
 
 

 

Are all lobes made equal? Comparing the sedimentological 

processes and depositional architecture of submarine lobes 

in different palaeogeographic and sequence stratigraphic 

positions 

 

 

 

 

 

 

 

 

 

Yvonne Therese Spychala 

 

Submitted in accordance with the requirements for the degree of 

Doctor of Philosophy  

 

The University of Leeds 

School of Earth and Environment 

 

April 2016 

  



ii 
 

 

The candidate confirms that the work submitted is her own, except where work which 

has formed part of jointly-authored publications has been included. The contribution 

of the candidate and the other authors to this work has been explicitly indicated below. 

The candidate confirms that appropriate credit has been given within the thesis where 

reference has been made to the work of others.   

 

The work in Chapter 4 and 5 of the thesis has appeared in publication as 

follows: 

Spychala, Y.T., Hodgson, D.M., Flint, S.S., and Mountney, N.P., 2015, 

Constraining the sedimentology and stratigraphy of submarine intraslope lobe 

deposits using exhumed examples from the Karoo Basin, South Africa: 

Sedimentary Geology, v. 322, p. 67-81. 

Spychala, Y.T., Hodgson, D.M., Stevenson, C.J., Flint, S.S. (accepted), 

Aggradational lobe fringes: The influence of subtle intrabasinal seabed 

topography on sediment gravity flow processes and lobe stacking patterns: 

Sedimentology. DOI: 10.1111/sed.12315 

As the primary author, I was responsible for data collection, processing, 

collation and interpretation, and writing of the manuscript. The contribution of 

the other authors was limited to discussion of the data and editorial 

suggestions. 

 

This copy has been supplied on the understanding that it is copyright material and 

that no quotation from the thesis may be published without proper acknowledgement. 

 

The right of Yvonne Therese Spychala to be identified as Author of this work has been 

asserted by her in accordance with the Copyright, Designs and Patents Act 1988. 

 

© 2016 The University of Leeds and Yvonne Therese Spychala. 



iii 
 

Acknowledgements 

Firstly I would like to thank my supervisors Dave Hodgson, Steve Flint and Nigel 

Mountney. I’m really grateful for the support, guidance and encouragement you 

provided over the years. You managed to make a fully-fledged clastic sedimentologist 

out of a carbonate sedimentologist like me. I really appreciate all the experiences and 

opportunities I have received during my PhD, being involved in field work in South 

Africa and Argentina, attending conferences and working with some of the brightest 

people I have met. 

I would also like to thank the sponsors of the LOBE 2 project (Anardarko, Bayerngas 

Norge, BG, BHPBilliton, BP, Chevron, DONG Energy, ENGIE, E.ON, Maersk, 

Marathon, Petrobras, Shell, Statoil, Total, VNG Norge and Woodside) for financial 

support. Special thanks to ENGIE and Elodie du Fornel for my internship and giving 

me a fantastic six months in London. 

Furthermore, I’d like to acknowledge the people in the Laingsburg and Tanqua area 

for permission to access their land. Special thanks to Madelene and Alwyn who 

always provided me with an open ear and coffee, Annalie Theron and DeVille 

Wickens who helped with contacting the farmers, and the lovely rangers of the 

Tanqua National Park. I also like to thank Graham Botha for logistical help in our 

Stellenbosch core store. 

I’m grateful to all the people who assisted me during my field work: Marcello Gugliotta, 

Sarah Cobain, Riccardo Teloni, Mariana Gomez O’Connell and Aurelia Privat – I 

couldn’t have done it without you. I will never forget Marcello’s obsession with 

baboons and the Italian cuisine, and Mariana’s attempts to drive a manual car being 

used to driving automatic ones, and how happy Riccardo was to see slumps in the 

field. 

I’d like to acknowledge Amandine Prélat, Chris Stevenson and Ian Kane for helpful 

discussions of my data. 

Thank you to my fellow members of the Stratigraphy Group (Menno Hofstra, Janet 

Richardson, Hannah Brooks, Andrea Ortiz-Karpf, Sarah Cobain, Miquel Poyatos 

More, Luz Gomis, Aurelia Privat, Chris Stevenson), for making my time in the UK a 

memorable experience. Special thanks to Janet Richardson who has been my flat 

mate during the write up period. You will always be an honary member of the 

‘Spychala Clan’.  Thanks also to Riccardo Teloni, Michelle Shiers, Catherine Russell 

and Catherine Burns - it wouldn’t have been the same without you. 



iv 
 

Thanks to Emma Morris for being an awesome flat mate and my guide in everything 

STRAT related when I first started out as well as supporting me through the write up 

phase. It’s very much appreciated! 

To all my friends in Germany (Pat, Angie, Maria, Sven, Stef) who kept in contact even 

though I decided to bugger off to the rainy island that is Great Britain: Thanks for your 

support. It’s finally done- Do hänn mer all druff gwad. 

Finally, to my family: Thanks for your love and support. Coming home to recharge my 

batteries for the next stretch of my PhD was always much appreciated and I’m very 

grateful that is was possible whenever I needed it. Das Sauerland wird immer meine 

Heimat bleiben, egal wo ich zuhause bin. 



v 
 

Abstract 

Submarine lobes are high aspect ratio sand-rich deposits fed by sediment gravity 

flows via channels. They are a major component of submarine fans, the largest 

depositional bodies on the planet, and therefore represent an important archive of 

palaeo-environmental change. Basin-floor, or terminal, lobes, are well-studied. Here, 

lobes in other geographical positions and the influence of confinement (especially 

when subtle and dynamic) and stratigraphic position on submarine lobe geometry, 

stacking patterns, and sedimentary facies are investigated. 

Extensive outcrop exposures and near-outcrop research boreholes from Permian 

fine-grained basin-floor and intraslope lobes in the Karoo Basin (South Africa) allow 

spatial and stratigraphic variability in sedimentary facies and architecture to be 

constrained. One hundred and seventy outcrop logs (~6.9 km total length) and 11 

core logs (~1 km) from Units A and E, Laingsburg depocentre and Fan 4, Tanqua 

depocentre, were integrated to enable the analysis of different lobe types within a 

physical hierarchy and enabled detailed facies distribution trends, stacking patterns 

and depositional models to be established. 

The main outcomes of the study are: 1) recognition criteria for three distinctive lobe 

fringe settings: frontal, lateral and aggradational lobe fringes; observed differences 

between frontal and lateral lobe fringe deposits are controlled by flow processes, 

while aggradational lobe fringes form in response to subtle confinement by 

intrabasinal slopes; 2) the documentation of lobe stacking patterns within lobe 

complexes and complex sets. Karoo lobes show a range of stacking patterns that are 

controlled by seabed topography and sediment supply; 3) the evaluation of hybrid 

bed distribution that indicates strong geographic but weak stratigraphic trends at 

different hierarchical scales. Lobe stacking patterns are shown to be a major control 

in these trends; and 4) the comparison of depositional models established from basin-

floor and rare examples of exhumed intraslope lobe complexes that show distinct 

differences. 
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Chapter 1 

 

Introduction 
 

1.1 Background 
 

Submarine lobes are high aspect ratio sand-rich deposits that are fed by turbidity 

currents and debris flows via channels in deep-marine settings. Submarine lobes 

have been identified within various deep-water settings, including the basin-floor (e.g. 

Harms, 1974; Twichell et al., 1992; den Hartog Jager et al., 1993; Sixsmith et al., 

2004; Gervais et al., 2006; Deptuck et al., 2008; Jegou et al., 2008; Prélat et al., 2009, 

Migeon et al., 2010; Prélat et al., 2010; Macdonald et al., 2011; Prélat & Hodgson, 

2013; Grundvåg et al., 2014; Picot et al., 2016), the base-of-slope (Posamentier & 

Kolla, 2003, Deptuck et al., 2008; Morris et al., 2014a) and on the continental slope 

(e.g.  Prather et al., 1998; Fiduk et al., 1999; Adeogba et al., 2005; Li et al., 2010; 

Pirmez et al., 2012; Prather et al., 2012 a, b; Oluboyo et al., 2014; Ortiz-Karpf et al., 

2015). Their facies associations and distributions, architecture and stacking patterns 

are controlled by the topographical configuration of the seabed, sediment supply 

system and slope maturity (disequilibrium/equilibrium). Submarine lobes are a major 

component of submarine fans, the largest depositional bodies on the planet, and 

therefore represent an important archive of palaeo-environmental change. Submarine 

lobe deposits are also of economic interest because of their potential as hydrocarbon 

reservoirs.  

 

Over the last decade, outcrop studies (e.g. Prélat et al., 2009; Macdonald et al., 2011; 

Etienne et al., 2012; Grundvåg et al., 2014), geophysical studies (e.g. Gervais et al., 

2006; Deptuck et al., 2008, Migeon et al., 2010; Gamberi & Rovere, 2011; Gamberi 

et al., 2011; Prather et al., 2012 a, b; Oluboyo et al., 2014), numerical and stochastic 

modelling (Pyrcz et al., 2005; Groenenberg et al., 2010) and flume tank experiments 

(e.g. Ouchi et al., 1995; Baas et al., 2004; Fernandez et al., 2014) have been 

undertaken to constrain the hierarchy, geometries and stacking patterns of submarine 

lobe deposits. More recent studies established a more detailed hierarchy of lobe sub-

environments (Gervais et al., 2006; Deptuck et al., 2008, Saller et al., 2008; Prélat et 
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al., 2009; Mulder & Etienne, 2010; Prélat et al., 2010; Bernhard et al., 2012; Etienne 

et al., 2012; Grundvåg et al., 2014).  

 

Outcrop and subsurface studies have highlighted that hybrid beds are an important 

component of lobe deposits (Ito, 2008; Hodgson, 2009; Talling et al., 2012a; Etienne 

et al., 2012; Grundvåg et al., 2014; Patacci et al., 2014; Collins et al., 2015; Fonnesu 

et al., 2015). The range of hybrid bed types has been studied by several authors (e.g. 

Lowe & Guy, 2000; Haughton et al., 2003; Talling et al., 2004; Ito, 2008; Davies et 

al., 2009; Haughton et al., 2009; Hodgson, 2009; Magalhaes & Tinterri, 2010; Kane 

& Pontén, 2012; Patacci et al., 2014; Fonnesu et al., 2015) and several flow 

processes have been proposed for their deposition (e.g. Wood & Smith, 1958; Nelson 

et al., 1992; Masson et al., 1997; Lowe & Guy, 2000; Haughton et al., 2003; Talling 

et al., 2004; Ito, 2008; Davies et al., 2009; Haughton et al., 2009; Hodgson, 2009; 

Baas et al., 2009; Sumner et al., 2009; Baas et al., 2011; Kane & Pontén, 2012; 

Patacci et al., 2014). However, quantification of stratigraphic and geographic trends 

are poorly constrained. 

 

The research presented in this thesis builds strongly on outcomes from the LOBE 

Phase 1 project, which focused on developing models for the depositional 

architecture and stratigraphic evolution of submarine lobe deposits (cf. Prélat et al., 

2009, 2010; Prélat & Hodgson, 2013) based on field and core data in the Karoo Basin, 

South Africa, and complementary process-based numerical models (cf. Groenenberg 

et al., 2010). 

 

1.2 Thesis aims 
 

The principal objective of this thesis is to refine and extend depositional and 

stratigraphic models established in the LOBE 1 project. As well as basin-floor or 

terminal lobes, which the first phase of the project focussed on, other geographic 

positions of submarine lobes have been identified within deep-water systems, but 

their deposits are poorly constrained in terms of detailed sedimentology. Furthermore, 

the influence of confinement (especially when subtle and dynamic) and stratigraphic 

position on submarine lobe geometry, stacking pattern, and facies are still poorly 

understood. Basin-floor lobes and intraslope lobes have been identified in the 

Laingsburg (Laingsburg and Fort Brown Formations) and Tanqua (Skoorsteenberg 

Formation) depocentres of the Karoo Basin, South Africa. Extensive and well-
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preserved outcrops enable the analysis of different lobe types in various hierarchical 

and temporal scales, and enable detailed facies distribution trends, stacking patterns 

and depositional models to be established.   

In this context, the thesis is focussed around key research questions. These are 

outlined in detail as follows, and will be returned to at the end of the thesis (Chapter 

7): 

 

Question 1: What are the sedimentological and stratigraphic expressions of lobe 

fringes? 

 

Rationale: Submarine lobe fringe deposits are heterolithic successions that can be 

rich in hybrid beds (e.g. Haughton et al., 2003; Ito, 2008; Haughton et al., 2009; Davis 

et al., 2009, Hodgson et al., 2009; Talling et al., 2012a; Etienne et al., 2012; Grundvåg 

et al., 2014; Patacci et al., 2014; Collins et al., 2015; Fonnesu et al., 2015). They 

represent the marginal parts of lobe complexes, or can stratigraphically separate lobe 

axis deposits through compensational stacking (Prélat et al., 2009; Prélat & Hodgson, 

2013). Lobe fringe deposits are the least well studied sub-environments of lobes 

despite 1) showing the widest range of facies configurations and 2) their potential to 

act as stratigraphic traps being encased within hemipelagic mudstones at the margins 

of lobe complexes. Testing and evaluating the temporal and spatial variability of lobe 

fringe successions could help improve reconstructions of deep-water fans, provide 

suitable building blocks for reservoir modelling and reduce uncertainty in the 

evaluation of subsurface stratigraphic traps (e.g. Biddle & Wielchowsky, 1994; 

Etienne et al., 2012; Bakke et al., 2013; Collins et al., 2015; Grecula et al., 2015).  

Lobe fringe facies associations include: 1) thick-bedded structureless or planar 

laminated sandstones that pinch and swell and can comprise thick debrites; 2) 

argillaceous and clast-rich hybrid beds; and 3) thin-bedded current ripple-laminated 

sandstones and siltstones. Depending on the distribution of these facies major 

heterogeneities can be created within a lobe complex. For example, hybrid beds can 

introduce reservoir heterogeneities on a bed scale due to the vertical juxtaposition of 

reservoir and non-reservoir lithologies (Davies et al., 2009; Haughton et al., 2009). 

Differences between down-dip and across-strike facies transitions in lobe deposits 

have been documented (e.g. MacPherson, 1978; Pickering, 1981, 1983), which could 

lead to distinctive facies trends in the lobe fringes. However, detailed depositional 

architecture, recognition criteria and variability between frontal (down-dip) and 
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across-strike (lateral) lobe fringe environments remain poorly constrained. In addition, 

even subtle basin confinement could influence lobe fringe facies and stacking 

patterns as these are deposited by stratified flows. Several authors (Smith, 1987 a, 

b; Wilson et al., 1992; Smith, 2004 b) described an example of subtle topography and 

its influence on the Welsh Basin Silurian sandstone systems, where sand-prone lobe 

deposits laterally grade or transition into mud-rich turbiditic 'levee-like' constructional 

features due to the influence of faults. These features are interpreted as lobe fringes 

(Smith, 1987 a, b; Wilson et al., 1992; Smith, 2004 b). The sedimentology of these 

lobe fringes has not yet been constrained in detail, regarding sedimentary facies, 

processes and stacking patterns.  

Establishing criteria for the identification of different lobe fringe settings could improve 

interpretation of palaeogeographic setting and degree of basin confinement 

 

To document the variability in the expression of lobe fringes, outcrop and core data 

from two well-constrained Permian basin-floor fans (Fan 4, Skoorsteenberg 

Formation, and Unit A, Laingsburg Formation) in the Karoo Basin have been 

assessed. Specific aims are 1) to establish characteristic facies associations that 

distinguish different lobe fringe settings, and 2) to discuss the role of confinement in 

the distribution and character of lobe fringes. 

 

Question 2: What is the range of stacking patterns that can be constrained from lobe 

complexes and lobe complex sets? 

 

Rationale: Stacking patterns of lobes are proxies for the relationship between 

sediment supply and seabed topography during the deposition of lobe complexes and 

lobe complex sets (Piper & Normark, 1983; Mitchum & Van Wagoner, 1991; Schlager, 

1993; Twichell et al., 2005; Picot et al., 2016). Traditionally, the existence of 

thickening upward cycles in lobes was interpreted as evidence that progradational 

stacking was the prevalent stacking pattern in submarine lobes (e.g. Mutti, 1974; Ricci 

Lucchi, 1975). Since then, several types of stacking patterns have been documented 

from lobe successions (e.g. Gervais et al., 2006; Amy et al., 2007; Deptuck et al., 

2008; MacDonald et al., 2011; Prather et al., 2012b; Prélat & Hodgson, 2013, 

Burgreen & Graham, 2014; Grundvåg et al., 2014; Picot et al., 2016): compensational, 

aggradational, and longitudinal, with either basinward (progradational) and landward 
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(retrogradational) trends. Compensational stacking describes the tendency of 

sediment to fill topographic lows created by preceding deposits (Mutti & Sonnino, 

1981; Straub et al., 2009), while aggradational stacking occurs where avulsion is not 

possible due to confinement (Burgreen & Graham, 2014). Longitudinal stacking is 

controlled by basin confinement (which limits space for lateral migration), and 

sediment supply (Amy et al., 2007; Prather et al., 2012b; Grundvåg et al., 2014). 

There is a continuum between these stacking patterns and a lobe complex set, which 

is formed by several genetically related lobe complexes within the same lowstand 

systems tract, can display different stacking patterns depending on the area of study 

and data type/resolution (e.g. well logs, core and outcrop). 

Understanding stacking patterns from 1D data, for example core and well logs, or 

from limited 2D data, for example outcrops, will help to evaluate the nature of seabed 

topography and the sediment supply during the development of lobe complexes and 

lobe complex sets. Detailed sedimentological facies and geometry studies enable the 

determination of the influence of seabed topography during the deposition of a lobe 

complex. Integration of data with regional studies can constrain the overall nature of 

the system (prograding or retrograding) and therefore provide a qualitative idea of 

sediment supply over time.  

 

An extensive data set including basin-floor and intraslope lobe deposits from the 

Tanqua depocentres (Fan 4, Skoorsteenberg Formation) and Laingsburg depocentre 

(Unit A, Laingsburg Formation, and Units D/E and E, Fort Brown Formation) has been 

evaluated to constrain dominant stacking patterns and their controlling factors. 

Specific aims are: 1) to document the range of stacking patterns observed in the 

Karoo Basin; 2) to provide recognition criteria for each stacking pattern that can be 

used in 1D and 2D data sets; and 3) discuss allogenic and autogenic controls on 

stacking patterns. 

 

Question 3: What is the stratigraphic and geographic distribution of hybrid beds in 

submarine lobes? 

 

Rationale: Hybrid bed deposits comprise a division that was deposited by a turbulent 

flow and a division that was deposited by a debritic flow and have been recognized 

as an important part of the rock record in lobe deposits(e.g. Ito, 2008; Hodgson, 2009; 
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Talling et al., 2012a; Etienne et al., 2012; Grundvåg et al., 2014; Patacci et al., 2014; 

Collins et al., 2015; Fonnesu et al., 2015). The distinction of their flow processes and 

their quantitative importance in the overall succession is important from a 

hydrocarbon exploration perspective because they affect reservoir quality. Over the 

last decade, many studies have focused on establishing recognition criteria and 

classifications for hybrid beds (e.g. Haughton et al., 2003; Talling et al., 2004; Ito, 

2008; Davies et al., 2009; Haughton et al., 2009; Hodgson, 2009; Magalhaes & 

Tinterri, 2010; Kane & Pontén, 2012; Patacci et al., 2014; Fonnesu et al., 2015) and 

their detailed process sedimentology (e.g. Haughton et al., 2003; Talling et al., 2004; 

Baas et al., 2009; Sumner et al., 2009; Baas et al., 2011). It has been proposed that 

hybrid beds are more common in distal fan and lobe settings, although they can also 

occur in proximal areas (Talling et al., 2004; Ito, 2008; Hodgson, 2009; Pyles & 

Jennette, 2009; Talling et al., 2012a; Etienne et al., 2012; Kane & Pontén, 2012; 

Grundvåg et al., 2014; Collins et al., 2015; Fonnesu et al., 2015; Southern et al., 

2015).  Several authors (e.g. Haughton et al., 2009; Hodgson, 2009) suggested, that 

hybrid bed deposits are preferentially developed in deposits of fan initiation and 

retreat phases during periods of disequilibrium over steep, out-of-grade slopes. 

However, the majority of studies are of a qualitative nature and therefore distribution 

trends maybe biased. Quantitative analysis can enable unbiased interpretations that 

are important to evaluate hybrid bed occurrence and distribution in submarine lobes. 

Such an approach will aid the understanding of heterogeneities within lobe deposits 

in a more predictable manner than qualitative data alone and can provide modellers 

with essential values to constrain geological and reservoir models. 

The well-constrained data set of submarine basin-floor lobes in the Karoo Basin (Fan 

4, Skoorsteenberg Formation, and Unit A, Laingsburg Formation) enabled a 

quantitative study that focuses on both stratigraphic and palaeogeographic trends. 

Studies of palaeogeographic trends will test the hypothesis that hybrid beds are more 

common in distal lobe settings, whereas studies of stratigraphic trends will determine 

if the occurrence of hybrid beds is more common in the initiation and growth phase of 

a lobe complex and complex set (e.g. Haughton et al., 2003, 2009; Hodgson, 2009).  
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Question 4: Can we apply concepts established from basin-floor lobes to lobe 

deposits in different stratigraphic and geographical settings? 

 

Rationale: Depositional and stratigraphic models of basin-floor lobes from the Karoo 

Basin, South Africa, act as analogues for a wide range of lobe deposits that are not 

necessarily in the same stratigraphic and geographical settings. Lobe deposits have 

been observed from various other settings, including on the continental slope (e.g.  

Prather et al., 1998; Fiduk et al., 1999; Adeogba et al., 2005; Li et al., 2010; Pirmez 

et al., 2012; Prather et al., 2012 a, b; Oluboyo et al., 2014; Ortiz-Karpf et al., 2015) 

and at the base-of-slope (Posamentier & Kolla, 2003; Deptuck et al., 2008 Morris et 

al., 2014a). They can be influenced by confinement in tectonically active settings or 

be deposited on the slope where accommodation is created by tectonics, halokinesis, 

mud diapirism or slide scars (e.g. Booth et al., 2003; Adeogba et al., 2005; Marchès 

et al., 2010; Li et al., 2012; Morris et al., 2014a; Oluboyo et al., 2014; Ortiz-Karpf et 

al., 2015). Testing the exportability of the conceptual models and quantitative data 

from unconfined basin-floor lobes is an important step in establishing important 

similarities and differences between different lobe types. The identification of these 

differences can be used to aid the identification of other lobe types (e.g. intraslope 

lobes) in less well constrained subsurface and outcrop datasets. 

 

The extensive data set of basin-floor lobes (Fan 3, Tanqua depocentre, Prélat et al., 

2009; Unit A, Laingsburg depocentre, Prélat & Hodgson, 2013) as well as new 

findings presented in this thesis allow comparison to intraslope lobe deposits of the 

Fort Brown Formation (Unit D/E and E) and recognition criteria for intraslope lobes to 

be determined.   

 

1.3 Thesis outline 
 

This thesis includes three manuscripts that have been accepted, or submitted, for 

publication in international peer-reviewed journals (Chapter 3-5). It also contains one 

chapter that is in preparation for submission (Chapter 6). 

 

Chapter 2: Submarine lobes: Hierarchy, anatomy and environments. This chapter 

summarizes the current understanding of the sedimentology of submarine lobes. This 
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is followed by an introduction to the field area, where the following studies were 

carried out, and a summary of methods used within.  

  

Chapter 3: Frontal and lateral submarine lobe fringes: Comparing sedimentary 

facies, architecture and flow processes. – submitted to the Journal of Sedimentary 

Research. This chapter assesses the difference between frontal and lateral lobe 

fringes for the first time using the palaeogeographically well-constrained Fan 4 

succession of the Skoorsteenberg Formation, Karoo Basin, South Africa. This chapter 

also discusses the control on these differences by flow processes and the implications 

of confinement to lobe fringe distribution patterns. 

 

Chapter 4: Aggradational lobe fringes: the influence of subtle intrabasinal topography 

on sediment gravity flow processes and lobe stacking patterns. – accepted at 

Sedimentology. This chapter examines the influence of a gentle intrabasinal slope on 

the depositional architecture of submarine lobe deposits. Modifications to lobe fringe 

facies and their stacking patterns are assessed and the nature of the confining slope 

evaluated.  

 

Chapter 5: Constraining the sedimentology and stratigraphy of submarine intraslope 

lobe deposits using exhumed examples from the Karoo Basin, South Africa. – 

published in Sedimentary Geology. This chapter presents the detailed sedimentology 

of intraslope lobes (facies, lobe environments and stacking patterns). The 

characteristics of intraslope lobes are compared to those of basin-floor lobes in the 

discussion and the creation of accommodation for lobe deposition on the slope is 

evaluated. 

 

Chapter 6: Is hybrid bed distribution in basin-floor fans predictable? – in preparation 

for submission. This chapter tests the predictability of hybrid beds within basin-floor 

lobe successions. In this quantitative study, that integrates outcrop and core data, 

geographical and stratigraphical trends of hybrid bed distribution have been 

evaluated. 
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Chapter 7: This chapter provides an extended discussion that addresses the key 

research questions presented in Chapter 1. Findings from research presented in 

chapters 3-6 are collated and synthesised to answer these questions. This chapter 

also includes the conclusions and wider implications of the research. Finally, possible 

future research foci are proposed. 
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Chapter 2 

 

Submarine lobes: Hierarchy, anatomy, environments and 

processes 
 

This chapter provides additional background knowledge that underpin the Chapters 

3-6, which have been written as manuscripts. It covers the sedimentology and 

stratigraphy of submarine lobes, subaqueous gravity flow processes, the geological 

setting of the study area and finally a detailed summary of the methodologies used. 

 

2.1 Sedimentology of submarine lobes 
 

Submarine lobes are defined as convex-upward deposits that are located down-dip 

of a submarine channel-mouth (e.g. Normark, 1970; Mutti, 1974; Pickering, 1981; 

Swart, 1994; Deptuck et al., 2008). A geographically defined channel-lobe transition 

zone (CLTZ) can exist between channel and lobe deposits (Bouma et al., 1985; Wynn 

et al., 2002; Macdonald et al., 2011). Traditionally, lobe deposits have been described 

as simple radial (lobate) bodies that thin and fine from an apex (e.g. Normark, 1970; 

Mutti, 1977; Normark, 1978; Lowe, 1982; Bouma, 2000) and have a convex-upward 

or lensoidal shape in cross-section (Swart, 1994; Bouma, 2000; Deptuck et al., 2008; 

Saller et al., 2008). Over the last decades, however, it has been recognized that the 

anatomy of lobe deposits is more complicated in terms of morphology, sub-

environments and stacking patterns (e.g. Nelson et al., 1992; Twichell et al., 1992; 

Bouma & Rozman, 2000; Gervais, 2006; Hodgson et al., 2006; Deptuck et al., 2008; 

Prélat et al., 2009; Groenenberg et al., 2010; Etienne et al., 2012; Burgreen & 

Graham, 2014, Grundvåg et al., 2014). The range of lobe settings, hierarchy, 

environments, stacking patterns and dimensions is reviewed in the following section: 

 

2.1.1 Lobe settings 
 

Lobes have been observed from various settings, including the basin-floor, the base-

of-slope and on the continental slope (Fig. 2.1). Basin-floor or terminal lobes can 

represent the  dominant component of submarine fan successions and criteria for 

their recognition are well established (e.g. Harms, 1974; Twichell et al., 1992; Hartog 
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Jager et al., 1993; Sixsmith et al., 2004; Gervais et al., 2006; Deptuck et al., 2008; 

Jegou et al., 2008; Prélat et al., 2009, Migeon et al., 2010; Prélat et al., 2010; 

Macdonald et al., 2011; Prélat & Hodgson, 2013; Grundvåg et al., 2014). 

 

 

Figure 2.1. Lobe settings including the slope, the base of slope and the basin floor. 

 

 

Examples of base-of-slope lobe deposits include "toe-of-slope lobes" (Deptuck et al., 

2008) and the so-called frontal lobes of Posamentier & Kolla (2003) and Morris et al. 

(2014a) and are deposited over a zone that lies on the lower slope and the basin-

floor. Not much is known about the detailed sedimentology of base-of-slope lobes as 

they are partially preserved in outcrop (Morris et al., 2014a), commonly channelized 

and misinterpreted as being part of the levee or channel-mouth bars. Intraslope lobes 

are deposited in areas of slope accommodation. They are also referred to as perched 

lobes and transient fans. Documented examples include studies from the Gulf of 

Mexico (Prather et al., 1998; Fiduk et al., 1999; Pirmez et al., 2012; Prather et al., 

2012b), the Niger Delta continental slope offshore Nigeria (Adeogba et al., 2005; Li 

et al., 2010; Barton, 2012; Prather et al., 2012a), the Lower Congo Basin, offshore 

Angola (Oluboyo et al., 2014), the Algarve Margin, offshore Portugal (Marchès et al., 

2010), the Gioia Basin, southeastern Tyrrhenian Sea (Gamberi and Rovere, 2011; 

Gamberi et al., 2011) and the Baiyun Sag, South China Sea (Li et al., 2012). 

 



12 
 

2.1.2 Lobe hierarchy 
 

Hierarchical schemes aid comparison of scales, processes, and stacking patterns 

across different datasets and have been developed for the component architectural 

elements in a range of siliciclastic settings including fluvial, submarine channel/levee, 

and aeolian dune deposits (e.g. Allen, 1966; Mutti & Normark, 1987; Miall, 1988; 

Pickering & Clark, 1996; Sprague et al., 2003).  

Over the recent years, it has been recognized that lobe deposits show a hierarchical 

structure (Gervais et al., 2006; Deptuck et al., 2008, Saller et al., 2008; Prélat et al., 

2009; Mulder & Etienne, 2010; Prélat et al., 2010; Bernhard et al., 2012; Etienne et 

al., 2012; Grundvåg et al., 2014). A fourfold hierarchy of lobes in the Karoo Basin was 

proposed by Prélat et al. (2009): 1) a ‘bed’ represents a single depositional event; 2) 

one or more beds stack to form a ‘lobe element’; 3) several lobe elements that are 

divided by thin siltstone intervals form a ‘lobe’; 4) one or more related lobes stack to 

form a ‘lobe complex’ (Fig. 2.2).  

 

Figure 2.2. Hierarchy of depositional elements of lobes in plan view. The fourfold hierarchy comprises: 
bed/bed sets, lobe element, lobe and lobe complex (from Prélat et al., 2010). 
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Lobe complexes are deposited as packages during discrete periods of channel 

activity or growth phases and bounded by fine-grained strata due to avulsion (cf. 

Feeley et al., 1985; Deptuck et al., 2008; Prélat et al., 2009) or changes in relative 

sea level (Flint et al., 2011). Their size, shape and architectural complexity depends 

on the period prior to avulsion (or abandonment; Deptuck et al., 2008). The hierarchy 

can be expanded by adding a fifth hierarchical unit, the ‘lobe complex set’, which is 

formed by several related lobe complexes within the same lowstand systems tract. 

Similar hierarchy divisions have been used by several authors (cf. Table 2.1) to 

describe depositional variability of lobes across different scales. Etienne et al. (2012) 

stated that the highest complexity in architecture and facies can be found on bed and 

lobe scale, whereas the laterally extensive outcrops on lobe complex scale appear to 

possess 'sheet-like' geometries.  

 

 

Table 2.1. Comparison of hierarchies used to describe lobe deposits in outcrop and in geophysical 
studies. 

 

2.1.3 Lobe environments 
 

Traditionally, authors distinguished between a thick-bedded lobe body and a thin-

bedded lobe fringe (e.g. Pickering, 1981; Deptuck et al., 2008; Hadelari et al., 2009). 

However, lobe deposits show more complexity and thus require further sub-division. 

Prélat et al. (2009) established four sub-environments for lobe deposits that are 

characterized by specific facies associations and thickness trends, termed lobe axis, 

lobe off-axis, lobe fringe and lobe distal fringe (Fig. 2.3). This terminology has been 

adapted by several authors working with outcrops in different basin settings, e.g. the 

Magallanes Basin (Bernhardt et al., 2012). 

Authors Data set Hierarchy

Prélat et al., 2009  

Grundvåg et al., 2014
outcrop bed/bedset lobe element lobe lobe complex lobe complex set

Mulder & Etienne, 

2010 Etienne et al., 

2012a,b 

outcrop bed lobe element lobe lobe system lobe complex  

Gervais et al., 2006 

Bourget et al., 2010
geophysical

elementary sedimentary 

body
internal unit lobe lobe complex

Deptuck et al., 2008 

MacDonald et al., 2011

geophysical and 

outcrop
bed lobe element composite lobe lobe complex

Jegou et al., 2008 geophysical subunit channel-mouth lobe

channel-

mouth lobe 

complex

Saller et al., 2008 geophysical

sheetlike 

splay 

elements

lobe fan
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Figure 2.3. Lobe sub-environments. From proximal to distal: lobe axis, lobe off-axis, lobe fringe and 
lobe distal fringe (Prélat et al., 2009) 

 

Thick-bedded sand-prone deposits that commonly show amalgamation define the 

lobe axis. The lobe axis represents the most proximal area to the feeder-channel 

channelization and scouring is commonly identified (Bouma, 2000; Deptuck et al., 

2008; Bourget et al., 2010; Grundvåg et al., 2014). The deposits of the lobe axis are 

laterally extensive down-dip and across strike for several hundred metres and 

generally show tabular geometries. Units of high amalgamation (high amalgamation 

zones) can be traced into non-amalgamated medium-bedded units of the lobe off-

axis towards the frontal and lateral margin of the lobe deposits. (Fig. 2.4) 
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Figure 2.4. Example of lobe axis deposits from the Laingsburg Formation, Karoo Basin, South Africa. 
Geologist (1.65 m) for scale. 

 

The lobe off-axis is characterized by medium-bedded sand-prone deposits that are 

either amalgamated or layered. The beds commonly show abundant sedimentary 

structures (planar lamination, ripple lamination, climbing-ripple lamination and wavy 

lamination). Lobe off-axis deposits are characterized by 50-85% sandstone. They 

show tabular geometries in outcrop and can be traced out for several hundred metres 

in both dip and strike directions (Fig. 2.5). 

 

Figure 2.5. Example of lobe off-axis deposits from the Laingsburg Formation, Karoo Basin, South 
Africa. Geologist (1.70 m) for scale. 
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The lobe fringe displays a heterolithic character as medium-bedded deposits from 

the lobe-axis generally thin and fine frontally and laterally basinward and turbidites 

can be replaced by hybrid beds. Lobe fringe deposits are characterized by 20-50% 

sandstone. At outcrop, lobe fringe deposits can show either tapering or pinch-and-

swell geometries. The pronounced pinch-and-swell geometries give the impression 

of lenticular bodies, even though no evidence of truncation is observed (Bouma & 

Rozman, 2000; Groenenberg et al., 2010). The lateral extent of lobe fringe deposits 

is variable and ranges from a few (1-2 km) to several (up to 5 km) kilometres. The 

term of 'interlobes' has been used to describe facies that correspond to these lobe 

fringe characteristics (e.g. Carr & Gardner, 2000; Prélat et al., 2009). A more detailed 

study on lobe fringe sedimentology is presented in Chapters 3 and 4 (Fig. 2.6). The 

transition from lobe fringe to lobe distal fringe environment marks the sand pinchout 

of the system. 

 

 

Figure 2.6. Heterolithic deposits of lobe fringes. An example from the Skoorsteenberg Formation, 
Karoo Basin, South Africa. Logging pole for scale. 

 

The lobe distal fringe environment is dominated by siltstone deposits with rare 

intercalated sandstone beds (< 20% sandstone). Siltstones can aggrade to bedded 

successions of several metres. Lobe distal fringe deposits form an extensive ‘halo’ 

around the main sand-prone lobe body and extend for several kilometres (Fig. 2.7). 
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Figure 2.7. Siltstone is the dominant facies in the distal lobe fringe setting. An example from the Fort 
Brown Formation, Karoo Basin, South Africa. Logging pole for scale. 

 

2.1.4 Lobe stacking patterns 
 

In general, three types of stacking patterns can be observed: compensational, 

aggradational stacking and longitudinal stacking. Stacking patterns are dependent on 

the confinement of the basin, avulsion of the feeder-channels and sediment supply. 

Compensational stacking describes the tendency of sediment to fill topographic lows 

created by preceding deposits (Mutti & Sonnino, 1981; Straub et al., 2009). Therefore, 

subsequent lobes will avoid the depositional relief created by underlying lobes, if 

sufficient accommodation is present to do so. Compensational stacking can occur 

across many scales from bed to lobe complex scale (Deptuck et al., 2008; Prélat et 

al., 2013) to lowstand systems tracts (van der Merwe et al., 2014). Migration of lobe 

deposition can be lateral or longitudinal (progradational or retrogradational; Gervais 

et al., 2006). Aggradational stacking occurs where avulsion is not possible due to the 

scale of confinement (Burgreen & Graham, 2014) and is commonly observed with 

lobes deposited in highly confined settings, e.g. mini-basins and ponded basins (e.g. 

Burgreen & Graham, 2014). Longitudinal stacking patterns can be either 

progradational (basinwards) or retrogradational (landwards). Progradational stacking 

has been described with basin configurations that limited the space for lateral 
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migration of lobes, increased rates of sedimentation due to shelf edge progradation 

and initiation of larger volume flows, and/or high sediment supply rates resulting in 

rapid shelf-margin accretion (Grundvåg et al., 2014). Progradational stacking patterns 

are associated with indicators of erosion and bypass of sediment farther into the 

basin, such as distributary channels, scours and megaflutes (Macdonald et al., 2011; 

Grundvåg et al., 2014). Landward stacking has been observed in highly confined 

basins, e.g. the Peïra Cava Basin, France (Amy et al., 2007) and the Brazos-Trinity 

system, Western Gulf of Mexico (Prather et al., 2012b). The landwards shift in 

deposition has been inferred to be caused by aggradation in the depocentre and an 

up-slope migration of the slope break (Amy et al., 2007).   

 

2.1.5 Lobe shapes and dimensions 
 

Lobes are described as having lenticular convex-upward cross-sections (Normark, 

1970; Swart, 1994; Bouma, 2000; Deptuck et al., 2008; Saller et al., 2008) and 

elongated ellipse to equidimensional plan view shapes (Vernai, 1998; Kenyon et al., 

2002; Jegou et al., 2008; Saller et al., 2008). Bouma (2000) suggested that the minor 

convexity of lobe deposits maybe too subtle to be observable in the field and therefore 

lobe deposits will exhibit apparently tabular geometries. More recently, it has been 

observed that lobes can show finger-like patterns at their most distal setting (Twichell 

et al., 1992; Prélat et al., 2009; Groenenberg et al., 2010). 

Areal dimensions of lobes are highly variable. They can be between 4-50 km long, 4-

18 km wide and 2-47 m thick (Pickering, 1981; Swart, 1994; Vernai, 1998; Carr & 

Gardner, 2000; Deptuck et al., 2008; Jegou et al., 2008; Saller et al., 2008; Prélat et 

al., 2009, Prélat & Hodgson, 2013; Grundvåg et al., 2014; Marini et al., 2015). 

Generally, there are two populations of lobes: 1) thin but areally extensive; and 2) 

thick but areally smaller. These two populations correspond to unconfined and 

confined lobes (Prélat et al., 2010; Fig. 2.8). However, Prélat et al. (2010) showed 

that their volumes are similar ranging from 0.4- 3.5 km3. This similarity in volumes has 

been suggested to be due to autogenic factors like the filtering of sediment load or 

avulsion and migration in the system (Prélat et al., 2010).  
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Figure 2.8. Plot of area of deposition versus maximum thickness. Two populations can be identified: 1) 
thinner more extensive lobes- unconfined; and 2) thicker less extensive lobes-confined. From Prélat et 
al., 2010. 

 

2.2 Subaqueous sediment gravity flows 
 

Sediment gravity flows (slides, slumps, debris flows and turbidity currents; Middleton 

& Hampton, 1973) contribute to the formation of canyons, channel-levee systems and 

lobes (Normark & Piper, 1972; Mutti, 1992). Therefore, understanding the initiation, 

characteristics and dynamics of such flows is paramount for interpreting their 

deposits. Sediment gravity flows are defined as mixtures of particles and fluid that are 

transported downslope because their density is greater than that of their ambient fluid. 

Sediment gravity flows are typically interpreted by their deposits (Mulder, 2011). 

These interpretations are tested by scaled experiments in the laboratory (e.g. Kuenen 

& Migliorini, 1950; Kuenen, 1950, 1951; Luthi, 1980, 1981; Baas et al., 2009, Sumner 

et al., 2009). Direct observations of sediment gravity flows, specifically turbidity 

currents, are extremely hard to obtain and still remain rare (e.g. Talling et al., 2012a, 

2013; Peakall & Sumner, 2015). Several classifications have been established and 

are based on the interpreted rheology of the flows (e.g. Dott; 1963, Mulder & 

Cochonat, 1996), on their particle- support mechanism (e.g. Middleton & Hampton, 

1973; Lowe, 1979; Stow, 1996), their flow concentration (Mulder & Alexander, 2001) 

and on their deposits (e.g. Bouma, 1962; Mutti & Ricci Lucchi, 1975; Pickering et al., 
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1989). Generally, two types of flows are described: cohesive (viscous) and non-

cohesive flows. The former is characterised by its matrix strength due to cohesion of 

fine particles, are commonly referred to as debris flows, while the latter is 

characterised by the behaviour of discrete particles, and includes a process 

continuum from sediment slides to turbidity currents (Mulder & Alexander, 2001). 

