• resolveModelProxies(): This method resolves any unresolved cross-model references

that have been kept as proxies when parsing the files (as only one file is open at a

time for performance reasons).

• scheduleNextUpdate(): Schedules the next update for this repository, based on the

heuristic discussed above.

Relevant addition/update and deletion procedures mentioned in the algorithm, as well

as metamodel-level operations, are discussed below:

Metamodel addition The procedure for parsing a metamodel file into a resource is de-

pendent on the file type and is described by its relevant driver. An example using XMI

as input is seen in Appendix C. As mentioned above, regardless of input, an IHawkMeta-

ModelResource is created from the file and is ready to be parsed for database insertion.

130

4.3. System Design

Algorithm 4: Synchronization procedure

1 if existsInteresting() then

2 for modelFile m : modelFiles() do

3 if added(m) then

4 Parse the model file into a resource. Insert it into the index (see

Section 4.3.5.2).

5 else if removed(m) then

6 Delete the model from the index.

7 else if updated(m) then

8 Update the model in the index (refer to Section 4.3.5.2).

9 else if (renamed(m) or moved(m)) then

10 Update the model in the index (see Section 4.3.5.2).

11 end

12 resolveModelProxies()

13 end

14 end

15 scheduleNextUpdate()

Similarly, creation of the database-specific persistence varies with the back-end used (de-

scribed by the relevant IGraphDatabase driver). Examples using Neo4J and OrientDB

as stores can be found in [34].

Metamodel removal Metamodels can be removed at any time (identified using their

unique namespace URI) and doing so will also remove any metamodels depending on

them, as well as models conforming to these metamodels (and subsequently from any

metamodels depending on the removed ones) from Hawk. When this operation is used,

any repositories containing models affected by this removal are flagged in Hawk so that

they are not ignored should a future insertion of the same metamodel occur (whilst the

repository itself has not changed).

131

4. Hawk: Scalable Model Indexing Framework

Metamodel evolution Hawk works under the assumption that metamodels are not

meant to change often and hence does not support advanced metamodel evolution pro-

cedures. If a new version of a metamodel needs to be used it can either be inserted with

its own unique namespace, in parallel to the old version, in order to maintain the latest

version of the model using the old version as well as the new one; or the old metamodel

can be removed (and consequently any models conforming to it) and the new metamodel

can then be inserted as normal.

Model file addition The procedure for parsing a model file into a resource is dependent

on the file type and is described by its relevant driver (Section 4.3.4). Should the

metamodel(s) of this model not exist in the store, the model insertion is aborted, pending

a future insertion of its relevant metamodel(s); when the relevant metamodel is inserted

the model will also be inserted in the next synchronization cycle of Hawk.

Model file update If a model file is updated to a new version, an IHawkModelResource

is created from this file (through the relevant driver) and any changes (deltas) between

it and the current version in the database are found and propagated to the store and the

new version is now recorded. Details of this procedure can be found in Section 4.3.5.2.

Model file rename/move If a model file is renamed or moved in the version control

system, it is considered as removed and re-added as all complex version control oper-

ations are broken down to a sequence of simple operations (add/update/remove). The

reason for choosing this “simplified” approach is due to the inherent complexity of move

operations on possibly inter-connected model fragments, as cross-file references will be

affected (broken if all relevant fragments are not also updated after the move). For ex-

ample if file “a.xmi” is a model fragment referencing an element in file “b.xmi” and file

b.xmi is renamed to “c.xmi”, then (as file “a.xmi” has not been altered) the reference is

broken as it points to a non-existing file (“b.xmi”) and hence needs to be removed from

Hawk.

The above procedure ensures any changes to files will be propagated to the model in-

dex and that each file is only read once, and never more than 1 file is in memory at

a time. This solution is seen as a performant and low resource consuming option for

synchronization.

132

4.3. System Design

4.3.8. Advanced Features and Optimizations

After the creation of the core implementation for storing models in Hawk, presented

in this chapter, further functionality was added to improve both the capabilities and

performance of Hawk.

4.3.8.1. Derived Attributes

Regardless of the use of native or back-end independent querying, in order to respond to

a model validation query requesting whether all diverging parallel gateways have more

than one outgoing sequence flow and exactly one incoming sequence flow and that all

converging parallel gateways have more than one incoming sequence flow and exactly

one outgoing sequence flow, the following steps would have to occur:

1. The starting point of the query would have to be found. In this case, the collection

of all instances of ParallelGateway in the model would have to be retrieved.

2. For each parallel gateway node, its diverging attribute would have to be retrieved

as well as its number of incoming and outgoing sequence flows.

3. Depending on the value of the diverging attribute the numbers of sequence flows the

parallel gateway has will have to be appropriately analyzed in order to determine

whether the validation passes for this specific parallel gateway. If all the gateways

meet the requirements True can be returned.

Step 1 is easy to perform in Hawk as a (database) index of Metamodels is kept which

can be used to rapidly provide a starting point for a query which requires elements of a

specific type (such as ParallelGateway instances for example). If a query uses the whole

model index as a starting point then there is no optimization to be performed as the

entire model index would have to be traversed in order to find the Node representing the

ParallelGateway type. Step 2 where we can begin optimizing to improve the execution

time of queries which have to perform some non-trivial calculation or navigation on the

model.

An effective way to increase query efficiency is to pre-compute and cache – at model

indexing time – information that can be used to speed up particular queries of interest

to the modeler.

133

4. Hawk: Scalable Model Indexing Framework

Such attributes are computed using expressions formed in the expression language of a

known Query Engine. A query engine, as discussed in Section 4.3.6, allows for expression

languages (such as OCL or Epsilon’s EOL [16]) to be used as a query mechanism for

a Hawk model index. Such derived attributes are hence pre-computed and cached at

model indexing time and need to be maintained as the model index evolves.

Figure 4.10.: Pre-computing whether parallel gateways are validated

A simple example is shown in Figure 4.10; here, the result of the validation of each

parallel gateway is pre-computed (using the EOL program presented in Listing 4.1) and

this information is stored in a new DerivedAttribute node24 with the attribute name as

the relationship linking it to its parent Element node. This derived attribute is handled

seamlessly with regards to querying, hence an EOL query used to validate parallel gate-

24a new node is used for overcoming a limitation found during incremental updating of derived attributes;

further information on this can be found in Section 4.3.8.2

134

4.3. System Design

ways would change from the one presented above to: not ParallelGateway.all.exists(pg |
pg.validate==False) (in both cases returning the Boolean value of the validation).

Listing 4.1: EOL program used to calculate whether a parallel gateway is validated

var diverging = self.diverging;

var incomingSFs = self.inFlows.size();

var outgoingSFs = self.outFlows.size();

return (diverging and incomingSFs == 1 and outgoingSFs > 1)

or ((not diverging) and incomingSFs > 1 and

outgoingSFs == 1) ;

Expressions of arbitrary complexity are expected to be used in practice so that pre-

caching the results of such expressions is actually worthwhile25; other examples are

presented in the Evaluation Section 5.3.3.

4.3.8.2. Derived Attributes: Incremental Updating

A naive approach for maintaining such attributes would involve having to fully re-

compute each one, every time any change happens to the model index. This is due

to the fact that any such attribute can potentially depend upon any model element in

the model index, thus any change can potentially affect any derived attribute. Such an

approach would be extremely inefficient and resource consuming.

As such, an incremental approach for updating derived attributes in Hawk has been

used. In this approach, which is an adaptation of the incremental OCL evaluation

approach discussed in [72], only attributes affected by a change made to the model

index are re-computed when an update happens. In order to know which elements affect

which derived attributes, the scope of a derived attribute needs to be calculated. The

scope of a derived attribute comprises the current model elements (and/or features) in

the model index this attribute needs to access in order to be calculated. When a derived

attribute is added/updated in the model index, the query engine used to calculate this

attribute also publishes an AccessListener to Hawk, providing the collection of Accesses

this attribute performed. By recording these accesses (element and/or feature accesses),

Hawk updates only the derived attributes which access an element altered during an

25 in order to reduce the inherent complexity of derived attributes depending on other derived attributes,

this is not allowed

135

4. Hawk: Scalable Model Indexing Framework

incremental update. As the incremental update changes the minimal number of elements

during model evolution, the updating of derived attributes can be seen to be as efficient

as possible with respect to the magnitude of the change.

In more detail, every time an update process happens in Hawk, it records the changes

it has made to the model index. A change can be one of the following:

• A model element has been created / deleted

• A feature (attribute or reference) of a model element has been altered (set/unset

if single valued or updated if multi-valued)

? Note: complex changes (like move) are broken down to these simple changes.

Furthermore, every time a derived attribute is added or updated, it records the accesses

it requires in order to be computed. An access can be one of:

• Access to an attribute or reference value of a model element

• Access to the collection of model elements of a specific type or kind

By having recorded the above-mentioned changes and accesses, Hawk can calculate

which derived attributes need to be re-computed during a model update using Algorithm

5. As the derived attribute is a node itself, it can be directly referenced and updated if

necessary; if the derived attribute was located inside its parent Element node, that node

would have to be referenced instead and hence all derived attributes in it would have to

be updated, as there would not be a way to distinguish which ones need updating and

which ones do not.

In the loan example, for the derived attribute isSlow of node t1 (name : Record Loan

App Info), the access would read as follows: The derived attribute isSlow (of node t1)

needs to access node t1 for its feature executionTime; it also needs to access nodes t2,

t3, t4 and t5 for their feature executionTime. Hence any time the feature executionTime

changes for any of the above-mentioned nodes, the derived attribute isSlow will have

to be recomputed (and only then). As demonstrated by [73], this approach works for

expressions of arbitrary complexity as long as they are deterministic (they do not intro-

duce any randomness using random number generators, hash-maps or other genuinely

unordered collections). As EOL defaults to using Sequences for collections and does not

inherently use random number generators, as long as the expressions provided do not

specifically introduce non-determinism, this approach is sound [73].

136

4.3. System Design

Algorithm 5: Derived attribute incremental update algorithm

1 let nodesToBeUpdated be the set containing the derived attribute nodes which

will have to be updated – initially empty

2 foreach change in the collection of changes do

3 if the change is a model element addition/deletion then

4 add any derived attribute which accesses this element (or any of its

structural features) to nodesToBeUpdated

5 else if the change is an attribute/reference value alteration then

6 add any derived attribute which accesses this structural feature to

nodesToBeUpdated

7 end

8 end

9 foreach node in nodesToBeUpdated do

10 re-compute the value of the (derived attribute) node

11 update the accesses to the new elements/features this node now requires

12 end

4.3.8.3. Database Indexing

Another effective way to increase query efficiency is to create custom database indexes

of interesting attributes – at model indexing time – so that they can be used to speed

up particular queries of interest. Using the bpmn loan example, we can index the

“executionTime” attribute of tasks, as shown in Figure 4.11.

By effectively caching this information into a database index, a query requesting

all tasks taking longer than an hour can be optimized so that it does not have to

iterate though all the tasks in the model index, but instead it can directly compare

the integer 3600 (as execution time is in seconds) to the keys of the index named

“http://bpmn_simplified#Task#executionTime”, which contains the values of

the attribute “executionTime” of the instances of type “Task” in the metamodel with

unique identifier “http://bpmn simplified”.

Any model attribute can be indexed in Hawk, a process performed during model

137

http://bpmn_simplified#Task#executionTime

4. Hawk: Scalable Model Indexing Framework

Figure 4.11.: Example of database indexing in Hawk

insertion into the Hawk model index. When Hawk updates any changes made to any

models it is indexing, such attributes are updated in the database indexes automatically.

Section 5.3.3 evaluates this feature.

4.3.8.4. Querying an optimized Hawk Model Index

In order to be able to use indexed attributes to speed up queries, any query engine

(such as the Epsilon Query Engine we have implemented) needs to be aware of possible

attribute indexes and how to handle them. The first step is to make the engine aware

that in certain situations it can avoid requesting a collection of results by going to the

model index and iterating through its contents, but can circumvent this procedure and

use the custom (database) indexes found in the model index to retrieve the exact results

directly. In Epsilon, this is done by creating a collection implementing the IAbstractOp-

erationContributor interface, so that it can use these database indexes to optimize the

performance of filtering operations performed on it.

This is implemented by introducing an OptimisableCollection, which extends the Java

HashSet class (which in turn extends Collection). This custom collection keeps various

138

4.3. System Design

meta-items of the context in which it was created, so that should a relevant operation

be called on it, it can possibly use an optimized approach. More specifically, it keeps

a pointer to the IModel which created it, one to a Node in the database which denotes

the type of the elements in this collection, and a custom SelectOperation which it uses.

A select operation in Epsilon takes a collection of model elements and returns a subset

of this collection that satisfies a boolean condition (various other logical operations such

as exists, reject etc. use this operation to be computed).

It is notable that such OptimisableCollections are only created when a .getAllOfType

or .getAllOfKind operation is called in an EOL program and hence its contents are all

of a common (super-)type. Furthermore since this collection is created by a .getAll*

operation, we know that it contains a complete set of instances of the type and as such

traversing it may be optimizable, should any of the attributes of the type be database

indexed (a detailed discussion of how a query on a collection of elements is optimizable

is detailed below).

Now, should a select operation be called by Epsilon upon an OptimisableCollection,

Hawk’s custom SelectOperation triggers (instead of the default Epsilon one) and will

attempt to optimize the selection of elements if possible:

1. If the select condition contains an expression of the form “x.attr ? value” (where ?

denotes a comparison operator26 – thus is potentially optimizable by use of custom

attribute indexes), instead of iterating through the collection and comparing the

‘value’ of attribute ‘attr’ with the value of each element, it first checks whether an

index of attribute ‘attr’ exists for elements of that type. If such an index exists,

it is used to directly get the sub-collection required without having to perform a

costly traversal of all the persisted elements (hence the expression is optimizable).

2. If the select condition contains an expression containing one of the operators: and,

or, xor, implies & not, it will be decomposed every time such an operator is found,

using the following strategy:

a) If the select condition contains an expression of the form “a and b” where

‘a’ & ‘b’ are arbitrary sub-expressions, it will first check whether ‘a’ or ‘b’

are optimizable (i.e. they satisfy step 1). If both are optimizable, it will

26 ie: <element collection>.select(x | x.attr = value), <element collection>.select(x | x.attr > value),

<element collection>.select(x | x.attr < value), <element collection>.select(x | x.attr >= value),

<element collection>.select(x | x.attr <= value)

139

4. Hawk: Scalable Model Indexing Framework

return a collection containing the set intersection of the results satisfying ‘a’

and those satisfying ‘b’. If only one of the two is optimizable, it will create

a collection of the relevant results (of the optimizable sub-expression) and

attempt to decompose the other sub-expression (using step 2), defaulting to

passing the computed collection (returned by the abovementioned optimized

sub-expression execution) to the default EOL driver for executing the non-

optimizable sub-expression on this collection (effectively performing efficient

partial filtering as it will pass a potentially much smaller collection to the

Epsilon driver). If none of the two expressions are optimizable it will pass

each sub-expression (‘a’ & ‘b’) to be further decomposed (using step 2) and

then will take their computed results and perform a set intersection on them.

For example:

• if the expression is: Task.all.select(t | t.executionTime > 100 and t.execu

tionTime < 200) and the attribute index of ‘executionTime’ is present,

both expressions will be optimized and their results will be set-intersected.

• if the expression is: Task.all.select(t | t.executionTime > 0 and t.out

Flows.size > 1) and the index of ‘executionTime’ is present, the left

hand side (t.executionTime > 0) will be optimized and the right hand

side will be passed to the default Epsilon execution engine for evaluation

(as it cannot be further decomposed), with the result calculated from the

left hand side as the element collection provided to the engine – instead

of the original, larger collection of all Tasks). The result provided by the

Epsilon execution engine will be returned.

• if the expression is: Task.all.select(t | t.executionTime > 0 and t.execution

Time < 100 and t.outFlows.size > 1) with the index of ‘executionTime’

being present, the sub-expression (t.executionTime > 0) will be opti-

mized and the remaining sub-expression will be decomposed (providing

it the result of the optimized execution as its element collection). Then

the (t.executionTime < 100) sub-expression will be optimized and the

remaining sub-expression will be passed to the default Epsilon execution

engine for evaluation (on the new, even smaller element collection, cal-

culated using the previous optimized executions of both sub-expressions

above), with the results of the first two (optimized) executions being

140

4.3. System Design

set-unioned and then the resulting collection set-unioned with the third

(non-optimized) execution results.

b) If the select condition contains an expression of the form “a or b” where ‘a’ &

‘b’ are arbitrary sub-expressions, it will first check whether ‘a’ & ‘b’ are both

optimizable. If both are optimizable, it will return a collection containing

the set union of the results satisfying ‘a’ and those satisfying ‘b’. If one or

none of the two expressions are optimizable it will attempt to decompose the

sub-expressions ‘a’ & ‘b’ (using step 2) and then will take their results and

perform a set union on them. For example:

• if the expression is: Task.all.select(t | t.executionTime < 100 or t.execu

tionTime > 200) and the attribute index of ‘executionTime’ is present,

both expressions will be optimized and their results will be set-unioned.

• if the expression is: Task.all.select(t | t.executionTime < 100 or t.execu

tionTime > 200 and t.outFlows.size > 1) with the index of ‘execution-

Time’ being present, the sub-expression (t.executionTime > 0) will be

optimized and the remaining sub-expression will be decomposed (pro-

viding it the result of the optimized execution as its element collection).

