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  Summary 

I 

 

SUMMARY 

The measurement of the interface conditions in a cutting tool contact is essential 

information for performance monitoring and control. In this work, a new method for 

measurement of interface conditions, based on the reflection of ultrasound, is 

evaluated for use in turning in both dry and wet cutting conditions. An ultrasonic wave 

will be partially reflected when it strikes an interface between materials with different 

acoustic properties. The proportion of the wave reflected depends on the nature of the 

interface.  

A transducer was positioned on the underside of a cutting tool insert and a pulse 

propagated through the insert. The pulse was reflected back at the tool-chip interface 

and received by the same transducer. The amplitude of the reflected wave was 

processed in the frequency domain. Reflection coefficient measurements were then 

used to investigate the tool-chip interface at different machining parameters including 

cutting speeds, depth of cut and feeds. It was seen clearly that the reflection coefficient 

increases with increasing cutting speed due to either a reduction in the tool-chip 

contact area or a decrease in the pressure applied on the rake face cutting tool. While 

the reflection coefficient decreases with increasing cutting depth and feed due to either 

an increase in the tool-chip contact area or an increase in the pressure. The results also 

showed that the reflection coefficient was significantly affected by feed followed by 

cutting speed whereas the depth of cut had the lowest effect on reflection coefficient. 

These results were attributed to the affect of tool-chip contact length with the 

machining parameters, where the depth of cut had the least effect on contact length.  

When applying the cutting fluid, more energy was reflected back from the tool-chip 

interface and thus a higher reflection coefficient was recorded than in dry condition 

and this was due to the lower pressure that was applied on the rake face cutting tool.     

The use of ultrasound in the monitoring of contact condition at the tool-chip interface 

is shown to be a viable technique for research and condition monitoring.
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Introduction 

 

 

Metal cutting, or simply machining, is a broad term used to describe a group of 

processes that are used to change the shape of a workpiece to a desired geometry by 

removing unwanted material from the workpiece, after it has been produced by various 

methods, in the form of chips (Astakhov 2006). The material layer which is removed 

from the workpiece, the chip, rubs and slides over the rake face of the cutting tool. 

During this process, high stresses and tribological conditions occur between the 

cutting tool and the chip interface, and when uncontrolled can lead to rapid tool wear 

(Totten & Hong 2004). In order to understand this phenomenon, research and studies 

have been carried out to predict and control the friction and wear at this interface. In 

the present research work, a novel technique was used to investigate and monitor the 

interface between the cutting tool and the chip. The statement of the problem, the aim 

and objectives of the study, ultrasonic application and the thesis layout are discussed 

in this chapter.
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1.1 Statement of the Problem 

Industries have to optimize their cutting processes with the aim to improve their 

productivity. To achieve this objective, industries use high cutting regimes by using a 

high cutting speed and feed rate (Ben Abdelali et al. 2012). In contrast, the use of these 

high cutting regimes leads to a rise in the stress and temperature in particular at the 

tool-chip interface as well as close to the cutting edge. Thus causes excessive tool wear 

or even premature tool failure (Ben Abdelali et al. 2011; Zemzemi et al. 2009).  

The useful work in the cutting process, i.e. removing material from the workpiece 

needs only 30-50% of the energy that is expended in the cutting process while the rest 

of the energy is consumed in the tool-workpiece and tool-chip interfaces due to 

tribological conditions (Astakhov 2006). The tribological contact condition at the 

interface between the cutting tool and the chip has a strong influence on the metal 

cutting mechanics. This is because of the correlation between the deformation process 

on the shear plane and the contact conditions at the cutting tool-chip interface (Hwang 

& Chandrasekar 2011). Hence, the need to investigate the nature of contact condition 

at the tool-chip interface is important. Any change in the contact condition such as 

contact length or friction results in a substantial change in cutting temperature or 

energy expenditure and shear angle (Dogra et al. 2010). This change again influences 

tool wear or integrity of the machined surface. Thus, it is very difficult to fully 

understand the process of metal cutting without detailed knowledge of the contact 

conditions at the tool-chip interface. For this reason, numerous endeavors have been 

made to comprehend the nature of contact conditions at the interface between the tool 

and the chip in machining.   

Lubricating and cooling the cutting process are the main reason for using cutting fluid 

in machining or metal cutting, hence reducing tool wear and increasing the tool life 

(Claudin et al. 2010). Using the cutting fluid during the machining process results in 

removing the heat from the tool-workpiece interface by convecting it away.  (Sharma 

et al. 2009). Due to the limited guidance from theory, selecting a suitable cutting fluid 

for a specific application, among the large number of available commercial fluids, is 

considered as an issue (Trent & Wright 2000), so understanding the action of coolants 

and lubricants in metal cutting is still at a rather primitive level since the conditions 

are complex and the selection of cutting fluids still relies on practical experience. 
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In this study, a new method has been used to measure the tool-chip interface conditions 

in dry and wet cutting conditions. This method is based on the reflection of the 

ultrasound wave at the interface. When an ultrasound wave is travelling through a 

medium to another one passing through an interface, some of the waves are transmitted 

through the asperities and some of the wave are reflected back through the gaps. 

1.2 Aim and Objectives 

The aim of this study has been to develop and investigate the use of ultrasonic 

reflection to monitor the interface conditions in a cutting tool contact in dry and wet 

cutting conditions. This thesis explores the relationship between the reflection 

coefficient with cutting forces and cutting parameters.   

The following are the specific objectives of the research work:  

1. Devise an ultrasonic method which allows the cutting tool-chip interface to be 

monitored in situ and non-invasively.  

2. Analysing ultrasonic measurements in order to extract features concerning the 

cutting process and built-up edge (BUE) formation.  

3. Investigate the effects of machining parameters such as cutting speed, cutting 

depth and feed on the tool-chip interface in dry and wet cutting conditions 

using the ultrasonic reflection. The aluminium alloy 6082 was selected for this 

study as the work material.   

4. Measure the contact area between the rake face cutting tool and the chip and 

cutting forces and then establishing a correlation between the reflection 

coefficient and the contact area and cutting forces.  

5. Develop a model to fit the experimental data, especially the reflection 

coefficient, cutting forces and tool-chip contact length. 

1.3 The Use of Ultrasonic Reflection in Tribology 

Ultrasonic is a process of creating an inaudible sound wave and sending these waves 

to the interface between two media and then sensing the reflected wave. This process 

is called ultrasonic reflectometry. When an ultrasound wave travelling through a 

medium and incident at point having different acoustic properties, some of the 

ultrasound wave will be reflected. Detecting imperfections and cracks are the most 

common fields in engineering which are using this technique.  
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The ultrasonic reflection has been successfully used in a numerous engineering 

applications in different interfaces including dry interface (solid-solid) contact, 

lubricated interface (solid-oil-solid) contact and mixed interface.  

Kendall & Tabor (1971) used the ultrasonic method to investigate dry contact for the 

first time. They found that the interfacial stiffness affected the transmission of 

ultrasound. Using ultrasound to examine dry contact has been continued, for example 

Marshall et al. (2004) carried out a static ultrasonic contact measurement using a 

scanning system to examine interference fits. In another work, Marshall et al. (2006) 

used the same system to investigate the static contact pressure and area between a 

wheel and rail. Marshall and his colleagues continued with static dry contact 

investigation where they examine the dry contact between the bolted plates using the 

scanning system (Marshall et al. 2010). 

The use of lubrication in engineering application is very important to separate surfaces 

and cool the components. The lubricant film thickness is most important where it 

should be a thick enough to separate the asperities from the both surfaces but not too 

thick that it causes a leakage. Numerous researches have been carried out to measure 

the lubricant film thickness using ultrasound, see Dwyer-Joyce et al. (2003) and 

Reddyhoff et al. (2005). The application of ultrasonic reflection for measuring the oil 

film thickness has been applied to different engineering applications such as rolling 

element bearings (Dwyer-Joyce et al. 2004A; Dwyer-Joyce et al. 2004B), journal 

bearings (Reddyhoff et al. 2006) and mixed lubricant contacts (Dwyer-Joyce et al. 

2011).  

It is of interest to note that to date there is no research on the use of ultrasonic reflection 

in machining. The work presented in this thesis will develop the technique needed to 

investigate the contact conditions at the cutting tool-chip interface. In addition to the 

information about the tool-chip interface obtained from the ultrasonic reflection during 

dry cutting condition for different machining parameters, the ultrasonic method can 

be used to obtain details about the penetration of the cutting coolant into the tool-chip 

interface.    
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1.4 Thesis Layout  

This thesis is divided into the following chapter headings: Literature Review, 

Ultrasonic Background, Cutting Tool Ultrasonic Instrumentation Method, Analysis of 

Machining Processes, Cutting Force and Chip Morphology Measurements, Ultrasonic 

Reflection from Tool-Chip Interface, Analysis and Discussion of Experimental 

Results and finally Conclusions and Recommendations. A brief summary of each 

chapter is as follows; 

 Chapter Two. Literature Review. This chapter reviews the literature of the 

tribological conditions at tool-chip interface in a machining process.  

 Chapter Three. Ultrasonic Background. In this chapter, the principles of 

ultrasound are introduced. The generation of ultrasound waves and typical 

ultrasonic transducers are also presented. 

 Chapter Four. Cutting Tool Ultrasonic Instrumentation Method. This chapter 

introduces the initial attempt to apply the ultrasonic reflection to machining. 

In addition, the chapter also presents the ultrasonic apparatus and the 

temperature effect on the piezoelectric materials. In the last section of the 

chapter, the experimental procedure to obtain the reflection from the tool-chip 

interface was discussed.  

 Chapter Five. Analysis of Machining Processes. In this chapter, the machine 

setup, and the experiment design are introduced. This chapter also presents all 

the apparatus used in this study excluding the ultrasonic apparatus which 

mentioned in Chapter 4.    

 Chapter Six. Cutting Force and Chip Morphology Measurement. The 

experimental results of the cutting forces and the tool-chip contact area are 

presented and discussed in this chapter. Furthermore, the chapter also 

introduces the temperature measurements and its effect on the cutting forces 

and contact area.      

 Chapter Seven. Ultrasonic Reflection from Tool-Chip Interface. The ultrasonic 

method is applied to a carbide cutting tool on a CNC machine. The ultrasonic 
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measurement data obtained from the orthogonal cutting are analysed and 

discussed in this chapter.        

 Chapter Eight. Analysis and Discussion of Experimental Results. In this 

chapter, a correlation between the different measurements is presented.  

 Chapter Nine. Conclusions and Recommendations. This chapter presents the 

main conclusions drawn in the thesis and some suggestions for future work.   
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2  
Literature Review 

 

 

 

The tribological conditions at the tool-chip interface in a machining process, such as 

the built-up edge (BUE), tool-chip contact length and contact area phenomena, are 

intimately responsible for the rising tool temperature, fluctuation of cutting forces, tool 

wear and thus tool life. In the literature, there are several techniques developed and 

used in order to measure the interfacial conditions at the tool-chip interface. A brief 

overview of these measurement methods is given in this chapter.    
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2.1 Machining Operation  

Machining is defined as the process of removing unwanted materials from a workpiece 

to obtain the desired shape. A large piece of stock is available in various standard 

shapes, such as solid bars, flat sheet, shaped beam and hollow tubes, which can be 

used to produce the workpiece. The most widely used conventional machining 

processes are: turning, milling and drilling. Below is a brief description of each of 

these processes.   

2.1.1 Turning  

Turning is one of the common processes in machining, which is utilised to produce 

circular shapes by removing undesired material. The turning operation involves a 

machine called a lathe together with appropriate fixture, cutting tool and workpiece. 

The workpiece is secured in the lathe machine by using the fixture (chuck) which is 

attached itself to the machine. The lathe utilises a single-point cutting tool, more 

details are given in Section 2.2, and is also secured in the lathe machine. In turning 

process, the workpiece is rotated about its axis and the cutting tool is fed into it, cutting 

away unwanted material in the form of small chips and producing the desired shape. 

There are two different cutting methods in turning processes namely; orthogonal and 

oblique cutting which are described in detail in Section 2.3.  

2.1.2 Milling 

Milling is a process that uses a multi-point cutting tool to remove unwanted material 

from the workpiece to produce the desired part. The workpiece in the milling machine 

is secured to a fixture, which itself is attached to the platform of the machine, and 

moves linearly. While the cutter or the cutting tool is secured to the milling machine 

and is rotates about its axis. In milling process, the cutter is rotated about its axis and 

the workpiece is fed into it, unwanted material is cut away from the parent metal in 

the form of small chips and producing the desired shape.  

2.1.3 Drilling 

A drilling machine is specifically used to make a hole into a workpiece. The workpiece 

in the drilling machine is secured to a fixture, which is attached to the platform of the 

machine. The drilling cutting tool is also called a drill which has normally two cutting 
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edges. In drilling operations, the cutting tool or the drill is rotated about its axis and it 

feeds into the workpiece, undesired material is cut away from the workpiece in the 

form of small chips and obtaining the desired shape. 

In addition to the above mentioned three most popular machining processes, there are 

many other material removal processes such as planing, shaping, broaching, sawing, 

grinding and boring.   

2.2 Classification of Cutting Tools 

A cutting tool is any tool that is used to remove metal from the workpiece by means 

of shear deformation. A cutting tool may be classified into two groups namely: single-

point and multi-point cutting tool depending upon the number of the cutting edges. 

Single-point cutting edge is used in turning, boring, planing and shaping. Grinding, 

drilling and milling tools are multi-point cutting tool. Figure 2.1 shows examples of 

different types of cutting tools.         

 

Figure 2.1 Types of cutting tools (Courtesy of Sandvik Coromant) 

2.3 Methods of Metal Cutting 

The turning processes can be classified into two main categories: orthogonal cutting 

and oblique cutting depending upon the angle between the tool cutting edge and the 

cutting direction. Figure 2.2 shows schematic of the both metal cutting configurations. 

In orthogonal cutting, the cutting edge is perpendicular to the direction of the cutting 

tool travel while in oblique cutting the angle between the cutting edge and the cutting 

direction is less than 90̊ (Black & Kohser 2013). Oblique cutting is considered as the 

most common type of cutting process, normally found in many machining processes 

a) Single-point cutting edge b) Multi-point cutting tool  
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while the orthogonal cutting is the most common type used in research purposes. 

Orthogonal cutting was used in this study because it is easy to analyse since it is close 

to a two dimensional and therefore it is also known as two-dimensional cutting. The 

flow direction of chip is another reason for choosing orthogonal cutting in this study, 

where the chip moves perpendicular to the cutting edge while the chip makes an angle 

with the edge. Oblique cutting is more difficult to analyse since it is three-dimensional 

process.            

 

Figure 2.2 a) Orthogonal and b) oblique cutting (Trent & Wright 2000) 

2.4 Types of Chips 

The chip is the removed metal layer from the workpiece during the material cutting 

process. This layer passes through different operations before being separated from 

the material which are: the elastic and plastic deformations and the final form is 

removed by shear from the parent metal. There are different types of chips depending 

on the workpiece material and the cutting conditions (Figure 2.3) (Juneja et al. 2003):  

a) Continuous chips, 

b) Continuous chips with built up edge (BUE). 

c) Discontinuous chips.  

d) Serrated chips 

a)  b)  

a)  b)  
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Figure 2.3 Types of chips 

2.4.1 Continuous Chips 

Plastic deformation of the workpiece material occurs when the tool cutting edge 

advances into the workpiece and the metal is separated and moves like a ribbon (Figure 

2.3a). The plastic zone ahead of the cutting edge is called the primary deformation 

zone. The material then moves over the rake face of the cutting tool for a short distance 

and then curls away from the cutting tool. These types of chips are produced when 

cutting ductile material such as: aluminium alloys, copper, low carbon steel, etc. The 

deformation zone on the tool rake face is called the secondary deformation zone.  

2.4.2 Continuous Chips with Built-Up Edge 

The high temperature at the tool-chip interface and the high pressure of the metal on 

the tool rake face enable part of the chip to be welded onto the rake face of the cutting 

tool. This is known as the built-up edge, BUE (Figure 2.3b). The BUE is stronger than 

the rest of material flowing over it, becomes work hardened, because its heat has been 

dissipated to the tool rake face as a result of the intimate contact with the rake face. 

With the continuation of the machining process, some of the BUE may be combined 

with the chip and moves along the rake face. Part of the BUE usually remains on the 

tool rake face giving rise to poorer surface finish of the workpiece and reducing the 

a) Continuous 

chip 

Chip  Feed  

Workpiece  

b) Continuous chip with BUE 

BUE  

Chip  
Feed  

Fragment of 

BUE  

Workpiece  

c) Discontinuous chip 

Feed  
Rake face  

Chip  
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Feed  High shear 

strain zone   

Low shear 

strain zone   
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d) Serrated or non-homogenous chips 
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cutting tool life (R.Kesavan & Ramanath 2006). More details about the BUE and its 

effects have been detailed in Section 2.5.        

The effect of the cutting conditions on the mechanism of chip formation, during 

machining aluminium hybrid composites, has been confirmed by the experimental 

work of Radhika et al. (2014), where different types of chip formation was observed 

during the machining of the same material but under different cutting conditions. At 

low cutting speed, a discontinuous chip was formed while with increasing the cutting 

speed the chip length was increased. The reason for changing the chip form from 

discontinuous to continuous is because of the increasing ductility of the workpiece 

material, where increasing cutting speed increases the temperature and thus increasing 

the ductility. They also observed that the number and the diameter of chip curls 

increased with increasing the feed rate. Similar results were found by Xu et al. (2014) 

while machining aluminium 6061-T6.  

2.4.3 Discontinuous Chips 

Segmental or discontinuous chips are formed during the machining of the brittle 

materials such as brass, cast iron and bronze. The mechanism of chip formation is 

different from continuous chips, where in this case the metal is fractured instead of 

sheared. The power expenditure is also low. In discontinuous chips the contact length 

between tool rake face and chip is shorter than the continuous chips; this in turn 

enables the chip to carry most of the heat produced in the chip (Figure 2.3c). As a 

result, the tool temperature is lower than the previous one, therefore, the tool life is 

longer (Juneja et al. 2003).  

2.4.4 Serrated Chips  

They are semi-continuous chips formed due to the non-uniform strain on the material 

during cutting. It has a saw tooth-like appearance due to zones of low and high shear 

strain (Figure 2.3d). This type of chip formed in the materials which are very difficult 

to machine such as titanium alloy, nickel based super alloy and austenitic stainless 

steel. Serrated chips or non-homogenous chips are likely to be formed when materials 

are cut at very high speed. 
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2.5 Built-Up Edge (BUE)  

In single point cutting of metals, a built-up edge (BUE) is an accumulation of material 

against the rake face that adheres to the tool tip, separating it from the chip. While if 

the adhered material is on the rake face of the cutting tool then it is called a built up 

layer (BUL). Figure 2.4 shows a cutting edge with and without the BUE. 

 

Figure 2.4 Cutting edge with and without BUE 

A new method of preventing BUE formation was introduced by Bandyopadhyay 

(1984) by preheating the tool cutting edge above the re-crystallization temperature of 

the workpiece material, where the heating gives rise to softening the material, thus 

preventing the work hardening which is necessary for the formation of the BUE. This 

phenomenon (i.e. preheating the cutting tool) interprets the eliminating of the BUE as 

the cutting velocity increases, where the temperature increases with increasing the 

cutting speed.  

During the cutting process the BUE dimension grows until it reaches the maximum 

point, at which point the BUE dimension starts to decrease until it completely 

disappears at a critical cutting speed. The critical cutting speed is defined as the speed 

at which the BUE disappears and is denoted by Vcritical. The frequency of appearance 

and disappearance of the BUE increases as it approaches the value of the critical 

cutting speed, when it vanishes completely. Figure 2.5 shows the relation between the 

BUE dimension and the cutting speed (Algarte et al., 1995, cited in Reis et al. 2007).  
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Figure 2.5 Variation in BUE dimensions as a function of cutting speed, identifying the stable 

and unstable regimens and the critical cutting speed (Algarte et al., 1995, cited in Reis et al. 

2007).  

Carrilero et al. (2002) used a TiN cutting tool insert in machining of AA2024-T351 to 

investigate the differences between a built-up edge (BUE) and a built-up layer (BUL). 

The BUE is accumulated close to the cutting tool edge, while the BUL is accumulated 

on the rake face cutting tool. The SEM images and EDS spectra recorded onto the tool 

rake surface show dissimilar thickness and composition between the BUL and BUE. 

The SEM images showed that in the nearest zones to the tool cutting edge, a much 

higher metal accumulation can be noticed than in the farthest zones to the edge of the 

cutting tool. Furthermore, the EDS spectra showed that the intensive of the Fe and Cu 

peaks in the BUE are much higher than in BUL for the same element. Figure 2.6 shows 

a schematic of the cutting tool insert showing the BUE and BUL.  

 

Figure 2.6 Schematic image of cutting tool with BUE and BUL (Gokkaya & Taskesen 2008) 
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Predicting the length and the height of the BUE and its effect on the cutting forces and 

chip flow were investigated by developing a slip-line model; which at the same time 

predicts many other machining factors as well such as the thickness of the chip, tool-

chip contact length, cutting forces and chip up-curl radius. Predicting the length and 

the height of the BUE is important because it is the key to estimating the fluctuation 

of cutting forces during machining (Fang & Dewhurst 2005). 

Figure 2.7 shows a quick-stop device which was used to investigate the behaviour of 

the tool-chip interface, by removing the cutting tool during cutting process at a higher 

speed than the cutting speed. This device was employed to study the geometry of the 

BUE of a SAE 12L14 steel at low speeds with and without lubricant (Reis et al. 2007). 

The results showed that the BUE is reduced with using cutting fluid at the lowest 

cutting speed, but at higher cutting speed they found that the role of the cutting fluid 

is negligible in eliminating the BUE because at higher cutting speed the fluid has 

difficulty to entering into the hot chip-tool interface.    

 

Figure 2.7 Diagram of the quick-stop test configuration (Reis et al. 2007).  

They also found that the geometry of the BUE varied considerably along the cutting 

width and that, under some conditions, the largest measured area was four-fold larger 

than the smallest. Figure 2.8 was obtained by using the quick stop device and it shows 

a schematic and a micrograph of the BUE.    
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Figure 2.8 a) Schematic drawing of a BUE; b) Micrograph of the built-up edge of an Al-Si alloy 

(Reis et al. 2007).  

The effect of the cutting conditions including cutting speeds and feed rates on the built-

up edge (BUE) and built-up layer (BUL) were studied as well as on the surface 

roughness and cutting forces. The experiments were conducted by utilizing a CNC 

machine using uncoated cutting tool in machining AA6351-T6. The cutting process 

was performed in the absence of cutting fluid. The results showed that in order to avoid 

the formation of BUE or BUL, the cutting speed value should be between (400-500 

m/min) or higher, whereas at lower cutting speeds an accumulation of the aluminium 

against the rake surface was shown (Gokkaya & Taskesen 2008). The existence of a 

BUE sometimes has a positive effect on the surface finish at lower cutting speed where 

it leads to an increase in the nose radius of the cutting tool and thus improves the 

surface finish (Stephenson & Agapiou 2006). They also found that at high cutting 

speed and low feed rate a good surface finish was obtained and the cutting forces were 

the lowest at the same cutting conditions. This is due to the small contact area between 

the tool and chip and the high temperature (Gokkaya & Taskesen 2008). 

In another work, Gokkaya (2010) used the same conditions but with different material, 

uncoated cutting tool in machining AA2014-T4, to investigate the effect of the cutting 

conditions on the BUE, BUL, surface roughness and cutting forces. They obtained 

similar results to the first study. 

Fang et al. (2010B) studied the effect of the BUE on vibration. They used two different 

tools for confirming of the existence of the BUE: microscopic and high speed camera 
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(HSC). The microscope was used to examine the deposit material on the rake surface 

of the cutting tool after cutting while the HSC was used to observe the BUE in situ. 

An accelerometer also was used to measure the vibration signals. The results showed 

that there were three distinct BUE regions which are categorised by different patterns 

of cutting vibration: the BUE initiation region (0.8-4 m/min), steady BUE region       (4-

20 m/min) and unsteady BUE region (20-100 m/min). They also found that kurtosis, a 

statistical tool, can be used to distinguish between the different regions of the BUE. 

Gómez-Parra et al. (2013) investigated the effect of the BUE and BUL on the surface 

quality of two different alloys of the aeronautical aluminium: Al-Cu and Al-Zn. The 

experiments were conducted without the use of coolant. The experiments showed that 

the presence of the BUE and BUL adversely effect the surface condition. 

The effect of coolant on the BUE formation, at different cutting speeds, were 

investigated by Seah & Li (1997) by utilizing a scanning electron microscope (SEM). 

The SEM images show the BUE as lumps or streaks of adhering material on the 

underside of the chip after breaking away from the cutting edge. This technique was 

used in this study in order to confirm the BUE existence.  

2.6 Tribological Conditions at the Tool-Chip Interface 

The success of machining processes demands a full understanding of the tribological 

conditions at the tool-chip interface, where cutting tool wear and chip formation are 

strongly affected by the interfacial boundary conditions at the tool-chip interface.   

2.6.1 Tool-Chip Contact Length 

In the orthogonal machining process, which is shown in Figure 2.9 below, the cutting 

tool is compelled to cut into the workpiece, a chip is generated in the shearing zone 

then moves on along the rake surface of the cutting tool until it bends off or breaks up. 

The distance of the chip, which is in contact with the cutting tool from the tip of the 

tool to where it leaves the tool, is called the tool-chip contact length, or simply contact 

length (Huang et al. 1999; Abukhshim et al. 2004; Iqbal et al. 2008; Fatima & 

Mativenga 2013). 
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Figure 2.9 Diagram of tool action 

In this process, some of the power which is supplied by cutting forces is consumed in 

breaking down the workpiece metal bonds in the sticking zone while some others 

overcome the friction in the sliding region on the rake surface. Both deformation and 

friction produce heat. The main heat sources thus identified in the machining process 

are the plastic deformation, the contact area between the tool and chip and the friction 

between the flank face of the cutting tool and the machined surface of the workpiece 

(Huang et al. 1999; Fatima & Mativenga 2013). Plastic deformation in the shear 

deformation zone is an example of the generation of heat. The breakage of the 

chemical and physiochemical bonds along the shearing region are caused by the 

shearing force. In addition, this particular process leads to the production of the chip 

which generates heat. More heat is produced as a result of the flow friction of the chip 

along the tool rake face. This is known as secondary sheared deformation. This 

generated heat is transferred to the tool through the tool-chip contact length.   

The tool-chip contact length provides the path for the heat flux to the tool with larger 

contact lengths resulting in more heat dissipating into the tool. Therefore, and based 

on the result of Huang et al. (1999) study, it can be concluded that controlling the tool-

chip contact length may reduce the heat and the friction force on the rake surface of 

the cutting tool, which results in the decrease of both cutting force and tangential 

(thrust) force. This can be attained by making a groove in the rake surface to restrict 

the contact length to a distance from the cutting edge to the groove (chip breaker).  A 

chip breaker groove is the most simple practical method for controlling the contact 

length.  

flank face 
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Figure 2.10 below shows the factors which are related to the contact length, where Lst 

is the sticking length, Ls is the sliding length, and Lc is the total contact length. The 

tool-chip contact length is affected by different parameters such as cutting parameters, 

tool material, workpiece material and tool geometry (Sadik & Lindström 1993; 

Abukhshim et al. 2004; Friedman & Lenz 1970).  

 

Figure 2.10 Factors that affect the tool–chip contact length (Sadik & Lindström 1993; Sadik & 

Lindström 1995).  

Furthermore, the contact length has a significant effect on the factors mentioned in 

Figure 2.11. The friction and the shear forces are the main sources of heat generation 

in the tool. It is obvious that the reduction of these forces lead to the decrease in 

temperature accumulation in the tool. By shortening the contact length, the friction 

force and heat along the rake face of the tool are decreased. As a result, both cutting 

and tangential (thrust) forces are minimized (Friedman & Lenz 1970; Sadik & 

Lindström 1993; Huang et al. 1999; Abukhshim et al. 2004; Iqbal et al. 2008). 

Predicting the contact length and the experimental evaluation will be reviewed in the 

next section.  

 

Figure 2.11 Factors affected by the tool-chip contact length (Sadik & Lindström 1993). 
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2.6.2 Prediction of Contact Length 

In orthogonal cutting, a number of theoretical and experimental predictors have been 

developed to estimate the contact length (Toropov & Ko 2003; Abukhshim et al. 2004; 

Iqbal et al. 2008; Iqbal et al. 2009; Fatima & Mativenga 2013). Table 2.1 summarizes 

the contact length models in orthogonal cutting available in the literature and the 

workpiece materials on which these models were developed (in chronological order).  

In the 1950s, the first model to predict the contact length was proposed by Lee & 

Shaffer (1951). This model was based on the slip line theory for mild steel (plain-

carbon steel). They found that the contact length is affected by the undeformed chip 

thickness, shear angle and rake angle, where the largest undeformed chip thickness 

has the longest contact length. They also found that the contact length has an inverse 

relationship with the rake angle (Lee & Shaffer 1951).  

During the same period, Hahn (1953) proposed another model depending on the theory 

of uniform stress distribution on the shear zone. Other researchers developed different 

models for the contact length derived on the basis of equilibrium consideration 

(Klushin 1960; Rubenstein 1965; Zorev 1966). In these models the shear angle had to 

be determined from numerous tests, therefore these models are not easily applicable 

to machining practice. These models also include a variable m factor. This factor is 

related to the stress distribution on the secondary shear zone, which is shown to take 

values between (-5 to 22) (Friedman & Lenz 1970). It has been concluded from these 

models that the chip thickness and the rake angle have the effect on a qualitative 

prediction of the contact length.   
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Table 2.1 Summary of contact length models 

Researcher Contact length model 
Workpiece material 

(Cutting speed m/min) 

Lee & Shaffer 

(1951) 𝐿𝑐 =
𝑡1√2

𝑠𝑖𝑛 ∅ 𝑠𝑖𝑛(45° + ∅ − 𝛼)
 Mild steel  

Hahn (1953) 𝐿𝑐 = 𝑚𝑡1

𝑠𝑖𝑛(𝜓 + ∅ − 𝛼)

𝑠𝑖𝑛 ∅ 𝑐𝑜𝑠 𝜓
 - 

Klushin (1960) 𝐿𝑐 = 𝑚
𝑡1 𝑐𝑜𝑠 𝜓

𝑠𝑖𝑛 ∅ 𝑠𝑖𝑛(𝜓 + ∅ − 𝛼)
 - 

Abuladze (1962) 𝐿𝑐 = 2𝑡1[𝜆(1 − 𝑡𝑎𝑛 𝛼) + 𝑠𝑒𝑐 𝛼] - 

Rubenstein 

(1965) 
𝐿𝑐 = 𝑚𝑡1

𝑠𝑖𝑛(𝜓 + ∅ − 𝛼)

𝑠𝑖𝑛 ∅ 𝑐𝑜𝑠 𝜓
 - 

Zorev (1966) 𝐿𝑐 = 𝑚𝑡2[𝑡𝑎𝑛 𝜓 + 𝑡𝑎𝑛(∅ − 𝛼)] Different grades of steel  

Boothroyd & 

Bailey (1966) 

𝐿𝑐

=
𝑡1 𝑐𝑜𝑠(∅ − 𝛼)[ 𝑐𝑜𝑠(𝜓 − 𝛼) + 2 𝑠𝑖𝑛(𝜓 − 𝛼)]

𝑠𝑖𝑛 ∅ [2(𝑐𝑜𝑠 𝜓 𝑐𝑜𝑠 𝛼) + 𝑠𝑖𝑛(𝜓 − 𝛼)
 

- 

Poletika (1969) 𝐿𝑐 = 𝑡1(2.05𝜆 − 0.55) Iron, copper, bronze, steel 

Kato et al. (1972) 

and 

Toropov & Ko 

(2003) 

𝐿𝑐 = 2𝑡2 
Aluminium, zink, copper 

(800), AI 6061(1000) 

Tay et al. (1976) 𝐿𝑐 =
𝑡1 sin 𝜃

cos(𝜃 + 𝛼 − ∅) 𝑠𝑖𝑛 ∅
 AISI 1016 (244) 

Vinogradov 

(1985) 
𝐿𝑐 =

𝑡1 sin
𝜋
4

𝑠𝑖𝑛 ∅ sin(
𝜋
4

+ ∅ − 𝛼)
 - 

Oxley (1980) 𝐿𝑐 =
𝑡1 sin 𝜃

cos 𝛼 𝑠𝑖𝑛 ∅
{1 +

𝑛𝐶

3 [1 + 2 (
𝜋
4

− ∅) − 𝑛𝐶]
} 

Low carbon steel 0.16%C 

(6-60) 

Zhang et al. 

(1991) 
𝐿𝑐 = 8.677 × 10−5𝑡1

0.515𝑉𝑐
−0.065(90° − 𝛼)0.733 AISI 1045 (30-130) 

Gad et al. (1992) 𝐿𝑐 = 57.5𝑡1
0.671(90° + 𝛼)−1.69𝑒−0.0087𝑉𝑐 S1214 steel (23.3-74.6) 

Stephenson et al. 

(1997) 

𝐿𝑐 = 0.485 + 0.00280𝑉𝑐 

𝐿𝑐 = 2.421𝑉𝑐
−0.294 

AISI 1018 (82) 

AI 2024 

Marinov (1999) 𝐿𝑐 = 1.61𝑡2 − 0.28𝑡1 AISI 1018 (291) 

Sutter (2005) 𝐿𝑐 = 1.92𝑡2 − 0.09𝑡1 XC 18 (3600) 

Wang & Zhu 

(2006) 

𝐿𝑐 = ℎ(1 + 𝑛𝛾) + (1

+ 𝑛𝛾)√(𝑥 + 𝑦)2 + (𝑥 − 𝑦)2 
- 

Woon et al. 

(2008) 
𝐿𝑐 = 1.25𝑡2 + 0.61𝑡1 

𝐿𝑐 = 1.07𝑡2 + 0.59𝑡1 
Steel (100) 

Iqbal et al. (2009) 
𝐿𝑐 = 1.56𝑡2 + 0.09𝑡1 

𝐿𝑐 = 1.15𝑡2 + 0.70𝑡1 

AISI 1045 (98-880) 

Ti6AI4V alloy 

Germain et al. 

(2010) 
𝐿𝑐 = 𝑡2 − 𝑎𝛼 + 𝑏 Copper (140) 

 

where:  

 Lc: Contact length  θ: Inclination of resultant cutting force to shear plane 

 t1: Undeformed chip thickness  h: Land length of the tool 

 t2: Chip thickness  n: strain hardening index 

 λ: Chip compression ratio  m, C: Material constants 

 α: Rake angle  γ: Shear strain 

 ∅: Shear angle  a, b: Empirical constants 

 ψ: Friction angle  x, y: Cartesian coordinates 

 Vc: Cutting velocity  
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Other models, were developed by Abuladze (1962) and Poletika (1969) based on 

analytical and experimental studies, respectively. According to the results of these 

studies, the contact length can be estimated from the chip compression ratio and the 

undeformed chip thickness, this can be seen clearly from the equations in Table 2.1. 

Boothroyd & Bailey (1966) found that the tool-chip contact length can be predicted 

from the shear angle, rake angle and the undeformed chip thickness.  

In the 1970s and 80s, a few works were performed on contact length prediction. Kato 

et al. (1972) proposed an empirical model to predict the contact length for various 

workpiece materials: ferrous and non-ferrous metals and the cutting speed was 50 

m/min. The model predicted the contact length was twice the deformed chip thickness.   

The estimation of the plastic contact length (sticking contact length) was conducted 

by Tay et al. (1976) by utilizing AISI 1016 under orthogonal cutting conditions and 

the elastic contact length (sliding region) was ignored. The analysis of the secondary 

shear zone (tool-chip interface) was undertaken using printed grids with quick stop 

chip sections. The contact length was found to be affected by: undeformed chip 

thickness, the shear angle and the rake angle. Mathew & Oxley (1980) and Oxley 

(1989) developed a model to determine the contact length, when machining plain-

carbon steel. This model was based on equilibrium considerations. In addition, it was 

based on the theory of the stress distribution on the rake face of the cutting tool. In 

1985, another model was proposed by Vinogradov (1985), which is very similar to 

Lee & Shaffer's (1951) model. Both models are dependent on shear angle and 

undeformed chip thickness and are similar in their mathematical form, with the 

exception of the numerator component.  

Zhang et al. (1991) presented another model which is completely different from its 

predecessors, where previous models did not take into account the effect of cutting 

speed on the tool-chip contact length. However, the effect of this parameter on the 

contact length was studied. A steel (AISI 1045) was used at different cutting speeds 

(30-130 m/min). The result showed that the contact length decreases with increasing 

cutting speed. Gad et al. (1992) also predicted the tool-chip contact length as a function 

of cutting speed. A statistical curve fitting technique was used to predict contact 

length. The contact length was found to be reduced as the cutting speed increases. This 

model was derived using a high-speed steel (HSS) tool with steel S1214 workpiece 
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material and was tested just up to a cutting velocity of 75 m/min. Likewise, Stephenson 

et al. (1997) predicted contact length as a function of speed of cutting only where this 

model does not show any effect of rake angle and undeformed chip thickness on 

contact length. It can be seen clearly from the equation (see Table 2.1) that at zero 

cutting speed a contact length is equal to 0.485 mm, which is unrealistic. The 

maximum cutting speed was 82 m/min. The contact length was found to increase as 

the cutting speed increases. At the end of 1990s, a model was suggested by Marinov 

(1999) in which a dimensional analysis was used to derive an equation for the contact 

length for AISI 1018. The researcher concluded that contact length changes with 

changing deformed and undeformed chip thickness.  

Using the slip line theory, Toropov & Ko (2003) reached the same result of Kato et al. 

(1972) which is that the contact length is twice the chip thickness. Verification of these 

models was experimentally performed for different workpiece materials. The model 

proposed by Abuladze (1962) is similar to Kato et al. (1972) and Toropov & Ko 

(2003), for a zero rake angle tool. Therefore, three models concluded that doubling the 

chip thickness is a good prediction for contact length. This model has been used in this 

study.  

Sutter (2005); Woon et al. (2008); Iqbal et al. (2009) used dimensional analysis 

methods similar to Marinov (1999) to predict contact length for different workpiece 

materials. Therefore, their contact length model is similar as well, although with 

different coefficients. In addition, the difference in coefficients of these models can be 

referred to different cutting speeds used (using different workpiece material). This 

obviously indicates the reliance of contact length on cutting speed and workpiece.   

Wang & Zhu (2006) presented a model to estimate contact length using the slip line 

theory taking into account the effect of shear strain on tool-chip contact length. 

Recently, a model was presented by Germain et al. (2010). This model based on the 

empirical data. The tool-chip contact length was predicted as a function of chip 

thickness and rake angle (Germain et al. 2010). Such models are unsatisfactory due to 

unknown experimental parameters like a, b and n.   