Initiation of sediment gravity flows can be due to transformation of submarine 

landslides into laminar and later turbulent flows, direct input from continental rivers or 

resuspension of sediment near the shelf edge by oceanographic processes (Piper & 

Normark, 2009). Submarine landslides transforming into debris flows and/or turbidity 

currents (Hampton, 1972; Hampton et al., 1996; for more detailed discussion see 

Chapter 2.2.3) can be caused by overloading and oversteepening of the shelf and 

submarine slope, seismic triggers, fluid escape (cf. the Storegga slide; Bugge, 1983; 

Mienert et al., 2005).  

 

2.2.1 Turbidity currents and turbidites 
 

Turbidity currents are defined as flows where fluid turbulence acts as the main particle 

transport mechanism (Middleton & Hampton, 1973; Lowe, 1982; Middleton, 1993; 

Simpson, 1997; Kneller & Buckee, 2000; Meiburg & Kneller, 2010; Mulder, 2011). The 

turbulence of the current is generated by the forward motion of the current along the 

lower boundary, the circular motion in the frontal part of the flow and shear between 

the flow and the ambient fluid (Meiberg & Kneller, 2010). Generally, turbidity currents 

can be divided into three types (Fig. 2.9): turbulent surges (lasting hours to days), 

longer duration surge-like flows, and quasi-steady flows (lasting weeks to months). 

Turbulent surges and surge-like flows are initiated by failure on the shelf and slope, 

whereas quasi-steady flows are associated with river flux. Flow duration has been 

linked to the resulting deposits. Surge-like turbidity currents are interpreted to deposit 

(complete) Bouma-Sequences, whereas quasi-steady flows can deposit coarsening-

up units that are capped by fining-up units and may comprise thick units of uniform 

character (Kneller, 1995; Kneller & Branney, 1995; Mulder & Alexander, 2001).  

Anatomy 

Turbidity currents start in the form of a surge, regardless of their type, and rapidly 

develop into a current that consists of a head (and neck), a body and a tail (Middleton, 

1966a,b; Edwards, 1993;). 
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The head has a bulge-like shape. It develops due to the strong mixing of sediment 

and ambient fluid. The head is mainly erosional, producing structures like grooves 

and flute marks (Allen, 1971a; Middleton, 1993), the most concentrated and 

transports the coarsest grains of the flows (cf. Stow, 1996). The head is where 

entrainment of 

 

 

Figure 2.9. Types of turbidity currents and their associated deposits (modified from Mulder & 
Alexander, 2001). 

 

underlying substrate takes place. Circular movement to the top and the front 

characterises the dynamics of the flow head (Mulder, 2011). 

The body is sometimes connected to the head by a neck (Mulder, 2011). Main 

transport mechanism in the body is sediment suspension supported through friction 

between the ambient fluid and the overriding bed (cf. Stow et al., 1996). The body is 

mainly depositional and transports the bulk of the sediment. Flow thickness in the 

body is approximately constant.  

The tail represents the dilute part of the turbidity current and transports the finer 

grained part of the sediment (Mulder, 2011). The sediment settles due to energy loss 

during downslope movement. 
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Dynamics of subaqueous turbidity currents 

To compare laboratory flow experiments with outcrop deposits, non-dimensional 

numbers were introduced to define the state of the flow (Reynolds Number), the flow 

regime (Froude Number) and the stability of the flow interface (Richardson Number): 

 

The Reynolds Number is defined as 

𝑅𝑒 =
𝑈𝐻

𝑣
 

Where U is the mean velocity of the flow, H is the thickness of the flow body and ν is 

the kinematic viscosity. The Reynolds number defines the state of flow. If Re is < 500 

the flow is laminar, between 500-2000 the flow is transitional and >2000 the flow is 

turbulent (cf. Lowe and Guy, 2000). Laminar flows are dominated by viscous forces 

and characterised by smooth, fluid motions, whereas turbulent flows are dominated 

by inertial forces and characterised by eddies, vortices and othe flow instabilities 

(Grant, 1958). 

The Froude Number is defined as  

𝐹𝑟 = 𝑈/√𝑔′𝐻 

Where U is the mean body velocity, H is the thickness of the flow body and g' is the 

reduced density (𝑔′ =  ∆𝜌/𝜌), that results due to the supporting fluid being water. The 

Froude number defines the flow regime. If Fr is <1 a flow is subcritical, if Fr= 1 a flow 

is critical and finally if Fr is >1 a flow is supercritical. A hydraulic jump is defined by 

the transition from Fr > 1 to Fr < 1. Super critical flows are thin, dense flows with high 

velocities (Komar, 1971). When a flow passes from supercritical to subcritical 

conditions its velocity decreases, turbulence is generated, and density is decreased 

by entrainment of ambient water (Ellison & Turner, 1959; Komar, 1971). Therefore, 

subcritical flows are thick, less-dense, low-velocity flows. 

The Richardson Number is defined as 

𝑅𝑖 = 1/𝐹𝑟2 
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It describes the stability of the flow and is used to quantify the entrainment of water 

within the flow. 

 

Velocity and density stratification 

Turbidity currents show velocity and density stratification. Generally, both decrease 

upwards. The flow velocity profile is characterised by two regions: the lower and upper 

region (Fig. 2.10). The lower region (near-wall region) comprises the lower part of the 

turbidity current and has a positive velocity gradient. The maximum velocity value 

marks the boundary to the upper region (shear layer) which is characterised by a 

negative velocity profile. The upper region is generally thicker that the lower region 

(by 5 to 10 times; Stacey & Bowen, 1988). Drag forces control the exact height of the 

velocity maximum, and thus the boundary between the regions (Fig. 2.10). Density 

stratification is dependent on the distribution of the suspended sediment throughout 

the current. Some authors (Britter & Simpson, 1978; Simpson & Britter, 1979) 

suggested that a flow comprises two parts: a thin and dense basal layer and a more 

dilute upper layer mixed with ambient fluid. However, it has been shown that flow 

density decreases upwards, i.e. finer grains are suspended in the more dilute upper 

region, whereas coarser grains are dominantly in the dense basal layer (Hess & 

Normark, 1976; García, 1994; Klauke et al, 1997; Peakall et al., 2000; Migeon et al., 

2012). Concentration profiles of turbidity currents are dependent on their dynamics. 

Thus, low-concentration and weakly depositional currents have a smoother 

concentration profile than erosional currents or currents with high rates of entrainment 

of ambient fluid (cf. García, 1990,1993, 1994; Altinakar et al., 1996; Peakall et al., 

2000). Stratification of turbidity currents is an important factor as it enables flow 

spilling and stripping in submarine channel-levee settings ( Peakall et al., 2000; Kane 

et al., 2007; Mulder, 2011) and on topographic highs (Sinclair & Tomasso, 2002). 
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Figure 2.10. Schematic of a turbidity current showing the two regions of the flow and generalized 
velocity and density profiles (modified from Meiburg & Kneller, 2010). 

 

Low-density vs high-density turbidity currents 

In the rock record, turbidity current deposits are commonly distinguished by their 

character and interpretation to be formed by low-density or high-density turbidity 

currents (Fig. 2.11). Low-density turbidity currents are thought to be fully turbulent 

near the bed (Lowe, 1982; Mulder & Alexander, 2001). They display low sediment 

fallout rates and sediment settling is not hindered due to grain-to-grain interactions 

(Fig. 2.11). Low-density turbidity currents form deposits that comprise several 

sedimentary structures: 1) planar laminations, both from lower-flow-regime (Bouma, 

1962) and upper-flow-regime (Allen, 1982; Southard, 1991); 2) ripple cross-

lamination; and 3) dunes (at very low fallout rates). They tend to form beds that have 

thicknesses below 0.5 m (Ricci Lucchi, 1967; Talling et al., 2007) and a tapering 

shape, whereas the mud intervals that cap these deposits thicken slightly distally 

(Mutti, 1992; Kane et al., 2007; Talling et al., 2007).  

The term of high-density turbidity currents was introduced by Kuenen (1948, 1950, 

1951) and Kuenen & Migliorini (1950) and describes turbidity currents where hindered 

settling is an important factor near the bed. This occurs at sediment concentrations 

that exceed 9%Vol (Bagnold, 1962) as grain-to-grain interactions, excess pore 

pressure and increased fluid viscosity become important additionally to fluid 

turbulence (Kuenen, 1950, 1951; Bagnold, 1954; Lowe, 1982). Aggradation rates 

from high-density turbidity currents are higher than those of low-density turbidity 

currents. Increased sediment concentration damps the flow turbulence, especially 

near to the bed (Kneller & Branney, 1995; Fig. 2.11). Therefore, bedload reworking is 

mostly prevented and predominantely structureless deposits are formed. 

Sedimentary structures that can form from high-density turbidity currents are: 1) 

planar laminations; and 2) stepped planar laminations. Generally, deposits from high-
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density turbidity currents show broad thickness maxima and tabular geometries (cf. 

Talling et al., 2012a). 

However, Peakall & Sumner (2015) argue that there is a discrepancy between the 

values for sediment concentration in high-density currents (>9% Vol; Kuenen, 1966; 

Mulder and Alexander, 2001; Talling et al., 2012a) based on experiments and rocks 

and estimated concentrations in modern systems (0.2-2.5% Vol; Pirmez & Imran, 

2003; Konsoer et al., 2013). The authors suggest this could be due to the issue of 

flow stratification as rock-based estimated only incorporate the in-situ deposited flow 

closest to the bed sediment interface raising the question if high-density and low-

density currents truly exist or reflect the remnant of interpretation from deposits.  

 

Figure 2.11. Summary of low-density and high-density currents showing transport phase, depositional 
phase and deposit characteristics (Modified from Talling et al., 2012a) 

 

2.2.2 Debris flows and debrites 
 

Submarine debris flows are high concentration flows and interpreted to be 

characterised by mainly laminar particle transport (Johnson, 1970; Hampton, 1972; 

Enos, 1977). Debris flows initiate from one or more submarine landslide or failure 

which undergo remoulding and incorporation of water (Hampton, 1972; Iverson, 

1997). Debris flows are charcaterised by 1) surges (Hampton, 1972; Coussot & 

Meunier, 1996; Iverson, 1997) 1) movement along shear planes (Hampton, 1972; 
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Coussot & Meunier, 1996), 2) their liquid-like state (Iverson, 1997), and 3) multimodal 

grain size distribution (Hampton, 1972; Coussot & Meunier, 1996; Iverson,1997). The 

behaviour of debris flows is influenced by the combination of grain-friction, grain-

collision, viscous fluid flow and suspension provided through yield-strength (Johnson, 

1970; Hampton, 1972; Iverson, 1997).  

Debris flow are able to transport clasts and blocks depending on their matrix strength 

and buoyancy. Commonly, the largest clasts are moved to the surface and front of 

debris flows (Hampton, 1972; Coussot & Meunier, 1996; Iverson, 1997). Internal 

shear in debris flows can enable syn-sedimentary deformation of transported clasts 

and blocks and form inverse grading (Mulder, 2011). The deposits of debris flows, 

debrites, form by en masse freezing of the flow (Hampton, 1972; Couusot & Meunier, 

1996; Talling et al., 2012b). Typically, debrites are poorly sorted, lack sedimentary 

structures that are created by bedload reworking, show sharp grain-size breaks on 

their top boundaries, display chaotic distribution of clasts in a fine grained matrix, and 

commonly have a high mud content. Their shape is highly irregular, creating relief on 

the slope and basin floor. Debrites tend to pinch out abruptly independently of the 

underlying seabed topography (Amy et al., 2005).  

Two end members of debris flows exist: cohesive debris flows (with mud-rich matrix) 

and non-cohesive debris flows (only sand matrix, no cohesive mud particles). 

Between those two end members a continuum of composition can occur. Cohesive 

debris flows are subdivided into high-strength, moderate-strength and low-strength 

debris flows depending on their ability to support mud clasts. High-strength debrites 

are very thick (>2 m) and occur mainly on the continental slope (Johns et al., 1981; 

Laberg & Vorren, 2000; Talling et al., 2013). Moderate-strength debris flow deposit 

thinner deposits (< 2m) and are described from the continental slope and in distal fan 

and lobe settings (Wood & Smith, 1958; Talling et al., 2004; Haughton et al., 2009). 

Moderate-strength debris flows are more likely to entrain ambient fluid and undergo 

successive dilution that can generate associated turbidity currents (cf. Talling et al., 

2012b). Deposits from low-strength debris flows do not contain mud clasts, solely 

outsized sand grains. They tend to be very extensive and very thin. Non-cohesive 

debris flows deposit structureless sandstones that are characterised by their chaotic 

distribution of clasts, their abrupt pinchout independent of the underlying seabed 

topography, contorted patches of outsized grains and irregular grading (Talling et al., 

2012b).   
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2.2.3 From debris flows to turbidity currents 
 

Debris flows can transform into turbidity currents downslope. Generally, there are 

three mechanisms observed (Marr et al., 2001; Mohrig & Marr, 2003; Felix & Peakall, 

2006): 1) grain-by-grain erosion of sediment on the surface of a debris flow (Hampton 

et al., 1972; Marr et al., 2001; Mohrig et al., 1998); 2) shearing of thin sediment layers 

from the head of the debris flow (Hampton et al., 1972; Marr et al., 2001); and 3) 

turbulent mixing at the head of the debris flow causing dilution and local 

transformation to a turbidity current (Allen,1971b; Hallworth et al., 1993; Marr et al., 

2001). Felix & Peakall (2006) suggest that density and viscousity of the parent debris 

flow govern the resulting turbidity current. For example a dense and viscous debris 

flows is described to undergo only minor transformation at the surface. This results in 

dilute turbidity currents. Less dense and viscous debris flows are postulated to 

undergo different transformations (breaking up of mass, breaking of internal waves, 

and mixing) throughout and transformed to turbidity currents entirely. 

 

2.2.4 Types and flow processes of hybrid beds 
 

Generally, hybrid beds comprise a division that was deposited by a turbulent flow and 

a division that was deposited by a cohesive flow. This means that the deposit 

comprises a sharp based, commonly structureless and dewatered sandstone that is 

overlain by poorly sorted argillaceous divisions that can contain terrestrial plant 

fragments, muddy sandstones that are rich on mudstone chips and terrestrial plant 

fragments, muddy sandstones with contorted texture (Haughton et al., 2003; Ito, 

2008; Davies et al., 2009; Haughton et al, 2009; Hodgson, 2009; Jackson et al., 2009; 

Magalhaes & Tinterri, 2010; Kane & Pontén, 2012) or mudclast-rich, well sorted 

sandstones (D3 of Hodgson, 2009). Contacts between the two divisions are either 

irregular with evidence of liquefaction and upward sand injection, or very sharp. Over 

the last decade, hybrid beds have been identified as an important component of lobe 

deposits. Several authors have studied them in detail in outcrop and core data sets 

(Haughton et al., 2003; Ito, 2008; Davies et al., 2009; Haughton et al., 2009; Hodgson, 

2009, Jackson et al., 2009; Magalhaes & Tinterri, 2010; Kane & Pontén, 2012; Patacci 

et al., 2014; Fonnesu et al., 2015) and established different classification schemes. 

Flume tank experiments have been carried out to confirm and verify process models 
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that have been postulated from these data sets (Baas et al., 2009; Sumner et al., 

2009). 

 

Figure 2.12. Schematic map and fence diagram illustrating the distribution of hybrid beds with lobe 
deposits (from Hodgson, 2009). 

 

Overall, it has been established that hybrid beds dominantly occur in lobe fringe 

settings (Fig. 2.12; Hodgson, 2009; Pyles & Jennette, 2009; Kane & Pontén, 2012; 

Talling et al., 2012a; Etienne et al., 2012; Grundvåg et al., 2014; Patacci et al., 2014; 

Collins et al., 2015; Fonnesu et al., 2015) and are commonly observed during fan 

initiation and retreat (Haughton et al., 2009; Hodgson, 2009). Where hybrid beds have 

been observed in more proximal lobe settings (Ito, 2008; Jackson et al., 2009; Patacci 

et al., 2014; Southern et al. 2015) enhanced erosion and deceleration have been 

invoked due to processes occurring in the channel-lobe transition zone and 

confinement. Frontal confinement is proposed to enhance flow transformation as it 

favours deceleration and mud-erosion processes (Magalhaes & Tinterri, 2010; 

Patacci et al., 2014). Many models for the generation of hybrid beds have been 

proposed (cf. Haughton et al., 2003; Talling et al., 2004; Haughton et al., 2009; Talling 

et al., 2013). Generally three models are preferentially invoked for the formation of 

hybrid bed deposits:  
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1) Co-generated by independent flows: In this model independent debris flows and 

turbidity currents are developed by the failure of the slope and juxtaposed to form a 

bed with a clean sandstone division and a chaotic muddy division (Wood & Smith, 

1958; Nelson et al., 1992; Masson et al., 1997). 

2) Longitudinal evolution from a high-density turbiditity current (sensu Haughton et al. 

2003; Fig. 2.13): In this scenario part of a turbidity current undergoes flow 

transformation through the successive entrainment of mudstone clasts due to 

erosion. The mudclasts are successively broken apart within the turbidity current. 

Eventually, the mud particles overload a section of the flow or suppress turbulence, 

transforming a section of the flow to a laminar clast-rich flow that is retarded compared 

to the forerunning turbulent section (Haughton et al., 2003; Talling et al., 2004; Ito, 

2008; Davies et al., 2009; Haughton et al., 2009; Hodgson, 2009; Magalhaes & 

Tinterri, 2010; Patacci et al., 2014). 

3) Vertical segregation supersaturated flows (sensu Baas et al., 2009; Fig. 2.13): In 

this model a supersaturated turbidity current transforms into a quasi-laminar flow 

through vertical segregation of grains due to deceleration. This turbidity current is 

characterised by higher clay concentration. During flow transformation it undergoes 

a transitional stage where a basal shear layer enhances turbulence and a plug flow 

develops (Baas et al., 2009; Sumner et al., 2009; Baas et al., 2011; Kane & Pontén, 

2012; Kane et al., in review). 
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Figure 2.13. Schematic log of idealized hybrid event bed with inferred processes of formation of H1 to 
H5 divisions, based on Haughton et al. (2009) and Baas et al. (2011). QLPF: quasi-laminar plug flow; 
TEFT: turbulence-enhanced transitional flow; LTPF: lower transitional plug flow; UTPF: upper transitional 
plug flow. Modified after Haughton et al. (2009) and Baas et al. (2011). 

 

2.3 Geological setting of the study area 
 

2.3.1 Karoo Basin 
 

 

Figure 2.14. Locations of the Tanqua and Laingsburg depocentre adjacent to the Cape Fold Belt 
branches. 
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The Late Carboniferous to Early Jurassic Karoo Basin lies inboard of the Cape Fold 

Belt. The basin is framed by the two branches of the Cape Fold Belt to the west 

(Cederberg branch) and south (Swartberg branch; Fig. 2.14). The two branches 

coalesce in the Hex River Mountains. There, the occurrence of linear anticlinal 

structures separate the Tanqua and Laingsburg depocentres (van der Werff & 

Johnson, 2003). The Karoo Basin formed as part of broad area of subsidence parallel 

to the palaeo-Pacific margin of Gondwana (Visser, 1997). Traditionally, the Karoo 

Basin is interpreted as a retroarc foreland basin with loading of the Cape Fold Belt as 

main factor of subsidence in the Permian (Visser & Prackelt, 1996; Visser, 1997; 

Catuneanu et al., 1998, 2005; Gamundi & Rossello, 1998). More recent tectonic 

reconstructions (Pysklywec & Mitrovica, 1999; Tankard et al., 2009) and geochemical 

studies (Fildani et al., 2007, 2009; McKay et al., 2015) point to lithospheric deflection, 

due to subduction driven mantle flows, as key factor for subsidence during the 

Permian. This means that the Cape Fold Belt was not emergent at the time of deep-

water to shelf-deposition. Tankard et al. (2009) suggest that the Cape orogeny started 

in the Early Triassic. At this time effects from flexural thrust loading (Pysklywec & 

Mitrovica, 1999) dominated subsidence. 

Deposits of the Karoo Supergroup fill the Karoo Basin. The Karoo Supergroup is 

divided into the Dwyka Group, the Ecca Group and the Beaufort Group. The late 

Carboniferous to early Permian Dwyka Group encompasses glaciomarine deposits 

(massive diamictites, stratified diamictites and mudstone). Their maximum thickness 

in the Karoo Basin is about 800 m and represents deposition during four major 

glacial/deglacialcycles (Visser, 1997). The Permian Ecca Group comprises a 

shallowing upward succession of deep-water to deltaic deposits, which is described 

in detail below for the Tanqua and Laingsburg depocentres. The Late Permian to 

Early Triassic Beaufort Group consists of fluvial deposits (e.g. Gulliford et al., 2014; 

Jirah & Ribidge, 2014; Wilson et al., 2014). The Beaufort Group is the final major 

sedimentation stage of the Karoo Basin, which was subsequently uplifted (Pysklywec 

& Mitrovica, 1999). 
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2.3.2 Tanqua depocentre 

 

Figure 2.15. Stratigraphy of the Tanqua depocentre. Chapter 3 presents data from Fan 4, 
Skoorsteenberg Formation (marked with blue box). 

 

In the Tanqua depocentre, the Ecca Group is up to 1350 m thick (King et al., 2009). 

It comprises the fine-grained Whitehill and Collingham Formations, >600 m of basinal 

mud- and siltstones of the Tierberg Formation (Hodgson et al., 2006; Fig. 2.15), 

clastic deep-water deposits of the Skoorsteenberg Formation (Wickens, 1994; Morris 

et al., 2000; Bouma & Rozman, 2000; Goldhammer et al., 2000; Rozman, 2000; 

Johnson et al., 2001; van der Werff & Johnson, 2003a,b; Sullivan et al. 2004; Wild et 

al., 2005; Hodgson et al., 2006, 2009; Prélat et al., 2009; Jobe et al., 2012; Hofstra et 

al., 2015, Kane at al., in review; Fig. 2.15), slope and shelf deposits of the Kookfontein 

Formation (Wild et al., 2009; Oliveira et al., 2010; Dixon et al., 2012; Laugier & Plink-

Björklund, 2016; Fig. 2.15) and shoreface/deltaic deposits of the Waterford Formation 

(Fig. 2.15). Radiometric dates of ashes from the Collingham Formation (270 Ma, 

Turner, 1999) and ages of fossil assemblages (255 Ma) from the overlying Beaufort 

Group (Rubidge, 1991), bracket the deep-water to fluvial succession to a 15 My 

period. 

The Skoorsteenberg Formation (450 m thick; Bouma & Wickens, 1991; Wickens, 

1994; Johnson et al., 2001) encompasses four basin-floor systems (Fan 1-4) and a 

base-of-slope system (Unit 5; Fig. 2.14). Each of these systems is 20–60 m thick and 

separated by 20–75 m thick claystone and siltstone intervals (Johnson et al., 2001). 
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Each fan is interpreted as a low-frequency lowstand system tract, whereas the mud-

and siltstone dominated intervals represent the associated transgressive and 

highstand system tracts (Johnson et al., 2001; Hodgson et al., 2006). 

 

Figure 2.16. Palaeogeographic reconstructions of the outlines of Fan 1-4 and Unit 5 (from Hodgson et 
al., 2006) 

 

Only the distal pinchout area of Fan 1 is exhumed in the Tanqua depocentre (Fig. 

2.16). Deposits are up to 20 m thick, comprising three sand-prone units separated by 

two siltstone units, and stacked progradationally (Hodgson et al., 2006). Palaeoflow 

was dominantly to the northwest. 

Fan 2 comprises mid-to outer fan deposits. Its maximum thickness is 42 m and 

comprise three sand-prone unit that are separated by intercalated mudstone and 

siltstone intervals (Rozman, 2000; Johnson et al., 2001; Hodgson et al., 2006). 

Architectural elements include heterolithic and sandstone channel-, scour-fills and 

'sheets'. Fan 2 exhibits progradational stacking patterns. Palaeoflow was dominantly 

to the northwest (Fig. 2.16). 

Fan 3 is the most studied system of the exhumed deep-water deposits of the Tanqua 

depocentre (e.g. Bouma & Rozman, 2000; Morris et al., 2000; van der Werff & 
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Johnson, 2003 a,b; Hodgson, 2006; Luthi et al., 2006; Prélat et al., 2009; Jobe et al., 

2012; Hofstra et al., 2015; Kane et al., in review). It is 36 km long and 15 km wide 

(van der Werff & Johnson, 2003 a,b; Fig. 2.16). Its maximum thickness of 55 m is in 

the south, thinning occurs over a distance of 28 km to the north (Johnson et al., 2001; 

Hodgson et al., 2006). Architectural elements include channels, lobes and scours. 

Similar to Fan 1 and 2, Fan 3 exhibits progradational stacking patterns.  

Fan 4 shows a maximum thickness of 65 m and is built up by channels in the south 

and lobes to the north (Johnson et al., 2001). Palaeocurrents and thickness 

distributions indicate that sediment was sourced from two directions (Fig. 2.16), from 

the southwest and west (Dudley et al., 2000; Hodgson et al., 2006). General 

palaeocurrent orientations are to the east and northeast (Wickens & Bouma, 2000; 

Hodgson et al., 2006). Fan 4 is divided into two sand-rich units named the lower and 

upper sandstone divisions (Wickens & Bouma, 2000; Hodgson et al., 2006) separated 

by a mudstone and siltstone package that is up to 6 m thick in the south and thins 

and fines northward. Fan 4 exhibits aggradational to progradational stacking patterns. 

Fan 4 is the focus of studies in Chapter 3.  

Deposits of Unit 5 (formerly Fan 5) are dominated by channel- and scour-fill deposits 

that represent slope-channel complexes (Johnson et al., 2001; Hodgson et al., 2006; 

Oliveira et al., 2009). Unit 5 is 80-100 m thick (Hodgson et al., 2006). Its deposition 

marks a period of abrupt slope progradation due to increased sediment supply and 

change from point- sourced basin-floor fans to line-sourced slope system (Hodgson 

et al., 2006; Fig. 2.16). 

 

2.3.3 Laingsburg depocentre 

 

In the Laingsburg depocentre, the Ecca Group is up to 1300 m thick (van der Merwe 

et al., 2009, 2010, 2011). The basal deposits comprise the mud-prone Prince Albert 

and Whitehill Formations and silt-prone turbidites of the Collingham Formation 

(Viljoen 1992, 1994; Fig. 2.17a). The Prince Albert, Whitehill and Collingham 

Formations have a cumulative thickness of 350 m (van der Merwe et al., 2010). They 

are overlain by the 280-380 m thick basin-plain deposits (siltstones, sandstones and 

mass transport deposits) of the Vischkuil Formation (van der Merwe et al.,2009, 2010, 

2011; Fig. 2.17b) followed by the deep-water deposits of the Laingsburg Formation 

(e.g. Grecula et al., 2003a,b; Sixsmith et al., 2004; Prélat & Hodgson, 2013; Brunt et 
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al., 2013a; Hofstra et al., 2015; Fig. 2.17b), the slope deposits of the Fort Brown 

Formation (e.g. Figueiredo et al., 2010; Di Celma et al., 2011; Hodgson et al., 2011; 

Brunt et al., 2013b; Morris et al. 2014a,b; Fig. 2.17b) and shoreface/deltaic deposits 

of the Waterford Formation (Jones et al., 2013, 2015; Fig. 2.16). 

 

 

Figure 2.17. A: Lithostratigraphy of the Western Cape (redrawn after Wickens, 2004). B: Stratigraphy 
of the study section in the Laingsburg depocentre.  Unit A of the Laingsburg Formation was the focus 
of studies presented in Chapter 4 and 5 and Unit E of the Fort Brown Formation of the study presented 
in Chapter 6. From Flint et al., 2011. 

 

Pb/U ages obtained from zircon grains in volcanic ashes constrain part of the 

chronology for the deep-water strata: 275±1.5 Ma for the upper Collingham 

Formation; 267.9±2.6 Ma for the Vischkuil Formation; and 254±3.2 Ma for the 

mudstone between Units A and B (Fildani et al., 2007; 2009). 

The Laingsburg Formation is subdivided into Unit A (sand-prone basin floor fan; 

Sixsmith et al., 2004; Prélat & Hodgson, 2013) and Unit B (base-of-slope deposits; 

Grecula et al., 2003a,b; Pringle et al., 2010; Brunt et al. 2013a). The stratigraphy of 

Unit A was subdivided by Sixsmith et al. (2004) into seven sandstone-prone subunits 

called A.1 to A.7 from base to top, separated by regional hemipelagic mudstone 

horizons. Recently, the stratigraphy of Unit A has been revised by Prélat & Hodgson 

(2013) and A.4 and A.7 were incorporated as lobe complexes into A.5 and A.6, 

respectively, as no true claystone separate them. Unit A is the focus of the study 
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presented in Chapter 4. Unit B is divided into three depositional sequences (B1, B2 

and B3). The subunits represent a lobe complex, channel systems and an overlying 

levee system marking the progradation of the system (Flint et al., 2011). Units A (150 

to 300 m) and B (200 m) are separated by a 40 m thick hemipelagic mudstone and 

(muddy) siltstone, which contains a thin sand-prone unit referred to as the A/B Interfan 

(Grecula et al., 2003a,b, Flint et al., 2011).  

The Fort Brown Formation is divided into Unit C-F. The units are separated by thick 

regional mudstone horizons. Several interfans (B/C, D/E) are intercalated with these 

mudstone horizons (Figueiredo et al., 2010; Flint et al., 2011). Units C and D are 

interpreted to represent lower to middle slope settings. Unit C represents a levee-

confined channel system with occurrence of frontal lobe deposits (Pringle et al., 2010; 

Hodgson et al., 2011; Morris et al., 2014b). It is 45 m thick and can be divided into 

three subunits (C1, C2 and C3) separated by hemipelagic mudstone intervals (Di 

Celma et al., 2011; Hodgson et al., 2011). Unit C is separated from Unit D by a 21 m 

thick mudstone. Unit D represents an entrenched channel-system that shows 

complicated stratigraphy with multiple erosion surfaces and abrupt sedimentary 

changes (Hodgson et al., 2011). The system cuts down (to a maximum of <100 m) 

into Unit C (Flint et al., 2011; Brunt et al., 2013b). Units E-G represent deposits from 

middle to upper slope settings. Unit E is 40-100 m thick and divided into three 

depositional cycles (E1, E2 and E3). Deposits of E1 are interpreted as intraslope 

lobes, whereas deposits of E2 and E3 represent a levee confined channel-belt and a 

larger channel-levee system (Figueiredo et al., 2010; Flint et al., 2011). Unit E (and 

intrafan D/E) is the focus of the study presented in Chapter 6). Unit F can be divided 

into three depositional sequences (F1, F2 and F3) as well. F1 comprises lobe fringe 

deposits, F2 deposits of an entrenched slope valley system and F3 deposits of a 

levee-confined slope valley. F2 cuts down ~150 m and removes locally the whole of 

Unit E (Figueiredo et al., 2010, 2013; Flint et al., 2011).  These composite sequences 

(Flint et al., 2011) have been mapped over a 2500 km2 area, from entrenched 

channels through channel-levee systems to basin-floor lobe complexes (van der 

Merwe et al., 2014), which provides an excellent palaeogeographic context for more 

detailed work. 
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2.4 Methodology 
 

The following studies (Chapters 3-6) are dominantly based on data that have been 

collected during field and core logging seasons. Detailed methods of data collection 

are outlined below and summarised in the corresponding chapters. Appendix A 

includes detailed information on the creation of isopach maps and statistical analysis.  

 

2.4.1 Outcrop data 
 

Outcrop data were collected from the Tanqua and Laingsburg depocentres of the 

Karoo Basin, South Africa. Methods used in the field include logging, outcrop 

sketching, photo panelling, measuring of palaeoflow directions and kinematic 

indicators and walking out of surfaces for in field correlation.  

Altogether 170 sections (6.9 km in cumulative thickness) were logged during the 

course of the project. Logging was executed at resolutions of 1:50 and 1:25, 

depending on the envisaged use of the log. Shorter detailed logs have permitted the 

creation of detailed sedimentological models that account for facies distributions and 

small-scale geometries. Individual bed-by-bed logs record grain size, thickness, 

grading, sedimentary structures and the nature and extent of bounding surfaces. In a 

first step, well-exposed outcrops were sketched to gain a first idea of internal 

geometries. Where applicable photo panelling was used to support the identification 

of larger outcrop geometries. Photo panels were printed out and annotated in the 

field. Palaeoflow measurements were collected from ripple lamination, climbing-ripple 

lamination and tool marks. In total 1345 measurements were collected and restored. 

Key stratigraphic surfaces (such as bed bases and erosion surfaces) and prominent 

beds (marker horizons) were established and walked out systematically in order to 

achieve a robust correlation of the internal stratigraphy of the studied units and 

document longitudinal facies variabilities. 
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2.4.2 Core data 

 

Figure 2.18. LOBE 2 sponsors visiting BK drill site during sponsors’ trip in 2013. 

 

During the course of the Lobe2 project seven new near-outcrop research boreholes 

were drilled (Fig. 2.18). Four cores were collected from the Tanqua depocentre (OR, 

KK, BK and GBE) and three from the Laingsburg depocentre (BSL, DK and ZKNL). 

The cores were stored near Stellenbosch for logging and photography. In total 782 m 

of core was logged at 1:4 scale. Later, they were redrawn at 1:50 scale for correlation 

purposes with the collected outcrop dataset. Bed-by-bed core logs record grain size, 

thickness, grading, sedimentary structures, bioturbation and the nature of bounding 

surfaces. For confident identification of mud-rich hybrid beds and banded facies a 

Dinocam (a handheld digital microscope) was used to establish relative clay content 

comparison (Fig. 2.19). During the course of logging, pictures of the different core 

facies and prominent beds were taken. After completion of core logging the entire 

core dataset was systematically photographed by a professional (example 

photograph see Fig. 2.20). 
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Figure 2.19. Usage of the Dinocam to look at banded facies in the core store. 

 

 

 

Figure 2.20. Representative example core photography from GBE core. 
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Chapter 3 

Frontal and lateral submarine lobe fringes: comparing 

sedimentary facies, architecture and flow processes 
 

3.1 Abstract 
 

Submarine lobe fringe deposits are heterolithic successions that may comprise a high 

proportion ofhybrid beds. The identification of lobe fringe successions aids 

interpretation of palaeogeographic setting and degree of basin confinement. Here, for 

the first time, the sedimentological and/or architectural discrimination between frontal 

and lateral lobe fringe deposits is investigated. Extensive outcrop and core data for 

Fan 4, Skoorsteenberg Formation, Karoo Basin, South Africa, allow facies changes 

from axis to fringe settings of lobes and lobe complexes in both down-dip (frontal) and 

across-strike (lateral) directions to be tightly constrained over a 800 km2 study area. 

Fan 4 comprises three sand-prone divisions that form compensationally stacked lobe 

complexes, separated by thick packages of thin-bedded siltstone and sandstone 

intercalated with (muddy) siltstone, interpreted as lobe complex fringes. Lobe-fringe 

facies associations comprise: 1) thick-bedded structureless or planar laminated 

sandstones that pinch and swell, and are associated with underlying debrites; 2) 

argillaceous and mudclast-rich hybrid beds; and 3) current ripple-laminated 

sandstones and siltstones. Typically, frontal fringes contain high proportions of hybrid 

beds and transition from thick-bedded sandstones over length-scales of 1 to 2 km. In 

contrast, lateral fringes tend to be current ripple-laminated and transition to thick-

bedded sandstones in the lobe axis over several kilometres. The distinct difference in 

facies association is considered to be controlled by flow processes. Preferential 

deposition of hybrid beds in frontal fringe positions is probably related to the 

dominantly downstream momentum of the high-density core of the flow. In contrast, 

the ripple-laminated thin beds in lateral fringe positions are interpreted to be deposited 

by more dilute (marginal) low-density (parts of) flows. The palaeogeographic 

constraints allow criteria to be established to discriminate between different fringe 

settings and to constrain the rates of facies transitions. These are critical to improving 

palaeogeographic reconstructions of submarine fans at outcrop and in the 

subsurface, and will help to reduce uncertainty during hydrocarbon field appraisal and 

development. 
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3.2 Introduction 
 

Traditionally, submarine lobe deposits are described as simple radial bodies that thin 

and fine from an apex (e.g. Mutti, 1977; Normark, 1978; Lowe, 1982; Bouma, 2000). 

However, it has been recognized that the anatomy of lobe deposits is more 

complicated in terms of facies distribution and geometry (e.g. Nelson et al., 1992; 

Twichell et al., 1992; Bouma & Rozman, 2000; Gervais et al., 2006; Hodgson et al., 

2006; Deptuck et al., 2008; Prélat et al., 2009; Groenenberg et al., 2010; Etienne et 

al., 2012). Prélat et al. (2009) proposedfour sub-environments for lobe deposits that 

are characterized by specific facies associations and thickness trends, termed lobe 

axis, lobe off-axis, lobe fringe and lobe distal fringe (Fig. 3.1a).  

 

 

Figure 3.1. A: Simplified lobe model indicating the different lobe sub-environments (redrawn from 
Prélat et al., 2009). B: Plan from view of fivefold lobe hierarchy: bed to bed set, lobe element, lobe, 
lobe complex and lobe complex set (modified from Prélat et al., 2010). 

 

 

Placing constraints on the temporal and spatially variability of lobe fringe successions 

would help improve reconstructions of deep-water fans, provide suitable building 

blocks for reservoir modelling and reduce uncertainty in the evaluation of subsurface 

stratigraphic traps (e.g. Biddle & Wiechowsky, 1994; Etienne et al., 2012; Bakke et 

al., 2013; Collins et al., 2015; Grecula et al., 2015). Hybrid beds (e.g. Haughton et al., 

2003; Talling et al., 2004; Haughton et al., 2009; Davis et al., 2009) and heterolithic 

deposits, dominated by thin-bedded turbidites, have been associated with lobe fringe 
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environments (Ito, 2008; Hodgson, 2009; Talling et al., 2012a; Etienne et al., 2012; 

Grundvåg et al., 2014; Patacci et al., 2014; Collins et al., 2015; Fonnesu et al., 2015). 

Previous work on lobe fringe successions has focused on pinch-out geometries (e.g. 

Rozman, 2000; Marini et al., 2011; Etienne et al., 2012; Nagatomo and Archer, 2015). 

Some authors (e.g. MacPherson, 1978; Pickering, 1981, 1983) have documented 

differences between down-dip and across-strike facies transitions in lobe deposits. 

However, detailed depositional architecture, recognition criteria and facies variability 

between down-dip (frontal) and across-strike (lateral) lobe fringe environments 

remain poorly constrained. 

The aim of this integrated outcrop and core study is to assess the difference between 

frontal and lateral lobe fringes using the palaeogeographically well-constrained Fan 

4 succession of the Skoorsteenberg Formation, Karoo Basin, South Africa. Specific 

research objectives are: 1) to establish the characteristic facies associations that 

distinguish the different lobe fringe settings, 2) to interpret flow processes that 

produce the observed facies variability; 3) to discuss the role of confinement in the 

distribution and character of lobe fringes; and 4) to assess the implication of the 

results for subsurface applications. 

 

3.3 Geological Setting 
 

The Karoo Basin has been interpreted as a retroarc foreland basin connected to a 

magmatic arc and fold-thrust belt (Cape Fold Belt) (Visser & Prackelt, 1996; Visser, 

1997; Catuneanu et al., 1998). Alternatively, Tankard et al. (2009) argue that 

subsidence during the early, deep-water, phase of deposition, which is the focus of 

this study, pre-dates the effects of loading by the Cape Fold Belt, and was induced 

by dynamic topography associated with mantle flow processes coupled to distant 

subduction of the palaeo-Pacific plate (Pysklywec & Mitrovica, 1999). The basin-fill 

comprises the Karoo Supergroup and records sedimentation from Late Carboniferous 

to Early Jurassic. The Karoo Supergroup comprises the glacial Dwyka Group, the 

deep- to shallow-marine Ecca Group and the non-marine (fluvial) Beaufort Group. 

The Ecca Group, which is the focus of this study, represents a shallowing-upward 

succession of sediments from deep-water to fluvial settings (Flint et al., 2011). 
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Figure 3.2. The Tanqua depocentre inboard of the Cape Fold Belt (Cederberg and Swartberg branches). 
The square indicates the location of the study area. B: Stratigraphy of the Tanqua depocentre. The 
Skoorsteenberg Formation. overlies the Tierberg Formation., and is overlain by the Kookfontein 
Formation (redrawn from Wild et al., 2009). This study focuses on Fan 4. Images taken from Google 
Earth.  

 

The Tanqua depocentre is located in the southwest of the Karoo Basin adjacent to 

the Cederberg branch of the Cape Fold Belt (Fig. 3.2a). Here, the Lower Ecca Group 

comprises the Prince Albert Formation (shallow-marine), the Whitehill Formation 

(deep-marine) and the Collingham Formation (deep-marine), and the Upper Ecca 

Group comprises the Tierberg Formation (basin-plain), the Skoorsteenberg 

Formation (basin-floor to base-of-slope), the Kookfontein Formation (slope to shelf-

edge) and the Waterford Formation (shoreface) (Fig. 3.2b; Bouma & Wickens, 1991; 

Wickens, 1994). 

The Skoorsteenberg Formation (450 m thick; Bouma & Wickens, 1994) is subdivided 

into five sand-prone bodies. The lower four sandstone bodies (Fans 1-4) have been 

interpreted as basin-floor fans (Wickens & Bouma, 2000, Johnson et al.,2001), 

whereas the fifth (Unit 5) has been interpreted as a lower slope to base-of-slope 

system (Wickens & Bouma, 2000; Wild et al., 2005 Hodgson et al., 2006). Although 

a submarine fan represents a system built up by channels and lobes, ‘Fan’ is retained 

here as a lithostratigraphic descriptor for consistency with previous literature. 