Then the (t.executionTime < 100) sub-expression will be optimized

and the remaining sub-expression will be passed to the default Epsilon

execution engine for evaluation (on the new, even smaller element col-

lection, calculated using the previous optimized executions of both sub-

expressions above), with the results of the first two (optimized) executions

being unioned and then the resulting collection set-intersected with the

third (non-optimized) execution results.

c) If the select condition contains an expression of the form “a xor b” where ‘a’ &

‘b’ are arbitrary sub-expressions, it will first check whether ‘a’ & ‘b’ are both

optimizable. If both are optimizable, it will return a collection containing

members of the collection satisfying ‘a’ or members satisfying ‘b’ but not

ones satisfying both. If one or none of the two expressions are optimizable it

attempt to decompose the sub-expressions ‘a’ & ‘b’ (using step 2) and then will

take their results and perform the abovementioned exclusive or comparison

on them.

d) If the select condition contains an expression of the form “a implies b” where

141

4. Hawk: Scalable Model Indexing Framework

‘a’ & ‘b’ are arbitrary sub-expressions, it will first check whether ‘a’ & ‘b’

are both optimizable. If both are optimizable, it will return the original

collection with members of it which satisfy ‘a’ removed (from the original

source collection) and members satisfying ‘b’ re-added (if not already present

– effectively performing “not(a) or b”). If ‘a’ is optimizable it will firstly get

the collection satisfying ‘a’. It will then use this sub-collection as the source

collection the filter of ‘b’ runs on. It will then create a collection containing

elements of the sub-collection of ‘a’ minus those of the sub collection of ‘b’ and

return the original collection minus this one (effectively performing “not(a and

not(b))”); similarly if ‘b’ is optimizable. If none of the two expressions are

optimizable it will attempt to decompose the sub-expressions ‘a’ & ‘b’ (using

step 2) and then will take their results and perform the abovementioned

implication comparison on them.

e) If the select condition contains an expression of the form “not(a)” where ‘a’ is

an arbitrary sub-expression, it will first check whether ‘a’ is optimizable. If it

is, it will return the result of the original source collection minus the elements

satisfying ‘a’. If it is not, it will attempt to decompose the sub-expression ‘a’

(using step 2) and then will take the result and perform the abovementioned

negation operation on it.

3. Should the select condition contain any other expression (or sub-expression that

cannot be further decomposed using step 2) it delegates to the default Epsilon

SelectOperation execute() method, to perform the job (providing it the relevant

source collection, possibly shrunk by performing partial optimized executions as

detailed above).

4.3.9. Summary

This section detailed the design of the model indexing system (Hawk). It presented the

model index structure and explained the importance of each of its key elements (such as

File nodes, Element nodes, etc.). It then discussed the two mapping layers the system

offers and their importance in offering an extensible system capable of incorporating

new back-ends and model persistence technologies on demand, in the form of pluggable

drivers. Information about the various components of the system was then provided:

for the version control and modeling components the focus was on their extensibility,

142

4.4. Implementation

whist for the querying and updating components the focus was on performance. Finally,

this section demonstrated how the use of derived attributes and database indexing can

offer potential performance improvements for querying whilst attempting to minimize

their overhead on the system. The following Section 4.4 offers a concise summary of the

implementation details of the Hawk model indexing prototype developed as part of this

work, whilst Chapter 5 evaluates the various features and optimizations presented here.

4.4. Implementation

This section details the implementation details of the current Hawk prototype; a user

guide can be found in Appendix C.

4.4.1. Eclipse Plugins

Even though Hawk can run as a standalone Java application if need be, it offers Eclipse

IDE integration for providing an administrator user interface and automating relevant

lifecycle operations.

The structure of Hawk’s primary plugins is as follows:

• org.hawk.core plugin This plugin (from now on referred to as the “core” plugin)

contains all the interfaces of Hawk as well as the necessary implementation classes

for running the main Hawk controller IModelIndexer. It only depends on the

org.hawk.core.dependencies plugin. It defines all the extension points to used by

other plugins in order to be automatically discovered upon initializing Hawk:

org.hawk.core.ModelExtensionPoint extension point Allows extensions defining

new types of model resource factories to be added to Hawk.

org.hawk.core.MetaModelExtensionPoint extension point Allows extensions de-

fining new types of metamodel resource factories to be added to Hawk.

org.hawk.core.QueryExtensionPoint extension point Allows extensions defining

new types of query engines to be added to Hawk.

org.hawk.core.ModelUpdaterExtensionPoint extension point Allows extensions

defining new types of model updater to be added to Hawk.

org.hawk.core.MetaModelUpdaterExtensionPoint extension point Allows exten-

sions defining new types of metamodel updater to be added to Hawk.

143

4. Hawk: Scalable Model Indexing Framework

org.hawk.core.BackEndExtensionPoint extension point Allows extensions defin-

ing new types of back-end stores (IGraphDatabases) to be used by Hawk.

org.hawk.core.VCSExtensionPoint extension point Allows extensions defining

new version control managers be added to Hawk.

• org.hawk.core.dependencies plugin This plugin contains all the (publicly available

– license compliant) dependencies of the core plugin. Currently the only depen-

dency is xstream-1.4.8.jar, used to serialize and deserialize Hawk metadata used

for persisting its model indexes between runs.

• org.hawk.emf plugin This plugin contains the necessary implementations for read-

ing EMF XMI-based metamodels and models into memory. It depends on the core

plugin as well as the org.eclipse.emf.ecore and org.eclipse.emf.ecore.xmi plugins.

These plugins can be obtained either automatically in any Eclipse modeling tools

distribution or manually from the EMF Eclipse update site. It implements exten-

sions for Hawk’s ModelExtensionPoint and MetaModelExtensionPoint extension

points.

• org.hawk.bpmn plugin This plugin contains the necessary implementations for read-

ing BPMN EMF XMI-based metamodels and models into memory. It depends on

the core plugin as well as the org.eclipse.emf.ecore, org.eclipse.emf.ecore.xmi and

org.eclipse.bpmn2 plugins. These plugins (except the BPMN one) can be obtained

either automatically in any Eclipse modeling tools distribution or manually from

the EMF Eclipse update site. The BPMN plugin can be obtained from the relevant

Eclipse update site27. It implements extensions for Hawk’s ModelExtensionPoint

and MetaModelExtensionPoint extension points.

• org.hawk.graph plugin This plugin contains the necessary implementations for up-

dating metamodels or models in Hawk. It depends on the core plugin. It im-

plements extensions for Hawk’s MetaModelUpdaterExtensionPoint and ModelUp-

daterExtensionPoint extension points.

• org.hawk.svn plugin This plugin contains the necessary implementations for con-

necting to an SVN version control system in Hawk. It depends on the core plugin

as well as org.tmatesoft.svnkit and org.tmatesoft.sqljet plugins. These plugins can

27http://download.eclipse.org/bpmn2-modeler/updates

144

http://download.eclipse.org/bpmn2-modeler/updates

4.4. Implementation

be found in the Eclipse update site of the official svnkit website. It implements an

extension for Hawk’s VCSExtensionPoint extension point.

• org.hawk.localfolder plugin This plugin contains the necessary implementations for

using a local folder as a pseudo-version control system in Hawk. It depends on the

core plugin. It implements an extension for Hawk’s VCSExtensionPoint extension

point.

• org.hawk.git plugin This plugin contains the necessary implementations for using

a local git repository as a version control system in Hawk. It depends on the

core plugin. It implements an extension for Hawk’s VCSExtensionPoint extension

point.

• org.hawk.neo4j-v2 plugin This plugin contains the necessary implementations for

connecting with a Neo4J NoSQL database. It depends on the core plugin as well as

the org.hawk.neo4j-v2.dependencies plugin. It implements an extension for Hawk’s

BackEndExtensionPoint extension point.

• org.hawk.neo4j-v2.dependencies plugin This plugin contains the necessary Neo4J

files for running a Neo4J database. As Neo4J has a non-compatible license with

the Eclipse public license of Hawk, the relevant .jars are not included in the plugin,

only references to which ones are needed. A public open-source release of these

Neo4J files can be found in the official Neo4J website under community downloads.

• org.hawk.epsilon plugin This plugin contains the necessary implementations for

using the Epsilon model suite to perform queries on Hawk. It depends on the

core plugin as well as the org.eclipse.epsilon.eol.engine plugin. This plugin can

be obtained from the public distribution of the Epsilon toolset in Eclipse. It

implements an extension for Hawk’s QueryExtensionPoint extension point.

• org.hawk.ui.emc.dt2 plugin This plugin contains the necessary implementations

for adding Hawk to the repositories available in the Epsilon platform, in or-

der to integrate with the current workflow of Epsilon. It depends on the core

plugin, the epsilon plugin (of Hawk), the UI plugin (of Hawk) as well as on

org.eclipse.epsilon.common.dt (can be found in the same place as the other Ep-

silon plugins needed for the Hawk Epsilon plugin).

145

4. Hawk: Scalable Model Indexing Framework

• org.hawk.osgiserver plugin This plugin contains the necessary implementations for

running Hawk server in a headless OSGI environment. It depends on the core

plugin, as well as various standard Eclipse plugins that expose OSGI functionality.

• org.hawk.ui2 plugin This plugin (UI plugin) contains the necessary implementations

for offering a user interface for Hawk integrated into Eclipse (by extending the

osgiserver plugin). It depends on the core plugin, the osgiserver plugin, as well as

various standard Eclipse UI plugins.

Furthermore, various other plugins were developed in the scope of the MONDO project

(in collaboration with Dr. Seyyed Shah and Dr. Antonio Garcia Dominguez)

• org.hawk.ifc plugin This plugin contains the necessary implementations for reading

Building Information Modeling (BIM) Industry Foundation Classes (IFC)-based

metamodels and models into memory. It depends on the core plugin as well as the

org.eclipse.emf.ecore and org.eclipse.emf.ecore.xmi plugins. It implements exten-

sions for Hawk’s ModelExtensionPoint and MetaModelExtensionPoint extension

points.

• org.hawk.modelio plugin This plugin contains the necessary implementations for

reading Modelio-based metamodels and models into memory. It depends on the

core plugin, the org.eclipse.emf.ecore and org.eclipse.emf.ecore.xmi plugins, as well

as various Modelio plugins. The Modelio plugins can be found in the public open-

source distribution of the Modelio tool found online. It implements extensions for

Hawk’s ModelExtensionPoint and MetaModelExtensionPoint extension points.

• org.hawk.emfresource plugin This plugin contains the necessary implementations

for exposing a Hawk model index as a standard EMF resource. It depends on the

core and graph plugins as well as the org.eclipse.emf.ecore plugin.

• org.hawk.orientdb plugin This plugin contains the necessary implementations for

connecting with an OrientDB NoSQL database. It depends on the core plugin. It

implements an extension for Hawk’s BackEndExtensionPoint extension point.

• org.hawk.workspace plugin This plugin contains the necessary implementations for

connecting to an active Eclipse Workspace as a version control system in Hawk.

It depends on the core plugin as well as various standard Eclipse plugins. It

implements an extension for Hawk’s VCSExtensionPoint extension point.

146

4.4. Implementation

• org.hawk.ui.emfresource plugin This plugin contains the necessary UI implemen-

tations for exposing a Hawk EMF resource and for using an optimized version

of the Epsilon Exeed tree editor with Hawk. IT depends on the core, graph, os-

giserver, UI and emfresource plugins as well as the org.eclipse.emf.ecore and the

org.eclipse.epsilon.dt.exeed plugins.

All relevant API operations are exposed through a GUI in the form of an Eclipse view,

a detailed presentation of which can be found in Appendix C.

147

5. Evaluation

This chapter evaluates the research hypothesis by presenting the evaluation strategy,

evaluation benchmarks and evaluation results obtained during this work. The evaluation

strategy Section 5.1 presents which aspects of Hawk can be evaluated, detailing the use-

cases covered in each case. It discusses how each scenario offers unique and critical

insight into the relevant functional and non-functional aspects of Hawk that are to be

evaluated. The evaluation benchmarks Section 5.2 outlines the various benchmarks

used in the evaluation. It presents each one and summarizes its relevance with respect

to validating the research hypothesis. The evaluation results Section 5.3 uses the various

benchmarks presented to test the various functional and non functional requirements of

Hawk, with the tool integration Section 5.4 performing a qualitative evaluation of Hawk’s

architecture. Finally Section 5.6 summarizing the findings and how they validate the

research hypothesis.

5.1. Evaluation Strategy

Evaluating the various aspects of a component-based system like Hawk firstly requires

splitting them into their distinct categories. This section presents them and discusses

the relevance of each one. Two primary categories, that of correctness and that of per-

formance, are identified, each broken down into relevant scenarios clarifying the specific

aspect of Hawk being looked at.

5.1.1. Correctness

Evaluating the correctness of the algorithms used in Hawk can be broken down into two

aspects: the correctness of the contents of the model index (reflecting the correctness of

the various algorithms used to insert and update models into Hawk) and the correctness

of the results returned by querying this index.

149

5. Evaluation

5.1.1.1. Index Content Correctness

As Hawk is a model index that stores copies of models, an important aspect to evaluate

is the correctness of this index with respect to the model files it is monitoring. More

specifically there are three scenarios to consider:

• A new model file is found and inserted into Hawk. In this scenario we need to

ensure that Hawk now contains the contents of the new file, that the previous

contents of Hawk are unaltered, that any proxy references pointing to the new

file are resolved and that any derived attributes that need updating are updated

correctly.

• An existing model file is updated and the changes need to be propagated into

Hawk. In this scenario we need to ensure that the updated version of the model

is propagated to Hawk so that the index now matches the new version, that the

remaining (unaffected) contents of the index are unaltered, that any proxy refer-

ences pointing to the changed file are resolved and that any derived attributes that

need updating are updated correctly.

• A model file is deleted and needs to be removed from Hawk. In this scenario we

need to ensure that any elements of the deleted file are removed from hawk, that

the remaining contents of Hawk are unaltered, that any references to the deleted

file from other files are kept as proxies and that any derived attributes that need

updating are updated correctly.

By handling these three cases we are able to ensure consistency in the model index

under normal execution as any compound change such as files being moved can be broken

down to a sequence of the aforementioned changes. By a consistent state of the model

index we mean the contents of the index for that version of the model reflect the contents

of the original model, so that regardless of whether a user retrieves information from

Hawk or the original model, the same results are returned.

To ensure consistency under failure we need to ensure that changes are transactional

and that any failure is rolled back to a previous stable state, so that hawk can retry the

change the next time it is able to.

In order to hook into these changes we use the change notification framework provided

by Hawk (Section 4.3.2.2) and run the Hawk validation listener (detailed below) after

Hawk attempts to synchronize with its monitored repositories.

150

5.1. Evaluation Strategy

Readers can refer to sections 5.3.4.2 and 5.4.4.2 for empirical data collected on tool

correctness.

5.1.1.2. Hawk Validation Listener

Using Hawk’s update notification framework (presented in Section 4.3.2.2) a validation

tool has been created that allows for checking Hawk’s consistency; this tool also outputs

various interesting metrics regarding each of Hawk’s synchronizations performed (one

such analysis is performed for each repository Hawk is currently watching over). The

tool has two modes, one which only records metrics for each update process and one

which also does a full two-way analysis of the Hawk index and the changed resources

in order to validate Hawk’s consistency. The first mode has little to no impact on

performance but the second mode has a large overhead as it not only performs a costly

comparison (presented below) but it also requires that Hawk keeps open ALL resources

used during a synchronize so that it can be given them to use for its validation (normally

Hawk can dispose of any resource used and only have one open at a time, in order to

use less memory).

Metrics provided are the following:

• total number of model files present in the current commit.

• number of changed model files Hawk needs to update.

• number of deleted model files Hawk needs to remove.

• number of changed model files successfully loaded into resources using their relevant

model factory.

• number of model elements changed during this update (added or updated into

Hawk).

• number of model elements deleted during this update (either due to the model file

being deleted or the element being deleted in the latest version of the model file).

• time taken for the synchronize to complete (not counting the time taken for this

tool to perform its analysis/validation).

Furthermore, should validation mode be enabled, this tool also performs a comprehen-

sive two-way comparison between the current version of Hawk and any model resources

151

5. Evaluation

used in this synchronize. More specifically, this process performs Algorithm 6, which

checks that for each model resource Hawk contains exactly the elements found in the

resource (and no other elements) and that for each such element its attributes and ref-

erences match the ones of the resource itself. If any inconsistency is found (either in the

model itself or in Hawk’s indexing of the model) it is output by the tool for informative

and debug purposes.

5.1.1.3. Query Correctness

In order to ensure correct results to queries performed on Hawk (Section 2.2.3), it is

not sufficient to have confidence in the contents of the model index alone, there is the

need to ensure that the query engines used to query Hawk are also correct. The index

is said to offer correct querying results when for any query, regardless on whether it is

executed on the model index or the original model itself, the same results are returned.

In practice, as testing all possible queries is not possible, empirical data can be gathered

using a collection of queries whose results are known beforehand, and comparing the

results obtained by querying hawk to these results. Refer to sections 5.3.1.2 and 5.4.4.2

for more details.