With regards to experimental evaluation, the most well-known method utilized for 

measurement of tool-chip contact length is the microscopic examination of the wear 
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traces left by the sliding chip on the rake face of the cutting tool (Lee & Shaffer 1951; 

Hahn 1953; Klushin 1960; Rubenstein 1965; Poletika 1969; Friedman & Lenz 1970; 

Stephenson et al. 1997; Marinov 1999; Woon et al. 2008; Iqbal et al. 2009). While, 

other researchers examined the wear traces of contact zone on the underside of the 

chip gained by a quick stop experiment for measurement of contact length (Boothroyd 

& Bailey 1966; Iqbal et al. 2007).  

Another promising technique for measurement of contact length is painting the rake 

face of the cutting tool before machining. Zorev (1966) coated the tool rake face with 

a copper paint before cutting and then wear tracks were observed on the rake face of 

the cutting tool. Gad et al. (1992) used a dyeing technique, where a solution of 

hydrofluoric acid, hydrogen peroxide and ammonium persulfate was used to dye the 

rake face. This solution changes the colour of the tool rake face to black, thus 

measuring the contact length was conducted by measuring the rubbed contact area 

using a microscope. However, these techniques were appropriate at low cutting speed 

whereas at higher cutting speed, the coating layer was oxidized. Microphotographs is 

another technique for measuring contact length that was used by Zhang et al. (1991), 

where a device consisting of a camera and light source was used to capture the 

deformation situation in machining. The experiments were conducted on steel (AISI 

1045) over a cutting speed range of 30-130 m/min, which is the upper limit of the 

conventional cutting speed for cutting steel (Fatima & Mativenga 2013). Abuladze 

(1962) used another technique for measuring contact length, by identifying the traces 

of chip’s material on the tool rake face. This can be completed because of the 

compositional differences between tool and work material. This technique is a 

precursor to the energy dispersive X-ray analysis (EDX) and this method was used in 

this work. 

The characterisation of the tool-chip contact length over the rake face of the cutting 

tool will be reviewed in the next section.   

2.6.3 Tool-Chip Contact Phenomena  

Boundary conditions of the tool-chip interface have an important role in determining 

the cutting tool stresses and temperature, which are important to ascertain the suitable 

cutting conditions and to improve the design of the cutting tool.  
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Presenting the precise modelling of the tool-chip interface’s friction is a big challenge, 

although it has been studied for almost 70 years. Particularly in turning processes 

where the continuous contact between the tool and chip makes reaching the tool-chip 

interface impossible. Sliding and sticking interfaces are the boundary conditions of the 

tool-chip interface. The geometry of these conditions varies continually with time 

through the machining process. 

A disagreement in terms of the characterisation of the boundary conditions of the 

contact length over the tool rake face have been found in the literature. The first and 

widely cited view is to divide the tool-chip contact length into two regions with full 

sticking (seizure) taking place over much of the tool-chip interface near the cutting 

edge where the sliding velocity is close to zero (Figure 2.12), followed by an 

interfacial sliding occurring near the boundary of the tool-chip contact (Zorev 1966). 

 

Figure 2.12 Contact conditions at the tool-chip interface: sticking and sliding regions 

(Norouzifard & Hamedi 2014)   

In contrast, the second view (Madhavan et al. 2002) holds that sliding occurs over 

much of the tool-chip interface near the cutting edge, followed by sticking occurs near 

the boundary of the tool-chip contact. A third hypothesis is that the contact length is 

divided into four regions (Figure 2.13): a stagnation region at the cutting edge, a 

retardation region, a sliding region, and a sticking region near the boundary of the tool-

chip contact (Ackroyd et al. 2003). 
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Figure 2.13 Contact conditions at the tool-chip interface: Stagnation, retardation, sliding and 

sticking regions (Ackroyd et al. 2003)  

The distribution of the shear and normal stress at the rake face of the cutting tool has 

been suggested by (Zorev, 1963, cited in Kilic & Raman, 2007) to estimate a model 

for the frictional boundary conditions at the interface between the tool and chip. He 

used orthogonal cutting of steel workpiece using controlled contact length at moderate 

and low cutting velocities so as to measure the cutting forces for different tool-chip 

contact lengths. Furthermore, a different cutting depth and different rake angles were 

used in his experiments. Based on the results of this work, the tool-chip interface 

consists of sticking and sliding zones, where the sticking zone dominates the cutting 

edge due to the occurrence of intense plastic shearing of the weaker material. While, 

the sliding zone represented the remaining parts of the contact area (see Figure 2.14), 

the frictional boundary conditions in this area is less than the sticking zone. 

Distinguishing these two areas was achieved using photomicrographs through a quick- 

stop mechanism.  

 

Figure 2.14 Distribution of shear and normal stress at tool-chip interface (Kilic & Raman 2007) 
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Zorev presumed that in the sticking area the shear stress was uniformed with a power 

law decrease in the sliding area, while the distribution of the normal stress was 

measured according to the power law equation of 𝜎 = 𝑞𝑥𝑦, where q and y are 

constants and x is the distance between the cutting edge and the point where the chip 

leaves the rake face of the cutting tool.  

Wallace & Boothroyd (1964) studied the frictional conditions at the tool-chip 

interface. They used different cutting tools with different rake angles to cut an 

aluminium alloy at different cutting velocities. A quick-stop technique was used in 

order to investigate the bottom side of the chip (i.e. the side which is in contact with 

the rake face of the cutting tool) and the variation of the friction at the tool-chip 

interface. The results showed that the interfacial friction relied on different factors 

including the coefficient of sliding friction, shear strength of the chip material and the 

distribution of the normal stress on the rake face of the cutting tool. 

In contrast to Zorev’s results, (Horne et al., 1978, cited in Wright et al., 1979) proved 

that the sliding conditions occur at the area behind the cutting tool edge while the 

sticking zone was shown at the rear part of the tool-chip contact length. They used 

transient sapphire cutting tools to cut soft materials like lead. Conversely, when cutting 

hard workpiece materials such as iron and steel by using metal cutting tools, the 

sticking zone will prevailed the area just behind the cutting tool edge.  

Wright (1981) attributed the reason for sliding and sticking occurring to the 

distribution of stress on the rake face of the cutting tool and also to the surface tool 

conditions. He found that there were many factors affecting the interface boundary 

conditions including the cutting time, cutting velocity, immediate environment and 

workpiece-tool combination. He also mentioned that when cutting soft material with 

coated cutting tool for short times the sliding conditions would occur. While the 

sticking conditions would dominate if the duration of cut was long, there were high 

cutting velocities and there were low hardness values of workpiece and tool materials. 

In other work, Wright et al.  (1979) stated that the sticking condition is “defined as a 

solid phase weld between totally clean metal surfaces devoid of oxide”. While the 

sliding conditions is “defined as relative movement between last layer of atoms and 

the tool surface”. They also proposed a model for interpreting the interaction between 
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sticking and sliding regions at the secondary shear zone (i.e. tool-chip interface). The 

model is  

 𝐴𝑠 = 𝐾𝐴𝑟 2.1 

where: As: the sticking area, Ar: the real contact area (total contact area), and K: 

constant.  

The range of the K values is between (0-1) which depends on many factors such as the 

cutting speed, tool rake angle, cutting time, tool material and workpiece purity. Such 

models, however, have failed to determine the exact value of K.   

A high-speed imaging system has been used by Madhavan et al. (2002) to study the 

boundary conditions at the tool-chip interface; this system consisted of an optical 

microscope with a charge coupled device (CCD) –based high speed camera. Using 

this system enabled the observation of the contact conditions in situ in orthogonal 

cutting of aluminium, pure lead and copper at low cutting speeds and without using a 

lubricant. The contact area between tool and chip was classified into three different 

regions of contact, as shown in Figure 2.15. A zone close to the cutting edge which 

was free of deposition of chip material onto the rake face of the cutting tool (zone 1) 

and was considered by sliding region. Followed by Zone 2a and 2b which were a 

deposition of the chip material on the tool rake face and were characterized by sticking 

zones.    

 

Figure 2.15 Schematic of the tool rake face showing the different zones (Madhavan et al. 2002)  

The high-speed imaging system was used by other researchers to enable the details of 

the tool-chip interface to be determined at high spatial and temporal resolution while 
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cutting at velocities varying from (1-2000 mm/sec). They used orthogonal cutting of 

pure lead workpiece using an optically transparent sapphire cutting tools. They 

concluded that the tool-chip contact area can be divided into four different regions, as 

shown in Figure 2.16, a stagnation region at the cutting edge, followed by a retardation 

region, a sliding region and sticking region which is placed near the boundary of the 

tool-chip contact. In the sticking region a thin layer of the chip material is deposited 

on the rake face of the cutting tool (Ackroyd et al. 2003).  

 

Figure 2.16 Model of tool-chip contact conditions derived from the observation (Ackroyd et al. 

2003)  

New methods were used to investigate the adhesion layers on the rake face of the 

cutting tool after the cutting process, because of the contact area between the tool and 

chip is small and the difficulty of investigations in situ through cutting process. These 

methods are the laser mass spectrometry, scanning electron microscopy (SEM)-energy 

dispersive X-ray spectrometry (EDX) and 3D white light interferometry. These 

techniques were used by M’Saoubi & Chandrasekaran (2005) to classify the chemical 

composition of the deposit layer on the tool rake face after machining 316L steel at 

different cutting speed and different times of cut. They pointed out that the 

longitudinal and lateral sections of 3D maps could be utilized to determine the 

thickness of the adhesive layer. They observed that the thickness of the adhesive layer 

increases with increasing cutting speed and cutting time. They also observed through 

using the EDS analysis that the tool-chip interface was divided into three regions: a 

region with small chip material transfer adjacent to the cutting edge, a sliding region 

and a sticking region where a thick layer of the chip material is deposited on the rake 

face of the cutting tool.  

Raman et al. (2002) used the scanning electron microscope (SEM) and image analysis 

to investigate the fractal nature of the contact regions. They found that the cutting 
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speed effects the fractal geometry of the sliding and sticking regions, where the fractal 

dimension decreases with increasing the cutting speed. 

Kilic & Raman (2007) used oblique cutting of aluminium alloys using carbide cutting 

tool at different cutting speeds to investigate the interfacial boundary conditions at the 

tool-chip interface including the BUE, sticking and sliding regions. The tool rake face 

was investigated after tests by utilizing different techniques such as: SEM, Laser 

Scanning Confocal Microscopy (LSCM) and surface profilometer. They found that 

there were different factors effecting the BUE, sticking and sliding regions such as: 

the cutting conditions, cutting geometry and workpiece material; where these 

boundary conditions vary according to these factors. They also observed that at low 

cutting speeds the sticking condition was dominated by the contact area between the 

tool and chip, while with increasing the cutting speeds three different regions were 

shown: I. sticking region close to the cutting edge, followed by a sliding region and 

the remaining parts of the contact area were represented by II. sticking region (see 

Figure 2.17). The increasing of the cutting speeds lead to decreasing the I. sticking 

zone and vice versa. They attributed the causes of the disappearance of BUE at high 

cutting speeds to two factors: there was no adequate time for the chip at high cutting 

speeds to stick on the tool rake face and the second was with increasing the cutting 

speeds the compression forces were decreased.   

 

Figure 2.17 SEM image of tool-chip contact area, showing different contact conditions (Kilic & 

Raman 2007)  

The analyses of the tool-chip contact area to distinguish between the sticking and 

sliding zones were performed by Courbon et al. (2013) by utilizing SEM-EDXA using 
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dry orthogonal cutting. They found that the tool-chip contact area decreases with 

increasing the cutting speed and reducing the feed rate. They concluded that the 

contact region consists of two regions: sticking zone which is close to the cutting edge 

and it is free of deposits of chip’s material and the second region is sliding zone. 

2.7 Measurement Techniques  

2.7.1 Cutting Forces 

In orthogonal cutting, there are two components of cutting forces, which are acting on 

the cutting tool, namely thrust force and main cutting force. The thrust force is in the 

feed direction (also known as feed force) and it is denoted by 𝐹𝑡, while the main cutting 

force is perpendicular to the cutting edge (known as cutting force) and denoted by 𝐹𝑐 

(Figure 2.18). These two forces are typically measured using a dynamometer. 

 

Figure 2.18 Forces in orthogonal metal cutting 

Below are some works which have been conducted to investigate the influence of the 

cutting forces on the machining performance.  

For machining aluminium, the data presented by (Trent 1977; Trent & Wright 2000) 

shows that the relationship between cutting speed and cutting force is inversely 

proportional (see Figure 2.19). It seems possible that these results are due to the 

softening of the workpiece material resulting from an increase in temperature at the 

tool-chip interface when the cutting speed increases.      
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Figure 2.19 Forces vs cutting speed-aluminium and magnesium (Trent & Wright 2000)  

Seah & Li, (1997) conducted an experimental investigation on AISI 1050 steel material 

during turning operations using P30 uncoated cemented carbide cutting tool at a 

different cutting speeds (10-200 m/min). The experiments were performed with and 

without coolant, and the coolant was applied on the rake face of the cutting tool. The 

experimental results revealed that the role of coolant in term of cutting forces depends 

on the cutting speed, where at low cutting speeds the coolant caused a decrease in the 

cutting forces while at high cutting speeds the coolant role was negligible. The tool 

temperature is not too high at low cutting speeds, therefore, the cutting fluid act as a 

lubricant and reduces the friction at the contact areas between the tool and workpiece. 

The effect of the cutting forces on the temperature of the machined surface, during 

machining of aluminium Al 6082-T6, has been confirmed by the experimental work 

of O’Sullivan & Cotterell, (2001). The experiment was performed in the absence of 

fluid. The cutting forces and the machined surface temperature were found to decrease 

as the cutting speed increases and increase with tool wear.  
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The influence of coolant on the cutting forces was investigated during cutting of 

aluminium Al 6061 at different cutting speeds (up to 400 m/min). The trials were 

conducted by utilizing a diamond-coated carbide cutting tool, and all the experiments 

were carried out both with and without cutting fluid. The author used two different 

methods for the coolant conditions, namely minimum quantity lubrication (MQL) and 

flood coolant. It has been concluded that the cutting forces affected by the machining 

environments, where at the unlubricated conditions the cutting force was the highest 

whereas at the flood coolant the cutting force was found to be the lowest. For the MQL, 

the researcher clarified that needs more investigation (Sreejith 2008). 

Gokkaya (2010) used cutting speed and feed rate as cutting variables to investigate 

their effect on the cutting force. The experiments were conducted on aluminium A2014 

using uncoated carbide cutting tool in dry conditions. Gokkaya found that the main 

cutting force increased with increasing the feed and decreased with increasing cutting 

speed. Jr et al. (2011) used different materials for the same purpose, 6262-T6 and 

7075-T6 aluminium alloys, and the same results of Gokkaya (2010) were observed.  

The influence of the BUE on the fluctuation of cutting forces has been studied by Fang 

et al. (2010A). They observed that the cutting forces fluctuated significantly within 

cutting speed up to 100 m/min and they attribute this fluctuation to the BUE existence. 

Whereas, during cutting beyond 100 m/min, no significant fluctuation of the forces 

observed due to the vanishing of the BUE.               

In another work, and in order to investigate further about how the cutting forces 

affected by the machining parameters; Ojolo & Ohunakin, (2011) used high-speed 

steel (HSS) cutting tool to cut aluminium alloy rods in dry and wet conditions. The 

experiments were conducted at different cutting parameters: cutting speed (1.7, 2.33, 

3.08 and 4.15 m/s), cutting depth (0.5, 1, 1.5, 1.8 and 2 mm) and feed rate (1, 1.5, 1.8 

and 2 mm/rev). They reported that the cutting force increased with increasing cutting 

depth and feed, but decreased with increasing cutting speed.  

More recently, Popov & Dugin, (2014) attributed the increasing of cutting forces with 

using coolant to the built-up edge (BUE), because cutting with a cutting fluid prevents 

the BUE on the rake face and therefore, the cutting is conducted with the nose radius 
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at a negative rake angle. Where cutting without cutting fluid, a built-up edge is formed, 

which changes the cutting edge geometry. 

Eliminating or reducing the cutting fluid during the cutting process was a scope of one 

of the researchers to get a healthy environment. Where Davoodi & Tazehkandi, (2014) 

conducted an experimental investigation on Aluminium 5083-O during turning cutting 

using coated carbide cutting tool in dry and wet conditions in order to remove coolant. 

It has been concluded that the cutting force mainly affected by feed or the uncut chip 

thickness. They also concluded that the possibility of machining Al 5083-O at high 

cutting speeds and low feeds without using cutting fluid.      

Davoodi et al. (2012) found that at wet conditions the cutting force decreased with 

increasing feed within a specific range (up to 0.282 mm/rev) but behind this range the 

cutting force was found to increase. 

2.7.2 Acoustic Emissions (AE) 

Acoustic emissions are defined as transient elastic stress waves generated due to the 

rapid release of energy in a material as a result of a rearrangement of its internal 

structure (Lauro et al. 2014). To detect these waves, microphones or sensors are used 

and coupled to the surface of the sample. Acoustic emissions are used in numerous 

applications like pressure vessels, pipeline leak detection, aircraft, solidification, and 

machining. 

The acoustic emissions are typically measured using AE sensor. There are many 

sources of acoustic emissions in machining process including deformation at the shear 

cutting zone, sliding friction at tool-chip interface, chip breakage and the waves which 

occurs as a result of chips impact on the cutting tool and workpiece.  

In orthogonal cutting, a number of experiments have been carried out to measure the 

machining performance by utilizing acoustic emission. The first analysis of the 

emitting sound from the cutting process was conducted by Grabec & Leskovar (1977). 

The experiments were carried out orthogonally on aluminium at the cutting speeds 

range of (100-1000 m/min), cutting depth range of (0.5-3.5 mm) and feed range of 

(0.027-0.132 mm/rev).  It was found that the cutting process is a severe generator of 

continuous acoustic emission in both ranges: audible and ultrasonic. In the audible 
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range, the spectrum is discrete, while the spectrum is continuous in the ultrasonic 

range, which is known later as AE. The effect of the machining parameters on the 

distribution of the spectrum was studied, and a qualitative explanation of the 

corresponding effects was given. They proposed that the AE could possibly be used 

to evaluate the sharpness of a cutting tool.   

Kannatey-Asibu & Dornfeld (1981) presented a theoretical relationship between the 

root mean square of the acoustic emission (AErms) and cutting parameters. 

Verification of this model was experimentally conducted during orthogonal cutting of 

two different workpiece materials, namely 6061-T6 tubular aluminium and SAE 1018 

tubular steel. The trials performed for different cutting speeds from 0.128 to 1.9 m/s 

and different rake angles from 10° to 40°with a constant feed of 0.089 mm/rev. The 

RMS of the acoustic emission was found to be increased with increasing the rake angle 

and cutting speed.  

Hu & Qin (2008) investigated the generation of acoustic emission signals during 

machining of two different aluminium alloys; A390 and A359/SiC/20p. The 

investigation was conducted by using a cutting tool coated with a nano-diamond. They 

used different cutting parameters for each material, for A 390 alloy, the cutting speeds 

(3.3 m/s and 10 m/s) and the feed (0.2 mm/rev, 0.8 mm/rev) with a constant cutting 

depth (2 mm) were selected. For A359/SiC/20p the two cutting speeds were (4 m/s and 

8 m/s), feeds (0.15 mm/rev and 0.3 mm/rev) and the depth of cut of (1 mm). They 

analysed the data in the time domain in respect of the amplitude of the raw signals and 

the root mean square of the acoustic emission (AErms), they also analysed the signals 

in frequency domain using Fast Fourier Transform (FFT).  They concluded that the 

amplitude of the acoustic emission signals increases considerably with increasing the 

cutting speeds while there was a minor effect of the feed on the signals. They also 

found that the prevailing effect for generation the acoustic emission signals refers to 

the chip formation and segmentation. 

The effect of the cutting parameters including cutting speed, feed or (undeformed chip 

thickness) and the tool-chip contact length on the AE signal energy was studied by 

Rangwala & Dornfeld (1991) by utilizing 6061-T6 aluminium using the orthogonal 

cutting. They found that the RMS of the AE signal increases with increasing cutting 

speed.            
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2.7.3 Machining Vibration 

In a cutting process, there are three major categories of vibration: free, forced and self-

excited vibration. Forced vibration is induced as a result of the unbalance influence of 

the machine tool assemblies such as bearings, spindles and gears and free vibration is 

caused by shock. Self-excited vibration or chatter are induced when the cutting tool is 

cutting a workpiece that had a wavy surface from the previous tool revolution 

(Siddhpura & Paurobally 2012). Chatter has a bad effect on the surface finish, 

productivity and tool life (Stephenson & Agapiou 2006). Therefore, many researchers 

tried to avoid chatter either by detecting it as soon as occurs or by predicting its 

occurrence earlier. 

As described in Section 2.5 of this chapter, the BUE has a profound effect on the 

machining surface, vibration and cutting forces. Therefore, a study has been carried 

out by Fang et al. (2010A) to predict the BUE formation. The study was performed 

during orthogonal tube cutting of 2024-T351 aluminium alloy using two different 

cutting tools: sharp and round edge tools. the experiments were conducted at different 

cutting speeds (0.8-250 m/min) and different feeds (0.01-0.3 mm/rev), while the 

cutting depth was constant which is equal to the tube wall thickness. A dynamometer 

and an accelerometer were used to measure the cutting forces and vibration, 

respectively. The results of the cutting forces have been reviewed in Section 2.7.1 of 

this chapter. Regarding to the vibration results, they concluded that the vibration 

amplitude depends on the cutting speeds where they divided the cutting speeds into 

three ranges according to the variation of the vibration amplitude. At the speeds below 

20 m/min, the amplitude of the vibration increased rapidly as the cutting speeds 

increased. For the speeds (20-100 m/min), the vibration amplitude found to be slightly 

varied as the speeds increased. For the speeds higher than 100 m/min, they reported 

that the amplitude drops as the cutting speeds increased. They observed that this 

variation of the vibration amplitude with the cutting speeds is related to the BUE 

formation. They also found that the vibration produced from the sharp edge tool were 

different from the round edge tool, where the round edge tools produced a higher 

amplitude than the sharp edge tools.               

In another study, and as mentioned in Section 2.5, Fang et al. (2010B) established a 

relationship between the cutting vibration and the BUE formation. Establishing this 
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relationship was experimentally performed at different cutting speeds (0.80-100 

m/min) during orthogonal cutting of 2024-T351 aluminium tube using cemented 

carbide cutting tool. They analysed the vibration signals in time and frequency 

domains. The results indicated that kurtosis, a statistical tool, can be used to confirm 

the existence of the BUE and to distinguish between the different regions of the BUE. 

Where the results showed that there were three distinct BUE regions which are 

categorised by different patterns of cutting vibration: the BUE initiation region (0.8-4 

m/min), steady BUE region (4-20 m/min) and unsteady BUE region (20-100 m/min).  

2.7.4 Temperature Increase and Its Effects on Machining 

In metal cutting, there are three main sources of heat (Figure 2.20): primary 

deformation zone, secondary deformation zone (tool-chip interface) and tertiary 

deformation zone (tool-workpiece interface) according to Kus et al. (2015).   

 

Figure 2.20 Heat sources and propagation in metal cutting 

The heat generated in cutting process is shared by the cutting tool, workpiece and the 

chip. The maximum amount of the generated heat is carried away by the flowing chip, 

while the amount of heat which shared by the cutting tool is about 10-20 % of the total 

heat and some of heat is goes to the workpiece. With increasing cutting speeds, the 

amount of the generated heat that shared by the cutting tool are decreased (see Figure 

2.21).      
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Figure 2.21 Distribution of heat amongst chip, tool and workpiece (Abhang & Hameedullah 

2010B)  

There are different methods for measuring the temperature in the cutting processes 

including tool-workpiece thermocouple, embedded thermocouple, Infrared cameras 

and infrared thermometers.   

2.8 Design of Experiments  

The experimental design technique is a powerful tool that allows the modelling and 

analysis of the influence of design factors on dependent factors. The process factors 

can be defined as a design factor which determines the dependent factors, also known 

as response factors. Although many variables are used as machining parameters in a 

cutting process, the cutting speed, cutting depth and feed are the most common 

parameters considered by researchers (Barman & Sahoo 2009; Devi et al. 2015). In 

this study, the other machining parameters have been set to be constant over the design 

of experiment while the selected process factors are taken in consideration. 

There are many methods of experimental design such as full factorial design, partial 

factorial design, Box-Behnken design and centre composite design (CCD). The full 

factorial design is not feasible, in cases involving many factors, because of time 

restrictions and the cost involved in performing these experiments. In metal cutting 

modelling, studies show that a centre composite design (CCD) developed by Box and 

Wilson, is the most recommended method of experimentation, where experiments are 

conducted for all variable combinations (Oraby 1989), and therefore, it was used in 

this study to design the experiments.  

Deleted due to copyright  
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For modelling a quadratic (second-order) response surface, the most widely used 

experimental method is a rotatable central composite design (Myers et al. 2002). This 

was used for conducting these trials. To fulfil a rotatability for a given number of 

process factors, α is required and is calculated as 

 𝛼 = (2𝑘)1/4 
2.2 

where k is the number of the process factors. 

Rotatability refers to the uniformity of prediction error. In rotatable designs, all points 

at the same radial distance (r) from the centre point have the same magnitude of 

prediction error. The total number of experiments for a rotatable second-order CCD is 

calculated as 

 𝑁 = 𝑛𝑎 + 𝑛𝑜 + 𝑛𝑐 2.3 

where: 

N: Total number of experiments 

𝑛𝑎: Axial point, 𝑛𝑎 = 2𝑘 

𝑛𝑜: Centre point 

𝑛𝑐: Corner point, 𝑛𝑎 = 2𝑘 

The axial points 𝑛𝑎 = 2𝑘 are positioned on the coordinate axes of factorial space [(± 

α,0,…0),(0,± α,…0), (0,0, …± α)] and 𝑛𝑜 is centre points (0, 0, 0, 0…, 0). The number 

of centre points can be calculated from the equation below 

 𝑛𝑜 =
(𝑛𝑎 + 𝑛𝑐)(𝜆(𝑘 + 2) − 𝑘)

𝑘
 

2.4 

where; 𝜆 is constant and it depends on the number of the design parameters, for 

instance at  𝑘 = 3, 𝜆 = 0.86 (Box & Hunter 1957). The corner points(𝑛𝑐) are known 

as factorial points and usually coded as ±1.    

In this experimentation, there are three design factors (k): cutting speed, cutting depth 

and feed. For 𝑘 = 3; 𝑛𝑐 = 8 (corner points), 𝑛𝑎 = 6 (axial point) and 𝑛𝑜 = 6 (centre 

points), a total of 20 experimental runs have been considered (Figure 2.22). From 
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equation 2.2, 𝛼 = 1.6817, A randomized experimental run was conducted to 

minimize the error as a result of machining set-up.  

 

Figure 2.22 Generation of a central composite design for three factors 

2.9 Conclusions  

The terminology of the machining operations has been presented in this chapter. The 

difference between the metal cutting methods and the reason for choosing the 

orthogonal cutting were also stated. The chip types and the mechanism of formation 

of the BUE and BUL and them effect on the machining performance were presented. 

The significance of the tribological conditions at the tool-chip interface in machining 

process were discussed in detail. In the last part of this chapter, the instrumentations 

of the cutting tools have been defined and reviewed including the techniques for 

measuring the cutting forces, acoustic emissions, vibration and temperature. The effect 

of increase temperature on machining performance were also presented in this chapter.               
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3  
Ultrasonic Background 

 

 

 

 

 

 

 

 

There are many advantages of the ultrasound technique which make it widely used in 

non-destructive testing and many other applications such as industrial control and 

medical imaging. Among these advantages, the use of ultrasound is a safe method, 

non-destructive and it is a portable technique. In addition, because of increasing 

capabilities of pulsing and digitizing equipment as well as the reducing cost, the use 

of ultrasonic method is becoming increasingly extensive. This chapter presents the 

fundamental principles of ultrasound which will be useful in the following 

investigation of the tool-chip interface.      
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3.1 An Introduction to Ultrasound 

The humans have a limited ability to sense sounds, where the humans are unable to 

hear sound with a frequency below 20 Hz and above 20 kHz. Ultrasound is acoustic 

energy in the form of mechanical waves having a frequency higher than the upper limit 

of human hearing range, i.e. greater than 20 kHz (see Figure 3.1). Today, ultrasound 

is used in many fields, from a basic car parking sensor to an advanced medical 

sonography to visualize internal organs and foetuses in the human womb. It is also 

widely used in manufacturing industry as a non-destructive tool for the inspection of 

imperfections in a solid body. 

  

 

 

3.2 Fundamental Principles of Ultrasound 

3.2.1 Ultrasonic Wave Propagation 

Sound wave move through a host medium as a result of the particles oscillation within 

the medium. This motion can be modelled as a collection of particles held in position 

by springs which represent the elastic forces. Figure 3.2 shows a model of the elastic 

body. The model behaves like a spring where the particles can perform elastic oscillations. 

If the material particles on the left side of the model are excited with sinusoidal 

oscillations, the particles on the first plane are then forced to oscillate with the same 

amplitude. The elastic forces transmit the oscillations to the particles in the second plane. 

This process will repeat itself for following planes of particles in the medium and, 

therefore, the vibratory movement of the particles will propagate through the medium.  

     

Ultrasound Audible Sound  Infrasound 

20 20000 Frequency Range (Hz) 

Figure 3.1 The frequency ranges of sound 
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Figure 3.2 Model of an elastic body 

Sound waves can propagate in solids in four principle modes that depend on the way 

the particles oscillate; shear waves, longitudinal waves, surface (Rayleigh) waves, and 

in thin materials as plate (Lamb) waves (NDT Resource Centre, 2012).  

3.2.1.1 Longitudinal Waves 

If the particle motion and the wave propagation are in the same direction, then it 

creates what is known as a longitudinal wave. The wave shown in Figure 3.3 shows 

an example of a longitudinal wave. This sort of longitudinal wave is also called as 

pressure or compression waves. This mode (i.e. longitudinal waves) considered the 

most common modes of propagation used in ultrasonic test and will be the subject of 

this study.  

 

Figure 3.3 Representation of longitudinal wave 

3.2.1.2 Shear, Surface and Lamb Waves 

The other form of propagation is that of transverse waves depicted in Figure 3.4. In 

this type of propagation, the motion of particles is perpendicular to the motion of the 

wave. This wave is also known as a shear wave. The shear wave can only propagate 

in the medium which support shear forces and because a liquid has not the ability to 
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support the shear force, so the shear wave cannot propagate through the liquid. The 

speed of sound of a longitudinal wave, 𝑐𝐿 through a medium is approximately double 

of the shear speed of sound, 𝑐𝑆.        

 

Figure 3.4 Representation of shear wave 

Surface waves are a combination of shear and longitudinal waves interacting. These 

waves are also known as Rayleigh waves. Rayleigh waves only exist on the surface of 

a material. 

Plate waves (also known as Lamb waves) are like the Rayleigh waves, they are a 

combination of longitudinal and shear waves, but plate waves only occur in thin plates. 

Transverse (shear), surface (Rayleigh) and plate (Lamb) waves were not used in this 

study, to monitor the tool-chip interface, because of their unsuitableness in respect of 

either ability of detection or application (transverse waves cannot propagate in a liquid, 

plate waves only occur in thin plates and surface waves cannot propagate through the 

material where only propagate on the surface of the material).         

This study is primarily concerned with longitudinal waves which were sent through 

the tool–chip interface to measure the interface conditions. 

3.2.2 Acoustic Properties of Materials 

As mentioned in Section 3.2.1, ultrasonic waves propagate by oscillating particles 

within a medium. Therefore, the ultrasonic wave properties are affected by the 

properties of the medium through which the wave is travelling. In this section, factors 

correlated with ultrasonic waves are presented with their relevance to the host medium.      

3.2.2.1 Speed of Sound 

As already stated, the vibrating particles within a material transmit the sound or the 

ultrasonic wave. The time it takes the particles to travel through the medium depends 
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on the intensity of the elastic forces between these particles (Marshall, 2005 cited in 

Reddyhoff, 2006). Different materials transmit an ultrasound wave at different rates 

because different materials have different elastic forces. For a given material, the 

speed of sound is constant at any frequency and wavelength. Equation 2.1 shows the 

relation between the speed of sound with the frequency and wavelength.       

 𝑐 = 𝑓𝜆 3.1 

where c is the speed of sound (m/s), f is the frequency (Hz) and 𝜆 (m) is the wave 

length. See Table 3.1 for some typical values of speed of sound for different materials.   

The host material does not affect the frequency of the ultrasound wave while the wave 

speed is specific to the host material.  Ultrasonic waves are produced from a source 

with a given frequency, and they are sent through a material with a known thickness. 

From the time of flight equation (equation 3.2), the speed of sound in a medium can 

be obtained.  

 𝑐 =
2ℎ

𝑡
 

3.2 

 where h is the thickness of the sample and t is the time. 

3.2.2.2 Acoustic Impedance of Material 

Acoustic impedance is considered as one of the most important properties of the host 

material in this study, which significantly determines the behaviour of the reflected 

signal from an interface. The acoustic impedance is defined as a product of the density 

𝜌 times the speed of sound c and it is denoted by z (Krautkramer & Krautkramer 1977).  

 𝑧 = 𝜌𝑐 3.3 

The units of the acoustic impedance are 𝑘𝑔 𝑚2𝑠⁄ , also known as Rayls. Typical values 

of acoustic impedance for various materials are shown in Table 3.1. Sonically hard is 

the name given to the materials that have a high acoustic impedance, while the 

materials that have a low acoustic impedance are called sonically soft.  



                           3.2 Fundamental Principles of Ultrasound 

46 

Table 3.1 Acoustic properties for various materials.  

Materials 
Speed of Sound, 

𝒎 𝒔⁄  

Density, 

𝒌𝒈 𝒎𝟑⁄  

Acoustic Impedance, 

𝒌𝒈 𝒎𝟐𝒔⁄  

Aluminium 6320 2700 17.1 × 106 

Tungsten 5180 19250 101.0 × 106 

Steel 5900 7700 45.4 × 106 

Water 1480 1000 1.48 × 106 

Air 343 1.2041 413.3 × 100 

3.2.2.3 Attenuation of a Sound Wave 

Absorption and scattering are the causes of attenuation, which causes a reduction of 

the signal amplitude as it travels through a medium. The attenuation level relies on the 

frequency of the ultrasound signal which is transmitted through the medium and the 

material itself. If the attenuation is too high then distinguishing the interest signal, 

from the background noise will be much difficult. 

The natural inhomogeneity of materials causes acoustic scattering. This 

inhomogeneity in material nature leads to a difference in acoustic impedance within 

the same material which causes the signal to reflect when it meets a boundary in a 

material. Grain boundaries, inclusions and voids can be reasons for these boundaries. 

Absorption occurs when the ultrasound signal travels through the host material as a 

part of the energy contained in the ultrasound wave is converted to another form of 

energy. Several processes can be responsible for this (Mason & Thurston 1979). The 

absorption is increased with increasing the wave frequency because at higher 

frequencies the particles within the material vibrate faster, hence, more energy is 

converted to heat (Marshall 2005).     

 The attenuation coefficient, α of ultrasound in a material can be defined by: 

 𝐴ℎ = 𝐴𝑜𝑒−𝛼ℎ 3.4 
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where 𝐴𝑜 is the initial amplitude of a wave and 𝐴ℎ is the amplitude after it has 

transmitted through a thickness of material h. By taking the natural logarithm for 

equation 3.4 gives 

 𝛼ℎ = ln
𝐴𝑜

𝐴ℎ
 3.5 

The attenuation coefficient in equation 3.5 is expressed regarding a dimensionless 

number of nepers per unit length, (i.e. Np/m). Nepers per unit length can be converted 

to decibels per unit length using equation 3.6.  

 
𝛼

𝑚
= 0.1151 

𝑑𝐵

𝑚
 

3.6 

To overcome the attenuation effect, the transmitter voltage and the gain can be 

amplified. 

3.3 Generating Ultrasound  

The ultrasound transducers are used to generate and receive the ultrasound waves. 

These transducers convert one energy form to acoustical energy and vice versa. There 

are several types of ultrasonic transducers that use different methods for generating 

the ultrasound. These include optical methods and laser, electro-magnetic and heat 

shock by suddenly heating the body surface (White 1963). The crystal oscillators 

which are based on the piezoelectric effect are used to generate the ultrasound wave, 

and considered as the most popular method for generating ultrasound. The other 

generating methods are beyond the scope of this investigation and will not be detailed 

here, but more information about these methods can be found in references (J. Blitz 

1963; Krautkramer & Krautkramer 1977) 

In 1880, the piezoelectric effect was presented by the Pierre Curie brothers. They noted 

that a plate cut from crystal in a certain direction, an electrical charges are generated 

across the plate as it is deformed as a result of the external mechanical pressure. In 

1881, Lippman predicted the reverse effect and concluded that, in consonance with 

the electrical signals applied, such crystals could be used either to generate mechanical 

vibration or to generate electrical signals. 
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Because of the behaviour of the piezoelectric materials when applied to mechanical 

pressure, which produce an electric charge, they are utilised in many applications. 

These effects establish the base of ultrasound transmitters and receivers for the non-

destructive testing, e.g. ultrasonic transducers.  

Today, different piezo materials are used for generating and receiving ultrasound 

signals. Piezoelectric ceramics such as lead zirconate titanate (PZT), lead metaniobate, 

barium sodium niobate and lead titanete are largely in use for material testing. Lithium 

niobate, piezoelectric monocrystals which are quartz, lithium tantalite, lithium 

sulphate, ionic acid and zinc oxide are rarely used. 

3.4 Ultrasonic Transducers  

Figure 3.5 a) shows a typical pulse from an ultrasonic transducer. The amplitude 

spectrum illustrated in Figure 3.5 b), was created by taking a Fast Fourier Transform 

(FFT) of the waveform. It can be seen clearly from the amplitude spectrum that the 

pulse has energy over a range of frequencies with a roughly Gaussian distribution 

about the frequency of the high amplitude which is known as the centre frequency. In 

general, the transducer centre frequencies in non-destructive testing (NDT) varies 

from ~0.5 MHz to 50 MHz relying on the application. Therefore, the bandwidth range 

is used to extract the useful information from a signal, where the energy outside of this 

range is so little and has a very little effect on the analysis. As shown in Figure 3.5 b), 

the bandwidth is defined as the range of the useful frequency which has an amplitude 

greater than half of the peak/maximum amplitude. This corresponds to a 6 dB below 

the peak amplitude. 

 

Figure 3.5 Example of a pulse produced by an ultrasonic transducer 

a) Time domain b) Frequency domain (Amplitude 

Spectrum) 

y  
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Ultrasonic transducers can be classified into different groups according to the wave 

propagation whether they produce longitudinal or shear waves, and whether the pulse 

is focused or not. Figure 3.6 shows the classification of the ultrasonic transducers.  