Individual preserved fans are up to 65 m in thickness, with gradational to sharp bases 

and tops (Johnson et al., 2001) separated by mudstones and siltstones (Van der 

Werff & Johnson, 2003a). Each fan is interpreted as a lowstand systems tract, with 

the overlying fine grained deposits of regional extent representing the related 
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transgressive/highstand systems tract (Goldhammer et al., 2000; Johnson et al., 

2001; Hodgson et al., 2006; Hodgson, 2009). 

This study focusses on the lobe deposits of Fan 4, a lobe complex-set (Fig. 3.1b), in 

an 800 km2 study area (Fig. 3.2a). Fan 4 is up to 65 m thick (Johnson et al., 2001) 

and is characterised by a high amount of amalgamation in the Skoorsteenberg area 

(Fig. 3; Dudley et al., 2000). Palaeocurrents and thickness distributions indicate that 

sediment was sourced from two directions, from the southwest and west (Dudley et 

al., 2000; Hodgson et al., 2006) in contrast to the underlying fans (Fan1-3) that are 

supplied solely from the SW. General palaeocurrent orientations are to the east and 

northeast (Wickens & Bouma, 2000; Hodgson et al., 2006). Fan 4 is divided into two 

sand-rich units named the lower and upper sandstone divisions (Wickens & Bouma, 

2000; Hodgson et al., 2006) separated by a mudstone and siltstone package that is 

up to 6 m thick in the south and thins and fines northward. The upper division thickens 

to the north where the lower division thins, which was suggested by Hodgson et al. 

(2006) to indicate compensational stacking. The stratigraphy of Fan 4 has been 

revised to show that the lower sandstone division comprises one sand-prone lobe 

complex, whereas the upper division comprises two sand-prone lobe complexes, 

separated by thin-bedded heterolithic lobe complex fringe strata. 

 

3.4 Methodology 
 

For this study, 24 log sections were measured in strategically chosen locations (Fig. 

3.3) in order to collect a data set that provides 3D constraint and that comprises 

lithology, palaeocurrent measurements and bed thickness data. Detailed bed-by-bed 

sections (see section locations on Fig. 3.3; ranging from 3 to 60 m in length and 

totalling 510 m in cumulative thickness) record grain size, sedimentary structures and 

bounding surfaces of beds. Logs were recorded at 1:25 scale in the field. Four newly 

drilled (see well locations on Fig. 3.3), near-outcrop cores intersect Fan 4 (212 m total 

thickness) and were logged at 1:4 scale. These data were augmented with three core 

logs (see locations of NOMAD wells on Fig. 3.3; 128 m cumulative thickness) and 19 

logs collected during previous research (Hodgson et al., 2006; Prélat et al., 2009) 

(Fig. 3.3). Outcrop sections and core logs were redrawn at 1:50 scale for correlation 

purposes. The base of the mudstone and siltstone interval that separates the lower  
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Figure 3.3. Locations of recently cored wells, outcrops, NOMAD well locations and previous studies’ 
outcrop sections used in the study. Fan 4 outcrops are marked in white. Images taken from GoogleEarth. 
A larger scale map of the Tanqua depocentre can be found in the back of the thesis as a pull-out. 

 

and upper sandstone division of Fan 4 was used as a marker interval. Palaeocurrent 

measurements (108 in total) were collected from current ripple-laminated strata, 

climbing ripple-laminated strata, and flutes and grooves preserved as casts on bed 
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bases. To determine facies associations and architectures of frontal and lateral lobe 

fringe deposits, the hierarchy and palaeogeography of Fan 4 needed to be revised to 

improve the spatial understanding of lobe distribution. 

 

3.5 Model of lobe anatomy 
 

3.5.1 Hierarchy 

 

A fourfold hierarchy of lobes in the Tanqua was proposedby Prélat et al. (2009): 1) a 

‘bed’ represents a single depositional event; 2) one or more beds stack to form a ‘lobe 

element’; 3) several lobe elements that are divided by thin siltstone intervals form a 

‘lobe’; 4) one or more lobes stack to form a ‘lobe complex’ (Fig. 3.1b). The hierarchy 

can be expanded by adding a fifth hierarchical unit, the ‘lobe complex set’, which is 

formed by several lobe complexes within the same lowstand systems tract (Fig. 3.1b). 

Prélat and Hodgson (2013) demonstrated that extensive meter-thick, thin-bedded 

units between sand-rich lobes, originally referred to as ‘interlobes’ by Prélat et al. 

(2009), represent the distal fringes of lobes. Typically, these are separated from sand-

rich lobe deposits (axis and ff axis) across abrupt surface interpretated to mark up dip 

channel avulsion (Prélat and Hodgson, 2013). Thicker and more extensive thin-

bedded successions can be interpreted as the fringes of lobe complexes (Prélat and 

Hodgson, 2013). 

 

3.5.2 Sedimentary facies and facies associations 

 

Aspects of the sedimentary facies and related environments of deposition of the 

Skoorsteenberg Formation have been described in detail previously (e.g. Morris et 

al., 2000; Johnson et al., 2001; van der Werff & Johnson 2003a; Hodgson et al., 2006; 

Luthi et al. 2006; Prélat at al., 2009; Hodgson, 2009, Jobe et al., 2012; Hofstra et al., 

2015). Individual facies encountered in both outcrop (Fig. 3.4a-f) and core (Fig. 3.5a-

f) datasets are summarized in Table 3.1. The facies combine into common facies 

associations representing different lobe environments: lobe axis, lobe off-axis, lobe 

fringe and lobe distal fringe (Fig. 3.1). The boundaries between these environments 

are transitional.  This fourfold division was introduced by Prélat et al. (2009) and has 

been applied to several outcrop studies (e.g. Etienne et al. 2012; Prélat & Hodgson, 
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2013; Grundvåg et al., 2014; Chapter 4-6). Lobe dimensions from several studies of 

sand-rich systems (Jegou et al., 2008; Saller et al., 2008; Deptuck et al., 2008; Prélat 

et al., 2009; Sømme et al., 2009) show that these bodies have elongate shapes with 

length-to-width ratios of 1.7 – 3.6 (Prélat et al., 2010). Average dimensions of lobes 

in the Tanqua depocentre are 27 km (length) × 13 km (width) × 5 m (thickness) (Fan 

3, Prélat et al., 2009). Similar dimensions are expected for the lobes of Fan 4 as it 

was deposited under similar conditions (e.g. relative unconfined, grain size range), 

and similar lobe dimensions are identified across different unconfined systems (Prélat 

et al., 2010). 

Lobe axis. Lobe axis deposits are dominated by thick-bedded structureless 

sandstone (F1; Figs.3.4a, 3.5a; Table 3.1) with planar laminated (F2; Figs. 3.4b, 3.5b; 

Table 3.1) and banded sandstone (F3; Fig. 3.5c; Table 3.1) in minor proportions. The 

lobe axis setting is characterized as 85-100% sandstone. Multiple zones of 

amalgamation may occur (Prélat et al., 2009) and can form packages up to 8 m thick 

where there is scouring at the base of the lobe. The deposits of the lobe axis are 

laterally extensive down-dip and across strike for several hundred metres and 

generally show tabular geometries (Fig. 3.4a). Units of high amalgamation can be 

traced into well-bedded units of the lobe off-axis towards the frontal and lateral margin 

of the lobe deposits. 

Lobe off-axis. Lobe off-axis deposits comprise well stratified medium-bedded 

structured sandstone (F2; Table 3.1) and are typically 2 to 4 m thick. Lobe off-axis 

deposits are characterized by 50-85% sandstone. They show tabular geometries in 

outcrop and can be traced out for several hundred metres in both dip and strike 

directions. 

Lobe fringe. Lobe fringe deposits comprise a range of facies, including structureless 

sandstone (F1), hybrid beds (F4; Figs. 3.4c,d; Table 3.1), debrites (F5; Fig. 3.5e; 

Table 3.1) and heterolithic packages (F6; Figs. 3.4d, 3.5e). Lobe fringe deposits are 

characterized by 20-50% sandstone. Typical thicknesses range between 0.1 and 2 

m. Several metre thick successions (>2 m) are interpreted as fringes to lobe 

complexes; such accumulations can be walked out into thick lobate sandstone units 

without truncation (cf. Prélat and Hodgson, 2013). At outcrop, lobe fringe deposits 

can show either tapering or pinch- and- swell geometries. The pronounced pinch- 

and- swell geometries give the impression of lenticular bodies, even though no 

evidence of truncation is observed (Bouma & Rozman, 2000; Groenenberg et al., 

2010). The lateral extent of lobe fringe deposits is variable and ranges from a few to 
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several kilometres. The transition from lobe fringe to lobe distal fringe environment 

marks the sand pinchout of the system. 

Lobe distal fringe. The lobe distal fringe environment is dominated by siltstone 

deposits (F7; Figs. 3.4e; 3.5g; Table 3.1). Some thin very fine-grained sandstone 

beds are intercalated in these siltstone-prone packages (<20% sandstone). Siltstones 

can aggrade to form bedded successions of several metres. Lobe distal fringe 

deposits form an extensive ‘halo’ around the main sand-prone lobe body and extend 

for several kilometres. Their dimensions have not been established. 

In summary, lobe axis and off-axis deposits build the core of a lobe body and are 

dominated by structureless and structured sandstone. Sandstone percentage 

decreases towards the lobe fringe and is lowest in distal lobe fringe environments.  

 

3.6 Architecture 
 

3.6.1Thickness distribution and palaeoflow directions 

 

Fan 4 is subdivided into a lower and upper sand-prone division, separated by a thin-

bedded heterolithic division (Fig. 3.6, 3.7a). The two sand-prone divisions of Fan 4 

show different thickness trends and palaeocurrent patterns and are separated by an 

extensive fine grained division.  

The lower sand-prone division has a maximum thickness of ~25 m in the southern 

part of the study area (Fig. 3.6). Thinning is documented to the north and the 

northeast. The lower division records palaeoflow to the northeast but this trend is 

more northwards in the northern part of the study area (Fig. 3.6). Correlation panels 

(Fig. 3.7) show that down-dip pinch-out of lobe deposits occurs in several areas, such 

as around BK, NB2, GBE, OC7 and Ios6 area (Fig. 3.7).  
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Table 3.1. Summary of sedimentary facies of Fan 4.  
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Figure 3.4. Representative outcrop photographs of observed facies. A: Structureless thick-bedded 
sandstone (F1). Person as scale (~ 1.7 m); B: Structured medium-bedded sandstone (F2). C: Hybrid 
bed (F4) with lower clean division and upper mudstone clast –rich division, Lens cover as scale (~7 cm 
diameter); D: Thin-bedded heterolithic strata (F6). Logging pole (1.8 m) as scale; E: Thin-bedded 
siltstone (F7). Lens cover as scale (~7 cm diameter); F: Mudstone (F8) horizon overlain by sandstone. 
Logging pole as scale (10 cm increments). 
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Figure 3.5. Representative core photographs of observed facies. A: Structureless sandstone (F1); B: 
Structured sandstone (F2); C: Banded sandstone (F3); D: Hybrid bed (F4) with lower clean sandstone 
division and upper argillaceous sandstone division; E: Debrites (F5); F: Heterolithic package (F6); G: 
Siltstones (F7); H: mudstone (F8). 
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Figure 3.6. Isopach and palaeocurrents maps for A. Lower and B. Upper Fan 4. Contours are in metres. 
Palaeocurrents from previous work based on Hodgson et al. (2006). 

 

The final sand-pinch out to the northeast occurs in the Vaalfontein- Sout Rivier area 

(Fig. 3.3). Notable lateral thinning across strike towards the east (NS3; Fig. 3.3) can 

be observed (~5.5 m/km). Thin (< 2 m thick) siltstone deposits are deposited farther 

to the north where they thin gradually.  

The thin-bedded heterolithic division that separates the lower and upper sand-prone 

divisions of Fan 4 thins and fines over 30 km from Bizansgat in the S (~6 m) gradually 

to Sout Rivier in the N (~0.7 m) (Fig. 3.8). 

The upper sand-prone division of Fan 4 has a more complicated thickness and 

palaeoflow distribution. There are two areas that show high thickness values (Fig. 

3.6). Maximum thickness in the southern study area is ~35 m (Bizansgat) from where 

the division thins to the north and northeast, with palaeoflow trends that conform to 

the northeasterly to northerly trends of the lower division and of underlying Fan 3 (cf. 

Wickens & Bouma, 2000; Hodgson et al., 2006; Prélat et al., 2009). In the area around 

Skoorsteenberg (Fig. 3.3), the upper division is 47 m thick (Fig. 3.6) with palaeoflow 

trends that record a radial spread of directions to the east, northeast and southeast 

(Fig. 3.6; cf. Hodgson et al., 2006). Thinning occurs to the southeast and northeast, 
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with the rate of thinning to the northeast being highest (~6.9 m/km). The most 

northeastern outcrops around Katjiesberg (down-dip) are characterized by highly 

variable thicknesses that range between 2 and 14 m and these reflect a pinching and 

swelling trend of the deposits, and record dominantly northward palaeocurrents (Fig. 

3.6b). Correlation panels (Fig. 3.7) show that the oldest deposits pinch-out in the Sout 

Rivier area, and the youngest deposits do not reach as far as the Katjiesberg area. 

Therefore, an overall basinward to landward stacking pattern is constrained.  

 

 3.6.2 Hierarchy of Fan 4 

 

Thicknesses, facies associations and palaeocurrents indicate that the lower division 

of Fan 4 comprises one lobe complex (Fig. 3.8a, LC1) that was fed by flows from the 

southwest. The heterolithic succession that separates the lower and upper sand-

prone divisions of Fan 4 comprises thin-bedded silty mudstone, siltstone and 

sandstones (heterolithic deposits) (Fig. 3.8b, c). The facies association, the lack of 

hemipelagic claystone, and the thickness patterns, collectively suggest this 

succession most-likely represents the distal fringe of a lobe complex. 

The associated sand-prone deposits of this lobe complex (LC2) are inferred to be 

located to the west, beyond the outcrop exposure. Palaeoflow and thickness trends 

suggest two distinct sediment entry points for the upper sand-prone division of Fan 4 

(Wickens & Bouma, 2000; Dudley et al., 2000; Hodgson et al., 2006).The upper part 

of Fan 4 comprises two sand-prone lobe complexes (LC3 and LC5). They both have 

maximum thicknesses in the Skoorsteenberg area, and are separated by a ~3 m thick 

extensive thin-bedded unit that is interpreted as the fringe of another lobe complex 

(LC4; Fig. 3.8a). 
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Figure 3.7. Correlation panels of Fan 4. Top: Correlation of a S-N transect from Bloukop (BK) to Isle of 
Sky (Ios). Bottom: SW-NE correlation from Klipfontein (Kf) to Isle of Sky (Ios). The base of the mudstone 
and siltstone interval (black unit) that separates the Lower and Upper Fan 4 is used as datum.
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Figure 3.8. A: Hierarchical model of Fan 4. Location of panel is marked in Fig. 3.3.  Fan 4 consists of 
two sand-prone divisions that are separated by a thin-bedded heterolithic lobe fringe complex. Lower 
Fan 4 comprises one lobe complex (LC1), and upper Fan 4 comprises two lobe complexes (LC3 and 
LC5) and a fringe complex (LC4). Blue square marks zoom-in area of B and C. B: Close-up of the LC2 
deposits in the OR well (see Fig. 3.3 for location). C: Corresponding core photographs. 
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3.6.3 Facies distribution 

 

Successive lobe deposits in weakly confined settings build lobe complexes that 

commonly exhibit compensational stacking patterns driven by avulsion of distributive 

channels (Pickering, 1981; Deptuck et al. 2008; Prélat et al., 2009; Prélat and 

Hodgson, 2013) (Fig. 9a-d). The distribution of sedimentary facies are described from 

LC1 (lower division; Fig. 10a) and LC 3-5 (upper division; Fig. 10b). 

 In the southern part of the study area, where LC1 is thickest, the deposits are 

dominated by structureless (F1) and structured sandstone (F2; see Table 3.1; 

F1+F2> 75%; Fig. 3.10a). The proportion of hybrid beds (F4) increases northwards 

where they can represent up to 50% of the thickness (e.g. Vaalfontein). Heterolithic 

deposits (F6) dominate the basal part of LC1 around the NB2, NS2 and NS1 well 

locations (see location of the well on Fig. 3.3). The NS3 well is represented by 

heterolithic deposits (~70%), siltstone (~10%) and mudstone (~20%) (Fig. 3.11). 

Structureless sandstones are present in the northern part of the study area in highly 

variable proportions (15% to 50% of deposits) (Fig. 3.10a). Sandstone-pinchout 

occurs in the Sout Rivier area (Fig. 3.7). Northwards, the deposits of LC1 consist 

entirely of thin-bedded siltstones. 

The upper part of Fan 4, which comprises LC3, 4, and 5, is characterised by a higher 

proportion of structureless sandstone. The southern study area is marked by 

structureless (F1), structured (F2) and banded sandstones (F3), which represent the 

bulk of deposits (50 to 75%; Fig. 3.10b). Hybrid beds (F4) contribute 20% of the facies 

composition in Koppieskraal; elsewhere they contribute less than 10%. Heterolithic 

deposits (F6) contribute 15 to 35% towards the central study area but less than 10% 

in the southern study area (Fig. 3.10b). The northern study area is dominated by 

structureless sandstone deposits (more than 50%) with the highest proportion 

observed in the Skoorsteensberg area (up to 80%; Fig. 3.10b). Structured sandstone 

is a minor contributor (~ 15%). Hybrid beds represent less than 10% of deposits, 

whereas heterolithic deposits commonly represent 10 to 15%. In the Katjiesberg area 

in the northeast, almost no heterolithic deposits are present (<2%) but thin-siltstone 

deposits are intercalated with structureless sandstone and hybrid beds. 
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Figure. 3.9. Representative photographs of lobe successions in the field area. A: Lobe fringe deposits of 
lower Fan 4 overlain by lobe axis and off-axis deposits of upper Fan 4. Person as scale (~1.7 m); B: 
Lobe fringe deposits of lower Fan 4 overlain by lobe axis and off-axis deposits of upper Fan 4 C: Lower 
Fan 4. Hybrid beds are separated by thin-bedded siltstone successions. Person as scale (~1.7 m). D: 
Thick-bedded lobe axis deposits of Upper Fan 4. Person as scale (~1.7 m). 

 

3.6.4 Fan 4 palaeogeographic reconstruction 

 

Integration of palaeoflow directions, thickness map and facies distribution have 

enabled reconstruction of the lower (LC1) and upper (LC3-5) divisions of Fan 4. 

Palaeoflow directions for LC1 are both to the north and northeast (Fig. 3.6) ), whereas 

sediment entered from the southwest (e.g. Dudley et al., 2000; Hodgson et al., 2006). 

This means that the northward pinchout represents a frontal fringe and the eastern 

termination a lateral pinchout at the scale of the lobe complex (Fig. 3.7). Younger lobe 

deposits of LC1 successively pinchout farther to the north, which is consistent with a 

progradational stacking pattern, and frontal pinch-out at the scale of a lobe. The 

frontal sand pinchout of LC1 in the Sout-Rivier area (Fig. 3.2) is associated with a 

pinch-and-swell geometry of lobes and predominantly structureless sandstone and 

hybrid beds (Fig. 3.7). A ‘halo’ of thin-bedded siltstone, that represents distal lobe 

fringe deposits, is deposited farther to the north. Deposits across strike (lateral) to the 

east are dominated by heterolithic deposits (NS3; Figs. 3.10a, 3.11). The change in 

facies is associated with thinning of LC1. Therefore, the deposits observed in NS3  
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Figure 3.10. Facies distributions and palaeogeographic reconstruction for the lower and upper Fan 4. 
A.: Lower Fan 4 consists of one lobe complex that progrades northward. OR: Ongeluks River; BK: 
Bloukop; KF: Klipfontein. B: Upper Fan 4 comprises four lobe complexes; the southern lobe complex 
prograded to the northeast, whereas the northern lobe complexes are characterised by weaker 
compensational stacking patterns. Both divisions show different distribution patterns in relation to their 
stacking patterns and sediment source. 
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represent several lateral lobe fringes that stack to form the lobe complex fringe. 

Similar facies changes have also been identified on the western margin of LC1 by 

Hodgson et al. (2006) in the Los Kop area (marked in Fig. 3.10a).  

The upper division of Fan 4 comprises two sand-rich lobe complexes, LC3 and LC5, 

separated by an extensive thin-bedded heterolithic interval interpreted as the lobe 

complex fringe, LC4. LC3 has two thick and axial zones, in the Bizansgat and in the 

Skoorsteensberg area (Figs. 3.6, 3.8). The facies distribution patterns and palaeoflow 

(Fig. 3.1) indicate that deposition could have been by two coeval systems with 

different entry points. The deposits are treated as a single lobe complex, because no 

bounding surface or extensive thin-bedded units separating the two thick and axial 

areas has been observed that could have been the result of avulsion.  Facies 

distributions indicate that the southern part of lobe complex (LC3) was strongly 

compensational on lobe scale (Fig. 3.10), whereas the northern part of LC3 and LC5 

show dominantly aggradational stacking patterns of lobes (Figs. 3.9, 3.10). Facies 

changes (e.g. F1 and F3) can be explained by compensational stacking on lobe 

element-scale (Prélat et al., 2009; Etienne et al., 2012; Prélat & Hodgson, 2013) and 

scouring and amalgamation in axial lobe environments. Abrupt facies changes from 

heterolithic deposits (distal lobe fringes) to sand-prone lobes suggest sufficient space 

for lateral compensation. In the down-dip direction (Katjiesberg; for location see Fig. 

3.3) of LC3, structureless sandstone, siltstone and hybrid bed deposits that show 

pinch-and-swell geometries are observed (Fig. 3.12, 3.13) dominate the lobe 

complex. These are interpreted as stacked frontal lobe fringe deposits. 
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Figure 3.11. Well core log through Fan 4 (NS3; see Fig.3.3). The lower division of Fan 4 comprises solely 
thin-bedded heterolithic deposits, siltstones and mudstones of lobe fringe setting. The upper division of 
Fan 4 consists of interbedded structureless sandstone, hybrid beds and heterolithic packages. 
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3.7 Lobe fringe associations 
 

 Palaeogeographic reconstruction of the Fan 4 lobe complex 1 (LC1) shows that 

lateral and frontal lobe complex fringe environments can be well constrained using 

isopach maps and palaeocurrents (Fig. 3.10). Integration of these data with mapped 

sand pinch-outs enables the relative position and orientation of individual lobe bodies 

to be determined with confidence (Fig. 3.10). Generally, their dip direction is to the N, 

whereas their strike direction is to the E and W. Figure 12 depicts characteristic 

transitions in facies at lateral (Fig. 3.12a) and frontal (Fig. 3.12b) lobe fringes in LC1, 

which are described in detail below. Frontal and lateral lobe fringe environments are 

shown to display characteristic facies associations and geometries that are 

summarized in Table 3.2. 

 

 Table 3.2. Recognition criteria of frontal and lateral lobes for outcrop and core. 
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Figure 3.12. Dip and strike facies transition of individual lobes within LC1 of Fan 4. A: Strike section in 
the Gemsbock Valley (see Figure 3.10 for location). Lithology changed from structureless sandstone to 
structured sandstone to heterolithic deposits. B: Dip section on the Sout Rivier area (see Figure 3.10 for 
location). Lithology is dominated by structureless sandstone, hybrid beds and siltstone. 

 

3.7.1 Lateral lobe fringe 

 

Figure 3.12a shows a correlation panel of a single lobe from Hammerkranz to NS2 in 

LC1 (Figs. 3.3 and 3.10a). The lobe is defined by sharp lower and upper changes in 

facies to distal lobe fringe successions. Using the well-constrained palaeogeographic 

map of LC1, this is a lateral transition from axial lobe deposits (dominated by F1 and 

F2) to a succession that is dominated by structured sandstone and heterolithic 

deposits. The lobe thins from 5.5 m in the axial position to 1.9 m in the lateral position 

in 4 km (0.9m/km rate of thinning). The lower part of the lobe exhibits a transition into 

thin-bedded lobe fringe deposits, and the upper part of the lobe exhibits a transition 

to traction dominated sandstones. Bed amalgamation is not observed. 

The NS3 core (Fig. 3.11) shows an example of the lateral margin of a lobe complex 

(LC1) where all lobes pass stratigraphically into an aggradational stack of fringe 

deposits. The integration of observations of the detailed facies transition and the lobe 

fringe-dominated succession in NS3 allows the following characteristics for lateral 
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lobe fringes to be established. The lateral lobe facies association is dominated by 

thin-bedded (>0.2 m) heterolithic deposits of structureless or planar laminated 

siltstone, and wavy, ripple and climbing-ripple laminated very-fine grained sandstone 

(Figs. 3.14a, b, 3.15b; Table 3.2). Rare, individual debrites are present (Fig. 3.15b). 

Lateral lobe fringe deposits experience gradual decrease in sand-content (~50% at 

the transition of the lobe-off axis to ~20% at transition to distal lobe fringe) and bed 

thickness (average bed thickness of 0.6 m in lobe off axis to average bed thickness 

of 0.1 m in lateral lobe fringe). Therefore, pinch-out occurs over several kilometers 

through thinning and fining of the deposits. In outcrop (e.g. LC4; Fig. 3.14b), lateral 

lobe fringes commonly show tabular geometries at the scale of observation (Figs. 

3.14a, b; Table 3.2). A similar facies transition to a lateral fringe in a lobe was well 

constrained in the underlying Fan 3 by Prélat et al. (2009, their Lobe 6). 

 

3.7.2 Frontal lobe fringe 

 

 Figure 3.12b shows a correlation panel of a single lobe from OC2 to OC5 in LC1 (Fig. 

3.7 and 3.10a). The lobe is identified by abrupt lower and upper contacts to lobe distal 

fringe deposits. Using the well-constrained palaeogeographic map of LC1, this marks 

the frontal transition from axial lobe deposits (dominated by F1) to a succession 

marked by hybrid bed deposits, structureless sandstone and siltstone beds. 

Sandstone deposits show a high degree of amalgamation in OC2, and become 

progressively less amalgamated down-dip, and increasingly intercalated with thin-

bedded siltstone units (Fig. 3.12b; Fig. 3.15a). The lobe deposits exhibit a pinch-and-

swell geometry (thickening from 2.5 m in OC2 to 3.2 m in OC3 and then thinning to 2 

m in OC5; Fig. 3.12b). The sand pinch-out of the lobe occurs abruptly within few 

hundred meters. 

Similar facies associations and geometries are observed in the frontal pinch-out of 

lobe deposits in termination of LC3. The frontal lobe fringe facies association is 

characterized by dewatered, structureless or planar laminated fine-grained 

sandstones (Figs. 3.14c, d, 3.15a) associated with hybrid beds and rare thick debrites 

(Table 3.2). Commonly, the sandstone and hybrid beds of frontal lobe fringes exhibit 

depositional pinch-and-swell geometries (Fig. 3.13), which are underlain by siltstones 

but without any basal truncation. In map view, the pinch-and-swell geometries are 

mapped as irregular finger-like bodies aligned with palaeoflow (Bouma & Rozmann, 

2000; Van der Werff & Johnson, 2003b; Prélat et al., 2009; Hodgson, 2009; 
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Groenenberg et al., 2010). The dimensions of these fingers are 200-300 m in strike 

width and 1.5 to 2.0 km in dip length. When sand pinch-out occurs overlying sand-

prone strata, pronounced fingers do not develop. The percentage of structureless 

sandstone within the frontal lobe fringe remains high (10 to 50%) up to the point of 

sandstone pinch-out. Commonly, sandstone pinch-out is abrupt, but deposition of 

thin-bedded siltstones typically continue for several kilometres farther. 

 

3.8 Discussion 
 

Lobes do not show simple thinning and fining trends in all directions away from their 

apex (cf. Groenenberg et al., 2010). Despite showing the widest range of facies, lobe 

fringes are the least well studied sub-environments of lobes. Observations of their 

complexity have already been made by MacPherson (1978) and Pickering (1981; 

1983), who demonstrated the significant variability of lobe (or fan) fringe facies. The 

process reasons behind the observed differences in lateral and frontal lobes fringes, 

and the subsurface implications of improved identification of fringe setting, are 

discussed below.  

3.8.1 Controls on lobe pinch-out geometries 

 

Generally, lateral lobe fringes are predominantely characterised by deposits from low-

density turbidity currents, whereas frontal lobe fringes are dominated by deposits from 

high-density turbidity currents and other high-concentration flows (structureless 

sandstones, debrites and hybrid beds; Talling et al., 2012). Lateral lobe fringes fine 

and thin as they taper away from lobe axis environments (Fig. 3.15b). In contrast, 

basal lobes in the frontal fringes of lobe complexes show abrupt thinning and facies 

changes (Fig. 3.15a). Controls on this distinctive geometry in frontal lobe position 

could reflect 1) influence of underlying seabed topography or 2) flow processes and 

interactions with substrate. Finger-like pinchouts of frontal lobes are observed within 

successive lobes of multiple different lobe complexes within the Tanqua depocentre 

(Bouma & Rozman, 2000; Rozman, 2000; Prélat et al., 2009; Groenenberg et al., 

2010). Similar terminations have also been observed within other basin-floor lobe 

systems (Nelson et al., 1992; Twichell et al., 1992), albeit occasionally misinterpreted 

as channel-forms (e.g. Van der Werff & Johnson, 2003b) due to their elongated shape 

in planform view and their convex-up form in outcrop. Therefore, flow processes can 
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Figure 3.13. Correlation panels for frontal lobe pinchout area around Katjiesberg. A: Areal correlation of 
four pinchout fingers. B: Zoom into the northwestern-southeastern part of the correlation panel. C: 
Sedimentary facies of the pinchout fingers. They are composed of structureless sandstone deposits, 
debrites and siltstone deposits. 
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Figure 3.14. Representative lobe fringe photographs. A: Frontal lobe fringe deposits at Katjesberg.  B: 
Frontal lobe fringe deposits at Katjesberg. C: Lateral lobe fringe deposits at Klipfontein. Logging pole as 
scale. D: Lateral lobe fringe deposits at Hammerkranz. Logging pole as scale.   

 

be invoked as the key factor (Fig. 3.16b). Groenenberg et al. (2010) did not support 

the presence of pre-existing seabed topography as the main influencing factor 

because of the common occurrence of finger like bodies in several basal lobes over 

several lobe complexes. The repeated formation of seabed relief in a radial finger-like 

pattern prior to initiation of each lobe complexes, was viewed as highly unlikely.   

Hybrid beds have been reported to be associated with distal lobe settings (Haughton 

et al., 2003; Talling et al., 2004; Ito, 2008; Hodgson, 2009; Talling et al., 2012a; 

Grundvåg et al., 2014; Patacci et al., 2014; Collins et al., 2015; Fonnesu et al., 2015) 

and their cohesiveness is suggested to control the abrupt pinch-out of deposits in this 

setting (Groenenberg et al., 2010). In frontal lobe fringes, there is evidence that 

relatively distal turbidity currents eroded and entrained substrate material, preserved 

as mud-clasts and dispersed mud (Hodgson 2009, Kane et al., in review). The 

combined effects of flow deceleration, and increased flow concentration through 

entrainment, led to enhanced flow stratification and the development of a dense, 
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Figure 3.15. Simplified anatomy of frontal lobe fringe deposits. B: Simplified anatomy of lateral lobe fringe 
deposits. C: Example log showing a vertical section through a frontal lobe fringe in the Sout Rivier area. 
D: Example log showing a vertical section through a lateral lobe fringe in the Gemsbock East core. 

 

cohesive basal layer (e.g. McCave & Jones, 1988; Kane & Pontén, 2012; Talling et 

al., 2013; Kane et al., in review). The development of a dense basal layer in the flow 

may have suppressed upward transfer of turbulence resulting in the collapse of the 

upper part of the flow (McCave & Jones, 1988; Kane et al., in review). The collapse 

of the upper part of the flow may account for the abrupt pinchout of both the lower 
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and upper parts of hybrid beds in distal settings. The principal alternative, that turbidity 

currents fractionated their suspended load and split into forerunning turbidity currents 

with trailing debris flows (depositing turbidites with linked debrites, Haughton et al., 

2003; Haughton et al., 2009), may account for thicker debrites, that are observed to 

be deposited within the finger-like structures (see Fig. 3.12c). These may have over-

run, or taken a different course, to their forerunning turbidity currents. Deposits of 

high-density turbidity currents are able to create their own pathways and become 

successively more elongated down-dip, forming finger-like bodies. These finger-like 

structures of frontal lobes are connected by thin-beds creating a webbed bird’s foot 

geometry in planform (Fig. 3.13, 3.16a). This accords with results by Groenenberg et 

al. (2010) from process-based numerical modelling of lobes, who suggested that 

depositional relief of preceding lobes could help to focus these types of flow into distal 

areas. Elongated beds have been produced experimentally by Luthi (1981) showing 

that velocity of the turbidity currents was highest along the central axis. The frontal 

pinchout of lobe complexes is accompanied by abrupt thickness decrease and occurs 

over a few hundred metres (Fig. 3.15a). 

The lateral fringe forms a wedge-like geometry that thins away from the lobe axis and 

off-axis (Fig. 15b) as deposits fine gradually over a few kilometres (Fig. 3.16a). Lateral 

lobe fringe deposits dominantly record the accumulated products of low-density 

turbidity currents. Luthi’s (1981) experiments show that flow velocities are lowest in 

these flow marginal areas, and the flow thickness decrease is greatest laterally away 

from the central flow axis. Depositional relief of preceding lobe deposits probably had 

a relatively minor influence on low-density flows, as these can surmount seabed 

topography (e.g., Brunt et al., 2004; Bakke et al., 2013). Their run-out distance is 

therefore primarily dependent on their thickness and volume (Wynn et al., 2002). The 

deposits of the low-density turbidity currents probably form laterally extensive radial 

deposits which are higher in proportion at the lateral fringe, owing to the forward 

momentum and lack of lateral spreading of the higher concentration flows. In the 

frontal fringe setting, the low-density turbidity currents, for the most-part, out ran the 

flows responsible for depositing the hybrid beds. Thin stand-alone debrites recorded 

in the lateral fringe deposits are inferred to have by-passed the majority of the lobe to 

be deposited in its fringe (Talling et al., 2012b; Ducassou et al., 2013).  
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Figure 3.16. Simplified plan view of a lobe marking the distribution of lobe sub-environments and 
example logs for each sub-environment. B: Dominant flow processes to deposit frontal lobe fringes: 
High-density turbidity currents and strongly stratified flows. C: Low-density turbidity currents and debris 
flow deposit lateral lobe fringes. C is modified from Kane et al. (in review).
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3.8.2 Role of confinement 
 

The presented configuration of lobe fringe evolution has been documented in a 

relatively unconfined basin-floor setting. In basins where lobes do not feel basin 

confinement, compensational stacking will result in alternating successions of lobe 

axis and off-axis environments, and facies within lobe fringes and distal fringes (Prélat 

& Hodgson, 2013). Therefore, it is possible that frontal and lateral lobe fringes will be 

present in a 1D section through a lobe complex. Flow confinement has been 

documented to be an important autogenic factor in the control of dispersal patterns 

and lobe stacking patterns (e.g. Piper & Normark, 1983; Smith & Joseph, 2004; Amy 

et al., 2004, Twichell et al., 2005; Macdonald et al., 2011; Southern et al., 2015; Marini 

et al. 2015).  

With increased seabed confinement lobes will be forced to aggrade or stack 

longitudinally over compensational stacking, leading to clearer segregation of frontal 

and lateral lobe fringes. Even subtle intrabasinal slopes, with angles as small as a 

fraction of a degree, have been shown to modify stacking patterns and facies 

distribution considerably. Chapter 4 shows that an intrabasinal slope (< 0.5°) in the 

Laingsburg depocentre, Karoo Basin, led to aggradational stacking of lateral lobe 

fringes in multiple stacked lobe complexes, compared to compensational stacking 

patterns in the unconfined part of the basin. The lateral lobe fringe facies association 

reflects the overall aggradational trend with sedimentary features such as climbing 

bedforms and predominant climbing-ripple lamination. Similar observations have 

been made from the Silurian sand-prone deep-water systems of the Welsh Basin (cf. 

Smith, 1987a,b; Wilson et al., 1992; Smith, 2004b). It is not clear if there are distinctive 

lateral or frontal facies trends in more highly confined basin settings; this is an area 

that warrants further investigation.  

 

3.8.3 Subsurface implications 
 

Differences in sedimentology and architecture of lobe fringes encompass several 

implications for subsurface applications. Facies recognition criteria established in 

this study can help determine internal division of lobe complexes in 1D datasets, 

e.g. core data, and help improve palaeogeographic reconstruction. Stacking of 
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fringe types are a helpful indicator of seabed topography. In an unconfined setting, 

vertical stacking of frontal and lateral lobe fringes is possible, whereas in settings 

influenced by relief thicker successions of frontal fringes (hybrid bed-rich deposits) 

and lateral fringes (thin-bedded heterolithic deposits) can be predicted depending 

on the location of the data point. 

Lobe fringe deposits form heterogeneities within deep-water fan deposits (e.g. 

Etienne et al., 2012; Collins et al., 2015; Grecula et al., 2015). Generally, frontal lobe 

fringes have higher sandstone percentages (~50%). However, the high proportion of 

hybrid beds means that permeability values are likely to be considerably lower than 

within structureless and structured sandstones. This conforms to conclusions of 

Marchand et al. (2015) who observed that the presence of silt-sized particles and 

ductile, platy shaped grains in distal sand-rich successions decreases reservoir 

quality. Thick-bedded deposits can be expected in frontal lobe fringes, but 

amalgamation is rare. Lateral fringe deposits gradually decrease in sand-content 

(~50% at transition structured sandstones of the lobe-off axis to ~20% at transition to 

distal lobe fringe) and bed thickness. Vertical amalgamation is not observed. 

Permeability and porosity values are expected to be relatively low, and decrease 

gradually as the deposits thin and fine. Lobe fringes have the potential to be 

stratigraphic traps (sensu Levorsen, 1936) with their confining element being lateral 

depositional changes especially at the margins of a lobe complex that are encased 

by hemipelagic deposits. Lateral lobe fringes are dominated by their lateral gradation 

of sandstone to silty mudstone with widespread waste zones (cf. Rittenhouse, 1972; 

Biddle & Wielchowsky, 1994). Frontal lobe fringes, however, are characterised by 

their abrupt pinchout style (cf. Rittenhouse, 1972; Biddle & Wielchowsky, 1994) and 

are connected to the high-quality reservoir sandstones of the lobe axis and lobe off-

axis up-dip. Therefore, in consideration with respect to successful stratigraphic trap 

mechanism, frontal fringes are considered more prospective. 

 

3.9 Conclusions 
 

Lobe fringe deposits are the least well studied sub-environments of lobes despite 

showing the widest range of facies. An integrated outcrop and research borehole data 

set uses thickness and grain-size trends, facies distribution and depositional 

geometries, to constrain two distinctive lobe fringe settings; frontal lobe fringe and 

lateral lobe fringe. Frontal lobe fringes are characterised by structureless sandstone 
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and hybrid bed deposits. They can exhibit elongated finger-like shapes with abrupt 

sandstone pinchout. Lateral fringes are dominated by heterolithic traction-influenced 

deposits that gradually thin and fine to form a simple taper. Therefore, lobes do not 

show simple thinning and fining trends in all directions away from their apex, and have 

a morphology that resembles a webbed bird's foot.  

Facies associations and geometries of the two lobe fringe sub-environments are 

controlled by flow processes. Frontal lobe fringes are characterised by deposits of the 

highest energy parts of turbidity currents that passed through the axis of the lobe, and 

maintained the highest momentum, whereas lateral fringes are dominated by 

deposits from low-density turbidity currents that are prone to tractional reworking. 

Distinguishing frontal and lateral fringes improves prediction of facies distributions, 

and their stacking patterns and better reconstruction of lobe systems even without 

well-exposed outcrops arranged in 3D distributions. Compensational stacking of 

lobes in unconfined settings can lead to stratigraphic alternations of frontal and lateral 

lobe fringes in lobe complexes, whereas it is speculated that in confined settings 

aggradational to longitudinal stacking of frontal and lateral fringes will result in 

stronger spatial segregation. The development of recognition criteria to distinguish 

between frontal and lateral lobe fringes will help to support palaeogeographic 

reconstructions, and inform the appraisal of stratigraphic trap prospects in the 

subsurface.  
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Chapter 4 

Aggradational lobe fringes: the influence of subtle 

intrabasinal seabed topography on sediment gravity flow 

processes and lobe stacking patterns 

 

 

4.1 Abstract 

 

Seabed topography is ubiquitous across basin-floor environments, and influences 

sediment gravity flows and dispersal patterns. The impact of steep (several degrees) 

confining slopes on sedimentary facies and depositional architecture has been widely 

documented. However, the influence of gentle (fraction of a degree) confining slopes 

is poorly understood, largely due to outcrop limitations. Here, exceptional outcrop and 

research borehole data from Unit A of the Permian Laingsburg Formation, South 

Africa, provides the means to examine the influence of subtle lateral confinement on 

flow behaviour and lobe stacking patterns. The dataset describes the detailed 

architecture of subunits A.1-A.6, a succession of stacked lobe complexes, over a 

palinspastically restored 22 km across-strike transect. Facies distributions, stacking 

patterns, thickness and palaeoflow trends indicate the presence of a southeast facing 

low angle (fraction of a degree) lateral intrabasinal slope. Interaction between 

stratified turbidity currents with a thin basal sand-prone part and a thick mud-prone 

part and the confining slope result in facies transition from thick-bedded sandstones 

to thin-bedded heterolithic lobe fringe-type deposits. Slope angle dictates the distance 

over which the facies transition occurs (100s m to km). These deposits are stacked 

vertically over tens of metres in successive lobe complexes to form an aggradational 

succession of lobe fringe. Extensive slides and debrites are present at the base of 

lobe complexes, and are associated with steeper restored slope gradients. The 

persistent facies transition across multiple lobe complexes, and the mass flow 

deposits, suggests that the intrabasinal slope was dynamic and was never healed by 

deposition during Unit A times. This study demonstrates the significant influence that 

even subtle basin-floor topography has on flow behaviour and depositional 

architecture in the Laingsburg depocentre, Karoo Basin; presenting a new 
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aggradational lobe fringe facies association and recognition criteria for subtle 

confinement in less well-exposed and subsurface basin fills.  