5.1.2. Performance

As one of Hawk’s non-functional requirements is performance when dealing with large-

scale models, evaluating this aspect is essential. This evaluation can be broken down

into two main areas: query performance and update performance.

5.1.2.1. Query Performance

Hawk aims at enabling performant global queries on models indexed by it. As such,

regardless of how large or how many models are stored in Hawk it should be able to

seamlessly handle queries provided to it in an efficient manner. As described in Sec-

tion 4.3.1, as the contents of Hawk’s model indexes are stored as homogeneous property

graphs performant global querying can be achieved by retrieving the necessary informa-

tion from the required elements in the graph. Empirical data gathered on querying large

models can be found in Section 5.3.1.2 and improvements observed when using derived

and indexed attributes can be found in Section 5.3.3.2.

152

5.1. Evaluation Strategy

Algorithm 6: Validation algorithm

1 let totalGraphSize be the number of model elements in Hawk that are contained

in one of the model files changed in this commit

2 let totalResourceSize be the number of model elements in all of the loaded

resources of model files changed in this commit

3 foreach changed model file in this commit do

4 retrieve the model resource created by Hawk for this model file

5 add the size of the resource to totalResourceSize

6 foreach graph node in Hawk linked to the current model file do

7 add one to totalGraphSize

8 if the node cannot be mapped to a model element in the resource then

9 inform that validation has failed alongside information about this

node which is not in the model resource

10 else

11 compare the attribute values of the node with the values of the model

element in the resource, informing of any inconsistencies and failing

the validation if there are any

12 compare the reference values of the node with the values of the

element, informing of any inconsistencies and failing the validation if

there are any

13 end

14 end

15 if there are any left over model elements not mapped to a node then

16 inform that validation has failed alongside information about the model

elements not found in Hawk

17 end

18 end

19 if totalGraphSize not equal to totalResourceSize then

20 inform that validation has failed as Hawk and the loaded resources do not

contain an identical number of model elements

21 end

153

5. Evaluation

5.1.2.2. Update Performance

Hawk needs to have the ability to handle evolving models stored in version control

systems (Section 4.1). As such it needs the ability to efficiently update its contents every

time any monitored model is changed. Furthermore it needs to efficiently re-compute its

derived attributes so that their values reflect the new state of the index.

Updating few large models. The first benchmark performed (Section 5.3.1) covers

updating a small set of large models (in the order of millions of model elements) and

attempted to push Hawk to its limits with regards to the number of changes in each

update.

Updating many small models. The next benchmark (Section 5.3.4) covers updating a

large set of smaller models and aimed to demonstrate Hawks efficiency in handling large

amounts of small changes to an index comprised hundreds of models.

5.1.3. Tool Integration

One of the envisioned benefits of Hawk is that it allows for easy integration with current

tools as it provides an orthogonal technology to current model storage and through

its simple generic API. As part of the integration efforts in the MONDO project (in

collaboration with Dr. Antonio Garcia Dominguez and Gábor Szárnyas), several tools

have been integrated with Hawk. Details can be found in section 5.4.

5.1.4. Architecture Evaluation

As Hawk aims to provide an extensible heterogeneous model indexing framework, eval-

uating the extent to which its architecture can be used with various modeling and data

persistence technologies is needed. Details on this can be found in Section 5.5.

5.2. Evaluation Benchmarks

This section presents the sources for the benchmarks used to evaluate Hawk. In each

case the reason for selection is discussed alongside details about the various artefacts

used. The first case-study focuses on monolithic models of increasing sizes (reaching the

order of millions of model elements) and offers a complex query that can be used to

154

5.2. Evaluation Benchmarks

evaluate the performance of querying the model index. The second focuses on a large

collection of (hundreds) of smaller models, which have been evolving, providing hundreds

of different versions of this collection; this benchmark lends itself to evaluating Hawk’s

update procedures in terms of correctness and performance.

5.2.1. Grabats 2009 Case-Study

To obtain meaningful evaluation results when using large models, large-scale models

extracted by reverse engineering existing Java code are used. In particular, the up-

dated version of the JDTAST metamodel used in the SharenGo Java Legacy Reverse-

Engineering MoDisco [74] use case, presented in the Grabats 2009 contest [75] described

below, as well as the five models also provided in the contest.

Figure 5.1.: Small subset of the Java JDTAST metamodel

A subset of the Java JDTAST metamodel is presented in Figure 5.1. In this figure,

there are TypeDeclarations that are used to represent Java classes and interfaces, Method-

Declarations that are used to define Java methods (in classes or interfaces, for example)

and Modifiers that are used to represent Java modifiers (like static or synchronized) for

Java classes or Java methods.

155

5. Evaluation

The Grabats 2009 contest comprised several tasks, including the case study used in

this work, for benchmarking different model querying and pattern detection technologies.

More specifically, task 1 of this case study is performed, using all of the case studies’

models, set0 – set4 (which represent progressively larger models, from one with 70,447

model elements (set0) to one with 4,961,779 model elements (set4)), all of which conform

to the JDTAST metamodel.

These models are injected into the persistence technologies used in the benchmark

(insertion benchmark) and then queried using the Grabats 2009 task 1 query (query

benchmark) [76]. This query requests all instances of TypeDeclaration elements which

declare at least one MethodDeclaration that has static and public modifiers and the

declared type being its returning type (i.e. singleton candidates).

5.2.1.1. Grabats Query

A model index like Hawk can be queried in a variety of ways, ranging from native Java,

technology-specific query languages such as Cypher (for a Neo4J backend), or general-

purpose languages such as Epsilon’s EOL.

Below we see the Grabats query written in these three forms:

Listing 5.1: Code excerpt for the Grabats query implemented in Java for Neo4J

1 {

...

109 for (Relationship outEdge : typeDeclaration.getRelationships(

Direction.OUTGOING, DynamicRelationshipType.withName("

bodyDeclarations"))) {

110 Node methodDeclaration = outEdge.getEndNode();

111 if (new MetamodelUtils().isOfType(methodDeclaration,

new MetamodelUtils().eClassNSURI(methodDeclarationClass))) {

112 boolean isPublic;

113 boolean isStatic;

114 String currMethodName;

115 for (Relationship methodDeclarationOutEdge :

methodDeclaration.getRelationships(Direction.OUTGOING,

DynamicRelationshipType.withName("name"))) {

116 Node name = methodDeclarationOutEdge.getEndNode();

156

5.2. Evaluation Benchmarks

117 currMethodName = name.getProperty("fullyQualifiedName").

toString(); }

118 for (Relationship methodDeclarationOutEdge :

methodDeclaration.getRelationships(Direction.OUTGOING,

DynamicRelationshipType.withName("modifiers"))) {

...

191 }

Listing 5.2: Code excerpt for the Grabats query implemented in Cypher for Neo4J

1 ExecutionEngine engine = new ExecutionEngine(graph);

2 ExecutionResult result = engine.execute("

START dom=node:METAMODELINDEX(’id:org.amma.dsl.jdt.dom’)

MATCH dom<-[]-(td{id:’TypeDeclaration’})<-[:typeOf]-(node)

MATCH node-[:bodyDeclarations]->(methodnode)-[:modifiers]->(

modifiernode{public:true})

MATCH methodnode-[:modifiers]->({static:true})

MATCH node-[:name]->(nodename)

MATCH methodnode-[:returnType]->()-[:name]->(returntypename)

WHERE nodename.fullyQualifiedName=returntypename.

fullyQualifiedName

MATCH methodnode-[:name]->(methodnodename)

RETURN DISTINCT nodename.fullyQualifiedName,methodnodename.

fullyQualifiedName

");

Listing 5.3: The Grabats 2009 query expressed in EOL

1 TypeDeclaration.all.select(

td|td.bodyDeclarations.exists(

md:MethodDeclaration|

md.modifiers.exists(mod:Modifier|mod.public==true) and

md.modifiers.exists(mod:Modifier|mod.static==true) and

md.returnType.isTypeOf(SimpleType) and

md.returnType.name.fullyQualifiedName == td.name.

fullyQualifiedName

157

5. Evaluation

)

);

In Section 5.3.1, we use the Hawk Epsilon driver to evaluate the impact of using EOL as

a higher-level query language in terms of performance and in order to evaluate Hawk’s

effectiveness in handling this class of queries on large models.

5.2.2. The BPMN MIWG Test Suite Repository

The BPMN Model Interchange Working Group (MIWG) at the OMG has created a

repository holding data about BPMN-based tools1. They have provided a set of eleven

reference BPMN models, both in XML and graphical form, and invite any tool using

BPMN models to use them in order to test its compatibility.

They record the results each tool obtains for up to four test cases (as many as the

tool in question supports):

• Import. The tool uses the XML representation of the reference models in order

to import them. The graphical representation of the model that is generated by

the tool is then compared to the reference image to determine whether the tool

provides a similar enough figure.

• Export. The tool is used to draw graphical representations of the reference models.

The tool then saves these representations and exports them as XMLs. The resulting

XMLs are then compared to the reference model XMLs.

• Roundtrip. The tool is used to import the reference XML models. The tool

then saves the graphical representations generated and proceeds to export the

XML representations of the models it initially imported. These XMLs are then

compared to the original reference model XMLs.

• Cross-test. The abovementioned roundtrip technique is used with the XML repre-

sentations of models exported by other tools contributing to this test suite instead

of using the original reference models. The resulting XMLs are then compared to

the reference model XMLs.

1 https://github.com/bpmn-miwg/bpmn-miwg-test-suite

158

https://github.com/bpmn-miwg/bpmn-miwg-test-suite

5.3. Evaluation Results

Currently (October 2015), 28 tools contribute data to this repository, resulting in

hundreds of variants of the original BPMN models being stored in it, alongside hundreds

of revisions representing the evolution of this test suite over time.

The combination of a large set of versions with a large collection of models lends itself

nicely for evaluating Hawk’s ability to rapidly synchronize with many changed models.

Section 5.3.4 discusses the results obtained when indexing the various versions of the

models with Hawk.

5.3. Evaluation Results

This section presents an analysis of the empirical data obtained running the evalua-

tion benchmarks described above. Hawk’s model insertion, model updating and query

execution are investigated, focusing on its performance when compared to relevant state-

of-the-art tools. As this work spans a substantial time-frame, the execution environment

used may vary from case to case, and so is explicitly stated.

5.3.1. Benchmarking of Model Insertion and Querying Using Native Java

and EOL

In this section, XMI, Teneo/Hibernate using a MySQL server, CDO (using its default

H2 SQL database as well as with a MySQL server) and two prototype Hawk drivers

(using Neo4J and OrientDB) implemented in this work are compared to assess their

performance and efficiency in terms of memory use. It is worth noting that an attempt

for running Morsa (Section 2.2.1.3) in the same environment did not succeed due to lack

of documentation. This work on benchmarking model insertion and querying has been

published in [34].

Execution Environment Performance figures that have been measured on a PC with

Intel(R) Core(TM) i5-2300 CPU @ 2.80GHz, with 8GB of physical memory, and running

the Windows 7 (64 bits) operating system are presented. The Java Virtual Machine

(JVM) version 1.6.0 25-b06 has been restarted for each measure as well as for each of

the 20 repetitions of each measure.

Table 5.1 shows the configurations that have been used for the JVM and for the

relevant databases aiming to optimize execution time and were obtained empirically.

159

5. Evaluation

Table 5.1.: Configuration options for benchmarks

Config
Persistence Mechanism

XMI Teneo/Hibernate CDO[H2] CDO[MySQL] Hawk[Neo4J] Hawk[OrientDB]

JVM -Xmx6G -Xmx6G -Xmx5G -Xmx5G -Xmx6G -Xmx5G

Database n/a default default default 2.2G MMIO 1.5G MMIO

MMIO stands for memory-mapped file IO, provided by most operating systems such as

Windows2 or Linux3, a feature leveraged by many NoSQL databases, that allows them

to rapidly access file-based storage mirrored in RAM in order to gain performance .

5.3.1.1. Model Insertion

Tables 5.2 and 5.3 show the results for the insertion of an XMI model into the databases.

We assume availability of XMI model files so models written to an XMI file are omitted.

Regarding insertion time, Teneo/Hibernate did not successfully insert set2 – set4 and

CDO did not successfully insert set3 – set4 (neither with H2 nor with MySQL), as

even with maximum memory allocated to both client and server in both cases, they

threw an exception, so values are omitted. For small model sizes, in the order of tens

of megabytes (set0, set1), CDO performs the best but for larger ones, in the order of

hundreds of megabytes (set2 – set4), Hawk[Neo4J] and Hawk[OrientDB] are not only able

to store them successfully, but for set2 do so faster than CDO.

5.3.1.2. Query Execution Time and Memory Footprint

Table 5.4 shows the results for performing the Grabats query (Section 5.2.1.1) on the

databases. As previously mentioned, the Grabats query finds all occurrences of Type-

Declaration elements that declare at least one public static method with the declared

type as its returning type.

2 https://msdn.microsoft.com/en-us/library/dd997372(v=vs.110).aspx
3 http://pubs.opengroup.org/onlinepubs/9699919799/functions/mmap.html

160

https://msdn.microsoft.com/en-us/library/dd997372(v=vs.110).aspx
http://pubs.opengroup.org/onlinepubs/9699919799/functions/mmap.html

5.3. Evaluation Results

Table 5.2.: Model insertion (persistent to database) size results

Model
Size (in MB)

XMI Teneo/Hibernate CDO[H2] CDO[MySQL] Hawk[Neo4J] Hawk[OrientDB]

Set0 8.75 38.6 26.0 34.8 29.4 53.6

Set1 26.59 83.1 67.0 75.7 85.9 134.0

Set2 270.12 - 539 551 794 1197

Set3 597.67 - - - 1750 2591

Set4 645.53 - - - 1890 2789

Table 5.3.: Model insertion (persistent to database) execution time results

Model
Time taken (in seconds)

XMI Teneo/Hibernate CDO[H2] CDO[MySQL] Hawk[Neo4J] Hawk[OrientDB]

Set0 n/a 58.7 11.8 26.2 12.4 19.6

Set1 n/a 218.2 19.2 66.7 32.5 57.1

Set2 n/a - 778.5 647.5 499.1 590.8

Set3 n/a - - - 2210 2245

Set4 n/a - - - 2432 2397

161

5.
E
valu

atio
n

Table 5.4.: Grabats Query results (in seconds and MB)

Model Metric
Persistence Mechanism

XMI Teneo/Hib CDO[H2] CDO[MySQL] Hawk[Neo4J] Hawk[OrientDB] Hawk[Neo4J](EMC) Hawk[OrientDB](EMC)

Set0

Time 1.20 4.53 0.60 0.61 0.11 0.43 0.35 0.99

Mem (Max) 42 248 14 12 15 10 12 15

Mem (Avg) 19 117 12 9 11 10 11 12

Set1

Time 2.28 7.34 1.12 1.06 0.62 1.18 0.61 2.21

Mem (Max) 111 323 17 20 18 27 12 23

Mem (Avg) 48 176 13 17 13 17 11 14

Set2

Time 16.51 - 12.94 12.20 3.10 9.83 6.02 15.63

Mem (Max) 813 - 98 120 401 742 520 910

Mem (Avg) 432 - 32 70 195 255 280 390

Set3

Time 84.91 - - - 6.71 24.41 12.71 38.92

Mem (Max) 1750 - - - 960 2229 1320 2400

Mem (Avg) 844 - - - 620 881 520 750

Set4

Time 145.67 - - - 7.16 29.65 14.99 41.37

Mem (Max) 1850 - - - 1070 2463 1410 2540

Mem (Avg) 939 - - - 866 1314 810 870

16
2

5.3. Evaluation Results

As Teneo/Hibernate did not insert set2 – set4 and CDO did not insert set3 – set4

(neither with H2 nor MySQL), query values are omitted for these test cases. As can be

observed, Hawk[Neo4J] demonstrates the best performance in terms of execution time and

Hawk[OrientDB] is faster than XMI but also uses a comparable memory footprint. CDO

has the lowest memory consumption for the queries it can run (we are not considering

memory use of set0 and set1 as it is extremely low and the variance caused by the com-

puter itself is significant) but is also slower to execute than Hawk[Neo4J] and comparable

to Hawk[OrientDB].

Using this empirical data we can deduce that even though Hawk[OrientDB] is com-

petitive and can be an improvement to XMI even for the largest model sizes in this

benchmark, due to the fact that it is built atop a document store causes its performance

to be lower than that of Hawk[Neo4J], which uses a pure graph-based database.

The last two columns of Table 5.4 show the results for performing the Grabats query

using the Epsilon EMC layer to query the databases. The EMC layer allows Hawk to

connect with the Epsilon platform in order to be queried using EOL as an expression

language (Section 4.3.6.2). As can be expected this layer adds an overhead both in

memory and execution time, but the results are still greatly superior to XMI persistence.

Figure 5.3 compares the total time taken for Ecore’s XMI loader and our prototypes

to answer the query, starting from a model provided in an XMI file. The querying time

(at 0 times performed) is the time it takes to insert the model to the store as we assume

the availability only of the XMI files.

The total time is calculated assuming that the persistence mechanism is disconnected

from the query API each time but the persistence (of Hawk model indexes) is not deleted,

and can be used to visualize after how many such runs a Hawk-based solution would

be beneficial to deploy. It is worth noting that the query execution time for XMI, not

counting the loading of the resource is comparable to Hawk[Neo4J] query execution times

(seen in Table 5.4), so if a model only needs to be analyzed very few distinct times, with

multiple queries executed, XMI is still the fastest approach, assuming that the client can

handle the immense memory consumption it requires.