The need for permanent bonding of the sensor to the substrate gives rise to the using 

of bare piezo elements in this study. This was driven by the risk of damage to 

expensive NDT transducers and the low cost of bare piezo elements. The possibility 

of cutting the bare piezo element to small size according to the tool-chip contact was 

another reason for choosing the bare piezo element in this study, more details are 

presented in Chapter 5.  

 

Figure 3.6 Tree diagram showing types of ultrasonic transducers 

3.5 Ultrasonic Reflection from an Interface 

When an ultrasonic wave is normally incident on a complete boundary between two 

media, some proportion of the sound wave will be transmitted and some will be 

reflected. This is shown in Figure 3.7, where the proportion of the wave reflected, is 

known as the reflection coefficient, R. While the proportion of the wave that is 

transmitted through the interface is known as the transmission coefficient, T, 

(Tattersall 1973).  

 
𝑅 =

𝑧1 − 𝑧2

𝑧1 + 𝑧2
 3.7 

 𝑇 =
2𝑧2

𝑧1 + 𝑧2
 3.8 

Ultrasonic Transducers 

Commercial  Bare Elements  

Immersion Contact Shear Longitudinal 

Shear Longitudinal Focused Unfocused 
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where z is the acoustic impedance of a material (which is equal to the product of its 

density and the speed of sound through it), and the subscripts 1 and 2 refer to the 

materials on either side of the interface. Equation 3.7 shows that the reflection 

coefficient, R, depends on the acoustic impedance mismatch between the two 

materials. 

 

Figure 3.7 Ultrasonic reflection and transmission at a perfectly bonded interface (I: incident 

wave, T: transmitted wave and R: reflected wave) 

If the materials on either side of the interface have the same acoustic impedance, then 

the reflection coefficient is equal to zero, and the entire wave is transmitted. While if 

the wave is travelling through acoustically very different materials, then the reflection 

coefficient will be close to unity and nearly all the signal will be reflected back. This 

is the case of a wave travelling through a metal then strikes at an air interface. This is 

because the acoustic impedance of the air is much lower than that of the metal (see 

Table 3.1). 

3.6 Ultrasonic Reflection and Spring Model for an Interface  

In real engineering surfaces, surfaces are always rough to some extent and pressing 

them together lead to contact at the asperities. The interface so consists of regimes of 

contact separated by air gaps. Therefore, an ultrasonic wave incident at rough surface 

contact will be partially reflected as shown in Figure 3.8a). If the wavelength of the 

incident ultrasound is large compared with the size of the air gaps then the spring 

model can be used to determine the response of the interface (Lewis et al. 2005). It is 

then the interface stiffness, K, determines the relation between reflection coefficient 

and interfacial layer thickness (Dwyer-Joyce, et al. 2004B). 

 𝑅 =
(𝑧1 − 𝑧2) + 𝑖(

𝜔
𝐾)𝑧1𝑧2

(𝑧1 + 𝑧2) + 𝑖(
𝜔
𝐾)𝑧1𝑧2

 3.9 

I 

T 

R 

Media 1 

Media 2 
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where ω is the angular frequency of the ultrasonic wave (2𝜋𝑓), and 𝑧1 and 𝑧2 are the 

acoustic impedance of the materials one and two, respectively and it is equal to (the 

product of the density, ρ and the speed of sound c). Because of the expression for 

reflection coefficient (equation 3.9) is a complex number it cannot be measured 

directly. Therefore, in order to get an expression for reflection coefficient, a 

Pythagoras’s theorem was applied to equation 3.9. 

if  𝑅 =
𝑎 + 𝑏𝑖

𝑐 + 𝑑𝑖
 3.10 

so 𝑅2 =
𝑎2 + 𝑏2

𝑐2 + 𝑑2
 3.11  

By applying this theory to equation 3.9 

Then, 𝑅2 =
(𝑧1 − 𝑧2)2 +

𝑤2𝑧1
2𝑧2

2

𝐾2

(𝑧1 + 𝑧2)2 +
𝑤2𝑧1

2𝑧2
2

𝐾2

 3.12 

Rearranging equation 3.12 

 |𝑅| = √
(𝑤𝑧1𝑧2)2 + 𝐾2(𝑧1 − 𝑧2)2

(𝑤𝑧1𝑧2)2 + 𝐾2(𝑧1 + 𝑧2)2
 3.13 

For the case of identical materials either side of the interface 𝑧1 = 𝑧2 = 𝑧 this reduces 

to:  

 
𝑅 =

1

√1 + (
2𝐾
𝜔𝑧)

2
 3.14 

 

To measure stiffness, equation 3.13 can be arranged at follow: 

 𝐾 = 𝑤𝑧1𝑧2√
1 − |𝑅|2

|𝑅|2(𝑧1 + 𝑧2)2 − (𝑧1 − 𝑧2)2
 3.15 

Equation 3.15 used to calculate layer stiffness from a reflection coefficient for a wave 

reflected from a layer. 
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Figure 3.8 Reflection of ultrasound, from a) not perfectly bonded interface and b) spring model 

of the interface.  

3.6.1 Layer Stiffness 

The stiffness of an interfacial layer, K, expressed per unit area, is given by the rate of 

pressure change, p with approach of the surface, h (Wan Ibrahim et al. 2012).  

 𝐾 = −
𝑑𝑝

𝑑ℎ
 3.16 

The spring model approach provides a method for interrogating tribological contacts. 

Figure 3.9 shows the prediction from the spring model for a series of interfaces of 

varying stiffness plotted from equation 3.14. The stiffer the interface (because the 

contact area is greater or the surfaces are separated for a thinner oil film), the more 

ultrasound wave can transmit through the interface and therefore the lower the 

reflection coefficient (Drinkwater et al. 1996; Dwyer-Joyce & Drinkwater 2003). For 

contacts made up of surfaces machined with standard engineering finishes (grinding, 

polishing, turning etc.) the stiffness of the interface is such that it can be measured 

using conventional ultrasonic frequencies. The spring model describes the ultrasonic 

response well (Dwyer-Joyce 2005). 

Contact points 

Air pockets 

a) b) 

K 

Media 1 

Media 2 
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Figure 3.9 The spring model of reflection coefficient for various stiffnesses 

3.7 Ultrasonic Reflection from an Oil Film   

The spring model also can be used if there is a thin film of oil or any other liquid 

between two surfaces (Figure 3.10). Where, the spring model applies when the 

wavelength of the ultrasound is large compared the layer thickness (Dwyer-Joyce et 

al. 2003).     

 

Figure 3.10 Reflection of ultrasound from an oil film between two surfaces 

If the interface is a liquid then the stiffness is determined by the thickness, h, and bulk 

modulus, B, of the layer. 

 𝐾 =
𝐵

ℎ
 3.17 
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The speed of sound through a liquid, c , is related to the bulk modulus, B , and density, 

ρ , by (Harper et al., 2005). 

 𝑐 = √
𝐵

𝜌
 3.18 

Combining equations (3.17) and (3.18) gives the stiffness of the layer in terms of its 

acoustic properties: 

 𝐾 =
𝜌𝑐2

ℎ
 3.19 

where h is the film thickness of the layer. 

Finally, by substitute equation (3.19) in equation (3.15) and rearranging gives the film 

thickness in terms of the reflection coefficient. 

 ℎ =
𝜌𝑐2

𝜔𝑧1𝑧2

√
𝑅2(𝑧1 + 𝑧2)2 − (𝑧1 − 𝑧2)2

1 − 𝑅2
 3.20 

If the materials either side of the interface are identical (i.e. 𝑧1 = 𝑧2), then equation 

3.20 simplified to 

 ℎ =
2𝜌𝑐2

𝜔𝑧
√

𝑅2

1 − 𝑅2
 3.21 

Figure 3.11 shows the expected reflection coefficient variation against frequency for 

a series of oil films between two steel bodies (according to equation 3.21). It can be 

seen that as the film thickness increases, the reflection coefficient increases as more 

of the wave is reflected. 
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Figure 3.11 Response of a layer to an ultrasonic wave, for steel-oil-steel system, according to 

equation 3.21, for various oil film thicknesses.  

3.8 Ultrasonic Reflection from Mixed Contact  

If the interface is contained solid and liquid as shown in Figure 3.12a), then the 

stiffness of the interface can be modelled by two springs in series, one of them 

representing the stiffness of the liquid and the other the stiffness of the solid contact 

as shown in Figure 3.12b).       

 

Figure 3.12 Modelling of a mixed contact by means of two springs 

The ultrasonic reflection will rely on the total of these stiffnesses in parallel (Gonzalez-

Valadez et al. 2005): 

 
𝐾𝑡𝑜𝑡𝑎𝑙 = 𝐾𝑙𝑖𝑞𝑢𝑖𝑑 + 𝐾𝑠𝑜𝑙𝑖𝑑 3.22 
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where, 𝐾𝑠𝑜𝑙𝑖𝑑 is the stiffness of the dry interface and 𝐾𝑙𝑖𝑞𝑢𝑖𝑑 is the stiffness of the liquid 

interface. 

3.9 Conclusions  

The ultrasound principles and the acoustic properties of the materials, namely speed 

of sound, impedance and attenuation, have been presented in this chapter. The 

piezoelectric effect and the generation of the ultrasound wave have been detailed. 

Typical transducer waveform and its FFT spectrum showing centre frequency and 

bandwidth, have been introduced. 

The ultrasonic wave reflection can be acquired and processed to achieve information 

about the contact nature at the interface. Therefore, in this work, the ultrasonic 

reflection was used to investigate the contact conditions at the tool-chip interface in 

dry and wet cutting process during machining of aluminium Al 6082.  
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4  
Cutting Tool Ultrasonic 

Instrumentation Method  

 

 

 

This chapter presents the practicalities of how the tool-chip interface was monitored 

ultrasonically. Ultrasonic equipment for the interface monitoring, such as the 

ultrasonic pulser-receiver (UPR), transducer, coupling and cable are introduced. The 

instrumentation of the cutting tool is explained in detail. The size and location of the 

piezoelectric element are described and explained. This chapter also describes how the 

temperature effect on the ultrasonic measurement and the way to overcome this issue 

is presented.   
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4.1 Ultrasonic Measurement Apparatus 

The ultrasonic apparatus consisted of a pulser, receiver and digitiser. In this work, a 

combined system was used that contained all these components as PCI (peripheral 

component interconnect) cards, and they were installed into an industrial computer, 

more details are in the following subsections. Several factors have made the PCI based 

system more popular in the present day including lower cost than individual 

components, reducing the mismatch between the components, compact units, the ease 

of use and portability and the capability to fit these cards into an existing computing 

hardware. 

4.1.1 Ultrasonic Apparatus  

In this study, the ultrasonic measurement was taken by using an ultrasonic pulsing 

hardware unit. The unit called a “Film Measurement System” (FMS-100 PC) from 

Tribosonics Ltd, which was used to generate, capture, display and record the ultrasonic 

signals. This unit is illustrated in Figure 4.1, and it consists of an ultrasonic pulsing 

and receiving card (UPR) and digitiser. The UPR is the core unit of the ultrasonic 

apparatus which consisted of two components, namely the ultrasonic pulser and 

ultrasonic receiver. Generating high-frequency voltage pulses, which are used to 

excite the transducer causing it to resonate, is the responsibility of the pulser 

component. This component comprises a peripheral component interconnect (PCI) 

card, built by Tribosonics Ltd, with eight channels. These channels can be configured 

separately, allowing different sensors to be excited as needed. A maximum achievable 

pulse rate of the pulser component is 80000 pulse/second, split between active 

channels, which were active during the process. 

The receiver component also contains a PCI card which is from Tribosonics Ltd as 

well. This component received the reflected pulses from the ultrasonic sensor (i.e. the 

piezoelectric element). It has also eight channels which can equally be configured 

separately to improve the performance of the ultrasonic system. 
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Figure 4.1 A photo showing a FMS-100 pulsing system 

The UPR control software was written using LabVIEW (National Instruments). The 

ultrasonic sensor was connected to the pulsing unit, with a pulse rate of 1 kHz. As 

mentioned above, the UPR is used to produce a high-frequency voltage pulse. These 

pulses are used to excite the transducer causing it to resonate. The transducer then 

emits a wide band pulse, sending it through the cutting tool and the reflected pulses, 

from the tool-chip interface, are received by the same transducer where, the transducer 

acts as both an emitter and receiver. The reflected pulses are amplified by the digitiser, 

fitted in the PC, at 100 MHz with a 12 bits resolution. The PC carries out the signal 

processing and shown results with software written in LabVIEW. Figure 4.2 shows a 

schematic diagram of the apparatus used for generation and measurement of ultrasonic 

signals in monitoring the tool-chip interface during the cutting process.  
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Figure 4.2 Schematic diagram of the measurement apparatus 

4.1.2 Transducers  

There are different types of ultrasonic transducers as mentioned in Chapter 3, among 

these types, a piezoelectric transducer was selected in this study. The need, in this 

study, for permanent bonding of the sensor (i.e. the piezoelectric element) to the 

substrate (cutting tool insert) led to the use of the piezoelectric element. This attributed 

to the risk of damage to expensive transducers and the low cost of the bare 

piezoelectric elements. In addition, the possibility to cut the bare piezoelectric element 

into smaller sizes in order to cover a smaller area was another reason for choosing this 

kind of sensors. If the ultrasonic wavelength is larger than the size of the air gaps, then 

the proportions of the ultrasonic energy reflected and transmitted are dependent on the 

stiffness of the interface and to a small extent on the effective damping and mass of 
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the interface where no longer dependent on the exact size and shape of each air gap 

(Drinkwater et al. 1997). If the sizes of the air gaps in the plane of the interface are in 

the range 5-50 µm then a wavelength of above 500 µm is required. The speed of the 

longitudinal ultrasonic wave in carbide tungsten carbide is around 5180 m/s (see Table 

3.1). This corresponds to a centre frequency of below 11 MHz in tungsten carbide. In 

this study, a piezoelectric sensor of 10 MHz centre frequency was used which is within 

the right range to study the tool-chip interface.   

The transducer used is formed from lead zirconate titanate (PZT) and has a disc shape 

with 10 MHz in centre frequency, 0.2 mm in thickness and 7.1 mm in diameter. Figure 

4.3 shows the comparative size of a 10 MHz transducer element, used in this study.  

 

Figure 4.3 Photograph of 10 MHz piezoelectric element 

4.1.3 Coupling  

A layer of coupling medium is usually required between a transducer and the test 

piece, so as to transmit the ultrasonic wave into the test piece. Without this coupling 

layer, the ultrasonic signal can not transmit through the test piece where a layer of air 

exists, which has a low impedance and very high attenuation, thus preventing the wave 

transmission. There are different types of couplant such as water, treacle, water based 

gel and adhesive. The bare piezo element can be very small, require attachment of 

connecting wires, contain negligible internal damping and have a low unit cost. Due 
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to these factors, adhesive bonding is the most satisfactory method of coupling. In this 

study, M-Bond 610 high-temperature adhesive (up to 230°C), from Vishay 

Measurement Group UK Ltd, was used as a couplant and for sticking the element to 

the cutting tool, which will be explained later in this chapter.      

4.1.4 Cables 

Cables are used to connect transducer to the pulsing equipment. Cables which are 

employed in this study are made of three main components: the conductor, the 

dielectric, and shield. An outer protective jacket surrounds these components. Figure 

4.4 shows a cross-sectional view of a typical cable. The conductor acts as the positive 

connection of the cable while the shield acts as the negative. The dielectric isolates the 

conductor from the shield (Olympus NDT 2010).  

 

Figure 4.4 Cross-sectional view of a typical cable (Olympus NDT 2010) 

4.1.5 Temperature Effect  

The piezoelectric transducers have a specific response to temperature because these 

transducers consist of a multi-layer construction and each of these layer has a different 

thermal expansion coefficient. This limits their maximum operating temperature as a 

result of the stresses that can occur in the layers. Exceeding the maximum operating 

temperature can lead to disbonding of one or more of the layers.  

Temperature rise can influence the transducer along with other variables such as 

couplant contact area, sound speed of couplant and couplant thickness. Therefore, it is 

extremely difficult to quantify the response of an NDT transducer. 

In addition, in a cutting process and because of the tests being run at different cutting 

speeds, temperatures on the cutting edge is increased, this raises several issues. 
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Changes in temperature effect the output from the ultrasonic transducers (Reddyhoff 

et al. 2008). This is due to the temperature dependence of both the element itself and 

the properties of the adhesive layer between the element and the cutting tool insert. 

Due to these changes with temperature, and in order to use these sensors in machining 

process a method of temperature compensation is required, which is discussed in more 

detail in Chapter 5.    

4.2 Instrumentation of a Cutting Tool 

Before discussing the instrumentation of the cutting tool, the area of investigation in 

this study must first be addressed. In this section, the area of interest is highlighted and 

then selecting the cutting tool insert is discussed. The steps of bonding the 

piezoelectric element to the cutting tool are described in detail.    

4.2.1 The Studied Area  

Figure 4.5a) shows the setup of the cutting test which was performed in this study. 

The workpiece consisted of a hollow cylinder with an outer diameter of 100 mm and 

a different wall thickness, more details are presented in Chapter 5. As soon as the tool 

cutting edge engaged with the workpiece and due to the stress concentration, an 

elastoplastic region was formed in front of the cutting edge. The stress concentration, 

ahead of the tool cutting edge, occurs as a result of the pure compression of the 

removal layer to be removed from the workpiece. Thus, the elastoplastic zone which 

is created ahead of the cutting tool allows the cutting edge to penetrate further into the 

workpiece. Thus, a part of the material layer being removed, from the workpiece, 

comes in close contact with the rake face of the cutting tool. This layer slides over the 

rake face by the moving chip which was formed due to the severe tribological 

conditions in the secondary deformation region. The contact area between this chip 

and the rake face of the cutting tool insert was the main area of interest for the 

investigation in this research (see Figure 4.5b), and it can be examined using an 

ultrasonic transducer underneath the cutting tool insert (i.e. the opposite side of the 

tool-chip contact area), Figure 4.5c) shows the location of the ultrasonic sensor. More 

detail about the piezoelectric element location is given in the next section.   
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Figure 4.5 Setup of the turning test (a) and schematic pictures of the cutting insert (b), showing 

the location of investigated area, (c) showing the location of the ultrasonic sensor 

4.2.2 Size and Location of the Sensor  

A series of orthogonal cuts were conducted using aluminium 6082-T6 to determine 

the size and location of the piezoelectric element. The experiments were carried out 

under the same cutting conditions used in this study. An SEM was used to measure 

the tracks length on the rake face cutting tool. It has been found that the smallest tool-

chip contact length was 0.804 µm and was gained when machining at a cutting speed 

of 120 m/min, cutting depth of 1.5 mm and feed of 0.12 mm/rev (see Figure 4.6). The 

experiments are presented in detail in Chapter 6. It was necessary to make the contact 

area larger in length than the sensor size so that all the waves from the sensor are 

incident on the tool-chip interface. A set of tests was carried out to investigate the 

smallest applicable size of the sensor; it was found to be 0.7 mm for the positive side.  

The negative side measures 1.3 mm, making the overall size of the sensor 2 mm in 

length. Therefore, with the expected contact length identified, the size of the sensor 

which was used in this work was about 1 mm by 2 mm. 
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Figure 4.6 SEM photograph of the rake face cutting tool during dry cutting conditions of Al 

6082 at a cutting speed 120 m/min, cutting depth 1.5 mm and feed of 0.12 mm/rev. 

As for the sensor location, it has been chosen the opposite side of the tool-chip contact 

area. Figure 4.7 shows a schematic diagram of the location of the piezoelectric element 

on the bottom of the cutting tool insert.   

 

Figure 4.7 An explanatory figure for the position of the  

sensor on the cutting tool insert 

4.2.3 Selecting the Cutting Tool 

In the turning process, selecting a certain cutting tool insert is dependent on many 

factors including the workpiece material and the types of turning process (longitudinal 

turning, facing, parting, grooving and boring). Among the various types of cutting tool 

insert, a rhombic 80º insert of a flat rake face has been chosen. The flat rake face 

geometry of the cutting tool insert was chosen so as not to restrict the tool-chip contact 

length and thus affecting the ultrasonic reflection. The tool inserts selected were 

commercially available uncoated with geometry [CCMW 12 04 04] from KYOCERA 

(see Figure 4.8a). This insert has a positive rake angle, with 0.4 mm nose radius, the 
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thickness of the insert is 4.76 mm, and the insert clearance angle (side relief angle) is 

7º. This cutting tool insert is recommended by the manufacturer to cut aluminium 

based alloy. These inserts were mounted on CERATIZIT [SCACR 2020 K12] tool 

holder and all the dimensions are shown in Figure 4.8b).  

 

 

 
 

f1 mm b mm l1 mm l3 mm 

20 20 125 17 
 

Figure 4.8 (a) shown the cutting tool insert and (b) shown the tool holder used in this study with 

the specification 

Figure 4.9 shows an explanatory figure for the tool cutting edge used in this study, 

where α refers to a side relief angle of the cutting tool, it measures 7 ̊.  The height of 

the cutting tool insert is 4.76 𝑚𝑚 therefore 𝑥 ≅ 0.6 𝑚𝑚, where 𝑥 is the contact length 

between the tool-chip interfaces which cannot be detected by the sensor. In order to 

investigate the tool-chip interface by the sensor, the contact length must be bigger than 

0.6 mm.  

 

Figure 4.9 An explanatory figure for the cutting edge 
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4.2.4 Cutting Tool Modification  

The tool holder, cutting tool insert and the shim require some significant modification 

in order to position the ultrasonic transducer and thermocouple wire. A hole was made 

on the underneath of the cutting tool insert, close to the location of the ultrasonic 

element, using Electrical Discharge machining (EDM) in order to accommodate the 

thermocouple wire. The hole diameter is 0.8 mm and depth of 2 mm, where the 

thermocouple tip is 0.5 mm.  Further to this, modifications were made to the shim to 

make a space for the ultrasonic element and soldered junction. In order to limit 

vibration and tool deflections, the space was as small as possible, and it consisted of a 

groove with 2.5 mm wide from each side and 1 mm in deep. A hole also has been made 

on the shim to guide the coaxial cable of the ultrasonic sensor and thermocouple wires 

to the tool holder. A drilling machine was used to drill a hole in the tool holder to pass 

the wires through. Finally, a groove was made on the underneath of the tool holder to 

protect the wires against shearing off during the cutting process. Figure 4.10 shows a 

diagram of the modified cutting tool while Figure 4.11 shows the photographs of the 

cutting tool used in this study.  

 

Figure 4.10 A diagram of the modified cutting tool used in this study 
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Figure 4.11 Photographs of the modified cutting tool used in this study   
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4.2.5 Ultrasonic Sensor Development 

In this study, as stated in Section 4.2.2, the 10 MHz piezoelectric sensor was cut into 

a shape of 2 mm in length and 1 mm in width as illustrated in Figure 4.12. By following 

an installation procedure, the piezoelectric element was installed on the cutting tool 

insert.   

 

Figure 4.12 Dimension of the piezoelectric element 

The bare piezoelectric element was coupled to the underneath of the cutting tool insert 

(i.e. the opposite side of the tool-chip contact area). To insure a perfect bonding, the 

coupling surface must be free from grease, oil, dust and dirt to the naked eye and or 

extraneous materials. For this purpose, an ultrasonic cleaning tank, filling with 

Acetone, was used to clean the cutting tool insert. Then the bare element was bonded 

to the cutting tool using M-Bond 610 high-temperature adhesive. A heat resistant tape 

was used to cover the cutting tool with the bare element in order to protect the sensor 

from the high temperature of the oven, and then pressure was applied to the sensor 

using a G-clamp with a silicon rubber, to protect the sensor from cracking and applying 

a distributed force, and putting them into a temperature controlled oven. A Carbolite 

oven was used for curing the sample in this study. The curing process was performed 

in three steps, namely ramping, dwelling and ramping. Where in the first step the 

temperature increased with a rate 1degree/min starting from the room temperature to 

200°C then to hold at this temperature for one hour (i.e. dwelling for 60 minutes) then 

the oven starting cooling down. Figure 4.13 shows the curing cycle and the post-curing 

which will discuss later in this section. Figure 4.14 shows a schematic and a 

photograph of the cutting tool with the sensor bonded to the back face of the cutting 

tool insert after removal from the oven. 
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Figure 4.13  A diagram showing the curing and post-curing process 

 

 

 

Figure 4.14 A schematic and a photograph of the sensor bonded to the back of the cutting tool 

insert 

Once the piezoelectric element was bonded to the cutting tool, a coaxial cable with a 

diameter of 0.4 mm was then wired to the sensor as shown in Figure 4.15. A 

photograph of the instrumented end fitting can be seen in Figure 4.16. It is worth 

noting that a heat transfer compound, with operating temperature up to 200°C, was 

used to fill the gaps around the thermocouple tip inside the hole.    
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Figure 4.15 Cutting tool instrumented with an ultrasonic element and thermocouple   

 

Figure 4.16 The complete end fitting assembly with the ultrasonic element and thermocouple 

wires 

To prevent the wires from breaking during the machining process and to protect the 

sensor from damage during the cutting process and handling, the soldered wires with 

the bonded sensors, at the points where they were soldered, were then covered with a 
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the piezoelectric transducer. Figure 4.17 shows the tool holder with the cutting tool in 

their final form. Finally, as recommended by the Tribosonics Ltd and Vishay 

Measurement Group UK Ltd, a post-curing was carried out for the assembly at a 20°C 

higher than the curing temperature. The post-curing cycle is shown in Figure 4.13.   

 

Figure 4.17 Showing the cutting tool with the cable which is covered by the epoxy 

Finally, the transducer is connected to the UPR which is connected to the digitiser in 

the PC. 

4.3 Cutting Parameters 

As mentioned in Sections 4.1.5, that the ultrasonic transducer and the couplant (M-

bond 610) both are affected by the temperature. Therefore, care must be taken when 

selecting the cutting conditions where the temperature should not exceed 230°C, 

which is equal to the operating temperature of the adhesive (M-bond 610). As a result, 

a set of experiments were carried out separately to measure the temperature and thus 
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selecting the cutting conditions that do not excede the temperature of the allowable 

limit. Therefore, with the expected temperature identified, it was found to be the 

cutting speed range from 40-140 m/min, cutting depth range from 1.2-2.8 mm and feed 

range from 0.09-0.23 mm/rev. More detail is presented in Chapter 5.     

4.4 Conclusions 

This chapter has described the ultrasound instrumentation of the cutting tool. The 

ultrasonic apparatus, transducer, coupling and cutting tool used during testing has been 

described. The temperature effect on the ultrasonic sensor significant modification in 

cutting tool and significant development in ultrasonic element are explained and 

described. Finally, the criteria for selecting the cutting conditions is explained. 



 

74 

5  
Analysis of Machining Processes 

 

 

 

 

Chapter five detailed instrumentation of the cutting tool and implementation of the 

ultrasonic measurement. This chapter deals with some of the machining performance 

measurements. The machine setup and the design of the experiment are described in 

detail. The significance of selecting orthogonal cutting rather than oblique cutting is 

also explained in this chapter. 
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5.1 Experimental Setup 

5.1.1 Machine Tool 

A series of orthogonal cutting tests were conducted on a CNC lathe machine (MAG 

HAWK 300) to monitor the tribological conditions of the tool-chip interface in dry 

and wet conditions using different sensors. The data were acquired simultaneously 

from the sensors. Figure 5.1 shows the experimental setup, while Figure 5.2 shows the 

cutting tool with the locations of the different sensors.  

 

Figure 5.1 Experimental Setup 

It is worth noting that in these experiments different sensors have been used including 

the ultrasonic sensor, dynamometer, acoustic emissions (AE) and accelerometer 

sensors. The AE measurements and the vibration measurements will not described in 

this study as they are not within the scope of this research.    
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Figure 5.2 Cutting tool with sensors combination set-up 

5.1.2 Work Material  

The experiments were performed on a 6082-T6 aluminium tube. Aluminium was 

chosen because it is widely used in many applications such as automotive parts, 

aerospace applications and many other applications, in addition, aluminium is easy to 

machine. Another advantage of using aluminium was ignoring the tool wear without 

seriously distorting the understanding of the tool-chip contact condition, more details 

are given in Section 5.1.4.   

Table 5.1 and Table 5.2 show the detailed chemical composition and the physical 

properties of Al 6082-T6, respectively. 

Table 5.1 Chemical composition of Al 6082-T6, wt% 
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Table 5.2 Physical properties of Al 6082-T6 

Physical Property Value 

Density 2.70 𝑔/𝑐𝑚3 

Melting Point 555 °𝐶 

Thermal Expansion 24 ∗ 10−6/𝐾 

Modulus of Elasticity 70 𝐺𝑃𝑎 

Thermal Conductivity 180 𝑊 𝑚. 𝐾⁄  

Electrical Resistivity 0.038 ∗ 10−6𝛺 . 𝑚 

5.1.3 Workpiece  

To remove any possible surface irregularities and ensure similar surface properties for 

all the specimens, aluminium tubes (Al 6082-T6) were pre-machined with a 1.5 mm 

cut. Then, to get orthogonal cutting, the tubes were pre-machined, using a separate 

cutting tool insert, to a different wall thickness tube (1.2, 1.5, 2, 2.5 and 2.8 mm) 

having an outer diameter of 100 mm. The large workpiece diameter was used in the 

machining experiments to get high cutting speeds. 

 

Figure 5.3 Geometry of the specimen 

In order, that the sample be more stable and safely mounted in the chuck of a lathe and 

to reduce vibration, a particular length of the workpiece was chose that was 100 mm, 

where 75 mm of the workpiece length extended out of the chuck. With a projecting 

length of 75 mm, the specimen was found to be more stable, and not subjected to static 

deflection or vibration for all the cutting conditions in this work. The tubes were 



  5.1 Experimental Setup 

78 

deflected as a result of the pressure of the chuck, especially with 1.2 mm thickness, 

even with low chuck pressure. Therefore, to overcome this issue, a support was made 

from steel that fit over the end of the tube as shown in the Figure 5.4. 

 

Figure 5.4 Workpiece with Steel Supporter 

5.1.4 Cutting Tool 

As explained in Section 4.2.3, the tool inserts selected were commercially available 

uncoated with geometry [CCMW 12 04 04] from KYOCERA. This insert has a 

positive rake angle, with 0.4 mm nose radius and the insert clearance angle is 7º. The 

rake face geometry of the inserts cutting tool was chosen so as not to restrict the tool-

chip contact length. These inserts were mounted on CERATIZIT [SCACR 2020 K12] 

tool holder. Figure 5.5 a) shows the tool-workpiece setup and b) shows the cutting tool 

with the dynamometer.  

 

Figure 5.5 a) Tool-workpiece setup, b) Cutting tool with Dynamometer 
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All the orthogonal cutting experiments were conducted in dry and wet cutting 

conditions. In the wet cutting condition, the cutting fluid (Houghton Hocut 795B – 

5.2% concentration) was applied using the standard pumping system of the machine- 

tool with a flow rate of 17 litres/min. The fluid concentration was frequently checked 

with a refractometer. Figure 5.6 shows the experiment set-up, which produces 

orthogonal cutting with the tool feed being equivalent to the uncut chip thickness and 

the thickness of the tube wall is equal to the width of the chip. To ensure repeatability 

of the experimental results, each cutting experiment was repeated three times and an 

average was taken. 

 

Figure 5.6 Orthogonal metal cutting 

As mentioned in Section 5.1.2, aluminium was chosen in this study because it is easy 

to machine and do not wear the rake face of the cutting tool much (i.e. ignoring the 

cutting tool wear), where Stephenson & Agapiou (2006) stated that the tool wear rate 

is very low in machining aluminium alloy. In this study, this was confirmed by 

examining the cutting tool surface topography using a ContourGT optical microscope, 

after carrying out all the experiments. Figure 5.7 shows the surface topography of the 

rake face of the cutting tool, that was used in this study, after machining Al 6082-T6. 

It can be seen clearly from the figure that the rake face not affected and it is in a good 

condition.      
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Figure 5.7 A ContourGT optical microscope image of the rake face of the cutting tool after 

conducting all the experiments of this study    

5.1.5 Cutting Conditions 

Designed experiments were conducted for a selected combination of five different 

cutting speeds, cutting depths and feeds as shown in Table 5.3. It is worth noting that 

the values for these cutting conditions were selected with respect to the maximum 

temperature, as discussed in Section 4.3, because these experiments have been used in 

monitoring the tool-chip interface as well as using the ultrasonic reflection. Where a 

series of orthogonal cutting experiments were carried out to monitor the temperature 

for different cutting parameters.  

Table 5.3 Cutting conditions 

Parameters 
Levels 

1 2 3 4 5 

Cutting speed (m/min) 40 60 90 120 140 

Depth of cut (mm) 1.2 1.5 2 2.5 2.8 

Feed (mm/rev) 0.09 0.12 0.16 0.2 0.23 

The tool-chip contact length, tool-chip contact area and the three components of 

forces, radial force in X direction; Fx, thrust force in Y direction; Fy and the cutting 

force in Z direction; Fz were measured. The third component of force is negligible 

because it is orthogonal cutting. The constants for the correlation between input 

parameters (cutting speed, feed and depth of cut) and measured output parameters 
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(contact length, contact area and cutting forces) were established for different 

lubrication conditions by applying nonlinear regression analysis to the quantitative 

data obtained from the experiments. This is explained in detail in a later section. 

5.2 Experimental Procedure  

5.2.1 Experiment Design 

As presented in Chapter 2, a centre composite design (CCD) method was utilised in 

this study to carry out the orthogonal experiments. A total of 20 experimental runs 

have been considered. The sequence of the 20 trials were randomized using a random 

number table to minimize the error as a result of machining set-up.  

As mentioned in Section 5.1.4, each cutting trial was repeated three times to ensure 

the repeatability of the measurement data, and an average was taken. It is worth noting 

that the number of experiments involving dry and wet turning conducted in this study 

was more than 125 experiments.      

Table 5.4 lists the cutting parameters levels including feed, cutting depth and cutting 

speed for the experiments. Depending on the experimental plan which based on the 

second order of central composite rotatable design the trials have been conducted. The 

matrix of the whole experimental design involving the coded and physical values of 

the design parameters and the run order are shown Table 5.5.  

In this work, a commercially available statistical software package (Minitab 17) was 

used for the computation of the regression constants and exponents. 

Table 5.4 Physical and coded values of cutting parameters for experiment design 

Symbol Parameters/Levels Lowest Low Centre High Highest 

 
Coding-classical 

experimental design 
-1.6817 -1 0 +1 +1.6817 

A Cutting speed (m/min) 40 60 90 120 140 

B Depth of Cut (mm) 1.2 1.5 2 2.5 2.8 

C Feed (mm/rev) 0.09 0.12 0.16 0.2 0.23 
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Table 5.5 Central Composite Design (CCD) used in this work  

 Coded Values Uncoded/Physical Value 

Test 

Number  
A B C 

Cutting 

Speed 

(m/min) 

Depth of Cut 

(mm) 

Feed 

(mm/rev) 

1 0 0 0 90 2 0.16 

2 0 0 0 90 2 0.16 

3 0 0 0 90 2 0.16 

4 -1.6817 0 0 40 2 0.16 

5 -1 1 -1 60 2.5 0.12 

6 -1 1 1 60 2.5 0.2 

7 1 -1 -1 120 1.5 0.12 

8 1.6817 0 0 140 2 0.16 

9 0 -1.6817 0 90 1.2 0.16 

10 1 -1 1 120 1.5 0.2 

11 0 1.6817 0 90 2.8 0.16 

12 1 1 1 120 2.5 0.2 

13 -1 -1 1 60 1.5 0.2 

14 0 0 0 90 2 0.16 

15 0 0 0 90 2 0.16 

16 0 0 1.6817 90 2 0.23 

17 0 0 0 90 2 0.16 

18 -1 -1 -1 60 1.5 0.12 

19 1 1 -1 120 2.5 0.12 

20 0 0 -1.6817 90 2 0.09 

 

5.2.2 Analysis of Variance (ANOVA) 

The statistical method of analysis of variance (ANOVA) was carried out on the 

experimental data for identifying the parameters significantly affecting the chip 

characteristics, cutting forces and reflection coefficient during machining aluminium 

Al 6082. The analysis was conducted by using the P-value. If P-values are less than 

0.05 (or 95% confidence) then the obtained models are considered as statistically 

significant (Song 2006). The highest influence for the corresponding output 

parameters has the lowest the P-value. The stepwise technique, is an automated tool 

used in statistics to add the most significant variable during each step or removes the 

least significant variable, was used to remove the non-significant variables from the 

model. It indicates that the chosen parameters in the model have a significant effect 
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on the output factors. Minitab 17, a statistical software, was employed to carry out the 

ANOVA.  

5.2.3 Cutting Force Measurement 

A three component piezoelectric quartz crystal Kistler 9121 type dynamometer was 

used for measuring the three orthogonal components of the cutting forces: Fr, Ft and 

Fc. The force data were acquired for 30 s at a sample rate of 10 kHz. The time process 

(30 seconds) was divided into three stages according to the cutting tool position with 

respect to the workpiece. In the first 10 s, no forces were recorded as the cutting tool 

was not in contact with the workpiece, in the second 10 s the cutting tool engages the 

workpiece and the cutting forces were acquired. In the last 10 s, the cutting tool reaches 

the workpiece end and same as the first stage no forces were recorded, more details 

are presented in Chapter 6.  

The piezoelectric dynamometer is connected to a multi-channel charge amplifier   

(type 5070A) using a high insulation cable. The multi-channel charge amplifier 

converts the charge produced by the piezoelectric sensor to a voltage, which is used 

as an input variable for monitoring and control processes. The amplifier is connected 

to a data acquisition system (type 5697A) which is connected to the PC. Kistler 

provides a software for the data acquisition and analysis known as Dynoware software. 

This software has been used to analyze the cutting force data and present the results in 

both time and frequency domain. The average mean values for the cutting forces are 

reported. A schematic diagram of the cutting force data acquisition system is shown 

in Figure 5.8, while a photograph of the apparatus and the dynamometer setup are 

shown in Figure 5.9.  

Further signal processing using Fast Fourier Transform (FFT) analysis of the cutting 

data was implemented in MATLAB software, where a MATLAB code was written to 

convert the time domain cutting data into frequency domain cutting data. Furthermore, 

the time domain cutting data were subjected to post processing to calculate some 

statistics features by utilizing MATLAB.          



  5.2 Experimental Procedure 

84 

 

Figure 5.8 Schematic diagram of force data acquisition system 

 

Figure 5.9 a) Workpiece and dynamometer setup inside the CNC machine, b) Kistler data 

acquisition and amplifier 

5.2.4 Chip Morphology Measurement  

Chips from each experiment were collected accurately, a container was used to avoid 

the side spread of the small amount of the chip. The thickness and width of the chips 

Cutting

tool

Kistler
Dynamometer

Multi Channel

Charge Amplifier
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in Lathe Chuck
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were measured at six different locations along their length, and the average was 

calculated. The chip thickness measurements were made using a ball type micrometre 

gauge while for measuring the chip width a digital Vernier calliper was used. Because 

of the small size of the chips in the thickness direction, a difficulty was found to 

measure the chip width by using a micrometre. That is why a digital Vernier calliper 

was used instead of micrometre. Furthermore, a digital scale type Mettler PJ3000 was 

used to measure the chip weight. Figure 5.10 shows the scale that was used in this 

study. The shear band angle and the chip velocity were measured using equations 5.1 

and 5.3, respectively.    

 tan 𝜑 =

𝑓
ℎ

cos 𝛼

1 −
𝑓
ℎ

sin 𝛼
 5.1 

where: 𝜑 is shear angle, 𝑓 is feed, ℎ is chip thickness and 𝛼 is rake angle. 