 

4.2 Introduction 

 

The behaviour of sedimentary gravity flows is strongly influenced by underlying 

seabed topography over a wide range of vertical and horizontal scales. Seabed 

topographic configurations control the general dispersal patterns of sediment and 

distribution of facies (e.g. Piper & Normark, 1983; Kneller & McCaffrey, 1999; Smith 

& Joseph, 2004; Amy et al., 2004, Smith, 2004a; Twichell et al., 2005; Bersezio et al., 

2009; Wynn et al., 2012; Stevenson et al., 2013). The origin of seabed topography 

may be related to active or inherited tectonic features (e.g. Piper & Normark, 1983; 

Wilson et al., 1992; Haughton, 2000; Laursen & Normark, 2003; Hodgson & 

Haughton, 2004; Zakaria et al., 2013; Lin et al., 2014), salt and mud diapirism (e.g. 

Fusi & Kenyon, 1996; Stewart & Clark, 1999; Rowan et al., 2003; Lopez-Mir et al., 

2014), and depositional and erosional relief (e.g. Normark et al., 1979; Pickering & 

Corregidor, 2005; Normark et al., 2009; Dakin et al., 2013; Ortiz-Karpf et al., 2015; 

Chapter 5). The impact of static and dynamic seabed topography on depositional 

architecture and dispersal patterns on the continental slope has been widely 

documented in subsurface datasets (e.g. Prather et al., 1998; Fiduk et al., 1999; 

Smith & Møller, 2003; Marchès et al., 2010; Gamberi & Rovere, 2011; Kilhams et al., 

2012; Yang & Kim, 2014; Prather et al., 2016). Underlying inherited structures can 

also exert long-term influence in a basin through differential compaction (e.g. Parker 

Gay, 1989; Nygård et al., 2002; Færseth & Lien, 2002).  

The interaction of turbidity currents and seabed topography results in a wide range of 

onlap configurations (e.g. Puigdefàbregas et al., 2004; Smith & Joseph, 2004; 

Gardiner, 2006; Bersezio et al., 2009; Marini et al., 2015). Understanding sedimentary 

facies changes and organisation of sub-seismic elements at onlaps can be used to 

reconstruct the palaeogeographic configurations and tectonic history of sedimentary 

basins. Smith & Joseph (2004) illustrated a continuum of onlap configurations from 

abrupt to aggradational onlap as a function of coeval aggradation on the bounding 

slope and the basin-floor. They inferred that abrupt onlap occur with high slope 

angles, when little or no coeval sediments are deposited on the slope. Aggradational 

onlaps occur when aggradation rates on the slope are high associated with a 
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progressive facies change towards the lateral slope (Smith & Joseph, 2004). Smith 

(2004b) illustrated low-gradient lateral bounding slope scenarios to explain thick 

intervals of 'lobe fringe' thin-bedded heterolithics, in belts several kilometres wide, 

adjacent to basin-floor lobe complexes.  

The influence of high amplitude palaeo-seabed topography and their associated high 

degree of confinement on turbidity currents and their depositional architecture is well 

constrained from outcrop studies in small basins (Pickering & Hilton, 1998; Sinclair, 

2000; Haughton, 2000; Sinclair & Tomasso, 2002 , Amy et al., 2004; Hodgson & 

Haughton, 2004; Smith & Joseph, 2004; Amy et al., 2007; Aas et al., 2010; Etienne, 

2012; Etienne et al., 2012; Yang & Kim, 2014; Marini et al., 2015). The angle of 

confining slopes interpreted from outcrop are commonly higher [e.g. 4-10° in the Grès 

d’Annot sub-basins (Puigdefàbregas et al., 2004; Amy et al., 2007); 5-10° in the 

Cengio Turbidite System (Bersezio et al., 2009); >10-12° in the Castagnola Turbidite 

System (Southern et al., 2015)] than the range of slopes identified on reflection 

seismic and multibeam data (e.g. Gervais et al., 2006; Heiniö & Davies, 2007; 

Hanquiez et al., 2010; Prather et al., 2012a; Stevenson et al., 2013b). The effects of 

confining topography are less well documented from moderately confined basins 

(associated with aggradational onlap and bounding slope degrees of <5-1°) (Bailleul 

et al., 2007; Pyles, 2008; Pyles & Jennette, 2009; Burgreen & Graham, 2014) and 

remain poorly constrained in weakly confined basins (bounding slopes <1°; Smith, 

1987 a, b; Wilson et al., 1992; Smith, 2004 b; Sixsmith et al., 2004), because the 

recognition of low-gradient slopes requires inference from isopach and facies trends 

or exceptionally extensive undeformed outcrops. General recognition criteria were 

established by Smith (2004 b): 1) palaeoflow parallel to the strike of the palaeoslope, 

and 2) lateral replacement of sand-prone lobe complexes by thin-bedded turbidites. 

This integrated outcrop and borehole study aims to examine the influence of a gentle 

lateral intrabasinal slope (fraction of a degree) on the depositional architecture of 

submarine lobe deposits in Unit A of the Laingsburg Formation, Karoo Basin, South 

Africa. The objectives are to 1) examine the distribution of facies associations within 

the deposits of Unit A; 2) reconstruct the palaeogeography during deposition; 3) 

establish diagnostic criteria for aggradational lobe fringe facies association; and 4) 

discuss the implications of the long-term interaction of turbidity currents and seabed 

topography in a continuum of systems between confined and unconfined settings.  
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4.3 Geological and stratigraphic setting 

 

The Karoo Basin has been interpreted as a retroarc foreland basin connected to a 

magmatic arc and fold-thrust belt (Cape Fold Belt) (Visser & Prackelt, 1996; Visser, 

1997; Catuneanu et al., 1998). More recently, Tankard et al. (2009) suggested that 

subsidence during the early, deep-water, phase of deposition pre-dates the effects of 

loading by the Cape Fold Belt, and was induced by dynamic topography through 

mantle flow processes coupled to distant subduction (Pysklywec & Mitrovica, 1999). 

The basin-fill comprises the Karoo Supergroup and records sedimentation from Late 

Carboniferous to Early Jurassic. The Karoo Supergroup comprises the glacial Dwyka 

Group, the deep- to shallow-marine Ecca Group and the non-marine/fluvial Beaufort 

Group. The Ecca Group represents a shallowing-upward succession of sediments 

from deep-water to fluvial settings (Flint et al., 2011). 

 

Figure 4.1. A: The Laingsburg depocentre inboard of the Cape Fold Belt. The blue dashed square 
indicates the area of study. B: Stratigraphy of the Laingsburg depocentre. The Laingsburg Fm. overlies 
the Vischkuil Fm. and is overlain by the Fort Brown Fm. (Flint et al., 2011). C: Unit A comprises six 
subunits, separated by regional hemipelagic mudstone horizons (modified from Sixsmith et al., 2004). 
Images taken from Google Earth. 
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4.3.1 Stratigraphy of the Laingsburg depocentre 

 

The Laingsburg depocentre is located in the southwestern part of the Karoo Basin 

(Fig. 4.1a). The deep-water stratigraphy comprises mud-prone distal basin-floor fan 

deposits of the Permian Vischkuil Formation (van der Merwe et al., 2009) overlain by 

the 550 m-thick sand-prone Laingsburg Formation, the focus of this study (Fig. 4.1b). 

The Laingsburg Formation is overlain by the Fort Brown Formation, a 400 m thick 

channelized submarine slope succession (Di Celma et al., 2011; Flint et al., 2011; 

Hodgson et al., 2011). The Permian Laingsburg Formation is subdivided into Unit A 

(sand-prone basin floor fan; Sixsmith et al., 2004; Prélat & Hodgson, 2013) and Unit 

B (base-of-slope deposits; Grecula et al., 2003b; Brunt et al., 2013a). A 40 m thick 

hemipelagic mudstone and (muddy) siltstone separates Units A (up to 300 m) and B 

(up to 200 m), which contains a thin sand-prone unit referred to as the A/B Interfan 

(Grecula et al., 2003b).  

The stratigraphy of Unit A was subdivided by Sixsmith et al. (2004) into seven 

sandstone-prone subunits called A.1 to A.7 from base to top, separated by regional 

hemipelagic mudstone horizons. Flint et al. (2011) reassessed the sequence 

stratigraphy of Unit A through interpretation of relative thicknesses of hemipelagic 

mudstone and stacking patterns. Unit A comprises three composite sequences. 

Subunits A.1 to A.3 show a progradational stacking pattern, and together with the 

overlying hemipelagic mudstone form the first composite sequence. The second 

composite sequence, which consists of subunits A.4 and A.5 and the overlying 

hemipelagic mudstone, has the most channel-fills and marks the most basinward 

advance in sedimentation in Unit A. The third composite sequence includes subunits 

A.6 and A.7 and with the overlying 40 m-thick mudstone marks an overall 

retrogradational stacking pattern. The three composite sequences make up the Unit 

A composite sequence set (Flint et al., 2011). In agreement with Prélat & Hodgson 

(2013), subunits A.4 and A.7 have been re-interpreted as lobe complexes within 

Subunits A.5 and A.6 respectively, as there is no true hemipelagic mudstone 

separating them (Fig. 4.1c). Palaeocurrents in Unit A show local complexity, but are 

dominantly to the NE (Sixsmith et al., 2004).  
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4.4 Methodology and data set 

 

For this study, 21 detailed (1: 50 scale) bed-by-bed sections (each ranging from 140 

to 300 m), recording grain size, sedimentary structures and bounding surfaces of 

beds, were measured to establish a S-N strike transect as well as W-E dip-sections 

to construct correlation panels (Fig. 4.2). For correlation purposes, facies 

associations were defined to represent particular sedimentary environments. All 

correlation panels use the base of Unit A.6 as a datum, because it is present in all 

outcrops, and the thickness and facies of Unit A.6 shows the least variation over the 

study area. More than 750 palaeocurrent measurements collected from ripple 

lamination and tool marks in sandstone beds, and from thrust planes and fold 

vergence in chaotic and folded deposits, were restored. Outcrop data were integrated 

with a recently drilled near-outcrop research borehole (ZKNL, Figs. 4.2 and 4.3 a-g) 

strategically sited to enhance the existing dataset. For isopach map purposes, 

thickness data were combined with existing thickness datasets of Unit A (Sixsmith, 

2000, Sixsmith et al., 2004; Prélat & Hodgson, 2013). 
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Figure 4.2. Log locations and lines of correlated sections. The grey line indicates the S-N transect (Fig. 
4.8), blue, violet, green (Fig.4.9) and beige lines indicate dip-section correlation panels. Black dots 
indicate logged sections, blue dot the location of the ZKNL core. A larger scale map of the Laingsburg 
depocentre can be found in the back of the thesis as a pull-out. 

 

4.5 Facies association  

 

Unit A is interpreted as a basin-floor fan system composed of tabular sandstone-rich 

units that are locally cut by sandstone-rich channel-fills (Sixsmith et al., 2004). The 

sand-rich units (30-110 m thick) are laterally extensive (kilometres) and are 

intercalated with thin-bedded siltstone units. The facies associations, bounding 

surfaces, and geometrical characteristics are consistent with an interpretation as 

basin-floor lobe deposits (Prélat et al., 2009), and show a variety of bed thickness 

patterns controlled by compensational stacking across multiple scales (Prélat & 

Hodgson, 2013). The basin-floor lobes stack to form lobe complexes (Prélat et al., 

2009). 
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4.5.1 Structureless and parallel laminated thick-bedded 

sandstones (lobe axis): 

 

This facies association is characterised by thick-bedded (>0.5 m – 2 m) weakly 

normally graded upper to lower fine-grained sandstones that are usually structureless 

but may show faint parallel lamination (Table 4.1). Bed bases are sharp, loaded or 

erosional. Beds stack to form 5-8 m thick amalgamated units. Amalgamation surfaces 

are indicated by discontinuous layers of mudclasts or subtle grain size breaks. In core, 

dewatering features are common in the lower part of thick sandstone beds. Mudstone 

clasts are common near bed bases and rarely dispersed through the whole bed. 

Typically, the sandstone beds are laterally extensive for kilometres (up to 1.5 km) and 

display tabular geometries. Locally, there is evidence for confinement on a channel-

scale such as lenticular geometries, truncation or margin collapse. Some packages 

of thick-bedded sandstone form large (up to 7 m high) symmetrical deformed features 

with vertical to overturned bedding that are laterally traceable (over 10s of metres) 

into undeformed successions along the outcrop.  

Thick-bedded structureless and parallel laminated sandstone beds are interpreted to 

be deposited by high density turbidity currents (Kneller & Branney, 1995) with high 

aggradation rates (Arnott & Hand, 1989; Leclair & Arnott, 2005; Talling et al., 2012a). 

Planar laminations that are produced by high density currents are associated with 

thick-structureless sandstones. Their geometry, thickness and facies conform to a 

lobe-axis interpretation (Prélat et al., 2009). Lenticular structureless sandstone beds 

(100-200 m in width) with basal erosion surfaces are interpreted to be deposited in 

channel-environments. Scours in Unit A have a more complex geometry and in-fill (cf. 

Hofstra et al., 2015). Units with vertical to overturned bedding are interpreted to be 

formed in-situ by dewatering (Oliveira et al., 2009). 

 

4.5.2 Structured medium to thin bedded sandstone (lobe off-axis):  

 

Medium- to thin-bedded (0.5-0.1 m) very fine- to fine-grained sandstones display a 

range of sedimentary structures such as planar, wavy and occasional climbing-ripple 

lamination (Table 4.1). Individual beds can preserve more than one type of 

sedimentary structure. Structureless sandstone beds are rare. Normal grading is 
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common with rare inverse grading observed at bed bases. Two types of hybrid bed 

are observed in this facies association. 1) Hybrid beds with an upper mudclast-rich 

division with a clean sandstone matrix (D3 division of Hodgson, 2009). The clasts are 

rounded and have a narrow diameter range (< 5 cm) within individual beds and 

located in the upper third of the event bed. 2) Hybrid beds with an upper banded 

division (Lowe & Guy, 2000; H2 division of Haughton et al., 2009). Commonly, banded 

sandstones have a lower structureless division that can make up the bulk of the bed. 

The banded division comprises alternating light and dark sandstone bands. Darker 

bands have a clay-rich matrix and are poorly sorted, whereas light bands are quartz-

rich and well sorted. Darker bands can be rich in carbonaceous material and/or 

mudstone chips. Light bands typically load into the dark bands. There are no grain 

size breaks between the individual bands. Observed banded divisions are up to 20 

cm thick comprising individual bands each < 2cm thick (see M2c and microbanded 

beds of Lowe and Guy, 2000). Bands are commonly planar or sub-parallel and 

continuous, but discontinuous bands are also observed. Structured sandstones are 

extensive for several hundred metres and show tabular geometries in outcrop scale. 

Structured medium- to thin-bedded sandstones are interpreted to be deposited by 

low-density turbidity currents. Planar laminations and current ripple-laminations are 

produced by dilute flows, which rework sediment along the bed (Allen, 1982; 

Southard, 1991; Best & Bridge, 1992). Where a bed shows repetitive sedimentary 

structures this may indicate either long lived surging flows or collapsing flows (Jobe 

et al., 2012). Planar laminations deposited by low density turbidity currents are 

associated with thin-bedded ripple laminated sandstones. Clean sandstone beds with 

an upper mud clast rich division are interpreted to be the product of turbidity currents; 

whereby the head and body of the flows deposit clean sand with mud clasts carried 

towards the top and rear of the flows, to be deposited on the bed top (Hodgson, 2009). 

Deposition of banded divisions and their associated lower structureless division is 

interpreted to be by high-density turbidity currents. The banded division results from 

fluctuations in clay content in near-bed layers in an aggradational setting as reported 

during deposition of traction carpets (Lowe, 1982; Sumner at al., 2008; Talling et al., 

2012a). Deposits are comparable to the H2 division of Haughton et al. (2009) and 

other transitional flow deposits (Lowe & Guy, 2000; Davis et al., 2009; Fonnesu et al., 

2015). The facies and thickness of this association is consistent with an interpretation 

as deposited in the lobe off-axis (Prélat et al., 2009).   
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Table 4.1Description of the facies association defined in Unit A 

 

4.5.3 Heterolithic packages (lobe fringe): 

 

Thin-bedded (0.01-0.1 m) heterolithic packages (0.2 to 2.5 m thick) (Figs. 4.3 f and 

4.4 a, b; Table 4.1) comprise fine and coarse siltstones (< 5 cm) interbedded with 

very fine- to lower fine-grained sandstone. Sandstone beds contain planar and/or 

current ripple laminations, with rare climbing ripple lamination. Siltstone beds are 

either structureless or planar laminated. Bed thickness range is narrow (5-10 cm), but 

2-5 m thick packages with thickening- or thinning-upward trends occur. Two types of 

hybrid beds (0.05-1.5 m thick) are observed within the heterolithic packages. 1) Clean 

sandstone overlain by an argillaceous (muddy sand) division that is mica- and plant 

material-rich (D1 division of Hodgson, 2009, and H3 division of Haughton et al., 2009). 

Core observations show that; the fabric in the upper argillaceous division is commonly 

swirly and patchy. The boundary between the lower and upper division is commonly 

gradational. Some sand grains in the argillaceous division are coarser than in the 

underlying sandy division. 2) Hybrid beds with an upper argillaceous clast-rich division 

(D2 division of Hodgson, 2009, and H3 division of Haughton et al., 2009). The 

argillaceous division consists of a muddy sand matrix and subangular to subrounded 

intraformational mudstone clasts (cm to dm in size). No preferred orientation of the 



83 
 

 

clasts was observed. The boundary between the lower and upper division can be 

gradational or sharp. The underlying sandstone can show wavy or pseudo-lamination, 

when it contains a significant amount of mud chips. Rarely, beds show a lower clean 

sandstone division overlain by an argillaceous division with either intraformational 

mudclasts- or a carbonaceous-rich middle division and a clean sandstone upper 

division (cf. H4 of Haughton et al., 2009). 

The heterolithic packages are interpreted as distal, sluggish, dilute flows (Stow & 

Bowen, 1980; Jobe at al., 2012). Ripple laminations form beneath dilute turbulent 

flows via bedload transport under moderate aggradation rates, whereas climbing-

ripple laminations form under high aggradation rates (Allen, 1971a; Allen, 1982; 

Southard, 1991). Hybrid beds are interpreted to be the product of flows that transform 

along their length from turbidity current to debris flow (Fisher, 1983; Haughton et al., 

2009; Fonnesu et al., 2015). The facies and thickness of this association are 

consistent with an interpretation of a lobe fringe setting (Mutti, 1977; Pickering, 1981; 

Prélat et al., 2009). 

 

4.5.4 Thin-bedded siltstones (distal lobe fringe): 

 

This association comprises thin-bedded (0.05 m) fine and coarse siltstones with rare 

thin (<0.05m) very fine-grained sandstones (Figs. 4.4 a, c; Table 1). The siltstones 

are structureless or planar to starved ripple laminated, when they display a sandy 

component. Observations from the core show moderate to high bioturbation in these 

facies associations. Thicknesses of individual intervals are variable (0.5 m to 3.5 m).  

Thin-bedded siltstones are the preserved products of dilute turbidity currents. Planar 

laminated and rippled beds are a product of tractional reworking of the bed (Stow & 

Piper, 1984; Mutti, 1992; Talling et al., 2012a), while structureless beds are a product 

of direct suspension fallout (Bouma, 1962). The facies is typical of distal lobe fringe 

environments (Prélat et al., 2009). The variation in interval thicknesses is interpreted 

to be dependent on the number of overlapping distal lobe fringe deposits (Prélat et 

al., 2009).  
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Figure 4.3. ZKNL core log and photos. A: Core log through Subunit A.5 B: Mud-streak rich sandstone on 
the top of A.3. Coin as scale (~1 cm diameter). C: Silt-prone syndepositional deformed interval of the 
chaotic facies. Coin as scale (~1 cm diameter). D: Clean sandstone loading into a debritic top of a hybrid 
bed. Coin as scale (~1 cm diameter). E: Dewatering features in a sandstone. Coin as scale (~1cm). F: 
Ripple-laminated sandstones intercalated with siltstone deposits. Coin as scale (~1 cm diameter). G: 
Highly sheared siltstone-prone package. Coin as scale (~1 cm diameter). 
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Figure 4.4. A: Sedimentary log through Doornkloof 1 section (see Fig. 4.3). Expanded parts show slide 
facies and lobe fringe facies. B: Thin-bedded appearance of A.1 at the lateral lobe complex margin at 
Steekweglagte 1. Logging pole for scale. C: Lobe fringe deposits of Subunit A.1. Pencil (~15 cm) for 
scale. D: Slightly deformed thin-beds in the Jakkalsfontein area. Geologist for scale (1.65 m). E: View 
into the Doornkloof area. 
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4.5.5 Structured climbing bedform dominated heterolithic 

packages: 

 

Thin-bedded (0.01 to <0.1 m) fine to coarse siltstones are interbedded with sandy 

siltstones to very fine-grained sandstones (Figs. 4.5 a-e; Table 1). Siltstones make 

up the bulk of the heterolithic packages (Fig. 4.5 c). Sandstone beds show either 

planar, stoss-side preserved climbing- ripple or wavy lamination. Ripple morphology 

is preserved on bed tops, and in cross-section individual beds are sigmoidal with a 

long gently dipping limb and a shorter steeper limb, used to indicate a palaeoflow 

direction (Fig. 4.5 b). Successions of these ripples form larger dune-like features. The 

heterolithic package comprises multiple event beds that stack in the direction of 

palaeoflow (Fig. 4.5 c). Stacking patterns are dominantly aggradational (Fig. 4.5 d). 

The facies association includes rare hybrid beds with an upper argillaceous 

carbonaceous division. These heterolithic intervals are up to 10 m thick, and 

intercalated with thin-bedded siltstone intervals (Fig. 4.5 e). 

Structured climbing bed dominated heterolithic packages indicate rapid deposition 

from dilute turbidity currents. Stoss-side preserved climbing-ripple lamination indicate 

deposition beneath energetic flows forming under high aggradation rates (Allen, 

1971a; Allen, 1982; Southard, 1991). 

  

4.5.6 Chaotic and folded facies association: 

 

Chaotically deformed packages (up to 30 m thick) (Figs. 4.3 b, c and 4.4 a, d, e; Table 

4.1) comprise isoclinal and recumbent folds of thin-bedded (cm-scale) siltstones 

interbedded with very fine- grained sandstones. Where folded, thin-bedded units can 

be partly disaggregated and encased by a poorly sorted structureless siltstone matrix. 

Planar, current ripple and climbing-ripple lamination can be observed in beds within 

the folded sandstone/siltstone packages. In core, the chaotic facies shows micro-

faulting (mm-scale offsets) around folds (Fig. 4.3 c). Locally, these units are 

intercalated with relatively undeformed thin-bedded units (Table 4.1). Bases of 

chaotic and folded units are sharp to erosive, while bed tops are undulated and 

irregular.  
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Figure 4.5. A: Sedimentary log of the Wilgerhoutfontein 2 section (see Fig. 4.3). Representative 
photographs to show the appearance of the aggradational lobe facies association (logging pole for 
scale). B: Very fine-grained sandstone beds showing sigmoidal shapes. Logging pole for scale. C: 
Package of climbing siltstone beds. Note the trajectory indicating flow direction. Compass for scale. D: 
Very fine-grained sandstone dominated package, climbing ripple laminated. Logging pole for scale. E: 
Thin-bedded planar laminated coarse siltstones. 
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The orientation of the folds does not conform to the post-depositional tectonic folding 

of the Laingsburg area stratigraphy. Therefore, the tight folding of the thin-bedded 

strata is interpreted as syn-depositional deformation due to remobilisation of local 

thin-bedded stratigraphy. The low amount of disaggregation supports an 

interpretation of slide to slump deposits, although where the matrix encases clasts of 

folded thin-beds a debris flow deposit interpretation is invoked (Woodcock, 1979; 

Prior et al., 1984; van der Merwe at al., 2009; Talling et al., 2012a). Slide deposits 

and debrites can be followed out for several kilometres and cover an area of at least 

65 km2.  

 

4.5.7 Hemipelagic mudstones: 

 

Mudstones are thin-bedded (0.5- 1cm) and commonly silty. Mudstone dominated 

packages can be up to 15 m thick. Calcareous concretions are common and can be 

associated with distinct horizons in the deposit. Thin-bedded siltstones and ash 

layers (< 5 cm) are locally intercalated. Clastic injection is common, especially in the 

mudstone horizon that separates Subunits A.5 and A.6 (Cobain et al., 2015). 

Mudstone packages are regional in extent and do not show thickness changes, 

except where eroded by remobilized chaotic and folded deposits or flows that 

deposit younger sand-rich deposits.  

Mudstones are interpreted as hemipelagic background deposits. They can be 

mapped over large areas and mark episodes of sediment starvation to the basin-

floor. Flint et al. (2011) interpret these to contain the deep-water expression of 

maximum flooding surfaces. Mudstone packages therefore serve as useful 

correlation intervals. 

 

4.6 Palaeocurrents 

 

Palaeocurrent measurements show that the mean palaeoflow direction of turbidity 

currents in Unit A was to the northeast (Fig. 4.6), consistent with overall northeast to 

east palaeocurrent measurements in the underlying Upper Vischkuil Formation (van 

der Merwe et al., 2009) and the overlying Unit B (Brunt et al., 2013a) and Fort Brown 
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Formation (Figueiredo et al., 2010; Di Celma et al., 2011; van der Merwe et al., 2014, 

Chapter 5). Around Jakkalsfontein and Dapperfontein, palaeocurrents are commonly 

to the east or show flow patterns to the southeast, especially in subunits A.3 and A.5 

(Fig. 4.6). Palaeocurrent data from ripple laminations in the most northern outcrops 

(Wilgerhoutfontein 1+2 and Waterkloof) present a narrow spread with a dominant 

direction to the east. In contrast, measurements of thrust planes and fold vergence 

from slides indicate transport towards the southeast and southwest (Fig. 4.6). 

 

4.7 Distribution of facies associations and their thicknesses  

 

In the study area, Unit A comprises six facies associations (Table 4.1) with five of 

them representing a particular lobe sub-environment. Prélat et al. (2009) described 

‘lobe axis’, ‘lobe off-axis’, ‘lobe fringe’ and ‘distal lobe fringe’ from detailed mapping 

of submarine lobes from the nearby Tanqua depocentre. Outcrops in the south of the 

study area (Skeiding and Rietfontein, Fig. 4.2) are dominated by lobe axis (Fig. 4.7 

a) and lobe off-axis deposits (Sixsmith et al., 2004) separated vertically by lobe fringe 

associations (Fig. 4.8). This stratigraphic trend is indicative of compensational 

stacking patterns (Prélat & Hodgson, 2013). Outcrops in the north of the study area 

consist of lobe off-axis (Fig. 4.7 b) and fringe deposits intercalated with silt-prone slide 

deposits and debrites (Doornkloof, Doornfontein and Jakkalsfontein). Slides and 

debrites occur dominantly at the bases of subunits A.3 and A.5 (Fig. 4.7 d), although 

thin (< 5 m) localised deposits of deformed strata can be observed within the other 

subunits. Subunit A.3 shows large-scale dewatering structures (up to 7 m high) in its 

top in the Jakkalsfontein- Dapperfontein area, which are truncated by an overlying 

debrite at the base of A.5 (Fig. 4.7 c). Climbing-bedform dominated thin-bedded 

siltstone successions are only present in the northern part of the study area 

(Waterkloof and Wilgerhoutfontein; Fig. 4.8). The position of the lateral transition from 

lobe fringe to climbing thin-bedded siltstones follows a strongly aggradational pattern, 

with a slight northward trend through the stratigraphy from A.1 to A.6 (Fig. 4.8). 

Locally, hemipelagic mudstones between A.2/A.3 and A.3/A.5 are completely 

removed through entrainment by slides and debris flows in some localities, while the 

mudstone deposits between A.1/A.2 and A.5/A.6 are preserved across the whole 

study area (Fig. 4.8, 4.9, 4.10). 
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Figure 4.6. Palaeocurrents for Unit A (cumulative) and subunits A.1 to A.6. Black: palaeocurrents for 
lobe deposits; blue: movement direction for chaotic deposits. Orange line: mean palaeoflow direction of 
lobe deposits; blue line: mean movement direction of chaotic deposits. 
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Figure 4.7. Representative photographs for Unit A, Laingsburg Fm. A: Thick-bedded structureless 
sandstones dominated by lobe axis deposits separated by lobe fringe thin-beds. Geologist (~1.65 m) for 
scale. B: Medium-bedded structured sandstones interbedded with heterolithic packages in the northern 
study area (Jakkalsfontein). Geologist (~1.65 m) for scale. C: Large-scale dewatering feature at 
Jakkalsfontein 1 in A.3. The flames are truncated by an erosion surface overlain by a debrite at the base 
of A.5. Geologist as scale (~1.7 m). D: Photo panel of the Jakkalsfontein area showing Subunits A.3 and 
A.5. Both subunits have a basal slide deposit that is overlain by bedded sandstones. The base of the 
A.5 slide is erosive and truncated the big-scale dewatering features at the top of A.3. 
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In strike section, the thickness of Unit A is 300 m in the south (Skeiding) and thins to 

140 m (Jakkalsfontein) towards the north (Fig. 4.8). Whereas the thickness of subunit 

A.1 shows no change, A.2 show slight thinning (from ~23 m to ~15 m; Fig. 4.8), while 

subunits A.3 – A.5 show a pronounced thinning trend. Subunit A.5, which consists of 

several lobe complexes, shows the maximum amount of thinning (117 m in the south 

to 42 m in the north). Subunit A. 3 thins from 43 m to 30 m, whereas A.6 thins slightly 

from 25 m to 22 m. In depositional dip sections (Fig. 4.9), subunits A.1-A.6 maintain 

a similar thickness, and only minor thickness and facies changes are observed that 

can be accounted for by compensational stacking at subunit level. Isopach thickness 

maps (Fig. 4.10) show an overall shift in the main locus of deposition to the N through 

A.1- A.6. Subunit A.3 displays two areas of thicknesses exceeding 30 m. In the SE, 

the thickness conforms to lobe deposits, whereas in the NW the thickness is caused 

by slides and debrites at the base of A.3 (34 m thick). 

 

4.8 Palaeogeographic reconstruction 
 

The stratigraphic thinning to the northwest, the presence of mass flow deposits with 

kinematic evidence of movement to the southeast and southwest, and the thick 

aggradational succession of climbing ripple dominated thin-bedded siltstone facies 

with a narrow eastward palaeoflow direction (Fig. 4.7) in all lobe complexes point to 

the presence of seabed topography during deposition of Unit A (cf. recognition criteria 

of low-gradient slopes established by Smith (2004 b)). Based on these data, a SW-

NE orientated and SE-facing intrabasinal slope has been reconstructed. The regional 

palaeocurrent trends in the underlying (Vischkuil Formation) and overlying (Unit B of 

Laingsburg Formation and Fort Brown Formation) are dominated by overall NE 

palaeocurrents (van der Merwe et al., 2009; Brunt et al., 2013, van der Merwe et al., 

2014). This indicates that the intrabasinal slope was a lateral slope rather than the 

main basin margin slope. The limited amount of basinward thickness changes in 

subunits A.1-A.6 to the east (Sixsmith et al., 2004; Prélat & Hodgson, 2013, Fig. 4.9), 

suggest that the base of the intrabasinal slope ran between Matjiesfontein in the 

southwest and the centre of the Moordenarskaroo in the NE (Fig. 4.10).  
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Figure 4.8. S-N transect correlation panels. Top: Correlation of subunits. Unit A thins to the north from 
~270m to ~160m. Middle: Correlation of lobe sub-environments. Slide deposits occur in the Doornfontein 
and Jakkalsfontein areas. In the most northerly outcrop all facies associations are replaced by the 
aggradational lobe fringe facies association. SK2: Skeiding 2; RF: Rietfontein; DF: Doornfontein 1; JF 1: 
Jakkalsfontein 1; WHF: Wilgerhoutfontein. DPF: Dapperfontein, JF: Jakkalsfontein. Fig. 4.2 shows 
locations of transects. Bottom: Percentage of facies proportion over the transect. Note that at 
Wilgerhoutfontein the typical lobe environments are replaced by 'aggradational lobe fringe' facies. 
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Figure 4.9. W-E transect (down-dip) correlation panel from the Doornkloof-Doornfontein area. Note that 
thickness remains almost the same over 5.6 km. Slight thickness changes may be due to compensational 
stacking of the subunits. 

 

 

The southern study area is characterised by lobe complexes built through 

compensational stacking of lobes dominated by lobe axis and lobe off-axis deposits 

intercalated with heterolithic lobe fringe deposits. The northern study area consists of 

progressively more thin-bedded lobe fringe deposits that show aggradational 

stacking. Compensational stacking in the south to southeast of the study area and 

aggradational stacking in the northwest point to a relatively abrupt change in gradient 

(Fig. 4.11), associated with a break in slope.  

 



95 
 

 

 

Figure 4.10. Thickness isopach and palaeoenvironmental maps for subunits A.1 to A.6. Note that A.1 
and A.2 do not show specific thickness trends but do show facies trends. A.3 to A.6 thin above an SE-
facing slope. DF: Doornfontein, DK: Doornkloof, GB: Geelbeck, JF: Jakkalsfontein, SK: Skeidingen, 
SWL: Steegweglagte, WH: Wilgerhout, WHF: Wilgerhoutfontein, ZKNL: Zoutkloof Northern Limb. MF: 
Matjiesfontein 
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Slightly more pronounced thinning of A.3 and prominent thinning of A.5 over the 

transect suggests that the confining slope steepens from the deposition of Subunits 

A.1 and A.2 to A.3 and A.5. The steepening of the confining slope is coincident with 

the emplacement of thick slide and debris flow deposits, which are most abundant in 

Subunits A.3 and A.5. The slides and debrites comprise remobilised heterolithic 

stratigraphy (lobe fringe deposits), dominated by thin-bedded climbing ripple 

laminated sandstones and the regional hemipelagic mudstones. Therefore, it is 

possible that the increased gradient destabilised sediments that had accumulated on 

the confining slope. The absence of the regional mudstone in situ, suggests that 

remobilisation happened after initiation of subunits A.3 and A.5.  

 

4.9 Discussion 

 

4.9.1 Aggradational lobe fringe facies association 

 

Flow processes 

Sedimentary structures indicate that very fine-grained sandstones, sandy siltstones, 

siltstones and mudstones with climbing bedform geometries were deposited rapidly 

from stratified turbidity currents with a thin basal sand-prone part and a thick mud-

prone part. Due to rapid deceleration the upper parts of the flows deposited 

heterolithic climbing-ripple dominated facies along the intrabasinal slope (Fig. 4.11). 

The main sand fraction was partitioned to the south, where lobe complexes display 

intercalation of dominantly structureless sandstone lobe axes and structured 

sandstone lobe off-axes with heterolithic lobe fringes that is indicative of unconfined 

compensational stacking (Fig. 4.11). The thick sand-rich packages in the south grade 

abruptly into thin-bedded heterolithic lobe fringe facies in the northwest (against the 

confining slope). The lateral transition to lobe fringe from lobe axis and off-axis 

successions supports interpretation of the palaeo-environment of deposition being 

stacked lateral lobe fringes (Pickering, 1981, 1983). The lobe fringe facies association 

in this study differs from the lobe fringe facies association proposed by Prélat et al. 

(2009) from the unconfined Tanqua depocentre, largely due to the evidence for high 

sedimentation rates (climbing ripples and climbing bedforms) and the persistent 

aggradational stacking of facies over tens of metres on lobe complex scale. The 

narrow spread of slope sub-parallel palaeocurrents documented within these deposits 
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suggests minor flow deflection (Fig. 4.6). We propose the term ‘aggradational lobe 

fringes’ for this specific lobe sub-environment. The lateral facies transition between 

lobe axis and off-axis to fringe is governed primarily by the height of the topography 

relative to the thickness of the flows (Muck & Underwood, 1990; Pickering & Hilton, 

1998, Wynn et al., 2012). However, flows are stratified in terms of their grain size and 

sediment concentration ( García & Parker, 1993; McCaffrey et al., 2003; Baas et al., 

2005; Kane & Pontén, 2012). In relatively unconfined basin-floor settings, flows are 

likely to be relatively thin (Stevenson et al., 2013b); transporting their sandy sediment 

only metres from the bed with the finer grained component transported in a thicker 

(10s metres) dilute overriding layer (Stevenson et al., 2014). The presence of subtle 

lateral topography on the basin-floor will therefore impose different levels of 

confinement on the basal and upper parts of the flows (Fig. 4.11). 

Interaction of stratified flows and seabed topography 

A gentle SE-facing lateral slope present during the deposition of A.2, A.3 and A.6 

would confine the basal part of the flows (metres thick) and lateral pinching would 

occur over distances of kms. In contrast, the upper parts of flows would be able to 

easily surmount the topography. This generates a scenario whereby sandy lobe 

deposition (axis and off-axis environments) is weakly confined by the slope, whilst the 

fine-grained fringes deposit as if unconfined (Fig. 4.11 a). Fringe deposits from lobes 

that are deposited farther away from the confining slope are extensive. As they 

deposit from the dilute part of the flow they will contribute to the deposits on the slope. 

Therefore, thinning in this scenario is notably gradual (Fig. 4.11 a).  

Relatively steeper slopes (subunit A.5) would confine the sandy basal parts of flows 

more strongly and result in lateral pinching over distances of hundreds of metres. The 

thicker upper parts of flows are also confined but still onlap higher up the slope and 

are, therefore, able to deposit drapes onto the bounding slope (cf. Smith & Joseph, 

2004). This generates lobe deposits that abruptly (over hundreds of metres) transition 

into aggradational lobe fringe facies (Fig. 4.11 b). With continued sandy lobe 

deposition, compensating lobes will stack against the confining slope with 

aggradational lobe fringes (Fig. 4.11 b).  
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Figure. 4.11. Schematic evolution of lobes and stacking patterns within subunits (thicknesses 
exaggerated). A) With a gentle intrabasinal slope as during the deposition of A.3 compensational 
stacking pattern in the main depocentre passes into a mixed aggradational and distal fringe on the slope. 
The transition from lobe axis and off-axis deposits to aggradational fringe deposits occurs over kms 
(climbing trajectory). B) A relative steeper intrabasinal slope as present during deposition of A.5 results 
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in compensational stacking in the main depocentre and abrupt facies transitions (100s m; vertical 
trajectory) and thinning to the slope, where aggradational fringe and distal lobe fringe deposits are 
successively located slope-upwards. C) Estimation of slope angle using trigonometric geometries. 
Where Taxis is the thickness at Rietfontein, Tmargin is the thickness at Wilgerhoutontein (for locations see 
Fig. 4.2) and d is the distance between the locations (18.7 km) along the transect corrected for post-
depositional tectonic shortening. 

 

4.9.2 Nature of the confining structure 

 

The origin of the lateral slope, and whether it was static or dynamic, is discussed 

using stratigraphic evidence. The thickness trends and facies distributions (Fig. 4.10) 

indicate that the gradient of the confining slope increased through time from A.1 to 

A.5, then reducing from A.5 to A.6. The persistent lateral facies transition to thick 

aggradationally stacked lobe complex fringes, in a similar fashion, indicates that the 

slope was always present and inhibited the development of lobes. Therefore, the 

intrabasinal slope was dynamic rather than static. Differential compaction above syn-

rift topography has been shown to have a long-lived impact on deep-water 

sedimentation patterns (e.g. e.g. Parker Gay, 1989; Nygård et al., 2002; Færseth & 

Lien, 2002). However, reduction of the slope gradient after the deposition of A.5 

indicates that differential compaction above a deeper rigid block cannot be the driving 

mechanism for the dynamic intrabasinal slope. Syn-tectonic activity deforming the 

seabed has been postulated previously in the basin (e.g. Grecula et al., 2003b; 

Sixsmith et al., 2014). Sixsmith (2000) proposed syndepositional basin-floor 

deformation as a driving mechanism for thickness variations, speculating early 

movement on incipient structures that became the present day E-W trending folds. 

Sixsmith et al. (2004) inferred that Units A.1 and A.2 pinchout with an onlap against 

an incipient Hexberg-Bontberg-Heuningberg antiform structure (see Fig. 4.1) with 

Unit A.1 and A.2 pinching-out against the structure, and that Unit A thickens 

dramatically to the north of the Heuningberg anticline. Here, all subunits are 

correlated over the study area, with no evidence of any subunit pinching out across 

the Heuningberg anticline area. The thinning and facies trends do not coincide with 

the present day orientation of fold structures but are consistent with a SE-facing low 

gradient intrabasinal confining slope. 