Regarding native querying, for set2, Hawk[Neo4J] is preferable to XMI after around 35

repeats while Hawk[OrientDB] after around 90. For set3, Hawk[Neo4J] is preferable after

around 28 while Hawk[OrientDB] after 37 repeats. For set4, Hawk[Neo4J] is preferable after

around 18 while Hawk[OrientDB] after 21 repeats.

We can observe that for any model size both Hawk solutions are beneficial after some

163

5. Evaluation

threshold, the larger the model size the earlier we can use Hawk solution to persist it

and that Hawk[Neo4J] is always more performant than Hawk[OrientDB].

Regarding EMC querying we observe that for set2, Hawk[OrientDB] has similar gradient

to XMI, with the lines only intersecting at around 2500 repeats and with Hawk[Neo4J]

still outperforming XMI at around 49 repeats. For set3 and set4, we see similar results

to native querying, with Hawk[Neo4J] surpassing XMI at 30 and 19 repeats respectively

and Hawk[OrientDB] at 53 and 23 respectively.

These results seem to show that the overhead of using Epsilon with Hawk[OrientDB] is

sufficient enough to cause it to only be negligibly more efficient than XMI for relatively

small model sizes (set0 – set2); when working with large enough model sizes (set3 – set4)

though, Hawk[OrientDB]’s EMC performance starts to reflect that of its native querying

with respect to XMI. Regarding Hawk[Neo4J], Epsilon’s overhead only minorly affects its

overall performance causing to be quickly surpass that of XMI for any model size.

5.3.1.3. Disc Space

As expected, Hawk[Neo4J] and Hawk[OrientDB] require more disk space than XMI. Figure

5.2 shows the ratios of relative disk space needed to store the different models (set0 –

set4) for the different technologies, using the results in Table 5.2.

0 1 2 3 4
0

1

2

3

4

5

6

7

R
at
io

Model: set(X)

Ratio: XMI - Hawk[Neo4J]

Ratio: Hawk[Neo4J] - Hawk[OrientDB]

Ratio: XMI - Hawk[OrientDB]

Figure 5.2.: Ratios of relative disk space used for the different persistence mechanisms

All three ratios, for large enough model sizes, tend to a constant. This constant

is estimated to be 4.3 for XMI – Hawk[OrientDB], 2.9 for XMI – Hawk[Neo4J] and 1.45

for Hawk[Neo4J] – Hawk[OrientDB]. For smaller model sizes variables such as database-

specific overhead seem to influence the ratios substantially (hence the larger ratios with

respect to XMI for smaller models). Hence, for large enough models, we can expect

164

5.3. Evaluation Results

an Hawk[OrientDB] store to be around 4.3x as large as its XMI file and a Hawk[Neo4J]

store around 2.9x as large. Furthermore the results seem to show that Hawk[Neo4J] is

more efficient in storing the data relative to Hawk[OrientDB], which can be expected as

it handles references in a more lightweight fashion, as explained in Section 4.3.1.1. The

ratio between Hawk[Neo4J] and Hawk[OrientDB] seems to indicate that for both databases

their relative overheads discussed above are similar, but Hawk[OrientDB] is less efficient

in that regard (with a 19.2% delta in the ratio between Hawk[Neo4J] and Hawk[OrientDB]

at set0 and the one at set4).

165

5. Evaluation

0 2 4 6 8 10 12 14 16
0

10

20

30

40

50

60

70

80

90

#
of

ti
m
es

lo
ad
ed

Time
(x100 sec)

XMI
Neo4J OrientDB

(a) Performance for set2

0 2 4 6 8 10 12 14 16
0

20

40

60

80

#
of

ti
m
es

lo
ad
ed

Time
(x100 sec)

XMINeo4J (EMC)

OrientDB
(EMC)

(b) Performance for set2 (EMC)

0 4 8 12 16 20 24 28 32
0

10

20

30

40

#
of

ti
m
es

lo
ad
ed

Time
(x100 sec)

XMI
Neo4J

OrientDB

(c) Performance for set3

0 6 12 18 24 30 36 42 48
0

10

20

30

40

50

#
of

ti
m
es

lo
ad
ed

Time
(x100 sec)

XMI
OrientDB
(EMC)

Neo4J
(EMC)

(d) Performance for set3 (EMC)

0 4 8 12 16 20 24 28 32
0

10

20

30

40

#
of

ti
m
es

lo
ad
ed

Time
(x100 sec)

XMI

Neo4J

OrientDB

(e) Performance for set4

0 4 8 12 16 20 24 28 32
0

10

20

30

#
of

ti
m
es

lo
ad
ed

Time
(x100 sec)

XMI

Neo4J (EMC)

OrientDB
(EMC)

(f) Performance for set4 (EMC)

Figure 5.3.: Performance comparison for executing the Grabats Query from XMI through
Hawk’s chosen persistence mechanism using native and EMC querying

166

5.3. Evaluation Results

5.3.2. Benchmarking of Incremental Updating in Hawk

In this section, models from the Grabats benchmark are used to conduct performance

tests for updating a Hawk model index. These models are mutated in order to simulate

changes that are picked up by Hawk. This work has been published in [66].

Execution Environment Performance figures that have been measured on a PC with

Intel(R) Core(TM) i5-4670K CPU @ 3.40GHz, with 32GB of physical memory, a Solid

State Drive (SSD) hard disk, and running the Windows 7 (64 bits) operating system

are presented. The Java Virtual Machine (JVM) version 1.8.0 20-b26 has been restarted

for each measure as well as for each repetition of each measure. In each case, 20GB of

RAM has been allocated to the JVM (which includes any virtual memory used by the

embedded Neo4J database server running the tests).

Model Manipulation In order to perform model manipulation operations, we used

Epsilon’s EOL. We decided to perform five model mutations (changes), which are rep-

resentative of modifications performed in Java code. These mutations are performed by

five EOL operations (shown in Appendix B, and available online4). The first operation

covers model element deletion, by removing a random TypeDeclaration model element

and all its children; the second operation covers model element creation, by inserting a

new TypeDeclaration element as well as a new SimpleName element connected to it; the

third operation covers complex model manipulation by adding a new MethodDeclaration

element to a random TypeDeclaration, setting a new Modifier to this MethodDeclaration,

and then setting the returnType of the TypeDeclaration to a newly created SimpleType

linked with a random SimpleName; the fourth operation covers attribute change by alter-

ing the value a random attribute of a random Modifier of a random MethodDeclaration;

the final one also covers attribute change by altering the attribute fullyQualifiedName

of the SimpleName of a random TypeDeclaration. By using these operations in an EOL

script we can change the model it is run on using operations often used in manipulation

of Java code, such as deleting a Java class (as indicative of a real-world scenario where a

developer is updating their Java model), as well as introducing randomness (for example,

by randomizing which Java class is deleted each time) in order to try limit any bias in

pre-selecting which elements are manipulated in each case.

4 https://github.com/kb634/mondo-hawk/blob/master/model_manipulations.eol

167

https://github.com/kb634/mondo-hawk/blob/master/model_manipulations.eol

5. Evaluation

5.3.2.1. Model Update Execution Time

Table 5.5 shows the average time taken to complete an update for the models produced

by performing the model mutations presented above, on the original Grabats models.

M(INS) represents the initial insert of the original Grabats models into an empty Hawk

model index (using the naive insert process) and M(0%)–M(50%) represent the update

time (from the original model) to one containing 0% to 50% content mutations. These

mutations contain an equal degree of each mutation operation found in Section 5.3.2 so

that the total change to the model ends up being N% of the original model contents. As

such, each of the five mutation operations performs changes equal to N
5 % of the original

model elements; since some changes are addition/removal operations on model elements,

the size of the resulting model is not the same as that of the original.

Table 5.5.: Update execution time results

Mutation

Execution Time (in seconds)

Set0 Set1 Set2 Set3 Set4

Naive Inc. Naive Inc. Naive Inc. Naive Inc. Naive Inc.

M(INS) 9.96 n/a 18.69 n/a 118.19 n/a 291.06 n/a 346.46 n/a

M(0%) 16.61 2.70 45.72 6.07 - 63.96 - 162.52 - 224.85

M(10%) 16.82 3.94 47.71 10.45 - 94.59 - 247.94 - 292.86

M(20%) 17.76 4.71 48.22 11.53 - 115.86 - 364.94 - 417.50

M(30%) 18.93 5.66 50.60 15.04 - 145.56 - 440.78 - 622.51

M(40%) 21.84 7.04 54.73 18.79 - 165.48 - 781.35 - -

M(50%) 22.09 7.97 60.21 20.92 - 193.41 - - - -

For each case both the incremental and naive updates were tested and compared with

one another. The naive update follows the process described in the prequel for naive

insertion, after having had the currently indexed elements deleted from the model index.

As the naive update process failed to terminate for the larger sets (Set2–Set4), figures for

these models are not presented for the naive update process. The reason for this failure

is that the Neo4J back-end runs out of memory when trying to delete the entire contents

168

5.3. Evaluation Results

of the model index. This is an unforeseen limitation in the Neo4J database, as we require

of it to perform a single transaction to delete the entire contents (as it does not support

nested transactions but only flattened nested transactions, which only commit when the

top-level transaction is closed) in order to maintain consistency between model versions.

We also note that the incremental update fails to complete for 50% of Set3, 40% of Set4

and 50% of Set4. This is due to the fact that the magnitude of the change is so large that

not enough memory is available for Neo4J to be able to fit this change in a transaction.

The aim is to test the limits of Hawk, as such a system typically aims at collecting a large

amount of fragmented models and not large monolithic ones; in the former case memory

would not be an issue as it can be flushed after each file is updated. Furthermore, a

40% or 50% change on a model with millions of elements is not an expected use-case

and again is presented to test the limits of the system.

These results suggest that the incremental update process is substantially faster than

the naive approach, while also not compromising availability of the model index5. This

can be largely attributed to there being no support for “mass deletes” in the model index,

which ends up taking the majority of time needed for a naive update. The actual time

taken for the incremental updates is promising as it scales linearly with the magnitude of

the change in the model, giving us improvements of up to 78.10% decrease in execution

time for a 10% model change and up to 65.25% for a 50% model change, averaging a

70.7% decrease in execution time over all of the comparable results6.

5.3.2.2. Derived Attribute Update Execution Time

Results for the execution time of altering derived attributes are not presented as they

would have to be compared to a baseline. Such a baseline would have been to use a naive

approach whereby all derived attributes in the model index would have to be updated any

time any model element or feature gets added/updated/removed. As Hawk is a model

index working with large collections of models, likely with multiple derived attributes,

the small overhead caused by the incremental process (storing and updating property

accesses) was deemed negligible when compared to that of having to fully re-compute

every single derived attribute any time anything in the index changes. As such, a naive

approach was never implemented, so a meaningful comparison cannot be made.

5 as it does not block any incoming queries which may need to be performed
6 the 10 results from set0 and set1 that both naive and incremental approaches completed, disregarding

the 0% change values as they are presented as a baseline

169

5. Evaluation

5.3.2.3. Threats to Validity

There are five observed threats to the validity of this approach:

• The model mutations performed may have influenced the results. We tried to limit

this by performing multiple mutations in each case, all of which contain a random

factor in them. An example involving real-world changes on a large collection of

models can be found in Section 5.3.4.

• The percentage change of each model may not be indicative of real model change.

We tried to limit this by exploring a large variety of changes ranging from zero to

fifty percent of the original model. An example involving real-world changes on a

large collection of models can be found in Section 5.3.4.

• The model sizes used for empirical evaluation may not be indicative. Hawk aims

at handling large collections of (possibly fragmented) models (as defined in Sec-

tion 3.4), thus we anticipate that the size of each fragment will not be orders of

magnitude greater than the test models. An example using a large collection of

evolving small models can be found in Section 5.3.4.

• This version of Hawk used an integer representation for the signatures, which has

a chance for collisions;

this chance tends to 1 in 4.29 billion for non-trivial Strings. In all of the empirical

tests performed no clashes have been observed, which gives us some confidence

that the approach should be used for performance reasons. It is worth noting that

in later versions of Hawk a SHA-1 signature is being used to further decrease the

chance for collisions (as of October 2015, no actual collisions are publicly known

for any process using SHA-1).

• The last one is regarding the correctness of the incremental algorithm. While this

is not formally proven, empirical tests comparing the model index state after an

incremental update with that of the original naive update, previously used in Hawk

(for the same changes), provided the same results for all of the mutated models

where both the incremental and naive updates completed. Sections 5.3.4.2 and

5.4.4.2 present various further empirical tests performed to evaluate the correctness

of this algorithm.

170

5.3. Evaluation Results

5.3.3. Benchmarking of Derived and Indexed Attributes in Hawk

As Hawk supports the creation of derived attributes as well as the indexing of attribute

values, this Section published in [67] evaluates the performance benefit of using such

features for query execution.

Execution Environment Performance figures that have been measured on a PC with

Intel(R) Core(TM) i5-4670K CPU @ 3.40GHz, with 32GB of physical memory, a Solid

State Drive (SSD) hard disk, and running the Windows 7 (64 bits) operating system are

presented. Java Virtual Machine (JVM) version 1.8.0 20-b26 has been used and both

the database connection to Neo4J and the Epsilon driver have been restarted for each

measure as well as for each repetition of each measure. In each case, 20GB of RAM has

been allocated to the JVM (which includes any virtual memory used by the embedded

Neo4J database server running the tests).

5.3.3.1. Derived Attribute Definition

In order to effectively use (database) indexed attributes to optimize the Grabats query

execution, due to the nature of the Grabats metamodel, we have to also use the derived

attributes feature hawk offers. This functionality allows for any applicable EOL expres-

sion to be used to evaluate the values of derived attributes, during the model indexing

process. The derived attributes used are the following:

• isPublic (in MethodDeclaration), which denotes whether the MethodDeclaration is

public (has a modifier with attribute public = true), defined by:

self.modifiers.exists(m:Modifier | m.public == true)

• isStatic (in MethodDeclaration), which denotes whether the MethodDeclaration is

static (has a modifier with attribute static = true), defined by:

self.modifiers.exists(m:Modifier | m.static == true)

• isSameReturnType (in MethodDeclaration), which denotes that the return type

of the MethodDeclaration is the same type as its containing TypeDeclaration (both

have the same name), defined by:

171

5. Evaluation

self.returnType.isTypeOf(SimpleType) and

self.eContainer.isTypeOf(TypeDeclaration) and

self.returnType.name.fullyQualifiedName == self.eContainer.name.

fullyQualifiedName

• singleton (in TypeDeclaration), which denotes that the TypeDeclaration fulfills all

of the criteria posed by the Grabats query (has at least one method which is public

and static and has this type as its return), defined by:

self.bodyDeclarations.exists(

md:MethodDeclaration |

md.modifiers.exists(mod:Modifier | mod.public == true) and

md.modifiers.exists(mod:Modifier | mod.static == true) and

md.returnType.isTypeOf(SimpleType) and

md.returnType.name.fullyQualifiedName == self.name.

fullyQualifiedName

)

5.3.3.2. Query Definition and Execution Time

Table 5.6 shows the results for performing the first Grabats 2009 query on the various

persisted models. It is worth noting that the impact of keeping these derived and indexed

attributes in Hawk (in terms of additional time needed during model insertion into Hawk)

was negligible (less than 1% of total insertion time in each case) in this case-study.

For these tests five queries have been written in EOL (Q1 – Q5):

• Q1 reads:

TypeDeclaration.all.select(

td|td.bodyDeclarations.exists(

md:MethodDeclaration|

md.modifiers.exists(mod:Modifier|mod.public==true) and

md.modifiers.exists(mod:Modifier|mod.static==true) and

md.returnType.isTypeOf(SimpleType) and

172

5.3. Evaluation Results

md.returnType.name.fullyQualifiedName == td.name.

fullyQualifiedName

)

)

Table 5.6.: Grabats Query execution time results

Model

Execution Time (in seconds)

Original DerivedOnly Derived&Indexed

Q1 Q2 Q3 Q4 Q5

Set0 0.040 0.031 0.021 0.062 0.020

Set1 0.081 0.051 0.030 0.072 0.042

Set2 1.850 1.282 0.262 0.302 0.072

Set3 3.664 2.688 0.732 0.852 0.080

Set4 4.124 2.847 0.772 0.902 0.081

This query (Q1) is the basic Grabats query using the original metamodel to in-

sert the relevant models into Hawk. As such it only uses attributes found in the

unaltered JDTAST metamodel and is used as a baseline for comparison.

• Q2 reads:

TypeDeclaration.all.select(

td|td.bodyDeclarations.exists(

md:MethodDeclaration |

md.isPublic == true and md.isStatic == true and

md.isSameReturnType == true

)

)

This query (Q2) assumes that relevant derived attributes have been created by

Hawk during insertion. As such, it uses attributes found in the original JDTAST

173

5. Evaluation

metamodel as well as the derived attributes ‘isPublic’, ‘isStatic’ and ‘isSameRe-

turnType’.

• Q3 reads:

TypeDeclaration.all.select(td | td.singleton == true)

This query (Q3) assumes that relevant derived attributes have been created by

Hawk during insertion. As such, it uses attributes found in the unaltered JDTAST

metamodel as well as the derived attribute ‘singleton’.