Due to the cutting tool used in this study has a zero rake angle, so the equation 5.1 will 

simplify to     

 tan 𝜑 = 𝑟 5.2 

where r is the chip ratio and is equal to feed divide by chip thickness (
𝑓

ℎ
).  

The chip velocity was calculated using the equation 

 𝑉𝐶 =
𝑉 sin 𝜑

cos(𝜑 − 𝛼)
 5.3 

where 𝑉𝐶 is the chip velocity (m/min), V is the cutting speed (m/min), 𝜑 is shear angle 

and 𝛼 is rake angle.      

 
Figure 5.10 Digital scale used in this study 
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5.2.5 Tool-Chip Contact Length Measurement 

In the orthogonal cutting process, the chip contacts the cutting tool from the tip to 

where it leaves the cutting tool. This distance is defined as the tool-chip contact length, 

or simply the contact length (Iqbal et al. 2008; Huang et al. 1999). In this study, the 

contact length was measured experimentally and determined theoretically. Because 

only one cutting tool was used in all the experiments, measurement of the contact 

length was impossible. Therefore, additional orthogonal experiments were conducted 

using low to high cutting speeds, using a fresh tip for each experiment, to measure the 

contact length. The experiments were carried out by using two different cutting tools 

and the same workpiece was used on a Triumph 2500 lathe machine. A scanning 

electron microscope SEM was used after machining to measure the contact length by 

measuring the contact track on the rake face cutting tool. The contact length was 

further checked by using the energy dispersive X-ray analysis (EDXA) as explained 

in Chapter 2, where the transfer of aluminium from the chip to the rake face was 

quantified. There is no aluminium concentration beyond the area of the tool–chip 

contact. Figure 5.11 shows the SEM that was employed in this study. Furthermore, the 

contact length was also calculated using Kato’s and Toropov’s model (see Section 

2.6.2 for further details about the model), which is the contact length is twice the chip 

thickness (Kato et al. 1972; Toropov & Ko 2003), and compared with the experimental 

results.    

 

Figure 5.11 SEM 

5.2.6 Existence Confirmation of Built-Up Edge (BUE)  

As mentioned in Chapter 2, a built-up edge (BUE) is an accumulation of material 

against the rake face that adheres to the tool tip, separating it from the chip. In this 
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study, the observation of the formation of BUE is made from the underside of the chips 

obtained when cutting Al 6082 at different cutting speeds, with and without cutting 

fluid. From scanning electron microscopy (SEM), the existence of BUE is confirmed 

through the presence of streaks or lumps of adhering material on the underside of the 

chips. This technique also was used by Seah & Li (1997). More details of the BUE 

confirmation are given in Chapter 6. 

5.2.7 Temperature Measurement  

To measure the temperature during the machining process, a small hole 0.8 mm in 

diameter and 2 mm in depth was made (see Figure 5.12), using Electro Discharge 

Machining (EDM), on the opposite side of the rake face of the cutting tool and close 

to the position of the ultrasonic transducer as described in Section 4.2.4. A 

thermocouple type K was fitted to the hole to ensure that thermocouple will be located 

at the same position in all machining tests. The thermocouple tips diameter was 0.5 

mm, a high temperature thermal conductivity paste with operating temperature up to 

200°C, was used to ensure perfect thermal contact between thermocouple and hole.  

 

Figure 5.12 Cutting tool insert showing the thermocouple location 

The temperature data was collected using Pico-TC 08 data logger that has 8 channels, 

as shown in Figure 5.13, and each channel can record temperature data with a sampling 

time of 100ms.  

Hole dia. 0.8 mm 
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Figure 5.13 Channels Thermocouple Data Logger 

The thermocouple wire was positioned to measure the temperature of the cutting edge 

of the cutting tool insert close to the location of the ultrasonic transducer. More details 

of the temperature measurement are given in Chapter 6. 

5.3 Conclusions  

This chapter has described the machining processes analysis. The experimental setup 

of the orthogonal cutting has been explained. Measuring the machining performance 

including cutting forces, chip morphology, contact length and temperature have been 

described and explained. The results will be presented in the next chapter.    
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6  
Chip Morphology and Cutting 

Force Measurements  

 

 

 

 

This chapter presents the experimental results of the cutting force components which 

have been carried out to correlate with the ultrasonic reflection results in order to 

investigate how much the tool-chip contact area is related to the cutting forces and 

ultrasonic reflection. The analysis of variance (ANOVA) of the experimental results 

is explained in detail. This chapter also introduces the comparison between the 

experimental results of the cutting forces and the predicted results obtained from the 

mathematical model. The tool-chip contact and the BUE are also explained in detail 

in this chapter.       
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6.1 Experiment Procedure 

As described in Chapter 5, different techniques have been used for investigating the 

tool-chip interface in dry and wet cutting conditions in situ in orthogonal cutting of 

aluminium. These techniques were ultrasonic reflection, cutting force, thermocouple, 

AE and accelerometer sensors.  A centre composite design (CCD) technique was used 

in this study, as explained in Chapter 5, to carry out these experiments and different 

data were recorded simultaneously. As presented in Table 5.5 and according to the 

CCD methodology, 20 trials were conducted including the centre point which was 

repeated six times (cutting speed 90 m/min, cutting depth 2 mm and feed 0.16 mm/rev). 

Each of the augmented tests was repeated three times, to confirm the repeatability of 

the trials, and an average with a standard deviation were taken. The results of these 

experiments are presented in the following sections of this chapter while the ultrasonic 

reflection results will be presented in the next chapter. The AE and vibration 

measurements will not be presented in this study as they are not within the scope of 

this work.  

6.2 Analysis of Variance (ANOVA) 

As presented in Chapter 5, the ANOVA was conducted on the experimental data to 

identify the main significant parameters on the chip characteristics and cutting forces 

during machining aluminium Al 6082, and also to develop the empirical relationships 

by using the regression analysis. The same procedures have been taken as described 

in Chapter 5, where the analysis was conducted by using the P-value; if the P-values 

are less than 0.05 then the obtained models are considered as a statistically significant. 

The highest influence for the corresponding output parameters has the lowest the P-

value. Only the significant parameters are presented in this chapter while the complete 

ANOVA results are presented in Appendix A. 

6.3 Temperature Measurements  

As described in Chapter 4, a thermocouple was attached to the cutting tool insert at a 

depth of 2 mm from the underneath surface of the cutting tool. This temperature value 

is not exactly at the tool-chip interface, but, still it gives a good indication of the cutting 

tool temperature. The main reason for measuring the temperature, in this study, was 

to calibrate the ultrasonic transducer output not the temperature itself. Figure 6.1 

shows the profile of the temperature data recorded during orthogonal tube cutting of 
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aluminium Al 6082 at dry and wet conditions. The figure demonstrates that the 

experimental process is divided into three regions according to the position of the tool 

cutting edge with reference to the tube workpiece. In the first 10 s of the experiment, 

the tool cutting edge is not in contact with the workpiece. Therefore, the temperature 

recorded was around the room temperature. As soon as the tool cutting edge engaged 

the workpiece, a sharp increase in the temperature starts to accumulate and continuing 

increases until the tool cutting edge reaches the end of the cutting length of the tube 

workpiece. In the last 10 s, the temperature starts to decrease sharply indicating the 

end of the cutting process. The average temperature value of the cutting region is 

reported in this study.  

 

Figure 6.1 Temperature profile during Al 6082 cutting at V=90 m/min, t=2 mm, and f= 0.09 

mm/rev 

The design of experiments (mentioned in Chapter 5) was carried out and the different 

data were recorded simultaneously (as discussed earlier in this section). In this part, 

the experimental results of the temperature at dry and wet machining conditions are 

presented. Figure 6.2 shows a comparison of the temperature between dry and wet 

machining conditions during orthogonal cutting. The error bars in the figure represent 

the maximum and minimum values. The results are also given, in detail, in Appendix 

A (Table A.1). 
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Figure 6.2 Comparison of the temperature for dry and wet cutting conditions 

In dry machining (see Figure 6.2), the results show that the temperature increased with 

increasing cutting speed, cutting depth and feed. The lowest temperature was gained 

when machining at low cutting speed (V=60 m/min), low feed (f=0.12 mm/rev) and 

low cutting depth (t=1.5 mm). While the highest was obtained at V=120 m/min, f=0.2 

mm/rev and t=2.5 mm. To study the influence of the cutting speed, cutting depth and 

feed individually on the temperature, some results from Figure 6.2 have been extracted 

and presented below.  

Figure 6.3 demonstrates the influence of cutting speed on temperature where the 

temperature increased with increasing cutting speeds (V=40, 90, 140 m/min) with 

constant cutting depth (t=2 mm) and feed (f=0.16 mm/rev) and this due to the 

insufficient time to dissipate the heat generated when the cutting speed increases 

where increasing cutting speed lead to increase the strain rates in secondary and 

primary cutting zones which results generating heat flux (Carvalho et al. 2006). The 

results are supported by literature references in many articles (Vieira et al. 2001; 

Gekonde & Subramanian 2002; Nouari et al. 2003; Carvalho et al. 2006; Sreejith 2008; 

Radhika et al. 2014). It was observed that the influence of cutting speed on temperature 

is higher at low speeds than high speeds, since the temperature roughly increased 20% 

from increasing cutting speed 40 m/min to 90 m/min while the increasing is less than 

half of this value from 90 m/min to 140 m/min and it is about 8%.  
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Figure 6.3 Comparison of the temperature under dry and wet machining of Al 6082-T6 at 

different cutting speeds with a constant cutting depth and feed (t=2 mm, f=0.16 mm/rev).  

With applying coolant, one unanticipated finding was that the temperature increased 

with increasing cutting speed up to 90 m/min and then decreased (see Figure 6.3 and 

Figure 6.4). In addition to the lubricant effect, there are, however, other possible 

explanations. One reason why temperature has declined, at cutting speeds > 90 m/min, 

is that and as mentioned earlier in this section that this temperature is not exactly at 

the tool-chip interface where the interface temperature is still higher than this. Another 

reason is, as mentioned in the literature review (see Figure 2.21), that with increasing 

cutting speeds the amount of heat that shared by the cutting tool decreased (Abhang 

& Hameedullah 2010B).   

To investigate more about the influence of the cutting speed on the temperature, 

further experiments were carried out. Figure 6.4 shows the results of these experiments 

where it can be seen clearly that the temperature in dry conditions increased with 

increasing cutting speed. In wet conditions, the graphs show that the influence of 

cutting speed is divided into two parts according to its range. At cutting speeds (V<90 

m/min) the results show that as in Figure 6.3 the temperature increased with increasing 

cutting speed, while at cutting speeds (V>90 m/min) the temperature decreased with 

increasing cutting speeds.   
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Figure 6.4 Comparison of the temperature under dry and wet machining of Al 6082-T6 at 

different cutting speeds with a constant cutting depth and feed (t=2.5 mm, f=0.12 mm/rev). 

Figure 6.5 shows that cutting aluminium Al 6082 at different depth of cut (t= 1.2, 2 

and 2.8 mm) with a constant cutting speed (V=90 m/min) and feed (f=0.16 mm/rev) 

results in increasing temperature because of the large volume of workpiece material 

being removed. This result agrees with previous researchers (Abhang & Hameedullah 

2010a). Where the increase in the temperature was smaller from (t=1.2 to t= 2 mm) 

(6%) than from (t=2 to t=2.8 mm) (20%).  

 

Figure 6.5 Comparison of the temperature under dry and wet machining of Al 6082-T6 at 

different cutting depth with a constant cutting speed and feed (V=90 m/min, f=0.16 mm/rev). 

The effect of feed on the temperature can be seen clearly from the Figure 6.6, where 

the relation between them is a direct relationship since the temperature increased with 

increasing the feed. The results are supported by (Gómez-Parra et al. 2013; Carvalho 
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et al. 2006; Nouari et al. 2003) where increasing the feed rate leads to increasing in 

the temperature. Increasing feed result in thicker chips, so there is less opportunity for 

the generated heat to be dissipated with a large thickness to the surface area of the 

chip, therefore, temperature increases, more detail are presented in Section 6.4.1. 

 

Figure 6.6 Comparison of the temperature under dry and wet machining of Al 6082-T6 at 

different feed with a constant cutting speed and cutting depth (V=90 m/min, t=2 mm). 

Contour plots of the temperature versus the machining parameters including feed, 

cutting speed and depth of cut in dry and wet cutting conditions are shown in Figure 

6.7. The contour plots can be used for monitoring temperature at different machining 

parameters.    
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Dry Wet 

  

  

  

Figure 6.7 Contour plot of temperature versus cutting parameters at dry and wet cutting 

conditions 

6.4 Chip Morphology and Characteristics 

In order to investigate the tool-chip interface at different cutting parameters, a number 

of physical parameters were investigated during post-experiment study, including the 

chip thickness, shear band angle, chip velocity, tool-chip contact length, tool-chip 
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contact area and built-up edge (BUE). The influence of the cutting speed, feed and 

cutting depth on these parameters are given in the following sections.      

6.4.1 Chip Thickness  

As explained in Section 5.2.4, the chip thickness was measured using a ball type 

micrometre gauge. The results obtained from these experiments are shown in the 

graphical format in Figure 6.8 and the error bars represent the standard deviation. The 

results are also given, in more detail, in Appendix A (Table A.2). 

In dry conditions, the results show that the chip thickness decreases with increasing 

cutting speed and cutting depth and increased with increasing feed (see Figure 6.8).   

 

Figure 6.8 Comparison of the chip thickness for dry and wet cutting conditions 

To study the influence of each cutting conditions individually on the chip thickness, 

some results of Figure 6.8 have been re-presented in linear graphs. The influence of 

cutting speed on chip thickness in the dry and wet cutting condition can be seen from 

the Figure 6.9, where the dry results show that there has been a steady decrease in the 

chip thickness with increasing cutting speed while the cutting depth and feed were 

kept constant at t=2 mm, f=0.16 mm/rev, respectively.  
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Figure 6.9 Comparison of the chip thickness under dry and wet machining of Al 6082-T6 at 

different cutting speeds with a constant cutting depth and feed (t=2 mm, f=0.16 mm/rev). 

These results may be explained by the temperature effect, with increasing cutting 

speed the temperature of the tool-chip interface increased and this leads to softening 

the workpiece and hence the friction at the tool-chip interface reduces. These result in 

increasing shear angle and thus reducing chip thickness. More detail about the 

temperature effect were given in Section 6.3. This result is in agreement with (Davoodi 

& Tazehkandi 2014; Xu et al. 2014; Kouam et al. 2013; Dhananchezian & Kumar 

2010; Seah & Li 1997). 

When applying coolant, the chip thickness shows a different trend. Here, the chip 

thickness initially increases and then decreases with the cutting speed. Where at low 

levels, V<90 m/min, the chip thickness found to increase with increasing cutting speed 

(see Figure 6.9 and Figure 6.10); whereas at high levels, V>90 m/min, the results found 

that the influence of the machining parameters on the chip thickness is same as the dry 

conditions, which is decreased with increasing cutting speed (see Figure 6.9 and 

Figure 6.10). The results also found that at wet conditions, the chip thickness was 

found smaller than in dry conditions and at low cutting speed (below 90 m/min). At 

cutting speeds higher than 90 m/min, there were no significant differences between the 

chip thickness in dry and wet cutting conditions (see Figure 6.9 and Figure 6.10). This 

result matches the previous finding by Seah & Li (1997). It seems possible that these 

results, are due to the temperature effect; where using cutting fluid reduce the effect 

of friction at the tool-chip interface and hence increasing the shear angle, which led to 

thinner chips. More detail about the shear angle are presented in the next section.   
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Further experiments were carried out to investigate the influence of the cutting speed 

on the chip thickness, by examining different machining parameters. The results of 

these experiments are graphically depicted in Figure 6.10 where the same trend was 

observed at a constant cutting depth (t=2.5 mm) and feed (f=0.12 mm/rev) with 

different cutting speeds. 

 

Figure 6.10 Comparison of the chip thickness under dry and wet machining of Al 6082-T6 at 

different cutting speeds with a constant cutting depth and feed (t=2.5 mm, f=0.12 mm/rev). 

The results show that the feed has a significant effect on the chip thickness than the 

cutting speed and cutting depth. The data reveals that there has been a gradual increase 

in the chip thickness with increasing feed while the cutting depth and cutting speed 

were kept constant at t=2 mm, V=90 m/min. Figure 6.11 show the effect of feed on the 

chip thickness. These results are likely to be related to the size of the primary shear 

zone, where with the increase in feed, the thickness of the primary shear zone increases 

and the strain rate at the zone decreases as reported by (Adibi-Sedeh et al. 2003). These 

results are in agreement with those obtained by (Adibi-Sedeh et al. 2003; Kouam et 

al. 2013; Dhananchezian & Kumar 2010).  
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Figure 6.11 Comparison of the chip thickness under dry and wet machining of Al 6082-T6 at 

different feed with a constant cutting speed and cutting depth (V=90 m/min, t=2 mm). 

The data reveals that there has been a slight decrease in the chip thickness with 

increasing cutting depth while the cutting speed and feed were kept constant (Figure 

6.12). These results are in agreement with those obtained by Bermingham et al. (2011).  

 

Figure 6.12 Comparison of the chip thickness under dry and wet machining of Al 6082-T6 at 

different cutting depth with a constant cutting speed and feed (V=90 m/min, f=0.16 mm/rev).  

With wet cutting conditions, it was found that the chip thickness trend remained 

constant with changing cutting depth and feed from low to high levels, as happened 

with the cutting speed, where in all the levels the relationship between chip thickness 

and cutting depth and feed is directly proportional, which increased with increasing 

feed and decreased with increasing cutting depth, (see Figure 6.11 and Figure 6.12). 

The ANOVA results of the chip thickness are presented in Appendix A.  
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6.4.2 Shear Angle and Chip Velocity  

As explained in Section 5.2.4, the shear angle and the chip velocity were calculated 

using equations 5.2 and 5.3, respectively. Figure 6.13 shows a comparison of the shear 

angle between dry and wet machining conditions during orthogonal cutting while 

Figure 6.14 presents the effect of cutting speed on shear angle in the dry and wet 

cutting condition, where the dry results show that there has been a steady increase in 

the shear angle with increasing cutting speed while the cutting depth and feed were 

kept constant at t=2 mm, f=0.16 mm/rev, respectively.  

 

Figure 6.13 Comparison of the shear angle for dry and wet cutting conditions 

At wet cutting conditions, the shear angle shows a different trend. Here, the shear 

angle initially decreases and then increases with the cutting speed. Where at low levels, 

V<90 m/min, the shear angle found to decrease with increasing cutting speed (see 

Figure 6.14); whereas at high levels, V>90 m/min, the results found that the influence 

of the machining parameters on the shear angle are same as the dry conditions, which 

is increased with increasing cutting speed.  
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Figure 6.14 Comparison of the shear angle under dry and wet machining of Al 6082-T6 at 

different cutting speeds with a constant cutting depth and feed (t=2.5 mm, f=0.12 mm/rev). 

The comparison of the chip velocity between dry and wet machining conditions during 

orthogonal cutting are presented in Figure 6.15. The data reveals that in the absence 

of cutting fluid there has been a gradual increase in the chip velocity with increasing 

cutting speed while the cutting depth and feed were kept constant (see Figure 6.16).      

 

Figure 6.15 Comparison of the chip velocity for dry and wet cutting conditions 

With using cutting fluid, the chip velocity shows a different trend. Here, the chip 

velocity initially decreases and then increases with the cutting speed. Where at low 

levels, V<90 m/min, the chip velocity found to decrease with increasing cutting speed; 

whereas at high levels, V>90 m/min, the results found that the influence of the 

machining parameters on the chip velocity is same as the dry conditions, which is 

increased with increasing cutting speed (see Figure 6.16).  
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Figure 6.16 Comparison of the chip velocity under dry and wet machining of Al 6082-T6 at 

different cutting speeds with a constant cutting depth and feed (t=2.5 mm, f=0.12 mm/rev).  

The ANOVA results of the chip morphology analysis including the chip thickness, 

shear angle and chip velocity are presented in Appendix A.  

6.4.3 Tool-Chip Contact Length 

6.4.3.1 Contact Length-Pilot Studies  

The tool-chip contact length or simply contact length 𝐿𝐶 was calculated theoretically, 

in this study, according to the model concluded by Kato et al. (1972) and Toropov & 

Ko (2003), as discussed in Chapter 2. The model predicts that the contact length is 

twice the deformed chip thickness (𝐿𝐶 = 2 ∗ 𝑐ℎ𝑖𝑝 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 (ℎ)). This model has 

been used due to the difficulty of measuring the contact length practically, as stated in 

Chapter 5 (Section 5.2.5), because one cutting tool insert was used for conducting all 

the experiments in this study, therefore, to verify the possibility of using the 

aforementioned model (Kato et al. 1972 and Toropov & Ko 2003 model), two pilot 

studies were carried out in this work using fresh cutting tool inserts in each study. In 

these two pilot studies, the tool-chip contact length was measured experimentally 

using an SEM  and compared to the aforementioned model (more detail are presented 

in Appendix A). The first pilot study was conducted to verify the model at low to high 

cutting speeds (45, 65, 95, 145, 215, and 305 m/min) with a constant cutting depth 

t=2.5 mm and feed f=0.16 mm/rev for both dry and wet cutting conditions. While the 

second pilot study was carried out at different cutting speed, cutting depth and feed. 

The machining parameters used in these two studies are presented in Appendix A (see 
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Table A.15 and Table A.16 ). The first pilot was carried out by using cutting tool 

(SCMW 12 04 08 from Sandvick) and without employing the experiments design 

while the other study was conducted using the same cutting tool as the main study and 

using the design of experiments (CCD). The both pilot studies were conducted on a 

Triumph 2500 lathe machine using orthogonal cutting of 6082-T6 aluminium tube as 

a workpiece.   

The results of these two studies are presented in Appendix A. The same results were 

obtained from both pilot experiments, and this confirms the validity of Kato et al. 

(1972) and Toropov & Ko (2003) model. Therefore, this model was used in calculating 

the tool-chip contact length for the rest of experiments. Thus, from now on all the 

results presented here were obtained based on the use of this model.  The tool-chip 

contact area was measured by multiplying the contact length by the chip width. More 

detail about measuring the contact area are presented in Appendix A (Section 

A.2.2.1.2).  

6.4.3.2 Contact Length-Main Study 

According to the design of experiments mentioned in Chapter 5, a set of orthogonal 

cutting experiments were conducted in order to investigate the influence of the 

machining parameters including feed, cutting speed and cutting depth on the tool-chip 

contact length and thus the tool-chip contact area during cutting Al 6082 workpiece 

tube in dry and wet conditions. In this section, the experimental results of the contact 

length at dry and wet machining conditions are presented. As explained in Section 

6.4.3.1, the contact length was measured using Kato et al. (1972) and Toropov & Ko 

(2003) model and the contact area was measured by multiplying the contact length by 

the chip width. Figure 6.17 shows a comparison of the contact length between dry and 

wet machining conditions during orthogonal cutting. For more details, the results 

obtained from the aforementioned model are also set out in Table A.17 in Appendix A. 
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Figure 6.17 Comparison of the tool-chip contact length for dry and wet cutting conditions 

In dry conditions, the results show that the contact length decreases with increasing 

cutting speed and cutting depth and increased with increasing feed (see Figure 6.17). 

Some results of Figure 6.17 have been re-presented in graphs to study the influence of 

the cutting speed, cutting depth and feed individually on the contact length and are 

presented below.   

The influence of cutting speed on contact length in the dry and wet machining 

condition can be seen from the Figure 6.18, where the contact length was decreased at 

with increasing cutting speed in dry condition while the cutting depth and feed were 

kept constant at t=2 mm, f=0.16 mm/rev, respectively.  

These relationships may be explained by the effect of temperature, as discussed in 

Section 6.3, with increasing cutting speed the temperature of the tool-chip interface 

increased and this leads to softening the workpiece and hence the friction at the tool-

chip interface reduces. These result in increasing shear angle and thus reducing chip 

thickness and contact length (see Figure 6.9, Figure 6.10 and Figure 6.14). This result 

is in agreement with (Abukhshim et al. 2004; Ojolo & Awe 2011).  

0

0.4

0.8

1.2

1.6

2

0.16 0.16 0.16 0.16 0.12 0.2 0.12 0.16 0.16 0.2 0.16 0.2 0.2 0.16 0.16 0.23 0.16 0.12 0.12 0.09

2 2 2 2 2.5 2.5 1.5 2 1.2 1.5 2.8 2.5 1.5 2 2 2 2 1.5 2.5 2

90 90 90 40 60 60 120 140 90 120 90 120 60 90 90 90 90 60 120 90

T
o
o
l-

C
h

ip
 C

o
n

ta
ct

 L
en

g
th

, 
m

m

Feed (mm/rev)/Cutting Depth (mm)/Cutting Speed (m/min) 

Dry Wet



  6.4 Chip Morphology and Characteristics 

106 

 

Figure 6.18 Comparison of the contact length under dry and wet machining of Al 6082-T6 at 

different cutting speeds with a constant cutting depth and feed (t=2 mm, f=0.16 mm/rev).  

At wet cutting conditions, the tool-chip contact length shows a different trend. Here, 

the contact length initially increases and then decreases with the cutting speed. Where 

at low levels, V<90 m/min, the contact length found to increase with increasing cutting 

speed; whereas at high levels, V>90 m/min, the results found that the influence of the 

machining parameters on the tool-chip contact length are same as the dry conditions, 

which is decreased with increasing cutting speed and cutting depth and increased with 

increasing feed. The results also found that, with applying the cutting fluid, the contact 

length was found smaller than in dry conditions and at low cutting speed (below 90 

m/min). At cutting speeds higher than 90 m/min, there were no significant differences 

between the contact length in dry and wet cutting conditions (see Figure 6.17 and 

Figure 6.19). It seems possible that these results, as explained in Section 6.4.1, are due 

to the temperature effect.  

Further experiments were carried out to investigate more about the influence of the 

cutting speed on the contact length, by examining different machining parameters. The 

results of these experiments are presented in Figure 6.19 where the same trend was 

observed at a constant cutting depth (t=2.5 mm) and feed (f=0.12 mm/rev) with 

different cutting speeds.  
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Figure 6.19 Comparison of the contact length under dry and wet machining of Al 6082-T6 at 

different cutting speeds with a constant cutting depth and feed (t=2.5 mm, f=0.12 mm/rev).   

Figure 6.20 shows that the feed has a more significant effect on the contact length than 

the other machining parameters. Where the data reveals that there has been a gradual 

increase in the contact length with increasing feed while the cutting depth and cutting 

speed were kept constant at t=2 mm, V=90 m/min, respectively. These results are in 

agreement with those obtained by (Ojolo & Awe 2011; Bermingham et al. 2011).  

 

Figure 6.20 Comparison of the contact length under dry and wet machining of Al 6082-T6 at 

different feed with a constant cutting speed and cutting depth (V=90 m/min, t=2 mm). 

The effect of cutting depth on the contact length was very small where it is almost 

negligible (Figure 6.21). The figure shows that there has been a slight decrease in the 

contact length with increasing the cutting depth while the cutting speed and feed were 
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kept constant. These results are in agreement with those obtained by Bermingham et 

al.(2011). 

 

Figure 6.21 Comparison of the contact length under dry and wet machining of Al 6082-T6 at 

different cutting depth with a constant cutting speed and feed (V=90 m/min, f=0.16 mm/rev). 

As can be seen from the Figure 6.20 and Figure 6.21, that with applying cutting fluid 

the contact length trend does not change with changing cutting depth and feed, as it is 

with the cutting speed, from low to high levels where in all the levels the relationship 

between contact length and cutting depth and feed is proportional.  

As mentioned in Chapter 5, the chip width was measured at six different locations 

along their length using a Vernier calliper, and the average were calculated. 

Multiplying the chip width by the contact length giving the tool-chip contact area. 

Figure 6.22 and Figure 6.23 show the contact area results, where Figure 6.22 show the 

comparison of the tool-chip contact area between dry and wet conditions at different 

cutting conditions. While Figure 6.23 show the comparison at different cutting speeds 

and the cutting depth and feed are constant. 

0.8

1

1.2

1.4

1.6

1 1.5 2 2.5 3

T
o
o
l-

C
h

ip
 C

o
n

ta
ct

 L
en

g
th

, 
m

m

Cutting Depth, mm

Dry Wet



  6.4 Chip Morphology and Characteristics 

109 

 

Figure 6.22 Comparison of the tool-chip contact area for dry and wet cutting conditions 

 

Figure 6.23 Comparison of the tool-chip contact area under dry and wet machining of Al 6082-

T6 at different cutting speeds with a constant cutting depth and feed (t=2.5 mm, f=0.12 mm/rev) 

The analysis of variance (ANOVA) of the tool-chip contact length and contact area 

are given in Appendix A.  

6.4.4 The Built-Up Edge (BUE)  

After collecting the chips from each experiment, as mentioned in Chapter 5, they were 

analysed for the BUE existence as previously reported by (Seah & Li 1997).  The 

existence of BUE is confirmed through the presence of streaks or lumps of adhering 

material on the underside of the chips. The observation of the BUE was made, using 

an SEM, from the underside of the chips gained when cutting Al 6082 with different 

machining parameters, with and without cutting fluid.   
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Figure 6.24 presents some SEM images of the side of the chip which is in contact with 

the rake face of the cutting tool in dry and wet cutting conditions at different cutting 

speeds while the cutting depth and feed are constant, t=2.5 mm and f=0.12 mm/rev, 

respectively. It can be seen from Figure 6.24 that the BUE amount decreased with 

increasing in cutting speed. In dry cutting, at low cutting speeds, (V=40 m/min, 60 

m/min), the BUE were observed while at cutting speed higher than 90 m/min no 

observed BUE was found on the chip. A possible explanation for this might be that as 

the cutting speed increased the chip flow rate increased as well which leads to a 

reduced likelihood of the breakaway material adhering to the chip (see Figure 6.16). 

Another possible explanation is that, as mentioned in Section 6.1, the temperature 

increased with increasing cutting speed. This increasing in temperature gives rise to 

BUE recrystallisation which would result in weakening of its structure and eventually 

breakdown. These results are in agreement with those obtained by (Takeyama & Ono 

1968; Seah & Li 1997; Fang et al. 2010A; Jomaa et al. 2014; Gokkaya & Taskesen 

2008; Carrilero et al. 2002; Yazman et al. 2013).     
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Figure 6.24 SEM photograph of chip underside during dry and wet cutting conditions of Al 

6082 at different cutting speeds and constant cutting depth and feed, t=2.5 mm, f= 0.12 mm/rev. 
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In wet conditions, it can be seen clearly from the Figure 6.24 that the BUE decreased 

with increasing cutting speeds, just as in dry conditions. The BUE material can still be 

observed on the chip at cutting speeds of 90 m/min and 120 m/min. while no BUE can 

be observed on the chip at cutting speed of 140 m/min. This shows that the stability of 

the BUE on the cutting edge is prolonged with the application of cutting fluid. This 

result may be explained by the fact that the temperature at the tool-chip interface 

decreased with cutting fluid which impedes the breakdown of the BUE structure.  

Figure 6.25 shows the SEM images of the chip underside in dry and wet conditions at 

different cutting speeds and a constant feed of f=0.16 mm/rev. The results show that 

the BUE affected by the feed as well where the BUE on the chip seems to increase 

with increasing feed. For example, at a cutting speed of 90 m/min and feed of 0.12 

mm/rev, no BUE was observed in dry condition (see Figure 6.24) while at the same 

cutting speed and with a higher feed (0.16 mm/rev) a small amount of BUE was 

observed. These results are in agreement with those obtained by (Gokkaya 2010; Fang 

et al. 2010B). In dry condition and at a cutting speed of 140 m/min and feed of 0.16 

mm/rev, no BUE was observed. When cutting fluid is applied, and at higher feed 

(f=0.16 mm/rev), the BUE was observed even at high cutting speed (V=140 m/min).         
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Figure 6.25 SEM photograph of chip underside during dry and wet cutting conditions of Al 

6082 at different cutting speeds and constant cutting depth and feed, t=2 mm, f= 0.16 mm/rev, 

respectively 
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6.5 Measurement of Cutting Forces  

6.5.1 Typical Raw Force Measurements  

Figure 6.26 shows a typical cutting force versus time curve which was recorded during 

orthogonal tube cutting of aluminium Al 6082 at a cutting speed (V=60 m/min), cutting 

depth (t= 2.5 mm) and feed (f=0.2 mm/rev). As mentioned in Chapter 5, according to 

the position of the cutting edge with reference to the workpiece the cutting process can 

be clearly divided into three stages, initially the cutting edge is not engaged with the 

workpiece and the background noise in the data signal is due to machine tool vibration. 

As soon as the cutting edge engaged the workpiece, a sharp increase in the cutting 

forces occurs followed by a plateau where the cutting forces oscillate around an 

average value. This oscillation is most likely due to the brief periods of cutting force 

relaxation as the swarf breaks and chips are formed (Andreasen & Chiffre 1993; Ward 

2010). Cutting force profile remains almost constant at which maximum cutting forces 

are observed. Once the cutting tool reaches the end of the workpiece, the cutting forces 

drop down sharply indicating the end of the cutting process.  

 

Figure 6.26 Cutting forces profile during Al 6082 cutting at V=60 m/min, t=2.5 mm, f=0.2 mm/rev  
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The cutting process was conducted orthogonally. Therefore, the radial force Fr is very 

small and has been neglected. The cutting forces data can be adjusted to remove the 

effect of long-term thermal drift and offset using the DynoWare software. Figure 6.27 

shows the profile of the rest cutting forces after removing the radial force and applying 

a smooth and drift compensation on the data. The average values of the cutting force 

components are reported in this study (see Figure 6.27).   

 

Figure 6.27 Cutting forces profile after data processing during Al 6082 cutting at V=60 m/min, 

t=2.5 mm, f=0.2 mm/rev       

6.5.2 Influence of Cutting Parameters on Cutting Forces 

Figure 6.28 and Figure 6.29 compare the experimental data, that obtained from the 

orthogonal cutting experiments, on the thrust and cutting forces, respectively in dry 

and wet cutting conditions. The error bars represent the maximum and minimum 

values. The results are also given, in more detail, in Appendix A (Table A.26).  

The results show that cutting forces in the absence of cutting fluid decreased with 

cutting speed and increased with cutting depth and feed. The lowest thrust and cutting 

forces were obtained when machining at high cutting speed (V=120 m/min), low feed 

(f=0.12 mm/rev) and low cutting depth (t=1.5 mm). While the highest were obtained 

at V=60 m/min, f=0.2 mm/rev and t=2.5 mm (see Figure 6.28 and Figure 6.29). With 
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applying cutting fluid, the lowest thrust Ft and cutting forces Fc (132.03, 196.73 N 

respectively) were obtained when machining at the cutting speed (V=60 m/min), low 

feed (f=0.12 mm/rev) and low cutting depth (t=1.5 mm). While the highest thrust Ft 

and cutting forces Fc (493.53, 579.13 N respectively) were obtained at V=60 m/min, 

f=0.2 mm/rev and t=2.5 mm which is the same as in the dry conditions.  

 

Figure 6.28 Comparison of the average maximum thrust force for dry and wet cutting 

conditions 

 

Figure 6.29 Comparison of the average maximum cutting force for dry and wet cutting 

conditions  

Some data in Figure 6.28 and Figure 6.29 have been re-plotted in order to examine the 

influence of each machining parameters and are presented below. The influence of 

cutting speed on the thrust and cutting forces in the dry and wet cutting condition can 

be seen from the Figure 6.30 and Figure 6.31, respectively. Where the dry results show 
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that there has been a steady decrease in both components of cutting force with 

increasing cutting speed while the cutting depth and feed were kept constant at t=2 

mm, f=0.16 mm/rev. It seems possible that these results are due to the softening of the 

workpiece material resulting from an increase in temperature at the tool-chip interface 

when the cutting speed increases (Gokkaya 2010; Sun et al. 2009; Gokkaya & 

Taskesen 2008). The low frictional forces on the rake face of the cutting tool at high 

cutting speeds is another reason for decreasing the cutting forces with increasing 

cutting speed (Gokkaya & Taskesen 2008). The results are supported by literature 

references in many articles (Fatima & Mativenga 2013; Pang 2012; Gokkaya & 

Taskesen 2008; Saglam et al. 2007; O’Sullivan & Cotterell 2001).  

 

Figure 6.30 Comparison of the thrust force under dry and wet machining of Al 6082-T6 at 

different cutting speeds with a constant cutting depth and feed (t=2 mm, f=0.16 mm/rev). 

 

Figure 6.31 Comparison of the cutting force under dry and wet machining of Al 6082-T6 at 

different cutting speeds with a constant cutting depth and feed (t=2 mm, f=0.16 mm/rev). 
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With applying the cutting fluid, the thrust Ft and cutting forces Fc show a different 

trend where they are smaller at low cutting speeds when coolant is applied than when 

dry. Here, the thrust and cutting forces initially increase and then decrease with cutting 

speed. Where at low cutting speed, V<90 m/min, the thrust and cutting forces were 

found to increase with increasing cutting speed; whereas at high levels, V>90 m/min, 

the results found that the influence of the machining parameters on the thrust and 

cutting forces are same as the dry conditions, which is decreased with increasing 

cutting speed. This is because at low cutting speeds, when the tool temperature is not 

too high, the coolant act as a lubricant and reduces the friction at the contact areas 

between the tool and workpiece (Seah & Li 1997). It can also be noticed from the 

results that the thrust force is more affected by the coolant than the cutting force. The 

results also show that the role of cutting fluid are considered negligible at high 

machining parameters (see Figure 6.30 and Figure 6.31). These results are in 

agreement with (Childs 2006). 

Williams & Tabor (1977) stated that cutting fluid is drawn into the asperity contact 

between the cutting tool and chip through capillary action. The cutting fluid is acting 

as a lubricant at a low cutting speed where the cutting fluid has a longer time to 

penetrate more of the tool-chip interface and will thus be effective in reducing friction, 

therefore, it acting as a lubricant. While at higher cutting speeds, the cutting fluid has 

a less time to penetrate the asperities contact between the tool-chip; therefore, the 

cutting fluid will be less effective.     