Timing of mass wasting processes, thickness distributions and slope angles are key 

indicators to determine the nature of the slope. Mass wasting events have been 

examined on modern seabed basin margins on slopes gradients as low as 0.05 to 

1.4° (Bugge et al., 1988, Masson et al., 1998; Gee at al., 1999; Haflidason et al., 
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2004; Frey-Martínez et al., 2006). The slides and debrites are located at the bases of 

Subunits A.3 and A.5 as slope angles increased. It is likely that much of the 

steepening occurred during the slow accumulation of the hemipelagic drapes that 

separate Subunit A.2 from A.3 and Subunit A.3 from A.5. The initiation of slides and 

debris flows may have been due to 1) oversteepening of the intrabasinal slope; 2) 

liquefaction of the underlying muddy deposits (cf. Bull et al., 2009); 3) failure through 

high pore pressure due to high sedimentation rates on the slope (Nygård et al., 2002), 

or a combination of these processes. Gee at al. (1999) reported that high pore 

pressures can initiate bed shearing on slopes as little as 0.05° conforming to slope 

angles during deposition of A.3 and A.5. For example, seismicity can increase slope 

gradients, liquefy strata and generate overpressure (Heezen and Ewing, 1952; Bugge 

et al., 1988). Therefore, punctuated mass wasting, and successive steepening of the 

slope and healing before the deposition of A.6 suggests an underlying tectonic driver 

and explains the presence of a dynamic if subtle lateral slope, with different rates of 

tilting and sedimentation governing its gradient at any time on the seabed. 

 

4.9.3 Estimating the angle of the lateral slope 

 

Estimation of palaeoslope gradients from outcrop data is problematic as many 

assumptions need to be made. For example, the original gradient of the seabed, the 

effects of differential sediment compaction, and the amount of post-depositional 

shortening due to tectonic activity. Although it is not possible to determine original 

gradient unequivocally, reconstructing an approximate slope gradient is useful in 

making comparisons across different systems (i.e. low gradient slope <1°; moderate 

gradient slope 1-5°; and high gradient slope < 5°). Although the original gradient of 

the seabed on the basin floor at the time of onset of accumulation of Subunit A1 

cannot be determined, it was likely close to zero (van der Merwe et al., 2009). 

Thinning and facies distribution of Unit A, particularly of remobilised chaotic deposits, 

suggest that the intrabasinal slope likely dipped to the SE. 

If all the thinning of subunits A.1 to A.6 across the transect from axis to margin is 

attributed to the presence of a seabed topography, and if the basin floor is assumed 

to have had no gradient at the time of accumulation, then an approximate minimum 

intrabasinal slope angle can be estimated using a simple trigonometric approach (see 

Fig. 11c): 
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tan-1 = (Taxis - Tmargin)/d    [Equation 1] 

Where Taxis is the original accumulated thickness at Rietfontein, Tmargin is the 

original accumulated thickness at Wilgerhoutfontein (for locations see Fig. 2), and d 

is the measured distance between the locations (Rietfontein and Wilgerhoutfontein, 

Fig.2 along the transect, which has been corrected for post-depositional tectonic 

shortening (18.7 current distance; 21.3 km restored distance; Spikings et al., 2015). 

The results of Equation 1 have been converted into degrees. 

A number of factors need to be taken into consideration when evaluating the 

uncertainties associated with the reconstruction of slope angles. Firstly, differential 

compaction will have resulted in significantly reduced thicknesses of the finer-grained 

lobe fringe deposits compared to the sand-rich lobe successions. Here, preserved 

section thicknesses have been decompacted using the approach of Sheldon & 

Retallack (2001) to estimate whether the effects of differential compaction have 

resulted in a significant error in the calculation of slope angle: 

C=Si/[Fo/eDk)-1]      [Equation 2] 

Where C is the fraction of the original thickness, Si is initial solidity, Fo is the initial 

porosity, D is depth of burial in km, k is the curve-fitting constant. General values for 

Si, Fo and k for marine sediments were established by Sclater & Christie (1980) and 

Baldwin & Butler (1985). They are displayed in Table 2. For sandstone, the following 

values are used: Si =0.51, Fo= 0.49, and k= 0.27 (cf. Sclater & Christie, 1980; 

Sheldon & Retallack, 2001). Sediments of the Karoo Basin exhibit greenschist 

metamorphism and were therefore buried to at least 6 km (Tinker et al., 2008; 

Hansma et al., 2015). The amount of compaction of the sandstone is estimated as 

follows: 

C=0.51/[0.49/e(6*0.27))-1]     [Equation 3] 

This yields a value for C of 0.55 for sandstone, (i.e. the present preserved thickness 

has decreased by almost half compared to its original thickness). C value for siltstone 

and claystone are 0.42 and 0.22, respectively. Lobe axis and off-axis are dominated 

by sandstone and minor siltstone deposits, whereas lobe fringes are dominated by 

siltstone and very fine-grained sandstone deposits, and claystone is absent, meaning 

that decompaction has limited effects on the estimation of slope angle. Table 3 shows 

compacted and decompacted thicknesses, sand percentages and the variation of 

slope angle for all subunits. Over the whole transect (21.3 km); these thickness 
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variations introduce an average error (variance) in calculated slope gradient of ±0.01° 

over all subunits. 

Second, post-depositional tectonic shortening has reduced the lateral distance of the 

transect from 21.3 km originally (Spikings et al., 2015) to 18.7 km today (d in Equation 

1). Spikings et al. (2015) conducted mass-balanced palinspastic restoration of the 

Laingsburg depocentre, and calculated a post-depositional shortening of 14.2%. 

Adjacent mass-balanced sections from Laingsburg and Matjiesfontein indicate post-

depositional shortening of 14.7 % and 9.2 %, respectively (Spikings et al., 2015). The 

range of shortening estimates for the area is 9.2 to 14.7 %, which results in corrected 

lateral distances across the transect ranging from 20.4-21.4 km. This 1000m 

uncertainty in the amount of shortening corresponds to an error of approximately ± 

0.01° in slope gradient (Equation 1) (see Table 4). 

Using Equation 1, Subunits A.2 and A.6 experienced slope angles of <0.05°, A.3 

around 0.05°, whereas A.5 encountered a slope of around 0.3° (see Table 4). Slope 

angle values for Subunit A.1 fall within the range of error. Nonetheless, the subunit 

shows palaeoflow directions that are parallel to the inferred slope, suggesting that a 

slope may have been present at this time of deposition, but the rate of aggradation 

on the lateral slope was similar to the rate of aggradation on the basin-floor.  

 

4.9.4 Grades of confinement and their influence to basin-floor 

lobe systems 

 

Several ancient deep marine fans with inferred lateral confinement have been 

described or inferred, including the Grès d’Annot Formation (SW Alps, France), the 

Castagnola Formation and the Cenigo Turbidite system (Tertiary Piedmont Basin, 

Italy), the Mynydd Bach, Aberystwyth, Cwmystwyth and Pysgotwr Formations (Welsh 

Basin, Wales), Laga Formation (South Laga Basin, Central Appenines, Italy) and the 

Loma de los Baños Formation (Tabernas-Sorbas Basin, Spain). Most of these 

systems show a range of onlap geometries (Fig. 4.12).  

The Grès d’Annot Formation, the Laga Formation, the Castagnola Formation, the 

Cenigo Turbidite systems and the Loma de los Baños Formation represent systems 

that were deposited under high to moderate confinement. Lateral palaeoslope values 

are reported between 4- 10° (Amy et al., 2007; Salles et al.,2014) for the Grès d’Annot 
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Formation; 6-8° (Marini et al., 2015) for the Laga Formation; 10-12° for the northern 

margin of the Castagnola Formation and 4° for the southern margin, respectively 

(Felletti, 2002; Southern et al., 2015; Marini et al., 2016); and 5-10° for the Cenigo 

Turbidite systems (Bersezio et al., 2009; Felletti & Bersezio, 2010).  The Grès d’Annot 

Formation was deposited during the upper Eocene and Oligocene in an Alpine 

foreland setting. It crops out in synclines of the thrust belt of the SW Alps in France 

(Amy et al., 2004). Two styles of onlap (Fig. 4.12) were described for the sub-basins: 

1) abrupt onlap (Sinclair, 2000; Etienne, 2012) and 2) aggradational onlap with 

draping of the confining slope (Sinclair, 2000; Etienne, 2012). The Laga Formation 

was reported to be deposited under changing grades of confinement (confined to 

semi-confined; Marini et al., 2015) in the Southern Laga Basin, Italy. The termination 

styles against the lateral slope comprise abrupt onlap and feather-like onlaps of thin 

ripple-laminated turbidites. The Tertiary Piedmont Basin (Castagnola Formation and 

Cenigo Turbidite systems) developed during the Alpine and Apennine orogenesis as 

a piggyback basin. Topographic features are complex and comprise several 

unconformities that resulted in modification of basin size and configuration (Felletti, 

2002). Bounding lateral slopes are mostly steep and lead to abrupt onlap, but 

aggradational onlap has been reported to the southern basin margin with lower slope 

gradients (4°; Felletti, 2002). The Loma de los Baños Formation, Tabernas-Sorbas 

Basin, SE Spain indicates flow confinement against intrabasinal faults, such as the 

the El Cautivo Fault zone (Hodgson & Haughton, 2004). Hodgson & Haughton (2004) 

reported aggradational onlaps when flows encountered forced folds (cf. Stearns, 

1978) and abrupt pinch-outs against fault scarps. Several authors (Smith, 1987 a,b; 

Wilson et al., 1992; Smith, 2004 b) described an example of subtle topography and 

its influence on the Welsh Basin Silurian sandstone systems, namely the Mynydd 

Bach, Aberystwyth, Cwmystwyth and Pysgotwr Formations. Sand-prone deposits 

laterally grade or transition into a mud-rich turbiditic 'levee-like' constructional feature 

due to the influence of faults. Smith (2004 b) used the geometrical model established 

by Smith & Joseph (2004) to illustrate the lateral facies change from lobes (Pysgotwr 

Formation) to thin-bedded heterolithics (Hafdre Formation).  

All of the above systems include syndepositional deformed slides/slumps in proximity 

to the lateral slope. The slides/slumps are interpreted to be initiated through 1) 

gravitational instability/ re-equilibration of the slope or 2) mass dumping of sediment 

against the slope. Except for the Mynydd Bach Formation, the examples outlined 

above describe direct onlap of deposits against the confining intrabasinal slopes. In 

contrast, this study describes a persistent facies transition to ‘aggradational lobe 



104 
 

 

fringes’ against the confining slope, similar to the facies transitions reported from the 

Welsh Basin Silurian systems (Smith, 1987 a, b; Wilson et al., 1992; Smith, 2004 b) 

and in subsurface from the Ormen Lange turbidite system (Smith & Møller, 2003). 

The systems discussed exhibit a range of onlap geometries from abrupt to 

aggradational onlaps, and more subtle facies transitions against the confining slope, 

which form part of a continuum of possible configurations (Fig. 4.12). 

 

 

Figure 4.12. Submarine basin-floor lobes and their interaction with topographic features. 1) Low amount 
of aggradation on the slope compared to the basin - abrupt pinch-out against structure; 2) moderate 
amount of aggradation on the slope compared to the basin - aggradational onlap with draping muds; 3) 
low-gradient slope and high aggradation rates - facies transition and remobilisation; 4) unconfined – 
downlap. 

 

4.10 Conclusions 

 

This study uses an integrated outcrop and research borehole data set, from Unit A of 

the Permian Laingsburg Formation, South Africa, to examine the influence of 

confinement on flow behaviour, and resulting depositional architecture of basin-floor 

lobes and lobe complexes. Across strike changes in unit thickness, palaeocurrent 

patterns, and the distribution of sedimentary facies, were combined to reconstruct a 

laterally confining SW-facing intrabasinal slope. Although subtle, the slope influenced 

flow behaviour throughout the succession generating distinctive facies distributions 

over the study area; confining the sandstone-rich deposits to the south, where 

conventional lobe compensational stacking was able to take place. Against the 
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confining slope, sand-rich lobe facies pinch and transition laterally into thick (10s of 

metres) aggrading successions of thin-bedded laminated to structureless siltstones, 

and current/climbing-ripple laminated very fine-grained sandstones: a new facies 

association termed ‘aggradational lobe fringes’. This transition is a result of stratified 

flows interacting with the slope, whereby sand (transported only meters from the bed) 

is confined and pinches out, whilst finer-grained sediment is held aloft in a much 

thicker overriding cloud and deposits much higher up the slope. Distances of facies 

transition depend on the slope angle. The persistent facies transition across multiple 

lobe complexes, and the punctuated occurrence of remobilized facies, associated 

with steeper slope gradients, suggests a tectonically-driven and dynamic intrabasinal 

slope. This study highlights that basin-floor flows are grain-size stratified with a thin 

basal sand-prone part and a thick mud-prone part, meaning that even subtle 

topography will exert a major influence on lobe architecture. Identification of thick 

aggradational lobe fringe successions, as a direct response to subtle dynamic 

intrabasinal topography, widens the range of geometric and facies-based recognition 

criteria of subtle confinement in basin-floor settings. The framework provided here is 

important for the improved recognition of lobe confinement in outcrop, and its 

interpretation in the subsurface. 
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Chapter 5 

Constraining the sedimentology and stratigraphy of 

submarine intraslope lobe deposits using exhumed 

examples from the Karoo Basin, South Africa 

 

 

5.1 Abstract 
 

Intraslope lobe deposits provide a record of the infill of accommodation on submarine 

slopes, and their recognition enables the accurate reconstruction of the stratigraphic 

evolution of submarine slope systems. Extensive exposures of discrete sand-prone 

packages in Units D/E and E, Fort Brown Formation, Karoo Basin, South Africa, 

permit analysis of the sedimentology and stacking patterns of three intraslope lobe 

complexes and their palaeogeographic reconstruction via bed-scale analysis and 

physical correlation of key stratal surfaces. The sand-prone packages comprise 

tabular, aggradationally to slightly compensationally stacked lobe deposits with 

constituent facies associations that can be attributed to lobe axis, lobe off-axis, lobe-

fringe and distal lobe-fringe environments. Locally, intraslope lobe deposits are 

incised by low aspect ratio channels that mark basinward progradation of the 

deepwater system. The origin of accommodation on the slope for lobe deposition is 

interpreted to be due to differential compaction or healing of scars from mass wasting 

processes. The stacking patterns and sedimentary facies arrangement identified in 

this study are distinct from those of more commonly recognised basin-floor lobe 

deposits, thereby enabling the establishment of recognition criteria for intraslope lobe 

deposits in other less well exposed and studied fine-grained systems. Compared to 

basin floor lobes, intraslope lobes are smaller volume, influenced by higher degrees 

of confinement, and tend to show aggradational stacking patterns. 
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5.2 Introduction 
 

Basin-floor lobe deposits are the dominant component of submarine fan successions 

and criteria for their recognition are well established (e.g., Harms, 1974; Hartog Jager 

et al., 1993; Sixsmith et al., 2004; Pyles, 2008; Prélat et al., 2009, 2010; Pyles & 

Jennette, 2009; Kilhams et al., 2012; Etienne et al., 2012; Burgreen & Graham, 2014). 

By contrast, the characteristics of intraslope lobes, which are also referred to as 

perched lobes (Plink-Björklund & Steel, 2002; Prather et al., 2012a) and transient fans 

(Adeogba et al., 2005; Gamberi & Rovere, 2011), which form in areas of slope 

accommodation, are poorly defined (Fig. 5.1). Intraslope lobes have been identified 

in several subsurface geophysical studies based on multibeam bathymetric data, 

CHIRP profiles and seismic imaging (2D and 3D). Documented examples include 

studies from the Gulf of Mexico (Prather et al., 1998; Fiduk et al., 1999; Badalini et 

al., 2000; Pirmez et al., 2012; Prather et al., 2012b), the Niger Delta continental slope 

offshore Nigeria (Adeogba et al., 2005; Li et al., 2010; Barton, 2012; Prather et al., 

2012a), the Lower Congo Basin, offshore Angola (Oluboyo et al., 2014), the Algarve 

Margin, offshore Portugal (Marchès et al., 2010), the Gioia Basin, southeastern 

Tyrrhenian Sea (Gamberi & Rovere, 2011; Gamberi et al., 2011) and the Baiyun Sag, 

South China Sea (Li et al., 2012). 

 

Figure 5.1. Principal features of a stepped deep-water system. Two mechanisms to generate 
accommodation on the slope are shown: generation of a slope step due to tectonic faulting and above 
a scar of a mass transport complex (MTC). 
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The geophysical expression of intraslope lobes is described as layered (high 

amplitude reflectors) to transparent seismic facies by most authors (Booth et al., 

2003; Adeogba et al., 2005; Li et al., 2012), though Marchès et al. (2010) report cases 

that are represented by chaotic seismic reflectors. These seismic facies have been 

interpreted as channel-lobe systems and associated mass transport deposits, 

respectively. Different mechanisms are invoked to explain the development of 

intraslope accommodation needed for intraslope lobe deposits to form, including 

tectonics (Marchès et al., 2010; Li et al., 2012), mud diapirism (Adeogba et al., 2005), 

halokinesis (Booth et al., 2003; Oluboyo et al., 2014) or slide scars (Morris et al., 

2014a). Several commonly observed features of intraslope lobes are considered as 

diagnostic indicators: 1) a smaller lateral extent and lower aspect ratio than basin floor 

lobes (Plink-Björklund & Steel, 2002; Deptuck et al., 2008); 2) common evidence for 

incision due to their transience that is linked to a lower base level on the basin floor 

(Adeogba et al., 2005; Flint et al., 2011; Barton, 2012; Prather et al., 2012b) or to 

slope profiles that are not in equilibrium (Ferry et al., 2005); 3) association with mass 

transport complexes (MTCs) (Adeogba et al., 2005; Gamberi & Rovere, 2011; Li et 

al., 2012); 4) deposits delimited by onlap and downlap terminations (Booth et al., 

2003; Li et al., 2012); 5) prevalence of coarse sand sediment that is deposited in 

response to hydraulic jumps due to a break-in-slope related to a stepped slope profile 

(Komar, 1971; Ferry et al., 2005); and 6) mounded or tabular morphologies (e.g., 

Oluboyo et al., 2014). 

Intraslope lobes are important features in the reconstruction of the evolution of the 

slope and the analysis of sediment dispersal patterns, and indicate the presence of 

an uneven slope profile during deposition. Although attempts have been made to 

determine the importance of submarine slope deposits within a source-to-sink system 

(Eschard et al., 2004), intraslope lobes have rarely been identified in outcrop studies 

(Plink-Björklund & Steel, 2002; Sinclair & Tomasso, 2002; Beaubouef et al., 2007; 

Figueiredo et al., 2010; Bernhardt et al., 2012; van der Merwe et al., 2014). Therefore, 

the sub-seismic depositional architecture of intraslope lobes can be considered as 

one of the missing pieces in understanding the stratigraphic record of deep-marine 

systems and their preserved successions. 

 

Extensive fieldwork carried out in the Laingsburg depocentre of the Karoo Basin, 

South Africa (e.g. Grecula et al., 2003a; Sixsmith et al., 2004; Di Celma et al., 2011; 

Flint et al., 2011; Hodgson et al., 2011; Brunt et al., 2013a; Morris et al., 2014b; van 
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der Merwe et al., 2014) has established the stratigraphic and palaeogeographic 

framework in detail and enables the identification of lobes that were deposited in a 

slope setting. In this study, we focus on a more detailed characterisation of some of 

the intraslope lobes of the Karoo Basin. Specific objectives are: 1) to determine the 

characteristic facies associations and anatomies of the intraslope lobes in the study 

area; 2) to compare their characteristics with those of basin floor lobes, and 3) to 

discuss the origin of the transient slope accommodation. The establishment of 

recognition criteria for the identification of intraslope lobes will help reduce 

uncertainties in the interpretation of depositional environments observed in core and 

outcrop where the palaeogeographic context is not clear. 

 

5.3 Geological and Stratigraphic Settings 
 

The evolution of the Karoo Basin has long been associated with a magmatic arc and 

the tectonics of a fold-thrust belt (Cape Fold Belt; Fig. 5.2a), thus characterising it as 

a retroarc foreland basin (Visser & Prackelt, 1996; Visser, 1997; Catuneanu et al., 

1998). Recent studies (e.g., Tankard et al., 2009) suggest that an early phase of 

subsidence enabled a basin fill that pre-dates the initiation of the Cape Orogeny, and 

was induced by dynamic topography. This topography is thought to have been 

derived from the coupling of mantle flow processes to distant subduction of the 

palaeo-Pacific Plate (Pysklywec & Mitrovica, 1999). 

The Laingsburg depocentre is located in the south-western part of the Karoo Basin 

and adjacent to the present-day Cape Fold Belt (Flint et al., 2011). The stratigraphic 

unit of study is the Fort Brown Formation of the Ecca Group, which is exposed along 

the limbs of large, post-depositional folds (Fig. 5.2b). The Fort Brown Formation is a 

400 m-thick submarine slope succession (Di Celma et al., 2011; Flint et al., 2011; 

Hodgson et al., 2011) that overlies the Laingsburg Formation, a 550 m-thick sand-

rich basin floor and base-of-slope succession (Sixsmith, 2000; Grecula et al., 2003a; 

2003b; Sixsmith et al., 2004; Brunt et al., 2013b). The Fort Brown Formation is divided 

into Units C to G (Flint et al., 2011; van der Merwe et al., 2014). These sand prone-

units are each separated by regional hemipelagic claystones that locally include 

additional thin (1-15 m-thick) intercalated sand-prone units informally referred to as 

interfans (B/C interfan and D/E interfan) (Grecula, 2003a; Hodgson et al., 2011). The 

sequence stratigraphy of the Fort Brown Formation has been proposed by Flint et al. 

(2011) to comprise two composite sequence sets, the lower one containing units 
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Figure 5.2. A) The Laingsburg depocentre is located inboard of the Cape Fold Belt. Black square 
indicates the area of study. Satellite images taken from Google Earth. B) Location of detailed study 
areas: Roggekraal and Zoutkloof in the North, Geelbek in the South. Shading corresponds to colours of 
boxes in C. White boxes represent the outlines of the study areas shown in D and E. C) Schematic 
stratigraphic log sections of the Fort Brown Formation., Laingsburg Formation. and Waterford Formation. 
(Flint et al., 2011). Units D/E and E are highlighted by the black square. D) Detailed view of the Zoutkloof 
and E) Geelbek study areas. White lines indicate outcrop exposure, black dots indicate positions of 
logged sections, and black boxed areas of detailed correlation panels (Figure 5.7).A more detailed 
location pull-out location map can be found at the back of the thesis. 

 

B/C, C and D and the upper one containing units D/E, E and F. Each individual unit 

represents a lowstand sequence set, with subunits. For example Unit E is divided into 

Subunits E1, E2, and E3 based on the occurrence of claystone layers of regional 

mapped extent. Each subunit is interpreted as a lowstand systems tract. In this 

framework, the regional claystones that separate the units are interpreted as 
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associated transgressive (TST) and highstand (HST) sequence sets and the equally 

widespread claystones between sub-units are interpreted as combined transgressive 

and highstand systems tracts that record the deep-water expression of maximum 

flooding surfaces (Flint et al., 2011). Limited chronostratigraphic age control in the 

Fort Brown Formation (McKay et al., 2015) precludes establishment of the duration 

of depositional sequences. 

This study focuses on two areas. Exposures of the Unit D/E interfan and Subunit E1 

in the NW area of Zoutkloof (Fig. 5.2b) have been interpreted previously as lobes that 

formed in a slope setting (Figueiredo et al., 2010), but have not been hitherto 

characterised in detail. Four correlation panels were constructed (Zoutkloof S, 

Zoutkloof N, Roggekraal and Roggekraal N) to illustrate down-dip and strike 

variations in the successions. Unit E2 in the Geelbek area (Fig. 5.2b) comprises 

tabular sand-rich deposits, which, based on a detailed regional dataset, are 

interpreted to be intraslope lobes that formed above a stepped slope profile up-dip of 

a ramp dominated by sediment bypass (van der Merwe at al., 2014). The existence 

of these intraslope lobe deposits demonstrates the location and timing of slope 

accommodation and can be used to constrain the stratigraphic evolution of the 

Laingsburg submarine slope system. 

 

5.4 Methodology and Data Set 
 

For this study, 125 measured sections (each ranging from 3 to 36 m in length and 

totalling 2.8 km in cumulative thickness) were logged at 1:50 scale in the field, 

recording grain size, sedimentary structures and the nature and extent of bounding 

surfaces. In the Zoutkloof area (Fig. 5.2b,d), 80 sedimentary logs and 422 

palaeocurrent measurements from ripple lamination and climbing-ripple lamination 

were collected over three large, adjacent fold limbs to reconstruct the large-scale 

geometries of exhumed intraslope complexes (Fig. 5.2b). In the south-eastern study 

area (Geelbek area; Fig. 5.2b,e), 45 sedimentary logs and 173 palaeoflow 

measurements were collected from ripple lamination, climbing ripple lamination and 

tool marks along an oblique dip section. In areas of specific interest, 11 additional 

detailed short sections were measured and correlated (Fig. 5.2e). This has permitted 

the development of a detailed sedimentological model to account for facies 

distributions and small-scale geometries. Correlation panels for the Geelbek area are 

hung from the regional claystones separating subunits E2 and E3. The Zoutkloof 
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correlation panels are hung from the base of Unit D/E that overlies a regional 

claystone above Unit D. 

 

5.5 Facies associations 
 

Six facies associations are identified based on inferred sedimentary processes and 

depositional environment. Five of the six facies associations represent particular lobe 

sub-environments (lobe axis, lobe off-axis, lobe fringe and distal lobe fringe) and have 

been modified from Prélat et al. (2009) according to the observed facies in the 

intraslope lobe deposits. FA1-5 represent lobe axis to lobe distal fringe, whereas FA 

6 represents hemipelagic background sedimentation. 

 

5.5.1 FA 1: Thick-bedded sandstone 

 

Observations. This facies association is dominated by structureless, 0.7 to 2.5 m-

thick beds of lower to upper fine-grained sandstone that commonly contain parallel 

lamination with some lenticular mudstone chips (mm-sized) aligned parallel to the 

laminae. Overall, beds are moderately to well sorted. Most beds lack grading, though 

weak normal grading is observed towards the tops of some beds that consist of 2 to 

10 cm-thick caps of mica-rich, moderately sorted silty sandstone. Intraformational 

mudclasts are rarely observed at bed bases. Bed bases are sharp, loaded or erosive 

and can preserve tool marks. Bed amalgamation is common and can lead to > 10 m-

thick packages of structureless sandstones (high-amalgamation zones; Fig. 5.3a). 

Amalgamation surfaces are indicated by discontinuous layers of mudclasts or subtle 

grain size breaks. Amalgamated sandstone packages can overlie surfaces that 

truncate underlying strata by up to 5 m. These surfaces are mantled with thin layers 

of mudstone clast conglomerates. Thick-bedded sandstones show tabular 

geometries. They are laterally extensive for up to 6 kms. 

Interpretation. Thick-bedded, structureless and amalgamated sandstones with weak 

normal grading are interpreted to be the deposits of high-density turbidity currents 

(Kneller & Branney, 1995) with high aggradation rates (Arnott & Hand, 1989; Leclair 

& Arnott, 2005; Talling et al., 2012a). Their geometries, thickness and facies conform 

to lobe- or channel-axis settings (e.g., Prélat et al., 2009; Brunt el al., 2013a). 
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5.5.2 FA 2: Medium- to thin-bedded structured sandstone 

 

Observations. This facies association comprises lower fine- to very-fine-grained, 

normally graded sandstone beds that are well sorted. Bed thicknesses range from 

0.1 to 0.7 m. Sedimentary structures present include planar lamination, wavy 

lamination, current-ripple lamination and climbing-ripple lamination (Fig. 5.3b). 

Climbing-ripple lamination can be observed with supercritical angles of climb whereby 

stoss sides are preserved. The majority of beds contain two or more of these 

sedimentary structures. A common pattern is the vertical repetition of climbing-ripple 

laminations that are transitional to wavy laminations. Ripple foresets can be draped 

by thin (<0.1 cm thick) silty laminae. Individual beds can preserve multiple flow 

directions. Carbonaceous material and mud chips are dispersed in the sandy matrix. 

Bed bases are sharp or loaded. Medium- to thin-bedded sandstones show tabular 

geometries and can be traced for kms down-dip and in strike. 

Interpretation. This facies association is interpreted to be deposited by low-density 

turbidity currents in a lobe off-axis setting. Bedforms such as planar lamination and 

current-ripple lamination are produced beneath dilute turbulent flows, which rework 

sediment along the bed (Allen, 1982; Southard, 1991; Best & Bridge, 1992). Beds 

with opposing palaeocurrent indicators suggest reflection and deflection of the flow 

(Edwards et al., 1994). Beds with repeating patterns of climbing-ripple and wavy 

lamination are interpreted to indicate highly unsteady flow behaviour due to either 

long-lived surging (Jobe et al., 2012). 

 

5.5.3 FA 3: Interbedded thin-bedded sandstones and siltstones 

 

Observations. This facies association comprises thin-bedded (0.01 to 0.2 m), very-

fine-grained sandstone interbedded with sandy siltstone and coarse to fine siltstone. 

Sandstone beds show planar, current-ripple or wavy lamination, whereas siltstone 

beds commonly display planar lamination with rare isolated starved ripple forms at 

their base where there is a sand component to the siltstone (Fig. 5.3c). Contacts 

between sandstone and siltstone beds are sharp, undulating or loaded. Stoss-side 

preservation of climbing ripple lamination in sandstone beds is observed in 2D, and 

ripple geometries are locally preserved as sigmoid-shaped bedforms where 3D 
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observations are possible (see Kane & Hodgson (2011) Fig. 12b). Commonly, 

interbedded sandstones and siltstones form stacked, aggradational packages up to 

5 m thick, which internally show no discernible trends in grain size or bed thickness. 

Individual packages dominantly comprise ripple and climbing-ripple laminated 

sandstones in their lower part and planar laminated sandstones in their upper part. 

Interpretation. Ripple lamination formed due to reworking by dilute turbulent flows 

with moderate aggradation rates, whereas climbing-ripple lamination is indicative of 

high aggradation rates (Allen, 1971a; Allen, 1982; Southard, 1991). Ripple and planar 

laminated packages correspond with TC and TD divisions of Bouma (1962). This facies 

association is interpreted as a combination of deposition from sluggish, small-volume 

flows (Jobe et al., 2012) and flows that underwent rapid deceleration that led to high 

rates of sediment fallout. This implies that some flows were responding to changes in 

confinement, similar to flows that undergo expansion and rapid deposition when 

exiting channel confinement (e.g. Morris et al., 2014b). Observed facies and 

thicknesses of this facies association conform to an interpretation of a lobe-fringe 

setting. 

 

5.5.4 FA 4: bipartite beds 

 

Observations. Bipartite sand-prone beds (0.01 to 1.5 m thick) are composed of a 

lower and upper division. The well sorted lower division comprises relatively clean, 

structureless sandstone with low mud content. The upper division comprises poorly 

sorted mica-rich argillaceous sandstone that contains sand grains that are coarser 

than in the lower division, and varied proportions of subangular to subrounded 

mudstone clasts (mm to cm sized), mudstone chips and carbonaceous material (plant 

fragments) (Fig. 5.3d). Mudstone clasts show no preferred orientation. Typically, the 

boundary between the lower and upper divisions is gradational. Bed bases are sharp, 

whereas bed tops can be undulose. 

Interpretation. Bipartite beds are interpreted to be the result of a juxtaposition of a 

high-density turbidity current and a genetically linked cohesive debris flow - a type of 

hybrid bed (Haughton et al., 2009). Several authors have identified an increase in the 

number of turbidites with linked debrites in distal parts of basin floor lobes (e.g. Ito, 

2008; Hodgson et al., 2009; Talling et al., 2012a; Grundvåg et al., 2014). Therefore, 

bipartite beds are interpreted to be deposited in lobe-fringe settings. 
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Figure 5.3. Representative photographs of sedimentary facies observed in the Zoutkloof area. A) Thick-
bedded amalgamated sandstones of the lobe axis (FA 1). Geologist for scale (1.6 m). B) Climbing ripple-
laminated, medium bedded, fine-grained sandstones, with some stoss-side preservation, in lobe off-axis 
(FA 2). Camera lens cover for scale. C) Heterolithic packages of thin-bedded sandstones and siltstones 
in the lobe fringe (FA 3). Logging pole (0.5 m) with 10 cm gradations as scale. D) Hybrid bed (FA 4). 
Camera lens cover as scale. E) Siltstone package with intercalated sandstones (FA 5). Logging pole (2 
m) with 10 cm gradations as scale. F) Silty claystones (FA 6). Geologist for scale (1.6 m). 

 

5.5.5 FA 5: thin- bedded siltstone 

 

Observations. Thin-bedded (sandy), fine- to coarse-grained siltstones (0.05 to 0.1 

m) form metre-scale packages with rare thin (>0.05 m), very fine-grained sandstones 

that are well sorted (Fig. 5.3e). Typically, beds are structureless or planar laminated 

and some incorporate mudstone chips (up to 20% of the bulk volume). Some sandy 
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siltstone beds show isolated starved ripple forms at their base. Thin-bedded siltstones 

can show minor bioturbation. 

Interpretation. Siltstone deposits are interpreted as the preserved products of dilute 

turbidity currents in distal lobe-fringe settings. Structureless beds are attributed to 

direct suspension fallout (Bouma, 1962), whereas planar laminated beds are 

produced by traction (Stow & Piper, 1984; Mutti, 1992; Talling et al., 2012a). 

 

5.5.6 FA 6: regional claystone 

 

Observations. Homogenous intervals of (silty) claystone (Fig. 5.3f) are up to 22 m 

thick. Layers of concretions are common and tend to be associated with distinct 

horizons in the deposits. Claystone intervals are laterally extensive for tens of 

kilometres, except where eroded by channelised flows. Thin (<10 cm) ash layers and 

thin-bedded (mm-scale) graded siltstone units are locally intercalated with the 

claystones. 

Interpretation. Claystones are interpreted as hemipelagic background deposits. 

Where mapped over large areas, they mark episodes of sediment starvation to the 

deep basin, and are interpreted to contain the deep-water expression of maximum 

flooding surfaces (e.g., Flint et al., 2011). Such packages therefore serve as useful 

correlation intervals. 

 

5.6 Architecture 
 

Unit D/E and Subunits E1 and E2 of the Fort Brown Formation have been recognized 

as tabular, sand-prone units within the submarine slope succession (Grecula et al., 

2003b; Figueiredo et al., 2010). Flint et al. (2011) placed these packages into the 

overall sequence stratigraphic framework and van der Merwe et al. (2014) confirmed 

their palaeogeographic position on the slope. For the first time, the distribution of 

architectural elements and facies associations of these units are presented and 

discussed. 

The identification of architectural elements is based on cross-sectional geometry, 

spatial extent, distribution of sedimentary facies and bounding surfaces marked by 
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abrupt changes in facies (Fig. 5.4). Interpreted architectural elements include lobe 

deposits, channel-fills and drapes (Fig. 5.4). 

 

5.6.1 Zoutkloof area 

 

Unit D/E. Unit D/E is a tabular sandstone package, informally referred to as an 

interfan (Flint et al., 2011), with a basal interval of interbedded siltstones and very 

fine-grained sandstones and a sharp top (Fig. 5.4a). The spatial extent of Unit D/E is 

limited to the Zoutkloof and Roggekraal study area (81 km2; Figueiredo et al., 2010). 

Overall, palaeocurrent direction is to the ENE, but climbing ripple-laminated 

sandstones at Zoutkloof S show some readings to the west (Figs. 5.5, 5.6). Unit D/E 

is thickest (10 m) in the Zoutkloof N and Roggekraal areas where it comprises 

amalgamated thick-bedded structureless sandstones (FA 1) (Fig. 5.5). Across strike 

to the south (Zoutkloof S), a 6 m heterolithic package (FA 3) sharply overlies very 

fine- and fine-grained structured sandstones (FA 2). Unit D/E is not observed 6 km 

along strike to the south, which constrains the southward (lateral) pinch-out (Fig. 5.6). 

Across strike to the north (Roggekraal North; Fig. 5.4b), a 7 m-thick succession of 

structured sandstone (FA 2) is sharply overlain by structureless sandstones (FA 1). 

Interpretation. Overall, the axis of Unit D/E is in the Zoutkloof N and Roggekraal 

areas, with more off-axis and fringe deposits in the south and north. The stratigraphic 

changes in facies in the Zoutkloof S and Roggekraal N areas suggest that Unit D/E 

comprises at least two lobes, and therefore represents a lobe complex (sensu Prélat 

et al. 2009). The lower lobe extends further south than the upper lobe, with lobe off-

axis deposits (FA 2) overlain by lobe-fringe deposits (FA 3) in Zoutkloof S and lobe 

off-axis deposits (FA 2) overlain by lobe-axis deposits (FA 1) in Roggekraal N (Fig. 

5.5) suggesting a minor compensational stacking pattern. The lobe axes are 

amalgamated in the central part of the study area. 
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Figure 5.4. Representative photographs and correlation panel of the intraslope lobe complexes of Unit 
D/E and E1 in the Zoutkloof area and correlation panel for the Roggekraal N area. A) Coarsening- and 
thickening-upward at the base of the intraslope lobe deposits in Unit D/E. Logging pole with 10 cm 
gradations as scale. B) Roggekraal N correlation panel showing siltstone intervals that separate 
individual lobes in Subunit E1 and the two lobes of Unit D/E. Dashed red line represents erosion surface 
C) Tabular geometries of Unit D/E and Subunit E1 in the Zoutkloof N area. The sand-prone units are 
separated by a ~11 m thick mudstone. D) E1 channels cut down through E1 lobes and into the underlying 
claystone (Zoutkloof N). 

 

The westward palaeocurrents in deposits in Zoutkloof S are interpreted to indicate 

rapid deposition of turbidity currents deflected and reflected off seabed topography at 
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the fringes of the intraslope lobe (Fig. 5.6). There is no evidence of incision into the 

Unit D/E deposits and no deposit of this age directly down-dip has been recognized 

(van der Merwe et al., 2014). The abandonment of Unit D/E suggests that either the 

sediment routing system avulsed outside of the study area or sand-grade sediment 

supply ceased prior to the complete infill of the slope accommodation. 

 

Subunit E1. E1 is separated from Unit D/E by a 10-11 m thick mudstone, and has a 

basal ~0.5 m-thick interval of interbedded mudstone, siltstone and very fine-grained 

sandstone. The dominant palaeoflow is to the E, which is consistent with regional 

trends, whereas some deposits show palaeoflow to the W in the Zoutkloof S area 

(Figs. 5.5 and 5.6). Where thickest (14 m), E1 is characterised by structureless 

amalgamated sandstones (FA 1) and structured sandstones (FA 2). In Roggekraal N, 

to the north where E1 is 8 m-thick, 3 packages are identified by sharp contacts with 

thin-bedded siltstone (FA 5) units. The lowermost unit is dominated by heterolithic 

deposits (FA 3), the middle is dominated by FA 1, and the upper is dominated by FA 

2 (Fig. 5.4b). In contrast, to the south at Zoutkloof S, E1 is thinner (5 m) and comprises 

heterolithic packages (FA 3) and thin-bedded siltstones (FA 5). E1 is not observed 6 

km along strike to the south, which constrains the southward (lateral) pinch-out (Fig. 

5.6). Locally, E1 is truncated by erosion surfaces from multiple stratigraphic levels 

(E1, E2, E3 and Unit F; Figueiredo et al., 2010, 2013; Fig. 5.6). Erosion surfaces 

within E1 cut down up to 10 m and are overlain by thick-bedded sandstones that have 

low aspect ratios (10:1 to 15:1; Fig. 5.4). Younger erosion surface commonly have 

higher aspect ratios (20: 1 to 35: 1; Fig. 5.5) and are overlain by thin bedded, and 

locally tightly folded, sandstones and siltstones (Figueiredo et al., 2010, 2013), but 

sand-filled younger channel-fills are also observed. 

Interpretation. In Roggekraal N, thin siltstone packages that abruptly separate three 

axis and off-axis packages indicate the existence of three lobes in the lobe complex 

(Fig. 5.4). The distribution of the lobe axis and off-axis deposits, and the lobe fringe 

and distal fringe deposits of the individual lobes, suggest an aggradational to slightly 

compensational stacking pattern. Deviation from the regional palaeocurrent trend in 

Zoutkloof S is interpreted to indicate deflection and reflection of turbidity currents off 

seabed topography. Erosion surfaces overlain by sandstones are interpreted as W-E 

and NW-SE oriented channel-fills. 
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Figure 5.5. Correlation panels for Unit D/E and Subunit E1 in the Zoutkloof area. Overall axis of the lobe 
complexes of Unit D/E and Subunit E1 is located in the Roggekraal and Zoutkloof N areas. Towards the 
north and south lateral facies transitions can be observed and correspond to lobe off-axis and lobe fringe 
deposits. Note incision of Subunit E1 by younger channel-fills. 
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Figure 5.6. Simplified palaeogeographic reconstruction of 1) Unit D/E and 2) overlying Subunit E1 in the 
Zoutkloof area. Flows show evidence for deflection and reflection. 

 

5.6.2 Geelbek area 

 

Subunit E2. Subunit E2 comprises three packages based on thickness trends, facies 

distribution, bounding surfaces and palaeocurrents measurements (Figs. 5.7a-d and 

8). The mean palaeocurrent direction is to the E, but with local variations (Fig. 5.8). 

The base of the lower package, E2A, consists of heterolithic deposits (FA 3) overlain 

by FA 1 and FA 2 beds with abundant dm-scale erosion surfaces (Fig. 5.9a). 

Commonly, medium-bedded, structured sandstones (FA 2) display more than one 

sedimentary structure vertically and laterally (planar lamination, ripple lamination and 

climbing-ripple lamination). Lateral facies transitions in individual beds include ripple-

, through wavy-, to planar-lamination, which occur over 10s of metres.  

In some beds, palaeocurrent measurements from stoss-side preserved climbing 

ripple-lamination can display ENE palaeocurrents in the lower section whereas the 

upper section preserves palaeocurrents to the WSW (e.g. Marker bed 1 (Mb1), see 

Fig. 5.7, 5.8 and 5.9a). Typically, these beds are thickest in the east and thin westward 

in an up-dip direction. Sedimentary structures change in the direction of thinning from 

stoss-side preserved climbing-ripple lamination, through planar lamination with 

isolated current-ripple forms, to planar laminated sandstones. The bases of some 

beds with bi-directional palaeocurrents (e.g. Marker bed 2 (Mb2), see Fig. 5.9a) 
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truncate underlying bedding with siltstones that display soft-sediment deformation 

structures (Fig. 5.7b). 