• Q4 reads:

MethodDeclaration.all.select(

md |

md.isPublic == true and md.isStatic == true and

md.isSameReturnType == true

)

.collect(td | td.eContainer)

This query (Q4) assumes that relevant derived attributes have been created by

Hawk during insertion and is a re-written form of Q2 which takes advantage of

(database) indexing of the attributes ‘isPublic’, ‘isStatic’ and ‘isSameReturnType’

in order to optimize performance. Using the eContainer call (in the spirit of EMF’s

homonymous method) we can get the TypeDeclarations that the MethodDeclara-

tions are contained in and thusly report the same output as Q2.

• Q5 Is the same as Q3 as it can take advantage of attribute indexing as-is (should

the relevant custom indexes exist in the store).

Similar to the discussion in [67] (which compares the use of derived attributes in an

older version of Hawk), Q2 and Q3 (which only use the derived attribute feature of

Hawk) perform a lot better than the original Q1, with observed improvements of 22.5%

– 37.0% when comparing Q1 and Q2 and 47.5% – 85.8% comparing Q1 and Q3.

Comparing Q2 with Q4 (as they have access to the same derived attributes, but in Q4

they are also (database) indexed), we note that for the small model sizes the overhead

of using database indexing results in similar execution times to that without it but for

the larger models we note a large improvement (of 68.3% – 76.4%).

174

5.3. Evaluation Results

Comparing Q3 with Q5 (as they have access to the same derived attributes, but in

Q5 they are also (database) indexed), we can also see that for the small model sizes the

overhead of using database indexing results in similar execution times, but for the larger

models we note a large improvement (of 72.5% – 89.5%).

These results support the idea that for sufficiently large model sizes the targeted use

of custom indexes for attributes can greatly improve query performance of certain types

of queries, while not compromising the querying of smaller models.

5.3.4. Benchmarking of Continuous Model Updates in Hawk

The BPMN MIWG repository presented in Section 5.2.2 is used to evaluate the perfor-

mance and correctness of Hawk, when dealing with a large collection of small, evolving

models. This section presents the methodology used and the results obtained during

this experiment.

Execution Environment Performance figures that have been measured on a PC with

Intel(R) Core(TM) i5-4670K CPU @ 3.40GHz, with 32GB of physical memory, a Solid

State Drive (SSD) hard disk, and running the Windows 7 (64 bits) operating system

are presented. Java Virtual Machine (JVM) version 1.8.0 65-b17 has been used and the

database has been re-created from scratch for each repetition of each measure. In each

case, 3GB of RAM has been allocated to the JVM (which includes any virtual memory

used by the embedded Neo4J database server running the tests, but NOT any virtual

memory used by OrientDB as this memory does not use the Java Heap).

Methodology As the BPMN MWIG repository contains hundreds of commits (490 as

of November 2015), a reasonable heuristic had to be created for deciding which commits

to use in order to emulate a real-life model evolution scenario. The following data was

gathered when analyzing the various commits:

• There were 485 commits which resulted in at least one BPMN file to be changed

• There were 457 commits with over 10 BPMN files changed

• The were 397 commits with over 50 BPMN files changed

• There were 122 commits with over 250 BPMN files changed

175

5. Evaluation

Using this data, commits that resulted in the change of over 250 BPMN files were

considered, and out of those commits only one in every 5 was selected, resulting in 25

commits being flagged.

Using these flagged 25 commits, Hawk was initially provided with the first (chronolog-

ically) commit and then each successive commit to synchronize with. Figure 5.4 shows

the changed (file-based) model resources/elements resulting from each successive com-

mit, with respect to the previous one (the initial commit is with respect to an initial

empty store). Note that in various commits the loaded and deleted resources do not add

up to the total altered resources (Figure 5.4a), as some model files were either malformed

or contained metamodels not present in Hawk, and hence the EMF-based Hawk BPMN

model factory was not able to load the relevant resource into memory.

1

10

100

1000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

M
o

d
e

l R
e

so
u

rc
e

s

Relative Commit Number

Altered Resource Files Loaded Resources Deleted Resources

(a) Number of Resources Loaded in Each Commit

1

10

100

1000

10000

100000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

M
o

d
e

l E
le

m
e

n
ts

Relative Commit Number

Added/Updated Elements Deleted Elements

(b) Total Number of Elements Affected by Each Commit

Figure 5.4.: BPMN benchmark model change results

176

5.3. Evaluation Results

5.3.4.1. Update Performance Results

Figure 5.5 displays the execution time of each synchronization process for each commit.

As expected the first commit takes the most time as it has over 200 files (and successfully

loaded resources) to fully insert into Hawk; the execution time of subsequent commits is

substantially lower as they only need to handle 17 model files on average (either changed

(and successfully loaded into a resource) or removed), and in some cases can perform

an incremental update (as 37 of the 194 subsequently loaded resources could be incre-

mentally updated). Compared to one another both back-end technologies perform very

similarly, with a difference of ∼30% in overall time taken to complete the benchmark.

1

10

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Sy
n

ch
ro

n
iz

at
io

n
 T

im
e

 (
se

co
n

d
s)

Relative Commit Number

Neo4J OrientDB

Figure 5.5.: BPMN benchmark execution time (Hawk synchronizing with each commit)

Figures 5.6 and 5.7 display the memory use of (a representative run of) Hawk through-

out this benchmark7 (using Neo4J and OrientDB respectively). As Java contains three

areas of memory (eden, survivor and old gen)8 they are all presented here, but for the

sake of simplicity we will only consider the sum of all of them at each given time period

(i.e. the total memory use of the program at any given time). Line L1 denotes the time

when the synchronization with the first commit finishes and line L2 denotes the time

when the synchronization with the last commit finishes. Looking at the time-line be-

tween the start of the benchmark and L1, Hawk’s memory use is consistently low in both

cases, as Hawk only loads one resource at a time to insert it into its back-end (so the

Java garbage collection can keep discarding the old objects used for managing previous

files). In the case of Hawk[Neo4J], the memory used is largely for the embedded MMIO

7 using the YourKit Java profiler: https://www.yourkit.com/
8 http://www.oracle.com/technetwork/java/javase/memorymanagement-whitepaper-

150215.pdf

177

https://www.yourkit.com/
http://www.oracle.com/technetwork/java/javase/memorymanagement-whitepaper-150215.pdf
http://www.oracle.com/technetwork/java/javase/memorymanagement-whitepaper-150215.pdf

5. Evaluation

of Neo4J (hence it rapidly reaches a peak (of around 250MB) and remains there for the

duration of the update), while in Hawk[OrientDB] (whereby the MMIO is not embedded

into the Java Heap but directly uses system RAM), the memory use rises consistently

during the update as OrientDB keeps strong references to all of its newly formed ele-

ments; Neo4J can be seen as more efficient in this case as it does not need this memory

but can quickly dispose of newly formed objects to disk, seen by the intermittent peaks

in memory use during the update process.

Looking at the time-line between L1 and L2, Hawk’s memory periodically spikes as

numerous batch inserts, deletions or incremental updates are called (incremental updates

require data from disk to be retrieved so that the current version of the model indexed

can be compared to the changed version of the new commit). In the case of Hawk[Neo4J],

the memory used keeps resetting down to near its MMIO baseline every time the Java

garbage collector deems necessary, while in the Hawk[OrientDB] case it keeps resetting

down to nearly 0 as the MMIO is not embedded into the Java Heap.

Finally, the time-line between L2 and the end of the recording of the benchmark shows

a constant memory footprint when no changes are detected by Hawk. The memory

keeping the Neo4J caches of recently accessed nodes remains constant and so does the

memory used by OrientDB keeping soft references to its MMIO that is outside the Java

Heap.

5.3.4.2. Update Validation Results

During the execution of this benchmark the Hawk validation listener (Section 5.1.1.2) was

used to analyze the contents of the model index after each synchronize and compare them

with any changed model files involved in that commit. For each of the 25 commits the

validator reported that Hawk had a consistent state with the model files, which provides

empirical evidence that Hawk’s batch injection and incremental update processes are

both correct.

178

5.3.
E
valu

ation
R
esu

lts

Allocated All Pools

0

500

1,000

1,500

2,000

2,500

0 1 2 3 4 5 6 7

Memory
(MB)

Time (Minutes)

Used PS Eden Space Used PS Survivor Space Used PS Old Gen

 L1 L2

Figure 5.6.: Memory graph of full BPMN benchmark execution (Hawk[Neo4J])

179

5.
E
valu

atio
n

Allocated All Pools

0

500

1,000

1,500

2,000

2,500

0 1 2 3 4 5 6 7

Memory
(MB)

Time (Minutes)

Used PS Eden Space Used PS Survivor Space Used PS Old Gen

 L1 L2

Figure 5.7.: Memory graph of full BPMN benchmark execution (Hawk[OrientDB])

18
0

5.4. Hawk Tool Integration

5.4. Hawk Tool Integration

Hawk has been integrated with several external MDE tools (in collaboration with various

MONDO project partners – detailed in each section). This section provides insight into

the integration and the reasoning behind it.

5.4.1. Epsilon Integration

The first tool integrated with Hawk was Epsilon, in order to provide it with a query

engine (as discussed in Section 4.3.6.2). This allowed for empirical tests for comparing

the performance of querying Hawk using a native Java approach with respect to using

the Epsilon Object Language as a query expression language (Section 5.3.1.2). Even

though this effort was not done collaboratively, it is mentioned here for completeness.

5.4.2. Exposing Hawk as an EMF Resource

As Hawk deals primarily with EMF-based models provided by its various model resource

factories, and to allow easy integration with any EMF-compatible tool and language,

Hawk can be exposed as a read-only EMF resource. When compared to a usual EMF

resource, Hawk provides various useful optimizations to improve performance:

Lazy Loading An important ability of a Hawk EMF resource is to load its contents in a

lazy manner. This functionality results in partial traversal of the Hawk index, based on

various options such as lazy loading only of root elements, lazy loading only of proxies

to model elements until their features are requested and lazy loading only of attributes

of elements until the targets of references are needed.

Editor Integration A Hawk EMF resource can be lazily loaded in the EMF-based Exeed

tree-based editor of Epsilon in order to be incrementally visualized, without having to

front-load the entire model beforehand. This allows for large models that would normally

take a long time to load, or would not load at all (as they would require more memory

than that available to the tool in order to be loaded from disk), to be partially loaded

using the various lazy loading strategies mentioned above.

Convenience Methods Hawks EMF resource also provides various convenience meth-

ods that can be used to improve performance of using such resources for various model

181

5. Evaluation

management operations:

• fetchNodes(eClass,fetchAttributes), which retrieves all model elements of type

eClass and returns it as an EList of EObjects. Optionally it can also fetch all the at-

tribute values of these elements. This method is similar to the Type.getAllOfType()

method Epsilon provides.

• fetchValuesByEClassifier(dataType), which lists all values of EStructuralFeatures

of type dataType.

• fetchTypesWithEClassifier(dataType), which maps all EClasses with a EStruc-

turalFeature of type dataType to a List of their relevant EStructuralFeatures.

• fetchValuesByEStructuralFeature(feature), which maps all EObjects with a specific

EStructuralFeature to their value of this EStructuralFeature.

This work was done in collaboration with Dr. Antonio Garcia Dominguez.

5.4.3. Remote Query API (using Apache Thrift)

In order to connect to Hawk remotely, a remote API has been created and implemented

using Apache Thrift9. This feature allows for Hawk to connect to remote instances (of

Hawk model indexers) and to perform the same operations as on local instances.

Notifications provided by remote instances are handled using Apache ActiveMQ Arte-

mis10. This remote queue allows for handling of disconnects and compressing large

change notifications to reduce network overhead.

Results of queries are serialized using Thrift and can be de-serialized on the client side

into various forms such as EMF resources. This remote Hawk EMF resource provides

similar functionality to the local one described in Section 5.4.2, allowing for lazy loading

and resolution in order to reduce network overhead. This architecture can be seen in

Figure 5.8.

This work was done in collaboration with Dr. Antonio Garcia Dominguez.

9 https://thrift.apache.org/
10https://activemq.apache.org/artemis/

182

https://thrift.apache.org/
https://activemq.apache.org/artemis/

5.4. Hawk Tool Integration

Figure 5.8.: Architecture of Hawk’s remote EMF API

5.4.4. EMF IncQuery Integration

As part of the efforts for the integration deliverable of the MONDO project, Hawk has

been integrated with IncQuery. This section briefly introduces this tool and describes

the evaluation opportunities it opened for Hawk.

5.4.4.1. EMF IncQuery

EMF IncQuery11 offers an incremental graph query engine on EMF-based models. Using

its declarative query language, users are able to formulate graph pattern matching queries

[77].

The tool uses an adaptation of the RETE algorithm [78] in order to incrementally

calculate results of queries based on previous results and the collection of changes since

these results; it caches current results in memory and keeps them up to date with any

changes made to the model.

IncQuery also offers a BaseIndexer API12 that can be used to optimize the connection

of any EMF-based persistence layer so that the engine can take full advantage of the un-

derlying store’s capabilities. As such, implementing this API for Hawk (through Hawk’s

11https://www.eclipse.org/incquery/
12https://wiki.eclipse.org/EMFIncQuery/UserDocumentation/API/BaseIndexer

183

https://www.eclipse.org/incquery/
https://wiki.eclipse.org/EMFIncQuery/UserDocumentation/API/BaseIndexer

5. Evaluation

EMF resource implementation (Section 5.4.2)) has allowed Hawk model indexes to be

exposed to IncQuery and used for answering queries performed through its language.

5.4.4.2. The Train Benchmark

As part of the evaluation of IncQuery, a custom benchmark has been created. This

benchmark’s main goal is to measure the execution time of graph-based querying, with

emphasis on incremental re-evaluation of queries as models evolve13. It has been used

in various publications including [79–81]. It uses the metamodel shown in Figure 5.913

and systematically generates instance models of incrementally larger sizes, using various

randomization points such as exact number of elements and cardinalities.

Figure 5.9.: The train benchmark metamodel

These models are then used to simulate a real-world scenario where faults emerge in

the railway system and they are repaired by engineers. This sequence of fault injection

and repair comprises model evolution (in the form of in-place model transformations)

and the tools used are expected to provide consistent results in each case (as well as

being performant).

13https://www.sharelatex.com/github/repos/FTSRG/trainbenchmark-docs/builds/

latest/output.pdf

184

https://www.sharelatex.com/github/repos/FTSRG/trainbenchmark-docs/builds/latest/output.pdf
https://www.sharelatex.com/github/repos/FTSRG/trainbenchmark-docs/builds/latest/output.pdf

5.5. Additional Drivers for Hawk

Hawk Correctness With respect to the Hawk integration, performance considerations

have not yet been made, but the experiments performed do provide evidence of the

correctness of Hawk’s incremental update process as well as that of the EMF resource

API it offers.

The train benchmark offers a collection of 24 JUnit14 test cases each of which tests

and evaluates the performance and correctness of different operations performed on a

specific train model with respect to a set of well-formedness constraints (for example the

ConnectedSegments test case injects faulty sensors with more than five segments (Figure

5.10a) and then repairs some of these sensors (Figure 5.10b)). As Hawk has passed all

of these test cases, further empirical evidence of Hawk’s correctness is obtained both for

the contents of the model indexer after initial and incremental updates are performed,

as well as for the results obtained when using Epsilon as a query engine.

This work was done in collaboration with Dr. Antonio Garcia Dominguez and Gábor

Szárnyas.

(a) Inject transformation (b) Repair transformation

Figure 5.10.: ConnectedSegments inject and repair transformations

5.5. Additional Drivers for Hawk

Even though Hawk’s primary drivers work with SVN, EMF, Neo4J and Epsilon; various

other drivers have been developed that can support Hawk’s extensibility argument:

14http://junit.org/

185

http://junit.org/

5. Evaluation

5.5.1. Alternate Version Control Managers

• As presented in Section 4.3.3.2, Hawk supports indexing models found on the local

machine through the LocalFolder driver.

• As presented in Section 4.3.3.4, Hawk can index models located in a local eclipse

workspace using the Workspace driver.

5.5.2. Alternate Model Factories

• As presented in Section 4.3.4.2, Hawk is able to index IFC models stored in XML

or STEP formats through its IFC*ResourceFactory drivers.

• As presented in Section 4.3.4.2, Hawk is able to index Modelio UML models stored

in Modelio’s XML format using its Modelio*ResourceFactory drivers.

5.5.3. Alternate Persistence Technologies

• A driver for OrientDB has been developed (and kept up to date in collaboration

with one of the MONDO project partners – Dr. Antonio Garcia Dominguez),

and can be used as an alternative back-end for Hawk. Section 5.3.1 compares the

performance of Neo4J and OrientDB for indexing and querying a set of large models

and Section 5.3.4 presents a similar comparison for indexing a large collection of

smaller models and their evolution over time.

5.6. Research Hypothesis Evaluation

In this section the empirical results obtained via extensive benchmarking on Hawk were

presented; these benchmarks tested the various aspects of the system in terms of cor-

rectness and performance. The results provide sufficient confidence that the research hy-

pothesis can be validated, showing that the overhead of computing model-element-level

queries over large (collections of) models stored in a file-based VCS can be significantly

reduced using a non-invasive model-indexing system orthogonal to the specific VCS or

model representation format. The research objectives presented in Section 3.3 have been

met:

186

5.6. Research Hypothesis Evaluation

(i) The prototype being evaluated (Hawk) provides sufficient validation of the research

hypothesis as the evaluation results obtained as part of this research support the

argument that a model indexing system can help reduce the query overhead on

large (collections of) models.