To investigate more about the influence of the cutting speed on the cutting forces, 

further experiments were carried out by examining a wider range of machining 

parameters. Five cutting speeds (V=40, 60, 90, 120 and 140 m/min), a constant cutting 

depth of t=2.5 mm and a constant feed of f=0.12 mm/rev were selected. Figure 6.32 

and Figure 6.33 show the results of these experiments where it can be seen clearly that 

similar results to (Figure 6.30 and Figure 6.31) were obtained.  
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Figure 6.32 Comparison of thrust force under dry and wet machining of Al 6082-T6 at different 

cutting speeds with a constant cutting depth and feed (t=2.5 mm, f=0.12 mm/rev).  

 

Figure 6.33 Comparison of cutting force under dry and wet machining of Al 6082-T6 at 

different cutting speeds with a constant cutting depth and feed (t=2.5 mm, f=0.12 mm/rev).   

Figure 6.34 and Figure 6.35 show the effect of cutting depth on the thrust Ft and 

cutting forces Fc. Where the data reveals that cutting aluminium Al 6082 at different 

depth of cut (t= 1.2, 2 and 2.8 mm) with a constant cutting speed (V=90 m/min) and 

feed (f=0.16 mm/rev) results in a gradually increasing in thrust Ft and cutting forces 

Fc because of the large volume of workpiece material being removed. This agreed 

with the conclusion of (Huang et al. 1999; Sun et al. 2009).  
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Figure 6.34 Comparison of the thrust force under dry and wet machining of Al 6082-T6 at 

different cutting depth with a constant cutting speed and feed (V=90 m/min, f=0.16 mm/rev).  

 

Figure 6.35 Comparison of the cutting force under dry and wet machining of Al 6082-T6 at 

different cutting depth with a constant cutting speed and feed (V=90 m/min, f=0.16 mm/rev).  

It can also be seen clearly from the Figure 6.36 and Figure 6.37 that the feed affects 

the cutting forces where the relation between them is a direct relationship since the 

cutting forces increased with increasing the feed. The results are supported by Asad et 

al. (2008) where increasing the feed rate leads to increasing in the cutting forces. 

Removing a large volume of the workpiece material at high cutting depth and feed are 

the reason for the increasing cutting forces with cutting depth and feed rate (Sun et al. 

2009).      
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Figure 6.36 Comparison of the thrust force under dry and wet machining of Al 6082-T6 at 

different feed with a constant cutting speed and cutting depth (V=90 m/min, t=2 mm).  

 

Figure 6.37 Comparison of the cutting force under dry and wet machining of Al 6082-T6 at 

different feed with a constant cutting speed and cutting depth (V=90 m/min, t=2 mm). 

It is worth noting that the relationship between the depth of cut and feed and the cutting 

forces are not affected by the cutting fluid where the both forces: thrust and cutting 

forces are increasing with increasing the cutting depth and feed with a constant cutting 

speed within the range of cutting depth (t=1.2-2.8 mm) and feed (f=0.09-0.23 mm/rev). 

Figure 6.38 and Figure 6.39 show a contour plot of the thrust Ft and cutting forces Fc 

versus the cutting parameters in dry and wet cutting conditions. The contour plots were 

presented to examine the influence of cutting parameters as well as their interactions 

and thus to visually display the area of optimal factor settings.  
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Dry Wet 

  

  

  

Figure 6.38 Contour plot of thrust force versus cutting parameters at dry and wet cutting 

conditions 
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Dry Wet 

  

  

  

Figure 6.39 Contour plot of cutting forces versus cutting parameters at dry and wet cutting 

conditions 

6.5.3 ANOVA of the Cutting Forces 

This section presents the ANOVA results of the cutting forces. Furthermore, variations 

of the thrust and cutting forces with the machining parameters including cutting speed, 

depth of cut and feed are studied in dry and wet conditions separately. Only the 

significant parameters are presented in following sections while the complete ANOVA 

results are presented in Appendix A.  
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6.5.3.1 Thrust Forces Ft   

The results of the ANOVA of thrust forces during dry and wet turning are presented 

in Table 6.1 and Table 6.2, respectively. These tables only show the significant effect 

of the machining parameters on the thrust forces (more detail are presented in 

Appendix A (Section A.3.1.1).  

Table 6.1 presents only the significant effects (P-value<0.05) of the ANOVA outputs. 

It can be seen from Table 6.1 that cutting speed (A), cutting depth (B) and feed (C), 

the quadratic value of feed (C*C), and the interaction between cutting speed and feed 

(A*C) and the interaction between cutting depth and feed (B*C) all have the most 

significant effect on the thrust force 𝐹𝑡 during dry turning. Table 6.1 also shows the 

value of the determination coefficient (𝑅2) 99.30%, which indicates the goodness of 

data fit for the model, and the values of adjusted determination coefficient (adj. 𝑅2) 

and predicted determination coefficient (pred𝑅2) are also shown in Table 6.1. The 

(adj.𝑅2) is 98.98%, which denotes a high significant of the model and the (pred𝑅2), 

97.8%, indicates the agreement with the (adj.𝑅2). This model can be employed to 

navigate the design space. 

Table 6.1 ANOVA output of thrust force 𝑭𝒕 in dry conditions (Significant) 

Source DF Adj SS Adj MS F-Value P-Value Note 

Model 6 116793 19465.5 309.31 0.000 Significant <0.05 

  Linear 3 114263 38087.5 605.21 0.000  

    A 1 15497 15496.8 246.25 0.000  

    B 1 66766 66766.3 1060.92 0.000  

    C 1 31999 31999.4 508.47 0.000  

  Square 1 1032 1031.6 16.39 0.001  

    C*C 1 1032 1031.6 16.39 0.001  

  2-Way 

Interaction 

2 1499 749.4 11.91 0.001  

    A*C 1 876 876.2 13.92 0.003  

    B*C 1 623 622.6 9.89 0.008  

Error 13 818 62.9    

  Lack-of-Fit 8 519 64.8 1.08 0.488 Not Significant >0.05 

  Pure Error 5 300 59.9    

Total 19 117611     

R-Squared  0.993      

R-Squared (adj) 0.9898      

R-Squared (pred) 0.9798      

DF: Degree of freedom Adj SS: Adjusted sum of square Adj MS: Adjusted mean square 

The final equation in terms of significant factors for the thrust force model (𝐹𝑡) in dry 

turning is given by Equation 6.1. It is worth to note that the regression equation is in 
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uncoded values (see Table 5.5). These models take only the influential factors into 

account: 

 
𝐹𝑡𝐷𝑟𝑦

= −147.8 + 0.273𝐴 + 69.3𝐵 + 2790𝐶 − 5240𝐶2 − 8.72𝐴𝐶

+ 441𝐵𝐶 

6.1 

where A is the cutting speed (m/min), B is the cutting depth (mm) and C is the feed 

(mm/rev).  

Table 6.2 presents the significant effects of the machining parameters on the thrust 

forces during wet conditions. It can be seen from the table that the linear model of the 

machining parameters cutting depth (B) and feed (C) have a stronger effect on the 

thrust force 𝐹𝑡, while the cutting speed (A) has less effect on the output. The ANOVA 

results also show that the thrust force 𝐹𝑡 is strongly affected by the quadratic model of 

cutting speed (A*A). Regarding to the interaction between the cutting parameters 

during wet turning, the results show that the thrust force is significantly influenced by 

(A*B) and (B*C) more than (A*C). 

The determination coefficient (𝑅2), adjusted 𝑅2 and predicted 𝑅2are also shown in 

Table 6.2 which are 96.22%, 94.02% and 77.78%, respectively.   

Table 6.2 ANOVA output of thrust force 𝑭𝒕 in wet conditions (Significant) 

Source DF Adj SS Adj 

MS 

F-

Value 

P-

Value 

Note 

Model 7 156825 22403.6 43.66 0.000 Significant <0.05 

  Linear 3 129262 43087.5 83.96 0.000  

    A 1 4784 4783.9 9.32 0.010  

    B 1 83133 83133.2 162.00 0.000  

    C 1 41345 41345.4 80.57 0.000  

  Square 1 17322 17322.5 33.76 0.000  

    A*A 1 17322 17322.5 33.76 0.000  

  2-Way 

Interaction 

3 10240 3413.4 6.65 0.007  

    A*B 1 3756 3756.3 7.32 0.019  

    A*C 1 2368 2368.4 4.62 0.053  

    B*C 1 4116 4115.5 8.02 0.015  

Error 12 6158 513.2    

  Lack-of-Fit 7 5927 846.7 18.33 0.003  

  Pure Error 5 231 46.2    

Total 19 162983     

R-Squared  0.9622      

R-Squared (adj) 0.9402      

R-Squared (pred) 0.7778      

DF: Degree of freedom Adj SS: Adjusted sum of square Adj MS: Adjusted mean square 
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The final equation in terms of significant factors for the thrust force model (𝐹𝑡) in wet 

turning is given by Equation 6.2. These models take only the influential factors into 

account: Regression equation is in uncoded values (see Table 5.5) 

 
𝐹𝑡𝑊𝑒𝑡

= −673 + 12.68𝐴 + 104.6𝐵 + 398𝐶 − 0.03818𝐴2 − 1.445𝐴𝐵

− 14.34𝐴𝐶 + 1134𝐵𝐶 

6.2 

where A is the cutting speed (m/min), B is the cutting depth (mm) and C is the feed 

(mm/rev).  

6.5.3.2 Cutting Forces Fc  

The results of the ANOVA of cutting forces during dry and wet turning are presented 

in Table 6.3 and Table 6.4, respectively. These tables only show the significant effect 

of the machining parameters on the cutting forces 𝐹𝐶 (more detail are presented in 

Appendix A (Section A.3.1.2). It can be seen from Table 6.3 that the linear model of 

the machining parameters cutting speed (A), cutting depth (B) and feed (C) have a 

stronger effect on the cutting force 𝐹𝐶. In addition, the quadratic values of cutting 

speed (A*A) and feed (C*C) are also significant but the effect of (C*C) is stronger 

than the cutting speed during dry turning. Regarding the interaction influence, it can 

be seen from the ANOVA outputs that the interaction between cutting speed and feed 

(A*C) and the interaction between cutting depth and feed (B*C) have a significant 

effect on the cutting force 𝐹𝐶. The determination coefficient (𝑅2) of the model is 

99.72% which is indicating the high data fit (see Table 6.3), the values of adjusted 

determination coefficient (adj. 𝑅2) and predicted determination coefficient (pred𝑅2) 

are also shown in Table 6.3 (99.56% and 98.68%, respectively). It is noticed that the 

only influential variables take into account in this model. 
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Table 6.3 ANOVA output of cutting force 𝑭𝑪 in dry conditions (Significant) 

Source DF Adj SS Adj 

MS 

F-

Value 

P-

Value 

Note 

Model 7 163971 23424.4 610.19 0.000 Significant <0.05 

  Linear 3 160274 53424.8 1391.68 0.000  

    A 1 12005 12004.9 312.72 0.000  

    B 1 90647 90647.3 2361.30 0.000  

    C 1 57622 57622.0 1501.01 0.000  

  Square 2 1488 744.0 19.38 0.000  

    A*A 1 410 410.2 10.69 0.007  

    C*C 1 953 952.8 24.82 0.000  

  2-Way 

Interaction 

2 2208 1104.2 28.76 0.000  

    A*C 1 270 270.0 7.03 0.021  

    B*C 1 1938 1938.3 50.49 0.000  

Error 12 461 38.4    

  Lack-of-Fit 7 423 60.5 8.07 0.018  

  Pure Error 5 37 7.5    

Total 19 164431     

R-Squared  0.9972      

R-Squared (adj) 0.9956      

R-Squared (pred) 0.9868      

DF: Degree of freedom Adj SS: Adjusted sum of square Adj MS: Adjusted mean square 

The final equation in terms of significant factors for the cutting force model (𝐹𝐶) in 

dry turning is given by Equation 6.3: Regression equation is in coded values (see Table 

5.5). 

 
𝐹𝐶 𝐷𝑟𝑦

= −7 − 1.275𝐴 + 38.4𝐵 + 21.21𝐶 + 0.00590𝐴2 − 5057𝐶2

− 4.84𝐴𝐶 + 778𝐵𝐶 

6.3 

where A is the cutting speed (m/min), B is the cutting depth (mm) and C is the feed 

(mm/rev). 

The results of the ANOVA of cutting forces 𝐹𝐶 during wet turning are presented in 

Table 6.4. It can be seen from the ANOVA that the linear model of the machining 

parameters cutting depth (B) and feed (C) have a stronger effect on the cutting force 

𝐹𝐶. In addition, the quadratic value of cutting speed (A*A) are also significant. The 

two-way interaction shows that the interaction between (B*C) was the only significant 

affect on the cutting force 𝐹𝐶 than the other interactions. The determination coefficient 

(𝑅2) of the model is 97.61%, the values of adjusted determination coefficient and 

predicted determination coefficient are also shown in Table 6.4 (96.22% and 88.02%, 

respectively).  
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Table 6.4 ANOVA output of thrust force 𝑭𝑪 in wet conditions (Significant) 

Source DF Adj SS Adj 

MS 

F-

Value 

P-

Value 

Note 

Model 7 189771 27110 70.14 0.000 Significant <0.05 

  Linear 3 174971 58324 150.91 0.000  

    A 1 534 534 1.38 0.263  

    B 1 105303 105303 272.46 0.000  

    C 1 69134 69134 178.88 0.000  

  Square 1 9375 9375 24.26 0.000  

    A*A 1 9375 9375 24.26 0.000  

  2-Way 

Interaction 

3 5425 1808 4.68 0.022  

    A*B 1 1475 1475 3.82 0.074  

    A*C 1 1558 1558 4.03 0.068  

    B*C 1 2392 2392 6.19 0.029  

Error 12 4638 386    

  Lack-of-Fit 7 4294 613 8.93 0.014  

  Pure Error 5 344 69    

Total 19 194409     

R-Squared  0.9761      

R-Squared (adj) 0.9622      

R-Squared (pred) 0.8802      

DF: Degree of freedom Adj SS: Adjusted sum of square Adj MS: Adjusted mean 

square 

Equation 6.4 presents the mathematical model of the most influential variables on the 

cutting force in wet machining, while the interaction between cutting speed and depth 

of cut and the interaction between the cutting speed and feed have to be presented in 

the modelling process since they were involved in two-way interactions that were 

significant. The regression equation is in coded values (see Table 5.5).   

 
𝐹𝐶𝑊𝑒𝑡

= −538 + 8.93𝐴 + 118.8𝐵 + 1096𝐶 − 0.02808𝐴2 − 0.905𝐴𝐵

− 11.63𝐴𝐶 + 865𝐵𝐶 

6.4 

where A is the cutting speed (m/min), B is the cutting depth (mm) and C is the feed 

(mm/rev).  

6.5.3.3 Comparison between the Experimental and Model Results of the Cutting 

Forces 

In this section, a comparison has been introduced between the experimental (actual) 

results, shown in Figure 6.28 and Figure 6.29, and the results obtained from the 

derived equations (6.1-6.4). The comparisons between these two values, actual and 

predicted values, for the two orthogonal cutting forces (𝐹𝒕 and 𝐹𝐶) at dry and wet 



  6.5 Measurement of Cutting Forces 

129 

cutting conditions are shown in (Figure 6.40-Figure 6.43). Very good agreement 

between the predicted and actual cutting forces are shown.   

 

Figure 6.40 Experimental versus predicted values for thrust force 𝑭𝒕 in dry condition, solid line 

indicates exact agreement 

 

Figure 6.41 Experimental versus predicted values for cutting force 𝑭𝑪 in dry condition, solid 

line indicates exact agreement 
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Figure 6.42 Experimental versus predicted values for thrust force 𝑭𝒕 in wet condition, solid line 

indicates exact agreement 

 

Figure 6.43 Experimental versus predicted values for cutting force 𝑭𝑪 in wet condition, solid 

line indicates exact agreement 

A comparison of the experimental results of machining force components, during dry 

and wet machining of Al 6082-T6 at different cutting speeds with a constant cutting 

depth and feed (t=2.5 mm, f=0.12 mm/rev), respectively, and the analytically predicted 

values using Equations (6.1-6.4) are shown by scatter plots with smooth lines in 

(Figure 6.44-Figure 6.47). It can be seen clearly from the figures that the predicted 

machining force magnitudes agree well with the corresponding experimental results.  
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Figure 6.44 Comparison of experimental and predicted thrust forces during dry machining of 

Al 6082-T6 at different cutting speeds with a constant cutting depth and feed (t=2.5 mm, f=0.12 

mm/rev) 

 
Figure 6.45 Comparison of experimental and predicted cutting forces during dry machining of 

Al 6082-T6 at different cutting speeds with a constant cutting depth and feed (t=2.5 mm, f=0.12 

mm/rev) 

 
Figure 6.46 Comparison of experimental and predicted thrust forces during wet machining of 

Al 6082-T6 at different cutting speeds with a constant cutting depth and feed (t=2.5 mm, f=0.12 

mm/rev) 
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Figure 6.47 Comparison of experimental and predicted cutting forces during wet machining of 

Al 6082-T6 at different cutting speeds with a constant cutting depth and feed (t=2.5 mm, f=0.12 

mm/rev) 

6.5.3.4 Model Validation Experiments  

Further to the experiments runs mentioned in Table 5.5, another set of orthogonal 

experiments, validation trials, have been carried out to validate and confirm the 

mathematical models, (Equations 6.1-6.4). The machining parameters for the 

validation experiments were chosen by default within the range of the cutting 

parameters mentioned in the experimental design matrix (see Table 5.5). The 

experiments were conducted during machining of Al 6082 at dry and wet conditions 

using the same cutting tool and the same CNC machine, described in Chapter 5. The 

machining parameters for the validation trials are shown in Table 6.5. The results of 

these experiments are graphically depicted in Figure 6.48 and Figure 6.49. The results 

are also given in Appendix A (Table A.31).   

Table 6.5 Machining parameters of the validation trials  

Trials No. 
Cutting parameters 

Cutting Speed (m/min) Cutting depth (mm) Feed (mm/rev) 

1 40 2.8 0.16 

2 40 2.5 0.12 

3 90 1.2 0.09 

4 140 2.8 0.09 

5 140 1.2 0.12 

6 90 2.5 0.12 

7 140 2.5 0.12 
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Figure 6.48 and Figure 6.49 show the comparison of the validation experiments results 

of the thrust and cutting forces, respectively, during dry and wet machining. This 

results confirm the significant effect of coolant, on the machining force components, 

at low machining parameters. The results also showed that the cutting force 𝐹𝐶 is 

affected by the coolant at low machining parameters, but by less than it is in the thrust 

force.  

 

Figure 6.48 Comparison of the validation experiments results of thrust force for dry and wet 

conditions  

 
Figure 6.49 Comparison of the validation experiments results of cutting force for dry and wet 

conditions 

The validation experiment results of the machining force components were compared 

with the corresponding predicted results, obtained from the empirical Equations (6.1-
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validation experiments and the corresponding analytical predicted results of the thrust 

force and cutting force, at dry conditions, are shown in Figure 6.50 and Figure 6.51, 

respectively. It can be seen from the results that analytical predicted cutting forces 

values agreed well with the corresponding experimental results and within an error 

percentage of 1.3-11.29%. While Figure 6.52 and Figure 6.53 show the comparison 

results at wet conditions. It can be seen from the results that the experimental results 

agreed well with their calculated results. 

 

Figure 6.50 Comparison of the validation experiments and predicted results of thrust force for 

dry conditions. 

 

Figure 6.51 Comparison of the validation experiments and predicted results of cutting force for 

dry conditions. 
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Figure 6.52 Comparison of the validation experiments and predicted results of thrust force for 

wet conditions. 

 

Figure 6.53 Comparison of the validation experiments and predicted results of cutting force for 

wet conditions. 
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cutting forces: thrust Ft and cutting forces Fc. The following conclusions can be 
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increase with increasing feed. While with cutting fluid, the chip thickness and 

contact length increase with increasing cutting speed within the range less than 

90 m/min, beyond this range the cutting fluid has a negligible effect on chip 

thickness and contact length.    

 The reason for decreasing chip thickness with increasing cutting speed is 

because of the temperature effect. Where the tool-chip interface temperature 

increases with increasing cutting speed and thus lead to softening the 

workpiece and hence a reduction in the tool-chip interface friction. Both these 

two factors increase the shear angle and thus decrease the chip thickness.     

 The influence of feed was more dominant than that of cutting speed on chip 

thickness whereas cutting depth has the lowest effect.  

 The tool-chip contact length model of Kato et al. (1972) and Toropov & Ko 

(2003) (𝐿𝑐 = 2ℎ), has been confirmed and used in this study.   

 The present work confirms previous findings and contributes additional 

evidence that suggests the capability of confirming the existence of the BUE 

on the underside of the chips.  

 The experimental findings in this study show that the BUE vanishes with 

increasing the cutting speed. This result may be explained by the fact that 

increasing cutting speed results in increasing temperature. This increasing in 

temperature leads to the recrystallisation of the BUE which would result in 

weakening of its structure and eventually the breakdown of the BUE, therefore, 

there is less BUE noticed on the chip.  

 BUE occurs both with and without cutting fluid during machining of 

aluminium (Al 6082). However, the application of cutting fluid increases the 

threshold at which BUE occurs.  

 Due to increasing temperature with increasing cutting speed, the thrust force 

(Ft) and cutting force (Fc) are seen to decrease with increasing cutting speed at 

a constant cutting depth and feed at dry cutting. Where increasing temperature 

leads to softening of the workpiece.  

 The thrust force (Ft) and cutting force (Fc) are found to increase with increasing 

cutting depth and feed because of removing a large volume of the workpiece 

at high cutting depth and feed. 
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 The influence of feed on the thrust force (Ft) and cutting force (Fc) was found 

to be higher at low feed since the thrust and cutting forces increased roughly 

about 41% from increasing feed 0.09 mm/rev to 0.16 mm/rev while the 

increasing is half of this value from 0.16 mm/rev to 0.23 mm/rev and it is about 

19%.     

 At a cutting speed <90 m/min, Ft and Fc are smaller when coolant is applied 

than when dry condition is performed. This is because at low cutting speeds, 

when the tool temperature is not too high, the coolant acts as a lubricant and 

reduces the friction at the contact areas between the tool and workpiece.   

 The research has also shown that the thrust/feed force is more affected by the 

cutting fluid than the cutting force. 

 The chip thickness is much smaller in wet conditions, in the same cases where 

a force difference was seen. 
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7  
Ultrasonic Reflection from Tool-

Chip Interface  

 

 

 

 

This chapter presents the results of experiments which have been carried out to 

understand the influence of machining parameters on the ultrasonic reflection. Various 

analyses are conducted in an attempt to provide further explanation of certain features 

that are often observed when applying the ultrasound technique to machining, but 

which are not well understood. Following this, the ANOVA results are presented in 

detail, and a comparison based upon some of the earlier findings within the chapter and 

the predicted results obtained from the mathematical model are presented.         
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7.1 Implementing Ultrasonic Measurement 

This section presents the procedure for the ultrasonic measurements   

7.1.1 Reflection from the Rake Face Cutting Tool  

As explained in Chapter 3, the ultrasonic sensor generated waves which propagate 

through the cutting tool, when the sensor was excited by the voltage signals. Figure 

7.1a) shows a complete recorded waveform from the cutting tool insert. The first pulse 

which is labelled as “sensor initial impulse” is a combination of reflection from the 

rear face of the cutting tool insert and sensor initiation. This pulse is stable as it is not 

affected by tool-chip contact. The first peak marked with (A) is the reflection from the 

rake face of the cutting tool insert and is changing as the chip contact the rake face. 

The rest were the echoes of this pulse occurred at the tool-chip interface. These are 

shown schematically in Figure 7.1b). Thus, in order to measure the interface condition 

in the cutting tool, the first peak (A) was isolated and used. In this study, this peak is 

known as the pulse of interest. 

 

Figure 7.1 Reflection from rake surface; a) in schematic view b) in time domain 

7.1.2 Reference Signal 

Initially, a signal is reflected back from the rake face of the cutting tool insert when 

there is no chip (i.e. before the machining). This received pulse is reflected from the 
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cutting tool insert-air contact, and it is used as a reference signal. Due to the low 

acoustic impedance of the air compared to the other materials, see Table 3.1 in Chapter 

3, therefore, if the matching material is air, then most of the incident waves are 

reflected back. This means that the wave reflected from the rake face cutting tool-air 

interface almost equivalent to the incident pulse/signal. 

Experimentally, an incident signal is hard to measure directly, for this reason, the 

measurement proceeds by comparing the signal from the interface of interest to that 

from a known reference interface. Hence,  

 
𝑅(𝑓) =

𝐴𝑚(𝑓)

𝐴𝑟𝑒𝑓(𝑓)
𝑅𝑟𝑒𝑓 7.1 

where 𝐴𝑚(𝑓) is the signal amplitude which is reflected from the interface (tool-chip 

interface), 𝐴𝑟𝑒𝑓(𝑓) is the wave amplitude of the reference signal (tool-air interface) 

and 𝑅𝑟𝑒𝑓 is the reflection coefficient of the reference interface (Zhang et al. 2005). 

Hence, during machining a pulse is reflected which is from the interface between the 

cutting tool insert and the chip. Figure 7.2 and Figure 7.3 show the difference between 

the reflected signal from the cutting tool-air and cutting tool-chip interfaces in time 

and frequency domain, could be thought of as a comparison between incident and 

reflected signals. It can be seen clearly from the figures that there is a drop in 

amplitude. This is purely attributed to the partial transmission of ultrasound signal 

through the tool-chip contact. In this study, the signal reflected from the cutting tool-

air interface is called as a reference signal.     
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Figure 7.2 Comparison of the reflected amplitude from cutting tool-air and cutting tool-chip in 

time domain 

 

Figure 7.3 Comparison of the reflected amplitude from cutting tool-air and cutting tool-chip in 

frequency domain 

7.1.3 Generic Signal Processing 

The commercial software package LabVIEW was used, in this work, for all online and 

offline signal processing of the ultrasonic signals. Once the reference and 

measurement ultrasonic signals were captured and digitized, several steps were taken 
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to obtain the reflection coefficient value. These steps are described schematically in 

Figure 7.4.  

 

Figure 7.4 Schematic diagram of generic signal processing 

To improve the accuracy and obtain further information about the reflected signal, a 

Fast Fourier Transform (FFT) is performed to analyse every frequency of the 

ultrasonic reflected signal (i.e. the reference and measurement ultrasonic signals). The 

FFT produces a spectrum showing signal amplitude versus frequency.  
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Before an FFT can be taken, a string of zeros can be added to the end of the input 

signal (both signals). This process is called a zero padding which is required to give a 

sufficient resolution in the resulting spectra produced by a Fourier Transform (Avan 

2013). An FFT of the reference and measurement signals can now be taken as shown 

in Figure 7.4.  

As explained in the previous section (Section 7.1.2), the reflection coefficient, which 

was the proportion of the amplitude of pulse by that of a reference, was obtained by 

dividing the FFT of measurement signal (reflected from the rake face cutting tool-chip 

interface) by the FFT of the reference signal (reflected from the rake face cutting tool-

air interface).                 

The graphical outputs from a typical LabVIEW software during the signal processing 

is shown in Figure 7.5. 

  
 

  

 

 

Figure 7.5 A typical graphical outputs obtained from the LabVIEW software during the signal 

processing; a) complete waveform, b) selected pulse, c) FFT and d) reflection coefficient with 

time 
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7.2 Temperature Compensation 

As explained in Chapter 4, during the tests being run at different machining parameters 

temperatures of the cutting edge ranged up to 175˚C this raises several issues. Both 

the ultrasonic piezoelectric and the couplant are affected by temperature, as explained 

in Section 4.1.5, and thus affects the outputs from the ultrasonic element (Reddyhoff 

et al., 2008). 

These temperature effects are detrimental to the operation of the monitoring system, 

as an increase in temperature would signal an erroneous increase in reflection 

coefficient. In order to overcome this problem, a thermocouple was attached to the 

cutting tool insert to monitor the temperature and its locations was shown in Figure 

4.14. The thermocouple was positioned to measure the temperature of the cutting edge 

of the cutting tool insert close to the position of the ultrasonic transducer. 

The cutting tool insert was placed into temperature controlled oven and the reference 

signals were recorded in a temperature range from 15˚C to 200˚C, the data was 

processed using LabVIEW. The reference signal has been recorded for each 5˚C 

increment in tool temperature during. The reference was taken during heating up and 

cooling down in order to check the behaviour of the element. In order to check the 

behaviour of the sensor over extended periods and to ensure the repeatability of the 

test, the reference signals were recorded 16 times, and an average taken. The average 

resulting plots of amplitude versus temperature at different frequencies are shown in 

Figure 7.6 and Figure 7.7. Figure 7.6 shows the influence of temperature on the 

amplitude at a frequency of 10 MHz, it can be seen clearly from the figure that the 

amplitude increases with increasing temperature. While at a frequency of 12.5 MHz, 

the data shows that the amplitude has a different trend, where the amplitude is almost 

constant until 120˚C approximately; then the amplitude starts to decrease until it 

reaches the highest temperature which was 195˚C (see Figure 7.7).  

The result was checked by performing another test with using a new sensor, the test 

was repeated 4 times and an average was taken. The result of this test is shown in 

Figure 7.6 and Figure 7.7. It is worth noting that almost the same results were obtained 

from both sensors, and this confirms the validity of the result. The difference in 

amplitude of both sensors was attributed to different factors including the couplant 

layer, sensor size and soldering.           
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Figure 7.6 Plot of amplitude versus temperature for pulses from the rake surface at 10 MHz 

 

Figure 7.7 Plot of amplitude versus temperature for pulses from the rake surface at 12.5 MHz 

Figure 7.8 shows the effect of temperature on the centre frequency of the element, 

where the centre frequency was shifted backward with increasing temperature. This 

shifting in the frequency affects the outputs from the element. Therefore, in order to 

take into account the shifting in the frequency, the maximum amplitude of the FFT 

was chosen regardless to the frequency. Where the reflection coefficient was 

calculated by dividing the maximum amplitude of the measurement signals by the 

maximum amplitude of the reference signal (see Figure 7.4). 
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Figure 7.8 Shows how the centre frequency shifted with increasing and decreasing temperature   

Another LabVIEW program was made for recording the measurement signals and 

temperature during machining. Finally, a LabVIEW program has been created to 

obtain the reflection coefficient by dividing the measurement signal by the appropriate 

reference signal for a given temperature. The data has been interpolated to allow the 

reflection coefficient to be obtained for any specific temperature. Figure 7.9 shows the 

effect of temperature compensation on the reflection coefficient. The compensated 

reflection coefficient is smaller than non-compensated because as explained before, 

the amplitude increases with increasing the temperature, as illustrated in Figure 7.9. 

 

Figure 7.9 Effect of temperature compensation on the reflection coefficient during Al 6082 
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7.3 Ultrasonic Measurements   

7.3.1 General Analysis of a Reflection Coefficient Profile 

Cutting experiments would typically be initiated by identifying the machining 

parameters such as the cutting speed, depth of cut (which equals the workpiece tube 

wall thickness) and feed. In this study, a set of orthogonal cutting experiments were 

conducted, and it was therefore possible to obtain ultrasonic measurement across a 

range of cutting parameters during such instances. This enabled various features of the 

ultrasonic measurements to be characterised as dependant on – or independent of – 

cutting speed, cutting depth and feed as well as the influence of the BUE and the tool-

chip contact phenomenon on the ultrasonic measurements.  

As described in Chapter 5, according to the centre composite design (CCD) 

methodology, a set of orthogonal cutting experiments were conducted (as shown in 

Table 5.5) in order to investigate the effect of the machining parameters on the tool-

chip interface using the ultrasonic reflection when machining an aluminium Al 6082 

workpiece tube with and without a cutting fluid. The results show that the overall 

profile of the reflection coefficient curves is almost similar for all the trials. The results 

also show that the reflection coefficient profile during wet cutting conditions is 

different from the dry conditions, therefore, the both profile are studied separately. To 

study the reflection coefficient curves, three trials have been chosen and presented 

below while the rest of results are presented in Section 7.3.3. 

7.3.1.1 Reflection Coefficient Variation in Dry Cutting 

Figure 7.10 shows reflection coefficient curves obtained from orthogonal cutting of Al 

6082, during dry machining, at a cutting speed of 90 m/min and depth of cut of 2 mm 

for feeds in the range of 0.09-0.23 mm/rev at 0.07 mm/rev increments. Each data set 

was recorded at a 1 𝑘𝐻𝑧 pulse rate, and reflection coefficient has been measured, as 

mentioned earlier in this chapter, at the maximum amplitude of the frequency of the 

ultrasonic source element (see Figure 7.4). The reference signal was obtained prior to 

the cutting process for temperatures in the range of 25-200 °C at 5 °C increments as 

described in Section 7.2.  
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In the figure, the contact between the rake face of the cutting tool and chip is clearly 

observed by way of a general reduction in reflection coefficient at 9000≤time≤19000 

𝑚𝑠, (±500 ms). All the curves have been smoothed using a DIAdem software, DIAdem 

calculates the moving average for each value from the reflection coefficient value and 

from the specified number of neighbour values which is by default 15. A clear 

relationship can be observed between reflection coefficient and feed, where reflection 

coefficient is increasingly minimised as feed is increased while the cutting speed and 

cutting depth are constant (see Figure 7.10).  

 

Figure 7.10 Reflection coefficient curves during dry cutting of Al 6082 at different feeds with a 

constant cutting speed and depth of cut (V=90 m/min, t=2 mm). 

The data also showed a number of additional features, as highlighted in Figure 7.11(a) 

and introduced within the following paragraphs. 

Firstly, when the cutting tool edge is not engaged with the workpiece, i.e. there is no 

contact between the cutting tool and chip, the reflection coefficient is close to 1 (Figure 

7.11(b)). As the chip forms and contacts the cutting tool the reflection coefficient starts 

to reduce preceded by a slight increase as shown in the last part of Figure 7.11(b). A 

possible explanation for this might be due to a collision of the cutting tool to the 

workpiece tube which is not exactly square, and thus, the cutting tool is not entirely in 

contact with the workpiece. This feature was observed in the experiments that have 

been using a new tube; therefore, this is a cutting parameter independent phenomenon. 

As soon as the cutting edge entirely contacts the workpiece the reflection coefficient 
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reduces. In some cases, reflection coefficient exceeded one at brief instances. This 

suggests reflected energy to be higher at brief instances than that of the cutting tool-

air reference condition. This was noticed only when the BUE exists [see Figure 7.16 

a), b) and c)]. A possible explanation for this might be that the measurement window 

(window covered by the ultrasonic waves) contains partial contact, the result is often 

an increase in the reflected amplitude, leading to a reflection coefficient greater than 

one (see last part of the Figure 7.11(b)).      

As the cutting edge entirely engaged the workpiece, the chips formed and moved over 

the tool rake face caused a sharp reduction in the reflection coefficient, depending on 

the feed until the chip entirely formed then the reflection signals are almost periodic, 

as will be discussed in more detail in the next section, (see Figure 7.11(d)). The reason 

for this reduction in the reflection coefficient is the increase in tool-chip contact area 

that increases with increasing the feed. As the contact area increases more transmission 

of waves through the interface, therefore, the lower reflection coefficient is recorded. 

Another reason for the reduction in the reflection coefficient is due to the increase in 

pressure applied on the rake face cutting tool that increases with increasing the feed. 

As the pressure on the rake face increased, more waves are transmitted to the chip 

through the interface and low reflection coefficient recorded. More detail about the 

influence of machining parameters on reflection coefficient will be given later in 

Section 7.3.3.        

Finally, as the cutting edge exits the cut, a similar feature to the entry stage has been 

observed (see Figure 7.11(c)). The reflection coefficient does not return to one. This 

result may be explained by the fact that the ultrasonic element properties are different 

from what it was before cutting where the sensor temperature is still higher than what 

it was before cutting and caused shifting the centre frequency of the element as 

discussed in Section 7.2. Another possible explanation for this might be due to the 

presence of aluminium deposits on the tool rake face. This feature appears to be similar 

for all the experiments, which can, therefore, be said to be cutting parameters 

independent.  
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b)  

 
c)  

 

 

Figure 7.11 Features of interest in reflection coefficient curves, at dry conditions, of Figure 7.10  
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7.3.1.2 Reflection Coefficient Variation in Wet Cutting 

With the presence of cutting fluid, reflection coefficient variation is different from the 

dry condition especially at high cutting speed and small cutting depth. Figure 7.12 

shows reflection coefficient curves obtained from orthogonal cutting of Al 6082, 

during wet cutting, at a cutting speed of 90 m/min and feeds 0.16 mm/rev for cutting 

depths in the range of 1.2-2.8 mm at 0.8 mm increments. While Figure 7.13 shows 

reflection coefficient curves at different cutting speeds (V=40, 90 and 140 m/min) with 

a constant cutting depth and feed (t=2 mm, f=0.16 mm/rev), respectively.  

The reflection coefficient is around 0.85 (not 1) when the cutting tool is not engaged 

the aluminium tube (see Figure 7.12 and Figure 7.13). This is attributed to existing a 

layer of oil on the rake face cutting tool before starting cutting. As shown by equation 

3.7, the reflection coefficient is a function of the acoustic impedance of both materials, 

which in this case is cutting tool and oil. Based on Equation 3.7, presented in Chapter 

3, the reflection coefficient was calculated and found to be equal to 0.885, where some 

of the energy is transmitted through the rake face-oil interface. The result also showed 

a number of additional features, as highlighted in Figure 7.14(a) and introduced within 

the following paragraphs. 

 
Figure 7.12 Reflection coefficient curves during wet cutting of Al 6082 at different depth of cut 

with a constant cutting speed and feed (V=90 m/min, f=0.16 mm/rev), respectively.  
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Figure 7.13 Reflection coefficient curves during wet cutting of Al 6082 at different cutting speed 

with a constant cutting depth and feed (t=2 mm, f=0.16 mm/rev). 

As the cutting edge engaged the workpiece, the chips formed and moved over the tool 

oily rake face and thus the interface consists of solid and liquid contact (mixed 

interface), as discussed in Chapter 3 (Section 3.8). In a mixed contact, the surface in 

some regions is fully separated by the fluid while in some other the surfaces are 

directly in contact (solid-solid contact).  

As discussed in the previous section that low reflection coefficient means high 

pressure is applied to the rake face cutting tool, chips push the oil out from the rake 

face, (i.e. a small amount of cutting fluid penetrates to the tool-chip interface). As 

explained in Chapter 6, pressure on the rake face increases with increasing feed and 

cutting depth while it decreases with increasing cutting speed. This can be seen clearly 

from the both figures (Figure 7.12 and Figure 7.13) and (see also Figure 7.14d)), where 

at low cutting depth the pressure is low and thus the cutting liquid penetrate more to 

the interface results in a high reflection coefficient (wets well). At high cutting depth 

the cutting fluid has a less chance to penetrate to the interface due to the high pressure 

on the tool caused by the thicker chip and thus a low reflection coefficient is recorded 

(poor wetting) (see Figure 7.12). Furthermore, a cutting fluid in a higher cutting speed 

is penetrated more to the interface than in lower cutting speeds because of the pressure 

that is low in higher cutting speed, therefore, a high reflection coefficient is recorded 

(wet well). The other features are the same as in the dry condition.         
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b)  

 
c)  

 

 

Figure 7.14 Features of interest in reflection coefficient curves, at wet condition, of Figure 7.12 
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7.3.2 Fringe Effects at Tool-Chip Contact  

This section will explain the causes of the oscillation in reflection coefficient that is 

observed at the tool-chip contact, as highlighted in Figure 7.11(d) and Figure 7.14(d). 