The middle package, E2B, is defined by a stepped basal erosion surface that incises 

6 m into E2A (Fig. 5.8). The overlying sediments comprise highly amalgamated thick-

bedded sandstones (FA 1) with rare planar lamination on bed tops (Fig. 5.8). These 

pass vertically into more clearly stratified but internally structureless fine-grained 

sandstones close to the (oblique) margin of the cut and can be traced out for over a 

km away beyond the basal scour surface, where E2B overlies E2A concordantly (Fig. 

5.7c). Palaeocurrents from grooves indicate an overall ENE-WSW flow direction (Fig. 

5.8). 

The upper E2C division is the most laterally extensive of Subunit E2 and the boundary 

with E2B is marked by a thin siltstone horizon (~10 cm; FA 5; Fig. 5.7d). It comprises 

basal bipartite beds (FA 4) in its proximal (westerly) section and is largely made up of 

medium-bedded, structured sandstones (FA 2) that overlie the highly  

 

Figure 5.7. Representative photographs of the intraslope complex in the Geelbek area. A) Bed showing 
climbing-ripple lamination with opposing flow direction patterns. Camera lens cover as scale. B) 
Deformed mudstone interlayer with flames. Camera lens cover as scale. C) E2B overlies E2A outside of 
the basal scour surface. Camera lens cover as scale. D) E2B and E2C are separated by a thin (0.1 to 
0.2 m thick; indicated by orange overlay) siltstone interval. Geologist (1.6 m) as scale. 
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amalgamated sandstones of E2B (FA 1). Thin-bedded deposits (FA 3 and FA 5) are 

rare. Palaeocurrents measured from current- and climbing-ripple lamination indicates 

an easterly flow direction (Fig. 5.8). In the west, beds are structureless (FA 1), with 

rare ripple lamination showing easterly palaeocurrents. Structureless sandstone beds 

onlap westward onto the underlying siltstone, overstepping the E2A and B deposits 

(Fig. 5.8). Commonly, the onlapping beds show pinching and swelling close to the 

onlap surface as well as evidence of erosion (rip-up clasts, truncation). Clastic 

injectites are abundant in the mudstone that underlies the sandstone onlap (Fig. 

5.9b). 

In the underlying claystone that separates Units D and E, a distinctive 0.4 m-thick 

intraformational mudclast-rich sandstone bed is used as a local marker bed. The 

sandstone bed and bounding claystones are present in western part of the outcrop. 

However, they terminate abruptly eastward against a steep surface overlain by a thin-

bedded coarse siltstone and silty claystone succession below where the overlying E2 

attains its maximum thickness (Fig. 5.8). The thin-bedded siltstone unit forms a 

discrete ~30 m-thick unit that thins out over ~700 m to the east; by contrast, the 

western edge is steep and abrupt (Fig. 5.8). 

Interpretation. The high sand-content and tabular geometry, the underlying and 

overlying channel-levee systems (e.g. Brunt et al 2013b), and the downdip change to 

thin-bedded turbidites led van der Merwe et al. (2014) to interpret E2 as an intraslope 

lobe in the Geelbek area. The three divisions of E2 in Geelbek are interpreted here 

as lobe deposits that stack to form a lobe complex. In E2A, sandstone beds with 

bidirectional palaeocurrents and up-dip thinning are interpreted to indicate reflection 

of the flow column (Pickering & Hiscott, 1985; Kneller et al., 1991;Edwards et al., 

1994; Kneller et al., 1999). Soft-sediment deformation was triggered either through 

instability on the open erosional slope or through dewatering due to deposition of 

overlying strata. This range of features is consistent with a confined setting at the 

onset of the filling of slope accommodation. The amalgamated deposits of E2B are 

interpreted to be deposited in a scoured lobe-axis setting. The scour-fill interpretation 

is preferred to a channel-fill interpretation because no mudstone clast conglomerate 

facies is observed, the geometries of the structureless sandstone beds are tabular 

and can be walked out for ~1.5 km away, and the erosion surface shallows in the 

direction of main palaeocurrent direction. E2C is the most laterally extensive of the 

subunits. Lack of bidirectional palaeocurrent indicators and dominance of climbing-

ripple laminated medium-bedded sandstones indicates a relatively unconfined phase 

of deposition. Overall, the depocentre of successive E2 lobe deposits shifts slightly to 
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the W (up slope; Fig. 5.9). These findings conform to subsurface observations made 

in the Gulf of Mexico indicating temporal evolution of the locus of sedimentation 

(Prather et al., 2012b). 

 

5.7 Discussion 
 

5.7.1 Mechanisms of slope accommodations 

 

Typically, submarine slope systems are dominated by sediment bypass (e.g. 

Beaubouef et al., 1999; Gardner et al., 2003; Romans et al. 2009; Hodgson et al., 

2011). For lobate bodies to deposit on the submarine slope low gradient areas of high 

accommodation must be present. Here, the origin of this accommodation is 

discussed. 

The formation of the intraslope lobe complexes of Unit D/E and Subunit E1 in a similar 

location, albeit slightly offset, demonstrates the presence of accommodation on 

Zoutkloof part of the palaeoslope through multiple depositional sequences. In the 

Zoutkloof area, there is no evidence of slide scars, syn-sedimentary tectonic or 

diapiric deformation of the seabed, or underlying mass transport complexes that could 

form an area of high accommodation (Figueiredo et al., 2010). However, in the 

underlying successions (Units A-D) the Zoutkloof area represents an overall off-axis 

position with abundant silt-prone deposits (levees and lobe fringes), and the main 

slope channel-levee systems to the south (e.g. Grecula et al., 2003 a; Sixsmith et al., 

2004; Figueiredo et al., 2010) feeding sand-prone basin-floor lobe complexes to the 

east and north east (Di Celma et al., 2011; van der Merwe et al., 2014). Therefore, 

slope accommodation at Zoutkloof is interpreted to be the result of differential 

compaction of the underlying fine grained stratigraphy relative to the more sand-rich 

underlying stratigraphy to the south (Figueiredo et al., 2010) and east (van der Merwe 

et al., 2014). 
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Figure 5.8. . Correlation of subunit E2 in the Geelbek area. Panel is hung from hemipelagic claystone 
between E2 and E3. Black boxes (A-D) indicate areas shown in detail in Figure 5.9. Note siltstone wedge 
within the mudstone interval which is interpreted to partially fill a slide scar. 
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Figure 5.9. Details of the Geelbek correlation panel. A) Detailed correlation panel of E2A. Coloured 
lines represent bed correlations B) Injected mudstone below E2A with geologist as scale. C) Detailed 
correlation panel of the E2C onlap zone. ‘a’ marks amalgamation surfaces, ‘E’ erosion surfaces. 
Coloured lines represent bed correlations D) Example graphic log through high-amalgamation zone of 
E2B overlain by well bedded, structured sandstone beds of E2C. 
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The geometries of architectural elements, palaeocurrent measurements, and facies 

distributions in Subunit E2 indicate a depositional setting that evolved from highly- to 

weakly-confined. E2A was deposited on the partially healed accommodation (Fig. 

5.10) and beds show evidence for flow deflection and reflection. E2B deposits show 

a slightly different main palaeocurrent direction and formed above an erosion surface 

that cuts into E2A and shallows downdip (Fig. 5.10). E2C shows onlap against the 

open slope when the accommodation was infilled (Fig. 5.10). 

At the regional-scale, sedimentary features in the Geelbek area have been shown to 

form part of a step in a stepped slope profile with a ramp and sediment bypass  ~ 2 

km basinward of this area (van der Merwe et al., 2014). A large slide scar has been 

interpreted at the top of the underlying Unit D in this locality (Brunt et al., 2013b). In 

this study, an abrupt facies change from claystones with a clast-rich sandstone 

marker bed to a 30 m-thick asymmetric wedge of thin-bedded siltstone (Fig. 5.8) in 

strata underlying Subunit E2 has been identified. This is interpreted to indicate the 

presence of a W-E oriented slide scar that formed near the step-to-ramp transition 

area prior to the initiation of Unit E, but was only partially healed, and could have 

modified and amplified the accommodation for the E2 intraslope lobe complex (Fig. 

5.10).  

 

5.7.2 Diagnostic criteria for intraslope lobe deposits 

 

The identification of key characteristics of intraslope lobes compared to basin floor 

lobes can aid their identification in less well constrained subsurface and outcrop 

datasets (Fig. 5.11a). Geometries and architecture have been compared using 

published data from basin floor lobes in the Karoo Basin (Fan 3, Tanqua depocentre, 

Prélat et al., 2009; Unit A, Laingsburg depocentre, Prélat & Hodgson, 2013) with 

intraslope lobes of Units D/E and E (Table 5.1). 
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Figure 5.10. Simplified palaeogeographic reconstruction of subunit E2 in the Geelbek area. 1) slide 
removes hemipelagic claystone and marker bed 3 (MB3). Surface is steep in the west and shallows to 
the east. 2) thin-bedded siltstone beds partially infill scar, which is also draped by hemipelagic 
mudstone.3) deposition of confined sediments of E2A. 4) E2B locally scours into E2A. 5: onlap of E2C 
deposits to the west. Slope feeder channels are not exposed in the field and therefore not displayed.   
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Column1 Intraslope lobes Basin-floor lobes 

Depositional setting Slope Basin floor/ terminal end of system 

Degree of confinement Weak to high Unconfined to weak 

Stacking patterns Aggradational to slightly compensational Compensational 

Aspect ratio Low High 

Sand percentage  Average: 70%                                                                                              
(>90% lobe axis; 50% lobe fringe) 

Average: 60%                                                                                              
(>80% lobe axis; <40% lobe fringe) 

Sediment features                                                              Immature sandstones, moderate sorting, 
micas and mud chips abundant, sediment 

features reflect highly variable flow 
patterns, paucity of hybrid beds, depleted 

of fine grained sediments 

Relative mature sandstones, fair to good 
sorting, abundance of hybrid beds in lobe 

fringe positions, fines concentrated in lobe 
fringe deposits, rich on mud clast and 

carbonaceous material in banded facies 

 

Table 5.1. Comparison chart of the main sedimentological and stratigraphic characteristics of intraslope 

lobes and basin-floor lobes in the Laingsburg depocentre, Karoo Basin. 

 

Dimensions 

 

The lobe complexes are 6 to 10 km wide, 15 to 25 km long and 10 to 15 m thick. In 

volume, they are an order of magnitude smaller than dimensions of basin floor lobe 

complexes quoted in Prélat et al. (2010), which are 10 to 30 km wide and 30 to 100 

m thick. 

Lobe stacking patterns 

 

Lobes stack to form lobe complexes (Deptuck et al., 2008; Prélat et al., 2009), and 

the patterns of stacking of lobes within such complexes provide an insight into the 

degree of confinement (Deptuck et al., 2008; Straub et al., 2009). Generally, an 

aggradational to slightly compensational style of stacking is observed within 

intraslope lobes of the Fort Brown Formation (Fig. 5.11). This characteristic is also 

identified from subsurface studies of recent deepwater systems (Ferry et al., 2005; 

Barton, 2012). In contrast, basin floor lobes exhibit markedly compensational styles 

of stacking, indicative of relatively unconfined settings (Prélat et al., 2009; Straub et 

al., 2009; Groenenberg et al., 2010).  
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Sedimentary facies and features 

 

Intraslope lobe-axis deposits share similar facies associations with basin floor lobes 

(e.g. Prélat et al., 2009). Off-axis deposits of intraslope lobes are characterised by an 

abundance of medium bedded ripple- and climbing ripple-laminated sandstones (Fig. 

5.11). Successions of climbing-wavy-climbing lamination or ripple-wavy-ripple 

lamination are indicative of highly unsteady flows with high rates of sediment fallout. 

Individual beds can preserve ripple forms and climbing ripple-lamination that yield 

palaeoflow directions oriented at a high angle or even opposite to each other (Fig. 

5.11), indicating deflection and reflection of the turbidity current during sedimentation. 

Commonly, basin floor, lobe fringe deposits contain numerous bipartite beds 

(Hodgson, 2009), and these are relatively rare in intraslope lobe fringe deposits. 

Erosion surfaces mantled with mudclasts are more common in intraslope lobe axis 

and lobe off-axis deposits than in basin floor lobe systems because proximity to 

channels and flow confinement leads to more entrainment of fine-grained substrate. 

Basin floor lobes also display erosion surfaces in the lobe axis, leading to 

amalgamation of thick-bedded sandstones by removal of intervening thin beds 

(Stephen et al., 2001; Prélat et al., 2009). However, erosion surfaces in basin-floor 

lobes are more subtle than in the intraslope lobes. In basin floor lobe systems, facies 

transitions occur over several kilometres, both frontally and laterally (e.g. Prélat et al. 

2009; Groenenberg et al. 2010), whereas in intraslope lobe systems, facies 

transitions occur over shorter distances (typically over 10+ m), as observed in Unit 

E2 in the Geelbek area (Fig. 5.9). 

Sand percentage 

 

Overall, intraslope lobe deposits are characterised by a higher percentage of 

sandstone than basin floor lobe deposits because sand becomes trapped 

preferentially in areas where available accommodation is limited compared to flow 

depth (Brunt et al., 2004). If the flow height is greater than the relief of the confinement 

then the upper fine-grained part of the flow can be stripped, which will increase the 

proportion of sand that is accumulated (Sinclair & Tomasso, 2002; Prather et al., 

2012b). Basin floor lobes of Unit A have an average sandstone percentage of 60% , 

with >80% in lobe axes and < 40% in distal lobe fringe settings (Prélat et al., 2009); 

intraslope lobes of Unit D/E and E show an average of 75% sandstone, with >90% in 

lobe axes and <50 % sandstone in lobe fringes (Table 5.1 and Fig. 5.11b). 
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Figure 5.11. A) Block diagram showing the key recognition criteria of intraslope lobes. Aggradational to 
slightly compensational stacking patterns; onlap combined with injection onto mud-prone slope; highly 
amalgamated zones in the lobe complex axis; subtle confinement leads to fringes that show 
aggradational stacking; high degree of confinement leads to preservation of beds with evidence of flow 
deflection, erosional based beds and abrupt facies changes; climbing-ripple lamination is the dominant 
facies of the lobe-off axis; incision by low-aspect-ratio channels that originate in the same unit as the 
intraslope lobes; more lobe deposits can be found down-dip on the basin-floor or on steps basinward on 
the slope. B) Simplified logs of typical thicknesses and stacking patterns from lobe axis to lobe fringe 
(downdip and laterally) in intraslope lobes that are observed over a few kilometres. Note position of the 
schematic logs from fringe (1) to axis (4) in A). 

 

Incision of intraslope lobes by channels 

 

Commonly, intraslope lobes are incised by channels (e.g. Adeogba et al. 2005). 

Incision of the E1 lobe complex by low-aspect-ratio channel systems of different ages, 

including E1-aged channels, indicates that when the accommodation had been filled, 

slope channel systems could develop in response to a lower base level. This indicates 

that slope accommodation in this area was transient. This is supported by the 
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identification of thick basin floor lobe complexes of Unit E age farther into the basin 

by van der Merwe et al. (2014). 

 

5.8 Conclusions 
 

Three exhumed intraslope lobe complexes, constrained by stratigraphic and 

geographic position based on extensive and detailed correlation and mapping in the 

Laingsburg depocentre, Karoo Basin, were studied to establish their sedimentological 

and stratigraphic characteristics. 

In the study area, intraslope lobe complexes are 6 to 10 km wide and extend 15 to 25 

km in down-dip directions; areal extent is controlled by the area over which slope 

accommodation was generated. The deposits are sandstone-rich and lack significant 

siltstone. Stacking patterns are aggradational to slightly compensational depending 

on the amount of confinement. The lobe axis is dominated by thick-bedded, 

amalgamated sandstones. The lobe off-axis mainly comprises medium-bedded 

climbing-ripple laminated sandstones. The lobe fringe is characterised by ripple- and 

climbing ripple-laminated sandstones that can show flow deflection and reflection, 

and are interbedded with siltstones. Lateral and vertical facies changes occur over 

tens of metres and demonstrate highly variable, unsteady depositional flows that 

interacted with, and were governed by, underlying sea-bed topography and 

surrounding confinement. Two mechanisms are proposed for the development of 

accommodation on the Karoo slope: differential compaction and scars formed by 

mass wasting processes. The presence of intraslope lobe complexes supports 

regional interpretations that the slope of the Laingsburg depocentre developed a 

series of steps. These sub-seismic-scale observations and interpretations provide 

possible analogues to sub-surface examples identified on geophysical data for which 

information relating to detailed internal sedimentary architecture is not available. 

The development of sedimentological and stratigraphic recognition criteria for 

identification of intraslope lobes will permit improved reconstruction of the 

stratigraphic evolution of continental margins. However, the depositional architecture 

will vary across systems depending on the mechanism responsible for slope 

accommodation, the areal extent of the accommodation, and the ratio of flow size and 

the degree of confinement. 
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Chapter 6 
 

Is hybrid bed distribution in basin-floor fans predictable? 
 

6.1 Abstract 
 

Hybrid beds, which are the deposits of flows that show more than one flow regime 

(turbulent, transitional and/or laminar), have been recognized as important elements 

of submarine lobe deposits. The range of hybrid bed types has been widely 

documented, however, quantitative analyses of the distribution of these deposits is 

rare. Here, extensive exposures supplemented by research borehole data from Unit 

A of the Laingsburg Formation and Fan 4 of the Skoorsteenberg Formation, South 

Africa, provide the means to examine geographical and stratigraphic patterns over a 

range hierarchical scales (from lobe to lobe complex set). 

 For this purpose, >23,000 individual beds have been evaluated for deposit type and 

bed thickness, and hybrid beds make up <17 % of all events in a lobe complex. A 

prominent geographical trend shows that hybrid bed deposits become more prevalent 

towards the frontal fringes of a lobe complex. Vertical stacking of clean sandstones, 

thin-bedded heterolithic deposits and hybrid-bed prone deposits is dependent on the 

dominant stacking pattern (aggradational, compensational, progradational and 

retrogradational) of lobes within a lobe complex as this controls the vertical stacking 

of clean sandstones, thin-bedded heterolithic deposits and hybrid-bed prone 

deposits. Rather than being dominantly controlled by processes on the slope as 

suggested hitherto, the occurrence and distribution of hybrid beds is interpreted to be 

controlled by flow transformation processes on the basin-floor. 

This has implications for reservoir evaluation and the recognition of lobe stacking 

patterns in 1D core data sets.  

 

6.2 Introduction 
 

Basin-floor lobes generally comprise three deposit types: turbidites, hybrid beds and 

debrites (Talling et al., 2004; Hodgson, 2009; Etienne et al., 2012). The distinction of 

their flow processes and their quantitative importance regarding the overall 
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succession is important from a hydrocarbon exploration and production perspective. 

In particular, understanding controlling factors on the geographical and stratigraphic 

distribution of hybrid event beds introduces bed-scale reservoir heterogeneities due 

to the vertical juxtaposition of reservoir and non-reservoir lithologies (Davies et al., 

2009; Haughton et al., 2009). Core and outcrop data sets (e.g. Haughton et al., 2003; 

Talling et al., 2004; Ito, 2008; Davies et al., 2009; Haughton et al., 2009; Hodgson, 

2009; Jackson et al., 2009; Magalhaes & Tinterri, 2010; Kane & Pontén, 2012; Patacci 

et al., 2014; Fonnesu et al., 2015) enabled different hybrid bed classifications to be 

established, and experiments have been conducted to study the flow processes that 

control hybrid bed deposition (Baas et al., 2009; Sumner et al., 2009; Baas et al., 

2011). 

Several studies have indicated that hybrid bed deposits occur in the distal parts of 

submarine fan and lobe settings (Talling et al., 2004; Ito, 2008; Hodgson, 2009; Pyles 

& Jennette, 2009; Talling et al., 2012a; Etienne et al., 2012; Kane & Pontén, 2012; 

Grundvåg et al., 2014; Collins et al., 2015; Fonnesu et al., 2015). Where hybrid beds 

have been observed in more proximal lobe settings (Ito, 2008; Jackson et al., 2009; 

Patacci et al., 2014; Southern et al. 2015) enhanced erosion and deceleration have 

been invoked due to processes occurring in the channel-lobe transition zone and 

basin confinement. Their stratigraphic distribution has been linked to the character of 

the supply slope and seabed relief. Hybrid beds are suggested to develop during 

periods of disequilibrium over steep, out-of-grade slopes (Haughton et al., 2003; 

2009; Hodgson, 2009), and therefore are dominantly deposited during fan initiation 

and growth, or initiated by flow expansion in the channel-lobe transition zone (Ito, 

2008; Kane & Pontén, 2012). Quantitative analysis on the geographic and 

stratigraphic distribution, and therefore predictability of these deposits has seldom 

been attempted. Davis et al. (2009) presented statistical analysis on hybrid bed 

deposits from the outer Forties Fan, Central North Sea. They assessed >1000 event 

beds of which 67% were hybrid beds. Their significance in terms of bed thickness 

was even higher (81%). However, this analysis incorporated data from different field 

areas. Correlation between the fields was hindered by field-specific fossil 

assemblages. 

Here, we present a quantitative analysis of geographic and stratigraphic hybrid bed 

distribution trend from an outcrop and core data set from the palaeogeographically 

well-constrained Fan 4 (Skoorsteenberg Formation, Tanqua depocentre) and Unit A 

(Laingsburg Formation, Laingsburg depocentre) of the Karoo Basin, South Africa. 

Specific objectives are to: 1) establish proximal to distal trends of hybrid beds within 
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a lobe complex; 2) examine stratigraphic trends at lobe complex set, lobe complex 

and lobe scale; and 3) discuss the factors that control the observed trends. 

 

6.3 Geological Setting 
 

Traditionally, the Karoo Basin has been interpreted as a retroarc foreland basin 

connected to a magmatic arc and fold-thrust belt (Visser & Prackelt, 1996; Visser, 

1997; Catuneanu et al., 1998). More recently, Tankard et al. (2009) suggested that 

subsidence during the early deep-water phase of deposition pre-dates the effects of 

loading by the Cape Fold Belt and was instead induced by dynamic topography 

associated with mantle flow processes coupled with distant subduction of the palaeo-

Pacific plate (Pysklywec & Mitrovica, 1999). This study focusses on deposits of the 

Ecca Group (Wickens, 1994; Flint et al., 2011) from that early deep-water phase of 

deposition in the Tanqua and Laingsburg depocentres of the southwest Karoo Basin 

(Fig. 6.1a). In both areas, the Ecca Group represents a shallowing-upward 

succession of sediments from deep-water to fluvial settings (Flint et al., 2011; Fig 

6.2). 

 

6.3.1 Tanqua depocentre 

 

The Tanqua depocentre is located in the southwest of the Karoo Basin adjacent to 

the Cederberg branch of the Cape Fold Belt (Fig. 6.1a, b). This study focuses on 

deposits of Fan 4 of the Skoorsteenberg Formation (Fig. 2), one of four sand-prone 

basin-floor channel-lobe systems (Bouma & Wickens, 1991; Wickens, 1994; Wickens 

& Bouma, 2000; Johnson et al., 2001; Hodgson et al., 2006; Prélat et al., 2009). Fan 

4 is up to 65 m thick (Johnson et al., 2001) and is built of three sand-rich lobe 

complexes (LC1, 3, 5) that are separated by thin-bedded deposits of lobe complex 

fringes (LC2, 4; cf. see Chapter 3). Data used for this study were collected from LC1, 

the basal lobe complex of Fan 4. Palaeocurrents and thickness distributions indicate 

that sediment was sourced from the southwest and transported north and northeast 

(Wickens & Bouma, 2000; Hodgson et al., 2006). Outcrops and cores for this study 

were measured from strategically chosen locations (Fig. 6.1b) in order to collect a 

data set that provides a 3D constraint on the geographical distribution of hybrid beds.  
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Figure 6.1. A: Geological setting of the two study areas inboard of the two branches of the Cape Fold 
Belt; B: Schematic outline of the lower lobe complex of Fan 4 (Skoorsteenberg Formation, Tanqua 
depocentre and outcrop and core locations); C: Schematic outline of Unit A and locations of the BSL and 
Bav 1b cores. Outlines of A.2 and A.3 are modified after Sixsmith et al., 2004. A more detailed pull-out 
map can be found at the back of the thesis. 
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Figure 6.2. Stratigraphy of the Tanqua and Laingsburg depocentre; based on Wild et al. (2009) and Flint 
et al. (2011). The studied fan systems are highlighted with blue boxes. 

 

6.3.2 Laingsburg depocentre 

 

The Laingsburg depocentre is located approximately 80 km southeast of the Tanqua 

depocentre, adjacent to the Swartberg branch of the Cape Fold Belt (Fig. 6.1 a, c). 

The proximal basin-floor system of the Laingsburg Formation is subdivided into Unit 

A (Sixsmith et al., 2004; Prélat & Hodgson, 2013; Hofstra et al., 2015) and Unit B 

(Grecula et al., 2003a; Brunt et al., 2013a; Fig. 6.2). Units A and B are separated by 

a 40 m thick hemipelagic mudstone, which contains a thin sand-prone unit referred to 

as the A/B Interfan (Grecula et al., 2003a; Fig. 6.2). The stratigraphy of Unit A was 

subdivided by Sixsmith et al. (2004) into seven sand-prone subunits called A.1 to A.7. 

The subunits are separated by regional hemipelagic mudstone horizons. In 

agreement with Prélat & Hodgson (2013), subunits A.4 and A.7 have been re-

interpreted as lobe complexes within Subunits A.5 and A.6, respectively, as there is 

no true hemipelagic mudstone separating them. Long-term progradational-

aggradational-retrogradational stacking patterns have been described by several 

authors (Sixsmith et al., 2004; Flint et al., 2011).The studied cores (BSL and Bav 1b; 

Fig. 6.1c) were obtained from the 'Skeiding' area within the post-depositional 

Baviaans anticline and assessed for stratigraphical trends in hybrid bed distribution. 
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6.4 Methodology 
 

For this study, 23,068 beds were individually assessed for their facies (turbidite, 

hybrid bed, debrite). The percentage of hybrid beds within subunits and lobe 

complexes was established in two ways: 1) as percentage of events; and 2) as 

percentage of bulk thickness. To determine the geographical distribution of hybrid 

beds ~11,000 beds from Tanqua Fan 4 were evaluated. The data set for this part of 

the study includes data from four research wells (OR, KK, BK and GBE) as well as 

outcrop data. The deposits of Fan 4 were examined on a lobe complex scale. 

Evaluation was limited to the basal three lobe complexes (LC1, LC2 and LC3) as 

these are extensive across the whole study area. Additionally, their palaeogeography 

is well known (cf. Hodgson et al., 2006; Chapter 3). To evaluate stratigraphic trends 

in hybrid bed distribution, ~12,000 beds of the BSL and Bav 1b cores (Laingsburg 

depocentre) were examined. The core locations are 1.58 km apart, and Bav 1b is 

located obliquely down-dip of BSL. Distribution was established for subunits A.1 - A.6. 

To compare detailed distribution trends on lobe complex scale in BSL and Bav 1b, 

moving averages were established for A.2 and A.3. For this purpose, the sections 

were divided into equal intervals (in this case 0.9 m) and the proportion of 

structureless sandstone, structured sandstone, siltstone, hybrid beds, debrites and 

claystone was determined and depicted graphically next to the core data set. 

 

6.5 Facies 
 

For the purpose of this study, deposits have been classed as turbidites, hybrid beds 

or debrites. Below a short description of the detailed facies is given. Sedimentary 

facies and related environments of deposition have been described in detail 

previously for the Skoorsteenberg Formation (e.g. Morris et al., 2000; Johnson et al., 

2001; van der Werff & Johnson, 2003a; Hodgson et al., 2006; Luthi et al., 2006; Prélat 

at al., 2009; Hodgson, 2009, Jobe et al., 2012; Hofstra et al., 2015; Chapter 3) and 

Laingsburg Formation ( e.g. Grecula et al., 2003a, b; Sixsmith et al., 2004; Hofstra et 

al., 2015; Chapter 4).  
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6.5.1 Turbidites 

 

Description. Turbiditic deposits include structureless sandstone, structured 

sandstone, banded sandstone and siltstones (Fig. 6.3a-g). Structureless sandstones 

are medium- to thick-bedded (>0.2 to 2 m), moderately to well sorted and lower fine 

to upper fine grained (Fig. 6.3a, e). Bed bases are sharp, erosive (with or without rip-

up clasts present), amalgamated, or loaded and commonly show flute and tool marks. 

Beds can show weak normal grading, passing to very fine-grained sandstone at their 

top.  

Structured sandstones are thin- to medium-bedded (0.1 to 0.7 m), very fine to fine-

grained and well sorted. They display a range of sedimentary structures (Fig. 6.3b, f) 

including planar lamination, current-ripple lamination, climbing-ripple lamination and 

rarely wavy laminations. Current-ripple lamination foresets may be draped by silt 

laminae. Climbing-ripple lamination commonly displays a low angle of climb and 

stoss-side preservation. 

Banded sandstones are thin- to thick-bedded (0.1 to 1.5 m) and display couplets of 

light and dark bands (Fig. 6.3c). The darker bands are clay-rich and less well sorted 

than the lighter ‘clean’ sandstones that commonly load into the darker bands. The 

thickness of clay-rich bands varies from 1 to 30 mm. 

Siltstones are very thin- to thin-bedded (0.01 to 0.2 m) and fine to coarse grained. 

They are structureless, planar laminated or current-ripple laminated (Fig. 6.3d, g). 

Current ripple lamination is observed, where the siltstones have a sandy component. 

Siltstones commonly show bioturbation. 

 

Processes. Medium- to thick-bedded structureless sandstones are interpreted to be 

deposited by high-density turbidity currents (Kneller & Branney, 1995) with high 

aggradation rates (Arnott & Hand, 1989; Leclair & Arnott, 2005; Talling et al., 2012), 

which act to suppress the formation of sedimentary structures (Davis et al., 2009). 

 Structured thin- to medium-bedded sandstones are interpreted to be deposited by 

low-density turbidity currents. Planar and current-ripple lamination are produced by 

reworking through dilute flows along the bed (Allen, 1982; Southard, 1991; Best & 

Bridge, 1992). Climbing-ripple lamination forms under bedload transport associated 
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with high aggradation rates (Allen, 1973; Hunter, 1977; Jobe et al., 2012; Talling et 

al., 2012a). Wavy or sinusoidal lamination has been interpreted to indicate deposition 

from waning currents with very high rates of suspension fallout (Allen, 1973; Jopling 

& Walker, 1968; Hunter, 1977).  

Banded sandstones are interpreted to form under aggradational but fluctuating flow 

conditions as in traction carpets of high-density currents (Lowe, 1982, Sumner et al., 

2008, Talling et al., 2012a). 

Thin-bedded siltstones are interpreted to be deposited by dilute turbidity currents. 

Planar lamination is a product of traction (Stow and Piper, 1984; Mutti, 1992; Talling 

et al., 2012a). Structureless beds are formed by direct suspension fallout (Bouma, 

1962). 

 

6.5.2 Hybrid beds 

 

Description. Hybrid beds are thin-to thick-bedded (0.05 to 1.5 m) and include a lower 

and upper division (Fig. 6.4). The lower division is well sorted, fine-to very fine-grained 

commonly structureless and dewatered sandstone that can have a sharp, loaded or 

erosive base. Rip- up clasts at the base and dewatering features are common. 

Mudstone chips (up to 10%) can be observed to the top of the lower division.  The 

upper division is poorly sorted mud-rich and argillaceous. It can comprise plant 

fragments, mudstone chips, mudstone/siltstone clast and outsized grains compared 

to the overall grain size of the bed. Characteristically, the fabric is swirly and patchy. 

In addition, it is often injected by the underlying clean sandstone. In rare cases, the 

upper division can be mudstone clast-rich well sorted sandstone (cf. D3 of Hodgson, 

2009). Mudstone and siltstone clasts and fragments show no preferred orientation. 

 Processes. Three models are invoked for the formation of hybrid bed deposits: 1) 

Deposition by independent debris flows and turbidity currents that were generated 

almost simultaneously through slope failure (cf. Georgiopoulou et al., 2009); 2) 

Deposition by co-genetic turbidity current and debris flow through longitudinal flow 

transformation (cf. Haughton et al., 2003; Talling et al., 2004; Ito, 2008; Davies et al., 
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Figure 6.3. Representative photographs from outcrop and core for turbidite facies. A: Structureless 
sandstone. Logging pole (10 cm increments) as scale. B: Ripple laminated sandstone. Camera lens 
cover (7 cm) as scale. C: Banded sandstone. Compass as scale. D: Planar and ripple laminated siltstone. 
Logging pole (10 cm increments) as scale. E: Dewatered structureless sandstone. F: Ripple laminated 
sandstone. G: Siltstone. 

 

2009; Haughton et al., 2009, Hodgson, 2009; Jackson et al., 2009; Magahlaes & 

Tinterri, 2010; Patacci et al., 2014); and 3) deposition initiated through grain-size 

segregation due to deceleration of a supersaturated turbidity current (cf. Baas et al., 

2009; Sumner et al., 2009; Kane & Pontén, 2012).  
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6.5.3 Debrites 

 

Debrites are thick- to thin-bedded (0.2 to 3.0 m), poorly sorted sandstones with a high 

mud content and outsized quartz grains (upper fine sand). Their fabric is swirly and 

patchy. Commonly these deposits comprise variable amounts of mudstone chips, 

mudstone and siltstone clasts, and carbonaceous material that show no preferred 

orientations. Clast size ranges between 1 and 35 cm in diameter. 

Debrites have been interpreted to be deposited by en-masse freezing of debris flows 

(Iverson, 1997; Talling et al., 2012b; Talling et al., 2013). 

 

6.6 Lobe hierarchy 
 

Several studies have recognized that submarine lobe deposits follow a hierarchical 

pattern (Gervais et al., 2006; Deptuck et al., 2008, Saller et al., 2008; Prélat et al., 

2009; Mulder & Etienne, 2010; Prélat et al., 2010; Bernhard et al., 2012; Etienne et 

al., 2012; Grundvåg et al., 2014). A fourfold hierarchy of lobes in the Karoo Basin was 

established by Prélat et al. (2009) where 1) a ‘bed’ represents a single depositional 

event; 2) one or more beds stack to form a ‘lobe element’; 3) several lobe elements 

that are divided by thin siltstone intervals form a ‘lobe’; 4) one or more genetically 

related lobes stack to form a ‘lobe complex’. This hierarchy is expanded by adding a 

fifth hierarchical unit, the ‘lobe complex set’, which is formed by several genetically 

related lobe complexes within the same lowstand systems tract (Prélat and Hodgson, 

2013). Lobes and lobe complexes are deposited during discrete periods of channel 

activity or growth phases (cf. Feeley et al., 1985; Deptuck et al., 2008; Prélat et al., 

2009), and are bounded by abrupt facies change to fine-grained strata that are 

interpreted to indicate avulsion of feeder channel, and compensational stacking 

(Prélat & Hodgson, 2013).  
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Figure 6.4. Representative photographs of hybrid beds from outcrop and core. A: Hybrid bed (F4) with 
lower clean division and upper mudstone clast –rich division. Lens cover as scale (~7 cm diameter). B: 
Hybrid bed showing different weathering of lower clean and upper muddy division. Lens cover as scale 
(~7 cm diameter). C: Weathered mica-rich upper division with high mud content. Lens cover as scale 
(~7 cm diameter). D: Hybrid bed. Upper clast rich division overlain directly by thin-bedded siltstone. Lens 
cover as scale (~7 cm diameter). E-G: Hybrid bed examples from core. 

 

Recognition of this hierarchical division in outcrop and core has been as follows: 

Hemipelagic intervals mark a true shutdown in clastic sediment supply to the deep 

basin, and can be correlated regionally (Flint et al., 2011). These are interpreted to 

represent transgressive and highstand systems tracts, and the sand-prone material 

between are the lowstand systems tract. In the lowstand systems tract deposits, lobe 

complexes are between 20-50 m thick and separated by 1) several metre thick 

siltstone intervals, or 2) several metre thick thin-bedded heterolithic packages. Both 

types are interpreted as lobe complex fringes (Prélat & Hodgson, 2013; Chapter 3) to 
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sand-prone lobe deposits elsewhere. Lobes are between 1 m (in distal environments) 

and 10 m (in axial environments) thick (Prélat et al. 2009, 2010). Individual lobes have 

been established through identification of 1) 0.2- 1.5 m thick thin-bedded siltstone 

packages; 2) 0.2- 1.5 m thick thin-bedded heterolithic packages, 3) prominent erosion 

surfaces, or distinctive facies changes (i.e. structureless thick-bedded sandstones 

overlain by hybrid bed rich deposits). Siltstone packages are interpreted as distal lobe 

fringe deposits (Chapter 3, 4; Prélat et al., 2009), whilst the heterolithic packages 

represent (lateral) lobe fringes (Chapter 3, 4; Prélat et al., 2009). Lobe elements have 

been assigned by recognition of 1) < 0.2 m siltstone intervals, or 2) facies changes 

that point to a different lobe sub-environment. Thick-bedded deposits with a major 

proportion of structureless sandstone are interpreted to represent a lobe axis 

environment, whereas a higher proportion of medium-bedded structured sandstone 

deposits are interpreted as lobe off-axis environment. Lobe fringes are characterised 

by hybrid bed prone successions and packages of thin-bedded interbedded siltstones 

and sandstones, whereas lobe distal fringes comprise siltstones with minor 

intercalated thin sandstone beds (< 20% sandstone). 

 

6.7 Results 
 

The proportion of hybrid beds has been evaluated in two respects at different levels 

of the lobe hierarchy: 1) the percentage of hybrid beds in the total number of events; 

and 2) the percentage of hybrid beds in the cumulative thickness. The results can be 

found in Table 1. Overall, of the bed types assessed in the whole dataset, the 

proportion of hybrid bed deposits is below 5% (4.1% mean; 2.65% median).. 90% of 

values fall below 17% of hybrid bed occurrence (Fig. 6.5a). However, they show more 

significance in terms of their proportion of cumulative thickness. Their percentage of 

bulk thickness averages at <12% (11.4% mean; 6.2% median)  with 90% of the values 

being below 26% of the succession thickness (Fig. 6.5b)  whichmeans that hybrid bed 

typically comprise less than 26% of thickness of a successions. 
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Figure 6.5 Hybrid bed distribution over the complete data set. A: Percentage of hybrid beds 
relative to all events. B: Hybrid bed proportion of the cumulative thickness 

 

6.7.1 Geographical trends 

 

The palaeogeography of lobe complex 1 (LC1) of Fan 4 is well established (Hodgson 

et al., 2006; Figure 3.10). Sediment was supplied from the southwest and palaeoflow 

directions are to the north and northwest (Fig. 6.1). LC1 is ~25 m thick in the south 

(OR) and thins to 5 m in the north (OC1-6; Sout Rivier) before it pinches out abruptly 

to the north (OC 7; cf. Chapter 3.6.1). Therefore, a cross-section from south (OR) to 

north (OC 6) represents a proximal to distal trend (Fig. 6.6a). The percentage of 

hybrid beds is less than 10% in terms of total events that make up LC1, except for a 

spike of high percentage (33.3%) in OC 4 (Fig. 6.5b). Deposits of OC 4 represent a 

frontal lobe fringe pinch-out finger; these deposits have been shown to contain high 
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amounts of hybrid bed deposits (Chapter 3.7.2). A prominent trend in the proportion 

of hybrid beds in the bulk thickness of LC1 can be observed (Fig. 6.6c). An 

approximately linear increase in the percentage of hybrid bed thickness (from 2.1% 

to 83.3%; cf. Table 6.1) can be observed from the proximal to distal areas of the lobe 

complex followed by an abrupt decrease. 

 

   

 

Figure 6.6. A: Schematic distribution of the outcrops over LC1. The green circle points out where hybrid 
beds are approximately 50% of the deposit thickness. B: Hybrid bed deposits plotted as percentage of 
all flow events. C: Hybrid bed deposits plotted as percentage of the bulk thickness of the succession. 
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6.7.2 Stratigraphic trends 

 

Unit A of the Laingsburg Formation comprises six subunits (Sixsmith et al., 2004; 

Prélat & Hodgson, 2013; Chapter 4.3.1) that are separated by intervals of siltstone 

and hemipelagic mudstone that have been mapped regionally (Flint et al., 2011). 

Subunits A.2 and A.3 of Laingsburg Fan A comprise one lobe complex each in the 

study area, whereas Subunits A.1, A.5 and A.6 comprise two to eight lobe complexes 

(A.1.1-3; A.5.1-8; A.6.1-2). Due to the well-established stratigraphy and exceptional 

preservation, the core from research boreholes BSL and Bav 1b (Fig. 6.1) are well-

suited for the evaluation of the stratigraphic distribution of hybrid beds.  

Hybrid beds account for less than 10 % of beds in all subunits in both locations (Table 

6.1). However, evaluation of their proportion of bulk thickness shows that there are 

considerable variations between the subunits (Table 6.1). In the BSL core, A.1 

comprises 7.7 % hybrid beds, A.2 slightly less (4.9%), whereas there is a spike 

towards 30.2 % in A.3. Subunits A.5 and A.6 contain 8.5% and 8.2% of hybrid beds, 

respectively. In the Bav 1b core, the largest bulk thickness is A.1 (17.9%) and A.2 

(18.2%). The proportion decreases significantly in A.3, which contains only 6.3%. 