(ii) An appropriate back-end has been selected, showing promising results in terms of

model insertion, model update and query execution performance, when compared

to various alternatives evaluated as part of this work, as well as to current state-

of-the-art model persistence approaches.

(iii) Hawk offers support for three modeling technologies (EMF, BIM IFC, Modelio

UML) and four model persistence formats (EMF XMI, IFC STEP, IFC XMI,

Modelio XML).

(iv) Hawk offers support for SVN and Git repositories as well as local folders and

Eclipse workspaces.

(v) Results on query execution show Hawk’s ability to offer a performant querying

environment for both large models and large collections of model fragments.

(vi) Results on index content (insertion and updating) performance and correctness

offer sufficient evidence of meeting Hawk’s requirements of correctness and incre-

mentality.

(vii) Results show Hawk competing with current state-of-the-art modeling tools, offering

better results in most cases, for the queries in the benchmarks performed as part

of this work.

These results encourage further development of this approach in the future, discussed in

Section 6.4.

187

6. Conclusions

This chapter summarizes the findings of this thesis, presents the various contributions it

has made to the field of software engineering and discusses various paths for extending

this work, which can be taken in the future.

6.1. Summary

In this work we presented Hawk, a model indexing framework aimed at tackling some

of the scalability issues identified in the field of MDE. Chapter 2 introduced the reader

to the field of MDE and to file-based version control; it reviewed many of the current

state-of-the-art tools and technologies used in MDE today, and discussed each of their

capabilities; finally it delved into model querying, one of the important aspects of MDE

commonly bottle-necking the process when using very large models (or large collections

of inter-connected models). Chapter 3 synthesized the findings of the review, presented

the research hypothesis this work is based upon and introduced the reader to the con-

cept of model indexing; it discussed the research objectives and identified the scope of

the research. Chapter 4 delved into the inner workings of the proposed framework by

detailing the architectural, design and implementation decisions made, while presenting

the various key processes, procedures and algorithms used. Finally, Chapter 5 detailed

a thorough empirical evaluation of the various aspects of Hawk that provided confidence

that its intended capabilities (both functional and non-functional are able to be met).

6.2. Contributions of the Thesis Research

This section presents the various contributions to the field of software engineering and

in particular to the work on scalability on MDE this work has offered. It is split into

two subsections, one for novel tools/techniques developed as part of this work and one

for other important side-products the research has produced.

189

6. Conclusions

6.2.1. Novel Tools and Techniques

As part of this work, several novel approaches have been proposed for tackling the various

scalability aspects presented.

6.2.1.1. Heterogeneous Model Indexing Platform

The primary contribution of this research is in the form of Hawk, a scalable heterogeneous

model indexing framework. It provides validation of the research hypothesis of this work

and offers an alternative to work alongside a widely-used paradigm in MDE:

Scalability. Hawk offers a scalable solution to indexing large collections of models found

in VCS by using graph-based NoSQL stores to persist the data as a property graph.

Empirical results presented in this work have provided confidence that the approach

taken is effective both in terms of persisting and in terms of querying models of increasing

sizes and numbers.

Modeling Technology Heterogeneity. Hawk supports indexing of EMF-based models,

as well as offering the capability for adding drivers for conceptually any modeling tech-

nology to be used for providing models to Hawk. As examples of alternate technologies

Hawk can handle, prototype drivers for Modelio UML and IFC BIM models have been

created, in collaboration with the MONDO research partners.

Extensibility. Hawk offers extensibility mechanisms for adding new drivers for alternate

VCS in which models can be stored in, as well as alternate back-end stores and model

updaters. Multiple drivers have been created to validate this claim, including Local-

Folder and Workspace drivers as well as one for OrientDB. Furthermore, Hawk has been

integrated with various other modeling tools such as Epsilon (for querying), IncQuery

(for validation) and EMF (for allowing any EMF-based tool to work with Hawk, for

example the EMF tree editor), further validating this architecture.

6.2.1.2. Incremental Updating of Model Indexes

Another novel contribution is that regarding the use of incremental updates in model

indexes. This work has presented an approach using model element signatures for ef-

ficiently calculating the changed elements between two versions of a model and hence

190

6.2. Contributions of the Thesis Research

updating the model index only with the elements which have actually changed. This au-

tomated process allows for a semantic model-level incremental update to be performed on

model indexes, for which the empirical data gathered and presented here shows promising

results.

6.2.1.3. Incremental Updating of Derived Attributes

A further contribution of this work is the novel approach used for incrementally re-

calculating only the relevant derived attributes after each model index update. By only

having to re-execute the expressions of derived attributes known to have been affected

by a change, a large overhead of redundantly having to re-evaluate unchanged attributes

is eliminated.

6.2.2. Notable side-products

While this work produced various novel tools, algorithms and techniques, a large part

of it offered interesting insights and quantitative results which, even though not novel

themselves, offer useful insight into the various scalability concerns raised in this research.

6.2.2.1. Evaluation of Model Persistence Technologies

This research, alongside the work presented in [41] (which was in collaboration with

one of the MONDO research partners), provides a thorough evaluation of various novel

persistence technologies in the context of MDE; it offers insight into the functionality

and limitations of the various state-of-the-art tools reviewed.

6.2.2.2. Use of Derived and Indexed Attributes in Model Indexes

This research has presented the use of derived and indexed attributes to improve the

performance of certain classes of queries on model indexes.

Database Indexed Attributes. Indexed attributes allow for efficient equality and com-

parison operations to be performed on relevant attributes of all elements of a type

without having to go to the persisted model index; with empirical data showing a large

performance gains when such attributes are used.

191

6. Conclusions

Derived Attributes. Derived attributes can be computed using one of Hawk’s query

engines and stored in their relevant model element. Such attributes allow not only

for the ability to quickly retrieve the solution to a complex expression on demand but

can provide significant performance benefits when used in certain classes of query, as

supported by the empirical results obtained as part of this research.

6.2.2.3. Scalable Model Querying

The model indexing framework presented in this work lists as one of its primary re-

quirements having the ability to efficiently answer global queries on large collections of

models it indexes. In this work, an OCL-like query language is used to investigate the

performance of querying such a model index as well as through its various optimiza-

tions (using indexed and derived attributes). Empirical results presented here support

this claim as the observed execution times for a complex query performed on models of

increasing sizes are very promising.

6.3. Applications

Every use-case of MDE is different, whether regarding the domain in question, the

environment surrounding the specific effort or the concrete set of scenarios tackled. As

such, it would be remiss to say that a tool, whether Hawk or other MDE-based framework

would fit every (or even most) situations; each tool has its own unique characteristics

and offers a different approach to managing models.

In particular, positioning Hawk in today’s MDE landscape would leverage its non-

invasive, orthogonal approach to one of the prominent current practices used today,

namely storing file-based (possibly fragmented) models in a VCS. As such, modeling

tools which save models as files (like EMF), can use a Hawk model index to perform

efficient global queries, without having to obtain or load the models locally. Hawk’s ex-

tensible infrastructure can be used for providing new drivers on demand, if the modeling

technology is not currently supported by Hawk.

For example, consider a company managing a large model of their evolving web-site,

stored as multiple XMI files on an SVN server, and generating the code used for running

it using model transformations (e.g. in the spirit of Jekyll1). They can use Hawk as the

1 https://jekyllrb.com/

192

https://jekyllrb.com/

6.3. Applications

source for re-executing the transformation every time the model changes. This would

leverage the efficient querying of Hawk to provide the transformation engine the data it

needs in a much more efficient manner than having to load all of the (remotely stored)

XMI files into memory and then accessing the required elements.

Alternatively, in an offline collaborative modeling scenario where a large fragmented

model representing the building details of a football stadium is being manipulated by

five teams of developers and stored as a collection of IFC STEP files in a remote VCS

repository. In this example, each team would only work with a specific subset of the

model and hence would only check out and load those model fragments it uses. Now

should any team need to perform a query that may require access to the remainder of

the model (such as one asking how much is the total projected cost of the stadium in

the current model version) they can use Hawk to do so without having to manipulate

the model, or having to check out or load any additional files.

A tool such as CDO would be beneficial when the user wishes to actually persist

their models in a model repository and hence leverage the benefits it provides, but is

not limited to using XML-based or other file-based MDE tooling. For example in an

online collaborative modeling scenario where a large model representing the design of a

power plant is being currently developed by five teams of developers, CDO can offer a

centralized location where all teams can concurrently update and query the model as it

is being developed.

A tool such as NeoEMF can provide a database persistence format for EMF models

and would be useful when the users do not need a repository but want to store large

models in an efficiently queriable format which offers lazy loading of elements. For

example a company owning a large model representing its internal business processes

can use NeoEMF to store it, so that whenever it has to query it for information, it can

do so without having to load the entire model into memory, with the limitation that

version control would have to be handled separately.

Tools such as Modelio, MagicDraw and MetaEdit+ offer extensive graphical UI func-

tionality for their respective domains and facilitate the creation of UML or domain-

specific models while also offering various alternatives for how these models can be

persisted or exported. For example a business creating a new UML model of their en-

visioned structure can use these tools to create it in a graphical and domain-specific

manner, hence allowing non-experts such as managers to understand it and contribute

their expertise to its development.

193

6. Conclusions

Finally, a tool directly using EMF and its default XMI serialization can be beneficial

when a model, for example of a legacy system which needs to be analyzed (and is already

stored as an XMI file), is used as a one-time source of data (or used very sparsely), for a

single query or transformation. In this case, the overhead of migrating this model into

another model persistence format, a model repository or a model index would surpass

the actual time needed to load this model into memory and run the relevant query or

transformation on it. Furthermore, XMI persistence of a small model (in the order

of thousands of model elements or smaller) will cause a manageable overhead when

loaded into memory (both in terms of memory and time, when considering contemporary

hardware) such that having to migrate it to another system may introduce additional

needs (such as training to use the new system, or financial overheads) that can be avoided

without much actual performance loss in practice.

Any effort spent on deciding which technology fits the users specific scenario is well

spent, as it will inevitably benefit them in the long term, when contrasted to attempting

to make a specific technology fit these needs. Table 6.1 summarizes the approaches,

categorizing the tools reviewed in Section 2.2 (as a summary of Table 2.1).

Table 6.1.: Categorization of state-of-the-art model persistence and versioning tools

Category Tools

Model Persistence

Format

File-based EMF

Database Teneo, Morsa, MongoEMF, NeoEMF

Model Repository
ModelCVS, CDO, EMFStore, Modelio

MagicDraw, MetaEdit+

Model Index Hawk

6.4. Future Work

Evaluating this model indexing approach against current state-of-the-art modeling tools

and approaches has provided us with sufficient confidence that the research hypothesis

is validated, giving incentive for it to be extended in the future.

Firstly, it is worth noting that a model index, even though currently contains a full

194

6.4. Future Work

copy of the model contents found on the relevant version control system, does not have

to. In principle, if some contents of the model are not deemed useful they can be omitted

in order to gain an improvement in insertion, update and possibly query time (this can

be done by creating custom updaters, and using them instead of – or in conjunction

with – the default one used to create the representation described in Section 4.3.1).

Furthermore, meta information regarding aspects outside the model can be stored in

the model index, either formulated in the programing language of the system (such as

Java for Hawk), or using the derived attribute functionality seen in Section 4.3.8.1; for

example metadata regarding the commits made for each model file (such as author,

time-stamp or file size) can be stored alongside information extracted from the models.

A second aspect of this work that can be further investigated is optimizing various

components of the system. The VCS managers currently work with base operations

such as add, delete, update but could be able to handle complex events such as move

in a much more efficient manner (for example in Hawk a file move event would result

in the indexed file being removed and re-added whereas a better approach would be to

simply update the file path in the system). The metamodel managers currently assume

immutable metamodels hence if a new version is needed it has to either be added after

removing the old version (alongside the entire contents of indexed files depending on it)

or as a new metamodel with a new unique namespace, but a better approach would be

to support metamodel evolution and only require re-indexing of dependent models when

breaking metamodel changes are discovered.

A third aspect of interest is offering a distributed back-end for the system. Currently,

both back-ends work on single-node machines and a better approach would be to offer

horizontal scalability (for example in a network cluster or in the cloud) so that the order

of magnitude of models the system is capable of efficiently handling is increased. This

can be achieved either by adding support for distributed management of the current

technologies used, or by investigating the relative effectiveness of a distributed layout of

the various technologies reviewed in this work.

A final aspect that can be looked at is further integration of this approach with

current state-of-the-art tools and practices. For example a tool like OpenBIM could in

principle directly use a model indexer to respond to queries or to efficiently create partial

visualizations of subsystems (views of the system). Currently, the integration would have

to be through EMF or Epsilon, but other query engines could be added to provide either

a more efficient way to connect to specific tools, or additional functionality.

195

Appendices

197

A. Details on Hawk Interfaces

This appendix presents the Core interfaces Hawk exposes; implementations can be ei-

ther connected together to form a running Hawk server programmatically, or through

the Hawk user interface (shown in Appendix C, which uses the plugin extension point

mechanism provided by the Eclipse IDE, discussed in Section 4.4.1).

IModelIndexer This interface provides the API for the Core component of Hawk. It

offers the required methods for setting up a Hawk model indexing server and running any

necessary operations on it (startup/maintenance/querying etc.); it acts as the central

point of control for the system. Key methods are described below:

• init() This method is used to initialize Hawk. It should be called after all the

relevant factories have been created and implementations need to create a syn-

chronization schedule (which needs to run in a separate NON-daemon thread,

ensuring the JVM stays active) as well as scheduling the initial insertion of any

static metamodels of known metamodel factories into Hawk (if they are not already

present).

• shutdown() This method is used to gracefully terminate Hawk. No other meth-

ods should be called after this other than init() (in the case Hawk needs to be

restarted). Implementations need to offer a serialization strategy for saving Hawk’s

metadata to the platform used to host Hawk, need to call the shutdown methods

of all VcsManagers as well as the IGraphDatabase Hawk is currently using, and

then cancel the running synchronization strategy used by Hawk (in order to allow

for a potential termination of the JVM if required).

• addVCSManager(vcs) This method is used to add an implementation of an IVcs-

Manager to Hawk. This will allow Hawk to monitor such version control systems.

199

A. Details on Hawk Interfaces

• addMetaModelResourceFactory(metaModelFactory) This method is used to add an

implementation of an IMetaModelResourceFactory to Hawk. This will allow Hawk

to be able to parse metamodels of this type.

• addModelResourceFactory(modelFactory) This method is used to add an imple-

mentation of an IModelResourceFactory to Hawk. This will allow Hawk to be able

to parse models of this type.

• setDB(db) This method is used to set the back-end of Hawk to the selected imple-

mentation of an IGraphDatabase.

• addQueryEngine(q) This method is used to add an implementation of an IQuery-

Engine to Hawk. This allows Hawk to use this engine for querying and creating

derived attributes (more information can be found in Section 4.3.8.1).

• addModelUpdater(updater) This method is used to add an implementation of an

IModelUpdater to Hawk. A model updater is responsible for handling the propa-

gation of model changes (from monitored VCSs) to Hawk.

• setMetaModelUpdater(metaModelUpdater) This method is used to set the imple-

mentation of the IMetaModelUpdater in Hawk. The metamodel updater is respon-

sible for inserting metamodels into Hawk.

• registerMetamodel(f) This method registers a metamodel originating in a File (f),

with Hawk. Registering a metamodel comprises using the relevant IMetamodel-

ResourceFactory to parse it into an IHawkMetamodelResource and then using the

IMetaModelUpdater(s) to insert it into Hawk.

• synchronize() This method is called according to the synchronization schedule of

Hawk. It finds out which files of interest to Hawk have changed, uses the relevant

IModelResourceFactories to parse them into IHawkModelResources and propagates

the resulting resources to Hawk’s IModelUpdaters.

IVcsManager This interface exposes a version control system to Hawk. It is used to

find out which files in it have changed between two revisions and subsequently fetch

these files for updating them in Hawk. Key methods are described below:

200

• getDelta(startRevision) This method takes an initial revision and returns the files

which have changed in the repository since that revision.

• importFiles(path,temp) This method imports one or more files from the VCS using

path as the path to the file(s) and temp as the local directory where to import

them to. It is worth noting that calling this method should only request files of

interest to Hawk, making it the responsibility of the IModelIndexer not to request

unnecessary files (such as files Hawk cannot parse or unchanged files).

IMetaModelResourceFactory This interface exposes a modeling language (metamodel)

persistence format to Hawk. This allows for any metamodel written in that language

(and persisted in that form), to be stored in Hawk. Key methods are described below:

• canParse(f) This method returns whether a File (f) can be parsed by this fac-

tory into an IHawkMetaModelResource. Implementations should aim to provide a

lightweight approach for this method, such as by using the file extension type.

• parse(f) This method returns the IHawkMetaModelResource created by parsing

the File (f). More details on IHawkMetaModelResources can be found is Section

4.3.2.1.

• getStaticMetamodels() This method returns any static metamodel(s) provided by

the modeling language, as IHawkMetaModelResource(s). Such metamodels are

intended to be automatically added to any Hawk that knows about this IMeta-

ModelResourceFactory, upon initialization.