This oscillation may be due to the chip segmentation. When the cutting edge engaged 

the workpiece, a crack initiation appears easily in front of the cutting edge. This crack 

will produce the slip of the matter where the formation of a slice (segment). This 

phenomenon will repeated again by giving a new segment where the process is cyclic 

(Childs et al. 2000). Figure 7.15 shows a schematic of the chip segmentation for an 

orthogonal cutting process. This process caused the variations in reflection coefficient 

signals. It was previously reported that the segment band increased with increasing 

feed and cutting speed (Barry & Byrne 2002; Atlati et al. 2011; Salem & Bayraktar 

2012; Ozel & Ulutan 2013; Atlati et al. 2013).  

 

Figure 7.15 Orthogonal cutting (uncut chip cross-section) 

Another possible explanation for the variations in reflection coefficient signals is that 

the chip curls increased with increasing feed; where at higher feed, the number of chip 

curls is higher than at lower feed (Dabade & Joshi 2009; Radhika et al. 2014). The 

chip long contact with the rake face has a larger radius than chips with shorter contact 

length. Therefore, due to increasing the segment band and chip curls radii with 

increasing feed, the reflection coefficient profiles are different (see Figure 7.16). For 
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instance, the reflection coefficient profile across the tool-chip interface (Figure 

7.16(d)) at feed of f=0.09 mm/rev is a slightly different from what it is at feed of f=0.16 

mm/rev and is very different from what it is at feed of f=0.23 mm/rev, despite all the 

other machining parameters, including cutting speed, spindle speed and cutting depth, 

are the same in these three experiments. The reason for these differences, in the 

reflection coefficient profiles, is because of chip segmentaion. 

 

 

 

Figure 7.16: (a), (b) and (c) SEM photographs of chip underside during dry cutting of Al 6082 at 

different feeds (0.09, 0.16 and 0.23 mm/rev), respectively and constant cutting speed and cutting 

depth, V=90 m/min, and t=2 mm, respectively; (d) Feature of interest in Reflection Coefficient 

curves of Figure 7.11 (Feature B); (e) Spectral reflection coefficient of the interest feature (d). 
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Figure 7.17 shows a chip root from Al 6082 showing the formation of the chip under 

an optical microscope. It can be seen from the figure that a hill can be distinguished at 

the root and this was repeated along the chip length and the distance between these 

hills are almost equal. The existence of these hills affects the reflected signals from 

the rake surface of the cutting tool, which lead to the fluctuation of reflection 

coefficient with time. This could be another possible explanation for the variations in 

reflection coefficient signals.  

 

Figure 7.17 Optical image of the chip roots 

It is clear from the Figure 7.16 d) that fluctuation of reflection coefficient with time at 

a feed of 0.09 mm/rev is varies less than the other two reflection coefficient curves 

(i.e. at f=0.16 and f=0.23 mm/rev). These results are likely to be related to the chip 

movement over the rake face cutting tool, where as explained earlier that at higher 

feed the chip contact the rake face longer than at lower feed because the chip has a 

larger curls radius and thus the chip does not detach the rake face early and a stable 

reflection coefficient is recorded.  

With applying cutting fluid the variations in reflection coefficient signals are different 

from the dry conditions, where fluctuation of reflection coefficient, in wet condition, 

with time is more stable. The reason for this is due to the increasing in chip curl radius 

where Childs et al. (2000) stated that the chip curled increased with using cutting fluid 

(see Figure 7.11 and Figure 7.14).     
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7.16 (e), it is apparent that the distance between any two amplitudes is around 4.77 

Hz, which is associated with the frequency of the spindle speed (i.e., number of 

revolution per minutes); the spindle speed of these experiments was constant (286 

RPM) which is equal to 4.77 Hz, so the length between any two amplitudes are 

constant and it is equal to 4.77 Hz as shown in Figure 7.16 (e). The frequency spectrum 

in Figure 7.16 (e) shows that the amplitude of the same frequency at different feed is 

different. This result may be explained by the fact that the thickness of the aluminium 

tube used in this study varies (±0.05 mm) where aluminium tube never completely 

aligned. The results of the FFT analysis proves that the difference in the profile of the 

reflection coefficient is a cutting parameter independent phenomenon. Therefore, this 

clearly suggests that different between the observed feature of the Figure 7.16 (d) can 

be said to be a chip segmentation dependant effect. 

The relation between the mean values of the ultrasonic coefficient curves versus the 

machining parameters are presented in the next paragraph. 

7.3.3 Influence of Cutting Parameters on Reflection Coefficient 

The influence of machining parameters on reflection coefficient, in dry and wet 

machining, is presented in Figure 7.18. The error bars in the figure represent the 

standard deviation; the results are also given in Appendix B (Table B.1). 

In both dry and wet cutting conditions, the results show that the reflection coefficient 

increases with increasing cutting speed and decreased with increasing feed and cutting 

depth (see Figure 7.18). Increasing cutting speed results in more of the ultrasonic 

energy/amplitude are reflected back from the rake face of the cutting tool (i.e. tool-

chip interface); while with increasing cutting depth and feed more of the ultrasonic 

energy are transmitted through the interface into the chip. From the data in Figure 

7.18, it is apparent that with applying cutting fluid more of ultrasonic energy is 

reflected back from the tool than when dry machining is performed. High reflection 

coefficient means low tool-chip contact area, low pressure/stress or both are applied 

on the rake face of the cutting tool and vice versa. The results show that the lowest 

value of reflection coefficient (R=0.6755) was obtained when machining performed in 

dry cutting at a cutting speed of (V=90 m/min), cutting depth of (t=2 mm) and higher 

feed (f=0.23 mm/rev); by keeping constant the cutting speed and cutting depth at V=90 
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m/min and t=2 mm, respectively and decreasing the feed to the lowest value (f=0.09 

mm/rev) the highest value of reflection coefficient was obtained (R= 0.8951).  

 

Figure 7.18 Comparison of the average reflection coefficient for dry and wet cutting conditions 

The results also show that the feed has the most significant effect on the reflection 

coefficient during the dry condition followed by the cutting speed which has a lower 

significance than feed while the effect of cutting depth is very small compared to the 

other machining parameters. While operating with cutting fluid, cutting speed and 

depth of cut have the most significant effect on reflection coefficient, and the influence 

of feed is very small contrary to what is in the dry cutting. To examine more about the 

influence of the machining parameters on the reflection coefficient individually, some 

data of Figure 7.18 have been re-plotted in linear graphs and are presented in the next 

paragraphs. 

The influence of cutting speed on reflection coefficient in the dry and wet conditions 

can be seen from Figure 7.19, where the reflection coefficient was increased with 

increasing cutting speed in dry cutting while the cutting depth and feed were kept 

constant at t=2 mm, f=0.16 mm/rev, respectively. These relationships may be explained 

by the effect of the tool-chip contact length, as discussed in Chapter 6, with increasing 

cutting speed the tool-chip contact length decreased and thus reducing the tool-chip 

contact area (see Figure 6.19 and Figure 6.23) that leads to reflect back more ultrasonic 

energy from the rake face cutting tool. Another possible explanation for these 

relationships is that as explained in Chapter 6, with increasing cutting speed the cutting 

forces decreased (see Figure 6.32 and Figure 6.33) and thus low pressure occurs on 
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the rake face cutting tool which leads to low ultrasonic energy transmission through 

the interface into the chip (i.e. high reflection coefficient). More detail about the 

correlation between the contact area, cutting forces and reflection coefficient are given 

in Chapter 8.  

The single most striking observation to emerge from the data comparison was, with 

applying cutting fluid, the reflection coefficient confirmed to increase with increasing 

cutting speed. This was in contrast to contact length, contact area and cutting forces 

findings (discussed in Chapter 6), there was no decrease in reflection coefficient 

recorded at cutting speeds (V<90 m/min). More detail will be given in Chapter 8.  

 

Figure 7.19 Comparison of the reflection coefficient under dry and wet machining of Al 6082-T6 

at different cutting speeds with a constant cutting depth and feed (t=2 mm, f=0.16 mm/rev).  

To investigate more about the influence of the cutting speed on the reflection 

coefficient, further experiments were carried out. The machining parameters of these 

experiments are shown in Table 7.1. Figure 7.20 shows the results of these 

experiments where it can be seen clearly that the same above results of Figure 7.19 

were obtained. These results further support the idea that with increasing cutting speed 

the tool-chip contact area decreased and pressure decreased and thus the amount of 

the ultrasonic energy which are reflected back from the rake face of the cutting tool 

increased.  
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Table 7.1 Machining parameters 

Trials No. 
Cutting parameters 

Cutting Speed (m/min) Cutting depth (mm) Feed (mm/rev) 

1 40 2.5 0.12 

2 60 2.5 0.12 

3 90 2.5 0.12 

4 120 2.5 0.12 

5 140 2.5 0.12 

 

Figure 7.20 Comparison of the reflection coefficient under dry and wet machining of Al 6082-T6 

at different cutting speeds with a constant cutting depth and feed (t=2.5 mm, f=0.12 mm/rev), 

respectively. 

The results also show that, at dry cutting conditions, the feed has the most significant 

effect on the reflection coefficient than cutting speed. Where the data reveals that there 

has been a gradual decrease in the reflection coefficient with increasing feed while the 

cutting speed and cutting depth were kept constant at V=90 m/min, t=2 mm, 

respectively. While at wet conditions, the feed does not have a significant effect. 

Figure 7.21 shows the influence of feed on the reflection coefficient. The observed 

decrease in reflection coefficient could be attributed to the increase in tool-chip contact 

area, where as discussed in Chapter 6, the tool-chip contact length increased with 

increasing feed, and thus the contact area increased (see Figure 6.20 and Figure 6.22). 

Increasing the tool-chip contact area leads to transmit more ultrasonic energy through 

the tool-chip interface and less energy are reflected back. These results confirm the 

association between the tool-chip contact area and reflection coefficient.  
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There are, however, other possible explanations for the relation between feed and 

reflection coefficient, as discussed in Chapter 6, the two orthogonal components of the 

cutting forces increased with increasing feed (see Figure 6.36 and Figure 6.37). This 

mean that with increasing feed high pressure are applied on the rake face cutting tool 

which results in reflecting less ultrasonic energy from the tool-chip interface and 

transmitting more energy through the interface.  

 

Figure 7.21 Comparison of the reflection coefficient under dry and wet machining of Al 6082-T6 

at different feed with a constant cutting speed and cutting depth (V=90 m/min, t=2 mm).      

The effect of cutting depth on the reflection coefficient in the absence of cutting fluid 

was very small where it is almost negligible, while with existing cutting fluid the data 

reveals that the reduction in reflection coefficient with increasing cutting depth is 

much bigger than in dry cutting (see Figure 7.22). These results confirm the 

association between the cutting depth and tool-chip contact length; where the effect of 

the cutting depth on the tool-chip contact length was very small (See  Figure 6.21 in 

Chapter 6). The influence of changes in machining parameters on the reflection 

coefficient will be presented in detail in Section 7.3.5.   
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Figure 7.22 Comparison of the reflection coefficient under dry and wet machining of Al 6082-T6 

at different cutting depth with a constant cutting speed and feed (V=90 m/min, f=0.16 mm/rev). 

7.3.4 Analysis of Variance (ANOVA) 

As presented in Chapter 5, the ANOVA was conducted on the ultrasonic data to 

identify the main significant parameters on the reflection coefficient during machining 

aluminium Al 6082, and also to develop the empirical relationships by using the 

regression analysis. The same procedures have been taken as described in Chapter 6, 

where the analysis was conducted by using the P-value; if the P-values are less than 

0.05 then the obtained models are considered as a statistically significant. The highest 

influence for the corresponding output parameters has the lowest the P-value. 

Furthermore, variations of the reflection coefficient with the machining parameters 

including cutting speed, depth of cut and feed are studied in dry and wet conditions 

separately. Only the significant parameters are presented here while the complete 

ANOVA results are presented in Appendix B.        
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indicates the goodness of data fit for the model, and the values of adjusted 

determination coefficient (adj. 𝑅2) and predicted determination coefficient (pred. 𝑅2) 

are also shown in Table 7.2. The (adj.𝑅2) denotes a high significant of the model and 

the (pred. 𝑅2) indicates the agreement with the (adj.𝑅2). This model can be employed 

to navigate the design space. 

Table 7.2 ANOVA output of the reflection coefficient in dry conditions (Significant) 

Source DF Adj SS Adj MS F-Value P-Value 

Model 4 0.073035 0.018259 135.88 0.000 

  Linear 3 0.069698 0.023233 172.89 0.000 

    Speed 1 0.006876 0.006876 51.17 0.000 

    Depth 1 0.001216 0.001216 9.05 0.009 

    Feed 1 0.061606 0.061606 458.46 0.000 

  Square 1 0.003337 0.003337 24.83 0.000 

    Feed*Feed 1 0.003337 0.003337 24.83 0.000 

Error 15 0.002016 0.000134   

  Lack-of-Fit 10 0.001826 0.000183 4.80 0.049 

  Pure Error 5 0.000190 0.000038   

Total 19 0.075051    

R-Squared  0.9731     

R-Squared (adj) 0.9660     

R-Squared (pred) 0.9445     

DF: Degree of freedom Adj SS: Adjusted sum of square Adj MS: Adjusted mean square 

Final equation in terms of significant factors for the reflection coefficient model in dry 

turning is given by Equation 7.2. These models take only the influential factors into 

account: It is worth to note that the regression equation is in uncoded values (see Table 

5.5). 

 𝑅𝐷𝑟𝑦 = 1.2304 + 748 ∗ 10−6𝐴 − 1887 ∗ 10−5𝐵 − 4.695𝐶 + 9.43𝐶2 7.2 

where R: Reflection coefficient, A: cutting speed, B: cutting depth and C: feed. 

7.3.4.2 Wet Cutting Conditions  

The results of the ANOVA of reflection coefficient during wet turning are presented 

in Table 7.3. This table only shows the significant effect of the machining parameters 

on the reflection coefficient. It can be seen from Table 7.3 that the linear model of the 

machining parameters cutting speed (A) and cutting depth (B) have a significant 

influence on the reflection coefficient during wet cutting while feed (C) has a less 

effect on reflection coefficient compared to the other two machining parameters. 

Furthermore, the ANOVA analysis also showed that the quadratic values of cutting 

speed (Speed*Speed) and cutting depth (Depth*Depth) have a significant effect on the 
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reflection coefficient. Table 7.3 also shows the value of the determination coefficient 

(𝑅2) which indicates the goodness of data fit for the model, and the values of adjusted 

determination coefficient (adj. 𝑅2) and predicted determination coefficient (pred. 𝑅2) 

are also shown in Table 7.3. It is noticed to mention that the stepwise procedure added 

the interaction between cutting speed and feed during the procedure in order to 

maintain a hierarchical model at each step. 

Table 7.3 ANOVA output of the reflection coefficient in wet conditions (Significant) 

Source DF Adj SS Adj MS F-Value P-Value 

Model 6 0.026514 0.004419 33.08 0.000 

Linear 3 0.015824 0.005275 39.49 0.000 

    Speed 1 0.010717 0.010717 80.23 0.000 

    Depth 1 0.003711 0.003711 27.78 0.000 

    Feed 1 0.001396 0.001396 10.45 0.007 

Square 2 0.010360 0.005180 38.78 0.000 

    Speed*Speed 1 0.004810 0.004810 36.01 0.000 

    Depth*Depth 1 0.006473 0.006473 48.46 0.000 

2-Way Interaction 1 0.000329 0.000329 2.47 0.140 

    Speed*Feed 1 0.000329 0.000329 2.47 0.140 

Error 13 0.001736 0.000134   

  Lack-of-Fit 8 0.001681 0.000210 18.93 0.002 

  Pure Error 5 0.000056 0.000011   

Total 19 0.028250    

R-Squared  93.85%     

R-Squared (adj) 91.02%           

R-Squared (pred) 73.73%     

DF: Degree of freedom Adj SS: Adjusted sum of square Adj MS: Adjusted mean square 

Final equation in terms of significant factors for the reflection coefficient model in wet 

turning is given by Equation 7.3. The equation is in uncoded values (see Table 5.5). 

 
𝑅𝑊𝑒𝑡 = 0.3686 + 0.005425𝐴 + 0.3045𝐵 + 0.228𝐶 − 2 × 10−5𝐴2

− 0.0844𝐵2 − 0.00535𝐴𝐶 

7.3 

where R: Reflection coefficient, A: Cutting speed, B: Cutting depth and C: Feed. 

7.3.4.3 Comparison between the Experimental and Model Results of the 

Reflection Coefficient 

In this section, a comparison has been introduced between the experimental (actual) 

results shown in Figure 7.18, and the results obtained from the derived Equations (7.2 

and 7.3) (predicted results). Where the equations have been used to predict the 

reflection coefficient and how it is affected by the machining parameters within the 
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range given in the experimental design. The comparisons between these two values, 

actual and predicted values, at dry and wet cutting conditions are shown in Figure 7.23 

and Figure 7.24, respectively. Very good agreement between the predicted and actual 

reflection coefficient is shown.   

 

Figure 7.23 Experimental versus predicted values for reflection coefficient in dry condition, 

solid line indicates exact agreement 

 

Figure 7.24 Experimental versus predicted values for reflection coefficient in wet condition, 

solid line indicates exact agreement 

A comparison of the experimental results of reflection coefficient, during dry and wet 

machining of Al 6082-T6 at different cutting speeds with a constant cutting depth and 
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using Equations 7.2 and 7.3 are shown by scatter plots with smooth lines in Figure 

7.25 and Figure 7.26. It can be seen clearly from the figures that the predicted 

reflection coefficient magnitudes are agreed well with the corresponding experimental 

results.  

 

Figure 7.25 Comparison of experimental and predicted reflection coefficient during dry cutting 

of Al 6082-T6 at different cutting speeds with a constant cutting depth and feed (t=2.5 mm, 

f=0.12 mm/rev). 

 

Figure 7.26 Comparison of experimental and predicted reflection coefficient during wet cutting 

of Al 6082-T6 at different cutting speeds with a constant cutting depth and feed (t=2.5 mm, 

f=0.12 mm/rev).  
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7.3.4.4 Model Validation Experiments  

Further to the experimental runs mentioned in Chapter 5 (Table 5.5) and results 

presented in a graphical manner in Figure 7.18, another set of orthogonal experiments 

(validation trials), as described in Chapter 6, have been carried out to validate and 

confirm the mathematical model, derived equations (7.2 and 7.3). The machining 

parameters for the validation trials and the results of these experiments are graphically 

presented in Figure 7.27. The results are also given in Appendix B (Table B.4).  

Figure 7.27 shows the comparison between the predicted values from the model 

developed in the present study (Equations 7.2 and 7.3), with the values obtained 

experimentally. It can be seen from the results that analytical predicted reflection 

coefficient values agree well with the corresponding experimental results. 

 

Figure 7.27 Comparison of the validation experiments and predicted results of reflection 

coefficient for dry and wet cutting conditions 

The next section presents the influence of the machining parameters on the reflection 

coefficient, where from now on, all the results presented are obtained based on the model 

developed in the present work (Equations 7.27.3). 
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has been chosen for each machining parameter and the other figures are introduced in 

Appendix B.  

7.3.5.1 Cutting Speed and Feed Versus Reflection Coefficient 

Figure 7.28 shows the ultrasonic reflection results of the tool-chip interface during dry 

cutting of Al 6082. The figure shows the change in reflection coefficient with the 

change in cutting speed and feed used when the cutting depth is 2 mm. For the other 

cutting depth values see Appendix B (Figure B.1-Figure B.9). The most surprising 

correlation is with the tool-chip contact length; where according to the results the 

transmission of ultrasonic waves and reflection coefficient are directly related to the 

tool-chip contact length and thus the tool-chip contact area. It seems possible that these 

results are due to the increased contact length, there is a higher tendency of 

transmission of ultrasonic waves via the tool-chip interface. This results in a lower 

reflection coefficient.  

On the other hand, the change in speed has an obvious influence on the reflection 

coefficient. As the speed increases the reflection coefficient increases. The observed 

increase in reflection coefficient could be attributed to the decrease of the tool-chip 

contact length with increasing cutting speed. At low speeds, the tool-chip contact area 

is much bigger than at higher speeds. Therefore, a bigger contact area results in higher 

reflection coefficient and a reduction in the transmission of ultrasonic waves as shown 

in Figure 7.28. The correlation between feed and reflection coefficient is interesting 

because at low feeds (0.09-0.12 mm/rev) the change in reflection coefficient is higher 

than the change at high feeds (0.2-0.23 mm/rev) and this is exactly what has been 

observed in the tool-chip contact length results in Chapter 6. 

Figure 7.29 shows the ultrasonic reflection results of the tool-chip interface during wet 

cutting conditions of Al 6082. The figure shows the change in reflection coefficient 

with the change in cutting speed and feed used when the cutting depth is 2 mm. The 

data reveals that the reflection coefficient increases with increasing cutting speed. This 

results confirm the penetration of the cutting fluid into the interface at higher cutting 

speed, where the pressure on the rake face decreases with increasing cutting speed and 

thus a high reflection coefficient was recorded (wet well) 
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Figure 7.28 Reflection coefficients versus cutting speed at dry condition for different feed at a 

constant cutting depth of (t=2 mm) 

 

Figure 7.29 Reflection coefficients versus cutting speed at wet condition for different feed at a 

constant cutting depth of (t=2 mm) 

7.3.5.2 Cutting Speed and Cutting Depth Versus Reflection Coefficient 

Figure 7.30 shows the change in reflection coefficient with the change in cutting speed 

and cutting depth used at a constant feed of 0.16 mm/rev. For the other feed values see 

Appendix B (Figure B.10-Figure B.18). It can be seen from Figure 7.30, that the 

minimum value of reflection coefficient is 0.696 when the cutting depth is the 

maximum (t=2.8 mm) and the cutting speed is the minimum (V=40 m/min). With a 

high cutting depth, a low reflection coefficient is recorded. For example, at a speed of 

40 m/min, the reflection coefficient changes from 0.728 at a cutting depth of 1.2 mm 

to 0.696 at a cutting depth of 2.8 mm. This result may be explained by the fact that 
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increasing cutting depth results in increasing the tool-chip contact area and more 

transmission of waves through the interface, therefore, lower reflection coefficient is 

recorded.   

The change in cutting depth does not have a significant effect on the reflection coefficient 

under the conditions used in this study. However, there is a slight change in reflection 

coefficient on the basis of change in the cutting depth. These results are consistent with 

data obtained in Chapter 6, where the cutting depth does not have a significant effect on 

the tool-chip contact length.  

 
Figure 7.30 Reflection coefficients versus cutting speed at dry condition for different cutting 

depth at a constant feed of (f=0.16 mm/rev) 

Figure 7.31 shows the ultrasonic reflection results during wet cutting. The figure 

shows the change in reflection coefficient with the change in cutting speed and depth 

with a constant feed.  

 
Figure 7.31 Reflection coefficients versus cutting speed at wet condition for different cutting 

depth at a constant feed of (f=0.16 mm/rev) 
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7.3.5.3 Cutting Depth and Feed Versus Reflection Coefficient 

Figure 7.32 shows the effects of changes in feed and cutting depth on the reflection 

coefficient, in dry cutting conditions, at a constant cutting speed of 90 m/min. For the 

other feed values of cutting speeds see Appendix B (Figure B.19-Figure B.27). It is 

apparent from this figure that the minimum value of reflection coefficient is 0.676 

when the cutting depth is the maximum (t=2.8 mm) and the feed is the maximum 

(f=0.23 mm/rev). While the maximum value of reflection coefficient is 0.922, this 

value was observed when was both the cutting depth and feed are minimum (t=1.2 

mm, f=0.09 mm/rev). The results, as shown in Figure 7.32, indicate that the change in 

feed significantly influences the reflection coefficient. As the feed increases the reflection 

coefficient decreases and ranges from 0.922 at a feed of 0.09 mm/rev to 0.708 at the feed 

of 0.23 mm/rev at a cutting depth of 1.2 mm.  

These results also show that the change in cutting depth has little effect on the reflection 

coefficient under the set of conditions used in this study. 

 

Figure 7.32 Reflection coefficients versus feed at dry condition for different cutting depth at a 

constant cutting speed of (V=90 m/min) 

Figure 7.33 presents the correlation between reflection coefficient and feed in wet 

cutting conditions. It can be seen from the figure that the reflection coefficient 

decreases with increasing feed at a constant cutting speed.     
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Figure 7.33 Reflection coefficients versus feed at wet condition for different cutting depth at a 

constant cutting speed of (V=90 m/min) 

7.4 Conclusions 
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indicate that cutting speed and cutting depth have the most significant effect 

and feed has a lower effect.   

 Reflection coefficient increases with increasing cutting speed and decreases 

with increasing cutting depth and feed. This results may be explained by the 

fact that tool-chip contact area is decreased with increasing cutting speed and 

increased with increasing cutting depth and feed. If the contact area is smaller, 

then more of ultrasonic energy is reflected back from the rake face (high 

reflection coefficient) and vice versa. Another possible explanation for the 

increase in reflection coefficient with increasing in cutting speed is due to the 

chip pressure that applied to the rake face cutting tool, where increasing cutting 

speed leads to decreasing the pressure/force which results in reflecting back 

more ultrasonic energy from the rake face. The same reason is true for the 

reduction in reflection coefficient with increasing cutting depth and feed, 

where increasing cutting depth and feed lead to increasing the pressure which 

results in transmitting more ultrasonic energy to the chip through the interface 

and thus low reflection coefficient.    

 The reflection coefficient values are higher when coolant is applied than when 

dry condition is performed. These results are likely to be related to the pressure 

on the rake face cutting tool. The pressure is lower in wet cutting than in dry 

cutting. In wet condition, a low pressure is applied on the rake face which 

results in transmitting a low energy to the chip through the tool-chip interface 

and more energy is reflecting back from the cutting tool thus a high reflection 

coefficient is recorded.      
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8  
Analysis and Discussion of 

Experimental Results  

 

 

 

 

 

The aim of this chapter is to examine the results that were presented in Chapter 6 and 

7 and discuss the relationships that exist between the reflection coefficient and the 

machining process. The chapter will focus on key correlations that were observed and 

physical mechanisms that have been deduced.   
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8.1 Reflection Coefficient Variation with Contact Area 

High tool-chip contact area, or high pressure applied by the chip on the rake face 

cutting tool result in low reflection coefficient. This section presents the relationship 

between reflection coefficient and contact area while the next section will introduce 

the relationship between reflection coefficient and cutting forces.  

Figure 8.1 presents the correlation between reflection coefficient and tool-chip contact 

area in both dry and wet cutting conditions. In dry cutting conditions, there is a clear 

trend of decreasing reflection coefficient with increasing tool-chip contact area as 

shown in Figure 8.1. These relationships may be explained by the decrease in the 

ultrasonic energy which is reflected back from the rake face cutting tool as a result of 

the increase in contact area, where more of ultrasonic energy was transmitted through 

the tool-chip interface.  

 

Figure 8.1 Correlation between the reflection coefficient vs contact area at dry and wet cutting 

In wet cutting conditions, surprisingly, no decrease in reflection coefficient was 

detected with increasing in the contact area. Reflection coefficient seems to be not 

affected by the contact area. One explanation for this might be that cutting fluid caused 

the chip to lift from the rake face, where the cutting fluid nozzle was directed on the 

interface between the cutting tool and chip not on the top face of the chip, then only 

one part of the tool-chip contact length was in contact to the rake face and thus less 

energy was transmitted to the chip.  
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Another possible explanation for reflection coefficient not affected by contact area in 

wet conditions is that the cutting fluid may fill the gap outside the cutting tool and chip 

interface when the contact area is smaller so reflection coefficient does not change 

much (see Figure 8.2).     

 

Figure 8.2 Schematic diagram of the reflection signals of the different possible contact area at 

wet cutting conditions (I: incident wave, T: transmitted wave and R: reflected wave). 

Another possible explanation for the wet results is the existence of BUE on the cutting 

edge, as highlighted in Chapter 6, in wet cutting the results reveal that the BUE 

existence under all the cutting speeds applied in this study except at a cutting speed of 

140 m/min. Where chip was supported by the BUE, it creates a gap between the tool 

and chip which caused a high reflection coefficient.  

Figure 8.3 shows a schematic diagram which illustrates the reflection signals at the 

BUE during wet conditions. Furthermore, the BUE caused the creation of another 

interface which is between the BUE and chip. Therefore, some of the ultrasonic energy 

was reflected from the tool-BUE interface and some was reflected from the BUE-chip 

interface as shown in Figure 8.4.    
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Figure 8.3 Schematic diagram showing the reflection signals with existence a built up edge 

 

Figure 8.4 Schematic diagram of the reflection signals with and without built up edge (I: 

incident wave, T: transmitted wave and R: reflected wave)   
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conditions, there is a clear trend of decreasing reflection coefficient with increasing 

cutting forces as shown in Figure 8.5 and Figure 8.6.  

The correlation between reflection coefficient and cutting forces are interesting 

because as the cutting forces increase more pressure is applied on the rake face which 

results in more ultrasonic energy is transmitted through the interface and low reflection 

coefficient was recorded and vice versa (i.e. higher reflection coefficient means lower 

pressure applied on the face) (see Figure 8.7 and Figure 8.8). 

 

Figure 8.5 Correlation between the reflection coefficient vs thrust force at dry and wet cutting 

 

Figure 8.6 Correlation between the reflection coefficient vs cutting force at dry and wet cutting 
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Figure 8.7 Schematic diagram of the reflection signals of the different possible contact 

conditions at the tool-chip interface at dry cutting conditions (I: incident wave, T: transmitted 

wave and R: reflected wave).  

 

Figure 8.8 Schematic diagram of the reflection signals of the different possible contact 

conditions at the tool-chip interface at wet cutting conditions (I: incident wave, T: transmitted 

wave and R: reflected wave). 
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From the data in Figure 8.5 and Figure 8.6, it can be seen clearly that there was a 

significant difference between the two conditions with respect to the reflection 

coefficients. Where with applying cutting fluid, the reflection coefficients were higher 

than when the dry cutting was conducted. As highlighted before, there are several 

possible explanations for this result. Obviously, a first possibility is that there could 

be due to the existence of a film layer of cutting fluid that penetrated to the tool-chip 

interface. In this case, the tool-chip contact was separated by a thin film of cutting 

fluid, therefore, the incident ultrasonic waves were reflected back from the tool-oil-

chip interface and thus a higher reflection coefficients were recorded. 

Another possible explanation for the significant difference in reflection coefficients 

between both dry and wet cutting conditions is due to the type of chip. Where with 

applying cutting fluid the chips were discontinuous and thus detaching the tool rake 

face earlier and high reflection coefficients were observed while in dry condition the 

chips were continuous and therefore stayed more on the tool rake face and thus low 

reflection coefficients were recorded (see Figure 8.9). Existence of the BUE and the 

mechanism of cutting fluid are the other reasons for this significant difference (see 

Figure 8.2 and Figure 8.4).  

 

Figure 8.9 Schematic diagram of the reflection signals in different chip types  
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8.3 Reflection Coefficient Variation with Specific Cutting Forces 

The specific cutting forces, which represent the energy required to remove a unit area 

of workpiece material, is calculated by dividing the cutting forces by the undeformed 

chip cross-section area (i.e. feed times cutting depth).  

Figure 8.10 and Figure 8.11 show the correlation between reflection coefficient and 

specific thrust force Kt and specific cutting force Kc, respectively, in both dry and wet 

cutting conditions. The most striking result to emerge from the data is the correlation 

between reflection coefficient and specific cutting forces, where in the both cutting 

conditions, there is a clear trend of increasing reflection coefficient with increasing 

specific cutting forces as shown in Figure 8.10 and Figure 8.11. The data also showed 

that the specific cutting forces were higher in wet cutting conditions. This correlation 

is interesting because an increase in the specific cutting forces is usually related to the 

occurrence of a built-up edge (BUE). As highlighted before, using cutting fluid tends 

to cool the machined material and thus promote BUE compared to dry cutting (see 

Figure 8.3 and Figure 8.4). That’s why reflection was higher in wet cutting whatever 

the conditions. And then, when Kc increases, this phenomenon is amplified and 

reflection increases even more.  

 

Figure 8.10 Correlation between the reflection coefficient vs specific thrust force at dry and wet 

cutting conditions  
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Figure 8.11 Correlation between the reflection coefficient vs specific cutting force at dry and 

wet cutting conditions 
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reflection coefficient decreases with increasing cutting forces in both cutting 

conditions. The increase in cutting forces led to an increase in the asperity 

contact between the tool and chip and reduction the air gaps between them and 

this result in reflecting less ultrasonic energy through the interface.       

 Measured specific forces reveal that at wet conditions, specific cutting force is 

higher than in dry conditions due to existence BUE. Where at dry cutting, 

specific cutting forces was lower due to thermal softening and material flow 

softening behavior at higher strain rates. This factor may partially explain the 

apparent differences between the reflection coefficients in dry and wet cutting 

conditions.   
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9  
Conclusions and 

Recommendations  

 

 

 

 

 

 

This chapter is divided into two parts; the first part highlights the conclusions drawn 

from the present study on the cutting forces and chip morphology and the use of a 

novel ultrasonic technique for monitoring the cutting conditions. The last part of this 

chapter presents some suggestion for the improvements to the method and possible 

future work.  
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9.1 Conclusions 

The following conclusions can be drawn from the present study 

9.1.1 Chip Morphology 

An experimental campaign of orthogonal cutting in turning on aluminium 6082 

cylindrical tubes was designed and conducted by considering different machining 

parameters in order to monitor the tool-chip interface in both dry and wet cutting 

conditions. A centre composite design (CCD) technique was used to conduct these 

experiments. For every cutting trial, chips were collected in order to measure the chip 

cross-section and investigate its morphology. A ball micrometre gauge was used to 

measure the chip thickness while the width was measured using a Vernier calliper. 

Both chip thickness and width were measure at six different locations along the chip 

length and an average was recorded. An SEM was used to examine the existence of 

BUE on the chip.   

The main results of the investigations as follows:           

9.1.1.1 Chip Thickness 

 For dry cutting conditions, chip thickness reduces with cutting speed and 

cutting depth; this is a temperature effect. With increasing cutting speed, the 

temperature at the tool-chip interface increases and leads to softening of the 

workpiece and hence a reduction in tool-chip interface friction. Both these two 

factors increase the shear angle and thus decrease the chip thickness.      

 Chip thickness increases with increasing feed at dry condition. The results of 

this study show that feed has the most significant affect on chip thickness 

followed by cutting speed whereas cutting depth has the lowest effect.   

 The experimental results show that whether or not coolant application 

decreases, chip thickness depends on whether the cutting was at low or high 

cutting speed. At low speed (V<90 m/min), coolant application results in an 

increase in the chip thickness, whereas at high cutting speed (V>90 m/min) 

coolant application has a negligible effect on chip thickness.    

 At low cutting speed (V<90 m/min), the chip thickness is affected by cutting 

fluid where it was thinner than in dry condtions. While at cutting speed higher 
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than 90 m/min, there was no significant effect of cutting fluid on the chip 

thickness.      

 Chip width is larger than the machined ring thickness due to the significant 

side flow or strain in the direction of the width.   

9.1.1.2 Contact Length 

 The study has confirmed the findings of Kato et al. (1972) and Toropov & Ko 

(2003) model which found that the tool-chip contact length is twice the 

deformed chip thickness.  

 This study has found that the tool-chip contact length reduces as cutting speed 

and cutting depth increase. These relationships may be explained by the effect 

of temperature, with increasing cutting speed the temperatrure increased and 

this caused softening the workpiece material and hence the friction between 

tool and chip decreases. These result in increasing the chip velocity and thus 

reducing the contact length.     

 The result also found that the contact length increases with increasing feed. 

These results are likely to be related to the size of the primary shear zone. 

Where the thickness of the primary shear zone increases with increasing feed 

and the strain rate at the zone decreases.  

9.1.1.3 Built-Up Edge (BUE) 

 The present study provides additional evidence with respect to the heat flux to 

the cutting tool where with increasing cutting speed the cutting tool shares heat 

decreasingly.      

 The present work confirms previous findings and contributes additional 

evidence that suggests the capability of confirming the existence of the BUE 

on the underside of the chip.  

 During the cutting of aluminium 6082, BUE occurs with or without cutting 

fluid. However, the application of cutting fluid increases the threshold at which 

BUE occurs. 

 The empirical findings in this study show that the BUE decreases with 

increasing the cutting speed. This is due to the chip flow rate which is increased 

with increasing cutting speed and thereby reducing the likelihood of the 
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breakaway material to adhere to the chip. Another possible explanation for this 

result is due to the increase in temperature which results in weakening of the 

BUE structure and eventually breakdown.      

9.1.2 Cutting Forces 

A dynamometer was used in this study to measure the cutting force Fc and thrust force 

Ft and below are the main results of the investigation:   

 Under dry cutting, thrust force (Ft) and cutting force (Fc) are seen to decrease 

with increasing cutting speed at a constant cutting depth and feed. This is due 

to softening of work material resulting from an increase in temperature at the 

tool-chip interface when the cutting speed is increased. Where the increase in 

temperature leads to decreasing the shear strength of the workpiece and 

reducing the cutting forces. 

 At cutting speeds <90 m/min, Ft and Fc are smaller when coolant is applied 

than under dry conditions. This is because at low cutting speeds, when the tool 

temperature is not too high, the coolant act as a lubricant and reduces the 

friction at the contact areas between the tool and workpiece.   

 At cutting speeds >90 m/min, the results show that the role of cutting fluid is 

considered negligible. Where the cutting fluid has a less time to penetrate the 

asperities contact between the tool-chip; therefore, the cutting fluid will be less 

effective. 

 The feed force is more affected by the coolant than the cutting force. This is 

due to the decrease in friction between the tool and chip.    

 As cutting speed increases, a large amount of the heat generated during the 

cutting process is carried away by the chip and a small amount goes into the 

tool and workpiece. Because the temperature measured in this study is that of 

the tool, where the temperature decreased with increasing cutting speed but the 

temperature of the interface is still too high and this the reason of the high 

cutting forces at higher cutting speed. 

 In wet conditions, cut chip thickness is much smaller, in the same cases where 

a force difference was seen. 
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9.1.3 The Use of Ultrasound for Tool-Chip Interface Monitoring  

This is the first study reporting a possibility of using the ultrasonic reflection for 

monitoring the tool-chip interface in orthogonal cutting. A 10 MHz piezoelectric 

transducer was coupled to the underside of a cutting tool insert so that ultrasonic pulses 

passed through the insert and reflected from the tool-chip interface and received by 

the same transducer. Initially (before machining), a signal is reflected from the tool-

air contact when there is no chip. This reflected pulse is used as a reference signal. 