Subunits A.5 and A.6 show similar values with 6.9% (Table 6.1).  

The subunits have been subdivided into sand-prone lobe complexes and metres thick 

thin-bedded heterolithic packages that are interpreted as fringes to lobe complexes 

(cf. Prélat et al., 2009 Prélat & Hodgson, 2013; Chapter 3.5.1). Several observations 

can be made (Fig. 6.7): 1) there is no clear trend in stratigraphic distribution of hybrid 

beds over the lowstand sequence set (Flint et al., 2011), which show a high number 

of events in A.5.5 for both cores, whereas in cumulative thickness they are most 

prevalent in A.3 of the BSL core and A.1.1 in the Bav 1b core (Table 6.1); 2) the 

younger lobe complexes (A.5.5- A.6.2) show an in-phase occurrence of hybrid beds 

for both cores; 3) the two lobe complexes of A.6 are the only intervals that show the 

same trends in the occurrence and thickness of hybrid beds in both cores; and 4) 

hybrid beds are a minor component of a lobe complex fringe, and comprise less than 

2% of events and bulk thickness (Fig. 6.7). Reoccurring hemipelagic intervals on the 

basin-floor that divide the lobe complex sets don’t seem to have any affect on the 

occurrence of subsequent hybrid bed deposits. 

Sub-units A.2 and A.3 show a large difference in hybrid bed distribution between the 

two locations (BSL and Bav1b; Fig. 6.1). This lateral variability has been examined in 

more detail (Figs. 6.8 a- c). For this purpose, a moving average for facies proportions 
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has been established and aligned with the corresponding core log. The base and top 

of A.2 and A.3 are rich in hybrid beds in both cores, however there are differences in 

the underlying spatial distribution of hybrid beds. The lobe complex in Unit A.2 shows 

an increasing proportion of hybrid beds from BSL to Bav 1b, which is located down-

dip of BSL. The lobe complex of A.3 shows the opposing trend of decreasing hybrid 

bed proportions down-dip. Overall, there are no obvious vertical trends established 

from the lobe complexes A.2 and A.3 other then their preferred accumulation in their 

bases and tops. However, hybrid bed deposit occurrence is not limited to the basal 

and/or top interval, but occurs throughout the succession, either irregularly as in A.3 

at BSL (Fig. 6.8b) or regularly as in A.3 at Bav 1b (every ~10m; Fig. 6.8c). 

 

 

6.8 Discussion 
 

6.8.1 Proximal to distal trend 

 

A strong geographic trend is evident, showing that hybrid bed occurrence increases 

to  the frontal lobe fringes (up to 30% of events and > 50% of deposit thickness; Fig. 

6.6 b,c), before their proportion drops abruptly towards the sand pinch-out of the lobe 

complex (Fig. 6.6b,c), before their proportion drops abruptly towards the sand pinch-

out of the lobe complex (Fig. 6.6b,c).Lateral thin-bedded lobe fringes (Fig. 6.7) 

contain less than 2% of hybrid beds. Recent studies, as presented in Chapter 3, show 

that hybrid beds are commonly found in the frontal lobe fringes and are much less 

common in lateral lobe fringes. The data analyzed for this study supports this model. 

The distinctly different distribution has been interpreted to be caused by the spatial 

distribution of primary flow processes. High-density turbidity currents that can 

transform to hybrid bed deposits are transported farther out to the frontal margins of 

the lobes, while low-density turbidity currents that deposit structured thin-beds spread 

out more radially and build up the lateral margins. Geographical distribution over the 

scale of lobes and lobe complexes is controlled by process (see Chapter 3.8.1). This 

study has quantified the previously qualitative observation that hybrid bed deposits 

occur in the distal parts of fan and lobe settings (Talling et al., 2004; Ito, 2008; 

Hodgson, 2009; Pyles & Jennette, 2009; Talling et al., 2012a; Etienne et al., 2012a; 

Kane & Pontén, 2012; Grundvåg et al., 2014; Collins et al., 2015; Fonnesu et al., 

2015).  
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Table 6.1. Proportion of hybrid beds for subunits of Unit A (BSL and Bav 1b; Laingsburg depocentre) 

and lobe complexes 1-3 of Fan 4 (Skoorsteenberg Formation, Tanqua depocentre). For locations see 

Figure 6.1 or the pull-out map. 

Location Subunit % hybrid beds of total events % hybrid beds of cumulative thickness

BSL A.1 2 7.7

A.2 4.7 4.9

A.3 7.2 30.2

A.5 4.5 8.5

A.6 0.7 8.2

Bav 1b A.1 2 17.9

A.2 6.6 18.2

A.3 3.5 6.3

A.5 2.4 6.9

A.6 0.4 6.9

OR LC1 1.2 2.1

LC2 0 0

LC3 14.5 11.3

KK LC1 3.2 16.3

LC2 0 0

LC3 12 23.7

BK1 LC1 7.4 22.2

LC2 0 0

LC3 5.8 8.5

GBE LC1 4 34.1

LC2 0 0

LC3 2.9 11

RW2 LC1 8.2 29.1

LC2 0 0

LC3

OC2 LC1 5.9 49.1

LC2 0 0

LC3 11.6 19.5

OC3 LC1 3.4 40.9

LC2 0 0

LC3 18.2 19.2

OC4 LC1 33.3 83.3

LC2 0 0

LC3 4.2 4

OC5 LC1 1.8 26.1

LC2 0 0

LC3

OC6 LC1 2.2 4.8

LC2 0 0

LC3 7.8 8

KF1 LC1 6.8 21.1

LC2 0 0

LC3 4.2 6.1

KF2 LC1 4 2.9

LC2 0 0

LC3 0.6 1.1

KF3 LC1 3.8 2.4

LC2 0 0

LC3

KF4 LC1 4.6 21.5

LC2 0 0

LC3 5.5 5.5

VF LC1 0 0

LC2 0 0

LC3 1.8 2.7
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Fig. 6.7. Hybrid bed distribution over the lobe complexes of Unit A. The graphs are linked to their 
depositional environment. The blue line displays values for BSL, whereas the violet line displays values 
for Bav 1b. 
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Figure 6.8. A: Facies proportions of subunits A.1- A.2 of Unit A, Laingsburg Formation; B: Core log of 

Subunits A.2 and A.3 of the BSL core aligned with its lithology composition (moving average); C: Core 

log of Subunits A.2 and A.3 of the Bav 1b core aligned with its lithology composition (moving average). 
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6.8.2 Stratigraphic distribution within Unit A 

 

The stratigraphic distribution within the lowstand sequence set (Flint et al., 2011) of 

Unit A shows no obvious trends. There is an overall increase of hybrid bed occurrence 

within the sand-prone lobe complexes of Subunit A.5, but the cores show different 

distribution curves (Fig. 6.9) Hybrid bed deposits are less common in the basal (A.1) 

and top (A.6) subunits in both core data sets (cf. Table 6.1) compared to A.2-A.5, 

which contain similar proportions (from 2.4%- 7.2%), although they can make up to 

18% of the thickness (A.1 in Bav 1b; Table 6.1 and Fig. 6.8a).  

These results contradict the simple model of hybrid bed distribution that has been 

suggested by several authors (e.g. Haughton et al., 2003, 2009; Hodgson, 2009) 

proposing that hybrid beds are most common in the basal part of deep-water 

successions during fan (lobe complex or lobe complex set) initiation and growth. The 

rationale being that the generation of hybrid beds is associated with the disequilibrium 

of steep, out-of-grade muddy slopes that would achieve equilibrium over the period 

of sediment accumulation on the basin-floor fan. Therefore, less muddy material 

needed to induce longitudinal flow transformation would be entrained through time, 

therefore hybrid beds would be less common in the younger parts of successions 

(sensu Haughton et al., 2003).  

 

Figure 6.9. Hybrid bed distribution curve for sand-prone lobe complexes of Unit A. The blue line displays 
values for BSL, whereas the violet line displays values for Bav 1b. 
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Haughton et al. (2009) suggested that deviation from this model provides important 

clues to the slope evolution: 1) occurrence of hybrid beds throughout a basin-floor 

system is connected to a supply slope that never achieved equilibrium; 2) sporadic 

occurrence through the system can point to intermittent periods where the slope is in 

disequilibrium due to slope adjustments caused by tectonics or changes in sediment 

supply. Van der Merwe et al. (2014) and Spychala et al. (2015; Chapter 5.7.2 and 

5.8) report a stepped slope profile that influenced the overlying Fort Brown Formation. 

It is possible that the supply slope during the deposition of Unit A may have been 

stepped meaning that the slope was always in disequilibrium.  

Picot et al. (2016) suggest that channel avulsion is another factor that can generate 

disruption of the equilibrium profile and is connected to the deposition of lobe complex 

successions. Ortiz-Karpf et al. (2015) inferred less sandy lobes early during a phase 

of channel avulsion from seismic amplitude responses due to entrainment of mud 

before new feeder channels could be established. High angle and up-dip channel 

avulsion is therefore an important mechanism that could promote the occurrence of 

hybrid beds at the initiation phase of lobe complexes and therefore also explain 

sporadic occurrence through a basin-floor system. 

Another factor that has been shown to have influence on the distribution of hybrid bed 

deposits is frontal basin confinement (e.g. Patacci et al., 2014; Southern et al., 2015), 

which leads to rapid deceleration and expansion of flows. The lobe complexes of the 

Laingsburg depocentre are interpreted to have experienced minor to no confinement 

in their axes and subtle confinement to their lateral margins (Sixsmith et al., 2004; 

Chapter 4) therefore enhanced deceleration (Patacci et al., 2014, Southern et al., 

2015) can be eliminated as a controlling factor on the stratigraphic distribution of 

hybrid beds, particularly in the Skeiding area (Fig. 6.1).  

However, the paucity of stratigraphic trends within a lobe complex set suggests that 

there is a complicated interplay of factors involved in hybrid bed initiation and 

evolution. The process of flow transformation from turbdity currents to flow that 

display turbulent as well as laminar behaviour is probably the most important factor. 

Flow transformation has been reported to occur when turbidity currents erode and 

entrain substrate material (Haugthon et al., 2003, 2009; Hodgson, 2009, Kane et al., 

in review) leading to 1) enhanced stratification and eventually to the collapse of the 

upper part of the flow (MacCave & Jones, 1988; Kane & Pontén, 2012; Kane et al., 

in review; see Chapter 3.8.1), or  2) longitudinal flow transformation to a co-genetic 
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turbidity current and debris flow (Haughton et al., 2003; Talling et al., 2004; Ito, 2008; 

Davis et al., 2009; Haughton et al., 2009; Magahlaes & Tinterri, 2010; Patacci et al., 

2014). The entrainment of substrate material does not need to happen on the slope, 

but may also occur at the channel-lobe transition zone () or on the basin-floor. This 

could explain why the distribution in Unit A of the Laingsburg Formation is not 

satisfingly explainable with the simple slope state-induced hybrid bed distribution 

model suggested by several authors (Haughton et al., 2003, 2009; Hodgson, 2009) 

 

6.8.3 Stratigraphic distribution on the scale of a lobe complex 

 

If avulsion was the main factor governing the distribution of hybrid beds on a lobe 

complex scale an abundance of hybrid beds in their basal intervals would be 

predicted. However, at a lobe complex scale there are no obvious trends. Rather, a 

prominent pattern can be determined once lobes have been identified (Fig. 6.10): 1) 

thick-bedded structureless sandstone-prone lobes have an irregular distribution of 

hybrid beds, 2) thin-to-medium bedded structureless and structured sandstone  and 

siltstones deposits that are rich in hybrid beds, and 3) thin-to-medium bedded 

structured sandstone and siltstone deposits that are poor in hybrid beds (Fig. 6.10). 

The 1D core data sets conform to the observation from 3D outcrop studies, and has 

been tested by geographical trend evaluation, that lobes have two fringe types (hybrid 

bed prone frontal fringes and hybrid bed poor lateral fringes). In addition, it shows that 

distribution in a 1D vertical succession is impacted by the superposition of lobes and 

their sub-environments. 
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Figure 6.10. Interpretation of individual lobes and their correlation from BSL to Bav 1b. A: Correlation for 
the lobe complex of Subunit A.2. B: Correlation for the lobe complex of Subunit A.3. 
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6.8.4 Stratigraphic distribution on the scale of a lobe  

 

Examination of individual lobes shows no clear trend, as (Fig. 6.10) hybrid beds can 

be found at the base, at the top or in the middle of the lobe. This is interpreted to be 

due to the stacking of lobe elements, and is well expressed in lobe 8 of Subunit A.3 

in Figure 6.9). Prélat & Hodgson (2013) suggested that the stacking of lobe elements 

can show a wide range of bed thickness patterns (compensational, disorganized, 

laterally stacked, landward and basinward stepping). Lobe elements and beds are 

not as laterally extensive as lobes themselves. Therefore, core datasets that are 

kilometres apart, sample different lobe elements and beds, leading to a range of 

vertical distributions (Fig. 6.10). This finding implies that lobe elements are 

comparable to lobes regarding their facies distributions and geometries, i.e. they 

show similar facies transitions albeit on a smaller scale. 

 

6.8.5 Subsurface implications 

 

Rather than being dominantly controlled by processes on the slope, the occurrence 

and distribution of hybrid beds is interpreted to be controlled by flow transformation 

processes on the basin-floor, and the stacking patterns of lobes. Stratigraphic 

distributions of clean sandstones, thin-bedded heterolithic deposits and hybrid-bed 

prone deposits is dependent on the dominant stacking patterns of lobes 

(aggradational, compensational, progradational and retrogradational) within a lobe 

complex. Therefore, the distribution of reservoir sandstones, and non-reservoir hybrid 

bed-prone and heterolithic deposits, can be used to infer lobe stacking patterns. 

Where aggradational stacking patterns dominate, and a core is sited in the axial area, 

there would be no to rare hybrid beds (Fig. 6.11). If progradational stacking of lobes 

is dominant, hybrid beds will be abundant on the base and become less frequent 

upwards in the succession in 1D (Fig. 6.11). Retrogradational stacking patterns would 

display the opposite distribution with hybrid beds being abundant in the top interval of 

the succession (Fig. 6.11). However, when compensational stacking is the dominant 

stacking pattern, reservoir and non-reservoir facies will be less predictable as lobe 

environments are superimposed in a more complicated manner (Fig. 6.11). In reality, 

a lobe complex can display more than one stacking pattern. Commonly reported 

progradational-aggradational-retrogradational stacking of lobes within a lobe complex 
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(e.g. Sixsmith et al., 2004; Hodgson et al., 2006; Flint et al., 2011) would result in 

basal and top lobes being hybrid-bed prone, while the aggradational middle section 

would show no or rare hybrid bed deposits. To sum up, hybrid bed distribution could 

be used in a 1D data set to form an initial evaluation of the dominant stacking patterns 

within the system, and the degree of confinement and the sediment supply of the 

system.  

 

Fig.6.11. Stacking patterns and resulting hybrid bed distribution within an axial setting. 

 

6.9 Conclusion 
 

A well-constrained outcrop and core data set from two unconfined basin-floor fans of 

the Karoo Basin, South Africa, have permitted the stratigraphic and geographic 

distribution of hybrid beds to be constrained quantitatively for the first time. In general, 

hybrid bed deposits average at 4.1% of all flows within the database.Most recorded 

values (>90%) fall below 17% of hybrid bed events in a lobe complex. Therefore, 

hybrid beds are not always prevalent, with less degradation of reservoir quality. There 
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is a strong geographic trend showing that while hybrid beds occur throughout lobes, 

they are preferentially found in frontal lobe fringes (up to 33% of the total number of 

events and 83% of deposit thickness). Stratigraphic trends do not support allogenic 

controls (e.g. confinement, nature of supply slope) on the generation and deposition 

of hybrid beds. The stratigraphic distribution is strongly influenced by autogenic 

factors, and in particular the style of stacking patterns of lobe element to lobe complex 

set scale. Stacking patterns, however, are strongly influenced by allogenic factors like 

seabed topography and sediment supply and their interplay warrants further 

investigation.  

  



159 
 

 

Chapter 7:  

Discussion & Conclusions 

 

Here, the research questions posed in Chapter 1 are addressed, with reference to 

the results presented in Chapters 3-6. This Chapter concludes with recommendations 

for potential future research arising from this PhD research. 

 

7.1 What are the sedimentological and stratigraphic 

expressions of lobe fringes? 

 

The fringes of lobes can stratigraphically separate lobe axis and off-axis deposits as 

a function of compensational stacking, and can stack to form the fringes of lobe 

complexes. Lobe fringe deposits are the least well-studied sub-environments of lobes 

despite showing the widest range of facies configurations (Fig. 7.1a-d). Here, lobe 

fringe deposits from unconfined to weakly confined settings have been studied to 

capture the range of sedimentological and stratigraphic expression of lobe fringes 

(Chapters 3, 4, 5).  

Several authors (e.g. MacPherson, 1978; Pickering, 1981, 1983) suggested that lobe 

deposits show different facies transitions down-dip and across-strike, which could 

lead to distinctive facies trends and characteristic facies associations for frontal and 

lateral fringes. This theory has been tested on Fan 4 of the Tanqua depocentre 

(Chapter 3). Characteristic facies associations and the flow processes are 

summarized and discussed below. 
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Figure 7.1. A: Range of lobe fringes within unconfined to subtly confined basin-floor settings. B: Frontal 
fringes are characterised by pinch-and-swell geometries and the occurrence of hybrid bed deposits. C: 
Lateral fringes are characterised by thin-beds with planar- and ripple-lamination and a tapering 
geometry. D: Aggradational lobe fringes are lateral fringes under the influence of subtle confinement 
resulting in modified sedimentology and stacking patterns, e.g. climbing bedforms.  
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7.1.1 Frontal lobe fringes 

The frontal lobe fringe facies association is characterised by dewatered, structureless 

or planar laminated fine-grained sandstone (Fig. 7.1a, b; Chapter 3.7.2) associated 

with hybrid beds and rare debrites. In strike section, frontal fringes exhibit prominent 

depositional pinch-and-swell geometries at lobe scale, with laterally variable bed 

thickness. Beds thin or pinch out abruptly at the transition to the distal lobe fringe (Fig. 

7.1a, b). 

Generally, frontal lobe fringes are dominated by deposits from high-density turbidity 

currents and other high-concentration flows (structureless sandstones, debrites and 

hybrid beds). In frontal lobe fringes, there is evidence that relatively distal turbidity 

currents eroded and entrained substrate material, preserved as mudstone clasts and 

dispersed mud (Hodgson, 2009, Kane et al., in review) that damped turbulence and 

resulted in the collapse of the upper part of the flow (McCave & Jones, 1988; Kane et 

al., in review), leading to the deposition of hybrid bed deposits. Deposits of high-

density turbidity currents are able to create their own pathways and become 

successively more elongated down-dip, forming finger-like bodies as observed in the 

Tanqua depocentre. These finger-like bodies are 1.5 to 2 km long and 200 to 300 m 

wide.  Finger-like pinchouts of frontal lobes are observed within successive lobes of 

multiple different lobe complexes within the Tanqua depocentre (Bouma & Rozman, 

2000; Rozman, 2000; Prélat et al., 2009; Groenenberg et al., 2010). Similar 

terminations have also been observed within other basin-floor lobe systems (Nelson 

et al., 1992; Twichell et al., 1992), albeit occasionally misinterpreted as channel-forms 

(e.g. Van der Werff & Johnson, 2003b) due to their elongated shape in planform view 

and their concave-up form in outcrop. 

 

7.1.2 Lateral lobe fringes 

The lateral lobe fringe facies association is dominated by thin-bedded (>0.2 m) 

heterolithic deposits of structureless or planar laminated siltstone and wavy, ripple 

and climbing ripple laminated very-fine grained sandstone (Fig. 7.1 a, c; Chapter 

3.7.1). Lobe pinch out occurs over several kilometres through thinning and fining of 

the deposits away from the lobe axis and lobe off-axis environments (Fig. 7.1a,c). In 

outcrop, lateral lobe fringes commonly show tabular geometries at the scale of 

observation. 

Generally, lateral lobe fringes are predominantely characterised by deposits from low-

density turbidity currents. Luthi’s (1981) experiments show that flow velocities are 
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lowest in these flow marginal areas, and that the decrease in flow thickness is 

greatest laterally away from the central flow axis. The deposits of the low-density 

turbidity currents probably form laterally extensive radial deposits that are higher in 

proportion at the lateral fringe, owing to the forward momentum and lack of lateral 

spreading of the higher concentration flows. 

The expression of lateral lobe fringes has been documented in a relatively unconfined 

basin-floor setting (Chapter 3.7.1). Studies from more confined areas in the Karoo 

Basin show that the presence of subtle seabed topography can influence the 

expression of lobe fringes and the stacking of lobe fringes in lobe complexes. Subtle 

seabed topography was formed by a lateral intrabasinal slope (Unit A, Laingsburg 

Formation; Chapter 4) and differential compaction on a stepped slope (E1, Fort Brown 

Formation; Chapter 5). The lobe fringe facies association in subtle confined 

environments differs from the lobe fringe facies association proposed from the 

unconfined Tanqua depocentre (see also Prélat et al., 2009), largely due to evidence 

for high sedimentation rates (climbing ripples and climbing bedforms; Fig. 7.1 a,d) 

and the persistent aggradational stacking of facies over tens of metres on lobe 

complex scale.    

 

7.1.3 Aggradational lobe fringes 

 

Aggradational lobe fringes (Fig. 7.1a, d) comprise a heterolithic facies association. 

Siltstones make up the bulk of the succession. Sandstone beds show stoss-side 

preserved climbing ripple-, planar, or wavy-lamination. Ripple morphology is 

preserved on bed tops, and in cross-section. Successions of these ripples form larger 

dune-like features. The heterolithic package comprises multiple event beds that stack 

in the direction of palaeoflow (climbing bedforms). Commonly, interbedded 

sandstones and siltstones form stacked, aggradational packages up to 10 m thick, 

which internally show no discernible trends in grain size or bed thickness. 

Palaeocurrents either show a narrow range parallel to the confining slope (Chapter 

4) or deviation from the regional palaeocurrent trend that is interpreted to indicate 

deflection and reflection of turbidity currents off seabed topography (Chapter 5). 

The facies association of aggradational lobe fringes indicates rapid deposition from 

density-stratified turbidity currents (e.g. Kneller & Buckee, 2000; Peakall et al., 2000), 

with a thin basal sand-prone section and a thick mud-prone section, that interact with 
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the confining seabed topography. The sand-prone portion is confined and pinches 

out, whilst the fine-grained sediment is held aloft and deposited higher up the 

confining structure. Stoss-side preserved climbing-ripple lamination indicates 

deposition beneath flows with high aggradation rates (Allen, 1971a; Allen, 1982; 

Southard, 1991; Jobe et al. 2012). The lateral facies transition between lobe axis and 

off-axis to fringe is governed primarily by the height of the topography relative to the 

thickness of the flows (Muck & Underwood, 1990; Pickering & Hilton, 1998, Wynn et 

al., 2012). 

 

7.2 What is the range of stacking patterns that can be 

constrained from lobe complexes and lobe complex sets? 

 

Stacking patterns of lobes are proxies for the relationship between sediment supply 

and seabed topography during the evolution of lobe complexes and lobe complex 

sets (Piper & Normark, 1983; Mitchum & Van Wagoner, 1991; Schlager, 1993; 

Twichell et al., 2005; Picot et al., 2016). Seabed topography can be dynamic or static, 

which can change the degree of confinement experienced by a system over time. 

Confinement has been documented to be an important allogenic factor in the control 

of sediment dispersal patterns and lobe stacking patterns (e.g. Piper & Normark, 

1983; Smith & Joseph, 2004; Amy et al., 2004, Twichell et al., 2005; Southern et al., 

2015; Marini et al. 2015). Sediment supply is governed by climate and tectonics in 

the hinterland, sea level variations that change accommodation on the shelf (e.g. 

Mitchum & Van Wagoner, 1991; Schlager, 1993), and topography on the supply slope 

(e.g. Prather, 1998). Several types of stacking patterns have been documented from 

lobe successions (e.g. Gervais et al., 2006; Amy et al., 2007; Deptuck et al., 2008; 

Prather et al., 2012b; Prélat & Hodgson, 2013, Burgreen & Graham, 2014; Grundvåg 

et al., 2014; Picot et al., 2016): compensational, aggradational, and longitudinal, with 

either basinward (progradational) and landward (retrogradational) trends (Fig. 7.2). 

There can be a continuum between these stacking patterns during the growth of a 

lobe complex set or lobe complex. For example, parts of a lobe complex set or lobe 

complex can experience the influence of confinement that results in aggradational 

stacking patterns, whereas away from the confining structure compensational 

stacking can be prevalent. 
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Different stacking patterns can be interpreted from 1D datasets and extensive 2D/3D 

datasets, with different implications for the distribution of heterogeneities and 

reservoir potential for a system. Where only 1D data are available, interpretations and 

predictions have to be considered very carefully as recognised thickening/thinning 

upwards cycles can be biased (e.g. Hiscott, 1981; Anderton, 1995).  

Lobes from the Karoo Basin show a range of stacking patterns reported in the 

literature. Below these stacking patterns and their controlling factors are presented: 

 

7.2.1 Compensational stacking 

Deposits of the Laingsburg and Tanqua depocentres are reported to show low to no 

influence of confinement by seabed topography and compensational stacking can be 

observed in several of the examined lobe successions, e.g. lobes of Unit A in the 

Laingsburg depocentre (cf. Chapter 4.7).  Compensational stacking patterns can be 

identified by the paucity of thickening- and thinning-upward cycles, abrupt 

stratigraphic changes in lobe sub-environments, and lateral thickness variations 

between stacked lobes. Compensational stacking can be observed across many 

scales from bed to lobe complex scale (Prélat & Hodgson, 2013) to lowstand 

sequence sets (van der Merwe et al. 2014). Migration of beds and lobes can be dip 

parallel, strike parallel or oblique, depending on the exact location of a topographic 

low. As long as there is no confinement impeding free dispersal of sediment then 

compensational stacking will be the dominant stacking pattern through a lobe 

complex (Straub et al., 2009). Compensational stacking in lobe to lobe complex sets 

is governed by the avulsion of feeder-channels to redirect to a new topographic low 

after the creation of sufficient depositional relief in a lobe complex.  
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Figure 7.2 Schematic plan view of lobe stacking patterns. A: Compensational stacking; B: Aggradational 
stacking; C: Progradational stacking; D: Retrogradational stacking. The dashed blue line indicates the 
locus of deposition of the next lobe. 

 

7.2.2 Aggradational stacking 

In the Karoo Basin deposits, aggradational stacking patterns have been observed in 

settings where accommodation and/or confinement influences sediment dispersal, 

e.g. on the slope (D/E and E1, Fort Brown Formation; cf. Chapter 5) and through the 

existence of an intrabasinal lateral slope (Unit A; cf. Chapter 4). The main recognition 

criterion for aggradational stacking is the vertical superposition of the same lobe sub-
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environment over the evolution of a lobe complex (E1, Unit A) and lobe complex set 

scale (Unit A), with little or no lateral offset. In E1, the axes of intraslope lobes are 

stacked in the axis of the available accommodation while fringes are stacked at its 

margin and show influence by confinement (deflected and reflected palaeoflow 

indicators; Chapter 4, 5). In the case of Unit A, a subtle intrabasinal slope influenced 

the stacking patterns (Chapter 4). While lobe deposits in the axis of the system show 

compensational stacking (see above), towards the slope and on the slope there is a 

vertical accumulation of lobe fringes (therefore termed aggradational lobe fringe).  

Aggradational stacking occurs where avulsion is not possible due to the scale of 

confinement (Burgreen & Graham, 2014) and is commonly observed with lobes 

deposited in highly confined settings, e.g. mini-basins and ponded basins (e.g. 

Burgreen & Graham, 2014). When accommodation is filled, the system will either 

prograde and sediment will spill into the next available mini-basin (fill and spill; e.g. 

Prather et al., 1998), or, in the case of stepped slope profiles, is transported farther 

downslope to the next available area of slope accommodation or the basin-floor (van 

der Merwe et al., 2014). If progradation is not possible deposits will migrate landwards 

as the break-of-slope successively moves up-slope. 

 

7.2.3 Progradational stacking 

Traditionally, the existence of thickening-upward cycles in lobes was interpreted as 

evidence of progradation (e.g. Mutti, 1974; Ricci Lucchi, 1975). Since then the 

interpretation of thickening upward cycles as the sole indicator for progradation has 

been challenged (Hiscott, 1981; Anderton, 1995; Chen & Hiscott, 1999; Macdonald 

et al., 2011). Hiscott (1981) stated that cycles have been over-interpreted by 

comparing them with thickening-upward cycles in delta-lobes even though processes 

of deposition are different. Macdonald et al. (2011) suggested that evidence of 

increased erosion and bypass needs to be identified in addition to repetitive 

thickening upward cycles to argue for progradational stacking over aggradational or 

compensational stacking.  

Progradational stacking has been observed in combination with compensational 

stacking in the Karoo Basin (e.g. Unit A, Laingsburg Formation; Fan 4, 

Skoorsteenberg Formation), but never as the predominant stacking pattern. 

Grundvåg et al. (2014) proposed that progradational stacking can be associated with 

1) basin configurations that limit the space for lateral migration of lobes, 2) tectonic 
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activity that increases the basin-floor gradient, 3) increased rates of sedimentation 

due to shelf edge progradation and initiation of larger volume flows, and/or 4) high 

sediment supply rates resulting in rapid shelf-margin accretion. Essentially, 

progradational stacking has been attributed to high sediment supply rates by Picot et 

al. (2016), and a combination of shelf edge progradation and high sediment supple 

rates by Grundvåg et al. (2014). Macdonald et al. (2011) suggest that progradational 

stacking of lobe elements can be explained by autocyclic growth of the supply 

channels through progressive confinement. If similar mechanisms could work on lobe 

scale has not been determined yet. Progradational stacking patterns might also be 

more common in proximal and base-of-slope settings where there is less 

accommodation and less space for lateral compensation and the deposition/ 

preservation of lobe fringe deposits. 

 

7.2.4 Retrogradational stacking 

 

Unit E.2 of the Fort Brown Formation (Laingsburg depocentre; Chapter 5) is a 

prominent example of landward stacking of lobes caused by low accommodation 

through healing of a slide scar on the slope. Retrogradational stacking can be 

identified by the vertical succession of lobe axis deposits overlain by lobe-off axis and 

eventually frontal lobe fringe deposits. Care must be taken to distinguish this stacking 

pattern from lateral offset stacking due to autogenic avulsion processes. These 

findings conform to subsurface observations made in the Gulf of Mexico indicating 

temporal evolution of the locus of sedimentation (Prather et al., 2012b) and outcrop 

observations from highly confined basins e.g. the Peïra Cava Basin, France (Amy et 

al., 2007), where the shift in deposition has been inferred to be caused by aggradation 

in the depocentre and an up-slope migration of the slope break (Amy et al., 2007). In 

general, retrogradational stacking patterns can also be caused through decrease in 

sediment supply at the end of a depositional cycle (e.g. at the end of a LST) when 

sediment is trapped on the shelf rather than transported to the deep-water. The same 

stacking has been described at sequence set scale in Unit C by Di Celma et al. (2011), 

where the upper LST stacks retrogradationally with respect to the lower two LSTs 

within the Unit C lowstand sequence set. 
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7.3 What is the stratigraphic and geographic distribution of 

hybrid beds in submarine lobes? 

 

Over the last decade hybrid beds have been recognised as an important part of the 

rock record in deep-water environments as indicator for distal fan settings. Many 

studies on core and outcrop data (e.g. Haughton et al., 2003; Talling et al., 2004; Ito, 

2008; Davies et al., 2009; Haughton et al., 2009; Hodgson, 2009; Jackson et al., 

2009; Magalhaes & Tinterri, 2010; Kane & Pontén, 2012; Patacci et al., 2014; 

Fonnesu et al., 2015) have resulted in different hybrid bed classifications. Quantitative 

analysis on the predictability and significance of these deposits is rare. Exceptionally 

large exposures supplemented by research borehole data from Unit A of the 

Laingsburg Formation and Fan 4 of the Skoorsteenberg Formation, South Africa, 

provided the means to examine geographical and stratigraphical trends over several 

hierarchical scales (Chapter 6). 

Overall, of the bed types assessed in the whole dataset, the proportion of hybrid bed 

deposits is below 5% (4.1% mean; 2.65% median).. 90% of values fall below 17% of 

hybrid bed occurrence. This figure differs markedly from the value of 67% that Davies 

et al. (2009) reported from the outer Forties Fan, Central North Sea. Two main 

reasons can be invoked for this striking diference: 1) palaeogeographic location of 

the data set; e.g. the data from the Forties Fan are from the distal end of the system 

while the data from the Karoo deposits were collected from all over the lobe complex 

sets; and 2) different degrees of basin confinement. It has been shown that increased 

frontal basin confinement can lead to increased hybrid bed content through 

deceleration and expansion of the flows (e.g. Patacci et al., 2014; Southern et al. 

2015).  
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Figure 7.3 A: Distribution of hybrid beds in lobe fringes; B: Stochastic distribution of hybrid beds due to 
compensational stacking patterns; C: Discrete areas of hybrid-bed rich and hybrid bed-poor successions 
due to aggradational stacking; D: Marginal hybrid rich successions, axial hybrid bed clusters throughout 
due to longitudinal stacking. 

 

7.3.1 Proximal to distal trends 

A strong geographic trend shows that hybrid beds are mostly accumulated in the 

frontal lobe fringes (up to 33% of the total number of events and 83% of deposit 

thickness; Fig.7.3a), before dropping off below 5% at sand pinchout. This result 

conforms to the qualitative observations made from outcrop and core studies that 

proposed hybrid beds occur in the distal lobe setting (Talling et al., 2004; Ito, 2008; 

Hodgson, 2009; Pyles & Jennette, 2009; Talling et al., 2012; Etienne et al., 2012; 

Kane & Pontén, 2012; Grundvåg et al., 2014; Collins et al., 2015; Fonnesu et al., 

2015). The data also support the observation that frontal lobe deposits are hybrid 

bed-prone (5-30% of events and > 50% of deposit thickness), whereas lateral fringes 

are hybrid bed-poor (less than 2% of events) as presented in Chapter 3.  
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7.3.2 Stratigraphic trends  

The stratigraphic distribution of hybrid beds has been postulated to be connected with 

the character of the supply slope and seabed relief. Hybrid beds are suggested to 

develop during periods of disequilibrium over steep, out-of-grade slopes (Haughton 

et al., 2003; 2009; Hodgson, 2009). Therefore, the occurrence of hybrid beds is 

thought to be greater during the initiation and growth phases of lobe complexes and 

lobe complex sets. The results of the quantitative study from the Karoo Basin do not 

conform to this model, nor are there any distinctive trends at a lobe complex or lobe 

scale. Sand-prone lobe complexes show a irregulardistribution of hybrid beds, 

whereas intercalated thin-bedded packages that represent the fringes of lobe 

complexes show a paucity in hybrid beds due to the difference in lobe fringe facies 

association mentioned above (cf. Chapter 3.7). Overall, it can be stated that stacking 

patterns are a major factor in the vertical distribution of hybrid beds on a lobe complex 

scale as they govern the stratigraphic trend of lobe axes, lobe off-axes and lobe 

fringes (Fig. 7.3b-d). Individual lobes show no clear trend. Hybrid beds are found at 

the base, at the top, or in the middle of the lobe. This is probably due to the stacking 

of lobe elements, which introduces another level of hierarchy and complexity to lobe 

successions. In summary, prediction of the stratigraphic distribution of hybrid beds is 

a complicated problem controlled by multiple allogenic (confinement, nature of supply 

slope) and autogenic factors (stacking patterns from lobe element to lobe complex 

set scale). 

 

7.4 Can we apply concepts established from basin-floor 

lobes to lobe deposits in different stratigraphic and 

geographic settings? 

 

Lobes have been observed from various settings, including the basin-floor, the base-

of-slope and on the continental slope. Depositional and stratigraphic models that have 

been established from basin-floor lobes of the Karoo Basin (Prélat et al., 2009, 2010; 

Prélat & Hodgson, 2013; this thesis) have been applied as analogues for a wide range 

of lobe deposits that are not necessarily in the same stratigraphic and geographical 

settings. Here, these models are discussed in terms of their application to lobes that 

have been deposited on the slope (intraslope lobes; Chapter 5): 
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7.4.1 Hierarchy 

Intraslope lobes show the same hierarchical organisation that has been presented 

from the basin-floor (cf. Prélat et al., 2009; Grundvåg et al., 2014). Beds stack to form 

lobe elements, these lobe elements stack to form lobes and lobes stack to form lobe 

complexes. The number of lobes in a lobe complex is controlled by the available 

accommodation and sediment supply. In the case of the intraslope lobes from the 

Fort Brown Formation, two to three lobes from individual lobe complexes occupied 

accommodation generated by differential compaction and a slide scar (cf. Chapter 5). 

A higher number of intraslope lobes per complex have been described from seismic 

data sets (e.g. Pirmez et al., 2012; Prather et al., 2012a, b) in salt withdrawal mini-

basins. 

 

7.4.2 Lobe sub-environments 

The fourfold model of lobe environment subdivision can be applied to intraslope lobe 

deposits, but needs slight modification to the facies associations. Although the lobe 

axis is also characterised by thick-bedded structureless sandstones, a higher amount 

of erosion (several metres instead of several dms) can be observed. Erosion surfaces 

mantled with mudstone clasts are more common in intraslope lobe axis deposits than 

in basin floor lobe systems due to proximity to channels and flow confinement leading 

to more entrainment of fine-grained substrate. Off-axis deposits of intraslope lobes 

are characterised by an abundance of medium-bedded ripple- and climbing ripple-

laminated sandstones. Individual beds can preserve ripple forms and climbing ripple-

lamination that yield palaeoflow directions orientated at a high angle or even opposite 

to each other, indicating deflection and reflection of the turbidity current on topography 

during sedimentation. Overall, lobe fringes have been observed to consist of thin-

bedded heterolithic facies, and hybrid beds are relatively rare. However, more 

examples need to be assessed to tell whether this is a diagnostic criterion. 

 

7.4.3 Lobe stacking patterns 

While basin-floor lobes show the full range of stacking patterns (see Chapter 7.2), 

intraslope lobes are generally stacked in aggradational to slightly compensational 

manner or show a retrogradational stacking pattern due to aggradation in the 

depocentre and an up-slope migration of the slope break.  As stacking patterns are 

thought to provide an insight into the degree of confinement (Deptuck et al., 2008; 
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Straub et al., 2009) these stacking patterns point to a relatively higher level of 

confinement for intraslope lobes compared to basin-floor lobes. 

In summary, it can be stated that depositional and stratigraphic models developed 

from basin-floor lobes can be applied to lobes from different geographic settings such 

as intraslope lobes. However, there are differences in detailed lobe sub-environments 

and predominant stacking patterns that require slight modifications to the models. 

Importantly the identification of these differences can be used to aid the identification 

of intraslope lobes in less well constrained subsurface and outcrop datasets. 

 

7.5 Recommendations for future research 

 

7.5.1 Lobe fringes and hybrid beds in moderate to highly confined 

settings 

 

The depositional and stratigraphic models for lobe fringes that have been 

established within this thesis have been derived from submarine lobes deposited in 

relatively unconfined settings. It has been shown that even subtle confinement can 

have a major influence on facies, architecture and stacking patterns of lobe fringes 

(see Chapters 4 and 7.1). It is not clear if there are distinctive lateral or frontal facies 

trends in more confined basin settings. This warrants further investigation, including 

lobes in settings where confinement changes through time. Stacking patterns and 

confinement have been suggested to have strong influence on the geographic and 

stratigraphic distribution of hybrid beds. While geographic trends for hybrid bed 

distribution could be established for relatively unconfined lobe deposits in the Karoo 

Basin (Chapter 6 and 7.3), stratigraphic trends, if any, remain poorly constrained. 

Basins with a higher degree of confinement favour aggradational or dip-parallel 

stacking over compensational stacking of lobes. Hence, stratigraphic trends that are 

controlled by allogenic factors might not be overprinted by autogenic lobe stacking. 

However, confinement has been shown to enhance erosion and flow deceleration 

(Patacci et al., 2014; Southern et al., 2015) and will therefore influence the dispersal 

patterns and occurrence of hybrid beds.   

 



173 
 

 

7.5.2 What is the detailed sedimentology of frontal and lateral lobe 

fringes? 
 

This study has focussed on the establishment of the broad differences between 

frontal and lateral fringes (Chapter 3). However, their detailed sedimentology and 

electrofacies character could be further analysed using the core and well log database 

collected during the Lobe2 research programme. This includes detailed 

documentation of facies transitions between the sub-environments, rates of change, 

net:gross values, and their evolution from axis to frontal/lateral fringe. Analysis of 

these aspects is important from an applied point of view to pinpoint heterogeneities 

within reservoir rocks. In addition, the transition zone between frontal and lateral 

fringes has not been studied and is an important part of the story. 

 

7.5.3 Integration of outcrop and seismic data sets 
 

Commonly, studies on submarine lobes are conducted from outcrop or geophysical 

data sets. While outcrop data sets can provide detailed insights into sedimentary 

facies and geometries, seismic data sets enable the study of lobes at basin scale. 

Because the resolution of these data sets is different, the terminology to describe the 

same hierarchical element differs, e.g. lobes in seismic studies commonly correspond 

to lobe complexes in outcrops. Integration of outcrop and seismic data sets is rare 

(e.g. Lin et al., 2014; Pickering et al., 2015) and not applied systematically, but can 

enable differences and similarities in observation to be determined. For example, in 

seismic studies distributary channels truncating submarine lobes are regularly 

described, while they are rarely documented in outcrop. Is this difference caused by 

outcrop limitations or caused through processes during lobe deposition? 