• parseFromString(String name, String contents) This method returns a IHawkMeta-

ModelResource created from a String containing the entire metamodel content.

Certain modeling technologies (such as EMF) only allow models to be parsed into

memory when their metamodel is also in memory; this limitation means that dur-

ing the execution of Hawk, all metamodels of such technologies need to be loaded

in memory in their native format. For this requirement to be met, Hawk needs to

persist the original metamodel in its original format upon registration, and every

time Hawk starts up it needs to provide this persisted metamodel to its relevant

factory and hence have it in memory for as long as Hawk runs. This method allows

for the factory to receive the persisted metamodel (in the form of a String) and

201

A. Details on Hawk Interfaces

create the relevant resource (which, if required, will be registered to the relevant

modeling technology for use). The content String is persisted in Hawk as an at-

tribute found in every metamodel node in the model index, which happens during

metamodel insertion.

IModelResourceFactory This interface exposes a model persistence format to Hawk.

This allows for any model written in that language (and persisted in that form) to be

stored in Hawk. Key methods are described below:

• canParse(f) This method returns whether a File (f) can be parsed by this factory

into an IHawkModelResource. Implementations should aim to provide a lightweight

approach for this method, such as by using the file extension type.

• parse(f) This method returns the IHawkModelResource created by parsing the File

(f). More details on IHawkModelResources can be found is Section 4.3.2.1.

• getModelExtensions() This method returns a collection of Strings representing

which file extensions this factory is able to parse. This method is used for dis-

carding non-model files and should be as complete as possible with any model

extension possibly recognized by the factory. For the actual model parsing into a

resource the canParse(f) method should be called before any costly parsing begins

(if any more checks need to be performed).

IMetaModelUpdater This interface provides Hawk with a strategy for inserting IHawk-

MetaModelResources (created by IMetaModelResourceFactories) into its current back-

end IGraphDatabase. Key methods are described below:

• insertMetamodels(metaModelResources,hawk) This method takes a collection of

IHawkMetaModelResources and uses the IGraphDatabase API to insert them into

Hawk.

• addDerivedAttribute(...) This method adds a derived attribute to the relevant

metamodel already present in Hawk. More details on derived attributes can be

found in Section 4.3.8.1.

• addIndexedAttribute(...) This method adds an indexed attribute to the relevant

metamodel already present in Hawk. More details on indexed attributes can be

found in Section 4.3.8.3.

202

IModelUpdater This interface provides Hawk with a strategy for inserting IHawk-

ModelResources (created by IModelResourceFactories) into its current back-end IGraph-

Database. Key methods are described below:

• updateStore(modelResources,hawk) This method takes a collection of IHawkModel-

Resources (alongside the versions of their originating file) and uses the IGraph-

Database API to update Hawk to reflect the latest version of each one. It returns

the actual model-level changes Hawk had to perform to synchronize itself with the

changes in these IHawkModelResources (compared to the current version of each

one in Hawk).

• updateDerivedAttribute(...) This method updates a derived attribute to the relevant

model already present in Hawk. More details on derived attributes can be found

in Section 4.3.8.1 and more information of when such attributes are updated can

be found in Section 4.3.8.2.

• updateIndexedAttribute(...) This method updates an indexed attribute to the rel-

evant model already present in Hawk. More details on indexed attributes can be

found in Section 4.3.8.3.

IQueryEngine This interface allows Hawk to connect with engines providing languages

that can be used to query it. Such engines are of great importance as they offer the

main way information stored in Hawk model indexes can be retrieved. Key methods are

described below:

• contextlessQuery(query,graph) This method takes a query in the form of a String

and returns the results of running this query in Hawk’s graph back-end. Implemen-

tations will need to either use the IQueryEngine’s API to implement a connection

with Hawk (through its IGraphDatabase layer) or will have to parse the query and

convert it to a set of calls to Hawk’s IGraphDatabase layer directly.

• contextfullQuery(query,graph,context) Similar to the above, this method takes a

query, this time with a context map which can provide parameters to the IQuery-

Engine on how it should perform the query or on constraints it needs to place on

the results provided back from the query.

203

B. Model Mutation Operations

This appendix presents the five model mutation operations used to change the source

models for the experiments performed in Section 5.3.2.

Listing B.1: EOL model mutation operations

//deletes a random TypeDeclaration and keeps track of the total

number of deleted elements (due to containments being deleted) in

variable i

operation deleteTypeDeclaration() {

var td = TypeDeclaration.all.random();

var it = td.eAllContents;

while(it.hasnext()){

it.next();

i=i+1;

}

i=i+1;

delete td;

}

//creates a new TypeDeclaration and gives it a random name

operation createTypeDeclaration() {

var t = new TypeDeclaration;

var count = Sequence{0..1000}.random();

var name = new SimpleName;

name.fullyQualifiedName = "synthetic_name_"+count;

t.name = name;

205

B. Model Mutation Operations

}

//adds a new MethodDeclaration to a random TypeDeclaration, setting

its returnType to a randomly named type, and setting one random

Modifier of the MethodDeclaration

operation addMethodDeclaration() {

var t = TypeDeclaration.all.random();

var m = new MethodDeclaration;

var returnType = new SimpleType;

var count = Sequence{0..1000}.random();

var name = new SimpleName;

name.fullyQualifiedName = "synthetic_name_"+count;

returnType.name = name;

m.returnType = returnType;

var mod = new Modifier;

var choice = Sequence{0..5}.random();

switch(choice){

case 0 : mod.public = true;

case 1 : mod.protected = true;

case 2 : mod.private = true;

case 3 : mod.static = true;

case 4 : mod.abstract = true;

case 5 : mod.final = true;

}

m.modifiers.add(mod);

t.bodyDeclarations.add(m);

}

//changes a random Modifier of a random MethodDeclaration from true

to false (if at least one exists)

operation changeModifier(){

206

var m = MethodDeclaration.all.random();

var mods = m.modifiers;

mods = mods.select(mod:Modifier|mod.public = true or mod.

protected = true or mod.private = true or mod.static = true

or mod.abstract = true or mod.final = true);

if(mods.size>0){

var mod = mods.random();

mod.public = false; mod.protected = false; mod.private = false

; mod.static = false; mod.abstract = false; mod.final =

false;

}

}

//renames a random TypeDeclaration to a random name

operation renameTypeDeclaration(){

var t = TypeDeclaration.all.random();

var name = t.name;

var count = Sequence{0..1000}.random();

var n = "synthetic_name_"+count; name.fullyQualifiedName = n;

}

207

C. User Guide

Hawk offers an Eclipse-based user interface for running and maintaining model indexes.

Figure C.1 shows how a new Hawk view looks like in a new Eclipse running the requires

Hawk plugins (installation details and the plugins themselves can be found online1).

Figure C.1.: Initial Hawk View

A new Hawk instance is added by clicking on the “Add” button found both in the

menu when you right click anywhere within the Hawk view and as a button in the

button bar on the top right hand side of the view. The window shown in Figure C.2

allows configuring of the new Hawk by choosing its name and location, as well as which

back-end store should be used. Advanced options such as setting the periodic check

interval of Hawk as well as using remote Hawk instances are also available but are not

covered here.

After having a running Hawk instance selected, metamodels can be added to it. Firstly,

clicking “Configure” button (which is only enabled if a running Hawk server is currently

selected in the view) will open the Hawk configuration dialog. The window in Figure

C.3 allows configuring the metamodels in the selected Hawk instance. By clicking the

“Add...” button in this window a file chooser is shown, allowing the addition of a (set

of) metamodel file(s) to Hawk. In this example the JDTAST.ecore metamodel (used in

the evaluation section 5.2.1) is added to Hawk, which will now show in the Metamodels

tab, as seen in Figure C.4.

1 https://github.com/mondo-project/mondo-hawk

209

https://github.com/mondo-project/mondo-hawk

C. User Guide

Figure C.2.: Creating a new Hawk

Next, Hawk needs to be provided with a path so that it can pick up any models found

there to index. In this example, the LocalFolder driver is used for simplicity and the

local folder “exampleModels” is indexed as shown in Figure C.5. After clicking the “OK”

button in the window the chosen folder is now indexed in Hawk, as in Figure C.6.

Now that a folder is indexed, in this case one named exampleModels, Hawk has au-

tomatically created the relevant model index, which can now be queried using the EOL

query engine driver of Hawk. For running the EOL program called grabats.eol, the

usual Epsilon “Run configurations” option in Eclipse can be used (by right-clicking the

file), and creating a new EOL Program run configuration, as shown in Figure C.7. This

program points to the selected EOL file (in this case a file named grabats.eol). By going

to the “Models” tab of the configuration, the “Add..” button can be used to add a

new Hawk model index to the configuration, as shown in Figure C.8. This opens the

configuration window shown in Figure C.9 where model can be named and pointed to

210

Figure C.3.: Metamodel configuration

Figure C.4.: JDTAST Metamodels added to Hawk

211

C. User Guide

Figure C.5.: Indexed folder configuration

Figure C.6.: Folder added to Hawk

212

the specific Hawk model index it needs to be read from. Optionally the query results

can be limited to a specific set of files/repositories (as described in Section 4.3.6.2) if

desired. Now the query can be run on the Hawk model by pressing the “Run” button,

as shown in Figure C.10.

Figure C.7.: Setting the source EOL file

The Hawk model index can be further optimized by adding derived attributes (de-

scribed in Section 4.3.8.1). This can be done by selecting the “Derived Attributes” tab

of the configuration window of Hawk, as shown in Figure C.11. By clicking the “Add..”

button in the window the option to create a new derived attribute for Hawk is available,

as shown in Figure C.12. After clicking “OK” the new derived attribute that has been

added is seen, as shown in Figure C.13.

Finally, (database) indexed attributes can be added, as described in Section 4.3.8.3.

This is done by selecting the “Indexed Attributes” tab of the configuration window of

Hawk, as shown in Figure C.14. By clicking the “Add..” button in the window the

option to create a new indexed attribute for Hawk is available. After clicking “OK” the

new indexed attribute that has been added is seen, as shown in Figure C.15.

213

C. User Guide

Figure C.8.: Adding a Hawk Index

A complete set of screencasts for running Hawk can be found online2.

2 https://www.youtube.com/channel/UCfJydYvvfcEg6o0kaSzC-LQ

214

https://www.youtube.com/channel/UCfJydYvvfcEg6o0kaSzC-LQ

Figure C.9.: Configuring the Hawk Index

Figure C.10.: Running the EOL query

215

C. User Guide

Figure C.11.: Configuring Derived Attributes

Figure C.12.: Adding a new Derived Attribute

216

Figure C.13.: Viewing current Derived Attributes

Figure C.14.: Adding a new Indexed Attribute

217

C. User Guide

Figure C.15.: Viewing current Indexed Attributes

218

Bibliography

[1] Dimitrios Kolovos, Richard Paige, and Fiona Polack. The Epsilon Object Language

(EOL). In Arend Rensink and Jos Warmer, editors, Model Driven Architecture

Foundations and Applications, volume 4066 of Lecture Notes in Computer Science,

pages 128–142. Springer Berlin / Heidelberg, 2006. 10.1007/11787044 11.

[2] The Unified Modeling Language (UML) [online], 2012. [Accessed 1 June 2012]

Available at: http://www.uml.org/.

[3] The Business Process Model and Notation (BPMN) [online], 2015. [Accessed 1

September 2015] Available at: http://www.bpmn.org/.

[4] The Systems Modeling Language (SysML) [online], 2015. [Accessed 1 September

2015] Available at: http://sysml.org/.

[5] Archimate Modeling Language [online], 2015. [Accessed 1 September 2015]

Available at: http://www.opengroup.org/subjectareas/enterprise/

archimate.

[6] Steven Kelly and Juha-Pekka Tolvanen. Domain-Specific Modeling. John Wiley &

Sons, 2007.

[7] The Web Modeling Language [online], 2012. [Accessed 1 June 2012] Available at:

http://www.webml.org/.

[8] The Systems Biology Markup Language [online], 2012. [Accessed 1 June 2012]

Available at: http://sbml.org/Main_Page.

[9] Richard Mark Soley. Object Management Architecture Guide, volume OMG Docu-

ment 92-11-1. Object Management Group, 1992.

219

http://www.uml.org/
http://www.bpmn.org/
http://sysml.org/
http://www.opengroup.org/subjectareas/enterprise/archimate
http://www.opengroup.org/subjectareas/enterprise/archimate
http://www.webml.org/
http://sbml.org/Main_Page

BIBLIOGRAPHY

[10] Anneke G. Kleppe, Jos Warmer, and Wim Bast. MDA Explained: The Model

Driven Architecture: Practice and Promise. Addison-Wesley Longman Publishing

Co., Inc., Boston, MA, USA, 2003.

[11] OMG. Meta-Object Facility (MOF) Specification Version 2.4.1 [online], 2012. [Ac-

cessed 1 June 2012] Available at: http://www.omg.org/spec/MOF/2.4.1/

PDF.

[12] Dick Grune and Ceriel J. H. Jacobs. Parsing techniques: a practical guide. Springer

New York, 2008.

[13] Heiko Kern. The interchange of (meta) models between metaedit+ and eclipse

emf using m3-level-based bridges. In 8th OOPSLA Workshop on Domain-Specific

Modeling at OOPSLA, volume 2008, 2008.

[14] Marcelo Paternostro Dave Steinberg Frank Budinsky and Ed Merks. EMF: Eclipse

Modeling Framework (2nd Edition). Addison-Wesley Professional, 2008.

[15] Jordi Cabot and Martin Gogolla. Object constraint language (ocl): a definitive

guide. In Formal Methods for Model-Driven Engineering, pages 58–90. Springer,

2012.

[16] Kolovos, D.S., Paige, R.F. and Polack, F.A. The Epsilon Object Language. In Proc.

European Conference in Model Driven Architecture (EC-MDA) 2006, volume 4066

of LNCS, pages 128–142, Bilbao, Spain, July 2006.

[17] Tom Mens and Pieter Van Gorp. A Taxonomy of Model Transformation. Electronic

Notes in Theoretical Computer Science, 152(0):125 – 142, 2006. Proceedings of the

International Workshop on Graph and Model Transformation (GraMoT 2005).

[18] Sreedhar Reddy, R Venkatesh, and Zahid Ansari. A relational approach to model

transformation using QVT Relations. iistunuedu, 2008.

[19] Radomil Dvorak. Model transformation with operational QVT. In EclipseCon 08,

Santa Clara, 2008.

[20] Dimitrios Kolovos, Richard Paige, and Fiona Polack. The Epsilon Transformation

Language. In Antonio Vallecillo, Jeff Gray, and Alfonso Pierantonio, editors, Theory

and Practice of Model Transformations, volume 5063 of Lecture Notes in Computer

220

http://www.omg.org/spec/MOF/2.4.1/PDF
http://www.omg.org/spec/MOF/2.4.1/PDF

BIBLIOGRAPHY

Science, pages 46–60. Springer Berlin / Heidelberg, 2008. 10.1007/978-3-540-69927-

9 4.

[21] Frédéric Jouault and Ivan Kurtev. Transforming Models with ATL. In Jean-Michel

Bruel, editor, Satellite Events at the MoDELS 2005 Conference, volume 3844 of

Lecture Notes in Computer Science, pages 128–138. Springer Berlin / Heidelberg,

2006. 10.1007/11663430 14.

[22] Frédéric Jouault, Freddy Allilaire, Jean Bézivin, Ivan Kurtev, and Patrick Val-

duriez. ATL: a QVT-like transformation language. In Companion to the 21st ACM

SIGPLAN symposium on Object-oriented programming systems, languages, and ap-

plications, OOPSLA ’06, pages 719–720, New York, NY, USA, 2006. ACM.

[23] The Epsilon Generation Language [online], 2012. [Accessed 1 June 2012] Available

at: http://www.eclipse.org/epsilon/doc/egl/.

[24] Xpand - M2T transformation language [online], 2012. [Accessed 1 June

2012] Available at: http://www.eclipse.org/projects/project.php?

id=modeling.m2t.xpand.

[25] Acceleo - Code generation language [online], 2012. [Accessed 1 June 2012] Available

at: http://www.acceleo.org/pages/welcome/en.

[26] Java Emitter Template (JET) [online], 2012. [Accessed 1 June 2012] Available at:

https://www.eclipse.org/modeling/m2t/?project=jet.

[27] Parastoo Mohagheghi, Miguel Fernandez, Juan Martell, Mathias Fritzsche, and

Wasif Gilani. MDE Adoption in Industry: Challenges and Success Criteria. In

Models in Software Engineering, volume 5421 of Lecture Notes in Computer Science,

pages 54–59. Springer, 2009.

[28] Dimitrios S. Kolovos, Richard F. Paige, and Fiona A.C. Polack. Scalability: The

Holy Grail of Model Driven Engineering. In Proc. Workshop on Challenges in MDE,

collocated with MoDELS ’08, Toulouse, France, 2008.

[29] Alix Mougenot, Alexis Darrasse, Xavier Blanc, and Michèle Soria. Uniform Random

Generation of Huge Metamodel Instances. In Proceedings of ECMDA-FA ’09, pages

130–145, Berlin, Heidelberg, 2009. Springer-Verlag.