This reference signal was compared to the ultrasonic signal that reflected from the 

tool-chip interface, during machining process, to measure reflection coefficient. To 

overcome the problem that the piezo-electric element was temperature sensitive, a 

thermocouple was positioned close to the ultrasonic transducer. A LabVIEW program 

was used for processing the temperature compensation.  

A set of orthogonal cutting experiments was conducted in order to investigate the 

effect of the machining parameters on the tool-chip interface, in both dry and wet 

cutting conditions, using the ultrasonic reflection. A centre composite design (CCD) 

technique was used in this study to carry out these experiments. It was therefore 

possible to obtain ultrasonic measurement across a range of cutting parameters during 

such instances.  

The main results of the investigations as follows:  

 Observations have been made on the ultrasonic measurements taken during 

orthogonal cutting of Al 6082-T6 under different cutting parameters. Different 

features were highlighted that related to the tribological condition at the tool-

chip interface.    

 This study has shown the capability of ultrasonic reflectometry in the 

investigation and monitoring the tool-chip interface in the metal cutting 

process.  

 One interesting finding in this work is the change in the shape of the ultrasonic 

data stream is related to the irregular movement of the chip on the rake face of 

the cutting tool. Where the direction of chip flow is changed in second parts, 

usually advantageously with the spiral pitch being increased, depends upon the 

cutting condition. Due to the spiral movement of the chip, the flow of the chip 
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will be unstable on the rake surface. Sometimes the chip is close to the rake 

surface i.e. contact area is high and low reflection coefficient was recorded or 

it can be far from the rake surface and hence contact area is reduced and thus 

high reflection coefficient was recorded.   

 The lowest reflection coefficient value was recorded at higher feed (f=0.23 

mm/rev) in dry cutting condition. Where at higher feed the contact area is 

higher and hence more ultrasonic energy is transmitted to the chip and thus 

low reflection coefficient was recorded.     

 The results of this study indicate that feed has the most significant affect on 

reflection coefficient followed by cutting speed whereas cutting depth has the 

lowest effect. It is likely that this is attributed to tool-chip contact length which 

was significantly affected by feed while the effect of cutting depth on the 

contact length was very small.  

 As the cutting speed increased, more ultrasonic energy was found to reflect 

from the rake face of the cutting tool. This is due to the decrease in the tool-

chip contact area and thus high reflection coefficients were recorded.   

 The ultrasonic energy that transmitted through the tool-chip interface was 

found to increase with increasing feed and cutting depth. This could be 

attributed to the increase in contact area thus less ultrasonic energy was 

reflected from the rake face and a low reflection coefficient was recorded. 

 This study has also shown that with increasing cutting forces more ultrasonic 

energy was trasmmitted into the chip through the interface and thus a low 

reflection coefficient was observed. This result may be explained by the fact 

that with increasing cutting forces, more pressure is applied on the rake face 

that leads to reduce the air gaps between the chip and cutting tool and thus 

more ultrasonic energy is transmitted through the interface and low reflection 

coefficient is recorded and vice versa.   

 The reflection coefficient values are higher when the cutting fluid was applied 

than when the dry condition was performed. It seems possible that these results 

are due to the penetration of the cutting fluid to the tool-chip interface. Another 

possible explanation for this is that the chip detaches the rake face earlier than in 

dry condition. Where with applying cutting fluid the chip was discontinuous and 

thus detaching the tool rake face earlier while in dry condition the chip was 
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continuous (i.e. the chip stayed more on the tool rake face) and low reflection 

coefficient was recorded.    

9.2 Recommendations for Future Work  

In this thesis, a novel technique based on the reflection of ultrasound was developed 

for monitoring the cutting tool-chip interface in both dry and wet cutting conditions. 

The technique shows significant promise as an effective tool to monitor the interface, 

non-invasively, in machining process. Possible future work outlined in this section 

could help to improve and build confidence on the current capability of the system. 

9.2.1 Reflection Coefficient Fluctuation with Time 

As highlighted before, the oscillation in reflection coefficient that is observed at the 

tool-chip interface is due to the chip segmentation (see Figure 7.15 and Figure 7.17). 

It would be worthwhile to investigate the movement of the chip on the rake face cutting 

tool and the chip segmentation by using a high-speed camera and trying to correlate it 

to the reflection coefficient. More information on the chip segmentation and chip 

movement would help establish a greater degree of accuracy on this matter.  

9.2.2 Wet Cutting Conditions 

Using the test rig developed in this study, further experimental investigations are 

needed to investigate the role and the effect of cutting fluid on reflection coefficient. 

To gain further understanding, it would be interesting to assess the effects of using 

different oil, as a cutting fluid, on the ultrasonic reflection waves. Moreover, future 

trials should assess the impact of using different method for lubrication namely 

minimum quantity lubrication (MQL) on the reflection coefficient. 

9.2.3 Industrial Relevance of Findings 

The findings of this study have a number of important implications for future practice 

in industries. The benefit of this technique is that it provides in-process evidence about 

what is happening at the tool-chip interface during machining. Therefore, it could be 

a new way for monitoring the cutting process including tool wear, contact length and 

vibration. The finding of this research could also be used for simulation software to 

predict other parameters. Another important practical implication is that could be used 
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instead of dynamometer to measure cutting force, where it is much cheaper than a 

dynamometer. This is could be especially useful for large scale production as a 

monitor of machining process.  

In this study, the ultrasonic sensor was placed underneath the cutting tool insert, so it 

was not possible to change the cutting tool insert in each experiment; therefore, in 

order to improve the capability of the technique used in this study and to make it 

industrial scale and more generic, further investigations are needed to change the 

location of the sensor and trying to embed the sensor to the machine tool so it will be 

more generic. 

Last but not least, extending the ultrasonic reflection technique to the configuration of 

metal cutting, oblique cutting, and other form of machining process such as drilling 

and milling would be very interesting. 
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A.1 Temperature Measurements  

Table A.1 shows the machining parameters and the results of the temperature at dry 

and wet machining conditions.  

Table A.1 Cutting parameters and temperature results 

 Cutting parameters Dry Wet 

Run 

Order 

Cutting 

Speed 

(m/min) 

Depth of 

Cut (mm) 

Feed 

(mm/rev) 

Temperature 

(°C) 

Temperature 

(°C) 

1 90 2 0.16 118.48 56.78 

2 90 2 0.16 122.60 49.90 

3 90 2 0.16 118.64 56.07 

4 40 2 0.16 98.17 34.29 

5 60 2.5 0.12 105.11 43.63 

6 60 2.5 0.2 130.25 56.92 

7 120 1.5 0.12 107.43 51.22 

8 140 2 0.16 128.77 40.53 

9 90 1.2 0.16 111.26 48.49 

10 120 1.5 0.2 132.37 48.67 

11 90 2.8 0.16 141.55 47.60 

12 120 2.5 0.2 150.01 59.90 

13 60 1.5 0.2 109.00 33.98 

14 90 2 0.16 119.52 51.40 

15 90 2 0.16 122.60 50.32 

16 90 2 0.23 147.95 54.71 

17 90 2 0.16 119.59 48.53 

18 60 1.5 0.12 90.21 31.87 

19 120 2.5 0.12 129.93 52.87 

20 90 2 0.09 96.54 46.14 

 

A.2  Chip Morphology Analysis 

A.2.1 Chip Thickness, Shear Angle and Chip Velocity  

Table A.2 shows the experimental results of the chip thickness, shear angle and chip 

velocity at dry and wet cutting conditions. 
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Table A.2 Machining parameters and some of the chip morphology results 

 Cutting parameters Dry Wet 

Run 

Order 

V 

(m/min) 

t 

(mm) 

f 

(mm/rev) 

h 

(mm) 

(φ) Chip 

Velocity 

(m/min) 

h 

(mm) 

 (φ) Chip 

Velocity 

(m/min) 

1 90 2 0.16 0.704 12.81 20.47 0.735 12.29 19.60 

2 90 2 0.16 0.726 12.43 19.83 0.735 12.29 19.60 

3 90 2 0.16 0.720 12.53 20.00 0.733 12.31 19.65 

4 40 2 0.16 0.876 10.35 7.31 0.393 22.14 16.28 

5 60 2.5 0.12 0.584 11.62 12.34 0.451 14.91 15.98 

6 60 2.5 0.2 0.829 13.57 14.48 0.803 13.99 14.95 

7 120 1.5 0.12 0.556 12.18 25.90 0.554 12.23 26.02 

8 140 2 0.16 0.618 14.51 36.23 0.636 14.12 35.23 

9 90 1.2 0.16 0.736 12.27 19.57 0.759 11.91 18.98 

10 120 1.5 0.2 0.780 14.38 30.77 0.803 13.99 29.90 

11 90 2.8 0.16 0.623 14.40 23.11 0.614 14.60 23.45 

12 120 2.5 0.2 0.728 15.36 32.97 0.682 16.34 35.18 

13 60 1.5 0.2 0.934 12.09 12.85 0.565 19.49 21.24 

14 90 2 0.16 0.694 12.99 20.76 0.680 13.24 21.18 

15 90 2 0.16 0.723 12.49 19.93 0.726 12.44 19.85 

16 90 2 0.23 0.896 14.40 23.11 0.923 14.00 22.43 

17 90 2 0.16 0.738 12.24 19.52 0.735 12.29 19.61 

18 60 1.5 0.12 0.644 10.55 11.18 0.268 24.15 26.90 

19 120 2.5 0.12 0.520 12.99 27.69 0.513 13.18 28.10 

20 90 2 0.09 0.479 10.64 16.90 0.352 14.33 23.00 

 

where V: cutting speed, t: cutting depth, f: feed, h: chip thickness, φ: shear angle and 

Vc: chip velocity.   

A.2.1.1  ANOVA of the Chip Thickness 

The results of the ANOVA of chip thickness during dry and wet turning are presented 

in (Table A.3-Table A.6). It can be seen from Table A.3 that the linear model of the 

machining parameters cutting speed (A), cutting depth (B) and feed (C) have a stronger 

effect on the chip thickness during dry cutting. In addition, the quadratic values of 

cutting depth (B*B) and feed (C*C) are also significant. As for the quadratic value of 

cutting speed (A*A) there is no significant influence on the chip thickness. Regarding 

to the interaction influence, it can be seen from the ANOVA outputs that there is no 

significant effect on the chip thickness.  
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Table A.3 ANOVA output of chip thickness in dry conditions 

Source DF Adj SS Adj MS F-Value P-Value 

Model 9 0.278686 0.030965 81.57 0.000 

Linear 3 0.269422 0.089807 236.58 0.000 

    Speed 1 0.051549 0.051549 135.80 0.000 

    Depth 1 0.014387 0.014387 37.90 0.000 

    Feed 1 0.203486 0.203486 536.06 0.000 

Square 3 0.006741 0.002247 5.92 0.014 

    Speed*Speed 1 0.001178 0.001178 3.10 0.109 

    Depth*Depth 1 0.003194 0.003194 8.42 0.016 

    Feed*Feed 1 0.002080 0.002080 5.48 0.041 

2-Way Interaction 3 0.002522 0.000841 2.21 0.149 

    Speed*Depth 1 0.000756 0.000756 1.99 0.188 

    Speed*Feed 1 0.001311 0.001311 3.45 0.093 

    Depth*Feed 1 0.000454 0.000454 1.20 0.300 

Error 10 0.003796 0.000380   

  Lack-of-Fit 5 0.002512 0.000502 1.96 0.240 

  Pure Error 5 0.001284 0.000257   

Total 19 0.282482    

Table A.4 presents only the significant effects, of the ANOVA outputs, of the cutting 

parameters on the chip thickness. The determination coefficient (R^2) of the model is 

98.23% which is indicating the high data fit, the values of adjusted determination 

coefficient (adj. R^2) and predicted determination coefficient (predR^2) are also 

shown in Table A.4 (97.19% and 93.67%, respectively). It is noticed to mention that 

the stepwise procedure added terms during the procedure in order to maintain a 

hierarchical model at each step. 

Table A.4 ANOVA output of chip thickness in dry conditions (Significant) 

Source DF Adj SS Adj MS F-Value P-Value 

Model 7 0.277475 0.039639 95.01 0.000 

Linear 3 0.269422 0.089807 215.25 0.000 

    Speed 1 0.051549 0.051549 123.55 0.000 

    Depth 1 0.014387 0.014387 34.48 0.000 

    Feed 1 0.203486 0.203486 487.71 0.000 

Square 3 0.006741 0.002247 5.39 0.014 

    Speed*Speed 1 0.001178 0.001178 2.82 0.119 

    Depth*Depth 1 0.003194 0.003194 7.66 0.017 

    Feed*Feed 1 0.002080 0.002080 4.99 0.045 

2-Way Interaction 1 0.001311 0.001311 3.14 0.102 

    Speed*Feed 1 0.001311 0.001311 3.14 0.102 

Error 12 0.005007   0.000417   

  Lack-of-Fit 7 0.003723 0.000532 2.07 0.220 

  Pure Error 5 0.001284 0.000257   

Total 19 0.282482    

R-Squared  98.23%     

R-Squared (adj) 97.19%     

R-Squared (pred) 93.67%     
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The final equation in terms of significant factors for the chip thickness model in dry 

turning is given by Equation A.1: It is worth noting that the regression equation is in 

uncoded values.  

 
ℎ𝐷𝑟𝑦 = 0.041 − 215 × 10−5𝐴 + 0.1733𝐵 + 6.41𝐶 + 1 × 10−5𝐴2

− 0.0596𝐵2 − 7.51𝐶2 − 0.01067𝐴𝐶 

A.1 

where h: chip thickness, A: cutting speed, B: cutting depth and C: feed. 

Table A.5 presents the ANOVA outputs of the machining parameters on the chip 

thickness during applying the cutting fluid. It can be seen from the table that the linear 

model of the machining parameters cutting speed (A) and feed (C) have a stronger 

effect on the chip thickness during wet cutting while the cutting depth  has no 

significant effect. In addition, the quadratic values of cutting speed (A*A) and feed 

(C*C) are also significant. As for the quadratic value of cutting depth (b*b) there is 

no significant influence on the chip thickness. Regarding to the interaction influence, 

it can be seen from the ANOVA outputs that the interaction between cutting speed and 

cutting depth has the significant effect on the chip thickness while the other two 

interactions have no significant effect on the chip thickness.  

Table A.5 ANOVA output of chip thickness in wet conditions  

Source DF Adj SS Adj MS F-Value P-Value 

Model 9 0.509649 0.056628 18.47 0.000 

Linear 3 0.356858 0.118953 38.80 0.000 

    Speed 1 0.055837 0.055837 18.22 0.002 

    Depth 1 0.000018 0.000018 0.01 0.941 

    Feed 1 0.301003 0.301003 98.19 0.000 

Square 3 0.103748 0.034583 11.28 0.002 

    Speed*Speed 1 0.091177 0.091177 29.74 0.000 

    Depth*Depth 1 0.005075 0.005075 1.66 0.227 

    Feed*Feed 1 0.018753 0.018753 6.12 0.033 

2-Way Interaction 3 0.049043 0.016348 5.33 0.019 

    Speed*Depth 1 0.042321 0.042321 13.81 0.004 

    Speed*Feed 1 0.006645 0.006645 2.17 0.172 

    Depth*Feed 1 0.000077 0.000077 0.03 0.877 

Error 10 0.030654 0.003065   

  Lack-of-Fit 5 0.028286 0.005657 11.94 0.008 

  Pure Error 5 0.002368 0.000474   

Total 19 0.540303    
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Table A.6 shows only the significant effects, of the ANOVA results, of the machining 

parameters on the chip thickness during the wet conditions.  

Table A.6 ANOVA output of chip thickness in wet conditions (Significant) 

Source DF Adj SS Adj MS F-Value P-Value 

Model 6 0.497852 0.082975 25.41 0.000 

Linear 3 0.356858 0.118953 36.43 0.000 

    Speed 1 0.055837 0.055837 17.10 0.001 

    Depth 1 0.000018 0.000018 0.01 0.942 

    Feed 1 0.301003 0.301003 92.18 0.000 

Square 2 0.098673 0.049336 15.11 0.000 

    Speed*Speed 1 0.087821 0.087821 26.89 0.000 

    Feed*Feed 1 0.017034 0.017034 5.22 0.040 

2-Way Interaction 1 0.042321 0.042321 12.96 0.003 

    Speed*Depth 1 0.042321 0.042321 12.96 0.003 

Error 13 0.042451 0.003265   

  Lack-of-Fit 8 0.040083 0.005010 10.58 0.009 

  Pure Error 5 0.002368 0.000474   

Total 19 0.540303    

R-Squared  92.14%     

R-Squared (adj) 88.52%     

R-Squared (pred) 76.98%   

The final equation in terms of significant factors for the chip thickness model in wet 

turning is given by Equation A.2:  

Regression Equation in Uncoded Units 

 
ℎ𝑊𝑒𝑡 = −2.2 + 0.02736𝐴 + 0.439𝐵 + 10.55𝐶 − 86 × 10−6𝐴2

− 21.38𝐶2 − 485 × 10−5𝐴𝐵 

A.2 

where h: chip thickness, A: cutting speed, B: cutting depth and C: feed. 

A.2.1.2  ANOVA of the Shear Angle 

(Table A.7-Table A.10) present the ANOVA outputs of the shear angle in dry and wet 

cutting conditions. It can be seen from the data in Table A.7 that the linear model of 

the machining parameters cutting speed (A), cutting depth (B) and feed (C) have a 

stronger effect on the shear angle during dry cutting. In addition, the quadratic value 

of cutting depth (B*B) is also significant. As for the quadratic values of cutting speed 

(A*A) and feed (C*C) there is no significant influence on the shear angle. Regarding 
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to the interaction influence, it can be seen from the ANOVA outputs that there is no 

significant effect on the shear angle.  

Table A.7 ANOVA output of shear angle in dry conditions 

Source DF Adj SS Adj MS F-Value P-Value 

Model 9 35.7436 3.9715 45.48 0.000 

Linear 3 34.2632 11.4211 130.80 0.000 

    Speed 1 14.4983 14.4983 166.04 0.000 

    Depth 1 4.6067 4.6067 52.76 0.000 

    Feed 1 15.1582 15.1582 173.59 0.000 

Square 3 1.2225 0.4075 4.67 0.027 

    Speed*Speed 1 0.0208 0.0208 0.24 0.636 

    Depth*Depth 1 1.1467 1.1467 13.13 0.005 

    Feed*Feed 1 0.0007 0.0007 0.01 0.930 

2-Way Interaction 3 0.2579 0.0860 0.98 0.439 

    Speed*Depth 1 0.0710 0.0710 0.81 0.389 

    Speed*Feed 1 0.1458 0.1458 1.67 0.225 

    Depth*Feed 1 0.0412 0.0412 0.47 0.508 

Error 10 0.8732 0.0873   

  Lack-of-Fit 5 0.4976 0.0995 1.32 0.383 

  Pure Error 5 0.3756 0.0751   

Total 19 36.6168    
 

Table A.8 presents only the significant effects of the cutting parameters on the shear 

angle in dry conditions.  

Table A.8 ANOVA output of shear angle in dry conditions (Significant) 

Source DF Adj SS Adj MS F-Value P-Value 

Model 4 35.4647 8.8662 115.44 0.000 

Linear 3 34.2632 11.4211 148.70 0.000 

    Speed 1 14.4983 14.4983 188.77 0.000 

    Depth 1 4.6067 4.6067 59.98 0.000 

    Feed 1 15.1582 15.1582 197.36 0.000 

Square 1 1.2015 1.2015 15.64 0.001 

    Depth*Depth 1 1.2015 1.2015 15.64 0.001 

Error 15 1.1521 0.0768   

  Lack-of-Fit 10 0.7764 0.0776 1.03 0.519 

  Pure Error 5 0.3756 0.0751   

Total 19 36.6168    

R-Squared  96.85%          

R-Squared (adj) 96.01%     

R-Squared (pred) 94.53%     

The final equation in terms of significant factors for the shear angle model in dry 

turning is given by Equation A.3:  
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Regression equation in uncoded units 

 𝜑𝐷𝑟𝑦 = 7.49 + 0.03434𝐴 − 3.42𝐵 + 26.34𝐶 + 1.145𝐵2 A.3 

where φ: shear angle, A: cutting speed, B: cutting depth and C: feed. 

The ANOVA outputs of the experiments data of the shear angle during applying the 

cutting fluid are shown in Table A.9. It can be seen from the table that the linear model 

of the machining parameter cutting speed (A) has a stronger effect on the shear angle 

during wet cutting while the cutting depth and feed have no significant effect on the 

shear angle. In addition, the quadratic value of cutting speed (A*A) is also significant. 

As for the quadratic values of cutting depth (B*B) and feed (C*C) have no significant 

influence on the shear angle. Regarding to the interaction influence, it can be seen 

from the ANOVA outputs that the interaction between cutting speed and cutting depth 

and the interaction between cutting speed and feed have the significant effect on the 

shear angle while the interactions between cutting depth and feed have no significant 

effect. 

Table A.9 ANOVA output of shear angle in wet conditions 

Source DF Adj SS Adj MS F-Value P-Value 

Model 9 199.313 22.1458 11.25 0.000 

Linear 3 70.814 23.6046 11.99 0.001 

    Speed 1 67.212 67.2119 34.13 0.000 

    Depth 1 3.493 3.4927 1.77 0.212 

    Feed 1 0.109 0.1094 0.06 0.818 

Square 3 70.781 23.5936 11.98 0.001 

    Speed*Speed 1 66.330 66.3303 33.69 0.000 

    Depth*Depth 1 2.551 2.5507 1.30 0.282 

    Feed*Feed 1 7.938 7.9382 4.03 0.072 

2-Way Interaction 3 57.718 19.2393 9.77 0.003 

    Speed*Depth 1 40.633 40.6326 20.64 0.001 

    Speed*Feed 1 13.782 13.7821 7.00 0.024 

    Depth*Feed 1 3.303 3.3031 1.68 0.224 

Error 10 19.690 1.9690   

  Lack-of-Fit 5 18.967 3.7934 26.22 0.001 

  Pure Error 5 0.723 0.1447   

Total 19 219.003    

Table A.10 presents only the significant effects of the cutting parameters on the 

shear angle in wet conditions. As explained in Section A.2.1.1, that the stepwise 
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procedure added terms during the procedure in order to maintain a hierarchical 

model at each step. 

Table A.10 ANOVA output of shear angle in wet conditions (Significant) 

Source DF Adj SS Adj MS F-Value P-Value 

Model 7 193.459 27.6370 12.98 0.000 

Linear 3 70.814 23.6046 11.09 0.001 

    Speed 1 67.212 67.2119 31.57 0.000 

    Depth 1 3.493 3.4927 1.64 0.224 

    Feed 1 0.109 0.1094 0.05 0.824 

Square 2 68.230 34.1151 16.03 0.000 

    Speed*Speed 1 64.407 64.4074 30.26 0.000 

    Feed*Feed 1 7.140 7.1402 3.35 0.092 

2-Way Interaction 2 54.415 27.2074 12.78 0.001 

    Speed*Depth 1 40.633 40.6326 19.09 0.001 

    Speed*Feed 1 13.782 13.7821 6.47 0.026 

Error 12 25.544 2.1287   

  Lack-of-Fit 7 24.821 3.5458 24.51 0.001 

  Pure Error 5 0.723 0.1447   

Total 19 219.003    

R-Squared  88.34%          

R-Squared (adj) 81.53%           

R-Squared (pred) 58.32%     
 

The final equation in terms of significant factors for the shear angle model in wet 

turning is given by Equation A.4: Regression equation in uncoded units. 

 
𝜑𝑊𝑒𝑡 = 94.8 − 0.97𝐴 − 14.53𝐵 − 240.8𝐶 + 2337 × 10−6𝐴2 + 438𝐶2

+ 0.1502𝐴𝐵 + 1.094𝐴𝐶 

A.4 

where φ: shear angle, A: cutting speed, B: cutting depth and C: feed. 

A.2.1.3  ANOVA of the Chip Velocity 

The results of the ANOVA of chip velocity during dry and wet turning are presented 

in (Table A.11-Table A.14). It can be seen from Table A.11 that the linear model of 

the machining parameters cutting speed (A), cutting depth (B) and feed (C) have a 

stronger effect on the chip velocity during dry cutting. In addition, the quadratic values 

of cutting speed (A*A) and feed (C*C) are also significant. As for the quadratic value 

of cutting depth (B*B) there is no significant influence on the chip velocity. Regarding 
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to the interaction influence, it can be seen from the ANOVA outputs that only the 

interaction between cutting speed and feed is significant while the others not.  

Table A.11 ANOVA output of chip velocity in dry conditions 

Source DF Adj SS Adj MS F-Value P-Value 

Model 9 1038.16 115.351 777.13 0.000 

Linear 3 1025.78 341.927 2303.58 0.000 

Speed 1 970.30 970.301 6536.97 0.000 

Depth 1 11.88 11.877 80.01 0.000 

Feed 1 43.60 43.602 293.75 0.000 

Square 3 7.10 2.368 15.96 0.000 

Speed*Speed 1 4.83 4.831 32.55 0.000 

Depth*Depth 1 2.65 2.649 17.85 0.002 

Feed*Feed 1 0.03 0.028 0.19 0.673 

2-Way Interaction 3 5.27 1.758 11.84 0.001 

Speed*Depth 1 0.18 0.180 1.21 0.297 

Speed*Feed 1 5.00 5.000 33.68 0.000 

Depth*Feed 1 0.09 0.095 0.64 0.443 

Error 10 1.48 0.148   

Lack-of-Fit 5 0.46 0.092 0.45 0.798 

Pure Error 5 1.02 0.204   

Total 19 1039.64    

Table A.12 presents only the significant effects of the machining parameters on the 

chip velocity. The determination coefficient (R^2) of the model is 99.83% which is 

indicating the high data fit, the values of adjusted determination coefficient (adj. R^2) 

and predicted determination coefficient (predR^2) are also shown in Table A.12 

(99.75% and 99.59%, respectively).  

Table A.12 ANOVA output of chip velocity in dry conditions (Significant) 

Source DF Adj SS Adj MS F-Value P-Value 

Model 6 1037.86 172.976 1258.56 0.000 

Linear 3 1025.78 341.927 2487.83 0.000 

    Speed 1 970.30 970.301 7059.82 0.000 

    Depth 1 11.88 11.877 86.41 0.000 

    Feed 1 43.60 43.602 317.25 0.000 

Square 2 7.08 3.538 25.75 0.000 

    Speed*Speed 1 4.95 4.953 36.04 0.000 

    Depth*Depth 1 2.73 2.730 19.86 0.001 

2-Way Interaction 1 5.00 5.000 36.38 0.000 

    Speed*Feed 1 5.00 5.000 36.38 0.000 

Error 13 1.79 0.137   

  Lack-of-Fit 8 0.76 0.096 0.47 0.838 

  Pure Error 5 1.02 0.204   

Total 19 1039.64    

R-Squared  99.83%          

R-Squared (adj) 99.75%           

R-Squared (pred) 99.59%     
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The final equation in terms of significant factors for the chip velocity model in dry 

turning is given by Equation A.5: Regression equation in uncoded units. 

 
𝑉𝑐𝐷𝑟𝑦 = 5.55 + 0.0589𝐴 − 5.06𝐵 − 14.6𝐶 + 648 × 10−6𝐴2 + 1.732𝐵2

+ 0.659𝐴𝐶 

A.5 

where Vc: chip velocity, A: cutting speed, B: cutting depth and C: feed. 

Table A.13 and Table A.14 show the ANOVA outputs of the experiments data of the 

chip velocity during applying the cutting fluid. It can be seen from Table A.13 that the 

linear model of the machining parameter cutting speed (A) has a stronger effect on the 

chip velocity during wet cutting while the cutting depth and feed have no significant 

effect on the chip velocity. In addition, the quadratic values of cutting speed (A*A) 

and feed (C*C) are also significant. As for the quadratic values of cutting depth (B*B) 

has no significant influence on the chip velocity. Regarding to the interaction 

influence, it can be seen from the ANOVA outputs that the interaction between cutting 

speed and cutting depth and the interaction between cutting speed and feed have the 

significant effect on the chip velocity while the interaction between cutting depth and 

feed has no significant effect. 

Table A.13 ANOVA output of chip velocity in wet conditions  

Source DF Adj SS Adj MS F-Value P-Value 

Model 9 600.871 66.763 20.40 0.000 

Linear 3 380.725 126.908 38.78 0.000 

    Speed 1 379.515 379.515 115.97 0.000 

    Depth 1 0.396 0.396 0.12 0.735 

    Feed 1 0.813 0.813 0.25 0.629 

Square 3 98.014 32.671 9.98 0.002 

    Speed*Speed 1 79.615 79.615 24.33 0.001 

    Depth*Depth 1 8.013 8.013 2.45 0.149 

    Feed*Feed 1 23.479 23.479 7.17 0.023 

2-Way Interaction 3 122.132 40.711 12.44 0.001 

    Speed*Depth 1 75.460 75.460 23.06 0.001 

    Speed*Feed 1 38.998 38.998 11.92 0.006 

    Depth*Feed 1 7.675 7.675 2.35 0.157 

Error 10 32.726 3.273   

  Lack-of-Fit 5 30.753 6.151 15.59 0.005 

  Pure Error 5 1.973 0.395   

Total 19 633.597    
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Table A.14 presents only the significant effects of the cutting parameters on the chip 

velocity in wet conditions. As explained earlier in this section that the stepwise 

procedure added terms during the procedure in order to maintain a hierarchical model 

at each step. 

Table A.14 ANOVA output of chip velocity in wet conditions (Significant) 

Source DF Adj SS Adj MS F-Value P-Value 

Model 7 585.183 83.598 20.72 0.000 

Linear 3 380.725 126.908 31.46 0.000 

    Speed 1 379.515 379.515 94.07 0.000 

    Depth 1 0.396 0.396 0.10 0.759 

    Feed 1 0.813 0.813 0.20 0.661 

Square 2 90.001 45.000 11.15 0.002 

    Speed*Speed 1 75.422 75.422 18.69 0.001 

    Feed*Feed 1 21.041 21.041 5.22 0.041 

2-Way Interaction 2 114.457 57.229 14.18 0.001 

    Speed*Depth 1 75.460 75.460 18.70 0.001 

    Speed*Feed 1 38.998 38.998 9.67 0.009 

Error 12 48.414 4.034   

  Lack-of-Fit 7 46.441 6.634 16.81 0.003 

  Pure Error 5 1.973 0.395   

Total 19 633.597    

R-Squared  92.36%          

R-Squared (adj) 87.90%           

R-Squared (pred) 70.60%     
 

The final equation in terms of significant factors for the chip velocity model in wet 

turning is given by Equation A.6: Regression equation in uncoded units.  

 
𝑉𝑐𝑊𝑒𝑡 = 107.4 − 0.983𝐴 − 18.77𝐵 − 400𝐶 + 2529 × 10−6𝐴2 + 751𝐶2

+ 0.2047𝐴𝐵 + 1.84𝐴𝐶 

A.6 

where Vc: chip velocity, A: cutting speed, B: cutting depth and C: feed. 

 

 

 

 

 

 

 



 A.2 Chip Morphology Analysis 

220 

A.2.2 Tool-Chip Contact Length Analysis 

A.2.2.1  Tool-Chip Contact Length- Pilot Studies 

The tool-chip contact length (or simply contact length) was measured experimentally 

using SEM  and compared to theoretical models. As mentioned in the literature review 

(Chapter 2), the tool-chip contact length 𝐿𝐶 was calculated theoretically, in this study, 

by using the model that concluded by Kato et al. (1972) and Toropov & Ko (2003). 

The model predicts that the contact length is twice the deformed chip thickness 𝐿𝐶 =

2 ∗ 𝑐ℎ𝑖𝑝 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 (ℎ). Therefore, to verify and use this model (Kato et al. 1972 and 

Toropov & Ko 2003) in this study, two pilot studies were carried out using a fresh tip 

in each study. The machining parameters and the results of these two studies are 

presented in the following sections. The first pilot was carried out by using cutting 

tool (SCMW 12 04 08 from Sandvick) and without employing experiment design 

while the other study was conducted using the same cutting tool as the main study and 

using the design of experiments. The both pilot studies were conducted on a Triumph 

2500 lathe using orthogonal cutting of 6082-T6 aluminium tube as a workpiece.   

Figure A.1 shows a typical SEM image of the rake face of the cutting tool showing 

the tool-chip contact length. The carbide material has a higher molecular weight than 

aluminium therefore the SEM image shows the carbide in lighter in grey shade than 

the aluminium (see Figure A.2). 

 

Figure A.1 Backscattered image of the tool-chip contact area  
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As mentioned in Chapter 2, the rake face of the cutting tool was further analysed, as 

previously reported by Abuladze (1962), the energy dispersive X-ray analysis 

(EDXA) was used in this study to identify the traces of chip’s material on the tool rake 

face. Figure A.2 and Figure A.3 show a typical result of the EDXA analysis, it can be 

seen clearly the amount of aluminium transfer from the workpiece to the rake face of 

the cutting tool. The EDX analysis also shows that as moved away from the cutting 

edge the tungsten amount increased while the amount of aluminium decreased to zero 

and this confirms the end of the tool-chip contact length (see Figure A.3). 

 

Figure A.2 SEM EDXA aluminium density area along the tool rake face 

 

Figure A.3 SEM EDXA aluminium density line along the tool rake face 
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The results of the tool-chip contact length measurements of the both pilot studies are 

presented in the next following sections. 

A.2.2.1.1 Influence of Cutting Speed 

A pilot study aimed at assessing whether Kato et al. (1972) and Toropov & Ko (2003) 

model could be used in this study to measure the contact length has been carried out. 

The trials were carried out in dry and wet condition at different cutting speeds with a 

constant cutting depth and feed t=2.5 mm, f=0.16 mm/rev, respectively. Table A.15 

presents the cutting speeds as well as the experimentally and the analytically results 

of the contact length. The experimental results obtained from the SEM while the 

analytical results were gained from the model. The results show that the chip thickness 

and thus the contact length decreased with increasing cutting speed, this is due to the 

effect of temperature. As mention in Section 6.1, the temperature of the tool-chip 

interface increases with increasing cutting speed (see Figure 6.4), and this results in 

softening the workpiece and hence the friction at the tool-chip interface reduces.  As 

a result of these two factors, the shear angle increases and thus reduce the chip 

thickness. It can also be seen from the results that the chip thickness is affected by 

cutting fluid, at low cutting speeds only. A possible explanation for this might be that 

the cutting fluid may reduce the friction between the tool-chip interface, and thus the 

shear angle increased leads to decreasing the chip thickness.  

Table A.15 Cutting speeds and the contact length results 

  Dry Wet 

Run 

Order 

V 

(m/min) 

h 

(mm) 

Theoretical 

𝑳𝑪 (mm) 

Experimental 

𝑳𝑪 (mm) 

h 

(mm) 

Theoretical 

𝑳𝑪 (mm) 

Experimental 

𝑳𝑪 (mm) 

1 45 0.9 1.8 1.909 0.76 1.52 1.606 

2 65 0.775 1.55 1.718 0.72 1.45 1.524 

3 95 0.675 1.35 1.508 0.67 1.35 1.404 

4 145 0.57 1.15 1.307 0.6 1.15 1.305 

5 215 0.5 1 1.057 0.495 0.99 1.062 

6 305 0.42 0.85 0.9039 0.415 0.83 0.9064 

where V is cutting speed, h is chip thickness and Lc is contact length.  

Figure A.4 presents the SEM images of the cutting tools rake faces at different cutting 

speeds in dry and wet cutting conditions. It is worth noting that the wear appeared in 

some of the tip in Figure A.4 is due to handling and happened during the preparation 
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for using them in SEM not from the machining process (see run order 3 and 6 of the 

Figure A.4 at wet condition). 

Tria

l 

No. 

V 

(m/min

) 

Dry Wet 

1 45 

  

2 65 

  

3 95 
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4 145 

  

5 215 

  

6 305 

  

Figure A.4 SEM photographs of the rake face of the cutting tool during dry and wet cutting 

conditions of Al 6082 at different cutting speeds and a cutting depth of t=2.5 mm and feed of 

f=0.16 mm/rev  

Figure A.5 shows the comparison of the experimental results of the contact length, 

obtained from the SEM, and the analytical results, gained from Kato et al. (1972) and 

Toropov & Ko (2003) model, during dry and wet cutting. What is interesting in this 

data is the good agreement between the both results. As discussed earlier in this section 

that in both machining conditions (dry and wet) the chip thickness and thus the contact 

length decreased with increasing the cutting speed. With applying the coolant, the chip 

   062 
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thickness was found smaller than in dry conditions and at low cutting speed (below 90 

m/min). At cutting speeds higher than 90 m/min, there were no significant differences 

between the contact length in dry and wet cutting conditions.      

 

Figure A.5 Comparison of the contact length model with the dry and wet experimental data for 

different cutting speeds and a cutting depth of 2.5 mm and feed of 0.16 mm/rev at wet condition 

A.2.2.1.2 Influence of Machining Parameters 

As mentioned in Chapter 6, that the second pilot study of measuring tool-chip contact 

length experiment was carried out using a central composite design technique. The 

reason for conducting these experiments was to measure contact length at the same 

machining parameters that were used with different sensors including cutting force, 

ultrasonic, acoustic emission and accelerometer (main study). The experiments were 

performed, in dry cutting conditions, as per Table A.16.  The contact length was 

measured in the same way as the first pilot study; where the tool-chip contact length 

was measured experimentally using SEM and compared to theoretical model. Table 

A.16 shows the contact length results obtained from the SEM and as well as the results 

gained from the model (𝑳𝑪 = 𝟐 × 𝒉) where h is the chip thickness. The Table A.16 

also shows the tool-chip contact area which was measured using the SEM.  