 

7.5.4 What is the role of changing sediment supply to the 

architecture and stacking patterns of lobe deposits? 
 

Sediment supply has been acknowledged to be one of the main factors to govern 

stacking patterns in deep-water lobes (e.g. Schlager, 1993; Picot et al., 2016). 

Sediment supply is controlled by climate and tectonics of the hinterland (Schlager, 

1993) and through relative sea-level changes as sediment can be stored on the shelf 

during a sea-level highstand. Most deep-water fans have been postulated to be 
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deposited during lowstands of relative sea level (e.g. Deptuck et al., 2008; Jegou et 

al., 2008; Covault & Romans, 2009; Prélat et al., 2009; Marchès et al., 2010; Flint et 

al., 2011). However, there are also examples of deep-water fans that deposited during 

highstand system tracts (e.g. Schwalbach et al., 1996; Weber et al., 1997; Piper et 

al., 1999; Normark et al., 2009), including many modern systems. Do lobes deposited 

during highstand systems tracts that are supplied by longshore systems differ from 

lobes in river-fed systems, and how do HST fans differ from LST fans? 
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Appendix A 

Methods 

 

A.1 Creation of isopach maps with ArcGIS 
 

Isopach maps for palaeogeographical reconstructions were constructed using the 

Geostatistical Wizard of ArcGIS. Input data were collected and prepared in Excel.  

 

A.1.1 Data preparation with Excel 
 

 Data can be loaded into ArcGIS directly from Excel 

 Be aware that in the column headers all the top row symbols are forbidden 

except for the underscore 

 All column headers must start with a letter 

 If Excel file is open before ArcGIS the document is live and changes made to 

Excel can be seen in ArcGIS when refreshing it 

 

 

Table A.1. Representative chart of thickness data preparation for the creation of isopach maps in 
ArcGIS. 

 

A.1.2 Importing data into ArcGIS 
 

 Use the Add button to load data into ArcGIS 

 Display the data by right clicking on it in the contents panel and ‘display XY 

data’ 

 Choose the relevant thickness column as your z field 

 

Object ID LogName LogCode X_Base Y_Base A1_Total A2_Total A3_Total A5_Total A.6_ Total

1 Skeidingen 1 SK1 471633 6324409 19 22 15 105.5 26

2 Skeidingen 2 SK2 474177 6323462 20.5 24 25 109 26

3 Rietfontein 1 RF1 473247 6327299 22.5 23.5 39.5 101.5 24

4 Doornkloof 1 DK1 462193 6330990 8.5 33 38.5 53.5 20

5 Doornkloof 2 DK2 461431 6330838 14.5 39 23 47 20

6 Doornkloof 3 DK3 462571 6330976 9.5 40 31 48 20

7 Doornkloof 4 DK4 463809 6330939 18 34 29 29.5 24.5
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A.1.3 Plotting data in ArcGIS 
 

 Use the Geostatistical analyst 

 Choose the Geostatistical Wizard 

 Under methods on the left choose Kriging/CoKriging 

 Choose your dataset and your field, e.g. A1_Total 

 Click ‘Next’ 

 Next click on ‘Order of trend removal’ and choose ‘constant’ 

 Click ‘Next’ 

 Now a value for ‘Exploratory Trend Surface Analysis’ needs to be supplied. 

With low values interpolation between the important data is weak, while with 

high numbers all data is taken into account, but might be overinterpreted. 

Data points turn green or red after typing in a value according to their 

loading. Green: loading is good. Red: loading is bad. 

 Click in ‘Finish’ 

 

A.1.4 Using the data: 
 

 Click right on your Kriging result in the content panel, choose properties and 

go to symbology 

 Click on ‘Classify’ 

 Under ‘Classification’ use ‘Equal Intervals’ under ‘Methods’ 

 Costum Min/Max needs to be turned to true and defined under the ‘Breaks’ 

section 

 Use appropriate amount of classes 

 Click ‘Ok’ 

 Colours, contours and/or filling can all be customised now if needed 
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Figure A.1. Example of isopach map created with ArcGIS. 

 

A.2 Statistical analysis 
 

Statistical analysis was conducted to establish unbiased evaluation of hybrid bed 

distribution (see Chapter 6). For this purpose over 23,000 individual beds were 

entered recording bed thickness, deposit type (turbidite, hybrid bed or debrite) and 

detailed sedimentology and proportions of clean division versus debritic division in 

case of hybrid beds. Distribution of hybrid beds was studied in relation to the total 

number of events of subunits and lobe complexes and in relation to the bulk thickness 

of deposits. Data from the 3D constrained dataset of the Tanqua depocentre was 

used to establish proximal to distal trends of hybrid bed distribution, whereas the 

Laingsburg depocentre dataset was used to establish stratigraphic trends (Fig. A.2). 

Furthermore, for selected lobe complexes moving stratigraphic averages were 

established. For this purpose, each succession was divided into equal intervals and 

the proportion of structureless sandstone, structured sandstone, siltstone, hybrid 

beds, debrites and claystone was determined and depicted graphically next to the 

core data set. 
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Fig. A.2. Screenshot of raw data evaluation for establishment of stratigraphic trends of the Laingsburg 
depocentre (BSL and Bav 1b cores). 
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Appendix B 

Outcrop and well locations 

 

B.1 Unit A, Laingsburg Formation 

 

B.1.1 Outcrop 

 

 

Table B.1 UTM positions of outcrop section in Unit A, Laingsburg Formation. 

B.1.2 Well locations 
 

 

Table B.2 UTM positions of well locations in Unit A, Laingsburg Formation. 

 

Name Abbrevation Easting Northing

Skeidingen 1 SK1 471633 6324409

Skeidingen 2 SK2 474177 6323462

Rietfontein 1 RF1 473247 6327299

Doornkloof 1 DK1 462193 6330990

Doornkloof 2 DK2 461431 6330838

Doornkloof 3 DK3 462571 6330976

Doornkloof 4 DK4 463809 6330939

Doornfontein 1 DF1 466988 6330577

Doornfontein 2 DF2 465737 6330567

Jakkalsfontein 1 JF1 468861 6336167

Jakkalsfontein 2 JF2 467856 6336120

Jakkalsfontein 3 JF3 467276 6336071

Dapperfontein 1 DAF1 466447 6335840

Dapperfontein 2 DAF1 465808 6335784

R354 R354 463464 6335832

Steekweglagte1 SWL1 475787 6337379

Steekweglagte2 SWL2 475029 6339345

Roggekraal RK1 478101 6339001

Waterkloof WK1 468441 6338988

Wilgerhoutfontein WHF1 463573 6338603

Wilgerhoutfontein 2 WHF2 462806 6338345

Name Abbrevation Easting Northing

ZKNL1 ZKNL1 465129 6334675

BSL1 BSL1 472480 6325243

DK1 DK1 461570 6331811

Bav_1b Bav_1b 473948 6324692
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B.2 Unit D/E and E, Fort Brown Formation 

 

B.2.1 Outcrop 
 

 

Table B.3 UTM positions of outcrops of Unit D/E and E1, Fort Brown Formation. 

Name Abbrevation Easting Northing

Zoutkloof ZK 1 480586 6337532

ZK2 480521 6337310

ZK3 480423 6337125

ZK4 480295 6336928

ZK5 480256 6336702

ZK6 480199 6336491

ZK7 480150 6336439

ZK8 480100 6336334

ZK9 480081 6336290

ZK10 479946 6336154

ZK11 479709 6336036

ZK12 479501 6335939

ZK13 479442 6335919

ZK14 479408 6335863

ZK15 478577 6335739

ZK16 478316 6335661

ZK17 478232 6335651

ZK18 478105 6335618

ZK19 477850 6335536

ZK20 477800 6335517

ZK21 477205 6335371

ZK22 476767 6335169

ZK23 476732 6335132

ZK24 476469 6335050

ZK25 476265 6335047

ZK26 476111 6334978

ZK27 482739 6332782

ZK28 482839 6332844

ZK29 483044 6332819

ZK30 483187 6332817

ZK31 483332 6332806

ZK32 483421 6332789

ZK33 483550 6332787

ZK34 483753 6332808

ZK35 483909 6332797

ZK36 482499 6332818

ZK37 482398 6332794

ZK38 482185 6332792

ZK39 481805 6332816

ZK40 481442 6332792

ZK41 480886 6332705

ZK42 480553 6332684

ZK43 480366 6332678

ZK44 480096 6332681
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Table B.4 UTM positions of outcrops of Unit D/E and E1, Fort Brown Formation. 

 

 

 

 

 

 

Name Abbrevation Easting Northing

Roggekraal Rk 1 480598 6337937

Rk2 480766 6338076

Rk3 480838 6338198

Rk4 481098 6338501

Rk5 481134 6338942

Rk6 481086 6339100

Rk7 480808 6339236

Rk8 480738 6339314

Rk9 480667 6339557

Rk10 480540 6339690

Rk11 480716 6339735

Rk12 480844 6339736

Rk 13 481021 6339766

Rk14 481215 6339789

Rk15 481475 6339836

Rk16 481517 6339961

Rk17 481435 6340022

Rk 18 481298 6340066

Rk19 481112 6340117

Rk20 480887 6340198

Rk21 480587 6340281

Rk22 480272 6340349

Rk23 477988 6340392

Rk24 479751 6340461

Rk25 479475 6340526

Rk26 479262 6340551

Rk27 479072 6340590

Rk28 478811 6340631

Rk29 478590 6340635

Rk30 478320 6340615

Rk31 478098 6340600

Rk32 477915 6340572
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Table B.5 UTM positions of outcrops of E2, Fort Brown Formation 

Name Abbrevation Easting Northing

Geelbeck GB1 498630 6323836

GB2 498643 6323901

GB3 498710 6323996

GB4 499017 6323895

GB5 499033 6323879

GB6 499054 6323769

GB7 499055 6323723

GB8 499090 6323677

GB9 499130 6323593

GB10 499185 6323597

GB11 499283 6323595

GB12 499354 6323597

GB13 499425 6323587

GB14 499512 6323563

GB15 499618 6323581

GB16 499707 6323599

GB17 499774 6323610

GB18 499861 6323623

GB19 499915 6323633

GB20 500012 6323648

GB21 500124 6323672

GB22 500228 6323655

GB23 500358 6323667

GB24 500439 6323648

GB25 500517 6323657

GB26 500699 6323633

GB27 500778 6323633

GB28 500872 6323695

GB29 500968 6323667

GB30 501065 6323692

GB31 501154 6323690

GB32 501209 6323686

GB33 501318 6323704

GB34 501406 6323612

GB35 501563 6323597

GB36 501701 6323637

GB37 501943 6323699

GB38 498483 6323791

GB39 498294 6323754

GB40 498322 6323759

GB41 497691 6323793

GB42 497479 6323809

GB43 497163 6323791

GB44 497095 6323774

GB45 496933 6323728
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B.3 Fan 4, Skoorsteenberg Formation 
 

B.3.1 Outcrop 
 

 

Table B.6 UTM positions of outcrops of Fan 4 Skoorsteenberg Formation. 

B.3.2 Well locations 
 

 

Table B.7 UTM positions of well locations of Fan 4 Skoorsteenberg Formation. 

Name Abbrevation Easting Northing

Klipfontein KF1 404403 6394541

KF2 405023 6395007

KF3 405436 6395235

KF4 405805 6395895

Hammerkranz HK1 412507 6386232

HK2 412728 6386061

Sout Rivier OC1 412427 6396751

OC2 412303 6397253

OC3 412535 6397613

OC4 412181 6397733

OC5 412093 6398031

OC6 412434 6398045

OC7 412258 6399662

Isle of Sky IoS 1 412274 6403598

IoS 2 412287 6403592

Ios 3 412998 6402611

IoS 4 413307 6402164

Ios 5 412541 6401486

Ios6 408229 6399925

Ios7 410012 6400198

Rondawell RW1 412136 6387342

RW2 411594 6388076

Grootfontein GF1 403753 6389844

Vaalfontein VF1 407876 6397379

Name Abbrevation Easting Northing

Bloukopp BK1 412244 6379944

Gemsbock East GBE 415220 6386072

Koppieskraal KK 402466 6372470

Ongeluks River OR 405625 6367897

Nomad Cores NB2 410274 6383578

NS1 413782 6395109

NS2 416234 6386267

NS3 414799 6377911
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Appendix C 

Core logs 

C.1 BSL 

 

Figure C.1. Core log of the BSL core, Unit A, Laingsburg Formation 
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C.1.1 Description 

 

Core interval:          492-222.4 m 

Total thickness:        269.6 m 

Unit A.1:                            29.9 m  

Unit A.2:                            21.9 m 

Unit A.3:                            41.4 m 

Unit A.5:                            109.1 m 

Unit A.6:                            48.4 m 

Box:          41-98 

 

492-490.1 m: Thin-bedded coarse- and fine grained siltstones. Beds are commonly 

bioturbated. The package is topped by a hemipelagic claystone interval. 

490.1-488.0 m: Two thickening and coarsening upward packages. Both packages 

start with planar laminated fine-grained siltstone and coarsen to fine-grained 

sandstones. Minor erosional surfaces are observed within both packages. 

488.0-482.2 m: Medium- to thick-bedded structureless sandstones. Some beds 

comprise mudstone-chips either in their bases or tops. The packages is divided into 

two divisions by 0.2 m of fine- to coarse grained siltstone. 

482.2-480.6 m: Heterolithic package comprising structured very fine-grained 

sandstone interbedded with fine- and coarse-grained siltstone. Bioturbation of 

siltstones and soft sediment deformation of sandstones is observed. 

480.6- 472.8 m: Predominately medium-to thick-bedded fine-grained sandstone 

beds. Planar lamination is observed at the tops of beds. Normal grading is common. 

Carbonaceous matter is observed at the top of individual beds. Amalgamation and 

erosional surfaces are common. 

472.8- 464.6 m: The lower part of this package is characterised by very fine to fine-

grained sandstone interbedded with fine- and coarse grained siltstone. Some 

sandstone beds are climbing-ripple laminated, while others show soft-sediment 

deformation. The upper part is characterised by planar laminated coarse siltstone. 

464.6- 460.1 m: Very fine to fine-grained sandstone interbedded with fine- and coarse 

grained siltstone. Sandstones can be ripple laminated, cross-laminated or 

structureless. Siltstones are commonly planar laminated and can show bioturbation. 
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460.1- 459.7 m: Planar laminated claystone package. 

459.7-441.0 m: Thick- to thin-bedded very fine- and fine-grained sandstone beds. 

The majority of beds show sedimentary structures (planar lamination, current ripple 

lamination, wavy lamination). Beds can comprise mudstone chips and mudstone 

clasts. Soft-sediment deformation and dewatering are common. Some beds show 

banding with mudstone chips orientated on the clay-rich bands. 

441.0-437.8 m: Coarse- and fine-grained siltstone package. A few sandstone beds 

are intercalated in the silt-prone interval. Siltstones display planar lamination. 

Bioturbation is common. 

437.8-436.2 m: Bioturbated silty claystone to fine siltstone package. 

436.2-424.0 m: This package is dominated by thick-bedded fine-grained sandstone. 

Individual thick-bedded sandstone packages are separated by thin intervals of thin-

bedded very fine-grained sandstones and siltstones. Carbonaceous material is found 

at bed tops, while mudstone and siltstone clasts are located at the base of beds. 

424.0- 422.5 m: Medium- to thin-bedded very fine- to fine grained sandstone 

interbedded with siltstones. Sandstone beds comprise abundant mudstone and 

siltstone clasts and mudstone chips. Dewatering features are observed. 

422.5- 402.9 m: Thick- to medium bedded normal graded fine-grained sandstone 

beds. Some beds show planar or current ripple laminated tops, while others comprise 

sub-rounded mudstone clasts at their tops. Dewatering at the bases of beds is 

common. Some beds comprise mudstone clasts at their bases. Amalgamation and 

erosion surfaces are common. Thin-bedded siltstone intervals are intercalated and 

separate individual packages. 

402.9-401.1 m:  Medium-bedded very fine-grained sandstone interbedded with thin-

bedded siltstone. Sandstones increase in mud-content to the top and comprise 

mudstone clasts. 

401.1- 399.6 m: Thick-bedded normal graded fine-grained sandstone, planar and 

current ripple to climbing ripple laminated with some floating subrounded mudclasts 

399.6- 394.8 m: Very fine- and fine grained sandstone interbedded with coarse- and 

fine-grained siltstone. Sandstone beds show current ripple and cross-lamination, 

dewatering and soft-sediment deformation. Siltstones are planar laminated and can 

be bioturbated. The interval is topped by claystone. 
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394.8-391.6 m: Bioturbated coarse- and fine siltstone interval. Normal grading is 

observed. 

391.6-384.8 m: This package comprises dominantly structureless thick-bedded 

normal graded very fine-sandstones. 

384.8-382.0 m: Medium- to thin-bedded sandstones intercalated with siltstone and 

claystone deposits. Mud-content in sandstone beds increases upwards. The upper 

division of these beds comprise mudstone chips, dewatering features and mudstone 

clasts. Carbonaceous material can also be observed.  

382.0-368.9 m: Thick- to medium-bedded normal graded very fine- to fine-grained 

sandstone. Mudstone chips in the matrix are common. Rare banding and ripple 

lamination is observed. The uppermost sandstone beds show abundance on soft-

sediment deformation and carbonaceous material. 

368.9-367.0 m: Thin-bedded fine-grained sandstone beds interbedded with coarse- 

and fine-grained siltstones. Sandstones are current ripple, wavy or climbing ripple 

laminated. Siltstone beds are planar laminated.  

367.0 - 361.3 m: Medium- to thin-bedded very-fine sandstone. Individual beds show 

planar and/or current ripple lamination. Some beds show banding that can be 

discontinuous. 

361.3- 354.9 m: Medium- to thin-bedded very fine to fine-grained sandstone that is 

commonly normal graded. Sandstones are intercalated with thin-bedded planar 

laminated siltstones. Sandstone beds show abundant sedimentary structures (planar 

lamination, current ripple lamination). Soft-sediment deformation is common. 

354.9-352.4 m: Thick- to medium bedded sandstones that re dominantly 

structureless. 

352.4- 348.2 m: Thin-bedded very fine-grained sandstone interbedded with coarse-

grained siltstone. Planar lamination is the dominant sedimentary structure. 

348.2- 329.2 m: Thick- to medium bedded normal graded fine-grained sandstones 

intercalated with thin siltstone intervals that separate individual packages. Sandstone 

beds are mostly structureless, but some tops are planar laminated and ripple 

lamination is rarely observed. Amalgamation and erosional surfaces are common. 

Sandstone beds can comprise a high amount of mudstone chips in their matrix. 
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329.2- 327.9 m: Thin-bedded very fine-grained sandstone interbedded with coarse-

grained siltstone. Planar lamination and current ripple lamination are the dominant 

sedimentary structures. 

327.9-323.9 m: Thick- to medium-bedded fine-grained sandstones. Tops can be 

planar or cross-laminated. Dewatering features on bases of beds are common. 

Mudstone chips are abundant on in the sandstone matrix. 

323.9-316.7 m: Thin-bedded very fine- to fine grained normal graded sandstone 

interbedded with fine- and coarse-grained siltstone. Siltstone beds are planar 

laminated, whereas sandstone beds are planar, current ripple or climbing-ripple 

laminated. 

316.7-291.4 m: Thick- to medium bedded normal graded fine-grained sandstone 

packages intercalated with thin-bedded heterolithic packages of very fine-grained 

sandstone and siltstone that are current ripple and climbing ripple laminated. Thick-

bedded sandstone deposits commonly show dewatering features on their bases. 

291.4- 285.9 m: Heterolithic package of interbedded very fine-grained sandstone and 

siltstone. Siltstone beds are planar laminated, whereas sandstone beds are planar, 

current ripple or climbing-ripple laminated. 

285.9-282.8 m: Medium to thin-bedded sandstone with dominantly planar lamination 

at their tops. Normal grading is common, but inverse grading occurs as well. 

282.8- 270.95 m: Claystone package with intercalated fine-grained siltstones and 

sand-grained clastic injectites. 

270.95-264.95 m: Medium bedded fine-grained sandstone intercalated with 

heterolithic packages of very fine-grained sandstone and siltstone. Thin-bedded 

sandstones are planar or ripple laminated, while siltstones are mostly planar 

laminated. Medium-bedded sandstones are structureless and show increase in mud-

content to their tops that can also have swirly fabric with incorporated mudstone chips 

and mudstone clasts. 

264.95- 250.3 m: Thick- to medium-bedded normal graded sandstone. Beds are 

commonly structureless with dewatering features. Some beds show planar, current 

ripple or climbing-ripple lamination. 

250.3- 242.8 m: Basal division comprises thin-bedded structured (planar and current 

ripple lamination) sandstone interbedded with siltstone. Upwards the package 

consists of medium- to thick-bedded fine-grained sandstone with abundant mudstone 
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clasts throughout the beds. These beds are separated by thin siltstone intervals. The 

top division of the package is made up by heterolithic deposits of very fine-grained 

sandstone and siltstone. 

242.98- 240.4 m: Thick-bedded fine grained sandstones. Tops can be planar 

laminated. 

240.4- 233.3 m: Very thin- to thin-bedded very fine-grained sandstone interbedded 

with fine- and coarse-grained siltstone. Sandstone beds are planar or current ripple 

laminated. 

233.3- 222.4 m: Package of dominantly coarse siltstone that can be intercalated with 

thin very fine-grained sandstone and fine siltstone. 

 

C.1.2 Interpretation 

 

The well is located in a proximal axial setting of Unit A (Fig. C.2). The core log 

comprises Subunits A.1- A.6. Subunit A. 1 consists of 12 distinguishable lobes that 

show compensational stacking of lobes axes and fringe deposits. A.1 is separated 

from A.2 by a ~12 m thick siltstone package. Subunit A.2 comprises 8 lobes. Deposits 

from predominantly lobe axis alternate with lobe fringe deposits. Subunits A.2 and 

A.3 are separated by a 4.5 m thick claystone/siltstone package. A.3 consists of 15 

lobes. Deposits show dominantly lobe axis and off-axis facies. A.3 and A.5 are 

separated by 3 m of silty claystone. Subunit A.5 is the thickest subunit of Unit A (~110 

m). It comprises 38 lobes. Subunits A.5 and A.6 are separated by a 12m thick 

claystone package with clastic sills and dykes. A. 6 consists of 13 lobes and a thick 

lobe fringe complex at the top. 

 

Figure C.2. Laingsburg depocentre showing the position of BSL. The BSL core is located in a proximal 
axial setting of Unit A. 
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C.2 ZKNL 

 

Figure C.3. Core log of ZKNL core, Unit A, Laingsburg Formation 
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C.2.1 Description 

 

Core interval:   335.8- 167.6 m 

Total thickness:  168.2 m 

Unit A.1:                            12.8 m 

Unit A.2:                            20.4 m 

Unit A.3:                            65 m (35 m of deformed facies) 

Unit A.5:                            34.5 m (14.1 m of deformed facies) 

Unit A.6:                            23 m 

Box:    32-64 

 

335.8-323 m: Thin to medium-bedded very fine sandstone interbedded with coarse 

and fine siltstone. Thin-bedded sandstone deposits are current ripple and climbing-

ripple laminated, while medium-bedded sandstone deposits are structureless with 

some dewatering features. Siltstone beds are structureless or planar laminated and 

can display bioturbation. 

323-322.4 m: Package of interbedded silty claystone and fine siltstone. 

322.4-319.9 m: Medium-bedded very fine- to fine grained sandstone. Beds are 

structureless or planar laminated. Normal grading is common. Beds show relative 

high amount of mudstone chips at their bases and tops and rare intraformational 

siltstone clasts. 

319.9-317.9 m: Dominantly thin-bedded coarse siltstone interbedded with fine 

siltstone. Normal grading is observed.  

317.9-315.4 m: Thick-bedded fine-grained sandstone bed overlain by thin-bedded 

very fine-grained sandstones. All beds show swirly fabric at their top and 

carbonaceous material.  

315.4-314.7 m: Coarsening upward heterolithic package. Thin-bedded coarse 

siltstone is overlain by thin-bedded structureless or wavy laminated very-fine grained 

sandstone interbedded with fine siltstone. 

314.7-305.6 m: Thick- to medium-bedded fine- to very fine-grained sandstone, 

separated by packages of thin-bedded siltstone or heterolithic packages of 

interbedded siltstone and sandstone. Thick-bedded sandstone deposits are 
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structureless, while medium-bedded sandstone deposits can have current ripple 

laminated tops, dewatering features and mudstone chips. 

305.6-302.8 m: Thin-bedded fine and coarse siltstone interbedded with rare thin-

bedded very fine-sandstone. Some beds are bioturbated. 

302.8-302.0 m: Coarsening upward package. The base comprises thin-bedded 

coarse siltstone overlain by medium-bedded very fine-grained sandstone with cross-

lamination. 

302.0-274.3 m: Folded coarse and fine siltstone with interbedded thin-bedded very-

fine sandstone deposits. Siltstones can show bioturbation. The package also 

comprises minor intervals with disintegrated sandstones encased by siltstone. 

274.3-269.8 m: Thin-bedded coarse and fine siltstone interbedded with few thin-

bedded very-fine grained sandstone.  

269.8-267.1 m:  Folded coarse and fine siltstone 

267.1- 258.7 m: Basal coarsening upward package comprising thin-bedded siltstone 

and very fine- to fine-grained sandstone. This package is overlain by medium- to 

thick-bedded fine-grained sandstone packages that are separated by siltstone-prone 

intervals. Planar lamination is the dominantly sedimentary structure and occurs on 

bed tops. Dewatering features are common. Individual beds can comprise mudstone 

chips and/or mudstone clasts. 

258.7-254.3 m: Thin-bedded fine and coarse siltstone intercalated with medium-

bedded planar laminated very fine-grained sandstone. 

254.3-252.0 m: Folded coarse and fine siltstone. 

252.0- 249.3 m: Coarsening upward package. Basal thin-bedded fine siltstone is 

overlain by thin-bedded coarse siltstone and eventually thin-bedded very fine-grained 

sandstone. 

249.3-244.2 m: Highly amalgamated fine-grained sandstone package. The top is 

planar laminated. 

244.2-237.1 m: Medium- to thick-bedded fine- to very fine-grained sandstone. The 

majority of beds show increasing mud content to the top. Commonly the tops show 

swirly fabric and carbonaceous material and/or mudstone chips. Some beds comprise 

a high amount of mudstone and intraformational clasts. 
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237.1-222.9 m: Folded coarse and fine siltstone with interbedded thin-bedded very-

fine sandstone deposits. Siltstones can show bioturbation. The package also 

comprises minor intervals with disintegrated sandstones encased by siltstone. 

222.9-221.3 m:  Thin-bedded fine siltstone interbedded with coarse siltstone. 

221.3-213.6 m: Thickening- upward package comprising thin- to thick-bedded fine- 

to very fine-grained sandstone. The basal thin-bedded sandstone deposits have tops 

with swirly fabric and carbonaceous material, while overlying medium-bedded 

sandstone deposits show planar and current ripple- laminated. The uppermost thick-

bedded sandstone deposits show no structures. 

213.6-212.3 m: Fine and coarse siltstones intercalated with rare current ripple 

laminated very fine-grained sandstone. 

212.3-202.5 m: Thin- to medium-bedded fine- to very fine-grained sandstone 

intercalated with thin-bedded siltstone packages. Tops show swirly fabric with 

carbonaceous material, planar lamination, current ripple lamination or climbing ripple 

lamination. Normal grading and amalgamation is common. 

202.5- 190.7 m: Claystone intercalated with thin-bedded fine and coarse siltstone, 

ash layers. Clastic injections are common. 

190.7- 183.6 m: Medium-bedded fine-grained sandstone, overlain by thick-bedded 

fine-grained sandstone. In the lower part beds comprise mudstone chips and 

mudstone clasts (at their bases). Thick-bedded sandstones in the upper half show 

dewatering features and planar laminations. 

183.6-179.7 m: Claystone interbedded with fine and coarse siltstone. Bioturbation is 

common. 

179.7-174.1 m: Basal part coarsens and thickens upward from thin-bedded siltstones 

to medium-bedded structured sandstones. Upper part is thick-bedded and 

structureless except for planar lamination. Deposits are normal graded. 

174.1- 167.6 m: Heterolithic package comprising very fine-grained sandstone (planar, 

current ripple and climbing ripple laminated), planar laminated coarse siltstone and 

structureless/planar laminated fine siltstone. 
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C.2.2 Interpretation 

 

The well is located in a lateral off-axis to fringe position of Unit A (Fig.C.4). The core 

log comprises Subunits A.1-A.6. Subunit A.1 is deposited in an overall fringe setting 

and consists of 9 distinguishable lobes that are commonly deposited in lobe lateral 

fringe environments. Subunit A.2 is overall deposited in an off-axis position. The 

subunit comprises 13 lobes that show compensational stacking of axis, off-axis, fringe 

and distal fringe deposits. The boundary to Subunit A.3 is marked by an erosion 

surface that is overlain by slide deposits. These slide deposits are 34 m thick. The 

lobe-dominated part of Subunit A.3 comprises 10 lobes and a fringe complex. The 

lobes show compensational stacking of deposits from axis, off-axis and fringe 

environments. The top of Subunit A.3 is characterised by an erosion surface that is 

overlain with the slide deposits of A.5 (~ 14 m thick). The lobate part of Subunit A.5 

comprises 8 lobes that are deposited in predominantly in off-axis settings. Subunits 

A.5 and A.6 are separated by a ~11 m thick claystone package that comprises sills 

and dykes. Subunit A.6 has a basal package of two lobes (axis/off-axis) that is 

separated by a second package of sandstone-rich lobes by a distal fringe complex. 

Upwards A.6 comprises a thick fringe complex that includes a ~4 m thick slide deposit. 

 

 

Figure C.4. Laingsburg depocentre showing the position of ZKNL. The ZKNL core is located in a lateral 
off-axis to fringe setting of Unit A. 
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C.3 OR 

 

Figure C. 5. Core log of OR core, Fan 4, Skoorsteenberg Formation 
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C.3.1 Description 

 

Core interval:   136.13-72.95 m 

Total thickness: 63.2 m 

Lower Fan 4:  24.7 m 

Upper Fan 4:  34.9 m 

Box:   17-30 

 

136.13-133.53 m: The lower subunit has a basal heterolithic package (2.6 m) 

consisting of claystone, siltstone and current ripple/planar laminated laminated very 

fine-grained sandstone. 

 

133.53-130.23 m: A 3.2 m thick package of structured very fine- to fine-grained 

sandstone, occasionally with erosive basal surfaces.  

 

130.23 m: A 13.6 m thick unit that consists of banded and planar laminated 

sandstone, occasionally topped by current ripple laminations. Some bed tops are rich 

in plant matter. 

 

130.23-116.63 m: A 1m thick heterolithic package consisting of claystone, 

bioturbated siltstone and current ripple laminated sandstone.  

 

116.3-112.3 m: A 4.3 m thick succession of fine-grained structureless and structured 

sandstone, capped by a mudstone chips-rich hybrid bed 

112.3-106.5 m: A 5.8 m thick claystone/siltstone unit with thin (<0.1 m) interbedded 

very fine-grained sandstones separates the lower and upper subunit of the fan. 

106.5-102.9 m: The upper part has a basal package (3.6 m) of banded and planar 

laminated sandstone.  

102.9-98.4 m: An amalgamated package (4.5 m) of structureless sandstone overlies 

an erosion surface that truncates the underlying package. 

98.4-88.4 m: Interbedded medium- to thick-bedded carbonaceous hybrid beds, 

banded sandstone and climbing-ripple laminated sandstone.  
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88.4-72.95 m: The top package of the upper subunit comprises 15.45m of 

interbedded bioturbated claystone/siltstone as well as current and climbing-ripple 

laminated very fine- to fine-grained sandstone. 

 

C.3.2 Interpretation 

 

The well is located in a proximal and axial setting of Fan 4 (Fig. C.6), which comprises 

three lobe complexes. The lower and upper parts of Fan 4 are separated by a ~6 m 

thick claystone/siltstone package. The lower part of Fan 4 comprises lobe axis 

deposited that alternate with lobe fringe deposits. Overall 9 lobes are distinguished. 

The upper part comprises lobe off-axis and lobe fringe deposits that are 

compensationally stacked. The top is built up by external levee. 

 

 

Figure C.6. Tanqua depocentre showing the position of OR in Fan 4. The OR core is located in a proximal 
and axial position of Fan 4. 
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C.4 KK 

 

Figure C.7. Core log of the KK core, Fan 4, Skoorsteenberg Formation 



232 
 

 

C.4.1 Description 

 

Core interval:   45.88-0 m 

Total thickness: 45.88 m 

Lower Fan 4:  22.5 m 

Upper Fan 4:  22.7 m 

Box:   1-11 

 

45.88-41.68 m: The basal part of the lower subunit is made up by bioturbated 

claystone and siltstone as well as current and climbing-ripple laminated very fine-

grained sandstone. 

41.68-37.28 m: The basal part is overlain by structured very fine- and fine-grained 

sandstone (4.4 m thick) either structureless or ripple to planar laminated. 

37.28-35.28 m: This package comprises current ripple laminated very fine-grained 

sandstones, planar laminated siltstones that can be bioturbated, silty claystone and 

a rare banded fine-grained sandstone bed.  

35.28-27.58 m: A thinning upwards succession that is dominated by carbonaceous 

hybrid beds interbedded with fine-grained structureless sandstone with dewatering 

features. 

27.38-23.18 m: The upper 4.2 m of the lower subunit comprises structureless and 

structured sandstones that show a weak thinning upward trend.  

23.18-22.48 m: The subunits are separated by a 0.6 cm thick thin-bedded 

claystone/siltstone unit. 

22.48-20.38 m: The upper subunit has a basal structureless bed (2.1 m) with erosive 

base overlain by mudstone rip-up clasts.  

20.38-12.18 m: A thinning upwards package (8.2 m) comprising carbonaceous hybrid 

beds interbedded with banded and structured sandstone beds. Some of the hybrid 

beds have planar laminated vfs caps (< 0.1 m). 

12.18-8.28 m: This unit is characterised by thick-bedded structureless and medium-

bedded normally graded structured fine-grained sandstones. 
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8.28-8.0 m: A 0.3 m thick predominately silty mudstone unit truncated by an erosion 

surface. 

8.0-4.8 m: Normally graded banded carbonaceous fine-grained sandstone beds. 

4.8-3.9 m: Not recovered. 

3.9-0 m: Very fine-grained thin-bedded structured sandstone overlain by thin- to thick-

bedded structureless fine-grained sandstone.  

 

C.4.2 Interpretation 

 

The well is located in a proximal axial setting of Fan 4 (Fig. C.8). The lower and upper 

sand-rich lobe complexes of Fan 4 are separated by a~0.5 m thick claystone package 

(distal lobe complex). The lower part comprises 6 lobes. Lobe axis deposits alternate 

with lobe lateral fringe deposits. The upper part consists of 6 lobes. Lobe axis deposits 

alternate with thin lobe fringe and distal fringe deposits. The top of Fan 4 is not 

recovered. 

 

Figure C.8. Tanqua depocentre showing the position of KK in Fan 4. The KK core is located in a proximal 
and axial position of Fan 4. 
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C.5 BK 

 

Figure C.9. Core log of BK1 core, Fan 4, Skoorsteenberg Formation 
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C.5.1 Description 
 

Core interval:   108.73-52.76 m 

Total thickness: 56 m 

Lower Fan 4:  32.5 m 

Upper Fan 4:  22.4 m 

Box:    24-37 

 

108.73-103.73 m: The basal interval (5 m) of the lower subunit is made up by a 

heterolithic package that comprises thin-bedded bioturbated claystones and 

siltstones as well as current ripple laminated very fine-grained sandstone beds. Rare 

erosion surfaces and sandstones with argillaceous bed tops are present. 

10.3.73-91.3 m: The overlying part of the lower subunit is dominated by 

carbonaceous and mudstone clast-rich hybrid beds intercalated with structured very 

fine- to fine-grained sandstone, banded sandstone and thin (<0.5 m) heterolithic units. 

Some beds show dewatering features at their bases. 

91.3-77 m: The upper unit comprises a succession of structureless sandstone with 

dewatering features, planar laminated fine-grained sandstone, and banded 

sandstones with ripple and climbing-ripple lamination at their tops. Rare hybrid beds 

with upper argillaceous carbonaceous divisions are intercalated. 

77-75.9 m: A 1.1 m thick thin-bedded claystone/siltstone unit separates the lower and 

upper fan. The interval comprises 0.6 m of claystone. 

75.9-71.4 m: The upper subunit comprises abundant clast-rich hybrid beds in its basal 

unit (4.5 m) that are associated with structureless and banded sandstones and topped 

by a heterolithic package comprising ripple-laminated very fine-grained sandstone, 

fine siltstone and silty claystone. 

71.4-64.4 m: The next 7 m are dominated by banded sandstone. Alternating 

argillaceous and clean sandstone bands can form the last 10-15 cm of otherwise 

structureless sandstone beds. Sandstone bands can overlying climbing-ripple 

laminated divisions of sandstone beds, when beds are amalgamated with each other. 

64.4-62.9 m:  A 1.5 m thick package of heterolithic strata consisting of dominantly 

ripple laminated very fine- to fine-grained sandstone, planar laminated siltstones and 

silty claystone. 
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62.9-59.8 m: A 3.1 m thick succession of fine-grained banded sandstone, planar 

laminated sandstone and carbonaceous hybrid beds on top. 

59.8-53.5 m: The top comprises 6.3 m of interbedded bioturbated claystone and 

siltstone as well as current ripple and climbing-ripple laminated very fine-grained 

sandstone. 

 

C.5.2 Interpretation 
 

The well is located in an off-axis/fringe position for the lower lobe complex of Fan 4 

and in an off-axis position for the upper lobe complex of Fan 4 (Fig. C.10). The lower 

and upper lobe complexes are separated by a 0.7 m thick mudstone package (distal 

lobe complex). The lower lobe complex has a basal fringe complex that is overlain by 

12 lobes. Off-axis deposits alternate with lobe frontal fringe deposits. The upper part 

comprises 5 lobes and a fringe complex at its top. Off-axis deposits are intercalated 

by lobe frontal fringe deposits. 

 

Figure C.10. Tanqua depocentre showing the position of BK in Fan 4. The BK core is located in an off 
axis/fringe position of Fan 4. 
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C.6 GBE 

 

Figure C.11. Core log of GBE core, Fan 4, Skoorsteenberg Formation 
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C.6.1 Description 

 

Core interval:   123.20-81.61 m 

Total thickness: 42.6m 

Lower Fan 4:  11.1 m 

Upper Fan 4:  30.6 m 

Box:    19-28 

 

123.2-119 m: The lower subunit starts with a basal heterolithic unit that comprises 

bioturbated claystone and siltstone, current ripple laminated very fine-grained 

sandstone and interbedded hybrid beds. The thickness of the mudstone clasts-rich 

and carbonaceous hybrid beds are variable (<0.1 m to 0.3 m). 

119-112 m: This interval comprises three packages that comprise hybrid beds with 

argillaceous carbonaceous upper divisions and subsequent planar laminated to 

banded sandstones. These packages thicken upwards and are separated by ~ 0.5 m 

thick heterolithic packages of interbedded siltstone and sandstone.  

112-111.1 m: The lower and upper subunit are separated by a 0.9 m thick thin-

bedded claystone/siltstone unit. 

111.1-89.4 m: The upper subunit is dominated by structured sandstone (planar and 

current ripple laminated), structureless sandstone and banded sandstone, that are 

separated in packages by heterolithic intervals.  

89.4-85.8 m: A 3.6 m thick heterolithic package comprising ripple laminated very fine-

sandstone, bioturbated siltstone and silty claystone as well as rare mudstone chip-

rich sandstone beds. 

85.8-82.8 m: Amalgamated fine-grained sandstone package with rip-up clasts and 

dewatering features at the base and high proportion of organic matter content at the 

top.  

82.8-81.61 m: The top of the upper subunit is preserved by another heterolithic 

package with bioturbated claystone and siltstone as well as current and climbing-

ripple laminated very fine-grained sandstone. 
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C.6.2 Interpretation 

 

The well is located in a fringe position for the lower lobe complex of Fan 4 and in an 

off-axis/axis position for the upper lobe complex of Fan 4. The lower and upper lobe 

complexes are separated by a 0.5 m thick claystone package intercalated with very 

thin sandstones (distal lobe complex). The lower part has 8 lobes that represent 

deposits from lobe frontal fringe and lateral fringe settings. The upper part comprises 

7 lobes and two fringe complexes. Lobe axis deposits are intercalated with lobe frontal 

fringe deposits. 

 

Figure C.12. Tanqua depocentre showing the position of GBE in Fan 4. The KK core is located in a 
fringe position for lower Fan 4 and off-axis/axis position of upper Fan 4. 
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Appendix D 

Unit A –additional correlation panels 

 

Figure D.1. Additional correlation panel of Unit A, Laingsburg Formation showing the Dapperfontein-
Jakkalsfontein limb; DPF: Dapperfontein; JF: Jakkalsfontein 
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Figure D.2. Correlation panel of Unit A, Laingsburg Formation showing the Doornkloof-Doornfontein 
limb. DK: Doornkloof; DF: Doornfontein 
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Appendix E 
 

Intraslope lobe- additional correlation panels 
 

 

Figure E.1. Roggekraal N correlation panel of Unit D/E and E1, Fort Brown Formation; RK: Roggekraal 
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Figure E.2. Roggekraal correlation panel of Unit D/E and E1, Fort Brown Formation; RK: Roggekraal 
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Figure E.3. Zoutkloof North correlation panel of Unit D/E and E1, Fort Brown Formation; Zk: Zoutkloof 
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Figure E.4. Zoutkloof South correlation panel of Unit D/E and E1, Fort Brown Formation; Zk: Zoutkloof 
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