221

http://www.eclipse.org/epsilon/doc/egl/
http://www.eclipse.org/projects/project.php?id=modeling.m2t.xpand
http://www.eclipse.org/projects/project.php?id=modeling.m2t.xpand
http://www.acceleo.org/pages/welcome/en
https://www.eclipse.org/modeling/m2t/?project=jet

BIBLIOGRAPHY

[30] Dimitrios Kolovos, Richard Paige, and Fiona Polack. The Epsilon Transformation

Language. In Antonio Vallecillo, Jeff Gray, and Alfonso Pierantonio, editors, Theory

and Practice of Model Transformations, volume 5063 of Lecture Notes in Computer

Science, pages 46–60. Springer Berlin / Heidelberg, 2008. 10.1007/978-3-540-69927-

9 4.

[31] Dimitrios S. Kolovos, Louis M. Rose, Nicholas Matragkas, Richard F. Paige, Esther

Guerra, Jesús Sánchez Cuadrado, Juan De Lara, István Ráth, Dániel Varró, Mas-

simo Tisi, and Jordi Cabot. A research roadmap towards achieving scalability in

model driven engineering. In Proceedings of the Workshop on Scalability in Model

Driven Engineering, BigMDE ’13, pages 2:1–2:10, New York, NY, USA, 2013. ACM.

[32] The Teneo/Hibernate Relational Database Model Store [online], 2012. [Accessed 1

June 2012] Available at: http://wiki.eclipse.org/Teneo/Hibernate.

[33] Javier Espinazo Pagán, Jesús Sánchez Cuadrado, and Jesús Garćıa Molina. A

repository for scalable model management. Software & Systems Modeling, pages

1–21, 2013.

[34] Konstantinos Barmpis and Dimitrios S. Kolovos. Evaluation of contemporary graph

databases for efficient persistence of large-scale models. Journal of Object Technol-

ogy, 13-3:3:1–26, July 2014.

[35] Javier Espinazo Pagán, Jesús Sánchez Cuadrado, and Jesús Garćıa Molina. Morsa:

a scalable approach for persisting and accessing large models. In Proceedings of

MODELS’11, pages 77–92, Berlin, Heidelberg, 2011. Springer-Verlag.

[36] MongoDB Developers. MongoDB, Document-Store NoSQL Database [online], 2012.

[Accessed 1 June 2012] Available at: www.mongodb.org/.

[37] Apache CouchDB Document Store Database [online], 2012. [Accessed 1 June 2012]

Available at: http://couchdb.apache.org/.

[38] OrientDB Developers. OrientDB, Hybrid Document-Store and Graph NoSQL

Database [online], 2012. [Accessed 1 June 2012] Available at: http://www.

orientechnologies.com/.

[39] Neo4J Developers. Neo4J, Graph NoSQL Database [online], 2012. [Accessed 1 June

2012] Available at: http://neo4j.org/.

222

http://wiki.eclipse.org/Teneo/Hibernate
www.mongodb.org/
http://couchdb.apache.org/
http://www.orientechnologies.com/
http://www.orientechnologies.com/
http://neo4j.org/

BIBLIOGRAPHY

[40] InfiniteGraph Graph Database [online], 2012. [Accessed 1 June 2012] Available at:

http://objectivity.com/products/infinitegraph/overview.

[41] Seyyed M. Shah, Ran Wei, Dimitrios S. Kolovos, Louis M. Rose, Richard F. Paige,

and Konstantinos Barmpis. A framework to benchmark nosql data stores for large-

scale model persistence. In Proc. 15th Conf. on Model-Driven Engineering Lang.

and Systems, Models’14, 2014.

[42] Amine Benelallam, Abel Gómez, Gerson Sunyé, Massimo Tisi, and David Launay.

Neo4emf, a scalable persistence layer for emf models. In Jordi Cabot and Julia

Rubin, editors, Modelling Foundations and Applications, volume 8569 of Lecture

Notes in Computer Science, pages 230–241. Springer International Publishing, 2014.

[43] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,

Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall,

and Werner Vogels. Dynamo: amazon’s highly available key-value store. In Proc.

21st ACM SIGOPS symposium on Operating systems principles, SOSP ’07, pages

205–220, 2007.

[44] Abel Gmez, Massimo Tisi, Gerson Suny, and Jordi Cabot. Map-based transparent

persistence for very large models. In Alexander Egyed and Ina Schaefer, editors,

Fundamental Approaches to Software Engineering, volume 9033 of Lecture Notes in

Computer Science, pages 19–34. Springer Berlin Heidelberg, 2015.

[45] Apache Subversion [online], 2012. [Accessed 1 June 2012] Available at: http:

//subversion.apache.org/.

[46] TWiki - the Open Source Enterprise Wiki and Web 2.0 Application Platform [on-

line], 2012. [Accessed 1 June 2012] Available at: http://twiki.org/.

[47] PVCS Version Manager [online], 2012. [Accessed 1 June 2012] Available at: http:

//pvcs.synergex.com/products/pvcs_version_manager.aspx.

[48] IBM Rational ClearCase [online], 2012. [Accessed 1 June 2012] Available at: http:

//www-01.ibm.com/software/awdtools/clearcase/.

[49] Brian Berliner and Jeff Polk. Concurrent Versions System (CVS) [online], 2012.

[Accessed 1 June 2012] Available at: www.cvshome.org.

223

http://objectivity.com/products/infinitegraph/overview
http://subversion.apache.org/
http://subversion.apache.org/
http://twiki.org/
http://pvcs.synergex.com/products/pvcs_version_manager.aspx
http://pvcs.synergex.com/products/pvcs_version_manager.aspx
http://www-01.ibm.com/software/awdtools/clearcase/
http://www-01.ibm.com/software/awdtools/clearcase/
www.cvshome.org

BIBLIOGRAPHY

[50] Git - distributed version control system [online], 2012. [Accessed 1 June 2012]

Available at: http://git-scm.com/.

[51] Mercurial [online], 2012. [Accessed 1 June 2012] Available at: http://

mercurial.selenic.com/.

[52] Bazaar [online], 2012. [Accessed 1 June 2012] Available at: http://bazaar.

canonical.com/en/.

[53] Peer-to-peer Version Control for Distributed Development [online], 2012. [Accessed

1 June 2012] Available at: http://www.relisoft.com/co_op/index.htm.

[54] Ben Collins-Sussman, Brian Fitzpatrick, and Michael Pilato. Version control with

subversion. ” O’Reilly Media, Inc.”, 2004.

[55] Haifeng Shen and Chengzheng Sun. Operation-based revision control systems. In

Proceedings of the 3rd Annual International Workshop on Collaborative Editing

Systems in conjunction with ACM Group Conference, 2001.

[56] Alessandro Rossini, Adrian Rutle, Yngve Lamo, and Uwe Wolter. A formalisation

of the copy-modify-merge approach to version control in MDE. Journal of Logic

and Algebraic Programming, 79(7):636 – 658, 2010. The 20th Nordic Workshop on

Programming Theory (NWPT 2008).

[57] Kerstin Altmanninger, Martina Seidl, and Manuel Wimmer. A survey on model ver-

sioning approaches. International Journal of Web Information Systems, 5(3):271–

304, 2009.

[58] Presentation of EMF Compare Utility [online], EclipseCon 2006,

2006. [Accessed 1 January 2016] Available at: https://www.

eclipsecon.org/summiteurope2006/presentations/ESE2006-

EclipseModelingSymposium10_EMFCompareUtility.pdf.

[59] Markus Scheidgen and Anatolij Zubow. Map/reduce on emf models. In Proceedings

of the 1st International Workshop on Model-Driven Engineering for High Perfor-

mance and CLoud computing, MDHPCL ’12, pages 7:1–7:5, New York, NY, USA,

2012. ACM.

224

http://git-scm.com/
http://mercurial.selenic.com/
http://mercurial.selenic.com/
http://bazaar.canonical.com/en/
http://bazaar.canonical.com/en/
http://www.relisoft.com/co_op/index.htm
https://www.eclipsecon.org/summiteurope2006/presentations/ESE2006-EclipseModelingSymposium10_EMFCompareUtility.pdf
https://www.eclipsecon.org/summiteurope2006/presentations/ESE2006-EclipseModelingSymposium10_EMFCompareUtility.pdf
https://www.eclipsecon.org/summiteurope2006/presentations/ESE2006-EclipseModelingSymposium10_EMFCompareUtility.pdf

BIBLIOGRAPHY

[60] G. Kramler, G. Kappel, T. Reiter, E. Kapsammer, W. Retschitzegger, and

W. Schwinger. Towards a semantic infrastructure supporting model-based tool in-

tegration. In Proceedings of the 2006 International Workshop on Global Integrated

Model Management, GaMMa ’06, pages 43–46, New York, NY, USA, 2006. ACM.

[61] The Connected Data Objects model Repository [online], 2012. [Accessed 1 June

2012] Available at: http://wiki.eclipse.org/CDO.

[62] Maximilian Koegel and Jonas Helming. Emfstore: a model repository for emf mod-

els. In Proceedings of the 32nd ACM/IEEE International Conference on Software

Engineering-Volume 2, pages 307–308. ACM, 2010.

[63] Javier Espinazo Pagán and Jesús Garćıa Molina. Querying large models efficiently.

Inf. Softw. Technol., 56(6):586–622, June 2014.

[64] Heiko Kern. The interchange of (meta) models between metaedit+ and eclipse

emf using m3-level-based bridges. In 8th OOPSLA Workshop on Domain-Specific

Modeling at OOPSLA, volume 2008, 2008.

[65] Konstantinos Barmpis and Dimitrios S. Kolovos. Hawk: towards a scalable model

indexing architecture. In Proceedings of the Workshop on Scalability in Model

Driven Engineering, BigMDE ’13, pages 6:1–6:9, New York, NY, USA, June 2013.

ACM.

[66] Konstantinos Barmpis, Seyyed Shah, and Dimitrios S. Kolovos. Towards incre-

mental updates in large-scale model indexes. In Proceedings of the 11th European

Conference on Modelling Foundations and Applications. ECMFA’15, July 2015.

[67] Konstantinos Barmpis and Dimitrios S. Kolovos. Towards scalable querying of

large-scale models. In Proceedings of the 10th European Conference on Modelling

Foundations and Applications. ECMFA’14, July 2014.

[68] Paige, R.F., Kolovos, D.S., Rose, L.M., Drivalos, N. and Polack, F.A. The Design

of a Conceptual Framework and Technical Infrastructure for Model Management

Language Engineering. In Proc. 14th IEEE International Conf. on Engineering of

Complex Computer Systems, Potsdam, Germany, 2009.

[69] Willink, E. Aligning OCL with UML. In Proceedings of the Workshop on OCL and

Textual Modelling, Electronic Communications of the EASST, 2011.

225

http://wiki.eclipse.org/CDO

BIBLIOGRAPHY

[70] Kolovos, D.S., Rose, L., Garcia, A.D. and Paige, R.F. The Epsilon Book. 2008.

[71] Dimitrios S Kolovos, Ran Wei, and Konstantinos Barmpis. An approach for efficient

querying of large relational datasets with ocl-based languages. In XM 2013–Extreme

Modeling Workshop, page 48, 2013.

[72] Alexander Egyed. Instant consistency checking for the uml. In Proc. of the 28th

International Conference on Software Engineering, ICSE ’06, pages 381–390, New

York, NY, USA, 2006. ACM.

[73] Alexander Egyed. Automatically detecting and tracking inconsistencies in software

design models. Software Engineering, IEEE Transactions on, 37(2):188–204, 2011.

[74] Hugo Brunelire, Jordi Cabot, Grgoire Dup, and Frdric Madiot. Modisco: A

model driven reverse engineering framework. Information and Software Technol-

ogy, 56(8):1012 – 1032, 2014.

[75] GraBaTs. 5th Int. Workshop on Graph-Based Tools, 2009.

[76] Jean-Sebastien Sottet and Frédéric Jouault. Program comprehension. In Proc. 5th

Int. Workshop on Graph-Based Tools, 2009.

[77] Gábor Bergmann, Ákos Horváth, István Ráth, Dániel Varró, András Balogh, Zoltán

Balogh, and András Ökrös. Incremental evaluation of model queries over emf mod-

els. In DorinaC. Petriu, Nicolas Rouquette, and Øystein Haugen, editors, Model

Driven Engineering Languages and Systems, volume 6394 of Lecture Notes in Com-

puter Science, pages 76–90. Springer Berlin Heidelberg, 2010.

[78] Gábor Bergmann, András Ökrös, István Ráth, Dániel Varró, and Gergely Varró.

Incremental pattern matching in the viatra model transformation system. In Pro-

ceedings of the Third International Workshop on Graph and Model Transformations,

GRaMoT ’08, pages 25–32, New York, NY, USA, 2008. ACM.

[79] Zoltán Ujhelyi, Gábor Bergmann, Ábel Hegedüs, Ákos Horváth, Benedek Izsó,

István Ráth, Zoltán Szatmári, and Dániel Varró. Emf-incquery: An integrated

development environment for live model queries. Science of Computer Program-

ming, 98, Part 1:80 – 99, 2015. Fifth issue of Experimental Software and Toolkits

(EST): A special issue on Academics Modelling with Eclipse (ACME2012).

226

BIBLIOGRAPHY

[80] Gábor Szárnyas, Benedek Izsó, István Ráth, Dénes Harmath, Gábor Bergmann,

and Dániel Varró. Incquery-d: A distributed incremental model query framework

in the cloud. In Model-Driven Engineering Languages and Systems, pages 653–669.

Springer, 2014.

[81] Gábor Szárnyas, Oszkár Semeráth, István Ráth, and Dániel Varró. The ttc 2015

train benchmark case for incremental model validation. 8th Transformation Tool

Contest (TTC 2015), 2015.

227

	Abstract
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Listings
	Author Declaration
	Introduction
	Overview of Model-Driven Engineering
	Overview of Versioning Systems
	Motivation and Research Hypothesis
	Research Results
	Thesis Structure

	Background
	Model-Driven Engineering
	Modeling and Automated Model Management
	Modeling Languages
	Metamodeling Architectures
	Model Querying and Modification
	Model Transformation

	MDE with Large-Scale Models
	Scalability

	Running Example

	Model Persistence and Versioning
	Model Persistence Formats
	XML Metadata Interchange (XMI)
	Relational Database Persistence – Teneo/Hibernate
	Document-based Persistence – Morsa
	Document-based Persistence – MongoEMF
	Graph-based Persistence – NeoEMF (Graph)
	Key-value-based Persistence – NeoEMF (Map)

	Model Versioning
	File-based Versioning
	Model-based Versioning

	Model Querying
	Querying Technologies
	Repository Querying

	Summary

	Analysis and Hypothesis
	Analysis
	Model Indexing

	Research Hypothesis
	Research Objectives
	Scope

	Hawk: Scalable Model Indexing Framework
	System Capabilities
	System Architecture
	System Components

	System Design
	Hawk Model Index Structure
	Back-end Persistence
	Background: Neo4J

	Hawk Mapping Layers
	Model Layer
	Graph Layer

	Version Control Managers
	SVN Manager
	LocalFolder Manager
	Git Manager
	Workspace Manager

	Metamodel/Model Resource Factories
	EMF Resource Factories
	Other Resource Factories

	Metamodel/Model Updaters
	Metamodel Updater
	Model Updater

	Querying Hawk
	Native Querying
	Back-end Independent Navigation and Querying

	System Lifecycle
	Synchronization Procedure

	Advanced Features and Optimizations
	Derived Attributes
	Derived Attributes: Incremental Updating
	Database Indexing
	Querying an optimized Hawk Model Index

	Summary

	Implementation
	Eclipse Plugins

	Evaluation
	Evaluation Strategy
	Correctness
	Index Content Correctness
	Hawk Validation Listener
	Query Correctness

	Performance
	Query Performance
	Update Performance

	Tool Integration
	Architecture Evaluation

	Evaluation Benchmarks
	Grabats 2009 Case-Study
	Grabats Query

	The BPMN MIWG Test Suite Repository

	Evaluation Results
	Benchmarking of Model Insertion and Querying Using Native Java and EOL
	Model Insertion
	Query Execution Time and Memory Footprint
	Disc Space

	Benchmarking of Incremental Updating in Hawk
	Model Update Execution Time
	Derived Attribute Update Execution Time
	Threats to Validity

	Benchmarking of Derived and Indexed Attributes in Hawk
	Derived Attribute Definition
	Query Definition and Execution Time

	Benchmarking of Continuous Model Updates in Hawk
	Update Performance Results
	Update Validation Results

	Hawk Tool Integration
	Epsilon Integration
	Exposing Hawk as an EMF Resource
	Remote Query API (using Apache Thrift)
	EMF IncQuery Integration
	EMF IncQuery
	The Train Benchmark

	Additional Drivers for Hawk
	Alternate Version Control Managers
	Alternate Model Factories
	Alternate Persistence Technologies

	Research Hypothesis Evaluation

	Conclusions
	Summary
	Contributions of the Thesis Research
	Novel Tools and Techniques
	Heterogeneous Model Indexing Platform
	Incremental Updating of Model Indexes
	Incremental Updating of Derived Attributes

	Notable side-products
	Evaluation of Model Persistence Technologies
	Use of Derived and Indexed Attributes in Model Indexes
	Scalable Model Querying

	Applications
	Future Work

	Appendices
	Details on Hawk Interfaces
	Model Mutation Operations
	User Guide
	Bibliography