The SEM photographs of the rake face cutting tool are shown in Figure A.6 and the 

number under each image represents the run order of the Table A.16.  
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Table A.16 Cutting parameters and contact length results 

 Cutting parameters  SEM Results 

Run 

Order 

V 

(m/min) 

t 

(mm) 

f 

(mm/rev) 

h 

(mm) 

Theoretical 

𝑳𝑪 (mm) 

Experimental 

𝑳𝑪 (mm) 

Ac 

(𝒎𝒎𝟐) 

1 90 2 0.16 0.800 1.600 1.569 3.800 

2 90 2 0.16 0.805 1.610 1.6175 4.097 

3 90 2 0.16 0.775 1.549 1.54 3.762 

4 40 2 0.16 1.185 2.370 2.304 6.336 

5 60 2.5 0.12 0.705 1.410 1.48 4.554 

6 60 2.5 0.2 0.978 1.955 1.619 4.807 

7 120 1.5 0.12 0.412 0.824 0.804 1.376 

8 140 2 0.16 0.612 1.224 1.454 3.354 

9 90 1.2 0.16 0.547 1.093 1.15 1.857 

10 120 1.5 0.2 0.633 1.265 1.208 2.264 

11 90 2.8 0.16 0.719 1.437 1.408 4.722 

12 120 2.5 0.2 0.793 1.587 1.35 3.654 

13 60 1.5 0.2 0.946 1.892 1.614 3.231 

14 90 2 0.16 0.767 1.534 1.533 3.710 

15 90 2 0.16 0.664 1.328 1.56 3.855 

16 90 2 0.23 0.987 1.974 1.931 5.637 

17 90 2 0.16 0.770 1.540 1.604 4.097 

18 60 1.5 0.12 0.553 1.107 1.142 2.145 

19 120 2.5 0.12 0.571 1.142 0.9308 2.732 

20 90 2 0.09 0.510 1.020 1.061 2.490 
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17)  

 
18)  

 
19)  

 
20)  

Figure A.6 SEM photographs of the rake face of the cutting tool during dry cutting conditions 

of Al 6082 at different cutting speeds, cutting depth and feed 

The current results confirm the results of the first pilot study with respect to the 

relationship between the cutting speed and tool-chip contact length. Figure A.7 shows 

the comparison of the experimental results of the contact length, obtained from the 

SEM, and the analytical results, gained from Kato et al. (1972) and Toropov & Ko 

(2003) model, during dry. What is interesting in this data is the good agreement 

between the both results.      
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Figure A.7 Benchmarking of contact length model 

To study the influence of the machining parameters on the contact length on the 

temperature, some results of Figure A.7 has been re-presented in linear graphs and 

presented below. 

The influence of cutting speed on the contact length can be seen from the Figure A.8, 

where the results show that there has been a steady decrease in the contact length with 

increasing cutting speed while the cutting depth and feed were kept constant at t=2 

mm, f=0.16 mm/rev, respectively.  

 

Figure A.8 Comparison of the contact length model with the experimental data for different 

cutting speeds and a cutting depth of 2 mm and feed of 0.16 mm/rev 

While the relationship between feed and contact length is as follows: the tool-chip 

contact length increases with the feed. For example, the SEM results show that the 
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contact length obtained at constant cutting speed of 90 m/min and 2 mm cutting depth 

increased from 1.061 mm to 1.54 mm as the feed increased from 0.09 mm/rev to 0.16 

mm/rev. as the feed increased to 0.23 mm/rev and keeping the cutting speed and cutting 

depth constant the contact length increased from 1.54 mm to 1.931 mm.  

 

Figure A.9 Comparison of the contact length model with the experimental data for different 

feed and a cutting speed of 90 m/min and cutting depth of 0.16 mm/rev 

Two different method were used, in this study, to measure the tool-chip contact area. 

The first method was measuring the tracks area on the rake face cutting tool using the 

SEM (see Table A.16 and Figure A.6). Multiplying the contact length by the chip 

width is the other method for measuring the contact area. A good agreement was found 

between these two results.   
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A.2.2.2  Contact Length-Main Study 

Table A.17 Machining parameters and contact length results (Main study) 

 Cutting parameters Dry Wet 

Run 

Order 

V 

(m/min) 

t 

(mm) 

f 

(mm/rev) 
𝑳𝑪 (mm) 

Ac 

(𝒎𝒎𝟐) 
𝑳𝑪 (mm) 

Ac 

(𝒎𝒎𝟐) 

1 90 2 0.16 1.41 3.79 1.47 3.86 

2 90 2 0.16 1.45 3.95 1.47 3.84 

3 90 2 0.16 1.44 3.90 1.47 3.91 

4 40 2 0.16 1.75 4.59 0.79 1.77 

5 60 2.5 0.12 1.17 3.47 0.90 2.57 

6 60 2.5 0.2 1.66 5.38 1.61 5.06 

7 120 1.5 0.12 1.11 2.28 1.11 2.19 

8 140 2 0.16 1.24 3.21 1.27 3.29 

9 90 1.2 0.16 1.47 2.85 1.52 2.86 

10 120 1.5 0.2 1.56 3.61 1.61 3.67 

11 90 2.8 0.16 1.25 4.22 1.23 4.12 

12 120 2.5 0.2 1.46 4.66 1.36 4.25 

13 60 1.5 0.2 1.87 4.27 1.13 1.95 

14 90 2 0.16 1.39 3.62 1.36 3.56 

15 90 2 0.16 1.45 3.81 1.45 3.91 

16 90 2 0.23 1.79 5.12 1.85 5.38 

17 90 2 0.16 1.48 3.90 1.47 4.01 

18 60 1.5 0.12 1.29 2.66 0.54 0.86 

19 120 2.5 0.12 1.04 3.10 1.03 3.01 

20 90 2 0.09 0.96 2.28 0.70 1.60 

where V: cutting speed, t: cutting depth, f: feed, Lc: tool-chip contact length and Ac: 

tool-chip contact area. 

A.2.2.2.1 ANOVA of the Contact Length 

The results of the ANOVA of contact length during dry and wet turning are presented 

in (Table A.18-Table A.21). It can be seen from Table A.18 that the linear model of 

the machining parameters cutting speed (A), cutting depth (B) and feed (C) have a 

stronger effect on the contact length during dry cutting. Furthermore, the quadratic 

values of cutting depth (B*B) and feed (C*C) are also significant. As for the quadratic 

value of cutting speed (A*A) there is no significant influence on the contact length. 

Regarding to the interaction influence, it can be seen from the ANOVA outputs that 

there is no significant effect on the contact length. 
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Table A.18 ANOVA output of contact length in dry conditions  

Source DF Adj SS Adj MS F-Value P-Value 

Model 9 1.11474 0.123860 81.57 0.000 

Linear 3 1.07769 0.359230 236.58 0.000 

    Speed 1 0.20620 0.206196 135.80 0.000 

    Depth 1 0.05755 0.057548 37.90 0.000 

    Feed 1 0.81394 0.813945 536.06 0.000 

Square 3 0.02696 0.008988 5.92 0.014 

    Speed*Speed 1 0.00471 0.004713 3.10 0.109 

    Depth*Depth 1 0.01278 0.012778 8.42 0.016 

    Feed*Feed 1 0.00832 0.008320 5.48 0.041 

2-Way Interaction 3 0.01009 0.003363 2.21 0.149 

    Speed*Depth 1 0.00303 0.003026 1.99 0.188 

    Speed*Feed 1 0.00525 0.005246 3.45 0.093 

    Depth*Feed 1 0.00182 0.001817 1.20 0.300 

Error 10 0.01518   0.001518   

  Lack-of-Fit 5 0.01005 0.002010 1.96 0.240 

  Pure Error 5 0.00514 0.001027   

Total 19 1.12993    
 

Table A.19 presents only the significant effects of the cutting parameters on the 

contact length. The determination coefficient (R^2) of the model is 98.23% which is 

indicating the high data fit, the values of adjusted determination coefficient (adj. R^2) 

and predicted determination coefficient (predR^2) are also shown in Table A.19 

(97.19% and 93.67%, respectively).  

Table A.19 ANOVA output of contact length in dry conditions (Significant) 

Source DF Adj SS Adj MS F-Value P-Value 

Model 7 1.10990 0.158557 95.01 0.000 

Linear 3 1.07769 0.359230 215.25 0.000 

    Speed 1 0.20620 0.206196 123.55 0.000 

    Depth 1 0.05755 0.057548 34.48 0.000 

    Feed 1 0.81394 0.813945 487.71 0.000 

Square 3 0.02696 0.008988 5.39 0.014 

    Speed*Speed 1 0.00471 0.004713 2.82 0.119 

    Depth*Depth 1 0.01278 0.012778 7.66 0.017 

    Feed*Feed 1 0.00832 0.008320 4.99 0.045 

2-Way Interaction 1 0.00525 0.005246 3.14 0.102 

    Speed*Feed 1 0.00525 0.005246 3.14 0.102 

Error 12 0.02003   0.001669   

  Lack-of-Fit 7 0.01489 0.002127 2.07 0.220 

  Pure Error 5 0.00514 0.001027   

Total 19 1.12993    

R-Squared  98.23%          

R-Squared (adj) 97.19%           

R-Squared (pred) 93.67%     
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The final equation in terms of significant factors for the contact length model in dry 

turning is given by Equation A.7: Regression equation in uncoded units. 

 
𝐿𝑐𝐷𝑟𝑦 = 0.081 − 430 × 10−5𝐴 + 0.347𝐵 + 12.83𝐶 + 20 × 10−6𝐴2

− 0.1191𝐵2 − 15.02𝐶2 − 0.0213𝐴𝐶 

A.7 

where Lc: contact length, A: cutting speed, B: cutting depth and C: feed. 

Table A.20 and Table A.21present the ANOVA outputs of the contact length during 

applying the cutting fluid. It can be seen from Table A.20 that the linear model of the 

machining parameters cutting speed (A) and feed (C) have a stronger effect on the 

contact length during wet cutting while the cutting depth has no significant effect on 

the contact length. In addition, the quadratic values of cutting speed (A*A) and feed 

(C*C) are also significant. As for the quadratic values of cutting depth (B*B) has no 

significant influence on the contact length. Regarding to the interaction influence, it 

can be seen from the ANOVA outputs that the interaction between cutting speed and 

cutting depth has the significant effect on the contact length while the other 

interactions have no significant effect on the contact length. 

Table A.20 ANOVA output of contact length in wet conditions 

Source DF Adj SS Adj MS F-Value P-Value 

Model 9 2.03860 0.22651 18.47 0.000 

Linear 3 1.42743 0.47581 38.80 0.000 

    Speed 1 0.22335 0.22335 18.22 0.002 

    Depth 1 0.00007 0.00007 0.01 0.941 

    Feed 1 1.20401 1.20401 98.19 0.000 

Square 3 0.41499 0.13833 11.28 0.002 

    Speed*Speed 1 0.36471 0.36471 29.74 0.000 

    Depth*Depth 1 0.02030 0.02030 1.66 0.227 

    Feed*Feed 1 0.07501 0.07501 6.12 0.033 

2-Way Interaction 3 0.19617 0.06539 5.33 0.019 

    Speed*Depth 1 0.16929 0.16929 13.81 0.004 

    Speed*Feed 1 0.02658 0.02658 2.17 0.172 

    Depth*Feed 1 0.00031 0.00031 0.03 0.877 

Error 10 0.12262 0.01226   

  Lack-of-Fit 5 0.11314 0.02263 11.94 0.008 

  Pure Error 5 0.00947 0.00189   

Total 19 2.16121    
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Table A.21 presents only the significant effects of the cutting parameters on the 

contact length in wet conditions. As explained in Section A.2.1.1, that in order to 

maintain a hierarchical model at each step, the stepwise procedure added terms during 

the procedure. 

Table A.21 ANOVA output of contact length in wet conditions (Significant) 

Source DF Adj SS Adj MS F-Value P-Value 

Model 6 1.99141 0.33190 25.41 0.000 

Linear 3 1.42743 0.47581 36.43 0.000 

    Speed 1 0.22335 0.22335 17.10 0.001 

    Depth 1 0.00007 0.00007 0.01 0.942 

    Feed 1 1.20401 1.20401 92.18 0.000 

Square 2 0.39469 0.19735 15.11 0.000 

    Speed*Speed 1 0.35128 0.35128 26.89 0.000 

    Feed*Feed 1 0.06814 0.06814 5.22 0.040 

2-Way Interaction 1 0.16929 0.16929 12.96 0.003 

    Speed*Depth 1 0.16929 0.16929 12.96 0.003 

Error 13 0.16980   0.01306   

  Lack-of-Fit 8 0.16033 0.02004 10.58 0.009 

  Pure Error 5 0.00947 0.00189   

Total 19 2.16121    

R-Squared  92.14%          

R-Squared (adj) 88.52%           

R-Squared (pred) 76.98%     
 

Final equation in terms of significant factors for the contact length model in wet 

cutting conditions is given by Equation A.8: Regression equation in uncoded units. 

 
𝐿𝑐𝑊𝑒𝑡 = −4.401 + 0.05473𝐴 + 0.877𝐵 + 21.11𝐶 − 173 × 10−6𝐴2

− 42.8𝐶2 − 0.0097𝐴𝐵 

A.8 

where Lc: contact length, A: cutting speed, B: cutting depth and C: feed. 

A.2.2.2.2 ANOVA of the Contact Area 

The results of the ANOVA of contact area during dry and wet cutting are presented in 

(Table A.22-Table A.25). It can be seen from Table A.22 that the linear model of the 

machining parameters cutting speed (A), cutting depth (B) and feed (C) have a stronger 

effect on the contact area during dry cutting. Furthermore, the quadratic value of 

cutting depth (B*B) is also significant. As for the quadratic value of cutting speed 

(A*A) and feed (C*C) there are no significant influence on the contact area. Regarding 
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to the interaction influence, it can be seen from the ANOVA outputs that there is no 

significant effect on the contact area. 

Table A.22 ANOVA output of contact area in dry conditions 

Source DF Adj SS Adj MS F-Value P-Value 

Model 9 13.6866 1.52074 95.10 0.000 

Linear 3 13.3879 4.46264 279.08 0.000 

    Speed 1 1.4526 1.45259 90.84 0.000 

    Depth 1 2.7360 2.73603 171.10 0.000 

    Feed 1 9.1993 9.19929 575.29 0.000 

Square 3 0.2133 0.07110 4.45 0.031 

    Speed*Speed 1 0.0064 0.00645 0.40 0.540 

    Depth*Depth 1 0.1715 0.17153 10.73 0.008 

    Feed*Feed 1 0.0371 0.03710 2.32 0.159 

2-Way Interaction 3 0.0854 0.02847 1.78 0.214 

    Speed*Depth 1 0.0004 0.00043 0.03 0.874 

    Speed*Feed 1 0.0511 0.05111 3.20 0.104 

    Depth*Feed 1 0.0339 0.03387 2.12 0.176 

Error 10 0.1599 0.01599   

  Lack-of-Fit 5 0.0918 0.01835 1.35 0.376 

  Pure Error 5 0.0681 0.01363   

Total 19 13.8465    
 

Table A.23 presents only the significant effects of the cutting parameters on the 

contact area. The determination coefficient (R^2) of the model is 98.80% which is 

indicating the high data fit, the values of adjusted determination coefficient (adj. R^2) 

and predicted determination coefficient (predR^2) are also shown in Table A.23 

(98.09% and 96.82%, respectively). 

Table A.23 ANOVA output of contact area in dry conditions (Significant) 

Source DF Adj SS Adj MS F-Value P-Value 

Model 7 13.6797 1.95425 140.61 0.000 

Linear 3 13.3879 4.46264 321.09 0.000 

    Speed 1 1.4526 1.45259 104.52 0.000 

    Depth 1 2.7360 2.73603 196.86 0.000 

    Feed 1 9.1993 9.19929 661.90 0.000 

Square 2 0.2068 0.10342 7.44 0.008 

    Depth*Depth 1 0.1800 0.17997 12.95 0.004 

    Feed*Feed 1 0.0406 0.04063 2.92 0.113 

2-Way Interaction 2 0.0850 0.04249 3.06 0.085 

    Speed*Feed 1 0.0511 0.05111 3.68 0.079 

    Depth*Feed 1 0.0339 0.03387 2.44 0.144 

Error 12 0.1668  0.01390   

  Lack-of-Fit 7 0.0986 0.01409 1.03 0.503 

  Pure Error 5 0.0681 0.01363   

Total 19 13.8465    

R-Squared  98.80%          

R-Squared (adj) 98.09%           

R-Squared (pred) 96.82%     
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Final equation in terms of significant factors for the contact area model in dry turning 

is given by Equation A.9: Regression equation in uncoded units. 

 
𝐴𝑐𝐷𝑟𝑦 = −2.79 − 0.00021𝐴 + 2.154𝐵 + 30.57𝐶 − 0.445𝐵2 − 33𝐶2

− 0.0666𝐴𝐶 + 3.25𝐵𝐶 

A.9 

where Ac: contact area, A: cutting speed, B: cutting depth and C: feed. 

Table A.24 and Table A.25 present the ANOVA outputs of the contact area while 

applying the cutting fluid. It can be seen from Table A.24 that the linear model of the 

machining parameters cutting speed (A), cutting depth (B) and feed (C) have a stronger 

effect on the contact area during wet cutting during wet cutting. In addition, the 

quadratic value of cutting speed (A*A) is also significant. As for the quadratic values 

of cutting depth (B*B) and feed (C*C) have no significant influence on the contact 

area. Regarding to the interaction influence, it can be seen from the ANOVA outputs 

that the interaction between cutting speed and cutting depth has the significant effect 

on the contact area while the other interactions have no significant effect on the contact 

area. 

Table A.24 ANOVA output of contact area in wet conditions 

Source DF Adj SS Adj MS F-Value P-Value 

Model 9 24.6145 2.7349 18.01 0.000 

Linear 3 18.8774 6.2925 41.43 0.000 

    Speed 1 2.0119 2.0119 13.25 0.005 

    Depth 1 5.1139 5.1139 33.67 0.000 

    Feed 1 11.7516 11.7516 77.37 0.000 

Square 3 4.0288 1.3429 8.84 0.004 

    Speed*Speed 1 3.6758 3.6758 24.20 0.001 

    Depth*Depth 1 0.3926 0.3926 2.58 0.139 

    Feed*Feed 1 0.3934 0.3934 2.59 0.139 

2-Way Interaction 3 1.7083 0.5694 3.75 0.049 

    Speed*Depth 1 1.4534 1.4534 9.57 0.011 

    Speed*Feed 1 0.0897 0.0897 0.59 0.460 

    Depth*Feed 1 0.1652 0.1652 1.09 0.322 

Error 10 1.5190 0.1519   

  Lack-of-Fit 5 1.4023 0.2805 12.02 0.008 

  Pure Error 5 0.1167 0.0233   

Total 19 26.1335    

Table A.25 shows only the significant effects of the cutting parameters on the contact 

area.  
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Table A.25 ANOVA output of contact area in wet conditions (Significant) 

Source DF Adj SS Adj MS F-Value P-Value 

Model 5 23.6446 4.7289 26.60 0.000 

Linear 3 18.8774 6.2925 35.40 0.000 

    Speed 1 2.0119 2.0119 11.32 0.005 

    Depth 1 5.1139 5.1139 28.77 0.000 

    Feed 1 11.7516 11.7516 66.10 0.000 

Square 1 3.3138 3.3138 18.64 0.001 

    Speed*Speed 1 3.3138 3.3138 18.64 0.001 

2-Way Interaction 1 1.4534 1.4534 8.18 0.013 

    Speed*Depth 1 1.4534 1.4534 8.18 0.013 

Error 14 2.4889 0.1778   

  Lack-of-Fit 9 2.3722 0.2636 11.29 0.008 

  Pure Error 5 0.1167 0.0233   

Total 19 26.1335    

R-Squared  90.48%          

R-Squared (adj) 87.07%           

R-Squared (pred) 76.43%     
 

Final equation in terms of significant factors for the contact area model in wet 

turning is given by Equation A.10: Regression equation in uncoded units. 

 
𝐴𝑐𝑊𝑒𝑡 = −13.09 + 0.1647𝐴 + 3.781𝐵 + 23.19𝐶 − 0.000528𝐴2

− 0.02842𝐴𝐵 

A.10 

where Ac: contact area, A: cutting speed, B: cutting depth and C: feed. 
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A.3  Measurement of Cutting Forces  

Table A.26 Cutting parameters and cutting forces results 

 Cutting parameters Dry Wet 

Run 

Order 

Cutting 

Speed 

(m/min) 

Depth 

of Cut 

(mm) 

Feed 

(mm/rev) 

Thrust 

force 

(N) 

Cutting 

force 

(N) 

Thrust 

force 

(N) 

Cutting 

force 

(N) 

1 90 2 0.16 335.1 388.77 337.47 406.57 

2 90 2 0.16 335.33 393.57 333.53 407.97 

3 90 2 0.16 333.97 393.07 339.87 413.13 

4 40 2 0.16 405.67 467.57 198.90 322.17 

5 60 2.5 0.12 365.45 406.5 269.15 359.65 

6 60 2.5 0.2 513 587.05 493.53 579.13 

7 120 1.5 0.12 202.55 231.25 203.57 238.23 

8 140 2 0.16 279.33 350.5 280.65 352.85 

9 90 1.2 0.16 228.05 259.48 226.27 267.13 

10 120 1.5 0.2 272.95 326.3 268.40 332.73 

11 90 2.8 0.16 463.85 526.25 443.88 522.70 

12 120 2.5 0.2 412.45 519.05 409.57 510.50 

13 60 1.5 0.2 338.05 385.55 194.20 303.03 

14 90 2 0.16 332.2 371.3 324.93 393.10 

15 90 2 0.16 351.8 396.15 332.85 409.70 

16 90 2 0.23 398.65 476.8 407.95 517.55 

17 90 2 0.16 346.3 393.3 344.75 417.50 

18 60 1.5 0.12 248.13 277.03 132.03 196.73 

19 120 2.5 0.12 329.1 371.5 325.50 390.85 

20 90 2 0.09 238.2 265.47 220.07 260.83 

 

A.2.1 Analysis of Variance (ANOVA) 

A.3.1.1  Thrust Forces Ft  

It can be seen from Table A.27 that cutting speed (A), cutting depth (B) and feed (C), 

the quadratic value of feed (C*C), and the interaction between cutting speed and feed 

(A*C) and the interaction between cutting depth and feed (B*C) all have the most 

significant effect on the thrust force 𝐹𝑡 during dry turning; while the quadratic values 

of cutting speed (A*A) and cutting depth (B*B) and the interaction between cutting 

speed and depth of cut (A*B) have no significant effect on the thrust force.  



 A.3 Measurement of Cutting Forces 

240 

Table A.27 ANOVA output of thrust force 𝑭𝒕 in dry conditions 

Source DF Adj SS 
Adj 

MS 

F-

Value 

P-

Value 

Note 

Model 9 116912 12990.2 185.83 0.000 Significant <0.05 

  Linear 3 114263 38087.5 544.87 0.000  

    A 1 15497 15496.8 221.69 0.000  

    B 1 66766 66766.3 955.14 0.000  

    C 1 31999 31999.4 457.78 0.000  

  Square 3 1065 354.9 5.08 0.022  

    A*A 1 1 1.2 0.02 0.898 Not Significant >0.05 

    B*B 1 33 32.8 0.47 0.509  

    C*C 1 974 974.2 13.94 0.004  

  2-Way 

Interaction 
3 1585 528.3 7.56 0.006 

 

    A*B 1 86 86.0 1.23 0.293  

    A*C 1 876 876.2 12.54 0.005  

    B*C 1 623 622.6 8.91 0.014  

Error 10 699 69.9    

Lack-of-Fit 5 399 79.9 1.33 0.380  

Pure Error 5 300 59.9    

Total 19 117611     

DF: Degree of freedom Adj SS: Adjusted sum of square Adj MS: Adjusted mean 

square 

The results of the ANOVA of thrust forces during wet turning are presented in Table 

A.28. It can be seen from the table that the linear model of the machining parameters 

cutting depth (B) and feed (C) have a stronger effect effect on the thrust force 𝐹𝑡, while 

the cutting speed (A) has less effect on the output. The ANOVA results also show that 

the thrust force 𝐹𝑡 is strongly affected by the quadratic model of cutting speed (A*A). 

While there is no significant effect of the quadratic value of depth of cut (B*B) and 

feed (C*C) on the thrust force. Regarding to the interaction between the cutting 

parameters during wet turning, the results show that the thrust force is significantly 

influenced by (A*B) and (B*C) more than (A*C). 
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Table A.28 ANOVA output of thrust force 𝑭𝒕 in wet conditions 

Source DF Adj SS Adj 

MS 

F-

Value 

P-

Value 

Note 

Model 9 158021 17557.9 35.38 0.000 Significant <0.05 

  Linear 3 129262 43087.5 86.83 0.000  

    A 1 4784 4783.9 9.64 0.011  

    B 1 83133 83133.2 167.54 0.000  

    C 1 41345 41345.4 83.32 0.000  

  Square 3 18518 6172.8 12.44 0.001  

    A*A 1 17983 17983.5 36.24 0.000  

    B*B 1 38 38.4 0.08 0.786 Not Significant >0.05 

    C*C 1 1188 1188.1 2.39 0.153  

  2-Way 

Interaction 

3 10240 3413.4 6.88 0.009  

    A*B 1 3756 3756.3 7.57 0.020  

    A*C 1 2368 2368.4 4.77 0.054  

    B*C 1 4116 4115.5 8.29 0.016  

Error 10 4962 496.2    

  Lack-of-Fit 5 4731 946.2 20.48 0.002  

  Pure Error 5 231 46.2    

Total 19 162983     

DF: Degree of freedom Adj SS: Adjusted sum of square Adj MS: Adjusted mean 

square 

A.3.1.2  Cutting Forces Fc  

The results of the ANOVA of cutting force 𝐹𝐶 during dry turning are presented in 

Table A.29. It can be seen from the table that the linear model of the machining 

parameters cutting speed (A), cutting depth (B) and feed (C) have a stronger effect on 

the cutting force 𝐹𝐶. In addition, the quadratic values of cutting speed (A*A) and feed 

(C*C) are also significant but, the effect of (C*C) is bigger than the cutting speed 

during dry turning. As for the quadratic value of depth of cut (B*B) there is no 

significant influence on the cutting force. Regarding to the interaction influence, it can 

be seen from the ANOVA outputs that the interaction between cutting speed and feed 

(A*C) and the interaction between cutting depth and feed (B*C) have the significant 

effect on the cutting force 𝐹𝐶; while the interaction between cutting speed and depth 

of cut (A*B) have no significant effect on the cutting force 𝐹𝐶.  
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Table A.29 ANOVA output of cutting force 𝑭𝑪 in dry conditions 

Source DF Adj SS Adj 

MS 

F-

Value 

P-

Value 

Note  

Model 9 163974 18219.3 398.51 0.000 Significant <0.05  

  Linear 3 160274 53424.8 1168.55 0.000   

    A 1 12005 12004.9 262.58 0.000   

    B 1 90647 90647.3 1982.72 0.000   

    C 1 57622 57622.0 1260.36 0.000   

  Square 3 1491 497.0 10.87 0.002   

    A*A 1 399 399.3 8.73 0.014   

    B*B 1 3 3.0 0.06 0.804 Not Significant >0.05  

    C*C 1 954 953.9 20.87 0.001   

  2-Way 

Interaction 

3 2209 736.3 16.10 0.000   

    A*B 1 1 0.5 0.01 0.918   

    A*C 1 270 270.0 5.91 0.035   

    B*C 1 1938 1938.3 42.40 0.000   

Error 10 457 45.7     

  Lack-of-Fit 5 420 83.9 11.21 0.010   

  Pure Error 5 37 7.5     

Total 19 164431      

DF: Degree of freedom Adj SS: Adjusted sum of square Adj MS: Adjusted mean 

square 

Table A.30 shows the ANOVA outputs of the cutting force 𝐹𝐶 during wet conditions. 

It can be seen from the ANOVA that the linear model of the machining parameters 

cutting depth (B) and feed (C) have a stronger effect on the cutting force 𝐹𝐶. In 

addition, the quadratic value of cutting speed (A*A) are also significant. The two-way 

interaction shows that the interaction between (B*C) have more significant afect on 

the cutting force 𝐹𝐶 than the other intecations. 
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Table A.30 ANOVA output of cutting force 𝑭𝑪 in wet conditions 

Source DF Adj SS Adj MS F-Value P-Value Note 

Model 9 191206 21245 66.32 0.000 Significant <0.05 

  Linear 3 174971 58324 182.08 0.000  

    A 1 534 534 1.67 0.226  

    B 1 105303 105303 328.74 0.000  

    C 1 69134 69134 215.83 0.000  

  Square 3 10810 3603 11.25 0.002  

    A*A 1 10195 10195 31.83 0.000  

    B*B 1 572 572 1.79 0.211 Not Significant >0.05 

    C*C 1 999 999 3.12 0.108  

  2-Way 

Interaction 

3 5425 1808 5.65 0.016  

    A*B 1 1475 1475 4.61 0.057  

    A*C 1 1558 1558 4.86 0.052  

    B*C 1 2392 2392 7.47 0.021  

Error 10 3203 320    

  Lack-of-Fit 5 2860 572 8.32 0.018  

  Pure Error 5 344 69    

Total 19 194409     

DF: Degree of freedom Adj SS: Adjusted sum of square Adj MS: Adjusted mean 

square 

A.3.1.3  Model Validation Experiments 

The machining parameters for the validation trials and the results of these experiments 

are shown in Table A.31. 

Table A.31 Machining parameters and cutting forces results of the validation trials 

Trials 

No. 

Cutting parameters Dry Wet 

Cutting 

Speed 

(m/min) 

Cutting 

depth 

(mm) 

Feed 

(mm/rev) 

Thrust 

force 

(N) 

Cutting 

force 

(N) 

Thrust 

force 

(N) 

Cutting 

force 

(N) 

1 40 2.8 0.16 529.55 592.25 300.80 478.27 

2 40 2.5 0.12 392.65 456.90 205.85 327.30 

3 90 1.2 0.09 161.63 177.73 108.05 143.18 

4 140 2.8 0.09 326.40 346.00 282.45 337.55 

5 140 1.2 0.12 156.40 182.70 166.50 194.30 

6 90 2.5 0.12 357.10 396.20 365.80 416.30 

7 140 2.5 0.12 312.30 355.40 308.60 375.10 
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Chip Interface 
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B.1 Influence of Machining Parameters 

Table B.1 Machining parameters and reflection coefficient results  

 Cutting parameters Dry Wet 

Run 

Order 

V 

(m/min) 

t 

(mm) 

f 

(mm/rev) 
R 

Ac 

(𝒎𝒎𝟐) 
R 

Ac 

(𝒎𝒎𝟐) 

1 90 2 0.16 0.743 3.79 0.923 3.86 

2 90 2 0.16 0.751 3.95 0.927 3.84 

3 90 2 0.16 0.747 3.90 0.915 3.91 

4 40 2 0.16 0.690 4.59 0.814 1.77 

5 60 2.5 0.12 0.803 3.47 0.852 2.57 

6 60 2.5 0.2 0.681 5.38 0.848 5.06 

7 120 1.5 0.12 0.866 2.28 0.878 2.19 

8 140 2 0.16 0.797 3.21 0.935 3.29 

9 90 1.2 0.16 0.771 2.85 0.957 2.86 

10 120 1.5 0.2 0.714 3.61 0.901 3.67 

11 90 2.8 0.16 0.734 4.22 0.823 4.12 

12 120 2.5 0.2 0.716 4.66 0.875 4.25 

13 60 1.5 0.2 0.696 4.27 0.864 1.95 

14 90 2 0.16 0.742 3.62 0.930 3.56 

15 90 2 0.16 0.742 3.81 0.920 3.91 

16 90 2 0.23 0.676 5.12 0.910 5.38 

17 90 2 0.16 0.757 3.90 0.925 4.01 

18 60 1.5 0.12 0.839 2.66 0.882 0.86 

19 120 2.5 0.12 0.848 3.10 0.921 3.01 

20 90 2 0.09 0.895 2.28 0.936 1.60 

 

where: V: Cutting speed, t: cutting depth, f: feed, R: Reflection coefficient, Ac: Tool-

chip contact area,  
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B.2 Analysis of Variance (ANOVA) 

The results of the ANOVA of reflection coefficient during dry and wet cutting are 

presented in (Table B.2 and Table B.3). It can be seen from Table B.2 that the linear 

model of the cutting parameters cutting speed (A), cutting depth (B) and feed (C) have 

a stronger effect on the reflection coefficient during dry cutting. In addition, the 

quadratic value of feed (C*C)  is significant. As for the quadratic values of cutting 

speed (A*A) and cutting depth (B*B) there are no significant influence on the 

reflection coefficient. Regarding to the interaction influence, it can be seen from the 

ANOVA outputs that there is no significant effect on the reflection coefficient.  

Table B.2 ANOVA output of reflection coefficient in dry conditions 

Source DF Adj SS Adj MS F-Value P-Value 

Model 9 0.073648 0.008183 58.32 0.000 

  Linear 3 0.069698 0.023233 165.58 0.000 

    Speed 1 0.006876 0.006876 49.00 0.000 

    Depth 1 0.001216 0.001216 8.67 0.015 

    Feed 1 0.061606 0.061606 439.08 0.000 

  Square 3 0.003546 0.001182 8.42 0.004 

    Speed*Speed 1 0.000007 0.000007 0.05 0.830 

    Depth*Depth 1 0.000207 0.000207 1.48 0.252 

    Feed*Feed 1 0.003456 0.003456 24.63 0.001 

  2-Way Interaction 3 0.000404 0.000135 0.96 0.449 

    Speed*Depth 1 0.000141 0.000141 1.01 0.339 

    Speed*Feed 1 0.000046 0.000046 0.33 0.580 

    Depth*Feed 1 0.000216 0.000216 1.54 0.243 

Error 10 0.001403 0.000140   

  Lack-of-Fit 5 0.001213 0.000243 6.38 0.032 

  Pure Error 5 0.000190 0.000038   

Total 19 0.075051    

Table B.3 presents the ANOVA outputs of the cutting parameters on the reflection 

coefficient during applying cutting fluid. It can be seen from the table that the linear 

model of the machining parameters cutting speed (A) and cutting depth (B) have a 

stronger effect on the reflection coefficient during wet cutting while feed (C) has less 

effect on the output. In addition, the quadratic values of cutting speed (A*A) and 

cutting depth (B*B) are also significant. As for the quadratic value of feed (C*C) there 

is no significant influence on the reflection coefficient. Regarding to the interaction 

influence, it can be seen from the ANOVA outputs that there is no significant effect 

on the reflection coefficient.  
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Table B.3 ANOVA output of reflection coefficient in wet conditions 

Source DF Adj SS Adj MS F-Value P-Value 

Model 9 0.026552 0.002950 17.37 0.000 

Linear 3 0.015824 0.005275 31.05 0.000 

    Speed 1 0.010717 0.010717 63.09 0.000 

    Depth 1 0.003711 0.003711 21.85 0.001 

    Feed 1 0.001396 0.001396 8.22 0.017 

Square 3 0.010379 0.003460 20.37 0.000 

    Speed*Speed 1 0.004823 0.004823 28.39 0.000 

    Depth*Depth 1 0.006479 0.006479 38.14 0.000 

    Feed*Feed 1 0.000019 0.000019 0.11 0.744 

2-Way Interaction 3 0.000348 0.000116 0.68 0.583 

    Speed*Depth 1 0.000017 0.000017 0.10 0.757 

    Speed*Feed 1 0.000329 0.000329 1.94 0.194 

    Depth*Feed 1 0.000002 0.000002 0.01 0.926 

Error 10 0.001699 0.000170   

  Lack-of-Fit 5 0.001643 0.000329 29.60 0.001 

  Pure Error 5 0.000056 0.000011   

Total 19 0.028250    

Table B.4 shows the machining parameters of the validation trials and also the 

reflection coefficient results of these experiments during dry and wet cutting 

conditions.   

Table B.4 Machining parameters and reflection coefficient results of the validation trials 

Trials 

No. 

Cutting parameters Reflection Co. Dry Reflection Co. Wet 

V 

(m/min) 

t 

(mm) 

f 

(mm/rev) 
Experimental Model Experimental Model 

1 40 2.8 0.16 0.729 0.696 0.785 0.747 

2 40 2.5 0.12 0.753 0.785 0.793 0.789 

3 90 1.2 0.09 0.926 0.922 0.927 0.916 

4 120 1.2 0.09 0.935 0.944 0.944 0.938 

5 90 2.5 0.12 0.814 0.823 0.863 0.898 

6 140 2.5 0.12 0.874 0.861 0.936 0.907 
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Figure B.1 Reflection coefficients versus cutting speed for different feed at a constant cutting 

depth of (t=1.2 mm) 

 
Figure B.2 Reflection coefficients versus cutting speed for different feed at a constant cutting 

depth of (t=1.5 mm) 

 
Figure B.3 Reflection coefficients versus cutting speed for different feed at a constant cutting 

depth of (t=2.5 mm) 
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Figure B.4 Reflection coefficients versus cutting speed for different feed at a constant cutting 

depth of (t=2.8 mm) 

 
Figure B.5 Reflection coefficients versus feed for different cutting speed at a constant cutting 

depth of (t=1.2 mm) 

 
Figure B.6 Reflection coefficients versus feed for different cutting speed at a constant cutting 

depth of (t=1.5 mm) 
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Figure B.7 Reflection coefficients versus feed for different cutting speed at a constant cutting 

depth of (t=2 mm) 

 
Figure B.8 Reflection coefficients versus feed for different cutting speed at a constant cutting 

depth of (t=2.5 mm) 

 
Figure B.9 Reflection coefficients versus feed for different cutting speed at a constant cutting 

depth of (t=2.8 mm) 
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Figure B.10 Reflection coefficients versus cutting speed for different cutting depth at a constant 

feed of (f=0.09 mm/rev) 

 
Figure B.11 Reflection coefficients versus cutting speed for different cutting depth at a constant 

feed of (f=0.12 mm/rev) 

 
Figure B.12 Reflection coefficients versus cutting speed for different cutting depth at a constant 

feed of (f=0.2 mm/rev) 
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Figure B.13 Reflection coefficients versus cutting speed for different cutting depth at a constant 

feed of (f=0.23 mm/rev) 

 
Figure B.14 Reflection coefficients versus cutting depth for different cutting speed at a constant 

feed of (f=0.09 mm/rev) 

 
Figure B.15 Reflection coefficients versus cutting depth for different cutting speed at a constant 

feed of (f=0.12 mm/rev) 
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Figure B.16 Reflection coefficients versus cutting depth for different cutting speed at a constant 

feed of (f=0.16 mm/rev) 

 
Figure B.17 Reflection coefficients versus cutting depth for different cutting speed at a constant 

feed of (f=0.2 mm/rev) 

 
Figure B.18 Reflection coefficients versus cutting depth for different cutting speed at a constant 

feed of (f=0.23 mm/rev) 
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Figure B.19 Reflection coefficients versus feed for different cutting depth at a constant cutting 

speed of (V=40 m/min) 

 
Figure B.20 Reflection coefficients versus feed for different cutting depth at a constant cutting 

speed of (V=60 m/min) 

 
Figure B.21 Reflection coefficients versus feed for different cutting depth at a constant cutting 

speed of (V=120 m/min) 
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Figure B.22 Reflection coefficients versus feed for different cutting depth at a constant cutting 

speed of (V=140 m/min) 

 
Figure B.23 Reflection coefficients versus cutting depth for different feed at a constant cutting 

speed of (V=40 m/min) 

 
Figure B.24 Reflection coefficients versus cutting depth for different feed at a constant cutting 

speed of (V=60 m/min) 
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Figure B.25 Reflection coefficients versus cutting depth for different feed at a constant cutting 

speed of (V=90 m/min) 

 
Figure B.26 Reflection coefficients versus cutting depth for different feed at a constant cutting 

speed of (V=120 m/min) 

 
Figure B.27 Reflection coefficients versus cutting depth for different feed at a constant cutting 

speed of (V=140 m/min 
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